THE ART OF
COMPUTER PROGRAMMING

VOLUME 4 PRE-FASCICLE 0C

A DRAFT OF SECTION 7.1.2:
BOOLEAN EVALUATION

DONALD E. KNUTH Stanford University

A
ADDISON-WESLEY vv

KNUTH

Internet page http://wwwu-cs-faculty.stanford.edu/ knuth/taocp.html contains
current information about this book and related books.

See also http://www-cs-faculty.stanford.edu/ knuth/sgb.html for information
about The Stanford GraphBase, including downloadable software for dealing with
the graphs used in many of the examples in Chapter 7.

See also http://www-cs—-faculty.stanford.edu/ knuth/mmixware.html for down-
loadable software to simulate the MMIX computer.

Copyright © 2006 by Addison—Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher, except
that the official electronic file may be used to print single copies for personal (not
commercial) use.

Zeroth printing (revision 8), 30 January 2008

Internet
Stanford GraphBase
MMIX

PREFACE

Your mind should break free of custom, furiously seizing the bit
and recklessly choosing its own path,
where you would fear to ascend by yourself.

— SENECA, De Tranquillitate Animi (c. 50)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, and 3
were at the time of their first printings. And those carefully-checked volumes,
alas, were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make the text both interesting and authoritative, as far as it goes.
But the field is so vast, I cannot hope to have surrounded it enough to corral it
completely. Therefore I beg you to let me know about any deficiencies that you
discover.

To put the material in context, this pre-fascicle contains Section 7.1.2 of a
long, long chapter on combinatorial algorithms. Chapter 7 will eventually fill
at least three volumes (namely Volumes 4A, 4B, and 4C), assuming that I'm
able to remain healthy. It will begin with a short review of graph theory, with
emphasis on some highlights of significant graphs in the Stanford GraphBase,
from which I will be drawing many examples. Then comes Section 7.1: Zeros
and Ones, beginning with basic material in Section 7.1.1 (see pre-fascicle Ob).
Section 7.1.2, which you’re about to read here, is concerned with the study of
efficient Boolean function evaluation. Section 7.1.3 will deal with tricks and
techniques of bitwise calculation; Section 7.1.4 will discuss data structures for
Boolean functions.

The next section, 7.2, is about generating all possibilities, and it begins
with Section 7.2.1: Generating Basic Combinatorial Patterns. Fascicles for this
section have already appeared on the Web and/or in print. Section 7.2.2 will
deal with backtracking in general. And so it will go on, if all goes well; an outline
of the entire Chapter 7 as currently envisaged appears on the taocp webpage
that is cited on page ii.

iii

SENECA
Internet
Stanford GraphBase

iv PREFACE

The topic of Boolean functions and bit manipulation can of course be in-
terpreted so broadly that it encompasses the entire subject of computer pro-
gramming. My original title for Section 7.1 — “Bit Fiddling” — was much more
modest; I decided, however, that those words were a bit too low-brow. The real
goal of this fascicle is to focus on concepts that appear at the lowest levels, on
which we can erect significant superstructures. And even these apparently lowly
notions turn out to be surprisingly rich, with explicit ties to Sections 2.3.4.4,
4.3.1, 4.6.4, and 5.3.4 of the first three volumes. I strongly believe in building
up a firm foundation, so I have discussed Boolean topics much more thoroughly
than I will be able to do with material that is newer or less basic. After typing
the manuscript I was astonished to discover that I had come up with 88 exercises,
even though —believe it or not —I had to eliminate quite a lot of the interesting
material that appears in my files.

My notes on combinatorial algorithms have been accumulating for more
than forty years, so I fear that in several respects my knowledge is woefully
behind the times. Please look, for example, at the exercises that I've classed as
research problems (rated with difficulty level 46 or higher), namely exercises 21
and 24; I’ve also implicitly mentioned or posed additional unsolved questions in
the answers to exercises 17, 40, 55, 61, 63, 70, and 80. Are those problems still
open? Please let me know if you know of a solution to any of these intriguing
questions. And of course if no solution is known today but you do make progress
on any of them in the future, I hope you’ll let me know.

I urgently need your help also with respect to some exercises that I made up
as I was preparing this material. I certainly don’t like to receive credit for things
that have already been published by others, and most of these results are quite
natural “fruits” that were just waiting to be “plucked.” Therefore please tell
me if you know who deserves to be credited, with respect to the ideas found in
exercises 11, 14, 16, 27, 29, 30, 34, 40, and 88, and/or the answer to exercise 38.
Furthermore I've cited unpublished results of Frank Liang, Mike Paterson, and
Rich Schroeppel; do you know of any related publications?

The text presents an approach to synthesis based on so-called “footprints”
of Boolean functions, which I haven’t seen in the literature. Is this method new,
or did I overlook some relevant papers?

I shall happily pay a finder’s fee of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I'll actually reward you with immortal
glory instead of mere money, by publishing your name in the eventual book:—)

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
14 March 2006

Liang
Paterson
Schroeppel
footprints
Knuth

PREFACE v

Helpful hints. Readers of Section 7.1.2 should ideally have already read (or
at least skimmed) Section 7.1.1. In particular, they should not be shocked or
puzzled by notations such as
i) v(z1z2...2pn) or V((T12Z2...Tpn)2) for the sum z1 + 22 + - - + zy;
i) Sk, ks,....k, (z) for the symmetric function that is true when va = ky or kg or
. or ky;

iii) (z1@2...xak_1) for the threshold function S>j that equals the median value
of {z1,x2,...,22k—1} (which is also the majority value).

©c o o ¢ 0 v 0 0 v 0 0 v 0 0 0 0 0

I thank the Stanford University InfoLab and Sun Microsystems Laboratories
for generously donating many hours of computer time on large, fast machines,
thereby allowing me to investigate the Boolean functions of five variables.

notations

sideways sum

symmetric function

median

majority

Stanford University InfoLab
Sun Microsystems Laboratories
five variables

0 COMBINATORIAL ALGORITHMS (F0C)

By and large the minimization of switching components
outweighs all other engineering considerations
in designing economical logic circuits.

— H. A. CURTIS, A New Approach to the Design of Switching Circuits (1962)

He must be a great calculator indeed who succeeds.
Simplify, simplify.

— HENRY D. THOREAU, Walden; or, Life in the Woods (1854)

7.1.2. Boolean Evaluation

Our next goal is to study the efficient evaluation of Boolean functions, much as
we studied the evaluation of polynomials in Section 4.6.4. One natural way to
investigate this topic is to consider chains of basic operations, analogous to the
polynomial chains discussed in that section.

A Boolean chain, for functions of n variables (z1,...,2,), is a sequence
(Tna1s- - - Tnir) with the property that each step combines two of the preceding
steps:

Ti = Tj@) O Th(i), forn+1<i:<n+r, (1)

where 1 < j(¢) < 7 and 1 < k(i) < ¢, and where o; is one of the sixteen binary
operators of Table 7.1.1-1. For example, when n = 3 the two chains

T4 =21 N\ To Ty =22Dx3
T5 = T1 N\ T3 and T =1 N\ T4 (2)
Tg = T4 V Ty Trg = T3 D Ty

both evaluate the “mux” or “if-then-else” function z¢ = (17 z3: x3), which
takes the value z3 or z3 depending on whether 1 is 1 (true) or 0 (false).

engineering

CURTIS

THOREAU

evaluation of Boolean functions—

Boolean chain

straight-line computation, see Boolean chain
mux

if-then-else

selection function, see mux

mux (multiplex)

7.1.2 BOOLEAN EVALUATION 1

(Notice that the left-hand example in (2) uses the simplified notation ‘x5 =
Z1 A x3’ to specify the NOT-BUT operation, instead of the form ‘zs = z1 C x5’
that appears in Table 7.1.1-1. The main point is that, regardless of notation,
every step of a Boolean chain is a Boolean combination of two prior results.)

Boolean chains correspond naturally to electronic circuits, with each step
in the chain corresponding to a “gate” that has two inputs and one output.
Electrical engineers traditionally represent the Boolean chains of (2) by circuit
diagrams such as

2 1
1 E.E):'\:Z} and 2)) ; jD . (3)
3 3

They need to design economical circuits that are subject to various technological
constraints; for example, some gates might be more expensive than others, some
outputs might need to be amplified if reused, the layout might need to be planar
or nearly so, some paths might need to be short. But our chief concern in this
book is software, not hardware, so we don’t have to worry about such things.
For our purposes, all gates have equal cost, and all outputs can be reused as
often as desired. (Jargonwise, our Boolean chains boil down to circuits in which
all gates have fan-in 2 and unlimited fan-out.)
Furthermore we shall depict Boolean chains as binary trees such as

3
@/@\@ and % (4)
2 3

1 2 1 3

instead of using circuit diagrams like (3). Such binary trees will have overlapping
subtrees when intermediate steps of the chain are used more than once. Every
internal node is labeled with a binary operator; external nodes are labeled with
an integer k, representing the variable zj. The label ‘&’ in the left tree of (4)
stands for the NOT-BUT operator, since £ Ay = [z < y]; similarly, the BUT-NOT
operator, x A g, can be represented by the node label ‘®)’.

Several different Boolean chains might have the same tree diagram. For
example, the left-hand tree of (4) also represents the chain

.’134:51 /\.T,‘g, s = I /\.T,‘z, e = Iy \/.TJ4.

Any topological sorting of the tree nodes yields an equivalent chain.

Given a Boolean function f of n variables, we often want to find a Boolean
chain such that zn4, = f(z1,...,2Zn), where r is as small as possible. The
combinational complezity C(f) of a function f is the length of the shortest chain
that computes it. To save excess verbiage, we will simply call C(f) the “cost
of f.” The mux function in our examples above has cost 3, because one can show
by exhaustive trials that it can’t be produced by any Boolean chain of length 2.

The DNF and CNF representations of f, which we studied in Section 7.1.1,
rarely tell us much about C(f), since substantially more efficient schemes of

NOT-BUT

circuits

gate

engineers

fan-out and fan-in
binary trees
overlapping subtrees
BUT-NOT
topological sorting
combinational complexity
DNF

CNF

2 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

calculation are usually possible. For example, in the discussion following 7.1.1—
(30) we found that the more-or-less random function of four variables whose
truth table is 1100 1001 0000 1111 has no DNF expression shorter than

(Zy AT ANT3) V(B AT3NT) V(T2 A3 Azg) V(21 A T2). (5)

This formula corresponds to a Boolean chain of 10 steps. But that function can
also be expressed more cleverly as

(((m2 A Z4) ® Z3) A T1) D T2, (6)

so its complexity is at most 4.

How can nonobvious formulas like (6) be discovered? We will see that a
computer can find the best chains for functions of four variables without doing an
enormous amount of work. Still, the results can be quite startling, even for people
who have had considerable experience with Boolean algebra. Typical examples
of this phenomenon can be seen in Fig. 9, which illustrates the four-variable
functions that are perhaps of greatest general interest, namely the functions
that are symmetric under all permutations of their variables.

Consider, for example, the function Sa(z1, z2,x3,4), for which we have

1 0000 0000 1111 1111
o 0000 1111 0000 1111
T3 0011 0011 0011 0011
T4 0101 0101 0101 0101
T5 =21 P 3 0011 0011 1100 1100
T6 = 1 ® o 0000 1111 1111 0000 (7)
Ty = T3 ® T4 0110 0110 0110 0110
zg = 5 V g 0011 1111 1111 1100
Lo = 6 ® T7 0110 1001 1001 0110
T10 = T8 A To 0001 0110 0110 1000

according to Fig. 9. Truth tables are shown here so that we can easily verify
each step of the calculation. Step zg yields a function that is true whenever
Ty # T or 1 # x3; and xg = z1 D T2 ® x3 D x4 is the parity function (z1 + z2 +
z3+x4) mod 2. Therefore the final result, 19, is true precisely when exactly two
of {z1, s, 3,74} are 1; these are the cases that satisfy zg and have even parity.

Several of the other computational schemes of Fig. 9 can also be justified
intuitively. But some of the chains, like the one for S; 4, are quite amazing.

Notice that the intermediate result z¢ is used twice in (7). In fact, no six-
step chain for the function Sa(z1, 2,3, 24) is possible without making double
use of some intermediate subexpression; the shortest algebraic formulas for Ss,
including nice symmetrical ones like

((Il A .’L'Q) V (.’133 A 1‘4)) (&%) ((Il V .’132) A (.1'3 V .’L'4)), (8)

all have cost 7. But Fig. 9 shows that the other symmetric functions of four vari-
ables can all be evaluated optimally via “pure” binary trees, without overlapping
subtrees except at external nodes (which represent the variables).

pi, random
symmetric functions—
Truth tables

parity

binary trees

7.1.2 BOOLEAN EVALUATION 3

Sa

1 23 412 3 4 1 23 412 3 4

1 23 412 3 4

1 23 412 3 4

Fig. 9. Optimum Boolean chains for the symmetric functions of four variables.

In general, if f(z1,...,zy) is any Boolean function, we say that its length
L(f) is the number of binary operators in the shortest formula for f. Obviously
L(f) > C(f); and we can easily verify that L(f) = C(f) whenever n < 3, by
considering the fourteen basic types of 3-variable functions in 7.1.1-(g5). But we
have just seen that L(S2) = 7 exceeds C(S2) = 6 when n = 4, and in fact L(f)
is almost always substantially larger than C(f) when n is large (see exercise 49).

The depth D(f) of a Boolean function f is another important measure of its
inherent complexity: We say that the depth of a Boolean chain is the length of the
longest downward path in its tree diagram, and D(f) is the minimum achievable
depth when all Boolean chains for f are considered. All of the chains illustrated
in Fig. 9 have not only the minimum cost but also the minimum depth — except
in the cases Sy 3 and S1,2, where we cannot simultaneously achieve cost 6 and
depth 3. The formula

S2,3($1,1}2,.’E3,.’E4) = ((.’131 N $2) D (.’133 A\ .’174)) Vv ((.’121 Vv .772) A\ (.’133 (&%) $4)) (9)
shows that D(Sz,3) = 3, and a similar formula works for S ».

Optimum chains for n = 4. Exhaustive computations for 4-variable functions
are feasible because such functions have only 2'® = 65,536 possible truth tables.
In fact we need only consider half of those truth tables, because the complement f
of any function f has the same cost, length, and depth as f itself.

length

formula complexity, see length
depth

functions of four variables—
complement

4 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

Let’s say that f(x1,...,2,) is normal if £(0,...,0) =0, and in general that
f(z1,...,2z0) @ f(0,...,0) (10)

is the “normalization” of f. Any Boolean chain can be normalized by normalizing
each of its steps and by making appropriate changes to the operators; for if
(#1,...,%; 1) are the normalizations of (x1,...,z; 1) and if z; = x;(;) 0; Ty (;) as
in (1), then #; is clearly a binary function of &;(;) and ;). (Exercise 7 presents
an example.) Therefore we can restrict consideration to normal Boolean chains,
without loss of generality.

Notice that a Boolean chain is normal if and only if each of its binary
operators o; is normal. And there are only eight normal binary operators—
three of which, namely |, L, and R, are trivial. So we can assume that all
Boolean chains of interest are formed from the five operators A, C, D, V, and &,
which are denoted respectively by ®, Q, &, @, and @ in Fig. 9. Furthermore
we can assume that j(i) < k(¢) in each step.

There are 2'° = 32,768 normal functions of four variables, and we can com-
pute their lengths without difficulty by systematically enumerating all functions
of length 0, 1, 2, etc. Indeed, L(f) = r implies that f = g o h for some g and h,
where L(g) + L(h) = r — 1 and o is one of the five nontrivial normal operators;
so we can proceed as follows:

Algorithm L (Find normal lengths). This algorithm determines L(f) for all

normal truth tables 0 < f < 22"~1, by building lists of all nonzero normal

functions of length r for r > 0.

L1. [Initialize.] Let L(0) + 0 and L(f) ¢+ oo for 1 < f < 22"~!. Then, for
1<k <n,set L(z) < 0 and put z; into list 0, where

o = (22 -1/ " +1) (11)
is the truth table for zy. (See exercise 8.) Finally, set ¢ « 22"-1 _p 1,
c is the number of places where L(f) = oc.
L2. [Loop on r.] Do step L3 for r = 1, 2, ...; eventually the algorithm will
terminate when ¢ becomes 0.
L3. [Loop on j and k.] Do step L4 for j =0, 1, ..., and k =r — 1 — j, while
i<k

L4. [Loop on g and h.] Do step L5 for all g in list j and all & in list k. (If j = k,
it suffices to restrict h to functions that follow g in list k.)

L5. [Loop on f.] Do step L6 for f =g&h, f =g& h, f =g&h, f =g | h, and
f=g®h. (Here g & h denotes the bitwise AND of the integers g and h; we
are representing truth tables by integers in binary notation.)

L6. [Is f new?] If L(f) = oo, set L(f) + r, ¢ + ¢ — 1, and put f in list r.
Terminate the algorithm if c=0. |

Exercise 10 shows that a similar procedure will compute all depths D(f).

With a little more work, we can in fact modify Algorithm L so that it finds
better upper bounds on C(f), by computing a heuristic bit vector ¢(f) called

normal
normalization
bitwise

truth tables
depths

7.1.2 BOOLEAN EVALUATION 5

Table 1
THE NUMBER OF FOUR-VARIABLE FUNCTIONS WITH GIVEN COMPLEXITY

C(f) Classes Functions

L(f) Classes Functions D(f) Classes Functions

0 2 10 0 2 10 0 2 10
1 2 60 1 2 60 1 2 60
2 5 456 2 5 456 2 17 1458
3 20 2474 3 20 2474 3 179 56456
4 34 10624 4 34 10624 4 22 7552
5 75 24184 5 75 24184 5 0 0
6 72 25008 6 68 24640 6 0 0
7 12 2720 7 16 3088 7 0 0

the “footprint” of f. A normal Boolean chain can begin in only 5(3) different
ways, since the first step x, 1 must be either z; A 3 or 1 A g or 1 A T3 or
Z1VZg Or 1 B To OF T3 AZ3 OT - -+ OF T—1 D Tp. Suppose P(f) is a bit vector of
length 5(3) and U(f) is an upper bound on C(f), with the following property:
Every 1 bit in ¢(f) corresponds to the first step of some Boolean chain that
computes f in U(f) steps.

Such pairs (U(f), #(f)) can be computed by extending the basic strategy of
Algorithm L. Initially we set U(f) < 1 and we set ¢(f) to an appropriate vector
0...010...0, for all functions f of cost 1. Then, for r =2, 3, ..., we proceed to
look for functions f = g o h where U(g) + U(h) =7 — 1, as before, but with two
changes: (1) If the footprints of g and h have at least one element in common,
namely if ¢(g) & @#(h) # 0, then we know that C(f) < r — 1, so we can decrease
U(f) if it was > r. (2) If the cost of g o h is equal to (but not less than) our
current upper bound U(f), we can set ¢(f) < &(f) | (¢(g) | ¢(h)) if U(f) =,
o(f) <« o(f) | (¢(g9) & d(h)) if U(f) = r — 1. Exercise 11 works out the details.

It turns out that this footprint heuristic is powerful enough to find chains of
optimum cost U(f) = C(f) for all functions f, when n = 4. Moreover, we’ll see
later that footprints also help us solve more complicated evaluation problems.

According to Table 7.1.1-5, the 2 = 65,536 functions of four variables
belong to only 222 distinct classes when we ignore minor differences due to
permutation of variables and/or complementation of values. Algorithm L and
its variants lead to the overall statistics shown in Table 1.

*Evaluation with minimum memory. Suppose the Boolean values z1, ..., T,
appear in n registers, and we want to evaluate a function by performing a
sequence of operations having the form

Tji) & Tjgi) O Tk(i)s for1 <2<, (12)
where 1 < j(7) <mn and 1 < k(%) < n and o; is a binary operator. At the end of
the computation, the desired function value should appear in one of the registers.
When n = 3, for example, the four-step sequence

= 00001111 =z = 00110011

T1 ¢ T1 D xo
T3 ¢ T3 N\ 1
To — T2 N T1
T3 < T3 V o

(z1

(z1 = 00111100
(z1 = 00111100
(z1 = 00111100
(z1 = 00111100

T2 = 00110011
T2 = 00110011
z2 = 00000011
z2 = 00000011

x3 = 01010101)
x3 = 01010101)
3 = 00010100)
@3 = 00010100)
@3 = 00010111)

(13)

footprint

length stats

cost stats

depth stats
minimum memory—
registers

6 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

computes the median (zyz223) and puts it into the original position of z3. (All
eight possibilities for the register contents are shown here as truth tables, before
and after each operation.)

In fact we can check the calculation by working with only one truth table at a
time, instead of keeping track of all three, if we analyze the situation backwards.
Let fi(x1,...,T,) denote the function computed by steps I, I + 1, ..., r of the
sequence, omitting the first [— 1 steps; thus, in our example, f2(z1,z2, z3) would
be the result in x3 after the three steps x5 < x3Ax1, To < Ta ATy, T3 3V T2.
Then the function computed in register x3 by all four steps is

fi(z1, @2, 23) = fa(z1 ® 22, 22, T3). (14)

Similarly fa(21, 2, 3) = fa(21, 2,3 A1), fa3(1,22,23) = fa(x1, 22 A T1,23),

fa(z1,22,23) = f5(z1, 22,23 V 22), and f5(z1, 22, z3) = x3. We can therefore go

back from f5 to f4 to - - - to f1 by operating on truth tables in an appropriate way.
For example, suppose f(z1,z2,z3) is a function whose truth table is

t = apaiazazaqasaear;
then the truth table for g(z1,x2,z3) = f(z1 ® x2,22,23) is
U = apa1060704050203,
obtained by replacing a, by a,/, where
z = (z12223)2 implies 7' = ((z1Dz2)T273)2.
Similarly the truth table for, say, h(x1,z2,23) = f(z1,22,23 A 21) is
VU = agGpa20204050607.
And we can use bitwise operations to compute v and v from ¢:
u=td ((t® (t>4)® (t < 4)) & (00110011),), (15)
v=ta ((t® (t>> 1)) & (01010000)3). (16)

Let C,,(f) be the length of a shortest minimum-memory computation for f.
The backward-computation principle tells us that, if we know the truth tables
of all functions f with Cp,(f) < 7, we can readily find all the truth tables of
functions with Cp,(f) = r. Namely, we can restrict consideration to normal
functions as before. Then, for all normal g such that Cp,(g) = r — 1, we can
construct the 5n(n — 1) truth tables for

g(x1,. .., 2 1,2 0Tk, Tjy1,...,Tn) (17)

and mark them with cost r if they haven’t previously been marked. Exercise 14
shows that those truth tables can all be computed by performing simple bitwise
operations on the truth table for g.

When n = 4, all but 13 of the 222 basic function types turn out to have
Cwm(f) = C(f), so they can be evaluated in minimum memory without increasing
the cost. In particular, all of the symmetric functions have this property —
although that fact is not at all obvious from Fig. 9. Five classes of functions

median

truth tables

bitwise operations
backward-computation principle
normal functions

7.1.2 BOOLEAN EVALUATION 7

have C(f) = 5 but C,,,(f) = 6; eight classes have C(f) = 6 but Cy,,(f) = 7. The optimum Boolean evaluation—

most interesting example of the latter type is probably the function (z1 V z2) @ ngﬁl‘i‘;"?ength
(3 V z4) ® (21 A 2 A 23 A 4), which has cost 6 because of the formula minimum-memory
1 D (.’133 \% .’IJ4) D (1‘2 AN (.’1_31 V (.’E3 N Z‘4))), (18)

but it has no minimum-memory chain of length less than 7. (See exercise 15.)

*Determining the minimum cost. The exact value of C(f) can be found
by observing that all optimum Boolean chains (2,41, -.,Zntr) for f obviously
satisfy at least one of three conditions:

i) Tnyr = xj 0 Tk, where z; and xj use no common intermediate results;

i) Tpy1 = T; o T, where either z; or xj is not used in steps zn42, ..., Tnir;
iii) Neither of the above, even when the intermediate steps are renumbered.
In case (i) we have f = g o h, where C(g) + C(h) = r — 1, and we can call this
a “top-down” construction. In case (ii) we have f(z1,...,zn) = g(z1,...,2j_1,
ZjOTk, Tjt1,.-.,%n), where C(g) = r—1; we call this construction “bottom-up.”

The best chains that recursively use only top-down constructions correspond
to minimum formula length, L(f). The best chains that recursively use only
bottom-up constructions correspond to minimum-memory calculations, of length
Cm(f)- We can do better yet, by mixing top-down constructions with bottom-up
constructions; but we still won’t know that we’ve found C(f), because a special
chain belonging to case (iii) might be shorter.

Fortunately such special chains are rare, because they must satisfy rather
strong conditions, and they can be exhaustively listed when n and r aren’t too
large. For example, exercise 19 proves that no special chains exist when r < n-+2;
and when n = 4, r = 6, there are only 25 essentially different special chains that
cannot obviously be shortened:

12 12 12 12 12 3 3 3
12 12 12 12
4 4 2 2 4 2 4 2 4 4 4 4 1 2
1 1 1 1 2 2 2 3 4
312 3 3 3 3 1 1 1 12
12 12 12 12 12 3 3 3
12 12 12
1 2 2 2 2 1 2 2 2 2
4 4 4 4 4 1 1 1
3 1 1 1 3 4 4 4
12 3 3 3 12 3 3 3
12 12 12 12 12 12

By systematically trying 5" possibilities in every special chain, one for each way
to assign a normal operator to the internal nodes of the tree, we will find at least

8 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

one function f in every equivalence class for which the minimum cost C(f) is
achievable only in case (iii).

In fact, when n = 4 and r = 6, these 25 - 56 = 390,625 trials yield only
one class of functions that can’t be computed in 6 steps by any top-down-plus-
bottom-up chain. The missing class, typified by the partially symmetric function
({(z1maw3) V z4) @ (z1AT2AT3), can be reached in six steps by appropriately
specializing any of the first five chains illustrated above; for example, one way is

5 =T1 Nx2, Te=T1V T2, xT7=1T3DTs,
T8 = T4 NT5, T9=TeNZTy, T10=TgV Ty, (19)

corresponding to the first special chain. Since all other functions have L(f) < 7,
these trial calculations have established the true minimum cost in all cases.

Historical notes: The first concerted attempts to evaluate all Boolean func-
tions f(w,z,y,z) optimally were reported in Annals of the Computation Labo-
ratory of Harvard University 27 (1951), where Howard Aiken’s staff presented
heuristic methods and extensive tables of the best switching circuits they were
able to construct. Their cost measure V(f) was different from the cost C(f)
that we’ve been considering, because it was based on “control grids” of vacuum
tubes: They had three kinds of gates, NOR, OR, and NAND, each of which could
take k inputs with cost k. Every input to such a gate could be either a variable,
or the complement of a variable, or the result of a previous gate. Furthermore
the function being evaluated was represented at the top level as an AND of any
number of gates, with no additional cost.

With those cost criteria, a function might not have the same cost as its com-
plement, because AND gates were possible only at the top level. One could evalu-
ate £ Ay as NOR(Z, §), with cost 2; but the cost of ZV (§AZ) =NAND(z, OR(y, 2))
was 4 while its complement z A (y V z) = AND(NOR(Z), OR(y, z)) cost only 3.
Therefore the Harvard researchers needed to consider 402 essentially differ-
ent classes of 4-variable functions instead of 222 (see the answer to exercise
7.1.1-125). Of course in those days they were working by hand. They found
V(f) < 20 in all cases, except for the 64 functions equivalent to Sp1(w, z,y,z) V
(S2(w,z,y) A z), which they evaluated with 20 control grids as follows:

g1 = NOR(QD?:E): g2 = NAND(ga Z), gs = NOR(U}, x)v
f = AND(NAND(g4, g2), NAND(gs, NOR(%, 2)),
NOR(NOR(g37 g: Z)7 NOR(gl)y 925 93))) - (20)

The first computer program to find provably optimum circuits was written
by Leo Hellerman [IEEE Transactions EC-12 (1963), 198-223], who determined
the fewest NOR gates needed to evaluate any given function f(z,y,z). He re-
quired every input of every gate to be either an uncomplemented variable or
the output of a previous gate; fan-in and fan-out were limited to at most 3.
When two circuits had the same gate count, he preferred the one with smallest
sum-of-inputs. For example, he computed Z = NOR(z) with cost 1; zVyV z =
NOR(NOR(z,y, z)) with cost 2; (zyz) = NOR(NOR(z,y), NOR(z, z), NOR(y, z))

Aiken

control grids
vacuum tubes
gates

NOR

OR

NAND

AND
symmetric funcs
Hellerman
fan-in

fan-out
majority
symmetric4+

7.1.2 BOOLEAN EVALUATION 9

Table 2
THE NUMBER OF FIVE-VARIABLE FUNCTIONS WITH GIVEN COMPLEXITY
C(f) Classes Functions L(f) Classes Functions D(f) Classes Functions
0 2 12 0 2 12 0 2 12
1 2 100 1 2 100 1 2 100
2 5 1140 2 5 1140 2 17 5350
3 20 11570 3 20 11570 3 1789 6702242
4 93 109826 4 93 109826 4 614316 4288259592
5 389 995240 5 366 936440 5 0 0
6 1988 8430800 6 1730 7236880 6 0 0
7 11382 63401728 7 8782 47739088 7 0 0
8 60713 383877392 8 40297 250674320 8 0 0
9 221541 1519125536 9 141422 955812256 9 0 0
10 293455 2123645248 10 273277 1945383936 10 0 0
11 26535 195366784 11 145707 1055912608 11 0 0
12 1 1920 12 4423 31149120 12 0 0

with cost 4; Si(z,y,z) = NOR(NOR(z,y, 2), (zyz)) with cost 6; etc. Since he
limited the fan-out to 3, he found that every function of three variables could be
evaluated with cost 7 or less, except for the parity function z@y®z = (z=y) =z,
where x=y has cost 4 because it is NOR(NOR(z, NOR(z, y)), NOR(y, NOR(z, 3))).

Electrical engineers continued to explore other cost criteria; but four-variable
functions seemed out of reach until 1977, when Frank M. Liang established the
values of C(f) shown in Table 1. Liang’s unpublished derivation was based on
a study of all chains that cannot be reduced by the bottom-up construction.

The case n = 5. There are 616,126 classes of essentially different functions
f(z1,z2, 3, T4, x5), according to Table 7.1.1-5. Computers are now fast enough
that this number is no longer frightening; so the author decided while writing
this section to investigate C(f) for all Boolean functions of five variables. Thanks
to a bit of good luck, complete results could indeed be obtained, leading to the
statistics shown in Table 2.

For this calculation Algorithm L and its variants were modified to deal
with class representatives, instead of with the entire set of 23! normal truth
tables. The method of exercise 7.2.1.2-20 made it easy to generate all functions
of a class, given any one of them, resulting in a thousand-fold speedup. The
bottom-up method was enhanced slightly, allowing it to deduce for example that
f(z1 A z2,%1 V T2,T3,T4,75) has cost < r if C(f) = r — 2. After all classes
of cost 10 had been found, the top-down and bottom-up methods were able to
find chains of length < 11 for all but seven classes of functions. Then the time-
consuming part of the computation began, in which approximately 53 million
special chains with n = 5 and r = 11 were generated; every such chain led to
511 = 48,828,125 functions, some of which would hopefully fall into the seven
remaining mystery classes. But only six of those classes were found to have 11-
step solutions. The lone survivor, whose truth table is 169ae443 in hexadecimal
notation, is the unique class for which C(f) = 12, and it also has L(f) = 12.

The resulting constructions of symmetric functions are shown in Fig. 10.
Some of them are astonishingly beautiful; some of them are beautifully simple;

parity function

engineers

Liang

bottom-up

functions of five variables—
Knuth

five variables

hexadecimal truth tables

10 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

monotonic
minimum memory

Fig. 10. Boolean chains of minimum cost
for symmetric functions of five variables.

and others are simply astonishing. (Look, for example, at the 8-step computation
of Sz 3(z1, 2, z3, 4, x5), or the elegant formula for S 3 4, or the nonmonotonic
chains for Sy 5 and Ss345.) Incidentally, Table 2 shows that all 5-variable func-
tions have depth < 4, but no attempt to minimize depth has been made in Fig. 10.

It turns out that all of these symmetric functions can be evaluated in
minimum memory without increasing the cost. But no simple proof of that
fact is known.

7.1.2 BOOLEAN EVALUATION 11

Multiple outputs. We often want to evaluate several different Boolean func-
tions f1(z1,.--,%n), -+, fm(z1,...,2,) at the same input values 1, ..., Zy;
in other words, we often want to evaluate a multibit function y = f(x), where
y = fi...fm is a binary vector of length m and x = ...z, is a binary
vector of length n. With luck, much of the work involved in the computation of
one component value f;(z1,...,%,) can be shared with the operations that are
needed to evaluate the other component values fx(z1,...,2n).

Let C(f) = C(f1 ... fm) be the length of a shortest Boolean chain that com-
putes all of the nontrivial functions f;. More precisely, the chain (zp41,. .., Tnir)
should have the property that, for 1 < j < m, either f;(x1,...,2,) = 2y or
fi(@1,. .., 2n) = Ty, for some I(j) with 0 < I(j) < n+r, where o = 0. Clearly
C(f) <C(f1)+ -+ C(fm), but we might be able to do much better.

For example, suppose we want to compute the functions z; and zg defined by
(2120)2 = @1 + 2 + w3, (21)

the two-bit binary sum of three Boolean variables. We have
z1 = (T1T273) and 20 = 1D T2 D w3, (22)

so the individual costs are C(z1) = 4 and C(z¢) = 2. But it’s easy to see that
the combined cost C(z312p) is at most 5, because 1 @ 2 is a suitable first step
in the evaluation of each bit z;:

Ty =21 D T2, 20=2T5=2T3DTyg;

Te = T3 NTy, Tr=T1NT2, 21 =Tg—=2TgVI7. (23)

Furthermore, exhaustive calculations show that C(z12¢) > 4; hence C(z12¢) = 5.

Electrical engineers traditionally call a circuit for (21) a full adder, because
n such building blocks can be hooked together to add two n-bit numbers. The
special case of (22) in which z3 = 0 is also important, although it boils down
simply to

z1 = T1 N Xy and Z0 = T1 D xy (24)

and has complexity 2; engineers call it a “half adder” in spite of the fact that
the cost of a full adder exceeds the cost of two half adders.

The general problem of radix-2 addition

(In—l e $1$0)2
(Yn—1--- Y1%0)2 (25)

(Zn Zn—1.-+ 21 20)2

is to compute n + 1 Boolean outputs z,...z129 from the 2n Boolean inputs
Tp_1...-T1ToYn_1 ---Y1Yo; and it is readily solved by the formulas

ci+1 = (T;yi¢;), 2z = T ©Y; Dy, for 0<j < m, (26)

where the ¢; are “carry bits” and we have co = 0, z, = c,. Therefore we can
use a half adder to compute ¢; and zg, followed by n — 1 full adders to compute
the other ¢’s and z’s, accumulating a total cost of 5n — 3. And in fact N. P.
Red’kin [Problemy Kibernetiki 38 (1981), 181-216] has proved that 5n — 3 steps

multiple outputs—
vector

engineers

full adder

half adder

binary addition
carry bits
Red’kin

12 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

are actually necessary, by constructing an elaborate 35-page proof by induction,
which concludes with Case 2.2.2.3.1.2.3.2.4.3(!). But the depth of this circuit,
2n —1, is far too large for practical parallel computation, so a great deal of effort
has gone into the task of devising circuits for addition that have depth O(logn)
as well as reasonable cost. (See exercises 41-44.)

Now let’s extend (21) and try to compute a general “sideways sum”

(2lgn) - 2120)2 = T+ Tp+ o+ T, (27)
If n = 2k+1, we can use k full adders to reduce the sum to (21 +- - -+,) mod 2
plus k bits of weight 2, because each full adder decreases the number of weight-1
bits by 2. For example, if n =9 and k = 4 the computation is
T10=T1DT20T3, T11=TaDT5DT6, T12=T7DTDT9, T13=T10DT11DT12,
y1=(17273), Yo =(T4T5Ts), Y3 =(T7T8T9), Ya=(T10T11T12),
and we have z1 + -+ 29 = 213 + 2(y1 + y2 + y3s + v4). If n = 2k is even, a

similar reduction applies but with a half adder at the end. The bits of weight 2
can then be summed in the same way; so we obtain the recurrence

s(n) = 5[n/2| — 3[n even] + s(|n/2]), s(0) =0, (28)
for the total number of gates needed to compute z|1gp| ... 2; 2y. (A closed formula
for s(n) appears in exercise 30.) We have s(n) < 5n, and the first values

n=12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
s(n)=0 259 12 17 20 26 29 34 37 44 47 52 55 63 66 71 74 81

show that the method is quite efficient even for small n. For example, when
n = 5 it produces

which computes three different symmetric functions zo = Sa5(x1,...,25), 21 =
S2.3(x1,...,5), 20 = S1,3,5(¢1,...,25) in just 12 steps. The 10-step computa-
tion of Sy 5 is optimum, according to Fig. 10; of course the 4-step computation
of Si 35 is also optimum. Furthermore, although C(S33) = 8, the function S 3
is computed here in a clever 10-step way that shares all but one gate with Sy 5.

Notice that we can now compute any symmetric function efficiently, because
every symmetric function of {z1,...,%,} is a Boolean function of z|jgp| . . . 21 2.
We know, for example, that any Boolean function of four variables has complexity
< 7; therefore any symmetric function Sk, ... k, (1, ..., Z15) costs at most s(15)+
7 = 62. Surprise: The symmetric functions of n variables were among the hardest
of all to evaluate, when n was small, but they’re among the easiest when n > 10.

parallel computation
sideways sum
binary recurrence
symmetric functions

7.1.2 BOOLEAN EVALUATION 13

We can also compute sets of symmetric functions efficiently. If we want, say,
to evaluate all n 4+ 1 symmetric functions Si(z1,...,2,) for 0 < k < n with a
single Boolean chain, we simply need to evaluate the first n+1 minterms of zy, 2;,
.-+, Z|1gn|- For example, when n = 5 the minterms that give us all functions Sk
are respectively So =2ZoNZ1 N\ 22, Sl =ZoNZ1 A\ 22y ey S5 =20 N Z1 N\ 29.

How hard is it to compute all 2" minterms of n variables? Electrical
engineers call this function an n-to-2" binary decoder, because it converts n bits
T1 ..., into a sequence of 2" bits dod; . .. dan 1, exactly one of which is 1. The
principle of “divide and conquer” suggests that we first evaluate all minterms
on the first [n/2] variables, as well as all minterms on the last |n/2]; then 27
AND gates will finish the job. The cost of this method is ¢(n), where

t(0) =¢(1) = 0; t(n) =2"+t([n/2]) +t(|n/2]) forn > 2. (30)
So t(n) = 2" 4+ 0(2"/?); there’s roughly one gate per minterm. (See exercise 32.)

Functions with multiple outputs often help us build larger functions with
single outputs. For example, we’ve seen that the sideways adder (27) allows
us to compute symmetric functions; and an n-to-2"™ decoder also has many
applications, in spite of the fact that 2" can be huge when n is large. A case in
point is the 2™-way multiplezer M, (x1,...,Zm;Yo,Y1,---,Y2m_1), also known
as the m-bit storage access function, which has n = m 4 2™ inputs and takes
the value yx when (21 ...2m,)2 = k. By definition we have

2m—1

Mm(xla---ameyanla---,iWM—l) = \/ (dk /\yk)v (31)
k=0

where dj, is the kth output of an m-to-2™ binary decoder; thus, by (30), we can
evaluate M, with 2™ + (2™—1) + ¢t(m) = 3n + O(y/n) gates. But exercise 39
shows that we can actually reduce the cost to only 2n + O(y/n). (See also
exercise 79.)

Asymptotic facts. When the number of variables is small, our exhaustive-
search methods have turned up lots of cases where Boolean functions can be
evaluated with stunning efficiency. So it’s natural to expect that, when more
variables are present, even more opportunities for ingenious evaluations will arise.
But the truth is exactly the opposite, at least from a statistical standpoint:

Theorem S. The cost of almost every Boolean function f(z1,...,%,) exceeds
2"/n. More precisely, if ¢(n,r) Boolean functions have complexity < r, we have
(r—Dle(n,r) < 227 (n+r—1)%. (32)

Proof. If a function can be computed in r — 1 steps, it is also computable by
an r-step chain. (This statement is obvious when r = 1; otherwise we can let
Tptr = Tpgr—1 A Tnyr—1.) We will show that there aren’t very many r-step
chains, hence we can’t compute very many different functions with cost < r.
Let 7 be a permutation of {1,...,n+r} that takes 1+— 1, ..., n—n, and
n—+r — n+r; there are (r—1)! such permutations. Suppose (Zp41,...,Znir) iSa

minterms

engineers

binary decoder

divide and conquer
binary recurrence
2m-way multiplexer
storage access function
asymptotic methods—
lower bounds—

14 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

Boolean chain in which each of the intermediate steps 41, ..., Tpyr—1 is used
in at least one subsequent step. Then the permuted chains defined by the rule

T = Tjr(4) 02 Tk' (i) = Tj(im)m— Oim Th(im)m—> forn<i<n+r, (33)

are distinct for different . (If w takes a — b, we write b = am and a = brr—.)
For example, if 7 takes 5+ 6 +— 7+ 8 — 9+ 5, the chain (7) becomes

Original
5 = 21 D x3,
g = x1 D T2,

Permuted
T5 = T1 D T2,
Te = T3 D T4,

T7 = T3 D x4, T7 =1T9 V Ts, (34)
T8 = o5 V Tg, Tg = x5 D T,
T9 = e ® 7, Tr9 = x1 D 3,

T10 = Tg N\ Tg; T10 = T7 N\ Tsg.

Notice that we might have j'(¢) > k'(4) or j'(¢) > 4 or k'(¢) > 4, contrary to our
usual rules. But the permuted chain computes the same function x,, as before,
and it doesn’t have any cycles by which an entry is defined indirectly in terms
of itself, because the permuted z; is the original ;.

We can restrict consideration to normal Boolean chains, as remarked earlier.
So the ¢(n,r)/2 normal Boolean functions of cost < r lead to (r — 1)!¢(n,r)/2
different permuted chains, where the operator o; in each step is either A, V, D,
or @. And there are at most 4"(n+r—1)2" such chains, because there are four
choices for o; and n+r—1 choices for each of j(i) and k(3), for n < i < n +r.
Equation (32) follows; and we obtain the opening statement of the theorem by
setting » = |2"/n|. (See exercise 46.) |

On the other hand, there’s also good news for infinity-minded people: We
can actually evaluate every Boolean function of n variables with only slightly
more than 2"/n steps of computation, even if we avoid @ and =, using a technique
devised by C. E. Shannon and improved by O. B. Lupanov [Bell System Tech. J.
28 (1949), 59-98, Theorem 6; Isvestiia VUZov, Radiofizika 1 (1958), 120-140].

In fact, the Shannon—Lupanov approach leads to useful results even when
n is small, so let’s get acquainted with it by studying a small example. Consider

f(@1, T2, 3,04, T5,T6) = [(T1T2T3T425T6)2 is prime], (35)

a function that identifies all 6-bit prime numbers. Its truth table has 26 = 64
bits, and we can work with it conveniently by using a 4 x 16 array to look at
those bits instead of confining ourselves to one dimension:

z3=0000000011111111
z4=0000111100001111
z5=0011001100110011
z6=0101010101010101

2122=00{0011010100010100 (36)
2122=01{0101000100000101
2122=10{000001000101000 1

z1z2=1110000010000010100

} Group 1

} Group 2

normal

upper bound++
Shannon
Lupanov

prime numbers
truth table

7.1.2 BOOLEAN EVALUATION 15

The rows have been divided into two groups of two rows each; and each group
of rows has 16 columns, which are of four basic types, namely 3, ¢, &, or 1. Thus
we see that the function can be expressed as

f(z1,...,26) = ([z122 €{00}] A [zszamsw6 € {0010,0101,1011}])
V ([z1z2 € {01} A[zszazsze € {0001,1111}))
V ([w122 € {00,01}] A [z3z4a526 € {0011,0111,1101}])
V ([z1z2 € {10}] A[zszzazsze € {1001,1111}))
\Y ([.’121.’1)2 € {11}] A [l‘31114.’1)5.’1:6 € {1101}])
\% ([a:lwg €{10,11}] A [z3z4z576 € {0101, 1011}]). (37)

(The first line corresponds to group 1, type &, then comes group 1, type 9, etc.;
the last line corresponds to group 2 and type %) A function like [m3x4z5a:6 €
{0010, 0101, 1011}] is the OR of three minterms of {z3, x4, x5, zs}.

In general we can view the truth table as a 2% x 2"~F array, with | groups
of rows having either |2¥/1| or [2¥/I] rows in each group. A group of size m
will have columns of 2™ basic types. We form a conjunction (g;t(x1,...,Zx) A
hit(Zg41,...,2yn)) for each group ¢ and each nonzero type t, where g;; is the OR
of all minterms of {zy,...,zx} for the rows of the group where ¢ has a 1, while
hit is the OR of all minterms of {zg1,...,Z,} for the columns having type ¢ in
group 7. The OR of all these conjunctions (g;: A hit) gives f(z1,...,2n).

Once we’ve chosen the parameters k and [, with1 < k <n—2and1 <[< 2’“,

the computation starts by computing all the minterms of {z;,...,zx} and all
the minterms of {zgi1,...,%n}, in t(k) + t(n — k) steps (see (30)). Then, for
1 <4 <, we let group i consist of rows for the values of (z1,...,zx) such that

(i — 1)2%/1 < (z1...21)2 < i2¥/1; it contains m; = [i2%/1] — [(i — 1)2¥/] rows.
We form all functions g;; for ¢t € S;, the family of 2™ — 1 nonempty subsets of
those rows; 2™ — m; — 1 ORs of previously computed minterms will accomplish
that task. We also form all functions h;; representing columns of nonzero type t;
for this purpose we’ll need at most 2" ~* OR operations in each group 1, since we
can OR each minterm into the A function of the appropriate type t. Finally we
compute f = \/é:1 Vies,(9it A hit); each AND operation is compensated by an

unnecessary first OR into h;;. So the total cost is at most
l

t(k) + t(n—k) + (I-1) + > (2™ —m;—1) + 2" F + (2™ -2)); (38)
i=1
we want to choose k and [so that this upper bound is minimized. Exercise 52
discusses the best choice when n is small. And when n is large, a good choice
yields a provably near-optimum chain, at least for most functions:

Theorem L. Let C(n) denote the cost of the most expensive Boolean functions
of n variables. Then as n — oo we have
n 1
o) = = (1+ 5% +0()); (39)
n n

n

C(n) < %(1—}-3%—{-0(%)). (40)

minterms

16 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

Proof. Exercise 48 shows that the lower bound (39) is a consequence of The-
orem S. For the upper bound, we set k = |2lgn| and | = [2¥/(n — 31gn)] in
Lupanov’s method; see exercise 53. |

Synthesizing a good chain. Formula (37) isn’t the best way to implement a 6-
bit prime detector, but it does suggest a decent strategy. For example, we needn’t
let variables x; and z2 govern the rows: Exercise 51 shows that a better chain
results if the rows are based on zsxg while the columns come from zizox3%4,
and in general there are many ways to partition a truth table by playing k of
the variables against the other n — k.

Furthermore, we can improve on (37) by using our complete knowledge of
all 4-variable functions; there’s no need to evaluate a function like [z3z4z526 €
{0010,0101, 1011}] by first computing the minterms of {z3, z4, x5, z¢ }, if we know
the best way to evaluate every such function from scratch. On the other hand, we
do need to evaluate several 4-variable functions simultaneously, so the minterm
approach might not be such a bad idea after all. Can we really improve on it?

Let’s try to find a good way to synthesize a Boolean chain that computes a
given set of 4-variable functions. The six functions of zgzs2526 in (37) are rather
tame (see exercise 54), so we’ll learn more by considering a more interesting
example chosen from everyday life.

A seven-segment display is a now-ubiquitous way to represent
a 4-bit number (z1z27324)2 in terms of seven cleverly positioned
segments that are either visible or invisible. The segments are
traditionally named (a,b,c,d,e, f,g) as shown; we get a ‘0’ by
turning on segments (a,b,c,d,e, f), but a ‘1’ uses only segments
(b, ¢). (Incidentally, the idea for such displays was invented by F. W.
Wood, U.S. Patent 974943 (1910), although Wood’s original design
used eight segments because he thought that a ‘4’ requires a diagonal stroke.)
Seven-segment displays usually support only the decimal digits ‘0’, ‘1°, ..., ‘9’;
but of course a computer scientist’s digital watch should display also hexadecimal
digits. So we shall design seven-segment logic that displays the sixteen digits

nJ3ycenogor - ACE
N IR R B N B N R I Ny Ny O Ny

when given the respective inputs zyx2z324 = 0000, 0001, 0010, ..., 1111.
In other words, we want to evaluate seven Boolean functions whose truth
tables are respectively

= 1011 0111 1110 0011,
1111 1001 1110 0100,
= 1101 1111 1111 0100,
1011 0110 1101 1110, (42)
1010 0010 1011 1111,
1000 1111 1111 0011,
= 0011 1110 1111 1111.

Q 0 Qo0 o
I

Lupanov
seven-segment display
Wood

Patent

7.1.2 BOOLEAN EVALUATION 17

If we simply wanted to evaluate each function separately, several methods that
we’ve already discussed would tell us how to do it with minimum costs C(a) = 5,
C(b)=C(c)=C(d) =6, C(e) = C(f) =5, and C(g) = 4; the total cost for all
seven functions would then be 37. But we want to find a single Boolean chain
that contains them all, and the shortest such chain is presumably much more
efficient. How can we discover it?

Well, the task of finding a truly optimum chain for {a,b,c,d,e, f,g} is
probably infeasible from a computational standpoint. But a surprisingly good
solution can be found with the help of the “footprint” idea explained earlier.
Namely, we know how to compute not only a function’s minimum cost, but also
the set of all first steps consistent with that minimum cost in a normal chain.
Function e, for example, has cost 5, but only if we evaluate it by starting with
one of the instructions

5 = 1 D xa or Ts = T2 N T3 or Ts = T2 V T3.

Fortunately, one of the desirable first steps belongs to four of the seven
footprints: Functions ¢, d, f, and g can all be evaluated optimally by starting
with z5 = o @ 3. So that is a natural choice; it essentially saves us three steps,
because we know that at most 33 of the original 37 steps will be needed to finish.

Now we can recompute the costs and footprints of all 2'6 functions, proceed-
ing as before but also initializing the cost of the new function x5 to zero. The
costs of functions ¢, d, f, and g decrease by 1 as a result, and the footprints
change too. For example, function a still has cost 5, but its footprint has
increased from {z1 ® z3, 22 A 23} to {1 ® 3,21 A T4,T1 A T4,Z2 A T3,T2 A 24,
ZTo ® Tq,T4 A\ T5,24 D x5} when the function z5 = zo @ 3 is available for free.

In fact, zg = T1 A x4 is common to four of the new footprints, so again we
have a natural way to proceed. And when everything is recalculated with zero
cost given to both x5 and xg, the subsequent step 7 = x3 A Tg turns out to be
desirable in five of the newest footprints. Continuing in this “greedy” fashion,
we aren’t always so lucky, but a remarkable chain of only 22 steps does emerge:

Ts = T2 D 73, z13 = 1 D w7, a = T = T14 N T19,
Te = T1 N x4, T4 = x5 D Tg, b= w21 = 7 ® T12,
T7 = T3 N\ Tg, Tis = x7 V T12, C= Tz = Ig N\ T1s,
zg = x1 D 22, T16 = &1 V Ts, d =T33 = Tg N\ Z13, (43)
T9 = x4 O Ts, T17 = x5 V Ts, € =T24 = Te V T1s, 13
T10 = Z7 N\ ws, T18 = 9 N T10, [=125 =T A 17,
T11 = T9 D T10, T19 = T3 N\ X9, g =12 =7V Z16.

T12 = T5 N T11,

(This is a normal chain, so it contains the normalizations {a,b,¢,d,€, f,g}
instead of {a,b,c,d,e, f,g}. Simple changes will produce the unnormalized
functions without changing the cost.)

Partial functions. In practice the output value of a Boolean function is often
specified only at certain inputs zi...x,, and the outputs in other cases don’t
really matter. We might know, for example, that some of the input combinations

footprint

greedy

normal

partial functions—

18 COMBINATORIAL ALGORITHMS (F0C)

will never arise.

7.1.2

In such cases, we place an asterisk into the corresponding

positions of the truth table, instead of specifying 0 or 1 everywhere.
The seven-segment display provides a case in point, because most of its

applications involve only the ten binary-coded decimal inputs for which we have
(z12273%4)2 < 9. We don’t care what segments are visible in the other six cases.
So the truth tables of (42) actually become

S0 Q0 oo

g:

1011 0111 11x%x
1111 1001 11xx
1101 1111 11x%x
1011 0110 11
1010 0010 10
1000 111% 11xx
0011 1110 11xx

*rkK,
*REE,
*REE,
*HAK, (44)
*kkk,
*kkk,
Kkkok,

(Function f here has an asterisk also in position z;z2z324 = 0111, because a ‘7’
can be displayed as either | or f]. Both of these styles appeared about equally
often in the display units available to the author when this section was written.
Truncated variants of the E, and the _q were sometimes seen in olden days, but
they have thankfully disappeared.)

Asterisks in truth tables are generally known as don’t-cares — a quaint term
that could only have been invented by an electrical engineer. Table 3 shows that
the freedom to choose arbitrary outputs is advantageous. For example, there are
(136)213 = 4,587,520 truth tables with 3 don’t-cares; 69% of them cost 4 or less,
even though only 21% of the asterisk-free truth tables permit such economy. On
the other hand, don’t-cares don’t save us as much as we might hope; exercise 63
proves that a random function with, say, 30% don’t-cares in its truth table tends
to save only about 30% of the cost of a fully specified function.

What is the shortest Boolean chain that evaluates the seven partially spec-
ified functions in (44)? Our greedy-footprint method adapts itself readily to
the presence of don’t-cares, because we can OR together the footprints of all 2¢
functions that match a pattern with d asterisks. The initial costs to evaluate each
function separately are now reduced to C(a) = 3, C(b) = C(c) = 2, C(d) = 5,
C(e) =2, C(f) =3, C(g) = 4, totalling just 21 instead of 37. Function g hasn’t
gotten cheaper, but it does have a larger footprint. Proceeding as before, but
taking advantage of the don’t-cares, we now can find a suitable chain of length
only 13—a chain with fewer than two operations per output(!):

T5 = 1 D X2, € =x190 =24 V Ts, b= x15 = T2 A T13,

Tg = T3 N T, g =211 = T7 O T8, €= T16 = T2 N\ T,

T7 =1 D T3, T2 = T4 B T4, f =211 =25 N\ xo. (45)
Tg = Tz N T, d =113 =T10 N T12,

Tg = T3 V Ty, a =214 = T3 A\ 213,

Tic-tac-toe. Let’s turn now to a slightly larger problem, based on a popular
children’s game. Two players take turns filling the cells of a 3 x 3 grid. One
player writes X’s and the other writes O’s, continuing until there either are three

truth table

seven-segment display
binary-coded decimal

don’t-cares

engineer

greedy-footprint

game—

noughts and crosses, see tic-tac-toe
tic-tac-toe—

7.1.2 BOOLEAN EVALUATION 19

Table 3
THE NUMBER OF 4-VARIABLE FUNCTIONS WITH d DON’T-CARES AND COST ¢
c=0 c=1 c=2 c=3 c=4 c=5 c=6 c¢c=7
d=0 10 60 456 2474 10624 24184 25008 2720
d=1 160 960 7296 35040 131904 227296 119072 2560
d=2 1200 7200 52736 221840 700512 816448 166144
d=3 5600 33600 228992 831232 2045952 1381952 60192
d=14 18200 108816 666528 2034408 3505344 1118128 3296
d=5 43680 257472 1367776 3351488 3491648 433568 32
d=26 80080 455616 2015072 3648608 1914800 86016
d=17 114400 606944 2115648 2474688 533568 12032
d=28 128660 604756 1528808 960080 71520 896
d=29 114080 440960 707488 197632 4160
d=10 78960 224144 189248 20160
d=11 41440 72064 25472 800
d=12 15480 12360 1280
d=13 3680 800
d=14 480
d=15 32
d=16 1

X’s or three O’s in a straight line (in which case that player wins) or all nine
cells are filled without a winner (in which case it’s a “cat’s game” or tie). For
example, the game might proceed thus:
4 F B B E R E B W

X has won. Our goal is to design a machine that plays tic-tac-toe optimally —
making a winning move from each position in which a forced victory is possible,
and never making a losing move from a position in which defeat is avoidable.

More precisely, we will set things up so that there are 18 Boolean variables
Ty, ..., L9, 01, --., 09, which govern lamps to illuminate cells of the current
position. The cells are numbered ﬂ%@ as on a telephone dial. Cell j displays
an X if ; = 1, an O if 0; = 1, or remains blank if ; = 0; = 0.* We never
have z; = o; = 1, because that would display ‘®’. We shall assume that the
variables xj...xg01 ...09 have been set to indicate a legal position in which
nobody has won; the computer plays the X’s, and it is the computer’s turn to
move. For this purpose we want to define nine functions y1, ..., 79, where y;
means “change x; from 0 to 1.” If the current position is a cat’s game, we should
make y; = -+ = yo = 0; otherwise exactly one y; should be equal to 1, and of
course the output value y; = 1 should occur only if z; = 0; = 0.

With 18 variables, each of our nine functions y; will have a truth table of
size 218 = 262,144. It turns out that only 4520 legal inputs z; ...zgo0; ... 09 are

* This setup is based on an exhibit from the early 1950s at the Museum of Science and
Industry in Chicago, where the author was first introduced to the magic of switching circuits.
The machine in Chicago, designed circa 1940 by W. Keister at Bell Telephone Laboratories,
allowed me to go first; yet I soon discovered that there was no way to defeat it. Therefore
I decided to move as stupidly as possible, hoping that the designer had not anticipated such
bizarre behavior. In fact I allowed the machine to reach a position where it had two winning
moves; and it seized both of them! Moving twice is of course a flagrant violation of the rules,
so I had won a moral victory even though the machine announced that I had lost.

cat’s game

Knuth

Museum of Science and Industry
Bell Telephone Laboratories
truth table

20 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

| commenced an examination of a game called “tit-tat-to” ...

to ascertain what number of combinations were required

for all the possible variety of moves and situations.

| found this to be comparatively insignificant.

... A difficulty, however, arose of a novel kind.

When the automaton had to move, it might occur that there were
two different moves, each equally conducive to his winning the game.
... Unless, also, some provision were made,

the machine would attempt two contradictory motions.

— CHARLES BABBAGE, Passages from the Life of a Philosopher (1864)

possible, so those truth tables are 98.3% filled with don’t-cares. Still, 4520 is
uncomfortably large if we hope to design and understand a Boolean chain that
makes sense intuitively. Section 7.1.4 will discuss alternative ways to represent
Boolean functions, by which it is often possible to deal with hundreds of variables
even though the associated truth tables are impossibly large.

Most functions of 18 variables require more than 218/18 gates, but let’s hope
we can do better. Indeed, a plausible strategy for making suitable moves in
tic-tac-toe suggests itself immediately, in terms of several conditions that aren’t
hard to recognize:

wj, an X in cell j will win, completing a line of X’s;

bj, an O in cell j would lose, completing a line of O’s;
fj, an X in cell j will give X two ways to win;

d;, an O in cell j would give O two ways to win.

For example, X’s move to the center in (46) was needed to block O, so it was of
type bs; fortunately it was also of type f5, forcing a win on the next move.

Let L = {{1,2,3},{4,5,6},{7,8,9},{1,4,7},{2,5,8},{3,6,9},{1,5,9},{3,5,7}}
be the set of winning lines. Then we have

mj =Z; N 0j; [moving in cell j is legal] (47)

w; =mj; A V{i,j,k}eL(mi A zk); [moving in cell j wins] (48)

bj =mj A Vi jkper(0i A ok); [moving in cell j blocks] (49)

fi=m; NSy ({aik | {i,4,k} € L}); [moving in cell j forks] (50)

dj =mj; N So({Bix | {i,5,k} € L}); [moving in cell j defends] (51)
here oy, and B;; denote a single X or O together with a blank, namely

air = (x;Amyg) V (m; Axy), Bik = (0iAmy) V (m;Nog). (52)

For example, by = my A ((02/\03) V(oaNo7)V (05/\09)); f2a = maASa(as, ass) =
ma A a1z A asg; ds = ms A Sa(Bro, Bas, P37, Bas).
With these definitions we might try rank-ordering our moves thus:

{wl,...,wg}>{b1,...,b9}>{f1,...,fg}>{d1,...,d9}>{m1,...,m9}. (53)

“Win if you can; otherwise block if you can; otherwise fork if you can; otherwise
defend if you can; otherwise make a legal move.” Furthermore, when choosing

Babbage
symmetric functions

7.1.2 BOOLEAN EVALUATION 21

between legal moves it seems sensible to use the ordering
ms > my > ms > Mg > My > My > Mg > Mg > My, (54)

because 5, the middle cell, occurs in four winning lines, while a corner move to
1, 3, 9, or 7 occurs in three, and a side cell 2, 6, 8, or 4 occurs in only two. We
might as well adopt this ordering of subscripts within all five groups of moves
{w;}, {b;}, 1}, {d;}, and {m;} in (53).

To ensure that at most one move is chosen, we define wj, b}, f;, d;, m} to
mean “a prior choice is better.” Thus, wy = 0, w] = wy, wy = wy Vwi, ...,
wy = wg V wg, by = wy Vwy, by =bs Vb, ..., mj = mgVmg. Then we can
complete the definition of a tic-tac-toe automaton by letting

yj = (w;Aw;) V (b AUV (F;AF7) V (djAdy) vV (myamy), for 1<j<9. (55)

So we’ve constructed 9 gates for the m’s, 48 for the w’s, 48 for the b’s, 144 for
the a’s and f’s, 35 for the f’s (with the help of Fig. 9), 35 for the d’s, 43 for the
primed variables, and 80 for the y’s. Furthermore we can use our knowledge of
partial 4-variable functions to reduce the six operations in (52) to only four,

air = (z;Dxg) V (0;D0y), Bik = (zi®zi) V (0;D0k). (56)

This trick saves 48 gates; so our design has cost 396 gates altogether.

The strategy for tic-tac-toe in (47)—(56) works fine in most cases, but it also
has some glaring glitches. For example, it loses ignominiously in the game

3 13 (57
the second X move is d3, defending against a fork by O, yet it actually forces O
to fork in the opposite corner! Another failure arises, for example, after position
ﬁg, when move mjy leads to the cat’s game , , , , , , , instead
of to the victory for X that appeared in (46). Exercise 65 patches things up and
obtains a fully correct Boolean tic-tac-toe player that needs just 445 gates.

*Functional decomposition. If the function f(z1,...,z,) can be written in
the form g(z1, ..., Tk, h(Tkt1,---,Tn)), it’s usually a good idea to evaluate y =
h(zk41,-..,2y,) first and then to compute g(z1, ..., 2k, y). Robert L. Ashenhurst
inaugurated the study of such decompositions in 1952 [see Annals Computation
Lab. Harvard University 29 (1957), 74-116], and observed that there’s an easy
way to recognize when f has this special property: If we write the truth table
for f in a 2% x 2"~F array as in (36), with rows for each setting of x; ...x; and
columns for each setting of g1 ...x,, then the desired subfunctions g and h
exist if and only if the columns of this array have at most two different values.
For example, the truth table for the function (z1z2(zsz4zs)) is

0 000 0 O0OOTP O
00 010111
00 010111
11111111

cat’s game

decomposition of functions—
disjoint decomposition
Ashenhurst

22 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

when expressed in this two-dimensional form. One type of column corresponds
to the case h(xg41,...,%,) = 0; the other corresponds to h(zg41,...,2n) = 1.

In general the variables X = {z1,...,2,} might be partitioned into any two
disjoint subsets Y = {y1,...,yx} and Z = {z1,...,2,_k}, and we might have
f(z) = g(y,h(z)). We could test for a (Y, Z) decomposition by looking at the
columns of the 28 x 2"~F truth table whose rows correspond to values of y. But
there are 2" such ways to partition X; and all of them are potential winners,
except for trivial cases when |Y| = 0 or |Z] < 1. How can we avoid examining
such a humungous number of possibilities?

A practical way to proceed was discovered by V. Y.-S. Shen, A. C. McKellar,
and P. Weiner [IEEE Transactions C-20 (1971), 304-309], whose method usually
needs only O(n?) steps to identify any potentially useful partition (Y, Z) that
may exist. The basic idea is simple: Suppose z; € Z, z; € Z, and z,, € Y.
Define eight binary vectors ¢; for I = (l1l2l3)2, where §; has (I1, 2, l3) respectively
in components (z,7,m), and zeros elsewhere. Consider any randomly chosen
vector £ = xj ... Z,, and evaluate f; = f(z®d;) for 0 <1 < 7. Then the four pairs

)) @) () e

will appear in a 2 x 4 submatrix of the 2% x 27~* truth table. So a decomposition
is impossible if these pairs are distinct, or if they contain three different values.

Let’s call the pairs “good” if they’re all equal, or if they have only two
different values. Otherwise they’re “bad.” If f has essentially random behavior,
we’ll soon find bad pairs if we do this experiment with several different randomly
chosen vectors x, because only 88 of the 256 possibilities for fy fi ... f7 correspond
to a good set of pairs; the probability of finding good pairs ten times in a row is

only (%)10 = .00002. And when we do discover bad pairs, we can conclude that

r,€Z and z,€Z = =z, €7, (59)

because the alternative z,, € Y is impossible.

Suppose, for example, that n = 9 and that f is the function whose truth
table 11001001000011...00101 consists of the 512 most significant bits of 7, in
binary notation. (This is the “more-or-less random function” that we studied
for n = 4 in (5) and (6) above.) Bad pairs for this = function are quickly
found in each of the cases (7,j,m) for which m # i < j # m. Indeed, in
the author’s experiments, 170 of those 252 cases were decided immediately; the
average number of random z vectors per case was only 1.52; and only one case
needed as many as eight z’s before bad pairs appeared. Thus (59) holds for all
relevant (7,7, m), and the function is clearly indecomposable. In fact, exercise
73 points out that we needn’t make 252 tests to establish the indecomposability
of this 7 function; only (’21) = 36 of them would have been sufficient.

Turning to a less random function, let f(z1,...,2z9) = (det X) mod 2, where

r1 T2 I3
X = r4 Ty g . (60)
Ty Tg T9g

Shen
McKellar
Weiner
randomization
good

bad

™

Tr function

7.1.2 BOOLEAN EVALUATION 23

This function does not satisfy condition (59) when ¢ = 1, j = 2, and m = 3, Horn clauses
because there are no bad pairs in that case. But it does satisfy (59) for4 <m <9 ie;i‘ﬁ:lnegm

when {1, j} = {1,2}. We can denote this behavior by the convenient abbreviation
‘12=-456789’; the full set of implications, for all pairs {7, j}, is

12=456789 18=34569 27=-34569 37=-24568 48=12369 67=12358
13=-456789 19=-24568 28=134679 38=14567 49=12358 68=-12347
14=235689 23=456789 29=-14567 39=124578 56=-123789 69=-124578
15=36789 24=-36789 34=25789 45=123789 57=12369 78=-123456
16=25789 25=-134679 35=14789 46=-123789 58=-134679 79=123456
17=235689 26=14789 36=124578 47=-235689 59=12347 89=-123456

(see exercise 69). Bad pairs are a little more difficult to find when we probe
this function at random: The average number of z’s needed in the author’s
experiments rose to about 3.6, when bad pairs did exist. And of course there
was a need to limit the testing, by choosing a tolerance threshold ¢ and then
giving up when ¢ consecutive trials failed to find any bad pairs. Choosing t = 10
would have found all but 8 of the 198 implications listed above.

Implications like (59) are Horn clauses, and we know from Section 7.1.1 that
it’s easy to make further deductions from Horn clauses. Indeed, the method of
exercise 74 will deduce that the only possible partition with |Z| > 1 is the trivial
one (Y =0, Z ={z1,...,39}), after looking at fewer than 50 cases (i, j, m).

Similar results occur when f(z1,...,2z9) = [per X > 0], where per denotes
the permanent function. (In this case f tells us if there is a matching in the
bipartite subgraph of K33 whose edges are specified by the variables z; ... zg.)
Now there are just 180 implications,

12=456789 18=3459 27=3459 37=2468 48=1269 67=1358
13=456789 19=2468 28=134679 38=1567 49=1358 68=2347
14=235689 23=-456789 29=-1567 39=-124578 56=123789 69=-124578
156=3678 24=3678 34=2579 45=123789 57=1269 78=-123456
16=2579 25=134679 35=1489 46=-123789 58=-134679 79=123456
17=235689 26=1489 36=124578 47=-235689 59=2347 89=-123456,

only 122 of which would have been discovered with ¢ = 10 as the cutoff threshold.
(The best choice of ¢ is not clear; perhaps it should vary dynamically.) Still, those
122 Horn clauses were more than enough to establish indecomposability.

What about a decomposable function? With f = (xoz3zeze(T124252728))
we get iAj=m for all m ¢ {1, j}, except when {7, j} C {1,4,5,7,8}; in the latter
case, m must also belong to {1,4,5,7,8}. Although only 185 of these 212 impli-
cations were discovered with tolerance t = 10, the partition Y = {2, z3, 26, 9},
Z = {x1,x4, 5,27, 23} emerged quickly as a strong possibility.

Whenever a potential decomposition is supported by the evidence, we need
to verify that the corresponding 2% x 2"~ truth table does indeed have only
one or two distinct columns. But we’re happy to spend 2" units of time on that
verification, because we’ve greatly simplified the evaluation of f.

24 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

The comparison function f = [(z1$2m3$4)2 > (z5x6T7T8)2 +:1:9] is another
interesting case. Its 184 potentially deducible implications are

12=-3456789 18=-2345679 27=-34689 37=489 48=9 67=23489
13=-2456789 19=-2345678 28=-34679 38=479 49=8 68=-23479
14=-2356789 23=46789 29=-34678 39=478 56=1234789 69=-23478
15=2346789 24=-36789 34=789 45=1236789 57=1234689 78=-349
16=2345789 25=1346789 35=1246789 46=-23789 58=1234679 79=348
17=2345689 26=34789 36=24789 47=389 59=1234678 89=-4,

and 145 of them were found when ¢t = 10. Three decompositions reveal them-
selves in this case, having Z = {x4, 25,29}, Z = {x3,24,27,2s,29}, and Z =
{2, 3,4, Ts, T7,Ts,Tg }, respectively. Ashenhurst proved that we can reduce f
immediately as soon as we find a nontrivial decomposition; the other decompo-
sitions will show up later, when we try to reduce the simpler functions g and h.

*Decomposition of partial functions. When the function f is only partially
specified, a decomposition with partition (Y, Z) hinges on being able to assign
values to the don’t-cares so that at most two different columns appear in the
corresponding 2 x 27~F truth table.

Two vectors uy . ..u, and vg ...v,, consisting of Os, 1s, and *s are said to
be incompatible if either u; = 0 and v; = 1 or u; = 1 and v; = 0, for some j—
equivalently, if the subcubes of the m-cube specified by u and v have no points
in common. Consider the graph whose vertices are the columns of a truth table
with don’t-cares, where u — v if and only if u and v are incompatible. We can
assign values to the *s to achieve at most two distinct columns if and only if this
graph is bipartite. For if uy, ..., u; are mutually compatible, their generalized
consensus uiL!- - -Uwy, defined in exercise 7.1.1-32, is compatible with all of them.
[See S. L. Hight, IEEE Trans. C-22 (1973), 103-110; E. Boros, V. Gurvich, P. L.
Hammer, T. Ibaraki, and A. Kogan, Discrete Applied Math. 62 (1995), 51-75.]
Since a graph is bipartite if and only if it contains no odd cycles, we can easily
test this condition with a depth-first search (see Section 7.4.1).

Consequently the method of Shen, McKellar, and Weiner works also when
don’t-cares are present: The four pairs in (58) are considered bad if and only
if three of them are mutually incompatible. We can operate almost as before,
although bad pairs will naturally be harder to find when there are lots of s (see
exercise 72). However, Ashenhurst’s theorem no longer applies. When several
decompositions exist, they all should be explored further, because they might use
different settings of the don’t-cares, and some might be better than the others.

Although most functions f(z) have no simple decomposition g(y, h(z)), we
needn’t give up hope too quickly, because other forms like g(y, h1(z), h2(2)) might
well lead to an efficient chain. If, for example, f is symmetric in three of its vari-
ables {z1, 22, 23}, we can always write f(z) = g(y, S1,2(21, 22, 23), S1,3(21, 22, 23)),
since S1,2(21, 22, 23) and S13(21,22,23) characterize the value of z; + zp + z3.
(Notice that just four steps will suffice to compute both S; 2 and Sy 3.)

In general, as observed by H. A. Curtis [JACM 8 (1961), 484-496], f(z) can
be expressed in the form g(y, h1(2),.. ., h.(z)) if and only if the 2% x 2"~* truth

comparison function
Ashenhurst
decomposition of partial functions—
don’t-cares
incompatible
bipartite

generalized consensus
Hight

Boros

Gurvich

Hammer

Ibaraki

Kogan

Shen

McKellar

Weiner

bad

Ashenhurst

7.1.2 BOOLEAN EVALUATION 25

table corresponding to Y and Z has at most 2" different columns. And when
don’t-cares are present, the same result holds if and only if the incompatibility
graph for Y and Z can be colored with at most 2" colors.

For example, the function f(z) = (det X)mod 2 considered above turns
out to have eight distinct columns when Z = {z4,xs,z¢, T7,Ts, T9}; that’s a
surprisingly small number, considering that the truth table has 8 rows and
64 columns. From this fact we might be led to discover how to expand a
determinant by cofactors of the first row,

f(I) == .Tl/\hl($4, e ,.’Eg) D .1'2/\h2($4, e ,.7,'9) D l‘3/\h3($4, ey Ig),

if we didn’t already know such a rule.

When there are d < 2" different columns, we can think of f(x) as a function
of y and h(z), where h takes each binary vector zj...z, j into one of the
values {0,1,...,d — 1}. Thus (hi,...,h,) is essentially an encoding of the
different column types, and we hope to find very simple functions A1, ..., h, that
provide such an encoding. Moreover, if d is strictly less than 2", the function
9(y, h1,...,h,) will have many don’t-cares that may well decrease its cost.

The distinct columns might also suggest a function g for which the h’s have
don’t-cares. For example, we can use g(y1, Y2, b1, he) = (y1® (h1 Ay2)) Ahg when
all columns are either (0,0,0,0)7 or (0,0,1,1)7 or (0,1,1,0)7; then the value
of hi(z) is arbitrary when z corresponds to an all-zero column. H. A. Curtis
has explained how to exploit this idea when |Y| =1 and |Z| = n — 1 [see IEEE
Transactions C-25 (1976), 1033—-1044].

For a comprehensive discussion of decomposition techniques, see Richard M.
Karp, J. Society for Industrial and Applied Math. 11 (1963), 291-335.

Larger values of n. We’ve been considering only rather tiny examples of
Boolean functions. Theorem S tells us that large, random examples are inher-
ently difficult; but practical examples might well be highly nonrandom. So it
makes sense to search for simplifications using heuristic methods.

When n grows, the best ways currently known for dealing with Boolean
functions generally start with a Boolean chain—not with a huge truth table —
and they try to improve that chain via “local changes.” The chain can be
specified by a set of equations. Then, if an intermediate result is used in com-
paratively few subsequent steps, we can try to eliminate it, temporarily making
those subsequent steps into functions of three variables, and reformulating those
functions in order to make a better chain when possible.

For example, suppose the gate x; = x; o x} is used only once, in the gate
Z| = X; 0T, so that z; = (z; o zx) o zp,. Other gates might already exist, by
which we have computed other functions of x;, xx, and x,; and the definitions
of z;, xx, and x,, may imply that some of the joint values of (z;,zx,zm) are
impossible. Thus we might be able to compute x; from other gates by doing
just one further operation. For example, if z; = z; A zx and x; = z; V 2., and
if the values z; V z, and =} V x,, appear elsewhere in the chain, we can set
z; = (2;V&m) A (TxVZr,); this eliminates ; and reduces the cost by 1. Or if,

coloring of graphs
determinant

Curtis

Karp

functions of many variables—
local changes

26 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

say, &; N (zx®x.,) appears elsewhere and we know that z;zxzm # 101, we can
set] = Ty B (25 A (TEDTm)).

If ; is used only in z; and z; is used only in z,, then gate x, depends on four
variables, and we might be able to reduce the cost by using our total knowledge of
four-variable functions, obtaining x, in a better way while eliminating «; and ;.
Similarly, if z; appears only in z; and x,, we can eliminate z; if we find a better
way to evaluate two different functions of four variables, possibly with don’t-
cares and with other functions of those four variables available for free. Again,
we know how to solve such problems, using the footprint method discussed above.

When no local changes are able to decrease the cost, we can also try local
changes that preserve or even increase the cost, in order to discover different
kinds of chains that might simplify in other ways. We shall discuss such local
search methods extensively in Section 7.10.

Excellent surveys of techniques for Boolean optimization, which electrical
engineers call the problem of “multilevel logic synthesis,” have been published
by R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli, Proceedings
of the IEEE 78 (1990), 264-300, and in the book Synthesis and Optimization of
Digital Circuits by G. De Micheli (McGraw—Hill, 1994).

Lower bounds. Theorem S tells us that nearly every Boolean function of
n > 12 variables is hard to evaluate, requiring a chain whose length exceeds 2"/n.
Yet modern computers, which are built from logic circuits involving electric
signals that represent thousands of Boolean variables, happily evaluate zillions
of Boolean functions every microsecond. Evidently there are plenty of important
functions that can be evaluated quickly, in spite of Theorem S. Indeed, the proof
of that theorem was indirect; we simply counted the cases of low cost, so we
learned absolutely nothing about any particular examples that might arise in
practice. When we want to compute a given function and we can only think of a
laborious way to do the job, how can we be sure that there’s no tricky shortcut?

The answer to that question is almost scandalous: After decades of concen-
trated research, computer scientists have been unable to find any explicit family
of functions f(z1,...,T,) whose cost is inherently nonlinear, as n increases.
The true behavior is 2"/n, but no lower bound as strong as nlogloglogn has
yet been proved! Of course we could rig up artificial examples, such as “the
lexicographically smallest truth table of length 2™ that isn’t achievable by any
Boolean chain of length [2"/n| — 1”; but such functions are surely not explicit.
The truth table of an explicit function f(z1,...,z,) should be computable in
at most, say, 2°® units of time for some constant c; that is, the time needed to
specify all of the function values should be polynomial in the length of the truth
table. Under those ground rules, no family of single-output functions is currently
known to have a combinational complexity that exceeds 3n 4+ O(1) as n — oo.
[See N. Blum, Theoretical Computer Science 28 (1984), 337-345.]

The picture is not totally bleak, because several interesting linear lower
bounds have been proved for functions of practical importance. A basic way to
obtain such results was introduced by N. P. Red’kin in 1970: Suppose we have

four-variable functions
footprint

electrical engineers
multilevel logic synthesis
Brayton

Hachtel
Sangiovanni-Vincentelli
De Micheli

lower bounds on combinational complexity—
Blum

Red’kin

7.1.2 BOOLEAN EVALUATION 27

an optimum chain of cost r for f(z1,...,z,). By setting z,, + 0 or z,, + 1, we
obtain reduced chains for the functions g(z1,...,zp—1) = f(z1,...,2Zn-1,0) and
h(z1,...,2n—1) = f(x1,...,Zn_1,1), having cost r —u if z,, was used as an input

to u different gates. Moreover, if z,, is used in a “canalizing” gate z; = z,, o g,
where the operator o is neither @ nor =, some setting of z,, will force z; to
be constant, thereby further reducing the chain for g or h. Lower bounds on g
and/or h therefore lead to a lower bound on f. (See exercises 77-81.)

But where are the proofs of nonlinear lower bounds? Almost every problem
with a yes-no answer can be formulated as a Boolean function, so there’s no
shortage of explicit functions that we don’t know how to evaluate in linear
time, or even in polynomial time. For example, any directed graph G with
vertices {v1,...,vm} can be represented by its adjacency matrix X, where z;; =

[vi = v;]; then
f(T12,-- s Zims -, Tmly -+, Tm(m—1)) = |G has a Hamiltonian path] (61)

is a Boolean function of n = m(m — 1) variables. We would dearly love to be
able to evaluate this function in, say, n* steps. We do know how to compute
the truth table for f in O(m!2") = 27+O(/7 1987) steps since only m! potential
Hamiltonian paths exist; thus f is indeed “explicit.” But nobody knows how to
evaluate f in polynomial time, or how to prove that there isn’t a 4n-step chain.

For all we know, short Boolean chains for f might exist, for each n. After all,
Figs. 9 and 10 reveal the existence of fiendishly clever chains even in the cases of
4 and 5 variables. Efficient chains for all of the larger problems that we ever will
need to solve might well be “out there” —yet totally beyond our grasp, because
we don’t have time to find them. Even if an omniscient being revealed the simple
chains to us, we might find them incomprehensible, because the shortest proof
of their correctness might be longer than the number of cells in our brains.

Theorem S rules out such a scenario for most Boolean functions. But fewer
than 219 Boolean functions will ever be of practical importance in the entire
history of the world, and Theorem S tells us zilch about them.

In 1974, Larry Stockmeyer and Albert Meyer were, however, able to con-
struct a Boolean function f whose complexity is provably huge. Their f isn’t
“explicit,” in the precise sense described above, but it isn’t artificial either; it
arises naturally in mathematical logic. Consider symbolic statements such as

048+1015#1063; 62
VmIn (m<n+1) ; 63
VnIm(m+1<n) ; 64

(
(
(
VaVvb (b>a+2#3ab(a<abAab<b)) ; (65
VAVB (A=B&-3n (n€AANEBVNEBANEA)) ; (66
VA (3n(n€A)=3Im(mEAAVN (n€A3M<n))) ; (67
VA (3n(n€A)=3Im(mEAAVN (n€EASM>N))) ; (68
3PVa((a€P#a+3¢P)#a<1000) ; (
VAVB (VCVc (C=AAc=1VC=BAc=0= (Vn(n€C4n+1€C)&c=1))+A=B) . (

69
70

N N N N N

canalizing
adjacency matrix
Stockmeyer

Meyer

quantified formulas
logic

28 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

Stockmeyer and Meyer defined a language L by using the 63-character alphabet
V31 () =€€+AVH@<<=#>>abcdefghijklmnopqABCDEFGHI JKLMNOPQ0123456789

and giving conventional meanings to these symbols. Strings of lowercase letters
within the sentences of L, like ‘ab’ in (65), represent numeric variables, restricted
to nonnegative integers; strings of uppercase letters represent set variables,
restricted to finite sets of such numbers. For example, (66) means, “For all
finite sets A and B, we have A = B if and only if there doesn’t exist a number n
that is in A but not in B, or in B but not in A.” Some of these statements are
true; others are false. (See exercise 82.)

All of the strings (62)—(70) belong to L, but the language is actually quite
restricted: The only arithmetic operation allowed on a number is to add a
constant; we can write ‘a+13’ but not ‘a+b’. The only relation allowed between
a number and a set is elementhood (€ or €). The only relation allowed between
sets is equality (=). Furthermore all variables must be quantified by 3 or v.*

Every sentence of L that has length & < n can be represented by a binary
vector of length 6n, with zeros in the last 6(n — k) bits. Let f(z) be a Boolean
function of 6n variables such that f(x) = 1 whenever z represents a true sentence
of L, and f(z) = 0 whenever x represents a sentence that is false; the value of f(x)
is unspecified when z doesn’t represent a meaningful sentence. The truth table
for such a function f can be constructed in a finite number of steps, according
to theorems of Biichi and Elgot [Zeitschrift fiir math. Logik und Grundlagen der
Math. 6 (1960), 66-92; Transactions of the Amer. Math. Soc. 98 (1961), 21-51].
But “finite” does not mean “feasible”: Stockmeyer and Meyer proved that

C(f)>2"*

In particular, we have C(f) > 24?6 > 10128 when n = 621. A Boolean chain with
that many gates could never be built, since 10'2® is a generous upper bound on

whenever n > 460 + .302r 4+ 5.08In7 and 7 > 36. (71)

the number of protons in the universe. So this is a fairly small, finite problem
that will never be solved.

Details of Stockmeyer and Meyer’s proof appear in JACM 49 (2002), 753—
784. The basic idea is that the language L, though limited, is rich enough to
describe truth tables and the complexity of Boolean chains, using fairly short
sentences; hence f has to deal with inputs that essentially refer to themselves.

*For further reading. Thousands of significant papers have been written about
networks of Boolean gates, because such networks underlie so many aspects of
theory and practice. We have focused in this section chiefly on topics that are
relevant to computer programming for sequential machines. But other topics
have also been extensively investigated, of primary relevance to parallel compu-
tation, such as the study of small-depth circuits in which gates can have any
number of inputs (“unlimited fan-in”). Ingo Wegener’s book The Complexity of

* Technically speaking, the sentences of L belong to “weak second-order monadic logic with
one successor.” Weak second-order logic allows quantification over finite sets; monadic logic
with k successors is the theory of unlabeled k-ary trees.

weak second-order logic
second-order logic
k-ary trees

WS1S

Monadic logic: Logic with only unary operators
Biichi

Elgot

Stockmeyer

Meyer

self-reference
diagonalization

depth

fan-in

‘Wegener

7.1.2 BOOLEAN EVALUATION 29

Boolean Functions (Teubner and Wiley, 1987) provides a good introduction to
the entire subject.

We have mostly considered Boolean chains in which all binary operators
have equal importance. For our purposes, gates such as @ or C are neither more
nor less desirable than gates such as A or V. But it’s natural to wonder if we
can get by with only the monotone operators A and V when we are computing a
monotone function. Alexander Razborov has developed striking proof techniques
to show that, in fact, monotone operators by themselves have inherently limited
capabilities. He proved, for example, that all AND-OR chains to determine
whether the permanent of an n X n matrix of Os and 1s is zero or nonzero
must have cost n‘2(1°6™). [See Doklady Akademii Nauk SSSR 281 (1985), 798
801; Matematicheskie Zametki 37 (1985), 887-900.] By contrast, we will see in
Section 7.5.1 that this problem, equivalent to “bipartite matching,” is solvable
in only O(n?%) steps. Furthermore, the efficient methods in that section can
be implemented as Boolean chains of only slightly larger cost, when we allow
negation or other Boolean operations in addition to A and V. (Vaughan Pratt
has called this “the power of negative thinking.”) An introduction to Razborov’s
methods appears in exercises 85 and 86.

EXERCISES

1. [24] The “random” function in formula (6) corresponds to a Boolean chain of
cost 4 and depth 4. Find a formula of depth 3 that has the same cost.

2. [21] Show how to compute (a) w @ (zyz) and (b) w A (zyz) with formulas that
have depth 3 and cost 5.

3. [M23] (B. I Finikov, 1957.) If the Boolean function f(z1,...,zs) is true at
exactly k points, prove that L(f) < 2n+(k—2)2F~'. Hint: Think of ¥ = 3 and n = 106,

4. [M26] (P. M. Spira, 1971.) Prove that the minimum depth and formula length of
a Boolean function satisfy 1g L(f) < D(f) < alg L(f)+1, where o = 2/1g(3) = 3.419.
Hint: Every binary tree with » > 3 internal nodes contains a subtree with s internal
nodes, where 1r < s < %r.

3
» 5. [21] The Fibonacci threshold function Fy(z1,...,2z,) = (2 zk? . zfn1zin-2)

was analyzed in exercise 7.1.1-101, when n > 3. Is there an efficient way to evaluate it?
6. [20] True or false: A Boolean function f(z1,...,z») is normal if and only if it
satisfies the general distributive law f(z1,...,Z2) Ay = f(Z1 AY,...,Zn AY).
7. [20] Convert the Boolean chain ‘zs = z1 V z4, z6 = T2 V x5, 7 = T1 A I3,
s = T6 = z7’ to an equivalent chain (Zs, Zs,27,%s) in which every step is normal.
» 8. [20] Explain why (11) is the truth table of variable zy.

9. [20] Algorithm L determines the lengths of shortest formulas for all functions f,
but it gives no further information. Extend the algorithm so that it also provides actual
minimum-length formulas like (6).

» 10. [20] Modify Algorithm L so that it computes D(f) instead of L(f).
» 11. [22] Modify Algorithm L so that, instead of lengths L(f), it computes upper
bounds U(f) and footprints ¢(f) as described in the text.

12. [15] What Boolean chain is equivalent to the minimum-memory scheme (13)?

monotone function
Razborov
AND-OR
permanent

0—-1 matrices
bipartite matching
Pratt

depth

pi, random
median

Finikov

Spira

Fibonacci threshold function

distributive law
normal

footprints
minimum-memory

30 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

13. [16] What are the truth tables of fi, f2, fs, f4, and f5 in example (13)7

14. [22] What’s a convenient way to compute the 5n(n—1) truth tables of (17), given
the truth table of g7 (Use bitwise operations as in (15) and (16).)

15. [28] Find short-as-possible ways to evaluate the following functions using mini-
mum memory: (a) Sa(z1,z2,zs,24); (b) S1(z1,2,23,z4); (c) the function in (18).
16. [HM33] Prove that fewer than 2''® of the 2'?® Boolean functions f(z1,...,z7)

are computable in minimum memory.

17. [25] (M. S. Paterson, 1977.) Although Boolean functions f(z1,...,z,) cannot
always be evaluated in n registers, prove that n + 1 registers are always sufficient. In
other words, show that there is always a sequence of operations like (13) to compute
f(z1,...,zn) if we allow 0 < j(3), k(i) < n.

18. [85] Investigate optimum minimum-memory computations for f(z1, z2, z3, Z4, Ts5):
How many classes of five-variable functions have Cp,(f) =7, for r=0,1,2,...7

19. [M22] If a Boolean chain uses n variables and has length r < n + 2, prove that it
must be either a “top-down” or a “bottom-up” construction.

20. [40] (R. Schroeppel, 2004.) A Boolean chain is canalizing if it does not use the
operators @ or =. Find the optimum cost, length, and depth of all 4-variable functions
under this constraint. Does the footprint heuristic still give optimum results?

21. [46] For how many four-variable functions did the Harvard researchers discover
an optimum vacuum-tube circuit in 19517

22. [21] Explain the chain for Ss in Fig. 10, by noting that it incorporates the chain
for Ss,3 in Fig. 9. Find a similar chain for Sz2(z1,z2, s, 4, z5).

23. [23] Figure 10 illustrates only 16 of the 64 symmetric functions on five elements.
Explain how to write down optimum chains for the others.

24. [47] Does every symmetric function f have Cp,(f) = C(f)?

25. [17] Suppose we want a Boolean chain that includes all functions of n variables:
Let frx(z1,...,2Zn) be the function whose truth table is the binary representation of k,
for 0 < k <m =22". What is C(fof1... fm—-1)?

26. [25] True or false: If f(zo,...,zn) = (o Ag(z1,...,Zn)) Dh(z1,...,2n), where g
and h are nontrivial Boolean functions whose joint cost is C(gh), then C(f) =2+C/(gh).

27. [23] Can a full adder (22) be implemented in five steps using only minimum
memory (that is, completely inside three one-bit registers)?

28. [26] Prove that C(u'v') = C(u'v") = 5 for the two-output functions defined by

"n_n

(u'v")2 = (z +y — (uv)2) mod 4, u'v")s = (—z — y — (uwv)2) mod 4.
Use these functions to evaluate [(z1 + - - - + z») mod 4= 0] in fewer than 2.5n steps.
29. [M28] Prove that the text’s circuit for sideways addition (27) has depth O(logn).
30. [M25] Solve the binary recurrence (28) for the cost s(n) of sideways addition.
31. [21] If f(z1,...,zn) is symmetric, prove that C(f) < 5n 4+ O(n/logn).
32. [HM16] Why does the solution to (30) satisfy t(n) = 2™ + O(2"/?)?

33. [HM22] True or false: If 1 < N < 2", the first N minterms of {z1,...,zn} can
all be evaluated in N + O(\/]V) steps, as n — oo and N — oco.

bitwise operations
symmetric functions
minimum memory
Paterson

five-variable functions
top-down

bottom-up
Schroeppel

canalizing

canalizing functions
AND/OR/NOT circuits
footprint
four-variable functions
Harvard

vacuum-tube circuit
symmetric functions
full adder

minimum memory
sideways addition
binary recurrence
minterms

7.1.2 BOOLEAN EVALUATION 31

> 34. [22] A priority encoder has n = 2™ — 1 inputs z1 ...z, and m outputs y1 ... ym,
where (y1...Ym)2 = k if and only if k¥ = max{j | 7 = 0 or z; = 1}. Design a priority
encoder that has cost O(n) and depth O(m).

35. [23] If n > 1, show that the conjunctions z1 A -+ A Tx—1 A Tk41 A -+ Az, for
1 < k < n can all be computed from (z1,...,z,) with total cost < 3n — 6.

» 36. [M28] (R.E.Ladner and M. J. Fischer, 1980.) Let yx be the “prefix” 1 A--- Az
for 1 <k <n. Clearly C(y1...yn) =n—1 and D(y1...yn) = [lgn]; but we can’t
simultaneously minimize both cost and depth. Find a chain of optimum depth [lgn]
that has cost < 4n.

37. [M28] (Marc Snir, 1986.) Given n > m > 1, consider the following algorithm:

S1. [Upward loop.] For t < 1, 2, ..., [lgm], set Toinim,2tk) & Zatk—1/2) A
Tinin(m,2tk) for k > 1 and 2tk — 1/2) < m.

S2. [Downward loop.] For t < [lgm] — 1, [lgm] —2, ..., 1, set Zorpi1/2)
Toty, A Tot(gy1/2) for k> 1 and 28(k +1/2) < m.

S3. [Extension.] For k < m+ 1, m+2, ..., n, set zx Tp—1 ATk. |

a) Prove that this algorithm solves the prefix problem of exercise 36: It transforms
(z1,22,...,2n) Into (z1,21 AZ2,...,Z1 AZ2 A--- A Zp).

b) Let c¢(m,n) and d(m,n) be the cost and depth of the corresponding Boolean chain.
Prove that, if n is sufficiently large, ¢(m,n) + d(m,n) = 2n — 2.

¢) Given n, what is d(n) = mini<m<n d(m,n)? Show that d(n) < 2lgn.

d) Prove that there’s a Boolean chain of cost 2n — 2 — d and depth d for the prefix
problem whenever d(n) < d < n. (This cost is optimum, by exercise 81.)

38. [25] In Section 5.3.4 we studied sorting networks, by which ,§'(n) comparator
modules are able to sort n numbers (z1,z2,...,z,) into ascending order. If the inputs
z; are Os and 1s, each comparator module is equivalent to two gates (z A y,z V y);
so a sorting network corresponds to a certain kind of Boolean chain, which evaluates
n particular functions of (z1,z2,...,Zn).
a) What are the n functions fif2 ... fn» that a sorting network computes?
b) Show that those functions {fi, fa,..., fn} can be computed in O(n) steps with a
chain of depth O(logn). (Hence sorting networks aren’t asymptotically optimal,
Booleanwise.)

» 39. [M21] (M. S. Paterson and P. Klein, 1980.) Implement the 2™-way multiplexer
Mp(z1,...,Tm; Yo, Y1,--.,y2m—_1) of (31) with an efficient chain that simultaneously
establishes the upper bounds C(M,,) < 2n + O(v/n) and D(M,,) < m + O(logm).

40. [25] If n >k > 1, let for(z1,...,2zn) be the “k in a row” function,
(@ A Azi)V (@2 A Azpgr) VooV (Tnp1-k A+ An).

Show that the cost C'(fnk) of this function is less than 4n — 3k.

41. [M23] (Conditional-sum adders.) One way to accomplish binary addition (25)
with depth O(logn) is based on the multiplexer trick of exercise 4: If (zz')2 + (yy')2 =
(22")2, where |z'| = |y'| = |Z’|, we have either (z)2+(y)2 = (2)2 and (z')2+(y')2 = (2')2,
or (z)2+ (y)2+1 = (2)2 and (z')2 + (y')2 = (12')2. To save time, we can compute both
(z)2 + (y)2 and ()2 + (y)2 + 1 simultaneously as we compute (z')2 + (y')2. Afterwards,
when we know whether or not the less significant part (z')2 + (y')2 produces a carry,
we can use multiplexers to select the correct bits for the most significant part.

priority encoder
Ladner

Fischer

prefix

Snir

prefix problem
sorting networks
comparator modules
Paterson

Klein

Zm—way multiplexer
k in a row
consecutive 1s
Conditional-sum adders
multiplexer

carry

32 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

If this method is used recursively to build 2n-bit adders from n-bit adders, how carry bits
many gates are needed when n = 2™? What is the corresponding depth? ﬁ?‘te state transducer
p
42. [25] In the binary addition (25), let ux = zx Ayx and vy, = z, D yx for 0 < k < n. Ladner
a) Show that zp = v @ c, where the carry bits ¢, satisfy E;Sgﬁg
Fischer

¢k = up—1V (Ve—1 A (up—2 V (vg—2 A (- (u1 Avg) -+ +))))-

b) Let UF =0, V¥ =1, and U;-“'H = ur V (vk A U]’-“)7 ij+1 = v A V]-"’7 for k > j.
Prove that ¢, = U¥, and that UF = U]’-" \Y (ij A Uij), VE = ij A Vij fori<j<k.
¢) Let h(m) = 2™(m~D/2 Show that when n = h(m), the carries c1, ..., ¢, can all
be evaluated with depth (m+1)m/2 = lgn++v/21lgn and with total cost O(2™n).

> 43. [28] A finite state transducer is an abstract machine with a finite input alpha-
bet A, a finite output alphabet B, and a finite set of internal states (). One of those
states, qo, is called the “initial state.” Given a string o = a1 ...an, where each a; € A,
the machine computes a string 3 = by ... b, where each b; € B, as follows:

T1. [Initialize.] Set j « 1 and g + go-

T2. [Done?] Terminate the algorithm if j > n.

T3. [Output b;.] Set b; « c(g,a;).

T4. [Advance j.] Set ¢ < d(g,a;), j < j+ 1, and return to step T2. |

The machine has built-in instructions that specify c(q,a) € B and d(g,a) € Q for every
state ¢ € Q and every character a € A. The purpose of this exercise is to show that, if
the alphabets A and B of any finite state transducer are encoded in binary, the string
B can be computed from a by a Boolean chain of size O(n) and depth O(logn).

a) Consider the problem of changing a binary vector a1 ...an to b1 ...b, by setting

b]‘ — a; @ [a]- =Qj—1="""=0aj—k =1 and Aj—k—1 =0, where £k is Odd],

assuming that ap = 0. For example, o = 1100100100011111101101010 — B =
1000100100010101001001010. Prove that this transformation can be carried out
by a finite state transducer with |A| = |B| = |Q| = 2.

b) Suppose a finite state transducer is in state g; after reading ai...a;—1. Explain
how to compute the sequence ¢ ... g, with a Boolean chain of cost O(n) and depth
O(logn), using the construction of Ladner and Fischer in exercise 36. (From this
sequence ¢i ...(¢n it is easy to compute by ... bn, since b; = ¢(g;,a;).)

c) Apply the method of (b) to the problem in (a).

» 44. [26] (R. E. Ladner and M. J. Fischer, 1980.) Show that the problem of binary
addition (25) can be viewed as a finite state transduction. Describe the Boolean chain
that results from the construction of exercise 43 when n = 2™, and compare it to the
conditional-sum adder of exercise 41.

45. [HM20] Why doesn’t the proof of Theorem S simply argue that the number of
ways to choose j(z) and k() so that 1 < j(3),k(2) < ¢ is n?(n+1)2... (n+r—1)2?

> 46. [HM21] Let a(n) = ¢(n, [2"/n])/2%" be the fraction of n-variable Boolean func-
tions f(z1,...,zn) for which C(f) < 2"/n. Prove that a(n) — 0 rapidly as n — oo.
47. [M23] Extend Theorem S to functions with » inputs and m outputs.
48. [HM23] Find the smallest integer 7 = r(n) such that (r—1)! 22" < 22"+ (n4r—1)",
(a) exactly when 1 < n < 16; (b) asymptotically when n — oco.

7.1.2 BOOLEAN EVALUATION 33

49. [HM25] Prove that, as n — oo, almost all Boolean functions f(z1,...,zn) have
minimum formula length L(f) > 2"/lgn — 2"2?/(1gn)>.

50. [24] What are the prime implicants and prime clauses of the prime-number func-
tion (35)? Express that function in (a) DNF (b) CNF of minimum length.

51. [20] What representation of the prime-number detector replaces (37), if rows of
the truth table are based on zsx¢ instead of x1x2?

52. [23] What choices of k£ and [minimize the upper bound (38) when 5 < n < 167
53. [HM22] Estimate (38) when k = |2lgn] and | = [2¥/(n — 31gn)] and n — oc.
54. [29] Find a short Boolean chain to evaluate all six of the functions f;(z) =
[z1222324 € Aj], where A1 = {0010,0101, 1011}, A, = {0001,1111}, A3 = {0011, 0111,
1101}, As = {1001,1111}, As = {1101}, Ag = {0101,1011}. (These six functions

appear in the prime-number detector (37).) Compare your chain to the minterm-first
evaluation scheme of Lupanov’s general method.

55. [34] Show that the cost of the 6-bit prime-detecting function is at most 14.
» 56. [16] Explain why all functions with 14 or more don’t-cares in Table 3 have cost 0.
57. [19] What seven-segment “digits” are displayed when (z1z2z324)2 > 9 in (45)7

> 58. [30] A 4x4-bit S-boz is a permutation of the 4-bit vectors {0000,0001,...,1111};
such permutations are used as components of well-known cryptographic systems such
as the Russian standard GOST 28147 (1989). Every 4x4-bit S-box corresponds to
a sequence of four functions fi(z1,22,23,%4), ..., fa(z1,Z2,23,24), which transform
T1T2XL3T4 —> f1f2f3f4-

Find all 4x4-bit S-boxes for which C(f1) = C(f2) = C(fs) = C(fa) =T.

59. [29] One of the S-boxes satisfying the conditions of exercise 58 takes (0,...,f) >
(0,6,5,b,3,9,f,e,c,4,7,8,d,2,a,1); in other words, the truth tables of (fi, f2, fs, f4)
are respectively (179a,63e8,5b26,3e29). Find a Boolean chain that evaluates these
four “maximally difficult” functions in fewer than 20 steps.

60. [23] (Frank Ruskey.) Suppose z = (z+y) mod 3, where z = (z122)2, y = (y192)2,
z = (z122)2, and each two-bit value is required to be either 00, 01, or 10. Compute z1
and z2 from z1, x2, y1, and y2 in six Boolean steps.

61. [84] Continuing exercise 60, find a good way to compute z = (z +y) mod 5, using
the three-bit values 000, 001, 010, 011, 100.

62. [HM23] Consider a random Boolean partial function of n variables that has 2"c
“cares” and 2"d “don’t-cares,” where c+ d = 1. Prove that the cost of almost all such
partial functions exceeds 2"c¢/n.

63. [HM35] (L. A. Sholomov, 1969.) Continuing exercise 62, prove that all such
functions have cost < 2%¢/n(1 4+ O(n"‘logn)). Hint: There is a set of 2™(1 + k)
vectors z1 ...z, that intersects every (k — m)-dimensional subcube of the k-cube.

64. [25] (Magic Fifteen.) Two players alternately select digits from 1 to 9, using no
digit twice; the winner, if any, is the first to get three digits that sum to 15. What’s a
good strategy for playing this game?

> 65. [35] Modify the tic-tac-toe strategy of (47)—(56) so that it always plays correctly.

66. [20] Criticize the moves chosen in exercise 65. Are they always optimum?

prime implicants
prime clauses
prime-number function
Lupanov

don’t-cares

S-box

GOST

Ruskey

addition modulo 3 and 5
cares

don’t-cares

Sholomov

subcube

k-cube

Magic Fifteen

34 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

» 67. [40] Instead of simply finding one correct move for each position in tic-tac-toe,
we might prefer to find them all. In other words, given z ...z901 ...09, we could try
to compute nine outputs g; ...ge, where g; = 1 if and only if a move into cell j is
among X’s best. For example, exclamation marks indicate all of the right moves for X
in the following typical positions:

i S A e M S Rl G THG S R S o B i
A machine that chooses randomly among these possibilities is more fun to play against
than a machine that has only one fixed strategy.

One attractive way to solve the all-good-moves problem is to use the fact that
tic-tac-toe has eight symmetries. Imagine a chip that has 18 inputs zi1...zg01...09
and three outputs (c,s,m), for “corner,” “side,” and “middle,” with the property
that the desired functions g; can be computed by hooking together eight of the chips
appropriately:

g1 = ¢(T1T2T3T4T5T6T7T5T9010203040506070809)

V e(Z1Z4T7T2T5 T8 T3T6L9010407020508030609),
g2 = 5($1$2$3$41‘5$6$7$8$9010203040506070809)

V $(Z3T2T1T6T5T4T9T8T7030201060504090807),
gs = C($3$2£C1$6£C5:E4.1‘9£Cg$7030201060504090807)

V ¢(T3T6T9T2T5T8T1T4T7030609020508010407),
g4 = S(T124XT7T2T5T8L3T6L9010407020508030609)

V $(Z724L128T5L2T9L6L3070401080502090603),
g9 = c(ToTsT7TEL5T4L3T2L10905807060504030201)

V ¢(Z9ZeT3L8T5L2L7T4L1090603080502070401),

and gs is the OR of the m outputs from all eight chips.

Design such a chip, using fewer than 2000 gates.
68. [M25] Consider the n-bit 7 function 7, (1 . .. s), whose value is the (z1 ... 25)2th
bit to the right of the most significant bit in the binary representation of 7. Does the
method of exercise 4.3.1-39, which describes an efficient way to compute arbitrary bits
of 7, prove that C(m,) < 2"/n for sufficiently large n?

69. [M24] Let the multilinear representation of f be
000 D ®01Tm D do10Z; D Q0112 Tm D X100Ts D X101 ZiTm D 110T:Z; B A111T45T5Tm,

where each coefficient a; is a function of the variables {z1,...,zn} \ {zs,Zj, Tm}.
a) Prove that the pairs (58) are “good” if and only if the coefficients satisfy

Q010101 = G011(X100, a101%110 = (X100X111, and a110¢011 = X111Q010-

b) For which values (,j,m) are the pairs bad, when f = (det X) mod 2?7 (See (60).)

> 70. [M27] Let X be the 3 x 3 Boolean matrix (60). Find efficient chains for the
Boolean functions (a) (det X)) mod 2; (b) [per X >0]; (c) [det X > 0].

> 71. [M26] Suppose f(z) is equal to 0 with probability p at each point z = z1 ... zp,
independent of its value at other points.
a) What is the probability that the pairs (58) are good?
b) What is the probability that bad pairs (58) exist?
¢) What is the probability that bad pairs (58) are found in at most ¢ random trials?
d) What is the expected time to test case (i,7,m), as a function of p, ¢, and n?

7r function

multilinear representation
good

bad

analysis of algorithms

7.1.2 BOOLEAN EVALUATION 35

72. [M24] Extend the previous exercise to the case of partial functions, where f(z) =
0 with probability p, f(z) = 1 with probability ¢, and f(z) = * with probability r.
73. [20] If bad pairs (58) exist for all (¢,7, m) with m # ¢ # j # m, show that the
indecomposability of f can be deduced after testing only (;) well-chosen triples (i, 7, m).
74. [25] Extend the idea in the previous exercise, suggesting a strategy for choosing
successive triples (i, 7, m) when using the method of Shen, McKellar, and Weiner.

75. [20] What happens when the text’s decomposition procedure is applied to the
“all-equal” function Son(Z1,...,2Zn)?7

76. [M25] (D. Uhlig, 1974.) The purpose of this exercise is to prove the amazing fact
that, for certain functions f, the best chain to evaluate the Boolean function

F(ut,...,Un,v1,-.-,0n) = f(ut,...,un)V f(v1,...,0n)

costs less than 2C(f); hence functional decomposition is not always a good idea.

We let n = m + 2™ and write f(i1,...,%m,Zo,-...,T2m_1) = fi(z), where ¢ is
regarded as the number (i1...%4m)2. Then (u1,...,un) = (%1,-..,%m,To,...,Tam_1),
(vlv ERE 7Uﬂ) = (j17 .. 7jm7y07 e 7y2m—1)7 and F(“v U) = fi(x) \ f](y)

a) Prove that a chain of cost O(n/logn)? suffices to evaluate the 2™ + 1 functions

a =@ ((I<idei<iha(zey), 0<I1<2m,

from given vectors i, j, x, and y; each z; is a vector of length 2™.

b) Let gi(z) = fi(z) ® fi—1(z) for 0 < i < 2™, where f_1(z) = fam (z) = 0. Estimate
the cost of computing the 2™ + 1 values ¢; = ¢i(2;), given the vectors z;, for
0<1<2m.

c) Let c;=ci A([i<j]=[l<i]) and ¢f = c; A ([<j]=[j>1]). Prove that

filz)=ch®cL @ D com, fily) =co®ci & D cym.

d) Conclude that C(F) < 2"/n+ O(2"(logn)/n?). (When n is sufficiently large, this
cost is definitely less than 2"*'/n, but functions f exist with C(f) > 2"/n.)
e) For clarity, write out the chain for F when m =1 and f(¢,z0,21) = (¢ A zo) V 1.

77. [85] (N. P. Red’kin, 1970.) Suppose a Boolean chain uses only the operations
AND, OR, or NOT; thus, every step is either z; = ;) A Tpu) Or Ti = Z;3) V Tr)
or x; = Zj(;). Prove that if such a chain computes either the “odd parity” function
fo(z1,...,2n) =21 ® -+ Dz, or the “even parity” function frn(z1,...,2,) =10z @
-+- @ xn, where n > 2, the length of the chain is at least 4(n — 1).

78. [26] (W.J.Paul, 1977.) Let f(z1,...,Zm, Yo, -.,Y2m_1) be any Boolean function
that equals yx whenever (z1...2m)2 =k € S, for some givenset S C {0,1,...,2™ —1};
we don’t care about the value of f at other points. Show that C(f) > 2||S||—2 whenever
S is nonempty. (In particular, when S = {0,1,...,2™ — 1}, the multiplexer chain of
exercise 39 is asymptotically optimum.)

79. [82] (C. P. Schnorr, 1976.) Say that variables u and v are “mates” in a Boolean
chain if there is exactly one simple path between them in the corresponding binary tree
diagram. T'wo variables can be mates only if they are each used only once in the chain;
but this necessary condition is not sufficient. For example, variables 2 and 4 are mates
in the chain for S1,2,3 in Fig. 9, but they are not mates in the chain for Ss.

a) Prove that a Boolean chain on n variables with no mates has cost > 2n — 2.

b) Prove that C(f) = 2n — 3 when f is the all-equal function So,n(z1,-..,Zn).

partial functions
don’t-cares

Shen

McKellar

Weiner

all-equal

Uhlig
decomposition
Red’kin
AND-OR-NOT chains
parity

Paul

don’t care
partially specified
multiplexer
Schnorr

mates

all-equal function

36 COMBINATORIAL ALGORITHMS (F0C) 7.1.2

» 80. [M27] (L. J. Stockmeyer, 1977.) Another notation for symmetric functions is
sometimes convenient: If o = aoa1 ...an is any binary string, let Sa(z) = av,. For
example, (z1z223) = Soo11 and z1 @ z2 @ 3 = So1o1 in this notation. Notice that
Sa(0,z2,...,%n) = Sar(z2,...,7n) and Sa(l,z2,...,Tn) = Sia(z2,...,Tn), where o
and '« stand respectively for o with its last or first element deleted. Also,

Sa(f(xay---r2n), F(®3y -, Tn), &35+, Tn) = Srar (T3, -+, Tn)

when f is any Boolean function of n — 2 variables.
a) A parity function has ag # a1 # a2 # -+ - # an. Assume that n > 2. Prove that if
S« is not a parity function and S,/ isn’t constant, then

C(Sa) > max(C(Sar)—i-Q, C(S/a)-l—z, min(C(Sa/)—}-S, C(Sla)+3, C(Slal)+5)).

b) What lower bounds on C(Sx) and C(Sxx) follow from this result, when 0 < k < n?

81. [23] (M. Snir, 1986.) Show that any chain of cost ¢ and depth d for the prefix
problem of exercise 36 has ¢+ d > 2n — 2.

> 82. [M23] Explain the logical sentences (62)—(70). Which of them are true?

83. [21] If there’s a Boolean chain for f(z1,...,z,) that contains p canalizing oper-
ations, show that C(f) < (p+ 1)(n+ p/2).

84. [M20] A monotone Boolean chain is a Boolean chain in which every operator o,
is monotone. The length of a shortest monotone chain for f is denoted by Ct(f). If
there’s a monotone Boolean chain for f(z1,...,2zn) that contains p occurrences of A
and g occurrences of V, show that C(f) < min((p + 1)(n + p/2), (g + 1)(n + ¢/2)).

> 85. [M28] Let M, be the set of all monotone functions of n variables. If L is a family
of functions contained in M, let

ny:/\{zeL|z2xVy} and xl‘ly:\/{zeL|z§x/\y}.

We call L “legitimate” if it includes the constant functions 0 and 1 as well as the
projection functions z; for 1 < j <n,andifz Uy € L, x My € L whenever z,y € L.

a) When n = 3 we can write M3 = {00, 01, 03, 05, 11, 07, 13, 15, Of, 33, 55, 17, 1f,
37, 57, 3f, bf, 77, 7f, ff}, representing each function by its hexadecimal truth
table. There are 2'° families L such that {00, 0f, 33,55, ff} C L C Ms; how many
of them are legitimate?

b) If A is a subset of {1,...,n}, let [A] = \/ 4 Za; also let [co] = 1. Suppose A
is a family of subsets of {1,...,n} that contains all sets of size < 1 and is closed
under intersection; in other words, AN B € A whenever A € A and B € A. Prove
that the family L = {[A] | A € AU {o0}} is legitimate.

c) Let (Zn+1,...,Znt+r) be a monotone Boolean chain (1). Suppose (£n+1,. .., Tn+r)
is obtained from the same Boolean chain, but with every operator A changed to N
and with every operator V changed to LI, with respect to some legitimate family L.
Prove that, for n +1 <1 < n + r, we must have

l
Z €z V \/ {#: ® (Zj0) V Er(s)) | 0s =V}
i=n+1
1
o C &1V {8 (@50 Adra) [0 = A}

i=n+1

Stockmeyer

notation

symmetric functions
prefixes of strings
suffixes of strings

parity

Snir

prefix problem

logic

monotone Boolean chain
monotone functions
legitimate

hexadecimal

truth table

closed under intersection

7.1.2 BOOLEAN EVALUATION 37

86. [HM37] A graph G on vertices {1,...,n} can be defined by N = (}) Boolean
variables z4, for 1 < u < v < n, where 4, = [u—wv in G]. Let f be the function
f(z) = [G contains a triangle]; for example, when n = 4, f(z12, 13, 14, 23, 24, Z34) =
($12 ANx13 N\ £E23) Vv (11312 ANx14 N .’E24) V (113 Ax14 N\ :E34) Vv (123 A xog N\ 134). The purpose
of this exercise is to prove that the monotone complexity C*(f) is Q(n/logn)3.

a) If uj — v; for 1 < j < rin a graph G, call S = {{u1,v1},-...,{ur,v-}} an 7-
family, and let A(S) = Ur<icj<r({ui, vi}N{u;j,v;}) be the elements of its pairwise
intersections. Say that G is r-closed if we have u — v whenever A(S) C {u,v} for
some r-family S. It is strongly r-closed if, in addition, we have |A(S)| > 2 for all
r-families S. Prove that a strongly r-closed graph is also strongly (r + 1)-closed.

b) Prove that the complete bigraph K, n is strongly r-closed when r > max(m,n).

¢) Prove that a strongly r-closed graph has at most (r — 1)* edges.

d) Let L be the family of functions {1} U {[G] | G is a strongly r-closed graph on
{1,...,n}}. (See exercise 85(b); we regard G as a set of edges. For example, when
the edges are 1—3,1—4,2—3, 2—4, we have [G] = 213 V 14 V Z23 V Z24.)
Is L legitimate?

e) Let zn41, ..., TN+p+q = f be a monotone Boolean chain with p A-steps and g
V-steps, and consider the modified chain Zn41, ..., EN4p+q = f based on the
family L in (d). If f # 1, show that 2(r — 1)*p+ (r — 1)%(n — 2) > (7). Hint: Use
the second formula in exercise 85(c).

f) Furthermore, if f =1 we must have r2¢ > 2" 1.

g) Therefore p = Q(n/logn)3. Hint: Let r ~ 61gn and apply exercise 84.

87. [M20] Show that when nonmonotonic operations are permitted, the triangle func-
tion of exercise 86 has cost C(f) = O(n'8"(logn)?) = O(n*®'). Hint: A graph has a
triangle if and only if the cube of its adjacency matrix has a nonzero diagonal.

88. [40] A median chain is analogous to a Boolean chain, but it uses median-of-three
steps i = (T;()Tk(i)Tis)) for n4+1 <4 <n+r, instead of the binary operations in (1).

Study the optimum length, depth, and cost of median chains, for all self-dual mono-
tone Boolean functions of 7 variables. What is the shortest chain for (z1z2z3z4252627)7

monotone complexity
7r-family

7-closed

complete bigraph
legitimate

monotone Boolean chain
triangle function
adjacency matrix
median chain
self-dual monotone
median of seven

38 ANSWERS TO EXERCISES 7.1.2

SECTION 7.1.2

1. ((:Ul Vv 1:4) A CL‘z) = (CL‘1 \2 CL‘3).

2. (a) (we(zAy)@((zDy)Az); (b) (wA(zVy)A((zAy)V 2).

3. [Doklady Akademii Nauk SSSR 115 (1957), 247-248.] Construct a k X n matrix
whose rows are the vectors z where f(z) = 1. By permuting and/or complementing
variables, we may assume that the top row is 1...1 and that the columns are sorted.
Suppose there are [distinct columns. Then f = g A h, where g is the AND of the
expressions (z;_1 = z;) over all 1 < j < n such that column j — 1 equals column j,
and h is the OR of k£ minterms of length [, using one variable from each group of equal
columns. For example, if n = 8 and if f is 1 at the £ = 3 points 11111111, 00001111,
00110111, then | = 4 and f(z) equals (z1 = z2) A (z3 = 74) A (6 = z7) A (T7 = 28) A
((xl ANzsAx5s Ax6)V (T1 ATsATs Aze) V (T1 Ax3 AT5 A xs)). The length of this formula
in general is 2n + (k — 2)] — 1, and we have [< 2871,

Notice that, if k is large, we get shorter formulas by writing f(z) as a disjunction
fi(z)V---V fr(z), where each f; has at most [k/r] 1s. Thus

L(f) < Irn>irll(r—1+(2n+ [k/r —2]2MF/m Ty,

4. The first inequality is obvious, because a binary tree of depth d has at most
1+24---4+ 24=1 — 24 _ 1 internal nodes.

The hint follows because we can find a minimal subtree of size > |r/3]. Its size s
is at most 1 4+ 2(|r/3| — 1). Therefore we can write f = (g? fi: fo), where g is a
subformula of size s; fo and fi1 are the formulas of size » — s — 1 obtained when that
subformula is replaced by 0 and 1, respectively.

Let d(r) = max{ D(f) | L(f) = r }. Since the mux function has depth 2, and since
max(s,r —s — 1) < [%], we have d(r) < 2+ d([%] — 1) for 7 > 3, and the result
follows by induction on r. [Hawaii International Conf. System Sci. 4 (1971), 525-527.]

5. Let go =0, g1 = z1, and g; = z; A (zj—1V gj—2) for j > 2. Then F,, = gn V gn—1,
with cost 2n — 2 and depth n. [These functions g; also play a prominent role in binary
addition; see exercises 42 and 44 for ways to compute them with depth O(logn).]

6. True: Consider the cases y = 0 and y = 1.

7. &5 = z1V&a, L6 = T2AEs, Tr = z1Vas, £s = £6DE7. (The original chain computes
the “random” function (6); see exercise 1. The new chain computes the normalization
of that function, namely its complement.)

8. The desired truth table consists of blocks of 2"~* 0s alternating with blocks of

n—k
2"=F 1s, as in (7). Therefore, if we multiply by 22 +1 we get zp, + (z < 2"7F),
which is all 1s.

9. When finding L(f) = oo in step L6, we can store g and h in a record associated
with f. Then a recursive procedure will be able to construct a minimum-length formula
for f from the respective formulas for g and h.

10. In step L3, use k = r — 1 instead of k = r — 1 — j. Also change L to D everywhere.

11. The only subtle point is that j should decrease in step U3; then we’ll never have

#(g) & ¢(h) # 0 when j = 0, so all cases of cost » — 1 will be discovered before we begin
to look at list » — 1.

U1. [Initialize.] Set U(0) < $(0) +— 0 and U(f) + oo for 1 < f < 22" 1. Then

set U(zr) < ¢(zx) < 0 and put z into list 0, as in step L1. Also set

mux
pi

normalization
recursive procedure

7.1.2 ANSWERS TO EXERCISES 39

U(zjozk) < 1, set ¢(z; o zx) to an appropriate bit vector of weight 1, and
put z; o zy into list 1, for 1 < j < k < n and all five normal operators o.
Finally set ¢ < 2*" ' —5(%) —n—1.

U2. [Loop on r.] Do step U3 for r =2, 3, ..., while ¢ > 0.

U3. [Loop on j and k.] Do step U4 for j = |(r —1)/2], |(r —1)/2] — 1, ..., and
k=r—1—j, while j > 0.

U4. [Loop on g and h.] Do step U5 for all g in list j and all h in list k; if j = k,
restrict h to functions that follow g in list k.

US5. [Loop on f.] If ¢(g9) & ¢(h) # 0, set u < r—1 and v + ¢(g) & $(h); otherwise
set u < r and v < ¢(g) | (k). Then do step U6 for f =g & h, f = g&h,
f=g&h,f=g|h,and f=g®h.
U6. [Update U(f) and ¢(f).] If U(f) = o0, set ¢ < ¢ — 1, ¢(f) < v, and put f
into list w. Otherwise if U(f) > u, set ¢(f) + v and move f from list U(f)
to list u. Otherwise if U(f) = u, set ¢(f) + &(f) |v. 1
12. Tra :m1®m2, s :Ig/\.’ﬂz, Te 21‘2/\54, i :$5V1,‘6.
13. fs = 01010101 (z3); fa = 01110111 (z2 V z3); fz = 01110101 ((Z1 A z2) V z3);
fo = 00110101 (217 z3: 2); fi = 00010111 ((z1z223)).
14. For 1 < j < n, first compute t < (g® (g > 2") & zj, t + t D (t € 2"7),
where z; is the truth table (11); then for 1 < k£ < n and k # j, the desired truth table
corresponding to z; < z; oz is g B (t & ((z o zk) D ;))-
(The 5n(n — 1) masks (z; o) @ z; are independent of g and can be computed
in advance. The same idea applies if we allow more general computations of the form
Tj(i) ¢ Tr(s) Oi Ti@s), with 5n?(n — 1) masks (zx o z1) @ x;.)

15. Remarkably asymmetrical ways to compute symmetrical functions:

(a) z1 < z1 @ z2, (b) z1 + 21 ® 2, (c) 1 + 71 ® z2,
T3 ¢ T3 D T4, Ty T2 N\ T1, T2 < T2 D 3,

Ty < 21 D T3, T3 < T3 D 24, T2 ¢ x2 V T1,

Ty < T2 D x4, T4 < T4 N\ 21, 1 < 1 D 74,
Is(—[Egvmz, .7:2(—52/\133, 1 (—11/\$3,

xr3 < T3 NZT1. Ty < T2 O 21, T < T2 N\ T1,

T — Toa N\ T4q. T — T2 D 4.

16. A computation that uses only @ and complementation produces nothing but
affine functions (see exercise 7.1.1-132). Suppose f(z) = f(z1,...,Z») is a non-affine
function computable in minimum memory. Then f(z) has the form g(Az + c) where
91,92,y Yn) = 9(¥y1 A Y2,Y2,...,Yn), for some nonsingular n x n matrix A of 0s
and 1s, where z and c¢ are column vectors and the vector operations are performed
modulo 2; in this formula the matrix A and vector ¢ account for all operations z; <
z; @ z; and/or permutations and complementations of coordinates that occur after the
most recent non-affine operation that was performed. We will exploit the fact that
9(0707y37" . 7y") = 9(1707y37" . 7y’ﬂ)'

Let « and B be the first two rows of A; also let @ and b be the first two elements
of c. Then if Az 4+ ¢ =y (modulo 2) we have y1 = y2 = 0 if and only if @ -z = a and
B -z = b. Exactly 2”72 vectors & satisfy this condition, and for all such vectors we
have f(z) = f(z ® w), where Aw = (1,0,...,0)%.

Given a, 3, a, b, and w, with a # (0,...,0), 8# (0,...,0),a# B,and - w =1
(modulo 2), there are 22"-2""2 functions f with the property that f(z) = f(z ® w)

affine functions

40 ANSWERS TO EXERCISES 7.1.2

whenever - £ mod 2 = @ and 8- mod 2 = b. Therefore the total number of functions
computable in minimum memory is at most 2" (for affine functions) plus

(2" —1)(2" — 2)22(27171)(22"72"—2) < 22"72"_2+3n+1.

17. Let f(z1,...,2zn) = g(z1,---,Zn-1) ® (h(z1,...,Zn—1) A zn) as in 7.1.1-(16).
Representing h in CNF, form the clauses one by one in zo and AND them into z,,
obtaining hAz,. Representing g as a sum (mod 2) of conjunctions, form the successive
conjunctions in zg and XOR them into z, when ready.

(It appears to be impossible to evaluate all functions inside of n + 1 registers if we
disallow the non-canalizing operators @ and =. But n + 2 registers clearly do suffice,
even if we restrict ourselves to the single operator A.)

18. As mentioned in answer 14, we should extend the text’s definition of minimum-
memory computation to allow also steps like x;(;) < Tx() 0i Ti(s), with k(i) # j(i) and
1(z) # j(i), because that will give better results for certain functions that depend on
only four of the five variables. Then we find Cr,(f) = (0,1,...,13,14) for respectively
(2, 2, 5, 20, 93, 389, 1960, 10459, 47604, 135990, 198092, 123590, 21540, 472, 0) classes
of functions .. . leaving 75,908 classes (and 575,963,136 functions) for which Cp, (f) = co
because they cannot be evaluated at all in minimum memory. The most interesting
function of that kind is probably (z1 Az2) V (z2 Azs) V (zs Aza) V (za Azs) V (z5 Az1),
which has C(f) = 7 but Cin(f) = co. Another interesting case is (((z1 V z2) ® z3) V
((z2VZs) Azs)) A((z1 =22) VT3 V T4), fOr which C(f) = 8 and Cin(f) = 13. One way
to evaluate that function in eight steps is ¢ = 1 V z2, x7 = 1 V x4, s = 2 D 7,
T9 = 3 D X6, T10 = T4 D T9, T11 = T5 V X9, T12 = T8 N\ Z10, L13 = T11 N T12.

19. If not, the left and right subtrees of the root must overlap, since case (i) fails.
Each variable must occur at least once as a leaf, by hypothesis. At least two variables
must occur at least twice as leaves, since case (ii) fails. But we can’t have n + 2 leaves
with 7 < n 4 1 internal nodes, unless the subtrees fail to overlap.

20. Now Algorithm L (with ‘f = g ® h’ omitted in step L5) shows that some formulas
must have length 15; and even the footprint method of exercise 11 does no better
than 14. To get truly minimum chains, the 25 special chains for 7 = 6 in the text must
be supplemented by five others that can no longer be ruled out, namely

4 3 4 3 4 4 4 .
3 12 3 3 !
12

12172 12172
12172 12172
and when r = (7, 8,9) we must also consider respectively (653, 12387, 225660) additional
potential chains that are not special cases of the top-down and bottom-up constructions.
Here are the resulting statistics, for comparison with Table 1:

Cets) Clazs- Bane: v Ol B r() Ol Bane p(y) Clas B
0 2 10 0 2 10 0 2 10 0 2 10
1 1 48 1 1 48 1 1 48 1 1 48
2 2 256 2 2 256 2 2 256 2 7 684
3 7 940 3 7 940 3 7 940 3 59 17064
4 9 2336 4 9 2336 4 7 2048 4 151 47634
5 24 6464 5 21 6112 5 20 5248 5 2 96
6 30 10616 6 28 9664 6 23 8672 6 0 0

CNF
canalizing
NAND

7.1.2 ANSWERS TO EXERCISES 41
7 61 18984 7 45 15128 7 37 11768 7 0 0
8 45 17680 8 40 14296 8 27 10592 8 0 0
9 37 7882 9 23 8568 9 33 11536 9 0 0
10 4 320 10 28 5920 10 16 5472 10 0 0
11 0 0 11 6 1504 11 30 6304 11 0 0
12 0 0 12 5 576 12 3 960 12 0 0
13 0 0 13 3 144 13 8 1472 13 0 0
14 0 0 14 2 34 14 2 96 14 0 0
15 0 0 15 0 0 15 4 114 15 0 0

The two function classes of depth 5 are represented by Sz 4(z1,z2,z3,2z4) and z1 @
Sa(z2,z3,24); and those two functions, together with S2(z1,z2,zs,z4) and the parity
function Si3(x1,%2,%3,24) = 1 ® T2 ® z3 D x4, have length 15. Also Uc(S2,4) =
Uc(S1,3) = 14. The four classes of cost 10 are represented by Si4(z1,z2,s,z4),
S2,4(Z1,T2,%3,%4), (£4? 1 B T2 B z3: (T12273)), and [(z1z22324)2 € {0,1,4,7,10,13}].
(The third of these, incidentally, is the complement of (20), “Harvard’s hardest case.”)

21. (The authors stated that their table entries “should be regarded only as the most
economical operators known to the present writers.”)

22. v(z1Z2z3z4ws5) = 3 if and only if v(z1z22324) € {2,3} and v(z1z2z3745) is odd.
Similarly, Sz(z1, z2, 3, %4, vs5) = S3(Z1, T2, Ts, T4, Ts) incorporates S1,2(z1, T2, T3, T4):

23. We need only consider the 32 normal cases, as in Fig. 9, since the complement of
a symmetric function is symmetric. Then we can use reflection, like S12(z) = S3,4(Z),
possibly together with complementation, like S2,3.4,5(z) = So,1(z) = S4,5(Z), to deduce
most of the remaining cases. Of course Si1, Si,3,5, and Si,2,3,4,5 trivially have cost 4.
That leaves OIlly 51,2,314(m1, T2,T3,T4, $5) = (zl @mz) vV (mg 691'3) \% (933 @1}4) V (m4 @.’Es),
which is discussed for general n in exercise 79.

24. As noted in the text, this conjecture holds for n < 5.

25. Itis 22"~ 1—n— 1, the number of nontrivial normal functions. (In any normal chain
of length r that doesn’t include all of these functions, z; o z; will be a new function
for some j and k in the range 1 < j,k < n + r and some normal binary operator o; so
we can compute a new function with every new step, until we’ve got them all.)

26. False. For example, if g = S1,3(z1,%2,%3) and h = S2,3(z1,%2,%3), then C(gh) =5
is the cost of a full adder; but f = Sa 3(z0, 21,22, 23) has cost 6 by Fig. 9.

27. Yes: The operations ‘xs < z2 ® r1, 1 + T1 D T3, T1 < 1 A T2, 1 + =1 D T3,
T2 < T2 @ z3’ transform (z1,z2,x3) into (21, 20, z3).

28. Letv' =v" =v®(zDy); v = (vDY)C(z DY) Du, v’ = (vOY)V(zDy)) Du.
Thus we can set up = 0, vo = 1, u; = ((vj—1DT2j4+1)V (T2 DT2j+1)) Duj—1 if j is odd,
u; = ((vj—1 @ 22j41) C(22; ® T2j41)) Duj—1 if j is even, and v; = vj—1 ® (z2; ® T2j+1),
obtaining (u;v;)2 = (21 + -+ + 22j41) mod 4 for 1 < j < |n/2]. Set zpy1 = 0if n is
even. The function [(z1 + -+ 4 &n) mod 4=0] = @|n 2] A U|n/2) is thereby computed
in |5n/2] — 2 steps.

symmetric functions
parity function
Harvard

normal

trivial

normal

full adder

42 ANSWERS TO EXERCISES 7.1.2

This construction is due to L. J. Stockmeyer, who proved that it is nearly optimal.
In fact, the result of exercise 80 together with Figs. 9 and 10 shows that it is at most
one step longer than a best possible chain, for all n > 5.

Incidentally, the analogous formula u"’ = (v@® y) A (z D y)) ® u yields (uv'"v') =
((uv)2+z —y) mod 4. The simpler-looking function ((uv)2+x+y) mod 4 costs 6, not 5.

29. To get an upper bound, assume that each full adder or half adder increases the
depth by 3. Tf there are a;q4 bits of weight 2 and depth 3d, we schedule at most [a;a/3]
subsequent bits of weights {27,27%} and depth 3(d + 1). It follows by induction that
ajq < (‘;)37dn + 4. Hence a;jq <5 when d > log;, n, and the overall depth is at most

3logs /s n+ 3. (Curiously, the actual depth turns out to be exactly 100 when n = 107.)

30. As usual, let vn denote the sideways addition of the bits in the binary represen-
tation of n itself. Then s(n) = 5n — 2vn — 3|lgn| — 3.

31. After sideways addition in s(n) < 5n steps, an arbitrary function of (z|1gn|,-- -, 20)
can be evaluated in ~ 2n/lgn steps at most, by Theorem L. [See O. B. Lupanov,
Doklady Akademii Nauk SSSR 140 (1961), 322-325.]

32. Bootstrap: First prove by induction on n that ¢(n) < 27*1.

33. False, on a technicality: If, say, N = 4/n, at least n steps are needed. A correct
asymptotic formula N + O(v/N) + O(n) can, however, be proved by first noting that
the text’s method gives N +O(v/N) when N > 2"~'; otherwise, if [lgN| =n—k—1,
we can use O(n) operations to AND the quantity Z; A --- A Tj to the other variables
ZTk+1, - - -, Tn, then proceed with n reduced by k.

(One consequence is that we can compute the symmetric functions {S1, Sa,...,Sn}
with cost s(n) + n+ O(v/n) = 6n + O(y/n) and depth O(logn).)

34. Say that an extended priority encoder has n + 1 = 2™ inputs zoz1 ...z, and
m + 1 outputs Yoy1 - . . Ym, Where yo = o V1 V---V z,. If Q), and Q) are extended
encoders for z ...z, and zg ...z, then Qi1 works for =g ... z,x0 ...z, if we define
Yo=Y0 VYo, Y1 =Y0, Y2 = Y17 Y1: Y1, --> Ym1 = Y17 Ym: Y- If Pp, is an ordinary
priority encoder for z} ...z,, we get Ppmy1 for 21 ... 2,20 ... 2 in a similar way.
Starting with m = 2 and yo = 23 V (1 A Z2), y1 = 2 V 3, Yo = Zo V Z1 V Y1,
this construction yields P,, and @, of costs p,, and ¢m, where p2 = 3, g2 = 5, and
Pm+1 = 3M + Pm + @m, gm+1 = 3m + 1 + 2¢g,, for m > 2. Consequently pm = ¢gm — m
and ¢m = 15-2™"2 — 3m — 4 ~ 3.75n.
35. If n = 2m, compute 1 Ax2, ..., Tn_1 AZn, then recursively form z1 A---Azar_2 A
Tog+1 A+ Azy for 1 < k < m, and finish in n more steps. If n = 2m — 1, use this chain
for n + 1 elements; three steps can be eliminated by setting zn4+1 « 1. [I. Wegener,
The Complexity of Boolean Functions (1987), exercise 3.25. The same idea can be used
with any associative and commutative operator in place of A.]

36. Recursively construct P, (z1,...,zn) and Qn(z1,-..,zxs) as follows, where P, has
optimum depth and @, has depth < [lgn] +1: The case n = 1 is trivial; otherwise P,
is obtained from Q;.(z1,...,,) and Py (z,41,--.,%n), where r = [n/2] and s = |n/2],
by setting y; = ¢ for 1 < j <r, y; = yr Ayj_, for r < j < n. And Qn is obtained
from either P/ (z1 A T2,...,Tn—1 A ZTn) or Pr(z1 AT2,...,Tn—2 A Tn_1,Ts) by setting
Y1 =1, Y25 = y;w Y241 = y;- ANToji1 for 1 <j <s,and y, = y;, Yn = y’r

To prove validity we must show also that output y, of @, has depth [lgn]; notice
that Qa2m+1 would fail if we began it with P, (z1 AZa,...,Tam—1 AT2m) instead of with
Pl i1(z1 Aza,...,T2m—1 A T2m, Tam+1), except when m is a power of 2.

Stockmeyer

sideways addition function nu
Lupanov

Bootstrap

symmetric functions
recurrence

Wegener

associative

commutative

Recursively

7.1.2 ANSWERS TO EXERCISES 43

These calculations can be performed in minimum memory, setting Ty) < ;i) A
Zy(;) at step 4 for some indices j(i) < k(i). Thus we can illustrate the construction
with diagrams analogous to the diagrams for sorting networks. For example,

(delay 0) (delay 0)
(delay 1) (delay 1)
(delay 2) (delay 2)
(delay 2) (delay 2)

P = T ll (delay 3) ? QS = X (delay 3) *
(delay 3) (delay 3)
I (delay 4)

1]
B A

The costs pn and gn satisfy p, = [n/2] +q[n/2) +Pins2)> @ = 2[n/2] = 14 p[ny2
when n > 1; for example, (p1,...,p7) = (¢1,---,97) = (0,1,2,4,5,7,9). Setting p, =
4n — p, and @, = 3n — g» leads to simpler formulas, which prove that p, < 4n and
Gn <3N g = Prnj2) + [n even]; Pan = P2n +Pn + 1, Pant1 = Pon + Pnt1 + 1, Pant2 =
p2n+1 +I§n+17 ﬁ4n+3 = ﬁ4n+2 + 2. In particular, 1 —}—ﬁzm = Fm+5 is a Fibonacci number.

[See JACM 27 (1980), 831-834. Slightly better chains are obtained if we use the
otherwise-forbidden P{n /2 construction for), when n = 2™ + 1, if we replace Ps and
Ps by Qs and Qs, and if we then replace (Ps, Pio, P11, Pi7) by (Qs, Q10, Q11,RQ17).]

Notice that this construction works in general if we replace ‘A’ by any associative
operator. In particular, the sequence of prefixes £1 @ --- @ xx for 1 < k < n defines the
conversion from Gray binary code to radix-2 integers, Eq. 7.2.1.1-(10).

37. The case m = 15, n = 16 is illustrated at the right.
(a) Let z;..; denote the original value of z; A - -- A z;. Whenever the

algorithm sets z < x; A zx, one can show that the previous value of xx ﬁ

was zji1.x. After step S1, xy is Tf(k)41..1, where f(k) = k & (k — 1) for

1<k < mand f(m)=0. After step S2, zy is z1..x for 1 < k < m. %%
)

(b) The cost of S1 is m — 1, the cost of S2 is m — 1 — [Ilgm], and

the cost of S3 is n — m. The final delay of z is |lgk| + vk — 1 for ll
1< k<m,anditis [lgm]+k—m for m < k < n. So the maximum J\J\ |
delay for {z1,...,Zm—1} turns out to be g(m) = m — 1 for m < 4, T

g(m) = |lgm] + |lg F | for m > 4. We have ¢(m,n) = m+n—2—[lgm], ll &
d(m,n) = max(g(m), [lgm] + n — m). Hence ¢(m,n) +d(m,n) = 2n — 2
whenever n > m + g(m) — [lgm].

(c) A table of values reveals that d(n) = [lgn] for n < 8, and d(n) = |lg(n —
llgn] +3)] + |lg2(n — |lgn] + 3)] — 1 for n > 8. Stating this another way, we
have d(n) > d(n — 1) > 0 if and only if n = 2" + k —3 or 2 4+ 2"* 4 k& — 3 for
some k > 1. The minimum occurs for m = n when n < 8; otherwise it occurs for
m=n—|2(n— |lgn] +3)] +2— [n=2"+k — 3 for some k].

(d) Set m « m(n,d), where m(n,d(n)) is defined in the previous sentence and
m(n,d) = m(n—1,d — 1) when d > d(n). [See J. Algorithms 7 (1986), 185-201.]

38. (a) From top to bottom, fx(z1,...,Zxs) is an elementary symmetric function also
called the threshold function S>x(z1,...,Zn). (See exercise 5.3.4-28, Eq. 7.1.1-(90).)

(b) After calculating {S1,...,Sn} in & 6n steps as in answer 33, we can apply the
method of exercise 37 to finish in 2n further steps.

But it is more interesting to design a Boolean chain specifically for the computation
of the 2™ + 1 threshold functions gx(z1,...,2Zm) = [(Z1...Zm)2 2 k] for 0 < k < 2™.
Since [('")2 > (u'y")2] = [(@')2 > (1)a+1] V ([(2)2 > (¥)2] A [(£")2 > (5")2]), &
divide-and-conquer construction analogous to a binary decoder solves this problem
with a cost at most 2t(m).

minimum memory
sorting networks
binary recurrence
Fibonacci number
associative

Gray binary code
threshold function
divide-and-conquer
binary decoder

44 ANSWERS TO EXERCISES 7.1.2

Furthermore, if 2™~ < n < 2™, the cost u(n) of computing {g1,-..,gn} by this sideways addition
method turns out to be 2n + O(v/n), and it is quite reasonable when n is small: Muller
Preparata
n=1234567 8 9 10 11 12 13 14 15 16 17 18 19 20 recursion
un)=0 1247781215 17 19 19 20 21 22 27 32 34 36 36 Sklansky

Starting with sideways addition, we can sort n Boolean values in s(n) + u(n) ~ Tn
steps. A sorting network, which costs 2S(n), is better when n = 4 but loses when
n > 8. [See 5.3.4—(11); D. E. Muller and F. P. Preparata, JACM 22 (1975), 195-201.]

39. [IEEE Transactions C-29 (1980), 737-738.] The identity
M’I‘+S(w17 e Ty ey - Tr4s3 Y0y - - - 7y27‘+5—1) = M”‘(xlv ce ,wr;y(l), s 7y127'—1)7

where y; = \/z;}l (dk A y2sj+x) and di is the kth output of an s-to-2° decoder applied
t0 (Tr41,-- -, Trts), shows that C(M,4s) < C(M,)+271°+27(2° —1)+t(s), where (s)
is the cost (30) of the decoder. The depth is D(My4s) = max(De(Myis), Dy(Mrts)),
where D, and D, denote the maximum depth of the z and y variables; we have
Dy(My4s) < max(Dac (M), 14+ s+ [lgs] +Dy(Mr)) and Dy(M,45) < 14 s+ Dy(M,).

Taking r = [m/2] and s = |m/2| yields C(My) < 2™ + 0(2™/?), Dy(Mm) <
m+ 1+ [lgm], and D,(My,) < Dy(M,,) + [lgm].

40. We can, for example, let fnx(z) = \/"7 7% (l;(@) A 7j1r—1(x)), where

Jj=1
_ KT if j mod k£ = 0, .)
l](m)_{zj/\lj+1($)7 if mod k £ 0, for 1 < j < n— (nmod k);
1, if j mod k£ = 0, .
ri(®) = {xj Arj_i(z), if jmodk # 0, fork<j<n.

The cost is 4n — 3k — 3| 2] — [%] + 2 — (nmod k).
A recursive solution is preferable when n is small or k is small: Observe that

mn_k+1/\"'/\$k/\
fen—2k)(n—k) (L1, - s Tk, Thy1,...,Zn), for k <n < 2k;

) =
fo(2) Flintwy/216(@15 -+ T iy 2)) V

Flintr—1)/2) (| (n=k) /2] 41>+ - » Tn), for n > 2k.

The cost of this solution can be shown to equal n — 1 + E;‘;lk |lgj] when k < n < 2k,
and it lies asymptotically between (m+ax —1)n+O(km) and (m+2—2/ax)n+O(km)
as n — oo, where m = |lgk] and 1 < o, = (K +1)/2™ < 2.

A marriage of these methods is better yet; the optimum cost is unknown.

41. Let ¢(m) be the cost of computing both (z)2 + (y)2 and (z)2 + (y)2 + 1 by the
conditional-sum method when z and y have n = 2™ bits, and let ¢'(m) be the cost of
the simpler problem of computing just (z)2 + (y)2. Then ¢(m+1) = 2¢(m)+6-2™+2,
d(m+1) = c(m)+c(m)+3-2™+ 1. (Bit 2, of the sum costs 1; but bits z, for
n < k < 2n+1 cost 3, because they have the form c? ax: by where c is a carry bit.) If
we start with n = 1 and ¢(0) = 3, ¢'(0) = 2, the solution is ¢(m) = (3m + 5)2™ — 2,
c(m) = (3m + 2)2™ — m. But improved constructions for the case n = 2 allow us
to start with ¢(1) = 11 and ¢'(1) = 7; then the solution is ¢(m) = (3m + 1)2™ — 2,
c'(m) = (3m+ £)2™ —m+1. In either case the depth is 2m+ 1. [See J. Sklansky, IRE
Transactions EC-9 (1960), 226-231.]

7.1.2 ANSWERS TO EXERCISES 45

42. (a) Since (zryrcr) = ur V (vi A ck), we can use (26) and induction.

(b) Notice that UF*" = u and V' = vy; use induction on j —i. [See A. Wein-
berger and J. L. Smith, IRE Transactions EC-5 (1956), 65-73; R. P. Brent and H. T.
Kung, IEEE Transactions C-31 (1982), 260-264.]

(c) First, for | = 1,2, ..., m—1, and for 1 < k < n, compute V¥ for all multiples i
of h(l) in the range k; > ¢ > kiy1, where k; = h(l)|(k — 1)/h(l)| denotes the largest
multiple of h(l) that is less than k. For example, when | = 2 and k = 99, we compute
Ve, Vas = Voo AVes, Vio = Veg A Vg, ..., Vai = Vi3 A Vgi; this is a prefix
computation using the values Vay, Vax, Var, ..., Voi that were computed when [= 2.
Using the method of exercise 36, step [adds at most [levels to the depth, and it
requires a total of (p1 + p2 + -+ + por)n/2" = O(2'n) gates.

Then, again for [=1, 2, ..., m — 1, and for 1 < k < n, compute U} for i = ki41,
using the “unrolled” formula

k k k j+h(l
Ut = U vV (Vi AU,
ki>j>kiy1
RO\

For example, the unrolled formula when [= 3 and £ =99 is
Usi = Use V (Vos AUss)V (Vss AUss) V (Vao AUzz) V (Ve AUGS).

Every such UF is a union of at most 2! terms, so it can be computed with depth < [
in addition to the depth of each term. The total cost of this phase for 1 < k£ < n is
042444+ (2'-2))n/2" = 0(2'n).

The overall cost to compute all necessary U’s and Vs is therefore Z;’;}l o(2'n) =
O(2™n). (Furthermore the quantities Vi aren’t actually needed, so we save the
cost of 31", h(l)p,: gates.) For example, when m = (2,3,4,5) we obtain Boolean
chains for the addition of (2,8, 64,1024)-bit numbers, respectively, with overall depths
(3,7,11,16) and costs (7, 64,1254, 48470).

[This construction is due to V. M. Khrapchenko, Problemy Kibernetiki 19 (1967),
107-122, who also showed how to combine it with other methods so that the overall
cost will be O(n) while still achieving depth Ign + O(v/logn). However, his combined
method is purely of theoretical interest, because it requires n > 2%¢ before the depth
becomes less than 21lgn. Another way to achieve small depth using the recurrences
in (b) can be based on the Fibonacci numbers: The Fibonacci method computes the
carries with depth log,n + O(1) = 1.441gn and cost O(nlogn). For example, it yields
chains for binary addition with the following characteristics:

n = 4 8 16 32 64 128 256 512 1024

depth 6 7 9 10 12 13 15 16 18
cost 24 71 186 467 1125 2648 6102 13775 30861

See D. E. Knuth, The Stanford GraphBase (1994), 276-279.

Charles Babbage found an ingenious mechanical solution to the analogous problem
for addition in radix 10, claiming that his design would be able to add numbers of
arbitrary precision in constant time; for this to work he would have needed idealized,
rigid components with vanishing clearances. See H. P. Babbage, Babbage’s Calculating
Engines (1889), 334-335. Curiously, an equivalent idea works fine with physical tran-
sistors, although it cannot be expressed in terms of Boolean chains; see P. M. Fenwick,
Comp. J. 30 (1987), 77-79.]

Weinberger

Smith

Brent

Kung
Khrapchenko
Fibonacci numbers
Knuth

Stanford GraphBase
Babbage

Babbage, HP
Fenwick

46 ANSWERS TO EXERCISES 7.1.2

43. (a) Let A= B =Q ={0,1} and go = 0. Define ¢(g,a) = d(g,a) = g A a.

(b) The key idea is to construct the functions di(g)...dn—1(q), where di(q) =
d(g,a1) and d;1+1(q) = d(d;(q),a;). In other words, di = d(#1) and d;q1 = dj o d(aJ),
where d(4) is the function that takes g — d(q,a) and where o denotes composition of
functions. Each function d; can be encoded in binary notation, and o is an associative
operation on these binary representations. Hence the functions dids...d,—_1 are the
prefixes d(a1), d(e1)od(a2), ... d(edo...od(en-1); and q1q2 . .. gn = qod1(qo) - - - dn—1(qo0)-

(c) Represent a function f(gq) by its truth table fofi. Then the composition
fofi 0gog1 is hoh1, where the functions ho = fo? g1: go and h1 = f17 g1: go are muxes
that can each be computed with cost 3 and depth 2. (The combined cost C(hohi) is
only 5, but we are trying to keep the depth small.) The truth table for d(@) is a0. Using
exercise 36, we can therefore compute the truth tables diodi1d20d21 . . . d(n—l)Od(n—l)l
with cost < 6pn—1 < 24n and depth < 2[lg(n — 1)]; then b; = §; A a; = d(j—1)0 A a;-
(These cost estimates are quite conservative; substantial simplifications arise because
of the 0s in the initial truth tables of d(¢;) and because many of the intermediate values
dj1 are never used. For example, when n = 5 the actual cost is only 10, not 6ps+4 = 28;
the actual depth is 4, not 1+ 2[lg4] = 5.)

44. The inputs may be regarded as the string xoyo £1y1 - .. Tn—1Yn—1 Whose elements
belong to the four-letter alphabet A = {00,01,10,11}; there are two states @ = {0,1},
representing a possible carry bit, with go = 0; the output alphabet is B = {0,1}; and
we have c(q,zy) = ¢ Dz @y, d(g,zy) = {gzy). In this case, therefore, the finite state
transducer is essentially described by a full adder.

Only three of the four possible functions of g occur when we compose the mappings
d(=z¥). We can encode them as uV (g Av). The initial functions d(¥ have u = zAy, v =
z@®y; and the composition (uv)o (u'v') is u’v", where v” = v’V (v' Au) and v’ = vAv'.

When n = 4, for example, the chain has the following form, using the notation of
exercise 42: U,’:""l = Tx A\ Yk, ka""l =zr @ yr, for 0 < k < 4; U3 = UE v (V2 AUY),
Uf = U v (Vi AUS), Vi = V& A VRS US = U3 v (VP AUB), U = U v (Vi A UR);
20=Vi, 21 =U®VE 2o =UZ @V, 23 =U ® V3, z4 = Us. The total cost is 20,
and the maximum depth is 5.

In general the cost will be 2n 4 3p,, in the notation of exercise 36, because we need
2n gates for the initial u’s and v’s, then 3p,, gates for the prefix computation; the n —1
additional gates needed to form z; for 0 < j < n are compensated by the fact that we
need not compute Voj for 1 < j < n. Therefore the total cost is 14 - 2™ — 3F 45 + 3,
clearly superior to the conditional-sum method (which has the same depth 2m + 1):

n=24 8 16 32 64 128 256 512 1024

cost of conditional-sum chain 7 25 74 197 492 1179 2746 6265 14072 31223
cost of Ladner—Fischer chain 7 20 52 125 286 632 1363 2888 6040 12509

[George Boole introduced his Algebra in order to show that logic can be understood
in terms of arithmetic. Eventually logic became so well understood, the situation
was reversed: People like Shannon and Zuse began in the 1930s to design circuits for
arithmetic in terms of logic, and since then many approaches to the problem of parallel
addition have been discovered. The first Boolean chains of cost O(n) and depth O(log n)
were devised by Yu. P. Ofman, Doklady Akademii Nauk SSSR 145 (1962), 48-51. His
chains were similar to the construction above, but the depth was approximately 4m.]

45. That argument would indeed be simpler, but it wouldn’t be strong enough to prove
the desired result. (Many chains with steps of fan-out 0 inflate the simpler estimate.)

composition of functions
associative

truth table

mux

multiplex operation
carry

full adder

Boole

Shannon

Zuse

parallel addition
Ofman

fan-out

7.1.2 ANSWERS TO EXERCISES 47

The text’s permutation-enhanced proof technique was introduced by J. E. Savage in
his book The Complexity of Computing (New York: Wiley, 1976), Theorem 3.4.1.

46. When r = 2"/n+0(1) we have ln(22r+1(n+r—l)zr/(r —-1))=rlnr+(14+n4)r+
O(n) = (2"/n)(nln2 —Inn+ 1 + In4) + O(n). So a(n) < (n/(4e))—2"/n+O(n/logn),
which approaches zero quite rapidly indeed when n > 4e.

(In fact, (32) gives a(11) < 7.6 x 107, (12) < 4.2 x 1075, (13) < 1.2 x 107%.)

47. Restrict permutations to the (r — m)! cases where imr = i for 1 < 7 < n and
(n+r+1—k)7 is the kth output. Then we get (r — m)!c(m,n,r) < 22"t (n+r—1)>" in
place of (32). Hence, as in exercise 46, almost all such functions have cost exceeding
2"m/(n 4+ lgm) when m = O(2"/n?).

48. (a) Not surprisingly, this lower bound on C(n) is rather crude when n is small:

n=123456 7 8 9 10 11 12 13 14 15 16
rln)=112 35 9 16 29 54 99 184 343 639 1196 2246 4229

(b) The bootstrap method (see Concrete Mathematics §9.4) yields
r(n) = 2" (1 n lgn—2—1/In2 n O(loan)).
n n n

49. The number of normal Boolean functions that can be represented by a formula of
length < r is at most 5"n"1g,, where g, is the number of oriented binary trees with
r internal nodes. Set r = 27/Ign — 2n+2/(Ign)? in this formula and divide by 22"—1
to get an upper bound on the fraction of functions with L(f) < r. The result rapidly
approaches zero, by exercise 2.3.4.4-7, because it is O((5a/16)2"/18 ") where o ~ 2.483.
[J. Riordan and C. E. Shannon obtained a similar lower bound for series-parallel
switching networks in J. Math. and Physics 21 (1942), 83-93; such networks are equiva-
lent to formulas in which only canalizing operators are used. R. E. Krichevsky obtained
more general results in Problemy Kibernetiki 2 (1959), 123-138, and O. B. Lupanov
gave an asymptotically matching upper bound in Prob. Kibernetiki 3 (1960), 61-80.]

50. (a) Using subcube notation as in exercise 7.1.1-30, the prime implicants are
00001%, (0001%1), 01001, 0111%1, 10101, 101%11, 00%011, 00%101, (01+111), 11%101,
(0%1101), (1%0101), 1%1011, 0%0%11, x00101, (*01011), (*11101), where the parenthe-
sized subcubes are omitted in a shortest DNF. (b) Similarly, the prime clauses and a
shortest CNF are given by 00111x, 01010%, 10110, 0110%%, 00x00%, 11x00%, 11%11x,
(0%100%), (1%00%x), 101, (1x*%%0), *0000%, (*1100%), *L1*%*0, s*1xx0, **+x1%0, and
(#*%x00). (Thus the CNF is (z1Vz2VZ3VZ4VZ5) A (1VZ2VEZ3VT4VTs) A« - - A (TaVe).)

51. f = ([zsz6 € {01} A[(z1227374)2 €{1,3,4,7,9,10,13,15}]) V ([z576 € {10,11}] A
[$1$2$3$4 = 0000]) \Y% ([Z‘5$6 € {11}] N [(£B1$2$3$4)2 € {1, 2,4, 5, 7, 10,11, 14}]) .

52. The small-n results are quite different from those that work asymptotically:

nkl (38) n k1 (38) n k1 (38) n k1l (38)
522 39 8 32175 11 4 4 803 14 55 4045
622 67 9 32279 12 4 3 1329 1555 7141
721 109 10 4 4 471 13 5 6 2355 16 5 4 12431

(Optimizations like the fact that [z1z2 € {00,01}] = Z; usually reduce the cost further.)
53. First note that 2¥/I < n — 3lgn, hence m; < n —3lgn + 1 and 2™ = O(2/n?).
Also I = O(n) and t(n — k) = O(2"/n?). So (38) reduces to [- 2" 7% 4 O(2"/n?) =
2™/ (n — 3lgn) + O(2"/n?).

Savage

bootstrap method

oriented binary trees

Riordan

Shannon

series-parallel switching networks
canalizing operators

Krichevsky

Lupanov

subcube

48

54.

ANSWERS TO EXERCISES

The greedy-footprint heuristic gives a chain of length 15:

5 = 21 @ Z2,
e = T2 @ T3,
x7 =21 N\ T3,
rs = T4 N\ Ts,
T9 = T4 N\ Ts,

T10 = T4 D s,
T11 = T7 V T10,
T12 = T6 D T11,
T13 = ZT10 N\ T12,
f1 =214 =x6 N ZT11,

The minterm-first method corresponds to a chain
that are never used:

Ts = 3_21 A 5‘2,
e — 2_21 /\ T2,
r7 =1 N\ T2,
rg = T1 N\ T2,
T9 = T3 N\ Za,
T10 = T3 N\ T4,
Tr11 = T3 N\ T4,
Tr12 =I5 N Zg,

r13 = T5 A T10,
T14 = T5 N\ T11,
T15 = Te N\ Zg,
T16 = Te N\ T11,
Tr17 = X7 N\ Z9,
T18 = 7 N\ T11,
fs = 10 = 8 A o,

f2 =215 = Ts A s,
f3 =x16 = T4 A Z12,
fa=z17 =71 N\ 28,
fs = x18 = T7 A 20,
fe = T19 = T3 A x13.

of length 22, after we remove steps

T20 = T8 N T11,

fs
fi =z22 =13 V 701,
f2 = z23 = 12 V 20,

T24 = T14 V T16,
fa = @25 = x24 V T19,
f4 =126 = 17 V T20.

T21 = T15 V ZT1s,

greedy-footprint heuristic

DNF
CNF
hexadecimal notation

(The distributive law could replace the computation of z14, 16, and z24 by two steps.)

Incidentally, the three functions in the answer to exercise 51 can be computed in
only ten steps:

s = T2 \/.’1347
Te :[il /\.’Es7
T7 = T2 N\ Za,

f3 = w9 =z ® ws,
T10 = T1 D T8,
f2 =211 =29 V 10,

T12 = T2 D T3,
T13 = T10 N\ T12,
f1 =214 =24 ® 713.

rg = T3 N\ T7,

55. The optimum two-level DNF and CNF representations in answer 50 cost 53 and 43,
respectively. Formula (37) costs 30, when optimized as in exercise 54. The alternative
in exercise 51 costs only 17. But the catalog of optimum five-variable chains suggests

T11 = T5 N\ T10, T15 = T13 D T14, T18 = T4 N T17,

T16 = T5 A T10,

Tr7 = T1 N\ T2,
T8 = x3 D X7,
Trg = I2 A rs,
Z10 = T1 D w9,

T12 = T5 V T10, T19 = Te N 15,

T13 = T4 N\ T11, T17 = T3 N T16, T20 = T18 V T19,

Z1a = T7 N\ Z12,

for this six-variable function. Is there a better way?

56. If we care about at most two values, the function can be either constant or z; or Z;.
57. The truth tables for z5 through z17, in hexadecimal notation, are respectively 0££0,

2222, 33cc, 0d0d, 7777, 5d5d, 3ecl, 6b94, 4914, 4804, 060b, 2020, 7007. So we get

_n _n _r — _ - — -
o10=L1, 1011=", 1012=", 1013= [, 1014=, 1015= 3.
58. The truth tables of all cost-7 functions with exactly eight 1s in their truth tables
are equivalent to either 0779, 169b, or 179a. Combining these in all possible ways
yields 9656 solutions that are distinct under permutation and/or complementation of
{z1, T2, 3,74} as well as under permutation and/or complementation of { f1, f2, fs, fa}.

7.1.2 ANSWERS TO EXERCISES 49

59. The greedy-footprint heuristic produces the following 17-step chain:

s — 1 VIE4, 11 zmstg, $17:jz/\$3,

re = 21 D 3, T12 = 1 D 711, f1 =218 = 13 ® Z15,
T7 = x2 D T4, T13 = T5 N\ Tg, f2 = 210 = T11 A Z1s,
T3 = T4 N Te, T14 = Ts N T12, f3 = z20 = 12 @ z17,
T9 = x3 D T7, T15 = T2 A Te, fa =221 = T10 N T14.

10 =22 V T3, T16 = T2 N\ Ts,

The initial functions all have large footprints, so we can’t achieve C(f1f2fsfs) = 28;
but a slightly more difficult S-box probably does exist.

60. One way is u1 = 1 ® Y1, U2 = T2 D Y2, v1 = Y2 D U1, v2 = Y1 D U2, 21 = v1 A U2,
Z2 = v2 A\ Ui.

61. Viewing these partial functions of six variables as 4 x 16 truth tables, with rows
governed by x1y1, our knowledge of 4-bit functions suggests good ways to compute the
rows and leads to the following 25-step solution: t1 = x2 Ay2, t2 = £3 Ays, t3 = T2 VY2,
ta = T3 Vys, ts = t1 Dta, te = t1 Via, tr = taAls, ts = taDts, to = T2 D Y2, t10 = t4 Do,
ti1 = ts Atio, tiz = t3 D ta, t1z = 21 V Y1, t1a = ts D t12, t1s = tis A t1a, t16 = ta D tr,
t17 = t13 Atie, t1s = t3 V i, t10 = 1 @ Y1, t2o = t19 A t1s, ta1 = ts D t1s, taz = t7 D t17,
zZ1 = t11 Vv tg(], Z9 = t21 A Ezo, zZ3 — t22 A t_zo. (IS there a better way? Gilbert Lee has
found a 17-step solution if the inputs are represented by 000, 001, 011, 101, and 111.)

62. There are (;:d) 22" such functions, at most (;:d)t(n,r) of which have cost < r.
So we can argue as in exercise 46 to conclude from (32) that the fraction with cost

< 7= |2"/n]| is at most 22r+1-2"¢(np 4 r — 1)>"/(r — 1)! = 27 T1EnHOM),

63. [Problemy Kibernetiki 21 (1969), 215-226.] Put the truth table in a 2¥ x2"~* array
as in Lupanov’s method, and suppose there are ¢; cares in column j, for 0 < j < 2"7*,
Break that column into |c;j/m| subcolumns that each have m cares, plus a possibly
empty subcolumn at the bottom that contains fewer than m of them. The hint tells us
that at most 2™* column vectors suffice to match the Os and 1s of every subcolumn
that has a specified top row 7o and bottom row ;. With O(m2m+3k) operations
we can therefore construct O(2™%3¥) functions gs(z1,...,zx) from the minterms of
{z1,...,2z1}, so that every subcolumn matches some type t. And for every type t we can
construct functions h(Zg+t1,...,Zn) from the minterms of {zx+1,...,2Zn}, specifying
the columns that match ¢; the cost is at most > .([c;/m]| + 1) < 2"¢/m + on—k,
Finally, f = \/,(g¢ A ht) requires O(2™3*) additional steps. Choosing k = [21lgn| and
m = [n — 91gn] makes the total cost at most (2"c/n)(1+9n""lgn + O(n™")).

Of course we need to prove the hint, which is due to E. I. Nechiporuk [Doklady
Akad. Nauk SSSR 163 (1965), 40—42]. In fact, 2™ (14 [kIn2]) vectors suffice (see S. K.
Stein, J. Combinatorial Theory A16 (1974), 391-397): If we choose ¢ = 2™ [k1n2]
vectors at random, not necessarily distinct, the expected number of untouched subcubes
is (:1) 2m(1-2"") < (:L) 2Me—92"™ < 2™. (An explicit construction would be nicer.)

For extensive generalizations — tolerating a percentage of errors and specifying the
density of 1s—see N. Pippenger, Mathematical Systems Theory 10 (1977), 129-167.

64. It’s exactly the game of tic-tac-toe, if we number the cells iﬁﬁ as in an ancient Chi-
nese magic square. [Berlekamp, Conway, and Guy use this numbering scheme to present
a complete analysis of tic-tac-toe in their book Winning Ways 3 (2003), 732-736.]

65. One solution is to replace the “defending” moves d; by “attacking” moves a; and
“counterattacking” moves c;, and to include them only for corner cells j € {1,3,9,7}.

Lee

Lupanov
Nechiporuk
Stein
Pippenger
tic-tac-toe
magic square
Lo Shu magic sq
Berlekamp
Conway

Guy

50 ANSWERS TO EXERCISES 7.1.2

Let 7 - k = (jk) mod 10; then cat
. ;. . Gardner
]. L J 2 J 3 Babbage
j4 55 j5-6 GARDNER
j7 3-8 j3-9

gives us another way to look at the tic-tac-toe diagram, when j is a corner, because
7 L 10. The precise definition of a; and c; is then

a; = mj A ((mj.s A Big)-o) N (Oj-4@0j-6)) \% (:Ej.7 A B-6)G-9) A (Oj.g@o]-.g))
V (mj.o A ((mjs Azjz A(0j3805.6)) V (mj.6 A zja A(0j7905.8)))));
c;j =d; A (:Ej.e A Oj.7) A (mj.s A Oj.s) A d_j.g;

here d; = m; A B(j.2)(-3) A B(j-4)(j.-7) takes the place of (51). We also define

u=(z1Dx3) D (z7 ® 9), mj AT, if j =5,
v = (01 P 03) (&) (07 D 09), zj =< m; A\ Jj.g, if j € {1,3,9,7},
t=ma Ame Ams Amg A (uV), m;, if j € {2,6,8,4},

in order to cover a few more exceptional cases. Finally the sequence of rank-ordered
moves d5d1d3dgd7d2d6d8d4m5m1m3mgm7m2m6msm4 in (53) is replaced by the se-
quence a1asaoarC1C3CyCr252123292722262824; and we replace (dj/\(f;-)v(mj /\m;-) in (55)
by (a;Aa}) V (¢;AC;) V (2;AZ;) when j is a corner cell, otherwise simply by (z;AZ}).

(Notice that this machine is required to move correctly from all legal positions,
even when those positions couldn’t arise after the machine had made X’s earlier moves.
We essentially allow humans to play the game until they ask the machine for advice.
Otherwise great simplifications would be possible. For example, if X always goes first,
it could grab the center cell and eliminate a huge number of future possibilities; fewer
than 8 X 6 X 4 X 2 = 384 games could arise. Even if O goes first, there are fewer than
9 X 7 x 5 x 3 = 945 possible scenarios against a fixed strategy. In fact, the actual
number of different games with the strategy defined here turns out to be 76 + 457, of
which 72 4 328 are won by the machine and the rest belong to the cat.)

66. The Boolean chain in the previous answer fulfills its mission of making correct
moves from all 4520 legal positions, where correctness was essentially defined to mean
that the worst-case final outcome is maximized. But a truly great tic-tac-toe player
would do things differently. For example, from position :Et the machine takes the
center, , and O probably draws by playing in a corner. But moving to X@: would give
O only two chances to avoid defeat. [See Martin Gardner, Hexaflexagons and Other
Mathematical Diversions, Chapter 4.]

Furthermore the best move from a position like is to instead of winning
immediately; then if the reply is §°, move to . That way you still win, but without
humiliating your opponent so badly.

Finally, even the concept of a single “best move” is flawed, because a good player
will choose different moves in different games (as Babbage observed).

It might be thought that programing a digital computer to play ticktacktoe,
or designing special circuits for a ticktacktoe machine,

would be simple. This is true unless your aim is to construct a master robot
that will win the maximum number of games against inexperienced players.

— MARTIN GARDNER, The Scientific American Book of
Mathematical Puzzles & Diversions (1959)

7.1.2 ANSWERS TO EXERCISES 51

67. The author’s best effort, with 1734 gates, was constructed by adapting the method
of Sholomov in answer 63: First divide the truth tables into 64 rows for 052502060804
and 4096 columns for the other 12 input variables. Then place appropriate 1s into
“care” positions, in such a way that the columns have relatively few 1s. Then find a
small number of column types that match the cares in all columns; 23 types suffice
for the ¢ function, 20 types for s, and 6 for m. We can then compute each output as
\/ (gt A ht), sharing much of the work of the minterm calculations within g; and h;.
[This exercise was inspired by a discussion in John Wakerly’s book Digital Design
(Prentice—Hall, 3rd edition, 2000), §6.2.7. Incidentally, Babbage planned to choose
among k possible moves by looking at N mod k, where N was the number of games won
so far; he didn’t realize that successive moves would tend to be highly correlated until NV
changed. Much better would have been to let N be the number of moves made so far.]

68. No. That method yields a “uniform” chain with a comprehensible structure, but its
cost is 2" times a polynomial in n. A circuit with approximately 2"/n gates, constructed
by Theorem L, exists but is more difficult to fabricate. (Incidentally, C'(7s) = 10.)

69. (a) One can, for example, verify this result by trying all 64 cases.

(b) If z,, lies in the same row or column as z;, and also in the same row or column
as zj, we have a111 = @101 = o110 = 0, so the pairs are good. Otherwise there are
essentially three different possibilities, all bad: If (i,j,m) = (1,2,4) then a1 = 0,
@100 = Ts5To9 D TeTs, 011 = Tg; if (4,7,m) = (1,2,6) then apio = z4z9, 11 = z7,
100 = T5T9, (X101 — T8; if (i,j, m) = (1,5,9) then Q111 = 1, Q110 = 0, Qp10 = T3X7.

70. (a) ziA((zsAT9) D(z6AT8)) D T2 A((T6AT7) B (T4AT9)) D T3 A((T2AT8) D (T5AT7)).

(b) z1A((z5AZ9)V (z6AZ8)) V 2 A((ZeAZ7)V (22aAZ9)) V 23 A ((TaAZ8)V (T5AZ7)).

(c) Let y1 = 21 AT5 AT, Y2 = T1 ATe AT, Y3 = T2 ATeAT7, Ya = T2 AT4AZg, Y5 =
T3 AT4ATs, Yo = T3Az5Az7. The function f(y1,...,¥6) = [y1 + y2 + ¥s > ya + ys + ys]
can be evaluated in 15 further steps with two full adders and a comparator; but there is
a 14-step solution: Let z1 = (y1 @ y2) Dys, 22 = (Y10 Y2) V(11D ys), 23 = (yaDys) D ys,
za = (Ya®ys)V (yaDys). Then f = (21D (22 A (24D (21V23)))) A(23V24). Furthermore
y1y2ys = 111 <= yaysye = 111; so there are don’t-cares, leading to an 11-step solution:
f = ((Z1A23)VZ4) A z2. The total cost is 12 4+ 11 = 23.

(The author knows of no way by which a computer could discover such an efficient
chain in a reasonable amount of time, given only the truth table of f. But perhaps an
even better chain exists.)

71. (a) P(p) = 1 — 12p” + 24p® + 12p* — 96p° + 144p® — 96p” + 24p°, which is 1 +
%e2 — 3e* — 2465 + 24€® when p= % + e

(b) There are N = 2"~ sets of eight values (fo,- .., fr), each of which yields good
pairs with probability P(p). So the answer is 1 — P(p)N.

(c) The probability is (IZ)P(p)" (1 — P(p))V " that exactly r sets succeed; and in
such a case t trials will find good pairs with probability (r/N)*. The answer is therefore
1= 325 () P@)" (1= PE)N(r/N)' =1~ P(p)* + O(t/N).

(@) X5, (D PE) (1=P@)" " X5 /N) = 1-P(p)")/(1-P(p))+O(t*/N).
72. The probability in exercise 71(a) becomes P(p) + (72p> — 264p* + 432p® — 336p° +
96p”)+ (60p? — 240p® +456p* — 432p° +144p°) 12 + (—48p* + 144p® — 216p* 4+ 96p°) > +
(—36p2 + 24p® + 12p*)r* 4 (48p® — 24p°)r® — 12p%r®. If p = ¢ = (1 — r)/2, this is
(11 4 48r + 3672 — 14472 — 307* + 3367° — 348r% + 14477 — 21r8)/32; for example, it’s
7739/8192 ~ 0.94 when r = 1/2.

Sholomov
Wakerly
Babbage
full adder
comparator
don’t-cares

52 ANSWERS TO EXERCISES 7.1.2

73. Consider the Horn clauses 1A2=3, 1A3=4, ..., 1A(n — 1)=n, 1An=2, and
iAj=1for 1 < i< j<mn. Suppose |Z| > 1 in a decomposition, and let ¢ be minimum
such that z; € Z. Also let j be minimum such that j > 7 and z; € Z. We cannot have
1> 1, since iAj=>1 in that case. Thus¢=1,and z; € Z for 2 < j < n.

74. Suppose we know that no nontrivial decomposition exists with ;1 € Z or --- or
ri_1 € Z; initially ¢ = 1. We hope to rule out z; € Z too, by choosing j and m
cleverly. The Horn clauses iAj=m reduce to Krom clauses j=-m when 7 is asserted.
So we essentially want to use Tarjan’s depth-first search for strong components, in a
digraph with arcs j=-m that may or may not exist.

When exploring from vertex j, first try m = 1, ..., m = ¢ — 1; if any such
implication ¢Aj=m succeeds, we can eliminate j and all its predecessors from the
digraph for 7. Otherwise, test if j=m for any such eliminated vertex m. Otherwise
test unexplored vertices m. Otherwise try vertices m that have already been seen,
favoring those near the root of the depth-first tree.

In the example f(z) = (det X) mod 2, we would successively find 1A2#4-3, 1A2=4,
1A4=>3, 1A3=5, IA5=6, 1A6=>7, 1AT=8, 1A8=>9, 1A9=>2 (now i « 2); 2A351,
2A3=4, 2A4#41, 2A47#45, 2A4=6, 2A6=1 (now 3, 4, and 6 are eliminated from
the digraph for 2), 2A5=-1 (and 5 is eliminated), 2A7# 1, 2A7=3 (7 is eliminated),
2A8=1, 2A9=>1 (now i < 3); 3AdA1, 3A4=>2, 3A5=>1, etc.

75. This function is 1 at only two points, which are complementary. So it is inde-
composable; yet the pairs (58) are never bad when n > 3. Every partition (Y, Z) will
therefore be a candidate for decomposition.

Similarly, if f is decomposable with respect to (Y, Z), the indecomposable func-
tion f(z) @ So,n(z) will act essentially like f in the tests. (A method to deal with
approximately decomposable functions should probably be provided in a general-purpose
decomposability tester.)

76. (a) Let a; = [i¢>1] for 0 < 1 < 2™. The cost is < 2¢(m), as observed in answer
38(b); and in fact, the cost can be reduced to 2™' — 2m — 2 with ©(m) depth.
Furthermore the function [<j] = (@1 Aj1) V(1 =j1) Aliz-.-tm <J2...Jm]) can be
evaluated with 4m—3 gates. After computing @y, each z; costs 2™ +1 = O(n/logn).

(b) Here the cost is at most C(go) + - -+ + C(gom) < (2™ + 1)(227/(2™ + O(m)))
by Theorem L, because each g; is a function of 2™ inputs.

(c) Ifi < j we have z; =z for I < i and z; = y for [> 4; hence fi(z) = co®--Dc;
and f;(y) = cj+1 D - Dcam. If i > j we have z; =y for | < ¢ and z; = z for [> i
hence f](y) = Co DD Cj and f,(ﬂ:) = Ci+1 DD cogm.

(d) The functions b; = [j <] can be computed for 0 < < 2™ in O(2™) steps, as
in (a). So we can compute F' from (co,...,com) with O(2™) further gates. Step (b)
therefore dominates the cost, for large m.

(e)ao=1,a1=1,a2=0;b0=0,b1 =5,b2o=1;d=[i<j]=1Vjmi=a Dd,
zio = o D (my A (o @ o)), 211 = o1 D (M A (z1 D y1)), for I = 0,1,2; co = zo1;
c1=z10AZ11; 2 = 200V za1; ¢, = A(d=ay), ¢f =ci A(d=by), for I =0,1,2; and
finally F = (co @ cy Dey) V (chp @ cf @ch).

The net cost (29 after obvious simplifications) is, of course, outrageous in such
a small example. But one wonders if a state-of-the-art automatic optimizer would be
able to reduce this chain to just 5 gates.

[This result is a special case of more general theorems in Matematicheskie Zametki
15 (1974), 937-944; London Math. Soc. Lecture Note Series 169 (1992), 165-173.]

Horn clauses

Krom clauses

Tarjan

depth-first search

strong components

approximately decomposable functions
optimizer

7.1.2 ANSWERS TO EXERCISES 53

77. Given a shortest such chain for f,, or fn, let Uy = {i | Il = j(i) or | = k(7)} be the
“uses” of 2, and let u; = |U;|. Let t; = 1 if z; = x;(;) V 2k (s), otherwise t; = 0. We will
show that there’s a chain of length < r —4 that computes either f,_1 or fn_1, by using
the following idea: If variable z,, is set to 0 or 1, for any m, we can obtain a chain
for fn_1 or fn_1 by deleting all steps of U,, and modifying other steps appropriately.
Furthermore, if z; = x;(;) o Tx(;) and if either z;(;) or zx(;) is known to equal t; when
Zm has been set to 0 or 1, then we can also delete the steps U;. (Throughout this
argument, the letter m will stand for an index in the range 1 < m < n.)

Case 1: um = 1 for some m. This case cannot occur in a shortest chain. For if the
only use of T, is T3 = Tm, eliminating this step would change f, + fn; and otherwise
we could set the values of 1, ..., m—1, Tm+1, - - -, Tn to make z; independent of z,,
contradicting &nir = fn or fn. Thus every variable must be used at least twice.

Case 2: x; = T, for some [and m, where u,, > 1. Then z; = x; o z, for some ¢
and k, and we can set x,, + %; to make z; independent of z;. Eliminating steps Uy,
U, and U; then removes at least 4 steps, except when u; = u; = 1 and un, = 2 and
Z; = Tm © ;; but in that case we can also eliminate Uj.

Case 3: um > 3 for some m, and not Case 2. If ¢,5,k € U, and ¢ < j < k, set
Tm ¢ tr and remove steps i, j, k, Uk.

Case 4: u1 = ugz = --- = un, = 2, and not Case 2. We may assume that the first
step is ©1 = x1 0 x2, and that z; = x1 o x} for some k < I.

Case 4.1: k> 0. Then k > 1. If ux = 1, set 1 + t; and remove steps 1, k, I, U;.
Otherwise set 2 < t1; this forces zx = ;, and we can remove steps 1, k, [, U.

Case 4.2: 1 = x1 0 Tr,. Then we must have m = 2; for if m > 2 we could
set x2 « t1, Tm < t;, and make z, independent of z;. Hence we may assume that
1 = 1 A T2, T2 = 1 V x2. Setting x1 < 0 allows us to remove Uy and U;; setting
x7 < 1 allows us to remove Uy and U,. Thus we’re done unless u; = up = 1.

If ©, = Z1, set 1 < 0 and remove 1, 2, p, Up; if 4 = T2, set 1 <~ 1 and remove 1,
2, q, Ugq. Otherwise z, = z;, oz, and z4 = z2 0 z,, where z, and z, do not depend on
z1 or z2. But that’s impossible; it would allow us to set zs, ..., Tn to make z, = tp,
then z2 < 1 to make z, independent of z;.

[Problemy Kibernetiki 23 (1970), 83-101; 28 (1974), 4. With similar proofs,
Red’kin showed that the shortest AND-OR-NOT chains for the functions ‘zy ...z, <
Y1...yn and ‘¢1...Tn = Y1...Ys have lengths 5n — 3 and 5n — 1, respectively.]

78. [SICOMP 6 (1977), 427-430.] Say that yi is active if k € S. We may assume that
the chain is normal and that ||S|| > 1; the proof is like Red’kin’s in answer 77:

Case 1: Some active y;, is used more than once. Setting yr < 0 saves at least two
steps and yields a chain for a function with ||S|| — 1 active values.

Case 2: Some active yi appears only in an AND gate. Setting yx < 0 eliminates
at least two steps, unless this AND is the final step. But it can’t be the final step,
because yr = 0 makes the result independent of every other active y;.

Case 3: Like Case 2 but with an OR or NOT-BUT or BUT-NOT gate. Setting
yr < c for some appropriate constant ¢ has the desired effect.

Case 4: Like Case 2 but with XOR. The gate can’t be final, since the result should
be independent of yr when (21 ...2Zm)2 addresses a different active value y;. So we can
eliminate two steps by setting yx to the function defined by the other input to XOR.

79. (a) Suppose the cost is r < 2n — 2; then n > 1. If each variable is used exactly
once, two leaves must be mates. Therefore some variable is used at least twice. Pruning
it away produces a chain of cost < 7 — 2 on n — 1 variables, having no mates.

Red’kin

comparison function
normal

Red’kin

54 ANSWERS TO EXERCISES 7.1.2

(Incidentally, the cost is at least 2n — 1 if every variable is used at least twice,
because at least 2n uses of variables must be connected together in the chain.)

(b) Notice that So,n = A,_,(u =v) whenever the edges u — v form a free tree
on {z1,...,zn}. So there are many ways to achieve cost 2n — 3.

Any chain of cost r < 2n — 3 must have n > 2 and must contain mates v and v. By
renaming and possibly complementing intermediate results, we can assume that v =1,
v =2, and that f(z1,...,2zn) = g(z1 0 h(zs,...,Tn),Z2,...,Tn), where o is A or @.

Case 1: o is AND. We must have h(0,...,0) = h(1,...,1) = 1, for otherwise
f(z1,22,y,...,y) wouldn’t depend on z1. Therefore f(z1,...,2n) = h(z3,...,2Zn) A
g(z1,22,...,2,) can be computed by a chain of the same cost in which 1 and 2 are
mates and in which the path between them has gotten shorter.

Case 2: ois XOR. Then f = foV f1, where fo(z1,...,2n) = (z1=h(z3,...,Za)) A
9(0,z2,...,2,) and fi(z1,...,2n) = (1 ® h(zs,...,2n)) A g(1,22,...,2Zn). But f =
So,» has only two prime implicants; so there are only four possibilities:

Case 2a: fo = f. Then we can replace z1 @ h by 0, to get a chain of cost < r — 2
for the function g(0,z2,...,Zn) = So,n-1(z2,---,Zn).

Case 2b: fi = f. Similar to Case 2a.

Case 2c: fo(z) = 1 A--- Azyp and fi(z) = Ty A -+ A Tn. In this case we must
have g(0,z2,...,2n) =22 A--- Azn and g(1,22,...,2n) = T2 A -+ A Tn. Replacing h
by 1 therefore yields a chain that computes f in < r steps.

Case 2d: fo(z) =Z1 A+ AZyp and fi(z) =z1 A--- A z,. Similar to Case 2c.

Applying these reductions repeatedly will lead to a contradiction. Similarly, one
can show that C(SoS») = 2n — 2. [Theoretical Computer Science 1 (1976), 289-295.]

80. [Mathematical Systems Theory 10 (1977), 323-336.] Without loss of generality,
ao = 0 and the chain is normal. Define U; and u; as in answer 77. We may assume by
symmetry that u; = max(u1,...,un).

We must have uq > 2. For if u; = 1, we could assume further that z,4+1 = z1 o z2;
hence two of the three functions S (0,0, z3,...,Zn) = S, Sa(0,1,23,...,2n) = Siy,
Sa(1,1,23,...,2n) = Sn, would be equal. But then S, would be a parity function, or
Sior would be constant.

Therefore setting 1 = 0 allows us to eliminate the gates of Uy, giving a chain for
S with at least 2 fewer gates. It follows that C(Sa) > C(Sar) + 2. Similarly, setting
z1 = 1 proves that C(S.) > C(S1,) + 2.

Three cases arise when we explore the situation further:

Case 1: uy > 3. Setting 1 = 0 proves that C(Sa) > C(Sqr) + 3.

Case 2: Uy = {i,j} and operator o; is canalizing (namely, AND, BUT-NOT, NOT-
BUT, or OR). Setting z; to an appropriate constant forces the value of z; and allows
us to eliminate Uy U Uj; notice that ¢ ¢ U; in an optimum chain. So either C(Ss) >
C(Sa) +3 or C(Sa) > C(Sr,) + 3.

Case 8: Uy = {i,j} and o; = o; = @. We may assume that z; = z1 ® z2 and
zj =21 @z If u; =1 and 2; = z; @ zp, we can restructure the chain by letting
zj = cr Dxp, T = T1Dx;; therefore we can assume that either u; # 1 or z; = zjox, for
some canalizing operator o. If Uz = {1, j'}, we can assume similarly that z;; = z2 @ zs

and that either ujs = 1 or z = zr o' z, for some canalizing operator o’. Furthermore
we can assume by symmetry that z; does not depend on z;/.

If zj does not depend on z;, let f(zs,...,zn) = zx; otherwise let f(zs,...,z,) be
the value of i when z; = 1. By setting z1 = f(x3,...,2,) and 2 = f(z3,...,2x),

or vice versa, we make z; and z; constant, and we obtain a chain for the nonconstant

free tree
prime implicants
canalizing

7.1.2 ANSWERS TO EXERCISES 55

function S/,/. We can, in fact, ensure that z; is constant in the case u; = 1. We claim
that at least five gates of this chain (including z; and z;) can be eliminated; hence
C(Sa) > C(S1er) + 5. The claim is clearly true if |U; U U;| > 3.

We must have |U; UU;| > 1. Otherwise we’d have p = 4, and z;, would not depend
on z;, s0 So would be independent of z1 with our choice of z2. Therefore |U; UU;| = 2.

Case 3a: U; = {l}. Then z; is constant; we can eliminate z;, z;, and U; UU; UU;.
If the latter set contains only two elements, then z4 = x; o ; is also constant and we
eliminate Uy. Since S/, isn’t constant, we won’t eliminate the output gate.

Case 8b: U; C Uj, |Uj| = 2. Then x4 = z; o z; for some ¢; we can eliminate z;,
z;, and U; U Uy. The claim has been proved.

(b) By induction, C(Sx) > 2n + min(k,n — k) — 3 — [n = 2k], for 0 < k < m;
C(S>k) > 2n + min(k,n + 1 — k) — 4, for 1 < k < n. The easy cases are C(So) =
C(Sn) = C(S»1) = C(S»n) =n—1; C(S»0) = 0. (According to Figs. 9 and 10, these
bounds are optimum for k = [n/2] when n < 5. All known results are consistent with
the conjecture that C(Sk) = C(S>x) for k > n/2.)

81. If some variable is used more than once, we can set it to a constant, decreasing n
by 1 and decreasing ¢ by > 2. Otherwise the first operation must involve z1, because
y1 = x1 is the only output that doesn’t need computation; making z; constant decreases
nby 1, cby > 1, and d by > 1. [J. Algorithms 7 (1986), 185-201.]

82. (62) is false.

(63) reads, “For all numbers m there’s a number n such that m < n 4+ 17; it is
true because we can take m = n.

(64) fails when n = 0 or n = 1, because the numbers in these formulas are required
to be nonnegative integers.

(65) says that, if b exceeds a by 2 or more, there’s a number ab between them. Of
course it’s true, because we can let ab = a + 1.

(66) was explained in the text, and it too is true. Notice that ‘A’ takes precedence
over ‘V’ and ‘=’ takes precedence over ‘<’ just as ‘+’ takes precedence over ‘>’ and
‘<’ over ‘A’ in (65); these conventions reduce the need for parentheses in sentences of L.

(67) says that, if A contains at least one element n, it must contain a minimum
element m (an element that’s less than or equal to all of its elements). True.

(68) is similar, but m is now a maximum element. Again true, because all sets are
assumed to be finite.

(69) asks for a set P with the property that [0€ P] = [3¢ P], [L€ P] = [4¢ P],
..., [999 € P] = [1002 ¢ P], [1000 € P] # [1003 ¢ P], [1001 € P| # [1004 ¢ P], etc. It’s
true if (and only if) P = {z | zmod 6 € {1,2,3} and 0 < z < 1000}.

Finally, the subformula Vn(n € C < n+1 € C) in (70) is another way of saying
that C = 0, because C is finite. Hence the parenthesized formula after VAVB is a
tricky way to say that A = () and B # (. (Stockmeyer and Meyer used this trick to
abbreviate statements in L that involve long subformulas more than once.) Statement
(70) is true because an empty set doesn’t equal a nonempty set.

83. We can assume that the chain is normal. Let the canalizing steps be y1, ..., yp.
Then yx = ar o Br and f = apt1, where ar and Bi are @’s of some subsets of
{z1,-..,%n,Y1,--.,Yk—1}; at most n+k—2 @’s are needed to compute them, combining
common terms first. Hence C(f) < p+ 32 1 (n+k—2) = (p+1)(n+p/2) — 1.

84. Argue as in the previous answer, with V or A in place of @. [N. Alon and R. B.
Boppana, Combinatorica 7 (1987), 15-16.]

quantified formulas
Stockmeyer

Meyer

Alon

Boppana

56 ANSWERS TO EXERCISES 7.1.2

85. (a) A simple computer program shows that 13744 are legitimate and 19024 aren’t.
(An illegitimate family of this kind has at least 8 members; one such is {00, 0f, 33, 55,
££,15,3f,77}. Indeed, if the functions 1 Vz2 (3f), z2Vas (77), and (z1 Vz2)Azs (15)
are present in a legitimate family L, then z; LI 156 = 33 | 15 = 37 must also be in L.)
(b) The projection and constant functions are obviously present. Define A* =
N{B | B2 A and B € A}, or A" = oo if no such set B exists. Then we have
[A]N[B] =[ANB] and [A|U [B] = [(AUB)*].
(c) Abbreviate the formulas as £; C z; VV,-l=n+1

by induction: If step is an AND step, & = &; Max C &5 Adr C (2 V V/_,yy 6i) A

(iEk sz‘l=n+1 51) =x VVil=n+1 bi5 ¢y =x Nag C (Zf'] VVil;71+1 61;) A (CZ‘k VVil;i+1 6,-) =
(; N&r) V \/il;lb_,’_1 €i, and £; A £x = &1 V €;. Argue similarly if step [is an OR step.

86. (a) If S is an r-family contained in the (r + 1)-family ', clearly A(S) C A(S").

(b) By the pigeonhole principle, A(S) contains elements v and v of each part,
whenever S is an r-family. And if A(S) = {u,v}, we certainly have u —wv.

(c) The result is obvious when r = 1. There are at most r — 1 edges containing
any given vertex u, by the “strong” property. And if u — v, the edges disjoint from
{u,v} are strongly (r — 1)-closed; so there are at most (r — 2)? of them, by induction.
Thus there are at most 1+ 2(r — 2) + (r — 2)? edges altogether.

(d) Yes, by exercise 85(b), if » > 1, because strongly r-closed graphs are closed
under intersection. All graphs with < 1 edges are strongly r-closed when 7 > 1, because
they have no r-families containing distinct edges.

6i, 71 C ilVV,-l=n+1 €i, and argue

(e) There are (’;) triangles z;; A z;x A zjk, only n— 2 of which are contained in any
term @y, of f. Hence the minterms for at most (r — 1)2(n — 2) triangles are contained
in f, and the others must be contained in one of the functions €; = &; ® (Z;(5) A Tr(s))-
Such a term has the form T' = ([GIN[H])®([GIA[H]) = ([GIA[H])A[G N H], where
G and H are strongly r-closed; we will prove that T contains at most 2(r—1)? triangles.

A triangle z;; A ik A zjr in T must involve some variable (say z;;) of [G] and
some variable (say z;x) of [H], but no variable of [G N H]. There are at most (r — 1)*
choices for ij; and then there are at most 2(r — 1) choices for k, since H has at most
r — 1 edges touching ¢ and at most r — 1 edges touching j.

(f) There are 2"~ ' complete bigraphs obtained by coloring 1 red, coloring other
vertices either red or blue, and letting u — v if and only if u and v have opposite colors.
By the first formula in exercise 85(c), the minterms B for every such graph must be
contained in one of the terms T' = &; = Z: ® (Z;(3) V Zw()) = [(GUH)"| A [GUH].
(For example, if n = 4 and vertices (2, 3,4) are (red, blue, blue), then B = Z15 A z13 A
Z14 A T23 A To4 A T3s.) A minterm B is contained in T if and only if, in the coloring
for B, some edge of (GU H)™* has vertices of opposite colors, but all edges of GUH are
monochromatic. We will prove that T includes at most 2"~ "% such B.

Let G be any graph, and T = [G*] A [G]. The following (inefficient) algorithm
can be used to find G*: If there’s an r-family S with |A(S)| < 2, stop with G* = oo.
Otherwise, if A(S) = {u,v} and u— v, add the edge u—v to G and repeat.

At most 2"~" bipartite minterms B have monochromatic {u;,v;} for 1 < j <r
when |A(S)| < 2. And when A(S) = {u,v} there are 2"~""! with monochromatic
{u;,v;} and bichromatic {u,v}. So we want to show that the algorithm for G takes
fewer then 272 iterations when G is strongly r-closed.

For k > 1, let ux — vi be the first new edge added to G that is disjoint from
{uj,v;} for 1 < j < k. At most r such edges exist, by “strongness”; and each of them

pigeonhole principle
complete bigraphs

7.1.2 ANSWERS TO EXERCISES 57

is followed by at most 2r — 3 new edges that touch w; or v;. So the total number of
steps to find G* is at most r(2r — 2) + 1 < 272
() Exercise 84 tells us that ¢ < () + (p+1)(%). Thus we have either 2(r —1)>p >

(3 - (r— 1)’(n—2) or B +@+1)(3) > 2"~1/r2. Both lower bounds for p are

1 n \3 loglog n nf
(2= (1+0(=B8n h = [g().
12(61gn) (1+of logn) when - "g<186624(1gn)4)-‘

[Noga Alon and Ravi B. Boppana, Combinatorica 7 (1987), 1-22, proceeded in this
way to prove, among other things, the lower bound ©(n/logn)® for the number of A’s
in any monotone chain that decides whether or not G has a clique of fixed size s > 3.]

87. The entries of X® are at most n? when X is a 0-1 matrix. A Boolean chain
with O(n'87(logn)?) gates can implement Strassen’s matrix multiplication algorithm
4.6.4-(36), on integers modulo 2Ll1sn?]+1,

88. There are 1,422,564 such functions, in 716 classes with respect to permutation of
variables. Algorithm L and the other methods of this section extend readily to ternary
operations, and we obtain the following results for optimum median-only computation:

o) Claew Bme: cm(y) Ol Bnee () O Bne py) Claes Bine
0 1 7 0 1 7 0 1 7 0 1 7
1 1 35 1 1 35 1 1 35 1 1 35
2 2 350 2 2 350 2 2 350 2 13 5670
3 9 3885 3 9 3885 3 8 3745 3 700 1416822
4 48 42483 4 48 42483 4 38 35203 4 1 30
5 201 406945 5 188 391384 5 139 270830 5 0 0
6 353 798686 6 253 622909 6 313 699377 6 0 0
7 99 169891 7 69 134337 7 176 367542 7 0 0
8 2 282 8 2 2520 8 34 43135 8 0 0
9 0 0 9 0 0 9 3 2310 9 0 0
10 0 0 10 0 0 10 0 0 10 0 0
11 0 0 00 143 224654 11 1 30 11 0 0

S. Amarel, G. E. Cooke, and R. O. Winder [IEEE Trans. EC-13 (1964), 4-13, Fig. 5b]
conjectured that the 9-operation formula

(z1Z22324T5T627) = <ac1 ((z2zsxs)(z2zaze)(T3xazr)){{T2T526) (T3L527) (x4xex7))>

is the best way to compute medians-of-7 via medians-of-3. But the “magic” formula
(z1((z2(zszazs) (zazews))(za({Tazerr)(z3ws (w52627)));

needs only 8 operations, and in fact the shortest chain needs just seven steps:

<$1 $2$3$4$5Z‘6$7> = <Z‘1 <$2 <CL‘5$6.’E7) (1‘3 <$5£L‘6$7>$4) (1‘5 <$2£L‘3$4> <.’E6 <$2$3$4>$7> > .
The interesting function f(z1,...,z7) = (z1Az2Az4) V (z2AZ3AT5) V (23AT4NAZ6) V
(zaAT5AZT) V (T5ATEAT1) V (T6AT7AZ2) V (T7AZT1AZ3), whose prime implicants corre-
spond to the projective plane with 7 points, is the toughest of all: Its minimum length
L(f) =11 and minimum depth D(f) = 4 are achieved by the remarkable formula

<<cc1 g <CE4$5$6>> <£L‘3£L'6 (331 <CL‘2$3£L‘7> <$2$5CE6))> <x2x7 <$1 <CE5$2$4> (:c5a:3x7))>>.

And the following even more astonishing chain computes it optimally:

Trg = ($1$2333>, Tg = ($1$4$6), 10 = <-T1555$8>7 T11 = <l‘2$7$8),
Ti2 = <$3$97510), 13 = (3743553312), T14 = (3363’1113312), T15 = <$7$137514)-

Alon

Boppana

clique

0-1 matrix
Strassen

matrix multiplication
ternary operations
Amarel

Cooke

Winder

prime implicants
projective plane

INDEX AND GLOSSARY

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

0-1 matrices, 29, 34, 57.

0-preserving functions, see Normal
Boolean functions.

2™-way multiplexer, 13, 31.

3-variable functions, 8-9.

4-variable functions, 2-9, 16-18, 26, 30, 33.

5-variable functions, v, 9-10, 30, 48.

vz (sideways sum), v, 12, 30, 42, 44.

7 (circle ratio), as “random” example,
2,22, 32, 38.

7 function, 2, 22, 29, 34, 38.

Addition, binary, 11-12, 31-32.
Addition modulo 3 and 5, 33.
Addition modulo 4, 30.
Adjacency matrix, 27, 37.
Affine functions, 39—40.
Aiken, Howard Hathaway, 8.
All-equal function (So,n), 35.
Alon, Noga ()oN M), 55, 57.
Amarel, Saul, 57.
Analysis of algorithms, 34.
AND gates (A), 1.
with vacuum tubes, 8.
AND-OR chains, 29, 36-37.
AND-OR-NOT chains, 35, see also
Canalizing chains.

Approximately decomposable functions, 52.

Ashenhurst, Robert Lovett, 21, 24.
Associative operators, 42, 43, 46.
Asymptotic methods, 13-16, 32-33.

Babbage, Charles, 20, 45, 50, 51.
Babbage, Henry Provost, 45.
Backward-computation principle, 6.
Bad pairs, 22-24, 34-35.

Bell Telephone Laboratories, 19.
Berlekamp, Elwyn Ralph, 49.
Bigraph: A bipartite graph.

Binary addition, 11-12, 31-32.
Binary comparison function, 24, 51-53.
Binary decoder, 13, 43.

Binary recurrences, 12, 13, 30, 43.
Binary trees, 1, 2, 47.
Binary-coded decimal digits, 18.
Bipartite graphs, 24, 37, 51.
Bipartite matching, 29.

Bitwise operations, 4-6, 30, 39, 56.
Blum, Norbert Karl, 26.

Boole, George, 46.

Boolean chains, 0-57.
AND-OR, 29, 36-37.
AND-OR-NOT, 30, 35, 47.
canalizing, 30, 36, 47.
definition of, 0.
monotone, 29, 36-37.
of 3 variables, 8-9.
of 4 variables, 2-9, 16-18, 26, 30, 33.
of 5 variables, v, 9-10, 30, 48.
of many variables, 13-16, 21-37.
optimization of, 25-26, 52.
with several outputs, 11-13, 16-21,
25-26, 30-34.
Bootstrapping, 42, 47.
Boppana, Ravi Babu, 55, 57.
Boros, Endre, 24.
Bottom-up synthesis, 7-9, 30, 40.
Brayton, Robert King, 26.
Brent, Richard Peirce, 45.
Biichi, Julius Richard, 28.
BUT-NOT gates (D), 1, 4, 14.

C(f), 1, 15-16, see Cost of a Boolean
function.

C(f1...fm), 11.

ct(f), 36, 37.

Cm/(f), 6-7, 30, 57.

Canalizing chains, 30, 36, 47.

Canalizing operators, 27, 30, 40, 54.

Cares, 33, 51, see also Don’t-cares.

Carry bits, 11, 31, 32, 46.

Cat’s game, 19, 21, 50.

Circuits, Boolean, 1, see Boolean chains.

Cliques, 57.

Closure under intersection, 36.

CNF: Conjunctive normal form, 1, 40, 48.

Coloring of graphs, 24-25.

Combinational complexity, 1, 15-16, see
Cost of a Boolean function.

Comparator modules, 31.

Comparison function, binary, 24, 51-53.

Complement of a Boolean function,
3-4, 11, 41.

Complete bipartite graphs, 37, 56.

Composition of functions, 46.

Conditional-sum adders, 31-32.

Consecutive 1s, 31, 32.

Control grids, 8.

Conway, John Horton, 49.

Cooke, George Erskine, 57.

Cost of a Boolean function, 1, 11,
15-16, 30-36.

statistics, 5, 9, 40—-41.

Curtis, Herbert Allen, 0, 24-25.

D(f), 3, see Depth of a Boolean function.
De Micheli, Giovanni, 26.

Decoder, binary, 13, 43.

Decomposition of functions, 21-25, 34—35.
Decomposition of partial functions, 24-25.

Depth of a Boolean function, 3, 4, 28-32, 36.

statistics, 5, 9, 40—-41.
Depth-first search, 52.
Determinants, 25, 34.
Diagonalization, 28.
Disjoint decomposition, 21-24.
Distributive law, 29.
Divide and conquer, 13, 42—45.
DNF: Disjunctive normal form, 1, 48.
Don’t-cares, 18, 20, 2426, 33, 35, 51.

Electrical engineers, 0, 1, 9, 11, 13, 18, 26.
Elgot, Calvin Creston, 28.
Evaluation of Boolean functions, 0-57,

see Boolean chains.

Fan-in: The number of inputs to a
gate, 1, 8, 28.
Fan-out: The number of uses of a
gate, 1, 8, 46.
Fenwick, Peter McAulay, 45.
Fibonacci, Leonardo, of Pisa (= Leonardo
filio Bonacii Pisano), numbers, 43, 45.
threshold functions, 29.
Finikov, Boris Ivanovich (®unukos,
Bopuc Vsanosuu), 29.
Finite state transducers, 32.
Fischer, Michael John, 31, 32.
Five-variable functions, v, 9-10, 30, 48.
Footprints, iv, 4-5, 17, 18, 26, 29, 30, 48—49.
Formula complexity, see Length of a
Boolean function.
Four-variable functions, 2-9, 1618,
26, 30, 33.
Free trees, 54.
Full adders, 11-12, 30, 41, 46, 51.
Functional decomposition, 21-25, 34-35.

Games, see Tic-tac-toe.
Gardner, Martin, 50.

Gates, 1, 8.

Generalized consensus, 24.
Good pairs, 22, 34-35.
GOST cipher, 33.

Gray, Frank, binary code, 43.
Greedy algorithm, 17.

Greedy-footprint heuristic, 17-18, 26, 48-49.

Gurvich, Vladimir Alexander (I'ypsuu,
Butagumup Astekcannposms), 24.
Guy, Richard Kenneth, 49.

INDEX AND GLOSSARY 59

Hachtel, Gary Deane, 26.

Half adders, 11-12.

Hammer, Péter Laszl6 (= Peter Leslie =
Tvanescu, Petru Ladislav), 24.

Hardware versus software, 1, 45.

Harvard University Computation
Laboratory, 30, 41.

Hellerman, Leo, 8-9.

Hexadecimal notation for truth tables,
9, 36, 48.

Hight, Stuart Lee, 24.

Horn, Alfred, clauses, 23, 52.

Ibaraki, Toshihide (RAETS), 24.
If-then-else function (mux), 0, 38, 42, 44, 46.
Incompatible columns, 24.

ITE, seeIf-then-else function.

k-ary trees, 28.

k-cubes, 33.

k-in-a-row function, 31.

Karp, Richard Manning, 25.

Keister, William, 19.

Khrapchenko, Valerii Mikhailovich
(Xpamuernko, Basnepuit Muxaiinosud),
45.

Klein, Peter, 31.

Knuth, Donald Ervin (FEf&44), i, iv,
9, 19, 45.

Kogan, Alexander (Koran, Asexcannp
IOpbeBuu), 24.

Krichevsky, Rafail Evseevich (KpuueBckunii,
Padams Esceesnu), 47.

Krom, Melven Robert, clauses, 52.

Kung, Hsiang Tsung (fL¥FEH), 45.

L(f), 3, see Length of a Boolean function.

Ladner, Richard Emil, 31, 32.

Legitimate lattices of functions, 36, 37.

Length of a Boolean function, 3, 7, 29, 49.

statistics, 5, 9, 40-41.

Liang, Franklin Mark, iv, 9.

Lo Shu magic square, 49.

Local optimizations, 25.

Logic, 27-28, 36.

Lower bounds on combinational complexity,
7-8, 13-16, 2628, 35-36.

Lupanov, Oleg Borisovich (JIynaros, Oser
Bopucosnu), 14, 16, 33, 42, 47, 49.

Magic Fifteen, 33.

Magic square, 49.

Majority operation, v, 8.

Matching, 23.

Mates in a Boolean chain, 35.
Matrix multiplication, 57.

McKellar, Archie Charles, 22, 24, 35.
Median chains, 37.

Median of seven, 37.

Median operation, v, 6, 29, 37.

60 INDEX AND GLOSSARY

Meyer, Albert Ronald da Silva, 27, 28, 55.
Minimum-memory evaluation, 57,

10, 29, 30, 43.
Minterms, 13, 15, 30.
MMIZ, ii.

Monadic logic: Logic with only unary
operators, 27-28, 36.
Monotone Boolean chains, 29, 36-37.
Monotone Boolean functions, self-dual, 37.
Monotone complexity, 10, 29, 36-37.
Muller, David Eugene, 44.
Multilevel logic synthesis, 26.
Multilinear representation of a Boolean
function, 34, 40.
Multiple outputs, 11-13, 16-21, 25-26,
30-34.
Multiplexer, 2-way, see Mux.
2™M-way, 13, 31, 35.
Museum of Science and Industry, 19.

Mux (multiplex) operation, 0, 38, 42, 44, 46.

NAND (A), 40.
with vacuum tubes, 8.
Nechiporuk, Eduard Ivanovich (Hewunopyx,
Snyapa VBanosuu), 49.
NOR gates (V), 8-9.
Normal Boolean functions, 4, 6, 14,
17, 29, 41, 53.
Normalization, 4, 38.
NOT-BUT gates (C), 1, 4.
Notational conventions, v, 36.
(zyz), v, see Median operation.
z? y: 2, 0, see Mux (multiplex) operation.
Noughts and crosses, see Tic-tac-toe.

Ofman, Yuri Petrovich (Odman, FOpmit
IMerposuu), 46.
Optimization of Boolean chains, 25-26, 52.
Optimum Boolean evaluation, 7-9.
OR gates (V), 1.
with vacuum tubes, 8.
Oriented binary trees, 47.
Overlapping subtrees, 1.

Parallel addition, 12, 31-32, 46.
Parallel computation, 12, 28.

Parity function, 2, 9, 35, 36, 41.
Partial functions, 17-18, 35.

Patents, 16.

Paterson, Michael Stewart, iv, 30, 31.
Paul, Wolfgang Jakob, 35.
Permanent of a matrix, 23, 29.

Pi (w), as “random” example, 2, 22, 32, 38.
Pi function, 2, 22, 29, 34, 38.
Pigeonhole principle, 56.

Pippenger, Nicholas John, 49.

Pratt, Vaughan Ronald, 29.

Prefix problem, 31, 36.

Prefixes of strings, 36.

Preparata, Franco Paolo, 44.
Prime clauses, 33.

Prime implicants, 33, 54, 57.
Prime-number function, 14, 33.
Priority encoders, 31.
Projective plane, finite, 57.

Quantified formulas, 27-28, 55.

r-closed graphs, 37.

r-families of edges, 37.

Randomization, 22, 34.

Razborov, Alexander Alexandrovich
(Pas6opos, Anekcannp
Asekcannposuu), 29.

Recurrence relations, 42, 44.

binary, 12, 13, 30, 43.

Recursive procedures, 38, 42.

Red’kin, Nikolai Petrovich (Penpku=,
Huxosnait Ilerposuu), 11, 26, 35, 53.

Registers, 5-7, 30.

Riordan, John, 47.

Ruskey, Frank, 33.

S-boxes, 33.
Sky,...,k: () notation, v, see Symmetric
functions.
Sangiovanni-Vincentelli, Alberto Luigi, 26.
Savage, John Edmund, 47.
Schnorr, Claus-Peter, 35.
Schroeppel, Richard Crabtree, iv, 30.
Second-order logic, 28.
Selection function, see Mux.
Self-dual monotone functions, 37.
Self-reference, 28, 60.
Seneca, Lucius Anneas, iii.
Series-parallel switching networks, 47.
Seven-segment display, 16-18, 33.
Shannon, Claude Elwood, Jr., 14, 46, 47.
Shen, Vincent Yun-Shen (P& HI),
22, 24, 35.
Sholomov, Lev Abramovich (IIlonomos,
Jles AGpamosuu), 33, 51.
Sideways addition function (vz), v,
12, 30, 42, 44.
Sklansky, Jack, 44.
Smith, John Lynn, 45.
Snir, Marc (v pn), 31, 36.
Sorting networks, 31, 43.
Spira, Philip Martin, 29.
Stanford University InfoLab, v.
Stein, Sherman Kopald, 49.
Stockmeyer, Larry Joseph, 27, 28, 36, 42, 55.
Storage access function, 13.
Straight-line computation, see Boolean
chains.
Strassen, Volker, 57.
Strong components, 52.
Subcubes, 33, 47.

Suffixes of strings, 36.

Sun Microsystems Laboratories, v.

Symmetric functions, v, 2-3, 8-10, 12,
13, 20, 30, 35, 36, 41, 42.

Tarjan, Robert Endre, 52.
Ternary Boolean functions, 8-9, 57.
Thoreau, David Henry (= Henry David), 0.
Threshold functions, 43.
Tic-tac-toe, 18-21, 33-34, 49.
Top-down synthesis, 7-9, 30, 40.
Topological sorting, 1.
Triangle function, 37.
Trivial functions, 41.
Truth tables, 2, 4, 6, 9, 46.
in hexadecimal notation, 9, 36, 48.
of partial functions, 18-20.
two-dimensional, 14-15, 21-25, 49, 51.

INDEX AND GLOSSARY 61

Uhlig, Dietmar, 35.
Upper bounds on combinational complexity,
14-16, 33, see also Footprints.

Vacuum-tube circuits, 8, 30.
Vector-valued Boolean functions, 11, 25.

‘Wakerly, John Francis, 51.

Weak second-order logic, 27-28, 36.
‘Wegener, Ingo Werner, 28, 42.
‘Weinberger, Arnold, 45.

Weiner, Peter Gallegos, 22, 24, 35.
Winder, Robert Owen, 57.

‘Wood, Frank W., 16.

WS18, 28.

XOR gates (@), 1.

Zuse, Konrad, 46.

