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PREFACE

[The Art of Combinations] has a relation
to almost every species of useful knowledge
that the mind of man can be employed upon.

— JAMES BERNOULLI, Ars Conjectandi (1713)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, and 3
were at the time of their first printings. And those carefully-checked volumes,
alas, were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make it both interesting and authoritative, as far as it goes. But the
field is so vast, I cannot hope to have surrounded it enough to corral it completely.
Therefore I beg you to let me know about any deficiencies you discover.

To put the material in context, this is Section 7.2.1.3 of a long, long chapter
on combinatorial algorithms. Chapter 7 will eventually fill three volumes (namely
Volumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It will
begin with a short review of graph theory, with emphasis on some highlights
of significant graphs in The Stanford GraphBase, from which I will be drawing
many examples. Then comes Section 7.1, which deals with the topic of bitwise
manipulations. (I drafted about 60 pages about that subject in 1977, but those
pages need extensive revision; meanwhile I’ve decided to work for awhile on
the material that follows it, so that I can get a better feel for how much to
cut.) Section 7.2 is about generating all possibilities, and it begins with Section
7.2.1: Generating Basic Combinatorial Patterns which, in turn, begins with
Section 7.2.1.1, “Generating all n-tuples,” and Section 7.2.1.2, “Generating all
permutations.” (Readers of the present booklet should have already looked at
those sections, drafts of which are available as Pre-Fascicles 2A and 2B.) The
stage is now set for the main contents of this booklet, Section 7.2.1.3: “Gener-
ating all combinations.” Then will come Section 7.2.1.4 (about partitions), etc.
Section 7.2.2 will deal with backtracking in general. And so it will go on, if all
goes well; an outline of the entire Chapter 7 as currently envisaged appears on
the taocp webpage that is cited on page ii.

iii



iv PREFACE

Even the apparently lowly topic of combination generation turns out to be
surprisingly rich, with ties to Sections 1.2.1, 1.2.4, 1.2.6, 2.3.2, 2.3.4.2, 3.4.2,
4.3.2, 4.6.1, 4.6.2, 5.1.2, 54.1, 5.4.2, 6.1, and 6.3 of the first three volumes.
I strongly believe in building up a firm foundation, so I have discussed this topic
much more thoroughly than I will be able to do with material that is newer or
less basic. To my surprise, I came up with 110 exercises, even though — believe
it or not —1I had to eliminate quite a bit of the interesting material that appears
in my files.

Some of the things presented are new, to the best of my knowledge, although
I will not be at all surprised to learn that my own little “discoveries” have been
discovered before. Please look, for example, at the exercises that I've classed as
research problems (rated with difficulty level 46 or higher), namely exercises 53,
56, 67, and 83; I've also implicitly posed additional unsolved questions in the
answers to exercises 59, 63, 101, 105, and 109. Are those problems still open?
Please let me know if you know of a solution to any of these intriguing questions.
And of course if no solution is known today but you do make progress on any of
them in the future, I hope you’ll let me know.

I urgently need your help also with respect to some exercises that I made
up as I was preparing this material. I certainly don’t like to get credit for things
that have already been published by others, and most of these results are quite
natural “fruits” that were just waiting to be “plucked.” Therefore please tell
me if you know who I should have credited, with respect to the ideas found in
exercises 9, 18, 19, 20, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 41, 42, 43, 44,
45, 48, 51, 59, 62, 63, 64, 65, 66, 69, 79, 82(b—f), 85, 86, 87, 93, and/or 110.

I shall happily pay a finder’s fee of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I'll actually reward you with immortal
glory instead of mere money, by publishing your name in the eventual book:—)

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
13 June 2002
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7.2.1.3. Generating all combinations. Combinatorial mathematics is often
described as “the study of permutations, combinations, etc.,” so we turn our
attention now to combinations. A combination of n things, taken t at a time,
often called simply a t-combination of n things, is a way to select a subset of size ¢
from a given set of size n. We know from Eq. 1.2.6-(2) that there are exactly (;’)
ways to do this; and we learned in Section 3.4.2 how to choose t-combinations
at random.

Selecting t of n objects is equivalent to choosing the n — t elements not
selected. We will emphasize this symmetry by letting

n=s+t (1)

throughout our discussion, and we will often refer to a ¢-combination of n things
as an “(s,t)-combination.” Thus, an (s,t)-combination is a way to subdivide
s+ t objects into two collections of sizes s and t.

If | ask how many combinations of 21 can be taken out of 25,
| do in effect ask how many combinations of 4 may be taken.
For there are just as many ways of taking 21 as there are of leaving 4.

— AUGUSTUS DE MORGAN, An Essay on Probabilities (1838)

There are two main ways to represent (s,t)-combinations: We can list the
elements ¢; .. .cacy that have been selected, or we can work with binary strings
Ap—1...a1ag for which

Qp_1+ - -+a+ag = t. (2)

The latter representation has s Os and ¢ 1s, corresponding to elements that are
unselected or selected. The list representation ¢; ... cocq tends to work out best
if we let the elements be members of the set {0,1,...,n— 1} and if we list them
in decreasing order:

n>c >->c >c > 0. (3)
Binary notation connects these two representations nicely, because the item list
Ct . ..cocy corresponds to the sum

n—1
20 - 4292 4 290 = Zaka = (@p_1...a1a0)2. (4)
k=0



2 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3

Of course we could also list the positions by ...byb; of the Os in a,_1...a1a9,
where
n>byg>-->by>b >0. (5)
Combinations are important not only because subsets are omnipresent in
mathematics but also because they are equivalent to many other configurations.
For example, every (s,t)-combination corresponds to a combination of s + 1
things taken t at a time with repetitions permitted, also called a multicombination,
namely a sequence of integers d; ...d2d; with

§>dy >+ 2>dy>d > 0. (6)
One reason is that d; ... d2d; solves (6) if and only if ¢; . .. cacq solves (3), where
Ct:dt+t—17 ey 02:d2+17 (11:(11 (7)

(see exercise 1.2.6-60). And there is another useful way to relate combinations
with repetition to ordinary combinations, suggested by Solomon Golomb [AMM
75 (1968), 530 531], namely to define

{cj, if ¢; <55
e; =

] .

€c;—s, ifcj>s.

(8)

In this form the numbers e;...e; don’t necessarily appear in descending or-
der, but the multiset {ej,es,...,e;} is equal to {c1,ca,...,¢;} if and only if
{e1,€2,...,€e} is a set. (See Table 1 and exercise 1.)

An (s,t)-combination is also equivalent to a composition of n+ 1 into ¢ + 1
parts, namely an ordered sum

n+1l = p+-+p+po, where py,...,p1,po > 1. (9)
The connection with (3) is now
pe=n-—c;, Pr1=C—C1, --., Pr=ca—c, po=c1+1.  (10)
Equivalently, if ¢; = p; — 1, we have
s =aq+ - +q+q,  whereg,....q,q >0, (11)
a composition of s into ¢t + 1 nonnegative parts, related to (6) by setting

@=s—dy, q1=di—di1, ..., q=dy—di, qo=di. (12)

Furthermore it is easy to see that an (s, t)-combination is equivalent to a
path of length s + ¢ from corner to corner of an s x ¢ grid, because such a
path contains s vertical steps and ¢ horizontal steps. Thus, combinations can
be studied in at least eight different guises. Table 1 illustrates all (g) = 20
possibilities in the case s =t = 3.

These cousins of combinations might seem rather bewildering at first glance,
but most of them can be understood directly from the binary representation
Gp_1-..a1ag. Consider, for example, the “random” bit string

ass...ajap = 011001001000011111101101, (13)
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Table 1
THE (3,3)-COMBINATIONS AND THEIR EQUIVALENTS

asasazazaiag  bsbabi  cscaci dsdadi  esezer  papapipo g3g2qiqo path

000111 543 210 000 210 4111 3000 185
001011 542 310 100 310 3211 2100 fH
001101 541 320 110 320 3121 2010 g
001110 540 321 111 321 3112 2001 255
010011 532 410 200 010 2311 1200 i
010101 531 420 210 020 2221 1110 s
010110 530 421 211 121 2212 1101 i
011001 521 430 220 030 2131 1020 Hh
011010 520 431 221 131 2122 1011 =
011100 510 432 222 232 2113 1002 =
100011 432 510 300 110 1411 0300 H
100101 431 520 310 220 1321 0210 H
100110 430 521 311 221 1312 0201 H
101001 421 530 320 330 1231 0120 H
101010 420 531 321 331 1222 0111 H
101100 410 532 322 332 1213 0102 H
110001 321 540 330 000 1141 0030 g
110010 320 541 331 111 1132 0021 H
110100 310 542 332 222 1123 0012 H
111000 210 543 333 333 1114 0003 H

which has s = 11 zeros and t = 13 ones, hence n = 24. The dual combination
bs ...by lists the positions of the zeros, namely

232019171614 13121141,

because the leftmost position is n — 1 and the rightmost is 0. The primal
combination ¢; ...cy lists the positions of the ones, namely

222118151098 7653 20.

The corresponding multicombination d; ... d; lists the number of Os to the right
of each 1:
101086222222110.

The composition p; . . . pg lists the distances between consecutive 1s, if we imagine
additional 1s at the left and the right:

21335111112121.

And the nonnegative composition ¢; ... gy counts how many Os appear between
“fenceposts” represented by 1s:

1022400000101 0;

thus we have
Ap_1...a1a9 = 0710911 ...107109%. (14)

The paths in Table 1 also have a simple interpretation (see exercise 2).



4 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3

Lexicographic generation. Table 1 shows combinations a,_1...ajap and
¢t .. .1 in lexicographic order, which is also the lexicographic order of d; ... d;.
Notice that the dual combinations bs...b; and the corresponding compositions
Pt ...Po, Gt - - - Qo then appear in reverse lexicographic order.

Lexicographic order usually suggests the most convenient way to generate
combinatorial configurations. Indeed, Algorithm 7.2.1.2L already solves the
problem for combinations in the form a,_;...a1ag, since (s,t)-combinations
in bitstring form are the same as permutations of the multiset {s-0,%-1}. That
general-purpose algorithm can be streamlined in obvious ways when it is applied
to this special case. (See also exercise 7.1-00, which presents a remarkable
sequence of seven bitwise operations that will convert any given binary number
(an—1...a1a0)2 to the lexicographically next t-combination, assuming that n
does not exceed the computer’s word length.)

Let’s focus, however, on generating combinations in the other principal form
¢t ... coc1, which is more directly relevant to the ways in which combinations are
often needed, and which is more compact than the bit strings when ¢ is small
compared to n. In the first place we should keep in mind that a simple sequence
of nested loops will do the job nicely when t is very small. For example, when
t = 3 the following instructions suffice:

For ¢3 =2,3, ..., n— 1 (in this order) do the following:
For ¢ =1, 2, ..., cg— 1 (in this order) do the following: (15)
For ¢; =0, 1, ..., c2 — 1 (in this order) do the following: 5

Visit the combination czcacy.
(See the analogous situation in 7.2.1.1-(3).)

On the other hand when ¢ is variable or not so small, we can generate
combinations lexicographically by following the general recipe discussed after
Algorithm 7.2.1.2L, namely to find the rightmost element c; that can be increased
and then to set the subsequent elements c;_;...c; to their smallest possible
values:

Algorithm L (Lezicographic combinations). This algorithm generates all t-
combinations ¢; ...cac; of the n numbers {0,1,...,n — 1}, given n > ¢t > 0.
Additional variables c¢;41 and ;42 are used as sentinels.

L1. [Initialize.] Set ¢; <— j — 1 for 1 < j <t; also set ¢;11 < n and ¢;19 < 0.

L2. [Visit.] Visit the combination ¢; ... cacy.

L3. [Find j.] Set j «~ 1. Then, while ¢;+1 =c¢j11,set ¢; «—j—1land j < j+1;
repeat until ¢; + 1 # ¢j4;.

L4. [Done?] Terminate the algorithm if j > ¢.

L5. [Increase c;.] Set ¢; < ¢; + 1 and return to L2. |

The running time of this algorithm is not difficult to analyze. Step L3 sets

cj < j — 1 just after visiting a combination for which c¢;41 = ¢; + j, and the

number of such combinations is the number of solutions to the inequalities

n>c > > Cip1 2> g (16)
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but this formula is equivalent to a (t — j)-combination of the n — j objects
{n—1,...,7}, so the assignment ¢; <— j—1 occurs exactly (?:JJ) times. Summing
for 1 < j <t tells us that the loop in step L3 is performed

(D)= ()= ()= () o

times altogether, or an average of

(szl)/(?):m/%:sil (18)

times per visit. This ratio is less than 1 when ¢ < s, so Algorithm L is quite
efficient in such cases.

But the quantity ¢/(s + 1) can be embarrassingly large when t is near n
and s is small. Indeed, Algorithm L occasionally sets c; <— j — 1 needlessly, at
times when ¢; already equals j — 1. Further scrutiny reveals that we need not
always search for the index j that is needed in steps L4 and L5, since the correct
value of j can often be predicted from the actions just taken. For example,
after we have increased c4 and reset czcaocy to their starting values 210, the next
combination will inevitably increase c3. These observations lead to a tuned-up
version of the algorithm:

Algorithm T (Lezicographic combinations). This algorithm is like Algorithm L,
but faster. It also assumes, for convenience, that ¢ < n.

T1. [Initialize.] Set ¢; < j — 1 for 1 < j < ¢; then set ¢;41 ¢ n, ¢i40 < 0, and
7« t.

T2. [Visit.] (At this point j is the smallest index such that ¢;11 > j.) Visit the
combination ¢ ...cac;. Then, if 7 > 0, set < j and go to step T6.

T3. [Easy case?| If ¢c; +1 < ¢g, set ¢; <= ¢ + 1 and return to T2. Otherwise set
7 2.

T4. [Find j.] Set ¢j_1 < j—2and x <~ ¢; + 1. if & = ¢;j41, set j < 7+ 1 and
repeat this step until x # cjq1.

T5. [Done?] Terminate the algorithm if j > ¢.

T6. [Increase c;.] Set ¢; <z, j < j — 1, and return to T2. 1

Now j = 0 in step T2 if and only if ¢; > 0, so the assignments in step T4 are
never redundant. Exercise 6 carries out a complete analysis of Algorithm T.

Notice that the parameter m appears only in the initialization steps L1
and T1, not in the principal parts of Algorithms L. and T. Thus we can think
of the process as generating the first (Ttl) combinations of an infinite list, which
depends only on ¢. This simplification arises because the list of ¢-combinations
for n + 1 things begins with the list for n things, under our conventions; we have
been using lexicographic order on the decreasing sequences c; ... cy for this very
reason, instead of working with the increasing sequences cj . .. ¢.

Derrick Lehmer noticed another pleasant property of Algorithms L and T
[Applied Combinatorial Mathematics, edited by E. F. Beckenbach (1964), 27-30]:
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Theorem L. The combination c; . ..cacy is visited after exactly

C¢ Co C1
<t>+ +<2)+<1> (19)
other combinations have been visited.

Proof. There are (C]j) combinations c; ...cycy with ¢ = ¢; for t > j > k and

¢, < ¢, namely ¢; ... cg41 followed by the k-combinations of {0,...,¢cx —1}. 1

When t = 3, for example, the numbers

2 1 0y (3 1 0y (3 2 0 5 4 3
G+E+Q) G++G) G+ +E) - (B)+E)+()
that correspond to the combinations czcac; in Table 1 simply run through the
sequence 0, 1, 2, ..., 19. Theorem L gives us a nice way to understand the
combinatorial number system of degree t, which represents every nonnegative
integer N uniquely in the form

N:<ntt>+...+(r;2)+<n11>a ng > >mny>n1 200 (20)

[See Ernesto Pascal, Giornale di Matematiche 25 (1887), 45 49.]

Binomial trees. The family of trees T,, defined by
TO = o , Tn = ml for n > 07 (21)
To Ty e Th

arises in several important contexts and sheds further light on combination
generation. For example, T} is

and Ty, rendered more artistically, appears as the frontispiece to Volume 1 of
this series of books.

Notice that T,, is like T, 1, except for an additional copy of T, 1; therefore
T, has 2™ nodes altogether. Furthermore, the number of nodes on level ¢ is the
binomial coefficient (?), this fact accounts for the name “binomial tree.” Indeed,
the sequence of labels encountered on the path from the root to each node on
level t defines a combination ¢; ... ¢y, and all combinations occur in lexicographic
order from left to right. Thus, Algorithms L and T can be regarded as procedures

to traverse the nodes on level ¢t of the binomial tree T;,.
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The infinite binomial tree T, is obtained by letting n — oo in (21). The root
of this tree has infinitely many branches, but every node except for the overall
root at level 0 is the root of a finite binomial subtree. All possible t-combinations
appear in lexicographic order on level ¢ of T,,.

Let’s get more familiar with binomial trees by considering all possible ways
to pack a rucksack. More precisely, suppose we have n items that take up
respectively w, 1, ..., wy, wg units of capacity, where

Wp—1 2+ 2 W1 2 Wo; (23)
we want to generate all binary vectors a, _1...ajag such that
a-W=0n_1Wp_1+ -+ aw; +apwg <N, (24)

where N is the total capacity of a rucksack. Equivalently, we want to find all
subsets C of {0,1,...,n— 1} such that w(C) = }_ .- w. < N; such subsets will
be called feasible. We will write a feasible subset as ¢y ...c;, where ¢y > -+ >
¢; > 0, numbering the subscripts differently from the convention of (3) above
because t is variable in this problem.

Every feasible subset corresponds to a node of T, and our goal is to visit
each feasible node. Clearly the parent of every feasible node is feasible, and so is
the left sibling, if any; therefore a simple tree exploration procedure works well:

Algorithm F (Filling a rucksack). This algorithm generates all feasible ways

c1... ¢ tofill a rucksack, given wy_1, ..., wi, wo, and N. We let §; = w; —w;_1

for 1 <j<n.

F1. [Initialize.] Set ¢t <+ 0, ¢y < n, and 7 < N.

F2. [Visit.] Visit the combination ¢; ... ¢;, which uses N — r units of capacity.

F3. [Try to add wo.] If ¢; > 0 and 7 > wg, set t < t + 1, ¢; < 0, 1 + r — wy,
and return to F2.

F4. [Try to increase ¢;.] Terminate if ¢ = 0. Otherwise, if ¢;_1 > ¢; + 1 and
r > d¢41, 86t ¢t <~ ¢t + 1, 7 <1 — I, and return to F2.

F5. [Remove ¢;.] Set r < 7+ w,,, t <+ t — 1, and return to F4. |

Notice that the algorithm implicitly visits nodes of T,, in preorder, skipping over
unfeasible subtrees. An element ¢ > 0 is placed in the rucksack, if it fits, just
after the procedure has explored all possibilities using element ¢ — 1 in its place.
The running time is proportional to the number of feasible combinations visited
(see exercise 20).

Incidentally, the classical “knapsack problem” of operations research is dif-
ferent: It asks for a feasible subset C' such that v(C) = Y .- v(c) is maximum,
where each item ¢ has been assigned a value v(c). Algorithm F is not a particu-
larly good way to solve that problem, because it often considers cases that could
be ruled out. For example, if C' and C' are subsets of {1,...,n—1} with w(C) <
w(C") < N —wy and v(C) > v(C"), Algorithm F will examine both C'U {0} and
C'U{0}, but the latter subset will never improve the maximum. We will consider
methods for the classical knapsack problem later; Algorithm F is intended only
for situations when all of the feasible possibilities are potentially relevant.
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Gray codes for combinations. Instead of merely generating all combinations,
we often prefer to visit them in such a way that each one is obtained by making

only a small change to its predecessor.

For example, we can ask for what Nijenhuis and ‘
Wilf have called a “revolving door algorithm”: Imagine )(
two rooms that contain respectively s and ¢ people, with N '
a revolving door between them. Whenever a person
goes into the opposite room, somebody else comes out. Can we devise a sequence

of moves so that each (s, t)-combination occurs exactly once?

The answer is yes, and in fact a huge number of such patterns exist. For
example, it turns out that if we examine all n-bit strings a,_1...aja¢ in the
well-known order of Gray binary code (Section 7.2.1.1), but select only those
that have exactly s Os and ¢ 1s, the resulting strings form a revolving-door code.

Here’s the proof: Gray binary code is defined by the recurrence I';, = 0T, _1,
ITE | of 7.2.1.1 (5), so its (s,t) subsequence satisfies the recurrence

Pst = 0Ls—1y1, 1F§t71) (25)

when st > 0. We also have I'yy = 0° and I'g; = 1*. Therefore it is clear by
induction that I'y; begins with 0°1* and ends with 10°1*~! when st > 0. The
transition at the comma in (25) is from the last element of OI'(;_qy; to the
last element of 1I'y;_1), namely from 01051t~ = 010 '11*72 to 110°1¢72 =
110°101~2 when t > 2, and this satisfies the revolving-door constraint. The
case t = 1 also checks out. For example, I'33 is given by the columns of

000111 011010 110001 101010
001101 011100 110010 101100
001110 010101 110100 100101 (26)
001011 010110 111000 100110
011001 010011 101001 100011

and I's3 can be found in the first two columns of this array. One more turn
of the door takes the last element into the first. [These properties of I'y; were
discovered by D. T. Tang and C. N. Liu, IEEE Trans. C-22 (1973), 176-180;
a loopless implementation was presented by J. R. Bitner, G. Ehrlich, and E. M.
Reingold, CACM 19 (1976), 517-521.]

When we convert the bit strings asasazaszajag in (26) to the corresponding
index-list forms c3cacy, a striking pattern becomes evident:

210 431 540 531
320 432 541 532
321 420 542 520 (27)
310 421 543 521
430 410 530 510

The first components c3 occur in increasing order; but for each fixed value of c3,
the values of ¢y occur in decreasing order. And for fixed czca, the values of ¢
are again increasing. The same is true in general: All combinations c¢;...cacy
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appear in lexicographic order of
(ct, —Ci—1, Ci—a, -, (1) 1ey) (28)

in the revolving-door Gray code I'g;. This property follows by induction, because
(25) becomes
Fst = F(sfl)tv (S+t7]‘)]‘—‘§(t71) (29)

for st > 0 when we use index-list notation instead of bitstring notation. Conse-
quently the sequence can be generated efficiently by the following algorithm due
to W. H. Payne [see ACM Trans. Math. Software 5 (1979), 163-172]:

Algorithm R (Revolving-door combinations). This algorithm generates all ¢-
combinations ¢;...cocy of {0,1,...,n — 1} in lexicographic order of the alter-
nating sequence (28), assuming that n > ¢ > 1. Step R3 has two variants,
depending on whether t is even or odd.

R1. [Initialize.] Set ¢; - j —1fort > j > 1, and ciq1 < n.
R2. [Visit.] Visit the combination ¢ ... cac;.

R3. [Easy case?] If ¢ is odd: If ¢; + 1 < co, increase ¢; by 1 and return to R2,
otherwise set j < 2 and go to R4. If ¢ is even: If ¢; > 0, decrease c¢; by 1
and return to R2, otherwise set 7 < 2 and go to Rb5.

R4. [Try to decrease c¢;.] (At this point ¢; =¢;_1 +1.) If ¢; > j, set ¢j = ¢j_1,
cj—1 < j — 2, and return to R2. Otherwise increase j by 1.

R5. [Try to increase ¢;.] (At this point ¢;_1 = 7 —2.) If ¢; +1 < ¢j41, set

cj—1 < ¢j, ¢j < ¢; + 1, and return to R2. Otherwise increase j by 1, and
gotoR4if j <t. |

Exercises 21-25 explore further properties of this interesting sequence. One of
them is a nice companion to Theorem L: The combination cic;_1 . . . cacy is visited
by Algorithm R after exactly

N <ct+1) B (Ct71+1) 4. “+(_1)t<62+1> _(_1)t<cl+1) — [t odd] (30)

t t—1 2 1

other combinations have been visited. We may call this the representation of N
in the “alternating combinatorial number system” of degree ¢; one consequence,
for example, is that every positive integer has a unique representation of the
form N = (2) — () + ({) with a > b > ¢ > 0. Algorithm R tells us how to add 1
to N in this system.

Although the strings of (26) and (27) are not in lexicographic order, they
are examples of a more general concept called genlex order, a name coined by
Timothy Walsh. A sequence of strings ay, ..., ay is said to be in genlex order
when all strings with a common prefix occur consecutively. For example, all
3-combinations that begin with 53 appear together in (27).

Genlex order means that the strings can be arranged in a trie structure, as
in Fig. 31 of Section 6.3, but with the children of each node ordered arbitrarily.
When a trie is traversed in any order such that each node is visited just before or
just after its descendants, all nodes with a common prefix — that is, all nodes of
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a subtrie— appear consecutively. This principle makes genlex order convenient,
because it corresponds to recursive generation schemes. Many of the algorithms
we have seen for generating n-tuples have therefore produced their results in some
version of genlex order; similarly, the method of “plain changes” (Algorithm
7.2.1.2P) visits permutations in a genlex order of the corresponding inversion
tables.

The revolving-door method of Algorithm R is a genlex routine that changes
only one element of the combination at each step. But it isn’t totally satisfactory,
because it frequently must change two of the indices ¢; simultaneously, in order
to preserve the condition ¢; > --- > ¢g > ¢3. For example, Algorithm R changes
210 into 320, and (27) includes nine such “crossing” moves.

The source of this defect can be traced to our proof that (25) satisfies the
revolving-door property: We observed that the string 010°~111*~2 is followed
by 110°7101*~2 when t > 2. Hence the recursive construction I'y; involves
transitions of the form 110%0 <> 010°1, when a substring like 11000 is changed
to 01001 or vice versa; the two 1s cross each other.

A Gray path for combinations is said to be homogeneous if it changes only
one of the indices c; at each step. A homogeneous scheme is characterized
in bitstring form by having only transitions of the forms 10¢ < 0?1 within

strings, for @ > 1, when we pass from one string
to the next. With a homogeneous scheme we can, ‘ ‘
for example, play all ¢-note chords on an n-note
keyboard by moving only one finger at a time.

A slight modification of (25) yields a genlex
scheme for (s,t)-combinations that is pleasantly

homogeneous. The basic idea is to construct a
sequence that begins with 0°1¢ and ends with 1?0°, and the following recursion
suggests itself almost immediately: Let K o = 0%, Kg; = 1%, K1) = @, and

Ky = 0K(s 1y 101(@44)071w 11Kz for st>0. (31)

At the commas of this sequence we have 01?0°~! followed by 101*~10°~!, and
10°1%~1 followed by 110°1*~2; both of these transitions are homogeneous, al-
though the second one requires the 1 to jump across s 0s. The combinations K33
for s =t =3 are

000111 010101 101100 100011

001011 010011 101001 110001

001101 011001 101010 110010 (32)

001110 011010 100110 110100

010110 011100 100101 111000

in bitstring form, and the corresponding “finger patterns” are

210 420 532 510
310 410 530 540
320 430 531 541 (33)
321 431 521 542
421 432 520 543.

10
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When a homogeneous scheme for ordinary combinations c; . .. ¢y is converted
to the corresponding scheme (6) for combinations with repetitions dy...dq, it
retains the property that only one of the indices d; changes at each step. And
when it is converted to the corresponding schemes (g) or (11) for compositions
Pt...Po OF gt ...qo, only two (adjacent) parts change when ¢; changes.

Near-perfect schemes. But we can do even better! All (s,t)-combinations
can be generated by a sequence of strongly homogeneous transitions that are
either 01 < 10 or 001 «> 100. In other words, we can insist that each step causes
a single index c¢; to change by at most 2. Let’s call such generation schemes
near-perfect.

Imposing such strong conditions actually makes it fairly easy to discover
near-perfect schemes, because comparatively few choices are available. Indeed,
if we restrict ourselves to genlex methods that are near-perfect on n-bit strings,
T. A. Jenkyns and D. McCarthy observed that all such methods can be easily
characterized [Ars Combinatoria 40 (1995), 153 159]:

Theorem N. If st > 0, there are exactly 2s near-perfect ways to list all (s,t)-
combinations in a genlex order. In fact, when 1 < a < s, there is exactly one
such listing, Ngq, that begins with 10° and ends with 0%1'0°~2; the other s
possibilities are the reverse lists, N2 _.

Proof. The result certainly holds when s = ¢t = 1; otherwise we use induction on
s+t. The listing Nyq, if it exists, must have the form 1X,,_;), 0Y(,_1); for some
near-perfect genlex listings X ;1) and Y(,_1),. If t =1, X 1) is the single
string 0°; hence Y{,_1); must be N(,_1)1(4—1) if @ > 1, and it must be N(I:_l)u
if a = 1. On the other hand if ¢ > 1, the near-perfect condition implies that the
last string of X ;1) cannot begin with 1; hence X,;_1) = Ny;_1)p for some b.
Ifa>1, Y_1); must be N;_1)¢(a—1), hence b must be 1; similarly, b must be 1
if s = 1. Otherwise we have a = 1 < s, and this forces Y(,_1); = N(}:;l)tc for
some c. The transition from 10°1*~10°~% to 0°t11¢0°~1~¢ is near-perfect only if
c=land b=2. |

The proof of Theorem N yields the following recursive formulas when st > 0:
INgi-1)1, ONG-1ye@1), ifl<a<s;
Nsta = { 1Ng¢—1)2, ON(I;I)“, ifl=a<s; (34)
1N1(t71)13 01t7 iflzazs.
Also, of course, Ny, = 0°.
Let usset Ag; = N1 and By = Ngio. These near-perfect listings, discovered
by Phillip J. Chase in 1976, have the net effect of shifting a leftmost block of 1s

to the right by one or two positions, respectively, and they satisfy the following
mutual recursions:

Agp = 1Bs(t71)v OAf?s;l)t; B = 1As(t71)1 OA(s—l)t- (35)

“To take one step forward, take two steps forward, then one step backward; to
take two steps forward, take one step forward, then another.” These equations

11
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Table 2
CHASE’S SEQUENCES FOR (3,3)—COMBINATIONS
Agg = Css Bgs = Cs3
543 531 321 420 543 520 432 410
541 530 320 421 542 510 430 210
540 510 310 431 540 530 431 310
542 520 210 430 541 531 421 320
532 521 410 432 521 532 420 321

hold for all integer values of s and ¢, if we define A,; and By; to be @ when s or
t is negative, except that Agg = Bpg = € (the empty string). Thus Ay actually
takes min(s, 1) forward steps, and Bg; actually takes min(s,2). For example,
Table 2 shows the relevant listings for s = t = 3, using an equivalent index-list
form cszcqcy instead of the bit strings asagsasasayag.

Chase noticed that a computer implementation of these sequences becomes
simpler if we define

oy — {Ast, ?fs-l—t%s odd; ., — {Aﬁ, if s+ t is even; (36)
B, if s+t is even; BE  if s +tis odd.
[See Congressus Numerantium 69 (1989), 215 242.] Then we have
10y 1y, 0C(s 1y, if s+t is odd;
Co = { oot DO s TS 0dd: (37)
1C,(—-1), 0C(s_1);, if s+ 1 is even;
~ 0C s_1)t) 163 t—1), if s+t is even;
G — (=t Frs(t-1) ' ‘ (38)
0C(s—1)t, 1Cs—1), if s+t is odd.

When bit a; is ready to change, we can tell where we are in the recursion by
testing whether j is even or odd.

Indeed, the sequence Cs; can be generated by a surprisingly simple algo-
rithm, based on general ideas that apply to any genlex scheme. Let us say that
bit a; is active in a genlex algorithm if it is supposed to change before anything to
its left is altered. (The node for an active bit in the corresponding trie is not the
rightmost child of its parent.) Suppose we have an auxiliary table w,, ... wjwy,
where w; = 1 if and only if either a; is active or 7 < r, where 7 is the least
subscript such that a, # ag; we also let w, = 1. Then the following method will
find the successor of a,_1...a1aq:

Set j 7. If w; =0, set w; <~ 1, j + j+ 1, and repeat until
w; = 1. Terminate if j = n; otherwise set w; < 0. Change a;
to 1 — a;, and make any other changes to a;j_;...ao and r that
apply to the particular genlex scheme being used.

(39)

The beauty of this approach comes from the fact that the loop is guaranteed to
be efficient: We can prove that the operation j < 7 + 1 will be performed less
than once per generation step, on the average (see exercise 36).

12
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By analyzing the transitions that occur when bits change in (37) and (38),
we can readily flesh out the remaining details:

Algorithm C (Chase’s sequence). This algorithm visits all (s, t)-combinations
Gn_1...a100, where n = s+t, in the near-perfect order of Chase’s sequence Clg;.

C1. [Initialize.] Set a; «+~ 0for 0 < j<'s, a; < 1for s <j<mn,and w; + 1
for 0 < j <n.If s >0, set r + s; otherwise set r + t.
C2. [Visit.] Visit the combination a,_1 ...ajao.

C3. [Find j and branch.] Set j « r. If w; = 0, set w; < 1, j < j + 1, and
repeat until w; = 1. Terminate if j = n; otherwise set w; < 0 and make a
four-way branch: Go to C4 if j is odd and a; # 0, to C5 if 5 is even and
a; # 0, to C6 if j is even and a; = 0, to C7 if j is odd and a; = 0.

C4. [Move right one.] Set aj_1 <~ 1, a; < 0. If r = 5 > 1, set r < j —1;
otherwise if r = 7 — 1 set r « j. Return to C2.

C5. [Move right two.] If a; o # 0, go to C4. Otherwise set a;_o < 1, aj < 0.
If r = j, set r + max(j — 2,1); otherwise if r = j — 2, set r + j—1. Return
to C2.

C6. [Move left one.] Set aj < 1, a;_1 < 0. If r = j > 1, set 7 < j—1; otherwise
if r =7 —1 set r < 7. Return to C2.

C7. [Move left two.] If a;_q # 0, go to C6. Otherwise set a; < 1, a;_o < 0. If
r=j—2,set r < j;otherwise if r = j — 1, set r + j — 2. Return to C2. |

* Analysis of Chase’s sequence. The magical properties of Algorithm C cry
out for further exploration, and a closer look turns out to be quite instructive.
Given a bit string a,,_1 ...ajag, let us define a,, = 1, u,, = n mod 2, and

uj = (1—ujp1)ajrr, v; = (u;j+j)mod2, wj;=(v;+a;)mod2, (40)
for n > 7 > 0. For example, we might have n = 26 and

ass . ..ajap = 11001001000011111101101010,
ugs . .. ujug = 10100100100001010100100101,
Vg5 ... v1v9 = 00001110001011111110001111,
was . .. wiwo = 11000111001000000011100101.

(41)

With these definitions we can prove by induction that v; = 0 if and only if bit
a; is being “controlled” by C rather than by C' in the recursions (37)—(38) that
generate a,_1 ...aiag, except when a; is part of the final run of Os or 1s at the
right end. Therefore w; agrees with the value computed by Algorithm C at the
moment when a,,_1 ...ajaq is visited, for r < 7 < n. These formulas can be used
to determine exactly where a given combination appears in Chase’s sequence (see
exercise 39).

If we want to work with the index-list form c¢;...cqoc; instead of the bit
strings a,,_1 ...a1aq, it is convenient to change the notation slightly, writing

13



14 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3

Cy(n) for Cyy and Cy(n) for Cy when s+t = n. Then Co(n) = Co(n) = ¢, and
the recursions for ¢ > 0 take the form

Crir(n+1) = nCy(n), Cit1(n), ?f n Ts even; (42)
nCy(n), Cir1(n), if nis odd;
~ C n,na n), if n is odd;
Cir1(n+1) = At+1( : At( : . (43)
Cit1(n), nCi(n), ifn is even.
These new equations can be expanded to tell us, for example, that
Ci11(9) = 8Cy(8), 6C(6), 4C(4), ..., 3C4(3), 5Ci(5), TCy(7);
Ci41(8) = TCi(7), 6C4(6), 4C4(4), ..., 3Ci(3), 5Cy(5); (44)
Cii1(9) = 6C,(6), 4C,(4), ..., 3C4(3), 5C.(5), 7C,(7), 8Cy(8):;
Crra(8) = 6C4(6), 4Ci(4), ..., 3Ci(3), 5C(5), TC(7);

notice that the same pattern predominates in all four sequences. The meaning of
“...” in the middle depends on the value of t: We simply omit all terms nCy(n)
and nCy(n) where n < t.

Except for edge effects at the very beginning or end, all of the expansions
in (44) are based on the infinite progression

.., 10, 8,6,4,2 0,1, 3,5, 7,9, ..., (45)

which is a natural way to arrange the nonnegative integers into a doubly infinite
sequence. If we omit all terms of (45) that are < ¢, given any integer ¢ > 0,
the remaining terms retain the property that adjacent elements differ by either
1 or 2. Richard Stanley has suggested the name endo-order for this sequence,
because we can remember it by thinking “even numbers decreasing, odd ...”.
(Notice that if we retain only the terms less than N and complement with respect
to N, endo-order becomes organ-pipe order; see exercise 6.1 18.)

We could program the recursions of (42) and (43) directly, but it is interest-
ing to unwind them using (44), thus obtaining an iterative algorithm analogous
to Algorithm C. The result needs only O(t) memory locations, and it is especially
efficient when t is relatively small compared to n. Exercise 45 contains the details.

*Near-perfect multiset permutations. Chase’s sequences lead in a natural
way to an algorithm that will generate permutations of any desired multiset
{s0:0,81-1,...,84-d} in a near-perfect manner, meaning that

1) every transition is either Aj 4105 € AjA541 O Qj110Q5 1 <> Qj _10j0541;

ii) transitions of the second kind have a; = min(a;_1, aj+1).
Algorithm C tells us how to do this when d = 1, and we can extend it to larger
values of d by the following recursive construction [CACM 13 (1970), 368 369,
376]: Suppose

Qp, &1, ..., AN-1

14



7.2.1.3 GENERATING ALL COMBINATIONS 15

is any near-perfect listing of the permutations of {s; - 1,...,s4-d}. Then Algo-
rithm C, with s = sg and t = s1 + - - - + s4, tells us how to generate a listing

Aj = OLjOS, ey 0“0@-057“ (46)

in which all transitions are 0z <> 20 or 00z <> x00; the final entry has a = 1 or 2
leading zeros, depending on s and ¢t. Therefore all transitions of the sequence

A07 Af A2; Tt (ANfl or Aﬁfl) (47)

are near-perfect; and this list clearly contains all the permutations.
For example, the permutations of {0,0,0,1,1,2} generated in this way are

211000, 210100, 210001, 210010, 200110, 200101, 200011, 201001, 201010, 201100,
021100, 021001, 021010, 020110, 020101, 020011, 000211, 002011, 002101, 002110,
001120, 001102, 001012, 000112, 010012, 010102, 010120, 011020, 011002, 011200,
101200, 101020, 101002, 100012, 100102, 100120, 110020, 110002, 110200, 112000,
121000, 120100, 120001, 120010, 100210, 100201, 100021, 102001, 102010, 102100,
012100, 012001, 012010, 010210, 010201, 010021, 000121, 001021, 001201, 001210

*Perfect schemes. Why should we settle for a near-perfect generator like Cj;,
instead of insisting that all transitions have the simplest possible form 01 < 107
One reason is that perfect schemes don’t always exist. For example, we
observed in 7.2.1.2 (2) that there is no way to generate all six permutations of
{1,1,2,2} with adjacent interchanges; thus there is no perfect scheme for (2,2)-
combinations. In fact, our chances of achieving perfection are only about 1 in 4:

Theorem P. The generation of all (s,t)-combinations asy¢_1 ...a1aq by adja-
cent interchanges 01 <+ 10 is possible if and only if s < 1 ort < 1 or st is odd.

Proof. Consider all permutations of the multiset {s - 0,¢-1}. We learned in
exercise 5.1.2-16 that the number my, of such permutations having k inversions
is the coefficient of z* in the z-nomial coefficient

s+t t
AN k-1 k=1
< . )Z_k_HJrl(1+z+---+z )/11:[1(1+z+---+z ). (48)

Every adjacent interchange changes the number of inversions by 41, so a perfect
generation scheme is possible only if approximately half of all the permutations

have an odd number of inversions. More precisely, the value of (s'tH') . =
mg — my + mg — --- must be 0 or ==1. But exercise 49 shows that
5—|—t> (L(s+t)/2j) i
= st 1s even|,
(7). el )l ! (49)

and this quantity exceeds 1 unless s < 1 or ¢t < 1 or st is odd.

Conversely, perfect schemes are easy with s < 1 or t < 1, and they turn
out to be possible also whenever st is odd. The first nontrivial case occurs
for s = t = 3, when there are four essentially different solutions; the most
symmetrical of these is

210 —310—410—510 — 520 — 521 — 531 — 532 — 432 — 431 —
421 — 321 —320— 420 — 430 — 530 — 540 — 541 — 542 — 543  (50)

15
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(see exercise 51). Several authors have constructed Hamiltonian paths in the
relevant graph for arbitrary odd numbers s and t; for example, the method
of Eades, Hickey, and Read [JACM 31 (1984), 19-29] makes an interesting
exercise in programming with recursive coroutines. Unfortunately, however, none
of the known constructions are sufficiently simple to describe in a short space,
or to implement with reasonable efficiency. Perfect combination generators have
therefore not yet proved to be of practical importance. |

In summary, then, we have seen that the study of (s,t)-combinations leads
to many fascinating patterns, some of which are of great practical importance
and some of which are merely elegant and/or beautiful. Figure 26 illustrates the
principal options that are available in the case s =t = 5, when (150) = 252 combi-
nations arise. Lexicographic order (Algorithm L), the revolving-door Gray code
(Algorithm R), the homogeneous scheme K5 of (31), and Chase’s near-perfect
scheme (Algorithm C) are shown in parts (a), (b), (¢), and (d) of the illustration.
Part (e) shows the near-perfect scheme that is as close to perfection as possible
while still being in genlex order of the ¢ array (see exercise 34), while part (f) is
the perfect scheme of Eades, Hickey, and Read. Finally, Figs. 26(g) and 26(h)
are listings that proceed by rotating aja;_;...ag <= aj_1 ...aga; or by swapping
a; <> ag, akin to Algorithms 7.2.1.2C and 7.2.1.2E (see exercises 55 and 56).

*Combinations of a multiset. If multisets can have permutations, they can
have combinations too. For example, consider the multiset {b,b,b,b,g, g, g,r, 7,7,
w,w}, representing a sack that contains four blue balls and three that are green,
three red, two white. There are 37 ways to choose five balls from this sack; in
lexicographic order (but descending in each combination) they are

gbbbb, ggbbb, gggbb, rbbbb, rgbbb, rggbb, rgggb, rrbbb, rrgbb, rrggb,

rrggg, rrrbb, rrrgb, rrrgg, wbbbb, wgbbb, wggbb, wgggb, wrbbb, wrgbb,

wrggb, wrggg, wrrbb, wrrgb, wrrgg, wrrrb, wrrrg, wwbbb, wwgbb, wwggb,
wwggg, wwrbb, wwrgb, wwrgg, Wwwrrb, WWrrg, WWrTT. (51)

This fact might seem frivolous and/or esoteric, yet we will see in Theorem W
below that the lexicographic generation of multiset combinations yields optimal
solutions to significant combinatorial problems.

James Bernoulli observed in his Ars Conjectandi (1713), 119-123, that we
can enumerate such combinations by looking at the coefficient of 2° in the
product (1+z+22)(1+2z+22+23)2(1+ 2+ 22+ 22 +2%). Indeed, his observation
is easy to understand, because we get all possible selections from the sack if we
multiply out the polynomials

I+w+ww)1+r+rr+rrr)(1+ 9+ 99+ 999)(1 + b+ bb + bbb + bbbb).

Multiset combinations are also equivalent to bounded compositions, namely
to compositions in which the individual parts are bounded. For example, the 37
multicombinations listed in (51) correspond to 37 solutions of

S=r3+rag+ri+rg, 0<r3<2, 0<rg,r; <3, 0<7ry<A4,
namely 5 = 0+0+1+4 = 0404243 = 0+0+3+2 = 04+1404+4 = - - - = 2+3+0+0.

16
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Fig. 26. Examples
of (5,5)-combinations:
a) lexicographic;
b) revolving-door;
¢) homogeneous;
d) near-perfect;
e) nearer-perfect;
f) perfect;
g) suffix-rotated;
h) right-swapped.
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Bounded compositions, in turn, are special cases of contingency tables, which
are of great importance in statistics. And all of these combinatorial configura-
tions can be generated with Gray-like codes as well as in lexicographic order.
Exercises 60 63 explore some of the basic ideas involved.

*Shadows. Sets of combinations appear frequently in mathematics. For example,
a set of 2-combinations (namely a set of pairs) is essentially a graph, and a set of
t-combinations for general ¢ is called a uniform hypergraph. If the vertices of a
convex polyhedron are perturbed slightly, so that no three are collinear, no four
lie in a plane, and in general no ¢ + 1 lie in a (¢ — 1)-dimensional hyperplane,
the resulting (¢ — 1)-dimensional faces are “simplexes” whose vertices have great
significance in computer applications. Researchers have learned that such sets
of combinations have important properties related to lexicographic generation.

If o is any t-combination c¢;...cocy, its shadow Oa is the set of all its
(t — 1)-element subsets ¢; q...¢2¢1, ..., Ct...C3€C1, C¢...c3¢2. For example,
085310 = {310,510, 530,531}. We can also represent a t-combination as a bit
string a, _1...ajag, in which case da is the set of all strings obtained by chang-
ing a 1 to a 0: 9101011 = {001011,100011,101001,101010}. If A is any set of
t-combinations, we define its shadow

0A = J{Oa|ac A} (52)

to be the set of all (¢ — 1)-combinations in the shadows of its members. For
example, 995310 = {10, 30, 31, 50, 51, 53}.

These definitions apply also to combinations with repetitions, namely to
multicombinations: 85330 = {330, 530,533} and 895330 = {30, 33,50, 53}. In
general, when A is a set of {-element multisets, A is a set of (¢ — 1)-element
multisets. Notice, however, that A never has repeated elements itself.

The upper shadow o with respect to a universe U is defined similarly, but
it goes from ¢-combinations to (¢ + 1)-combinations:

oa = {BCU|acdp}, foracU; (53)
A = U{ga|ac A}, for ACU. (54)

If, for example, U = {0,1,2,3,4,5,6}, we have 95310 = {53210, 54310, 65310};
on the other hand, if U = {oc-0,0c-1,...,00-6}, we have 05310 = {53100, 53110,
53210,53310, 54310, 55310, 65310}.

The following fundamental theorems, which have many applications in var-
ious branches of mathematics and computer science, tell us how small a set’s
shadows can be:

Theorem K. If A is a set of N t-combinations contained in U = {0,1,...,n—1},
then

|0A| > |0Pn:|  and  [A| > |0Qnntl, (55)
where Pn; denotes the first N combinations generated by Algorithm L, namely

the N lexicographically smallest combinations ¢ ...cacy that satisfy (3), and
QnNn: denotes the N lexicographically largest. |

18
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Theorem M. If A is a set of N t-multicombinations contained in the multiset
U={c0-0,00-1,...,00"- 8}, then

|0A| > |0Py;|  and A > |0QnNstl, (56)

where ﬁNt denotes the N lexicographically smallest multicombinationsdy . .. dadq
that satisfy (6), and Qs denotes the N lexicographically largest. 1

Both of these theorems are consequences of a stronger result that we shall
prove later. Theorem K is generally called the Kruskal Katona theorem, because
it was discovered by J. B. Kruskal [Math. Optimization Techniques, edited by
R. Bellman (1963), 251-278] and rediscovered by G. Katona [Theory of Graphs,
Tihany 1966, edited by Erdds and Katona (Academic Press, 1968), 187-207];
M. P. Schiitzenberger had previously stated it in a less-well-known publication,
with incomplete proof [RLE Quarterly Progress Report 55 (1959), 117 118].
Theorem M goes back to F. S. Macaulay, many years earlier [Proc. London
Math. Soc. (2) 26 (1927), 531-555).

Before proving (55) and (56), let’s take a closer look at what those formulas
mean. We know from Theorem L that the first NV of all t-combinations visited
by Algorithm L are those that precede n;...ngnq, where

N:(Zt>+~-~+(7;2>+<"11>, Ny > >ne>n1 >0

is the degree-t combinatorial representation of N. Sometimes this representation
has fewer than ¢ nonzero terms, because n; can be equal to 7 — 1; let’s suppress
the zeros, and write

N = (nt>+(m_1)+---+<m>7 ne>nga > >ny >0 > 10 (57)
v

t t—1
Now the first ("t‘) combinations ¢ . .. ¢y are the t-combinations of {0, ..., n;—1};
the next (T’:l‘) are those in which ¢; = n; and ¢; 1 ...c; is a (¢— 1)-combination

of {0,...,n;1—1}; and so on. For example, ift =5 and N = (g) + (Z) + (431)7 the
first N combinations are

Pys = {43210, ...,87654} U {93210, ...,96543} U {97210, ...,97321}.  (58)
The shadow of this set Pys is, fortunately, easy to understand: It is
dPns = {3210,...,8765} U {9210,...,9654} U {9710,...,9732}, (59)

namely the first (2) + (;) + (3) combinations in lexicographic order when ¢ = 4.

In other words, if we define Kruskal's function x; by the formula

”tN:<trit1>+(:t:;)+“'+<urfl> (6o)

when N has the unique representation (57), we have

0PNt = Pue,nyt—1)- (61)
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20 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3

Theorem K tells us, for example, that a graph with a million edges can

contain at most 1414 1009
< ) >+< , ) = 470,700,300

triangles, that is, at most 470,700,300 sets of vertices {u,v,w} with u — v —
w — u. The reason is that 1000000 = (14214) + (10109) by exercise 17, and the edges
P(1000000)2 do support (14314) + (10209) triangles; but if there were more, the graph
would necessarily have at least 3470700301 = (*4*) + (%) + (}) = 1000001
edges in their shadow.

Kruskal defined the companion function

AtN:(t?1>+(nt;>+'”+<v?1) (62)

to deal with questions such as this. The x and A functions are related by an
interesting law proved in exercise 72:

t t
M+ N = <5—|— ) implies kK, M + \MN = <S+ ), if st > 0. (63)
t t+1
Turning to Theorem M, the sizes of 813Nt and Q@Nst turn out to be
0Pxn| = N and  |@Qnst| = N4 kN (64)

(see exercise 81), where the function p; satisfies

ng—1 ng_1—1 ny, — 1
’”N_<t71)+< t—2 >+'”+<’u71> (65)
when N has the combinatorial representation (57).

Table 3 shows how these functions x; N, \; N, and pu; N behave for small
values of ¢t and N. When t and N are large, they can be well approximated
in terms of a remarkable function 7(z) introduced by Teiji Takagi in 1903; see
Fig. 27 and exercises 82 85.

Theorems K and M are corollaries of a much more general theorem of discrete
geometry, discovered by Da-Lun Wang and Ping Wang [SIAM J. Applied Math.
33 (1977), 55-59], which we shall now proceed to investigate. Consider the
discrete n-dimensional torus T'(my,...,m,) whose elements are integer vectors
x=(r1,...,2,) with 0 <2y <mq, ..., 0 <z, < my,. We define the sum and
difference of two such vectors z and y as in Egs. 4.3.2 (2) and 4.3.2 (3):

T+y = ((acl+y1)modm1,...,(a:n—|—yn) modmn), (66)
T—y = ((T1 —y1)modmy, ..., (Tn — Yn) modmn). (67)

We also define the so-called cross order on such vectors by saying that = < y if
and only if

vr <vy or (ve=wvyandx >y lexicographically); (68)

here, as usual, v(z1,...,o,) = 1 + -+ - + x,. For example, when m; = mg = 2
and mgz = 3, the 12 vectors xyx273 in cross order are

000, 100, 010, 001, 110, 101, 011, 002, 111, 102, 012, 112,  (69)
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Table 3
EXAMPLES OF THE KRUSKAL MACAULAY FUNCTIONS &, /\7 AND p

N=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
kxN=0 111111111111 11 1 1 1 1 11
keN=0 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 7 7 7
ksN=0 3 5 6 6 8 9 9 10 10 10 12 13 13 14 14 14 15 15 15 15
kaN=10 4 7 9 10 10 13 15 16 16 18 19 19 20 20 20 23 25 26 26 28
ks N= 0 5 9 12 14 15 15 19 22 24 25 25 28 30 31 31 33 34 34 35 35
MN=0 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105120136153171190
AN=0 0 0 1 1 2 4 4 5 7 10 10 11 13 16 20 20 21 23 26 30
MMN=0 0 0 0 1 1 1 2 2 3 5 5 5 6 6 7 9 9 1012 15
MN=0 0 0 0 0 1 1 1 1 2 2 2 3 3 4 6 6 6 6 7 7
MMN=0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5
#yt1N=01 111 111111 111 1 1 1 1 1 11
weN=0 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6
usN=0 1 2 3 3 4 5 5 6 6 6 7 8 8 9 9 9 10 10 10 10
paN=0 1 2 3 4 4 5 6 7 7 8 9 9 10 10 10 11 12 13 13 14
usN=0 1 2 3 4 5 5 6 7 8 9 9 10 11 12 12 13 14 14 15 15

ks N—N 7(z)
22 2/3
o 1/2
' Y i
.
N
0 7 8\ (8Y (T \9 0
0 (5) ) G+E () 0 1/4 1/2 3/4 1

Fig. 27. Approximating a Kruskal function with the Takagi function. (The
smooth curve in the left-hand graph is the lower bound kN — N of exercise 80.)

omitting parentheses and commas for convenience. The complement of a vector
in T(ma,...,my,) is

T =m —-1—zy,....m,—1—2,). (70)
Notice that x < g holds if and only if Z > 3. Therefore we have

rank(z) + rank(z) = T -1, where T = mq ... m,,, (71)

if rank(z) denotes the number of vectors that precede z in cross order.

We will find it convenient to call the vectors “points” and to name the points
€0, €1, .., er_1 in increasing cross order. Thus we have e; = 002 in (69), and
e, = er_1_, in general. Notice that

e; = 100...00, ey, =010...00, ..., e, =000...01; (72)
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22 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3

these are the so-called unit vectors. The set

Sy = {60,61-,---,6N—1} (73)

consisting of the smallest N points is called a standard set, and in the special
case N = n+ 1 we write

E ={eq,e1,...,en} ={000...00,100...00,010...00,...,000...01}. (74)

Any set of points X has a spread X1, a core X°, and a dual X", defined
by the rules

Xt ={zeSr|zeXorzx—e €Xor-rorx—e, €X}; (75)
X ={zeSp|lreXandz+e € Xand---and z+e, € X}; (76)
X~ ={zeSr|z¢ X} (77)
We can also define the spread of X algebraically, writing
Xt = X+ E, (78)
where X +Y denotes {x +y |z € X and y € Y }. Clearly
XtCy if and only if XCcvye. (79)

These notions can be illustrated in the two-dimensional case my; = 4, mqo = 6, by
the more-or-less random toroidal arrangement X = {00, 12,13, 14, 15, 21,22, 25}
for which we have, pictorially,

oo oo+ eooe cle e+
° ° + ° 30 e/+/0|e@
° ° |+ ° ° ° |+ o
oo o|le|+ oo ° ole|+|ol|’ (80)
[ ] + e + e e [ ] oO|e|+ |0
. o+ |+ ° ° e+ |+|0
X X°and Xt X~ X~ and X~t

here X in the first two diagrams consists of points marked e or o, X° comprises
just the os, and X consists of +s plus es plus os. Notice that if we rotate the
diagram for X~° and X~% by 180°, we obtain the diagram for X° and X, but
with (e,0,+, ) respectively changed to (+, ,e,0); and in fact the identities

X° = x~t~, Xt = x~o (81)

hold in general (see exercise 86).
Now we are ready to state the theorem of Wang and Wang:

Theorem W. Let X be any set of N points in the discrete torus T(mq, ..., my),
where m; < -+ < m,,. Then | X*| > |S%| and | X°| < [S%|.

In other words, the standard sets Sy have the smallest spread and largest core,
among all N-point sets. We will prove this result by following a general approach
first used by F. W. J. Whipple to prove Theorem M [Proc. London Math. Soc.
(2) 28 (1928), 431-437]. The first step is to prove that the spread and the core
of standard sets are standard:
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Lemma S. There are functions « and (8 such that S7. = S,n and Sy = Sgn-

Proof. We may assume that N > 0. Let » be maximum with e, € Sj\}, and let
alN = r + 1; we must prove that e, € S?\} for 0 < ¢ < r. Suppose e, = = =
(1,...,2n) and e, =y = (y1,...,Yn), and let k be the largest subscript with
x> 0. Since y € SKH there is a subscript j such that y —e; € Sn. It suffices to
prove that & — e, =< y — e;, and exercise 88 does this.

The second part follows from (81), with SN = T — (T — N), because
Sy =5 n 1

Theorem W is obviously true when n = 1, so we assume by induction that
it has been proved in n — 1 dimensions. The next step is to compress the given
set X in the kth coordinate position, by partitioning it into disjoint sets

Xp(a) ={reX|zp=a} (82)
for 0 < a < my, and replacing each Xy (a) by

Xp(a) = { (5155 8k-1,0,8%,- -, 8n-1) | (S1:---,8n-1) € Sxp(a) }»  (83)

a set with the same number of elements. The sets S used in (83) are standard in
the (n — 1)-dimensional torus T'(m1,...,mg_1,Mg41,...,My). Notice that we
have (Z1,..., 251,80, Zk41,--,Tn) = (Y1, Yk—1,0, Y41, --,Yn) if and only
if (21, ., @1, kg1, Tn) = (Y1s- s Yk—1:Yk+1, - - -, Yn); therefore Xj (a) =
X, (a) if and only if the (n — 1)-dimensional points (21, ..., Tk—1, Tht1;---,Zn)
with (z1,...,2k—1,a,ZTk41,...,2Zn) € X are as small as possible when projected
onto the (n — 1)-dimensional torus. We let

CoX = XL(O0)UXL()U-- UXL(myg — 1) (84)

be the compression of X in position k. Exercise 90 proves the basic fact that
compression does not increase the size of the spread:

X > [(CpX)T, for 1 <k <n. (85)

Furthermore, if compression changes X, it replaces some of the elements by other
elements of lower rank. Therefore we need to prove Theorem W only for sets X
that are totally compressed, having X = C} X for all k.

Consider, for example, the case n = 2. A totally compressed set in two
dimensions has all points moved to the left of their rows and the bottom of their
columns, as in the eleven-point sets

o + +

e + e |+ + |+ + +

o + o | + e o + o + |+ o +
or or or or

e + |+ e o + e o + e o o + ® e | + +

® o | o + e 0 o + ® o o + e 0 o + o o 0 o

L BN BN BN J e o 0 o o o o o e o 0 o o o o o

the rightmost of these is standard, and has the smallest spread. Exercise 91
completes the proof of Theorem W in two dimensions.
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24 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3

When n > 2, suppose & = (z1,...,2,) € X and z; > 0. The condition
CrX = X implies that, if 0 <7 < jand i # k # j, we have x +¢;, —e; € X.
Applying this fact for three values of k tells us that 2 + e; — e; € X whenever
0 <1 < j. Consequently

Xn(a)+ E,(0) C X, (a—1)+e, for0<a<m, (86)

where m = m,, and E,(0) is a clever abbreviation for the set {eg,...,en_1}.
Let X,,(a) have N, elements, so that N =|X| = No+ N;+---+ Np,_1, and
let Y = XT. Then

Yo(a) = (Xn((a—1)modm) + en) U (Xy(a) + En(0))
is standard in n — 1 dimensions, and (86) tells us that
N1 <PBNp-2 < Np_g < - < Ny < BNy < Ny < alNg,
where o and 3 refer to coordinates 1 through n — 1. Therefore
Y1 = [Ya(0)) + [Ya(D)] + [Ya(2)[ + -+ [Yn(m — 1)
=alNo+No+ N1+ +Npa=alNo+ N — Np,_1.

The proof of Theorem W now has a beautiful conclusion. Let Z = Sy, and
suppose | Zn(a)| = M,. We want to prove that |XT| > |Z7|, namely that

aNo+N — Ny, 1 2 aMy+ N — My, 1, (87)
because the arguments of the previous paragraph apply to Z as well as to X.

We will prove (87) by showing that N,,_1 < M,,—1 and Ny > M.
Using the (n — 1)-dimensional o and S functions, let us define

N! =aN/

7In—1:Nm—17 m—2 — m—17 "> N{:aNév N(’):OZN{, (88)

N = N,, Ny =pBN}/, Ny =8Ny, ..., N! =B8N} _,. (89)

m

Then we have N < N, < N/ for 0 < a < m, and it follows that
N'=Ny+Ni+--+Ny_y <N < N'=N/+N'+-+Nj_4. (90)

Exercise 92 proves that the standard set Z' = Sy has exactly N/ elements with
nth coordinate equal to a, for each a; and by the duality between o and 3, the
standard set Z"" = Sy~ likewise has exactly N elements with nth coordinate a.
Finally, therefore,

M1 = | Zy(m —1)] > | Z(m — D] = N,y s,
Mo =2, (0)| < |Z,(0)] = Ny,
because Z' C Z C Z" by (90). By (81) we also have | X°| < |Z°|. 1

Now we are ready to prove Theorems K and M, which are in fact special
cases of a substantially more general theorem of Clements and Lindstrom that
applies to arbitrary multisets [J. Combinatorial Theory 7 (1969), 230-238]:
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Corollary C. If A is a set of N t-multicombinations contained in the multiset
U={s0-0,81-1,...,8q4-d}, where sg > s1 > -+ > 84, then

|0A| > |0Pni|  and  |A] > |@Qn+l, (91)

where Py denotes the N lexicographically smallest multicombinations dy . .. dady
of U, and Q¢ denotes the N lexicographically largest.

Proof. Multicombinations of U can be represented as points x; ... x, of the torus
T(my,...,my), where n = d+ 1 and m; = s,_; + 1; we let z; be the number
of occurrences of n — j. This correspondence preserves lexicographic order. For
example, if U = {0,0,0,1,1,2, 3}, its 3-multicombinations are

000, 100, 110, 200, 210, 211, 300, 310, 311, 320, 321, (92)
in lexicographic order, and the corresponding points xizox324 are
0003, 0012, 0021,0102,0111,0120, 1002, 1011, 1020, 1101, 1110. (93)

Let T, be the points of the torus that have weight xy + - -- + x,, = w. Then
every allowable set A of t-multicombinations is a subset of T;. Furthermore —
and this is the main point—the spread of ToUT; U---UT; 1 U A is

(ThbuTyU---UT, yUA)Y = ThuTF U U, uAf
= ToUTyU---UT; UpA. (94)

Thus the upper shadow @A is simply (To UTy U+ U Ty—q U A)*T N Tiyq, and
Theorem W tells us in essence that |A| = N implies |pA| > |o(Sm+n N T1)],
where M = |ToU---UT;_4|. Hence, by the definition of cross order, Sp+n N T}
consists of the lexicographically largest N t-multicombinations, namely Q ;.

The proof that |0A| > |0Py¢| now follows by complementation (see exer-
cise 94). |

EXERCISES
1. [M23] Explain why Golomb’s rule (8) makes all sets {c1,...,c:} C {0,...,n—1}
correspond uniquely to multisets {e1,...,e:} C {c0-0,...,00-n —t}.

2. [16] What path in an 11 x 13 grid corresponds to the bit string (13)?

3. [21] (R. R. Fenichel, 1968.) Show that the compositions g + - - -+ g1 + go of s into
t + 1 nonnegative parts can be generated in lexicographic order by a simple loopless
algorithm.

v

4. [16] Show that every composition g; ...qo of s into ¢ + 1 nonnegative parts corre-
sponds to a composition 75 ...79 of t into s + 1 nonnegative parts. What composition
corresponds to 10224000001010 under this correspondence?

» 5. [20] What is a good way to generate all of the integer solutions to the following
systems of inequalities?
a) N> Ty > Ty_1 > Ty_a > Ty—3 > -+ > w1 > 0, when ¢ is odd.
b) n>> Tt 3> Ti_1 > - > x2 > w1 > 0, where a > b means a > b+ 2.

6. [M22] How often is each step of Algorithm T performed?

25
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7. [22] Design an algorithm that runs through the “dual” combinations bs ... b2b1 in
decreasing lexicographic order (see (5) and Table 1). Like Algorithm T, your algorithm
should avoid redundant assignments and unnecessary searching.

8. [M23] Design an algorithm that generates all (s,t)-combinations a,_1 ...a1a0
lexicographically in bitstring form. The total running time should be O((’t‘)) assuming
that st > 0.

9. [M26] When all (s, t)-combinations a,—1 ...a1ao are listed in lexicographic order,
let 2A,: be the total number of bit changes between adjacent strings. For example,
Assz = 25 because there are respectively

2424+2444+24+2444+24+2464+2+24+44+24+24+44+24+242=50

bit changes between the 20 strings in Table 1.
a) Show that A,; = min(s,t) + A(s_1); + Ag—1) when st > 0; A, = 0 when st = 0.
b) Prove that As < Q(Sft).

10. [21] The “World Series” of baseball is traditionally a competition in which the
American League champion (A) plays the National League champion (N) until one of
them has beaten the other four times. What is a good way to list all possible scenarios
AAAA, AAANA, AAANNA, ..., NNNN? What is a simple way to assign consecutive
integers to those scenarios?

11. [19] Which of the scenarios in exercise 10 occurred most often during the 1900s?
Which of them never occurred? [Hint: World Series scores are easily found on the
Internet.]

12. [HM32] A set V of n-bit vectors that is closed under addition modulo 2 is called
a binary vector space.
a) Prove that every such V contains 2’ elements, for some integer ¢, and can be

represented as the set {z101 ® - - ® zra: | 0 < z1,...,2: < 1} where the vectors
ai, ..., ap form a “canonical basis” with the following property: There is a t-
combination ¢;...cac1 of {0,1,...,n — 1} such that, if ay is the binary vector

Ak(n—1) - -+ Qk1Gk0, WE have
age; = [j=k] for 1 <j k<t apr=0 for0<I<eg, 1<k<t.

For example, the canonical bases with n =9, ¢t = 4, and c4c3caci = 7641 have the

general form
a; = x00«x0=xx%x10,

a2 *+00x10000,
a3 = x01000000,
*10000000;

Qg4

there are 2° ways to replace the eight asterisks by Os and/or 1s, and each of these
defines a canonical basis. We call ¢ the dimension of V.

b) How many t-dimensional spaces are possible with n-bit vectors?

c) Design an algorithm to generate all canonical bases (a1,...,a:) of dimension t.
Hint: Let the associated combinations ¢;...c; increase lexicographically as in
Algorithm L.

d) What is the 1000000th basis visited by your algorithm when n =9 and ¢ = 4?

13. [25] A one-dimensional Ising configuration of length n, weight ¢, and energy r,
is a binary string a,—_1...ao such that Z?;Ol aj =t and Z?;ll b; = r, where b; =
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a; @ aj_1. For example, ai2...apo = 1100100100011 has weight 6 and energy 6, since
b2 ...b1 = 010110110010.
Design an algorithm to generate all such configurations, given n, t, and r.

14. [26] When the binary strings an—1...a1aq of (s,t)-combinations are generated
in lexicographic order, we sometimes need to change 2min(s,t) bits to get from one
combination to the next. For example, 011100 is followed by 100011 in Table 1.
Therefore we apparently cannot hope to generate all combinations with a loopless
algorithm unless we visit them in some other order.

Show, however, that there actually is a way to compute the lexicographic successor
of a given combination in O(1) steps, if each combination is represented indirectly in a
doubly linked list as follows: There are arrays [[0], ..., ![n] and r[0], ..., r[n] such that
[[r[j]] =7 for 0 < j <n. If zg =1[0] and z; = l[zj—1] for 0 < j < n, then a; = [z; > 5]
for 0 <j < n.

15. [M22] Use the fact that dual combinations bs...b2by occur in reverse lexico-
graphic order to prove that the sum (b;) + -+ (b22) + (611) has a simple relation
to the sum (Ctt) +o+ () + ().

16. [M21] What is the millionth combination generated by Algorithm L when ¢ is
(a) 27 (b) 37 (c) 4?7 (d) 57 (e) 10000007

17. [HM25] Given N and ¢, what is a good way to compute the combinatorial repre-
sentation (20)?

18. [20] What binary tree do we get when the binomial tree 7T;, is represented by
“right child” and “left sibling” pointers as in exercise 2.3.2-57

19. [21] Instead of labeling the branches of the binomial tree T4 as shown in (22), we
could label each node with the bit string of its corresponding combination:

0000

No—

0001 0010 0100 1000

0011 0101 0110 1001 1010 1100
0111 1011 1101 1110

1111

If T has been labeled in this way, suppressing leading zeros, preorder is the same as
the ordinary increasing order of binary notation; so the millionth node turns out to be
11110100001000111111. But what is the millionth node of T in postorder?

20. [M20] Find generating functions g and h such that Algorithm F finds exactly
[2V] g(2) feasible combinations and sets t < t + 1 exactly [2™] h(z) times.

21. [M22

]
22. [M23] What is the millionth revolvmg-door combination visited by Algorithm R
when ¢ is (a) 2?7 (b) 37 (c) 4?7 (d) 57 (e) 10000007
]

23. [M23] Suppose we augment Algorithm R by setting 7 < ¢+ 1 in step R1, and
j < 1if R3 goes directly to R2. Find the probability distribution of j, and its average
value. What does this imply about the running time of the algorithm?

Prove the alternating combination law (30).
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> 24. [M25] (W. H. Payne, 1974.) Continuing the previous exercise, let ji be the value
of j on the kth visit by Algorithm R. Show that |jx+1 — jk| < 2, and explain how to
make the algorithm loopless by exploiting this property.

25. [M35] Let ¢;...coeq and ¢ ... ch¢) be the Nth and N’th combinations generated
by the revolving-door method, Algorithm R. If the set C = {c¢;,...,co,c1} has m

elements not in C' = {c},...,ch,ci}, prove that [N — N'| > 371 (%)),

26. [26] Do elements of the ternary reflected Gray code have properties similar to the
revolving-door Gray code I's:, if we extract only the n-tuples a,—_1...a1a0 such that
(@) an—1+ -+ a1+ a0 =t? (b) {an-1,...,01,a0} ={r-0,s8-1,t-2}?

> 27. [25] Show that there is a simple way to generate all combinations of at most t
elements of {0,1,...,n — 1}, using only Gray-code-like transitions 0 <+ 1 and 01 <> 10.
(In other words, each step should either insert a new element, delete an element, or
shift an element by +1.) For example,

0000, 0001, 0011, 0010, 0110, 0101, 0100, 1100, 1010, 1001, 1000

is one such sequence when n =4 and ¢ = 2. Hint: Think of Chinese rings.

28. [M21] True or false: A listing of (s,t)-combinations a,—1...a1a0 in bitstring
form is in genlex order if and only if the corresponding index-form listings bs ... b2b1
(for the 0s) and ¢t ...cac1 (for the 1s) are both in genlex order.

29. [M28] (P. J. Chase.) Given a string on the symbols +, -, and 0, say that an
R-block is a substring of the form -**! that is preceded by 0 and not followed by -; an
L-block is a substring of the form +-* that is followed by 0; in both cases k > 0. For
example, the string {00++-+++-000-| has two L-blocks and one R-block, shown in gray.
Notice that blocks cannot overlap.

We form the successor of such a string as follows, whenever at least one block is
present: Replace the rightmost 0-**" by -+*0, if the rightmost block is an R-block;
otherwise replace the rightmost +-*¥0 by 0+F%1. Also negate the first sign, if any, that
appears to the right of the block that has been changed. For example,

-#00++- — 0O+~ — -0*—0--| = -0+--H0 — -OF——0+ — —00+++-,

where the notation @ — 8 means that 8 is the successor of a.

a) What strings have no blocks (and therefore no successor)?

b) Can there be a cycle of strings with ag = a1 — -+ = ar—1 — ao?

c) Prove that if @ — § then —38 — —a, where “—” means “negate all the signs.”
(Therefore every string has at most one predecessor.)

d) Show that if &g — a1 — --- — ai and k > 0, the strings ap and aj do not have
all their Os in the same positions. (Therefore, if ap has s signs and ¢ zeros, k must
be less than (*17).)

e) Prove that every string a with s signs and ¢ zeros belongs to exactly one chain

v

op —> 0y —> o —> a(s+t)71.
t

30. [M32] The previous exercise defines 2° ways to generate all combinations of s 0s

and t 1s, via the mapping + — 0, - — 0, and 0 — 1. Show that each of these ways

is a homogeneous genlex sequence, definable by an appropriate recurrence. Is Chase’s

sequence (37) a special case of this general construction?

31. [M23] How many genlex listings of (s, t)-combinations are possible in (a) bitstring
form an—1...a1a0? (b) index-list form ¢;...coc1?
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» 32. [M32] How many of the genlex listings of (s,t)-combination strings an—_1...a1a0
(a) have the revolving-door property? (b) are homogeneous?

33. [HM33] How many of the genlex listings in exercise 31(b) are near-perfect?

34. [M32] Continuing exercise 33, explain how to find such schemes that are as near
as possible to perfection, in the sense that the number of “imperfect” transitions c; <+
¢;j £ 2 is minimized, when s and ¢ are not too large.

35. [M26] How many steps of Chase’s sequence Cs; use an imperfect transition?

v

36. [M21] Prove that method (39) performs the operation j < j+1 a total of exactly

(S't“) — 1 times as it generates all (s,t)-combinations an—1 ...a1a0, given any genlex
scheme for combinations in bitstring form.

» 37. [27] What algorithm results when the general genlex method (39) is used to

produce (s,t)-combinations an—1 ...a1ao in (a) lexicographic order? (b) the revolving-

door order of Algorithm R? (c) the homogeneous order of (31)?

38. [26] Design a genlex algorithm like Algorithm C for the reverse sequence C%.

39. [M21] When s = 12 and ¢t = 14, how many combinations precede the bit string
11001001000011111101101010 in Chase’s sequence Cs:? (See (41).)

40. [M22] What is the millionth combination in Chase’s sequence Cs:, when s = 12
and ¢t = 147

41. [M27] Show that there is a permutation ¢(0), ¢(1), ¢(2), ... of the nonnegative
integers such that the elements of Chase’s sequence Cs; are obtained by complementing
the least significant s 4+ ¢ bits of the elements c(k) for 0 < k < 2°* that have weight
v(c(k)) = s. (Thus the sequence ¢(0), ..., 2™ — 1) contains, as subsequences, all of
the Cs; for which s + t = n, just as Gray binary code g(0), ..., g(2" — 1) contains all
the revolving-door sequences I's;.) Explain how to compute the binary representation
c(k) = (...a2a1a0)2 from the binary representation k = (...b2b1bo)2.

42. [HM34] Use generating functions of the form 3 _, gstw®z' to analyze each step of
Algorithm C.

43. [20] Prove or disprove: If s(z) and p(z) denote respectively the successor and
predecessor of z in endo-order, then s(z + 1) = p(z) + 1.

> 44. [M21] Let C¢(n) — 1 denote the sequence obtained from C;(n) by striking out
all combinations with ¢; = 0, then replacing c¢;...c1 by (¢t — 1)...(c1 — 1) in the
combinations that remain. Show that C¢(n) — 1 is near-perfect.

45. [32] Exploit endo-order and the expansions sketched in (44) to generate the
combinations ¢ . ..cac1 of Chase’s sequence Cy¢(n) with a nonrecursive procedure.

» 46. [33] Construct a nonrecursive algorithm for the dual combinations bs . ..b2b1 of
Chase’s sequence Cs:, namely for the positions of the zeros in an—_1 ...a1ao0.

47. [26] Implement the near-perfect multiset permutation method of (46) and (47).

48. [M21] Suppose ag, a1, ..., an—1 is any listing of the permutations of the multiset
{s1-1,...,8q4-d}, where ay, differs from ai11 by the interchange of two elements. Let
Bo, ..., Bm—1 be any revolving-door listing for (s, t)-combinations, where s = so, t =

s1+---+8d4,and M = (SJ{t). Then let A; be the list of M elements obtained by starting
with a; 1 o and applying the revolving-door exchanges; here 1 3 denotes the string
obtained by substituting the elements of « for the 1s in (3, preserving left-right order.

For example, if Bo, ..., Ba_1 is 0110, 0101, 1100, 1001, 0011, 1010, and if a; = 12,
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then A; is 0120, 0102, 1200, 1002, 0012, 1020. (The revolving-door listing need not be
homogeneous.)

Prove that the list (47) contains all permutations of {so - 0,s1 - 1,...,5q - d}, and
that adjacent permutations differ from each other by the interchange of two elements.

49. [HM23] If q is a primitive mth root of unity, such as e2™/™ show that
(n) _ (Ln/mJ) (nmodm)
k), lk/m| kmodm/,
50. [HM25] Extend the formula of the previous exercise to g-multinomial coefficients
(m +o e )
Niy..., Nt q.
51. [25] Find all Hamiltonian paths in the graph whose vertices are permutations of

{0,0,0,1,1,1} related by adjacent transposition. Which of those paths are equivalent
under the operations of interchanging Os with 1s and/or left-right reflection?

52. [M37] Generalizing Theorem P, find a necessary and sufficient condition that all
permutations of the multiset {so -0, ..., sq - d} can be generated by adjacent transpo-
sitions aja;j_1 ¢ aj_1a; .

53. [M46] (D. H. Lehmer, 1965.) Suppose the N permutations of {so - 0,...,sq4 - d}
cannot be generated by a perfect scheme, because (N + x)/2 of them have an even
number of inversions, where x > 2. Is it possible to generate them all with a sequence
of N + x — 2 adjacent interchanges as, <+ as,—1 for 1 < k < N + x — 1, where
r — 1 cases are “spurs” with d = dx_1 that take us back to the permutation we’ve

just seen? For example, a suitable sequence 1 ...d9s4 for the 90 permutations of
{0,0,1,1,2,2}, where & = (2”“)_1 = 6, is 234535432523451a42aF51a42aR51a4,

2,2,2

where o = 45352542345355, if we start with asasaszazaiao = 221100.

54. [M40] For what values of s and t can all (s,t)-combinations be generated if we
allow end-around swaps an—1 <> ao in addition to adjacent interchanges a; <> aj—1?
55. [30] (Frank Ruskey, 2004.) Show that all (s,t)-combinations as4¢—1 ...a1a0 can
be generated efficiently by doing successive rotations ajaj_1...ao0 ¢ aj—1...aoa;.
56. [M49] (Buck and Wiedemann, 1984.) Can all (t,¢)-combinations az;—1 ...a1a0
be generated by repeatedly swapping ap with some other element?

57. [22] (Frank Ruskey.) Can a piano player run through all possible 4-note chords
that span at most one octave, changing only one finger at a time? This is the problem of
generating all combinations ¢;...c; such that n > ¢ > -+ >¢1 > 0and ¢t — 1 <m,
where ¢ = 4 and (a) m = 8, n = 52 if we consider only the white notes of a piano
keyboard; (b) m = 13, n = 88 if we consider also the black notes.

58. [20] Consider the piano player’s problem of exercise 57 with the additional con-
dition that the chords don’t involve adjacent notes. (In other words, cj+1 > ¢; + 1 for
t > j > 1. Such chords tend to be more harmonious.)

59. [M25] Is there a perfect solution to the 4-note piano player’s problem, in which
each step moves a finger to an adjacent key?

60. [23] Design an algorithm to generate all bounded compositions
t=rs+---+ 71+ r0, where 0 < r; < mj; for s > j > 0.

61. [32] Show that all bounded compositions can be generated by changing only two
of the parts at each step.
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> 62. [M27] A contingency table is an m X n matrix of nonnegative integers (a;;) having
. n m
given row sums r; = Ej:l ai; and column sums ¢; = Y " | a5, where 71 4+ -+ - 4+ 1, =
c1+ -+ cn.
a) Show that 2 X n contingency tables are equivalent to bounded compositions.
b) What is the lexicographically largest contingency table for (r1,...,rm;c1,...,¢n),
when matrix entries are read row-wise from left to right and top to bottom, namely

in the order (ai1,a12,...,01n,a21,...,amn)?

¢) What is the lexicographically largest contingency table for (r1,...,rm;c1,...,¢n),
when matrix entries are read column-wise from top to bottom and left to right,
namely in the order (ai1,a21,...,am1,a812,...,Amn)?

d) What is the lexicographically smallest contingency table for (r1,...,rm;c1,...,¢n),

in the row-wise and column-wise senses?
e) Explain how to generate all contingency tables for (r1,...,7m;c1,...,¢n) in lex-
icographic order.

63. [M41] Show that all contingency tables for (r1,...,7m;c1,...,cn) can be gener-
ated by changing exactly four entries of the matrix at each step.

64. [M30] Construct a genlex Gray cycle for all of the 2° (Si't) subcubes that have
s digits and t asterisks, using only the transformations %0 < 0%, *1 < 1%, 0 < 1.
For example, one such cycle when s =t =2 is

v

(003, 015, 01, 01, 0xx0, 0x0%, x00%, x01, x0x1, x0%0, *xx00, *x01,
w11, %% 10, %10, x 11, x 1T, x10%, 1Tx0%, 10, T 1, 1k, TTskk, 10%:k).
65. [M40] Enumerate the total number of genlex Gray paths on subcubes that use
only the transformations allowed in exercise 64. How many of those paths are cycles?

66. [22] Given n >t > 0, show that there is a Gray path through all of the canonical
bases (au, ..., o) of exercise 12, changing just one bit at each step. For example, one
such path when n =3 and t = 2 is

001 101 101 001 001 011 010
010’ 010’ 110’ 110> 100’ 100’ 100°

67. [46] Consider the Ising configurations of exercise 13 for which ag = 0. Given n,

v

t, and r, is there a Gray cycle for these configurations in which all transitions have the
forms 0*1 <+ 10* or 01% « 1¥0? For example, in the case n = 9, t = 5, 7 = 6, there is
a unique cycle

(010101110, 010110110, 011010110, 011011010, 011101010, 010111010).

68. [M01] If a is a t-combination, what is (a) 8'a? (b) 8" 'a?

> 69. [M22] How large is the smallest set A of ¢-combinations for which [9A| < |A|?
70. [M25] What is the maximum value of ks N — N, for N > 07
71. [M20] How many t-cliques can a million-edge graph have?

> 72. [M22] Show that if N has the degree-t combinatorial representation (57), there

is an easy way to find the degree-s combinatorial representation of the complementary

number M = (Sjt) — N, whenever N < (Sft). Derive (63) as a consequence.

73. [M23] (A.J. W. Hilton, 1976.) Let A be a set of s-combinations and B a set of
t-combinations, both contained in U = {0,...,n — 1} where n > s + t. Show that if A
and B are cross-intersecting, in the sense that N B # () for all « € A and 8 € B, then
so are the sets Quns and Qnne defined in Theorem K, where M = |A| and N = |B|.
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74. [M21] What are |pPn¢| and |QQnn¢| in Theorem K?

75. [M20] The right-hand side of (60) is not always the degree-(t — 1) combinatorial
representation of k; N, because v — 1 might be zero. Show, however, that a positive
integer N has at most two representations if we allow v = 0 in (57), and both of them
yield the same value k; N according to (60). Therefore

N ng—1 Ny
.. ke N = for 1 < k<t
Pk ke - - it (k71)+<k72)+ +(k71+v7t) orl<kst

76. [M20] Find a simple formula for x¢(N 4+ 1) — k¢ N.

77. [M26] Prove the following properties of the x functions by manipulating binomial
coefficients, without assuming Theorem K:

a) Ke(M 4+ N) < rk:M + ke N.

b) k(M + N) < max(k: M, N) + k:—1N.
it ()44 () () o (3) il fo ("7 4+ (M) 4
(m’;\""‘) + -4 (mlfnl), where V and A denote max and min.

78. [M22] Show that Theorem K follows easily from inequality (b) in the previous
exercise. Conversely, both inequalities are simple consequences of Theorem K. Hint:
Any set A of t-combinations can be written A = A1+ Ao0, where Ay = {a € A |0 ¢ a}.
79. [M23] Prove that if t > 2, we have M > p; N if and only if M + A\;—1 M > N.

80. [HM26] (L. Lovész, 1979.) The function (3) increases monotonically from 0 to co
as x increases from ¢t — 1 to oo; hence we can define

&N:( m ), ifN:(m)andmZt—l.
' t—1 t

Prove that k; N > k, N for all integers t > 1 and N > 0. Hint: Equality holds when z
is an integer.

81. [M27] Show that the minimum shadow sizes in Theorem M are given by (64).
82. [HM31] The Takagi function of Fig. 27 is defined for 0 < x < 1 by the formula

(z) = i::/ozm(t) dt,

where 7 (t) = (—1)L2k” is the Rademacher function of Eq. 7.2.1.1-(16).
a) Prove that 7(z) is continuous in the interval [0..1], but its derivative does not
exist at any point.
b) Show that 7(z) is the only continuous function that satisfies

(3z) = 7(1-32) = 12+ i7(2) for0<z<1.

What is the asymptotic value of 7(¢) when € is small?

Find all roots of the equation 7(z) = 1/2.

)
d) Prove that 7(z) is rational when z is rational.
)
) Find all roots of the equation 7(z) = maxg<z<1 7().

83. [HM46] Determine the set R of all rational numbers r such that the equation
7(z) = r has uncountably many solutions. If 7(z) is rational and z is irrational, is it
true that 7(z) € R? (Warning: This problem can be addictive.)
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84. [HM27] U T = (m;l), prove the asymptotic formula

3
mN—Ne:§O(¥)+OG@?J) for0< N <T.

85. [HM21] Relate the functions A\; N and u; N to the Takagi function 7(z).

86. [M20] Prove the law of spread/core duality, X~+ = X°~,

87. [M21] True or false: (a) X C Y° if and only if Y~ C X~°; (b) X°t° = X°;
(¢) aM < N if and only if M < BN.

88. [M20] Explain why cross order is useful, by completing the proof of Lemma S.
89. [16] Compute the o and B functions for the 2 X 2 x 3 torus (69).

90. [M22] Prove the basic compression lemma, (85).

91. [M24] Prove Theorem W for two-dimensional toruses T'(l,m), I < m.

92. [M28] Let x = 1 ...Tn—1 be the Nth element of the torus T'(my,...,mn—1), and
let S be the set of all elements of T'(m1,...,m,_1,m) that are < z1...2,_1(m—1)
in cross order. If N, elements of S have final component a, for 0 < a < m, prove
that N1 = N and N,—1 = aN, for 1 < a < m, where « is the spread function for
standard sets in T'(m1,...,m,_1).

93. [M25] (a) Find an N for which the conclusion of Theorem W is false when the
parameters mi, ma, ..., m, have not been sorted into nondecreasing order. (b) Where
does the proof of that theorem use the hypothesis that m; < ma <--- < m,?

94. [M20] Show that the 0 half of Corollary C follows from the o half. Hint: The
complements of the multicombinations (g92) with respect to U are 3211, 3210, 3200,
3110, 3100, 3000, 2110, 2100, 2000, 1100, 1000.

95. [17] Explain why Theorems K and M follow from Corollary C.

96. [M22] If S is an infinite sequence (so, S1, S2,...) of positive integers, let
n—1
(Sgcn)) = [2"] _1_[0(1+z+---+zsf);
j=

thus (S(k")) is the ordinary binomial coefficient (2) ifsg=8,=8,=---=1.
Generalizing the combinatorial number system, show that every nonnegative inte-
ger N has a unique representation

S(nt)) (S(nt_1)> (S(n1)>
( t + t—1 + + 1

where ny > ng_1 > --->ny > 0and {ng,ne—1,...,n1} C{s0-0,81-1,82-2,...}. Use
this representation to give a simple formula for the numbers |9 Pn;¢| in Corollary C.

97. [M26] The text remarked that the vertices of a convex polyhedron can be per-
turbed slightly so that all of its faces are simplexes. In general, any set of combinations
that contains the shadows of all its elements is called a simplicial complez; thus C' is a
simplicial complex if and only if @ C § and 8 € C implies that a € C, if and only if
C' is an order ideal with respect to set inclusion.
The size vector of a simplicial complex C on n vertices is (Ng, N1,..., N,,) when
C' contains exactly N; combinations of size t.
a) What are the size vectors of the five regular solids (the tetrahedron, cube, octa-
hedron, dodecahedron, and icosahedron), when their vertices are slightly tweaked?
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34 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3

b) Construct a simplicial complex with size vector (1,4,5,2,0).

¢) Find a necessary and sufficient condition that a given size vector (No, N1,..., Ny)
is feasible.

d) Prove that (No, ..., N,) is feasible if and only its “dual” vector (No,..., N,) is
feasible, where we define N, = (?) — Np—z¢.

e) List all feasible size vectors (Ng, N1, Na, N3, N4) and their duals. Which of them

are self-dual?

98. [30] Continuing exercise 97, find an efficient way to count the feasible size vectors
(No, N1,...,Ny) when n < 100.

99. [M25] A clutter is a set C of combinations that are incomparable, in the sense
that o C 8 and o, 8 € C implies a = B. The size vector of a clutter is defined as in
exercise 97.
a) Find a necessary and sufficient condition that (Mo, M1, ..., My) is the size vector
of a clutter.
b) List all such size vectors in the case n = 4.

» 100. [M30] (Clements and Lindstrém.) Let A be a “simplicial multicomplex,” a set
of submultisets of the multiset U in Corollary C with the property that 94 C A. How
large can the total weight vA = > {|a| | @« € A} be when |A| = N?

101. [M25] If f(z1,...,%n) is a Boolean formula, let F'(p) be the probability that
f(z1,...,xzn) =1 when each variable z; independently is 1 with probability p.
a) Calculate G(p) and H (p) for the Boolean formulas g(w, z,y, z) = wzzVwyzVzyz,
h(w,z,y, z) = 0yz V zyz.
b) Show that there is a monotone Boolean function f(w,z,y, z) such that F(p) =
G(p), but there is no such function with F(p) = H(p). Explain how to test this
condition in general.

102. [HM35] (F.S. Macaulay, 1927.) A polynomial ideal I in the variables {z1 ..., zs}
is a set of polynomials closed under the operations of addition, multiplication by a
constant, and multiplication by any of the variables. It is called homogeneous if it
consists of all linear combinations of a set of homogeneous polynomials, namely of
polynomials like zy+ 2% whose terms all have the same degree. Let N; be the maximum
number of linearly independent elements of degree ¢ in I. For example, if s = 2,
the set of all a(zo,z1,x2) (zoxs — 2z123) + B(z0, T1,T2)Tor1 25, Where a and B run
through all possible polynomials in {zo, 21,22}, is a homogeneous polynomial ideal
WithN0:N1:N2:0, N3:1, N4:4, N5:9,N6:15,
a) Prove that for any such ideal I there is another ideal I' in which all homogeneous
polynomials of degree ¢ are linear combinations of N; independent monomials.
(A monomial is a product of variables, like z3z,x5.)
b) Use Theorem M and (64) to prove that Niy1 > Nt + k5N for all £ > 0.
c) Show that Niy1 > Ni + k5N occurs for only finitely many ¢. (This statement
is equivalent to “Hilbert’s basis theorem,” proved by David Hilbert in Géttinger
Nachrichten (1888), 450-457; Math. Annalen 36 (1890), 473-534.)

> 103. [M38] The shadow of a subcube aj ... a,, where each a; is either 0 or 1 or %, is
obtained by replacing some * by 0 or 1. For example,

90x11x0 = {0011x0, 0111x0, 01100, 0x1110}.

Find a set Pns: such that, if A is any set of N subcubes a; ...a, having s digits and
t asterisks, |0A| > |Pnst|.
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104. [M41] The shadow of a binary string a; ... a, is obtained by deleting one of its
bits. For example,

6110010010 = {10010010, 11010010, 11000010, 11001000, 11001001}.

Find a set Pn» such that, if A is any set of N binary strings a1 ... an, |0A| > |Pnnl.

105. [M20] A wuniversal cycle of t-combinations for {0,1,...,n — 1} is a cycle of
(?) numbers whose blocks of ¢ consecutive elements run through every ¢-combination
{c1,...,ct}. For example,

(02145061320516243152630425364103546)

is a universal cycle when t =3 and n = 7.
Prove that no such cycle is possible unless (?) is a multiple of n.

106. [M21] (L. Poinsot, 1809.) Find a “nice” universal cycle of 2-combinations for
{0,1,...,2m}. Hint: Consider the differences of consecutive elements, mod (2m + 1).

107. [22] (O. Terquem, 1849.) Poinsot’s theorem implies that all 28 dominoes of a
traditional “double-six” set can be arranged in a cycle so that the spots of adjacent
dominoes match each other:

How many such cycles are possible?

108. [M31] Find universal cycles of 3-combinations for the sets {0,...,n — 1} when
n mod 3 # 0.

109. [M31] Find universal cycles of 3-multicombinations for {0,1,...,n — 1} when
nmod 3 # 0 (namely for combinations di1d>ds with repetitions permitted). For exam-
ple,

(00012241112330222344133340024440113)

is such a cycle when n = 5.

» 110. [26] Cribbage is a game played with 52 cards, where each card has a suit (&, <,
Q, or #) and a face value (A, 2, 3, 4,5, 6,7, 8,9, 10, J, Q, or K). One feature of the
game is to compute the score of a 5-card combination C' = {c1, ¢z, c3, ca, c5 }, where one
card ¢y is called the starter. The score is the sum of points computed as follows, for
each subset S of C' and each choice of k: Let |S| = s.

i) Fifteens: If Y {v(c) | ¢ € S} = 15, where (v(4),v(2),v(3),...,v(9),v(10),v(J),
v(Q),v(K)) = (1,2,3,...,9,10,10, 10, 10), score two points.
ii) Pairs: If s = 2 and both cards have the same face value, score two points.
iii) Runs: If s > 3 and the face values are consecutive, and if C' does not contain a
run of length s + 1, score s points.
iv) Flushes: If s = 4 and all cards of S have the same suit, and if ¢, ¢ S, score
4 + [cx, has the same suit as the others].
v) Nobs: If s =1 and ci ¢ S, score 1 if the card is J of the same suit as cy.
For example, if you hold {Jé&,5&,5<¢,6Q} and if 4 is the starter, you score 4 x 2 for
fifteens, 2 for a pair, 2 X 3 for runs, plus 1 for nobs, totalling 17.
Exactly how many combinations and starter choices lead to a score of z points,
forx=0,1,2,...7

35



36 ANSWERS TO EXERCISES 7.2.1.3

SECTION 7.2.1.3

1. Given a multiset, form the sequence e;...eze; from right to left by listing the
distinct elements first, then those that appear twice, then those that appear thrice,
etc. Let usset e_; <~ s—jfor 0 < j < s=mn—t, sothat every element e; for 1 < j <t
is equal to some element to its right in the sequence e;...eieq...e—s. If the first such
element is e.; s, we obtain a solution to (3). Conversely, every solution to (3) yields a
unique multiset {e1,...,e:}, because ¢; < s+ j for 1 < j < .

[A similar correspondence was proposed by E. Catalan: If0 < e; < --- < e < s, let

{e1,...,a} = {er,...,e}U{s+j|1<j<tande; =e€j41}.

See Mémoires de la Soc. roy. des Sciences de Liége (2) 12 (1885), Mélanges Math., 3.]
2. Start at the bottom left corner; then go up for each 0, go right for each 1. The

result is

3. In this algorithm, variable r is the least positive index such that ¢, > 0.

F1. [Initialize.] Set g; + 0 for 1 < j < ¢, and go < s. (We assume that st > 0.)
F2. [Visit.] Visit the composition g; ...qo. Go to F4 if go = 0.
F3. [Easy case.] Set go < qgo — 1, 7 + 1, and go to F5.
F4. [Tricky case.] Terminate if r = t. Otherwise set qo +— gr—1, g» < 0,7 < r+1.
F5. [Increase g..] Set g, < g» + 1 and return to F2. |

[See CACM 11 (1968), 430; 12 (1969), 187. The task of generating such compositions

in decreasing lexicographic order is more difficult.]

4. We can reverse the roles of 0 and 1 in (14), so that 09¢109%-11...109'10% =
17:017=-10...01"101"™. This gives 0'10°10%10%10*10°10°10°10°10°10*10°10'10° =
1°01201°01'01°01101°01°01°01°01%01'.  Lexicographic order of an_i...aiaq corre-
sponds to lexicographic order of rs...ri7g.

Incidentally, there’s also a multiset connection: {d:,...,d1} = {rs-s,...,r0-0}.
For example, {10, 10,8,6,2,2,2,2,2,2,1,1,0} = {0-11,2-10,0-9,1-8,0-7,1-6,0-5,
0-4,0-3,6-2,2-1,1-0}.

5. (a) Set z; = ¢;—|(7—1)/2] in each t-combination of n+|t/2]. (b) Set x; = ¢;+j+1
in each t-combination of n — t — 2.

(A similar approach finds all solutions (x4, ..., x1) to the inequalities z;j4+1 > z;+6;
for 0 < j < t, given the values of z¢y1, (J¢,...,01), and zg.)

6. Assume that t > 0. We get to T3 when ¢; > 0; to T5 whenco =c1+1 > 15 to T4
for 2 < j <t+4+1whenc; =c1+j5—12> j. So the counts are: T1, 1; T2, (?), T3, (";1);
n—2 n—2 n—t—1 n—1y\, n—2\, n—1 n—2
T4, (tfl) + (t72) + o+ ( 0 ) = (tfl)'f 5, (7:71)7 16, (tfl) + (t—l) - L
7. A procedure slightly simpler than Algorithm T suffices: Assume that s < n.
S1. [Initialize.] Set b; + j+n—s—1for 1 < j < s; then set 7 « 1.
S2. [Visit.] Visit the combination bs ...b2b1. Terminate if j > s.
S3. [Decrease bj;.] Set b; < b; — 1. If b; < j, set j < j + 1 and return to S2.

S4. [Reset bj_1...b1.] While j > 1, set bj_1  bj — 1, j + 7 — 1, and repeat until
7=1. GotoS2. 1
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(See S. Dvoidk, Comp. J. 33 (1990), 188. Notice that if zx = n — b for 1 < k < s,
this algorithm runs through all combinations x5 ... z2x1 of {1,2,...,n} with1 < z, <
-+ < z2 < 71 < n, in increasing lexicographic order.)

8. Al. [Initialize.] Set ay, ... a0 ¢ 0°T*1% g < t, 7 + 0. (We assume that 0 < t < n.)
A2. [Visit.] Visit the combination a,_1 ...a1a9. Go to A4 if ¢ = 0.
A3. [Replace ...01% by ...10197 %] Set aq < 1, ag—1 < 0, ¢ < q — 1; then if
q =0, set r + 1. Return to A2.

A4. [Shift block of 1s.] Set a, + 0 and r + r + 1. Then if a, = 1, set aq + 1,
q < q+ 1, and repeat step A4.

AS5. [Carry to left.] Terminate if r = n; otherwise set a, < 1.
A6. [0dd?] If ¢ > 0, set 7 < 0. Return to A2. 1|

In step A2, ¢ and r point respectively to the rightmost 0 and 1 in a,—1...a0. Steps

A1, ..., A6 are executed with frequency 1, (7), (’;:11), (’t‘) -1, (";1), (";1) —1.

9. (a) The first (";1) strings begin with 0 and have 2A4,_1); bit changes; the other
(7)) begin with 1 and have 2A,;_1). And v(01°0°"" @ 10°1*~') = 2min(s, ¢).
(b) Solution 1 (direct): Let Bs; = Ag + min(s,t) + 1. Then

By = B(s_1)t + Bst—1) + [s=t] when st > 0; Bst =1 when st = 0.

Consequently Bq; = Z:’:(‘J(S’t) (s‘:"':kz’“), If s <t thisis < 337, (s+t—k) _ (s+t+1) _

. . s—k s
(4= < o('F).

Solution 2 (indirect): The algorithm in answer 8 makes 2(z + y) bit changes when
steps (A3, A4) are executed (z,y) times. Thus As < (7;:11) + () —1<2(}).
[The comment in answer 7.2.1.1-3 therefore applies to combinations as well.]

10. Each scenario corresponds to a (4,4)-combination bybsbzbi or csczczer in which
A wins games {8 — b4, 8—b3,8—b2,8—b1} and N wins games {8 —c4,8—c3,8—c2,8—c1},
because we can assume that the losing team wins the remaining games in a series of 8.
(Equivalently, we can generate all permutations of {A, A, A;A;N,N,N,N} and omit
the trailing run of As or Ns.) The American League wins if and only if by # 0, if and
only if ¢; = 0. The formula (CZ) + (C;) + (C22) + (Cll) assigns a unique integer between
0 and 69 to each scenario.

For example, ANANAA <= ar7...a1a0 = 01010011 <= babsbab; = 7532 <=
caczcac; = 6410, and this is the scenario of rank (i) + (g) + (;) + ((1]) = 19 in
lexicographic order. (Notice that the term (37) will be zero if and only if it corresponds

to a trailing N.)

11. AAAA (9 times), NNNN (8), and ANAAA (7) were most common. Exactly 27
of the 70 failed to occur, including all four beginning with NNNA. (We disregard the
games that were tied because of darkness, in 1907, 1912, and 1922. The case ANNAAA
should perhaps be excluded too, because it occurred only in 1920 as part of ANNAAAA
in a best-of-nine series. The scenario NNAAANN occurred for the first time in 2001.)

12. (a) Let V; be the subspace {an—1...a0 € V | ar = 0 for 0 < k < j}, so that
{0...0} =V, C Vo1 C---CVop=V. Then {c1,...,¢:} ={c| Ve # Vey1}, and oy is
the unique element a,,_1...a¢ of V with ac; =[j=k] for 1 <j <t

Incidentally, the t X n matrix corresponding to a canonical basis is said to be in
reduced row-echelon form. It can be found by a standard “triangulation” algorithm
(see exercise 4.6.1-19 and Algorithm 4.6.2N).
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t t—1
right properties, because 2* (";1)2 binary vector spaces have ¢; < n—1 and (

(b) The 2-nomial coefficient (7)2 =2! ("71)2 + ("71)2 of exercise 1.2.6-58 has the
n—1
t—1
¢t = n— 1. [In general the number of canonical bases with r asterisks is the number of

)2 have

partitions of r into at most ¢ parts, with no part exceeding n — ¢, and this is [2"] (T;)
by Eq. 7.2.1.4—(51). See D. E. Knuth, J. Combinatorial Theory 10 (1971), 178-180.]
(c) The following algorithm assumes that n > ¢ > 0 and that a11); = 0 for
t<j<n
V1. [Initialize.] Set ar; < [j=k —1]for 1 <k <tand 0 < j < n. Also set g + t,
r < 0.

z

V2. [Visit.] (At this point we have ag—1) = 1 for 1 < k < ¢, a(g+1)q = 0, and
a1, = 1.) Visit the canonical basis (a1(n—1) ... @11010,..., 0 n—1) - - Gt100).
Go to V4 if ¢ > 0.

V3. [Find block of 1s.] Set ¢ < 1, 2, ..., until a(41)(g+r) = 0. Terminate if
qg+r=n.
V4. [Add 1 to column g+7.] Set k < 1. If ag(q4r) = 1, set aggtr) < 0, k < k+1,

and repeat until agg4r) = 0. Then if k < g, set ag(g4+r) + 1; otherwise set
Ag(g+r) < 1, Gg(g4r-1) < 0, ¢ qg— 1.

V5. [Shift block right.] If ¢ = 0, set 7 - r+1. Otherwise, if r > 0, set ag_1) < 1
and ag(r4x—1) < 0 for 1 < k < g, then set 7 <~ 0. Go to V2. |

Step V2 finds ¢ > 0 with probability 1 — (27" — 1)/(2" — 1) & 1 — 277, so we could
save time by treating this case separately.

(d) Since 999999 = 4 (), +16 (3), 45 (5), +5(5), +8(5), +0(), +4(3), 1 (), +
2 ((1))2, the millionth output has binary columns 4, 16/2, 5, 5, 8/2, 0, 4/2, 1, 2/2, namely

01 = 001100011,
a; = 000000100,
a3 = 101110000,
s = 010000000.

[Reference: E. Calabi and H. S. Wilf, J. Combinatorial Theory A22 (1977), 107 109.]

13. Let n = s +t. There are (HT':)l/ﬂ) ([(T):;/ﬂ) configurations beginning with 0
and (L(ri_nl/zj) (((ri_li/ﬂ) beginning with 1, because an Ising configuration that begins
with 0 corresponds to a composition of s 0s into [(r+1)/2] parts and a composition of
t 1s into [(r + 1)/2] parts. We can generate all such pairs of compositions and weave
them into configurations. [See E. Ising, Zeitschrift fiir Physik 31 (1925), 253-258;

J. M. S. Simdes Pereira, CACM 12 (1969), 562.]

14. Start with I[j] + 7 — 1 and r[j — 1] + j for 1 < j < n; [[0] « n, r[n] + 0. To get
the next combination, assuming that ¢t > 0, set p < s if [[0] > s, otherwise p < r[n]—1.
Terminate if p < 0; otherwise set ¢ < r[p], l[q] + [[p], and r[l[p]] < ¢. Then if r[qg] > s
and p < s, set r[p] « r[n], l[r[n]] < p, r[s] < rlq], l[r[q]] < s, r[n] < 0, [[0] + n;
otherwise set r[p] < r[q], l[r[q]] < p. Finally set r[q] < p and I[p] + q.

[See Korsh and Lipschutz, J. Algorithms 25 (1997), 321-335, where the idea is
extended to a loopless algorithm for multiset permutations. Caution: This exercise,
like exercise 7.2.1.1-16, is more academic than practical, because the routine that visits
the linked list might need a loop that nullifies any advantage of loopless generation.]
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15. (The stated fact is true because lexicographic order of ¢;...c; corresponds to
lexicographic order of a,_1 ...ao, which is reverse lexicographic order of the comple-
mentary sequence 1...1 @ an—1...a0.) By Theorem L, the combination ¢t ...cq is
visited before exactly ( ) 4.4 ( ) + (bll) others have been visited, and we must have

bs b Ct) <c1> (s—l—t)
ce. ca. = —1.
( s ) + + ( 1 ) + ( t + + 1 t
This general identity can be written

n—1 . n—1 .
ZTj + Z; = -1
; ’(mo+---+xj ; NZo+---+1; To+ 4 Tpoa

when each z; is 0 or 1, and Z; = 1 — z;; it follows also from the equation

Tn +ZTn| _ _ = - .
Zo+ -+ Tn Zo+ -+ Tn To+ -+ Tn Zo+ -+ Tn1

16. Since 999999 = (*%) + (*7%) = (3) + (3) + (W) = (D + )+ () + (V) =
(D) +C)+ G+ (%) + (5), the answers are (a) 1414 1008; (b) 182 153 111; (c) 71
56 36 14; (d) 43 32 21 15 6; (e) 1000000 999999 ... 2 0.
17. By Theorem L, n; is the largest integer such that N > (T); the remaining terms
are the degree-(t — 1) representation of N — ("%!).

A simple sequential method for ¢ > 1 starts with x = 1, ¢ = ¢, and sets ¢ < ¢+ 1,
x « zc/(c —t) zero or more times until z > N; then we complete the first phase by
setting = < z(c — t)/c, ¢ ¢ — 1, at which point we have z = () < N < (°1'). Set
ng < ¢, N < N —z; terminate with ny < N if t = 2; otherwise set © < zt/c, t + t—1,
¢+ c—1; while z > N set z < xz(c—t)/c, ¢ + ¢ — 1; repeat. This method requires
O(n) arithmetic operations if N < (7), so it is suitable unless ¢ is small and N is large.

When t = 2, exercise 1.2.4-41 tells us that no = [V2N +2 + %j In general,
ny is |x] where 2 is the largest root of 2! = #! N; this root can be approximated
by reverting the series y = ()Yt = z — -1+ L@ — 1z '+ toget x =
y+2(t—1)+ 5> —1)/y+O0(y®). Setting y = (¢! N)'/* in this formula gives a good
approximation, after which we can check that (m) < N < (LzHl) or make a final
adjustment. [See A. S. Fraenkel and M. Mor, Comp. J. 26 (1983), 336-343.]

18. A complete binary tree of 2" — 1 nodes is obtained, with an extra node at the
top, like the “tree of losers” in replacement selection sorting (Fig. 63 in Section 5.4.1).
Therefore explicit links aren’t necessary; the right child of node & is node 2k + 1, and
the left sibling is node 2k, for 1 < k < 2"~ .

This representation of a binomial tree has the curious property that node k =
(0“1cr)2 corresponds to the combination whose binary string is 0%1aR.

19. It is post(1000000), where post(n) = 2* + post(n — 2% + 1) if 2F < n < 2¥*' and
post(0) = 0. So it is 11110100001001000100.

20. f(2) = (1420 1) .. (14 27) /(1= 2), g(=) = (14 2°0) f(2), h(z) = 2°f ().

21. Therankofc:...cact is (C‘;H) —1 minus the rank of ¢;—1 ... cac1. [See H. Liineburg,

Abh. Math. Sem. Hamburg 52 (1982), 208-227.]
22. Since 999999 = (%) = (1) = () = (D) + () = () - ) + ) - (V) =

1 3

(=) + ) = (%) + (3), the answers are (a) 1414 405; (b) 182 97 21; (c) 71 56

5
31 26; (d) 43 39 32 12 3; (e) 1000000 999999 999998 999996 ... 0.
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23. There are (7::) combinations with j > r, for r =1, 2, ..., ¢t. (If » =1 we have
ca=c1+1;ifr=2wehavecy =0,co =1;ifr=3wehavecy =0,co =1, ¢4 = c3+1;
etc.) Thus the meanis ((})+ (7 )+ +(".))/(G) = ("F)/(}) = (n+1)/(n+1—1¢).
The average running time per step is approximately proportional to this quantity; thus
the algorithm is quite fast when ¢ is small, but slow if ¢ is near n.
24. In fact jr — 2 < jr+1 < jr + 1 when ji = ¢ (modulo 2) and jr — 1 < jr41 < jr +2
when j, # t, because R5 is performed only when ¢; =i —1 for 1 <3 < j.

Thus we could say, “If j > 4, set j < j—1—[7 odd] and go to R5” at the end of R2,
if t is odd; “If j > 3, set j < j — 1 —[j even] and go to R5” if ¢ is even. The algorithm
will then be loopless, since R4 and R5 will be performed at most twice per visit.

25. Assume that N > N’ and N — N’ is minimum; furthermore let ¢ and ¢, be
minimum, subject to those assumptions. Then ¢; > c}.

If there is an element z ¢ C U C’ with 0 < < ¢;, map each t-combination of
CUC' by changing j — j —1 for j > z; or, if there is an element z € CNC', map each
t-combination that contains z into a (¢ — 1)-combination by omitting z and changing
jr— x—jfor j < x. In either case the mapping preserves alternating lexicographic
order; hence N — N' must exceed the number of combinations between the images
of C and C’. But ¢; is minimum, so no such z can exist. Consequently ¢ = m and
Ct = 2m — 1.

Now if ¢, < ¢,, — 1, we could decrease N — N' by increasing c,,,. Therefore ¢, =
2m—2, and the problem has been reduced to finding the mazimum of rank(c,,_1 ...c1)—
rank(cp,_1 ...c1), where rank is calculated as in (30).

Let f(s,t) = max(rank(bs...b1) — rank(c;...c1)) over all {bs,... . b1,ct...,c1} =
{0,...,s+t—1}. Then f(s,t) satisfies the curious recurrence

f(s,0)=f(0,t) =0;  f(L,1) =t
f(s,t) = (S+t71) + max(f(t — 1,5 — 1), f(s — 2,t)) if st >0and s> 1.

When s + t = 2u + 2 the solution turns out to be

u—r r—1

F(s,t) = (Ztujll) +Z(2“+i _Qj) +Z<2j+1), r = min(s — 2,¢ — 1),
pst =0

J

with the maximum occurring at f(t—1,s—1) when s < ¢ and at f(s—2,t) when s > t+2.
Therefore the minimum N — N’ occurs for

C={2m-1}u{2m—-2—-z|1<z<2m -2, zmod4 <1},
C'={2m—-2}u{2m—-2—z|1<z<2m—2, zmod4d>2};

and it equals (> ') — 72 (K =1+ 37 ((2F)- [See A. J. van Zanten, IEEE

Trans. IT-37 (1991), 1229-1233.]
26. (a) Yes: The first is 0"~ [t/211tmod29lt/2] 4nd the last is 21t/211tmed2gn=Tt/2],
transitions are substrings of the forms 02?1 + 1270, 02?2 + 12°1, 101 « 20%0,
1072 + 20°1.

(b) No: Tf s = 0 there is a big jump from 02/0"~" to 2072°~'.

27. The following procedure extracts all combinations c; ... ci of I',, that have weight
< t: Begin with k < 0 and ¢p < n. Visit ¢1...¢cx. If k is even and ¢, = 0, set
k< k—1;if kis even and ¢ > 0, set ¢ < cx — 1 if k = t, otherwise k < k + 1
and cx < 0. On the other hand if k is odd and ¢x + 1 = cr—1, set k «+ k — 1 and
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¢k < cr+1 (but terminate if k = 0); if k is odd and ¢x + 1 < cx—1, set cx <+ cp + 1 if
k =t, otherwise k <+ k + 1, ¢k < cx_1, ck—1 < cx + 1. Repeat.

(This loopless algorithm reduces to that of exercise 7.2.1.1-12(b) when t = n, with
slight changes of notation.)

28. True. Bit strings a,,_;...a0 = afB and a;,_; ...a5 = af8’ correspond to index lists
(bs...by=0x,ce...ci = ) and (b ...b1 = 0xX', ci...cy = ¢¢') such that everything
between a8 and a8’ begins with « if and only if everything between §x and 6’ begins
with 6 and everything between ¢t and ¢1)' begins with ¢. For example, if n = 10, the
prefix o = 01101 corresponds to prefixes § = 96 and ¢ = 875.

(But just having c; ... c; in genlex order is a much weaker condition. For example,
every such sequence is genlex when ¢ = 1.)

29. (a) -F0o'*! or -*0'*T1+2™ or 2% for k,I,m > 0.

(b) No; the successor is always smaller in balanced ternary notation.

(c) For all @ and all k,I,m > 0 we have a0-*T10'+2™ — q-+¥0'*1-2™ and
a+-Fo!Tlea™ 5 qo+F+10l-2™: also a0-*¥T10! — a-+F0'*! and a+-Fo't! — ao+F+10l.

(d) Let the jth sign of a; be (—1)?4, and let it be in position b;;. Then we have
(—1)%itPi-1) = (~1)2G+1aFPE1G-D for 0 <4 < k and 1 < j < t, if we let bp = 0.

(e) By parts (a), (b), and (c), o belongs to some chain ag — -+ — ay, where ay
is final (has no successor) and «p is initial (has no predecessor). By part (d), every
such chain has at most (S;Lt) elements. But there are 2° final strings, by (a), and there
are 2° (Sft) strings with s signs and ¢ zeros; so k must be (S;’t) - 1.

Reference: SICOMP 2 (1973), 128-133.

30. Assume that ¢ > 0. Initial strings are the negatives of final strings. Let o; be the
initial string 0°-7; for 0 < j < 2°7', where the kth character of 7; for 1 < k < s is the
sign of (—1)** when j is the binary number (as—1...a1)2; thus oo = 0'=++.. .+, 01 =

Of——+...4, ..., 0gac1_; = 0f=—= ...~ Let p; be the final string obtained by inserting
-0 after the first (possibly empty) run of minus signs in 7;; thus pp = -0'++.. .+,
p1 = ==0"+ ...+ ... pos—1_; = —=...-0". We also let 0,.-1 = gy and pya—1 = pq.

Then we can prove by induction that the chain beginning with o; ends with p; when ¢
is even, with p; 1 when ¢ is odd, for 1 < j < 2°!. Therefore the chain beginning with
—pj ends with —o; or —oj41.

Let Aj(s,t) be the sequence of (s,t)-combinations derived by mapping the chain
that starts with o, and let B;(s,t) be the analogous sequence derived from —p;. Then,
for 1 < j < 2°!, the reverse sequence A;(s,t)E is B;(s,t) when t is even, B;_1(s,t)
when t is odd. The corresponding recurrences when st > 0 are

A(s.) LTAj(s,t — 1), 0A[ (a1 1 jya)(s — 1,8)%, if j + ¢ is even;
(s,1) =
! 1Aj(s,t — 1), 0A;/2)(s — 1,1), if 7+ ¢ is odd;

and when st > 0 all 2°7! of these sequences are distinct.
Chase’s sequence Cst is A|gs/3/(s,t), and Cly; is AL25*1/3J (s,t). Incidentally, the
homogeneous sequence K of (31) is Ays—1_[; even) (5, 1)

31. (a) 2(*7)= solves the recurrence f(s,t) = 2f(s—1,t) f(s,t — 1) when f(s,0) =
f(0,t) =1. (b) Now f(s,t) = (s+ 1)! f(s,t —1)... f(0,t — 1) has the solution
(s+ Dt (s — () () = f[(r (s,

r=1
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32. (a) No simple formula seems to exist, but the listings can be counted for small s
and t by systematically computing the number of genlex paths that run through all
weight-t strings from a given starting point to a given ending point via revolving-door
moves. The totals for s +¢ < 6 are

1
1 1
1 2 1
1 4 4 1
1 8 20 8 1

1 16 160 160 16 1
1 32 2264 17152 2264 32 1

and f(4,4) = 95,304,112,865,280; f(5,5) &~ 5.92646 x 10*®. [This class of combination
generators was first studied by G. Ehrlich, JACM 20 (1973), 500-513, but he did not
attempt to enumerate them.]

(b) By extending the proof of Theorem N, one can show that all such listings or
their reversals must run from 10 to 01°0°~* for some a, 1 < a < s. Moreover, the
number ns:, of possibilities, given s, ¢, and a with st > 0, satisfies ni;; = 1 and

{ Ng(t—1)1MN(s—1)t(a—1)5 ifa>1;
Nsta = .
Ns(t—1)2N(s—1)t1 T+ + Ng(t=1)sN(s=1)t(s—1), f a=1<s.

This recurrence has the remarkable solution ngie = gm(st.a)

m(s t a) = (S+:—3) + (91-1;5) +ooet (S;1)7 if ¢ is even;
2 (S+§,73) + (Sﬁgs) IS (;) +s—a—Ja<s], iftisodd.

, where

33. Consider first the case t = 1: The number of near-perfect paths from ¢ to j > i is
fG—i—1[i>0]—[j<n—1]), where >, f()z" =1/(1 — z— 2*). (By coincidence, the
same sequence f(j) arises in Caron’s polyphase merge on 6 tapes, Table 5.4.2-2.) The
sum over 0 <1< j <mis3f(n)+ f(n—1)+ f(n—2) + 2 — n; and we must double this,
to cover cases with j > 4.

When ¢t > 1 we can construct (;’) X (7:) matrices that tell how many genlex listings
begin and end with particular combinations. The entries of these matrices are sums of
products of matrices for the case ¢ — 1, summed over all paths of the type considered

for t = 1. The totals for s + ¢ < 6 turn out to be

1 1
1 1 11
1 2 1 121
1 6 2 1 1201
1 12 10 2 1 12201
1 20 44 10 2 1 120001

1 34 238 68 10 2 1 1260001

where the right-hand triangle shows the number of cycles, g(s,t). Further values include
f(4,4) =17736; f(5,5) = 9,900,888,879,984; g(4,4) = 96; g(5,5) = 30,961,456,320.

There are exactly 10 such schemes when s = 2 and n > 4. For example, when
n = 7 they run from 43210 to 65431 or 65432, or from 54321 to 65420 or 65430 or
65432, or the reverse.
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34. The minimum can be computed as in the previous answer, but using min-plus
matrix multiplication ¢;; = ming(a;x + by;) instead of ordinary matrix multiplication
cij = >, @ikbrj. (When s =t =5, the genlex path in Fig. 26(e) with only 49 imperfect
transitions is essentially unique. There is a genlex cycle for s = ¢t = 5 that has only 55
imperfections.)

35. From the recurrences (35) we have as; = byz—1) + [s > 1][t> 0] + a(s_1)s, bat =
@s(t—1) + a(s—1)1; consequently as; = bsr + [s>1][todd] and as: = ag¢—1) + as—1)t +
[s>1][t odd]. The solution is

t/2

o, :Z(s+t7272k> —[s> 1][teven]:

s—2
k=0

this sum is approximately s/(s + 2t) times (°*).

36. Cousider the binary tree with root node (s, t) and with recursively defined subtrees
rooted at (s—1,t) and (s,t—1) whenever st > 0; the node (s,?) is a leaf if st = 0. Then
the subtree rooted at (s,t) has (°T") leaves, corresponding to all (s,t)-combinations
@n-1...-a1ap. Nodes on level [ correspond to prefixes an—_1...an—1, and leaves on
level | are combinations with r = n — [.

Any genlex algorithm for combinations a,_1 ... a1a0 corresponds to preorder tra-
versal of such a tree, after the children of the (sft) — 1 branch nodes have been
ordered in any desired way; that, in fact, is why there are Z(SJtri%1 such genlex schemes
(exercise 31(a)). And the operation j < j + 1 is performed exactly once per branch
node, namely after both children have been processed.

Incidentally, exercise 7.2.1.2-6(a) implies that the average value of r is s/(t+1) +
t/(s+1), which can be Q(n); thus the extra time needed to keep track of r is worthwhile.

37. (a) In the lexicographic case we needn’t maintain the w; table, since a; is active
for 7 > r if and only if a; = 0. After setting a; <— 1 and a;_1 - 0 there are two cases
to consider if j > 1: If r = j, set r « j — 1; otherwise set a;_...aq < 07197177 and
r«j—1—r(orr+ jifr wasj—1).

(b) Now the transitions to be handled when j > 1 are to change a; . .. ao as follows:
01" — 110172, 010" — 10"*!, 010%1" — 110°+'1"~ ', 10" — 010" ', 110" — 010"~ '1,
10%1" — 0”17; these six cases are easily distinguished. The value of r should change
appropriately.

(c) Again the case j = 1 is trivial. Otherwise 010" — 101°7'0"; 0%1" — 10%1"";
101%0" — 01°710"; 10°1" — 0”17 and there is also an ambiguous case, which can
occur only if an—1...a;41 contains at least one 0: Let k£ > j be minimal with a; = 0.
Then 10" — 010"~ if k is odd, 10" — 071 if k is even.

38. The same algorithm works, except that (i) step C1 sets an_1...a0 « 01°0°7! if
nisoddor s =1, an_1...a0 < 001°0°"2 if n is even and s > 1, with an appropriate
value of r; (ii) step C3 interchanges the roles of even and odd; (iii) step C5 goes to C4
alsoif j = 1.
39. In general, start with r < 0, j + s+ ¢ — 1, and repeat the following steps until
st =0: .
J
— i=0

e rrmmol(,?
Then r is the rank of a,_1...a1a0. So the rank of 11001001000011111101101010 is
23 22 21 17 16 14 13 12 11 10 9 8 4 3 1
(12) + () +(G) + )+ (D) + )+ )+ () +G)+ G+ G +G) + G+ () +6) =
2390131.

), s+ s—la;=0], t+<t—Ja;j=1], j<«j—1.
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40. We start with N < 999999, v < 0, and repeat the following steps until st = 0: If
v=0,sett <+ t—1and asys < 1if N < (3+271), otherwise set N < N — (S+§71),
v (s+t)mod2, s+ s—1,as4: < 0. fv=1,set v+ (s+¢)mod2, s+ s—1,
and asq¢ < 0if N < (*T171), otherwise set N < N — (*"!71), ¢ « t — 1, asqs + 1.
Finally if s = 0, set at—1...a0 1% if £ = 0, set as_1...a9 < 0°. The answer is

ass...ao = 11101001111110101001000001.
41. Let C(O), ey C(2n — 1) = Cn where Czn = OC2n717 1C2n71; Czn+1 = OCZn-,
162n; ézn = 1C2n71, Oéznfl; 62n+1 = 162n, Oazn; Co = ao = €. Then CLJ‘ @ bj =
bj+1/\(bj+2\/(bj+3/\(bj+4\/' N ))) lfj is even, bj+1\/(bj+2/\(bj+3\/(bj+4/\' N )_)) lf_] is odd.
Curiously we also have the inverse relation ¢((...asa@3a2a1a0)2) = (...bab3bab1bo)2.
42. Equation (40) shows that the left context an—_1 ... ai+1 does not affect the behavior
of the algorithm on a;_1...a0 if a; = 0 and [ > r. Therefore we can analyze
Algorithm C by counting combinations that end with certain bit patterns, and it
follows that the number of times each operation is performed can be represented as
[w®2"] p(w, 2) /(1 = w?)*(1 = 2%)?(1 — w — 2) for an appropriate polynomial p(w, z).

For example, the algorithm goes from C5 to C4 once for each combination that ends
with 012¢+1012°% or has the form 1°71012**1, for integers a,b > 0; the corresponding
generating functions are w?z?%/(1 — 2?)?(1 — w — 2) and w(2* + 2°) /(1 — 2%)2.

Here are the polynomials p(w, z) for key operations. Let W = 1 —w?, Z = 1 — 22,

C3 — C4: wzW(14+wz)(1—w—22); C5(r+1):  w?zW?Z(1—wz—22);
C3 — C5: wzW(w+2z)(1—wz—22%); C5(r + j—1): w?2PW?(1—wz—2%);
C3 — C6: w? 22 W (w+2); Cé6(j =1): w?2W?Z;

C3 = CT: w2z W (14+wz); C6(r + j—1): w?2*W?

C4(3=1): wzW?2Z(1—w—22); Cé(r +j): w2 2WZ;

Ca(r + j—1): w*2WZ(1—w—2?); C7 — Cé6: w2 W2,

Ca(r +j5):  wW? (A4z—2wz—2>—2%); C7(r<+j): w*2WZ;

C5 — C4: w22 W2 (1 —wz—2%); C7(r + j—2): w322W2,

C5(r + j—2): w*2WZ(1—wz—2%);

The asymptotic value is (°1*)(p(1 — z,2)/(2z — 2°)*(1 — 2°)> + O(n™")), for fixed
0<z<1,ift=2n+O0(1) as n = oc. Thus we find, for example, that the four-way
branching in step C3 takes place with relative frequencies z+a2%—2% :1:2: 14+z—2?.

Incidentally, the number of cases with j odd exceeds the number of cases with
7 even by

Z <5+t722127 2l>[2k+2lﬁs+ﬂ + [soddHtOdd],
S — g
k>1

in any genlex scheme that uses (39). This quantity has the interesting generating
function wz/(1 + w)(1+ 2)(1 — w — 2).

43. The identity is true for all nonnegative integers x, except when x = 1.

44. In fact, Cy(n) —1 = Ci(n—1)%, and Cy(n) — 1 = Cy(n — 1)*. (Hence Cy(n) —2 =
Ci(n — 2), etc.)

45. In the following algorithm, r is the least subscript with ¢, > r.

CC1. [Initialize.] Set ¢;j + n—t—1+4+jand z; + 0for 1 < j <t+ 1. Also set
7 < 1. (We assume that 0 < t < n.)

CC2. [Visit.] Visit the combination c; ...cz2c1. Then set j < 7.
CC3. [Branch.] Go to CC5 if z; # 0.
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CCA4. [Try to decrease c¢j.] Set © < ¢j + (¢;jmod2) — 2. If x > j, set ¢; + =z,
7+ 1; otherwise if ¢; = j, set c; + j — 1, zj + cj+1 — ((¢j+1 + 1) mod 2),
r <+ j; otherwise if ¢; < 7, set ¢; + 7, z; + cj4+1 — ((cj+1 + 1) mod 2),
r < max(1,j — 1); otherwise set ¢; < z, r < j. Return to CC2.

CCs5. [Try to increase cj.] Set z < ¢; +2. If z < zj;, set ¢; < z; otherwise if
x = z; and zj11 # 0, set ¢; < = — (¢j+1 mod 2); otherwise set z; < 0,
j < 7+ 1, and go to CC3 (but terminate if j > t). If ¢1 > 0, set r + 1;
otherwise set r < 7 — 1. Return to CC2. |

46. Equation (40) implies that uy = (b; + k+ 1) mod 2 when j is minimal with b; > k.
Then (37) and (38) yield the following algorithm, where we assume for convenience
that 3 < s < n.

CBL1. [Initialize.] Set bj + j—1for 1 < j < s; also set z < s+ 1, b, + 1. (When
subsequent steps examine the value of z, it is the smallest index such that
b, #z—1.)

CB2. [Visit.] Visit the dual combination bs . .. b2b;.

CBa3. [Branch.] If bs is odd: Go to CB4 if by # b1 + 1, otherwise to CB5 if b1 > 0,
otherwise to CB6 if b, is odd. Go to CB9 if b, is even and b1 > 0. Otherwise
go to CB8 if b,41 = b, + 1, otherwise to CBT.

CB4. [Increase b1.] Set by « b1 + 1 and return to CB2.

CBS5. [Slide b1 and bs.] If b3 is odd, set b1 < by + 1 and bs < by + 1; otherwise
set by < b1 — 1, by < b2 — 1, z + 3. Go to CB2.

CBe6. [Slide left.] If z is odd, set z < 2z — 2, bo41 < 2z + 1, b, < z; otherwise set
z+ z—1,b, + z. Go to CB2.

CBY. [Slide b;.] If b.41 is odd, set b, < b, + 1 and terminate if b, > n; otherwise
set b, < b, — 1, then if b, < z set z + 2z + 1. To CB2.

CBS. [Slide b. and b.41.] If b.42 is odd, set b, < b41, bo41 < b, + 1, and
terminate if b,41 > n. Otherwise set b,41 < b;, b, < b, — 1, then if b, < z
set z <+ z + 2. To CB2.

CB9. [Decrease b1.] Set b1 < b1 — 1, z < 2, and return to CB2. |

Notice that this algorithm is loopless. Chase gave a similar procedure for the sequence
CZ in Cong. Num. 69 (1989), 233-237. It is truly amazing that this algorithm defines
precisely the complements of the indices c¢;...c1 produced by the algorithm in the
previous exercise.

47. We can, for example, use Algorithm C and its reverse (exercise 38), with w;
replaced by a d-bit number whose bits represent activity at different levels of the
recursion. Separate pointers rg, r1, ..., ra—1 are needed to keep track of the r-values
on each level. (Many other solutions are possible.)

48. There are permutations 71, ..., mar such that the kth element of A is mro; 18k —1.
And 7  runs through all permutations of {s1-1,...,s4-d} as j varies from 0 to N — 1.

Historical note: The first publication of a homogeneous revolving-door scheme
for (s,t)-combinations was by Eva Térok, Matematikai Lapok 19 (1968), 143-146,
who was motivated by the generation of multiset permutations. Many authors have
subsequently relied on the homogeneity condition for similar constructions, but this
exercise shows that homogeneity is not necessary.

45



46 ANSWERS TO EXERCISES 7.2.1.3

49. We have lim,_,,(2"™" — 1)/(2!™" — 1) = 1 when 0 < r < m, and the limit
is lim,_,q(kmz¥™"1)/(Imz"™~') = k/I when r = 0. So we can pair up factors of the
numerator [, _, .., (2" — 1) with factors of the denominator H0<b<k(zb — 1) when
a = b (modulo m).

Notes: This formula was discovered by G. Olive, AMM 72 (1965), 619. In the

special case m = 2, ¢ = —1, the second factor vanishes only when n is even and k is
odd. The formula (Z)q = (nfk holds for all n > 0, but ({Z;zj) is not always equal

q
to ([(nL%:)n/JmJ)' We do, however, have |k/m]| + [(n — k)/m| = |n/m] in the case when
n mod m > k mod m; otherwise the second factor is zero.

50. The stated coefficient is zero when ny; mod m + - - - + ny mod m > m. Otherwise it
equals

(|_(n1+---—|—nt)/mj>< (n1+---+ny) modm )q7

[ni/m]|,...,|n:/m]|/ \ny modm,...,ns modm
by Eq. 1.2.6—(43); here each upper index is the sum of the lower indices.

51. All paths clearly run between 000111 and 111000, since those vertices have de-
gree 1. Fourteen total paths reduce to four under the stated equivalences. The path
in (50), which is equivalent to itself under reflection-and-reversal, can be described
by the delta sequence A = 3452132523414354123; the other three classes are B =
3452541453414512543, C' = 3452541453252154123, D = 3452134145341432543. D. H.
Lehmer found path C' [AMM 72 (1965), Part II, 36-46]; D is essentially the path
constructed by Eades, Hickey, and Read.

(Incidentally, perfect schemes aren’t really rare, although they seem to be difficult
to construct systematically. The case (s,t) = (3,5) has 4,050,046 of them.)

52. We may assume that each s; is nonzero and that d > 1. Then the difference
between permutations with an even and odd number of inversions is (Lls(s‘/’;JJrsL‘;l//Zyj) >
2, by exercise 50, unless at least two of the multiplicities s; are odd.

Conversely, if at least two multiplicities are odd, a general construction by G. Sta-
chowiak [SIAM J. Discrete Math. 5 (1992), 199-206] shows that a perfect scheme
exists. Indeed, his construction applies to a variety of topological sorting problems; in
the special case of multisets it gives a Hamiltonian cycle in all cases with d > 1 and
sos1 odd, except when d = 2, so = s1 = 1, and sz is even.

53. See AMM 72 (1965), Part II, 36-46.

54. Assuming that st # 0, a Hamiltonian path exists if and only if s and t are not
both even; a Hamiltonian cycle exists if and only if, in addition, (s # 2 and t # 2) or
n =5. [T. C. Enns, Discrete Math. 122 (1993), 153-165.]

55. [Solution by Aaron Williams.] The sequence 0°1%, W;; has the correct properties if
Wat = OWo_1ye, 1Waqio1y, 10°1°7Y for st > 0;  Wor = Wio = 0.

And there is an amazingly efficient, loopless implementation: Assume that ¢ > 0.

W1. [Initialize.] Set n « s+1¢,a; < 1for 0 < j < ¢, and aj < 0 fort <: < n.
Also set j « k <t — 1. (This is tricky, but it works.)

W2. [Visit.] Visit the (s,t)-combination an—1 ...a1a0.
W3. [Zero out a;.] Set aj + 0 and j < j+ 1.
Wd4. [Easy case?] If a; =1, set ap + 1, k + k+ 1, and return to W2.

W5. [Wrap around.] Terminate if j = n. Otherwise set a; < 1. Then if k > 0,
set ar < 1, ap < 0, j < 1, and k + 0. Return to W2. |
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After the second visit, j is the smallest index with aja;—1 = 10, and k is smallest with
ar = 0. The easy case occurs exactly (S+§71) — 1 times; and the condition k£ = 0 occurs

s+t—2
t

in step W5 exactly ( ) + 0¢1 times. [To appear.]

56. [Discrete Math. 48 (1984), 163-171.] This problem is equivalent to the “middle
levels conjecture,” which states that there is a Gray path through all binary strings
of length 2¢ — 1 and weights {¢t — 1,¢}. In fact, such strings can almost certainly be
generated by a delta sequence of the special form o . ..a2:_2 where the elements of
ay are those of ag shifted by k, modulo 2¢ — 1. For example, when ¢t = 3 we can start
with asasasazaiap = 000111 and repeatedly swap ag <> as, where § runs through the
cycle (4134 5245 1351 2412 3523). The middle levels conjecture is known to be true for
t < 15 [see I. Shields and C. D. Savage, Cong. Num. 140 (1999), 161-178].

57. Yes; there is a near-perfect genlex solution for all m, n, and t when n > m > t.
One such scheme, in bitstring notation, is 1Ay, _s)-1)0"" ™, OlA(m_t)(t_l)O"*m*I,
L 0" T LAty (t—1) 5 0"_m+11A(m,1,t)(t,1), cee On_tlAO(t,l), using the sequences
Ast of (35).
58. Solve the previous problem with m and n reduced by ¢t — 1, then add 7 — 1 to
each ¢;. (Case (a), which is particularly simple, was probably known to Czerny.)
59. The generating function G,nt(z) = Egmntkzk for the number gmnix of chords
reachable in k steps from 0"~ "1" satisfies Gmmt (2) = (7), and Go(nt1)t(2) = Gmnt(2)+
Ztn—(t-1)m (7:”:11)2, because the latter term accounts for cases with ¢; = n and ¢; >
n — m. A perfect scheme is possible only if |Gpni(—1)] < 1. Butif n > m >t > 2,
this condition holds only when m =t + 1 or (n — ¢)t is odd, by (49). So there is no
perfect solution when t = 4 and m > 5. (Many chords have only two neighbors when
n = t 4 2, so one can easily rule out that case. All cases withn > m > 5and t =3
apparently do have perfect paths when n is even.)
60. The following solution uses lexicographic order, taking care to ensure that the aver-
age amount of computation per visit is bounded. We may assume that stms...mg # 0
and t < mg 4+ -+ my + mgo.
Q1. [Initialize.] Set g; + 0 for s > j > 1, and = = t.
Q2. [Distribute.] Set j <= 0. Then while z > mj, set ¢; < m;, z + = — m;,
j < j+1, and repeat until z < m;. Finally set q; < x.
Q3. [Visit.] Visit the bounded composition ¢s + - - 4+ ¢1 + qo.
Q4. [Pick up the rightmost units.] If j = 0, set © < go — 1, j < 1. Otherwise if
go =0,set £ ¢q; — 1, qj < 0, and j < 5+ 1. Otherwise go to Q7.
Q5. [Full?] Terminate if j > s. Otherwise if g; = m;, set z < = + m;, q; + 0,
7 < j+ 1, and repeat this step.
Q6. [Increase g;.] Set g; < ¢; + 1. Then if z = 0, set go < 0 and return to Q3.
(In that case gj_1 = -+ = go = 0.) Otherwise go to Q2.
Q7. [Increase and decrease.] (Now g¢; = m; for j > ¢ > 0.) While q; = m;, set
j < j+ 1 and repeat until ¢; < m; (but terminate if j > s). Then set
G +—¢q¢+1,5j5—1,q+q; —1. If g =0, set j < 1. Return to Q3. 1|
For example, if ms = -+ = mg = 9, the successors of the composition 3+9+9+7+0+0
are 4+0+04+6+9+9, 44+0+0+7+8+9, 4+0+0+7+9+8, 4+0+0+8+7+9, ....
61. Let Fs(t)=0ift <0 or t > ms + - - -+ mo; otherwise let Fy(t) = ¢, and

Fo(t) = 04F. 1 (t), 14Fs 1(t— 1%, 24F, 1(t—=2), ..., metFa 1(t —m)®"
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when s > 0. This sequence can be shown to have the required properties; it is, in
fact, equivalent to the compositions defined by the homogeneous sequence K; of (31)
under the correspondence of exercise 4, when restricted to the subsequence defined by
the bounds ms, ..., mo. [See T. Walsh, J. Combinatorial Math. and Combinatorial
Computing 33 (2000), 323-345, who has implemented it looplessly.]

62. (a) A 2 X n contingency table with row sums r and ¢1 + - - - + ¢, — 7 is equivalent
tosolvingr =a1 4+ -+ a, with0< a1 <c1,...,0<a, <cp.

(b) We can compute it sequentially by setting a;; < min(r; — ai1 — - — a;(j—1),
cj —ai;—---—ag_1y;) for j=1,...,n,fori =1, ..., m. Alternatively, if r1 < ¢1, set
a11 < T1, @12 < -+ ¢ aip, < 0, and do the remaining rows with ¢; decreased by rq; if
r1 > c1, set a11 + c1, a1 < -+ < am1 < 0, and do the remaining columns with ry
decreased by ci1. The second approach shows that at most m + n — 1 of the entries are
nonzero. We can also write down the explicit formula

a;; = max(0, min(ry,cj, 71+ T —c1 — - —Cj_1,C1 b =T — s —Til1)).

(c) The same matrix is obtained as in (b).
(d) Reverse left and right in (b) and (c); in both cases the answer is

a;; = max(0, min(rs, cj, Tig1+  + T —C1 = —Cjo1,C1 G T — = Tm)).

(e) Here we choose, say, row-wise order: Generate the first row just as for bounded
compositions of ry, with bounds (c1,...,¢,); and for each row (ai1,...,a1,), gen-
erate the remaining rows recursively in the same way, but with the column sums
(c1 — @a11,...,cn — ain). Most of the action takes place on the bottom two rows,
but when a change is made to an earlier row the later rows must be re-initialized.

63. If a;; and ay; are positive, we obtain another contingency table by setting a;; <
aij —1, aiyp < ay+1, arj < arj +1, ap < arr — 1. We want to show that the graph G
whose vertices are the contingency tables for (r1,...,7m;c1,...,¢,), adjacent if they
can be obtained from each other by such a transformation, has a Hamiltonian path.
When m = n = 2, G is a simple path. When m = 2 and n = 3, G has a two-
dimensional structure from which we can see that every vertex is the starting point of at
least two Hamiltonian paths, having distinct endpoints. When m = 2 and n > 4 we can
show, inductively, that G actually has Hamiltonian paths from any vertex to any other.
When m > 3 and n > 3, we can reduce the problem from m to m — 1 as in answer
62(e), if we are careful not to “paint ourselves into a corner.” Namely, we must avoid
reaching a state where the nonzero entries of the bottom two rows have the form ( La 0)

0bec

for some a, b, ¢ > 0 and a change to row m — 2 forces this to become (8 0 i) The

previous round of changes to rows m — 1 and m can avoid such a trap unless ¢ = 1 and

it begins with ((1) ‘;f; (1)) or ((1) ‘Z;i (1)
(A genlex method based on exercise 61 would be considerably simpler, and it
almost always would make only four changes per step. But it would occasionally need

to update 2 min(m,n) entries at a time.)

). But that situation can be avoided too.

64. When z1 ...z is a binary string and A is a list of subcubes, let A & x1...z,
denote replacing the digits (a1,...,as) in each subcube of A by (a1 ® z1,...,as ® zs),
from left to right. For example, 0%1%%10@ 1010 = 1%1%%00. Then the following mutual
recursions define a Gray cycle, because A,; gives a Gray path from 0" to 10°~ '’ and
B,; gives a Gray path from 0%+’ to *01°"1x*~! when st > 0:

Ast = 0B(s_1)t, ¥Agi—1) ® 001° 2, 1B(R;—1)t§
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Bst = OA(S—l)t-, 1B(s—1)t®0105727 *As(t—l) @18-

The strings 001°~2 and 010°~2 are simply 0° when s < 2; Ay is Gray binary code;
Aot = Bor = **. (Incidentally, the somewhat simpler construction

Gst - *Gs(t71)7 atG(sfl)h atflG{.i—l)h ay = t mod 27

defines a pleasant Gray path from *'0° to a;—1%'0°71.)

65. If a path P is considered equivalent to P® and to P @ z1 ... zs, the total number
can be computed systematically as in exercise 33, with the following results for s+t < 6:

paths cycles
1 1
1 1 11
1 2 1 111
1 3 3 1 1111
1 5 10 4 1 12111
1 6 36 35 5 1 123111

1 9 3104630218 6 1 13464 111

In general there are ¢ + 1 paths when s = 1 and ([S/ZH'Z) — (smod 2) when t = 1. The
cycles for s < 2 are unique. When s = ¢ = 5 there are approximately 6.869 x 1017°
paths and 2.495 x 107° cycles.

66. Let G(n,0) =¢; G(n,t) = 0 when n < t; and for 1 <t < n, let G(n,t) be
g(O)G(TL - 17t): g(l)G(n - 17t)R7 R g(2t - 1)G(ﬂ - 17t)R7 g(zt - 1)G(7’L —-1,t- 1)7

where (k) is a t-bit column containing the Gray binary number g(k) with its least
significant bit at the top. In this general formula we implicitly add a row of zeros
below the bases of G(n — 1, — 1).

This remarkable rule gives ordinary Gray binary code when ¢ = 1, omitting 0. .. 00.

A cyclic Gray code is impossible because (?)2 is odd.

67. A Gray path for compositions corresponding to Algorithm C implies that there is
a path in which all transitions are 0¥1' < 1'0* with min(k,[) < 2. Perhaps there is, in
fact, a cycle with min(k,l) = 1 in each transition.

68. (a) {0}; (b) 0.

69. The least N with i, N < Nis (*, ')+ (* ) +- -+ (H+1=2(C+ &)+

o (8) + 1), because (tfl) < (Tt’) if and only if n > 2t — 1.
70. From the identity

Ht((ztzg)+N’)*((2t;3)+Nl) _ Ht((zt;2)+N’)*((2t;2)+Nl) _ (2t;2)ﬁ+ﬁt—1NI*N’

when N' < (2t;3), we conclude that the maximum is (2t;2) % + (2::14) ﬁ 4+ (g) %,

and it occurs at 2871 values of N when ¢ > 1.

71. Let C; be the t-cliques. The first (14t14) + (107019) t-combinations visited by Al-
gorithm L define a graph on 1415 vertices with 1000000 edges. If |C;| were larger,
|8 ~2C4| would exceed 1000000. Thus the single graph defined by P(1000000)2 has the

maximum number of #-cliques for all ¢ > 2.

72. M = (";5) R (";“) for mg > -+ > my > u > 1, where {ms,...,my} =
{s+t—1,...,n.}\{n¢,...,nvt1}. (Compare with exercise 15, which gives (S+t)flfN.)

t
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If o = an—_1...ap is the bit string corresponding to the combination n; ...ni, then
v is 1 plus the number of trailing 1s in «, and u is the length of the rightmost run
of 0s. For example, when a = 1010001111 we have s =4, t =6, M = (i) + (;), u =3,
N=(G)+ () v=>5
73. A and B are cross-intersecting <= o € U\ B for all @« € A and 8 € B <
ANO" * B~ =, where B~ = {U\ 3| B € B} is a set of (n — t)-combinations. Since
Q;Vnt = PN(n—t)a we have ‘8n_s_tB_| > |8n_s_tPN(n,t)‘, and Bn‘S_tPN(n,t) = Pnrg
where N' = k441 ...5n_¢N. Thus if A and B are cross-intersecting we have M + N’ <
|A| + 0" *7'B™| < (:), and Qurns N Pyrg = 0.

Conversely, if Quns N Pn/s # 0 we have (:) <M+ N <|A+[0"*""B7|,50 A
and B cannot be cross-intersecting.

74. |@QnNnt| = kn—tN (see exercise 94). Also, arguing as in (58) and (59), we find
oPns = (n—1)Pns U -+ U 10Pns U {543210,...,987654} in that particular case; and

loPni| = (n+1—n) N+ (T:ll) in general.

75. The identity (":1) = (:) + (Z:i) + -+ ("ak), Eq. 1.2.6-(10), gives another
representation if n, > v. But (60) is unaffected, since we have (Zfi) = (kil) + (Z:;) +
)

76. Represent N + 1 by adding (2:1) to (57); then use the previous exercise to deduce

that ke(N + 1) — ke N = (z:;) =v— 1.

77. [D. E. Daykin, Nanta Math. 8,2 (1975), 78-83.] We work with extended repre-
sentations M = ("}*) + -+ ("*) and N = (") + - + ("*) as in exercise 75, calling
them improper if the final index u or v is zero. Call N flexible if it has both proper
and improper representations, that is, if n, > v > 0.

(a) Given an integer S, find M + N such that M + N = S and x:M + k¢ N is
minimum, with M as large as possible. If N = 0, we’re done. Otherwise the max-min
operation preserves both M + N and k: M + k: N, so we can assume that v > u > 1 in
the proper representations of M and N. If N is inflexible, r:(M + 1) + k(N — 1) =
(ke M +u—1)+ (ke N —v) < ke M + K+ N, by exercise 76; therefore N must be flexible.
But then we can apply the max-min operation to M and the improper representation
of N, increasing M: Contradiction.

This proof shows that equality holds if and only if M N = 0, a fact that was noted
in 1927 by F. S. Macaulay.

(b) Now we try to minimize max(x¢ M, N) + :—1N when M + N = S, this time
representing N as (’;*_*11) + -+ ("v") The max-min operation can still be used if
ni—1 < my; leaving m; unchanged, it preserves M + N and k¢t M + k¢_1 N as well as the
relation k¢ M > N. We arrive at a contradiction as in (a) if N # 0, so we can assume
that Nnt—1 Z my.

If ny_1 > m: we have N > kM and also A:N > M; hence M + N < \tN + N =
(M) + -+ ("), and we have k(M + N) < k(AN + N) = N + x¢_1N.

Finallyifn;_1 = m; = a,let M = (:)—i—M' and N = (tfl)—i—N’. Then kt(M+N) =

(‘:t;) + ki1 (M + N, ss M = (tfl) + ki1 M', and K 1N = (:2) + k¢ oN'; the
result follows by induction on t.
78. [J. Eckhoff and G. Wegner, Periodica Math. Hung. 6 (1975), 137-142; A. J. W.
Hilton, Periodica Math. Hung. 10 (1979), 25-30.] Let M = |A;| and N = |Ao|; we can
assume that ¢t > 0 and N > 0. Then |9A| = |0A1 U Ag| + |0Ao| > max(|0A1],|Ao|) +
|0Ao| > max(k; M,N) + k1N > k:(M + N) = |P|a}¢|, by induction on m + n + .
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Conversely, let Ay = Py 4+ 1 and Ag = Py:—1) + 1; this notation means, for
example, that {210,320} + 1 = {321,431}. Then x(M + N) < |0A| = |[0A; U Ag| +
|(0A0)0| = max(k;M,N) + k:_1N, because A1 = P(,;, m)¢—1) + 1. [Schiitzenberger
observed in 1959 that k:(M + N) < kM + k:—1 N if and only if kK, M > N.]

For the first inequality, let A and B be disjoint sets of £-combinations with |A| = M,
|0A| = keM, |B| = N, |0B| = k¢t N. Then k(M + N) = r:]AU B| < |8(AU B)| =
|DAUOB| = |0A|+ |0B| = k: M + k: N.

79. In fact, us(M + X1 M) = M, and ps N + Ai—1pe N = N + (n2 — n1)[v=1] when
N is given by (57).

80. If N > 0 and ¢ > 1, represent N as in (57) and let N = No + Ny, where

nt—l) <nv—1) (m—l) (nv—l)
No = N, = )
0 ( t + + v ’ ! t—1 + + v—1

TLet No = (’t’) and N; = (tfl). Then, by induction on ¢ and |z, we have (:) =

No by 2 (1) + (1) = () M = ()= () 2 () = (57) = (3)s and
N = N re N> () 4 () = () 2 ().

[Lovéasz actually proved a stronger result; see exercise 1.2.6-66. We have, similarly,
wN > (f:ll), see Bjorner, Frankl, and Stanley, Combinatorica 7 (1987), 27-28.]

81. For example, if the largest element of Pus is 66433, we have

so N = (150) + (9) + (6) + (;) Tts lower shadow is

4 3

Pys = {00000, . . ., 55555}U{60000, . . ., 65555} U{66000, . .., 66333} U{66400, . .., 66433}

dPys = {0000, ...,5555} U {6000, ...,6555} U {6600,...,6633} U {6640, ...,6643},

of size (3) + (5) + (3) + (3)-
If the smallest element of Q) g5 is 66433, we have

Qnos = {99999, ...,70000} U {66666, ...,66500} U {66444, ...,66440} U {66433}

5o N = (9)+(2)+) + () + () + ()- s upper shadow is

Qnos = {999999, ...,700000} U {666666, . . .,665000}
U {664444, . ..,664400} U {664333, . .., 664330},

of size (()+(2)+(2)) + () + () + () = N + oN. The size, ¢, of each
combinatior}\ is essentially irrelevant, as long as N < (Sjt); for example, the smallest
element of Qnos is 99966433 in the case we have considered.

82. (a) The derivative would have to be Y, rx(z), but that series diverges.

[Informally, the graph of 7(z) shows “pits” of relative magnitude 27% at all odd
multiples of 2—*. Takagi’s original publication, in Proc. Physico-Math. Soc. Japan (2)
1 (1903), 176177, has been translated into English in his Collected Papers (Iwanami
Shoten, 1973).]

(b) Since ri,(1—t) = (—1)*"when k > 0, we have [} “ry(t) dt = [ r(1—u) du =
— le ri(u) du = [ ri(u) du. The second equation follows from the fact that ry(3t) =
Tk—1(t). Part (d) shows that these two equations suffice to define 7(z) when z is
rational.

(c) Since 7(27%) = a2 %2 + 27 %7r(x) for 0 < z < 1, we have 7(¢) = ae + O(e)
when 27771 <€ < 27" Therefore 7(e) = elg 2 + O(e) for 0 < e < 1.
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(d) Suppose 0 < p/q < 1. If p/q < 1/2 we have 7(p/q) = p/q + 7(2p/q)/2;
otherwise 7(p/q) = (¢ — p)/q + 7(2(q9 — p)/q)/2. Therefore we can assume that q is
odd. When gq is odd, let p' = p/2 when p is even, p' = (¢ — p)/2 when p is odd. Then
T(p/q) = 27(p'/q) — 2p'/q for 0 < p < g; this system of ¢ — 1 equations has a unique
solution. For example, the values for ¢ = 3, 4, 5, 6, 7 are 2/3,2/3; 1/2,1/2,1/2; 8/15,
2/3,2/3, 8/15; 1/2,2/3,1/2, 2/3, 1/2; 22/49, 30/49, 32/49, 32/49, 3049, 22/49.

11
()The@olu‘rlon%<—areT_Z,Z—E,Z—E—a,z—ﬁ—a—%ﬁ N

(f) The value 2 is achieved for z = 1 £ 2+ L + -1+ ... an uncountable set.

™

83. Given any integers ¢ > p > 0, consider paths starting from 0 in the digraph

0+ 1<+ 2+ 3+ 45+« -

K

1 52532542526

Compute an associated value v, starting with v <— —p; horizontal moves change v < 2v,
vertical moves from node a change v < 2(ga — v). The path stops if we reach a node
twice with the same value v. Transitions are not allowed to upper node a if v < —q or
v > ga at that node; they are not allowed to lower node a with v < 0 or v > g(a + 1).
These restrictions force most steps of the path. (Node a in the upper row means, “Solve
7(z) = axr — v/q”; in the lower row it means, “Solve 7(z) = v/q — az.”) Empirical
tests suggest that all such paths are finite. The equation 7(z) = p/q then has solutions
x = xo defined by the sequence zo, z1, T2, ... where zp = %xk+1 on a horizontal step
and zp = 1— %mk+1 on a vertical step; eventually =, = x; for some j < k. If j > 0 and
if ¢ is not a power of 2, these are all the solutions to 7(z) = p/q when z > 1/2.

For example, this procedure establishes that T( ) = 1/5 and £ > 1/2 only when
T is 83581/87040 the only path yields zop = 1 — ml, 1 = %$2 ce., T1g = %mlg, and
z19 = z11. There are, similarly, just two values z > 1/2 with 7(z) = 3/5, having
denominator 2%6(2°% — 1)/3.

Moreover, it appears that all cycles in the digraph that pass through node 0 define
values of p and g such that 7(z) = p/q has uncountably many solutions. Such values
are, for example, 2/3, 8/15, 8/21, corresponding to the cycles (01), (0121), (012321).
The value 32/63 corresponds to (012121) and also to (012101234545454321), as well as
to two other paths that do not return to 0.

84. [Frankl, Matsumoto, Ruzsa, and Tokushige, J. Combinatorial Theory A69 (1995),
125-148.] If a < b we have

(% 10) 7= - 1= - 1 = 270+ et + O
where f(a,b) = a(1+b) —a®> —b(1+b)/4 = f(a+1,b) — b+ 2a. Therefore if N has
the combinatorial representation (57), and if we set n; = 2t — 1 — b;, we have

t bt btfl -2 btfz —4 O(lOg?‘:)3
f<mN—N) gt T Tt

the terms being negligible when b; exceeds 21g¢. And one can show that

l

T<i2—e]’) = Z(e]-_Qj)Q—ej_

3=0

85. N—\;_1 N has the same asymptotic form as K N—N, by (63), since 7(z) = 7(1—z).
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So does 2us N — N, up to O(T(log t)?/¢*), because (Zt;_lgb) = 2(2t;_2{:b) (1+O(logt)/t)
when b < 2lgt.

86. 1€ X" <=zr¢ X <= zx¢Xorz¢ X+ejor---orz¢ X+e,<=ze€X"”
orzeX~—eior-rorx€X™ —e, <=z X T,

87. All three are true, using the fact that X C Y° ifand only if X*T CY: (a) X CY°
= X2V =YY" «—= Y~ C X~ (b) XT C Xt = X C X*° hence
X° C X°T°, Also X° C X° = X°t C X; hence X°™° C X°. (¢) aM < N <=
S, C Sy <= Sy C Sy < M < BN.

88. If vz < vy then v(z — ex) < v(y — e;), so we can assume that vz = vy and that
x > y in lexicographic order. We must have y; > 0; otherwise v(y — e;) would exceed
v(z—eg). fz; =y; for 1 <i < j, clearly k > j and = — e, < y—e;. Otherwise z; > y;
for some 7 < j; again we have x — e, <y —e;, unless z — e =y —e;.

89. From the table

7= 0 1 2 3 4 5 6 7 8 9 10 11
ejt+er = e €0 €4 €5 €2 €3 €s €9 €6 €7 €11 €10
ej+ex = ez €4 €o €6 €1 €s €3 €10 €5 €11 €7 €9
e; +es = e3 €5 €g er €8 €9 €10 €0 €11 €1 €2 €4

we find (a0,al,...,al12) = (0,4,6,7,8,9,10,11,11,12,12,12,12); (80,41, ...,512) =
(0,0,0,0,1,1,2,3,4,5,6,8,12).
90. Let Y = Xt and Z = Cx X, and let N, = |X(a)| for 0 < a < mg. Then

V=" Wi(a) = > [(Xala— 1) +ex) U (Xi(a) + Ei(0))]
> mf max(Ny—1,aNg),

where a — 1 stands for (a — 1) mod m and the « function comes from the (n — 1)-
dimensional torus, because | X (a) + Er(0)| > aN, by induction. Also

mp—1 myg—1

74 = Y 175 @)= Y |(Zk(a—1) + ex) U (Zi(a) + Ex(0))]

mp—1

= Z max(Ny—1,aN,),

a=0
because both Zi(a — 1) + e; and Zi(a) + E(0) are standard in n — 1 dimensions.

91. Let there be N, points in row a of a totally compressed array, where row 0 is
at the bottom; thus [ = N_y > Ng > -+ > Np—1 > N,, = 0. We show first

that there is an optimum X for which the “bad” condition N, = N,4+1 never occurs
except when N, = 0 or N, = [. For if a is the smallest bad subscript, suppose
Noa—1 > Ng = Nagy1 = -+ = Nayr > Natr+1. Then we can always decrease Noip

by 1 and add 1 to some N, for b < a without increasing | X |, except in cases where
k=1and Noy2 = Noy1 —1 and Ny = Ny +a —b <l for 0 < b < a. Exploring such
cases further, if Ne41 < N, = N._1 for some ¢ > a + 1, we can set N. + N. — 1 and
Ng < N, + 1, thereby either decreasing a or increasing Ny. Otherwise we can find
a subscript d such that N = Nqot1+a+1—c¢> 0 for a < ¢ < d, and either Ng = 0 or
Nag < Ng—1 — 1. Then it is OK to decrease N. by 1 for a < ¢ < d and subsequently to
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increase Ny by 1 for 0 < b < d—a—1. (It is important to note that if Ny = 0 we have
No > d — 1; hence d = m implies | = m.)

Repeating such transformations until N, > N,4+1 whenever N, # | and Ngy1 # 0,
we reach situation (86), and the proof can be completed as in the text.

92. Let = + k denote the lexicographically smallest element of T'(m1,..., mn—1) that
exceeds x and has weight vz 4k, if any such element exists. For example, if mq = mo =
m3 =4 and x = 211, we have z+1 = 212, x+2 = 213, 2 +3 = 223, x+4 = 233, z+5 =
333, and x + 6 does not exist; in general, x + k + 1 is obtained from x + k by increasing
the rightmost component that can be increased. If z+k = (m1 —1,...,mp_1 — 1), let
us set £ + k+ 1 =z + k. Then if S(k) is the set of all elements of T'(m1,...,mn_1)
that are < = + k, we have S(k+ 1) = S(k)*. Furthermore, the elements of S that end
in a are those whose first n — 1 components are in S(m — 1 — a).

The result of this exercise can be stated more intuitively: As we generate n-
dimensional standard sets Si, Sz, ..., the (n — 1)-dimensional standard sets on each
layer become spreads of each other just after each point is added to layer m — 1.
Similarly, they become cores of each other just before each point is added to layer 0.

93. (a) Suppose the parameters are 2 < mj < mj < --- < m,, when sorted properly,
and let k& be minimal with m,, # m;},. Then take N = 1+rank(0,...,0,m},—1,0,...,0).
(We must assume that min(my, ..., m,) > 2, since parameters equal to 1 can be placed
anywhere.)

(b) Only in the proof for n = 2, buried inside the answer to exercise 91. That
proof is incorporated by induction when n is larger.

94. Complementation reverses lexicographic order and changes g to 0.

95. For Theorem K, let d =n — 1 and so = --- = s4 = 1. For Theorem M, let d = s
and so =---=sq=t+1.

96. In such a representation, N is the number of ¢t-multicombinations of {so - 0,51 - 1,
s2 - 2,...} that precede ntni—1...n1 in lexicographic order, because the generalized

coefficient (S(t")) counts the multicombinations whose leftmost component is < n.
If we truncate the representation by stopping at the rightmost nonzero term
(S(Z")), we obtain a nice generalization of (60):

S(n:) S(ni—1) S(nq,))
Pry| = _
9P| (t—1)+( t—2 >+ +(v—1
[See G. F. Clements, J. Combinatorial Theory A37 (1984), 91-97. The inequalities
S0 > 81 > - -+ > 84 are needed for the validity of Corollary C, but not for the calculation
of |0Pn¢|. Some terms (S(:")) for t > k > v may be zero. For example, when N =1,

t=14, sop =3, and s; = 2, we have N = (5511)) + (Sgl)) =0+1]
97. (a) The tetrahedron has four vertices, six edges, four faces: (No,...,Ns) =
(1,4,6,4,1). The octahedron, similarly, has (No,...,Ng) = (1,6,8,8,0,0,0), and
the icosahedron has (No,...,Ni2) = (1,12,30,20,0,...,0). The hexahedron, aka the
3-cube, has eight vertices, 12 edges, and six square faces; perturbation breaks each
square face into two triangles and introduces new edges, so we have (Np,...,Ng) =
(1,8,18,12,0,...,0). Finally, the perturbed pentagonal faces of the dodecahedron lead
to (No,...,Na) = (1,20,54,36,0,...,0).

(b) {210,310} U {10,20,21,30,31} U {0,1,2,3} U {e}.

() 0 < N < (:) for 0 <t < nand Ni_1 > KNy for 1 <t < n. The second
condition is equivalent to A\;_1Nz—1 > N; for 1 < t < n, if we define A\g1 = occ. These
conditions are necessary for Theorem K, and sufficient if A = | Pn,:.
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(d) The complements of the elements not in a simplicial complex, namely the sets
{{0,...,n = 1}\ a | a ¢ C}, form a simplicial complex. (We can also verify that
the necessary and sufficient condition holds: Ni—1 > kit Ny <= Ai—1Ni—1 > Ny <
Iinft+1ﬁn7t+1 S ant, because Iinftﬁnft+1 = (7) — /\t—th—l by exercise 94)

(e) 00000 <> 14641; 10000 <> 14640; 11000 <> 14630; 12000 <> 14620; 13000 <>
14610; 14000 < 14600; 12100 < 14520; 13100 <> 14510; 14100 <« 14500; 13200 <
14410; 14200 <> 14400; 13300 < 14400; and the self-dual cases 14300, 13310.

98. The following procedure by S. Linusson [Combinatorica 19 (1999), 255-266], who
considered also the more general problem for multisets, is considerably faster than a
more obvious approach. Let L(n, h,1) count feasible vectors with V; = (7:) for0 <t <I,
Nit1 < (1), and N; = 0 for ¢ > h. Then L(n,h,l) = 0 unless —1 < 1 < h < n;
also L(n,h,h) = L(n,h,—1) = 1, and L(n,n,l) = L(n,n — 1,1) for | < n. When
n > h > 12> 0 we can compute L(n,h,l) = Z]}.L:lL(n - 1,h,j)L(n—1,7—1,1—1),a
recurrence that follows from Theorem K. (Each size vector corresponds to the complex
U Pn,t, with L(n—1, h, j) representing combinations that do not contain the maximum
element n — 1 and L(n — 1,7 — 1,1 — 1) representing those that do.) Finally the grand
total is L(n) = >_;_, L(n,n,1).

We have L(0), L(1), L(2), ... = 2, 3, 5, 10, 26, 96, 553, 5461, 100709, 3718354,
289725509, . ..; L(100) & 3.2299 x 10842,

99. The maximal elements of a simplicial complex form a clutter; conversely, the
combinations contained in elements of a clutter form a simplicial complex. Thus the
two concepts are essentially equivalent.

(a) If (Mo, My,...,My,) is the size vector of a clutter, then (No, N1,...,Ny) is
the size vector of a simplicial complex if N, = M, and N; = M; + &k¢y+1N¢y1 for
0 <t < n. Conversely, every such (No,...,Ny) yields an (Mo,...,My) if we use
the lexicographically first N; t-combinations. [G. F. Clements extended this result to
general multisets in Discrete Math. 4 (1973), 123-128.]

(b) In the order of answer 97(e) they are 00000, 00001, 10000, 00040, 01000, 00030,
02000, 00120, 03000, 00310, 04000, 00600, 00100, 00020, 01100, 00210, 02100, 00500,
00200, 00110, 01200, 00400, 00300, 01010, 01300, 00010. Notice that (Mo, ..., M,) is
feasible if and only if (M, ..., Mg) is feasible, so we have a different sort of duality in
this interpretation.

100. Represent A as a subset of T'(mu, ..., my,) as in the proof of Corollary C. Then the
maximum value of v A is obtained when A consists of the N lexicographically smallest
points x1 ... ZTn.

The proof starts by reducing to the case that A is compressed, in the sense that
its t-multicombinations are P anr, ¢ for each t. Then if y is the largest element € A
and if z is the smallest element ¢ A, we prove that z < y implies vz > vy, hence
v(A\ {y} U {z}) > vA. For if vz = vy — k we could find an element of 8y that is
greater than z, contradicting the assumption that A is compressed.

101. (a) In general, F(p) = Nop™"+Nip™ *(1—p)+-- -+ Nn(1—p)" when f(z1,...,z
is satisfied by exactly N; binary strings z1 ...z, of weight . Thus we find G(p)
P+ 3p*(1—p) +p*(1—p)% H(p) = p* +p*(1 - p) +p*(1 — p)*.

(b) A monotone formula f is equivalent to a simplicial complex C' under the cor-
respondence f(z1,...,2,) =1<= {j —1|z; =0} € C. Therefore the functions f(p)
of monotone Boolean functions are those that satisfy the condition of exercise 97(c), and
we obtain a suitable function by choosing the lexicographically last N,,_: t-combinations

n)
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(which are complements of the first Ny s-combinations): {3210}, {321, 320,310}, {32}
gives f(w,z,y,2) = wryz V zyz V wyz V wrz V yz = wrz V yz.

M. P. Schiitzenberger observed that we can find the parameters N; easily from
f(p) by noting that f(1/(1 +u)) = (No + Nyu+ -+ Nyu™)/(1 + u)". One can show
that H(p) is not equivalent to a monotone formula in any number of variables, because
1+ u+u?)/(1+u)?* = (No+ Niu+ -+ Nou™) /(1 4+ u)™ implies that Ny = n — 3,
Ny = (";3) + 1, and ke N2 = n — 2.

But the task of deciding this question is not so simple in general. For example,
the function (1 + 5u + 5u® + 5u®)/(1 + u)® does not match any monotone formula in
five variables, because k35 = 7; but it equals (1 + 6u + 10u® + 10u® + 5u*)/(1 + u)S,
which works fine with six.

102. (a) Choose N; linearly independent polynomials of degree ¢ in I; order their terms
lexicographically, and take linear combinations so that the lexicographically smallest
terms are distinct monomials. Let I’ consist of all multiples of those monomials.

(b) Each monomial of degree t in I' is essentially a t-multicombination; for
example, 232,25 corresponds to 55552111. If M, is the set of independent monomials
for degree t, the ideal property is equivalent to saying that M; 11 2 gM;.

In the given example, M3 = {z¢23}; My = oMsU{zo2,23}; Ms = oMaU{z 23},
since 23 (zoxi — 22q123) — o1 (zomq23) = —22,2%; and My41 = @M, thereafter.

(¢) By Theorem M we can assume that M; = @M,gt. Let Ny = (”;“) 4+ 4
("52) + ("“), where s +t > ngs > -+ > nga > ng1 > 0; then nys = s + t if and only if

1
Nys—1) = 8§ — 2, ..., ng1 = 0. Furthermore we have

nts+[ntszs}>+...+ (mz—i—[ntzZZ]) 4 (ntl—l—[n“Zl})'

Nit1 > N, sNy =
t+1 = IVt + Ks IVt < s 9 1

Therefore the sequence (nys—t—oo[nes < 8], ..., N2 —t—o0[n2 < 2], ny —t—oc[n < 1])
is lexicographically nondecreasing as ¢ increases, where we insert ‘—o0o’ in components
that have n;; = j — 1. Such a sequence cannot increase infinitely many times without

exceeding the maximum value (s, —oco,..., —00), by exercise 1.2.1-15(d).

103. Let Pns: be the first N elements of a sequence determined as follows: For each
binary string = Zs4¢—1... %o, in lexicographic order, write down (") subcubes by
changing t of the 1s to *s in all possible ways, in lexicographic order (considering 1 < *).
For example, if z = 0101101 and ¢ = 2, we generate the subcubes 0101x0%, 010x10x,
010%x01, 0x0110%, 0x01x01, 0x0x101.

[See B. Lindstrém, Arkiv for Mat. 8 (1971), 245-257; a generalization analogous
to Corollary C appears in K. Engel, Sperner Theory (Cambridge Univ. Press, 1997),

Theorem 8.1.1.]

104. The first N strings in cross order have the desired property. [T. N. Danh and
D. E. Daykin, J. London Math. Soc. (2) 55 (1997), 417-426.]

Notes: Beginning with the observation that the “l-shadow” of the N lexico-
graphically first strings of weight ¢ (namely the strings obtained by deleting 1 bits
only) consists of the first u; N strings of weight ¢, R. Ahlswede and N. Cai extended
the Danh Daykin theorem to allow insertion, deletion, and/or transposition of bits
[Combinatorica 17 (1997), 11-29; Applied Math. Letters 11,5 (1998), 121-126]. Uwe
Leck has proved that no total ordering of ternary strings has the analogous minimum-
shadow property [Preprint 98/6 (Univ. Rostock, 1998), 6 pages].

105. Every number must occur the same number of times in the cycle. Equivalently,

(7:11) must be a multiple of ¢. This necessary condition appears to be sufficient as
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well, provided that n is not too small with respect to ¢; but such a result may well be
true yet impossible to prove. [See Chung, Graham, and Diaconis, Discrete Math. 110
(1992), 55 57.]

The next few exercises consider the cases ¢t = 2 and ¢ = 3, for which elegant
results are known. Similar but more complicated results have been derived for t = 4
and t = 5, and the case t = 6 has been partially resolved. The case (n,t) = (12,6) is
currently the smallest for which the existence of a universal cycle is unknown.

106. Let the differences mod (2m+1) be 1,2,...,m,1,2,..., m, ..., repeated 2m+1
times; for example, the cycle for m = 3 is (013602561450346235124). This works
because 1 + -+ 4+m = (m+1) is relatively prime to 2m + 1. [.J. Ecole Polytechnique 4,
Cabhier 10 (1810), 16-48.]

107. The seven doubles Jill. BBY, ..., B can be inserted in 37 ways into any
universal cycle of 3-combinations for {0,1,2,3,4,5,6}. The number of such universal
cycles is the number of Eulerian trails of the complete graph K7, which can be shown
to be 129,976,320 if we regard (aoai ...a20) as equivalent to (a1 ...az0a0) but not to
the reverse-order cycle (azo . ..a1a0). So the answer is 284,258,211,840.

[This problem was first solved in 1859 by M. Reiss, whose method was so com-
plicated that people doubted the result; see Nouvelles Annales de Mathématiques 8
(1849), 74; 11 (1852), 115; Annali di Matematica Pura ed Applicata (2) 5 (1871-
1873), 63-120. A considerably simpler solution, confirming Reiss’s claim, was found by
P. Jolivald and G. Tarry, who also enumerated the Eulerian trails of Kg; see Comptes
Rendus Association Francaise pour I’Avancement des Sciences 15, part 2 (1886), 49—
53; E. Lucas, Récréations Mathématiques 4 (1894), 123-151. Brendan D. McKay and
Robert W. Robinson found an approach that is better still, enabling them to continue
the enumeration through K»>; by using the fact that the number of trails is

(m— D™ 2T 2 det(ag) [ (2 + D),
1<j<k<2m

where ajr = —1/(2§ + z;) when j # k; aj; = —1/(225) + Y gchcam L/ (2] + 27); see
Combinatorics, Probability, and Computing 7 (1998), 437-449.]

C. Flye Sainte-Marie, in L’Intermédiaire des Mathématiciens 1 (1894), 164-165,
noted that the Eulerian trails of K7 include 2 x 720 that have 7-fold symmetry under
permutation of {0,1,...,6} (namely Poinsot’s cycle and its reverse), plus 32 x 1680
with 3-fold symmetry, plus 25778 x 5040 cycles that are asymmetric.

108. No solution is possible for n < 7, except in the trivial case n = 4. When
n = 7 there are 12,255,208 x 7! universal cycles, not considering (aoas ... as4) to be the
same as (a1 ...assao0), including cases with 5-fold symmetry like the example cycle in
exercise 105.

When n > 8 we can proceed systematically as suggested by B. Jackson in Discrete
Math. 117 (1993), 141-150; see also G. Hurlbert, SIAM J. Disc. Math. 7 (1994),
598-604: Put each 3-combination into the “standard cyclic order” cicacs where c3 =
(c1+6) modn, cz3 = (c2 +8') modn, 0 < §,8" < n/2, and either § = §' or max(4,d') <
n—80-68#Mm-1)/2or (1 <d<n/4dand ' = (n—1)/2) or (6 = (n—1)/2 and
1 < & < n/4). For example, when n = 8 the allowable values of (4,4') are (1,1),
(1,2), (1,3), (2,1), (2,2), (3,1), (3,3); when n = 11 they are (1,1), (1,2), (1,3),
(1,4), (2,1), (2,2), (2,3), (2,5), (3,1), (3,2), (3,3), (4,1), (4,4), (5,2), (5,5). Then
construct the digraph with vertices (¢, ) for 0 < ¢ < n and 1 < § < n/2, and with arcs
(c1,8) = (c2,8") for every combination cicacs in standard cyclic order. This digraph is
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connected and balanced, so it has an Eulerian trail by Theorem 2.3.4.2D. (The peculiar
rules about (n — 1)/2 make the digraph connected when n is odd. The Eulerian trail
can be chosen to have n-fold symmetry when n = 8, but not when n = 12.)

109. When n = 1 the cycle (000) is trivial; when n = 2 there is no cycle; and
there are essentially only two when n = 4, namely (00011122233302021313) and
(00011120203332221313). When n > 5, let the multicombination did2ds be in
standard cyclic order if dy = (d1 + 6 — 1) mod n, d3 = (d2 + &' — 1) mod n, and (4, 6')
is allowable for n 4+ 3 in the previous answer. Construct the digraph with vertices
(d,8) for 0 < d<mnand1 <6< (n+3)/2, and with arcs (d1,5) — (d2,4") for every
multicombination didzds in standard cyclic order; then find an Eulerian trail.

Perhaps a universal cycle of ¢t-multicombinations exists for {0,1,...,n—1} if and
only if a universal cycle of t-combinations exists for {0,1,...,n+¢— 1}.

110. A nice way to check for runs is to compute the numbers b(S) = 32{27(¢) | c € S}
where (p(4),...,p(K)) = (1,...,13); then set | <+ b(S)A—b(S) and check that b(S)+1 =
I < s, and also that ((I < s)V (I > 1)) Aa = 0, where a = 2P(¢1) v ... v 27(¢3) The
values of b(S) and Y {v(c) | ¢ € S} are easily maintained as S runs through all 31
nonempty subsets in Gray-code order. The answers are (1009008, 99792, 2813796,
505008, 2855676, 697508, 1800268, 751324, 1137236, 361224, 388740, 51680, 317340
19656, 90100, 9168, 58248, 11196, 2708, 0, 8068, 2496, 444, 356, 3680, 0, 0, 0, 76, 4)
for z = (0,...,29); thus the mean score is ~ 4.769 and the variance is & 9.768.

Hands without points are sometimes facetiously called nineteen,
as that number cannot be made by the cards.

— G. H. DAVIDSON, Dee’s Hand-Book of Cribbage (1839)

Note: A four-card flush is not allowed in the “crib.” Then the distribution is a bit
easier to compute, and it turns out to be (1022208, 99792, 2839800, 508908, 2868960,
703496, 1787176, 755320, 1118336, 358368, 378240, 43880, 310956, 16548, 88132, 9072,
57288, 11196, 2264, 0, 7828, 2472, 444, 356, 3680, 0, 0, 0, 76, 4); the mean and variance
decrease to approximately 4.735 and 9.667.
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When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

2-nomial coefficients, 38.
r+ (Kruskal function), 19-21, 31-34, 51.
A+ (Kruskal function), 20 21, 32 33.
w1t (Macaulay function), 20-21, 32-33, 51.
v (sideways sum), 20, 29, 37.
m (circle ratio), as “random” example,
2, 13, 27-29, 35.
7 (Takagi function), 20-21, 32-33.
0 (shadow), 18.
¢ (upper shadow), 18.

Active bits, 12.

Adjacent transpositions, 15 17, 30.

Ahlswede, Rudolph, 56.

Alternating combinatorial number
system, 9, 27.

Analysis of algorithms, 4-5, 25, 27, 29.

Antichains of subsets, see Clutters.

Balanced ternary notation, 41.

Baseball, 26.

Basis of vector space, 26, 31.

Basis theorem, 34.

Beckenbach, Edwin Ford, 5.

Bellman, Richard Ernest, 19.

Bernoulli, Jacques (= Jakob = James),
iii, 16.

Binary tree representation of tree, 27.

Binary vector spaces, 26, 31.

Binomial coefficients, 1, 32.

generalized, 33.

Binomial number system, see Combinatorial
number system.

Binomial trees, 6 7, 27.

Bitner, James Richard, 8.

Bitwise manipulation, 4, 58.

Bjorner, Anders, 51.

Boolean functions, 34.

Bounded compositions, 16, 30, 31.

Buck, Marshall Wilbert, 30.

Cai, Ning (3% 7%), 56.
Calabi, Eugenio, 38.
Canonical bases, 26, 31.
Caron, Jacques, 42.
Catalan, Eugéne Charles, 36.
Chase, Phillip John, 11-13, 16, 28—29, 45.
Chinese rings, 28.
Chords, 10, 30.
Chung Graham, Fan Rong King
(B% 4 95 #%), 57
Clements, George Francis, 24 25, 34, 54, 55.
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Cliques, 31.

Clutters, 34.

Colex order, 5.

Combination generation, 1-18, 25-31, 35.
Gray codes for, 8 18.
homogeneous, 10-11, 16-17, 28-29,

41, 45, 48.
near-perfect, 11 17, 29.
perfect, 15-17, 30.

Combinations, 1-35.
dual, 2 4, 26 27, 29.
of a multiset, 2-3, 16-18, 25, 33.
with repetitions, 2-3, 11, 16-19, 25, 33.

Combinatorial number system, 6, 27,

31-32, 37.
alternating, 9, 27.
generalized, 33.

Complement in a torus, 21.

Complete binary tree, 39.

Complete graph, 57.

Compositions, 2-4, 11, 25, 38.
bounded, 16, 30, 31.

Compression of a set, 23, 33, 55.

Contingency tables, 18, 31.

Core set in a torus, 22 23, 33.

Cribbage, 35.

Cross-intersecting sets, 31.

Cross order, 20-25, 33, 56.

Cycle, universal, of combinations, 35.

Czerny, Carl, 47.

Danh, Tran-Ngoc, 56.
Davidson, George Henry, 58.
Daykin, David Edward, 50, 56.
De Morgan, Augustus, 1.

Delta sequences, 46, 47.
Derivative, 32.

Diaconis, Persi Warren, 57.
Dimension of a vector space, 26.
Dominoes, 35.

Dual combinations, 2—4, 2627, 29.
Dual set in a torus, 22 23.

Dual size vector, 34.

Duality, 33, 55.

Dvorék, Stanislav, 37.

Eades, Peter Dennis, 16, 46.
Eckhoff, Jiirgen, 50.

Ehrlich, Gideon (7Y )W), 8, 42.
End-around swaps, 30.

Endo-order, 14, 29.

Engel, Konrad Wolfgang, 56.

Enns, Theodore Christian, 46.
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Erdés, Pal (= Paul), 19.

Euler, Leonhard (Eitneps, Jleonapas =
Sitnep, Jleonapn), trails, 57, 58.

Fenichel, Robert Ross, 25.
First-element swaps, 16-17, 30.

Flye Sainte-Marie, Camille, 57.
Fraenkel, Aviezri S (52319 »nyan), 39.
Frankl, Péter, 51, 52.

Generating functions, 29, 47.

Genlex order, 9 13, 16 17, 28 29, 44, 48.
for Gray codes, 31.

Golomb, Solomon Wolf, 2, 25.

Graham, Ronald Lewis (B 3. {f), 57.

Gray, Frank, binary code, 8, 49, 58.
codes for combinations, 8 18, 27 30.

Grid paths, 2-3, 25.

Hamilton, William Rowan, cycles, 8, 46.
paths, 16, 30, 46, 48.

Hickey, Thomas Butler, 16, 46.

Hilbert, David, basis theorem, 34.

Hilton, Anthony John William, 31, 50.

Homogeneous generation, 10-11, 28-30, 45.
scheme K¢, 10, 16 17, 29, 41, 48.

Homogeneous polynomials, 34.

Hurlbert, Glenn Howland, 57.

Hypergraphs, 18.

Ising, Ernst, configurations, 26, 31, 38.
Iteration versus recursion, 12—-14, 29.

Jackson, Bradley Warren, 57.
Jenkyns, Thomas Arnold, 11.
Jolivald, Philippe (= Paul de Hijo), 57.

Katona, Gyula (Optima&lis Halmaz), 19.

Keyboard, 10, 30.

Knapsack problem, 7.

Knuth, Donald Ervin (7 f&4Y), i, iv, 38.

Korsh, James F., 38.

Kruskal, Joseph Bernard, Jr., 19-20.
function k¢, 19 21, 31 34, 51.
function A¢, 20-21, 32-33.

—Katona theorem, 19.

Lattice paths, 2 3, 25.

Leck, Uwe, 56.

Lehmer, Derrick Henry, 5, 30, 46.

Lexicographic generation, 4 7, 16 19,
25-27, 29, 31, 47.

Lindstrom, Bernt Lennart Daniel,
24-25, 34, 56.

Linked lists, 27, 39.

Linusson, Hans Svante, 55.

Lipschutz, Seymour Saul, 38.

Liu, Chao-Ning (%] Jk 28), 8.

Loopless generation, 8, 25, 27, 28, 41, 45, 46.
Lovész, Léaszlo, 32, 51.

Lucas, Frangois Edouard Anatole, 57.
Liineburg, Heinz, 39.

Macaulay, Francis Sowerby, 19, 34, 50.
function ps, 20-21, 32-33, 51.
Matrix multiplication, 43.
Matsumoto, Makoto (5 7N B.), 52.
McCarthy, David, 11.
McKay, Brendan Damien, 57.
Middle levels conjecture, 47.
Min-plus matrix multiplication, 43.
MMIX, ii.
Monomials, 34.
Monotone Boolean functions, 34.
Mor, Moshe (Mn nwn), 39.
Multicombinations: Combinations with
repetitions, 2 3, 11, 16 19, 25, 33.
Multisets, 2, 36.
combinations of, 2-3, 16—18, 25, 33.
permutations of, 4, 14-15, 29, 30, 38.

Near-perfect combination generation,
11 17, 29.
Near-perfect permutation generation, 15, 29.
Nijenhuis, Albert, 8.
Nowhere differentiable function, 32.

Olive, Gloria, 46.
Order ideal, 33.
Organ-pipe order, 14.

Partitions, 38.
ordered, see Compositions.

Pascal, Ernesto, 6.

Paths on a grid, 2-3, 25.

Payne, William Harris, 9, 28.

Perfect combination generation, 15 17, 30.

Permutations of multisets, 4, 14-15,
29, 30, 38.

Pi (7), as “random” example, 2, 13,
27 29, 35.

Piano, 10, 30.

Plain changes, 10.

Playing cards, 35.

Poinsot, Louis, 35, 57.

Polyhedron, 18, 33.

Polynomial ideal, 34.

Postorder traversal, 27.

Preorder traversal, 7, 27, 43.

g-multinomial coefficients, 30.
g-nomial coefficients, 15, 30, 38, 47.
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Rademacher, Hans, functions, 32.
Ranking a combination, 6, 9, 19, 29, 39, 40.
Read, Ronald Cedric, 16, 46.
Recurrences, 26, 40—42.
Recursion, 10-12.
versus iteration, 12 14, 29.
Recursive coroutines, 16.
Reflected Gray code, 28.
Regular solids, 33.
Reingold, Edward Martin (75100717,
D»N 2 v PNYY), 8.
Reiss, Michel, 57.
Replacement selection sorting, 39.
Reversion of power series, 39.
Revolving door property, 8, 29 30.
scheme T'g¢, 810, 16-17, 27-29.
Robinson, Robert William, 57.
Root of unity, 30.
Row-echelon form, 37.
Rucksack filling, 7, 27.
Ruskey, Frank, 30.
Ruzsa, Imre Zoltan, 52.

Savage, Carla Diane, 47.
Schiitzenberger, Marcel Paul, 19, 51, 56.
Shadows, 18 25, 31 34.

of binary strings, 35.

of subcubes, 34.
Shields, Tan Beaumont, 47.
Sibling links, 27.
Sideways sum, 20, 29, 37.
Simdes Pereira, José Manuel dos Santos, 38.
Simplexes, 18.
Simplicial complexes, 33-34, 55.
Simplicial multicomplexes, 34.
Size vectors, 33, 34.
Sperner, Emanuel, theory, 56.
Spread set in a torus, 22-25, 33.
Stachowiak, Grzegorz, 46.
Standard set in a torus, 22 24, 33.
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Stanley, Richard Peter, 14, 51.

Star transpositions, 16—17, 30.

Subcubes, 31, 34.

Swapping with the first element, 16-17, 30.

Takagi, Teiji (% 7N H &), 20, 51.
function, 20-21, 32-33.

Tang, Donald Tao-Nan (¥ & §), 8.

Tarry, Gaston, 57.

Ternary strings, 28, 56.

Terquem, Olry, 35.

Tokushige, Norihide ({1 & #iL 3%), 52.

Topological sorting, 46.

Torok, Eva, 45.

Torus, n-dimensional, 20-25, 33.

Tree of losers, 39.

Triangles, 20.

Triangulation, 37.

Trie, 9-10.

Unit vectors, 22.

Universal cycles of combinations, 35.
Unranking a combination, 27, 29.
Upper shadow, 18.

van Zanten, Arend Jan, 40.
Vector spaces, 26, 31.

Walsh, Timothy Robert Stephen, 9, 48.
Wang, Da-Lun (F K1), 20, 22.

Wang, Ping Yang (F F, née ¥5 %), 20, 22.
Wegner, Gerd, 50.

Whipple, Francis John Welsh, 22.
Wiedemann, Douglas Henry, 30.

Wilf, Herbert Saul, 8, 38.

Williams, Aaron Michael, 46.

z-nomial coefficients, 15, 30, 38, 47.
Zanten, Arend Jan van, 40.
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