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PREFACE
[The Art of Combinations℄ has a relationto almost every spe
ies of useful knowledgethat the mind of man 
an be employed upon.| JAMES BERNOULLI, Ars Conje
tandi (1713)

This booklet 
ontains draft material that I'm 
ir
ulating to experts in the�eld, in hopes that they 
an help remove its most egregious errors before toomany other people see it. I am also, however, posting it on the Internet for
ourageous and/or random readers who don't mind the risk of reading a fewpages that have not yet rea
hed a very mature state. Beware: This material hasnot yet been proofread as thoroughly as the manus
ripts of Volumes 1, 2, and 3were at the time of their �rst printings. And those 
arefully-
he
ked volumes,alas, were subsequently found to 
ontain thousands of mistakes.Given this 
aveat, I hope that my errors this time will not be so numerousand/or obtrusive that you will be dis
ouraged from reading the material 
arefully.I did try to make it both interesting and authoritative, as far as it goes. But the�eld is so vast, I 
annot hope to have surrounded it enough to 
orral it 
ompletely.Therefore I beg you to let me know about any de�
ien
ies you dis
over.To put the material in 
ontext, this is Se
tion 7.2.1.3 of a long, long 
hapteron 
ombinatorial algorithms. Chapter 7 will eventually �ll three volumes (namelyVolumes 4A, 4B, and 4C), assuming that I'm able to remain healthy. It willbegin with a short review of graph theory, with emphasis on some highlightsof signi�
ant graphs in The Stanford GraphBase, from whi
h I will be drawingmany examples. Then 
omes Se
tion 7.1, whi
h deals with the topi
 of bitwisemanipulations. (I drafted about 60 pages about that subje
t in 1977, but thosepages need extensive revision; meanwhile I've de
ided to work for awhile onthe material that follows it, so that I 
an get a better feel for how mu
h to
ut.) Se
tion 7.2 is about generating all possibilities, and it begins with Se
tion7.2.1: Generating Basi
 Combinatorial Patterns|whi
h, in turn, begins withSe
tion 7.2.1.1, \Generating all n-tuples," and Se
tion 7.2.1.2, \Generating allpermutations." (Readers of the present booklet should have already looked atthose se
tions, drafts of whi
h are available as Pre-Fas
i
les 2A and 2B.) Thestage is now set for the main 
ontents of this booklet, Se
tion 7.2.1.3: \Gener-ating all 
ombinations." Then will 
ome Se
tion 7.2.1.4 (about partitions), et
.Se
tion 7.2.2 will deal with ba
ktra
king in general. And so it will go on, if allgoes well; an outline of the entire Chapter 7 as 
urrently envisaged appears onthe tao
p webpage that is 
ited on page ii.iii
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iv PREFACEEven the apparently lowly topi
 of 
ombination generation turns out to besurprisingly ri
h, with ties to Se
tions 1.2.1, 1.2.4, 1.2.6, 2.3.2, 2.3.4.2, 3.4.2,4.3.2, 4.6.1, 4.6.2, 5.1.2, 5.4.1, 5.4.2, 6.1, and 6.3 of the �rst three volumes.I strongly believe in building up a �rm foundation, so I have dis
ussed this topi
mu
h more thoroughly than I will be able to do with material that is newer orless basi
. To my surprise, I 
ame up with 110 exer
ises, even though|believeit or not| I had to eliminate quite a bit of the interesting material that appearsin my �les.Some of the things presented are new, to the best of my knowledge, althoughI will not be at all surprised to learn that my own little \dis
overies" have beendis
overed before. Please look, for example, at the exer
ises that I've 
lassed asresear
h problems (rated with diÆ
ulty level 46 or higher), namely exer
ises 53,56, 67, and 83; I've also impli
itly posed additional unsolved questions in theanswers to exer
ises 59, 63, 101, 105, and 109. Are those problems still open?Please let me know if you know of a solution to any of these intriguing questions.And of 
ourse if no solution is known today but you do make progress on any ofthem in the future, I hope you'll let me know.I urgently need your help also with respe
t to some exer
ises that I madeup as I was preparing this material. I 
ertainly don't like to get 
redit for thingsthat have already been published by others, and most of these results are quitenatural \fruits" that were just waiting to be \plu
ked." Therefore please tellme if you know who I should have 
redited, with respe
t to the ideas found inexer
ises 9, 18, 19, 20, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 41, 42, 43, 44,45, 48, 51, 59, 62, 63, 64, 65, 66, 69, 79, 82(b{f), 85, 86, 87, 93, and/or 110.I shall happily pay a �nder's fee of $2.56 for ea
h error in this draft when it is�rst reported to me, whether that error be typographi
al, te
hni
al, or histori
al.The same reward holds for items that I forgot to put in the index. And valuablesuggestions for improvements to the text are worth 32/
 ea
h. (Furthermore, ifyou �nd a better solution to an exer
ise, I'll a
tually reward you with immortalglory instead of mere money, by publishing your name in the eventual book:�)Cross referen
es to yet-unwritten material sometimes appear as `00'; thisimpossible value is a pla
eholder for the a
tual numbers to be supplied later.Happy reading!Stanford, California D. E. K.13 June 2002
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7.2.1.3 GENERATING ALL COMBINATIONS 1

7.2.1.3. Generating all 
ombinations. Combinatorial mathemati
s is oftendes
ribed as \the study of permutations, 
ombinations, et
.," so we turn ourattention now to 
ombinations. A 
ombination of n things, taken t at a time,often 
alled simply a t-
ombination of n things, is a way to sele
t a subset of size tfrom a given set of size n. We know from Eq. 1.2.6{(2) that there are exa
tly �nt�ways to do this; and we learned in Se
tion 3.4.2 how to 
hoose t-
ombinationsat random.Sele
ting t of n obje
ts is equivalent to 
hoosing the n � t elements notsele
ted. We will emphasize this symmetry by lettingn = s + t (1)throughout our dis
ussion, and we will often refer to a t-
ombination of n thingsas an \(s; t)-
ombination." Thus, an (s; t)-
ombination is a way to subdivides+ t obje
ts into two 
olle
tions of sizes s and t.If I ask how many 
ombinations of 21 
an be taken out of 25,I do in e�e
t ask how many 
ombinations of 4 may be taken.For there are just as many ways of taking 21 as there are of leaving 4.| AUGUSTUS DE MORGAN, An Essay on Probabilities (1838)There are two main ways to represent (s; t)-
ombinations: We 
an list theelements 
t : : : 
2
1 that have been sele
ted, or we 
an work with binary stringsan�1 : : : a1a0 for whi
h an�1 + � � �+ a1 + a0 = t: (2)The latter representation has s 0s and t 1s, 
orresponding to elements that areunsele
ted or sele
ted. The list representation 
t : : : 
2
1 tends to work out bestif we let the elements be members of the set f0; 1; : : : ; n� 1g and if we list themin de
reasing order: n > 
t > � � � > 
2 > 
1 � 0: (3)Binary notation 
onne
ts these two representations ni
ely, be
ause the item list
t : : : 
2
1 
orresponds to the sum2
t + � � �+ 2
2 + 2
1 = n�1Xk=0 ak2k = (an�1 : : : a1a0)2: (4)
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2 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3Of 
ourse we 
ould also list the positions bs : : : b2b1 of the 0s in an�1 : : : a1a0,where n > bs > � � � > b2 > b1 � 0: (5)Combinations are important not only be
ause subsets are omnipresent inmathemati
s but also be
ause they are equivalent to many other 
on�gurations.For example, every (s; t)-
ombination 
orresponds to a 
ombination of s + 1things taken t at a time with repetitions permitted, also 
alled amulti
ombination,namely a sequen
e of integers dt : : : d2d1 withs � dt � � � � � d2 � d1 � 0: (6)One reason is that dt : : : d2d1 solves (6) if and only if 
t : : : 
2
1 solves (3), where
t = dt + t� 1; : : : ; 
2 = d2 + 1; 
1 = d1 (7)(see exer
ise 1.2.6{60). And there is another useful way to relate 
ombinationswith repetition to ordinary 
ombinations, suggested by Solomon Golomb [AMM75 (1968), 530{531℄, namely to de�neej = � 
j ; if 
j � s;e
j�s; if 
j > s. (8)In this form the numbers et : : : e1 don't ne
essarily appear in des
ending or-der, but the multiset fe1; e2; : : : ; etg is equal to f
1; 
2; : : : ; 
tg if and only iffe1; e2; : : : ; etg is a set. (See Table 1 and exer
ise 1.)An (s; t)-
ombination is also equivalent to a 
omposition of n+ 1 into t+ 1parts, namely an ordered sumn+ 1 = pt + � � �+ p1 + p0; where pt; : : : ; p1; p0 � 1. (9)The 
onne
tion with (3) is nowpt = n� 
t; pt�1 = 
t � 
t�1; : : : ; p1 = 
2 � 
1; p0 = 
1 + 1: (10)Equivalently, if qj = pj � 1, we haves = qt + � � �+ q1 + q0; where qt; : : : ; q1; q0 � 0, (11)a 
omposition of s into t+ 1 nonnegative parts, related to (6) by settingqt = s� dt; qt�1 = dt � dt�1; : : : ; q1 = d2 � d1; q0 = d1: (12)Furthermore it is easy to see that an (s; t)-
ombination is equivalent to apath of length s + t from 
orner to 
orner of an s � t grid, be
ause su
h apath 
ontains s verti
al steps and t horizontal steps. Thus, 
ombinations 
anbe studied in at least eight di�erent guises. Table 1 illustrates all �63� = 20possibilities in the 
ase s = t = 3.These 
ousins of 
ombinations might seem rather bewildering at �rst glan
e,but most of them 
an be understood dire
tly from the binary representationan�1 : : : a1a0. Consider, for example, the \random" bit stringa23 : : : a1a0 = 011001001000011111101101; (13)
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7.2.1.3 GENERATING ALL COMBINATIONS 3Table 1THE (3; 3)-COMBINATIONS AND THEIR EQUIVALENTSa5a4a3a2a1a0 b3b2b1 
3
2
1 d3d2d1 e3e2e1 p3p2p1p0 q3q2q1q0 path000111 543 210 000 210 4111 3000001011 542 310 100 310 3211 2100001101 541 320 110 320 3121 2010001110 540 321 111 321 3112 2001010011 532 410 200 010 2311 1200010101 531 420 210 020 2221 1110010110 530 421 211 121 2212 1101011001 521 430 220 030 2131 1020011010 520 431 221 131 2122 1011011100 510 432 222 232 2113 1002100011 432 510 300 110 1411 0300100101 431 520 310 220 1321 0210100110 430 521 311 221 1312 0201101001 421 530 320 330 1231 0120101010 420 531 321 331 1222 0111101100 410 532 322 332 1213 0102110001 321 540 330 000 1141 0030110010 320 541 331 111 1132 0021110100 310 542 332 222 1123 0012111000 210 543 333 333 1114 0003whi
h has s = 11 zeros and t = 13 ones, hen
e n = 24. The dual 
ombinationbs : : : b1 lists the positions of the zeros, namely23 20 19 17 16 14 13 12 11 4 1;be
ause the leftmost position is n � 1 and the rightmost is 0. The primal
ombination 
t : : : 
1 lists the positions of the ones, namely22 21 18 15 10 9 8 7 6 5 3 2 0:The 
orresponding multi
ombination dt : : : d1 lists the number of 0s to the rightof ea
h 1: 10 10 8 6 2 2 2 2 2 2 1 1 0:The 
omposition pt : : : p0 lists the distan
es between 
onse
utive 1s, if we imagineadditional 1s at the left and the right:2 1 3 3 5 1 1 1 1 1 2 1 2 1:And the nonnegative 
omposition qt : : : q0 
ounts how many 0s appear between\fen
eposts" represented by 1s:1 0 2 2 4 0 0 0 0 0 1 0 1 0;thus we have an�1 : : : a1a0 = 0qt10qt�11 : : : 10q110q0 : (14)The paths in Table 1 also have a simple interpretation (see exer
ise 2).
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4 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3Lexi
ographi
 generation. Table 1 shows 
ombinations an�1 : : : a1a0 and
t : : : 
1 in lexi
ographi
 order, whi
h is also the lexi
ographi
 order of dt : : : d1.Noti
e that the dual 
ombinations bs : : : b1 and the 
orresponding 
ompositionspt : : : p0, qt : : : q0 then appear in reverse lexi
ographi
 order.Lexi
ographi
 order usually suggests the most 
onvenient way to generate
ombinatorial 
on�gurations. Indeed, Algorithm 7.2.1.2L already solves theproblem for 
ombinations in the form an�1 : : : a1a0, sin
e (s; t)-
ombinationsin bitstring form are the same as permutations of the multiset fs � 0; t � 1g. Thatgeneral-purpose algorithm 
an be streamlined in obvious ways when it is appliedto this spe
ial 
ase. (See also exer
ise 7.1{00, whi
h presents a remarkablesequen
e of seven bitwise operations that will 
onvert any given binary number(an�1 : : : a1a0)2 to the lexi
ographi
ally next t-
ombination, assuming that ndoes not ex
eed the 
omputer's word length.)Let's fo
us, however, on generating 
ombinations in the other prin
ipal form
t : : : 
2
1, whi
h is more dire
tly relevant to the ways in whi
h 
ombinations areoften needed, and whi
h is more 
ompa
t than the bit strings when t is small
ompared to n. In the �rst pla
e we should keep in mind that a simple sequen
eof nested loops will do the job ni
ely when t is very small. For example, whent = 3 the following instru
tions suÆ
e:For 
3 = 2, 3, : : : , n� 1 (in this order) do the following:For 
2 = 1, 2, : : : , 
3 � 1 (in this order) do the following:For 
1 = 0, 1, : : : , 
2 � 1 (in this order) do the following:Visit the 
ombination 
3
2
1. (15)
(See the analogous situation in 7.2.1.1{(3).)On the other hand when t is variable or not so small, we 
an generate
ombinations lexi
ographi
ally by following the general re
ipe dis
ussed afterAlgorithm 7.2.1.2L, namely to �nd the rightmost element 
j that 
an be in
reasedand then to set the subsequent elements 
j�1 : : : 
1 to their smallest possiblevalues:Algorithm L (Lexi
ographi
 
ombinations). This algorithm generates all t-
ombinations 
t : : : 
2
1 of the n numbers f0; 1; : : : ; n � 1g, given n � t � 0.Additional variables 
t+1 and 
t+2 are used as sentinels.L1. [Initialize.℄ Set 
j  j � 1 for 1 � j � t; also set 
t+1  n and 
t+2  0.L2. [Visit.℄ Visit the 
ombination 
t : : : 
2
1.L3. [Find j.℄ Set j  1. Then, while 
j+1 = 
j+1, set 
j  j�1 and j  j+1;repeat until 
j + 1 6= 
j+1.L4. [Done?℄ Terminate the algorithm if j > t.L5. [In
rease 
j .℄ Set 
j  
j + 1 and return to L2.The running time of this algorithm is not diÆ
ult to analyze. Step L3 sets
j  j � 1 just after visiting a 
ombination for whi
h 
j+1 = 
1 + j, and thenumber of su
h 
ombinations is the number of solutions to the inequalitiesn > 
t > � � � > 
j+1 � j; (16)
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7.2.1.3 GENERATING ALL COMBINATIONS 5but this formula is equivalent to a (t � j)-
ombination of the n � j obje
tsfn�1; : : : ; jg, so the assignment 
j  j�1 o

urs exa
tly �n�jt�j� times. Summingfor 1 � j � t tells us that the loop in step L3 is performed�n�1t�1 �+�n�2t�2 �+� � �+�n�t0 � = �n�1s �+�n�2s �+� � �+�ss� = � ns+1� (17)times altogether, or an average of� ns+ 1�.�nt � = n!(s+ 1)! (t� 1)! . n!s! t! = ts+ 1 (18)times per visit. This ratio is less than 1 when t � s, so Algorithm L is quiteeÆ
ient in su
h 
ases.But the quantity t=(s + 1) 
an be embarrassingly large when t is near nand s is small. Indeed, Algorithm L o

asionally sets 
j  j � 1 needlessly, attimes when 
j already equals j � 1. Further s
rutiny reveals that we need notalways sear
h for the index j that is needed in steps L4 and L5, sin
e the 
orre
tvalue of j 
an often be predi
ted from the a
tions just taken. For example,after we have in
reased 
4 and reset 
3
2
1 to their starting values 210, the next
ombination will inevitably in
rease 
3. These observations lead to a tuned-upversion of the algorithm:Algorithm T (Lexi
ographi
 
ombinations). This algorithm is like Algorithm L,but faster. It also assumes, for 
onvenien
e, that t < n.T1. [Initialize.℄ Set 
j  j � 1 for 1 � j � t; then set 
t+1  n, 
t+2  0, andj  t.T2. [Visit.℄ (At this point j is the smallest index su
h that 
j+1 > j.) Visit the
ombination 
t : : : 
2
1. Then, if j > 0, set x j and go to step T6.T3. [Easy 
ase?℄ If 
1 +1 < 
2, set 
1  
1 +1 and return to T2. Otherwise setj  2.T4. [Find j.℄ Set 
j�1  j � 2 and x  
j + 1. If x = 
j+1, set j  j + 1 andrepeat this step until x 6= 
j+1.T5. [Done?℄ Terminate the algorithm if j > t.T6. [In
rease 
j .℄ Set 
j  x, j  j � 1, and return to T2.Now j = 0 in step T2 if and only if 
1 > 0, so the assignments in step T4 arenever redundant. Exer
ise 6 
arries out a 
omplete analysis of Algorithm T.Noti
e that the parameter n appears only in the initialization steps L1and T1, not in the prin
ipal parts of Algorithms L and T. Thus we 
an thinkof the pro
ess as generating the �rst �nt� 
ombinations of an in�nite list, whi
hdepends only on t. This simpli�
ation arises be
ause the list of t-
ombinationsfor n+1 things begins with the list for n things, under our 
onventions; we havebeen using lexi
ographi
 order on the de
reasing sequen
es 
t : : : 
1 for this veryreason, instead of working with the in
reasing sequen
es 
1 : : : 
t.Derri
k Lehmer noti
ed another pleasant property of Algorithms L and T[Applied Combinatorial Mathemati
s, edited by E. F. Be
kenba
h (1964), 27{30℄:
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6 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3Theorem L. The 
ombination 
t : : : 
2
1 is visited after exa
tly�
tt �+ � � �+ �
22 �+ �
11 � (19)other 
ombinations have been visited.Proof. There are �
kk � 
ombinations 
0t : : : 
02
01 with 
0j = 
j for t � j > k and
0k < 
k, namely 
t : : : 
k+1 followed by the k-
ombinations of f0; : : : ; 
k � 1g.When t = 3, for example, the numbers�23�+�12�+�01�; �33�+�12�+�01�; �33�+�22�+�01�; : : : ; �53�+�42�+�31�that 
orrespond to the 
ombinations 
3
2
1 in Table 1 simply run through thesequen
e 0, 1, 2, : : : , 19. Theorem L gives us a ni
e way to understand the
ombinatorial number system of degree t, whi
h represents every nonnegativeinteger N uniquely in the formN = �ntt �+ � � �+ �n22 �+ �n11 �; nt > � � � > n2 > n1 � 0: (20)[See Ernesto Pas
al, Giornale di Matemati
he 25 (1887), 45{49.℄Binomial trees. The family of trees Tn de�ned by
T0 = ; Tn = T0 T1 Tn�1: : :0 1 n� 1 for n > 0; (21)

arises in several important 
ontexts and sheds further light on 
ombinationgeneration. For example, T4 is0 0 0 00 0 0 0
1 1 1 1

2 23
; (22)

and T5, rendered more artisti
ally, appears as the frontispie
e to Volume 1 ofthis series of books.Noti
e that Tn is like Tn�1, ex
ept for an additional 
opy of Tn�1; thereforeTn has 2n nodes altogether. Furthermore, the number of nodes on level t is thebinomial 
oeÆ
ient �nt�; this fa
t a

ounts for the name \binomial tree." Indeed,the sequen
e of labels en
ountered on the path from the root to ea
h node onlevel t de�nes a 
ombination 
t : : : 
1, and all 
ombinations o

ur in lexi
ographi
order from left to right. Thus, Algorithms L and T 
an be regarded as pro
eduresto traverse the nodes on level t of the binomial tree Tn.

6



7.2.1.3 GENERATING ALL COMBINATIONS 7The in�nite binomial tree T1 is obtained by letting n!1 in (21). The rootof this tree has in�nitely many bran
hes, but every node ex
ept for the overallroot at level 0 is the root of a �nite binomial subtree. All possible t-
ombinationsappear in lexi
ographi
 order on level t of T1.Let's get more familiar with binomial trees by 
onsidering all possible waysto pa
k a ru
ksa
k. More pre
isely, suppose we have n items that take uprespe
tively wn�1, : : : , w1, w0 units of 
apa
ity, wherewn�1 � � � � � w1 � w0; (23)we want to generate all binary ve
tors an�1 : : : a1a0 su
h thata � w = an�1wn�1 + � � �+ a1w1 + a0w0 � N; (24)where N is the total 
apa
ity of a ru
ksa
k. Equivalently, we want to �nd allsubsets C of f0; 1; : : : ; n� 1g su
h that w(C) =P
2C w
 � N ; su
h subsets willbe 
alled feasible. We will write a feasible subset as 
1 : : : 
t, where 
1 > � � � >
t � 0, numbering the subs
ripts di�erently from the 
onvention of (3) abovebe
ause t is variable in this problem.Every feasible subset 
orresponds to a node of Tn, and our goal is to visitea
h feasible node. Clearly the parent of every feasible node is feasible, and so isthe left sibling, if any; therefore a simple tree exploration pro
edure works well:Algorithm F (Filling a ru
ksa
k). This algorithm generates all feasible ways
1 : : : 
t to �ll a ru
ksa
k, given wn�1, : : : , w1, w0, and N . We let Æj = wj�wj�1for 1 � j < n.F1. [Initialize.℄ Set t 0, 
0  n, and r  N .F2. [Visit.℄ Visit the 
ombination 
1 : : : 
t, whi
h uses N � r units of 
apa
ity.F3. [Try to add w0.℄ If 
t > 0 and r � w0, set t  t + 1, 
t  0, r  r � w0,and return to F2.F4. [Try to in
rease 
t.℄ Terminate if t = 0. Otherwise, if 
t�1 > 
t + 1 andr � Æ
t+1, set 
t  
t + 1, r  r � Æ
t , and return to F2.F5. [Remove 
t.℄ Set r  r + w
t , t t� 1, and return to F4.Noti
e that the algorithm impli
itly visits nodes of Tn in preorder, skipping overunfeasible subtrees. An element 
 > 0 is pla
ed in the ru
ksa
k, if it �ts, justafter the pro
edure has explored all possibilities using element 
� 1 in its pla
e.The running time is proportional to the number of feasible 
ombinations visited(see exer
ise 20).In
identally, the 
lassi
al \knapsa
k problem" of operations resear
h is dif-ferent: It asks for a feasible subset C su
h that v(C) =P
2C v(
) is maximum,where ea
h item 
 has been assigned a value v(
). Algorithm F is not a parti
u-larly good way to solve that problem, be
ause it often 
onsiders 
ases that 
ouldbe ruled out. For example, if C and C 0 are subsets of f1; : : : ; n�1g with w(C) �w(C 0) � N �w0 and v(C) � v(C 0), Algorithm F will examine both C [f0g andC 0[f0g, but the latter subset will never improve the maximum. We will 
onsidermethods for the 
lassi
al knapsa
k problem later; Algorithm F is intended onlyfor situations when all of the feasible possibilities are potentially relevant.
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8 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3Gray 
odes for 
ombinations. Instead of merely generating all 
ombinations,we often prefer to visit them in su
h a way that ea
h one is obtained by makingonly a small 
hange to its prede
essor.For example, we 
an ask for what Nijenhuis andWilf have 
alled a \revolving door algorithm": Imaginetwo rooms that 
ontain respe
tively s and t people, witha revolving door between them. Whenever a persongoes into the opposite room, somebody else 
omes out. Can we devise a sequen
eof moves so that ea
h (s; t)-
ombination o

urs exa
tly on
e?The answer is yes, and in fa
t a huge number of su
h patterns exist. Forexample, it turns out that if we examine all n-bit strings an�1 : : : a1a0 in thewell-known order of Gray binary 
ode (Se
tion 7.2.1.1), but sele
t only thosethat have exa
tly s 0s and t 1s, the resulting strings form a revolving-door 
ode.Here's the proof: Gray binary 
ode is de�ned by the re
urren
e �n = 0�n�1,1�Rn�1 of 7.2.1.1{(5), so its (s; t) subsequen
e satis�es the re
urren
e�st = 0�(s�1)t; 1�Rs(t�1) (25)when st > 0. We also have �s0 = 0s and �0t = 1t. Therefore it is 
lear byindu
tion that �st begins with 0s1t and ends with 10s1t�1 when st > 0. Thetransition at the 
omma in (25) is from the last element of 0�(s�1)t to thelast element of 1�s(t�1), namely from 010s�11t�1 = 010s�111t�2 to 110s1t�2 =110s�101t�2 when t � 2, and this satis�es the revolving-door 
onstraint. The
ase t = 1 also 
he
ks out. For example, �33 is given by the 
olumns of000111 011010 110001 101010001101 011100 110010 101100001110 010101 110100 100101001011 010110 111000 100110011001 010011 101001 100011 (26)
and �23 
an be found in the �rst two 
olumns of this array. One more turnof the door takes the last element into the �rst. [These properties of �st weredis
overed by D. T. Tang and C. N. Liu, IEEE Trans. C-22 (1973), 176{180;a loopless implementation was presented by J. R. Bitner, G. Ehrli
h, and E. M.Reingold, CACM 19 (1976), 517{521.℄When we 
onvert the bit strings a5a4a3a2a1a0 in (26) to the 
orrespondingindex-list forms 
3
2
1, a striking pattern be
omes evident:210 431 540 531320 432 541 532321 420 542 520310 421 543 521430 410 530 510 (27)
The �rst 
omponents 
3 o

ur in in
reasing order; but for ea
h �xed value of 
3,the values of 
2 o

ur in de
reasing order. And for �xed 
3
2, the values of 
1are again in
reasing. The same is true in general: All 
ombinations 
t : : : 
2
1

8



7.2.1.3 GENERATING ALL COMBINATIONS 9appear in lexi
ographi
 order of(
t; �
t�1; 
t�2; : : : ; (�1)t�1
1) (28)in the revolving-door Gray 
ode �st. This property follows by indu
tion, be
ause(25) be
omes �st = �(s�1)t; (s+t�1)�Rs(t�1) (29)for st > 0 when we use index-list notation instead of bitstring notation. Conse-quently the sequen
e 
an be generated eÆ
iently by the following algorithm dueto W. H. Payne [see ACM Trans. Math. Software 5 (1979), 163{172℄:Algorithm R (Revolving-door 
ombinations). This algorithm generates all t-
ombinations 
t : : : 
2
1 of f0; 1; : : : ; n � 1g in lexi
ographi
 order of the alter-nating sequen
e (28), assuming that n > t > 1. Step R3 has two variants,depending on whether t is even or odd.R1. [Initialize.℄ Set 
j  j � 1 for t � j � 1, and 
t+1  n.R2. [Visit.℄ Visit the 
ombination 
t : : : 
2
1.R3. [Easy 
ase?℄ If t is odd: If 
1 + 1 < 
2, in
rease 
1 by 1 and return to R2,otherwise set j  2 and go to R4. If t is even: If 
1 > 0, de
rease 
1 by 1and return to R2, otherwise set j  2 and go to R5.R4. [Try to de
rease 
j .℄ (At this point 
j = 
j�1 + 1.) If 
j � j, set 
j  
j�1,
j�1  j � 2, and return to R2. Otherwise in
rease j by 1.R5. [Try to in
rease 
j .℄ (At this point 
j�1 = j � 2.) If 
j + 1 < 
j+1, set
j�1  
j , 
j  
j + 1, and return to R2. Otherwise in
rease j by 1, andgo to R4 if j � t.Exer
ises 21{25 explore further properties of this interesting sequen
e. One ofthem is a ni
e 
ompanion to Theorem L: The 
ombination 
t
t�1 : : : 
2
1 is visitedby Algorithm R after exa
tlyN = �
t+1t ���
t�1+1t�1 �+ � � �+(�1)t�
2+12 �� (�1)t�
1+11 �� [t odd℄ (30)other 
ombinations have been visited. We may 
all this the representation of Nin the \alternating 
ombinatorial number system" of degree t; one 
onsequen
e,for example, is that every positive integer has a unique representation of theform N = �a3�� �b2�+ �
1� with a > b > 
 > 0. Algorithm R tells us how to add 1to N in this system.Although the strings of (26) and (27) are not in lexi
ographi
 order, theyare examples of a more general 
on
ept 
alled genlex order, a name 
oined byTimothy Walsh. A sequen
e of strings �1, : : : , �N is said to be in genlex orderwhen all strings with a 
ommon pre�x o

ur 
onse
utively. For example, all3-
ombinations that begin with 53 appear together in (27).Genlex order means that the strings 
an be arranged in a trie stru
ture, asin Fig. 31 of Se
tion 6.3, but with the 
hildren of ea
h node ordered arbitrarily.When a trie is traversed in any order su
h that ea
h node is visited just before orjust after its des
endants, all nodes with a 
ommon pre�x|that is, all nodes of

9



10 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3a subtrie|appear 
onse
utively. This prin
iple makes genlex order 
onvenient,be
ause it 
orresponds to re
ursive generation s
hemes. Many of the algorithmswe have seen for generating n-tuples have therefore produ
ed their results in someversion of genlex order; similarly, the method of \plain 
hanges" (Algorithm7.2.1.2P) visits permutations in a genlex order of the 
orresponding inversiontables.The revolving-door method of Algorithm R is a genlex routine that 
hangesonly one element of the 
ombination at ea
h step. But it isn't totally satisfa
tory,be
ause it frequently must 
hange two of the indi
es 
j simultaneously, in orderto preserve the 
ondition 
t > � � � > 
2 > 
1. For example, Algorithm R 
hanges210 into 320, and (27) in
ludes nine su
h \
rossing" moves.The sour
e of this defe
t 
an be tra
ed to our proof that (25) satis�es therevolving-door property: We observed that the string 010s�111t�2 is followedby 110s�101t�2 when t � 2. Hen
e the re
ursive 
onstru
tion �st involvestransitions of the form 110a0 $ 010a1, when a substring like 11000 is 
hangedto 01001 or vi
e versa; the two 1s 
ross ea
h other.A Gray path for 
ombinations is said to be homogeneous if it 
hanges onlyone of the indi
es 
j at ea
h step. A homogeneous s
heme is 
hara
terizedin bitstring form by having only transitions of the forms 10a $ 0a1 withinstrings, for a � 1, when we pass from one stringto the next. With a homogeneous s
heme we 
an,for example, play all t-note 
hords on an n-notekeyboard by moving only one �nger at a time.A slight modi�
ation of (25) yields a genlexs
heme for (s; t)-
ombinations that is pleasantlyhomogeneous. The basi
 idea is to 
onstru
t asequen
e that begins with 0s1t and ends with 1t0s, and the following re
ursionsuggests itself almost immediately: Let Ks0 = 0s, K0t = 1t, Ks(�1) = ;, andKst = 0K(s�1)t; 10KR(s�1)(t�1); 11Ks(t�2) for st > 0: (31)At the 
ommas of this sequen
e we have 01t0s�1 followed by 101t�10s�1, and10s1t�1 followed by 110s1t�2; both of these transitions are homogeneous, al-though the se
ond one requires the 1 to jump a
ross s 0s. The 
ombinations K33for s = t = 3 are 000111 010101 101100 100011001011 010011 101001 110001001101 011001 101010 110010001110 011010 100110 110100010110 011100 100101 111000 (32)
in bitstring form, and the 
orresponding \�nger patterns" are210 420 532 510310 410 530 540320 430 531 541321 431 521 542421 432 520 543. (33)

10



7.2.1.3 GENERATING ALL COMBINATIONS 11When a homogeneous s
heme for ordinary 
ombinations 
t : : : 
1 is 
onvertedto the 
orresponding s
heme (6) for 
ombinations with repetitions dt : : : d1, itretains the property that only one of the indi
es dj 
hanges at ea
h step. Andwhen it is 
onverted to the 
orresponding s
hemes (9) or (11) for 
ompositionspt : : : p0 or qt : : : q0, only two (adja
ent) parts 
hange when 
j 
hanges.Near-perfe
t s
hemes. But we 
an do even better! All (s; t)-
ombinations
an be generated by a sequen
e of strongly homogeneous transitions that areeither 01$ 10 or 001$ 100. In other words, we 
an insist that ea
h step 
ausesa single index 
j to 
hange by at most 2. Let's 
all su
h generation s
hemesnear-perfe
t.Imposing su
h strong 
onditions a
tually makes it fairly easy to dis
overnear-perfe
t s
hemes, be
ause 
omparatively few 
hoi
es are available. Indeed,if we restri
t ourselves to genlex methods that are near-perfe
t on n-bit strings,T. A. Jenkyns and D. M
Carthy observed that all su
h methods 
an be easily
hara
terized [Ars Combinatoria 40 (1995), 153{159℄:Theorem N. If st > 0, there are exa
tly 2s near-perfe
t ways to list all (s; t)-
ombinations in a genlex order. In fa
t, when 1 � a � s, there is exa
tly onesu
h listing, Nsta, that begins with 1t0s and ends with 0a1t0s�a; the other spossibilities are the reverse lists, NRsta.Proof. The result 
ertainly holds when s = t = 1; otherwise we use indu
tion ons+t. The listing Nsta, if it exists, must have the form 1Xs(t�1), 0Y(s�1)t for somenear-perfe
t genlex listings Xs(t�1) and Y(s�1)t. If t = 1, Xs(t�1) is the singlestring 0s; hen
e Y(s�1)t must be N(s�1)1(a�1) if a > 1, and it must be NR(s�1)11if a = 1. On the other hand if t > 1, the near-perfe
t 
ondition implies that thelast string of Xs(t�1) 
annot begin with 1; hen
e Xs(t�1) = Ns(t�1)b for some b.If a > 1, Y(s�1)t must be N(s�1)t(a�1), hen
e b must be 1; similarly, b must be 1if s = 1. Otherwise we have a = 1 < s, and this for
es Y(s�1)t = NR(s�1)t
 forsome 
. The transition from 10b1t�10s�b to 0
+11t0s�1�
 is near-perfe
t only if
 = 1 and b = 2.The proof of Theorem N yields the following re
ursive formulas when st > 0:
Nsta = 8><>: 1Ns(t�1)1; 0N(s�1)t(a�1); if 1 < a � s;1Ns(t�1)2; 0NR(s�1)t1; if 1 = a < s;1N1(t�1)1; 01t; if 1 = a = s. (34)

Also, of 
ourse, Ns0a = 0s.Let us set Ast = Nst1 and Bst = Nst2. These near-perfe
t listings, dis
overedby Phillip J. Chase in 1976, have the net e�e
t of shifting a leftmost blo
k of 1sto the right by one or two positions, respe
tively, and they satisfy the followingmutual re
ursions:Ast = 1Bs(t�1); 0AR(s�1)t; Bst = 1As(t�1); 0A(s�1)t: (35)\To take one step forward, take two steps forward, then one step ba
kward; totake two steps forward, take one step forward, then another." These equations

11



12 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3Table 2CHASE'S SEQUENCES FOR (3; 3)-COMBINATIONSA33 = bCR33543 531 321 420541 530 320 421540 510 310 431542 520 210 430532 521 410 432
B33 = C33543 520 432 410542 510 430 210540 530 431 310541 531 421 320521 532 420 321hold for all integer values of s and t, if we de�ne Ast and Bst to be ; when s ort is negative, ex
ept that A00 = B00 = � (the empty string). Thus Ast a
tuallytakes min(s; 1) forward steps, and Bst a
tually takes min(s; 2). For example,Table 2 shows the relevant listings for s = t = 3, using an equivalent index-listform 
3
2
1 instead of the bit strings a5a4a3a2a1a0.Chase noti
ed that a 
omputer implementation of these sequen
es be
omessimpler if we de�neCst = �Ast; if s+ t is odd;Bst; if s+ t is even; bCst = �ARst; if s+ t is even;BRst; if s+ t is odd. (36)[See Congressus Numerantium 69 (1989), 215{242.℄ Then we haveCst = ( 1Cs(t�1); 0 bC(s�1)t; if s+ t is odd;1Cs(t�1); 0C(s�1)t; if s+ t is even; (37)

bCst = ( 0C(s�1)t; 1 bCs(t�1); if s+ t is even;0 bC(s�1)t; 1 bCs(t�1); if s+ t is odd. (38)When bit aj is ready to 
hange, we 
an tell where we are in the re
ursion bytesting whether j is even or odd.Indeed, the sequen
e Cst 
an be generated by a surprisingly simple algo-rithm, based on general ideas that apply to any genlex s
heme. Let us say thatbit aj is a
tive in a genlex algorithm if it is supposed to 
hange before anything toits left is altered. (The node for an a
tive bit in the 
orresponding trie is not therightmost 
hild of its parent.) Suppose we have an auxiliary table wn : : : w1w0,where wj = 1 if and only if either aj is a
tive or j < r, where r is the leastsubs
ript su
h that ar 6= a0; we also let wn = 1. Then the following method will�nd the su

essor of an�1 : : : a1a0:Set j  r. If wj = 0, set wj  1, j  j + 1, and repeat untilwj = 1. Terminate if j = n; otherwise set wj  0. Change ajto 1� aj , and make any other 
hanges to aj�1 : : : a0 and r thatapply to the parti
ular genlex s
heme being used. (39)
The beauty of this approa
h 
omes from the fa
t that the loop is guaranteed tobe eÆ
ient: We 
an prove that the operation j  j + 1 will be performed lessthan on
e per generation step, on the average (see exer
ise 36).

12



7.2.1.3 GENERATING ALL COMBINATIONS 13By analyzing the transitions that o

ur when bits 
hange in (37) and (38),we 
an readily 
esh out the remaining details:Algorithm C (Chase's sequen
e). This algorithm visits all (s; t)-
ombinationsan�1 : : : a1a0, where n = s+ t, in the near-perfe
t order of Chase's sequen
e Cst.C1. [Initialize.℄ Set aj  0 for 0 � j < s, aj  1 for s � j < n, and wj  1for 0 � j � n. If s > 0, set r  s; otherwise set r  t.C2. [Visit.℄ Visit the 
ombination an�1 : : : a1a0.C3. [Find j and bran
h.℄ Set j  r. If wj = 0, set wj  1, j  j + 1, andrepeat until wj = 1. Terminate if j = n; otherwise set wj  0 and make afour-way bran
h: Go to C4 if j is odd and aj 6= 0, to C5 if j is even andaj 6= 0, to C6 if j is even and aj = 0, to C7 if j is odd and aj = 0.C4. [Move right one.℄ Set aj�1  1, aj  0. If r = j > 1, set r  j � 1;otherwise if r = j � 1 set r  j. Return to C2.C5. [Move right two.℄ If aj�2 6= 0, go to C4. Otherwise set aj�2  1, aj  0.If r = j, set r  max(j� 2; 1); otherwise if r = j� 2, set r  j� 1. Returnto C2.C6. [Move left one.℄ Set aj  1, aj�1  0. If r = j > 1, set r  j�1; otherwiseif r = j � 1 set r  j. Return to C2.C7. [Move left two.℄ If aj�1 6= 0, go to C6. Otherwise set aj  1, aj�2  0. Ifr = j� 2, set r  j; otherwise if r = j� 1, set r  j� 2. Return to C2.*Analysis of Chase's sequen
e. The magi
al properties of Algorithm C 
ryout for further exploration, and a 
loser look turns out to be quite instru
tive.Given a bit string an�1 : : : a1a0, let us de�ne an = 1, un = nmod 2, anduj = (1� uj+1)aj+1; vj = (uj + j) mod 2; wj = (vj + aj) mod 2; (40)for n > j � 0. For example, we might have n = 26 anda25 : : : a1a0 = 11001001000011111101101010;u25 : : : u1u0 = 10100100100001010100100101;v25 : : : v1v0 = 00001110001011111110001111;w25 : : : w1w0 = 11000111001000000011100101: (41)
With these de�nitions we 
an prove by indu
tion that vj = 0 if and only if bitaj is being \
ontrolled" by C rather than by bC in the re
ursions (37){(38) thatgenerate an�1 : : : a1a0, ex
ept when aj is part of the �nal run of 0s or 1s at theright end. Therefore wj agrees with the value 
omputed by Algorithm C at themoment when an�1 : : : a1a0 is visited, for r � j < n. These formulas 
an be usedto determine exa
tly where a given 
ombination appears in Chase's sequen
e (seeexer
ise 39).If we want to work with the index-list form 
t : : : 
2
1 instead of the bitstrings an�1 : : : a1a0, it is 
onvenient to 
hange the notation slightly, writing

13



14 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3Ct(n) for Cst and bCt(n) for bCst when s + t = n. Then C0(n) = bC0(n) = �, andthe re
ursions for t � 0 take the formCt+1(n+ 1) = (nCt(n); bCt+1(n); if n is even;nCt(n); Ct+1(n); if n is odd; (42)
bCt+1(n+ 1) = (Ct+1(n); n bCt(n); if n is odd;bCt+1(n); n bCt(n); if n is even. (43)These new equations 
an be expanded to tell us, for example, thatCt+1(9) = 8Ct(8); 6Ct(6); 4Ct(4); : : : ; 3 bCt(3); 5 bCt(5); 7 bCt(7);Ct+1(8) = 7Ct(7); 6Ct(6); 4Ct(4); : : : ; 3 bCt(3); 5 bCt(5);bCt+1(9) = 6Ct(6); 4Ct(4); : : : ; 3 bCt(3); 5 bCt(5); 7 bCt(7); 8 bCt(8);bCt+1(8) = 6Ct(6); 4Ct(4); : : : ; 3 bCt(3); 5 bCt(5); 7 bCt(7); (44)

noti
e that the same pattern predominates in all four sequen
es. The meaning of\: : :" in the middle depends on the value of t: We simply omit all terms nCt(n)and n bCt(n) where n < t.Ex
ept for edge e�e
ts at the very beginning or end, all of the expansionsin (44) are based on the in�nite progression: : : ; 10; 8; 6; 4; 2; 0; 1; 3; 5; 7; 9; : : : ; (45)whi
h is a natural way to arrange the nonnegative integers into a doubly in�nitesequen
e. If we omit all terms of (45) that are < t, given any integer t � 0,the remaining terms retain the property that adja
ent elements di�er by either1 or 2. Ri
hard Stanley has suggested the name endo-order for this sequen
e,be
ause we 
an remember it by thinking \even numbers de
reasing, odd : : : ".(Noti
e that if we retain only the terms less than N and 
omplement with respe
tto N , endo-order be
omes organ-pipe order; see exer
ise 6.1{18.)We 
ould program the re
ursions of (42) and (43) dire
tly, but it is interest-ing to unwind them using (44), thus obtaining an iterative algorithm analogousto Algorithm C. The result needs only O(t) memory lo
ations, and it is espe
iallyeÆ
ient when t is relatively small 
ompared to n. Exer
ise 45 
ontains the details.*Near-perfe
t multiset permutations. Chase's sequen
es lead in a naturalway to an algorithm that will generate permutations of any desired multisetfs0 � 0; s1 � 1; : : : ; sd � dg in a near-perfe
t manner, meaning thati) every transition is either aj+1aj $ ajaj+1 or aj+1ajaj�1 $ aj�1ajaj+1;ii) transitions of the se
ond kind have aj = min(aj�1; aj+1).Algorithm C tells us how to do this when d = 1, and we 
an extend it to largervalues of d by the following re
ursive 
onstru
tion [CACM 13 (1970), 368{369,376℄: Suppose �0; �1; : : : ; �N�1

14



7.2.1.3 GENERATING ALL COMBINATIONS 15is any near-perfe
t listing of the permutations of fs1 � 1; : : : ; sd � dg. Then Algo-rithm C, with s = s0 and t = s1 + � � �+ sd, tells us how to generate a listing�j = �j0s; : : : ; 0a�j0s�a (46)in whi
h all transitions are 0x$ x0 or 00x$ x00; the �nal entry has a = 1 or 2leading zeros, depending on s and t. Therefore all transitions of the sequen
e�0; �R1 ; �2; : : : ; (�N�1 or �RN�1) (47)are near-perfe
t; and this list 
learly 
ontains all the permutations.For example, the permutations of f0; 0; 0; 1; 1; 2g generated in this way are211000, 210100, 210001, 210010, 200110, 200101, 200011, 201001, 201010, 201100,021100, 021001, 021010, 020110, 020101, 020011, 000211, 002011, 002101, 002110,001120, 001102, 001012, 000112, 010012, 010102, 010120, 011020, 011002, 011200,101200, 101020, 101002, 100012, 100102, 100120, 110020, 110002, 110200, 112000,121000, 120100, 120001, 120010, 100210, 100201, 100021, 102001, 102010, 102100,012100, 012001, 012010, 010210, 010201, 010021, 000121, 001021, 001201, 001210.*Perfe
t s
hemes. Why should we settle for a near-perfe
t generator like Cst,instead of insisting that all transitions have the simplest possible form 01$ 10?One reason is that perfe
t s
hemes don't always exist. For example, weobserved in 7.2.1.2{(2) that there is no way to generate all six permutations off1; 1; 2; 2g with adja
ent inter
hanges; thus there is no perfe
t s
heme for (2; 2)-
ombinations. In fa
t, our 
han
es of a
hieving perfe
tion are only about 1 in 4:Theorem P. The generation of all (s; t)-
ombinations as+t�1 : : : a1a0 by adja-
ent inter
hanges 01$ 10 is possible if and only if s � 1 or t � 1 or st is odd.Proof. Consider all permutations of the multiset fs � 0; t � 1g. We learned inexer
ise 5.1.2{16 that the number mk of su
h permutations having k inversionsis the 
oeÆ
ient of zk in the z-nomial 
oeÆ
ient�s+ tt �z = s+tYk=s+1(1 + z + � � �+ zk�1). tYk=1(1 + z + � � �+ zk�1): (48)Every adja
ent inter
hange 
hanges the number of inversions by �1, so a perfe
tgeneration s
heme is possible only if approximately half of all the permutationshave an odd number of inversions. More pre
isely, the value of �s+tt ��1 =m0 �m1 +m2 � � � � must be 0 or �1. But exer
ise 49 shows that�s+ tt ��1 = �b(s+ t)=2
bt=2
 �[st is even℄; (49)and this quantity ex
eeds 1 unless s � 1 or t � 1 or st is odd.Conversely, perfe
t s
hemes are easy with s � 1 or t � 1, and they turnout to be possible also whenever st is odd. The �rst nontrivial 
ase o

ursfor s = t = 3, when there are four essentially di�erent solutions; the mostsymmetri
al of these is210���310���410���510���520���521���531���532���432���431���421���321���320���420���430���530���540���541���542���543 (50)
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16 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3(see exer
ise 51). Several authors have 
onstru
ted Hamiltonian paths in therelevant graph for arbitrary odd numbers s and t; for example, the methodof Eades, Hi
key, and Read [JACM 31 (1984), 19{29℄ makes an interestingexer
ise in programming with re
ursive 
oroutines. Unfortunately, however, noneof the known 
onstru
tions are suÆ
iently simple to des
ribe in a short spa
e,or to implement with reasonable eÆ
ien
y. Perfe
t 
ombination generators havetherefore not yet proved to be of pra
ti
al importan
e.In summary, then, we have seen that the study of (s; t)-
ombinations leadsto many fas
inating patterns, some of whi
h are of great pra
ti
al importan
eand some of whi
h are merely elegant and/or beautiful. Figure 26 illustrates theprin
ipal options that are available in the 
ase s = t = 5, when �105 � = 252 
ombi-nations arise. Lexi
ographi
 order (Algorithm L), the revolving-door Gray 
ode(Algorithm R), the homogeneous s
heme K55 of (31), and Chase's near-perfe
ts
heme (Algorithm C) are shown in parts (a), (b), (
), and (d) of the illustration.Part (e) shows the near-perfe
t s
heme that is as 
lose to perfe
tion as possiblewhile still being in genlex order of the 
 array (see exer
ise 34), while part (f) isthe perfe
t s
heme of Eades, Hi
key, and Read. Finally, Figs. 26(g) and 26(h)are listings that pro
eed by rotating ajaj�1 : : : a0  aj�1 : : : a0aj or by swappingaj $ a0, akin to Algorithms 7.2.1.2C and 7.2.1.2E (see exer
ises 55 and 56).*Combinations of a multiset. If multisets 
an have permutations, they 
anhave 
ombinations too. For example, 
onsider the multiset fb; b; b; b; g; g; g; r; r; r;w; wg, representing a sa
k that 
ontains four blue balls and three that are green,three red, two white. There are 37 ways to 
hoose �ve balls from this sa
k; inlexi
ographi
 order (but des
ending in ea
h 
ombination) they aregbbbb; ggbbb; gggbb; rbbbb; rgbbb; rggbb; rgggb; rrbbb; rrgbb; rrggb;rrggg; rrrbb; rrrgb; rrrgg; wbbbb; wgbbb; wggbb; wgggb; wrbbb; wrgbb;wrggb; wrggg; wrrbb; wrrgb; wrrgg; wrrrb; wrrrg; wwbbb; wwgbb; wwggb;wwggg; wwrbb; wwrgb; wwrgg; wwrrb; wwrrg; wwrrr: (51)This fa
t might seem frivolous and/or esoteri
, yet we will see in Theorem Wbelow that the lexi
ographi
 generation of multiset 
ombinations yields optimalsolutions to signi�
ant 
ombinatorial problems.James Bernoulli observed in his Ars Conje
tandi (1713), 119{123, that we
an enumerate su
h 
ombinations by looking at the 
oeÆ
ient of z5 in theprodu
t (1+z+z2)(1+z+z2+z3)2(1+z+z2+z3+z4). Indeed, his observationis easy to understand, be
ause we get all possible sele
tions from the sa
k if wemultiply out the polynomials(1 + w + ww)(1 + r + rr + rrr)(1 + g + gg + ggg)(1 + b+ bb+ bbb+ bbbb):Multiset 
ombinations are also equivalent to bounded 
ompositions, namelyto 
ompositions in whi
h the individual parts are bounded. For example, the 37multi
ombinations listed in (51) 
orrespond to 37 solutions of5 = r3 + r2 + r1 + r0; 0 � r3 � 2; 0 � r2; r1 � 3; 0 � r0 � 4;namely 5 = 0+0+1+4 = 0+0+2+3 = 0+0+3+2 = 0+1+0+4 = � � � = 2+3+0+0.
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7.2.1.3 GENERATING ALL COMBINATIONS 17

Fig. 26. Examplesof (5; 5)-
ombinations:a) lexi
ographi
;b) revolving-door;
) homogeneous;d) near-perfe
t;e) nearer-perfe
t;f) perfe
t;g) suÆx-rotated;h) right-swapped. (a) (b) (
) (d) (e) (f) (g) (h)
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18 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3Bounded 
ompositions, in turn, are spe
ial 
ases of 
ontingen
y tables, whi
hare of great importan
e in statisti
s. And all of these 
ombinatorial 
on�gura-tions 
an be generated with Gray-like 
odes as well as in lexi
ographi
 order.Exer
ises 60{63 explore some of the basi
 ideas involved.*Shadows. Sets of 
ombinations appear frequently in mathemati
s. For example,a set of 2-
ombinations (namely a set of pairs) is essentially a graph, and a set oft-
ombinations for general t is 
alled a uniform hypergraph. If the verti
es of a
onvex polyhedron are perturbed slightly, so that no three are 
ollinear, no fourlie in a plane, and in general no t + 1 lie in a (t � 1)-dimensional hyperplane,the resulting (t� 1)-dimensional fa
es are \simplexes" whose verti
es have greatsigni�
an
e in 
omputer appli
ations. Resear
hers have learned that su
h setsof 
ombinations have important properties related to lexi
ographi
 generation.If � is any t-
ombination 
t : : : 
2
1, its shadow �� is the set of all its(t � 1)-element subsets 
t�1 : : : 
2
1, : : : , 
t : : : 
3
1, 
t : : : 
3
2. For example,�5310 = f310; 510; 530; 531g. We 
an also represent a t-
ombination as a bitstring an�1 : : : a1a0, in whi
h 
ase �� is the set of all strings obtained by 
hang-ing a 1 to a 0: �101011 = f001011; 100011; 101001; 101010g. If A is any set oft-
ombinations, we de�ne its shadow�A = Sf �� j � 2 A g (52)to be the set of all (t � 1)-
ombinations in the shadows of its members. Forexample, ��5310 = f10; 30; 31; 50; 51; 53g.These de�nitions apply also to 
ombinations with repetitions, namely tomulti
ombinations: �5330 = f330; 530; 533g and ��5330 = f30; 33; 50; 53g. Ingeneral, when A is a set of t-element multisets, �A is a set of (t � 1)-elementmultisets. Noti
e, however, that �A never has repeated elements itself.The upper shadow �� with respe
t to a universe U is de�ned similarly, butit goes from t-
ombinations to (t+ 1)-
ombinations:�� = f� � U j � 2 �� g; for � 2 U ; (53)�A = Sf �� j � 2 A g; for A � U: (54)If, for example, U = f0; 1; 2; 3; 4; 5; 6g, we have �5310 = f53210; 54310; 65310g;on the other hand, if U = f1�0;1�1; : : : ;1�6g, we have �5310 = f53100; 53110;53210; 53310; 54310; 55310; 65310g.The following fundamental theorems, whi
h have many appli
ations in var-ious bran
hes of mathemati
s and 
omputer s
ien
e, tell us how small a set'sshadows 
an be:Theorem K. If A is a set of N t-
ombinations 
ontained in U = f0; 1; : : : ; n�1g,then j�Aj � j�PNtj and j �Aj � j �QNntj; (55)where PNt denotes the �rst N 
ombinations generated by Algorithm L, namelythe N lexi
ographi
ally smallest 
ombinations 
t : : : 
2
1 that satisfy (3), andQNnt denotes the N lexi
ographi
ally largest.

18



7.2.1.3 GENERATING ALL COMBINATIONS 19Theorem M. If A is a set of N t-multi
ombinations 
ontained in the multisetU = f1 � 0;1 � 1; : : : ;1 � sg, thenj�Aj � j� bPNtj and j �Aj � j �bQNstj; (56)where bPNt denotes theN lexi
ographi
ally smallest multi
ombinations dt : : : d2d1that satisfy (6), and bQNst denotes the N lexi
ographi
ally largest.Both of these theorems are 
onsequen
es of a stronger result that we shallprove later. Theorem K is generally 
alled the Kruskal{Katona theorem, be
auseit was dis
overed by J. B. Kruskal [Math. Optimization Te
hniques, edited byR. Bellman (1963), 251{278℄ and redis
overed by G. Katona [Theory of Graphs,Tihany 1966, edited by Erd}os and Katona (A
ademi
 Press, 1968), 187{207℄;M. P. S
h�utzenberger had previously stated it in a less-well-known publi
ation,with in
omplete proof [RLE Quarterly Progress Report 55 (1959), 117{118℄.Theorem M goes ba
k to F. S. Ma
aulay, many years earlier [Pro
. LondonMath. So
. (2) 26 (1927), 531{555℄.Before proving (55) and (56), let's take a 
loser look at what those formulasmean. We know from Theorem L that the �rst N of all t-
ombinations visitedby Algorithm L are those that pre
ede nt : : : n2n1, whereN = �ntt �+ � � �+ �n22 �+ �n11 �; nt > � � � > n2 > n1 � 0is the degree-t 
ombinatorial representation of N . Sometimes this representationhas fewer than t nonzero terms, be
ause nj 
an be equal to j � 1; let's suppressthe zeros, and writeN = �ntt �+ �nt�1t� 1�+ � � �+ �nvv �; nt > nt�1 > � � � > nv � v � 1: (57)Now the �rst �ntt � 
ombinations 
t : : : 
1 are the t-
ombinations of f0; : : : ; nt�1g;the next �nt�1t�1 � are those in whi
h 
t = nt and 
t�1 : : : 
1 is a (t�1)-
ombinationof f0; : : : ; nt�1�1g; and so on. For example, if t = 5 and N = �95�+�74�+�43�, the�rst N 
ombinations arePN5 = f43210; : : : ; 87654g [ f93210; : : : ; 96543g [ f97210; : : : ; 97321g: (58)The shadow of this set PN5 is, fortunately, easy to understand: It is�PN5 = f3210; : : : ; 8765g [ f9210; : : : ; 9654g [ f9710; : : : ; 9732g; (59)namely the �rst �94�+ �73�+ �42� 
ombinations in lexi
ographi
 order when t = 4.In other words, if we de�ne Kruskal's fun
tion �t by the formula�tN = � ntt� 1�+ �nt�1t� 2�+ � � �+ � nvv � 1� (60)when N has the unique representation (57), we have�PNt = P(�tN)(t�1) : (61)
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20 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3Theorem K tells us, for example, that a graph with a million edges 
an
ontain at most �14143 �+ �10092 � = 470;700;300triangles, that is, at most 470,700,300 sets of verti
es fu; v; wg with u��� v���w���u. The reason is that 1000000 = �14142 �+�10091 � by exer
ise 17, and the edgesP(1000000)2 do support �14143 �+�10092 � triangles; but if there were more, the graphwould ne
essarily have at least �3470700301 = �14142 � + �10091 � + �10� = 1000001edges in their shadow.Kruskal de�ned the 
ompanion fun
tion�tN = � ntt+ 1�+ �nt�1t �+ � � �+ � nvv + 1� (62)to deal with questions su
h as this. The � and � fun
tions are related by aninteresting law proved in exer
ise 72:M +N = �s+ tt � implies �sM + �tN = �s+ tt+ 1�; if st > 0. (63)Turning to Theorem M, the sizes of � bPNt and �bQNst turn out to bej� bPNtj = �tN and j �bQNstj = N + �sN (64)(see exer
ise 81), where the fun
tion �t satis�es�tN = �nt � 1t� 1 �+ �nt�1 � 1t� 2 �+ � � �+ �nv � 1v � 1 � (65)when N has the 
ombinatorial representation (57).Table 3 shows how these fun
tions �tN , �tN , and �tN behave for smallvalues of t and N . When t and N are large, they 
an be well approximatedin terms of a remarkable fun
tion �(x) introdu
ed by Teiji Takagi in 1903; seeFig. 27 and exer
ises 82{85.Theorems K and M are 
orollaries of a mu
h more general theorem of dis
retegeometry, dis
overed by Da-Lun Wang and Ping Wang [SIAM J. Applied Math.33 (1977), 55{59℄, whi
h we shall now pro
eed to investigate. Consider thedis
rete n-dimensional torus T (m1; : : : ;mn) whose elements are integer ve
torsx = (x1; : : : ; xn) with 0 � x1 < m1, : : : , 0 � xn < mn. We de�ne the sum anddi�eren
e of two su
h ve
tors x and y as in Eqs. 4.3.2{(2) and 4.3.2{(3):x+ y = �(x1 + y1) modm1; : : : ; (xn + yn) modmn�; (66)x� y = �(x1 � y1) modm1; : : : ; (xn � yn) modmn�: (67)We also de�ne the so-
alled 
ross order on su
h ve
tors by saying that x � y ifand only if �x < �y or (�x = �y and x � y lexi
ographi
ally); (68)here, as usual, �(x1; : : : ; xn) = x1 + � � �+ xn. For example, when m1 = m2 = 2and m3 = 3, the 12 ve
tors x1x2x3 in 
ross order are000; 100; 010; 001; 110; 101; 011; 002; 111; 102; 012; 112; (69)
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7.2.1.3 GENERATING ALL COMBINATIONS 21Table 3EXAMPLES OF THE KRUSKAL{MACAULAY FUNCTIONS �, �, AND �N = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20�1N = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1�2N = 0 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 7 7 7�3N = 0 3 5 6 6 8 9 9 10 10 10 12 13 13 14 14 14 15 15 15 15�4N = 0 4 7 9 10 10 13 15 16 16 18 19 19 20 20 20 23 25 26 26 28�5N = 0 5 9 12 14 15 15 19 22 24 25 25 28 30 31 31 33 34 34 35 35�1N = 0 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105120136153171190�2N = 0 0 0 1 1 2 4 4 5 7 10 10 11 13 16 20 20 21 23 26 30�3N = 0 0 0 0 1 1 1 2 2 3 5 5 5 6 6 7 9 9 10 12 15�4N = 0 0 0 0 0 1 1 1 1 2 2 2 3 3 4 6 6 6 6 7 7�5N = 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5�1N = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1�2N = 0 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6�3N = 0 1 2 3 3 4 5 5 6 6 6 7 8 8 9 9 9 10 10 10 10�4N = 0 1 2 3 4 4 5 6 7 7 8 9 9 10 10 10 11 12 13 13 14�5N = 0 1 2 3 4 5 5 6 7 8 9 9 10 11 12 12 13 14 14 15 15

0
22147 0 �75� �85�

�5N�N

�85�+�74� �95� 0
2/31/21/4

0 1/4 1/2

�(x)

3/4 1Fig. 27. Approximating a Kruskal fun
tion with the Takagi fun
tion. (Thesmooth 
urve in the left-hand graph is the lower bound �5N�N of exer
ise 80.)omitting parentheses and 
ommas for 
onvenien
e. The 
omplement of a ve
torin T (m1; : : : ;mn) is x = (m1 � 1� x1; : : : ;mn � 1� xn): (70)Noti
e that x � y holds if and only if x � y. Therefore we haverank(x) + rank(x) = T � 1; where T = m1 : : :mn, (71)if rank(x) denotes the number of ve
tors that pre
ede x in 
ross order.We will �nd it 
onvenient to 
all the ve
tors \points" and to name the pointse0, e1, : : : , eT�1 in in
reasing 
ross order. Thus we have e7 = 002 in (69), ander = eT�1�r in general. Noti
e thate1 = 100 : : : 00; e2 = 010 : : : 00; : : : ; en = 000 : : : 01; (72)
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22 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3these are the so-
alled unit ve
tors. The setSN = fe0; e1; : : : ; eN�1g (73)
onsisting of the smallest N points is 
alled a standard set, and in the spe
ial
ase N = n+ 1 we writeE = fe0; e1; : : : ; eng = f000 : : : 00; 100 : : : 00; 010 : : : 00; : : : ; 000 : : : 01g: (74)Any set of points X has a spread X+, a 
ore XÆ, and a dual X�, de�nedby the rulesX+ = fx 2 ST j x 2 X or x� e1 2 X or � � � or x� en 2 X g; (75)XÆ = fx 2 ST j x 2 X and x+ e1 2 X and � � � and x+ en 2 X g; (76)X� = fx 2 ST j x =2 X g: (77)We 
an also de�ne the spread of X algebrai
ally, writingX+ = X + E; (78)where X + Y denotes fx+ y j x 2 X and y 2 Y g. ClearlyX+ � Y if and only if X � Y Æ: (79)These notions 
an be illustrated in the two-dimensional 
ase m1 = 4, m2 = 6, bythe more-or-less random toroidal arrangement X = f00; 12; 13; 14; 15; 21; 22; 25gfor whi
h we have, pi
torially,
� �� ���
� �

� ����
� �Æ+ ++ ++++ +

� �� � �� � �� �� � �� � �
� ���
� �� �

ÆÆ ÆÆ ÆÆÆÆ
+ +++++ + ; (80)

X XÆ and X+ X� X�Æ and X�+here X in the �rst two diagrams 
onsists of points marked � or Æ, XÆ 
omprisesjust the Æs, and X+ 
onsists of +s plus �s plus Æs. Noti
e that if we rotate thediagram for X�Æ and X�+ by 180Æ, we obtain the diagram for XÆ and X+, butwith (�; Æ; +; ) respe
tively 
hanged to (+; ; �; Æ); and in fa
t the identitiesXÆ = X�+�; X+ = X�Æ� (81)hold in general (see exer
ise 86).Now we are ready to state the theorem of Wang and Wang:TheoremW. LetX be any set of N points in the dis
rete torus T (m1; : : : ;mn),where m1 � � � � � mn. Then jX+j � jS+N j and jXÆj � jSÆN j.In other words, the standard sets SN have the smallest spread and largest 
ore,among all N -point sets. We will prove this result by following a general approa
h�rst used by F. W. J. Whipple to prove Theorem M [Pro
. London Math. So
.(2) 28 (1928), 431{437℄. The �rst step is to prove that the spread and the 
oreof standard sets are standard:
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7.2.1.3 GENERATING ALL COMBINATIONS 23Lemma S. There are fun
tions � and � su
h that S+N = S�N and SÆN = S�N .Proof. We may assume that N > 0. Let r be maximum with er 2 S+N , and let�N = r + 1; we must prove that eq 2 S+N for 0 � q < r. Suppose eq = x =(x1; : : : ; xn) and er = y = (y1; : : : ; yn), and let k be the largest subs
ript withxk > 0. Sin
e y 2 S+N , there is a subs
ript j su
h that y� ej 2 SN . It suÆ
es toprove that x� ek � y � ej , and exer
ise 88 does this.The se
ond part follows from (81), with �N = T � �(T � N), be
auseS�N = ST�N .Theorem W is obviously true when n = 1, so we assume by indu
tion thatit has been proved in n� 1 dimensions. The next step is to 
ompress the givenset X in the kth 
oordinate position, by partitioning it into disjoint setsXk(a) = fx 2 X j xk = a g (82)for 0 � a < mk and repla
ing ea
h Xk(a) byX 0k(a) = f (s1; : : : ; sk�1; a; sk; : : : ; sn�1) j (s1; : : : ; sn�1) 2 SjXk(a)j g; (83)a set with the same number of elements. The sets S used in (83) are standard inthe (n � 1)-dimensional torus T (m1; : : : ;mk�1;mk+1; : : : ;mn). Noti
e that wehave (x1; : : : ; xk�1; a; xk+1; : : : ; xn) � (y1; : : : ; yk�1; a; yk+1; : : : ; yn) if and onlyif (x1; : : : ; xk�1; xk+1; : : : ; xn) � (y1; : : : ; yk�1; yk+1; : : : ; yn); therefore X 0k(a) =Xk(a) if and only if the (n� 1)-dimensional points (x1; : : : ; xk�1; xk+1; : : : ; xn)with (x1; : : : ; xk�1; a; xk+1; : : : ; xn) 2 X are as small as possible when proje
tedonto the (n� 1)-dimensional torus. We letCkX = X 0k(0) [X 0k(1) [ � � � [X 0k(mk � 1) (84)be the 
ompression of X in position k. Exer
ise 90 proves the basi
 fa
t that
ompression does not in
rease the size of the spread:jX+j � j(CkX)+j; for 1 � k � n: (85)Furthermore, if 
ompression 
hanges X, it repla
es some of the elements by otherelements of lower rank. Therefore we need to prove Theorem W only for sets Xthat are totally 
ompressed, having X = CkX for all k.Consider, for example, the 
ase n = 2. A totally 
ompressed set in twodimensions has all points moved to the left of their rows and the bottom of their
olumns, as in the eleven-point sets
� � � �� � ����� ++ ++++ or � � � �� � �� ��� +++++ or � � � �� � �� �� � ++++ + or � � � �� � �� � �� +++ ++ or � � � �� � � �� �� + +++ ;

the rightmost of these is standard, and has the smallest spread. Exer
ise 91
ompletes the proof of Theorem W in two dimensions.
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24 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3When n > 2, suppose x = (x1; : : : ; xn) 2 X and xj > 0. The 
onditionCkX = X implies that, if 0 � i < j and i 6= k 6= j, we have x + ei � ej 2 X.Applying this fa
t for three values of k tells us that x + ei � ej 2 X whenever0 � i < j. ConsequentlyXn(a) + En(0) � Xn(a� 1) + en for 0 < a < m; (86)where m = mn and En(0) is a 
lever abbreviation for the set fe0; : : : ; en�1g.Let Xn(a) have Na elements, so that N = jXj = N0+N1+ � � �+Nm�1, andlet Y = X+. ThenYn(a) = �Xn�(a� 1) modm�+ en� [ �Xn(a) + En(0)�is standard in n� 1 dimensions, and (86) tells us thatNm�1 � �Nm�2 � Nm�2 � � � � � N1 � �N0 � N0 � �N0;where � and � refer to 
oordinates 1 through n� 1. ThereforejY j = jYn(0)j+ jYn(1)j+ jYn(2)j+ � � �+ jYn(m� 1)j= �N0 +N0 +N1 + � � �+Nm�2 = �N0 +N �Nm�1:The proof of Theorem W now has a beautiful 
on
lusion. Let Z = SN , andsuppose jZn(a)j =Ma. We want to prove that jX+j � jZ+j, namely that�N0 +N �Nm�1 � �M0 +N �Mm�1; (87)be
ause the arguments of the previous paragraph apply to Z as well as to X.We will prove (87) by showing that Nm�1 �Mm�1 and N0 �M0.Using the (n� 1)-dimensional � and � fun
tions, let us de�neN 0m�1 = Nm�1; N 0m�2 = �N 0m�1; : : : ; N 01 = �N 02; N 00 = �N 01; (88)N 000 = N0; N 001 = �N 000 ; N 002 = �N 001 ; : : : ; N 00m�1 = �N 00m�2: (89)Then we have N 0a � Na � N 00a for 0 � a < m, and it follows thatN 0 = N 00 +N 01 + � � �+N 0m�1 � N � N 00 = N 000 +N 001 + � � �+N 00m�1: (90)Exer
ise 92 proves that the standard set Z 0 = SN 0 has exa
tly N 0a elements withnth 
oordinate equal to a, for ea
h a; and by the duality between � and �, thestandard set Z 00 = SN 00 likewise has exa
tly N 00a elements with nth 
oordinate a.Finally, therefore,Mm�1 = jZn(m� 1)j � jZ 0n(m� 1)j = Nm�1;M0 = jZn(0)j � jZ 00n(0)j = N0;be
ause Z 0 � Z � Z 00 by (90). By (81) we also have jXÆj � jZÆj.Now we are ready to prove Theorems K and M, whi
h are in fa
t spe
ial
ases of a substantially more general theorem of Clements and Lindstr�om thatapplies to arbitrary multisets [J. Combinatorial Theory 7 (1969), 230{238℄:
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7.2.1.3 GENERATING ALL COMBINATIONS 25Corollary C. If A is a set of N t-multi
ombinations 
ontained in the multisetU = fs0 � 0; s1 � 1; : : : ; sd � dg, where s0 � s1 � � � � � sd, thenj�Aj � j�PNtj and j �Aj � j �QNtj; (91)where PNt denotes theN lexi
ographi
ally smallest multi
ombinations dt : : : d2d1of U , and QNt denotes the N lexi
ographi
ally largest.Proof. Multi
ombinations of U 
an be represented as points x1 : : : xn of the torusT (m1; : : : ;mn), where n = d + 1 and mj = sn�j + 1; we let xj be the numberof o

urren
es of n� j. This 
orresponden
e preserves lexi
ographi
 order. Forexample, if U = f0; 0; 0; 1; 1; 2; 3g, its 3-multi
ombinations are000; 100; 110; 200; 210; 211; 300; 310; 311; 320; 321; (92)in lexi
ographi
 order, and the 
orresponding points x1x2x3x4 are0003; 0012; 0021; 0102; 0111; 0120; 1002; 1011; 1020; 1101; 1110: (93)Let Tw be the points of the torus that have weight x1+ � � �+ xn = w. Thenevery allowable set A of t-multi
ombinations is a subset of Tt. Furthermore|and this is the main point| the spread of T0 [ T1 [ � � � [ Tt�1 [A is(T0 [ T1 [ � � � [ Tt�1 [A)+ = T+0 [ T+1 [ � � � [ T+t�1 [A+= T0 [ T1 [ � � � [ Tt [ �A: (94)Thus the upper shadow �A is simply (T0 [ T1 [ � � � [ Tt�1 [ A)+ \ Tt+1, andTheorem W tells us in essen
e that jAj = N implies j �Aj � j �(SM+N \ Tt)j,where M = jT0 [ � � � [ Tt�1j. Hen
e, by the de�nition of 
ross order, SM+N \ Tt
onsists of the lexi
ographi
ally largest N t-multi
ombinations, namely QNt.The proof that j�Aj � j�PNtj now follows by 
omplementation (see exer-
ise 94).EXERCISES1. [M23 ℄ Explain why Golomb's rule (8) makes all sets f
1; : : : ; 
tg � f0; : : : ; n� 1g
orrespond uniquely to multisets fe1; : : : ; etg � f1 � 0; : : : ;1 � n� tg.2. [16 ℄ What path in an 11� 13 grid 
orresponds to the bit string (13)?x 3. [21 ℄ (R. R. Feni
hel, 1968.) Show that the 
ompositions qt+ � � �+q1+q0 of s intot + 1 nonnegative parts 
an be generated in lexi
ographi
 order by a simple looplessalgorithm.4. [16 ℄ Show that every 
omposition qt : : : q0 of s into t+1 nonnegative parts 
orre-sponds to a 
omposition rs : : : r0 of t into s+ 1 nonnegative parts. What 
omposition
orresponds to 10224000001010 under this 
orresponden
e?x 5. [20 ℄ What is a good way to generate all of the integer solutions to the followingsystems of inequalities?a) n > xt � xt�1 > xt�2 � xt�3 > � � � > x1 � 0, when t is odd.b) n� xt � xt�1 � � � � � x2 � x1 � 0, where a� b means a � b+ 2.6. [M22 ℄ How often is ea
h step of Algorithm T performed?
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26 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.37. [22 ℄ Design an algorithm that runs through the \dual" 
ombinations bs : : : b2b1 inde
reasing lexi
ographi
 order (see (5) and Table 1). Like Algorithm T, your algorithmshould avoid redundant assignments and unne
essary sear
hing.8. [M23 ℄ Design an algorithm that generates all (s; t)-
ombinations an�1 : : : a1a0lexi
ographi
ally in bitstring form. The total running time should be O(�nt�), assumingthat st > 0.9. [M26 ℄ When all (s; t)-
ombinations an�1 : : : a1a0 are listed in lexi
ographi
 order,let 2Ast be the total number of bit 
hanges between adja
ent strings. For example,A33 = 25 be
ause there are respe
tively2 + 2 + 2 + 4 + 2 + 2 + 4 + 2 + 2 + 6 + 2 + 2 + 4 + 2 + 2 + 4 + 2 + 2 + 2 = 50bit 
hanges between the 20 strings in Table 1.a) Show that Ast = min(s; t) +A(s�1)t + As(t�1) when st > 0; Ast = 0 when st = 0.b) Prove that Ast < 2�s+tt �.x 10. [21 ℄ The \World Series" of baseball is traditionally a 
ompetition in whi
h theAmeri
an League 
hampion (A) plays the National League 
hampion (N) until one ofthem has beaten the other four times. What is a good way to list all possible s
enariosAAAA, AAANA, AAANNA, : : : , NNNN? What is a simple way to assign 
onse
utiveintegers to those s
enarios?11. [19 ℄ Whi
h of the s
enarios in exer
ise 10 o

urred most often during the 1900s?Whi
h of them never o

urred? [Hint: World Series s
ores are easily found on theInternet.℄12. [HM32 ℄ A set V of n-bit ve
tors that is 
losed under addition modulo 2 is 
alleda binary ve
tor spa
e.a) Prove that every su
h V 
ontains 2t elements, for some integer t, and 
an berepresented as the set fx1�1 � � � � � xt�t j 0 � x1; : : : ; xt � 1g where the ve
tors�1, : : : , �t form a \
anoni
al basis" with the following property: There is a t-
ombination 
t : : : 
2
1 of f0; 1; : : : ; n � 1g su
h that, if �k is the binary ve
torak(n�1) : : : ak1ak0, we haveak
j = [j= k ℄ for 1 � j; k � t; akl = 0 for 0 � l < 
k, 1 � k � t:For example, the 
anoni
al bases with n = 9, t = 4, and 
4
3
2
1 = 7641 have thegeneral form �1 = � 0 0 � 0 � � 1 0;�2 = � 0 0 � 1 0 0 0 0;�3 = � 0 1 0 0 0 0 0 0;�4 = � 1 0 0 0 0 0 0 0;there are 28 ways to repla
e the eight asterisks by 0s and/or 1s, and ea
h of thesede�nes a 
anoni
al basis. We 
all t the dimension of V .b) How many t-dimensional spa
es are possible with n-bit ve
tors?
) Design an algorithm to generate all 
anoni
al bases (�1; : : : ; �t) of dimension t.Hint: Let the asso
iated 
ombinations 
t : : : 
1 in
rease lexi
ographi
ally as inAlgorithm L.d) What is the 1000000th basis visited by your algorithm when n = 9 and t = 4?13. [25 ℄ A one-dimensional Ising 
on�guration of length n, weight t, and energy r,is a binary string an�1 : : : a0 su
h that Pn�1j=0 aj = t and Pn�1j=1 bj = r, where bj =
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7.2.1.3 GENERATING ALL COMBINATIONS 27aj � aj�1. For example, a12 : : : a0 = 1100100100011 has weight 6 and energy 6, sin
eb12 : : : b1 = 010110110010.Design an algorithm to generate all su
h 
on�gurations, given n, t, and r.14. [26 ℄ When the binary strings an�1 : : : a1a0 of (s; t)-
ombinations are generatedin lexi
ographi
 order, we sometimes need to 
hange 2min(s; t) bits to get from one
ombination to the next. For example, 011100 is followed by 100011 in Table 1.Therefore we apparently 
annot hope to generate all 
ombinations with a looplessalgorithm unless we visit them in some other order.Show, however, that there a
tually is a way to 
ompute the lexi
ographi
 su

essorof a given 
ombination in O(1) steps, if ea
h 
ombination is represented indire
tly in adoubly linked list as follows: There are arrays l[0℄, : : : , l[n℄ and r[0℄, : : : , r[n℄ su
h thatl[r[j℄℄ = j for 0 � j � n. If x0 = l[0℄ and xj = l[xj�1℄ for 0 < j < n, then aj = [xj >s℄for 0 � j < n.15. [M22 ℄ Use the fa
t that dual 
ombinations bs : : : b2b1 o

ur in reverse lexi
o-graphi
 order to prove that the sum �bss � + � � � + �b22 � + �b11 � has a simple relationto the sum �
tt �+ � � �+ �
22 �+ �
11 �.16. [M21 ℄ What is the millionth 
ombination generated by Algorithm L when t is(a) 2? (b) 3? (
) 4? (d) 5? (e) 1000000?17. [HM25 ℄ Given N and t, what is a good way to 
ompute the 
ombinatorial repre-sentation (20)?x 18. [20 ℄ What binary tree do we get when the binomial tree Tn is represented by\right 
hild" and \left sibling" pointers as in exer
ise 2.3.2{5?19. [21 ℄ Instead of labeling the bran
hes of the binomial tree T4 as shown in (22), we
ould label ea
h node with the bit string of its 
orresponding 
ombination:00000001 00100011 01000101 01100111
10001001 10101011 11001101 11101111If T1 has been labeled in this way, suppressing leading zeros, preorder is the same asthe ordinary in
reasing order of binary notation; so the millionth node turns out to be11110100001000111111. But what is the millionth node of T1 in postorder?20. [M20 ℄ Find generating fun
tions g and h su
h that Algorithm F �nds exa
tly[zN ℄ g(z) feasible 
ombinations and sets t t+ 1 exa
tly [zN ℄h(z) times.21. [M22 ℄ Prove the alternating 
ombination law (30).22. [M23 ℄ What is the millionth revolving-door 
ombination visited by Algorithm Rwhen t is (a) 2? (b) 3? (
) 4? (d) 5? (e) 1000000?23. [M23 ℄ Suppose we augment Algorithm R by setting j  t + 1 in step R1, andj  1 if R3 goes dire
tly to R2. Find the probability distribution of j, and its averagevalue. What does this imply about the running time of the algorithm?
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28 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3x 24. [M25 ℄ (W. H. Payne, 1974.) Continuing the previous exer
ise, let jk be the valueof j on the kth visit by Algorithm R. Show that jjk+1 � jkj � 2, and explain how tomake the algorithm loopless by exploiting this property.25. [M35 ℄ Let 
t : : : 
2
1 and 
0t : : : 
02
01 be the Nth and N 0th 
ombinations generatedby the revolving-door method, Algorithm R. If the set C = f
t; : : : ; 
2; 
1g has melements not in C 0 = f
0t; : : : ; 
02; 
01g, prove that jN �N 0j >Pm�1k=1 � 2kk�1�.26. [26 ℄ Do elements of the ternary re
e
ted Gray 
ode have properties similar to therevolving-door Gray 
ode �st, if we extra
t only the n-tuples an�1 : : : a1a0 su
h that(a) an�1 + � � �+ a1 + a0 = t? (b) fan�1; : : : ; a1; a0g = fr � 0; s � 1; t � 2g?x 27. [25 ℄ Show that there is a simple way to generate all 
ombinations of at most telements of f0; 1; : : : ; n� 1g, using only Gray-
ode-like transitions 0$ 1 and 01$ 10.(In other words, ea
h step should either insert a new element, delete an element, orshift an element by �1.) For example,0000; 0001; 0011; 0010; 0110; 0101; 0100; 1100; 1010; 1001; 1000is one su
h sequen
e when n = 4 and t = 2. Hint: Think of Chinese rings.28. [M21 ℄ True or false: A listing of (s; t)-
ombinations an�1 : : : a1a0 in bitstringform is in genlex order if and only if the 
orresponding index-form listings bs : : : b2b1(for the 0s) and 
t : : : 
2
1 (for the 1s) are both in genlex order.x 29. [M28 ℄ (P. J. Chase.) Given a string on the symbols +, -, and 0, say that anR-blo
k is a substring of the form -k+1 that is pre
eded by 0 and not followed by -; anL-blo
k is a substring of the form +-k that is followed by 0; in both 
ases k � 0. Forexample, the string +00++-+++-000- has two L-blo
ks and one R-blo
k, shown in gray.Noti
e that blo
ks 
annot overlap.We form the su

essor of su
h a string as follows, whenever at least one blo
k ispresent: Repla
e the rightmost 0-k+1 by -+k0, if the rightmost blo
k is an R-blo
k;otherwise repla
e the rightmost +-k0 by 0+k+1. Also negate the �rst sign, if any, thatappears to the right of the blo
k that has been 
hanged. For example,-+00++-! -0+0-+-! -0+-0--! -0+--+0! -0+--0+! -00+++-;where the notation �! � means that � is the su

essor of �.a) What strings have no blo
ks (and therefore no su

essor)?b) Can there be a 
y
le of strings with �0 ! �1 ! � � � ! �k�1 ! �0?
) Prove that if � ! � then �� ! ��, where \�" means \negate all the signs."(Therefore every string has at most one prede
essor.)d) Show that if �0 ! �1 ! � � � ! �k and k > 0, the strings �0 and �k do not haveall their 0s in the same positions. (Therefore, if �0 has s signs and t zeros, k mustbe less than �s+tt �.)e) Prove that every string � with s signs and t zeros belongs to exa
tly one 
hain�0 ! �1 ! � � � ! �(s+tt )�1.30. [M32 ℄ The previous exer
ise de�nes 2s ways to generate all 
ombinations of s 0sand t 1s, via the mapping + 7! 0, - 7! 0, and 0 7! 1. Show that ea
h of these waysis a homogeneous genlex sequen
e, de�nable by an appropriate re
urren
e. Is Chase'ssequen
e (37) a spe
ial 
ase of this general 
onstru
tion?31. [M23 ℄ How many genlex listings of (s; t)-
ombinations are possible in (a) bitstringform an�1 : : : a1a0? (b) index-list form 
t : : : 
2
1?
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7.2.1.3 GENERATING ALL COMBINATIONS 29x 32. [M32 ℄ How many of the genlex listings of (s; t)-
ombination strings an�1 : : : a1a0(a) have the revolving-door property? (b) are homogeneous?33. [HM33 ℄ How many of the genlex listings in exer
ise 31(b) are near-perfe
t?34. [M32 ℄ Continuing exer
ise 33, explain how to �nd su
h s
hemes that are as nearas possible to perfe
tion, in the sense that the number of \imperfe
t" transitions 
j  
j � 2 is minimized, when s and t are not too large.35. [M26 ℄ How many steps of Chase's sequen
e Cst use an imperfe
t transition?x 36. [M21 ℄ Prove that method (39) performs the operation j  j+1 a total of exa
tly�s+tt � � 1 times as it generates all (s; t)-
ombinations an�1 : : : a1a0, given any genlexs
heme for 
ombinations in bitstring form.x 37. [27 ℄ What algorithm results when the general genlex method (39) is used toprodu
e (s; t)-
ombinations an�1 : : : a1a0 in (a) lexi
ographi
 order? (b) the revolving-door order of Algorithm R? (
) the homogeneous order of (31)?38. [26 ℄ Design a genlex algorithm like Algorithm C for the reverse sequen
e CRst.39. [M21 ℄ When s = 12 and t = 14, how many 
ombinations pre
ede the bit string11001001000011111101101010 in Chase's sequen
e Cst? (See (41).)40. [M22 ℄ What is the millionth 
ombination in Chase's sequen
e Cst, when s = 12and t = 14?41. [M27 ℄ Show that there is a permutation 
(0), 
(1), 
(2), : : : of the nonnegativeintegers su
h that the elements of Chase's sequen
e Cst are obtained by 
omplementingthe least signi�
ant s + t bits of the elements 
(k) for 0 � k < 2s+t that have weight�(
(k)) = s. (Thus the sequen
e �
(0), : : : , �
(2n � 1) 
ontains, as subsequen
es, all ofthe Cst for whi
h s+ t = n, just as Gray binary 
ode g(0), : : : , g(2n � 1) 
ontains allthe revolving-door sequen
es �st.) Explain how to 
ompute the binary representation
(k) = ( : : : a2a1a0)2 from the binary representation k = ( : : : b2b1b0)2.42. [HM34 ℄ Use generating fun
tions of the formPs;t gstwszt to analyze ea
h step ofAlgorithm C.43. [20 ℄ Prove or disprove: If s(x) and p(x) denote respe
tively the su

essor andprede
essor of x in endo-order, then s(x+ 1) = p(x) + 1.x 44. [M21 ℄ Let Ct(n) � 1 denote the sequen
e obtained from Ct(n) by striking outall 
ombinations with 
1 = 0, then repla
ing 
t : : : 
1 by (
t � 1) : : : (
1 � 1) in the
ombinations that remain. Show that Ct(n)� 1 is near-perfe
t.45. [32 ℄ Exploit endo-order and the expansions sket
hed in (44) to generate the
ombinations 
t : : : 
2
1 of Chase's sequen
e Ct(n) with a nonre
ursive pro
edure.x 46. [33 ℄ Constru
t a nonre
ursive algorithm for the dual 
ombinations bs : : : b2b1 ofChase's sequen
e Cst, namely for the positions of the zeros in an�1 : : : a1a0.47. [26 ℄ Implement the near-perfe
t multiset permutation method of (46) and (47).48. [M21 ℄ Suppose �0, �1, : : : , �N�1 is any listing of the permutations of the multisetfs1 � 1; : : : ; sd � dg, where �k di�ers from �k+1 by the inter
hange of two elements. Let�0, : : : , �M�1 be any revolving-door listing for (s; t)-
ombinations, where s = s0, t =s1+� � �+sd, andM = �s+tt �. Then let �j be the list ofM elements obtained by startingwith �j " �0 and applying the revolving-door ex
hanges; here � " � denotes the stringobtained by substituting the elements of � for the 1s in �, preserving left-right order.For example, if �0, : : : , �M�1 is 0110, 0101, 1100, 1001, 0011, 1010, and if �j = 12,
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30 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3then �j is 0120, 0102, 1200, 1002, 0012, 1020. (The revolving-door listing need not behomogeneous.)Prove that the list (47) 
ontains all permutations of fs0 � 0; s1 � 1; : : : ; sd � dg, andthat adja
ent permutations di�er from ea
h other by the inter
hange of two elements.49. [HM23 ℄ If q is a primitive mth root of unity, su
h as e2�i=m, show that�nk�q = � bn=m
bk=m
��nmodmkmodm�q:x 50. [HM25 ℄ Extend the formula of the previous exer
ise to q-multinomial 
oeÆ
ients�n1 + � � �+ ntn1; : : : ; nt �q:51. [25 ℄ Find all Hamiltonian paths in the graph whose verti
es are permutations off0; 0; 0; 1; 1; 1g related by adja
ent transposition. Whi
h of those paths are equivalentunder the operations of inter
hanging 0s with 1s and/or left-right re
e
tion?52. [M37 ℄ Generalizing Theorem P, �nd a ne
essary and suÆ
ient 
ondition that allpermutations of the multiset fs0 � 0; : : : ; sd � dg 
an be generated by adja
ent transpo-sitions ajaj�1 $ aj�1aj .53. [M46 ℄ (D. H. Lehmer, 1965.) Suppose the N permutations of fs0 � 0; : : : ; sd � dg
annot be generated by a perfe
t s
heme, be
ause (N + x)=2 of them have an evennumber of inversions, where x � 2. Is it possible to generate them all with a sequen
eof N + x � 2 adja
ent inter
hanges aÆk $ aÆk�1 for 1 � k < N + x � 1, wherex � 1 
ases are \spurs" with Æk = Æk�1 that take us ba
k to the permutation we'vejust seen? For example, a suitable sequen
e Æ1 : : : Æ94 for the 90 permutations off0; 0; 1; 1; 2; 2g, where x = �2+2+22;2;2 ��1 = 6, is 234535432523451�42�R51�42�R51�4,where � = 45352542345355, if we start with a5a4a3a2a1a0 = 221100.54. [M40 ℄ For what values of s and t 
an all (s; t)-
ombinations be generated if weallow end-around swaps an�1 $ a0 in addition to adja
ent inter
hanges aj $ aj�1?x 55. [30 ℄ (Frank Ruskey, 2004.) Show that all (s; t)-
ombinations as+t�1 : : : a1a0 
anbe generated eÆ
iently by doing su

essive rotations ajaj�1 : : : a0  aj�1 : : : a0aj .56. [M49 ℄ (Bu
k and Wiedemann, 1984.) Can all (t; t)-
ombinations a2t�1 : : : a1a0be generated by repeatedly swapping a0 with some other element?x 57. [22 ℄ (Frank Ruskey.) Can a piano player run through all possible 4-note 
hordsthat span at most one o
tave, 
hanging only one �nger at a time? This is the problem ofgenerating all 
ombinations 
t : : : 
1 su
h that n > 
t > � � � > 
1 � 0 and 
t � 
1 < m,where t = 4 and (a) m = 8, n = 52 if we 
onsider only the white notes of a pianokeyboard; (b) m = 13, n = 88 if we 
onsider also the bla
k notes.58. [20 ℄ Consider the piano player's problem of exer
ise 57 with the additional 
on-dition that the 
hords don't involve adja
ent notes. (In other words, 
j+1 > 
j + 1 fort > j � 1. Su
h 
hords tend to be more harmonious.)59. [M25 ℄ Is there a perfe
t solution to the 4-note piano player's problem, in whi
hea
h step moves a �nger to an adja
ent key?60. [23 ℄ Design an algorithm to generate all bounded 
ompositionst = rs + � � �+ r1 + r0; where 0 � rj � mj for s � j � 0.61. [32 ℄ Show that all bounded 
ompositions 
an be generated by 
hanging only twoof the parts at ea
h step.

30



7.2.1.3 GENERATING ALL COMBINATIONS 31x 62. [M27 ℄ A 
ontingen
y table is an m�n matrix of nonnegative integers (aij) havinggiven row sums ri =Pnj=1 aij and 
olumn sums 
j =Pmi=1 aij , where r1 + � � �+ rm =
1 + � � �+ 
n.a) Show that 2� n 
ontingen
y tables are equivalent to bounded 
ompositions.b) What is the lexi
ographi
ally largest 
ontingen
y table for (r1; : : : ; rm; 
1; : : : ; 
n),when matrix entries are read row-wise from left to right and top to bottom, namelyin the order (a11; a12; : : : ; a1n; a21; : : : ; amn)?
) What is the lexi
ographi
ally largest 
ontingen
y table for (r1; : : : ; rm; 
1; : : : ; 
n),when matrix entries are read 
olumn-wise from top to bottom and left to right,namely in the order (a11; a21; : : : ; am1; a12; : : : ; amn)?d) What is the lexi
ographi
ally smallest 
ontingen
y table for (r1; : : : ; rm; 
1; : : : ; 
n),in the row-wise and 
olumn-wise senses?e) Explain how to generate all 
ontingen
y tables for (r1; : : : ; rm; 
1; : : : ; 
n) in lex-i
ographi
 order.63. [M41 ℄ Show that all 
ontingen
y tables for (r1; : : : ; rm; 
1; : : : ; 
n) 
an be gener-ated by 
hanging exa
tly four entries of the matrix at ea
h step.x 64. [M30 ℄ Constru
t a genlex Gray 
y
le for all of the 2s�s+tt � sub
ubes that haves digits and t asterisks, using only the transformations �0 $ 0�, �1 $ 1�, 0 $ 1.For example, one su
h 
y
le when s = t = 2 is(00��; 01��; 0�1�; 0��1; 0��0; 0�0�; �00�; �01�; �0�1; �0�0; ��00; ��01;��11; ��10; �1�0; �1�1; �11�; �10�; 1�0�; 1��0; 1��1; 1�1�; 11��; 10��):65. [M40 ℄ Enumerate the total number of genlex Gray paths on sub
ubes that useonly the transformations allowed in exer
ise 64. How many of those paths are 
y
les?x 66. [22 ℄ Given n � t � 0, show that there is a Gray path through all of the 
anoni
albases (�1; : : : ; �t) of exer
ise 12, 
hanging just one bit at ea
h step. For example, onesu
h path when n = 3 and t = 2 is001010 ; 101010 ; 101110 ; 001110 ; 001100 ; 011100 ; 010100 :67. [46 ℄ Consider the Ising 
on�gurations of exer
ise 13 for whi
h a0 = 0. Given n,t, and r, is there a Gray 
y
le for these 
on�gurations in whi
h all transitions have theforms 0k1$ 10k or 01k $ 1k0? For example, in the 
ase n = 9, t = 5, r = 6, there isa unique 
y
le(010101110; 010110110; 011010110; 011011010; 011101010; 010111010):68. [M01 ℄ If � is a t-
ombination, what is (a) �t�? (b) �t+1�?x 69. [M22 ℄ How large is the smallest set A of t-
ombinations for whi
h j�Aj < jAj?70. [M25 ℄ What is the maximum value of �tN �N , for N � 0?71. [M20 ℄ How many t-
liques 
an a million-edge graph have?x 72. [M22 ℄ Show that if N has the degree-t 
ombinatorial representation (57), thereis an easy way to �nd the degree-s 
ombinatorial representation of the 
omplementarynumber M = �s+tt ��N , whenever N < �s+tt �. Derive (63) as a 
onsequen
e.73. [M23 ℄ (A. J. W. Hilton, 1976.) Let A be a set of s-
ombinations and B a set oft-
ombinations, both 
ontained in U = f0; : : : ; n� 1g where n � s+ t. Show that if Aand B are 
ross-interse
ting, in the sense that �\ � 6= ; for all � 2 A and � 2 B, thenso are the sets QMns and QNnt de�ned in Theorem K, where M = jAj and N = jBj.
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32 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.374. [M21 ℄ What are j �PNtj and j �QNntj in Theorem K?75. [M20 ℄ The right-hand side of (60) is not always the degree-(t � 1) 
ombinatorialrepresentation of �tN , be
ause v � 1 might be zero. Show, however, that a positiveinteger N has at most two representations if we allow v = 0 in (57), and both of themyield the same value �tN a

ording to (60). Therefore�k�k+1 : : : �tN = � ntk � 1�+ � nt�1k � 2�+ � � �+ � nvk � 1 + v � t� for 1 � k � t.76. [M20 ℄ Find a simple formula for �t(N + 1)� �tN .x 77. [M26 ℄ Prove the following properties of the � fun
tions by manipulating binomial
oeÆ
ients, without assuming Theorem K:a) �t(M +N) � �tM + �tN .b) �t(M +N) � max(�tM;N) + �t�1N .Hint: �mtt � + � � � + �m11 � + �ntt � + � � � + �n11 � is equal to �mt_ntt � + � � � + �m1_n11 � +�mt^ntt �+ � � �+ �m1^n11 �, where _ and ^ denote max and min.78. [M22 ℄ Show that Theorem K follows easily from inequality (b) in the previousexer
ise. Conversely, both inequalities are simple 
onsequen
es of Theorem K. Hint:Any set A of t-
ombinations 
an be written A = A1+A00, where A1 = f� 2 A j 0 =2 �g.79. [M23 ℄ Prove that if t � 2, we have M � �tN if and only if M + �t�1M � N .80. [HM26 ℄ (L. Lov�asz, 1979.) The fun
tion �xt� in
reases monotoni
ally from 0 to1as x in
reases from t� 1 to 1; hen
e we 
an de�ne�tN = � xt� 1�; if N = �xt � and x � t� 1.Prove that �tN � �tN for all integers t � 1 and N � 0. Hint: Equality holds when xis an integer.x 81. [M27 ℄ Show that the minimum shadow sizes in Theorem M are given by (64).82. [HM31 ℄ The Takagi fun
tion of Fig. 27 is de�ned for 0 � x � 1 by the formula�(x) = 1Xk=1 Z x0 rk(t) dt;where rk(t) = (�1)b2kt
 is the Radema
her fun
tion of Eq. 7.2.1.1{(16).a) Prove that �(x) is 
ontinuous in the interval [0 : : 1℄, but its derivative does notexist at any point.b) Show that �(x) is the only 
ontinuous fun
tion that satis�es�( 12x) = �(1� 12x) = 12x+ 12�(x) for 0 � x � 1:
) What is the asymptoti
 value of �(�) when � is small?d) Prove that �(x) is rational when x is rational.e) Find all roots of the equation �(x) = 1=2.f) Find all roots of the equation �(x) = max0�x�1 �(x).83. [HM46 ℄ Determine the set R of all rational numbers r su
h that the equation�(x) = r has un
ountably many solutions. If �(x) is rational and x is irrational, is ittrue that �(x) 2 R? (Warning: This problem 
an be addi
tive.)
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7.2.1.3 GENERATING ALL COMBINATIONS 3384. [HM27 ℄ If T = �2t�1t �, prove the asymptoti
 formula�tN �N = Tt ���NT �+O� (log t)3t �� for 0 � N � T :85. [HM21 ℄ Relate the fun
tions �tN and �tN to the Takagi fun
tion �(x).86. [M20 ℄ Prove the law of spread/
ore duality, X�+ = XÆ�.87. [M21 ℄ True or false: (a) X � Y Æ if and only if Y � � X�Æ; (b) XÆ+Æ = XÆ;(
) �M � N if and only if M � �N .88. [M20 ℄ Explain why 
ross order is useful, by 
ompleting the proof of Lemma S.89. [16 ℄ Compute the � and � fun
tions for the 2� 2� 3 torus (69).90. [M22 ℄ Prove the basi
 
ompression lemma, (85).91. [M24 ℄ Prove Theorem W for two-dimensional toruses T (l;m), l � m.92. [M28 ℄ Let x = x1 : : : xn�1 be the Nth element of the torus T (m1; : : : ;mn�1), andlet S be the set of all elements of T (m1; : : : ;mn�1;m) that are � x1 : : : xn�1(m�1)in 
ross order. If Na elements of S have �nal 
omponent a, for 0 � a < m, provethat Nm�1 = N and Na�1 = �Na for 1 � a < m, where � is the spread fun
tion forstandard sets in T (m1; : : : ;mn�1).93. [M25 ℄ (a) Find an N for whi
h the 
on
lusion of Theorem W is false when theparameters m1, m2, : : : , mn have not been sorted into nonde
reasing order. (b) Wheredoes the proof of that theorem use the hypothesis that m1 � m2 � � � � � mn?94. [M20 ℄ Show that the � half of Corollary C follows from the �half. Hint: The
omplements of the multi
ombinations (92) with respe
t to U are 3211, 3210, 3200,3110, 3100, 3000, 2110, 2100, 2000, 1100, 1000.95. [17 ℄ Explain why Theorems K and M follow from Corollary C.x 96. [M22 ℄ If S is an in�nite sequen
e (s0; s1; s2; : : : ) of positive integers, let�S(n)k � = [zk℄ n�1Yj=0(1 + z + � � �+ zsj );thus �S(n)k � is the ordinary binomial 
oeÆ
ient �nk� if s0 = s1 = s2 = � � � = 1.Generalizing the 
ombinatorial number system, show that every nonnegative inte-ger N has a unique representationN = �S(nt)t �+ �S(nt�1)t� 1 �+ � � �+ �S(n1)1 �
where nt � nt�1 � � � � � n1 � 0 and fnt; nt�1; : : : ; n1g � fs0 � 0; s1 � 1; s2 � 2; : : : g. Usethis representation to give a simple formula for the numbers j�PNtj in Corollary C.x 97. [M26 ℄ The text remarked that the verti
es of a 
onvex polyhedron 
an be per-turbed slightly so that all of its fa
es are simplexes. In general, any set of 
ombinationsthat 
ontains the shadows of all its elements is 
alled a simpli
ial 
omplex ; thus C is asimpli
ial 
omplex if and only if � � � and � 2 C implies that � 2 C, if and only ifC is an order ideal with respe
t to set in
lusion.The size ve
tor of a simpli
ial 
omplex C on n verti
es is (N0; N1; : : : ; Nn) whenC 
ontains exa
tly Nt 
ombinations of size t.a) What are the size ve
tors of the �ve regular solids (the tetrahedron, 
ube, o
ta-hedron, dode
ahedron, and i
osahedron), when their verti
es are slightly tweaked?
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34 COMBINATORIAL ALGORITHMS (F3A) 7.2.1.3b) Constru
t a simpli
ial 
omplex with size ve
tor (1; 4; 5; 2; 0).
) Find a ne
essary and suÆ
ient 
ondition that a given size ve
tor (N0; N1; : : : ; Nn)is feasible.d) Prove that (N0; : : : ; Nn) is feasible if and only its \dual" ve
tor (N0; : : : ; Nn) isfeasible, where we de�ne N t = �nt��Nn�t.e) List all feasible size ve
tors (N0; N1; N2; N3; N4) and their duals. Whi
h of themare self-dual?98. [30 ℄ Continuing exer
ise 97, �nd an eÆ
ient way to 
ount the feasible size ve
tors(N0; N1; : : : ; Nn) when n � 100.99. [M25 ℄ A 
lutter is a set C of 
ombinations that are in
omparable, in the sensethat � � � and �; � 2 C implies � = �. The size ve
tor of a 
lutter is de�ned as inexer
ise 97.a) Find a ne
essary and suÆ
ient 
ondition that (M0;M1; : : : ;Mn) is the size ve
torof a 
lutter.b) List all su
h size ve
tors in the 
ase n = 4.x 100. [M30 ℄ (Clements and Lindstr�om.) Let A be a \simpli
ial multi
omplex," a setof submultisets of the multiset U in Corollary C with the property that �A � A. Howlarge 
an the total weight �A =Pfj�j j � 2 Ag be when jAj = N?101. [M25 ℄ If f(x1; : : : ; xn) is a Boolean formula, let F (p) be the probability thatf(x1; : : : ; xn) = 1 when ea
h variable xj independently is 1 with probability p.a) Cal
ulateG(p) andH(p) for the Boolean formulas g(w; x; y; z) = wxz_wyz_xy�z,h(w; x; y; z) = �wyz _ xyz.b) Show that there is a monotone Boolean fun
tion f(w; x; y; z) su
h that F (p) =G(p), but there is no su
h fun
tion with F (p) = H(p). Explain how to test this
ondition in general.102. [HM35 ℄ (F. S. Ma
aulay, 1927.) A polynomial ideal I in the variables fx1 : : : ; xsgis a set of polynomials 
losed under the operations of addition, multipli
ation by a
onstant, and multipli
ation by any of the variables. It is 
alled homogeneous if it
onsists of all linear 
ombinations of a set of homogeneous polynomials, namely ofpolynomials like xy+z2 whose terms all have the same degree. Let Nt be the maximumnumber of linearly independent elements of degree t in I. For example, if s = 2,the set of all �(x0; x1; x2)(x0x21 � 2x1x22) + �(x0; x1; x2)x0x1x22, where � and � runthrough all possible polynomials in fx0; x1; x2g, is a homogeneous polynomial idealwith N0 = N1 = N2 = 0, N3 = 1, N4 = 4, N5 = 9, N6 = 15, : : : .a) Prove that for any su
h ideal I there is another ideal I 0 in whi
h all homogeneouspolynomials of degree t are linear 
ombinations of Nt independent monomials.(A monomial is a produ
t of variables, like x31x2x45.)b) Use Theorem M and (64) to prove that Nt+1 � Nt + �sNt for all t � 0.
) Show that Nt+1 > Nt + �sNt o

urs for only �nitely many t. (This statementis equivalent to \Hilbert's basis theorem," proved by David Hilbert in G�ottingerNa
hri
hten (1888), 450{457; Math. Annalen 36 (1890), 473{534.)x 103. [M38 ℄ The shadow of a sub
ube a1 : : : an, where ea
h aj is either 0 or 1 or �, isobtained by repla
ing some � by 0 or 1. For example,�0�11�0 = f0011�0; 0111�0; 0�1100; 0�1110g:Find a set PNst su
h that, if A is any set of N sub
ubes a1 : : : an having s digits andt asterisks, j�Aj � jPNstj.
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7.2.1.3 GENERATING ALL COMBINATIONS 35104. [M41 ℄ The shadow of a binary string a1 : : : an is obtained by deleting one of itsbits. For example,�110010010 = f10010010; 11010010; 11000010; 11001000; 11001001g:Find a set PNn su
h that, if A is any set of N binary strings a1 : : : an, j�Aj � jPNnj.105. [M20 ℄ A universal 
y
le of t-
ombinations for f0; 1; : : : ; n � 1g is a 
y
le of�nt� numbers whose blo
ks of t 
onse
utive elements run through every t-
ombinationf
1; : : : ; 
tg. For example,(02145061320516243152630425364103546)is a universal 
y
le when t = 3 and n = 7.Prove that no su
h 
y
le is possible unless �nt� is a multiple of n.106. [M21 ℄ (L. Poinsot, 1809.) Find a \ni
e" universal 
y
le of 2-
ombinations forf0; 1; : : : ; 2mg. Hint: Consider the di�eren
es of 
onse
utive elements, mod (2m+ 1).107. [22 ℄ (O. Terquem, 1849.) Poinsot's theorem implies that all 28 dominoes of atraditional \double-six" set 
an be arranged in a 
y
le so that the spots of adja
entdominoes mat
h ea
h other:<0>0<0>1<1>3<3>6<6>6<6>0<0>2<2>5<5>5<5>6<6>1<1>4<4>44̂v50̂v4<4>2<2>1<1>1<1>5<5>3<3>2<2>2<2>6<6>4<4>3<3>3<3>0<0>5How many su
h 
y
les are possible?108. [M31 ℄ Find universal 
y
les of 3-
ombinations for the sets f0; : : : ; n � 1g whennmod 3 6= 0.109. [M31 ℄ Find universal 
y
les of 3-multi
ombinations for f0; 1; : : : ; n � 1g whennmod 3 6= 0 (namely for 
ombinations d1d2d3 with repetitions permitted). For exam-ple, (00012241112330222344133340024440113)is su
h a 
y
le when n = 5.x 110. [26 ℄ Cribbage is a game played with 52 
ards, where ea
h 
ard has a suit (|, },~, or �) and a fa
e value (A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, or K). One feature of thegame is to 
ompute the s
ore of a 5-
ard 
ombination C = f
1; 
2; 
3; 
4; 
5g, where one
ard 
k is 
alled the starter. The s
ore is the sum of points 
omputed as follows, forea
h subset S of C and ea
h 
hoi
e of k: Let jSj = s.i) Fifteens: If Pfv(
) j 
 2 Sg = 15, where (v(A); v(2); v(3); : : : ; v(9); v(10); v(J);v(Q); v(K)) = (1; 2; 3; : : : ; 9; 10; 10; 10; 10), s
ore two points.ii) Pairs: If s = 2 and both 
ards have the same fa
e value, s
ore two points.iii) Runs: If s � 3 and the fa
e values are 
onse
utive, and if C does not 
ontain arun of length s+ 1, s
ore s points.iv) Flushes: If s = 4 and all 
ards of S have the same suit, and if 
k =2 S, s
ore4 + [
k has the same suit as the others℄.v) Nobs: If s = 1 and 
k =2 S, s
ore 1 if the 
ard is J of the same suit as 
k.For example, if you hold fJ|; 5|; 5}; 6~g and if 4| is the starter, you s
ore 4� 2 for�fteens, 2 for a pair, 2� 3 for runs, plus 1 for nobs, totalling 17.Exa
tly how many 
ombinations and starter 
hoi
es lead to a s
ore of x points,for x = 0, 1, 2, : : : ?
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36 ANSWERS TO EXERCISES 7.2.1.3SECTION 7.2.1.31. Given a multiset, form the sequen
e et : : : e2e1 from right to left by listing thedistin
t elements �rst, then those that appear twi
e, then those that appear thri
e,et
. Let us set e�j  s� j for 0 � j � s = n� t, so that every element ej for 1 � j � tis equal to some element to its right in the sequen
e et : : : e1e0 : : : e�s. If the �rst su
helement is e
j�s, we obtain a solution to (3). Conversely, every solution to (3) yields aunique multiset fe1; : : : ; etg, be
ause 
j < s+ j for 1 � j � t.[A similar 
orresponden
e was proposed by E. Catalan: If 0 � e1 � � � � � et � s, letf
1; : : : ; 
tg = fe1; : : : ; etg [ fs+ j j 1 � j < t and ej = ej+1g:See M�emoires de la So
. roy. des S
ien
es de Li�ege (2) 12 (1885), M�elanges Math., 3.℄2. Start at the bottom left 
orner; then go up for ea
h 0, go right for ea
h 1. Theresult is .3. In this algorithm, variable r is the least positive index su
h that qr > 0.F1. [Initialize.℄ Set qj  0 for 1 � j � t, and q0  s. (We assume that st > 0.)F2. [Visit.℄ Visit the 
omposition qt : : : q0. Go to F4 if q0 = 0.F3. [Easy 
ase.℄ Set q0  q0 � 1, r  1, and go to F5.F4. [Tri
ky 
ase.℄ Terminate if r = t. Otherwise set q0  qr�1, qr  0, r  r+1.F5. [In
rease qr.℄ Set qr  qr + 1 and return to F2.[See CACM 11 (1968), 430; 12 (1969), 187. The task of generating su
h 
ompositionsin de
reasing lexi
ographi
 order is more diÆ
ult.℄4. We 
an reverse the roles of 0 and 1 in (14), so that 0qt10qt�11 : : : 10q110q0 =1rs01rs�10 : : : 01r101r0 . This gives 01100102102104100100100100100101100101100 =10012010011010011010010010016012011. Lexi
ographi
 order of an�1 : : : a1a0 
orre-sponds to lexi
ographi
 order of rs : : : r1r0.In
identally, there's also a multiset 
onne
tion: fdt; : : : ; d1g = frs � s; : : : ; r0 � 0g.For example, f10; 10; 8; 6; 2; 2; 2; 2; 2; 2; 1; 1; 0g = f0 � 11; 2 � 10; 0 � 9; 1 � 8; 0 � 7; 1 � 6; 0 � 5;0 � 4; 0 � 3; 6 � 2; 2 � 1; 1 � 0g.5. (a) Set xj = 
j�b(j�1)=2
 in ea
h t-
ombination of n+bt=2
. (b) Set xj = 
j+j+1in ea
h t-
ombination of n� t� 2.(A similar approa
h �nds all solutions (xt; : : : ; x1) to the inequalities xj+1 � xj+Æjfor 0 � j � t, given the values of xt+1, (Æt; : : : ; Æ1), and x0.)6. Assume that t > 0. We get to T3 when 
1 > 0; to T5 when 
2 = 
1+1 > 1; to T4for 2 � j � t+1 when 
j = 
1+j�1 � j. So the 
ounts are: T1, 1; T2, �nt�; T3, �n�1t �;T4, �n�2t�1�+ �n�2t�2�+ � � �+ �n�t�10 � = �n�1t�1�; T5, �n�2t�1�; T6, �n�1t�1�+ �n�2t�1�� 1.7. A pro
edure slightly simpler than Algorithm T suÆ
es: Assume that s < n.S1. [Initialize.℄ Set bj  j + n� s� 1 for 1 � j � s; then set j  1.S2. [Visit.℄ Visit the 
ombination bs : : : b2b1. Terminate if j > s.S3. [De
rease bj .℄ Set bj  bj � 1. If bj < j, set j  j + 1 and return to S2.S4. [Reset bj�1 : : : b1.℄ While j > 1, set bj�1  bj � 1, j  j� 1, and repeat untilj = 1. Go to S2.
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7.2.1.3 ANSWERS TO EXERCISES 37(See S. Dvo�r�ak, Comp. J. 33 (1990), 188. Noti
e that if xk = n � bk for 1 � k � s,this algorithm runs through all 
ombinations xs : : : x2x1 of f1; 2; : : : ; ng with 1 � xs <� � � < x2 < x1 � n, in in
reasing lexi
ographi
 order.)8. A1. [Initialize.℄ Set an : : : a0  0s+11t, q  t, r  0. (We assume that 0 < t < n.)A2. [Visit.℄ Visit the 
ombination an�1 : : : a1a0. Go to A4 if q = 0.A3. [Repla
e : : : 01q by : : : 101q�1.℄ Set aq  1, aq�1  0, q  q � 1; then ifq = 0, set r  1. Return to A2.A4. [Shift blo
k of 1s.℄ Set ar  0 and r  r + 1. Then if ar = 1, set aq  1,q  q + 1, and repeat step A4.A5. [Carry to left.℄ Terminate if r = n; otherwise set ar  1.A6. [Odd?℄ If q > 0, set r  0. Return to A2.In step A2, q and r point respe
tively to the rightmost 0 and 1 in an�1 : : : a0. StepsA1, : : : , A6 are exe
uted with frequen
y 1, �nt�, �n�1t�1�, �nt�� 1, �n�1t �, �n�1t �� 1.9. (a) The �rst �n�1t � strings begin with 0 and have 2A(s�1)t bit 
hanges; the other�n�1t�1� begin with 1 and have 2As(t�1). And �(01t0s�1 � 10s1t�1) = 2min(s; t).(b) Solution 1 (dire
t): Let Bst = Ast +min(s; t) + 1. ThenBst = B(s�1)t +Bs(t�1) + [s= t℄ when st > 0; Bst = 1 when st = 0:Consequently Bst = Pmin(s;t)k=0 �s+t�2ks�k �. If s � t this is � Psk=0 �s+t�ks�k � = �s+t+1s � =�s+ts � s+t+1t+1 < 2�s+tt �.Solution 2 (indire
t): The algorithm in answer 8 makes 2(x+ y) bit 
hanges whensteps (A3;A4) are exe
uted (x; y) times. Thus Ast � �n�1t�1�+ �nt�� 1 < 2�nt�.[The 
omment in answer 7.2.1.1{3 therefore applies to 
ombinations as well.℄10. Ea
h s
enario 
orresponds to a (4; 4)-
ombination b4b3b2b1 or 
4
3
2
1 in whi
hA wins games f8�b4; 8�b3; 8�b2; 8�b1g and N wins games f8�
4; 8�
3; 8�
2; 8�
1g,be
ause we 
an assume that the losing team wins the remaining games in a series of 8.(Equivalently, we 
an generate all permutations of fA;A;A;A;N;N;N;Ng and omitthe trailing run of As or Ns.) The Ameri
an League wins if and only if b1 6= 0, if andonly if 
1 = 0. The formula �
44 � + �
33 � + �
22 � + �
11 � assigns a unique integer between0 and 69 to ea
h s
enario.For example, ANANAA () a7 : : : a1a0 = 01010011 () b4b3b2b1 = 7532 ()
4
3
2
1 = 6410, and this is the s
enario of rank �64� + �43� + �12� + �01� = 19 inlexi
ographi
 order. (Noti
e that the term �
jj � will be zero if and only if it 
orrespondsto a trailing N.)11. AAAA (9 times), NNNN (8), and ANAAA (7) were most 
ommon. Exa
tly 27of the 70 failed to o

ur, in
luding all four beginning with NNNA. (We disregard thegames that were tied be
ause of darkness, in 1907, 1912, and 1922. The 
ase ANNAAAshould perhaps be ex
luded too, be
ause it o

urred only in 1920 as part of ANNAAAAin a best-of-nine series. The s
enario NNAAANN o

urred for the �rst time in 2001.)12. (a) Let Vj be the subspa
e fan�1 : : : a0 2 V j ak = 0 for 0 � k < jg, so thatf0 : : : 0g = Vn � Vn�1 � � � � � V0 = V . Then f
1; : : : ; 
tg = f
 j V
 6= V
+1g, and �k isthe unique element an�1 : : : a0 of V with a
j = [j= k ℄ for 1 � j � t.In
identally, the t � n matrix 
orresponding to a 
anoni
al basis is said to be inredu
ed row-e
helon form. It 
an be found by a standard \triangulation" algorithm(see exer
ise 4.6.1{19 and Algorithm 4.6.2N).
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38 ANSWERS TO EXERCISES 7.2.1.3(b) The 2-nomial 
oeÆ
ient �nt�2 = 2t�n�1t �2 + �n�1t�1�2 of exer
ise 1.2.6{58 has theright properties, be
ause 2t�n�1t �2 binary ve
tor spa
es have 
t < n�1 and �n�1t�1�2 have
t = n� 1. [In general the number of 
anoni
al bases with r asterisks is the number ofpartitions of r into at most t parts, with no part ex
eeding n � t, and this is [zr℄ �nt�zby Eq. 7.2.1.4{(51). See D. E. Knuth, J. Combinatorial Theory 10 (1971), 178{180.℄(
) The following algorithm assumes that n > t > 0 and that a(t+1)j = 0 fort � j � n.V1. [Initialize.℄ Set akj  [j= k � 1℄ for 1 � k � t and 0 � j < n. Also set q  t,r  0.V2. [Visit.℄ (At this point we have ak(k�1) = 1 for 1 � k � q, a(q+1)q = 0, anda1r = 1.) Visit the 
anoni
al basis (a1(n�1) : : : a11a10; : : : ; at(n�1) : : : at1at0).Go to V4 if q > 0.V3. [Find blo
k of 1s.℄ Set q  1, 2, : : : , until a(q+1)(q+r) = 0. Terminate ifq + r = n.V4. [Add 1 to 
olumn q+r.℄ Set k  1. If ak(q+r) = 1, set ak(q+r)  0, k  k+1,and repeat until ak(q+r) = 0. Then if k � q, set ak(q+r)  1; otherwise setaq(q+r)  1, aq(q+r�1)  0, q  q � 1.V5. [Shift blo
k right.℄ If q = 0, set r  r+1. Otherwise, if r > 0, set ak(k�1)  1and ak(r+k�1)  0 for 1 � k � q, then set r  0. Go to V2.Step V2 �nds q > 0 with probability 1 � (2n�t � 1)=(2n � 1) � 1 � 2�t, so we 
ouldsave time by treating this 
ase separately.(d) Sin
e 999999 = 4�84�2+16�74�2+5�63�2+5�53�2+8�43�2+0�32�2+4�22�2+1�11�2+2�01�2, the millionth output has binary 
olumns 4, 16/2, 5, 5, 8/2, 0, 4/2, 1, 2/2, namely�1 = 0 0 1 1 0 0 0 1 1;�2 = 0 0 0 0 0 0 1 0 0;�3 = 1 0 1 1 1 0 0 0 0;�4 = 0 1 0 0 0 0 0 0 0:[Referen
e: E. Calabi and H. S. Wilf, J. Combinatorial Theory A22 (1977), 107{109.℄13. Let n = s + t. There are � s�1d(r�1)=2e�� t�1b(r�1)=2
� 
on�gurations beginning with 0and � s�1b(r�1)=2
�� t�1d(r�1)=2e� beginning with 1, be
ause an Ising 
on�guration that beginswith 0 
orresponds to a 
omposition of s 0s into d(r+1)=2e parts and a 
omposition oft 1s into b(r + 1)=2
 parts. We 
an generate all su
h pairs of 
ompositions and weavethem into 
on�gurations. [See E. Ising, Zeits
hrift f�ur Physik 31 (1925), 253{258;J. M. S. Sim~oes Pereira, CACM 12 (1969), 562.℄14. Start with l[j℄ j � 1 and r[j � 1℄ j for 1 � j � n; l[0℄ n, r[n℄ 0. To getthe next 
ombination, assuming that t > 0, set p s if l[0℄ > s, otherwise p r[n℄�1.Terminate if p � 0; otherwise set q  r[p℄, l[q℄ l[p℄, and r[l[p℄℄ q. Then if r[q℄ > sand p < s, set r[p℄  r[n℄, l[r[n℄℄  p, r[s℄  r[q℄, l[r[q℄℄  s, r[n℄  0, l[0℄  n;otherwise set r[p℄ r[q℄, l[r[q℄℄ p. Finally set r[q℄ p and l[p℄ q.[See Korsh and Lips
hutz, J. Algorithms 25 (1997), 321{335, where the idea isextended to a loopless algorithm for multiset permutations. Caution: This exer
ise,like exer
ise 7.2.1.1{16, is more a
ademi
 than pra
ti
al, be
ause the routine that visitsthe linked list might need a loop that nulli�es any advantage of loopless generation.℄
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7.2.1.3 ANSWERS TO EXERCISES 3915. (The stated fa
t is true be
ause lexi
ographi
 order of 
t : : : 
1 
orresponds tolexi
ographi
 order of an�1 : : : a0, whi
h is reverse lexi
ographi
 order of the 
omple-mentary sequen
e 1 : : : 1 � an�1 : : : a0.) By Theorem L, the 
ombination 
t : : : 
1 isvisited before exa
tly �bss �+ � � �+�b22 �+�b11 � others have been visited, and we must have� bss �+ � � �+ � b11 �+ � 
tt �+ � � �+ � 
11 � = �s+ tt �� 1:This general identity 
an be writtenn�1Xj=0 xj� jx0 + � � �+ xj �+ n�1Xj=0 �xj� j�x0 + � � �+ �xj � = � nx0 + � � �+ xn�1�� 1when ea
h xj is 0 or 1, and �xj = 1� xj ; it follows also from the equationxn� nx0 + � � �+ xn�+ �xn� n�x0 + � � �+ �xn� = � n+ 1x0 + � � �+ xn�� � nx0 + � � �+ xn�1�:16. Sin
e 999999 = �14142 �+ �10081 � = �1823 �+ �1532 �+ �1111 � = �714 �+ �563 �+ �362 �+ �141 � =�435 � + �324 � + �213 � + �152 � + �61�, the answers are (a) 1414 1008; (b) 182 153 111; (
) 7156 36 14; (d) 43 32 21 15 6; (e) 1000000 999999 : : : 2 0.17. By Theorem L, nt is the largest integer su
h that N � �ntt �; the remaining termsare the degree-(t � 1) representation of N � �ntt �.A simple sequential method for t > 1 starts with x = 1, 
 = t, and sets 
 
+ 1,x  x
=(
 � t) zero or more times until x > N ; then we 
omplete the �rst phase bysetting x  x(
 � t)=
, 
  
 � 1, at whi
h point we have x = �
t� � N < �
+1t �. Setnt  
, N  N�x; terminate with n1  N if t = 2; otherwise set x xt=
, t t�1,
  
 � 1; while x > N set x  x(
 � t)=
, 
  
 � 1; repeat. This method requiresO(n) arithmeti
 operations if N < �nt�, so it is suitable unless t is small and N is large.When t = 2, exer
ise 1.2.4{41 tells us that n2 = bp2N + 2 + 12 
. In general,nt is bx
 where x is the largest root of xt = t!N ; this root 
an be approximatedby reverting the series y = (xt)1=t = x � 12 (t � 1) + 124 (t2 � 1)x�1 + � � � to get x =y+ 12 (t� 1)+ 124 (t2� 1)=y+O(y�3). Setting y = (t!N)1=t in this formula gives a goodapproximation, after whi
h we 
an 
he
k that �bx
t � � N < �bx
+1t � or make a �naladjustment. [See A. S. Fraenkel and M. Mor, Comp. J. 26 (1983), 336{343.℄18. A 
omplete binary tree of 2n � 1 nodes is obtained, with an extra node at thetop, like the \tree of losers" in repla
ement sele
tion sorting (Fig. 63 in Se
tion 5.4.1).Therefore expli
it links aren't ne
essary; the right 
hild of node k is node 2k + 1, andthe left sibling is node 2k, for 1 � k < 2n�1.This representation of a binomial tree has the 
urious property that node k =(0a1�)2 
orresponds to the 
ombination whose binary string is 0a1�R.19. It is post(1000000), where post(n) = 2k + post(n� 2k + 1) if 2k � n < 2k+1, andpost(0) = 0. So it is 11110100001001000100.20. f(z) = (1 + zwn�1) : : : (1 + zw1)=(1� z), g(z) = (1 + zw0)f(z), h(z) = zw0f(z).21. The rank of 
t : : : 
2
1 is �
t+1t ��1 minus the rank of 
t�1 : : : 
2
1. [See H. L�uneburg,Abh. Math. Sem. Hamburg 52 (1982), 208{227.℄22. Sin
e 999999 = �14152 � � �4061 � = �1833 � � �982 � + �211 � = �724 � � �573 � + �322 � � �271 � =�445 � � �404 � + �333 � � �132 � + �31�, the answers are (a) 1414 405; (b) 182 97 21; (
) 71 5631 26; (d) 43 39 32 12 3; (e) 1000000 999999 999998 999996 : : : 0.
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40 ANSWERS TO EXERCISES 7.2.1.323. There are �n�rt�r� 
ombinations with j > r, for r = 1, 2, : : : , t. (If r = 1 we have
2 = 
1+1; if r = 2 we have 
1 = 0, 
2 = 1; if r = 3 we have 
1 = 0, 
2 = 1, 
4 = 
3+1;et
.) Thus the mean is (�nt�+�n�1t�1�+� � �+�n�t0 �)/�nt� = �n+1t �/�nt� = (n+1)=(n+1�t).The average running time per step is approximately proportional to this quantity; thusthe algorithm is quite fast when t is small, but slow if t is near n.24. In fa
t jk � 2 � jk+1 � jk + 1 when jk � t (modulo 2) and jk � 1 � jk+1 � jk + 2when jk 6� t, be
ause R5 is performed only when 
i = i� 1 for 1 � i < j.Thus we 
ould say, \If j � 4, set j  j�1�[j odd℄ and go to R5" at the end of R2,if t is odd; \If j � 3, set j  j � 1� [j even℄ and go to R5" if t is even. The algorithmwill then be loopless, sin
e R4 and R5 will be performed at most twi
e per visit.25. Assume that N > N 0 and N � N 0 is minimum; furthermore let t and 
t beminimum, subje
t to those assumptions. Then 
t > 
0t.If there is an element x =2 C [ C 0 with 0 � x < 
t, map ea
h t-
ombination ofC [C 0 by 
hanging j 7! j�1 for j > x; or, if there is an element x 2 C \C 0, map ea
ht-
ombination that 
ontains x into a (t � 1)-
ombination by omitting x and 
hangingj 7! x � j for j < x. In either 
ase the mapping preserves alternating lexi
ographi
order; hen
e N � N 0 must ex
eed the number of 
ombinations between the imagesof C and C 0. But 
t is minimum, so no su
h x 
an exist. Consequently t = m and
t = 2m� 1.Now if 
0m < 
m � 1, we 
ould de
rease N �N 0 by in
reasing 
0m. Therefore 
0m =2m�2, and the problem has been redu
ed to �nding themaximum of rank(
m�1 : : : 
1)�rank(
0m�1 : : : 
01), where rank is 
al
ulated as in (30).Let f(s; t) = max(rank(bs : : : b1)� rank(
t : : : 
1)) over all fbs; : : : ; b1; 
t : : : ; 
1g =f0; : : : ; s+ t� 1g. Then f(s; t) satis�es the 
urious re
urren
ef(s; 0) = f(0; t) = 0; f(1; t) = t;f(s; t) = �s+t�1s �+max(f(t� 1; s� 1); f(s� 2; t)) if st > 0 and s > 1:When s+ t = 2u+ 2 the solution turns out to bef(s; t) = �2u+ 1t� 1 �+ u�rXj=1�2u+ 1� 2jr �+ r�1Xj=0�2j + 1j �; r = min(s� 2; t� 1);with the maximum o

urring at f(t�1; s�1) when s � t and at f(s�2; t) when s � t+2.Therefore the minimum N �N 0 o

urs forC = f2m� 1g [ f2m� 2� x j 1 � x � 2m� 2; xmod 4 � 1g;C 0 = f2m� 2g [ f2m� 2� x j 1 � x � 2m� 2; xmod 4 � 2g;and it equals �2m�1m�1 ��Pm�2k=0 �2k+1k � = 1 +Pm�1k=1 � 2kk�1�. [See A. J. van Zanten, IEEETrans. IT-37 (1991), 1229{1233.℄26. (a) Yes: The �rst is 0n�dt=2e1tmod 22bt=2
 and the last is 2bt=2
1tmod 20n�dt=2e;transitions are substrings of the forms 02a1 $ 12a0, 02a2 $ 12a1, 10a1 $ 20a0,10a2$ 20a1.(b) No: If s = 0 there is a big jump from 02t0r�1 to 20r2t�1.27. The following pro
edure extra
ts all 
ombinations 
1 : : : 
k of �n that have weight� t: Begin with k  0 and 
0  n. Visit 
1 : : : 
k. If k is even and 
k = 0, setk  k � 1; if k is even and 
k > 0, set 
k  
k � 1 if k = t, otherwise k  k + 1and 
k  0. On the other hand if k is odd and 
k + 1 = 
k�1, set k  k � 1 and
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7.2.1.3 ANSWERS TO EXERCISES 41
k  
k+1 (but terminate if k = 0); if k is odd and 
k + 1 < 
k�1, set 
k  
k + 1 ifk = t, otherwise k  k + 1, 
k  
k�1, 
k�1  
k + 1. Repeat.(This loopless algorithm redu
es to that of exer
ise 7.2.1.1{12(b) when t = n, withslight 
hanges of notation.)28. True. Bit strings an�1 : : : a0 = �� and a0n�1 : : : a00 = ��0 
orrespond to index lists(bs : : : b1 = ��, 
t : : : 
1 = � ) and (b0s : : : b01 = ��0, 
0t : : : 
01 = � 0) su
h that everythingbetween �� and ��0 begins with � if and only if everything between �� and ��0 beginswith � and everything between � and � 0 begins with �. For example, if n = 10, thepre�x � = 01101 
orresponds to pre�xes � = 96 and � = 875.(But just having 
t : : : 
1 in genlex order is a mu
h weaker 
ondition. For example,every su
h sequen
e is genlex when t = 1.)29. (a) -k0l+1 or -k0l+1+�m or �k, for k; l;m � 0.(b) No; the su

essor is always smaller in balan
ed ternary notation.(
) For all � and all k; l;m � 0 we have �0-k+10l+�m ! �-+k0l+1-�m and�+-k0l+1+�m ! �0+k+10l-�m; also �0-k+10l ! �-+k0l+1 and �+-k0l+1 ! �0+k+10l.(d) Let the jth sign of �i be (�1)aij , and let it be in position bij . Then we have(�1)aij+bi(j�1) = (�1)a(i+1)j+b(i+1)(j�1) for 0 � i < k and 1 � j � t, if we let bi0 = 0.(e) By parts (a), (b), and (
), � belongs to some 
hain �0 ! � � � ! �k, where �kis �nal (has no su

essor) and �0 is initial (has no prede
essor). By part (d), everysu
h 
hain has at most �s+tt � elements. But there are 2s �nal strings, by (a), and thereare 2s�s+tt � strings with s signs and t zeros; so k must be �s+tt �� 1.Referen
e: SICOMP 2 (1973), 128{133.30. Assume that t > 0. Initial strings are the negatives of �nal strings. Let �j be theinitial string 0t-�j for 0 � j < 2s�1, where the kth 
hara
ter of �j for 1 � k < s is thesign of (�1)ak when j is the binary number (as�1 : : : a1)2; thus �0 = 0t-++ : : : +, �1 =0t--+ : : : +, : : : , �2s�1�1 = 0t--- : : : -. Let �j be the �nal string obtained by inserting-0t after the �rst (possibly empty) run of minus signs in �j ; thus �0 = -0t++ : : : +,�1 = --0t+ : : : +, : : : , �2s�1�1 = -- : : : -0t. We also let �2s�1 = �0 and �2s�1 = �0.Then we 
an prove by indu
tion that the 
hain beginning with �j ends with �j when tis even, with �j�1 when t is odd, for 1 � j � 2s�1. Therefore the 
hain beginning with��j ends with ��j or ��j+1.Let Aj(s; t) be the sequen
e of (s; t)-
ombinations derived by mapping the 
hainthat starts with �j , and let Bj(s; t) be the analogous sequen
e derived from ��j . Then,for 1 � j � 2s�1, the reverse sequen
e Aj(s; t)R is Bj(s; t) when t is even, Bj�1(s; t)when t is odd. The 
orresponding re
urren
es when st > 0 areAj(s; t) = ( 1Aj(s; t� 1); 0Ab(2s�1�1�j)=2
(s� 1; t)R; if j + t is even;1Aj(s; t� 1); 0Abj=2
(s� 1; t); if j + t is odd;and when st > 0 all 2s�1 of these sequen
es are distin
t.Chase's sequen
e Cst is Ab2s=3
(s; t), and bCst is Ab2s�1=3
(s; t). In
identally, thehomogeneous sequen
e Kst of (31) is A2s�1�[t even℄(s; t)R.31. (a) 2(s+tt )�1 solves the re
urren
e f(s; t) = 2f(s � 1; t)f(s; t � 1) when f(s; 0) =f(0; t) = 1. (b) Now f(s; t) = (s+ 1)!f(s; t� 1) : : : f(0; t� 1) has the solution(s+ 1)!ts!(t2)(s� 1)!(t+13 ) : : : 2!(s+t�2s ) = sYr=1(r + 1)!(s+t�1�rt�2 )+[r=s℄:
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42 ANSWERS TO EXERCISES 7.2.1.332. (a) No simple formula seems to exist, but the listings 
an be 
ounted for small sand t by systemati
ally 
omputing the number of genlex paths that run through allweight-t strings from a given starting point to a given ending point via revolving-doormoves. The totals for s+ t � 6 are 11 11 2 11 4 4 11 8 20 8 11 16 160 160 16 11 32 2264 17152 2264 32 1and f(4; 4) = 95;304;112;865;280; f(5; 5) � 5:92646� 1048. [This 
lass of 
ombinationgenerators was �rst studied by G. Ehrli
h, JACM 20 (1973), 500{513, but he did notattempt to enumerate them.℄(b) By extending the proof of Theorem N, one 
an show that all su
h listings ortheir reversals must run from 1t0s to 0a1t0s�a for some a, 1 � a � s. Moreover, thenumber nsta of possibilities, given s, t, and a with st > 0, satis�es n1t1 = 1 andnsta = �ns(t�1)1n(s�1)t(a�1); if a > 1;ns(t�1)2n(s�1)t1 + � � �+ ns(t�1)sn(s�1)t(s�1); if a = 1 < s.This re
urren
e has the remarkable solution nsta = 2m(s;t;a), wherem(s; t; a) = (�s+t�3t �+ �s+t�5t�2 �+ � � �+ �s�12 �; if t is even;�s+t�3t �+ �s+t�5t�2 �+ � � �+ �s3�+ s� a� [a< s℄; if t is odd.33. Consider �rst the 
ase t = 1: The number of near-perfe
t paths from i to j > i isf(j� i� [i> 0℄� [j <n� 1℄), wherePj f(j)zj = 1=(1� z� z3). (By 
oin
iden
e, thesame sequen
e f(j) arises in Caron's polyphase merge on 6 tapes, Table 5.4.2{2.) Thesum over 0 � i < j < n is 3f(n) + f(n�1)+ f(n�2)+ 2� n; and we must double this,to 
over 
ases with j > i.When t > 1 we 
an 
onstru
t �nt���nt� matri
es that tell how many genlex listingsbegin and end with parti
ular 
ombinations. The entries of these matri
es are sums ofprodu
ts of matri
es for the 
ase t � 1, summed over all paths of the type 
onsideredfor t = 1. The totals for s+ t � 6 turn out to be11 11 2 11 6 2 11 12 10 2 11 20 44 10 2 11 34 238 68 10 2 1
11 11 2 11 2 0 11 2 2 0 11 2 0 0 0 11 2 6 0 0 0 1where the right-hand triangle shows the number of 
y
les, g(s; t). Further values in
ludef(4; 4) = 17736; f(5; 5) = 9;900;888;879;984; g(4; 4) = 96; g(5; 5) = 30;961;456;320.There are exa
tly 10 su
h s
hemes when s = 2 and n � 4. For example, whenn = 7 they run from 43210 to 65431 or 65432, or from 54321 to 65420 or 65430 or65432, or the reverse.
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7.2.1.3 ANSWERS TO EXERCISES 4334. The minimum 
an be 
omputed as in the previous answer, but using min-plusmatrix multipli
ation 
ij = mink(aik + bkj) instead of ordinary matrix multipli
ation
ij =Pk aikbkj . (When s = t = 5, the genlex path in Fig. 26(e) with only 49 imperfe
ttransitions is essentially unique. There is a genlex 
y
le for s = t = 5 that has only 55imperfe
tions.)35. From the re
urren
es (35) we have ast = bs(t�1) + [s> 1℄[t> 0℄ + a(s�1)t, bst =as(t�1) + a(s�1)t; 
onsequently ast = bst + [s> 1℄[t odd℄ and ast = as(t�1) + a(s�1)t +[s> 1℄[t odd℄. The solution isast = t=2Xk=0�s+ t� 2� 2ks� 2 �� [s> 1℄[t even℄;this sum is approximately s=(s+ 2t) times �s+tt �.36. Consider the binary tree with root node (s; t) and with re
ursively de�ned subtreesrooted at (s�1; t) and (s; t�1) whenever st > 0; the node (s; t) is a leaf if st = 0. Thenthe subtree rooted at (s; t) has �s+tt � leaves, 
orresponding to all (s; t)-
ombinationsan�1 : : : a1a0. Nodes on level l 
orrespond to pre�xes an�1 : : : an�l, and leaves onlevel l are 
ombinations with r = n� l.Any genlex algorithm for 
ombinations an�1 : : : a1a0 
orresponds to preorder tra-versal of su
h a tree, after the 
hildren of the �s+tt � � 1 bran
h nodes have beenordered in any desired way; that, in fa
t, is why there are 2(s+tt )�1 su
h genlex s
hemes(exer
ise 31(a)). And the operation j  j + 1 is performed exa
tly on
e per bran
hnode, namely after both 
hildren have been pro
essed.In
identally, exer
ise 7.2.1.2{6(a) implies that the average value of r is s=(t+1)+t=(s+1), whi
h 
an be 
(n); thus the extra time needed to keep tra
k of r is worthwhile.37. (a) In the lexi
ographi
 
ase we needn't maintain the wj table, sin
e aj is a
tivefor j � r if and only if aj = 0. After setting aj  1 and aj�1  0 there are two 
asesto 
onsider if j > 1: If r = j, set r  j � 1; otherwise set aj�2 : : : a0  0r1j�1�r andr  j � 1� r (or r  j if r was j � 1).(b) Now the transitions to be handled when j > 1 are to 
hange aj : : : a0 as follows:01r ! 1101r�2, 010r ! 10r+1, 010a1r ! 110a+11r�1, 10r ! 010r�1, 110r ! 010r�11,10a1r ! 0a1r+1; these six 
ases are easily distinguished. The value of r should 
hangeappropriately.(
) Again the 
ase j = 1 is trivial. Otherwise 01a0r ! 101a�10r; 0a1r ! 10a1r�1;101a0r ! 01a+10r; 10a1r ! 0a1r+1; and there is also an ambiguous 
ase, whi
h 
ano

ur only if an�1 : : : aj+1 
ontains at least one 0: Let k > j be minimal with ak = 0.Then 10r ! 010r�1 if k is odd, 10r ! 0r1 if k is even.38. The same algorithm works, ex
ept that (i) step C1 sets an�1 : : : a0  01t0s�1 ifn is odd or s = 1, an�1 : : : a0  001t0s�2 if n is even and s > 1, with an appropriatevalue of r; (ii) step C3 inter
hanges the roles of even and odd; (iii) step C5 goes to C4also if j = 1.39. In general, start with r  0, j  s + t � 1, and repeat the following steps untilst = 0:r  r + [wj =0℄� js� aj �; s s� [aj =0℄; t t� [aj =1℄; j  j � 1:Then r is the rank of an�1 : : : a1a0. So the rank of 11001001000011111101101010 is�2312�+�2211�+�219 �+�178 �+�167 �+�145 �+�133 �+�123 �+�113 �+�103 �+�93�+�83�+�43�+�31�+�10� =2390131.
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44 ANSWERS TO EXERCISES 7.2.1.340. We start with N  999999, v  0, and repeat the following steps until st = 0: Ifv = 0, set t  t � 1 and as+t  1 if N < �s+t�1s �, otherwise set N  N � �s+t�1s �,v  (s + t) mod 2, s  s � 1, as+t  0. If v = 1, set v  (s + t) mod 2, s  s � 1,and as+t  0 if N < �s+t�1t �, otherwise set N  N � �s+t�1t �, t  t � 1, as+t  1.Finally if s = 0, set at�1 : : : a0  1t; if t = 0, set as�1 : : : a0  0s. The answer isa25 : : : a0 = 11101001111110101001000001.41. Let 
(0), : : : , 
(2n � 1) = Cn where C2n = 0C2n�1, 1C2n�1; C2n+1 = 0C2n,1 bC2n; bC2n = 1C2n�1, 0 bC2n�1; bC2n+1 = 1 bC2n, 0 bC2n; C0 = bC0 = �. Then aj � bj =bj+1^(bj+2_(bj+3^(bj+4_� � � ))) if j is even, bj+1_(bj+2^(bj+3_(bj+4^� � � ))) if j is odd.Curiously we also have the inverse relation 
(( : : : a4�a3a2�a1a0)2) = ( : : : b4�b3b2�b1b0)2.42. Equation (40) shows that the left 
ontext an�1 : : : al+1 does not a�e
t the behaviorof the algorithm on al�1 : : : a0 if al = 0 and l > r. Therefore we 
an analyzeAlgorithm C by 
ounting 
ombinations that end with 
ertain bit patterns, and itfollows that the number of times ea
h operation is performed 
an be represented as[wszt℄ p(w; z)=(1� w2)2(1� z2)2(1� w � z) for an appropriate polynomial p(w; z).For example, the algorithm goes from C5 to C4 on
e for ea
h 
ombination that endswith 012a+1012b+1 or has the form 1a+1012b+1, for integers a; b � 0; the 
orrespondinggenerating fun
tions are w2z2=(1� z2)2(1� w � z) and w(z2 + z3)=(1� z2)2.Here are the polynomials p(w; z) for key operations. Let W = 1�w2, Z = 1� z2.C3! C4: wzW (1+wz)(1�w�z2);C3! C5: wzW (w+z)(1�wz�z2);C3! C6: w2z2W (w+z);C3! C7: w2zW (1+wz);C4(j = 1): wzW 2Z(1�w�z2);C4(r j�1): w3zWZ(1�w�z2);C4(r j): wz2W 2(1+z�2wz�z2�z3);C5! C4: wz2W 2(1�wz�z2);C5(r j�2): w4zWZ(1�wz�z2);

C5(r 1): w2zW 2Z(1�wz�z2);C5(r j�1): w2z3W 2(1�wz�z2);C6(j = 1): w2zW 2Z;C6(r j�1): w2z3W 2;C6(r j): w3z2WZ;C7! C6: w2zW 2;C7(r j): w4zWZ;C7(r j�2): w3z2W 2:The asymptoti
 value is �s+tt �(p(1 � x; x)=(2x � x2)2(1 � x2)2 + O(n�1)), for �xed0 < x < 1, if t = xn + O(1) as n ! 1. Thus we �nd, for example, that the four-waybran
hing in step C3 takes pla
e with relative frequen
ies x+x2�x3 : 1 : x : 1+x�x2.In
identally, the number of 
ases with j odd ex
eeds the number of 
ases withj even by Xk;l�1�s+ t� 2k � 2ls� 2k �[2k + 2l� s+ t℄ + [s odd℄[t odd℄;in any genlex s
heme that uses (39). This quantity has the interesting generatingfun
tion wz=(1 + w)(1 + z)(1� w � z).43. The identity is true for all nonnegative integers x, ex
ept when x = 1.44. In fa
t, Ct(n)� 1 = bCt(n� 1)R, and bCt(n)� 1 = Ct(n� 1)R. (Hen
e Ct(n)� 2 =Ct(n� 2), et
.)45. In the following algorithm, r is the least subs
ript with 
r � r.CC1. [Initialize.℄ Set 
j  n � t � 1 + j and zj  0 for 1 � j � t + 1. Also setr  1. (We assume that 0 < t < n.)CC2. [Visit.℄ Visit the 
ombination 
t : : : 
2
1. Then set j  r.CC3. [Bran
h.℄ Go to CC5 if zj 6= 0.
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7.2.1.3 ANSWERS TO EXERCISES 45CC4. [Try to de
rease 
j .℄ Set x  
j + (
j mod 2) � 2. If x � j, set 
j  x,r  1; otherwise if 
j = j, set 
j  j � 1, zj  
j+1 � ((
j+1 + 1) mod 2),r  j; otherwise if 
j < j, set 
j  j, zj  
j+1 � ((
j+1 + 1) mod 2),r  max(1; j � 1); otherwise set 
j  x, r  j. Return to CC2.CC5. [Try to in
rease 
j .℄ Set x  
j + 2. If x < zj , set 
j  x; otherwise ifx = zj and zj+1 6= 0, set 
j  x � (
j+1 mod 2); otherwise set zj  0,j  j + 1, and go to CC3 (but terminate if j > t). If 
1 > 0, set r  1;otherwise set r  j � 1. Return to CC2.46. Equation (40) implies that uk = (bj+k+1) mod 2 when j is minimal with bj > k.Then (37) and (38) yield the following algorithm, where we assume for 
onvenien
ethat 3 � s < n.CB1. [Initialize.℄ Set bj  j � 1 for 1 � j � s; also set z  s+1, bz  1. (Whensubsequent steps examine the value of z, it is the smallest index su
h thatbz 6= z � 1.)CB2. [Visit.℄ Visit the dual 
ombination bs : : : b2b1.CB3. [Bran
h.℄ If b2 is odd: Go to CB4 if b2 6= b1+1, otherwise to CB5 if b1 > 0,otherwise to CB6 if bz is odd. Go to CB9 if b2 is even and b1 > 0. Otherwisego to CB8 if bz+1 = bz + 1, otherwise to CB7.CB4. [In
rease b1.℄ Set b1  b1 + 1 and return to CB2.CB5. [Slide b1 and b2.℄ If b3 is odd, set b1  b1 + 1 and b2  b2 + 1; otherwiseset b1  b1 � 1, b2  b2 � 1, z  3. Go to CB2.CB6. [Slide left.℄ If z is odd, set z  z � 2, bz+1  z + 1, bz  z; otherwise setz  z � 1, bz  z. Go to CB2.CB7. [Slide bz.℄ If bz+1 is odd, set bz  bz +1 and terminate if bz � n; otherwiseset bz  bz � 1, then if bz < z set z  z + 1. To CB2.CB8. [Slide bz and bz+1.℄ If bz+2 is odd, set bz  bz+1, bz+1  bz + 1, andterminate if bz+1 � n. Otherwise set bz+1  bz, bz  bz � 1, then if bz < zset z  z + 2. To CB2.CB9. [De
rease b1.℄ Set b1  b1 � 1, z  2, and return to CB2.Noti
e that this algorithm is loopless. Chase gave a similar pro
edure for the sequen
ebCRst in Cong. Num. 69 (1989), 233{237. It is truly amazing that this algorithm de�nespre
isely the 
omplements of the indi
es 
t : : : 
1 produ
ed by the algorithm in theprevious exer
ise.47. We 
an, for example, use Algorithm C and its reverse (exer
ise 38), with wjrepla
ed by a d-bit number whose bits represent a
tivity at di�erent levels of there
ursion. Separate pointers r0, r1, : : : , rd�1 are needed to keep tra
k of the r-valueson ea
h level. (Many other solutions are possible.)48. There are permutations �1, : : : , �M su
h that the kth element of �j is �k�j"�k�1.And �k�j runs through all permutations of fs1 �1; : : : ; sd �dg as j varies from 0 to N�1.Histori
al note: The �rst publi
ation of a homogeneous revolving-door s
hemefor (s; t)-
ombinations was by �Eva T�or�ok, Matematikai Lapok 19 (1968), 143{146,who was motivated by the generation of multiset permutations. Many authors havesubsequently relied on the homogeneity 
ondition for similar 
onstru
tions, but thisexer
ise shows that homogeneity is not ne
essary.
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46 ANSWERS TO EXERCISES 7.2.1.349. We have limz!q(zkm+r � 1)=(zlm+r � 1) = 1 when 0 < r < m, and the limitis limz!q(kmzkm�1)=(lmzlm�1) = k=l when r = 0. So we 
an pair up fa
tors of thenumerator Qn�k<a�n(za � 1) with fa
tors of the denominator Q0<b�k(zb � 1) whena � b (modulo m).Notes: This formula was dis
overed by G. Olive, AMM 72 (1965), 619. In thespe
ial 
ase m = 2, q = �1, the se
ond fa
tor vanishes only when n is even and k isodd. The formula �nk�q = � nn�k�q holds for all n � 0, but �bn=m
bk=m
� is not always equalto � bn=m
b(n�k)=m
�. We do, however, have bk=m
+ b(n� k)=m
 = bn=m
 in the 
ase whennmodm � kmodm; otherwise the se
ond fa
tor is zero.50. The stated 
oeÆ
ient is zero when n1 modm+ � � �+ nt modm � m. Otherwise itequals � b(n1 + � � �+ nt)=m
bn1=m
; : : : ; bnt=m
�� (n1 + � � �+ nt) modmn1 modm; : : : ; nt modm�q;by Eq. 1.2.6{(43); here ea
h upper index is the sum of the lower indi
es.51. All paths 
learly run between 000111 and 111000, sin
e those verti
es have de-gree 1. Fourteen total paths redu
e to four under the stated equivalen
es. The pathin (50), whi
h is equivalent to itself under re
e
tion-and-reversal, 
an be des
ribedby the delta sequen
e A = 3452132523414354123; the other three 
lasses are B =3452541453414512543, C = 3452541453252154123, D = 3452134145341432543. D. H.Lehmer found path C [AMM 72 (1965), Part II, 36{46℄; D is essentially the path
onstru
ted by Eades, Hi
key, and Read.(In
identally, perfe
t s
hemes aren't really rare, although they seem to be diÆ
ultto 
onstru
t systemati
ally. The 
ase (s; t) = (3; 5) has 4,050,046 of them.)52. We may assume that ea
h sj is nonzero and that d > 1. Then the di�eren
ebetween permutations with an even and odd number of inversions is �b(s0+���+sd)=2
bs0=2
;:::;bsd=2
� �2, by exer
ise 50, unless at least two of the multipli
ities sj are odd.Conversely, if at least two multipli
ities are odd, a general 
onstru
tion by G. Sta-
howiak [SIAM J. Dis
rete Math. 5 (1992), 199{206℄ shows that a perfe
t s
hemeexists. Indeed, his 
onstru
tion applies to a variety of topologi
al sorting problems; inthe spe
ial 
ase of multisets it gives a Hamiltonian 
y
le in all 
ases with d > 1 ands0s1 odd, ex
ept when d = 2, s0 = s1 = 1, and s2 is even.53. See AMM 72 (1965), Part II, 36{46.54. Assuming that st 6= 0, a Hamiltonian path exists if and only if s and t are notboth even; a Hamiltonian 
y
le exists if and only if, in addition, (s 6= 2 and t 6= 2) orn = 5. [T. C. Enns, Dis
rete Math. 122 (1993), 153{165.℄55. [Solution by Aaron Williams.℄ The sequen
e 0s1t, Wst has the 
orre
t properties ifWst = 0W(s�1)t; 1Ws(t�1); 10s1t�1; for st > 0; W0t =Ws0 = ;:And there is an amazingly eÆ
ient, loopless implementation: Assume that t > 0.W1. [Initialize.℄ Set n  s + t, aj  1 for 0 � j < t, and aj  0 for t � i � n.Also set j  k  t� 1. (This is tri
ky, but it works.)W2. [Visit.℄ Visit the (s; t)-
ombination an�1 : : : a1a0.W3. [Zero out aj .℄ Set aj  0 and j  j + 1.W4. [Easy 
ase?℄ If aj = 1, set ak  1, k  k + 1, and return to W2.W5. [Wrap around.℄ Terminate if j = n. Otherwise set aj  1. Then if k > 0,set ak  1, a0  0, j  1, and k  0. Return to W2.
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7.2.1.3 ANSWERS TO EXERCISES 47After the se
ond visit, j is the smallest index with ajaj�1 = 10, and k is smallest withak = 0. The easy 
ase o

urs exa
tly �s+t�1s ��1 times; and the 
ondition k = 0 o

ursin step W5 exa
tly �s+t�2t �+ Æt1 times. [To appear.℄56. [Dis
rete Math. 48 (1984), 163{171.℄ This problem is equivalent to the \middlelevels 
onje
ture," whi
h states that there is a Gray path through all binary stringsof length 2t � 1 and weights ft � 1; tg. In fa
t, su
h strings 
an almost 
ertainly begenerated by a delta sequen
e of the spe
ial form �0�1 : : : �2t�2 where the elements of�k are those of �0 shifted by k, modulo 2t� 1. For example, when t = 3 we 
an startwith a5a4a3a2a1a0 = 000111 and repeatedly swap a0 $ aÆ , where Æ runs through the
y
le (4134 5245 1351 2412 3523). The middle levels 
onje
ture is known to be true fort � 15 [see I. Shields and C. D. Savage, Cong. Num. 140 (1999), 161{178℄.57. Yes; there is a near-perfe
t genlex solution for all m, n, and t when n � m > t.One su
h s
heme, in bitstring notation, is 1A(m�t)(t�1)0n�m, 01A(m�t)(t�1)0n�m�1,: : : , 0n�m1A(m�t)(t�1), 0n�m+11A(m�1�t)(t�1), : : : , 0n�t1A0(t�1), using the sequen
esAst of (35).58. Solve the previous problem with m and n redu
ed by t � 1, then add j � 1 toea
h 
j . (Case (a), whi
h is parti
ularly simple, was probably known to Czerny.)59. The generating fun
tion Gmnt(z) = P gmntkzk for the number gmntk of 
hordsrea
hable in k steps from 0n�t1t satis�esGmmt(z) = �mt �z andGm(n+1)t(z) = Gmnt(z)+ztn�(t�1)m�m�1t�1 �z , be
ause the latter term a

ounts for 
ases with 
t = n and 
1 >n �m. A perfe
t s
heme is possible only if jGmnt(�1)j � 1. But if n � m > t � 2,this 
ondition holds only when m = t + 1 or (n � t)t is odd, by (49). So there is noperfe
t solution when t = 4 and m > 5. (Many 
hords have only two neighbors whenn = t + 2, so one 
an easily rule out that 
ase. All 
ases with n � m > 5 and t = 3apparently do have perfe
t paths when n is even.)60. The following solution uses lexi
ographi
 order, taking 
are to ensure that the aver-age amount of 
omputation per visit is bounded. We may assume that stms : : :m0 6= 0and t � ms + � � �+m1 +m0.Q1. [Initialize.℄ Set qj  0 for s � j � 1, and x = t.Q2. [Distribute.℄ Set j  0. Then while x > mj , set qj  mj , x  x � mj ,j  j + 1, and repeat until x � mj . Finally set qj  x.Q3. [Visit.℄ Visit the bounded 
omposition qs + � � �+ q1 + q0.Q4. [Pi
k up the rightmost units.℄ If j = 0, set x  q0 � 1, j  1. Otherwise ifq0 = 0, set x qj � 1, qj  0, and j  j + 1. Otherwise go to Q7.Q5. [Full?℄ Terminate if j > s. Otherwise if qj = mj , set x  x +mj , qj  0,j  j + 1, and repeat this step.Q6. [In
rease qj .℄ Set qj  qj + 1. Then if x = 0, set q0  0 and return to Q3.(In that 
ase qj�1 = � � � = q0 = 0.) Otherwise go to Q2.Q7. [In
rease and de
rease.℄ (Now qi = mi for j > i � 0.) While qj = mj , setj  j + 1 and repeat until qj < mj (but terminate if j > s). Then setqj  qj + 1, j  j � 1, qj  qj � 1. If q0 = 0, set j  1. Return to Q3.For example, ifms = � � � = m0 = 9, the su

essors of the 
omposition 3+9+9+7+0+0are 4+0+0+6+9+9, 4+0+0+7+8+9, 4+0+0+7+9+8, 4+0+0+8+7+9, : : : .61. Let Fs(t) = ; if t < 0 or t > ms + � � �+m0; otherwise let F0(t) = t, andFs(t) = 0+Fs�1(t); 1+Fs�1(t� 1)R; 2+Fs�1(t� 2); : : : ; ms+Fs�1(t�ms)Rms
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48 ANSWERS TO EXERCISES 7.2.1.3when s > 0. This sequen
e 
an be shown to have the required properties; it is, infa
t, equivalent to the 
ompositions de�ned by the homogeneous sequen
e Kst of (31)under the 
orresponden
e of exer
ise 4, when restri
ted to the subsequen
e de�ned bythe bounds ms, : : : , m0. [See T. Walsh, J. Combinatorial Math. and CombinatorialComputing 33 (2000), 323{345, who has implemented it looplessly.℄62. (a) A 2� n 
ontingen
y table with row sums r and 
1 + � � �+ 
n � r is equivalentto solving r = a1 + � � �+ an with 0 � a1 � 
1, : : : , 0 � an � 
n.(b) We 
an 
ompute it sequentially by setting aij  min(ri � ai1 � � � � � ai(j�1);
j � a1j � � � � � a(i�1)j) for j = 1, : : : , n, for i = 1, : : : , m. Alternatively, if r1 � 
1, seta11  r1, a12  � � �  a1n  0, and do the remaining rows with 
1 de
reased by r1; ifr1 > 
1, set a11  
1, a21  � � �  am1  0, and do the remaining 
olumns with r1de
reased by 
1. The se
ond approa
h shows that at most m+ n� 1 of the entries arenonzero. We 
an also write down the expli
it formulaaij = max(0;min(ri; 
j ; r1 + � � �+ ri � 
1 � � � � � 
j�1; 
1 + � � �+ 
j � r1 � � � � � ri�1)):(
) The same matrix is obtained as in (b).(d) Reverse left and right in (b) and (
); in both 
ases the answer isaij = max(0;min(ri; 
j ; ri+1 + � � �+ rm � 
1 � � � � � 
j�1; 
1 + � � �+ 
j � ri � � � � � rm)).(e) Here we 
hoose, say, row-wise order: Generate the �rst row just as for bounded
ompositions of r1, with bounds (
1; : : : ; 
n); and for ea
h row (a11; : : : ; a1n), gen-erate the remaining rows re
ursively in the same way, but with the 
olumn sums(
1 � a11; : : : ; 
n � a1n). Most of the a
tion takes pla
e on the bottom two rows,but when a 
hange is made to an earlier row the later rows must be re-initialized.63. If aij and akl are positive, we obtain another 
ontingen
y table by setting aij  aij � 1, ail  ail+1, akj  akj +1, akl  akl� 1. We want to show that the graph Gwhose verti
es are the 
ontingen
y tables for (r1; : : : ; rm; 
1; : : : ; 
n), adja
ent if they
an be obtained from ea
h other by su
h a transformation, has a Hamiltonian path.When m = n = 2, G is a simple path. When m = 2 and n = 3, G has a two-dimensional stru
ture from whi
h we 
an see that every vertex is the starting point of atleast two Hamiltonian paths, having distin
t endpoints. When m = 2 and n � 4 we 
anshow, indu
tively, that G a
tually has Hamiltonian paths from any vertex to any other.When m � 3 and n � 3, we 
an redu
e the problem from m to m� 1 as in answer62(e), if we are 
areful not to \paint ourselves into a 
orner." Namely, we must avoidrea
hing a state where the nonzero entries of the bottom two rows have the form ( 10 ab 0
 )for some a, b, 
 > 0 and a 
hange to row m � 2 for
es this to be
ome ( 00 ab 1
 ). Theprevious round of 
hanges to rows m� 1 and m 
an avoid su
h a trap unless 
 = 1 andit begins with ( 01 a+1b�1 01) or ( 10 a�1b+1 10 ). But that situation 
an be avoided too.(A genlex method based on exer
ise 61 would be 
onsiderably simpler, and italmost always would make only four 
hanges per step. But it would o

asionally needto update 2min(m;n) entries at a time.)64. When x1 : : : xs is a binary string and A is a list of sub
ubes, let A � x1 : : : xsdenote repla
ing the digits (a1; : : : ; as) in ea
h sub
ube of A by (a1 � x1; : : : ; as � xs),from left to right. For example, 0�1��10� 1010 = 1�1��00. Then the following mutualre
ursions de�ne a Gray 
y
le, be
ause Ast gives a Gray path from 0s�t to 10s�1�t andBst gives a Gray path from 0s�t to �01s�1�t�1, when st > 0:Ast = 0B(s�1)t; �As(t�1) � 001s�2; 1BR(s�1)t;
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7.2.1.3 ANSWERS TO EXERCISES 49Bst = 0A(s�1)t; 1B(s�1)t � 010s�2; �As(t�1) � 1s:The strings 001s�2 and 010s�2 are simply 0s when s < 2; As0 is Gray binary 
ode;A0t = B0t = �t. (In
identally, the somewhat simpler 
onstru
tionGst = �Gs(t�1); atG(s�1)t; at�1GR(s�1)t; at = tmod 2;de�nes a pleasant Gray path from �t0s to at�1�t0s�1.)65. If a path P is 
onsidered equivalent to PR and to P � x1 : : : xs, the total number
an be 
omputed systemati
ally as in exer
ise 33, with the following results for s+t � 6:paths11 11 2 11 3 3 11 5 10 4 11 6 36 35 5 11 9 310 4630 218 6 1


y
les11 11 1 11 1 1 11 2 1 1 11 2 3 1 1 11 3 46 4 1 1 1In general there are t+1 paths when s = 1 and �ds=2e+22 �� (smod 2) when t = 1. The
y
les for s � 2 are unique. When s = t = 5 there are approximately 6:869 � 10170paths and 2:495� 1070 
y
les.66. Let G(n; 0) = �; G(n; t) = ; when n < t; and for 1 � t � n, let G(n; t) beĝ(0)G(n� 1; t); ĝ(1)G(n� 1; t)R; : : : ; ĝ(2t � 1)G(n� 1; t)R; ĝ(2t � 1)G(n� 1; t� 1);where ĝ(k) is a t-bit 
olumn 
ontaining the Gray binary number g(k) with its leastsigni�
ant bit at the top. In this general formula we impli
itly add a row of zerosbelow the bases of G(n� 1; t� 1).This remarkable rule gives ordinary Gray binary 
ode when t = 1, omitting 0 : : : 00.A 
y
li
 Gray 
ode is impossible be
ause �nt�2 is odd.67. A Gray path for 
ompositions 
orresponding to Algorithm C implies that there isa path in whi
h all transitions are 0k1l $ 1l0k with min(k; l) � 2. Perhaps there is, infa
t, a 
y
le with min(k; l) = 1 in ea
h transition.68. (a) f;g; (b) ;.69. The least N with �tN < N is �2t�1t �+ �2t�3t�1 �+ � � �+ �11�+ 1 = 12 (�2tt �+ �2t�2t�1 �+� � �+ �00�+ 1), be
ause � nt�1� � �nt� if and only if n � 2t� 1.70. From the identity�t(�2t�3t �+N 0)�(�2t�3t �+N 0) = �t(�2t�2t �+N 0)�(�2t�2t �+N 0) = �2t�2t � 1t�1+�t�1N 0�N 0when N 0 < �2t�3t �, we 
on
lude that the maximum is �2t�2t � 1t + �2t�4t�1 � 1t�2 + � � �+ �22� 11 ,and it o

urs at 2t�1 values of N when t > 1.71. Let Ct be the t-
liques. The �rst �1414t � + �1009t�1� t-
ombinations visited by Al-gorithm L de�ne a graph on 1415 verti
es with 1000000 edges. If jCtj were larger,j�t�2Ctj would ex
eed 1000000. Thus the single graph de�ned by P(1000000)2 has themaximum number of t-
liques for all t � 2.72. M = �mss � + � � � + �muu � for ms > � � � > mu � u � 1, where fms; : : : ;mug =fs+t�1; : : : ; nvgnfnt; : : : ; nv+1g. (Compare with exer
ise 15, whi
h gives �s+tt ��1�N .)
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50 ANSWERS TO EXERCISES 7.2.1.3If � = an�1 : : : a0 is the bit string 
orresponding to the 
ombination nt : : : n1, thenv is 1 plus the number of trailing 1s in �, and u is the length of the rightmost runof 0s. For example, when � = 1010001111 we have s = 4, t = 6, M = �84�+ �73�, u = 3,N = �96�+ �75�, v = 5.73. A and B are 
ross-interse
ting () � 6� U n � for all � 2 A and � 2 B ()A\�n�s�tB� = ;, where B� = fU n� j � 2 Bg is a set of (n� t)-
ombinations. Sin
eQ�Nnt = PN(n�t), we have j�n�s�tB�j � j�n�s�tPN(n�t)j, and �n�s�tPN(n�t) = PN0swhere N 0 = �s+1 : : : �n�tN . Thus if A and B are 
ross-interse
ting we have M +N 0 �jAj+ j�n�s�tB�j � �ns�, and QMns \ PN0s = ;.Conversely, if QMns \ PN0s 6= ; we have �ns� < M +N 0 � jAj+ j�n�s�tB�j, so Aand B 
annot be 
ross-interse
ting.74. j �QNntj = �n�tN (see exer
ise 94). Also, arguing as in (58) and (59), we �nd�PN5 = (n�1)PN5 [ � � � [ 10PN5 [ f543210; : : : ; 987654g in that parti
ular 
ase; andj �PNtj = (n+ 1� nt)N + �nt+1t+1 � in general.75. The identity �n+1k � = �nk� + �n�1k�1� + � � � + �n�k0 �, Eq. 1.2.6{(10), gives anotherrepresentation if nv > v. But (60) is una�e
ted, sin
e we have �n+1k�1� = � nk�1�+�n�1k�2�+� � �+ �n�k+10 �.76. Represent N +1 by adding �v�1v�1� to (57); then use the previous exer
ise to dedu
ethat �t(N + 1)� �tN = �v�1v�2� = v � 1.77. [D. E. Daykin, Nanta Math. 8, 2 (1975), 78{83.℄ We work with extended repre-sentations M = �mtt �+ � � �+ �muu � and N = �ntt �+ � � �+ �nvv � as in exer
ise 75, 
allingthem improper if the �nal index u or v is zero. Call N 
exible if it has both properand improper representations, that is, if nv > v > 0.(a) Given an integer S, �nd M + N su
h that M + N = S and �tM + �tN isminimum, with M as large as possible. If N = 0, we're done. Otherwise the max-minoperation preserves both M +N and �tM + �tN , so we 
an assume that v � u � 1 inthe proper representations of M and N . If N is in
exible, �t(M + 1) + �t(N � 1) =(�tM +u� 1)+ (�tN � v) < �tM +�tN , by exer
ise 76; therefore N must be 
exible.But then we 
an apply the max-min operation to M and the improper representationof N , in
reasing M : Contradi
tion.This proof shows that equality holds if and only if MN = 0, a fa
t that was notedin 1927 by F. S. Ma
aulay.(b) Now we try to minimize max(�tM;N) + �t�1N when M +N = S, this timerepresenting N as �nt�1t�1 � + � � � + �nvv �. The max-min operation 
an still be used ifnt�1 < mt; leaving mt un
hanged, it preserves M +N and �tM +�t�1N as well as therelation �tM > N . We arrive at a 
ontradi
tion as in (a) if N 6= 0, so we 
an assumethat nt�1 � mt.If nt�1 > mt we have N > �tM and also �tN > M ; hen
e M +N < �tN +N =�nt�1+1t �+ � � �+ �nv+1v �, and we have �t(M +N) � �t(�tN +N) = N + �t�1N .Finally if nt�1 = mt = a, letM = �at�+M 0 andN = � at�1�+N 0. Then �t(M+N) =�a+1t�1� + �t�1(M 0 + N 0), �tM = � at�1� + �t�1M 0, and �t�1N = � at�2� + �t�2N 0; theresult follows by indu
tion on t.78. [J. E
kho� and G. Wegner, Periodi
a Math. Hung. 6 (1975), 137{142; A. J. W.Hilton, Periodi
a Math. Hung. 10 (1979), 25{30.℄ Let M = jA1j and N = jA0j; we 
anassume that t > 0 and N > 0. Then j�Aj = j�A1 [ A0j+ j�A0j � max(j�A1j; jA0j)+j�A0j � max(�tM;N) + �t�1N � �t(M +N) = jP jAjtj, by indu
tion on m+ n+ t.
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7.2.1.3 ANSWERS TO EXERCISES 51Conversely, let A1 = PMt + 1 and A0 = PN(t�1) + 1; this notation means, forexample, that f210; 320g + 1 = f321; 431g. Then �t(M + N) � j�Aj = j�A1 [ A0j +j(�A0)0j = max(�tM;N) + �t�1N , be
ause �A1 = P(�tM)(t�1) + 1. [S
h�utzenbergerobserved in 1959 that �t(M +N) � �tM + �t�1N if and only if �tM � N .℄For the �rst inequality, letA and B be disjoint sets of t-
ombinations with jAj =M ,j�Aj = �tM , jBj = N , j�Bj = �tN . Then �t(M + N) = �tjA [ Bj � j�(A [ B)j =j�A [ �Bj = j�Aj+ j�Bj = �tM + �tN .79. In fa
t, �t(M + �t�1M) =M , and �tN + �t�1�tN = N + (n2 � n1)[v=1℄ whenN is given by (57).80. If N > 0 and t > 1, represent N as in (57) and let N = N0 +N1, whereN0 = �nt � 1t �+ � � �+ �nv � 1v �; N1 = �nt � 1t� 1 �+ � � �+ �nv � 1v � 1 �:Let N0 = �yt� and N1 = � zt�1�. Then, by indu
tion on t and bx
, we have �xt� =N0 + �tN0 � �yt� + � yt�1� = �y+1t �; N1 = �xt� � �yt� � �xt� � �x�1t � = �x�1t�1�; and�tN = N1 + �t�1N1 � � zt�1�+ � zt�2� = �z+1t�1� � � xt�1�.[Lov�asz a
tually proved a stronger result; see exer
ise 1.2.6{66. We have, similarly,�tN � �x�1t�1�; see Bj�orner, Frankl, and Stanley, Combinatori
a 7 (1987), 27{28.℄81. For example, if the largest element of bPN5 is 66433, we havebPN5 = f00000; : : : ; 55555g[f60000; : : : ; 65555g[f66000; : : : ; 66333g[f66400; : : : ; 66433gso N = �105 �+ �94�+ �63�+ �52�. Its lower shadow is� bPN5 = f0000; : : : ; 5555g [ f6000; : : : ; 6555g [ f6600; : : : ; 6633g [ f6640; : : : ; 6643g;of size �94�+ �83�+ �52�+ �41�.If the smallest element of QN95 is 66433, we havebQN95 = f99999; : : : ; 70000g [ f66666; : : : ; 66500g [ f66444; : : : ; 66440g [ f66433gso N = (�139 �+�128 �+�117 �)+ (�86�+�75�)+ �54�+ �33�. Its upper shadow is�bQN95 = f999999; : : : ; 700000g [ f666666; : : : ; 665000g[ f664444; : : : ; 664400g [ f664333; : : : ; 664330g;of size (�149 �+�138 �+�127 �) + (�96�+�85�) + �64� + �43� = N + �9N . The size, t, of ea
h
ombination is essentially irrelevant, as long as N � �s+tt �; for example, the smallestelement of bQN98 is 99966433 in the 
ase we have 
onsidered.82. (a) The derivative would have to be Pk>0 rk(x), but that series diverges.[Informally, the graph of �(x) shows \pits" of relative magnitude 2�k at all oddmultiples of 2�k. Takagi's original publi
ation, in Pro
. Physi
o-Math. So
. Japan (2)1 (1903), 176{177, has been translated into English in his Colle
ted Papers (IwanamiShoten, 1973).℄(b) Sin
e rk(1�t) = (�1)d2ktewhen k > 0, we have R 1�x0 rk(t) dt = R 1x rk(1�u) du =� R 1x rk(u) du = R x0 rk(u) du. The se
ond equation follows from the fa
t that rk( 12 t) =rk�1(t). Part (d) shows that these two equations suÆ
e to de�ne �(x) when x isrational.(
) Sin
e �(2�ax) = a2�ax + 2�a�(x) for 0 � x � 1, we have �(�) = a� + O(�)when 2�a�1 � � � 2�a. Therefore �(�) = � lg 1� +O(�) for 0 < � � 1.
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52 ANSWERS TO EXERCISES 7.2.1.3(d) Suppose 0 � p=q � 1. If p=q � 1=2 we have �(p=q) = p=q + �(2p=q)=2;otherwise �(p=q) = (q � p)=q + �(2(q � p)=q)=2. Therefore we 
an assume that q isodd. When q is odd, let p0 = p=2 when p is even, p0 = (q � p)=2 when p is odd. Then�(p=q) = 2�(p0=q) � 2p0=q for 0 < p < q; this system of q � 1 equations has a uniquesolution. For example, the values for q = 3, 4, 5, 6, 7 are 2/3, 2/3; 1/2, 1/2, 1/2; 8/15,2/3, 2/3, 8/15; 1/2, 2/3, 1/2, 2/3, 1/2; 22/49, 30/49, 32/49, 32/49, 30/49, 22/49.(e) The solutions < 12 are x = 14 , 14 � 116 , 14 � 116 � 164 , 14 � 116 � 164 � 1256 , : : : , 16 .(f) The value 23 is a
hieved for x = 12 � 18 � 132 � 1128 � � � � , an un
ountable set.83. Given any integers q > p > 0, 
onsider paths starting from 0 in the digraph0  1  2  3  4  5  � � �l l l l l l1 ! 2 ! 3 ! 4 ! 5 ! 6 ! � � �Compute an asso
iated value v, starting with v  �p; horizontal moves 
hange v  2v,verti
al moves from node a 
hange v  2(qa � v). The path stops if we rea
h a nodetwi
e with the same value v. Transitions are not allowed to upper node a if v � �q orv � qa at that node; they are not allowed to lower node a with v � 0 or v � q(a+ 1).These restri
tions for
e most steps of the path. (Node a in the upper row means, \Solve�(x) = ax � v=q"; in the lower row it means, \Solve �(x) = v=q � ax.") Empiri
altests suggest that all su
h paths are �nite. The equation �(x) = p=q then has solutionsx = x0 de�ned by the sequen
e x0, x1, x2, : : : where xk = 12xk+1 on a horizontal stepand xk = 1� 12xk+1 on a verti
al step; eventually xk = xj for some j < k. If j > 0 andif q is not a power of 2, these are all the solutions to �(x) = p=q when x > 1=2.For example, this pro
edure establishes that �(x) = 1=5 and x > 1=2 only whenx is 83581/87040; the only path yields x0 = 1 � 12x1, x1 = 12x2, : : : , x18 = 12x19, andx19 = x11. There are, similarly, just two values x > 1=2 with �(x) = 3=5, havingdenominator 246(256 � 1)=3.Moreover, it appears that all 
y
les in the digraph that pass through node 0 de�nevalues of p and q su
h that �(x) = p=q has un
ountably many solutions. Su
h valuesare, for example, 2/3, 8/15, 8/21, 
orresponding to the 
y
les (01), (0121), (012321).The value 32/63 
orresponds to (012121) and also to (012101234545454321), as well asto two other paths that do not return to 0.84. [Frankl, Matsumoto, Ruzsa, and Tokushige, J. Combinatorial Theory A69 (1995),125{148.℄ If a � b we have�2t� 1� bt� a �.T = ta(t� 1)b�a/(2t� 1)b = 2�b(1 + f(a; b)t�1 +O(b4=t2));where f(a; b) = a(1 + b) � a2 � b(1 + b)=4 = f(a + 1; b) � b + 2a. Therefore if N hasthe 
ombinatorial representation (57), and if we set nj = 2t� 1� bj , we havetT ��tN �N� = bt2bt + bt�1 � 22bt�1 + bt�2 � 42bt�2 + � � �+ O(log t)3t ;the terms being negligible when bj ex
eeds 2 lg t. And one 
an show that�� lXj=0 2�ej� = lXj=0 (ej � 2j)2�ej :85. N��t�1N has the same asymptoti
 form as �tN�N , by (63), sin
e �(x) = �(1�x).
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7.2.1.3 ANSWERS TO EXERCISES 53So does 2�tN �N , up to O(T (log t)3=t2), be
ause �2t�1�bt�a � = 2�2t�2�bt�a �(1+O(log t)=t)when b < 2 lg t.86. x 2 XÆ� () �x =2 XÆ () �x =2 X or �x =2 X + e1 or � � � or �x =2 X + en () x 2 X�or x 2 X� � e1 or � � � or x 2 X� � en () x 2 X�+.87. All three are true, using the fa
t that X � Y Æ if and only if X+ � Y : (a) X � Y Æ() X� � Y Æ� = Y �+ () Y � � X�Æ. (b) X+ � X+ =) X � X+Æ; hen
eXÆ � XÆ+Æ. Also XÆ � XÆ =) XÆ+ � X; hen
e XÆ+Æ � XÆ. (
) �M � N ()S+M � SN () SM � SÆN () M � �N .88. If �x < �y then �(x � ek) < �(y � ej), so we 
an assume that �x = �y and thatx > y in lexi
ographi
 order. We must have yj > 0; otherwise �(y � ej) would ex
eed�(x� ek). If xi = yi for 1 � i � j, 
learly k > j and x� ek � y� ej . Otherwise xi > yifor some i � j; again we have x� ek � y � ej , unless x� ek = y � ej .89. From the tablej = 0 1 2 3 4 5 6 7 8 9 10 11ej + e1 = e1 e0 e4 e5 e2 e3 e8 e9 e6 e7 e11 e10ej + e2 = e2 e4 e0 e6 e1 e8 e3 e10 e5 e11 e7 e9ej + e3 = e3 e5 e6 e7 e8 e9 e10 e0 e11 e1 e2 e4we �nd (�0; �1; : : : ; �12) = (0; 4; 6; 7; 8; 9; 10; 11; 11; 12; 12; 12; 12); (�0; �1; : : : ; �12) =(0; 0; 0; 0; 1; 1; 2; 3; 4; 5; 6; 8; 12).90. Let Y = X+ and Z = CkX, and let Na = jXk(a)j for 0 � a < mk. ThenjY j = mk�1Xa=0 jYk(a)j = mk�1Xa=0 j(Xk(a� 1) + ek) [ (Xk(a) + Ek(0))j
� mk�1Xa=0 max(Na�1; �Na);where a � 1 stands for (a � 1) modmk and the � fun
tion 
omes from the (n � 1)-dimensional torus, be
ause jXk(a) + Ek(0)j � �Na by indu
tion. AlsojZ+j = mk�1Xa=0 jZ+k (a)j = mk�1Xa=0 j(Zk(a� 1) + ek) [ (Zk(a) + Ek(0))j
= mk�1Xa=0 max(Na�1; �Na);be
ause both Zk(a� 1) + ek and Zk(a) + Ek(0) are standard in n� 1 dimensions.91. Let there be Na points in row a of a totally 
ompressed array, where row 0 isat the bottom; thus l = N�1 � N0 � � � � � Nm�1 � Nm = 0. We show �rstthat there is an optimum X for whi
h the \bad" 
ondition Na = Na+1 never o

ursex
ept when Na = 0 or Na = l. For if a is the smallest bad subs
ript, supposeNa�1 > Na = Na+1 = � � � = Na+k > Na+k+1. Then we 
an always de
rease Na+kby 1 and add 1 to some Nb for b � a without in
reasing jX+j, ex
ept in 
ases wherek = 1 and Na+2 = Na+1 � 1 and Nb = Na + a � b < l for 0 � b � a. Exploring su
h
ases further, if N
+1 < N
 = N
�1 for some 
 > a + 1, we 
an set N
  N
 � 1 andNa  Na + 1, thereby either de
reasing a or in
reasing N0. Otherwise we 
an �nda subs
ript d su
h that N
 = Na+1 + a+ 1� 
 > 0 for a < 
 < d, and either Nd = 0 orNd < Nd�1 � 1. Then it is OK to de
rease N
 by 1 for a < 
 < d and subsequently to
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54 ANSWERS TO EXERCISES 7.2.1.3in
rease Nb by 1 for 0 � b < d� a� 1. (It is important to note that if Nd = 0 we haveN0 � d� 1; hen
e d = m implies l = m.)Repeating su
h transformations until Na > Na+1 whenever Na 6= l and Na+1 6= 0,we rea
h situation (86), and the proof 
an be 
ompleted as in the text.92. Let x + k denote the lexi
ographi
ally smallest element of T (m1; : : : ;mn�1) thatex
eeds x and has weight �x+k, if any su
h element exists. For example, if m1 = m2 =m3 = 4 and x = 211, we have x+1 = 212, x+2 = 213, x+3 = 223, x+4 = 233, x+5 =333, and x+6 does not exist; in general, x+ k+1 is obtained from x+ k by in
reasingthe rightmost 
omponent that 
an be in
reased. If x+ k = (m1� 1; : : : ;mn�1� 1), letus set x + k + 1 = x + k. Then if S(k) is the set of all elements of T (m1; : : : ;mn�1)that are � x+ k, we have S(k+ 1) = S(k)+. Furthermore, the elements of S that endin a are those whose �rst n� 1 
omponents are in S(m� 1� a).The result of this exer
ise 
an be stated more intuitively: As we generate n-dimensional standard sets S1, S2, : : : , the (n � 1)-dimensional standard sets on ea
hlayer be
ome spreads of ea
h other just after ea
h point is added to layer m � 1.Similarly, they be
ome 
ores of ea
h other just before ea
h point is added to layer 0.93. (a) Suppose the parameters are 2 � m01 � m02 � � � � � m0n when sorted properly,and let k be minimal withmk 6= m0k. Then take N = 1+rank(0; : : : ; 0;m0k�1; 0; : : : ; 0).(We must assume that min(m1; : : : ;mn) � 2, sin
e parameters equal to 1 
an be pla
edanywhere.)(b) Only in the proof for n = 2, buried inside the answer to exer
ise 91. Thatproof is in
orporated by indu
tion when n is larger.94. Complementation reverses lexi
ographi
 order and 
hanges �to �.95. For Theorem K, let d = n � 1 and s0 = � � � = sd = 1. For Theorem M, let d = sand s0 = � � � = sd = t+ 1.96. In su
h a representation, N is the number of t-multi
ombinations of fs0 � 0; s1 � 1;s2 � 2; : : : g that pre
ede ntnt�1 : : : n1 in lexi
ographi
 order, be
ause the generalized
oeÆ
ient �S(n)t � 
ounts the multi
ombinations whose leftmost 
omponent is < n.If we trun
ate the representation by stopping at the rightmost nonzero term�S(nv)v �, we obtain a ni
e generalization of (60):j�PNtj = �S(nt)t� 1 �+ �S(nt�1)t� 2 �+ � � �+ �S(nv)v � 1 �:[See G. F. Clements, J. Combinatorial Theory A37 (1984), 91{97. The inequalitiess0 � s1 � � � � � sd are needed for the validity of Corollary C, but not for the 
al
ulationof j�PNtj. Some terms �S(nk)k � for t � k > v may be zero. For example, when N = 1,t = 4, s0 = 3, and s1 = 2, we have N = �S(1)4 �+ �S(1)3 � = 0 + 1.℄97. (a) The tetrahedron has four verti
es, six edges, four fa
es: (N0; : : : ; N4) =(1; 4; 6; 4; 1). The o
tahedron, similarly, has (N0; : : : ; N6) = (1; 6; 8; 8; 0; 0; 0), andthe i
osahedron has (N0; : : : ; N12) = (1; 12; 30; 20; 0; : : : ; 0). The hexahedron, aka the3-
ube, has eight verti
es, 12 edges, and six square fa
es; perturbation breaks ea
hsquare fa
e into two triangles and introdu
es new edges, so we have (N0; : : : ; N8) =(1; 8; 18; 12; 0; : : : ; 0). Finally, the perturbed pentagonal fa
es of the dode
ahedron leadto (N0; : : : ; N20) = (1; 20; 54; 36; 0; : : : ; 0).(b) f210; 310g [ f10; 20; 21; 30; 31g [ f0; 1; 2; 3g [ f�g.(
) 0 � Nt � �nt� for 0 � t � n and Nt�1 � �tNt for 1 � t � n. The se
ond
ondition is equivalent to �t�1Nt�1 � Nt for 1 � t � n, if we de�ne �01 = 1. These
onditions are ne
essary for Theorem K, and suÆ
ient if A = SPNtt:
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7.2.1.3 ANSWERS TO EXERCISES 55(d) The 
omplements of the elements not in a simpli
ial 
omplex, namely the setsf f0; : : : ; n � 1g n � j � =2 C g, form a simpli
ial 
omplex. (We 
an also verify thatthe ne
essary and suÆ
ient 
ondition holds: Nt�1 � �tNt () �t�1Nt�1 � Nt ()�n�t+1Nn�t+1 � Nn�t, be
ause �n�tNn�t+1 = �nt�� �t�1Nt�1 by exer
ise 94.)(e) 00000 $ 14641; 10000 $ 14640; 11000 $ 14630; 12000 $ 14620; 13000 $14610; 14000 $ 14600; 12100 $ 14520; 13100 $ 14510; 14100 $ 14500; 13200 $14410; 14200$ 14400; 13300$ 14400; and the self-dual 
ases 14300, 13310.98. The following pro
edure by S. Linusson [Combinatori
a 19 (1999), 255{266℄, who
onsidered also the more general problem for multisets, is 
onsiderably faster than amore obvious approa
h. Let L(n; h; l) 
ount feasible ve
tors withNt = �nt� for 0 � t � l,Nt+1 < � nt+1�, and Nt = 0 for t > h. Then L(n; h; l) = 0 unless �1 � l � h � n;also L(n; h; h) = L(n; h;�1) = 1, and L(n;n; l) = L(n;n � 1; l) for l < n. Whenn > h � l � 0 we 
an 
ompute L(n; h; l) =Phj=l L(n� 1; h; j)L(n� 1; j � 1; l � 1), are
urren
e that follows from Theorem K. (Ea
h size ve
tor 
orresponds to the 
omplexSPNtt, with L(n�1; h; j) representing 
ombinations that do not 
ontain the maximumelement n� 1 and L(n� 1; j � 1; l� 1) representing those that do.) Finally the grandtotal is L(n) =Pnl=1 L(n;n; l).We have L(0), L(1), L(2), : : : = 2, 3, 5, 10, 26, 96, 553, 5461, 100709, 3718354,289725509, : : : ; L(100) � 3:2299� 101842.99. The maximal elements of a simpli
ial 
omplex form a 
lutter; 
onversely, the
ombinations 
ontained in elements of a 
lutter form a simpli
ial 
omplex. Thus thetwo 
on
epts are essentially equivalent.(a) If (M0;M1; : : : ;Mn) is the size ve
tor of a 
lutter, then (N0; N1; : : : ; Nn) isthe size ve
tor of a simpli
ial 
omplex if Nn = Mn and Nt = Mt + �t+1Nt+1 for0 � t < n. Conversely, every su
h (N0; : : : ; Nn) yields an (M0; : : : ;Mn) if we usethe lexi
ographi
ally �rst Nt t-
ombinations. [G. F. Clements extended this result togeneral multisets in Dis
rete Math. 4 (1973), 123{128.℄(b) In the order of answer 97(e) they are 00000, 00001, 10000, 00040, 01000, 00030,02000, 00120, 03000, 00310, 04000, 00600, 00100, 00020, 01100, 00210, 02100, 00500,00200, 00110, 01200, 00400, 00300, 01010, 01300, 00010. Noti
e that (M0; : : : ;Mn) isfeasible if and only if (Mn; : : : ;M0) is feasible, so we have a di�erent sort of duality inthis interpretation.100. Represent A as a subset of T (m1; : : : ;mn) as in the proof of Corollary C. Then themaximum value of �A is obtained when A 
onsists of the N lexi
ographi
ally smallestpoints x1 : : : xn.The proof starts by redu
ing to the 
ase that A is 
ompressed, in the sense thatits t-multi
ombinations are PjA\Ttjt for ea
h t. Then if y is the largest element 2 Aand if x is the smallest element =2 A, we prove that x < y implies �x > �y, hen
e�(A n fyg [ fxg) > �A. For if �x = �y � k we 
ould �nd an element of �ky that isgreater than x, 
ontradi
ting the assumption that A is 
ompressed.101. (a) In general, F (p) = N0pn+N1pn�1(1�p)+� � �+Nn(1�p)n when f(x1; : : : ; xn)is satis�ed by exa
tly Nt binary strings x1 : : : xn of weight t. Thus we �nd G(p) =p4 + 3p3(1� p) + p2(1� p)2; H(p) = p4 + p3(1� p) + p2(1� p)2.(b) A monotone formula f is equivalent to a simpli
ial 
omplex C under the 
or-responden
e f(x1; : : : ; xn) = 1() fj � 1 j xj = 0g 2 C. Therefore the fun
tions f(p)of monotone Boolean fun
tions are those that satisfy the 
ondition of exer
ise 97(
), andwe obtain a suitable fun
tion by 
hoosing the lexi
ographi
ally lastNn�t t-
ombinations
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56 ANSWERS TO EXERCISES 7.2.1.3(whi
h are 
omplements of the �rst Ns s-
ombinations): f3210g, f321; 320; 310g, f32ggives f(w; x; y; z) = wxyz _ xyz _ wyz _ wxz _ yz = wxz _ yz.M. P. S
h�utzenberger observed that we 
an �nd the parameters Nt easily fromf(p) by noting that f(1=(1 + u)) = (N0 +N1u+ � � �+Nnun)=(1 + u)n. One 
an showthat H(p) is not equivalent to a monotone formula in any number of variables, be
ause(1 + u + u2)=(1 + u)4 = (N0 + N1u + � � � + Nnun)=(1 + u)n implies that N1 = n � 3,N2 = �n�32 �+ 1, and �2N2 = n� 2.But the task of de
iding this question is not so simple in general. For example,the fun
tion (1 + 5u + 5u2 + 5u3)=(1 + u)5 does not mat
h any monotone formula in�ve variables, be
ause �35 = 7; but it equals (1 + 6u + 10u2 + 10u3 + 5u4)=(1 + u)6,whi
h works �ne with six.102. (a) Choose Nt linearly independent polynomials of degree t in I; order their termslexi
ographi
ally, and take linear 
ombinations so that the lexi
ographi
ally smallestterms are distin
t monomials. Let I 0 
onsist of all multiples of those monomials.(b) Ea
h monomial of degree t in I 0 is essentially a t-multi
ombination; forexample, x31x2x45 
orresponds to 55552111. If Mt is the set of independent monomialsfor degree t, the ideal property is equivalent to saying that Mt+1 � �Mt.In the given example,M3 = fx0x21g;M4 = �M3[fx0x1x22g;M5 = �M4[fx1x42g,sin
e x22(x0x21 � 2x1x22)� x1(x0x1x22) = �2x1x42; and Mt+1 = �Mt thereafter.(
) By Theorem M we 
an assume that Mt = bQMst. Let Nt = �ntss � + � � � +�nt22 � + �nt11 �, where s+ t � nts > � � � > nt2 > nt1 � 0; then nts = s+ t if and only ifnt(s�1) = s� 2, : : : , nt1 = 0. Furthermore we haveNt+1 � Nt + �sNt = �nts + [nts� s℄s �+ � � �+ �nt2 + [nt2� 2℄2 �+ �nt1 + [nt1� 1℄1 �:Therefore the sequen
e (nts�t�1[nts<s℄; : : : ; nt2�t�1[nt2< 2℄; nt1�t�1[nt1< 1℄)is lexi
ographi
ally nonde
reasing as t in
reases, where we insert `�1' in 
omponentsthat have ntj = j � 1. Su
h a sequen
e 
annot in
rease in�nitely many times withoutex
eeding the maximum value (s;�1; : : : ;�1), by exer
ise 1.2.1{15(d).103. Let PNst be the �rst N elements of a sequen
e determined as follows: For ea
hbinary string x = xs+t�1 : : : x0, in lexi
ographi
 order, write down ��xt � sub
ubes by
hanging t of the 1s to �s in all possible ways, in lexi
ographi
 order (
onsidering 1 < �).For example, if x = 0101101 and t = 2, we generate the sub
ubes 0101�0�, 010�10�,010��01, 0�0110�, 0�01�01, 0�0�101.[See B. Lindstr�om, Arkiv f�or Mat. 8 (1971), 245{257; a generalization analogousto Corollary C appears in K. Engel, Sperner Theory (Cambridge Univ. Press, 1997),Theorem 8.1.1.℄104. The �rst N strings in 
ross order have the desired property. [T. N. Danh andD. E. Daykin, J. London Math. So
. (2) 55 (1997), 417{426.℄Notes: Beginning with the observation that the \1-shadow" of the N lexi
o-graphi
ally �rst strings of weight t (namely the strings obtained by deleting 1 bitsonly) 
onsists of the �rst �tN strings of weight t, R. Ahlswede and N. Cai extendedthe Danh{Daykin theorem to allow insertion, deletion, and/or transposition of bits[Combinatori
a 17 (1997), 11{29; Applied Math. Letters 11, 5 (1998), 121{126℄. UweLe
k has proved that no total ordering of ternary strings has the analogous minimum-shadow property [Preprint 98/6 (Univ. Rosto
k, 1998), 6 pages℄.105. Every number must o

ur the same number of times in the 
y
le. Equivalently,�n�1t�1� must be a multiple of t. This ne
essary 
ondition appears to be suÆ
ient as
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7.2.1.3 ANSWERS TO EXERCISES 57well, provided that n is not too small with respe
t to t; but su
h a result may well betrue yet impossible to prove. [See Chung, Graham, and Dia
onis, Dis
rete Math. 110(1992), 55{57.℄The next few exer
ises 
onsider the 
ases t = 2 and t = 3, for whi
h elegantresults are known. Similar but more 
ompli
ated results have been derived for t = 4and t = 5, and the 
ase t = 6 has been partially resolved. The 
ase (n; t) = (12; 6) is
urrently the smallest for whi
h the existen
e of a universal 
y
le is unknown.106. Let the di�eren
es mod (2m+1) be 1, 2, : : : , m, 1, 2, : : : , m, : : : , repeated 2m+1times; for example, the 
y
le for m = 3 is (013602561450346235124). This worksbe
ause 1 + � � �+m = �m+12 � is relatively prime to 2m+ 1. [J. �E
ole Polyte
hnique 4,Cahier 10 (1810), 16{48.℄107. The seven doubles <0>0 , <1>1 , : : : , <6>6 
an be inserted in 37 ways into anyuniversal 
y
le of 3-
ombinations for f0; 1; 2; 3; 4; 5; 6g. The number of su
h universal
y
les is the number of Eulerian trails of the 
omplete graph K7, whi
h 
an be shownto be 129,976,320 if we regard (a0a1 : : : a20) as equivalent to (a1 : : : a20a0) but not tothe reverse-order 
y
le (a20 : : : a1a0). So the answer is 284,258,211,840.[This problem was �rst solved in 1859 by M. Reiss, whose method was so 
om-pli
ated that people doubted the result; see Nouvelles Annales de Math�ematiques 8(1849), 74; 11 (1852), 115; Annali di Matemati
a Pura ed Appli
ata (2) 5 (1871{1873), 63{120. A 
onsiderably simpler solution, 
on�rming Reiss's 
laim, was found byP. Jolivald and G. Tarry, who also enumerated the Eulerian trails of K9; see ComptesRendus Asso
iation Fran�
aise pour l'Avan
ement des S
ien
es 15, part 2 (1886), 49{53; �E. Lu
as, R�e
r�eations Math�ematiques 4 (1894), 123{151. Brendan D. M
Kay andRobert W. Robinson found an approa
h that is better still, enabling them to 
ontinuethe enumeration through K21 by using the fa
t that the number of trails is(m� 1)!2m+1 [z2m0 z2m�21 : : : z2m�22m ℄ det(ajk) Y1�j<k�2m(z2j + z2k);where ajk = �1=(z2j + z2k) when j 6= k; ajj = �1=(2z2j ) +P0�k�2m 1=(z2j + z2k); seeCombinatori
s, Probability, and Computing 7 (1998), 437{449.℄C. Flye Sainte-Marie, in L'Interm�ediaire des Math�emati
iens 1 (1894), 164{165,noted that the Eulerian trails of K7 in
lude 2� 720 that have 7-fold symmetry underpermutation of f0; 1; : : : ; 6g (namely Poinsot's 
y
le and its reverse), plus 32 � 1680with 3-fold symmetry, plus 25778� 5040 
y
les that are asymmetri
.108. No solution is possible for n < 7, ex
ept in the trivial 
ase n = 4. Whenn = 7 there are 12;255;208�7! universal 
y
les, not 
onsidering (a0a1 : : : a34) to be thesame as (a1 : : : a34a0), in
luding 
ases with 5-fold symmetry like the example 
y
le inexer
ise 105.When n � 8 we 
an pro
eed systemati
ally as suggested by B. Ja
kson in Dis
reteMath. 117 (1993), 141{150; see also G. Hurlbert, SIAM J. Dis
. Math. 7 (1994),598{604: Put ea
h 3-
ombination into the \standard 
y
li
 order" 
1
2
3 where 
2 =(
1 + Æ) mod n, 
3 = (
2 + Æ0) mod n, 0 < Æ; Æ0 < n=2, and either Æ = Æ0 or max(Æ; Æ0) <n � Æ � Æ0 6= (n � 1)=2 or (1 < Æ < n=4 and Æ0 = (n � 1)=2) or (Æ = (n � 1)=2 and1 < Æ0 < n=4). For example, when n = 8 the allowable values of (Æ; Æ0) are (1; 1),(1; 2), (1; 3), (2; 1), (2; 2), (3; 1), (3; 3); when n = 11 they are (1; 1), (1; 2), (1; 3),(1; 4), (2; 1), (2; 2), (2; 3), (2; 5), (3; 1), (3; 2), (3; 3), (4; 1), (4; 4), (5; 2), (5; 5). Then
onstru
t the digraph with verti
es (
; Æ) for 0 � 
 < n and 1 � Æ < n=2, and with ar
s(
1; Æ)! (
2; Æ0) for every 
ombination 
1
2
3 in standard 
y
li
 order. This digraph is
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58 ANSWERS TO EXERCISES 7.2.1.3
onne
ted and balan
ed, so it has an Eulerian trail by Theorem 2.3.4.2D. (The pe
uliarrules about (n � 1)=2 make the digraph 
onne
ted when n is odd. The Eulerian trail
an be 
hosen to have n-fold symmetry when n = 8, but not when n = 12.)109. When n = 1 the 
y
le (000) is trivial; when n = 2 there is no 
y
le; andthere are essentially only two when n = 4, namely (00011122233302021313) and(00011120203332221313). When n � 5, let the multi
ombination d1d2d3 be instandard 
y
li
 order if d2 = (d1 + Æ � 1) mod n, d3 = (d2 + Æ0 � 1) mod n, and (Æ; Æ0)is allowable for n + 3 in the previous answer. Constru
t the digraph with verti
es(d; Æ) for 0 � d < n and 1 � Æ < (n + 3)=2, and with ar
s (d1; Æ) ! (d2; Æ0) for everymulti
ombination d1d2d3 in standard 
y
li
 order; then �nd an Eulerian trail.Perhaps a universal 
y
le of t-multi
ombinations exists for f0; 1; : : : ; n�1g if andonly if a universal 
y
le of t-
ombinations exists for f0; 1; : : : ; n+ t� 1g.110. A ni
e way to 
he
k for runs is to 
ompute the numbers b(S) =Pf2p(
) j 
 2 Sgwhere (p(A); : : : ; p(K)) = (1; : : : ; 13); then set l b(S)^�b(S) and 
he
k that b(S)+l =l � s, and also that ((l � s) _ (l � 1)) ^ a = 0, where a = 2p(
1) _ � � � _ 2p(
5). Thevalues of b(S) and Pfv(
) j 
 2 Sg are easily maintained as S runs through all 31nonempty subsets in Gray-
ode order. The answers are (1009008, 99792, 2813796,505008, 2855676, 697508, 1800268, 751324, 1137236, 361224, 388740, 51680, 317340,19656, 90100, 9168, 58248, 11196, 2708, 0, 8068, 2496, 444, 356, 3680, 0, 0, 0, 76, 4)for x = (0; : : : ; 29); thus the mean s
ore is � 4:769 and the varian
e is � 9:768.Hands without points are sometimes fa
etiously 
alled nineteen,as that number 
annot be made by the 
ards.| G. H. DAVIDSON, Dee's Hand-Book of Cribbage (1839)Note: A four-
ard 
ush is not allowed in the \
rib." Then the distribution is a biteasier to 
ompute, and it turns out to be (1022208, 99792, 2839800, 508908, 2868960,703496, 1787176, 755320, 1118336, 358368, 378240, 43880, 310956, 16548, 88132, 9072,57288, 11196, 2264, 0, 7828, 2472, 444, 356, 3680, 0, 0, 0, 76, 4); the mean and varian
ede
rease to approximately 4.735 and 9.667.

58



INDEX AND GLOSSARYWhen an index entry refers to a page 
ontaining a relevant exer
ise, see also the answer tothat exer
ise for further information. An answer page is not indexed here unless it refers to atopi
 not in
luded in the statement of the exer
ise.2-nomial 
oeÆ
ients, 38.�t (Kruskal fun
tion), 19{21, 31{34, 51.�t (Kruskal fun
tion), 20{21, 32{33.�t (Ma
aulay fun
tion), 20{21, 32{33, 51.� (sideways sum), 20, 29, 37.� (
ir
le ratio), as \random" example,2, 13, 27{29, 35.� (Takagi fun
tion), 20{21, 32{33.� (shadow), 18.�(upper shadow), 18.A
tive bits, 12.Adja
ent transpositions, 15{17, 30.Ahlswede, Rudolph, 56.Alternating 
ombinatorial numbersystem, 9, 27.Analysis of algorithms, 4{5, 25, 27, 29.Anti
hains of subsets, see Clutters.Balan
ed ternary notation, 41.Baseball, 26.Basis of ve
tor spa
e, 26, 31.Basis theorem, 34.Be
kenba
h, Edwin Ford, 5.Bellman, Ri
hard Ernest, 19.Bernoulli, Ja
ques (= Jakob = James),iii, 16.Binary tree representation of tree, 27.Binary ve
tor spa
es, 26, 31.Binomial 
oeÆ
ients, 1, 32.generalized, 33.Binomial number system, see Combinatorialnumber system.Binomial trees, 6{7, 27.Bitner, James Ri
hard, 8.Bitwise manipulation, 4, 58.Bj�orner, Anders, 51.Boolean fun
tions, 34.Bounded 
ompositions, 16, 30, 31.Bu
k, Marshall Wilbert, 30.Cai, Ning ( ), 56.Calabi, Eugenio, 38.Canoni
al bases, 26, 31.Caron, Ja
ques, 42.Catalan, Eug�ene Charles, 36.Chase, Phillip John, 11{13, 16, 28{29, 45.Chinese rings, 28.Chords, 10, 30.Chung Graham, Fan Rong King( ), 57.Clements, George Fran
is, 24{25, 34, 54, 55.

Cliques, 31.Clutters, 34.Colex order, 5.Combination generation, 1{18, 25{31, 35.Gray 
odes for, 8{18.homogeneous, 10{11, 16{17, 28{29,41, 45, 48.near-perfe
t, 11{17, 29.perfe
t, 15{17, 30.Combinations, 1{35.dual, 2{4, 26{27, 29.of a multiset, 2{3, 16{18, 25, 33.with repetitions, 2{3, 11, 16{19, 25, 33.Combinatorial number system, 6, 27,31{32, 37.alternating, 9, 27.generalized, 33.Complement in a torus, 21.Complete binary tree, 39.Complete graph, 57.Compositions, 2{4, 11, 25, 38.bounded, 16, 30, 31.Compression of a set, 23, 33, 55.Contingen
y tables, 18, 31.Core set in a torus, 22{23, 33.Cribbage, 35.Cross-interse
ting sets, 31.Cross order, 20{25, 33, 56.Cy
le, universal, of 
ombinations, 35.Czerny, Carl, 47.Danh, Tran-Ngo
, 56.Davidson, George Henry, 58.Daykin, David Edward, 50, 56.De Morgan, Augustus, 1.Delta sequen
es, 46, 47.Derivative, 32.Dia
onis, Persi Warren, 57.Dimension of a ve
tor spa
e, 26.Dominoes, 35.Dual 
ombinations, 2{4, 26{27, 29.Dual set in a torus, 22{23.Dual size ve
tor, 34.Duality, 33, 55.Dvo�r�ak, Stanislav, 37.Eades, Peter Dennis, 16, 46.E
kho�, J�urgen, 50.Ehrli
h, Gideon (JILX� OERCB), 8, 42.End-around swaps, 30.Endo-order, 14, 29.Engel, Konrad Wolfgang, 56.Enns, Theodore Christian, 46.59
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60 INDEX AND GLOSSARYErd}os, P�al (= Paul), 19.Euler, Leonhard (E�ler�, Leonard� =��ler, Leonard), trails, 57, 58.Feni
hel, Robert Ross, 25.First-element swaps, 16{17, 30.Flye Sainte-Marie, Camille, 57.Fraenkel, Aviezri S (LWPXT IXFRIA�), 39.Frankl, P�eter, 51, 52.Generating fun
tions, 29, 47.Genlex order, 9{13, 16{17, 28{29, 44, 48.for Gray 
odes, 31.Golomb, Solomon Wolf, 2, 25.Graham, Ronald Lewis ( ), 57.Gray, Frank, binary 
ode, 8, 49, 58.
odes for 
ombinations, 8{18, 27{30.Grid paths, 2{3, 25.Hamilton, William Rowan, 
y
les, 8, 46.paths, 16, 30, 46, 48.Hi
key, Thomas Butler, 16, 46.Hilbert, David, basis theorem, 34.Hilton, Anthony John William, 31, 50.Homogeneous generation, 10{11, 28{30, 45.s
heme Kst, 10, 16{17, 29, 41, 48.Homogeneous polynomials, 34.Hurlbert, Glenn Howland, 57.Hypergraphs, 18.Internet, ii, iii, 26.Ising, Ernst, 
on�gurations, 26, 31, 38.Iteration versus re
ursion, 12{14, 29.Ja
kson, Bradley Warren, 57.Jenkyns, Thomas Arnold, 11.Jolivald, Philippe (= Paul de Hijo), 57.Katona, Gyula (Optim�alis Halmaz), 19.Keyboard, 10, 30.Knapsa
k problem, 7.Knuth, Donald Ervin ( ), i, iv, 38.Korsh, James F., 38.Kruskal, Joseph Bernard, Jr., 19{20.fun
tion �t, 19{21, 31{34, 51.fun
tion �t, 20{21, 32{33.{Katona theorem, 19.Latti
e paths, 2{3, 25.Le
k, Uwe, 56.Lehmer, Derri
k Henry, 5, 30, 46.Lexi
ographi
 generation, 4{7, 16{19,25{27, 29, 31, 47.Lindstr�om, Bernt Lennart Daniel,24{25, 34, 56.Linked lists, 27, 39.Linusson, Hans Svante, 55.Lips
hutz, Seymour Saul, 38.Liu, Chao-Ning ( ), 8.

Loopless generation, 8, 25, 27, 28, 41, 45, 46.Lov�asz, L�aszl�o, 32, 51.Lu
as, Fran�
ois �Edouard Anatole, 57.L�uneburg, Heinz, 39.Ma
aulay, Fran
is Sowerby, 19, 34, 50.fun
tion �t, 20{21, 32{33, 51.Matrix multipli
ation, 43.Matsumoto, Makoto ( ), 52.M
Carthy, David, 11.M
Kay, Brendan Damien, 57.Middle levels 
onje
ture, 47.Min-plus matrix multipli
ation, 43.MMIX, ii.Monomials, 34.Monotone Boolean fun
tions, 34.Mor, Moshe (XEN DYN), 39.Multi
ombinations: Combinations withrepetitions, 2{3, 11, 16{19, 25, 33.Multisets, 2, 36.
ombinations of, 2{3, 16{18, 25, 33.permutations of, 4, 14{15, 29, 30, 38.Near-perfe
t 
ombination generation,11{17, 29.Near-perfe
t permutation generation, 15, 29.Nijenhuis, Albert, 8.Nowhere di�erentiable fun
tion, 32.Olive, Gloria, 46.Order ideal, 33.Organ-pipe order, 14.Partitions, 38.ordered, see Compositions.Pas
al, Ernesto, 6.Paths on a grid, 2{3, 25.Payne, William Harris, 9, 28.Perfe
t 
ombination generation, 15{17, 30.Permutations of multisets, 4, 14{15,29, 30, 38.Pi (�), as \random" example, 2, 13,27{29, 35.Piano, 10, 30.Plain 
hanges, 10.Playing 
ards, 35.Poinsot, Louis, 35, 57.Polyhedron, 18, 33.Polynomial ideal, 34.Postorder traversal, 27.Preorder traversal, 7, 27, 43.q-multinomial 
oeÆ
ients, 30.q-nomial 
oeÆ
ients, 15, 30, 38, 47.
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INDEX AND GLOSSARY 61Radema
her, Hans, fun
tions, 32.Ranking a 
ombination, 6, 9, 19, 29, 39, 40.Read, Ronald Cedri
, 16, 46.Re
urren
es, 26, 40{42.Re
ursion, 10{12.versus iteration, 12{14, 29.Re
ursive 
oroutines, 16.Re
e
ted Gray 
ode, 28.Regular solids, 33.Reingold, Edward Martin (CLEBPIIX,MIIG OA DYN WGVI), 8.Reiss, Mi
hel, 57.Repla
ement sele
tion sorting, 39.Reversion of power series, 39.Revolving door property, 8, 29{30.s
heme �st, 8{10, 16{17, 27{29.Robinson, Robert William, 57.Root of unity, 30.Row-e
helon form, 37.Ru
ksa
k �lling, 7, 27.Ruskey, Frank, 30.Ruzsa, Imre Zolt�an, 52.Savage, Carla Diane, 47.S
h�utzenberger, Mar
el Paul, 19, 51, 56.Shadows, 18{25, 31{34.of binary strings, 35.of sub
ubes, 34.Shields, Ian Beaumont, 47.Sibling links, 27.Sideways sum, 20, 29, 37.Sim~oes Pereira, Jos�e Manuel dos Santos, 38.Simplexes, 18.Simpli
ial 
omplexes, 33{34, 55.Simpli
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