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PREFACE

These unforeseen stoppages,

which | own | had no conception of when | first set out;

— but which, | am convinced now, will rather increase than diminish as | advance,
— have struck out a hint which | am resolved to follow;

— and that is, — not to be in a hurry;

— but to go on leisurely, writing and publishing two volumes of my life every year;
— which, if | am suffered to go on quietly, and can make a tolerable bargain
with my bookseller, | shall continue to do as long as | live.

— LAURENCE STERNE, The Life and Opinions of
Tristram Shandy, Gentleman (1760)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, and 3
were at the time of their first printings. And those carefully-checked volumes,
alas, were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make the text both interesting and authoritative, as far as it goes.
But the field is vast; I cannot hope to have surrounded it enough to corral it
completely. So I beg you to let me know about any deficiencies that you discover.

To put the material in context, this pre-fascicle contains Section 7.1.3 of a
long, long chapter on combinatorial algorithms. Chapter 7 will eventually fill
at least three volumes (namely Volumes 4A, 4B, and 4C), assuming that I'm
able to remain healthy. It will begin with a short review of graph theory, with
emphasis on some highlights of significant graphs in the Stanford GraphBase,
from which I will be drawing many examples. Then comes Section 7.1: Zeros
and Ones, beginning with basic material about Boolean operations in Section
7.1.1 and Boolean evaluation in Section 7.1.2. Section 7.1.3, which you’re about
to read here, applies these ideas to make computer programs run fast. Section
7.1.4 will then discuss the representation of Boolean functions.

The next part, 7.2, is about generating all possibilities, and it begins with
Section 7.2.1: Generating Basic Combinatorial Patterns. Fascicles for this section
have already appeared on the Web and/or in print. Section 7.2.2 will deal with
backtracking in general. And so it will continue, if all goes well; an outline of
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iv PREFACE

the entire Chapter 7 as currently envisaged appears on the taocp webpage that
is cited on page ii.

This part of The Art of Computer Programming has probably been more fun
to write than any other so far. Indeed, I’ve spent more than 30 years collecting
material for Section 7.1.3; finally I'm able to assemble these goodies together
and segue through them.

Most of Volume 4 will deal with abstract concepts, and there will be little
or no need to say much about a computer’s machine language. Volumes 1-3
have already dealt with most of the important ideas about programming at that
level. But Section 7.1.3 is a notable exception: Here we often want to see the
very pulse of the machine.

Therefore I strongly recommend that readers become familiar with the ba-
sics of the MMIX computer, explained in Volume 1 Fascicle 1, in order to fully
appreciate the bitwise tricks and techniques described here. Cross references
to Sections 1.3.1" and 1.3.2" in the present booklet refer to that fascicle. I've
reprinted the basic MMIX opcode-and-timing chart, Table 1.3.1-1, at the end of
this booklet for convenience, together with a list of ASCII codes.

The topic of Boolean functions and bit manipulation can of course be inter-
preted so broadly that it encompasses the entire subject of computer program-
ming. The real goal of this fascicle is to focus on concepts that appear at the
lowest levels, concepts on which we can erect significant superstructures. And
even these apparently lowly notions turn out to be surprisingly rich, with explicit
ties to sections 1.2.4, 1.2.5, 1.2.8, 2.3.1, 2.3.3, 2.3.4.2, 2.3.5, 3.1, 3.2.2, 4.1, 4.4,
4.5.3,4.5.4, 4.6.1, 4.6.2, 4.6.3, 4.6.4, 5, 5.2.2, 5.2.3, 5.2.5, and 5.3.4 of the first
three volumes. I strongly believe in building up a firm foundation, so I have
discussed Boolean topics much more thoroughly than I will be able to do with
material that is newer or less basic. Section 7.1.3 presented me with an extreme
embarrassment of riches: After typing the manuscript I was astonished to dis-
cover that I had come up with 217 exercises, even though —believe it or not —1
had to eliminate quite a lot of the interesting material that appears in my files.

My notes on combinatorial algorithms have been accumulating for more
than forty years, so I fear that in several respects my knowledge is woefully
behind the times. Please look, for example, at the exercises that I've classed as
research problems (rated with difficulty level 46 or higher), namely exercises 61,
76, 112, 117, 126, 128, 129, 130, and 174; I’ve also implicitly mentioned or posed
additional unsolved questions in the answers to exercises 21, 140, 141, 156, and
165. Are those problems still open? Please inform me if you know of a solution
to any of these intriguing questions. And of course if no solution is known today
but you do make progress on any of them in the future, I hope you’ll let me know.

I urgently need your help also with respect to some exercises that I made up
as I was preparing this material. I certainly don’t like to receive credit for things
that have already been published by others, and most of these results are quite
natural “fruits” that were just waiting to be “plucked.” Therefore please tell
me if you know who deserves to be credited, with respect to the ideas found in
exercises 5, 6, 20, 26, 34, 39, 49, 50, 53, 57, 58(d,e), 59, 60, 72, 78, 80, 81, 82, 83,
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PREFACE v

84, 86, 90, 95, 110, 115, 116, 120, 121, 127, 146, 154, 155, 159, 168, 184, 194, and
199, and/or the answers to exercises 17, 18, and 139. Furthermore I've credited
exercises 45 and 54 to unpublished work of Tom Rokicki and Bill Gosper. Have
either of those results ever appeared in print, to your knowledge?

Special thanks are due to Guy Steele and Hank Warren for their comments
on my early attempts at exposition, as well as to numerous other correspondents
who have contributed crucial corrections.

I happily offer a “finder’s fee” of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I’ll actually do my best to give you
immortal glory, by publishing your name in the eventual book:—)

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
16 December 2006

[These techniques] are instances of general mathematical principles

waiting to be discovered, if an appropriate setting is created.

Such a setting would be a calculus of bitmap operations, so one can learn

to use these operations just as naturally as arithmetic operations on numbers.

— L. J. GUIBAS and J. STOLFI, ACM Transactions on Graphics (1982)

A nice mixture of boolean and numeric functions —
a suitable exercise for biturgical acolytes.

— R. W. GOSPER (1996)

A note on notation. Several formulas in Section 7.1.3 use the notation (zyz),
for the median function (aka majority function) that is discussed extensively in
Section 7.1.1. Other formulas use the notation = - y, for the monus function
(aka dot-minus or saturating subtraction), which was defined in Section 1.3.1".
Hexadecimal constants are preceded by a sharp sign: #123 means (123)16. If you
run across other notations that may be unfamiliar, please look at the Index to
Notations at the end of Volumes 1, 2, or 3, and/or the entries under “Notation”
in the index to the present booklet. Of course Volume 4 will some day contain
its own Index to Notations.

Rokicki

Gosper

Steele

Warren

Knuth

GUIBAS

STOLFI

GOSPER

notation <a:yz>
median function
majority function
notation & — Y
monus function
dot-minus

saturating subtraction
Hexadecimal constants
Notation



7.1.3 BITWISE TRICKS AND TECHNIQUES 1

Lady Caroline. Psha! that's such a hack!
Sir Simon. A hack, Lady Caroline, that
the knowing ones have warranted sound.

— GEORGE COLMAN, John Bull, Act 3, Scene 1 (1803)

7.1.3. Bitwise Tricks and Techniques

Now comes the fun part: We get to use Boolean operations in our programs.
People are more familiar with arithmetic operations like addition, subtrac-
tion, and multiplication than they are with bitwise operations such as “and,”
“exclusive-or,” and so on, because arithmetic has a very long history. But we will
see that Boolean operations on binary numbers deserve to be much better known.
Indeed, they’re an important component of every good programmer’s toolkit.
Early machine designers provided fullword bitwise operations in their com-
puters primarily because such instructions could be included in a machine’s
repertoire almost for free. Binary logic seemed to be potentially useful, although

Braymore,Caroline
Rochdale,Simon
COLMAN
bitwise—



2 COMBINATORIAL ALGORITHMS (F1A) 7.1.3

only a few applications were originally foreseen. For example, the EDSAC com-
puter, completed in 1949, included a “collate” command that essentially per-
formed the operation z < z + (z & y), where z was the accumulator, = was
the multiplier register, and y was a specified word in memory; it was used for
unpacking data. The Manchester Mark I computer, built at about the same
time, included not only bitwise AND, but also OR and XOR. When Alan Turing
wrote the first programming manual for the Mark I in 1950, he remarked that
bitwise NOT can be obtained by using XOR (denoted ‘F’) in combination with a
row of 1s. R. A. Brooker, who extended Turing’s manual in 1952 when the Mark
II computer was being designed, remarked further that OR could be used “to
round off a number by forcing 1 into its least significant digit position.” By this
time the Mark II, which was to become the prototype of the Ferranti Mercury,
had also acquired new instructions for sideways addition and for the position of
the most significant 1.

Keith Tocher published an unusual application of AND and OR in 1954,
which has subsequently been reinvented frequently (see exercise 85). And dur-
ing the ensuing decades, programmers have gradually discovered that bitwise
operations can be amazingly useful. Many of these tricks have remained part of
the folklore; the time is now ripe to take advantage of what has been learned.

A trick is a clever idea that can be used once, while a technique is a trick
that can be used at least twice. We will see in this section that tricks tend to
evolve naturally into techniques.

Enriched arithmetic. Let’s begin by officially defining bitwise operations on
integers so that, if z = (... Z2x120)2, ¥ = (-..Y2¥1Y0)2, and z = (...222120)2
in binary notation, we have

r&y=2z <= TpAYr= 2k, for all £ > 0; (1)
Tly=2z <= T Vyp=2, for all k > 0; (2)
T®Yy=2z <= TD Yk = 2k, for all £ > 0. (3)

(It would be tempting to write ‘zAy’ instead of z&y, and ‘zVy’ instead of z|y; but
when we study optimization problems we’ll find it better to reserve the notations
z Ay and z Vy for min(z,y) and max(z, y), respectively.) Thus, for example,

5&11=1, 5|11=15, and 5&11 =14,

since 5 = (0101), 11 = (1011), 1 = (0001)3, 15 = (1111), and 14 = (1110),.
Negative integers are to be thought of in this connection as infinite-precision
numbers in two’s complement notation, having infinitely many 1s at the left; for
example, —5is (...1111011),. Such infinite-precision numbers are a special case
of 2-adic integers, which are discussed in exercise 4.1-31, and in fact the operators
&, |, ® make perfect sense when they are applied to arbitrary 2-adic numbers.
Mathematicians have never paid much attention to the properties of & and |
as operations on integers. But the third operation, @, has a venerable history,
because it describes a winning strategy in the game of nim (see exercises 8-16).
For this reason @y has often been called the “nim sum” of the integers x and y.

EDSAC computer
collation, see bitwise and
unpacking

Manchester Mark I computer
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OR
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Turing

NOT
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Mark II computer (Manchester/Ferranti)
round off
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tricks versus techniques
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two’s complement notation
2-adic integers
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7.1.3 BITWISE TRICKS AND TECHNIQUES 3

All three of the basic bitwise operations turn out to have many useful
properties. For example, every relation between A, V, and @ that we studied in
Section 7.1.1 is automatically inherited by &, |, and @ on integers, since the rela-
tion holds in every bit position. We might as well recap the main identities here:

c&ky=y&z, z|ly=ylz, HY=yd (4)
(z&y)&z=z&(y&z), (zly)|lz==z|(ylz), (SY)Sz=26(sdz2); (5
(@ly)&z=(z&2)|(y&z), (z&y)|z=(z|2)&(y]2); (6)
oy &z=(v&2)d(y&2); (7)
(z&y) o=z, (z|y)&e=uz (8)
(z&y)@(z]y) =z y; (9)
z&0=0, z|0=uz, z®0 = z; (10)
z&z=uz, z|z ==z, z@z =0 (11)
z& —-1=z, z|-1=-1, z®—-1=7; (12)
z &z =0, z|z=-1, THT=—1; (13)

zly (14)

z&y=1|9, zly=r&y, TQY=TQy=rdY.
The notation Z in (12), (13), and (14) stands for bitwise complementation of z,
namely (...Z2Z1Z)2, also written ~x. Notice that (12) and (13) aren’t quite
the same as 7.1.1-(10) and 7.1.1—(18); we must now use —1 = (...1111), instead
of 1 =(...0001) in order to make the formulas bitwise correct.

We say that x is contained in y, written x C y or y D z, if the individual
bits of z and y satisfy xy < yi for all £ > 0. Thus

zCy <= z&ky=z <= =z|ly=y <<= z&j=0. (15)

Of course we needn’t use bitwise operations only in connection with each
other; we can combine them with all the ordinary operations of arithmetic. For
example, from the relation z +Z = (...1111); = —1 we can deduce the formula

-z = 7T+1, (16)

which turns out to be extremely important. Replacing = by « — 1 gives also

o =71 (17)

and in general we can reduce subtraction to complementation and addition:

T—y = T+y. (18)

We often want to shift binary numbers to the left or right. These operations
are equivalent to multiplication and division by powers of 2, with appropriate
rounding, but it is convenient to have special notations for them:

z <k = z shifted left k bits = [2*z]; (19)
x>k = g shifted right k bits = [27%z]. (20)
Here k can be any integer, possibly negative. In particular we have

L (=k)=z>k and > (k) =z <k, (21)

commutative laws
associative laws
distributive laws
absorption laws
complementation
notation: ~ T
negation
subtraction
addition

shift binary



4 COMBINATORIAL ALGORITHMS (F1A) 7.1.3

for every infinite-precision number z. Also (z& y) <k = (z< k) & (y < k), ete.
When bitwise operations are combined with addition, subtraction, multi-
plication, and/or shifting, extremely intricate results can arise, even when the
formulas are quite short. A taste of the possibilities can be seen, for example,
in Fig. 11. Furthermore, such formulas do not merely produce purposeless,
chaotic behavior: A famous chain of operations known as “Gosper’s hack,” first
published in 1972, opened people’s eyes to the fact that a large number of useful
and nontrivial functions can be computed rapidly (see exercise 20). Our goal in
this section is to explore how such efficient constructions might be discovered.

Fig. 11. A small portion of
the patchwork quilt defined by
the bitwise function f(z,y) =
((z @ 9) & ((z — 350) > 3))*%;
the square cell in row z and
column y is painted white or
black according as the value of
((f(z,y) > 12) & 1) is 0 or 1.

. (Design by D. Sleator, 1976;

- ':g:;i see also exercise 18.)

Packing and unpacking. We studied algorithms for multiple-precision arith-
metic in Section 4.3.1, dealing with situations where integers are too large to fit in
a single word of memory or a single computer register. But the opposite situation,
when integers are significantly smaller than the capacity of one computer word, is
actually much more common; D. H. Lehmer called this “fractional precision.” We
can often deal with several integers at once, by packing them into a single word.
For example, a date x that consists of a year number y, a month number m,
and a day number d, can be represented by using 4 bits for m and 5 bits for d:

z = (((yk4)+m)K5)+d. (22)

We’ll see below that many operations can be performed directly on dates in this
packed form. For example, z < z’ when date = precedes date z’. But if necessary
the individual components (y, m,d) can readily be unpacked when z is given:

d = z mod 32, m = (z > 5) mod 16, y=z>09. (23)

And these “mod” operations do not require division, because of the important
law
zmod 2" = z& (2"-1) (24)

for any integer n > 0. We have, for instance, d = z & 31 in (22) and (23).
Such packing of data obviously saves space in memory, and it also saves time:
‘We can more quickly move or copy items of data from one place to another when

infinite-precision
Sleator

quilt

pixel pattern
black

white

Gosper’s hack
packing++
unpacking++
Lehmer
fractional precision
date

mod

division



7.1.3 BITWISE TRICKS AND TECHNIQUES 5

they’ve been packed together. Moreover, computers run considerably faster when
they operate on numbers that fit into a cache memory of limited size.

The ultimate packing density is achieved when we have 1-bit items, because
we can then cram 64 of them into a single 64-bit word. Suppose, for example,
that we want a table of all odd prime numbers less than 1024, so that we can
easily decide the primality of a small integer. No problem; only eight 64-bit
numbers are required:

P, =0111011011010011001011010010011001011001010010001011011010000001,
P; = 0100110000110010010100100110000110110000010000010110100110000100,
P, =1001001100101100001000000101101000000100100001101001000100100101,
P; =0010001010001000011000011001010010001011010000010001010001010010,
P, = 0000110000000010010000100100110010000100100110010010110000010000,
P; =1101001001100000101001000100001000100001000100100101000100101000,
Ps = 1010000001000010000011000011011000010000001011010000001011010000,
P7; = 0000010100010000100010100100100000010100100100010010000010100110.

To test whether 2k + 1 is prime, for 0 < k < 512, we simply compute
P|_k/64j < (k‘ & 63) (25)

in a 64-bit register, and see if the leftmost bit is 1. For example, the following
MMIX instructions will do the job, if register pbase holds the address of Fy:

SRU $0,k,3 $0 «+ |k/8] (i-e., k> 3).

LDOU $1 ,pbase,$0 $1 P|_$0/8J (i.e., P|_k/64j)-

AND $0,k,#3f $0 < k mod 64 (i.e., k & #3£). (26)
SLU $1,$1,%0 $1 « ($1 < $0) mod 2°*.

BN $1,PRIME Branch to PRIME if s($1) < 0. |

Notice that the leftmost bit of a register is 1 if and only if the register contents
are negative.
We could equally well pack the bits from right to left in each word:

Qo =1000000101101101000100101001101001100100101101001100101101101110,
@1 =0010000110010110100000100000110110000110010010100100110000110010,
Q2 =1010010010001001011000010010000001011010000001000011010011001001,
@3 =0100101000101000100000101101000100101001100001100001000101000100,
@4 =0000100000110100100110010010000100110010010000100100000000110000,
Qs =0001010010001010010010001000010001000010001001010000011001001011,
Qe =0000101101000000101101000000100001101100001100000100001000000101,
@~ =0110010100000100100010010010100000010010010100010000100010100000;

here Q; = PJR. Instead of shifting left as in (25), we now shift right,

Q|k/64) > (k & 63), (27)
and look at the rightmost bit of the result. The last two lines of (26) become
SRU $1,%1,%0 $1 < 81> %0. (28)

BOD $1,PRIME Branch to PRIME if $1 is odd. |

(And of course we use gbase instead of pbase.) Either way, the classic sieve of
Eratosthenes will readily set up the basic table entries P; or Q; (see exercise 24).

cache memory

prime numbers

table lookup by shifting
sieve of Eratosthenes
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Table 1 big-endian-+
THE BIG-ENDIAN VIEW OF A 32-BYTE MEMORY little-endian++
multiple-precision
octa 0
tetra O tetra 4
wyde 0 wyde 2 wyde 4 wyde 6
byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
ap...ar ag...ais Q16.-.@23 G24...QG31 (32...039 G40...Q47 Q48 ...055 G56...063
octa 8
tetra 8 tetra 12
wyde 8 wyde 10 wyde 12 wyde 14
byte 8 byte 9 byte 10 byte 11 byte 12 byte 13 byte 14 byte 15
aga...a71 A72...a79 GgQ...Ag7 A8 ...A95 Y6 ...G103 G104 ---G111 @112 - .- A119 G120 - - - B127
octa 16
tetra 16 tetra 20
wyde 16 wyde 18 wyde 20 wyde 22

byte 16 byte 17 byte 18 byte 19 byte 20 byte 21 byte 22 byte 23

@128 ---0135a136 - - - 4143 @144 - - - A151 @152 - .. @159 Q160 - - - 167 A168 - - - A175 @176 - - - @183 A184 - - - @191

octa 24
tetra 24 tetra 28
wyde 24 wyde 26 wyde 28 wyde 30
byte 24 byte 25 byte 26 byte 27 byte 28 byte 29 byte 30 byte 31

@192 ...Qa199 @200 - - - @207 A208 - - - G215 @216 - . - 4223 @224 . ..A231 4232 . .. A239 A240 - . - G247 A248 ... A255

Big-endian and little-endian conventions. Whenever we pack bits or bytes
into words, we must decide whether to place them from left to right or from right
to left. The left-to-right convention is called “big-endian,” because the initial
items go into the most significant positions; thus they will have bigger significance
than their successors, when numbers are compared. The right-to-left convention
is called “little-endian”; it puts the first items where little numbers go.

A big-endian approach seems more natural in many cases, because we'’re ac-
customed to reading and writing from left to right. But a little-endian placement
has advantages too. For example, let’s consider the prime number problem again;
let ay, = [2k+1 is prime|. Our table entries { Py, P, ..., P;} are big-endian, and
we can regard them as the representation of a single multiple-precision integer
that is 512 bits long:

(PoPl [P P7)264 = (a0a1 [N a511)2. (29)
Similarly, our little-endian table entries represent the multiprecise integer

(Q7...Q1Q0)26¢ = (as11...a1a0)2. (30)
The latter integer is mathematically nicer than the former, because it is

511 511 oo
ZQkak = Z2k[2k+1 is prime] = (Z 2F[2k+1 is prime]) mod 2°'2.  (31)
k=0 k=0 k=0
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Table 2 portability+
THE LITTLE-ENDIAN VIEW OF A 32-BYTE MEMORY
octa 24
tetra 28 tetra 24
wyde 30 wyde 28 wyde 26 wyde 24

byte 31 byte 30 byte 29 byte 28 byte 27 byte 26 byte 25 byte 24

4255 - - . 3248 4247 - . - 4240 @239 - - - @232 G231 - - - G224 0223 - . - 4216 A215 - . - @208 G207 - - - @200 Q199 - - - 192

octa 16
tetra 20 tetra 16
wyde 22 wyde 20 wyde 18 wyde 16
byte 23 byte 22 byte 21 byte 20 byte 19 byte 18 byte 17 byte 16

a191...0184 G183 - ..A176 G175 - - - @168 G167 - - - G160 A159 - - - @152 G151 - . - @144 G143 . . - @136 G135 - - - G128
octa 8
tetra 12 tetra 8
wyde 14 wyde 12 wyde 10 wyde 8
byte 15 byte 14 byte 13 byte 12 byte 11 byte 10 byte 9 byte 8

ai27...a120 @119 -..4112 @111 --- 4104 @103 .-.-A96 4aAQ5...488 Ag7...4A8) A79...A72 a71...0464

octa 0

tetra 4 tetra 0

wyde 6 wyde 4 wyde 2 wyde 0
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0

a3 ...as6 Aas55...048 Q47...040 G39...Q432 G31...024 G23...016 ais ...as ar...ag

Notice, however, that we used (Q7...Q1Qo)264 to get this simple result, not
(QoQ1 - ..Q7)264. The other number,

(QoQ1-.-Qr)26e = (a3 - --A1a0aA127 - - - A65064G191 - - - A38503840511 - - - 14490448 )2

is in fact quite weird, and it has no really nice formula. (See exercise 25.)

Endianness has important consequences, because most computers allow in-
dividual bytes of the memory to be addressed as well as register-sized units. MMIX
has a big-endian architecture; therefore if register x contains the 64-bit number
#0123456789abcdef, and if we use the commands ‘STOU x,0; LDBU y,1’ to
store x into octabyte location 0 and read back the byte in location 1, the result
in register y will be #23. On machines with a little-endian architecture, the
analogous commands would set y < #cd instead; #23 would be byte 6.

Tables 1 and 2 illustrate the competing “world views” of big-endian and
little-endian aficionados. The big-endian approach is basically top-down, with
bit 0 and byte 0 at the top left; the little-endian approach is basically bottom-up,
with bit 0 and byte 0 at the bottom right. Because of this difference, great care
is necessary when transmitting data from one kind of computer to another, or
when writing programs that are supposed to give equivalent results in both cases.
On the other hand, our example of the @ table for primes shows that we can
perfectly well use a little-endian packing convention on a big-endian computer
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like MMIX, or vice versa. The difference is noticeable only when data is loaded
and stored in different-sized chunks, or passed between machines.

Working with the rightmost bits. Big-endian and little-endian approaches
aren’t readily interchangeable in general, because the laws of arithmetic send
signals leftward from the bits that are “least significant.” Some of the most
important bitwise manipulation techniques are based on this fact.

If x is almost any nonzero 2-adic integer, we can write its bits in the form

z = (a01°10%),; (32)

in other words, z consists of some arbitrary (but infinite) binary string a, followed
by a 0, which is followed by a + 1 ones, and followed by b zeros, for some a > 0

and b > 0. (The exceptions occur when z = —2°; then a = c0.) Consequently
z = (@10%01°),, (33)
r—1 = (a01°01%),, (34)
—z = (@10%10%)y; (35)

and we see that Z+1 = —z = & — 1, in agreement with (16) and (17). With two
operations we can therefore compute relatives of x in several useful ways:

z & (r—1) = ( @ 01%00%); [remove the rightmost 1J; (36)
x & —x = (0°00%10%), [extract the rightmost 1]; (37)
x| —z = (1°11°10%); [smear the rightmost 1 to the left]; (38)
r® —z = (1°11%00%), [remove and smear it to the left]; (39)
z | (z—1) = (@ 01°11%); [smear the rightmost 1 to the right]; (40)
z® (z—1) = (0°00%11%); [extract and smear it to the right]; (41)
T & (z—1) = (0°00%01%); [extract, remove, and smear it to the right]. (42)

And two further operations produce yet another variant:
((z](z—=1))+1) & 2 = ( @ 00°00%); [remove the rightmost run of 1s].  (43)

When z = 0, five of these formulas produce 0, the other three give —1. [For-
mula (36) is due to Peter Wegner, CACM 3 (1960), 322; and (43) is due to
H. Tim Gladwin, CACM 14 (1971), 407-408. See also Henry S. Warren, Jr.,
CACM 20 (1977), 439-441.]

The quantity b in these formulas, which specifies the number of trailing zeros
in z, is called the ruler function of x and written pz, because it is related to
the lengths of the tick marks that are often used to indicate fractions of an inch:
‘prrTTTTTTTTTTTTT, In general, pr is the largest integer k such that 2% divides z,
when z # 0; and we define p0 = oo. The recurrence relations

p(2z+1)=0,  p(2z) =p(z)+1 (44)

also serve to define pz for nonzero . Another handy relation is worthy of note,

plr—y) = plz@y). (45)

rightmost bits++
smearing bits
extracting bits
removing bits
runs of bits
Wegner
Gladwin
Warren
trailing zeros
ruler function
px

binary valuation, see ruler function
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The elegant formula z & —z in (37) allows us to extract the rightmost 1 bit
very nicely, but we often want to identify exactly which bit it is. The ruler
function can be computed in many ways, and the best method often depends
heavily on the computer that is being used. For example, a two-instruction
sequence due to J. Dallos does the job quickly and easily on MMIX (see (42)):

SUBU t,x,1; SADD rho,t,x. (46)

(See exercise 30 for the case z = 0.) We shall discuss here two approaches that
do not rely on exotic commands like SADD; and later, after learning a few more
techniques, we’ll consider a third way.
The first general-purpose method makes use of “magic mask” constants pg
that prove to be useful in many other applications, namely
to = (...101010101010101010101010101010101)5 = —1/3,
p#1 = (...100110011001100110011001100110011)3 = —1/5, (47)
p2 = (...100001111000011110000111100001111)5 = —1/17,

and so on. In general uy is the infinite 2-adic fraction —1/(22"+ 1), because
(22" 4+ V) g = (pe € 2%) + g = (...11111)3 = —1. On a computer that has 29-
bit registers we don’t need infinite precision, of course, so we use the truncated
constants

par =% -1)/2%*+1) for0<k<d. (48)

These constants are familiar from our study of Boolean evaluation, because they
are the truth tables of the projection functions z4_ (see, for example, 7.1.2—(7)).
When z is a power of 2, we can use these masks to compute

pr =[x & po=0]+2[z & p1=0]+4[z & pp=0] +8[z & p3=0]+---, (49)

because [27 & pui = 0] = ji, when j = (... jsjaj1jo)2- Thus, on a 2¢-bit computer,
we can start with p < 0 and y < z & —=; then set p + p+2F if y& pgx = 0, for
0 < k < d. This procedure gives p = px when z # 0. (It also gives p0 = 2% — 1,
an anomalous value that may need to be corrected; see exercise 30.)

For example, the corresponding MMIX program might look like this:

mO GREG #5555555555555555 ;m1 GREG #3333333333333333;
m2 GREG #0£f0f0f0f0f0f0f0f ;m3 GREG #00ff00ff00ff00ff;
m4 GREG #0000ff£ff0000ffff ;mb GREG #00000000ffffffff;
NEGU y,x; AND y,x,y; AND q,y,m5; ZSZ rho,q,32;
AND q,y,m4; ADD t,rho,16; CSZ rho,q,t; (50)
AND q,y,m3; ADD t,rho,8; CSZ rho,q,t;
AND q,y,m2; ADD t,rho,4; CSZ rho,q,t;
AND q,y,m1; ADD t,rho,2; CSZ rho,q,t;
AND q,y,m0; ADD t,rho,1; CSZ rho,q,t;

total time = 19v. Or we could replace the last three lines by
SRU y,y,rho; LDB t,rhotab,y; ADD rho,rho,t (51)

where rhotab points to the beginning of an appropriate 129-byte table (only
eight of whose entries are actually used). The total time would then be p+ 13v.

Dallos

SADD

magic mask

mask: A bit pattern with 1s in key positions
2-adic fraction

truth tables

projection functions

MMIX

CSz

ZSZ
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The second general-purpose approach to the computation of px is quite
different. On a 64-bit machine it starts as before, with y < = & —z; but then it
simply sets

p + decode[((a-y) mod 2°4) >> 58], (52)

where a is a suitable multiplier and decode is a suitable 64-byte table. The
constant a = (ag3 . ..a1a9)2 must have the property that its 64 substrings

ae3062 - - - A58, Ae2061 ---A57, ---, A544 . ..040, a4a3a2a1a00, ceey aOOOOOO

are distinct. Exercise 2.3.4.2-23 shows that many such “de Bruijn cycles” exist;
for example, we can use M. H. Martin’s constant #03£79d71b4ca8b09, which
is discussed in exercise 3.2.2-17. The decoding table decode[0],. .., decode[63] is

th
e 00,01, 56,02, 57, 49, 28,03, 61, 58, 42, 50, 38, 29, 17, 04,

62,47,59,36,45,43, 51,22, 53,39, 33, 30, 24, 18, 12, 05, (53)
63,55, 48,27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11, 53
54,26,40, 15,34, 20,31, 10, 25, 14, 19,09, 13, 08, 07, 06.

[This technique was devised in 1997 by M. Lauter, and independently by C. E.

Leiserson, H. Prokop, and K. H. Randall a few months later (unpublished).
David Seal had used a similar method in 1994, with a larger decoding table.]

Working with the leftmost bits. The function Az = |lg x|, which is dual to
pz because it locates the leftmost 1 when x > 0, was introduced in Eq. 4.6.3—(6).
It satisfies the recurrence

Al =0; A(2z) = A2z +1)=A(z)+1 forz > 0; (54)

and it is undefined when z is not a positive integer. What is a good way to
compute it? Once again MMIX provides a quick-but-tricky solution:

FLOTU y,ROUND_DOWN,x; SUB y,y,fone; SR lam,y,52 (55)

where fone = #3££0000000000000 is the floating point representation of 1.0.
(Total time 6v.) This code floats z, then extracts the exponent.

But if floating point conversion is not readily available, a binary reduction
strategy works fairly well on a 2%-bit machine. We can start with A < 0 and
y < x; then weset A<~ A+28 and y < y>>2Fif y>2F £0, for k =d — 1,
..., 1,0 (or until k is reduced to the point where a short table can be used to
finish up). The MMIX code analogous to (50) and (51) is now

SRU y,x,32; ZSNZ lam,y,32;

ADD t,lam,16; SRU y,x,t; CSNZ lam,y,t;

ADD t,lam,8; SRUy,x,t; CSNZ lam,y,t;

SRU y,x,lam; LDB t,lamtab,y; ADD lam,lam,t; (56)

and the total time is g+ 11v. In this case table lamtab has 256 entries, namely
Az for 0 < z < 256. Notice that the “conditional set” (CS) and “zero or set”
(ZS) instructions have been used here and in (50) instead of branch instructions.

de Bruijn cycles
Martin

Lauter
Leiserson
Prokop

Randall

Seal

leftmost bits+

AT+

[lg x]+

binary logarithm+
leftmost

floating point

conditional set
zero or set
branch instructions
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There appears to be no simple way to extract the leftmost 1 bit that appears
in a register, analogous to the trick by which we extracted the rightmost 1 in (37).
For this purpose we could compute y < Az and then 1<y, if z # 0; but a binary
“smearing right” method is somewhat shorter and faster:

Set y + x, then y < y | (y > 2F) for 0 < k < d.

The leftmost 1 bit of z is then y — (y > 1). (57)

[These non-floating-point methods have been suggested by H. S. Warren, Jr.]

Other operations at the left of a register, like removing the leftmost run of
1s, are harder yet; see exercise 39. But there is a remarkably simple, machine-
independent way to determine whether or not Ax = Ay, given unsigned integers
x and y, in spite of the fact that we can’t compute Az or Ay quickly:

Az = Ay rdy<z&y. (58)

[See exercise 40. This elegant relation was discovered by W. C. Lynch in 20086.]
We will use (58) below, to devise another way to compute Az.

if and only if

Sideways addition. Binary n-bit numbers = (zp_1...21%0)2 are often used
to represent subsets X of the n-element universe {0,1,...,n — 1}, with k € X
if and only if 28 C . The functions Az and px then represent the largest and
smallest elements of X. The function

VT = Tp_1+ -+ x1 + To, (59)

which is called the “sideways sum” or “population count” of z, also has obvious
importance in this connection, because it represents the cardinality |X|, namely
the number of elements in X. This function, which we considered in 4.6.3—(7),
satisfies the recurrence

v0=0; v(2z) =v(z) and v(2z+1)=v(z)+1, forz >0. (60)
It also has an interesting connection with the ruler function (exercise 1.2.5-11),
pr=1+v(z—1) —vz; equivalently, Z pk=n—vn. (61)

k=1

The first textbook on programming, The Preparation of Programs for an
Electronic Digital Computer by Wilkes, Wheeler, and Gill, second edition (Read-
ing, Mass.: Addison—Wesley, 1957), 155, 191-193, presented an interesting sub-
routine for sideways addition due to D. B. Gillies and J. C. P. Miller. Their
method was devised for the 35-bit numbers of the EDSAC, but it is readily
converted to the following 64-bit procedure for vz when z = (zes .. .T170)2:

Sety — z— ((z>1) & po). (Now y = (u31...u1up)a, where uj = o411+ 25.)
Sety  (y& p1)+ ((y>2) & p1). (Now y = (vi5...v100)16, Vj = Ugj41 + U2j.)
Set y + (y+ (y>4)) & p2. Now y = (w7 ... wiwo)as6, W; = Vaj41 + Vaj.)

Finally v « ((a - y) mod 2%) >> 56, where a = (11111111)556. (62)

The last step cleverly computes y mod 255 = wy+- - - +wy +wp via multiplication,
using the fact that the sum fits comfortably in eight bits. [David Muller had
programmed a similar method for the ILLIAC I machine in 1954.]

smearing right
Warren

run of 1s
Lynch

sum of bits, see sideways sum
ones counting, see sideways

sideways addition+
subsets

largest

smallest
population count
cardinality
Wilkes

Wheeler

Gill

Gillies

Miller

EDSAC

remainder mod 2" — 1

Muller
ILLIACI
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If z is expected to be “sparse,” having at most a few 1-bits, we can use a
faster method [P. Wegner, CACM 3 (1960), 322]:

Set v+ 0,y « z. Then whiley #0,set v+ v+ 1, y+ y& (y—1). (63)
A similar approach, using y < y|(y+1), works when z is expected to be “dense.”

Bit reversal. For our next trick, let’s change z = (zg3...%120)2 to its left-
right mirror image, % = (zoz1 ... xs3)2. Anybody who has been following the
developments so far, seeing methods like (50), (56), (57), and (62), will probably
think, “Aha—once again we can divide by 2 and conquer! If we’ve already
discovered how to reverse 32-bit numbers, we can reverse 64-bit numbers almost
as fast, because (zy)® = yRxf. All we have to do is apply the 32-bit method in
parallel to both halves of the register, then swap the left half with the right half.”

Right. For example, we can reverse an 8-bit string in three easy steps:

Given T7TeLsL4T3L2L1 Lo
Swap bits TeX7LAT5T2L3TOT ] (6 )
Swap nyps T4T5TeXL7TOL1T2TS 4

Swap nybbles ToT1T2X3TALETeLT

And six such easy steps will reverse 64 bits. Fortunately, each of the swapping
operations turns out to be quite simple with the help of the magic masks py:

y(z>D&po, z+(z&p)<Kl, z+vy|z

Yy (@>2)&u, z+ (2&m)<K2, z+ylz

Yy (> &p2, z+— (z&p)<K4, z+vy|z

y (@>8)&ps, z+ (z&pu3)<K8, z+vy|z (65)
Yy (>16)& pa, z+ (x&ps) K16, z+y|z;

z + (z>>32) | ((z < 32) mod 2%%).

[Christopher Strachey foresaw some aspects of this construction in CACM 4
(1961), 146, and a similar ternary method was devised in 1973 by Bruce Baum-
gart (see exercise 49). The mature algorithm (65) was presented by Henry S.
Warren, Jr., in Hacker’s Delight (Addison—Wesley, 2002), 102.]

But MMIX is once again able to trump this general-purpose technique with
less traditional commands that do the job much faster. Consider

rev GREG #0102040810204080; MOR x,x,rev; MOR x,rev,x; (66)

the first MOR instruction reverses the bytes of z from big-endian to little-endian
or vice versa, while the second reverses the bits within each byte.

Bit swapping. Suppose we only want to interchange two bits within a register,
x; > xj, where 4 > j. What would be a good way to proceed? (Dear reader,
please pause for a moment and solve this problem in your head, or with pencil
and paper — without looking at the answer below.)

Let § =i — j. Here is one solution (but don’t peek until you're ready):

Y+ (230)&27, 2+ (2&279) <0, = <+ (x&m) |y |z, where m = 2¢|27. (67)

Wegner

reversal of bits+
divide by 2 and conquer
magic masks
Strachey
Baumgart

Warren

big-endian
little-endian

MOR

swapping bits+++



7.1.3 BITWISE TRICKS AND TECHNIQUES 13

It uses two shifts and five bitwise Boolean operations, assuming that i and j
are given constants. It is like each of the first lines of (65), except that a new
mask m is needed because y and z don’t account for all of the bits of x.

We can, however, do better, saving one operation and one constant:

Yy (@ (z>0)) & 27, r—zdyd(y<K9). (68)

The first assignment now puts z; @ x; into position j; the second changes x; to
z; ® (z; ® x;) and z; to z; ® (x; ® x;), as desired. In general it’s often wise to
convert a problem of the form “change x to f(z)” into a problem of the form
“change z to = @ g(z),” since the bit-difference g(z) might be easy to calculate.

On the other hand, there’s a sense in which (67) might be preferable to (68),
because the assignments to y and z in (67) can sometimes be performed simulta-
neously. When expressed as a circuit, (67) has a depth of 4 while (68) has depth 5.

Operation (68) can of course be used to swap several pairs of bits simulta-
neously, when we use a mask 6 that’s more general than 27:

y (z@ (z>9)) &9, T—xDYd(y<K9). (69)

Let us call this operation a “d-swap,” because it allows us to swap any non-
overlapping pairs of bits that are d places apart. The mask 6 has a 1 in the right-
most position of each pair that’s supposed to be swapped. For example, (69) will
swap the leftmost 25 bits of a 64-bit word with the rightmost 25 bits, while leav-
ing the 14 middle bits untouched, if we let § = 39 and 0 = 225 — 1 = #1ffffff.

Indeed, there’s an astonishing way to reverse 64 bits using J-swaps, namely
y(@>D&po, z+ (z&po)<Kl, z+y|z

y <+ (z® (z>4)) & #0300c0303030c303, z <+ Dy d (y <K 4),

y < (z ® (z>8)) & #00c0300c03£0003f, z <+ zDyYd (y < 8), (70)
y < (z @ (z>>20)) & #00000££c00003f£ff, =+ zdyd (y < 20),

x < (z>>34) | ((z < 30) mod 2%4),

saving two of the bitwise operations in (65) even though (65) looks “optimum.”

*Bit permutation in general. The methods we’ve just seen can be extended to
obtain an arbitrary permutation of the bits in a register. In fact, there always ex-
ist masks 6y, ..., 05, é4, ceey 6o such that the following operations transform z =
(263 . ..2120)2 into any desired rearrangement ™ = (Zg3y - . - T17ZTox )2 Of its bits:

(71)

x + 2F-swap of z with mask 6, for k =0, 1, 2, 3, 4, 5;
x < 2*-swap of = with mask ék, for k=4, 3,2,1,0.

In general, a permutation of 2¢ bits can be achieved with 2d — 1 such steps,
using appropriate masks 6, ék, where the swap distances are respectively 2°,
ol ..., 24-1 . 21 20,

To prove this fact, we can use a special case of the permutation networks
discovered independently by A. M. Duguid and J. Le Corre in 1959, based on
earlier work of D. Slepian [see V. E. Benes, Mathematical Theory of Connecting
Networks and Telephone Traffic (New York: Academic Press, 1965), Section 3.3].

depth
-swap
bit permutation++++
permutation networks
Duguid
Le Corre
Slepian
Benes
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Figure 12 shows a permutation network P(2n) for 2n elements constructed from

two permutation networks for n elements, when n = 4. Each ‘I’ connection
between two lines represents a crossbar module that either leaves the line contents
unaltered or interchanges them, as the data flows from left to right. Every setting
of the individual crossbars therefore causes P(2n) to produce a permutation of
its inputs; conversely, we wish to show that any permutation of the 2n inputs
can be achieved by some setting of the crossbars.

The construction of Fig. 12 is best understood by considering an example.
Suppose we want to route the inputs (0,1,2,3,4,5,6,7) to (3,2,4,1,6,0,5,7),
respectively. The first job is to determine the contents of the lines just after the
first column of crossbars and just before the last column, since we can then use
a similar method to set the crossbars in the inner P(4)’s. Thus, in the network

(72)

N U WN RO
—0 00— 0—0 0—¢
B omRH 0 00 o
mQmMMmbo Qo
—0 00— 0—O 66—
N UTO O = NW

we want to find permutations abcdefgh and ABCDEFGH such that {a,b} = {0,1},
{c,d} = {2,3}, ..., {g,h} = {6,7}, {a,c,e,g} = {4,C,E,G}, {b,d,f,h} =
{B,D,F,H}, {A,B} = {3,2}, {C¢,D} = {4,1}, ..., {G,H} = {5,7}. Starting at
the bottom, let us choose h = 7, because we don’t wish to disturb the contents
of that line unless necessary. Then the following choices are forced:

H=7;G=5;e=5;f=4;D=4;C=1;a=1;b=0; F=0; E=6; g=6. (73)
If we had chosen h = 6, the forcing pattern would have been similar but reversed,
F=6;E=0;a=0;b=1;D=1;C=4; e=4; £=5; H=5; G=7; g=7. (74)

Options (73) and (74) can both be completed by choosing either d = 3 (hence
B=3,A=2,c=2)ord=2 (hence B=2,A=3, c = 3).

In general the forcing pattern will go in cycles, no matter what permutation
we begin with. To see this, consider the graph on eight vertices {ab, cd, ef, gh,
AB, CD, EF, GH} that has an edge from uv to UV whenever the pair of inputs
connected to uv has an element in common with the pair of outputs connected
to UV. Thus, in our example the edges are ab — EF, ab — CD, cd — AB,
cd — AB, ef — CD, ef — GH, gh — EF, gh — GH. We have a “double bond”
between cd and AB, since the inputs connected to ¢ and d are exactly the outputs
connected to A and B; subject to this slight bending of the strict definition of
a graph, we see that each vertex is adjacent to exactly two other vertices, and
lowercase vertices are always adjacent to uppercase ones. Therefore the graph

rearrangeable networks, see perm networks
crossbar module

graph

bipartite graph
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crossbar modules
sl | T B
£ b
S — o)
£ g
R L L I G
|4 =
a 1, Lo | a’
-1 B () L
£(7)
P 2r2)

Fig. 12. The inside of a black box P(2n) that permutes 2n elements
in all possible ways, when n > 1. (Illustrated for n = 4.)

always consists of disjoint cycles of even length. In our example, the cycles are

EF — gh
ab_ ~qH

75
D —ef (75)

cd — AB,
where the longer cycle corresponds to (73) and (74). If there are k different
cycles, there will be 2% different ways to specify the behavior of the first and last
columns of crossbars.

To complete the network, we can process the inner 4-element permutations
in the same way; and any 2%-element permutation is achievable in this same
recursive fashion. The resulting crossbar settings determine the masks 6; and éj
of (71). Some choices of crossbars may lead to a mask that is entirely zero; then
we can eliminate the corresponding stage of the computation.

If the input and output are identical on the bottom lines of the network, our
construction shows how to ensure that none of the crossbars touching those lines
are active. For example, the 64-bit algorithm in (71) could be used also with a
60-bit register, without needing the four extra bits for any intermediate results.

Of course we can often beat the general procedure of (71) in special cases.
For example, exercise 52 shows that method (71) needs nine swapping steps to
transpose an 8 X 8 matrix, but in fact three swaps suffice:

Given

00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
7071 7273747576 77

T-swap
0010 02 12 04 14 06 16
01 11 03 1305 15 07 17
20 30 22 32 24 34 26 36
21 31 23 33 25 35 27 37
40 50 42 52 44 54 46 56
41 51 43 53 45 55 47 57
60 70 62 72 64 74 66 76
61 71 63 73 65 75 67 77

14-swap
00 10 20 30 04 14 24 34
01 11 21 31 05 15 25 35
02 12 22 32 06 16 26 36
03 13 23 33 07 17 27 37
40 50 60 70 44 54 64 74
41 51 61 71 45 55 65 75
42 52 62 72 46 56 66 76
43 53 63 73 47 57 67 77

28-swap
00 10 20 30 40 50 60 70
01 11 21 31 41 51 61 71
02 12 22 32 42 52 62 72
03 13 23 33 43 53 63 73
041424 3444546474
05 15 25 35 45 55 65 75
06 16 26 36 46 56 66 76
07 17 27 37 47 57 67 T7

cycles in a graph
transpose
matrix transposition
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The “perfect shuffle” is another bit permutation that arises frequently in
practice. If x = (...zaz120)2 and y = (... y2y1Y0)2 are any 2-adic integers, we
define zty (“z zip y,” the zipper function of z and y) by interleaving their bits:

riy = (... T2027191%0Y0)2- (76)

This operation has important applications to the representation of 2-dimensional
data, because a small change in either x or y usually causes only a small change
in z {y (see exercise 86). Notice also that the magic mask constants (47) satisfy

Pk e = Py (77)
If z appears in the left half of a register and y appears in the right half, a perfect
shuffle is the permutation that changes the register contents to x I y.

A sequence of d — 1 swapping steps will perfectly shuffle a 29-bit register; in
fact, exercise 53 shows that there are several ways to achieve this. Once again,
therefore, we are able to improve on the (2d —1)-step method of (71) and Fig. 12.

Conversely, suppose we're given the shuffled value z = z {y in a 2%-bit
register; is there an efficient way to extract the original value of y? Sure: If the
d — 1 swaps that do a perfect shuffle are performed in reverse order, they’ll undo
the shuffle and recover both x and y. But if only y is wanted, we can save half of
the work: Start with y < z & po; then set y < (y + (y > 2F71)) & py, for k=1,
..., d—1. For example, when d = 3 this procedure goes (0y30y20y10yo)2 —
(00y3y200y1yp)2 — (0000y3y2y1Y0)2. “Divide and conquer” conquers again.

Consider now a more general problem, where we want to extract and com-
press an arbitrary subset of a register’s bits. Suppose we’re given a 2%-bit word
z = (29a_1...2120)2 and a mask x = (Xad_1---X1X0)2 that has s 1-bits; thus
vx = §. The problem is to assemble the compact subword

Yy = (ysfl s ylyO)2 = (st—1 R Zj0)27 (78)
where js_1 > .-+ > j1 > jo are the indices where x; = 1. For example, if
d = 3 and x = (10110010)3, we want to transform z = (ysT3y2y1T2T1Y0To )2 into
y = (y3¥2¥1%0)2- (The problem of going from z } y to y, considered above, is the
special case x = po.) We know from (71) that y can be found by d-swapping,
at most 2d — 1 times; but in this problem the relevant data always moves to the
right, so we can speed things up by doing shifts instead of swaps.

Let’s say that a §-shift of  with mask 6 is the operation

z <+ z® ((x®(z>6)) &), (79)
which changes bit x; to x;4s if 6 has 1 in position j, otherwise it leaves z;
unchanged. Guy Steele discovered that there always exist masks g, 61, ..., 04_1

so that the general extraction problem (78) can be solved with a few d-shifts:

Start with < z; then do a 2*-shift of = with mask 6y, (80)

for k=0,1,...,d—1; finally set y + .
In fact, the idea for finding appropriate masks is surprisingly simple. Every bit
that wants to move a total of exactly I = (Iz_1 . ..l1lp)2 places to the right should
be transported in the 2¥-shifts for which I = 1.

perfect shuffle

2-adic integers
interleaving, see zipper function, perf shuffle
2-dimensional data
magic mask

Divide and conquer
extract and compress
mask

packing

O-shift

Steele
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For example, suppose d = 3 and x = (10110010)3. (We must assume that sheep-and-goats
X # 0.) Remembering that some 0s need to be shifted in from the left, we can notation Z | X

set o = (00011001),, 6; = (00000110)s, 6, = (11111000)s; then (80) maps Chung
Wong
(Y3T3Yy2y1Z2L1Y0%T0)2 — (Y3T3Y2Y2Y1T1Y0Y0)2 — (Y3L3Y2Y2Y1Y2¥1Y0)2 — (0000y3y2y190)2- fg’acifs

. . . . . . i, as "random” exampl
Exercise 69 proves that the bits being extracted will never interfere with each Pl as Trandom: exampe

other during their journey. Furthermore, there’s a slick way to compute the
necessary masks 6y dynamically from y, in O(d?) steps (see exercise 70).

A “sheep-and-goats” operation has been suggested for computer hardware,
extending (78) to produce the general unshuffled word

2 X =(r_1-. T1T0Ys—1---Y1Y0)2 = (Zip_y - - - Ziy Zig Zju_y - - - Zj1 Zj0 )25 (81)

here i,_1 > -+ > i1 > ig are the indices where y; = 0. Any permutation of 2¢
bits is achievable via at most d sheep-and-goats operations (see exercise 73).

Shifting also allows us to go beyond permutations, to arbitrary mappings of
bits within a register. Suppose we want to transform

T=(Tga_1...21T0)2 = T¥ = (T(2d_1)p-- - T1pT0y)2, (82)

where @ is any of the (Zd)zd functions from the set {0,1,...,2¢ — 1} into itself.
K. M. Chung and C. K. Wong [IEEE Transactions C-29 (1980), 1029-1032]
discovered an attractive way to do this in O(d) steps by using cyclic §-shifts,
which are like (79) except that we set

g+ 2@ ((z®(z>0) @ (z< (2¢-9))) &0). (83)

Their idea is to let ¢; be the number of indices j such that jo = 1, for 0 < [ < 2¢9.
Then they find masks 6y, 61, ..., 64—1 with the property that a cyclic 2*-shift
of z with mask 6, done successively for 0 < k < d, will transform z into a
number z’ that contains exactly c; copies of bit z; for each I. Finally the general
permutation procedure (71) can be used to change z’ + z¥.

For example, suppose d = 3 and z¥ = (232121 ZoZ32725%5)2. Then we have
(co,c1,0C2,cC3,cC4,c5,¢6,¢7) = (1,2,0,2,0,2,0,1). Using masks 6, = (00011100)a,
61 = (00001000)2, and 6 = (01100000)2, three cyclic 2k_shifts now take z =
(:117:126(1:5:12411731132117121?0)2 — ($7$6$5$5$4$3$1$0)2 — ($7$6$5$5l‘5.’1)3$1.’1)0)2 —
(z7z321252523212T0)2 = 2. Then, some d-swaps: &' — (T327252T1T3T5T1Z0)2 —
(T3T1T5T723T5L120)2 — (T3T1L1T0T3T5T5L7)2 — (T3T1X1L0T3T7T5L5)2 = T¥;
we’re done! Of course any 8-bit mapping can be achieved more quickly by brute
force, one bit at a time; the method of Chung and Wong becomes much more
impressive in a 256-bit register. Even with MMIX’s 64-bit registers it’s pretty
good, needing at most 96 cycles in the worst case.

To find 6y, we use the fact that Y ¢; = 2¢, and we look at Deven = Y. C21
and Loqqd = Y. Carg1- If Deven = Lodd = 29471, we can set fp = 0 and omit the
cyclic 1-shift. But if, say, Xeven < Xodd, We find an even [ with ¢; = 0. Cyclically
shifting into bits [, [+1, ..., I+t (modulo 2¢) for some t will produce new counts
(chy---sCha_y) for which X =57 =221 50 g = 2! + - -+ + 2(+t) mod 29,

even
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Then we can deal with the bits in even and odd positions separately, using the
same method, until getting down to 1-bit subwords. Exercise 74 has the details.

Working with fragmented fields. Instead of extracting bits from various
parts of a word and gathering them together, we can often manipulate those bits
directly in their original positions.

For example, suppose we want to run through all subsets of a given set U,
where (as usual) the set is specified by a mask x such that [k € U] = (x> k) &1.
If £ C x and x # x, there’s an easy way to calculate the next largest subset of U
in lexicographic order, namely the smallest integer ' > = such that =’ C x:

= (z—x)&x. (84)

In the special case when = 0 and x # 0, we’ve already seen in (37) that this for-
mula produces the rightmost bit of x, which corresponds to the lexicographically
smallest nonempty subset of U.

Why does formula (84) work? Imagine adding 1 to the number z | ¥, which
has 1s wherever x is 0. A carry will propagate through those 1s until it reaches
the rightmost bit position where x has a 0 and x has a 1; furthermore all bits
to the right of that position will become zero. Therefore =’ = ((z | ) + 1) & x.
But we have (z | x)+1=(z+Xx)+1=z+(x+1) =2z — x when z C x. QED.

Notice further that ' = 0 if and only if z = x. So we’ll know when we’ve
found the largest subset. Exercise 79 shows how to go back to z, given z'.

We might also want to run through all elements of a subcube— for example,
to find all bit patterns that match a specification like *10%1%01, consisting of
0s, 1s, and #s (don’t-cares). Such a specification can be represented by asterisk
codes a = (an_1...ap)2 and bit codes b = (b,_1 ...bp)2, as in exercise 7.1.1-30;
our example corresponds to a = (10010100)2, b = (01001001);. The problem of
enumerating all subsets of a set is the special case where a = xy and b = 0. In
the more general subcube problem, the successor of a given bit pattern x is

¢ = ((z—(a+b)&a)+b. (85)

Suppose the bits of z = (z,—1 ... 20)2 have been stitched together from two
subwords ¢ = (zy_1...20)2 and ¥y = (Ys—1.--Yo)2, where 7 + s = n, using
an arbitrary mask x for which vy = s to govern the stitching. For example,
z = (y2w4T3y1T2Y0T1%0)2 when n = 8 and x = (10010100)2. We can think of z
as a “scattered accumulator,” in which alien bits x; lurk among friendly bits y;.
From this viewpoint the problem of finding successive elements of a subcube is
essentially the problem of computing y + 1 inside a scattered accumulator z,
without changing the value of . The sheep-and-goats operation (81) would
untangle = and y; but it’s expensive, and (8s5) shows that we can solve the
problem without it. We can, in fact, compute y + 3" when y' = (v._;...y})2
is any value inside a scattered accumulator 2/, if ¥ and y’ both appear in the
positions specified by x: Consider t = z & x and t' = 2’ & x. If we form the
sum (¢ | ) +t', all carries that occur in a normal addition y + 3’ will propagate

recursively
fragmented fields
subsets

mask

lexicographic order
subcube
don’t-cares
asterisk codes

bit codes

scattered accumulator
sheep-and-goats
carries
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through the blocks of 1s in ¥, just as if the scattered bits were adjacent. Thus
((z&x)+ (2" | %) &x (86)

is the sum of y and %', modulo 2%, scattered according to the mask x.

Tweaking several bytes at once. Instead of concentrating on the data in one
field within a word, we often want to deal simultaneously with two or more sub-
words, performing calculations on each of them in parallel. For example, many
applications need to process long sequences of bytes, and we can gain speed by
acting on eight bytes at a time; we might as well use all 64 bits that our machine
provides. General multibyte techniques were introduced by Leslie Lamport in
CACM 18 (1975), 471-475, and subsequently extended by many programmers.

Suppose first that we simply wish to take two sequences of bytes and find
their sum, regarding them as coordinates of vectors, doing arithmetic mod-
ulo 256 in each byte. Algebraically speaking, we’re given 8-byte vectors z =
(z7...2120)256 and y = (Y7 - . - Y1Yo)256; We want to compute z = (27 ... 2120 )256,
where z; = (z; +y;) mod 256 for 0 < j < 8. Ordinary addition of = to y doesn’t
quite work, because we need to prevent carries from propagating between bytes.
So we extract the high-order bits and deal with them separately:

z+ (zdy) &h, where h = #8080808080808080;
2+ ((z&h)+ (y&h)) @ 2. (87)

The total time for MMIX to do this is 6v, plus 3u+ 3v if we also count the time to
load z, load y, and store z. By contrast, eight one-byte additions (LDBU, LDBU,
ADDU, and STBU, repeated eight times) would cost 8 x (3u + 4v) = 24u + 32v.
Parallel subtraction of bytes is just as easy (see exercise 88).

We can also compute bytewise averages, with z; = [(x; +y;)/2] for each j:

z+ ((zy) &lI)>1, where [ = #0101010101010101;
z+ (z&y)+ = (88)

This elegant trick, suggested by H. G. Dietz, is based on the well-known formula
z+y = (z@y)+((z&y) <1) (89)

for radix-2 addition. (We can implement (88) with four MMIX instructions, not
five, because a single MOR operation will change = @y to ((x @ y) & 1) > 1.)
Exercises 88-93 and 100—104 develop these ideas further, showing how to do
mixed-radix arithmetic, as well as such things as the addition and subtraction of
vectors whose components are treated modulo m when m needn’t be a power of 2.
In essence, we can regard the bits, bytes, or other subfields of a register as if
they were elements of an array of independent microprocessors, acting indepen-
dently on their own subproblems yet tightly synchronized, and communicating
with each other via shift instructions and carry bits. Computer designers have
been interested for many years in the development of parallel processors with a
so-called SIMD architecture, namely a “Single Instruction stream with Multiple
Data streams”; see, for example, S. H. Unger, Proc. IRE 46 (1958), 1744-1750.

scattered sum

packed data, operating on++
Lamport

parallel processing of subwords
multibyte processing
multibyte addition

carries
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The increased availability of 64-bit registers has meant that programmers of
ordinary sequential computers are now able to get a taste of SIMD processing.
Indeed, computations such as (87), (88), and (89) are called SWAR methods—
“SIMD Within A Register,” a name coined by R. J. Fisher and H. G. Dietz [see
Lecture Notes in Computer Science 1656 (1999), 290-305].

Of course bytes often contain alphabetic data as well as numbers, and one
of the most common programming tasks is to search through a long string of
characters in order to find the first appearance of some particular byte value. For
example, strings are often represented as a sequence of nonzero bytes terminated
by 0. In order to locate the end of a string quickly, we need a fast way to
determine whether all eight bytes of a given word z are nonzero (because they
usually are). Several fairly good solutions to this problem were found by Lamport
and others; but Alan Mycroft discovered in 1987 that three instructions actually
suffice:

t < h&(z-1) &7, (90)
where h and [ appear in (87) and (88). If each byte x; is nonzero, ¢t will be zero;
for (z;—1)&z; will be 2°%i —1, which is always less than #80 = 27. But if z; = 0,
while its right neighbors x;_1, ..., zo (if any) are all nonzero, the subtraction
x — 1 will produce #£f in byte j, and ¢ will be nonzero. In fact, pt will be 85+ 7.

Caution: Although the computation in (go) pinpoints the rightmost zero
byte of x, we cannot deduce the position of the leftmost zero byte from the value
of t alone. (See exercise 94.) In this respect the little-endian convention proves
to be preferable to the corresponding big-endian behavior. An application that
needs to locate the leftmost zero byte can use (go) to skip quickly over nonzeros,
but then it must fall back on a slower method when the search has been narrowed
down to eight finalists. The following 4-operation formula produces a completely
precise test value t = (t7...t1t0)256, in which t; = 128[z; =0] for each j:

t < h&~(z|((z]h)—-1). (91)

The leftmost zero byte of = is now x;, where At = 8j 4 7.

Incidentally, the single MMIX instruction ‘BDIF t,1,x’ solves the zero-byte
problem immediately by setting each byte ¢; of ¢ to [z; =0], because 1 — z =
[z =0]. But we are primarily interested here in fairly universal techniques that
don’t rely on exotic hardware; MMIX’s special features will be discussed later.

Now that we know a fast way to find the first 0, we can use the same ideas
to search for any desired byte value. For example, to test if any byte of x is the
newline character (*a), we simply look for a zero byte in ®#0a0a0a0a0a0alala.

And these techniques also open up many other doors. Suppose, for instance,
that we want to compute z = (z7...2120)256 from z and y, where z; = z;
when z; = y; but z; = **’ when z; # y;. (Thus if £ = "beaching" and
y = "belching", we’re supposed to set z < "bexching".) It’s easy:

t«h&((zoy) | (zoy)|h)—1);
m (1) — (E>7); (92)
24 @ ((T @ "*xxxkkkx") & m).

bit slices
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Fisher

Dietz

alphabetic data
strings

Lamport
Mycroft

ruler function
little-endian convention
big-endian
dotminus
equality of bytes
newline



7.1.3 BITWISE TRICKS AND TECHNIQUES 21

The first step uses a variant of (91) to flag the high-order bits in each byte
where z; # y;. The next step creates a mask to highlight those bytes: #00 if
x; = y;, otherwise #£f. And the last step, which could also be written z «
(@ &) | ("**xxxx%%" & m), sets zj < x; or z; < ’*’, depending on the mask.
Operations (9o) and (91) were originally designed as tests for bytes that are
zero; but a closer look reveals that we can more wisely regard them as tests for
bytes that are less than 1. Indeed, if we replace [ by c -1 = (cccceeee)ase in
either formula, where ¢ is any positive constant < 128, we can use (9o) or (91)
to see if  contains any bytes that are less than c. Furthermore the comparison
values ¢ need not be the same in every byte position; and with a bit more work
we can also do bytewise comparison in the cases where ¢ > 128. Here’s an 8-step
formula that sets t; < 128[z; <y, | for each byte position j in the test word ¢:

t « h&~{(zyz), where z = (z | h) — (y & h). (93)

(See exercise 96.) The median operation in this general formula can often be
simplified; for example, (93) reduces to (91) when y = [, because (z(—1)z) = z| 2.

Once we've found a nonzero ¢ in (9o) or (91) or (93), we might want to
compute pt or At in order to discover the index j of the rightmost or leftmost
byte that has been flagged. The problem of calculating p or A is now simpler
than before, since t can take on only 256 different values. Indeed, the operation

256 —1
j « table[((a-t) mod 2%*) > 56], where a = ——r (94)

271"
now suffices to compute j, given an appropriate 256-byte table. And the mul-
tiplication here can often be performed faster by doing three shift-and-add
operations, “t «+ t+ (t K 7), t +— t+ (t € 14), t + t + (t < 28),” instead.

Broadword computing. We’ve now seen more than a dozen ways in which
a computer’s bitwise operations can produce astonishing results at high speed,
and the exercises below contain many more such surprises.

Elwyn Berlekamp has remarked that computer chips containing N flip-flops
continue to be built with ever larger values of N, yet in practice only O(log N) of
those components are flipping or flopping at any given moment. The surprising
effectiveness of bitwise operations suggests that computers of the future might
make use of this untapped potential by having enhanced memory units that are
able to do efficient n-bit computations for fairly large values of n. To prepare for
that day, we ought to have a good name for the concept of manipulating “wide
words.” Lyle Ramshaw has suggested the pleasant term broadword, so that we
can speak of n-bit quantities as broadwords of width n.

Many of the methods we’ve discussed are 2-adic, in the sense that they work
correctly with binary numbers that have arbitrary (even infinite) precision. For
example, the operation z & —z always extracts 2°”, the least significant 1 bit of
any nonzero 2-adic integer x. But other methods have an inherently broadword
nature, such as the methods that use O(d) steps to perform sideways addition
or bit permutation of 2%-bit words. Broadword computing is the art of dealing
with n-bit words, when n is a parameter that is not extremely small.

flag: A 1-bit indicator

mask

comparison of bytes

bytes, testing relative order of
median operation
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Some broadword algorithms are of theoretical interest only, because they are
efficient only in an asymptotic sense when n exceeds the size of the universe. But
others are eminently practical even when n = 64. And in general, a broadword
mindset often suggests good techniques.

One fascinating-but-impractical fact about broadword operations is the dis-
covery by M. L. Fredman and D. E. Willard that O(1) broadword steps suffice
to evaluate the function Az = |lgz| for any nonzero n-bit number z, no matter
how big n is. Here is their remarkable scheme, when n = g2 and ¢ is a power of 2:

t1 < h& (x| ((x|h)—1)), where h=29"1 andl= (2" —1)/(29 —1);

y <+ (((a-t;)mod 2™) > (n—g)) -1, wherea= (2""9 —1)/(297 —1);

tah&(y|((y|h)—Db)), whereb= (2" —1)/(29%! —1);

m ¢ (t2 <1) = (2> (g — 1)), m « m® (m> g); (95)

2+ (((I- (z &m))mod 2™) > (n—g)) - |;

ts < h & (2] ((z] h) —b));

A ((1-((t2> (29 —1gg — 1)) + (ta > (29 — 1)))) mod 2") > (n — g).
(See exercise 106.) The method fails to be practical because five of these 29 steps
are multiplications, so they aren’t really “bitwise” operations. In fact, we’ll prove
later that multiplication by a constant requires at least Q(logn) bitwise steps.

A multiplication-free way to find Az, with only O(loglogn) bitwise broad-
word operations, was discovered in 1997 by Gerth Brodal, whose method is even
more remarkable than (g95). It is based on a formula analogous to (49),

Az = [Az=Az &)+ 2 z=Az & m1)] +4[Az=A(z & @2)] +---, (96)

and the fact that the relation Az = Ay is easily tested (see (58)):

Algorithm B (Binary logarithm). This algorithm uses n-bit operations to

compute Az = |lgz|, assuming that 0 < z < 2" and n = d - 2%.

B1. [Scale down.] Set A < 0. Then set A < A+ 2* and z + z > 2F if & > 22",
fork=T[lgn] -1, [lgn] -2, ..., d.

B2. [Replicate.] (At this point 0 < z < 22; the remaining task is to increase
A by |lgz|. We will replace = by d copies of itself, in 2%-bit fields.) Set
T+ x| (z<29%) for 0 < k < [lgd].

B3. [Change leading bits.] Set y <— 2 & ~(pta,d 1 - - - [d,11d,0)q2¢- (See (48).)

B4. [Compare all fields.] Set t + h& (y | ((y | h) — (z & y))), where h =
(22"71 22"7122%1) 4

... gad -

B5. [Compress bits.] Set ¢ + (¢ + (t < (247% — 2%))) mod 2™ for 0 < k < [lgd].

B6. [Finish.] Finally, set A< A+ (t> (n—d)). 1

This algorithm is almost competitive with (56) when n = 64 (see exercise 107).
Another surprisingly efficient broadword algorithm was discovered in 2006

by M. S. Paterson and the author, who considered the problem of identifying

all occurrences of the pattern 01" in a given n-bit binary string. This problem,
which is related to storage allocation, is equivalent to computing

g =&z )& (<& (<) & - &(z<Kr) (97)
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when z = (2, 1...2120)2 is given. For example, when n = 16, » = 3, and
x = (1110111101100111)2, we have ¢ = (0001000000001000)2. One might expect
intuitively that Q(logr) bitwise operations would be needed. But in fact the
following 20-step computation does the job for all n > r > 0: Let s = [r/2],
=3 4502 mod 2", h=(2*"")mod 2", and a = (3 ;~o(—1)F122%¢) mod 2".

y<—h&z& ((x&h)+1);

t— (z+y) &z & 27

u+t&a, v+ t&a; (98)
m s (u—(u>r)) | (v—(v>r));

g t&((z&m)+ ((t>71) & ~(m<k1))).

Exercise 111 explains why these machinations are valid. The method has little
or no practical value; there’s an easy way to evaluate (97) in 2[lgr] + 2 steps,
so (98) is not advantageous until r > 512. But (98) is another indication of the
unexpected power of broadword methods.

*Lower bounds. Indeed, the existence of so many tricks and techniques makes
it natural to wonder whether we’ve only been scratching the surface. Are there
many more incredibly fast methods, still waiting to be discovered? A few
theoretical results are known by which we can derive certain limitations on what
is possible, although such studies are still in their infancy.

Let’s say that a 2-adic chain is a sequence (zo, Z1,. .., x,) of 2-adic integers
in which each element xz; for ¢ > 0 is obtained from its predecessors via bitwise
manipulation. More precisely, we want the steps of the chain to be defined by
binary operations

Ti = Tj) % Tk(s) OF CiOjTg(s) Or Tj(g) O Ciy (99)

where each o; is one of the operators {+,—,&,|,®,=,C,D,C,D,A,V, <, >}
and each c; is a constant. Furthermore, when the operator o; is a left shift or
right shift, the amount of shift must be a positive integer constant; operations
such as x (3 KTg(;) OF ¢;>>Ty(;) are not permitted. (Without the latter restriction
we couldn’t derive meaningful lower bounds, because every 0-1 valued function
of a nonnegative integer = would be computable in two steps as “(c¢ > z) & 1”
for some constant c.)

Similarly, a broadword chain of width n, also called an n-bit broadword
chain, is a sequence (zg,1,...,T,) of n-bit numbers subject to essentially the
same restrictions, where n is a parameter and all operations are performed
modulo 2". Broadword chains behave like 2-adic chains in many ways, but
subtle differences can arise because of the information loss that occurs at the left
of n-bit computations (see exercise 113).

Both types of chains compute a function f(z) = z, when we start them
out with a given value z = zg. Exercise 114 shows that an mn-bit broadword
chain is able to do m essentially simultaneous evaluations of any function that
is computable with an n-bit chain. Our goal is to study the shortest chains that
are able to evaluate a given function f.

2-adic chain++++
broadword chain++++
branchless+-++

table lookup by shifting
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Any 2-adic or broadword chain (zg, z1,. .., z,) has a sequence of “shift sets”
(So, S1,---,5r) and “bounds” (Bg,Bi,...,B;), defined as follows: Start with
So = {0} and By = 1; then for ¢ > 1, let

Sji) Y k(i) M;Bjs)Breiy, if 2i = () 0i Tpa),
Sk(i)s M; By 3, if &; = ¢; 0; Th(y),
Si = < Sji) and B; = { MiB;@), if z; = (3 °i Ci, (100)
Sj) + ¢, Bj), if 2 = z) > ci,
Sjti) = Cis Bi(iys if z; = 750 <ci

where M; = 2 if o; € {+,—} and M; = 1 otherwise, and these formulas assume
that o; ¢ {<,>}. For example, consider the following 7-step chain:

T S; B;
To=1=T {0} 1
Tr1 = X9 & -2 {0} 1
To = T1 + 2 {0} 2
T3 =29 > 1 {1} 2 (101)
T4 = T2+ T3 {0, 1} 8
Ty =124 >4 {4, 5} 8

Tg = T4 + T5 {0, 1,4, 5} 128
T7 = 26> 4 {4,5,8,9} 128

(We encountered this chain in exercise 4.4-9, which proved that these operations

will yield z7 = |z/10] for 0 < x < 160 when performed with 8-bit arithmetic.)
To begin a theory of lower bounds, let’s notice first that the high-order bits

of x = z¢ cannot influence any low-order bits unless we shift them to the right.

Lemma A. Given a 2-adic or broadword chain, let the binary representation of
x; be (...xi2x:1240)2- Then bit x;, can depend on bit o, only if ¢ < p+max S;.

Proof. By induction on ¢ we can in fact show that, if B; = 1, bit x;, can depend
on bit xoq only if ¢ —p € S;. Addition and subtraction, which force B; > 1,
allow any particular bit of their operands to affect all bits that lie to the left in
the sum or difference, but not those that lie to the right. |

Corollary I. The function x — 1 cannot be computed by a 2-adic chain, nor
can any function for which at least one bit of f(z) depends on an unbounded
number of bits of z. |

Corollary W. An n-bit function f(z) can be computed by an n-bit broadword
chain without shifts if and only if x = y (modulo 2P) implies f(z) = f(y)
(modulo 2P) for 0 < p < n.

Proof. If there are no shifts we have S; = {0} for all ¢. Thus bit z,, cannot
depend on bit o4 unless ¢ < p. In other words we must have z, = y, (modulo 2P)
whenever zg = yo (modulo 2P).

Conversely, all such functions are achievable by a sufficiently long chain.
Exercise 119 gives shift-free n-bit chains for the functions

foy(z) = 2P[z mod 2PT! =y], when 0 <p<nand0<y<2Ptl (102)

shift sets
division, by 10
monus
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from which all the relevant functions arise by addition. [H. S. Warren, Jr., gener-
alized this result to functions of m variables in CACM 20 (1977), 439-441.] 1

Shift sets S; and bounds B; are important chiefly because of a fundamental
lemma that is our principal tool for proving lower bounds:

Lemma B. Let X, = {2,& 2P —29| | g € Vpg,} in an n-bit broadword chain,
where
Vpgr = {z |z & |2PT5 —29%5| =0 for all s € S,} (103)

and p > q. Then |X,q-| < B,. (Here p and g are integers, possibly negative.)

This lemma states that at most B, different bit patterns z,(,_1) ... Zq can occur
within f(z), when certain intervals of bits in z are constrained to be zero.

Proof. The result certainly holds when r = 0. Otherwise if, for example, x, =
xj + x, we know by induction that | Xpg;| < B; and | Xpgk| < Bg. Furthermore
Vogr = Vpgj N Vpgk, since S, = S; U Sx. Thus at most B;Bj possibilities for
(zj + xx) & [2P — 29] arise when there’s no carry into position ¢, and at most
B;By when there is a carry, making a grand total of at most B, = 2B;B;
possibilities altogether. Exercise 122 considers the other cases. |

We now can prove that the ruler function needs Q(loglogn) steps.

Theorem R. If n=d-2¢%, every n-bit broadword chain that computes px for
0 < x < 2™ has more than lgd steps that are not shifts.

Proof. If there are | nonshift steps, we have |S,| < 2! and B, < 22'-1 Apply
Lemma B with p = d and ¢ = 0, and suppose | X4o,| = 2¢ — t. Then there are ¢
values of k < 24 such that

{2’0, 2k+2d’ 2k+2-2d, . 2k+(d—1)2d} ¢ VdO’r-

But Vo, excludes at most 2!d of the n possible powers of 2; so t < 2.
If I < lgd, Lemma B tells us that 2¢ —t < B, < 2%71: hence 24! < t <
2! < d. But this is impossible unless d < 2, when the theorem clearly holds. 1

The same proof works also for the binary logarithm function:

Corollary L. If n =d-2% > 2, every n-bit broadword chain that computes Az
for 0 < & < 2™ has more than 1gd steps that are not shifts. |

By using Lemma B with ¢ > 0 we can derive the stronger lower bound
Q(logn) for bit reversal, and hence for bit permutation in general.

Theorem P. If 2 < g < n, every n-bit broadword chain that computes the
g-bit reversal zf for 0 < z < 29 has at least L% Ig gJ steps that are not shifts.

Proof. Assume as above that there are | nonshifts. Let h = |/g] and suppose
that I < |lg(h+1)]. Then S, is a set of at most 2! < 1(h + 1) shift amounts s.
We shall apply Lemma B with p = g+ h, where p < gand ¢ > 0, thusing—h+1
cases altogether. The key observation is that zf* & [2P — 29| is independent of
x & |2PT¢ — 298| whenever there are no indices j and k such that 0 < j k < h
and g—1—q—j =q+ s+ k. The number of “bad” choices of ¢ for which such
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indices exist is at most %(h +1)h? < g — h; therefore at least one “good” choice
of g yields | Xpq-| = 2". But then Lemma B leads to a contradiction, because we
obviously cannot have 2" < B, < 2(h=1)/2_ |

Corollary M. Multiplication by certain constants, modulo 2", requires Q(logn)
steps in an n-bit broadword chain.

Proof. In Hack 167 of the classic memorandum HAKMEM (M.I.T. A.I Lab-
oratory, 1972), Richard Schroeppel observed that the operations

t < ((az) mod 2™) & b, y <+ ((ct) mod2™) > (n — g) (104)

compute y = z® whenever n = ¢? and 0 < x < 29, using the constants a =
(2nt9 —1)/(29t1 —1),b=29"1(2" -1)/(29 —1),and c = (2" 79— 1) /(2971 - 1).
(See exercise 123.) 1

At this point the reader might well be thinking, “Okay, I agree that broad-
word chains sometimes have to be asymptotically long. But programmers needn’t
be shackled by such chains; we can use other techniques, like conditional branches
or references to precomputed tables, which go beyond those restrictions.”

Right. And we’re in luck, because broadword theory can also be extended
to more general models of computation. Consider, for example, the follow-
ing idealization of an abstract reduced-instruction-set computer, called a basic
RAM: The machine has n-bit registers r1, ..., 7, and n-bit memory words
{M]0],...,M[2™ —1]}. It can perform the instructions

Ti & TjETE, Ti4T;O0TE, T T;>TE, T;4C,

ri < M[r; mod2™], M][r; mod2™| <+ r;, (105)
where o is any bitwise Boolean operator, and where 7 in the shift instruction is
treated as a signed integer in two’s complement notation. The machine is also
able to branch if r; < r;, treating 7; and r; as unsigned integers. Its state is the
entire contents of all registers and memory, together with a “program counter”
that points to the current instruction. Its program begins in a designated state,
which may include precomputed tables in memory, and with an n-bit input
value z in register r;. This initial state is called Q(z,0), and Q(z,t) denotes the
state after ¢ instructions have been performed. When the machine stops, r; will
contain some n-bit value f(z). Given a function f(z), we want to find a lower
bound on the least ¢ such that 71 is equal to f(z) in state Q(z,t), for 0 < z < 2™.

Theorem R’. Let € = 27% A basic n-bit RAM with memory parameter m <

nl~€ requires at least 1glg n—e steps to evaluate the ruler function px, asn — 0o.

Proof. Let n = 226+f, so that m < 22"=2"  Exercise 124 explains how an
omniscient observer can construct a broadword chain from a certain class of
inputs z, in such a way that each z causes the RAM to take the same branches,
use the same shift amounts, and refer to the same memory locations. Our earlier
methods can then be used to show that this chain has length > f. |

A skeptical reader may still object that Theorem R’ has no practical value,

because lglgn never exceeds 6 in the real world. To this argument there is no
rebuttal. But the following result is slightly more relevant:

HAKMEM
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Theorem P’. A basic n-bit RAM requires at least % lg g steps to compute the
g-bit reversal z® for 0 < x < 29, if g < n and

h+1 \
sl —2 =Wl (106)

Proof. An argument like the proof of Theorem R’ appears in exercise 125. |

max(m,1+1gn) <

Lemma B and Theorems R, P, R/, P’ and their corollaries are due to
A. Brodnik, P. B. Miltersen, and J. I. Munro, Lecture Notes in Comp. Sci.
1272 (1997), 426-439, based on earlier work of Miltersen in Lecture Notes in
Comp. Sci. 1099 (1996), 442-451.

Many unsolved questions remain (see exercises 126-130). For example, does
sideways addition require Q(logn) steps in an n-bit broadword chain? Can the
parity function (vz)mod 2, or the majority function [vz >n/2], be computed
substantially faster than vz itself, broadwordwise?

An application to directed graphs. Now let’s use some of what we’ve learned,
by implementing a simple algorithm. Given a digraph on a set of vertices V', we
write u — v when there’s an arc from u to v. The reachability problem is to
find all vertices that lie on oriented paths beginning in a specified set @Q C V;
in other words, we seek the set

R = {v|u—" v for some u € Q}, (107)
where u —* v means that there is a sequence of ¢ arcs
U= Uyg—PU — * -+ —> U = V, for some t > 0. (108)

This problem arises frequently in practice. For example, we encountered it in
Section 2.3.5 when marking all elements of Lists that are not “garbage.”

If the number of vertices is small, say |V| < 64, we may want to approach
the reachability problem in quite a different way than we did before, by working
directly with subsets of vertices. Let

Slu] = {v[u—v} (109)
be the set of successors of vertex u, for all w € V. Then the following algorithm

is almost completely different from Algorithm 2.3.5E, yet it solves the same
abstract problem:

Algorithm R (Reachability). Given a simple directed graph, represented by

the successor sets S[u| in (109), this algorithm computes the elements R that

are reachable from a given set Q.

R1. [Initialize.] Set R < @ and X <« (. (In the following steps, X is the subset
of vertices u € R for which we’ve looked at S[u].)

R2. [Done?] If X = R, the algorithm terminates.

R3. [Examine another vertex.] Let u be an element of R\ X. Set X «+ X U{u},
R < RU Su|, and return to step R2. |

The algorithm is correct because (i) every element placed into R is reachable;
(ii) every reachable element u; in (108) is present in R, by induction on j; and
(iii) termination eventually occurs, because step R3 always increases |X|.

Brodnik

Miltersen

Munro

sideways addition
parity function
majority function
graph algorithms+
reachability problem
oriented paths
transitive closure
notation U —* v
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To implement Algorithm R we will assume that V = {0,1,...,n — 1}, with
n < 64. The set X is conveniently represented by the integer o(X) = > {2 |
u € X}, and the same convention works nicely for the other sets @, R, and
S[u]. Notice that the bits of S[0], S[1], ..., S[n— 1] are essentially the adjacency
matriz of the given digraph, as explained in Section 7, but in little-endian order:
The “diagonal” elements, which tell us whether or not u € S[u], go from right to
left. For example, if n = 3 and the arcs are {0—0,0—1,1—0,2—0}, we have
S[0] = (011); and S[1] = S[2] = (001)2, while the adjacency matrix is (10).

Step R3 allows us to choose any element of R\ X, so we use the ruler function
u < p(o(R) — (X)) to choose the smallest. The bitwise operations require no
further trickery when we adapt the algorithm to MMIX:

Program R (Reachability). The input set Q is given in register q, and each
successor set S[u] appears in octabyte Mg[suc + 8u]. The output set R will
appear in register r; other registers s, t, tt, u, and x hold intermediate results.

01 1H SET r,q 1 R1. Initialize. r <+ o(Q).

02  SET x,0 1 x¢ o).

03 JMP 2F 1 To R2.

04 3H SUBU tt,t,1 |R| R3. Examine another vertex. tt -t — 1.

05 SADD u,tt,t |R| u < p(t) [see (46)].

06 SLU s,u,3 IRl s« Su.

07 LDOU s,suc,s |R| s < o(S[u]).

08 ANDN tt,t,tt |R| tt — t & ~tt = 2%,

09 OR  x,x,tt | R X + X U {u}; that is, x « x | 2%, since x = o(X)).
10 OR r,r,s |R| R < RU S[u]; that is, r + r | s, since r = o(R).
11 2H SUBU t,r,x |[R|+1 R2. Done? t +r—x=o0(R\ X), since X C R.
12 PBNZ t,3B |[R|l+1 ToR3ifR#X. 1

The total running time is (1 + 9v)|R| + 7v. By contrast, exercise 131 imple-
ments Algorithm R with linked lists; the overall execution time then grows to
(38 +4|R| -2|Q|+1)u+ (58 +12|R| - 5|Q| +4)v, where S =3 - |S[u]|. (But
of course that program is also able to handle graphs with millions of vertices.)

Exercise 132 presents another instructive algorithm where bitwise operations
work nicely on not-too-large graphs.

Application to data representation. Computers are binary, but (alas?)
the world isn’t. We often must find a way to encode nonbinary data into Os
and 1s. One of the most common problems of this sort is to choose an efficient
representation for items that can be in exactly three different states.

Suppose we know that z € {a,b,c}, and we want to represent z by two
bits z;x,.. We could, for example, map a — 00, b — 01, and ¢ — 10. But there
are many other possibilities—in fact, 4 choices for a, then 3 choices for b, and
2 for ¢, making 24 altogether. Some of these mappings might be much easier to
deal with than others, depending on what we want to do with z.

Given two elements z,y € {a,b,c}, we typically want to compute z = z oy,
for some binary operation o. If x = z;z, and y = y;y, then z = z;2,, where

2] = fl(mla-rraylayr) and Zpr = fr(mlamraylay’r‘); (110)

adjacency matrix

little-endian order

ruler function

encoding of ternary data

representing three states with two bits++4+
mapping three items into two-bit codes+++
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these Boolean functions f; and f,. of four variables depend on o and the chosen
representation. We seek a representation that makes f; and f, easy to compute.

Suppose, for example, that {a,b,c} = {—1,0,+1} and that o is multiplica-
tion. If we decide to use the natural mapping x — x mod 3, namely

0 — 00, +1 01, -1+ 10, (111)
so that x = x, — x;, then the truth tables for f; and f, are respectively
Ji <> 000%001%010%xxxx* and fr > 0005010500 Lskskskssk. (112)

(There are seven “don’t-cares,” for cases where zjz, = 11 and/or yy, = 11.)
The methods of Section 7.1.2 tell us how to compute z; and z, optimally, namely

2] = (-'L'l@yl)/\(xr@yr)a Zr = (mleayr)/\(xr@yl); (113)

unfortunately the functions f; and f, in (112) are independent, in the sense that
they cannot both be evaluated in fewer than C(f;) + C(f,) = 6 steps.
On the other hand the somewhat less natural mapping scheme

+1 — 00, 0 — 01, -1~10 (114)
leads to the transformation functions
f1 > 001%000x 100 sk and fr <> 010511101 0% %%%x, (115)
and three operations now suffice to do the desired evaluation:
2y =, VY, 2= (1 DY) N Zr. (116)
Is there an easy way to discover such improvements? Fortunately we don’t
need to try all 24 possibilities, because many of them are basically alike. For
example, the mapping = — z,x; is equivalent to = — z;x,, because the new
representation zjz, = x,x; obtained by swapping coordinates makes
fll(x;’ xlrv yzv y’r) = Zl/ = Zr = f’l‘(xlv Zr,Yi, yr)Q

the new transformation functions f] and f; defined by

fll(mlamraylayT) :fT(mTaxlayTayl)a f:«(IlaITaylay’r‘):fl(xramlayrayl) (117)

have the same complexity as f; and f,. Similarly we can complement a coordi-
nate, letting zjx] = Z;z,; then the transformation functions turn out to be

fll(wlawraylayr) :fl(i'l:xraylvyr)a f;(a:lva"?"vylvy?‘) :fT(i‘lvwraglayT)a (118)

and again the complexity is essentially unchanged.
Repeated use of swapping and/or complementation leads to eight mappings
that are equivalent to any given one. So the 24 possibilities reduce to only three,

which we shall call classes I, II, and III:
Class I Class 11 Class I1I

a+—000110110010011100011011001001110001101100 1001 11;
b—010011101000110101001110100011011110010011011000; (119)
c—10110001011100101110010011011000010011101000 11 01.

multiplication of signed bits+
signed bits, representation of
don’t-cares

2-cube equivalence
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To choose a representation we need consider only one representative of each
class. For example, if a = +1, b = 0, and ¢ = —1, representation (111) belongs
to class II, and (114) belongs to class I. Class III turns out to have cost 3, like
class I. So it appears that representation (114) is as good as any, with z computed
by (116), for the 3-element multiplication problem we’ve been studying.

Appearances can, however, be deceiving, because we need not map {a, b, c}
into unique two-bit codes. Consider the one-to-many mapping

+1+00, 0~0lorll,  —1s 10, (120)

where both 01 and 11 are allowed as representations of zero. The truth tables
for f; and f, are now quite different from (112) and (115), because all inputs are
legal but some outputs can be arbitrary:

J1 > Ok Lk 1k O and fr < 0101111101011111. (121)
And in fact, this approach needs just two operations, instead of the three in (116):
2=z DY, 2p = Ty V Yp- (122)

A moment’s thought shows that indeed, these operations obviously yield the
product z = z-y when the three elements {+1,0, —1} are represented as in (120).

Such nonunique mappings add 36 more possibilities to the 24 that we had
before. But again, they reduce under “2-cube equivalence” to a small number of
equivalence classes. First there are three classes that we call IV,, IV;, and IV,
depending on which element has an ambiguous representation:

Class IV, Class IV, Class IV,

~ 7~

a > 0% O* 1x 1% x0 0 x1 *1 11 10 01 00 11 01 10 00 10 11 00 01 01 11 00 10;
b— 1011000101 1100 10 0% 0% 1% 1% x0 x0 1 %1 11 1001 00 11 01 10 00; (123)
c—111001001101100010110001 011100 10 0 O 1* 1% %0 0 x1 *1.

(Representation (120) belongs to class IVy. Classes IV, and IV, don’t work well
for z = z-y.) Then there are three further classes with only four mappings each:

Class V, Class Vg Class V.

aw tt t& ¢ ¢ 10 11 00 01 01 00 11 10;
b— 01 00 11 10 ¢ ¢t t ¢ 10 11 00 01, (124)
c— 10 11 00 01 01 00 11 10 ¢t & ¢ tt.

These classes are a bit of a nuisance, because the indeterminacy in their truth
tables cannot be expressed simply in terms of don’t-cares as we did in (121). For
example, if we try

+1+— 00 or 11, 0+~ 01, -1~ 10, (125)
which is the first mapping in class V,, there are binary variables pgrst such that

f1 <> p01¢g00001071s01¢ and fr < p10q11110170s10%. (126)

one-to-many mapping
don’t-cares

2-cube equivalence
don’t-cares
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Furthermore, mappings of classes V,, Vp, and V. almost never turn out to
be better than the mappings of the other six classes (see exercise 138). Still,
representatives of all nine classes must be examined before we can be sure that
an optimal mapping has been found.

In practice we often want to perform several different operations on ternary-
valued variables, not just a single operation like multiplication. For example, we
might want to compute max(z,y) as well as z-y. With representation (120), the
best we can do is z; = 1 Ay, 2, = (i Ayr) V (zr A (1 V yr)); but the “natural”
mapping (111) now shines, with z; = z; Ay, zr = @, V y,. Class III turns out
to have cost 4; other classes are inferior. To choose between classes II, III, and
IV} in this case, we need to know the relative frequencies of z-y and max(z,y).
And if we add min(z,y) to the mix, classes II, ITI, and IV, compute it with the
respective costs 2, 5, 5; hence (111) looks better yet.

The ternary max and min operations arise also in other contexts, such as the
three-valued logic developed by Jan Lukasiewicz in 1917. [See his Selected Works,
edited by L. Borkowski (1970), 84-88, 1563-178.] Consider the logical values
“true,” “false,” and “maybe,” denoted respectively by 1, 0, and *. Lukasiewicz
defined the three basic operations of conjunction, disjunction, and implication
on these values by specifying the tables

) Y Y
—N— —N— —N—
0 1 0«1 0 =1
0|0 0O 0]0 = 1 0|1 11
ac{*()**, m{***l, J;{**ll (127)
1{0 % 1 1111 110 = 1
T Ay zVy =1y

For these operations the methods above show that the binary representation
0 +— 00, x> 01, 111 (128)
works well, because we can compute the logical operations thus:
nze AYyr = (TAY) (e Ayr), Ty Vyyr = (@Vy)(TrVyr),
Tty = Yyr = (Tr © Yr) A (Tt A yr)) (@1 A Gr)-
Of course x need not be an isolated ternary value in this discussion; we often

want to deal with ternary vectors © = x1x3...x,, where each z; is either a, b,
or c¢. Such ternary vectors are conveniently represented by two binary vectors

(129)

T] = T11To] . . . Tl and Ty = T17Top ... Ty (130)
where z; — .z, as above. We could also pack the ternary values into two-bit
fields of a single vector,

T = T1UT1rT2AL2r -+« TnlTnr; (131)

that would work fine if, say, we’re doing Lukasiewicz logic with the operations A
and V but not =-. Usually, however, the two-vector approach of (130) is better,
because it lets us do bitwise calculations without shifting and masking.

max

min

three-valued logic

Lukasiewicz

Borkowski

modal logic

maybe

conjunction

disjunction

implication

groupoids, multiplication tables
ternary vectors

pack

masking: ANDing with a mask



32 COMBINATORIAL ALGORITHMS (F1A) 7.1.3

Applications to data structures. Bitwise operations offer many efficient ways
to represent elements of data and the relationships between them. For example,
chess-playing programs often use a “bit board” to represent the positions of
pieces (see exercise 143).

In Chapter 8 we shall discuss an important data structure developed by
Peter van Emde Boas for representing a dynamically changing subset of integers
between 0 and N. Insertions, deletions, and other operations such as “find the
largest element less than z” can be done in O(loglog N) steps with his methods;
the general idea is to organize the full structure recursively as v/ N substructures
for subsets of intervals of size VN, together with an auxiliary structure that
tells which of those intervals are occupied. [See Information Processing Letters
6 (1977), 80-82; also P. van Emde Boas, R. Kaas, and E. Zijlstra, Math. Systems
Theory 10 (1977), 99-127.] Bitwise operations make those computations fast.

Hierarchical data can sometimes be arranged so that the links between
elements are implicit rather than explicit. For example, we studied “heaps”
in Section 5.2.3, where n elements of a sequential array implicitly have a binary
tree structure like

when, say, n = 10. (Node numbers are shown here both in decimal and binary
notation.) There is no need to store pointers in memory to relate node j of a
heap to its parent (which is node j > 1 if j # 1), or to its sibling (which is node
j®1if 7 #1), or to its children (which are nodes j <1 and (j < 1)+ 1 if those
numbers don’t exceed n), because a simple calculation leads directly from j to
any desired neighbor.

Similarly, a sideways heap provides implicit links for another useful family
of n-node binary tree structures, typified by

when n = 10. (We sometimes need to go beyond n when moving from a node to
its parent, as in the path from 10 to 12 to 8 shown here.) Heaps and sideways
heaps can both be regarded as nodes 1 to n of infinite binary tree structures:
The heap with n = oo is rooted at node 1 and has no leaves; by contrast, the
sideways heap with n = oo has infinitely many leaves 1, 3, 5, ..., but no root(!).

The leaves of a sideways heap are the odd numbers, and their parents are the
odd multiples of 2. The grandparents of leaves, similarly, are the odd multiples
of 4; and so on. Thus the ruler function pj tells how high node j is above leaf level.

The parent of node j in the infinite sideways heap is easily seen to be node

G-k | (1), where k = j & —j; (134)
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this formula rounds j to the nearest odd multiple of 2127, And the children are

j—(k>1) and j+(k>1) (135)
when j is even. In general the descendants of node j form a closed interval
[ —2f+1..j+27 1], (136)

arranged as a complete binary tree of 2177 — 1 nodes. The ancestor of node j
at height h is node

GlA<h)&-1<h)=(G>h)|1)<h (137)

when h > pj. Notice that the symmetric order of the nodes, also called inorder,
is just the natural order 1, 2, 3, ....

Dov Harel noted these properties in his Ph.D. thesis (U. of California, Irvine,
1980), and observed that the nearest common ancestor of any two nodes of a
sideways heap can also be easily calculated. Indeed, if node [ is the nearest
common ancestor of nodes ¢ and j, where ¢ < j, there is a remarkable identity

pl = max{pz |i <z <j} = A(j & —i), (138)

which relates the p and A functions. (See exercise 146.) We can therefore use
formula (137) with h = A(j & —i) to calculate [.

Subtle extensions of this approach lead to an asymptotically efficient algo-
rithm that finds nearest common ancestors in any oriented forest whose arcs
grow dynamically [D. Harel and R. E. Tarjan, SICOMP 13 (1984), 338-355].
Baruch Schieber and Uzi Vishkin [SICOMP 17 (1988), 1253-1262] subsequently
discovered a much simpler way to compute nearest common ancestors in an
arbitrary (but fixed) oriented forest, using an attractive and instructive blend of
bitwise and algorithmic techniques that we shall consider next.

Recall that an oriented forest with m trees and n vertices is an acyclic
digraph with n —m arcs. There is at most one arc from each vertex; the vertices
with out-degree zero are the roots of the trees. We say that v is the parent of u
when u — v, and v is an ancestor of u when u —* v. Two vertices have a
common ancestor if and only if they belong to the same tree. Vertex w is called
the nearest common ancestor of v and v when we have

u—"* zand v—"* z if and only if w—"* z. (139)
Schieber and Vishkin preprocess the given forest, mapping its vertices into
a sideways heap S of size n by computing three quantities for each vertex v:
v, the rank of v in preorder (1 < v < n);
Bv, a node of the sideways heap S (1 < Sv < n);
av, a (1 + An)-bit routing code (1 < av < 211An),

If u—v we have mu > wv by the definition of preorder. Node Sv is defined to
be the nearest common ancestor of all sideways-heap nodes mu such that v is an
ancestor of vertex u. And we define

av = Z {2PP% | v —* w}. (140)

rounds
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For example, here’s an oriented forest with ten vertices and two trees:

(141)

Each node has been labeled with its preorder rank, from which we can compute
the 8 and « codes:
v= A B C D E F G H I J
mv = 0001 1000 0010 0100 1001 0011 0101 0111 1010 0110
Bv = 0100 1000 0010 0100 1010 0011 0110 0111 1010 0110
av = 0100 1000 0110 0100 1010 0111 0110 0101 1010 0110
Notice that, for instance, BA = 4 = 0100 because the preorder ranks of the
descendants of A are {1,2,3,4,5,6,7}. And aH = 0101 because the ancestors
of H have 8 codes {SH,8D,BA} = {0111,0100}. One can prove without
difficulty that the mapping v — [v satisfies the following key properties:
i) If u—> v in the forest, then Su is a descendant of fv in S.
ii) If several vertices have the same value of v, they form a path in the forest.
Property (ii) holds because exactly one child u of v has fu = Sv when Sv # 7.
Now let’s imagine placing every vertex v of the forest into node Bv of S:

1100

142
1010) r-E—B ( 4 )
(000D (0011) F—»c (0101) 0111) v—»p (1001

If k vertices map into node j, we can arrange them into a path

Vg —IV —> Vg1 — Uk, where fvg = vy =--- = Bug_1 =j. (143)

These paths are illustrated in (142); for example, J— G — D is a path in (141),
and ‘s e p’ appears with node 0110 = 8J = 8G.

The preprocessing algorithm also computes a table 77 for all nodes j of S,
containing pointers to the vertices vy at the tail ends of (143):

j = 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010
7= A A C A A D D AN A B

Exercise 149 shows that all four tables 7v, Bv, av, and 75 can be prepared in
O(n) steps. And once those tables are ready, they contain just enough informa-
tion to identify the nearest common ancestor of any two given vertices quickly:

Algorithm V (Nearest common ancestors). Suppose v, fv, av, and Tj are
known for all n vertices v of an oriented forest, and for 1 < 7 < n. A dummy
vertex A is also assumed to be present, with mA = BA = aA = 0. This algorithm
computes the nearest common ancestor z of any given vertices z and y, returning
z = A if z and y belong to different trees. We assume that the values \j = |lgj|
have been precomputed for 1 < j < n, and that A0 = An.
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V1. [Find common height.] If Sz < By, set h + A(By & —Bz); otherwise set
h < X(Bz & —By). (See (138).)

V2. [Find true height.] Set k + az & ay & —(1 < h), then h < A(k & —k).

V3. [Find Bz.] Set j < ((Bx>h) |1) < h. (Now j =Bz, if z#A.)

V4. [Find Z and §.] (We now seek the lowest ancestors of z and y in node j.)
If j = Bz, set & <+ =x; otherwise set | + A(az & ((1 < h) — 1)) and & «+
T(((Bx>1) | 1) < 1). Similarly, if j = By, set § + y; otherwise set | +
May & (1< h) —1)) and § « 7(((By >1) | 1) <1).

V5. [Find z.] Set z « & if 72 < 7y, otherwise z + §. 1|

These artful dodges obviously exploit (137); exercise 152 explains why they work.

Sideways heaps can also be used to implement an interesting type of priority
queue that J. Katajainen and F. Vitale call a “navigation pile,” illustrated here
for n = 10:

8 24

4 12 20 (144)

[503]087[512]061]908]170] 275897 [ 653 | 426 |

3 7 9 11 13 15 17 19

Data elements go into the leaf positions 1, 3, ..., 2n — 1 of the sideways heap;
they can be many bits wide, and they can appear in any order. By contrast, each
branch position 2, 4, 6, ... contains a pointer to its largest descendant. And the
novel point is that these pointers take up almost no extra space — fewer than two
bits per item of data, on average — because only one bit is needed for pointers 2,
6, 10, ..., only two bits for pointers 4, 12, 20, ..., and only pj for pointer j in
general. (See exercise 153.) Thus the navigation pile requires very little memory,
and it behaves nicely with respect to cache performance on a typical computer.

R ST
C P!
0l Q)
A Fig. 13. Two views of five lines
P Q' in the hyperbolic plane.
R

*Cells in the hyperbolic plane. Hyperbolic geometry suggests an instructive
implicit data structure that has a rather different flavor. The hyperbolic plane is
a fascinating example of non-Euclidean geometry that is conveniently viewed by
projecting its points into the interior of a circle. Its straight lines then become
circular arcs, which meet the rim at right angles. For example, the lines PP’,
QQ', and RR’ in Fig. 13 intersect at points O, A, B, and those points form a
triangle. Lines SQ’' and QQ' are parallel: They never touch, but their points
get closer and closer together. Line QT is also parallel to QQ'.

priority queue
Katajainen

Vitale

navigation pile

cache

hyperbolic plane—
non-Euclidean geometry
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We get different views by focusing on different center points. For example,
the second view in Fig. 13 puts O smack in the center. Notice that if a line passes
through the very center, it remains straight after being projected; such diameter-
spanning chords are the special case of a “circular arc” whose radius is infinite.

Most of Euclid’s axioms for plane geometry remain valid in the hyperbolic
plane. For example, exactly one line passes through any two distinct points; and
if point A lies on line PP’ there’s exactly one line Q@' such that angle PAQ has
any given value 6, for 0 < § < 180°. But Euclid’s famous fifth postulate does not
hold: If point C' is not on line QQ', there always are exactly two lines through C
that are parallel to QQ’. Furthermore there are many pairs of lines, like RR’
and SQ' in Fig. 13, that are totally disjoint or wltraparallel, in the sense that
their points never become arbitrarily close. [These properties of the hyperbolic
plane were discovered by G. Saccheri in the early 1700s, and made rigorous by
N. I. Lobachevsky, J. Bolyai, and C. F. Gauss a century later.]

Quantitatively speaking, when points are projected onto the unit disk |z| <1,
the arc that meets the circle at e and e~* has center at secf and radius
tan f. The actual distance between two points whose projections are z and 2’ is
d(z,2") =In(]1 — 22| + |z — 2'|) = In(|1 — 22’| — |z — 2’|). Thus objects far from
the center appear dramatically shrunken when we see them near the circle’s rim.

The sum of the angles of a hyperbolic triangle is always less than 180°. For
example, the angles at O, A, and B in Fig. 13 are respectively 90°, 45°, and 36°.
Ten such 36°-45°-90° triangles can be placed together to make a regular pentagon
with 90° angles at each corner. And four such pentagons fit snugly together at
their corners, allowing us to tile the entire hyperbolic plane with right regular
pentagons (see Fig. 14). The edges of these pentagons form an interesting family
of lines, every two of which are either ultraparallel or perpendicular; so we have
a grid structure analogous to the unit squares of the ordinary plane. We call it
the pentagrid, because each cell now has five neighbors instead of four.

There’s a nice way to navigate in the pentagrid using Fibonacci numbers,
based on ideas of Maurice Margenstern [see F. Herrmann and M. Margenstern,
Theoretical Comp. Sci. 296 (2003), 345-351]. Instead of the ordinary Fibonacci
sequence {F, ), however, we shall use the negaFibonacci numbers (F_,,), namely

Fi1=1,F3=-1,F3=2 F 4=-3, ..., F ,=(-1)""F,. (145)

Exercise 1.2.8-34 introduced the Fibonacci number system, in which every non-
negative integer « can be written uniquely in the form

x=Fy, + Fy, +---+ Fy,, where ky > ko > -+ > k. > 0; (146)

here ‘j =~ k’ means ‘j > k+2’. But there’s also a negaFibonacci number system,
which suits our purposes better: Every integer x, whether positive, negative, or
zero, can be written uniquely in the form

= Fy, + Fg, + -+ + Fg,, where k1 << kg < -+ < k, < 1. (147)

For example, 4 =5—-1=F 5+ F sand -2 =-34+1=F_4+ F_;. This
representation can conveniently be expressed as a binary code oo = ...azaz2aq,

Euclid
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Saccheri

Lobachevsky

Bolyai
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tile

ultraparallel
perpendicular

grid structure
tessellation

pentagrid

Fibonacci numbers
Margenstern

Herrmann

negaFibonacci

Fibonacci number system
negaFibonacci number system
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negadecimal system
2-adic
magic mask

Fig. 14. The pentagrid,
in which identical pentagons
tile the hyperbolic plane.

A circular regular tiling, confined on all sides
by infinitely small shapes, is really wonderful.

— M. C. ESCHER, letter to George Escher (9 November 1958)

standing for N (o) = )", axF_k, with no two 1s in a row. For example, here are
the negaFibonacci representation codes of all integers between —14 and +15:

—14 =10010100 -8 =100000 —2=1001 4 =10010 10 = 1001000

—13 =10010101 —7=100001 —-1=10 5 = 10000 11 = 1001001
—12 = 101010 —6 = 100100 0=0 6 = 10001 12 = 1000010
—11 = 101000 —5=100101 1=1 7 =10100 13 = 1000000
—10 = 101001 —4 =1010 2 =100 8 =10101 14 = 1000001

—9 = 100010 —3 = 1000 3=101 9 =1001010 15 = 1000100

As in the negadecimal system (see 4.1-(6) and (7)), we can tell whether z is
negative or not by seeing if its representation has an even or odd number of digits.
The predecessor a— and successor a+ of any negaFibonacci binary code «
can be computed recursively by using the rules
(a0l)— = a00, (@000)— = 010, (@l00)— =001, (@l0)— = (a—)01,
(al0)+ = a00, (a00)+ =a0l, (al)+ = (a—)O0. (148)
(See exercise 157.) But ten elegant 2-adic steps do the calculation directly:

Y~ Tdho, 2 yd(y+1), where z = (a)2;
z+z|(z& (2 1)); (149)
w—z®z® ((z+1)>2); then w = (at),.

We just use y — 1 in the top line to get the predecessor, y+ 1 to get the successor.
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And now here’s the point: A negaFibonacci code can be assigned to each
cell of the pentagrid in such a way that the codes of its five neighbors are easy to
compute. Let’s call the neighbors n, s, e, w, and o, for “north,” “south,” “east,”
“west,” and “other.” If « is the code assigned to a given cell, we define

O =a>2 a,=a<K2, Q= Oy =0as—; (150)
thus as, = @, and also ae, = (@01), = . The “other” direction is trickier:

an+, fa&l=1;
Qo = .
ay—, fa&l=0.

For example, 1000, = 101001 and 101001, = 1000. This mysterious interloper
lies between north and east when a ends with 1, but between north and west
when a ends with 0.

If we choose any cell and label it with code 0, and if we also choose an
orientation so that its neighbors are n, e, s, w, and o in clockwise order, rules
(150) and (151) will assign consistent labels to every cell of the pentagrid. (See
exercise 160.) For example, the vicinity of a cell labeled 1000 will look like this:

(151)

(152)

en e
10000001
S

w olo
10001001 100000

s

w s

The code labels do not, however, identify cells uniquely, because infinitely
many cells receive the same label. (Indeed, we clearly have 0, = 05 = 0 and
1, =1, = 1.) To get a unique identifier, we attach a second coordinate so that
each cell’s full name has the form (a, y), where y is an integer. When y is constant
and a ranges over all negaFibonacci codes, the cells (a,y) form a more-or-less
hook-shaped strip whose edges take a 90° turn next to cell (0,y). In general, the
five neighbors of (a,y) are (&, y)n = (@n, ¥y + In(@)), (&, y)s = (as,y + ds(x)),
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(@, y)e = (ae,y+0e()), (@, ¥)w = (Qw, ¥+ 0w (@), and (a, y)o = (0, y+do(a)),

6n(@) = [a=0], b&s(a)=—[a=0], 6. (a)=0, 6&y(a)=—[a=1];
5.(0) = {signgao—an)[ao&anzo], fa&kl=1;

0y — ) &y, =0], fa&1=0. (153)

(See the illustration below.) Bitwise operations now allow us to surf the entire
hyperbolic plane with ease. On the other hand, we could also ignore the y
coordinates as we move, thereby wrapping around a “hyperbolic cylinder” of
pentagons; the a coordinates define an interesting multigraph on the set of all
negaFibonacci codes, in which every vertex has degree 5.

(154)

Bitmap graphics. It’s fun to write programs that deal with pictures and shapes,
because they involve our left and right brains simultaneously. When image data
is involved, the results can be engrossing even if there are bugs in our code.

The book you are now reading was typeset by software that treated each
page as a gigantic matrix of Os and 1s, called a “raster” or “bitmap,” containing
millions of square picture elements called “pixels.” The rasters were transmitted
to printing machines, causing tiny dots of ink to be placed wherever a 1 appeared
in the matrix. Physical properties of ink and paper caused those small clusters
of dots to look like smooth curves; but each pixel’s basic squareness becomes
evident if we enlarge the images tenfold, as in the letter ‘A’ shown in Fig. 15(a).

With bitwise operations we can achieve special effects like “custering,” in
which the black pixels disappear when they are surrounded on all sides:

Fig. 15. The letter A,
before and after custering.

(a) (b)

cylinder

—implicit data structures
bitmap graphics—
typeset

raster

pixels

printing

custering
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This operation, introduced by R. A. Kirsch, L. Cahn, C. Ray, and G. H. Urban
[Proc. Eastern Joint Computer Conf. 12 (1957), 221-229], can be expressed as

custer(X) = X & ~((XV1) & (X >1) & (X <1) & (XAL)), (155)

where ‘XV/1’ and ‘XAl’ stand respectively for the result of shifting the bitmap X
down or up by one row. Let us write

Xy=XV1, Xy=X>1, Xs=X<1, Xs=XAl (156)

for the 1-pixel shifts of a bitmap X. Then, for example, the symbolic expression
‘X & (X5 | Xi)’ evaluates to 1 in those pixel positions whose northern neighbor
is black, and which also have either a black neighbor on the south side or a white
neighbor to the east. With these abbreviations, (155) takes the form

custer(X) = X & ~(Xy & Xy & Xi & X5), (157)

which can also be expressed as X & (Xy | Xw | Xg | Xs)-

Every pixel has four “rook-neighbors,” with which it shares an edge at the
top, left, right, or bottom. It also has eight “king-neighbors,” with which it
shares at least one corner point. For example, the king-neighbors that lie to the
northeast of all pixels in a bitmap X can be denoted by Xyg, which is equivalent
to (Xy)g in pixel algebra. Notice that we also have Xyg = (Xg)x-

A 3 x 3 cellular automaton is an array of pixels that changes dynamically
via a sequence of local transformations, all performed simultaneously: The state
of each pixel at time ¢ + 1 depends entirely on its state at time ¢ and the states
of its king-neighbors at that time. Thus the automaton defines a sequence of
bitmaps X (@, X1 X2 that lead from any given initial state X(©), where

x¢D = px@, xP xB xO x® xP x& xO xP) (158)

and f is any bitwise Boolean function of nine variables. Fascinating patterns
often emerge in this way. For example, after Martin Gardner introduced John
Conway’s game of Life to the world in 1970, more computer time was probably
devoted to studying its implications than to any other computational task during
the next several years—although the people paying the computer bills were
rarely told! (See exercise 167.)
There are 2512 Boolean functions of nine variables, so there are 2512 different
3 x 3 cellular automata. Many of them are trivial, but most of them probably
have such complicated behavior that they are humanly impossible to understand.
Fortunately there also are many cases that do turn out to be useful in practice —
and much easier to justify on economic grounds than the simulation of a game.
For example, algorithms for recognizing alphabetic characters, fingerprints,
or similar patterns often make use of a “thinning” process, which removes excess
black pixels and reduces each component of the image to an underlying skeleton
that is comparatively simple to analyze. Several authors have proposed cellular
automata for this problem, beginning with D. Rutovitz [J. Royal Stat. Society
A129 (1966), 512-513] who suggested a 4 x 4 scheme. But parallel algorithms
are notoriously subtle, and flaws tended to turn up after various methods had
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Guo
Fig. 16. Example Hall

connectivity structure
resu{ts of Guo and kingwise connected
Hall’'s 3x3 autom- rookwise connected
aton for thinning Rosenfeld

the components of a
bitmap. (“Hollow”
pixels were origi-

nally black.)

been published. For example, at least two of the black pixels in a component like
il should be removed, yet a symmetrical scheme will erroneously erase all four.

A satisfactory solution to the thinning problem was finally found by Z. Guo
and R. W. Hall [CACM 32 (1989), 359-373, 759], using a 3 X 3 automaton that
invokes alternate rules on odd and even steps. Consider the function

f(-TNwa-TNa-TNEaIwawaIE7ISWam57ISE) = w/\_'g(-/L'NW7 ey Ty TEye-- 7ISE)7 (159)
where g = 1 only in the following 37 configurations surrounding a black pixel:

R E LT EL A A el ol LS CE L) LA E AL lecla) o] )

Then we use (158), but with f(Zxw, Zx,Zxe; Tw, L, Tr, Tsw, Ts, Tsg) Teplaced by
its 180° rotation f(Zsg, Ts, Zsw;Zr, T, Tw, Txr, Tn, Txw) ON even-numbered steps.
The process stops when two consecutive cycles make no change.

With this rule Guo and Hall proved that the 3 x 3 automaton will preserve
the connectivity structure of the image, in a strong sense that we will discuss
below. Furthermore their algorithm obviously leaves an image intact if it is
already so thin that it contains no three pixels that are king-neighbors of each
other. On the other hand it usually succeeds in “removing the meat off the
bones” of each black component, as shown in Fig. 16. Slightly thinner thinning
is obtained in certain cases if we add four additional configurations

ETEXTE (160)

to the 37 listed above. In either case the function g can be evaluated with a
Boolean chain of length 25. (See exercises 170-172.)

In general, the black pixels of an image can be grouped into segments or
components that are kingwise connected, in the sense that any black pixel can
be reached from any other pixel of its component by a sequence of king moves
through black pixels. The white pixels also form components, which are rookwise
connected: Any two white cells of a component are mutually reachable via rook
moves that touch nothing black. It’s best to use different kinds of connectedness
for white and black, in order to preserve the topological concepts of “inside” and
“outside” that are familiar from continuous geometry [see A. Rosenfeld, JACM
17 (1970), 146-160]. If we imagine that the corner points of a raster are black,
an infinitely thin black curve can cross between pixels at a corner, but a white
curve cannot. (We could also imagine white corner points, which would lead to
rookwise connectivity for black and kingwise connectivity for white.)
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time = 0 time =1 time = 3

(a) (b) (c)

Fig. 17. The shrinking of a Cheshire cat

An amusing algorithm for shrinking a picture while preserving its connec-
tivity, except that isolated black or white pixels disappear, was presented by
S. Levialdi in CACM 15 (1972), 7-10; an equivalent algorithm, but with black
and white reversed, had also appeared in T. Beyer’s Ph.D. thesis (M.I.T., 1969).
The idea is to use a cellular automaton with the simple transition function

f(xNW7wN7 TNy Twy Ty anwSW7$Sa$SE) = (-73 A (xwvwswvws)) \ (-Tw/\xs) (161)

at each step. This formula is actually a 2 X 2 rule, but we still need a 3 x 3 window
if we want to keep track of the cases when a one-pixel component goes away.

For example, the 25 x 30 picture of a Cheshire cat in Fig. 17(a) has seven
kingwise black components: the outline of its head, the two earholes, the two
eyes, the nose, and the smile. The result after one application of (161) is shown
in Fig. 17(b): Seven components remain, but there’s an isolated point in one ear,
and the other earhole will become isolated after the next step. Hence Fig. 17(c)
has only five components. After six steps the cat loses its nose, and even the
smile will be gone at time 14. Sadly, the last bit of cat will vanish during step 46.

At most M + N — 1 transitions will wipe out any M x N picture, because
the lowest visible northwest-to-southeast diagonal line moves relentlessly upward
each time. Exercises 176 and 177 prove that different components will never
merge together and interfere with each other.

Of course this cubic-time cellular method isn’t the fastest way to count or
identify the components of a picture. We can actually do that job “online,”
while looking at a large image one row at a time, not bothering to keep all of
the previously seen rows in memory if we don’t wish to look at them again.

While we’re analyzing the components we might as well also record the
relationships between them. Let’s assume that only finitely many black pixels
are present. Then there’s an infinite component of white pixels called the
background. Black components adjacent to the background constitute the main
objects of the image. And these objects may in turn have holes, which may serve
as a background for another level of objects, and so on. Thus the connected
components of any finite picture form a hierarchy — an oriented tree, rooted at
the background. Black components appear at the odd-numbered levels of this
tree, and white components at the even-numbered levels, alternating between

Levialdi
Beyer
Cheshire cat
online
background
objects

holes
oriented tree
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time =5 time = 10 time = 20

(d) (e)

by repeated application of Levialdi’s transformation.

kingwise and rookwise connectedness. Each component except the background is
surrounded by its parent. Childless components are said to be simply connected.

For example, here are the Cheshire cat’s components, labeled with digits for
white pixels and letters for the black ones, and the corresponding oriented tree:

00000000000000000000000FJ000000
000OFW¥I000000000000000F¥N000000
0000JV1IW10000000000000J1 1JJ00000

00O¥1 1 1lWA00 OrUWWWWWY0 011 100000

OO0O\1E1 ifWWWNii11111i/WWY 11130000

00O 1111111111111 11J{1[1N0000 ©,
ooOf{ilEl11iM11111111111 1110000
000J}11111111111111111M1110000
000M111111111111111111M11M0000 n
000O0M1111111111111111111M1l000
000O0Of¥11111111111111111111000

000001 1PHMI1111111jABA11111000

900 MM 221 111133 3E1111M000 (1) (162)
JWNO0 OFY1 1 pPP2h]i 111 1ikA3jd111 11300

COoIuW1 ihDIIIi11111lAMd111111[00
0000MWN1111111pI11111111111M00
JUWW111111111RIg111111111 179N BACHMDNENFNG
00OfWWWA11111id110d11111 1IFWWWNiJY00
00011111111 10kBd111111111111J100
0000M111[AA11111111111INUNUNYWWY @ B
00000M111 111111111111I0000

000000111 111080000

0000000 OFWAL 11117WY00000

000000000 OI 1JWWN0000000

00000000000 JWNG 00000000

During the shrinking process of Fig. 17, components disappear in the order

0. {®.0 3} (alat time 3), @, B, ®, O, D, O-

Suppose we want to analyze the components of such a picture by reading
one row at a time. After we've seen four rows the result-so-far will be

00000000000000000000000IN000000 ©)
000OEER]000000000000000FWI000000 ) ® O (16 )
0000k 1h:3:30000000000000F¥22I300000 3
00 OE]1 1 113510 O O[eielelieleleled O OFX2 2INO0 000 @ @

and we’ll be ready to scan row five. A comparison of rows four and five will
then show that @ and @ should merge into @, but that new components @
and (3 should also be launched. Exercise 179 contains full details about an
instructive algorithm that properly updates the current tree as new rows are
input. Additional information can also be computed on the fly: For example, we
could determine the area of each component, the locations of its first and last
pixels, the smallest enclosing rectangle, and/or its center of gravity.

surrounded

ﬂ simply connected
(f)
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*Filling. Let’s complete our quick tour of raster graphics by considering how
to fill regions that are bounded by straight lines and/or simple curves. Particu-
larly efficient algorithms are available when the curves are built up from “conic
sections” — circles, ellipses, parabolas, or hyperbolas, as in classical geometry.

In keeping with geometric tradition, we shall adopt Cartesian coordinates
(z,y) in the following discussion, instead of speaking about rows or columns
of pixels: An increase of z will signify a move to the right, while an increase
of y will move upward. More significantly, we will focus on the edges between
square pixels, instead of on the pixels themselves. Edges run between integer
points (z,y) and (z',y’) of the plane when |z — 2’| + |y — 3’| = 1. Each pixel
is bounded by the four edges (z,y) — (z—1,y) — (z—1,y—1) — (z,y—1) —
(z,y). Experience has shown that algorithms for filling contours become simpler
and faster when we concentrate on the edge transitions between white and black,
instead of on the black pixels of a custerized boundary. (See, for example, the
discussion by B. D. Ackland and N. Weste in IEEE Trans. C-30 (1981), 41-47.)

Consider a continuous curve z(t) = (z(t),y(t)) that is traced out as ¢ varies
from 0 to 1. We assume that the curve doesn’t intersect itself for 0 <t < 1, and
that z(0) = 2z(1). The famous Jordan curve theorem [C. Jordan, Cours d’analyse
3 (1887), 587-594; O. Veblen, Trans. Amer. Math. Soc. 6 (1905), 83-98] states
that every such curve divides the plane into two regions, called the inside and
the outside. We can “digitize” z(¢) by forcing it to travel along edges between
pixels; then we obtain an approximation in which the inside pixels are black and
the outside pixels are white. This digitization process essentially replaces the
original curve by the sequence of integer points

round(z(t)) = (lz(t)+ 3], ly(t) + 3]), for 0 <t <1. (164)

The curve can be perturbed slightly, if necessary, so that z(t) never passes exactly
through the center of a pixel. Then the digitized curve takes discrete steps along
pixel edges as t grows; and a pixel lies inside the digitization if and only if its
center lies inside the original continuous curve {z(t) | 0 < ¢ < 1}.

For example, the equations z(t) = 20 cos 2wt and y(t) = 10sin 27t define an
ellipse. Its digitization, round(z(¢)), starts at (20,0) when ¢ = 0, then jumps to
(20, 1) when ¢ ~ .008 and 10sin 2wt = 0.5. Then it proceeds to the points (20, 2),
(19,2), (19,3), (19,4), (18,4), ..., (20,—1), (20,0), as t increases through the
values .024, .036, .040, .057, .062, ..., .976, .992:

. o
=

The horizontal edges of such a boundary are conveniently represented by bit
vectors H (y) for each y; for example, H(10) = ...000000111111111111000000. ..
and H(9) = ...011111000000000000111110... in (165). If the ellipse is filled

raster graphics
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with black to obtain a bitmap B, the H vectors mark transitions between black
and white, so we have the symbolic relation

H = B® (BA1). (166)
Conversely, it’s easy to obtain B when the H vectors are given:

B(y) = H(ymaX) D H(ymax—l) D---b H(y + 1)
= H(Ymin) ® H(Ymint1) © -+ © H(y). (167)

Notice that H (Ymin) D H (Ymin+1) D+ - - D H (ymax) is the zero vector, because each
bitmap is white at both top and bottom. Notice further that the analogous verti-
cal edge vectors V(z) are redundant: They satisfy the formulas V = B& (B<1)
and B = V® (see exercise 36), but we need not bother to keep track of them.
Conic sections are easier to deal with than most other curves, because we
can readily eliminate the parameter ¢. For example, the ellipse that led to (165)
can be defined by the equation (z/20)? + (y/10)? = 1, instead of using sines
and cosines. Therefore pixel (z,y) should be black if and only if its center point
(z—3,y—3) lies inside the ellipse, if and only if (z—3)?/400+ (y—3)%*/100—1 < 0.
In general, every conic section is the set of points for which F(z,y) = 0,
when F' is an appropriate quadratic form. Therefore there’s a quadratic form

Qz,y) = Flx—3,y—3) = a® +bay+cy’ +dr+ey+ f (168)

that is negative at the integer point (z,y) if and only if pixel (z,y) lies on a
given side of the digitized curve.

For practical purposes we may assume that the coefficients (a,b, ..., f) of Q
are not-too-large integers. Then we’re in luck, because the exact value of Q(z,y)
is easy to compute. In fact, as pointed out by M. L. V. Pitteway [Comp. J.
10 (1967), 282-289], there’s a nice “three-register algorithm” by which we can
quickly track the boundary points: Let z and y be integers, and suppose we’ve got

the values of Q(z,v), Qz(z,y), and Qy(z,y) in three registers (Q, Qz, Qy), where
Qz(z,y) =2ax+ by +d and Qy(z,y) =bz+2cy+e (169)

are %Q and B%Q. We can then move to any adjacent integer point, because

Qz*l,y) = Q(z,y)+Q:(z,y)+a,  Qz,y*1) = Q(z,y)£Qy(z,y)+c,
Qz(milay) = Qz(xay)i2a'a Qz(xayil) = Qz(way)iba
Qy(zxl,y) = Qy(z,y)Lb; Qy(z,y£l) = Qy(z,y)E2c. (170)

Furthermore we can divide the contour into separate pieces, in each of which z(t)
and y(t) are both monotonic. For example, when the ellipse (165) travels from
(20,0) to (0,10), the value of = decreases while y increases; thus we need only
move from (z,y) to (z—1,y) or to (z,y+1). If registers (Q, R, S) respectively
hold (@, Qs —a, Qy+c), a move to (z—1, y) simply sets Q + Q@ —R, R +— R—2a,
and S < S — b; a move to (z,y+1) is just as quick. With care, this idea leads
to a blindingly fast way to discover the correctly digitized edges of almost any
conic curve.

quadratic form
Pitteway
three-register algorithm-++4+



46 COMBINATORIAL ALGORITHMS (F1A) 7.1.3

For example, the quadratic form Q(z,y) for ellipse (165) is 4% + 16y —
(4 + 16y + 1595), when we integerize its coefficients. We have Q(20,0) =
F(19.5,—0.5) = —75 and Q(21,0) = +85; therefore pixel (20,0), whose center is
(19.5,—0.5), is inside the ellipse, but pixel (21, 0) isn’t. Let’s zoom in closer:

-

—51 93 245 405

—179 -—-35 117 277

—275 —131 21 181

(171)

—339 —195 —43 | 117

—371 —227 -—75 85

(21,0)

—371 —227 -—75 85

The boundary can be deduced without examining @ at very many points. In
fact, we don’t need to look at Q(21,0), because we know that all edges between
(20,0) and (0,10) must go either upwards or to the left. First we test Q(20,1)
and find it negative (—75); so we move up. Also Q(20,2) is negative (—43), so
we go up again. Then we test Q(20, 3), and find it positive (21); so we move left.
And so on. Ounly the @ values —75, —43, 21, —131, —35, 93, —51, ... actually
need to be examined, if we’ve set the three-register method up properly.

Algorithm T (Three-register algorithm for conics). Given two integer points
(z,y) and (2',y'), and an integer quadratic form @ as in (168), this algorithm
decides how to digitize a portion of the conic section defined by F(z,y) = 0,
where F(z,y) = Q(z+ 3,y + 1). It creates |2’ — z| horizontal edges and |y’ — y|
vertical edges, which form a path from (z,y) to (z’,3’). We assume that

i) Real-valued points (£,7) and (¢',7n') exist such that F(&,n) = F(¢',n') = 0.

) The curve travels from (&, 7) to (¢,7') monotonically in both coordinates.
i) z=6+5),y=In+3z], 2" = [+ 3], and ¥ = [7/ + 3.
)
)

ii

iv) If we traverse the curve from (§,7n) to (¢',7n'), we see F < 0 on our left.

v) No edge of the integer grid contains two roots of Q (see exercise 183).

T1. [Initialize.] If z = 2/, go to T11;if y =y, go to T10. If z < 2’ and y < ¢/,
set Q « Q(z+1,y+1), R  Qu(z+1,y+1)+a, S + Qy(z+1,y+1)+c, and
gotoT2. If z < 2’ and y > ¢/, set Q + Q(z+1,y), R + Q(z+1,y) + a,
S  Qy(z+1,y) —c, and go to T3. If z > 2’ and y < ¢/, set Q «+
Q(z,y+1), R + Qu(z,y+1) —a, S + Qy(z,y+1) + ¢, and go to T4. If
z>a andy >y, set Q  Q(z,y), R+ Qu(z,y) —a, S + Qy(z,y) —c,
and go to T5.

T2. [Right or up.] If Q < 0, do T9; otherwise do T6. Repeat until interrupted.

T3. [Down or right.] If @ < 0, do T'7; otherwise do T9. Repeat until interrupted.
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T4. [Up or left.] If @ < 0, do T6; otherwise do T8. Repeat until interrupted.
T5. [Left or down.] If @ < 0, do T8; otherwise do T7. Repeat until interrupted.
T6. [Move up.] Create the edge (z,y) — (z,y+1), then set y + y+1. Interrupt
to T10 if y = ¢'; otherwise set @ < Q@+ S, R+ R+b, S < S + 2c.
T7. [Move down.] Create the edge (z,y) — (z,y—1), then set y + y — 1.
Interrupt to T10 if y = 3'; otherwise set Q + Q—S, R <+ R—b, S <+ S—2c.
T8. [Move left.] Create the edge (z,y) — (z—1,y), then set z + z — 1.
Interrupt to T11 if z = z'; otherwiseset Q + Q—R, R <+ R—2a, S + S—b.
T9. [Move right.] Create the edge (z,y) — (z+1,y), then set z + = + 1.
Interrupt to T11 if z = z'; otherwise set Q + Q+R, R + R+2a, S < S+b.
T10. [Finish horizontally.] While z < 2, create the edge (z,y) — (z+1,y) and
set £ + z + 1. While z > 2, create the edge (z,y) — (z—1,y) and set
z < z — 1. Terminate the algorithm.
T11. [Finish vertically.] While y < ', create the edge (z,y) — (z,y+1) and
set y < y+ 1. While y > g/, create the edge (z,y) — (z,y—1) and set
y ¢~y — 1. Terminate the algorithm. |

=~

[=2]

For example, when this algorithm is invoked with (z,y) = (20,0), (z',y') =
(0,10), and Q(z,y) = 4a? + 16y — 4z — 16y — 1595, it will create the edges
(20,0) — (20,1) — (20,2) — (19,2) — (19,3) — (19,4) — (18,4) —
(18,5) — (17,5) — (17,6) — --- — (5,9) — (5,10), then make a beeline
for (0,10). (See (165) and (171).) Exercise 182 explains why it works.
Movement to the right in step T9 is conveniently implemented by setting
H(y) + H(y) ® (1 € (Zmax — x)), using the H vectors of (166) and (167).
Movement to the left is similar, but we set x < x — 1 first. Step T10 could set

H(y) + H(y)® (1< (Tmax+1—min(z, z"))) — (1<K (Tmax —max(z, z')))); (172)

but one move at a time might be just as good, because |z’ — z| is often small.
Movement up or down needs no action, because vertical edges are redundant.

Notice that the algorithm runs somewhat faster in the special case when
b = 0; circles always belong to this case. The even more special case of straight
lines, when a = b = ¢ = 0, is of course faster yet; then we have a simple one-
register algorithm (see exercise 185).

Fig. 18. Pixels change from
white to black and back again,
at the edges of digitized circles.

When many contours are filled in the same image, using H vectors, the
pixel values change between black and white whenever we cross an odd number
of edges. Figure 18 illustrates a tiling of the hyperbolic plane by equilateral
45°-45°-45° triangles, obtained by superimposing the results of several hundred
applications of Algorithm T.

circles

tiling

hyperbolic plane
eofill
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Fig. 19. Squines that define
the outline contour of an ‘S’.

Algorithm T applies only to conic curves. But that’s not really a limitation
in practice, because just about every shape we ever need to draw can be well ap-
proximated by “piecewise conics” called quadratic Bézier splines or squines. For

example, Fig. 19 shows a typical squine curve with 40 points (2o, 21, . - - , 239, 210),
where z490 = zp. The even-numbered points (zg, 22,...,240) lie on the curve;
the others, (z1,23,...,239), are called “control points,” because they regulate

local bending and flexing. Each section S(z2;, 2211, 22j+2) begins at point zy;,
traveling in direction zpj41 — 22;. It ends at point 255,42, traveling in direction
Z9j42 — Z2j+1. Thus if 2z5; lies on the straight line from z5;_1 to 2941, the squine
passes smoothly through point zp; without changing direction.

Exercise 186 defines S(za;, 22j+1, 22;+2) precisely, and exercise 187 explains
how to digitize any squine curve using Algorithm T. The region inside the
digitized edges can then be filled with black pixels.

Incidentally, the task of drawing lines and curves on a bitmap turns out
to be much more difficult than the task of filling a digitized contour, because
we want diagonal strokes to have the same apparent thickness as vertical and
horizontal strokes do. An excellent solution to the line-drawing problem was

found by John D. Hobby, JACM 36 (1989), 209-229.

*Branchless computation. Modern computers tend to slow down when a
program contains conditional branch instructions, because an uncertain flow
of control can interfere with predictive lookahead circuitry. Therefore we’ve
used MMIX’s conditional-set instructions like CSNZ in programs like (56). Indeed,
four instructions such as ‘ADD z,y,1; SR t,u,2; CSNZ x,q,z; CSNZ v,q,t’ are
probably faster than their three-instruction counterpart

BZ q,@+12; ADD x,y,1; SRv,u,2 (173)

when the actual running time is measured on a highly pipelined machine, even
though the rule-of-thumb cost of (173) is only 3v according to Table 1.3.1-1.

Bézier splines
squines

control points

S, the letter

drawing on a bitmap
—filling a contour in a bitmap
Hobby

—bitmap graphics
conditional

branch

CSNZ

pipelined machine
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Bitwise operations can help diminish the need for costly branching. For
example, if MMIX didn’t have a CSNZ instruction we could write

NEGU m,q; OR m,m,q; SR m,m,63;

ADD t,y,1; XOR t,t,x; AND t,t,m; XOR x,x,t; (174)
SR t,u,2; XOR t,t,v; AND t,t,m; XOR v,v,t;
here the first line creates the mask m = —[¢ #0]. On some computers these eleven

branchless instructions would still run faster than the three instructions in (173).
The inner loop of a merge sort algorithm provides an instructive example.
Suppose we want to do the following operations repeatedly:
If z; < yj, set 2, <= x4, 1 <1+ 1, and go to z_done if 1 = i x.
Otherwise set 2z < y;, j < j + 1, and go to y-done if j = jmax-
Then set k < k+ 1 and go to z_done if k = kpax-
If we implement them in the “obvious” way, four conditional branches are in-
volved, three of which are active on each path through the loop:
iH CMP t,xi,yj; BNN t,2F Branch if z; > y;.

STO xi,zbase,kk 2K — T,

ADD ii,ii,8 i i+l

BZ ii,X Done To z_done if 1 = imax-

LDO xi,xbase,ii Load z; into register xi.

JMP 3F Join the other branch.
2H STO yj,zbase,kk Zk Y-

ADD  jj,jj,.8 jj+1

BZ jj,YDone To y_done if j = jmax-

LDO yj,ybase,jj Load y; into register yj.
3H ADD kk,kk,8 k+—k+1.

PBNZ kk,1B Repeat if k # kmax-

JMP Z_Done To z_done. |

(Here ii = 8(% — imax); jj = 8(J — Jmax), and kk = 8(k — kmax); the factor of
8 is needed because z;, y;, and z, are octabytes.) Those four branches can be
reduced to just one:

iH CMP t,xi,yj t < sign(z; — y;).
CSN yj,t,xi yj < min(z;,y;).
STO yj,zbase,kk 2K < V]
AND t,t,8 t < 8[z; <yj).
ADD ii,ii,t 14 1+ [z <yj].
LDO xi,xbase,ii Load x; into register xi.
XO0R t,t,8 ttd8.
ADD  jj,jj,t 33+ [zi >yl
LDO yj,ybase,jj Load y; into register yj.
ADD kk,kk,8 k<+Fk+1.
AND u,ii,jj; AND u,u,kk wu < ii& jj & kk.
PBN u,1B Repeat if 1 <imax, ] <Jmax, and k<kmax- |

When the loop stops in this version, we can readily decide whether to continue at
z_done, y_done, or z_done. These instructions load both z; and y; from memory
each time, but the redundant value will already be present in the cache.

mask

signed shift right
NEG

merge sort

cache



50 COMBINATORIAL ALGORITHMS (F1A) 7.1.3

*More applications of MOR and MXOR. Let’s finish off our study of bitwise
manipulation by taking a look at two operations that are specifically designed for
64-bit work. MMIX’s instructions MOR and MXOR, which essentially carry out matrix
multiplication on 8 x 8 Boolean matrices, turn out to be extremely flexible and
powerful, both by themselves and in combination with other bitwise operations.

If x = (27...21%0)256 is an octabyte and a = (a7 ...a1a0)2 is a single byte,
the instruction MOR t,x,a sets t < arx7|---| a121 | agzo, while MXOR t,x,a sets
t< arx7®---Daizry P apxo. For example, MOR t,x,2 and MXOR t,x,2 both set
t < x1; MOR t,x,3 sets t <~z | zo; and MXOR t,x,3 sets t «+ x1 @ xg.

In general, of course, MOR and MXOR are functions of octabytes. When y =
(y7-..Y190)256 is a general octabyte, the instruction MOR t,x,y produces the
octabyte t whose jth byte t; is the result of MOR applied to = and y;.

Suppose z = —1 = #ffffffffFfFffFfff. Then MOR t,x,y computes the
mask ¢ in which byte ¢; is #£f whenever y; # 0, while ¢; is zero when y; = 0. This
simple special case is quite useful, because it accomplishes in just one instruction
what we previously needed seven operations to achieve in situations like (g2).

We observed in (66) that two MORs will suffice to reverse the bits of any 64-bit
word, and many other important bit permutations also become easy when MOR
is in a computer’s repertoire. Suppose 7 is a permutation of {0,1,...,7} that
takes 0 — Om, 1 — 1m, ..., 7 — 7w. Then the octabyte p = (277 ...217207)y¢
corresponds to a permutation matrix that makes MOR do nice tricks: MOR t,x,p
will permute the bytes of x, setting ¢; < z;,. Furthermore, MOR u,p,y will
permute the bits of each byte of y, according to the inverse permutation; it sets
uj < (a7 ...a100)2 when y; = (arx ... a1:00x)2-

With a little more skullduggery we can also expedite further permutations
such as the perfect shuffle (76), which transforms a given octabyte z = 232z +y =
(z31...T1T0Y31 - - - Y1Y0)2 into the “zippered” octabyte

w=1x}y = (T31Y31---T1¥1Z0Y0)2- (175)

With appropriate permutation matrices p, ¢, and r, the intermediate results

t= ($31$27$30$26$29$25$28$24y31y27y30y26y29y25y28y24 e

TrT3TEL2T5T1T4T0YTY3Y6Y2Y5Y1Y4Y0)2, (176)
u= (y27y31y263/30y25y29:1/24y285627$31$26$30$25$29$24$28 cee
Y3Y7Y2Y6Y1Y5Y0YaT3TTL2TEL1T5L0T4)2 (177)

can be computed quickly via the four instructions
MOR t,z,p; MOR t,q,t; MORu,t,r; MOR u,r,u; (178)

see exercise 204. So there’s a mask m for which ‘PUT rM,m; MUX w,t,u’ completes
the perfect shuffle in just six cycles altogether. By contrast, the traditional
method in exercise 53 requires 30 cycles (five §-swaps).

The analogous instruction MXOR is especially useful when binary linear alge-
bra is involved. For example, exercise 1.3.1-37 shows that XOR and MXOR directly
implement addition and multiplication in a finite field of 2¥ elements, for k < 8.

MOR++

MXOR++

matrix multiplication
mask

bit permutations
byte permutations
permutation matrix
1NVErse permutation
perfect shuffle
zippered

MUX

6-swaps

finite field
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The problem of cyclic redundancy checking provides an instructive example
of another case where MXOR shines. Streams of data are often accompanied by
“CRC bytes” in order to detect common types of transmission errors [see W. W.
Peterson and D. T. Brown, Proc. IRE 49 (1961), 228-235]. One popular method,
used for example in MP3 audio files, is to regard each byte @ = (a7 ...a1a0)2
as if it were the polynomial

a(z) = (ar...a1a0)z = a7z’ + -+ a1z + ag. (179)
When transmitting n bytes a,_1 ...a1ap, we then compute the remainder
B=(an 1(2)a®™ ™V 4. + ay(2)a® + ao(z)) 2" mod p(z), (180)

where p(z) = 16 +2'° + 2% + 1, using polynomial arithmetic mod 2, and append
the coefficients of 8 as a 16-bit redundancy check.

The usual way to compute 3 is to process one byte at a time, according to
classical methods like Algorithm 4.6.1D. The basic idea is to define the partial
result 3, = (an_l(x)xs("_l) 4+ 4 am(x)acsm) 2% mod p(zx) so that B8, = 0,
and then to use the recursion

B = ((Bm+1 < 8) & #££00) @ cre_table[(Bm+1 > 8) @ am]  (181)

to decrease m by 1 until m = 0. Here crc_table[c] is a 16-bit table entry that
holds the remainder of a(z)z'®, modulo p(z) and mod 2, for 0 < a < 256.
[See A. Perez, IEEE Micro 3,3 (June 1983), 40-50.]

But of course we’d prefer to process 64 bits at once instead of 8. The solution
is to find 8 x 8 matrices A and B such that

a(z)z% = () (z) + (aB)(z)z™® (modulo p(x) and 2), (182)

for arbitrary bytes «, considering « to be a 1 x 8 vector of bits. Then we can
pad the given data bytes a,_1 ...a1a0 with leading zeros so that n is a multiple
of 8, and use the following efficient reduction method:

Begin with ¢+~ 0, n < n — 8, and t «+ (apt7...n)2s56-
Whilen >0,set u<t-A,v<t-B, n<+ n—38, (183)
t <+ (Qpy7-..0n)ase Dud (v>>8)® (c kK 56), and ¢+ v & #£f.

Here t - A and t - B denote matrix multiplication via MXOR. The desired CRC
bytes, (tz'®+cz®) mod p(x), are then readily obtained from the 64-bit quantity ¢
and the 8-bit quantity c. Exercise 213 contains full details; the total running
time for n bytes comes to only (¢ + 10v)n/8 + O(1).

The exercises below contain many more instances where MOR and MXOR lead
to substantial economies. New tricks undoubtedly remain to be discovered.

For further reading. The book Hacker’s Delight by Henry S. Warren, Jr.
(Addison—Wesley, 2002) discusses bitwise operations in depth, emphasizing the
great variety of options that are available on real-world computers that are not
as ideal as MMIX.

cyclic redundancy checking
CRC

Peterson

Brown

MP3 (MPEG-1 Audio Layer III)
Perez

Warren
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EXERCISES
» 1. [15] What is the net effect of settingz + 2@y, y+ y D (& m), z +— z D y?

2. [16] (H.S. Warren, Jr.) Are any of the following relations valid for all integers x
andy? (Jedy<z|y (i)z&y<z|y (ii)|lz-y/<zdy.

3. [M20] Ifz = (zp-1...T120)2 With zn—1 =1, let £ = (Zp—1...Z1Z0)2. Thus we

have 0™, 1M, 2M 3M  =-1,0,1,0,3,2,1,0,7,6, ..., if we let 0¥ = —1. Prove
that (z @)™ < |zt —y| <z Dy for all z,y > 0.
> 4. [M16] Let z€ =z, 2" = —z, 2% = 241, and z¥ = 2 — 1 denote the complement,

the negative, the successor, and the predecessor of an infinite-precision integer z. Then
we have £C€C = zNN = 5P = PS = z. What are 2N and zNC?

5. [M21] Prove or disprove the following conjectured laws concerning binary shifts:
a) (z<)Kk=2zK(j+k);

b) @) &y <k)= (> +k)&y) <k=(z&(y<(+k)) >

6. [M22] Find all integers  and y such that (a) 2> y=y>z; (b) sy =y <KL z.

7. [M22] (R. Schroeppel, 1972.) Find a fast way to convert the binary number
z = (...T2T1T0)2 to its negabinary counterpart z = (...x5717()—2, and vice versa.
Hint: Only two bitwise operations are needed!

> 8. [M22] Given a finite set S of nonnegative integers, the “minimal excludant” of S
is defined to be

mex(S) =min{k |k >0and k ¢ S}.

Let z @ S denote the set {z @y |y € S}, and let S@ y denote {z Dy | z € S}. Prove
that if z = mex(S) and y = mex(T) then z ® y = mex((S® y) U (z & T)).

9. [M26] (Nim.) Two people play a game with k piles of sticks, where there are a;
sticks in pile j. If a;y = -+ = ar = 0 when it is a player’s turn to move, that player
loses; otherwise the player reduces one of the piles by any desired amount, throwing
away the removed sticks, and it is the other player’s turn. Prove that the player to
move can force a victory if and only if a1 @ -+ ® ax # 0.

10. [HM40] (Conway’s field.) Continuing exercise 8, define the operation z ® y of
“nim multiplication” recursively by the formula

zy=mex{(z®j)D(I®y)D(E®))|0<i<z,0<j <y}

Prove that @ and ® define a field over the set of all nonnegative integers. Prove also
that if 0 < z,y < 22" then z ® y < 22", and 22" @ y = 22"y. (In particular, this field
contains subfields of size 22" for all n > 0.) Explain how to compute = ® y efficiently.

» 11. [M26] (H. W. Lenstra, 1978.) Find a simple way to characterize all pairs of
positive integers (m,n) for which m ® n = mn in Conway’s field.

12. [M26] Devise an algorithm for division in Conway’s field. Hint: If z < 22"*" then
we have z ® (z @ (z > 2")) < 22™.

13. [M32] (Second-order nim.) Extend the game of exercise 9 by allowing two kinds
of moves: Either a; is reduced for some j, as before; or a; is reduced and a; is replaced
by an arbitrary nonnegative integer, for some ¢ < j. Prove that the player to move
can now force a victory if and only if the pile sizes satisfy either az # as ® --- ® ax or
a1 #as®(2®as)® - P ((k—2)Q®ax). For example, when k = 4 and (a1,a2,as,a4) =
(7,5,0,5), the only winning move is to (7,5,6, 3).
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14. [M30] Suppose each node of a complete, infinite binary tree has been labeled with
0 or 1. Such a labeling is conveniently represented as a sequence T' = (¢, to, t1, too, to1,

t10,t11,tooo, - - . ), with one bit t, for every binary string «; the root is labeled t, the
left subtree labels are Ty = (to, too, to1,tooo, - - - ), and the right subtree labels are Ty =
(t1, t10, t11,t100,-..). Any such labeling can be used to transform a 2-adic integer

z = (...2T221%0)2 into the 2-adic integer y = (...¥y2y190)2 = T'(z) by setting yo = ¢,
Y1 = tzg, Y2 = tzgay, €tc., so that T'(z) = 2T,,(|z/2]) + t. (In other words, z defines
an infinite path in the binary tree, and y corresponds to the labels on that path, from
right to left in the bit strings as we proceed from top to bottom of the tree.)
A branching function is the mapping 7 = z @ T(z) defined by such a labeling.
For example, if to; = 1 and all of the other ¢, are 0, we have 27 =z @ 4[z mod 4 =2].
a) Prove that every branching function is a permutation of the 2-adic integers.
b) For which integers k is z @ (z < k) a branching function?
¢) Let z — z” be a mapping from 2-adic integers into 2-adic integers. Prove that z”
is a branching function if and only if p(z @ y) = p(zT ® y7) for all 2-adic z and y.
d) Prove that compositions and inverses of branching functions are branching func-
tions. (Thus the set B of all branching functions is a permutation group.)
e) A branching function is balanced if the labels satisfy to = tao @ ta1 for all a. Show
that the set of all balanced branching functions is a subgroup of B.

» 15. [M26] J. H. Quick noticed that ((z+2)®3) —2 = ((z —2) ®3) +2 for all z. Find
all constants a and b such that ((z + a) ®b) — a = ((z — a) ® b) + a is an identity.

16. [M31] A function of z is called animating if it can be written in the form
(- ((((z+a1) ®b1) +az) Dba) + -+ ) + am) D bm

for some integer constants a1, b1, as, b2, ..., aGm, by, with m > 0.
a) Prove that every animating function is a branching function (see exercise 14).
b) Furthermore, prove that it is balanced if and only if by @ b2 @ --- @ b, = 0. Hint:
What binary tree labeling corresponds to the animating function ((z®c¢)—1) ®c?
¢) Let [z] =@ (z—1) = 2°@*' _1. Show that every balanced animating function
can be written in the form

2D |z2Dp1 | D |lzDp2| DD |z D pi], p1<p2<---<pp,

for some integers {p1,p2,...,pi1}, where [ > 0, and this representation is unique.
d) Conversely, show that every such expression defines a balanced animating function.

17. [HM36] The results of exercise 16 make it pos-
sible to decide whether or not any two given ani-
mating functions are equal. Is there an algorithm
that decides whether any given expression is iden-
tically zero, when that expression is constructed
from a finite number of integer variables and con-
stants using only the binary operations 4+ and @7
What if we also allow &7

18. [M25] The curious pixel pattern shown here
has (2°y > 11) & 1 in row & and column y, for
1 < z,y < 256. Is there any simple way to explain
some of its major characteristics mathematically?
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> 19. [M37] (Paley’s rearrangement theorem.) Given three vectors A = (ao,...,a2n—1),
B = (bo,...,b2n_1), and C = (co,...,c2n—1) of nonnegative numbers, let
f(A7B7C) = Z ajbkcl.
jOk®I=0

For example, if n = 2 we have f(A, B, C) = agboco + aobici + agbzcz +aobscs +ai1boci +
aibico + aibacs + - - - + asbsco; in general there are 22n terms, one for each choice of
j and k. Our goal is to prove that f(A,B,C) < f(A",B*,C"), where A* denotes the
vector A sorted into nonincreasing order: a5 > ai > - > azn_;.

a) Prove the result when all elements of A, B, and C are 0s and 1s.

b) Show that it is therefore true in general.

c) Similarly, f(A,B,C,D) = 3,01 e1@m=o %ibkcidm < f(A", B*,C*,D").

» 20. [21] (Gosper’s hack.) The following seven operations produce a useful function y

of z, when z is a positive integer. Explain what this function is and why it is useful.

u ¢ & —x; vz +u; y— v+ (((v®z)/u) > 2).

21. [22] Construct the reverse of Gosper’s hack: Show how to compute z from y.

22. [21] Implement Gosper’s hack efficiently with MMIX code, assuming that = < 254,
without using division.

» 23. [27] A sequence of nested parentheses can be represented as a binary number by
putting a 1 in the position of each right parenthesis. For example, ‘(()) ()’ corresponds
in this way to (001101);, the number 13. Call such a number a parenthesis trace.

a) What are the smallest and largest parenthesis traces that have exactly m 1s?

b) Suppose z is a parenthesis trace and y is the next larger parenthesis trace with
the same number of 1s. Show that y can be computed from x with a short chain
of operations analogous to Gosper’s hack.

¢) Implement your method on MMIX, assuming that vz < 32.

> 24. [M30] Program 1.3.2°P instructed MMIX to produce a table of the first five hundred
prime numbers, using trial division to establish primality. Write an MMIX program that
uses the “sieve of Eratosthenes” (exercise 4.5.4-8) to build a table of all odd primes that
are less than N, packed into octabytes Qo, Q1, --., @n/128—1 as in (27). Assume that
N < 2% and that it’s a multiple of 128. What is the running time when N = 35847

» 25. [15] Four volumes sit side by side on a bookshelf. Each of them contains exactly
500 pages, printed on 250 sheets of paper 0.1 mm thick; each book also has a front and
back cover whose thicknesses are 1 mm each. A bookworm gnaws its way from page 1
of Volume 1 to page 500 of Volume 4. How far does it travel while doing so?

26. [22] Suppose we want random access to a table of 12 million items of 5-bit data.
We could pack 12 such items into one 64-bit word, thereby fitting the table into 8
megabytes of memory. But random access then seems to require division by 12, which
is rather slow; we might therefore prefer to let each item occupy a full byte, thus using
12 megabytes altogether.

Show, however, that there’s a memory-efficient approach that avoids division.

27. [21] In the notation of Eqgs. (32)—(43), how would you compute (a) (a10°01°),?
(b) (@1011%)57? (c) («00°01°)2? (d) (0°°11°00°)2? (e) (0°°01°00°)2? (f) (0°11%11°),?
28. [16] What does the operation (z+1) & Z produce?

29. [20] (V. R. Pratt.) Express the magic mask p of (47) in terms of pr41.
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30. [20] If z =0, the MMIX instructions (46) will set p < 64 (which is a close enough
approximation to co). What changes to (50) and (51) will produce the same result?

31. [20] A mathematician named Dr. L. I. Presume decided to calculate the ruler
function with a simple loop as follows: “Set p < 0; then while z& 1 =0, set p+ p+1
and x < x> 1.” He reasoned that, when z is a random integer, the average number
of right shifts is the average value of p, which is 1; and the standard deviation is only
V2, so the loop almost always terminates quickly. Criticize his decision.

32. [20] What is the execution time for pz when (52) is programmed for MMIX?

33. [26] (Leiserson, Prokop, and Randall, 1998.) Show that if ‘58’ is replaced by ‘49’
in (52), we can use that method to identify both bits of the number y = 27 4 2% quickly,
when 64 > j > k > 0. (Altogether (') = 2016 cases need to be distinguished.)
34. [M23] Let z and y be 2-adic integers. True or false: (a) p(z & y) = max(pz, py);
(b) p(z | y) = min(pz, py); (c) pz = py ifand only if z @y = (z —1) ® (y — 1).
35. [M26] According to Reitwiesner’s theorem, exercise 4.1-34, every integer n has a
unique representation n = nt —n~ such that v(n*) + v(n™) is minimized. Show that
nT and n~ can be calculated quickly with bitwise operations. Hint: Prove the identity
(z®32) & ((zd3z) >1) =0.
36. [20] Given z = (ze63...%1Z0)2, suggest efficient ways to calculate the quantities
i) 2% = (m%...m?wga)g, where m? =z @D Dx1 D xo for 0 < k < 64;
it) z% = (xg‘g,...m‘fxg)z, where 2 = 2 A--- Azy Ao for 0 < k < 64.
37. [16] What changes to (55) and (56) will make A0 come out —17
38. [17] How long does the leftmost-bit-extraction procedure (57) take when imple-
mented on MMIX?
39. [20] Formula (43) shows how to remove the rightmost run of 1 bits from a given
number z. How would you remove the leftmost run of 1 bits?

40. [21] Prove (58), and find a simple way to decide if Az < Ay, given z and y > 0.

41. [M22] What are the generating functions of the integer sequences (a) pn, (b) An,
and (c) vn?

42. [M21] Ifn=2° + ... +2° withe; > --- > e, > 0, express the sum Y 70 vk
in terms of the exponents ey, ..., e,.

43. [20] How sparse should z be, to make (63) faster than (62) on MMIX?

> 44. [23] (E. Freed, 1983.) What’s a fast way to evaluate the weighted bit sum ) jz;?

v

45. [20] (T. Rokicki, 1999.) Explain how to test if < y%, without reversing z and y.

46. [22] Method (68) uses six operations to interchange two bits z; <> z; of a register.
Show that this interchange can actually be done with only three MMIX instructions.

47. [10] Can the general é-swap (69) also be done with a method like (67)?

48. [M21] How many different é-swaps are possible in an n-bit register? (When n = 4,
a d-swap can transform 1234 into 1234, 1243, 1324, 1432, 2134, 2143, 3214, 3412, 4231.)
49. [M30] Let s(n) denote the fewest §-swaps that suffice to reverse an n-bit number.
a) Prove that s(n) > [logy n] when n is odd, s(n) > [log; 3n/2] when n is even.
b) Evaluate s(n) when n =3™,2-3™, (3™ +1)/2, and (3™ —1)/2.
¢) What are s(32) and s(64)? Hint: Show that s(5n + 2) < s(n) + 2.
50. [M37] Continuing exercise 49, prove that s(n) = logg n + O(loglogn).
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51. [23] Let c be a constant, 0 < ¢ < 2¢. Find all sequences of masks (6o, 601, . .,04 1, reversal
0q—2,...,01,60) such that the general permutation scheme (71) takes z — z™, where cyclic right shift
. . . . . . . . d perfect shuffle
the bit permutation 7 is defined by either (a) jm = j @ ¢; or (b) jm = (j + ¢) mod 2°. outshuffle
[The masks should satisfy 6 C pa,r and 6x C pa,k, so that (71) corresponds to Fig. 12; transposes
see (48). Notice that reversal, ™ = z™, is the special case ¢ = 2¢ — 1 of part (a), while fast Fourier transforms
L. . . d permutation of index digits
part (b) corresponds to the cyclic right shift 2™ = (z>¢) + (z < (2% — ¢)) ] Gosper
. . s A A a t d
52. [22] Find hexadecimal constants (60,01, 02,03,04,05,04,03,02,01,00) that cause I;Z;l:il))(ofr?ultiplication
(71) to produce the following important 64-bit permutations, based on the binary Boolean matrix multiplication
representation j = (jsjajsjzjijo)2: (a) jm = (Jojsjajsjzji)z; (b) jm = (Jejrjodsjajs)z; ﬂggR
(¢) jm = (J1jodsjajaja)z; (d) jm = (jojijajajajs)2. [Case (a) is called a “perfect shuf- swap
fle” because it takes (.’Ess ...T33L32L31 - - - [Elmo)z into ($63$31 . [E33$1I32$0)2; case (b) Omega network for routing

. L S s butterfly network
transposes an 8 X 8 matrix of bits; case (c), similarly, transposes a 4 x 16 matrix; and shuffle network for routing

case (d) arises in connection with “fast Fourier transforms,” see exercise 4.6.4-14.] branching functions

53. [M25] The permutations in exercise 52 are said to be “induced by a permutation
of index digits,” because we obtain jm by permuting the binary digits of j. Suppose
Jm = (J(a=1)w - - - JrpJoy)2, where 9 is a permutation of {0,1,...,d — 1}. Prove that if
1 has t cycles, the 29-bit permutation z — z™ can be obtained with only d — ¢ swaps.
In particular, show that this observation speeds up all four cases of exercise 52.

54. [22] (R. W. Gosper, 1985.) If an m X m bit matrix is stored in the rightmost
m? bits of a register, show that it can be transposed by doing (2¥(m — 1))-swaps for
0 < k < [lgm]. Write out the method in detail when m = 7.

55. [26] Suppose an nXn bit matrix is stored in the rightmost n? bits of an n>-bit reg-
ister. Prove that 18d+ 2 bitwise operations suffice to multiply two such matrices, when
n = 2%; the matrix multiplication can be either Boolean (like MOR) or mod 2 (like MXOR).

56. [24] Suggest a way to transpose a 7 x 9 bit matrix in a 64-bit register.
57. [22] The network P(2?%) of Fig. 12 has a total of (2d — 1)2¢"" crossbars. Prove

that any permutation of 2¢ elements can be realized by some setting in which at most
d2971 of them are active.

58. [M32] The first d columns of crossbar modules in the permutation network P(2%)
perform a 1-swap, then a 2-swap, ..., and finally a 2? “swap, when the wires of the

network are stretched into horizontal lines as shown here ford = 3. 0y
Let N = 2¢. These N lines, together with the N d/2 crossbars, 1 )¢ 1
form a so-called “Omega router.” The purpose of this exercise is g 1 gg
to study the set €2 of all permutations ¢ such that we can obtain 4 )
(0,1, ..., (NN —1)¢p) as outputs on the right of an Omega router 5 5 5¢
when the inputs at the left are (0,1,...,N — 1). g T ?g

a) Prove that Q| = 2V%/2. (Thus Ig|Q| = Nd/2 ~ 1lgNL)
b) Prove that a permutation ¢ of {0,1,..., N — 1} belongs to Q if and only if

imod 2* = jmod 2¥ and ip>k=jo>k implies ip = jo (%)

forall0 <i,7< Nandall0<k<d.
¢) Simplify condition (*) to the following, for all 0 < 7,5 < N:

Mip ® jo) < p(i®j) implies i=j.

d) Let T be the set of all permutations 7 of {0,1,..., N — 1} such that p(i ® j) =
p(it@®j7) for all ¢ and j. (This is the set of branching functions considered in exer-
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cise 14, modulo 2%; so it has 2V ! members, 2V/2t9~1 of which are the animating
functions modulo 2¢.) Prove that ¢ € Q if and only if 7o € Q for all 7 € T.
e) Suppose @ and ¢ are permutations of Q2 that operate on different elements; that
is, jo # j implies ji = 7, for 0 < j < N. Prove that ¢ € Q.
59. [M30] Given 0 < a < b < N = 2%, how many Omega-routable permutations
operate only on the interval [a..b]? (Thus we want to count the number of ¢ € €2 such
that jo # j implies a < j < b. Exercise 58(a) is the special case a =0, b= N —1.)
60. [HM28] Given a random permutation of {0,1,...,2n—1}, let p,x be the proba-
bility that there are 2* ways to set the crossbars in the first and last columns of the
permutation network P(2n) when realizing this permutation. In other words, p, is the
probability that the associated graph has k cycles (see (75)). What is the generating
function Ek>0 pnkzk? What are the mean and variance of 2°7

61. [46] Is it NP-hard to decide whether a given permutation is realizable with at
least one mask 6; = 0, using the recursive method of Fig. 12 as implemented in (71)?

62. [22] Let N = 2¢. We can obviously represent a permutation 7 of {0,1,...,N -1}
by storing a table of N numbers, d bits each. With this representation we have instant
access to y = zm, given z; but it takes Q(IV) steps to find z = ym~ when y is given.
Show that, with the same amount of memory, we can represent an arbitrary
permutation in such a way that zm and ym~ are both computable in O(d) steps.

63. [19] For what integers w, z, y, and z does the zipper function satisfy (i) ziy =
yia? (i) (0iy)>2 = (@ [2/2]) 1 (y> [2/2])7 (iii) (wF2)& (y12) = (w&y)F(2&2)?
64. [22] Find a “simple” expression for the zipper-of-sums (z + z') 1 (y + ¢'), as a
function of z =z fyand 2’ =2'ty'.
65. [M16] The binary polynomial u(z) = uo + u1z + - - - + Up_12™ T (mod 2) can be
represented by the integer u = (un—1 ...u1uo0)2. If u(z) and v(z) correspond to integers
u and v in this way, what polynomial corresponds to u {v?
66. [M26] Suppose the polynomial u(z) has been represented as an n-bit integer u as
in exercise 65, and let v = u @ (u K ) B (u K 26) ® (u K 36) ® - - - for some integer 4.

a) What’s a simple way to describe the polynomial v(z)?

b) Suppose n is large, and the bits of u have been packed into 64-bit words. How

would you compute v when § = 1, using bitwise operations in 64-bit registers?

¢) Consider the same question as (b), but when § = 64.

d) Consider the same question as (b), but when § = 3.

e) Consider the same question as (b), but when § = 67.
67. [M31] If u(z) is a polynomial of degree < n, represented as in exercise 65, discuss
the computation of v(z) = u(z)?> mod (z™ + 2™ + 1), when 0 < m < n and both m
and n are odd. Hint: This problem has an interesting connection with perfect shuffling.
68. [20] What three MMIX instructions implement the §-shift operation, (79)?

69. [25] Prove that method (80) always extracts the proper bits when the masks 0
have been set up properly: We never clobber any of the crucial bits y;.

70. [31] (Guy L. Steele Jr., 1994.) What’s a good way to compute the masks 6o, 61,
..., Bq_1 that are needed in the general compression procedure (80), given x # 07

71. [17] Explain how to reverse the procedure of (80), going from the compact value
Yy = (Yr—1-.-Y1Y0)2 to a number z = (263 . ..2120)2 that has z;; = y; for 0 < i < 7.

72. [10] Simplify the expression (zfy)-|-po, when z,y < 227", (See Egs. (76) and (81).)
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73. [22] Prove that d sheep-and-goats steps will implement any 2%_bit permutation.

74. [22] Given counts (co,c1,- .. ,Cqa_4) for the Chung—Wong procedure, explain why
an appropriate cyclic 1-shift can always produce new counts (cg, ¢, . . ., cha_,) for which
> chi =Y o1, thus allowing the recursion to proceed.

75. [82] The method of Chung and Wong replicates bit [ of a register exactly ¢
times, but it produces results in scrambled order. For example, the case (cq,...,c7) =
(1,2,0,2,0,2,0,1) illustrated in the text produces (z7z3z1Zs5Z5T3T1T0)2. In some
applications this can be a disadvantage; we might prefer to have the bits retain their
original order, namely (z7Z5T52323212120)2 in that example.

Prove that the permutation network P(2%) of Fig. 12 can be modified to achieve

this goal, given any sequence of counts (cg,c1,...,Cod_y), if we replace the d - 2d-1
crossbar modules in the right-hand half by general 2 X 2 mapping modules. (A crossbar
module with inputs (a, b) produces either (a,b) or (b,a) as output; a mapping module
can also produce (a,a) or (b,b).)
76. [47] A mapping network is analogous to a sorting network or a permutation
network, but it uses 2 X 2 mapping modules instead of comparators or crossbars, and it
is supposed to be able to output all n™ possible mappings of its n inputs. Exercise 75,
in conjunction with Fig. 12, shows that a mapping network for n = 2¢ exists with only
4d—2 levels of delay, and with n/2 modules on each level; furthermore, this construction
needs general 2 X 2 mapping modules (instead of simple crossbars) in only d of those
levels.

To within O(n), what is the smallest number G(n) of modules that are sufficient
to implement a general n-element mapping network?

77. [26] (R. W. Floyd and V. R. Pratt.) Design an algorithm that tests whether
or not a given standard n-network is a sorting network, as defined in the exercises
of Section 5.3.4. When the given network has r comparator modules, your algorithm
should use O(r) bitwise operations on words of length 2.

78. [M27] (Testing disjointness.) Suppose the binary numbers z1, z2, ..., Tm each
represent sets in a universe of n — k elements, so that each x; is less than 2"k J.H.
Quick (a student) decided to test whether the sets are disjoint by testing the condition

zi|z2| | Zm = (z1+ 22+ -+ Tm) mod 2™.

Prove or disprove: Quick’s test is valid if and only if k£ > lg(m — 1).

79. [20] If z # 0 and =z C x, what is an easy way to determine the largest integer
x, < z such that z, C x? (Thus (z,)’ = (z'), = z, in connection with (84).)

80. [20] Suggest a fast way to find all maximal proper subsets of a set. More precisely,
given x with vy = m, we want to find all z C x such that vz = m — 1.

81. [21] Find aformula for “scattered difference,” to go with the “scattered sum” (86).
82. [21] Is it easy to shift a scattered accumulator to the left by 1, for example to
change (y22423Y122Y02120)2 t0 (Y12423Yoz20z120)27

83. [33] Continuing exercise 82, find a way to shift a scattered 2?-bit accumulator to
the right by 1, given z and X, in O(d) steps.

84. [25] Given n-bit numbers z = (2n—1...2120)2 and x = (Xn—1-..X1X0)2, explain
how to calculate the “stretched” quantities z «— x = (Z(n—1)\—x---21‘—x20\—x)2 and

2z — X = (Z(n=1)—y - - - Z1x 20— )2, Where

j~x=max{k |k <jand xx = 1}, j—x=min{k | k> jand xx = 1};
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we let zj—y = 0if xx =0for 0 <k <j, and zj,, =0if xxy =0 forn > k > j. For
example, if n = 11 and x = (01101110010)2, then z v~ x = (292928262625242121210)2
and z — x = (02z0282826252424242121)2.

85. [22] (K. D. Tocher, 1954.) Imagine that you have a vintage 1950s computer
with a drum memory for storing data, and that you need to do some computations
with a 32 x 32 x 32 array ali, j, k], whose subscripts are 5-bit integers in the range
0 <1,j,k < 32. Unfortunately your machine has only a very small high-speed memory:
You can access only 128 consecutive elements of the array in fast memory at any time.
Since your application usually moves from ai, 5, k] to a neighboring position a[é’, j', k'],
where |1 —¢'| + |j — j'| + |k — k'| = 1, you have decided to allocate the array so that, if

stored in drum location (ksjsaiaksjsizkzjzizk1j1i1kojoio)2. By interleaving the bits in
this way, a small change to ¢, j, or k will cause only a small change in the address.
Discuss the implementation of this addressing function: (a) How does it change
when 4, j, or k changes by £1? (b) How would you handle a random access to als, 7, ],
given i, j, and k? (c) How would you detect a “page fault” (namely, the condition that
a new segment of 128 elements must be swapped into fast memory from the drum)?

86. [M27] An array of 2P x 27 x 2" elements is to be allocated by putting a[t, j, k]
into a location whose bits are the p + g + 7 bits of (¢, 7, k), permuted in some fashion.
Furthermore, this array is to be stored in an external memory using pages of size 2°.
(Exercise 85 considers the case p = ¢ = r = 5 and s = 7.) What allocation strategy
of this kind minimizes the number of times that a[i, 7, k] is on a different page from
ali’, ', k'], summed over all 4, j, k, 7', j', and k' such that |i —i'|+|j —j'| +|k—k'| = 17
87. [20] Suppose each byte of a 64-bit word z contains an ASCII code that represents
either a letter, a digit, or a space. What three bitwise operations will convert all the
lowercase letters to uppercase?

88. [20] Given z = (z7...20)256 and y = (y7...Yo)2s6, compute z = (z7...20)256,
where z; = (z; — y;) mod 256 for 0 < j < 8. (See the addition operation in (87).)

89. [23] Givenz = (x31...Z1%0)s and y = (Y31 ... Y1Y0)4, compute z = (231 ...2120)4,
where z; = |z;/y;| for 0 < j < 32, assuming that no y; is zero.

90. [20] The bytewise averaging rule (88) always rounds downward when z; + y; is
odd. Make it less biased by rounding to the nearest odd integer in such cases.

91. [26] (Alpha channels.) Recipe (88) is a good way to compute bytewise averages,
but applications to computer graphics often require a more general blending of 8-bit
values. Given three octabytes z = (z7...%0)256, ¥ = (Y7..-Y0)256, @ = (a7 ...a0)2s6,
show that bitwise operations allow us to compute z = (27 ... 20)256, Where each byte z;
is a good approximation to ((255—a;)z; +a;y;)/255, without doing any multiplication.
Implement your method with MMIX instructions.

92. [21] What happens if the second line of (88) is changed to ‘z « (z | y) — 2’7

93. [18] What basic formula for subtraction is analogous to formula (89) for addition?
94. [21] Let ¢ = (z7...21%0)256 and t = (t7...t1t0)256 in (90). Can ¢; be nonzero
when z; is nonzero? Can t; be zero when z; is zero?

95. [22] What’s a bitwise way to tell if all bytes of z = (27 ...2Z120)256 are distinct?
96. [21] Explain (93), and find a similar formula that sets test flags t; «+ 128[z; < y;].

97. [23] Leslie Lamport’s paper in 1975 presented the following “problem taken from
an actual compiler optimization algorithm”: Given octabytes z = (z7...%0)256 and y =

Tocher
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(y7 - -yo)2s6, compute t = (t7...to)2s6 and z = (27 ...20)256 so that t; # 0 if and only
if zj #0,z; # %, and z; # y;; and z; = (z; = 07 y;: (zj # % Ay £ y;7 71 x5)).
98. [20] Given z = (.’E7 .. -930)256 and Yy = (y7 .. -y0)2567 compute z = (27 .. .Z0)256

and w = (w7 ... wo)2s6, where z; = max(z;,y;) and w; = min(z;,y;) for 0 < j < 8.

99. [28] Find hexadecimal constants a, b, ¢, d, e such that the six bitwise operations

yez0a, t ((y&b)+0)y)dd)&e

will compute the flags ¢ = (f7 ... f1f0)256 K7 from any bytes x = (27 ...z1%0)256, Where

fo=[zo="1], fi=[z1# %], fo=[22<’X’], fs=[23>72°], fa=[za2> 2’],
.f5: [3356{,0’,’1’7---7,9’}]7 fﬁ = [$6S168]7 f7: [$7E{’<,,’=’,’>’,’?’}]-

100. [25] Suppose = (z15...2Z1%0)16 and ¥ = (y15...Y1Yo)16 are binary-coded dec-
tmal numbers, where 0 < z;,y; < 10 for each j. Explain how to compute their sum
u = (u15 ... u1u0)16 and difference v = (v1s . ..v1v0)16, Where 0 < u;,v; < 10 and

(U15 e u1u0)10 = (($15 PP [Eliﬂo)lo -|- (y15 P ylyO)IO) IIlOd 1016,

(U15 e ’1)11)0)10 = (((E15 - 331(130)10 — (y15 - ylyo)lo) mod 1016,
without bothering to do any radix conversion.

101. [22] Two octabytes z and y contain amounts of time, represented in five fields
that respectively signify days (3 bytes), hours (1 byte), minutes (1 byte), seconds
(1 byte), and milliseconds (2 bytes). Can you add and subtract them quickly, without
converting from this mixed-radix representation to binary and back again?

102. [25] Discuss routines for the addition and subtraction of polynomials modulo 5,
when (a) 16 4-bit coefficients or (b) 21 3-bit coefficients are packed into a 64-bit word.

103. [22] Sometimes it’s convenient to represent small numbers in unary notation, so
that 0, 1, 2, 3, ..., k appear respectively as (0)a, (1)2, (11)2, (111)a2, ..., 2¥ — 1 inside
the computer. Then max and min are easily implemented as | and &.

Suppose the bytes of z = (z7...20)256 are such unary numbers, while the bytes
of y = (y7..-yo0)256 are all either 0 or 1. Explain how to “add” y to x or “subtract” y
from z, giving u = (u7 ... u0)256 and v = (v7...vg)256 Where

_ Qmin(g,lg(zj+1)+yj) -1 _ Qmax(O,lg(Zj+1)—yj) -1

uj and vj

104. [22] Use bitwise operations to check the validity of a date represented in “year-
month-day” fields (y,m,d) as in (22). You should compute a value ¢ that is zero if and
only if 1900 < y < 2100, 1 < m < 12, and 1 < d < maz_day(m), where month m has
at most maz_day(m) days. Can it be done in fewer than 20 operations?

105. [30] Given z = (z7...%o0)2s6 and y = (y7...%Yo)2s6, discuss bitwise operations
that will sort the bytes into order, so that o < yo < --- < z7 < y7 afterwards.

106. [27] Explain the Fredman—Willard procedure (95). Also show that a simple
modification of their method will compute 2*® without doing any left shifts.

107. [22] Implement Algorithm B on MMIX when d = 4, and compare it with (56).
108. [26] Adapt Algorithm B to cases where n does not have the form d - 2¢.
109. [20] Evaluate pz for n-bit numbers z in O(loglogn) broadword steps.
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> 110. [30] Suppose n = 22° and 0 < z < n. Show how to compute 1 < z in O(e) extract the most significant bit
broadword steps, using only shift commands that shift by a constant amount. (Together pattern .
. . I . . strong broadword chain
with Algorithm B we can therefore extract the most significant bit of an n-bit number broadword chain, strong
in O(loglogn) such steps.) 2-adic chains
rational 2-adic numbers
111. [23] Explain the 01" pattern recognizer, (98). regular language
shifts
112. [46] Can all occurrences of the pattern 170 be identified in O(1) broadword steps? branches

monus

113. [28] A strong broadword chain is a broadword chain of a specified width n that
is also a 2-adic chain, for all n-bit choices of zo. For example, the 2-bit broadword
chain (zo,z1) with 1 = zo + 1 is not strong because o = (11)2 makes z1 = (00)2.
But (zo,21,...,%4) is a strong broadword chain that computes (zo 4+ 1) mod 4 for all
O0<zo<difwesetz1 =zo®1l,z2=20& 1, 23 =22 K 1, and x4 = 1 D x3.

Given a broadword chain (zo, z1, . . ., z,) of width n, construct a strong broadword
chain (zg, z1,...,z,) of the same width, such that r' = O(r) and (zo,z1,...,z,) is a
subsequence of (x4, ], ..., T).

114. [16] Suppose (zo,Z1,-..,Zr) is a strong broadword chain of width n that com-
putes the value f(z) = z, whenever an n-bit number z = zo is given. Construct a
broadword chain (Xq, X1, ..., X,) of width mn that computes X, = (f(&1) ... f(&m))2n
for any given mn-bit value Xo = (£1...&m)2n, where 0 < &1,...,&m < 2",

> 115. [24] Given a 2-adic integer z = (...z2x1Z0)2, we might want to compute y =
(...y2y1Y0)2 = f(z) from z by zeroing out all blocks of consecutive 1s that (a) are
not immediately followed by two 0Os; or (b) are followed by an odd number of Os
before the next block of 1s begins; or (¢) contain an odd number of 1s. For exam-
ple, if z is (...01110111001101000110)2 then y is (a) (...00000111000001000110)2;
(b) (...00000111000000000110)s; (c) (...00000000001100000110),. (Infinitely many
Os are assumed to appear at the right of zo. Thus, in case (a) we have

Yi = o A ((Tj-1AZj—2) V (2, 1ATj—2ATj—3) V (21 AT 2 AT —3ATj—a) V -+ )

for all j, where z; = 0 for £ < 0.) Find 2-adic chains for y in each case.

116. [HM30] Suppose z = (...z2z1%0)2 and y = (...y2y1Y0)2 = f(z), where y is
computable by a 2-adic chain having no shift operations. Let L be the set of all binary
strings such that y; = [z; ...z120 € L], and assume that all constants used in the chain
are rational 2-adic numbers. Prove that L is a regular language. What languages L
correspond to the functions in exercise 115(a) and 115(b)?

117. [HM46] Continuing exercise 116, is there any simple way to characterize the reg-
ular languages L that arise in shift-free 2-adic chains? (The language L = 0*(10*10*)*
does not seem to correspond to any such chain.)

118. [80] According to Lemma A, we cannot compute the function z > 1 for all n-
bit numbers x by using only additions, subtractions, and bitwise Boolean operations
(no shifts or branches). Show, however, that O(n) such operations are necessary and
sufficient if we include also the “monus” operator y — z in our repertoire.

119. [20] Evaluate the function fpy(z) in (102) with four broadword steps.

> 120. [M25] There are 272™" functions that take n-bit numbers (z1,-..,Zm) into an
n-bit number f(z1,...,Zm). How many of them can be implemented with addition,
subtraction, multiplication, and nonshift bitwise Boolean operations (modulo 2™)?7

> 121. [M25] By exercise 3.1-6, a function from [0..2") into itself is eventually periodic.
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a) Prove that if f is any n-bit broadword function that can be implemented without
shift instructions, the lengths of its periods are always powers of 2.

b) However, for every p between 1 and n, there’s an n-bit broadword chain of length 3
that has a period of length p.

122. [M22] Complete the proof of Lemma B.

123. [M23] Let ag be the constant 1+ 29 4+ 229 4+ ... 4+ 20607 = (22° _ 1) /(27 — 1),
Using (104), show that there are infinitely many g such that the operation of multiplying
by aq, modulo 29% requires Q(log q) steps in any n-bit broadword chain with n > ¢*.

124. [M38] Complete the proof of Theorem R’ by defining an n-bit broadword chain
(z0,z1,...,zf) and sets (Uo, Us, ..., Uy) such that, for 0 < ¢t < f, all inputs z € U; lead
to an essentially similar state Q(z,t), in the following sense: (i) The current instruction
in Q(z,t) does not depend on z. (ii) If register r; has a known value in Q(z, t), it holds
zjr for some definite index j' < ¢. (iii) If memory location M|[z] has been changed, it
holds z,» for some definite index 2" < t. (The values of j' and 2" depend on j, z,
and t, but not on z.) Furthermore |U;| > n/22'~1, and the program cannot guarantee
that 71 = px when t < f. Hint: Lemma B implies that a limited number of shift
amounts and memory addresses need to be considered when ¢ is small.

125. [M33] Prove Theorem P'. Hint: Lemma B remains true if we replace ‘= 0’ by
‘= @’ in (103), for any values as,.

126. [M46] Does the operation of extracting the most significant bit, 2X2
Q(loglogn) steps in an n-bit basic RAM? (See exercise 110.)

127. [HM40] Prove that at least Q(logn/loglogn) broadword steps are needed to
compute the parity function, (vz) mod 2, using the theory of circuit complexity. [Hint:
Every boardword operation is in complexity class ACo.]

128. [M46] Can (vz)mod 2 be computed in O(logn/loglogn) broadword steps?
129. [M46] Does sideways addition require 2(logn) broadword steps?

130. [M46] Is there an n-bit constant a such that the function (a < z) mod 2" requires
Q(log n) n-bit broadword steps?

, require

131. [28] Write an MMIX program for Algorithm R when the graph is represented by
arc lists. Vertex nodes have at least two fields, called LINK and ARCS, and arc nodes have
TIP and NEXT fields, as explained in Section 7. Initially all LINK fields are zero, except
in the given set of vertices (), which is represented as a circular list. Your program
should change that circular list so that it represents the set R of all reachable vertices.

132. [M27] A clique in a graph is a set of mutually adjacent vertices; a clique is
mazimal if it’s not contained in any other. The purpose of this exercise is to discuss
an algorithm due to J. K. M. Moody and J. Hollis, which provides a convenient way
to find every maximal clique of a not-too-large graph, using bitwise operations.
Suppose G is a graph with n vertices V = {0,1,...,n — 1}. Let p, = > {2* |
u— v or u = v} be row v of G’s reflexive adjacency matrix, and let §, = > {2* |
u # v} = 2" —1— 2", Every subset U C V is representable as an n-bit integer
o(U) = >, cu 2"; for example, §, = (V' \ v). We also define the bitwise intersection

T(U) = 0<<%£<n(u € U? pu: bu).

For example, if n = 5 we have 7({0,2}) = po & 61 & p2 & 3 & 4.
a) Prove that U is a clique if and only if 7(U) = o(U).
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b) Show that if 7(U) = o(T') then T is a clique.
¢) For 1 < k < n, consider the 2% bitwise intersections

— 2 . _
Ck {OS§z<k(ueU.pu.5u) Uc{o,1,...,k 1}},

and let C’,j' be the maximal elements of C. Prove that U is a maximal clique if
and only if o(U) € C;.
d) Explain how to compute C; from C}_,, starting with Cj" = {2" — 1}.
> 133. [20] Given a graph G, how can the algorithm of exercise 132 be used to find
(a) all maximal independent sets of vertices? (b) all minimal vertex covers (sets that
hit every edge)?
134. [15] Nine classes of mappings for ternary values appear in (119), (123), and (124).
To which class does the representation (128) belong, if a =0, b = %, ¢ = 1?
135. [22] Lukasiewicz included a few operations besides (127) in his three-valued logic:
—z (negation) interchanges 0 with 1 but leaves * unchanged; oz (possibility) is defined
as —¢ = z; oz (necessity) is defined as —¢—z; and z < y (equivalence) is defined as
(z=y) A (y=z). Explain how to perform these operations using representation (128).
136. [29] Suggest two-bit encodings for binary operations on the set {a,b,c} that are
defined by the following “multiplication tables”:

abec acb aba
(a) <bcc); (b) <cba>; (c) (aac)-
ccec bac abc

137. [21] Show that the operation in exercise 136(c) is simpler with packed vectors
like (131) than with the unpacked form (130).

138. [24] Find an example of three-state-to-two-bit encoding where class V, is best.

139. [25] If z and y are signed bits 0, +1, or —1, what 2-bit encoding is good for
calculating their sum (z122)s =  + y, where z; and 2, are also required to be signed
bits? (This is a “half adder” for balanced ternary numbers.)
140. [27] Design an economical full adder for balanced ternary numbers: Show how
to compute signed bits u and v such that 3u+v = z+y+ 2 when z,y, 2z € {0,+1, —1}.
> 141. [30] The Ulam numbers (U1,Us,...) = (1,2,3,4,6,8,11,13,16,18,26,...) are
defined for n > 3 by letting U, be the smallest integer > U,_; that has a unique
representation U, = U; 4+ Uy for 0 < j < k < n. Show that a million Ulam numbers
can be computed rapidly with the help of bitwise techniques.
> 142. [38] A subcube such as *10%1%01 can be represented by asterisk codes 10010100
and bit codes 01001001, as in (85); but many other encodings are also possible. What
representation scheme for subcubes works best, for finding prime implicants by the
consensus-based algorithm of exercise 7.1.1-317
143. [20] Let = be a 64-bit number that represents an 8 x 8 chessboard, with a 1 bit
in every position where a knight is present. Find a formula for the 64-bit number f(z)
that has a 1 in every position reachable in one move by a knight of x. For example,
the white knights at the start of a game correspond to x = #42; then f(z) = #a51800.
144. [16] What node is the sibling of node j in a sideways heap? (See (134).)
145. [17] Interpret (137) when h is less than the height of j.

> 146. [M20] Prove Eq. (138), which relates the p and X functions.
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> 147. [M20] What values of mv, Bv, av, and 7j occur in Algorithm V when the forest is
a) the empty digraph with vertices {v1,...,vn} and no arcs?
b) the oriented path v, — -+ —va —v17?

148. [M21] When preprocessing for Algorithm V, is it possible to have Szs —*
By2 —* Brs —" Byi1 — Bxr1 in S when z3 — 22 — 21 — A and yo —y1 — A in
the forest? (If so, two different trees are “entangled” in S.)

149. [28] Design a preprocessing procedure for Algorithm V.

150. [25] Given an array of elements A1, ..., Ay, the range minimum query problem
is to determine k(i, j) such that Ay j) = min(As,. .., A;) for any given indices ¢ and j
with 1 < ¢ < j < n. Prove that Algorithm V will solve this problem, after O(n) steps of
preprocessing on the array A have prepared the necessary tables (7, 8, o, 7). Hint: Con-
sider the binary search tree constructed from the sequence of keys (p(1),p(2), .. .,p(n)),
where p is a permutation of {1,2,...,n} such that Ap1) < App) < -+ < Ay(y).

151. [22] Conversely, show that any algorithm for range minimum queries can be used
to find nearest common ancestors, with essentially the same efficiency.
152. [M21] Prove that Algorithm V is correct.

153. [M20] The pointers in a navigation pile like (144) can be packed into a binary
string such as

0/10(0{100(0{00f{1{0 10 0{0{00|0|000

2| 4 |6 8 10[ 12 (14 16 18/ 20 (22| 24

At what bit position (from the left) does the pointer for node j end?

154. [20] The gray lines in Fig. 14 show how each pentagon is composed of ten
triangles. What decomposition of the hyperbolic plane is defined by those gray lines
alone, without the black pentagon edges?

155. [M21] Prove that (z¢$) mod 1 = (a0),,4 when « is the negaFibonacci code for z.

156. [21] Design algorithms (a) to convert a given integer z to its negaFibonacci
code a, and (b) to convert a given negaFibonacci code a to z = N(«).

157. [M21] Explain the recursion (148) for negaFibonacci predecessor and successor.

158. [M26] Let @ = an...a1 be the binary code for F(a0) = anFny1 + -+ + a1 F2
in the standard Fibonacci number system (146). Develop methods analogous to (148)
and (149) for incrementing and decrementing such codewords.

159. [M384] Exercise 7 shows that it’s easy to convert between the negabinary and
binary number systems. Discuss conversion between negaFibonacci codewords and the
ordinary Fibonacci codes in exercise 158.

160. [M29] Prove that (150) and (151) yield consistent code labels for the pentagrid.

161. [20] The cells of a chessboard can be colored black and white, so that neighboring
cells have different colors. Does the pentagrid also have this property?

162. [HM37] Explain how to draw the pentagrid, Fig. 14. What circles are present?

163. [HM/1] Devise a way to navigate through the triangles in the tiling of Fig. 18.

164. [23] The original definition of custerization in 1957 was not (157) but
CuSter’(X) =X & N(XNW & XN & XNE & XW & XE & XSW & XS & XSE)-

Why is (157) preferable?
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165. [21] (R. A. Kirsch.) Discuss the computation of the 3 x 3 cellular automaton with
X = custer(X®) = ~X O & (X | X&) | X8 | x).

166. [M23] Let f(M,N) be the maximum number of black pixels in an M x N
bitmap X for which X = custer(X). Prove that f(M,N) = §MN + O(M + N).

167. [24] (Life.) If the bitmap X represents an array of cells that are either dead (0)
or alive (1), the Boolean function

f(fENw, e

can lead to astonishing life histories when it governs a cellular automaton as in (158).

yLyen 7$SE) = [2 < Inw+2INnT+INe+Tw+ %$+$E+-’Esw+$s+$SE < 4]

a) Find a way to evaluate f with a Boolean chain of 26 steps or less.
b) Let X ]@ denote row j of X at time ¢. Show that X ](H'l) can be evaluated in

at(r)nost 23 broadword steps, as a function of the three rows X J(-t_)l, X J(-t), and
XM
j+1

168. [23] To keep an image finite, we might insist that a 3 x 3 cellular automaton
treats a M x N bitmap as a torus, wrapping around seamlessly between top and bottom
and between left and right. The task of simulating its actions efficiently with bitwise
operations is somewhat tricky: We want to minimize references to memory, yet each
new pixel value depends on old values that lie on all sides. Furthermore the shifting of
bits between neighboring words tends to be awkward, taxing the capacity of a register.
Show that such difficulties can be surmounted by maintaining an array of n-bit
words Ajp for0 < j < Mand 0< k< N' =[N/(n—2)]. Ifj # M and k # 0, word Aj,
should contain the pixels of row j and columns (k — 1)(n — 2) through k(n — 2) + 1,
inclusive; the other words Ay and Ajo provide auxiliary buffer space. (Notice that
some bits of the raster appear twice.)
169. [22] Continuing the previous two exercises, what happens to the Cheshire cat of
Fig. 17(a) when it is subjected to the vicissitudes of Life, in a 26 x 31 torus?
170. [21] What result does the Guo—Hall thinning automaton produce when given a
solid black rectangle of M rows and N columns? How long does it take?
171. [24] Find a Boolean chain of length < 25 to evaluate the local thinning function
g(znw, TN, TnE, Tw, T, Tsw, Ts, Tsg) Of (159), with or without the extra cases in (160).

172. [M29] Prove or disprove: If a pattern contains three black pixels that are king-
neighbors of each other, the Guo—Hall procedure extended by (160) will reduce it,
unless none of those pixels can be removed without destroying the connectivity.
173. [M30] Raster images often need to be cleaned up if they contain noisy data. For
example, accidental specks of black or white may well spoil the results when a thinning
algorithm is used for optical character recognition.

Say that a bitmap X is closed if every white pixel is part of a 2 X 2 square of
white pixels, and open if every black pixel is part of a 2 X 2 square of black pixels. Let

XP = &{V|YDXandYisclosed}; X" = |{Y|Y C X and Y is open}.
A bitmap is called clean if it equals XPT for some X. We might, for example, have
x=4H~; x°=J; x""=»21
In general XP is “darker” than X, while XT is “lighter”: XP D X D XL,

a) Prove that (XPL)PL = XPL. Hint: X CY implies XP C YP and XL C YL
b) Show that X D can be computed with one step of a 3 x 3 cellular automaton.
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174. [M46] (M. Minsky and S. Papert.) Is there a three-dimensional shrinking algo- Minsky
rithm that preserves connectivity, analogous to (161)7 Papert
shrinking
175. [15] How many rookwise connected black components does the Cheshire cat have? Cheshire cat
176. [M24] Let G be the graph whose vertices are the black pixels of a given bitmap X, Eigs:isf: ﬁﬁﬁﬁzcted
with ¥ — v when u and v are a king move apart. Let G’ be the corresponding graph rookwise connected
after the shrinking transformation (161) has been applied. The purpose of this exercise i‘;‘;g;i;cli:dness tree
is to show that the number of connected components of G’ is the number of components conic
of G minus the number of isolated vertices of G. ’T1°n°t°n%° parts hod
Let Niijy = {(i,5), (i—1,7), (i—1,5+1), (3,5+1)} be pixel (i,]) together with its  pore oo o oo
north and/or east neighbors. For each v € G let S(v) = {v' € G’ | v' € N, }. straight line
a) Prove that S(v) is empty if and only if v is isolated in G. f(fj;ﬁ;:phnes+
b) If u—wv in G, v’ € S(u), and v’ € S(v), prove that v' —* ¢v' in G'. parabola
c) For each v' € G' let S'(v') = {v € G| v' € Ny}. Is S'(v') always nonempty?
d) If ' —+' in G, u € S'(v'), and v € S’'(v"), prove that u—" v in G.
)

@

Hence there’s a one-to-one correspondence between the nontrivial components
of G and the components of G’.

177. [M22] Continuing exercise 176, prove an analogous result for the white pixels.
178. [20] If X is an M X N bitmap,
let X* be the M x (2N + 1) bitmap
X (X | (X «1)). Show that the
kingwise connected components of
X* are also rookwise connected, and
that bitmap X* has the same “sur-
roundedness tree” (162) as X.
> 179. [34] Design an algorithm that constructs the surroundedness tree of a given
M x N bitmap, scanning the image one row at a time as discussed in the text. (See
(162) and (163).)
» 180. [M24] Digitize the hyperbola y*> = 2° + 13 by hand, for 0 < y < 7.
181. [HM20] Explain how to subdivide a general conic (168) with rational coefficients
into monotonic parts so that Algorithm T applies.
182. [M81] Why does the three-register method (Algorithm T) digitize correctly?
> 183. [M29] (G. Rote.) Explain why Algorithm T might fail if condition (v) is false.
> 184. [M22] Find a quadratic form Q'(z,y) so that, when Algorithm T is applied to
(z',y'), (z,y), and @', it produces exactly the same edges as it does from (z,y), (z',y'),
and @, but in the reverse order.
> 185. [22] Design an algorithm that properly digitizes a straight line from (&,7) to
(&',n"), when &, m, £, and 1’ are rational numbers, by simplifying Algorithm T.

186. [HM22] Given three complex numbers (zo, 21, 22), consider the curve traced out by
B(t) = (1—=1)%20 +2(1 = t)tz1 + t722, for 0 <t < 1.

a) What is the approximate behavior of B(t) when ¢ is near 0 or 17

b) Let S(zo0,21,22) = {B(t) | 0 <t < 1}. Prove that all points of S(zo, 21, 22) lie
on or inside the triangle whose vertices are zo, 21, and z».

¢) True or false? S(w + (zo,w + (21, w + C2z2) = w + (S(20, 21, 22)-

d) Prove that S(zo, z1,22) is part of a straight line if and only if zg, 21, and 2z, are
collinear; otherwise it is part of a parabola.
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e) Prove that if 0 < # < 1, we have the recurrence
S(Zo, 21, 22) = S’(Zo7 (1—0)20 =+ 021, B(O)) @] S(B(O), (1—9)21 + 922, Z2).

187. [M29] Continuing exercise 186, show how to digitize S(zo, z1, 22) using the three-
register method (Algorithm T). For best results, the digitizations of S(z2,21,20) and
S(zo0, 21, z2) should produce the same edges, but in reverse order.

188. [25] Given a 64 x 64 bitmap, what’s a good way (a) to transpose it, or (b) to
rotate it by 90°, using operations on 64-bit numbers?

189. [25] Bitmap images can often be viewed conveniently using pixels that are shades
of gray instead of just black or white. Such gray levels typically are 8-bit values that
range from 0 (black) to 255 (white); notice that the black/white convention is tradition-
ally reversed with respect to the 1-bit case. An m X n bitmap whose resolution is 600
dots per inch corresponds nicely to the (m/8) x (n/8) grayscale image with 75 pixels
per inch that is obtained by mapping each 8 x 8 subarray of 1-bit pixels into the gray
level [255(1 — k/64)Y/7 + 1], where v = 1.3 and k is the number of 1s in the subarray.
Write an MMIX routine that converts a given m X n array BITMAP into the corre-
sponding (m/8) x (n/8) image GRAYMAP, assuming that m = 8m' and n = 64n’.
190. [23] A parity pattern of length m and width n is an m X n matrix of Os and 1s
with the property that each element is the sum of its neighbors, mod 2. For example,

0011 100 01110

11 0100 01010 110 10101
00, 1101’ 11011, 101, and 11011
11 0101 01010 011 10101
001 01110

are parity patterns of sizes 3 x 2,4 x 4,3 x 5,5 x 3, and 5 x 5.
a) If the binary vectors au, aa, ..., am are the rows of a parity pattern, show that

s, ..., am can all be computed from the top row a; by using bitwise operations.
Thus at most one m X n parity pattern can begin with any given bit vector.

b) True or false: The sum (mod 2) of two m X n parity patterns is a parity pattern.

¢) A parity pattern is called perfect if it contains no all-zero row or column. For
example, three of the matrices above are perfect, but the 3 x 2 and 3 x 5 examples
are not. Show that every m X mn parity pattern contains a perfect parity pattern
as a submatrix. Furthermore, all such submatrices have the same size, m’ x n’,
where m' + 1 is a divisor of m + 1 and n’ + 1 is a divisor n + 1.

d) There’s a perfect parity pattern whose first row is 0011, but there is no such
pattern beginning with 01010. Is there a simple way to decide whether a given
binary vector is the top row of a perfect parity pattern? nl

e) Prove that there’s a unique perfect parity pattern that begins with 10...0.

191. [M380] A wraparound parity pattern is analogous to the parity patterns of exer-
cise 190, except that the leftmost and rightmost elements of each row are also neighbors.
a) Find a simple relation between the parity pattern of width n that begins with «
and the wraparound parity pattern of width 2n + 2 that begins with 0a0a®.
b) The Fibonacci polynomials F(z) are defined by the recurrence

Fo(CE) = O, Fl(:c) = 1, and Fj+1($) = :I?FJ(CE) + Fj_l(:I,‘) for _j Z 1.

Show that there’s a simple relation between the wraparound parity patterns that
begin with 10...0 (N—1 zeros) and the Fibonacci polynomials modulo = + 1.
Hint: Consider Fj (m_l + 1+ z), and do arithmetic mod 2 as well as mod zN+ 1.
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¢) If « is the binary string a1 ...an, let fo(z) = a1z + - -+ + anz™. Show that
fla0amy(@) = (fa(z) + fo(z 1)) Fj(z '4+142z) mod (2" + 1) and mod 2,
J J

when N = 2n+2 and ¢; is row j of a width-n parity pattern that begins with «.

d) Consequently we can compute a; from « in only O(n?log j) steps. Hints: See ex-
ercise 4.6.3-26; and use the identity Finin(2) = Fim(2) Fot1(2) + Fr—1(z) Fo(z),
which generalizes Eq. 1.2.8—(6).

192. [HM38] The shortest parity pattern that begins with a given string can be quite
long; for example, it turns out that the perfect pattern of width 120 whose first row is
10...0 has length 36,028,797,018,963,966(!). The purpose of this exercise is to consider
how to calculate the interesting function

¢(q) = 1+ max{m | there exists a perfect parity pattern of length m and width ¢g—1},

whose initial values (1, 3,4,6,5,24,9,12,28) for 1 < ¢ < 9 are easy to compute by hand.

a) Characterize ¢(q) algebraically, using the Fibonacci polynomials of exercise 191.

b) Explain how to calculate ¢(q) if we know a number M such that ¢(q) divides M,
and if we also know the prime factors of M.

¢) Prove that ¢(2%) = 3-2°"! when e > 0. Hint: Fze(y) has a simple form, mod 2.

d) Prove that when q is odd and not a multiple of 3, ¢(q) is a divisor of 2%¢ — 1,
where e is the order of 2 modulo ¢. Hint: Fje_1(y) has a simple form, mod 2.

e) What happens when g is an odd multiple of 37

f) Finally, explain how to handle the case when g is even.

193. [M21] If a perfect m x n parity pattern exists,
when m and n are odd, show that there’s also a perfect
(2m+1) X (2n+1) parity pattern. (Intricate fractals arise
when this observation is applied repeatedly; for example,
the 5 x 5 pattern in exercise 190 leads to Fig. 20.)

194. [M24] Find all n < 383 for which there exists a
perfect n X n parity pattern with 8-fold symmetry, such
as the example in Fig. 20. Hint: The diagonal elements Fig. 20. A perfect

of all such patterns must be zero. 383 x 383 parity pattern.

195. [HM25] Let A be a binary matrix having rows

ai, ..., am of length n. Explain how to use bitwise operations to compute the
rank m — r of A over the binary field {0,1}, and to find linearly independent binary
vectors 61, ..., 0 of length m such that ;A =0...0 for 1 < j < r. Hint: See the
“triangularization” algorithm for null spaces, Algorithm 4.6.2N.

196. [21] (K. Thompson, 1992.) Integers in the range 0 < z < 2*' can be encoded as
a string of up to six bytes a(z) = a1 ...q; in the following way: If z < 27, set [ + 1 and
ay < . Otherwise let £ = (x5 ... Z120)6a; set | « [(Az)/5], a1 + 28 —28"'42; 4, and
aj =274, for 2 < j < I. Notice that a(z) contains a zero byte if and only if z = 0.
a) What are the encodings of #a, #3a3, #7097, and #1d141?
b) If z < z', prove that a(z) < a(z') in lexicographic order.
¢) Suppose a sequence of values zMz® 2™ has been encoded as a byte string
a(zM)a(z@)...a(@™), and let ax be the kth byte in that string. Show that
it’s easy to determine the value (¥ from which oy came, by looking at a few of
the neighboring bytes if necessary.

fractals

0-1 matrix

rank
triangularization
null spaces
Thompson
multibyte encoding+
lexicographic order
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197. [22] The Universal Character Set (UCS), also known as Unicode, is a standard
mapping of characters to integer codepoints z in the range 0 < 2 < 22° + 2. An
encoding called UTF-16 represents such integers as one or two wydes S(z) = (1 or
B(z) = B1fe, in the following way: If z < 2'® then 8(z) = z; otherwise

B1 = #4800 + |y/2"°| and B2 = #dc00 + (y mod 2'°), where y = = — 2'6.

Answer questions (a), (b), and (c) of exercise 196 for this encoding.

> 198. [21] Unicode characters are often represented as strings of bytes using a scheme
called UTF-8, which is the encoding of exercise 196 restricted to integers in the range
0 < z < 22°42'®_ Notice that UTF-8 efficiently preserves the standard ASCII character
set (the codepoints with = < 27), and that it is quite different from UTF-16.
Let a1 be the first byte of a UTF-8 string a(z). Show that there are reasonably
small integer constants a, b, and ¢ such that only four bitwise operations

(a> ((e1>b)&c)) &3

suffice to determine the number [ — 1 of bytes between a3 and the end of a(z).

» 199. [28] A person might try to encode #a as #c08a or #e0808a or #£080808a in
UTF-8, because the obvious decoding algorithm produces the same result in each case.
But such unnecessarily long forms are illegal, because they could lead to security holes.

Suppose a1 and oy are bytes such that oy > #80 and #80 < as < #c0. Find
a branchless way to decide whether a; and as are the first two bytes of at least one
legitimate UTF-8 string a(x).
200. [20] Interpret the contents of register $3 after the following three MMIX instruc-
tions have been executed: MOR $1,$0,#94; MXOR $2,$0,#94; SUBU $3,$1,$2.
201. [20] Suppose z = (z15...Z1Zo0)16 has sixteen hexadecimal digits. What one
MMIX instruction will change each nonzero digit to £, while leaving zeros untouched?
202. [20] What two instructions will change an octabyte’s nonzero wydes to #*££££?
203. [22] Suppose we want to convert a tetrabyte z = (z7...z1z0)16 to the octabyte
y = (Y7...Y1Y0)256, Where y; is the ASCII code for the hexadecimal digit z;. For
example, if z = #1234abcd, y should represent the 8-character string "1234abcd".
What clever choices of five constants a, b, ¢, d, and e will make the following MMIX
instructions do the job?

MOR t,x,a; SLUs,t,4; XOR t,s,t; AND t,t,b;
ADD t,t,c; MOR s,d,t; ADD t,t,e; ADDy,t,s.
> 204. [22] What are the amazing constants p, g, r, m that achieve a perfect shuffle
with just six MMIX commands? (See (175)—(178).)
> 205. [22] How would you perfectly unshuffle on MMIX, going from w in (175) back to z?

206. [20] The perfect shuffle (175) is sometimes called an “outshuffle,” by comparison
with the “inshuffle” that takes z — y Iz = (ys1Zs1...¥121Y0%0)2; the outshuffle
preserves the leftmost and rightmost bits of z, but the inshuffle has no fixed points.
Can an inshuffle be performed as efficiently as an outshuffle?

207. [22] UseMOR to perform a 3-way perfect shuffle or “triple zip,” taking (zes . .. Zo0)2
to ($21£C42$63.’1320 . $2$23$44£C1$22:E43.’E0)2, as well as the inverse of this shuffle.

> 208. [28] What’s a fast way for MMIX to transpose an 8 x 8 Boolean matrix?
» 209. [21] Is the suffix parity operation z® of exercise 36 easy to compute with MXOR?

Universal Character Set
UcCs

Unicode

UTF-16: 16-bit UCS Transformation Format
UTF-8

ASCII

packing

fractional precision
table lookup by shifting
wyde: a 16-bit quantity
byte: an 8-bit quantity
nybble: a 4-bit quantity
nyp: a 2-bit quantity
tetrabyte or tetra: a 32-bit quantity
octabyte or octa: a 64-bit quantity
security

branchless
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MXOR+

hexadecimal digits
masks

ASCII

hexadecimal digit
perfect shuffle
outshuffle
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transpose
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210. [22] A puzzle: Register x contains a number 85+k, where 0 < j,k < 8. Registers
a and b contain arbitrary octabytes (a7 ...a1ao0)2s6 and (b7 . ..b1bo)2s6. Find a sequence
of four MMIX instructions that will put a; & by into register x.

211. [M25] The truth table of a Boolean function f(z1,...,xs) is essentially a 64-bit
number f = (£(0,0,0,0,0,0)...£(1,1,1,1,1,0)f(1,1,1,1,1,1)),. Show that two MOR
instructions will convert f to the truth table of the least monotone Boolean function,
f , that is greater than or equal to f at each point.

212. [M82] Suppose a = (aes . . .a1a0)2 represents the polynomial
a(z) = (aes - - - a1a0)z = ae3z + -+ a1z + ao.

Discuss using MXOR to compute the product c(z) = a(z)b(z), modulo z** and mod 2.
213. [HM26] Implement the CRC procedure (183) on MMIX.

214. [HM28] (R. W. Gosper.) Find a short, branchless MMIX computation that com-
putes the inverse of any given 8 x 8 matrix X of 0s and 1s, modulo 2, if det X is odd.
215. [21] What’s a quick way for MMIX to test if a 64-bit number is a multiple of 37
216. [M26] Given n-bit integers z1,...,zm > 0, n > Am, compute in O(m) steps the
least y > O such that y ¢ {a1z1+ - “+amZm | a1,-..,am € {0,1}}, if Az takes unit time.
217. [40] Explore the processing of long strings of text by packing them in a “trans-

posed” or “sliced” manner: Represent 64 consecutive characters as a sequence of eight
octabytes wo ... w7, where wy contains all 64 of their kth bits.

truth table

monotone Boolean function
polynomial multiplication
MXOR

CRC

Gosper

branchless

inverse

matrix X of Os and 1s
Divisibility by 3

Az

missing subset sum
subset sum, first missing
transposed
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SECTION 7.1.3

1. These operations interchange the bits of z and y in positions where m is 1. (In
particular, if m = —1, the step ‘y + y ® (z & m)’ becomes just ‘y < y @ z’, and the
three assignments will swap z <> y without needing an auxiliary register. H. S. Warren,
Jr., has located this trick in vintage-1961 IBM programming course notes.)

2. All three hold when z and y are nonnegative, or if we regard x and y as “unsigned
2-adic integers” in which 0 < 1 < 2 < -+ < =3 < —2 < —1. But if negative integers
are less than nonnegative integers, (i) fails if and only if z < 0 and y < 0; (ii) and (iii)
fail if and only if z @ y < 0, namely, if and only if z < 0 and y > 0 or z > 0 and y < 0.

3. Note that z —y = (z @ y) — 2(Z & y) (see exercise 93). By removing bits common
to z and y at the left, we may assume that z,_1 =1 and yn,—1 = 0. Then 2(Z & y) <
20@zoy) -2""N)=(@oy) -@zey¥ -1

4. 2N =z +1 =25, by (16). Hence V€ = gVOSF = g NOONP — pNNP _ ;P

5. (a) Disproof: Let = (...Z22120)2. Then digit [ of z K k is z;_x[l > k]. So digit
[ of the left-hand side is x;—x—;[l > k][l — k > j], while digit [ of the right-hand side is
zi—j—k[l> 7+ k]. These expressions agree if 5 > 0 or k£ < 0. But if j < 0 < k, they
differ when ! = max(0,j + k) and z;_;_r = 1.

(We do, however, have (z < j) < k C ¢ < (j + k) in all cases.)
(b) Proof: Digit ! in all three formulas is z;4;[l > —j] A yi—x[l > k]

6. Since z < y > 0 if and only if z > 0, we must have > 0 if and only if y > 0.
Obviously z = y is always a solution. The solutions with z > y are (a) z = —1 and
y=-2,0r2>z>y>0;(b)z=2andy=1,0r 27> —y> —z > 0.

7. Set 2’ « (x+ jio) ® fio, where po is the constant in (47). Then z' = (...z5z]1 ()2,
since (z' @ jio) —fio = (... Z3z5T120)2—(...1010)2 = (...0z50z)2 — (... x50z10)2 = z.

[This is Hack 128 in HAKMEM; see answer 20 below. An alternative formula,
z' < (po—1z)D o, has also been suggested by D. P. Agrawal, IEEE Trans. C-29 (1980),
1032-1035. The results are correct modulo 2" for all n, but overflow or underflow can
occur. For example, two’s complement binary numbers in an n-bit register range from
—2™"1 to 2"7! — 1, inclusive, but negabinary numbers range from —%(2" —1) to
1(2™ — 1) when n is even. In general the formula 2’ < (z 4+ p) @ p converts from
binary notation to the general number system with binary basis (2"(—1)™") discussed
in exercise 4.1-30(c), when g = (... mamimo)2.]

8. First, 2@y ¢ (S®y)U(z®T). Second, suppose that 0 < k < z@y, and let zdy =
(ala)2, k = («0a")2, where «, o', and o are strings of Os and 1s with |o/| = ||
Assume by symmetry that z = (818’)2 and y = (v07')2, where |a| = |8 = |y|. Then
k@®y = (B0v")2 is less than z. Hence kdy € S, and k = (kDy) Dy € SDy. [See R. P.
Sprague, Téhoku Math. J. 41 (1936), 438-444; P. M. Grundy, Eureka 2 (1939), 6-8.]

9. The Sprague—Grundy theorem in the previous exercise shows that two piles of x
and y sticks are equivalent in play to a single pile of z@y sticks. (There is a nonnegative
integer k < z @y if and only if there either is a nonnegative i < z with i ®y < x Dy or
a nonnegative j < y with z @ j < z @ y.) So the k piles are equivalent to a single pile
of size a1 @ - - - @ a. [See C. L. Bouton, Annals of Math. (2) 3 (1901-1902), 35-39.]
10. For clarity and brevity we shall write simply xy for  ® y and z + y for z ® y, in
parts (i) through (w) of this answer only.

(i) Clearly 0y = 0 and z+y = y+ = and zy = yz. Also 1y = y, by induction on y.
(ii) If z # 2’ and y # ¢’ then zy + zy’ + 'y + ='y’ # 0, because the definition of
zy says that zy’ + 'y + 2’y < zy when 2’ < z and 3’ < y. In particular, if  # 0 and
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y # 0 then zy # 0. Another consequence is that, if z = mex(S) and y = mex(T) for
arbitrary finite sets S and T', we have zy = mex{zj +iy+14j |1 € S,j € T}.
(iii) Consequently, by induction on the (ordinary) sum of z, y, and z, (z + y)z is

mex{(z +y)2' + (' +y)z+ (' +y)2', (x +y)z' + (z +y)z+ (z +¢)7
| 0<z' <z, 0<y <y, 0§z'<z},

which is mex{zz' + z'z + 2’2’ + yz,z2 + y2' + ¥’z + y'2'} = zz + yz. In particular,
there’s a cancellation law: If zz = yz then (z + y)z =0,s0 z =y or z = 0.

(iv) By a similar induction, (zy)z = mex{(zy)z' + (zy' + 'y + 2'y')(z + ')} =
mex{(zy)z' + (zy')z + (zy)2' + ---} = mex{z(y2’) + 2(y'2) + «(y'?) + -} =
mex{(z + z')(yz' + ¥’z + y'2') + 2'(y2)} = z(yz).

(v) If 0 < z,y < 22" we shall prove that z ® y < 227, 22" @ y = 22"y, and
22" @ 22" = 222", By the distributive law (iii) it suffices to consider the case z = 2*
and y=2°for 0< a,b< 2" Let a=2°+a' and b=29+ ¥, where 0 < a’ < 2P and
0 < b <29 then z = 22° ® 2¢' and y = 22° ® 2%, by induction on n.

If p < n—1 and ¢ < n—1 we've already proved that zQy < 22" *. If p < ¢ =n—1,
then £ ® 2" < 227 hence t ® y < 22". Andifp=¢g=n—1, we have 2 Q y =
227 @227 © 20’ @ 2V = (%22”) ® z, where z < 22°. Thus z ® y < 22" in all cases.

By the cancellation law, the nonnegative integers less than 22" form a subfield.
Hence in the formula

22" @y = mex{22"y' @' (ydy) |0<z <22",0<y <y}

we can choose z’ for each 3’ to exclude all numbers between 22"y’ and 227 (y' + 1) — 1;
but 22"y is never excluded.

Finally in 22" ® 22" = mex{22"(z' @ ¢') ® (¢’ ® ¥') | 0 < z’,y' < 22"}, choosing
z' = 9 will exclude all numbers up to and including 22" — 1, since 2 ®@ z = y Q@ y
implies that (z®y) ® (z®y) = 0, hence z = y. Choosing =’ = ' ® 1 excludes numbers
from 22" to 222" — 1, since (rQ@z) ®x = (y®y) @y implies that z =y or z = y® 1, and
since the most significant bit of x ® = is the same as that of z. This same observation
shows that £22" is not excluded. QED.

Consider, for example, the subfield {0,1,...,15}. By the distributive law we can
reduce z@y toasumof z®1, z®2, z®4, and/or z®8. We have 2®@2 = 3,2Q4 =8,
4 ® 4 = 6; and multiplication by 8 can be done by multiplying first by 2 and then by 4
or vice versa, because 8 =2® 4. Thus2®8=12,4®8=11,8® 8 = 13.

In general, for n > 0, let n = 2™ + 7 where 0 < r < 2™. There is a 2™ 1! x 2m+!
matrix @, such that multiplication by 2™ is equivalent to applying Q. to blocks of
2m+1 bits and working mod 2. For example, Q; = G (1)), and (...zT4T3%221Z0)2 ® 2! —
(...y4ysy29y1y0)2, where yo = 1, y1 = =1 D Zo, Y2 = Z3, Y3 = T3 D T2, Y4 = s, etc.
The matrices are formed recursively as follows: Let Qo = Ro = (1) and

Qr 0 2
I Ry, Rm R,
Qamyr = (I 0 ) ( )7 Ry = (Rm 0 ):Q2m+1—17
0

Qr
where Q. is replicated enough times to make 2™ rows and columns. For example,
1011 1101
0110, . Q 0\ (1011}
@=11000]|° Q3_Q2(0 Q1>_ 1100 | =%
0100 1000

cancellation law
distributive law
cancellation law
distributive law
recursively
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If register x holds any 64-bit number, and if 1 < j < 7, the MMIX instruction MXOR y,q;,x
will compute y = x ® 27, given the hexadecimal matrix constants
q; = c08030200c080302,
q, = b06080400b060804,
q; = d0b0c0800d0b0c08,

[J. H. Conway, On Numbers and Games (1976), Chapter 6, shows that these definitions
actually yield an algebraically closed field over the ordinal numbers.]

11. Let m = 2% 4+ --- 4+ 2% with gy > --- > a; > 0 and n = 2% + ... 4+ 2% with
by > -+ >b1 >0. Then m®n =mn if and only if (as | -+ | a1) & (bs | --- | b1) = 0.
12. If £ = 22"a + b where 0 < a,b< 22n, let ' =z ® (z ® a). Then

2 =((2"Ra) bR (2 ®a)®adb) = 27 '®a®a)® (bR (a®db) < 2%,
To nim-divide by = we can therefore nim-divide by 2’ and multiply by z@®a. [This algo-

rithm is due to H. W. Lenstra, Jr.; see Séminaire de Théorie des Nombres (Université
de Bordeaux, 1977-1978), exposé 11, exercise 5.]

13. Ifaz @ - -@ar = a1 Pazs® - -®((k—2)®ax) = 0, every move breaks this condition;
we can’t have (a®z)® (b®y) = (a®z') ® (b ®y') when a # b unless (z,y) = (z,y').

Conversely, if az @ --- ® ar # 0 we can reduce some a; with j > 2 to make this
sum zero; then ai can be set to az @ - D ((k—2) Qag). faz @ - ® ar = 0 and
a1 Zaz®--- @ ((k—2)®ax), we simply reduce a1 if it is too large. Otherwise there’s a
j > 3 such that equality will occur if (j — 2) ® a; is replaced by an appropriate smaller
value ((j —2) ®aj) ® ((i — 2) ® (a; ®aj)), for some 2 <4 < j and 0 < a} < a;, because
of the definition of nim multiplication; hence both of the desired equalities are achieved
by setting a; < aj and a; < a; ®a; D aj. [This game was introduced in Winning Ways
by Berlekamp, Conway, and Guy, at the end of Chapter 14.]

q, = 8d4b2c1880402010, q4 = b9678d4bb0608040,
gy = c68d342cc0803020, q, = deb9c68dd0b0c080.

14. (a) Each y = (...y251%0)2 = zT determines z = (-..@2@120)2 uniquely, since
zo=yo @t and |y/2] = |z/2] 0.

(b) When k£ > 0, it is a branching function with labels toqg = a for || = k — 1,
and to = 0 for |a| < k. But when k < 0, the mapping is not a permutation; in fact, it
sends 27 different 2-adic integers into 0, when k < 0.

[The case k = 1 is particularly interesting: Then 27 takes nonnegative integers
into nonnegative integers of even parity, negative integers into nonnegative integers of
odd parity, and —1/3 — —1. Furthermore |z”/2] is “Gray binary code,” 7.2.1.1-(9).]

(c) If p(z ® y) = k we have T(z) = T(y) and z = y + 2* (modulo 2**!). Hence
p(zT @ yT) = p(zr ®y® T(x) DT (y)) = k. Conversely, if p(z” ® y”) = k whenever y =
z+2¥, we obtain a suitable bit labeling by letting to = (z7>>|a|) mod 2 when = = (aR),.

(d) This statement follows immediately from (a) and (c). For if we always have
pz@y) = p(zV®yY) = p(zVdy"), then p(z B y) = p(zV® yY) = p(zVV@ yV"). And
if 27U = ¢ for all z, p(zU® yU) = p(z @ y) is equivalent to p(z @ y) = p(z7® y7).

We can also construct the labelings explicitly: If W = UV, note that when a, b, c €
{0,1} we have W, = U,V, Wap = UasVarpr, and Wope = UabeVarpror, where @’ = a @ u,
b =b®uq, ¢ =c®uap, and so on; hence w = u D v, We = Uq D Vo, Wab = Uab D Varpr,
etc. The labeling T inverse to U is obtained by swapping left and right subtrees of all
nodes labeled 1; thus t = u, tor = Ug, te/sr = Ugp, €tc.

(e) The explicit constructions in (d) demonstrate that the balance condition is
preserved by compositions and inverses, because {0’,1'} = {0, 1} at each level.

Notes: Hendrik Lenstra observes that branching functions can profitably be viewed
as the isometries (distance-preserving permutations) of the 2-adic integers, when we
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use the formula 1/2°(*®¥) to define the “distance” between 2-adic integers z and y.
Moreover, the branching functions mod 22 turn out to be the Sylow 2-subgroup of the
group of all permutations of {0,1,...,2% — 1}, namely the unique (up to isomorphism)
subgroup that has maximum power-of-2 order among all subgroups of that group. They
also are equivalent to the automorphisms of the complete binary tree with 2 leaves.

15. Equivalently, (z 4+ 2a) @ b = (z @ b) + 2a; so we might as well find all b and ¢ such
that (z®b) +c= (z+c¢) ®b. Setting z = 0 and z = —c implies that b+ c = b® c and
b—c = bd(—c); hence b&c = b&(—c) = 0 by (89), and we have b < 2°°. This condition is
also sufficient. Thus 0 < b < 2°%*! is necessary and sufficient for the original problem.

16. (a) If p(z ® y) = k we have = = y + 2* (modulo 2*¥*'); hence  +a =y + a + 2F
and p((z+a)® (y+a)) =k. And p((z® b) ® (y ® b)) is obviously k.

(b) The hinted labeling, call it P(c), has 1s on the path corresponding to ¢, and
Os elsewhere; thus it is balanced. The general animating function can be written

wP(Co)7a1P(01)7a2---P(Cm—l)fam ® cm, where ¢; = b1 @ -+ @ by;
so it is balanced if and only if ¢,, = 0.

[Incidentally, the set S = {P(0)}U{P(k)® P(k+2°) | k > 0 and 2° > k} provides
an interesting basis for all possible balanced labelings: A labeling is balanced if and
only if it is @ {q | g € Q} for some Q@ C S. This exclusive-or operation is well defined
even though @ might be infinite, because only finitely many 1s appear at each node.]

(c) The function P(c) in (b) has this form, because z7®) = z @ |z @ ¢]. Its
inverse, 259 = (z @ c)+1)®c, is z @ |z @ ¢| = zP®. Furthermore we have
zP()Pd) = gP)P|zP)Dd] = 2D | zdc|D|zPdS()], because |zPy]| = |zT7@yT ]| for any
branching function z7. Similarly zP(P(d)P(e) = z@ |zPc| @ |zDdS()| D |zDeS@S()],
etc. After discarding equal terms we obtain the desired form. The resulting numbers
p; are unique because they are the only values of z at which the function changes sign.

(d) We have, for example, z ® |z ®a] ® |z @ b] ® |z @ ¢] = 27 @IPEIP() where
a =a, b =bP@) and ¢ = ¢P(PE),

[The theory of animating functions was developed by J. H. Conway in Chapter 13
of his book On Numbers and Games (1976), inspired by previous work of C. P. Welter
in Indagationes Math. 14 (1952), 304-314; 16 (1954), 194-200.]

17. (Solution by M. Slanina.) Such equations are decidable even if we also allow opera-
tions such as z&y, Z, <1, 2>>1, 2°°, and 2%, and even if we allow Boolean combina-
tions of statements and quantifications over integer variables, by translating them into
formulas of second-order monadic logic with one successor (S1S). Each 2-adic variable
z = (...T271T0)2 corresponds to an S1S set variable X, where j € X means z; = 1:

z=1T becomes Vi(t€ Z &t ¢ X);

z=xz &y becomes Vi(te Z & (te X AteY));

z=2°" becomes Vi(t€Z & (t€ X AVs(s<t=s¢ X)));

z=1z+y becomes ICVL0¢C A (t€ Z & (t€X) D (t€Y) @ (teC))
A (t+1 € C & ((teX)(teY)(teC)))).

An identity such as z & (—z) = 2°? is equivalent to the translation of
VXVYVZ((integer(X) A 0=z+y A 2=z &y) = z=2"7),

where integer(X) stands for 3tVs(s >t = (s € X & t € X)). We can also include
2-adic constants if they are, say, ratios of integers; for example, z = uo is equivalent to
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the formula 0 € Z AVi(t € Z < t+ 1 ¢ Z). But of course we cannot include arbitrary
(uncomputable) constants.

J. R. Biichi proved that all formulas of S1S are decidable, in Logic, Methodology,
and Philosophy of Science: Proceedings (Stanford, 1960), 1-11. If we restrict attention
to equations, one can show in fact that exponential time suffices.

On the other hand M. Hamburg has shown that the problem would be unsolvable
if pz, Az, or 1 K z were added to the repertoire; multiplication could then be encoded.

Incidentally, many nontrivial identities exist, even if we use only the operations
z @y and z + 1. For example, C. P. Welter noticed in 1952 that

(zod@+1)+)d(z+1) = ((z+)Dy)+1)dz)+ 1.
18. Of course row z is entirely blank when z is a multiple of 64. The fine details
of this image are apparently “chaotic” and complex, but there is a fairly easy way to
understand what happens near the points where the straight lines x = 64+/7 intersect
the hyperbolas zy = 2''k, for integers j,k > 1 that aren’t too large.

Indeed, when z and y are integers, the value of z?y > 11 is odd if and only if
z?y/2? mod 1 > % Thus, if 2 = 64/ + 6 and zy = 2" (k + €) we have

2 - 2 52 2
zTg mod 1= (%)ymodl = (%)ymodl = ((k+e)5— 46(]—9y6) mod 1,

and this quantity has a known relation to % when, say, J is close to a small integer.

[See C. A. Pickover and A. Lakhtakia, J. Recreational Math. 21 (1989), 166-169.]

19. (a) When n = 1, f(A, B,C) has the same value under all arrangements except
when ag # a1, bo # b1, and ¢g # c¢1; and then it cannot exceed 1. For larger values of n
we argue by induction, assuming that n = 3 in order to avoid cumbersome notation. Let
Ao = (ao,al,az,ag), Al = (a4,a5,ae,a7), ey Cl = (C4,C5,CG,C7). Then f(A,B,C) =
> jarai=o f (Ais B, C1) < 30 arai—o f(A5, B, Cr) by induction. Thus we can assume
that ap > a1 > a2 > as, a4 > as > ag > ar, ..., €4 > C5 > ¢g > ¢7. We can also
sort the subvectors Ay = (ao, a1, as,as), Ay = (a2,as,as,a7r), ..., C1 = (c2,cs,cq,¢7)
in a similar way. Finally, we can sort Ay = (ao,a1,as,ar), AY = (a2,as,as,as), ...,
CY = (c2,c3,c4,c5), because in each term a;jbyc; the number of subscripts {7, k,1} with
leading bits 01, 10, and 11 must satisfy so1 = s10 = s11 (modulo 2). And these three
sorting operations leave A, B, C fully sorted, by exercise 5.3.4-48. (Exactly three sorts
on subvectors of length 2"~ ! are needed, for all n > 2.)

(b) Suppose A = A*, B = B*, and C = C*. Then we have a; = Ef:o_l o7 <t],
where a;j = a; — aj4+1 > 0 and we set az» = 0; similar formulas hold for b; and ¢;. Let
A(p) denote the vector (ap(o), - - - , @pzn—1)) When p is a permutation of {0,1,...,2"—1}.
Then by part (a) we have

f(Aw); Bg),Cr)) = Zj@k@l:o Et,u,v atBure[p(7) < t]lg(k) <ul[r(l) <v]
< 5 orico Do 0tBureli <tk <ulll <v] = £(4, B,0).

[This proof is due to Hardy, Littlewood, and Pélya, Inequalities (1934), §10.3.]

(c) The same proof technique extends to any number of vectors. [R. E. A. C.
Paley, Proc. London Math. Soc. (2) 34 (1932), 263-279, Theorem 15.]
20. The given steps compute the least integer y greater than x such that vy = vez.
They’re useful for generating all combinations of n objects, taken m at a time (that is,
all m-element subsets of an n-element set, with elements represented by 1 bits).

[This tidbit is Hack 175 in HAKMEM, Massachusetts Institute of Technology
Artificial Intelligence Laboratory Memo No. 239 (29 February 1972).]
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21. Sett+—y+lLu+t@y,v+t&y,z+v—(v&—v)/(u+1). fy=2"—1is mone

the first m-combination, these eight operations set = to zero. (The fact that z = f(7) ’S"Z]g)i]%maSk
does not seem to yield any shorter scheme.) Arndt

22. Sideways addition avoids the division: SUBU t,x,1; ANDN u,x,t; SADD k,t,x; ;Vé‘éa
ADDU v,x,u; XOR t,v,x; ADDUk,k,2; SRU t,t,k; ADDU y,v,t. But we can actually little-endian
save a step by judiciously using the constant mone = —1: SUBU t,x,1; XOR u,t,x;

ADDU y,x,u; SADD k,t,y; ANDN y,y,u; SLU t,mone,k; ORNy,y,t.
23. (a) (0...01...1); = 2™ — 1 and (0101...01); = (2>™ — 1)/3.
(b) This solution uses the 2-adic constant po = (...010101); = —1/3:
v&w J
Vut1l
If z = (22™ — 1)/3, the operations produce a strange result because u = 2™+ — 1,
(c) XOR t,x,m0; SUBUu,t,1; XORu,t,u; ORv,x,u; SADD y,u,m0; ADDU w,v,1;
ANDN t,v,w; SRUy,t,y; ADDU y,w,y. [This exercise was inspired by Jorg Arndt.]

t—zc®po, u+ (t—-1)Pt, v+<z|u, w+v+l, y(—w—l—{

24. It’s expedient to “prime the pump” by initializing the array to the state that it
should have after all multiples of 3, 5, 7, and 11 have been sieved out. We can combine
3 with 11 and 5 with 7, as suggested by E. Wada:

LOC Data_Segment
qbase GREG @ ;N IS 3584 ;n GREG N ;one GREG 1

Q OCTA #816d129a64b4cbbe Qo (little-endian)
LOC Q+N/16
qtop GREG @ End of the @ table

Init OCTA #9249249249249249|#4008010020040080 Multiples of 3 or 11 in [129..255]
OCTA #8421084210842108|#0408102040810204 Multiples of 5 or 7
t IS $255 ;x33 IS $0 ;x35 IS $1 ;j IS $4

LOC #100
Main LDOU x33,Init; LDOU x35,Init+8
LDA j,qbase,8; SUB j,j,qtop Prepare to set Q1.

1H NOR t,x33,x33; ANDN t,t,x35; STOU t,qtop,j Initialize 64 sieve bits.
SLU t,x33,2; SRU x33,x33,31; OR x33,x33,t Prepare for the next 64 values.
SLU t,x35,6; SRU x35,x35,29; OR x35,x35,t
ADD j,j,8; PBN j,1B Repeat until reaching qtop. |
Then we cast out nonprimes p?, p? + 2p, ..., for p =13, 17, ..., until p2 > N:
p IS $0 ;pp IS $1 ;m IS $2 ;mm IS $3 ;q IS $4 ;s IS $5
LDOU q,gbase,0; LDA pp,qgbase,8
SET p,13; NEG m,13*13,n; SRU q,q,6 Begin with p = 13.
1H SR m,m,1 m <+ | (p® — N)/2].
2H SR mm,m,3; LDOU s,qtop,mm; AND t,m,#3f;
SLU t,one,t; ANDN s,s,t; STOU s,qtop,mm Zero out a bit.

ADD m,m,p; PBN m,2B Advance by p bits.

SRU q,q,1; PBNZ q,3F Move to next potential prime.
2H LDOU q,pp,0; INCL pp,8 Read in another batch

OR p,p,#7f; PBNZ q,3F of potential primes.

ADD p,p,2; JMP 2B Skip past 128 nonprimes.
2 SRU q,q,1
3H ADD p,p,2; PBEV q,2B Set p < p+ 2 until p is prime.

MUL m,p,p; SUB m,m,n; PBN m,1B Repeat until p> > N. |
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The running time, 1172p + 5166w, is of course much less than the time needed for steps
P1-P8 of Program 1.3.2'P, namely 10037x + 641543v (improved to 10096 + 215351v
in exercise 1.3.2'-14). [See P. Pritchard, Science of Computer Programming 9 (1987),
17-35, for several instructive variations. In practice, a program like this one tends
to slow down dramatically when the sieve is too big for the computer’s cache. Better
results are obtained by working with a segmented sieve, which contains bits for numbers
between Ng + k6 and No + (k + 1)J, as suggested by L. J. Lander and T. R. Parkin,
Math. Comp. 21 (1967), 483-488; C. Bays and R. H. Hudson, BIT 17 (1977), 121-127.
Here Ny can be quite large, but § is limited by the cache size; calculations are done
separately for k = 0, 1, .... Segmented sieves have become highly developed; see, for
example, T. R. Nicely, Math. Comp. 68 (1999), 1311-1315, and the references cited
there. The author used such a program in 2006 to discover an unusually large gap of
length 1370 between 418032645936712127 and the next larger prime.]

25. (1+14+254+14+1+4+25+1+ 1= 56)mm; the worm never sees pages 2-500 of
Volume 1 or 1-499 of Volume 4. (Unless the books have been placed in little-endian
fashion on the bookshelf; then the answer would be 106 mm.) This classic brain-teaser
can be found in Sam Loyd’s Cyclopedia (New York: 1914), pages 327 and 383.

26. We could multiply by #aa...ab instead of dividing by 12 (see exercise 1.3.1-17);
but multiplication is slow too. Or we could deal with a “flat” sequence of 12000000 x 5
consecutive bits (= 7.5 megabytes), ignoring the boundaries between words. Another
possibility is to use a scheme that is neither big-endian nor little-endian but transposed:
Put item k into octabyte 8(k mod 2%°), where it is shifted left by 5|k/2%°|. Since
k < 12000000, the amount of shift is always less than 60. The MMIX code to put item k
into register $1 is AND $0,k, [#fffff]; SLU $0,$0,3; LDOU $1,base,$0; SRU $0,k,20;
4ADDU $0,$0,$0; SRU $1,$1,$0; AND $1,$1,#1f.

[This solution uses 8 large megabytes (2% bytes). Any convenient scheme for con-
verting item numbers to octabyte addresses and shift amounts will work, as long as the
same method is used consistently. Of course, just ‘LDBU $1,base,k’ would be faster.]

27. (a) ((z—1) ® z) + z. [This exercise is based on an idea of Luther Woodrum, who
noticed that ((z—1)|z) +1 = (z & —z) + z.]

(b) (y + )|y, where y = (z—1) ® z.

(c,de) (z@z)+2) &2, (2®z)+z) D2, and ((z D z) + z) & z, where z = z—1.

(f) z® (a); alternatively, t® (t+1), where t = | (z—1). [The number (0°01911%),
looks simpler, but it apparently requires five operations: ((t+ 1) &) —1.]

These constructions all give sensible results in the exceptional cases when z = —2°.

28. A 1 bit indicates z’s rightmost 0 (for example, (101011); — (000100)2); —1 + 0.

29. pr = prt1 D (prt1 < 2’“) [see STOC 6 (1974), 125]. This relation holds also for
the constants pa,r of (48), when 0 < k < d, if we start with pugqq = 22¢ _ 1. (There is,
however, no easy way to go from py to g1, unless we use the “zip” operation; see (77).)

30. Append ‘CSZ rho,x,64’ to (50), thereby adding 1v to its execution time; or replace
the last two lines by SRU t,y,rho; SLU t,t,2; SRU t, [#300020104],t; AND t,t,#f;
ADD rho,rho,t, saving 1v. For (51), we simply need to make sure that rhotab[0] = 8.

31. In the first place, his code loops forever when = 0. But even after that bug is
patched, his assumption that z is a random integer is highly questionable. In many
applications when we want to compute pz for a nonzero 64-bit number z, a more
reasonable assumption would be that each of the outcomes {0,1,...,63} is equally
likely. The average and standard deviation then become 31.5 and ~ 18.5.
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32. ‘NEGU y,x; AND y,x,y; MULU y,debruijn,y; SRU y,y,58; LDB rho,decode,y’ has
estimated cost p + 14v, although multiplication by a power of 2 might well be faster
than a typical multiplication. Add 1v for the correction in answer 30.

33. In fact, an exhaustive calculation shows that exactly 94727 suitable constants a
yield a “perfect hash function” for this problem, 90970 of which also identify the power-
of-two cases y = 27; 90918 of those also distinguish the case y = 0. The multiplier
#208b2430c8c82129 is uniquely best, in the sense that it doesn’t need to refer to table
entries above decode[32400] when y is known to be a valid input.

34. Identity (a) fails when = 5, y = 6; but (b) is true, also when zy = 0. Proof of (c):
If z # y and pz = py = k we have z = a10* and y = $10*; hence z Dy = (a® B)00* =
(x—1)®(y—1). If pz > py = k we have (x®y) mod 2¥*2 £ ((z—1)®(y—1)) mod 2572,
35. Let f(z) = ¢ @ 3z. Clearly f(2z) = 2f(z), and f(4z + 1) = 4f(z) + 2. We also
have f(4x — 1) = 4f(x) + 2, by exercise 34(c). The hinted identity follows.

Givenn, set u <~ n>>1, v u+n, t— u®v, nT < v&t,and n” + u&t.
Clearly u = |n/2| and v = [3n/2], so nT™ —n~ = v —u = n. And this is Reitwiesner’s
representation, because n* | n~ has no consecutive 1s. [H. Prodinger, Integers 0 (2000),
paper a8, 14 pp. Incidentally we also have f(—z) = f(z).]

36. (i) The commands z + z®(z<K1), z + z&(2K2), z + zd(z<K4), z + zd(2<K8),
T+ z® (r < 16), z + = @ (¢ < 32) change z to z®. (i) 2% = z & ~(z + 1).

(See exercises 66, 70, and 117 for applications of 2®; see also exercise 209.)
37. Insert ‘CSZ y,x,half’ after the FLOTU in (55), where half = #3£e0000000000000;
note that (55) says ‘SR’ (not ‘SRU’). No change is needed to (56), if lamtab[0] = —1.
38. ‘SRU t,x,1; ORy,x,t; SRU t,y,2; ORy,y,t; SRU t,y,4; ORy,y,t; ...;
SRU t,y,32; ORy,y,t; SRUy,y,1; CMPU t,x,0; ADDUy,y,t’ takes 15v.
39. (Solution by H. S. Warren, Jr.) Let o(z) denote the result of smearing = to the
right, as in the first line of (57). Compute z & o((z > 1) & Z).

40. Suppose Az = Ay = k. If z = y = 0, (58) certainly holds, regardless of how we
define A\0. Otherwise z = (la)2 and y = (18)2, for some binary strings « and 8 with
|a| = |8] = k; and 2 ® y < 2° < 2 & y. On the other hand if Az < Ay = k, we have
z®y > 2% > z&y. And H. S. Warren, Jr., notes that Az < Ay if and only if z < y & Z.
41. (a) Yo (pn)z" = Y 2, 2°/(1 - 22%) = z/(1 — 2) — > reo 22*/(1 4 22%). The
Dirichlet generating function is simpler: > > (pn)/n* = {(2)/(2* — 1).

(b) 02, (An)z" = 3232, 22/ (1 — 2).

(€) SonZa(wn)z" = 3232, 22/((1 = 2) (1 + 22%)) = 3232 22" (2), where pi(2) =
(1424 +22°-1)/(1 — 22**"). (The “magic masks” of (47) correspond to jux(2).)

[See Automatic Sequences by J.-P. Allouche and J. Shallit (2003), Chapter 3, for
further information about the functions p and v, which they denote by v2 and s».]

42, e;20171 4 (e2 +2)2€2_1 4+ (er+2r— 2)2‘3’_1, by induction on 7. [D. E. Knuth,
Proc. IFIP Congress (1971), 1, 19-27. The fractal aspects of this sum are illustrated
in Figs. 3.1 and 3.2 of the book by Allouche and Shallit.]

43. The straightforward implementation of (63), ‘SET nu,0; SET y,x; BZ y,Done;
1H ADD nu,nu,1; SUBU t,y,1; ANDy,y,t; PBNZ y,1B’ costs (5 + 4vz)v; it beats the
implementation of (62) when vz < 4, ties when vz = 4, and loses when vz > 4.

But we can save 4v from the implementation of (62) if we replace the final
multiplication-and-shift by ‘y < y+ (y > 8), y < y+ (y > 16), y < y + (y > 32),
v+ y & #££’. [Of course, MMIX’s single instruction ‘SADD nu,x,0’ is much better.]
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44. Let this sum be v z. If we can solve the problem for 2%-bit numbers, we can
solve it for 24t1-bit numbers, because v (22%z +1') = v P z+ 1@z’ 4 2%v2. Therefore
a solution analogous to (62) suggests itself, on a 64-bit machine:

Set z+ (> 1)& po and y < = — z.
Set z 4+ ((z+ (2>>2) & p1) + ((y& 1) > 1) and y « (y & p1) + ((y > 2) & pa).
Set 2+ ((z+ (2> 4)) & u2) + ((y & fiz) >2) and y + (y + (y>4)) & po.
Finally v(® « (((Az) mod 2%*) > 56) + ((((By) mod 2%4) > 56) < 3),

where A = (11111111)256 and B = (01234567)256.

But another approach is better on MMIX, which has sideways addition built in:

SADD nu2,x,m0 SADD t,x,m2 8ADDU nu2,t,nu2 SADD t,x,mb
SADD t,x,ml 4ADDU nu2,t,nu2 SADD t,x,m4 SLU t,t,5
2ADDU nu2,t,nu?2 SADD t,x,m3 16ADDU nu2,t,nu2 ADD nu2,nu2,t |

[In general, v®z = 3. 2*v(z & fir). See Dr. Dobb’s Journal 8,4 (April 1983), 24-37.]

45. Let d = (z —y) & (y — x); test if d& y # 0. [Rokicki found that this idea, which is
called colex ordering, can be used with node addresses to near-randomize binary search
trees or Cartesian trees as if they were treaps, without needing an additional random
“priority key” in each node. See U.S. Patent 6347318 (12 February 2002).]

46. SADD t,x,m; NXOR y,x,m; CSOD x,t,y; the mask mis ~(1<<i|1<<j). (In general,
these instructions complement the bits specified by @ if those bits have odd parity.)

47. y+ (> 6) &0,z (2 & 0) K0,z + (z & m) |y | z, where m =0 | (0 K J).
48. Given 6, there are ss = H‘;;; F|(n+j)/5)+1 different §-swaps, including the identity
permutation. (See exercise 4.5.3-32.) Summing over & gives 1+ 5 (ss—1) altogether.

49. (a) Theset S = {a161+ - +amdm | {a1,...,am} C {—1,0,+1}} for displacements
01, - .., 6m must contain {n—1,n—3,...,1—n}, because the kth bit must be exchanged
with the (n + 1 — k)th bit for 1 < k < n. Hence |S| > n. And S contains at most 3™
numbers, at most 2 - 3™~ ! of which are odd.

(b) Clearly s(mn) < s(m) + s(n), because we can reverse m fields of n bits each.
Thus s(3™) < m and s(2-3™) < m + 1. Furthermore the reversal of 3™ bits uses
only é-swaps with even values of §; the corresponding (§/2)-swaps prove that we have
s((83™ £ 1)/2) < m. These upper bounds match the lower bounds of (a) when m > 1.

(¢) The string aaB60v¢zw with |a| = |8| = |6] = |¢| = |w| = n can be changed to
wzypOBac with a (3n + 1)-swap followed by an (n + 1)-swap. Then s(n) further swaps
reverse all. Hence s(32) < s(6) + 2 = 4, and s(64) < 5. Again, equality holds by (a).

Incidentally, s(63) = 4 because s(7) = s(9) = 2. The lower bound in (a) turns out
to be the exact value of s(n) for 1 < n < 22, except that s(16) = 4.

50. Express n = (tm ...t1t0)s in balanced ternary notation. Let n; = (¢m ...t;)s and
(SJ' = 2nj +tj—1, so that nj—1 — 5]' = n; and 25]' —nj_1 =n; +tj1 for1 <j<m.
Let Eo = {0} and Ej11 = E; U{t; —z | z € E;} for 0 < j < m. (Thus, for example,
FEi = {O,to} and Fp = {0,t0,t1,t1 — to}.) Notice that € € E; implies |6| <jJ.

Assume by induction on j that §-swaps for § = d1, ..., §; have changed the n-bit
word g ...as; to ag; . ..a;, where each subword oy has length nj+ej for some e, € Ej.
If njy1 > j, a §+1-swap within each subword will preserve this assumption. Otherwise
each subword oy, has |ax| < nj+j < 3njp 1+ 147 < 4541 < 4m. Therefore 2*-swaps
for |lg4m| > k > 0 will reverse them all. (Note that a 2*_swap on a subword of size t,
where 2% < t < 28! reduces it to three subwords of sizes t — 2%, 28+ — ¢ ¢ — 2’“.)
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51. (a) If ¢ = (cq—1 - Co)z, we must have 03_1 = cq—114d,d—1- But for 0 < k<d—1
we can take 0y = cppia,x D Hk, where 9k is any mask C pg k-

(b) Let ©(d, ¢) be the set of all such mask sequences. Clearly ©(1,c) = {c}. When
d > 1 we will have, recursively,

O(d,c) = {(007---70d—270d—17éd—27 ) | 6k = 0116k 1, O =0 1160 1},

by “zipping together two sequences (8, ...,0 5,04 5,04 4,...,00) € ©(d—1,¢') and
08, ...,04 5,604 5,04 4,...,0)) € ©(d—1,c") for some appropriate 6o, 6o, ¢, and ¢".
When c is odd, the bigraph corresponding to (75) has only one cycle; so (Oo,éo,
c,c") is either (Md 0,0, [¢/2], [¢/2]) or (0, pa,0, [c/2],[c/2]). But when c is even, the
bigraph has 247 double bonds; so # = fo is any mask C Uao, and ¢ = ' = ¢/2.
[Incidentally, lg |©(d,c)| = 2d71(d -1) - Z;i (2%47% —1)(2F 1 — |2¢71 — ¢ mod 2F)).]

In both cases we can therefore let éd_z == éo = 0 and omit the second half
of (71) entirely. Of course in case (b) we would do the cyclic shift directly, instead of
using (71) at all. But exercise 58 proves that many other useful permutations, such as
selective reversal followed by cyclic shift, can also be handled by (71) with 6r = 0 for
all k. The inverses of those permutations can be handled with §, =0for 0 < k < d—1.

52. The following solutions make é]‘ = 0 whenever possible. We shall express the
0 masks in terms of the u’s, for example by writing pe,s & po instead of stating the
requested hexadecimal form #55555555; the p form is shorter and more instructive.
(a) Or = e,k & ps and Ox = pe,k & (Uk+1 @ pr—1) for 0 < k < 5; 05 = 04. (Here
-1 = 0. To get the “other” perfect shuffle, (acglxss . T1L33T0T32)2, let 00 = pe,0&fi1.)
(b) 0—93—90—M60&u3, 01 =04 =0, = pe,1 & pa; 92—05—92—M62&M5,
65 = 64 = 0. [See J. Lenfant, IEEE Trans. C-27 (1978), 637647, for a general theory.]
(c) 0o = pe,0 & pa; 61 = pe,1 & ps; 62 = 64 = le2 85 ta; 03 = 05 = pe,z & ps;

~ A A ~ ~

0o = pe,0 & p2; 01 = pe,1 & ps; 02 = 0o ®92;93=91®03;94=(3. R
(d) 0k:l”6,k&u5—k fOI‘OSkJS5; GkiekaTOSk§2;93:04:0.

53. We can write 9 as a product of d — ¢ transpositions, (u1v1)...(ua—tva—t) (see
exercise 5.2.2-2). The permutation induced by a single transposition (uv) on the index
digits, when u < v, corresponds to a (2¥ — 2*)-swap with mask pq4,, & fiu. We should
do such a swap for (ujv1) first, ..., (ug—1v4—1) last.

In particular, the perfect shuffle in a 2¢-bit register corresponds to the case where
1 =(01...(d—1)) is a one-cycle; so it can be achieved by doing such (2¥ — 2")-swaps
for (u,v) = (0,1), ..., (0,d — 1). For example, when d = 3 the two-step procedure is
12345678 +— 13245768 — 15263748. [Guy Steele suggests an alternative (d — 1)-step
procedure: We can do a 2*-swap with mask pak+1 &y ford—1> k> 0. Whend =3
his method takes 12345678 — 12563478 — 15263748.]

The matrix transposition in exercise 52(b) corresponds to d = 6 and (u,v) = (0, 3),
(1,4), (2,5). These operations are the 7-swap, 14-swap, and 28-swap steps for 8 x 8
matrix transposition illustrated in the text; they can be done in any order.

For exercise 52(c), use d = 6 and (u,v) = (0, 2), (1, 3), (0,4), (1,5). Exercise 52(d)
is as easy as 52(b), with (u,v) = (0,5), (1,4), (2,3).

54. Transposition amounts to reversing the bits of the minor diagonals. Successive
elements of those diagonals are m — 1 apart in the register. Simultaneous reversal of
all diagonals corresponds to simultaneous reversal of subwords of sizes 1, ..., m, which
can be done with 2*-swaps for 0 < k < [lgm] (because such transposition is easy

zipping

magic masks
inshuffle

Lenfant
transpositions
perfect shuffle
Steele

matrix transposition



7.1.3

ANSWERS TO EXERCISES

when m is a power of 2, as illustrated in the text). Here’s the procedure for m = 7:

Given

00 01 02 03 04 05 06
101112131415 16
20 21 22 23 24 25 26
30 31 32 33 34 35 36
40 41 42 43 44 45 46
50 51 52 53 54 55 56
60 61 62 63 64 65 66

6-swap
00 10 02 12 04 14 06
01 1103 13 05 15 25
20 30 22 32 24 16 26
21 31 23 33 43 35 45
40 50 42 34 44 36 46
41 51 61 53 63 55 65
60 52 62 54 64 56 66

12-swap
00 10 20 30 04 14 24
01 11 21 31 05 15 25
02 12 22 32 06 16 26
03 13 23 33 43 53 63
40 50 60 34 44 54 64
41 51 61 35 45 55 65
42 52 62 36 46 56 66

24-swap

00 10 20 30 40 50 60
01 11 21 31 41 51 61
02 12 22 32 42 52 62
03 13 23 33 43 53 63
04 14 24 34 44 54 64
05 15 25 35 45 55 65
06 16 26 36 46 56 66

81

55. Given z and y, first set z + z| (z<2*) and y « y | (y<2¥) for 2d < k < 3d. Then
set = ¢ (224T% —2F)_swap of z with mask p2q+x & fix and y < (2%4TF —29+%)_swap of y
with mask pogye&fratr for 0 < k < d. Finally set z + &y, then either z < z| (z>>2k)
or z < z® (2> 2%) for 2d < k < 3d, and z + z & (27* — 1). [The idea is to form two
n X n X n arrays = (ooo - - -$(n—1)(n—1)(n—1))2 and ¥y = (Yooo - --y(n—1)(n—1)(n—1))z
with z;;x = ajx and y;jx = bjk, then transpose coordinates so that z;;x = a;; and
Yijk = bix; now z & y does all n2 bitwise multiplications at once. This method is due to
V. R. Pratt and L. J. Stockmeyer, J. Computer and System Sci. 12 (1976), 210-213.]

56. Use (71) with 8y = fp = 0, 6§ = #0010201122113231, 65 = #00080€0400080c06,,
63 = #00000092008100a2, 65 = #0000000000000£16, f5 = #0000000003199¢c26 , O, =
#00000c9£0000901a, 5 = #003a00b50015002b, f2 = #000103080c0d0£0c, and 6; =
#0020032033233333.

57. The two choices for each cycle when d > 1 have complementary settings. So we
can choose a setting in which at least half of the crossbars are inactive, except in the
middle column. (See exercise 5.3.4-55 for more about permutation networks.)

58. (a) Every different setting of the crossbars gives a different permutation, because
there is exactly one path from input line ¢ to output line j for all 0 < ¢,5 < N. (A net-
work with that property is called a “banyan.”) The unique such path carries input ¢
on line I(i,4,k) = ((i > k) < k) + (j mod 2¥) after k swapping steps have been made.

(b) We have l(ip, 1, k) = l(jp, j, k) if and only if i mod 2¥ = j mod 2% and ip >k =
jo > k; so (x) is necessary. And it is also sufficient, because a mapping ¢ that sat-
isfies (%) can always be routed in such a way that jo appears on line | = I(jy,j, k)
after k steps: If k > 1, jp will appear on line I(j¢p, j,k — 1), which is one of the inputs
to [. Condition (*) says that we can route it to [ without conflict, even if [ is I(i¢p, ¢, k).

(In IEEE Transactions C-24 (1975), 1145-1155, Duncan Lawrie proved that condi-
tion (x) is necessary and sufficient for an arbitrary mapping ¢ of the set {0,1,..., N—1}
into itself, when the crossbar modules are allowed to be general 2 X 2 mapping modules
as in exercise 75. Furthermore the mapping ¢ might be only partially specified, with
jo = * (“wild card” or “don’t-care”) for some values of j. The proof that appears in
the previous paragraph actually demonstrates Lawrie’s more general theorem.|

(c) imod 2¥ = j mod 2* if and only if k < p(i @ j); i > k = j > k if and only if
E>Xi@®j); and ip = jo if and only if i = j, when ¢ is a permutation.

(d) XGEp @ jp) > p(i @ 7) for all i #£ j if and only if A(ite ® jTe) > p(it @ j7) =
p(z @ j) for all i # j, because 7 is a permutation. [Note that the notation can be
confusing: Bit j7¢ appears in bit position j if permutation ¢ is applied first, then 7.

(e) Since I(j,4,k) = j for 0 < k < d, a permutation of Q fixes j if and only if
each of its swaps fixes j. Thus the swaps performed by ¢ and by ¥ operate on disjoint
elements. The union of these swaps gives 1.
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59. It is 2Ma(@®) where My(a,b) is the number of crossbars that have both endpoints
in [a..b]. To count them, let k = A(a®b), a’ = amod 2¥, and b’ = b mod 2*; notice that
b—a=2F4+b'—d', and My(a,b) = My,1(a’,2% +b'). Counting the crossbars in the top
half and bottom half, plus those that jump between halves, gives Mg11(a’,2% +b') =
My, (a',2F — 1) + My, (0,8") + () +1) =~ @'). Finally, we have M(0,b') = S(b' +1); and
Mi(a', 2% —1) = Mp(0,28 —1—a') = S(2% — a') = k2F~! — ka' + S(a’), where S(n) is
evaluated in exercise 42.

60. A cycle of length 2 corresponds to a pattern ug < vo <> v1 — U1 <> Uz  v2 &
cee 43 Vi1 —> Ugi—1 <> U2, Where ug; = uo and ‘u < v’ or ‘v — u’ means that the
permutation sends u to v, ‘¢ <> y’ means that z =y @ 1.

We can generate a random permutation as follows: Given ug, there are 2n choices
for vg, then 2n — 1 choices for u; only one of which causes us = ug, then 2n — 2 choices
for ve, then 2n — 3 choices for uz only one of which closes a cycle, etc.

Consequently the generating function is G(z) = H?:l 3223?;; The expected

number of cycles, k, is G'(1) = Hzn — Hn = 2Inn+1In2+ 1y + O(n™'). The mean
of 2% is G(2) = (2"n!)¥/(2n)! = Van + O(n~'/?); and the variance is G(4) — G(2)? =
(n+1-G((2)G(?2) = Van*?+0(n).
62. The crossbar settings in P(2?) can be stored in (2d—1)2"" = Nd— 1N bits. To get
the inverse permutation proceed from right to left. [See P. Heckel and R. Schroeppel,
Electronic Design 28,8 (12 April 1980), 148-152. Note that any way to represent an
arbitrary permutation requires at least lg N! > Nd — N/In2 bits of memory; so this
representation is nearly optimum, spacewise.]

63. (i) « = y. (ii) Either z is even or z ® y < 2™*(*(="1/2)_(When 2 is odd we have
(zty)>z=(y>[2/2]) (x> |2/2]), even when z < 0.) (iii) This identity holds for
all w, z, y, and z (and also with any other bitwise Boolean operator in place of &).

64 (((2 & ) + (2 | o)) & o) | (= & o) + (/| o)) & fi). (See (86).)

65. a:u(.rz) + v(m2) = mu(m)2 + v(m)z.

66. (a) v(z) = (u(z)/(14+2°%)) mod «™; it’s the unique polynomial of degree less than n
such that (1+2z°)v(z) = u(z) (modulo £™). (Equivalently, v is the unique n-bit integer
such that (v @ (v < §)) mod 2" = u.)

(b) We may as well assume that n = 64m, and that v = (Um—1...u1u0)q64,
v = (Um—1...V100)964. Set ¢ < 0; then, using exercise 36, set v; < u? @ (—c) and
c+uv;>»63forj=0,1,...,m—1.

(c) Set ¢ < vo ¢ uo; then v; «+ u; @cand c+vj,forj=1,2,...,m—1.

(d) Start with ¢ < 0 and do the following for j =0, 1, ..., m — 1: Set t + u;,
t+tD(t<K3),t+tD(tK6),t+tD(tKI2),t+tD(tK24),t«+ tD (tK48),
vj — tDe, ¢+ (t>>61) X #9249249249249249.

(e) Start with v «— u. Then, for j =1, 2, ..., m—1, set v;  v; ® (vj_1 K 3) and
(lf] <m — 1) Vj+1 & Vi1 D ('Uj71 > 61).

67. Let n =2l —1and m =n —2d. If n < k < n we have z°* = 2™ 4 z* (modulo
z"4+z™+1), where t = 2k—n is odd. Consequently, if v = (vp—1...v1v0)2, the number

w=1u®((u>d)®@u>2d)®u>3d)o--)&-2"7

turns out to equal (vp—2...V3V1Vp—1...V200)2. For example, when | = 4 and d = 2,
the square of ugz® + - - - + u1 2 4+ uo modulo (m7 + 23+ 1) is uex® +usz + (ue ® U4)x1 +
(us ® us)wﬁ + (ue @ ua ® uz)m4 + u1z? + uo. To compute v, we therefore do a perfect
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shuffle, v = |w/2'| { (w mod 2'). The number w can be calculated by methods like
those of the previous exercise. [See R. P. Brent, S. Larvala, and P. Zimmermann,
Math. Comp. 72 (2003), 1443-1452; 74 (2005), 1001-1002.]

68. SRU t,x,delta; PUT rM,theta; MUX x,t,x.

69. Notice that the procedure might fail if we attempt to do the 29-1_shift first instead
of last. The key to proving that a small-shift-first strategy works correctly is to watch
the spaces between selected bits; we will prove that the lengths of these spaces are
multiples of 251! after the 2*-shift.

Consider the infinite string xx = ...1%402" 1t302"1t202" 11102" 1% which represents
the situation where t; > 0 items need to move 2k] places to the right. A 2k _shift with

k+1 k+1 . . .
%2 1t30%2427 7 1%10% leaves us with the situation
L 1T202 T T

any mask of the form 6, = ...0%

represented by the string xx4+1 = , where exactly T; = to +
t2141 items need to move right 2% places. So the claim holds by induction on k.

70. Let v = 0x © (0 < 1), so that 0 = ¥ in the notation of exercise 36. If we take
#2¥t1 = 02%12* in the previous answer, we have 1o = ¥ and Yp41 = (r & 1) > 2%,
Therefore we can proceed as follows:

Set ¥ «+ X, k < 0, and repeat the following steps while ¥ # 0: Set = < 1, then
T z®(z<2) for 0< 1< d, then O <z, % + (Y& z) > 2%, and k + k + 1.

The computation ends with £ = Avy + 1; the remaining masks 0, ..., 04_1, if
any, are zero and those steps can be omitted from (80). Sometimes this procedure gives
nonzero masks 6 that actually do nothing useful, because t1 = t3 = --- = 0. To avoid

such redundancy, change ‘O < z’ to ‘Ox < z & (z + (z & ¢ & (¥ > 2¥)))".
[See compress in H. S. Warren, Jr., Hacker’s Delight (Addison—Wesley, 2002), §7—4;
also G. L. Steele Jr., U.S. Patent 6715066 (30 March 2004).]

71. Start with & < y. Do a (—2%)-shift of  with mask 6y, for k =d—1, ..., 1,0, using
the masks of exercise 70. Finally set z < z (or z + z& ¥, if you want a “clean” result).

72. 227"
. T +vy.

73. Equivalently, d sheep-and-goats operations must be able to transform the word
" = (:/v(zd_l)7r ... ZTixZox )2 INto (Zga_q ... ZT1%0)2, for any permutation = of {0,1,...,
2%—-1}. And this can be done by radix-2 sorting (Algorithm 5.2.5R): First bring the
odd numbered bits to the left, then bring the bits j for odd |j/2] left, and so on.
For example, when d = 3 and 2™ = (2321Z0Z7T5T2T6%4)2, the three operations yield
successively (23Z1Z7Z5Z0L226%4)2, (L3Z7T2L6XT1T5Z0T4)2, (T7T6T5LaT3T2T120)2. [See
Z. Shi and R. Lee, Proc. IEEE Conf. ASAP’00 (IEEE CS Press, 2000), 138-148.]
Historical note: The BESM-6 computer, designed in 1965, implemented half of
the sheep-and-goats operation: Its «cGopka» (“gather” or “pack”) command produced
(z & x) I X, and its «pasbopka» command (“scatter” or “unpack”) went the other way.

74. If |Z Cop — 2021+1| = 2A > 0, we must rob A from the rich half and give it to
the poor. There’s a position [ in the poor half with ¢; = 0; otherwise that half would
sum to at least 27!, A cyclic 1-shift that modifies positions ! through (I 4+ t) mod 2°
makes ¢j p = ciyry1 for 0 < k < t, ¢y = Ciye41 — 6, Ciyqr = 6, and ciyy, = cpup
for all other k; here § can be any desired value in the range 0 < & < ¢iy441. (We've
treated all subscripts modulo 2¢ in these formulas.) So we can use the smallest even ¢
such that c;41 + ci4s + -+ cige41 = 1 + cig2 + - + ci4+ + A+ § for some § > 0.

(The 1-shift need not be cyclic, if we allow ourselves to shift left instead of right.
But the cyclic property may be needed in subsequent steps.)
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75. Equivalently, given indices 0 < ip < 41 < --- < 451 < 45 = 2% and 0 = jo <
1< <js—1<js = Zd, we want to map (Zgd_q ... Z1%0)2 — (m(zd_l)w e T1pZ0p)2,
where jo = i, for jr < j < jr41 and 0 <7 < s. If d = 1, a mapping module does this.

When d > 1, we can set the left-hand crossbars so that they route input i, to line
ir @ ((ir +7) mod 2). If s is even, we recursively ask one of the networks P(24-1) inside
P(29) to solve the problem for indices |{%o0, %2, ..,%s}/2] and |{jo, jo,...,Js}/2], while
the other solves it for |{i1,1s,...,%s—1,22}/2| and [{jo, j2,---,Js}/2]- At the right of
P(24), one can now check that when j, < j < jr41, the mapping module for lines j
and j @ 1 has input %, on line j if j = r (modulo 2), otherwise i, is on line j @ 1.
A similar proof works when s is odd.

Notes: This network is a slight improvement over a construction by Yu. P. Ofman,
Trudy Mosk. Mat. Obshchestva 14 (1965), 186-199. We can implement the correspond-
ing network by substituting a “-map” for a §-swap; instead of (69), we use two masks
and do seven operations instead of six: y «+ z® (z>>6), z + z® (y&0) D ((y&0') K J).
This extension of (71) therefore takes only d additional units of time.

76. When a mapping network realizes a permutation, all of its modules must act as
crossbars; hence G(n) > Ign!. Ofman proved that G(n) < 2.5nlgn, and remarked in
a footnote that the constant 2.5 could be improved (without giving any details). We
have seen that in fact G(n) < 2nlgn. Note that G(3) = 3.

77. Represent an n-network by (z2n_1...Z120)2, where z; = [the binary representa-
tion of k is a possible configuration of 0s and 1s when the network has been applied to
all 2" sequences of 0s and 1s], for 0 < k < 2". Thus the empty network is represented
by 22" — 1, and a sorting network for n = 3 is represented by (10001011),. In general,
z represents a sorting network for n elements if and only if it represents an n-network
and vz =n+1, if and only if ¢ = 20 + 21 + 2% 427 4 ... 4 2271,

If = represents a according to these conventions, the representation of afi:j] is
(z@y) | (y> @ " —2"7)), where y = 2 & fin—i & pn—;.

[See V. R. Pratt, M. O. Rabin, and L. J. Stockmeyer, STOC 6 (1974), 122-126.]

78. If k > lg(m — 1) the test is valid, because we always have z1 + z2 + -+ + Tm >
Z1 | z2 | -+ | Tm, with equality if and only if the sets are disjoint. Moreover, we have
(@4t am) = (@] [am) S(m=-DER* T4 1) < (m-1)2"7F < 2m
Conversely, if m > 2F + 2 and n > 2k, the test is invalid. We might have, for
example, 1+ +Im — (2k: + 1)(2n—k _ 2n—2k—1) + 2n—k—1 — 9n + (2n—k _ 2n—2k—1).
But if n < 2k the test is still valid when m = 2¥ + 2, because our proof shows that
z1 4 F T — (z1 | | zm) < (2F+1)(277F — 1) < 2" in that case.

79. z, = (z—1) & x. (And the formula z, = ((z — b— 1) & a) + b corresponds to (85).)
These recipes for z/ and z, are part of Jorg Arndt’s “bit wizardry” routines (2001);
their origin is unknown.

80. Perhaps the nicest way is to start with z < x — 1 as a signed number; then while
z >0, set z + z & x, visit z, and set z + 2z — x. (The operation 2z — x can in fact
be performed with a single MMIX instruction, ‘2ADDU x,x,minuschi’.)

But that trick fails if x is so large as to be already “negative.” A slightly slower
but more general method starts with z < x and does the following while z # 0: Set

t <« xz & —z, visit x — t, and set z < x —t.
81. ((z& x) — (2’ & x)) & x. (One way to verify this formula is to use (18).)
82. Yes, by letting z = 2’ in (86): w | (z & ), where w = ((z & x) + (2 | X)) & x-
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83. (The following iteration propagates bits of y to the right, in the gaps of a scattered
accumulator ¢. Auxiliary variables v and v respectively mark the left and right of each
gap; they double in size until being wiped out by w.) Set t + z& x, u' + (x>1) & X,
v (x<1)+1) &% w+ 3w &v), u + 3u', v + 3v, and k + 1. Then, while
u # 0, do the following steps: t < t| (> k)& u'), b+ k<1, u + u& W, v < v& W,
w (&> D)&a)<(k+1) - (v& (K1) &D) > k), v « (u& D) >k,
v v+ ((v&8) <k), u <+ u+u'. Finally return the answer ((t>>1) & x) | (z & %).

84. z+—x =w— (z&x), where w = (((z & x) € 1) + %) & x appears in answer 82;
z — X is the quantity ¢ computed (with more difficulty) in the answer to exercise 83.

85. (a) If z = L0OC(als, 4, k]) is the drum location corresponding to interleaved bits as
stated, then LOC(a[i + 1,7,k]) =z® ((z® ((z & x) — X)) & x) and LOC(a[: — 1, j,k]) =
z® ((z® ((z&x) — 1)) & x), where x = (11111)s, by (84) and answer 79. The formulas
for LOC(a[i,j £ 1,k]) and LOC(a[é, 7,k £ 1]) are similar, with masks 2y and 4y.

(b) For random access, let’s hope there is room for a table of length 32 giving

(On a vintage machine, bitwise computation of f would be much worse than table
lookup, because register operations used to be as slow as fetches from memory.)

(c) Let p be the location of the page currently in fast memory, and let z = —128.
When accessing location z, if & z # p it is necessary to read 128 words from drum
location z & z (after saving the current data to drum location p if it has changed);
then set p < z & z. [See J. Royal Stat. Soc. B-16 (1954), 53—55. This scheme of array
allocation for external storage was devised independently by E. W. Dijkstra, circa 1960,
who called it the “zip-fastener” method. It has often been rediscovered, for example
in 1966 by G. M. Morton and later by developers of quadtrees; see Hanan Samet,
Applications of Spatial Data Structures (Addison—Wesley, 1990). See also R. Raman
and D. S. Wise, IEEE Trans. C57 (2008), to appear, for a contemporary perspective.
Georg Cantor had considered interleaving the digits of decimal fractions in Crelle 84
(1878), 242258, §7; but he observed that this idea does not lead to an easy one-to-one
correspondence between the unit interval [0..1] and the unit square [0..1] x [0..1].]

86. If (p',q',r') rightmost bits and (p”,q",r") other bits of (i, j, k) are in the part of
the address that does not affect the page number, the total number of page faults is
2((2P77' —1)297 (2979 —1)2P+" 4 (27" —1)2P+9). Hence we want to minimize 277 +
279 + 27" over nonnegative integers ,q,r",p",q",r") withp'+p" <p, ¢ +q" <gq,
P <rop g+ +p" ¢ 7" =s. Since 22 +2° > 2971 4 22! when a and b are
integers with @ > b+1, the minimum (for all s) occurs when we select bits from right to
left cyclically until running out. For example, when (p,q,7) = (2,6,3) the addressing
function would be (js5jajsk2j2k17121k0j0%0)2. In particular, Tocher’s scheme is optimal.
[But such a mapping is not necessarily best when the page size isn’t a power of 2.
For example, consider a 16 x 16 matrix; the addressing function (jsi3zi2%1%0j271J0)2 is
better than (jsisj2i2j1i1j0%0)2 for all page sizes from 17 to 62, except for size 32 when
they are equally good.]
87. Set z + z & ~((z & "00QEQEEEQ") > 1); each byte (a7 ...ao)2 is thereby changed to
(aras(asA@e)as . ..a0)2. The same transformation works also on 30 additional letters
in the Latin-1 supplement to ASCII (for example, @ — E); but there’s one glitch, § — 8.
[Don Woods used this trick in his original program for the game of Adventure
(1976), uppercasing the user’s input words before looking them up in a dictionary.

88. Set z + (z @ Y) & h, then z < ((z | h) — (y & h)) D =.
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89. t+ x|y, t + t&(t>1), z + (z&y&io) | (t&po). [From the “nasty” test program
for H. G. Dietz and R. J. Fisher’s SWARC compiler (1998), optimized by T. Dahlheimer.]
90. Insert ‘z < z | ((z @ y) &)’ either before or after ‘z + (z & y) + 2’. (The ordering
makes no difference, because z+y = 2@y (modulo 4) when z+y is odd. Therefore MMIX
can round to odd at no additional cost, using MOR. Rounding to even in the ambiguous
cases is more difficult, and with fixed point arithmetic it is not advantageous.)

91. If 1[z,y] denotes the average as in (88), the desired result is obtained by repeating
the following operations seven times, then concluding with z < %[m, y] once more:

2 %[z,y], tea&h, me(E<l)—(E>T),

2+ (m&2)| (M&z), y+ M&2)| (m&y), a+akl.

Although rounding errors accumulate through eight levels, the resulting absolute error
never exceeds 807/255. Moreover, it is & 1.13 if we average over all 2563 cases, and
it is less than 2 with probability ~ 94.2%. If we round to odd as in exercise 90, the
maximum and average error are reduced to 616/255 and = 0.58; the probability of error
< 2 rises to & 99.9%. Therefore the following MMIX code uses such unbiased rounding:

x GREG ;y GREG ;z GREG X0R t,x,y MOR m,ffhi,alf

alf GREG ;m GREG ;t IS $255 MOR z,rodd,t PUT rM,m

ffhi GREG -1<<56 repeat seven times: { AND t,x,y MUX x,z,x

1 GREG #0101010101010101 ADDU z,z,t MUX y,y,z

rodd GREG #4020100804020101 SLU alf,alf,1
after which the first four instructions are repeated again. The total time for eight
a-blends (67v) is less than the cost of eight multiplications.

92. We get z; = [(z; + y;)/2] for each j. (This fact, noticed by H. S. Warren, Jr.,
follows from the identity z +y = ((z | y) € 1) — (z @ y). See also the next exercise.)
93. z—y=(zdy) — ((Z&y) K 1). (“Borrows” instead of “carries.”)
94. (z—1); = (zj —1—b;) mod 256, where b; is the “borrow” from fields to the right.
So t; is nonzero if and only if (z;...20)2s6 < (1...1)256 = (2567 — 1)/255. (The
answers to the stated questions are therefore “yes” and “no.”)

In general if the constant [ is allowed to have any value (I7...l1lo)2s56, Opera-
tion (go) makes t; # 0 if and only if (z;...z0)256 < (I5-..l0)256 and z; < 128.

95. Use (90): Test if h& (t(z @ ((z>>8) + (z < 56))) | t(z ® ((z > 16) + (z < 48))) |
t(z® ((z>>24) + (z < 40))) | t{z® ((z>>32) + (z < 32)))) = 0, where t(z) = (z—1) & Z.
(These 28 steps reduce to 20 if cyclic shift is available, or to 11 with MXOR and BDIF.)
96. Suppose 0 < z,y < 256, z, = |z/128], z; = zmod 128, yr = |y/128], yi =
ymod 128. Then [z <y] = (Tayn[zi <yi1]); see exercise 7.1.1-106. And [z;<yi] =
[y: + 127 — z; > 128]. Hence [z <y] = [(ZTyz)/128], where z = (Z & 127) + (y & 127).

It follows that ¢t = h& (Zyz) has the desired properties, when z = (Z & h) + (y&h).
This formula can also be written ¢t = h & ~{xyz), where z = ~((z & h) + (y & h)) =
(| h) = (y&h) by (18).

To get a similar test function for [z; < y;] = 1—[y; < z;], we just interchange z <> y
and take the complement: t « h & ~{zyz) = h & (Tyz), where z = (z & h) + (y & h).
97. Set ' < @ "wxrxrknx" '« z Dy, t+ h&(z|((z|h) 1) &Y' | ((¥' | h) =1)),
m 4+ (K1) —(E>7),t + t&(z'|((z' |h)=1)), 2  (Mm&"skkskkxx") | (M&y). (20 steps.)
98. Set u + z®y, z + (Z&h)+(y&h), t + h&(z®(u](z2D2))), v + (K1) = (7)) &u,
z+ z@v, w4 ydv. [This 14-step procedure invokes answer 96 to compute ¢t =
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h & (zyz), using the footprint method of Section 7.1.2 to evaluate the median in only
three steps when = @ y is known. Of course the MMIX solution is much quicker, if
available: BDIF t,x,y; ADDU z,y,t; SUBU w,x,t.]

99. In this potpourri, each of the eight bytes appears to be solving a different kind
of problem; we must recast the conditions so that they fit into a common framework:
fo=[z0@ 1’ L0], fi = [£1@ %’ >0], fo = [22 <A — 1], fz = [£3> 2], fu =
[$4> ’a’ — 1],f5 = [$5 @0’ Sg], fe = [$6®255>86],f7 = [.’E7® 7 §3] Aha! We
can use the formulas in answer 96, adjusting d to switch between < and > as needed:
a=(?77(255)70°0007 %717 )95 = #3£££300000002a21; b = h = *TETETETETETETETE;
c=h&~(3(86)9(’a’ —1)’z’(?A’> —1)00)256 = #7c29761£053£7£7£ (the hardest one);
d= #8000800000800080; and e = h = #8080808080808080.

100. We want u; = x;+y;+c; —10¢j4+1 and v; = x;—y;—b;4+10b; 41, where c; and b; are
the “carry” and “borrow” into digit position j. Set u' < (z +y + (6...66)16) mod 25
and v' < (z — y) mod 254 Then we find u; =uz; +y; +c¢j +6—16¢cjy1 and v;- =
xj —yj — b; + 16b;41 for 0 < j < 16, by induction on j. Hence v’ and v’ have the
same pattern of carries and borrows as if we were working in radix 10, and we have
uw=1u—6(Ci6...22C1)16, v = V' —6(b1g . ..bab1)16. The following computation schemes
therefore provide the desired results (10 operations for addition, 9 for subtraction):

v'(—m—y,
t (Eyv')&(8...88)16,
vev —t+ (> 2).

Y +—y+(6...66)16, v +—z+7,
t (ig'u')& (888)167
uu' —t+ (t>2);

101. For subtraction, set z < x — y; for addition, set z < x +y + *e8c4c4fc18, where
this constant is built from 256 — 24 = #e8, 256 — 60 = #c4, and 65536 — 1000 =
#£c18. Borrows and carries will occur between fields as if mixed-radix subtraction or
addition were being performed. The remaining task is to correct for cases in which
borrows occurred or carries did not; we can do this easily by inspecting individual
digits, because the radices are less than half of the field sizes: Set t +— z& #8080808000,
te (<) —(t>7) = ((t>15)& 1), 2 + 2 — (t & #e8c4cafc18). [See Stephen Soule,
CACM 6 (1975), 344-346. We’re lucky that the ‘c’ in ‘fc18’ is even.]
102. (a) We assume that z = (z15...70)16 and y = (y15...Yo)16, with 0 < z;,y; < 5;
the goal is to compute v = (u1s5...u0)16 and v = (v1s...v0)16, With components
u; = (z; + y;) mod 5 and v; = (z; — y;) mod 5. Here’s how:
v x—y+5l,
t < (u+3l) &h, t+ (v+3l) &h,
u < u— ((t— (t>3)) & 5l); v+ v—((t—(t>3)) &5l).
Herel = (1...1)16 = (26'4 —1)/15, h = 81. (Addition in 7 operations, subtraction in 8.)
(b) Now z = (220 .. .Zo)s, etc., and we must be more careful to confine carries:

t—x+ E,

2+ (t&h)+ (y&h),

t+ (y|2)&t&h,

uz+y— (t+(E>2));
Here h = (4...4)s = (2% — 4)/7. (Addition in 11 operations, subtraction in 10.)

Similar procedures work, of course, for other moduli. In fact we can do multibyte

arithmetic on the coordinates of toruses in general, with different moduli in each
component (see 7.2.1.3—(66)).

Uu+—r+vy,

z4 (z|h)~(y&h),
t« (y|2z) &z &h,
vez—y+t+ (E>2).
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103. Let hand ! be the constants in (87) and (88). Addition is easy: u + z|((z&h)+y).
For subtraction, take away 1 and add z;&(1—y;): t < (z&I)>1, v + t|(t+(z&(yDl))).

104. Yes, in 19: Let a = (((1901 < 4) +1) < 5) + 1, b = (((2099 < 4) + 12) < 5) + 28.
Set m < (z > 5) & #£ (the month), ¢ + #10 & ~((z | (z > 1)) > 5) (the leap year
correction), u < b+ #3 & ((*3bbeecc + ¢) > (m +m)) (the maz_day adjustment), and
t+ ((z®a®(z—a)) | (z®ud (u—1)))& #1000220 (the test for unwanted carries).

105. Exercise 98 explains how to compute bytewise min and max; a simple modification
will compute min in some byte positions and max in others. Thus we can “sort by
perfect shuffles” as in Section 5.3.4, Fig. 57, if we can permute bytes between z and y
appropriately. And such permutation is easy, by exercise 1. [Of course there are much
simpler and faster ways to sort 16 bytes. But see S. Albers and T. Hagerup, Inf. and
Computation 136 (1997), 25-51, and M. Thorup, J. Algorithms 42 (2002), 205-230,
for asymptotic implications of this approach.]

106. The n bits are regarded as g fields of g bits each. First the nonzero fields are
detected (1), and we form a word y that has (yg—1...y0)2 in each g-bit field, where
y; = [field j of x is nonzero]. Then we compare each field with the constants 291,
.., 2% (t2), and form a mask m that identifies the most significant nonzero field of z.
After putting g copies of that field into z, we test z as we tested y (¢3). Finally an appro-
priate sideways addition of t; and t3 (g-bit-wise) yields A. (Try the case g =4, n = 16.)
To compute 2* without shifting left, replace ‘2 < 1’ by ‘t2 + t2’, and replace the

final line by w « (((a - (t3 ® (tz > g))) mod 2") > (n — g)) - I; then w & m is 2**.

107. h GREG #8000800080008000 SLU q,t,16 OR  t,t,y
ms GREG #00ffOf0f33335555 ADDU t,t,q AND t,t,h

1H SRU q,x,32 SLU q,t,32 5H SLU q,t,15

ZSNZ lam,q,32 ADDU t,t,q ADDU t,t,q

ADD t,lam,16 3H ANDN y,t,ms SLU q,t,30

SRU q,x,t 4H XOR t,t,y ADDU t,t,q

CSNZ lam,q,t OR gq,y,h
2H SRU t,x,lam SUBU t,q,t

6H SRU q,t,60
ADDU lam,lam,q |

The total time is 22v (and no mems). [There’s also a mem-less version of (56),
costing only 16w, if its last line is replaced by ADD t,lam,4; SRU y,x,t; CSNZ lam,y,t;
SRU y,x,lam; SLU t,y,1; SRU t, [#ffffaa50],t; AND t,t,3; ADD lam,lam,t.]

108. For example, let e be minimum so that n < 2¢ - 2> Ifnisa multiple of 2%, we
can use 2° fields of size n/2°, with e reductions in step B1; otherwise we can use 2°
fields of size 2/'8"1=¢~1 with e + 1 reductions in step B1. In either case there are e
iterations in steps B2 and B5, so the total running time is O(e) = O(loglogn).

109. Start with z < = & —z and apply Algorithm B. (Step B4 of that algorithm can
be slightly simplified in this special case, using a constant ! instead of z @ y.)
110. Let s = 2¢ where d = 2° — e. We will use s-bit fields in n-bit words.

K1. [Stretch z mod s.] Set y <~ & (s—1). Thenset t <~ y& i and y - y Ot D
(t<2’(s—1)) fore > j > 0. Finally set y « (y<s)—y. [Ifz = (z2¢_1...20)2
we now have y = (y2e—1...Y0)2s, where y; = (2° — 1)z;[j <d].]

K2. [Set up minterms.] Set y < y®(aze—1...a0)2s, where aj = pq,; for0 < j < d
and a; =2° —1ford < j < 2°.

K3. [Compress.] Set y + y & (y>>29s) for e > j > 0. [Now y = 1 < (z mod s).
This is the key point that makes the algorithm work.]
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K4. [Finish.] Set y + y | (y € 27s) for 0 < j < e. Finally set y + y & (pae,; @
—((z>j)&1)ford<j<2° |

111. The n bits are divided into fields of s bits each, although the leftmost field might
be shorter. First y is set to flag the all-1 fields. Then ¢ = (. ..%1t0)2s contains candidate
bits for g, including “false drops” for certain patterns 01° with s < k < r. We always
have vt; < 1, and t; # 0 implies ¢t;_1 = 0. The bits of u and v subdivide ¢ into two
parts so that we can safely compute m = (¢>>1) | (£>>2) | --- | (¢>>r), before making
a final test to eliminate the false drops.

112. Notice that if g = 2 & (2 K1) & - & (z € (r — 1)) & ~(z K r) then we have
z&zrztg=c&k(z<]l) & - &(z <K (r—1)).

If we can solve the stated problem in O(1) steps, we can also extract the most

significant bit of an 7-bit number in O(1) steps: Apply the case n = 2r to the number
2™ —1—z. Conversely, a solution to the extraction problem can be shown to yield a solu-
tion to the 170 problem. Exercise 110 therefore implies a solution in O(loglogr) steps.
113. Let 0' = 0, z; = =zo, and construct zi, = z; for 1 < i < r as follows: If
x; =ao;band o; ¢ {+,—,<}, let i' = (i — 1)+ 1 and z}; = a’ 0; b', where o’ = z
ifa=zjandad =aifa=c¢. fz;=a<c let i =(—1)+2and (zl,_,,z}) =
(@&([2" ] -1),z}_ <c). If z; = a+b, let i’ = (i—1)'+6 and let (z{;_1y11q,---,25)
compute ((a’' & k) + (' & h)) @ ((¢' @ b') & h), where h = 2""'. And if ; = a — b, do
the similar computation ((a’ | h) — (b’ & h)) @ ((' =b') & h). Clearly ' < 6r.
114. Simply let X; = Xj(;) 0i Xp) when x; = ;) 0; Ty, Xi = Ci 0; Xy when
T; = C; 0; Tp(s), and X; = X;(;) o; C; when z; = x;(;) 0; ¢;, where C; = ¢; when ¢; is a
shift amount, otherwise C; = (¢; . ..c¢;)2» = (2™" — 1)¢; /(2" — 1). This construction is
possible thanks to the fact that variable-length shifts are prohibited.

[Notice that if m = 2%, we can use this idea to simulate 2% instances of f(z,y:);
then O(d) further operations allow “quantification.”]

115. (a) z + (2 <K 1) & (r K 2), y « = & (z + z). [This problem was posed to the
author by Vaughan Pratt in 1977.]

(b) First find z; + (z < 1) & Z and z, + z & (T < 1), the left and right ends
of z’s blocks; and set z,. + z, & (z, — 1). Then z. + z; & (z; — (z1 & fio)) and
20 + T & (. — (71 & po)) are the right ends that are followed by a left end in even or
odd position, respectively. The answer is y < z & (z + (2. & j10) + (20 & p20)); it can be
simplified to y + = & (z + (ze @ (=1 & po))).

(c¢) This case is impossible, by Corollary I.

116. The language L is well defined, by Lemma A (except that the presence or absence
of the empty string is irrelevant). A language is regular if and only if it can be defined by
a finite-state automaton, and a 2-adic integer is rational if and only if it can be defined
by a finite-state automaton that ignores its inputs. The identity function corresponds
to the language L = 1(0U1)*, and a simple construction will define an automaton that
corresponds to the sum, difference, or Boolean combination of the numbers defined by
any two given automata acting on the sequence zoziz2.... Hence L is regular.

In exercise 115, L is (a) 11*(000*1(0 U 1)* U 0*); (b) 11*(00(00)*1(0 U 1)* U 0*).
117. Incidentally, the stated language L corresponds to an inverse Gray binary code:
It defines a function with the property that f(2z) = ~f(2z + 1), and g(f(2z)) =
9(f(2z + 1)) = z, where g(z) =z @ (> 1) (see Eq. 7.2.1.1-(9)).

118. If £ = (zp—1...2170)2 and 0 < a; < 27 for 0 < j < n, we have Z;:Ol a;r; =
o (a; = (T & 27)). Take a; = 277" to get > 1.
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Conversely, the following argument by M. S. Paterson proves that monus must be
used at least n — 1 times: Consider any chain for f(z) that uses addition, subtraction,
bitwise Booleans, and k occurrences of the “underflow” operation y<z = (2" —1)[y < z].
If k < n—1 there must be two n-bit numbers =’ and ="’ such that 2’ mod 2 = z”’ mod 2 =
0 and such that all k£ of the <’s yield the same result for both ' and z”. Then
f(z') mod 27 = f(z") mod 27 when j = p(z' ® 2""). So f(z) is not the function z > 1.
119. 2+ z @y, f+ 22 & z& (2 — 1). (See (90).)

120. Generalizing Corollary W, these are the functions such that f(zi1,...,zm) =
f(y1,-..,ym) (modulo 2¥) whenever z; = y; (modulo 2¥) for 1 < j < m, for 0 < k < n.
The least significant bit is a binary function of m variables, so it has 22™ possibilities.
The next-to-least is a binary function of 2m variables, namely the bits of (z1 mod 4,
.., Zm mod 4), so it has 22°™; and so on. Thus the answer is 22™+22™+-+2"™

121. (a) If f has a period of length pg, where ¢ > 1 is odd, its p-fold iteration f! has a
period of length ¢, say yo — y1 > - - - — yq = yo where y;j+1 = Jid (y;) and y1 # yo. But
then, by Corollary W, we must have yo mod 2" ~* + y; mod 2"~ ~ ... = y, mod 2"~ *
in the corresponding (n — 1)-bit chain. Consequently y1 = yo (modulo 2"°!), by
induction on n. Hence y; = yo ® 2" 1, and y2 = o, etc., a contradiction.

(b) z1 = zo + o, T2 = 0> (p— 1), T3 = z1 | z2; a period of length p starts with
the value zo = (1 + 2P + 22P 4. -+) mod 2".

122. Subtraction is analogous to addition; Boolean operations are even simpler; and
constants have only one bit pattern. The only remaining case is &, = z; > ¢, where we
have S, = S; + c; the shift goes left when ¢ < 0. Then Vpgr = V(pyc)(g+c)j» and

zr & (27 — 2] = ((z; & |2PF° = 297°)) > ¢) & (2" — 1).
Hence | Xpgr| < | X(ptc)(g+e)i| < Bj = By by induction.
123. If z = (zg—1...T0)2, note first that t = 297" (z¢...24_1)29 in (104); hence y =
(wo...Tg—1)2 as claimed. Theorem P now implies that |1 lgg| broadword steps are
needed to multiply by ag+1 and by ag—1. At least one of those multiplications must
require |_% lg g| or more steps.
124. Initially t + 0, o = z, Uy = {1,2,...,2"7'}, and 1’ <~ 0. When advancing
t < t+ 1, if the current instruction is r; <— r; £ 7 we simply define ; = ;s =z, and
i’ < t. The cases r; < rj org and r; <— c are similar.

If the current instruction branches when r; < r;, define z; = z;—1 and let Vi =
{r € U1 | &y < zy}, Vo = Ug \ V1. Let U; be the larger of V5 and Vi; branch if
U; = Vi. Notice that |Ug| > |U;—1|/2 in this case.

If the current instruction is r; — 7;>>7, let W = {x € Uy_1 | z& | 28" —=2°] #£ 0
for some s € Sy}, and note that |[W| < |Sy|lgn < 27 Let V. = {x € Uy_1 \W |
zp = c} for || < n, and Vo = U1 \ W\ U, <, V. Lemma B tells us that at most
By 4+1 < 22°7'=14 1 of the sets V, are nonempty. Let Uy be the largest; and if it is V%,
define ; = zjr > c, i’ < t. In this case |Uy| > (|Up—q| — 2871 ) /(227" -1 - 1).

Similarly for r; - M|[r; mod 2™] or M[r; mod 2™] < r;, let W = {z € Uz_1 |
z & |2™F5 — 25| £ 0 for some s € Sj}, and V, = {z € Us—1 \ W | ;s mod 2™ = z},
for 0 < z < 2™. By Lemma B, at most B;s < 22"7'—1 of the sets V, are nonempty; let
U; = V, be the largest. To write 7; in M|z], define = = z4—_1, 2"’ < ¢'; to read r; from
M]z], set i’ + t and put =z = z,» if 2"’ is defined, otherwise let z; be the precomputed
constant M|[z]. In both cases |U;| > (|U;_1| — 2¢"1m) /22" *~1 is sufficiently large.

If t < f we cannot be sure that 11 = px. The reason is that the set W =
{z €U; | z & |2'8™F° — 2°| £ 0 for some s € Sy/} has size |[W| < |Sy/|lgn < 2tTeF7,

Paterson
underflow
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and |Up \ W| > 22577 241 _ gtbe+f > 221 > |{zy, & |2'8™ — 1] | @0 € U; \ W}|. Two
elements of U; \ W cannot have the same value of pz = z1/ & [2'8™ — 1].

[The same lower bound applies even if we allow the RAM to make arbitrary
22"~ way branches based on the contents of (r1,...,r;) at time t.]

125. Start as in answer 124, but with Uy = [0..29). Simplifying that argument by
eliminating the sets W will yield sets such that |U;| > 29/ max(2™,2n)?; for example,
at most 2n different shift instructions can occur.

Suppose we can stop at time t with ¢ < [lg(h + 1)|. The proof of Theorem P
yields p and ¢ with 2% & |27 — 27 independent of z & |2P*° — 27%¢|, Hence the hinted
extension of Lemma B shows that z* takes on at most 22°—1 < 2(F~1)/2 different values,
for every setting of the other bits {z & |2°1* — 29%¢| | s € S;}. Consequently r = zy,
can be the correct value of z® for at most 2(*~V/2+97% yalyes of z. But 2(h~1/2+9—h
is less than |Uy|, by (106).

126. M. S. Paterson has proposed a related (but different) conjecture: For every 2-adic
chain with k£ addition-subtraction operations, there is a (possibly huge) integer z with
vz = k + 1 such that the chain does not calculate 2%,

127. Johan Héstad [Advances in Computing Research 5 (1989), 143-170] has shown
that every polynomial-size circuit that computes the parity function from the inputs
{z1,...,%n,T1,...,Tn} with AND and OR gates of unlimited fanin must have depth
Q(logn/loglogn).

128. (Note also that the suffix parity function z® is considered in exercises 36 and 117.)
130. If the answer is “no,” the analogous question with variable a suggests itself.

131. This program does a typical “breadth-first search,” keeping LINK(q) = r. Regis-
ter u is the vertex currently being examined; v is one of its successors.

OH LDOU r,q,link 1 r « LINK(q). STOU v,q,link |R|—|Q| LINK(q) < v.
SET u,r 1 u<+r. STOU r,v,link |R|—|Q| LINK(v) + r.
1H LDOU a,u,arcs |R| a < ARCS(u). SET q,v |R|—|Q| q<¢« v.
BZ a,4F |R| Is S[u]=0? 3H PBNZ a,2B S Loop on a.
2H LDOU v,a,tip S v+« TIP(a). 4H LDOU u,u,link |R| u < LINK(u).
LDOU a,a,next S a < NEXT(a). CMPU t,u,r |R| Isu#1x?
LDOU t,v,link S t <« LINK(v). PBNZ t,1B |R| If so, continue.
PBNZ t,3F S IsveR? I

132. (a) We always have 7(U) C &gy 6u = o(U). And equality holds if and only if
2" Cp(u') forallu € U and v’ € U.

(b) We've proved that 7(U) C o(U); hence T C U. And if t € T we have 2° C p,
for all u € U. Therefore o(T) C 7(T).

(c) Parts (a) and (b) prove that the elements of C,, represent the cliques.

(d) If u C v then u& pr C v& pr and u& dx C v& dx; so we can work entirely with
maximal entries. The following algorithm uses cache-friendly sequential (rather than
linked) allocation, in a manner analogous to radix exchange sort (Algorithm 5.2.2R).

We assume that w; ... ws is a workspace of s unsigned words, bounded by wo = 0
and ws+1 = 2" — 1. The elements of C’,'c"_1 appear initially in positions w;s ... wm, and
our goal is to replace them by the elements of C,j.

M1. [Initialize.] Terminate if py, = 2™ — 1. Otherwise set v « 2%, i < 1, j « m.
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M2. [Partition on v.] While w; & v = 0, set ¢ + ¢ + 1. While w; & v # 0, set
j < j—1. Then if ¢ > j, go to M3; otherwise swap w; <> wj, set i - i+ 1,
j < 7 — 1, and repeat this step.
Ma3. [Split w; ... wm.] Set I < j, p < s+ 1. While ¢ < m, do subroutine Q with
u = w; and set ¢ i+ 1.
M4. [Combine maximal elements.] Set m <« I. While p < s, set m < m + 1,
Wm ¢ Wp,and p+—p+ 1. |
Subroutine Q uses global variables j, k, [, p, and v. It essentially replaces the word u
by u' = u & pr and v = u & i, retaining them if they are still maximal. If so, u' goes
into the upper workspace wy ... ws but u” stays below.

Q1. [Examine u'.] Set w < u & p and q < s. If w = u, go to Q4.

Q2. [Is it comparable?] If ¢ < p, go to Q3. Otherwise if w & wq = w, go to QT.
Otherwise if w & wq = wq, go to Q4. Otherwise set ¢ <~ ¢—1 and repeat Q2.

Q3. [Tentatively accept u'.] Set p < p—1 and w, < w. Memory overflow occurs
if p < m + 1. Otherwise go to Q7.

Q4. [Prepare for loop.] Set 7 < p and wp—1 <+ 0.

Q5. [Remove nonmaximals.] While w | wg # w, set ¢ + ¢—1. While w | w, = w,
set 7 <~ 7+ 1. Then if ¢ < r, go to Q6; otherwise set wq + w,, w, < 0,
q<+q—1,r < r+1, and repeat this step.

Q6. [Reset p.] Set wq + w and p < g. Terminate the subroutine if w = u.

Q7. [Examine u".] Set w <+ u & v. If w = wq for some g in the range 1 < ¢ < 7,
do nothing. Otherwise set [ <~ [+ 1 and w; < w. |

In practice this algorithm performs reasonably well; for example, when it is applied to
the 8 X 8 queen graph (exercise 7-129), it finds the 310 maximal cliques after 306,513
mems of computation, using 397 words of workspace. It finds the 10188 maximal
independent sets of that same graph after about 310 megamems, using 15090 words;
there are respectively (728,6912,2456,92) such sets of sizes (5,6, 7,8), including the 92
famous solutions to the eight queens problem.

Reference: N. Jardine and R. Sibson, Mathematical Taxonomy (Wiley, 1971), Ap-
pendix 5. Many other algorithms for listing maximal cliques have also been published.
See, for example, W. Knédel, Computing 3 (1968), 239-240, 4 (1969), 75; C. Bron
and J. Kerbosch, CACM 16 (1973), 575-577; S. Tsukiyama, M. Ide, H. Ariyoshi, and
I. Shirakawa, SICOMP 6 (1977), 505-517; E. Loukakis, Computers and Math. with
Appl. 9 (1983), 583-589; D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou, Inf.
Proc. Letters 27 (1988), 119-123. See also exercise 5-23.

133. (a) An independent set is a clique of G; so complement G. (b) A vertex cover is
the complement of an independent set; so complement G, then complement the outputs.
134. a+— 00, b — 01, ¢ +— 11 is the first mapping of class II.
135. The unary operators are simple: —(ziz,) = Z,Zi; O(z12r) = Tr2p; o(z12r) = T4
And zizr & yiyr = (21 A 2r) (21 V 27), where 21 = (2 = 1) and 2z, = (xr = yr)-
136. (a) Classes II, III, IV,, and IV, all have the optimum cost 4. Curiously the
functions z; = z1Vy1V (2, Ay, ), 2» = z,Vy, work for the mapping (a, b, c) — (00,01,11)
of class II as well as for the mapping (a, b, c) — (00,01, 1%) of class IV.. [This operation
is equivalent to saturating addition, when a = 0, b = 1, and ¢ stands for “more than 1.”]
(b) The symmetry between a, b, and ¢ implies that we need only try classes I,
IV,, and V,; and those classes turn out to cost 6, 7, and 8. One winner for class I, with
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(a,b,¢) — (00,01,10), is z1 = vr AU, 2r = v A Uy, where wi = 1 D yi1, ur = zr D yr,
v = yr D uy, and v, = y; D u,. [See exercise 7.1.2-60, which gives the same answer but
with z; <> z,. The reason is that we have (z + y + z) mod 3 = 0 in this problem but
(z +y — z) mod 3 = 0 in that one; and z; > 2, is equivalent to negation. The binary
operation z = x oy in this case can also be characterized by the fact that the elements
(z,y,2z) are all the same or all different; thus it is familiar to people who play the game
of SET. It is the only binary operation on n-element sets that has n! automorphisms
and differs from the trivial examples z oy =z or zoy = y.|

(c) Cost 3 is achieved only with class I: Let (a,b,¢) — (00,01,10) and 2z =
(z1Vzr) ANyt 20 = Tr A yr.

137. In fact, z = (z + 1) & y when (a, b, c) — (00,01,10). [It’s a contrived example.]

138. The simplest case known to the author requires the calculation of two binary

operations, such as
abd aba
(abb) and <aba>;
caa cac

each has cost 2 in class V,, but the costs are (3,2) and (2, 3) in classes I and II.

139. The calculation of z; is essentially equivalent to exercise 136(b); so the natural
representation (111) wins. Fortunately this representation also is good for 21, with
21 =TI ANy, 21r = Tr NYr.

140. With representation (111), first use full binary adders to compute (aiao)2 =
zi+ yi + 21 and (b1bo)2 = zr + yr + 2r in 5+ 5 = 10 steps. Now the “greedy footprint”
method shows how to compute the four desired functions of (a1,a0,b1,bo) in eight
further steps: u; = a1 A bo, ur = ag Ab1; t1 = a1 ® bo, t2 = ao ® b1, tz3 = a1 D ta,
ta=ag®t1, vy =tz A1, v, = ta Aa. [Is this method optimum?]

141. Suppose we’ve computed bits ¢ = agai ...a2m—1 and b = bgbs .. .bam—1 such that

as =[s=1or s=2or s is a sum of distinct Ulam numbers <m in exactly one way],

bs = [s is a sum of distinct Ulam numbers < m in more than one way],

for some integer m = U, > 2. For example, when m = n = 2 we have a = 0111 and
b = 0000. Then {s | s < m and as = 1} = {U1,...,Un}; and Upy1 = min{s | s > m
and as = 1}. (Notice that as =1 when s = Un_1 + Uy,.) The following simple bitwise
operations preserve these conditions: n <~ n+ 1, m < Uy, and

(am . ..a2m71,bm .. .bszl) <~ ((am ...Qam—1 D ag ...amfl) & bm .. .bszl,

(am «..a2m—1 & ag . . .am_l) | bm . -b2m—1)7

where as = bs = 0 for 2U,,_1 < s < 2U,, on the right side of this assignment.

[See M. C. Wunderlich, BIT 11 (1971), 217-224; Computers in Number Theory
(1971), 249-257. These mysterious numbers, which were first defined by S. Ulam in
SIAM Review 6 (1964), 348, have baffled number theorists for many years. The ratio
U, /n appears to converge to a constant, &~ 13.52; for example, Uzoo00000 = 270371127
and Usooo0000 = 540752349. Furthermore, D. W. Wilson has observed empirically that
the numbers form quasi-periodic “clusters” whose centers differ by multiples of another
constant, &~ 21.6016. Calculations by Jud McCranie and the author for U,, < 640000000
indicate that the largest gap U, — U,—1 may occur between Us4s76523 = 332250401 and
Usas7e524 = 332251032; the smallest gap U, — Un—1 = 1 apparently occurs only when
U, € {2,3,4,48}. Certain small gaps like 6, 11, 14, and 16 have never been observed.]
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142. Algorithm E in that exercise performs the following operations on subcubes:
(i) Count the #s in a given subcube c. (ii) Given ¢ and ¢/, test if ¢ C ¢'. (iii) Given
c and ¢/, compute clLl ¢’ (if it exists). Operation (i) is simple with sideways addition;
let’s see which of the nine classes of two-bit encodings (119), (123), (124) works best
for (ii) and (iii). Suppose a = 0, b = 1, ¢ = *; the symmetry between 0 and 1 means
that we need only examine classes I, III, IV,, IV., V,, and V..

For the asterisks-and-bits mapping (0,1,%) +— (00,01,10), which belongs to
class I, the truth table for ¢ Z ¢’ is 010x100%110%**x*xx in each component. (For example,
0 C * and * Z 1. The *s in this truth table are don’t-cares for the unused codes 11.)
The methods of Section 7.1.2 tell us that the cheapest such functions have cost 3;
for example, ¢ C ¢’ if and only if (b @ b') | a) & @' = 0. Furthermore the consensus
cUc = ¢" exists if and only if vz = 1, where z = (b D b') & ~(a ® a’). And in that
case,a’ = (a®bD V)& ~(aDa'), b’ = (b|b') & z. [The asterisk and bit codes were
used for this purpose by M. A. Breuer in Proc. ACM Nat. Conf. 23 (1968), 241-250.]

But class III works out better, with (0,1, %) + (01,10, 00). Then ¢ C ¢ if and only
if (,&¢}) | (6,.&c..) = 0; cUc’ = ¢ exists if and only if vz = 1 where z = z&y, z = ¢; | ],
y=c.lcr;and ¢f = z® z, ¢ =y @ 2. We save two operations for each consensus,
with respect to class I, compensating for an extra step when counting asterisks.

Classes IV,, V,, and V. turn out to be far inferior. Class IV, has some merit,
but class III is best.

143. f(z) = ((z&m1)<K17)|((z>>17)&m1) | ((z&m2)<k15) | ((z>>15)&ms) | ((z&ms) <K
10) | ((z > 10) & m3) | ((x & ma) K 6) | ((z > 6) & ma), where mq = #TETETETETETE,
me = #fefefefefefe, my = #3£3£3£3£3£f3£3f, ms = #fcfcfcfcfcfcfc. [See, for
example, Chess Skill in Man and Machine, edited by Peter W. Frey (1977), page 59.
Five steps suffice to compute f(z) on MMIX (four MOR operations and one OR), since
f(x)=q-z-q | ¢ -x-q with ¢ = #40205028140a0502 and ¢' = #2010884422110804 .|
144. Node j @ (k < 1), where k = j & —j.

145. It names the ancestor of the leaf node j | 1 at height h.

146. By (136) we want to show that A\(j & —i) = pl when 1 —2°' < i <1< j < 1+42°%
The desired result follows from (35) because —I < —i < —I +2°L.

147, (a) mv; = Pv; =j, av; = 1<K pj,and 75 = A, for 1 < j < n.

(b) Suppose n = 2°* +- - .42° wheree; > -+ > e; > 0, and let np = 2°' +. - . 4-2%
for 0 < k <t. Then 7v; = j and Bv; = av; = ng for ng—1 < j < ng. AlsoTng = vn,_,
for 1 < k < t, where vo = A; all other 7j = A.

148. Yes, if my, = 010000, 7wy, = 010100, 721 = 010101, 72, = 010110, w3 = 010111,
Bxs = 010111, Bys = 010100, Bzs = 011000, By: = 010000, and Bz1 = 100000.
149. We assume that CHILD(v) = SIB(v) = PARENT(v) = A initially for all vertices v
(including v = A), and that there is at least one nonnull vertex.
S1. [Make triply linked tree.] For each of the n arcs u— v (perhaps v = A), set
SIB(u) < CHILD(v), CHILD(v) < u, PARENT (u) < v. (See exercise 2.3.3-6.)

S2. [Begin first traversal.] Set p - CHILD(A), n < 0, and A0 + —1.

S3. [Compute B in the easy case.] Set n < n+ 1, 7p < n, 7n < A, and
An < 14+ A(n>1). If CHILD(p) # A, set p + CHILD(p) and repeat this step;
otherwise set 8p < n.

S4. [Compute 7, bottom-up.] Set 73p < PARENT(p). Then if SIB(p) # A, set
p < SIB(p) and return to S3; otherwise set p «— PARENT (p).
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S5. [Compute 8 in the hard case.] If p # A, set h + A(n & —mp), then Bp +
((n>h) | 1) < h, and go back to S4.

S6. [Begin second traversal.] Set p <~ CHILD(A), A0 < An, mA < BA + aA «+ 0.
3

S7. [Compute «a, top-down.] Set ap < «(PARENT(p)) | (Bp & —Bp). Then if
CHILD(p) # A, set p < CHILD(p) and repeat this step.

S8. [Continue to traverse.] If SIB(p) # A, set p < SIB(p) and go to ST7.
Otherwise set p +— PARENT (p), and repeat step S8 if p # A. |

150. We may assume that the elements A; are distinct, by regarding them as ordered
pairs (A;,7). The hinted binary search tree, which is a special case of the “Cartesian
trees” introduced by Jean Vuillemin [CACM 23 (1980), 229-239], has the property that
k(%,7) is the nearest common ancestor of ¢ and j. Indeed, the ancestors of any given
node j are precisely the nodes k such that Ay is a right-to-left minimum of A, ... A4;
or A is a left-to-right minimum of 4; ... A,.

The algorithm of the preceding answer does the desired preprocessing, except
that we need to set up a triply linked tree differently on the nodes {0,1,...,n}. Start
as before with CHILD(v) = SIB(v) = PARENT(v) = 0 for 0 < v < n, and let A = 0.
Assume that Ap < Aj for 1 < j < n. Set t + 0 and do the following steps for v = n,
n—1,...,1: Set u « 0; then while A, < A; set u < t and ¢t < PARENT(¢). If u # 0,
set SIB(v) < SIB(u), SIB(u) < 0, PARENT(u) < v, CHILD(v) < u; otherwise simply
set SIB(v) < CHILD(t¢). Also set CHILD(t) < v, PARENT(v) < ¢, t < v.

Continue with step S2 after the tree has been built. The running time is O(n),
because the operation ¢ < PARENT (¢) is performed at most once for each node ¢. [This
beautiful way to reduce the range minimum query problem to the nearest common
ancestor problem was discovered by H. N. Gabow, J. L. Bentley, and R. E. Tarjan,
STOC 16 (1984), 137-138, who also suggested the following exercise.]

151. For node v with k children w1, ..., uk, define the node sequence S(v) = v if
k=0; S(v) =vS(u1) if k =1; and S(v) = S(u1)v ... vS(ux) if £ > 1. (Consequently
v appears exactly max(k—1,1) times in S(v).) If there are k trees in the forest, rooted at
U1, ..., Uk, write down the node sequence S(u1)A ... AS(ux) = Vi...Vn. (The length
of this sequence will satisfy n < N < 2n.) Let A; be the depth of node Vj, for 1 <
j < N, where A has depth 0. (For example, consider the forest (141), but add another
child K — D and an isolated node L. Then V;...Vis = CFAGJDHDKABEIAL
and Ay ... A5 =231342323012301.) The nearest common ancestor of u and v, when
u =V; and v = Vj, is then Vj(; ;) in the range minimum query problem. [See J. Fischer
and V. Heun, Lecture Notes in Comp. Sci. 4009 (2006), 36-48.]

152. Step V1 finds the level above which axz and ay have bits that apply to both of
their ancestors. (See exercise 148.) Step V2 increases h, if necessary, to the level where
they have a common ancestor, or to the top level An if they don’t (namely if k = 0).
If Bz # Bz, step V4 finds the topmost level among z’s ancestors that leads to level h;
hence it knows the lowest ancestor & for which 82 = 8z (or £ = A). Finally in V5,
preorder tells us which of Z or ¢ is an ancestor of the other.

153. That pointer has pj bits, so it ends after p1 + p2+ --- 4+ pj = 7 — vj bits of the
packed string, by (61). [Here j is even. Navigation piles were introduced in Nordic
Journal of Computing 10 (2003), 238—262.]

154. The gray lines define 36°-36°-90° triangles, ten of which make a pentagon with
72° angles at each vertex. These pentagons tile the hyperbolic plane in such a way
that five of them meet at each vertex.
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155. Observe first that 0 < (a0)1/4 < ¢~ +¢ 2 + ¢ >+ -+ = 1, since there are no

consecutive 1s. Observe next that F_,¢ = ¢ " (modulo 1), by exercise 1.2.8-11. Now

add Fy, ¢+ - -+ Fy, ¢. For example, (4¢) mod 1 = ¢ 54+¢2; (—2¢) mod 1 = ¢+ .
This argument also proves the interesting formula | N(a)¢| = —N(a0).

156. (a) Start with y < 0, and with k large enough that |z] < Fjy1. If z < 0, set
kE < (k—1) |1, and while z + Fx > 0 set k < k — 2; then set y + y + (1 < k),
T < x + Fi41; repeat. Otherwise if z > 1, set k < k & —2, and while z — F}, < 0 set
k <+ k — 2; then set y <+ y+ (1 < k), 2 < = — Fi41; repeat. Otherwise set y < y+ =
and terminate with y = (a)2.

(b) The operations z1 < a1, Y1 < —a1, Tk  Yk—1 + Qk, Yk < Th—1 — Tk
compute zx = N(a1...ax) and yx = N(a1...a;0). [Does every broadword chain for
N(ay .. .an) require Q(n) steps?]

157. The laws are obvious except for the two cases involving (a—). For those we have
N((a—)0F)= N(a0F) + F_j_; for all k > 0, because decrementation never “borrows”
at the right. (But the analogous formula N ((a+)0%)= N(a0%)+ F_;_; does not hold.)

158. Incrementation satisfies the rules (a00)+ = a01, (a10)+ = (a+)00, (al)+ =
(a+)0. It can be achieved with six 2-adic operations on the integer z = (a)2 by setting
yz|(z>1),z+y&~y+1),z+ (z|2)+1

Decrementation of a nonzero codeword is more difficult. It satisfies (a10?*)— =
a0(10)*, (@10?*t1)— = a(01)***; hence by Corollary I it cannot be computed by a
2-adic chain. Yet six operations suffice, if we allow monus: y «+ z — 1, z + y & T,
w+z&po, z—y—w+ (w= (z—w)).
159. Besides the Fibonacci number system (146) and the negaFibonacci number sys-
tem (147), there’s also an odd Fibonacci number system: Every positive integer x can
be written uniquely in the form

$:F11+Flz+"'+F157 where l; > lp >+ > 13 > 0 and [, is odd.

Given a negaFibonacci code a, the following 20-step 2-adic chain converts z = (a)2 to
y = (B)2 to z = ()2, where 8 is the odd codeword with N(a) = F(8) and v is the
standard codeword with F(8) = F(y0): 2t + 2 & po, 2~ +— 2@ 2+, d + 2T —z~;
td|z7,t+t&~EtK]);y« (d&o)DtD(t&zT)>1);2+ (y+1)>1;
W< 2@ (4p0); t — w & ~(w+1); 2+ 2D (t & (2 ® (w+1) > 1))).

Corresponding negaFibonacci and odd representations satisfy the remarkable law

Frigm+ -+ Fopgm = (1) (Fly—m + -+ Fiy,—m), for all integers m.

For example, if N(a) < 0 the steps above will convert z = (a0)2 to y = (8)2, where
F((8>2)0) = —N(c). Furthermore 3 is the odd code for negaFibonacci « if and only
if ot is the odd code for negaFibonacci 8%, when |a| = || is odd and N(a) > 0.

No finite 2-adic chain will go the other way, by Corollary I, because the Fibonacci
code 10* corresponds to negaFibonacci 10°*! when k is odd, (10)*/21 when k is even.
But if v is a standard Fibonacci codeword we can compute y = (3)2 from z = (v)2 by
setting y + 2K 1, t +— y & (y—1) & fio, y < y— t + [t #0]((t — 1) & po). And then
the method above will compute o from 8®. The overall running time for conversion
to negaFibonacci form will then be of order log ||, for two string reversals.

160. The text’s rules are actually incomplete: They should also define the orientation
of each neighbor. Let us stipulate that asn = @; den = @3 (@0)wn = a0, (al)wo = alj;
(a00)ns = a00, (al0)nw = @10, (al)ne = al; (a0)oo = a0, (al0l)s, = «101,

broadword chain

2-adic chain

monus

magic mask

odd Fibonacci number system
2-adic chain

magic mask

string reversals
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(@1001)60 = @1001, (a0001)ow, = @0001. Then a case analysis proves that all cells
within d steps of the starting cell have a consistent labeling and orientation, by induc-
tion on the graph distance d. (Note the identity a+ = ((«0)—) > 1.) Furthermore the
labeling remains consistent when we attach y coordinates and move when necessary
from one strip to another via the é-rules of (153).

161. Yes, it is bipartite, because all of its edges are defined by the set of boundary
lines. (The hyperbolic cylinder cannot be bicolored; but two adjacent strips can.)

162. It’s convenient to view the hyperbolic plane through another lens,
by mapping its points to the upper halfplane Sz > 0. Then the “straight
lines” become semicircles centered on the z-axis, together with vertical
halflines as a limiting case. In this representation, the edges |z —1| = v/2,
|z| = 7, and Rz = 0 define a 36°-45°-90° triangle if * = ¢ + 1/¢. Every
triangle ABC has three neighbors CBA', ACB’, and BAC’, obtained "
by “reflecting” two of its edges about the third, where the reflection of VA
|z—c|=r"about |z—c|=ris |z —c— L(z1 + z2)| = L|z1 — 32|, z; =1°/(' £7' —¢).
The mapping z — (2 — 20)/(z — Zo) takes the upper halfplane into the unit circle;
when 20 = (v/@ — 1/¢)(1 + 5'/*i) the central pentagon will be symmetric. Repeated
reflections of the initial triangle, using breadth-first search until reaching triangles that
are invisible, will lead to Fig. 14. To get just the pentagons (without the gray lines),
one can begin with just the central cell and perform reflections about its edges, etc.

163. (This figure can be drawn as in exercise 162, starting with vertices that project to
the three points ir, irw, and irw®, where r* = 1(1++/2)(4—v2—+/6) and w = e2mi/3,
Using a notation devised by L. Schlafli in 1852, it can be described as the infinite tiling
with parameters {3, 8}, meaning that eight triangles meet at every vertex; see Schlafli’s
Gesammelte Mathematische Abhandlungen 1 (1950), 212. Similarly, the pentagrid and
the tiling of exercise 154 have Schlafli symbols {5,4} and {5, 5}, respectively.)

164. The original definition requires more computation, even though it can be factored:
custer' (X) = X & ~(Ya &Y & Ys), Y = Xw & X & X&.

But the main reason for preferring (157) is that it produces a thinner, kingwise con-
nected border. The rookwise connected border that results from the 1957 definition is
less attractive, because it’s noticeably darker when the border travels diagonally than
when it travels horizontally or vertically. (Try some experiments and you’ll see.)

165. The first image X () is the “outer” border of the original black pixels. Fingerprint-
like whorls are formed thereafter. For example, starting with Fig. 15(a) we get

A

in a 120 x 120 bitmap, eventually alternating endlessly between two bizarre patterns.
(Does every nonempty M x N bitmap lead to such a 2-cycle?)

166. If X = custer(X), the sum of the elements of X +(XA1)+(X <1)+(X>1)+(XV1)
is at most 4M N + 2M + 2N, since it is at most 4 in each cell of the rectangle and at
most 1 in the adjacent cells. This sum is also five times the number of black pixels.
Hence f(M,N) < 2MN + 2M + 2N. Conversely we get f(M,N) > 2MN — 2 by

’ k]

bipartite

cylinder

hyperbolic plane
upper halfplane
reflection
breadth-first search
Schlafli
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letting the pixel in row ¢ and column j be black unless (¢ + 2j) mod5 = 2. (This
problem is equivalent to finding a minimum dominating set of the M x N grid.)

167. (a) With 17 steps we can construct a half adder and three full adders (see 7.1.2—
(23)) so that (z122)2 = Tnw + Tw + Tsw, (2324)2 = Tn + Ts, (2526)2 = Tne + Te + Tse,
and (z728)2 = 22 + 24 + z6. Then f = S1(z1, 23, 25,27) A (z V 25), where the symmetric
function fi needs seven operations by Fig. 9 in Section 7.1.2. [This solution is based
on ideas of W. F. Mann and D. Sleator.]

(b) Given z~ = XJ(-t_)17 z = XJ(-t), and ¢t = X](-f,:l, compute a + &~ & T (= z3),
bz @xt (=24),c Db, d < c>1 (= 2), c + cKL1 (= 22), e + cDd, ¢ + c&d,
fb&e, fflc(=27),ebDe(=2s),cz&bc+cla,b+ckKl (= 2s5),
c+—c>1l(=z1),d<b&c,c+ble,b—a&f, fal|lf,fd|f,c+b]c
f Ff®c(=51(z1,23,25,27)),ee|z, [« f&e.

[For excellent summaries of the joys and passions of Life, including a proof that
any Turing machine can be simulated, see Martin Gardner, Wheels, Life and Other
Mathematical Amusements (1983), Chapters 20-22; E. R. Berlekamp, J. H. Conway,
and R. K. Guy, Winning Ways 4 (A. K. Peters, 2004), Chapter 25.]

At last I've got what | wanted —an apparently unpredictable law of genetics.
. Overpopulation, like underpopulation, tends to Kill.

A healthy society is neither too dense nor too sparse.

— JOHN H. CONWAY, letter to Martin Gardner (March 1970)

168. The following algorithm, which uses four n-bit registers ¢, z, ™, and y, works
properly even when M = 1 or N = 1. It needs only about two reads and two writes
per raster word to transform X® to X**1 in (158):

C1. [Loop on k.] Do step C2 for k=1, 2, ..., N'; then go to C5.
C2. [Loop on j.| Set z < A(pr—1)k, % ¢ Aok, and Ay < 7. Then perform
steps C3 and C4 for j =0,1, ..., M — 1.

C3. [Move down.] Set 2~ + z, 2 + «*, and ¥ + A(j11)k. (Now z = Ajx, and
z~ holds the former value of A(;_1)x.) Compute the bitwise function values
Yy flzm > L,z <Lz> Lz et > 1,72 «1).
C4. [Update Ajr.| Set 27 + Ajp_1) & =2, y + y & 2" = 1), Aje_1) «
4+ (y>(n—2)), Ajr ¢+ y+ (27 < (n—2)).
C5. [Wrap around.] For 0 < j < M, set ¢ < A;jn' & —gn-1-d Ajnt — z+
(Aj1>d), and Aj1 + Aj1 + (z < d), whered=14+ (N —1) mod (n—2). |
[An M X N torus is equivalent to an (M — 1) X (N — 1) array surrounded by zeros,
in many cases like (157) and (159) and even (161). For exercise 173 we can clean an
(M —2) x (N — 2) array that is bordered by two rows and columns of zeros. But Life
images (exercise 167) can grow without bound; they can’t safely be confined to a torus.]

169. It quickly morphs into a rabbit, which proceeds to explode. Beginning at time
278, all activity stabilizes to a two-cycle formed from a set of traffic lights and three
additional blinkers, together with three still lifes (tub, boat, and bee hive).

170. If M > 2 and N > 2, the first step blanks out the top row and the rightmost
column. Then if M > 3 and N > 3, the next step blanks out the bottom row and the
leftmost column. So in general we’re left after ¢ = min(M, N) — 1 steps with a single
row or column of black pixels: The first [¢/2] rows, the last [¢/2] columns, the last
|t/2] rows, and the first |¢/2]| columns have been set to zero. The automaton will stop
after making two more (nonproductive) cycles.

dominating set
grid

half adder

full adders
Mann

Sleator

Turing machine
Gardner
Berlekamp
Conway

Guy
CONWAY
Gardner

clean
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171. Without (160): z1 + zse & Tn, T2 « Tn & Tsk, 3 + Tr & T1, Ta + Tne & T2,
Ts X3 | T4, Te — Tw & Ts, 7 1 & Tne, Ts — 7 & Tnw, To — Te | Tsw,
T10 < I8 & Tg9, T11 < T10 | Tg, T12 < Ts & T11, T13 < T2 &:Z‘E, T14 < T13 & Tw,
T1s < Tn & Tne, T16 ¢ Tsw & Tw, T17 < T1s | T16, T18 < Tne & Tsw, T19 < T17 & Z1s,
T20 < Tr | Zsg, T21 < T20 | Ts, T2 < Tnw & To1, T3  To2 & T19, Taa  T12 | Z14,
g < 23 | £24. With (160), set 24  zne & Tn and leave everything else the same.

172. The statement isn’t quite true; consider the following examples:

I

bl F ——
The ‘T’ and ‘H’ at the left show that pixels are sometimes left intact where paths join,
and that rotating by 90° can make a difference. The next two examples illustrate
a quirky influence of left-right reflection. The diamond example demonstrates that
very thick images can be unthinnable; none of its black pixels can be removed without
changing the number of holes. The final examples, one of which was inspired by the

answer to exercise 166, were processed first without (160), in which case they are
unchanged by the transformation. But with (160) they’re thinned dramatically.

173. (a)If X and Y are closed, X &Y is closed; if X and Y are open, X |Y is open. Thus
XP is closed and X is open; the hinted statement follows. Furthermore XPP = xP
and X" = X%, (In fact we have X* = ~(~X)P, because the definitions are dual,
obtained by swapping black with white.) Now XPL C XP, so XPIP C xPP = xP.
And dually, X* € X*PL We conclude that there’s no reason to launder a clean
picture: XPLDL = (xPLDYL C xDL C (xD)LDL _ xDLDL

(b) We have X© = (X | Xw | Xxw | Xn) & (X | Xn | Xne | Xi) & (X | X | Xsu | Xs) &
(X | Xs|Xsw | Xw). Furthermore, in analogy with answer 167(b), this function can be
computed from 2™, z, and z* in ten broadword steps: f <+ z|(z>1)|((z” |(z™>1))&
(zt | (2t >1))), f « f & (f < 1). [This answer incorporates ideas of D. R. Fuchs.]

To get X, just interchange | and &. [For further discussion, see C. Van Wyk
and D. E. Knuth, Report STAN-CS-79-707 (Stanford Univ., 1979), 15-36.]

174. Three-dimensional digital topology has been studied by R. Malgouyres, Theoret-
ical Computer Science 186 (1997), 1-41.

175. There are 25 in the outline, 2+ 3 in the eyes, 1+ 1 in the ears, 4 in the nose, and
1 in the smile, totalling 37. (All white pixels are connected kingwise to the background.)

176. (a) If v isn’t isolated, there are eight easy cases to consider, depending on what
kind of neighbor v has in G.

(b) There’s a vertex of G’ adjacent to each vertex of (N, UN,)\G'. (Four cases.)

(c) Yes. In fact, by definition (161), we always have |S’(v")| > 2.

(d) Let N, = {v | v' € Ny}. If v is the east neighbor of u', call it ug, either
u' € G or ug € G; this element is equal-or-adjacent to every vertex of N., UN,,. A
similar argument applies when v’ = uy. If v' = uyg, there’s no problem if ' € G.
Otherwise uyy € G, us € G, and either uy € G or ug € G; hence N,, UN,, is connected
in G. Finally if v' = u4g, the proof is easy if u§ € G; otherwise v’ € G and v’ € G.

(e) Given a nontrivial component C of G, with v € C and v’ € S(v), let C’ be the
component of G’ that contains v’. This component C' is well defined, by (a) and (b).
Given a component C’ of G', with v' € C' and v € S’'(v'), let C be the component of
G that contains v. This component C is nontrivial and well defined, by (c) and (d).
Finally, the correspondence C <+ C' is one-to-one.

dual

Fuchs

Van Wyk
Knuth
Malgouyres
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177. Now the vertices of G are the white pixels, adjacent when they are rook-neighbors.
So we define N, ;) = {(i,4),(i—1,5), (4,j+1)}. Arguments like those of answer 176,
but simpler, establish a one-to-one correspondence between the nontrivial components
of G and the components of G'.

178. Observe that in adjacent rows of X ™, two pixels of the same value are kingwise
neighbors only if they are rookwise connected.

179. The pixels of each row z1...znx can be “runlength encoded” as a sequence of
integers 0 = cp < ¢1 < +++ < Cam+1 = N+2sothat z; =0for j € [co..c1)U[cz..c3)U
--Uleam--camy1) and z;j = 1 for j € [e1..c2) U---U[cam—1--C2m). (The number of
runs per row tends to be reasonably small in most images. Notice that the background
condition zo = zn+1 = 0 is implicitly assumed.)

The algorithm below uses a modified encoding with a; = 2¢; — (j mod 2) for
0 < j < 2m+1. For example, the second row of the Cheshire cat has (¢1,c2,c3,¢4,¢5) =
(5,8,23,25,32); we will use (a1, a2,as,as,as) = (9,16,45,50,63) instead. The reason is
that white runs of adjacent rows are rookwise adjacent if and only if the corresponding
intervals [a;..aj+1) and [bg ..bkt1) overlap, and exactly the same condition charac-
terizes when black runs of adjacent rows are kingwise adjacent. Thus the modified
encoding nicely unifies both cases (see exercise 178).

We construct a triply linked tree of components, where each node has several
fields: CHILD, SIB, and PARENT (tree links); DORMANT (a circular list of all children that
aren’t connected to the current row); HEIR (a node that has absorbed this one); ROW and
COL (location of the first pixel); and AREA (the total number of pixels in the component).

The algorithm traverses the tree in double order (see exercise 2.3.1-18), using
pairs of pointers (P,P’), where P’ = P when P is traversed the first time, P’ = PARENT (P)
when P is traversed the second time. The successor of (P,P’) is (Q,Q") = next(P,P’),
determined as follows: If P = P’ and CHILD(P) # A, then Q <— Q' < CHILD(P); otherwise
Q + P and Q' < PARENT(Q). If P # P’ and SIB(P) # A, then Q < Q' < SIB(P);
otherwise Q <— PARENT(P) and Q' < PARENT(Q).

When there are m black runs, the tree will have m + 1 nodes, not counting nodes
that are dormant or have been absorbed. Moreover, the primed pointers P1, ..., Py, 11
of the double traversal (Py,P}), ..., (Pami1,P2m+1) are precisely the components of
the current row, in left-to-right order. For example, in (163) we have m = 5; and

(P1,...,P11) point respectively to @, @, ©, @, ©, ®, ©, @, @, @, ©.

I1. [Initialize.] Set ¢ < 1, ROOT <— LOC(NODE(0)), CHILD(ROOT) < SIB(ROOT) <
PARENT(ROOT) < DORMANT(ROOT) <« HEIR(ROOT) < A; also ROW(ROOT) <«
COL (ROOT) < 0, AREA(ROOT) < N +2, s < 0, a0 ¢ bo 0, a1 < 2N + 3.

I2. [Input a new row.] Terminate if s > M. Otherwise set by + ax for k=1, 2,
..., until by = 2N+3; then set br+1 < by as a “stopper.” Set s + s+1. If s >
M, set a1 < 2N + 3; otherwise let a1, ..., aam+1 be the modified runlength
encoding of row s as discussed above. (This encoding can be obtained with
the help of the p function; see (43).) Set j < k + 1 and P < P’ < ROOT.

13. [Gobble up short b’s.] If bxy1 > aj, go to 19. Otherwise set (Q,Q") «+
next(P,P’), (R,R') « next(Q,Q’), and do a four-way branch to (14,15,16,17)
according as 2[Q# Q']+ [R#R'] = (0, 1,2, 3).

I4. [Case 0.] (Now Q = Q' is a child of P’, and R = R'is the first child of Q'. Node Q
will remain a child of P/, but it will be preceded by any children of R.) Absorb
R into P’ (see below). Set CHILD(Q) < SIB(R) and Q' + CHILD(R). If Q' # A,

runlength encoded

runlength encoding, see also edge transitions
Cheshire cat

triply linked tree

circular list

double order

ruler function
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set R < Q, and while R # A set PARENT(R) < P', R’ + R, R < SIB(R); then
SIB(R) +Q, Q<+ Q. Set CHILD(P) <—Q if P=P’, SIB(P) < Q if P£P’. Go to I8.

I5. [Case 1.] (Now component Q = R is surrounded by P’ = R'.) If P = P’, set
CHILD(P) < SIB(Q); otherwise set SIB(P) <+ SIB(Q). Set R <— DORMANT (R').
Then if R = A, set DORMANT (R') < SIB(Q) ¢ Q; otherwise SIB(Q) < SIB(R)
and SIB(R) «+ Q. Go to I8.

I6. [Case 2.] (Now Q' is the parent of both P’ and R. Either P = P’ is childless, or
P is the last child of P’.) Absorb R into P’ (see below). Set SIB(P') «+ SIB(R)
and R < CHILD(R). If P = P/, set CHILD(P) < R; otherwise SIB(P) < R.
While R # A, set PARENT(R) <+ P’ and R < SIB(R). Go to IS.

I7. [Case 3.] (Node P’ = Q is the last child of Q' = R, which is a child of R'.)
Absorb P’ into R’ (see below). If P = P’ set P <~ R. Otherwise set P' <
CHILD(P'), and while P’ # A set PARENT(P') «+ R’, P’ < SIB(P'); also
set SIB(P) <+ SIB(Q') and SIB(Q') < CHILD(Q). If Q = CHILD(R), set
CHILD(R) < A. Otherwise set R < CHILD(R), then R < SIB(R) until
SIB(R) = Q, then SIB(R) < A. Finally set P’ «+ R'.

18. [Advance k.] Set k < k + 2 and return to step I3.

I9. [Update the area.] Set AREA(P') < AREA(P') + [a;/2] — [a;j—1/2]. Then go
back to 12 if a; = 2N 4+ 3.

I10. [Gobble up short a.] If ajy1 > b, go to I11. Otherwise set Q <+ LOC(NODE (%))
and t + t+ 1. Set PARENT(Q) < P’, DORMANT(Q) ¢« HEIR(Q) <« A; also
ROW(Q) < s, COL(Q) < [a;/2], AREA(Q) < [ajt1/2] — [a;/2]. IfP =P, set
SIB(Q) + CHILD(P) and CHILD(P) < Q; otherwise set SIB(Q) « SIB(P) and
SIB(P) < Q. Finally set P <— Q, 7 - 7 + 2, and return to I3.
I11. [Move on.] Set j «+ j+ 1, k+ k+ 1, (P,P’') < next(P,P’), and go to 13. |
To “absorb P into Q” means to do the following things: If (ROW(P),COL(P)) is less
than (R(JW(Q),C(JL(Q))7 set (ROW(Q),COL(Q)) — (ROW(P),COL(P)). Set AREA(Q) <«
AREA(P) + AREA(Q). If DORMANT(Q) = A, set DORMANT(Q) < DORMANT(P); otherwise if
DORMANT (P) # A, swap SIB(DORMANT (P)) <> SIB(DORMANT(Q)). Finally, set HEIR(P) <
Q. (The HEIR links could be used on a second pass to identify the final component of
each pixel. Notice that the PARENT links of dormant nodes are not kept up to date.)
[A similar algorithm was given by R. K. Lutz in Comp. J. 23 (1980), 262-269.]
180. Let F(z,y) =2’ -y’ +13and Q(z,y) = F(z — 2,y —3) =2 -y’ —z+y +13.
Apply Algorithm T to digitize the hyperbola from (£,7) = (=6,7) to (¢,7') = (0,+/13);
hence z = —6, y = 7, ' = 0, y' = 4. The resulting edges are (—6,7) — (=5,7) —
(-5,6) — (—4,6) — (—4,5) — (—3,5) — (—3,4) — - - -—(0,4). Then apply it again
withé=0,7=+13,¢ =6, 7 =7, =0,y=4, &' =6,y = T; the same edges are
found (in reverse order), but with negated z coordinates.
181. Subdivide at points (£,7n) where F,(£,n) = 0 or Fy(£,n) = 0, namely at the real
roots of {Q(—(bn+d)/(2a),n+ %) =0, £ = —(bn+ d)/(2a) — 3} or the real roots of
{QE+ 3, - (b€ +e)/(2¢)) =0, n = —(b€ +e)/(2c) — 3}, if they exist.
182. By induction on |z’ — z| + |y’ — y|. Consider, for example, the case z > '
and y < y'. We know from (iii) that (£,7) lies in the box z — 1 < £ < z+ 1 and
Y — % <n<y+ %, and from (ii) that the curve travels monotonically as it moves from
(&,m) to (¢',n'). It must therefore exit the box at the edge (z—3,y— %) — (z—%,y+3)
or (z—3,y+3)— (z+3,y+ 1). The latter holds if and only if F(z — 1,y + 1) <0,
because the curve can’t intersect that edge twice when z’ < z. And F(z — 1,y + 1) is

Lutz
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the value Q(z,y + 1) that is tested in step T4, because of the initialization in step T1.
(We assume that the curve doesn’t go ezactly through (z — %,y + %), by implicitly
adding a tiny positive amount to the function F' behind the scenes.)

183. Consider, for example, the ellipse defined by F(z — 1,y — 1) = Q(z,y) = 132 +
Tey +y? — 2 = 0; this ellipse is a cigar-shaped curve that extends roughly between
(—2,5) and (1, —6). Suppose we want to digitize its upper right boundary. Hypotheses
(i)—(iv) of Algorithm T hold with
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z=1,y=-6,z = -2,y =5. Step T1 sets Q < Q(1,—5) = 1, which causes step T4
to move left (L); in fact, the resulting path is L3U"!, while the correct digitization
according to (164) is USLU*LULU. Failure occurred because Q(z,y) = 0 has two
roots on the edge (1, —5) — (2, —5), namely ((35 & —v/29)/26, —5), causing Q(1,—5)
to have the same sign as Q(2, —5). (One of those roots is on the boundary we are not
trying to draw, but it’s still there.) Similar failure occurs with the parabola defined
by Q(xvy) = 9x2 + 6zy + y2 -y =0, £ = _5/127 n= _1/47 £’ = _5/27 17, = _19/27
z=0,y=0,2 =-2, v =9. Hyperbolas can fail too (consider 6x2 + 5zy + y* = 1).
Algorithms for discrete geometry are notoriously delicate; unusual cases tend to
drive them berserk. Algorithm T works properly for portions of any ellipse or parabola
whose maximum curvature is less than 2. The maximum curvature of an ellipse with
semiaxes a > f is a/B%; the cigar-shaped example has maximum curvature ~ 42.5.
The maximum curvature of the parabola y = az? is a/2; the anomalous parabola above
has maximum curvature = 5.27. “Reasonable” conics don’t make such sharp turns.
To make Algorithm T work correctly without hypothesis (v), we need to slow it
down a bit, by changing the tests ‘Q < 0’ to ‘Q < 0 or X’, where X is a test on the
sign of a derivative. Namely, X is respectively ‘S > ¢’, ‘R > a’, ‘R < —a’, ‘S < —¢’, in
steps T2, T3, T4, T5.
184. Let Q'(z,y) = —1 — Q(z,y). The key point is that Q(z,y) < 0 if and only if
Q' (z,y) > 0. (Curiously the algorithm makes the same decisions, backwards, although
it probes the values of Q' and @ in different places.)

185. Find a positive integer h so that d = (n—n')h and e = (¢ — £)h are integers and
d+e is even. Then carry out Algorithm T withz = [{+ 3],y = [n+3], 2" = [€ +3],
y' =10+ 3], and Q(z,y) = d(z — 3) +e(y — 3) + f, where

F=1n'¢ = ¢n)h] —[d>0and ('€ — £'n)h is an integer].

(The ‘d > 0’ term ensures that the opposite straight line, from (¢',7n") back to (£,7), will
have precisely the same edges; see exercise 183.) Steps T1 and T6-T9 become much
simpler than they were in the general case, because R = d and S = e are constant.

(F. G. Stockton [CACM 6 (1963), 161, 450] and J. E. Bresenham [IBM Systems
Journal 4 (1965), 25-30] gave similar algorithms, but with diagonal edges permitted.)
186. (a) B(e) = 20 + 2¢e(z1 — 20) + O(€?); B(1 — €) = 22 — 2¢e(z2 — 21) + O(?).

(b) Every point of S(zo, 21, 22) is a convex combination of zo, 21, and zs.

(c) Obviously true, since (1 —¢)® +2(1 — t)t +t* = 1.

(d) The collinear condition follows from (b). Otherwise, by (c), we need only
consider the case zo = 0 and 22 — 227 = 1, where 21 = x1 + 7y1 and y1 # 0. In that
case all points lie on the parabola 4z = (y/y1)? + 4yz1 /y:.

(e) Note that B(uf) = (1—u)?20+2u(1—u)((1—0)20+021)+u’>B(6) for 0 < u < 1.
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[S. N. Bernshtein introduced Bn(20,21,...,2n;t) = >, (})(1 — ¢)" %2 in
Soobshcheniia Khar’kovskoe matematicheskoe obshchestvo (2) 13 (1912), 1-2.]

187. We can assume that zo = (zo,%0), 21 = (z1,¥1), and z2 = (z2,y2), where the
coordinates are (say) fixed-point numbers represented as 16-bit integers divided by 32.
If 20, 21, and z2 are collinear, use the method of exercise 185 to draw a straight
line from zg to zo. (If z1 doesn’t lie between zo and z2, the other edges will cancel out,
because edges are implicitly XORed by a filling algorithm.) This case occurs if and
only if D = zoy1 + z1y2 + T2Yo — T1Yo — T2y1 — Toy2 = 0.
Otherwise the points (z,y) of S(zo0, 21, 22) satisfy F(z,y) = 0, where

F(z,y) = ((z — 20)(y2 — 291 + y0) — (¥ — yo) (22 — 221 + x0))”
—4D((z1 — z0)(y — yo) — (y1 — yo)(z — z0))

and D is defined above. We multiply by 32% to obtain integer coefficients; then negate
this formula and subtract 1, if D < 0, to satisfy condition (iv) of Algorithm T and the
reverse-order condition. (See exercise 184.)

The monotonicity condition (ii) holds if and only if (z1 — zo)(z2 — z1) > 0 and
(y1 — yo)(y2 — y1) > 0. If necessary, we can use the recurrence of exercise 186(e)
to break S(zo,z1,22) into at most three monotonic subsquines; for example, setting
0 = (zo — 1)/ (o — 221 + z2) will achieve monotonicity in z. (A slight rounding error
may occur during this fixed point arithmetic, but the recurrence can be performed in
such a way that the subsquines are definitely monotonic.)

Notes: When zg, z1, and z; are near each other, a simpler and faster method based
on exercise 186(e) with 6 = % is adequate for most practical purposes, if one doesn’t
care about making the exactly correct choice between local edge sequences like “up-
then-left” versus “left-then-up.” In the late 1980s, Sampo Kaasila chose to use squines
as the basic method of shape specification in the TrueType font format, because they
can be digitized so rapidly. The METAFONT system achieves greater flexibility with
cubic Bézier splines [see D. E. Knuth, METAFONT: The Program (Addison—Wesley,
1986)], but at the cost of extra processing time. A fairly fast “six-register algorithm”
for the resulting cubic curves was, however, developed subsequently by John Hobby
[ACM Trans. on Graphics 9 (1990), 262-277]. Vaughan Pratt introduced conic splines,
which are sort of midway between squines and Bézier cubics, in Computer Graphics
9,3 (July 1985), 151-159. Conic spline segments can be elliptical and hyperbolic as
well as parabolic, hence they require fewer intermediate points and control points than
squines; furthermore, they can be handled by Algorithm T.

188. If the rows of the bitmap are (Xo, X1,...,Xe63), do the following operations for
k=0,1,...,5: For all i such that 0 < i < 64 and 1 & 2*¥ = 0, let j = 7 + 2* and either
(a) set t + (X; @ (X; > 2%) & pep, Xi — Xi Dt, X; — X; @ (t < 2%); or (b) set
t <+ Xi&ﬂG,ky U $— Xj &/1«6,197 X; ((X1 <<2k)&ﬂ6,k) | u, Xj — ((X] >>2k)&ﬂ6,k) | t.

[The basic idea is to transform 2* x 2F submatrices for increasing k, as in exercise
5-12. Speedups are possible with MMIX, using MOR and MUX as in exercise 208, and
using LDTU/STTU when k& = 5. See L. J. Guibas and J. Stolfi, ACM Transactions on
Graphics 1 (1982), 204-207; M. Thorup, J. Algorithms 42 (2002), 217. Incidentally,
Theorem P and answer 54 show that €2(nlogn) operations on n-bit numbers are needed
to transpose an n X n bit matrix. An application that needs frequent transpositions
might therefore be better off using a redundant representation, maintaining its matrices
in both normal and transposed form.]

189. The following big-endian program assumes that n < 74880.
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LOC Data_Segment LDO k,Initk
BITMAP LOC Q+M*N/8 OH SET s,N/64
base GREG @ 1H SET a,h A trick (see below)
GRAYMAP LOC Q+MxN/64 SET r,8
GTAB BYTE 255,252,249,246,243 2H LDOU t,base,k
BYTE 240,236,233,230,227 MOR u,cl,t
BYTE 224,221,217,214,211 SUBU t,t,u (Nypwise sums)
BYTE 208,204,201,198,194 MOR u,c2,t
BYTE 191,188,184,181,178 AND t,t,mul
BYTE 174,171,167,164,160 ADDU t,t,u (Nybblewise sums)
BYTE 157,153,150,146,142 MOR u,c3,t
BYTE 139,135,131,128,124 AND t,t,mu2
BYTE 120,116,112,108,104 ADDU t,t,u (Bytewise sums)
BYTE 100,96,92,88,84 ADDU a,a,t
BYTE 79,75,70,66,61 INCL k,N/8 Move to next row.
BYTE 56,52,46,41,36 SUB r,r,1
BYTE 30,24,18,10,0 PBNZ r,2B Repeat 8 times.
Initk OCTA BITMAP-GRAYMAP 3H SRU t,a,56
corr GREG N-8 LDBU t,gtab,t
cl GREG #4000100004000100 SLU a,a,8
c2 GREG #2010000002010000 STBU t,z,0
c3 GREG #0804020100000000 INCL z,1
mul GREG #3333333333333333 PBN a,3B (The trick)
mu?2 GREG #OfOfOfOfOfOfOfOf SUB k,k,corr
h GREG #8080808080808080 SUB s,s,1
gtab GREG GTAB-#80 PBNZ s,1B Loop on columns.
LOC #100 INCL k,7*N/8 Loop on groups
MakeGray LDA z,GRAYMAP PBN k,O0B of 8 rows. |

[Inspired by Neil Hunt’s DVIPAGE, the author used such graymaps extensively
when preparing new editions of The Art of Computer Programming in 1992-1998.]

190. (a) We must have aji1 = f(aj) ® aj_q for j > 1, where ap = 0...0 and
fla)=((ak1)&1...1)®a® (a>1). The elements of the bottom row a., satisfy
the parity condition if and only if this rule makes a,,+1 entirely zero.

(b) True. The parity condition on matrix entries ai; is ai; = a(i—1); D Gi(j—1) D
a;(j+1) ® ait1)j, where a;; = 0if i =0ori=m+1lorj=0o0rj=n+1 If two
matrices (a;;) and (b;;) satisfy this condition, so does (¢;;) when ¢;; = a5 @ bij.

(c) The upper left submatrix consisting of all rows that precede the first all-zero
row (if any) and all columns that precede the first all-zero column (if any) is perfect.
And this submatrix determines the entire matrix, because the pattern on the other side
of a row or column of zeros is the top/bottom or left/right reflection of its neighbor.
For example, if a1 is zero, then ayr414j = apryq—j for 1 < j <m'.

(d) Starting with a given vector a; and using the rule in (a) will always lead to
a row with am41 =0...0. Proof: We must have (o, aj+1) = (ak, ak+1) for some 0 <
j < k < 22 by the pigeonhole principle. If j > 0 we also have (aj_1,0;) = (1, %),
because aj—1 = f(a;) ® ajr1 = f(ar) ® ary1 = ar—1. Therefore the first repeated
pair begins with a row aj of zeros. Furthermore we have a; = ag—; for 0 < ¢ < k;
hence the first all-zero row am+1 occurs when m is k — 1 or k/2 — 1.

Rows aa, ..., au, will form a perfect pattern unless there is a column of 0s. There
are t > 0 such columns if and only if ¢ 4+ 1 is a divisor of n + 1 and a3 has the form
a0af0...0a (t even) or a0a®0...0a® (t 0odd), where |a| + 1 = (n+1)/(t +1).
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(e) This starting vector does not have the form forbidden in (d).

191. (a) The former is au, @z, ... if and only if the latter is 0c; 0aft, 0az00d, .. ..

(b) Let the binary string aga; ...an—1 correspond to the polynomial ao + a1z +

-+ an-—1z™ 7!, and let y = o7 +14+x. Then ap = 0...0 corresponds to Fo(y);

a1 = 10...0 corresponds to Fi(y); and by induction «; corresponds to Fj(y), mod
zV + 1 and mod 2. For example, when N = 6 we have az = 110001 < 1+ z + 2°
because ™! mod (z°® 4+ 1) = z°, etc.

(¢) Again, induction on j.

(d) The identity in the hint holds by induction on m, because it is clearly true
when m = 1 and m = 2. Working mod 2, this identity yields the simple equations

Fa(y) =yFe(y)®  Far1(y) = (Fre—1(y) + F(y))*.

So we can go from the pair Py = (Fi—1(y) mod (z™+1), Fx(y) mod (z¥+1)) to the pair
Py11 in O(n) steps, and to the pair Py in O(n?) steps. We can therefore compute
Fj(y) mod (z + 1) after O(logj) iterations. Multiplying by fa(z) + fa(z™") and
reducing mod 2V + 1 then allows us to read off the value of a;.

Incidentally, F,11(z) is the special case Kn(z,z,...,z) of a continuant polyno-
mial; see Eq. 4.5.3-(4). We have Fpi1(z) = Sp_, ("3 F)z™ 2* =i "Un(iz/2), where
U, is the classical Chebyshev polynomial defined by Un(cos ) = sin((n + 1)) /siné.
192. (a) By exercise 191(c), c(q) is the least j > 0 such that (z+2 ™) Fj(z ™ 4+14+z) = 0
(modulo 2?7 + 1), using polynomial arithmetic mod 2. Equivalently, it’s the smallest
positive j for which F;(y) is a multiple of (z*¢ +1)/(z* +1) = 1+ 2+ -+ 29 )%,
when y = 2z 14+1+z.

(b) Use the method of exercise 191(d) to evaluate ((z +z ') F;(y)) mod (z>? + 1)
when j = M/p, for all prime divisors p of M. If the result is zero, set M « M/p and
repeat the process. If no such result is zero, ¢(q) = M.

(c) We want to show that c¢(2°) is a d1v1sor of 3-2°7! but not of 3.2°7?
2¢71. The latter holds because Fye—1(y) = y2° ' ~1is relatively prime to z2“"" +1. The
former holds because

e—1 e—1 e—1 e e—1 e
Fypeily) =7y B =y 1+y)* =y @ +o)”,

which is = 0 modulo :cze+1 + 1 but not modulo $26+2 + 1.

(d) Fae_1(y) = 35_, y2°—2". Sincey = 27 (1+z+2?) is relatively prime to z7+1,
we have y 1=qotarz+- ot ago1z?” 1 (modulo z?+ 1) for some coefficients a;; hence
y_2’C = ag +a1m2 +. 4+ aq_1m2 (e=1) = ao + alaczlﬂ—e 4+ Fag1x
(modulo z? 4 1) for 0 < k < e, and it follows that Fyzc_,(y) is a multiple of z27 + 1.

(e) In this case c(q) divides 4(2%¢ —1). Proof: Let 2?7 + 1 = fi(z) fo(z) . .. fr(x)
where fi(z) = z+ 1, fa(z) = 22 + z + 1, and each f;(z) is irreducible mod 2. Since
q is odd, these factors are distinct. Therefore, in the finite field of polynomials mod
fi(z) for j > 3, we have y—2* = y=2"*"° as in (d). Consequently Fy2._,(y) is a multiple
of fa(z)...fr(x) = (27 +1)/(z® + 1). So Fy2e 1)(y) = yFy2e_1(y)? is a multiple of
(z®? 4+ 1)/(x® 4+ 1) as desired.

(f) If F.(q) (v) is a multiple of z??+1, it’s easy to see that ¢(2q) = 2¢(g). Otherwise
Fs.(9(y) is a multiple of F3(y) = (1 +y)* = 27%(1 + z)*; hence Fs.(q)(y) is a multiple
of 47+ 1 and ¢(2q) divides 6¢(g). The latter case can happen only when ¢ is odd.

ok+e (g—1) _ y_2k+e

Notes: Parity patterns are related to a popular puzzle called “Lights Out,”
which was invented in the early 1980s by Dario Uri, also invented independently about
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Chebyshev polynomial
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the same time by Ldaszlé Meeré and called i . [See David Singmaster’s Cubic
Circular, issues 7&8 (Summer 1985), 39-42; Dieter Gebhardt, Cubism For Fun 69
(March 2006), 23-25.] Klaus Sutner has pursued further aspects of this theory in
Theoretical Computer Science 230 (2000), 49-73.

193. Let b2iy25) = @ij, b2it1)(25) = @ij D a@t1)j, biyei+1) = aij ® ai(j41), and
b2i+1)(2j+1) = 0, for 0 <4 < m and 0 < j < n, where we regard a;; = 0 when ¢ = 0
ori=m + 1 or ] =0or _7 =n-+ 1. We don’t have (b(Zi)lyb(Zi)27---7b(2i)(2n+1)) =
(0,0,...,0) because (ai1,...,ain) # (0,...,0) for 1 < i < m. And we don’t have
(bzi+1)1,0(2i4+1)25 - - - » D2i+1)(2n+1)) = (0,0, ...,0) because adjacent rows (ai1, ..., Gin)
and (@(it1)1; - --»a(+1)n) always differ for 0 < 4 < m when m is odd.

194. Set f5; + (1 K (n—1)) | (1K (¢—1)) for 1 < i < m, where m = [n/2]. Also set
Yi ¢ (B1 & ai1) + (B2 & aiz) + - - + (Bm & @im ), where ayj is the jth row of the parity
pattern that begins with (3;; vector «y; records the diagonal elements of such a matrix.
Then set r < 0 and apply subroutine N of answer 195 for ¢ <— 1, 2, ..., m. The resulting
vectors 04, ..., 0, are a basis for all n X n parity patterns with 8-fold symmetry.

To test if any such pattern is perfect, let the pattern starting with 6; first be zero
in row ¢;. If any ¢; = n + 1, the answer is yes. If lem(cy,...,c,) < n, the answer
is no. If neither of these conditions decides the matter, we can resort to brute-force
examination of 2" — 1 nonzero linear combinations of the 6 vectors.

For example, when n = 9 we find v = 111101111, 2 = 3 = 010101010, v4 =
000000000, 5 = 001010100; then » = 0, §; = 011000110, 62 = 000101000, ¢; = cz = 5.
So there is no perfect solution.

In the author’s experiments for n < 3000, “brute force” was needed only when
n = 1709. Then r» = 21 and the values of ¢; were all equal to 171 or 855 except that
co1 = 342. The solution 61 @ 021 was found immediately.

The answers for 1 < n < 383 are 4, 5, 11, 16, 23, 29, 30, 32, 47, 59, 62, 64, 65,
84, 95, 101, 119, 125, 126, 128, 131, 154, 164, 170, 185, 191, 203, 204, 239, 251, 254,
256, 257, 263, 314, 329, 340, 341, 371, 383.

[A fractal similar to Fig. 20, called the “mikado pattern,” appears in a paper by
H. Eriksson, K. Eriksson, and J. Sjostrand, Advances in Applied Math. 27 (2001), 365.
See also S. Wolfram, A New Kind of Science (2002), rule 150R on page 439.]

195. Set B; + 1 < (m —1) and v; < a; for 1 < ¢ < m; also set r 0. Then perform
the following subroutine for i =1, 2, ..., m:

N1. [Extract low bit.] Set z < v; & —;. If z = 0, go to N4.
N2. [Find j.] Find the smallest j > 1 such that v; &z # 0 and v; & (z — 1) = 0.

N3. [Dependent?] If j < ¢, set v; < vi ® v;, Bs < Bi ® B, and return to N1.
(These operations preserve the matrix equation C = BA.) Otherwise termi-
nate the subroutine (because ~; is linearly independent from 71, ..., yi—1).

N4. [Record a solution.] Set r < r+ 1 and 6, < 8;. |

At the conclusion, the m — r nonzero vectors 7; are a basis for the vector space of all
linear combinations of a1, ..., am; they’re characterized by their low bits.

196. (a) #0a; #cea3; #e7ae97; #£09d8581.

(b) If Ax = A\z', the result is clear because [ = I’. Otherwise we have either
ay < of or (g = @} and a, < a3); the latter case can occur only when z > 2'6.

(c) Set j « k; while a;; @ #80 < #40, set j < j— 1. Then a(z?) begins with «;.

Meerd

XL25
Singmaster
Gebhardt
Sutner
Knuth
mikado pattern
Eriksson
Eriksson
Sjostrand
Wolfram
vector space



7.1.3 ANSWERS TO EXERCISES 107

197. (a) #000a; #03a3; #7b97; #d834dd41.
(b) Lexicographic order is not preserved when, say, ¢ = #££fff and z’ = #10000.
(¢) To answer this question properly one needs to know that the 2048 integers
in the range #d800 < z < #e000 are not legal codepoints of UCS; they are called
surrogates. With this understanding, ﬂ(z(i)) begins at By if Bx @ #dc00 > #0400,
otherwise it begins at Br_1.
198. a = #e50000, b = 3, ¢ = #16. (We could let b = 0, but then a would be
huge. This trick was suggested by P. Raynaud-Richard in 1997. The stated constants,
suggested by R. Pournader in 2008, are the smallest possible.)
199. We want a1 > #c1; 28aq + a2 < #£490; and either (a1 & —a1) + a1 < #100 or
a1 + as > #17f. These conditions hold if and only if

(#Ci —0[1)&(28061 +a2—#f490)&(((a1&—a1)+a1 —#100) | (#17f — Q1 —az)) < 0.

Markus Kuhn suggests adding the further clause ‘& (#20 — ((28a1 + a2) @ *eda0))’,
to ensure that a;as doesn’t begin the encoding of a surrogate.

200. If $0 = (z7...z120)256 then $3 is set to the symmetric function Sz (z7,z4,z2).
201. MOR x,c,x, where ¢ = #£0f0f0£00£0f0f0f .

202. MOR x,x,c, where c = #c0c030300c0c0303; then MOR x,mone,x. (See answer 209.)

203. a = #0008000400020001, b = #OfOfOfOfOfOfOfOf, c = #0606060606060606,
d = #0000002700000000, e = #2a2a2a2a2a2a2a2a. (The ASCII code for 0 is 6 + #2a;
the ASCII code for a is 6 + #2a + 10 + #27.)

204. p = #8008400420021001, ¢ = #8020080240100401 (the transpose of p), r =
#4080102004080102 (a symmetric matrix), and m = *aab5aa55aa55aab5.

205. Shuffle, but with p <> ¢, r = #0804020180402010, m = *£0£0£0£00£0£0£Of .
206. Just change p to #0880044002200110. (Incidentally, these shuffles can also be
defined as permutations on z = (263 ...2120)2 in another way: The outshuffle maps
Zj  Z(2j) mod 63, for 0 < j < 63, while the inshuffle maps z; — z(2;11) mod 65-)

207. Do MOR y,p,x; MORy,y,p; MOR t,y,q; PUT rM,mi; MUX y,y,t; MOR t,t,q;
PUT rM,m2; MUX y,y,t. In both cases p = #2004801002400801; for triple-zip, ¢ =
#402010080402018, my; = #4949494949494949, mo = #dbdbdbdbdbdbdbdb; for the
inverse, ¢ = #0402018040201008, m; = #07070707070707, mo = *3f3£f3f3f3f3£3f.
208. (Solution by H. S. Warren, Jr.) The text’s 7-swap, 14-swap, 28-swap method can
be implemented with only 12 instructions:

MOR t,x,cl; MOR t,cl,t; PUT rM,ml; MUX y,x,t;

MOR t,y,c2; MOR t,c2,t; PUT rM,m2; MUX y,y,t;

MOR t,y,c3; MOR t,c3,t; PUT rM,m3; MUXy,y,t;
here c1 = #4080102004080102, c2 = #2010804002010804, c3 = #0804020180402010,
ml = #aab5aa55aa55aa55, m2 = #*cccc3333cccc3333, m3 = #£0f0f0f00f0f0f0f .

209. Four instructions suffice: MXOR y,p,x; MXOR x,mone,x; MXOR x,x,q; XORx,x,y;
here p = #80c0e0f0f8fcfeff, mone = —1, and q = p.

210. SLU x,one,x; MOR x,b,x; AND x,x,a; MOR x,x,#ff; here register one = 1.
211. In general, element ij of the Boolean matrix product AXB is \/{zk | airbi; = 1}.
For this problem we choose a;x = [¢ Ck] and b;; = [l D j]; the answer is ‘MOR t,f,a;
MOR t,b,t’ where a = #80c0a0f088ccaaff and b = #££5533110£050301 = a’.

surrogates
Raynaud-Richard
Pournader

Kuhn

surrogate

symmetric function
Warren

swap

MUX

Boolean matrix product



108 ANSWERS TO EXERCISES 7.1.3

(Notice that this trick gives a simple test [f = f] for monotonicity. Furthermore,

the 64-bit result (tes3...t1to)2 gives the coeflicients of the multilinear representation

f(z1,...,26) = (tes + te2Te + * - - + t1T1T2T3T4T5 + toT1T2T3T4T5T6) mod 2,
if we substitute MXOR for MOR, by the result of exercise 7.1.1-11.)
212. If - denotes MXOR as in (183) and b = (87 . .. 3180)2s6 has bytes 3;, we can evaluate
¢ = (a-By) ® ((a<8)-(BI+B57)) @ ((a < 16)-(Bz +BY)) & - ((a < 56)- (Bf +Bg),
where BY = (¢B;) & m, B} = (((gB;) < 8) + B;) & m, ¢ = #0080402010080402, and
m = #7£3£1£0£07030100. (Here gB3; denotes ordinary multiplication of integers.)

213. In this big-endian computation, register nn holds —n, and register data points
to the octabyte following the given bytes an_1...100 in memory (with o, first).
The constants aa = #8381808080402010 and bb = #339bcf6530180c06 correspond to
matrices A and B, found by computing the remainders z* mod p(z) for 72 < k < 80.

SET ¢,0 c+ 0. LDOU t,data,nn t < next octa.
LDOU t,data,nn ¢ < next octa. X0R u,u,c u+—ude.
ADD nn,nn,8 n < n — 8. SLU c,v,56 c 4+ v <K 56.
BZ nn,2F Done if n = 0. SRU v,v,8 v+ v>8.
1H MXOR u,aa,t u<t-A. XOR u,u,v U+ udv.
MXOR v,bb,t v+ t-B. X0R t,t,u t<—tPdu.
ADD nn,nn,8 n < n—8. PBN nn,1B Repeat if n > 0. |
A similar method finishes the job, with no auxiliary table needed:
2H SET nn,8 n < 8. SRU v,v,8 v v>8.
3H AND x,t,ffooo z < high byte. XO0R t,t,v t—tdo.
MXOR u,aaa,x u+zx-A. SUB nn,nn,1 n+<n—1.
MXOR v,bbb,x vz B. PBP nn,3B Repeat if n > 0.
SLU t,t,8 t+—tK8. X0R t,t,c t+—tdec.
XOR t,t,u t+—tdDu. SRU crc,t,48 Return ¢t>48. |

Here aaa = #8381808080808080, bbb = #0383¢363331b0£05, and ffooo = #££00...00.
The Books of the Big-Endians have been long forbidden.
— LEMUEL GULLIVER, Travels Into Several Remote Nations of the World (1726)

214. By considering the irreducible factors of the characteristic polynomial of X,
we must have X™ = I where n = 23.3%.5.7.17-31 127 = 168661080. Neill
Clift has shown that [(n — 1) = 33 and found the following sequence of 33 MXOR
instructions to compute Y = X ' = X"~ ': MXOR t,x,x; MXOR $1,t,x; MXOR $2,t,$1;
MXOR $3,$2,$2; MXORt,$3,$3; S°® MXORt,t,$2; S°; MXOR $1,t,$1; MXORt,$1,$3;
S13. MXOR t,t,$1; S; MXOR y,t,x; here S stands for ‘MXOR t,t,t’. To test if X is
nonsingular, do MXOR t,y,x and compare t to the identity matrix #8040201008040201.
215. SADD $0,x,0; SADD $1,x,a; NEG $0,32,$0; 2ADDU $1,$1,$0; SLU $0,b,$1; then
BN $0,Yes; here a = #*aaaaaaaaaaaaaaaa and b = #2492492492492492.

216. Start with sy < 0 and tx < —1 for 0 < k£ < m. Then do the following for
1 <k<m: Ifzr #20and zx, < 2™, set | < Azx and s; « s; + zx; if t; < 0 or
t1 > Tk, also set t; « xx. Finally, set y < 1 and k < 0; while y > tx and k£ < m, set
y < y+ sk and k < k + 1. Double precision n-bit arithmetic is sufficient for y and si.
[This pleasant algorithm appeared in D. Eppstein’s blog, 2008.03.22.]

217. See R. D. Cameron, U.S. Patent 7400271 (15 July 2008); Proc. ACM Symp.
Principles and Practice of Parallel Programming 12 (2008), 91-98.
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0-1 matrices, 67—70, see also Bitmaps.
multiplication of, 50-51, 56, 107.
transposing, 15, 56, 67, 69, 80.
triangularizing, 68.

0-1 principle, 54.

—1 (the constant (---111)3), 3, 8, 9,

50, 71, 76, 107.

2-adic chains, 23-27, 37, 61, 91, 96.

2-adic fractions, 9, 75.

2-adic integers: Infinite binary strings

(-..x2w170)2 subject to arithmetic
and bitwise operations, 2, 8, 16,
21, 53, 55, 61.

as a metric space, 74.

2-bit encoding for 3-state data, 28-31, 63.

2-cube equivalence, 29-30.

2-dimensional data allocation, 16.

2ADDU (times 2 and add unsigned),
79, 84, 108.

3-valued logic, 31, 63.

4-neighbors, see Rook-neighbors, 40.

4ADDU (times 4 and add unsigned), 77, 79.

8-neighbors, see King-neighbors, 40.
8ADDU (times 8 and add unsigned), 79.
16ADDU (times 16 and add unsigned), 79.
oo (infinity), 8, 55.
d-maps, 84.
4-shifts, 16, 57.

cyclic, 17, 58.
§-swaps, 13-16, 50, 55-56, 107.
Az (|lgz]), see Binary logarithm.
1 (average memory access time), 118.
py and pg x, see Magic masks.
vz, seeSideways addition.

m (circle ratio), as “random” example, 17.

pz, see Ruler function.
v (instruction cycle time), 118.

Absorption laws, 3.
Abstract RISC (reduced-instruction-set
computer) model, 26.
Ackland, Bryan David, 44.
Acyclic digraph, 33.
Addition, 3, 19.
bytewise, 19, 87.
modulo 5, 60.
scattered, 18, 57.
sideways, 2, 11-12, 55, 62, 79, 88, 94.
unary, 60.
Adjacency lists, 62.
Adjacency matrices of graphs, 28, 62.
Adventure game, 85.

Agrawal, Dharma Prakash (8% W&T¥T
JAYAT), 71.

Albers, Susanne, 88.

Allouche, Jean-Paul, 78.

Alpha channels, 59.

Alphabetic data, 20, 59.

Analysis of algorithms, 55, 85.

Ancestors in a forest, 33.

nearest common, 33-35, 64.

AND (bitwise conjunction), 2-3.

Animating functions, 53, 56.

Arc lists, 62.

Ariyoshi, Hiromu (&54), 92.

Arndt, Jorg Uwe, 76, 84.

Array storage allocation, 16, 22, 54, 59.

ASCII: American Standard Code for
Information Interchange, iv, 59, 69, 118.

Associative laws, 3, 72.

Asterisk codes for subcubes, 18, 63.

Averages, bytewise, 19, 59.

Background of an image, 42—43.

Balanced branching functions, 53.

Balanced ternary notation, 63, 79.

Banyan networks, 81.

Basic RAM (random-access machine)
model, 26-27, 62, 91.

Baumgart, Bruce Guenther, 12.

Bays, John Carter, 77.

BDIF (byte difference), 20, 86-87.

Benes, Vaclav Edvard, 13.

Bentley, Jon Louis, 95.

Berlekamp, Elwyn Ralph, 21, 73, 98.

Bernshtein, Sergel Natanovich (Bepumreiis,
Cepreit Haranosu4), 103.

BESM-6 (BECM-6) computer, 83.

Beyer, Wendell Terry, 42.

Bézier, Pierre Etienne, splines, 48,
66-67, 103.

Big-endian convention, 6-8, 12, 20, 77,
103-104, 108.

Binary basis, 71.

Binary logarithm (Az = |lgz]), 10-11,
21-22, 25, 33-35, 55-56, 6061, 64, 70.

Binary recurrence relations, 8, 10, 11, 55.

Binary search trees, 64, 79.

Binary tree structures, 32.

Binary valuation, see Ruler function.

Binary-coded decimal notation, 60.

Bipartite graphs, 14-15, 97.

Bit boards, 32, 63.

Bit codes for subcubes, 18, 63.

Bit permutations, 13-17, 25, 50.
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Bit reversal, 12-13, 25, 27, 55, 56, 96, 97.
Bit slices, 19, 70.
Bitmaps, 3948, 64-68.
cleaning, 65.
drawing on, 48.
filling contours in, 4448, 66—67.
rotation and transposition of, 67.
Bitwise manipulations, 1-108.
Black pixels, 4, 40-41, 47-48, 67.
Bolyai, Janos, 36.
Bookworm problem, 54.
Boolean matrices, 50, 69, see also Bitmaps.
multiplication of, 50-51, 56, 107.
Borkowski, Ludwik Stefan, 31.
Borrows, 8687, 96.
Boundary curves, digitized, 44—48.
Bouton, Charles Leonard, 71.
Branch instructions, 26, 90, see also
Branchless computation.
Branching functions, 53, 56.
Branchless computation, 10, 2327,
48-49, 61, 69, 70.
Braymore, Caroline, 1.
Breadth-first search, 91, 97.
Brent, Richard Peirce, 83.
Bresenham, Jack Elton, 102.
Breuer, Melvin Allen, 94.
Broadword chains, 23-27, 60-62, 65, 96.
strong, 61.
Broadword computations, 21-27,
60-62, 65, 99.
Brodal, Gerth Stglting, 22.
Brodnik, Andrej, 27.
Bron, Coenraad, 92.
Brooker, Ralph Anthony, 2.
Brown, David Trent, 51.
Bruijn, Nicolaas Govert de, cycles, 10.
Biichi, Julius Richard, 75.
Butterfly networks, 56.
Byte: An 8-bit quantity, 7-8.
Byte permutations, 50.
Bytes, parallel operations on, see Multibyte
processing.

Cache memory, 5, 35, 49, 77, 91.

Cache-oblivious array addressing, see Zip.

Cahn, Leonard, 40.

Cameron, Robert Douglas, 108.

Cancellation law, 72.

Cantor, Georg Ferdinand Ludwig
Philipp, 85.

Cardinality of a set, 11.

Carries, 18-19, 25, 86-87.

Cartesian coordinates, 44.

Cartesian trees, 79, 95.

Cellular automata, 40-43, 65—66.

Characteristic polynomial of a matrix, 108.

Chebyshev (= Tschebyscheff), Pafnutii
Lvovich (Ye6pmmes, ITabryTnit
JIeBoBHM4), polynomials, 105.

Cheshire cat, 42-43, 65, 66, 100.

Chessboards, 32, 63.

Chung, Kin-Man (JEEER), 17, 58.

Cigar-shaped curve, 102.

Circles, digitized, 44, 47.

Circular lists, 62, 100.

Cleaning images, 65, 98.

Clift, Neill Michael, 108.

Cliques, maximal, 62—63.

Closed bitmaps, 65.

Colex ordering of integers, 79.

Collation of bits, 2.

Colman, George, the younger, 1.

Combinations, 75—76.

Commutative laws, 3, 71.

Comparator modules, 58.

Comparison of bytes, 21, 60.

Complementation, 3, 52, 92.

Complete binary trees, 33, 74.

infinite, 53.

Composition of permutations, 53, 56-57.

Compression of scattered bits, 16, 57, 83.

Conditional-set instructions, 9-10,
48-49, 77-79, 88.

Conic sections, digitizing, 44-48, 66—67.

Conic splines, 103.

Conjunction, in 3-valued logic, 31.

Connectivity structure of an image,
4143, 65-66.

Consensus of subcubes, 63.

Continuant polynomials, 105.

Control points, 48.

Convex optimization, 85.

Conway, John Horton, 40, 73, 74, 98.

field, 52.

CRC (cyclic redundancy check), 51, 70.

Crossbar modules, 14-15, 58.

CSNZ (conditional set if nonzero), 10,
48-49, 88.

CSOD (conditional set if odd), 79.

CSZ (conditional set if zero), 9, 77, 78.

Curvature: Reciprocal of the radius, 102.

Custering, 39, 44, 64—65.

Cycles in a graph, 15.

Cyclic redundancy checking, 51, 70.

Cyclic shifts, 17, 56, 86.

Cylinder, hyperbolic, 39, 97.

Dahlheimer, Thorsten, 86.

Dallos, Jézsef, 9.

Dates, packed, 4, 60.

de Bruijn, Nicolaas Govert, cycles, 10.

Depth of a Boolean function, 13.

Descartes, René, coordinates, 44.

Dietz, Henry Gordon, 19, 86.

Digitization of contours, 44—48, 66—67.

Dijkstra, Edsger Wybe, 85.

Dilated numbers, see Scattered
arithmetic, Zip.



Dirichlet, Johann Peter Gustav Lejeune,
generating function, 78.
Discrete logarithm, see Binary logarithm.
Disjointness testing, 58.
Disjunction, in 3-valued logic, 31.
Distance between 2-adic integers, 74.
Distinct bytes, testing for, 59.
Distribution networks, see Mapping
networks.
Distributive laws, 3, 72.
Divide and conquer paradigm, 12, 16.
Divisibility by 3, 70.
Division, 54.
avoiding, 4, 54.
by 10, 24.
by powers of 2, 3-4.
in Conway'’s field, 52.
of 2-bit numbers, 59.
Dominating sets, minimum, 98.
Don’t-cares, 18, 29-30, 81, 94.
Dot-minus operation (z=y), v, 20,
24, 61, 82, 96.

Double order for traversing trees, 100-101.

Dovetailing, 16, 59, see also Perfect
shuffles, Zip.

Drawing on a bitmap, 48.

Duality between 0 and 1, 99.

Duguid, Andrew Melville, 13.

DVIPAGE program, 104.

Edges between pixels, 44-48, 66—67.
EDSAC computer, 2, 11.
Eight queens problem, 92.
Ellipses, 44-47, 102, 103.
Encoding of ternary data, 28—-31, 63.
Eofill (even/odd filling), 47.
Eppstein, David Arthur, 108.
Equality of bytes, 20, 59, 60.
Equivalence, in 3-valued logic, 63.
Eratosthenes of Cyrene ("Epotocfévnc
6 Kvpnyaiog); sieve (xdoxwov), 5, 54.
Eriksson, Henrik, 106.
Eriksson, Kimmo, 106.
Escher, Giorgio Arnaldo (= George
Arnold), 37.
Escher, Maurits Cornelis, 37.
Euclid (EdxXeidng), 36.
Extracting bits, 2, 4, 8.
and compressing them, 16-17, 57, 83.
the least significant only (2°%),
8-10, 18, 21.
the most significant only (2*%), 11,
55, 60-62, 89.

Fast Fourier transforms, 56.

Ferranti Mercury computer, 2.

Fibonacci, Leonardo, of Pisa (= Leonardo
filio Bonacii Pisano), numbers, 36.
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Fibonacci number system, 36, 64; see also
NegaFibonacci number system.

odd, 96.
Fibonacci polynomials, 67—-68.
Fields, algebraic, 50, 52, 105.
Fields of data, see Packing of data.
Filling a contour in a bitmap, 44—48, 66—67.
Fingerprints, 40.
Finite fields, 50, 52, 105.
Finite-state automata, 89.
Fischer, Johannes Christian, 95.
Fisher, Randall James, 19, 86.
Fixed point arithmetic, 86, 103.
Flag: A 1-bit indicator, 20, 59, 60.
Floating point arithmetic, 10, 78.
Floyd, Robert W, 58.
Footprints, 87, 93.
Fractals, 68, 78.
Fractional precision, 4, 69.
Fragmented fields, 18, 58.
Fredman, Michael Lawrence, 22, 60.
Freed, Edwin Earl, 55.
Frey, Peter William, 94.
Fuchs, David Raymond, 99.
Full adders, 98.

for balanced ternary numbers, 63.

Gabow, Harold Neil, 95.
Games, 40, 52, 63, 65, 85, 93.
Gaps, between prime numbers, 77.
between Ulam numbers, 93.
in a scattered accumulator, 85.
Garbage collection, 27.
Gardner, Martin, 40, 98.
Gathering bits, 83.
GauB3 (= Gauss), Johann Friderich Carl
(= Carl Friedrich), 36.
Gebhardt, Dieter, 106.
Generating functions, 55, 57.
Dirichlet, 78.
Gill, Stanley, 11.
Gillies, Donald Bruce, 11.
Gladwin, Harmon Timothy, 8.
Gosper, Ralph William, Jr., v, 56, 70.
hack, 4, 54.
Graphs, 14-15.
algorithms on, 27-28, 62-63.
Gray, Frank, binary code, 73, 89.
Gray levels in image data, 59, 67.
Greedy-footprint heuristic, 87, 93.
GREG (global register definition), 9, 12.
Grid structure, 36, 98.
Group of functions, 53.
Groupoids, multiplication tables for, 31, 63.
Grundy, Patrick Michael, 71.
Guibas, Leonidas John (Txipmog, Aswvidag
Iwévvov), v, 103.
Gulliver, Lemuel, 108.
Guo, Zicheng Charles (58 H %), 41, 65.
Guy, Richard Kenneth, 73, 98.
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Hacks, 1-70.
Hagerup, Torben, 88.
HAKMEM, 26, 71, 75.
Half adders, 98.

for balanced ternary numbers, 63.
Hall, Richard Wesley, Jr., 41, 65.
Hamburg, Michael Alexander, 75.
Hardy, Godfrey Harold, 75.
Harel, Dov (9890 17), 33.
Hastad, Johan Torkel, 91.
Heaps, 32.

sideways, 32-35, 63—64.
Heckel, Paul Charles, 82.
Herrmann, Francine, 36.
Heun, Volker, 95.
Hexadecimal constants, v.
Hexadecimal digits, 69.
Hobby, John Douglas, 48, 103.
Holes in images, 42—43.
Hollis, Jeffrey John, 62.
Hudson, Richard Howard, 77.
Hunt, Neil, 104.
Hyperbolas, 44, 66, 75, 102, 103.
Hyperbolic plane geometry, 35-39,

47, 64, 97.
Hyperfloor function (2*?), 11, 55,
60-62, 74, 89.

Ide, Mikio (FH-F4t4), 92.

Identities for bitwise operations, 3, 4,
52, 53, 55, 75, 77, 86.

Identity matrix, 108.

ILLIAC I computer, 11.

Implication, in 3-valued logic, 31.

Implicit data structures, 32—-39, 63—64.

Independent sets, maximal, 63.

Infinite binary trees, 53.

Infinite exclusive-or operation, 74.

Infinite-precision numbers, 2, 4, 52.

Inorder of nodes, 33.

Inshuffles, 69, 80.

Inside of a curve, 44.

Interchanging selected bits, 71.

Interchanging two bits, 55.

Interleaving bits, 16, 59, see also Perfect

shuffles, Zip.
Inverse of a binary matrix, 70.
Inverse of a permutation, 50, 80.
Isometries, 73-74.

Jardine, Nicholas, 92.

Johnson, David Stifler, 92.

Jordan, Marie Ennemond Camille,
curve theorem, 44.

Kaas, Robert, 32.
Kaasila, Sampo Juhani, 103.
Katajainen, Jyrki Juhani, 35.

Kerbosch, Joseph (= Joep) August
Gérard Marie, 92.

King-neighbors, 40, 65.

Kingwise connected components, 41-43,
65—66, 97.

Kirsch, Russell Andrew, 40, 65.

Knight moves, 63.

Knodel, Walter, 92.

Knuth, Donald Ervin (&%), i, v, 22,
77, 78, 93, 99, 103, 104, 106.

Kuhn, Markus Giinther, 107.

Lakhtakia, Akhlesh (3rFaeisr s@ef®ar), 75.

Lamport, Leslie B., 19, 20, 59.

Lander, Leon Joseph, 77.

Large megabytes: 220 bytes, 77.

Largest element of a set, 11.

Larvala, Samuli Kristian, 83.

Latin-1 supplement to ASCII, 85.

L&auter, Martin, 10.

Lawrie, Duncan Hamish, 81.

LDTU (load tetra unsigned), 103.

Le Corre, J., 13.

Leap year, 88.

Least common ancestors, see Nearest
common ancestors.

Least significant 1 bit (2°%), 8-9, 21.

Lee, Ruby Bei-Loh (Z={ifli), 83.

Left-to-right minimum, 95.

Leftmost bits, 10-11, 22, 55.

Lehmer, Derrick Henry, 4.

Leiserson, Charles Eric, 10, 55.

Lenfant, Jacques, 80.

Lenstra, Hendrik Willem, Jr., 52, 73.

Levialdi Ghiron, Stefano, 42—43.

Lexicographic order, 18, 68.

lg, see Binary logarithm.

Life game, 40, 65.

Lights Out puzzle, 105-106.

Linked allocation, 91.

Little-endian convention, 6-8, 12, 20,
28, 76, 77.

Littlewood, John Edensor, 75.

Lobachevsky, Nikolai Ivanovich
(JTob6agenckiit, Hukosait
VBanoBuus), 36.

Loukakis, Emmanuel (Aouvxéxng,
Mavwhng), 92.

Lower bounds, 23-27, 61-62, 103.

Lowercase letters, 59.

Lowest common ancestors, see Nearest
common ancestors.

Loyd, Samuel, 77.

Lukasiewicz, Jan, 31, 63.

Lutz, Riidiger Karl (= Rudi), 101.

Lynch, William Charles, 11.

Magic masks (ur and pq k), 9, 11-13,
16, 22, 37, 54, T1, 75, 76, 78 82, 84,
86, 88, 89, 96, 103.



Majority function, 27, see also Median
function.

Malgouyres, Rémy, 99.

Manchester Mark I computer, 2.

Mann, William Fredrick, 98.

Mapping modules, 58, 81.

Mapping networks, 58, 81.

Mapping three items into two-bit codes,
28-31, 63.

Mappings of bits, 17, 58, 81.

Margenstern, Maurice, 36.

Mark IT computer (Manchester/Ferranti), 2.

Martin, Monroe Harnish, 10.

Mask: A bit pattern with 1s in key
positions, 9, 12-13, 16-18, 20,

49, 50, 69.

Masked integers, see Scattered arithmetic.

Masking: ANDing with a mask, 31.

Matrices of Os and 1s, 67-70, see also
Bitmaps.

multiplication of, 50-51, 56.
transposing, 15, 56, 67, 69, 80.
triangularizing, 68.

Matrix multiplication, 50-51, 56.

Matrix transposition, 15, 56, 67, 69, 80.

max (maximum) function, 2, 31, 60.

Maximal cliques, 62—63.

Maximal independent sets, 63, 92.

Maximal proper subsets, 58.

Maybe, 31.

McCranie, Judson Shasta, 93.

Median function, v, 21, 86, 87.

Meero, Lészlé, 106.

Mems: Memory accesses.

Merge sorting, 49.

METAFONT, 103.

mex (minimal excludant) function, 52.

Mikado pattern, 106.

Miller, Jeffrey Charles Percy, 11.

Miltersen, Peter Bro, 27.

min (minimum) function, 2, 31, 60.

Minimal excludant, 52.

Minimum element in subarray, 64.

Minsky, Marvin Lee, 66.

Missing subset sum, 70.

Mixed-radix representation, 60.

MMIX, ii, iv, 5, 7-10, 12, 19, 20, 28, 48-51,
54, 55, 57, 59, 60, 62, 67, 69, 70, 73,
77,79, 84, 86, 87, 94, 103, 118.

mod (remainder) function, 4.

Mod-5 arithmetic, 60.

Modal logic, 31, 63.

mone, 76, see —1.

Monotone Boolean functions, 70.

Monotonic portions of curves, 45-47, 66.

Monus operation (z—y), v, 20, 24,

61, 82, 96.

Moody, John Kenneth Montague

(= Ken), 62.
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MOR (multiple or), 12, 19, 50-51, 56, 6970,
94, 103, 104, 107-108.
Morton, Guy Macdonald, 85.
Most significant 1 bit (2*%), 2, 11, 60-62, 89.
MP3 (MPEG-1 Audio Layer III), 51.
Muller, David Eugene, 11.
Multibyte encoding, 68—69.
Multibyte processing, 19-23, 59-61.
addition, 19, 60, 87.
comparison, 20-21.
max and min, 60, 88.
modulo 5, 60.
potpourri, 87.
subtraction, 59, 60, 87.
Multilinear representation of a Boolean
function, 108.
Multiple-precision arithmetic, 6.
Multiplication, 4, 10-11, 22, 61, 78.
avoiding, 21, 22, 59, 78.
by powers of 2, 3, 78.
in Conway’s field, 52.
in groupoids, 31, 63.
lower bound for, 22, 26, 62.
of 0—1 matrices, 56; see also MOR and MXOR.
of polynomials mod 2, 70.
of signed bits, 29-30.
Munro, James Ian, 27.
MUX (multiplex), 50, 83, 86, 103, 107.
MXOR (multiple xor), 50-51, 56, 69-70,
73, 86, 107-108.
Mycroft, Alan, 20.

Navigation piles, 35, 64.
Nearest common ancestors, 33—35, 64.
Necessity, in 3-valued logic, 63.
NEG (negation), 49, 76, 108.
Negabinary number system, 52.
Negadecimal number system, 37.
NegaFibonacci number system, 36-39, 64.
Negation, 3, 52, 63.
Nested parentheses, 54.
Newline symbol, 20.
Nicely, Thomas Ray, 77.
Nim, 2, 52.
addition, 2, 52.
division, 52.
multiplication, 52, 73.
second-order, 52.
Noisy data, 65.
Non-Euclidean geometry, 35-36, 97.
Nonzero bytes, testing for, 20—21.
Nonzero register, converted to mask, 49.
NOT (bitwise complementation), 2.
Notational conventions, v, 81.
(zyz) (median of three), v.
u—*v (transitive closure), 27.
z or ~z (bitwise complement), 3.
9 (suffix parity), 55.
z & y (bitwise AND), 3.
z | y (bitwise OR), 3.
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z @ y (bitwise XOR), 3.
z K y (bitwise left shift), 3.
z > y (bitwise right shift), 3.
z } y (zipper function), see Zip.
z - y (max(z—y,0)), v, 20, 24, 61, 82, 96.
z?y:z = zy + Tz (mux), 60, 62.
z +|- x (sheep-and-goats), 17-18, 57-58.
NP-hard problems, 57.
Null spaces, 68.
NXOR (not xor), 79.
Nybble: A 4-bit quantity, 12.
Nyp: A 2-bit quantity, 12.

Objects in images, 42.

Octabyte or octa: A 64-bit quantity, 7-8.

Odd Fibonacci number system, 96.

Ofman, Yuri Petrovich (Odman, FOpuit
IMerposuu), 84.

Omega network for routing, 56-57.

One-to-many mapping, 17, 30.

Ones counting, see Sideways addition.

Online algorithms, 42-43, 66.

Open bitmaps, 65.

Optical character recognition, 40, 65.

OR (bitwise disjunction), 2-3.

Ordinal numbers, 73.

Oriented forests and trees, 33-34, 42-43.

Oriented paths, 27, 64.

Outshuffles, 56, 69.

Outside of a curve, 44.

Overflowing memory, 92.

Packed data, operating on, 4, 19-21,
31, 59-60, 63, 69.

Packing of data, 4-6, 16, 31, 54, 64,
69, 70, 83.

Page faults, 59.

Paley, Raymond Edward Alan Christopher,
54, 75.

Papadimitriou, Christos Harilaos
(Manadnuntelov, Xpictoc Xapiddov), 92.

Papert, Seymour Aubrey, 66.

Parabolas, 44, 66, 102.

Parallel processing of subwords, 19-23,
59-61, 70.

Parenthesis traces, 54.

Parity function, 27, 62, 73, 79.

suffix, 55, 69, 91.

Parity patterns, 67—68.

Parkin, Thomas Randall, 77.

Patents, 79, 83, 108.

Paterson, Michael Stewart, 22, 90, 91.

Pattern recognition, 40.

Patterns, searching for, 20-22, 61.

Pentagrid, 36-39, 64, 97.

Perez, Aram, 51.

Perfect hash functions, 78.

Perfect parity patterns, 67-68.

Perfect shuffles, 16, 50, 56, 57, 69, 80, 88.

3-way, 69, 85.

Period length, 62.
Permutation matrices, 50.
Permutation networks, 13-15, 5658, 81.
Permutations,
induced by index digits, 56.
of bits within a word, 13-17, 25, 50.
of bytes within a word, 50.
of the 2-adic integers, 53.
Omega-routable, 56-57.
Perpendicular lines, 36.
Peterson, William Wesley, 51.
Phi (¢), 64.
Pi (), as “random” example, 17.
Pickover, Clifford Alan, 75.
Pigeonhole principle, 104.
Pipelined machine, 48—49.
Pitteway, Michael Lloyd Victor, 45.
Pixel algebra, v, 40.
Pixel patterns, 4, 53.
Pixels, 39-48, 64-68.
gray, 59, 67.
Poélya, Gyorgy (= George), 75.
Polynomials modulo 2, 51, 57.
multiplication of, 70.
remainders of, 51, 57, 67—68.
Polynomials modulo 5, 60.
Population count, 11, see Sideways addition.
Portability, 7-8.
Possibility, in 3-valued logic, 63.
Pournader, Roozbeh (b5 43s,), 107.
Pratt, Vaughan Ronald, 54, 58, 81,
84, 89, 103.
Prefix problem, see Suffix parity function.
Preorder of nodes, 33-35.
Presume, Livingstone Irving, 55.
Prime implicants, 63.
Prime numbers, 5, 54.
Printing, 39.
Priority queues, 35.
Pritchard, Paul Andrew, 77.
Prodinger, Helmut, 78.
Program counter, 26.
Projection functions, 9.
Prokop, Harald, 10, 55.

Quadratic forms, 4547, 66—67.
Quadtrees, 85.

Quantifications, 74, 89.

Queen graph, 92.

Quick, Jonathan Horatio, 53, 58.
Quilt, 4.

Rabin, Michael Oser ()27 MMy DNIM), 84.

Radix —2, 52.

Radix conversion, 60.

Radix exchange sort, 91.

RAM (random-access machine), 26-27,
62, 91.

Raman, Rajeev, 85.



Ramshaw, Lyle Harold, 21.
Randall, Keith Harold, 10, 55.
Randomized data structures, 79.
Range checking, 60.

Range minimum query problem, 64.
Rank of a binary matrix, 68.
Rasters, 39, see Bitmaps.

Rational 2-adic numbers, 61.

Ray, Louis Charles, 40.
Raynaud-Richard, Pierre, 107.
Reachability problem, 27-28, 33.
Rearrangeable networks, see Permutation

networks.

Recurrence relations, 8, 10, 11, 37,
51, 55, 67.

Recursive processes, 15, 17, 32, 52,
72, 80, 84.

Redundant representations, 103.
Reflection of bits, 12-13, 25, 55, 56, 96, 97.
Regular languages, 61.
Reitwiesner, George Walter, 55.
Remainders mod 2™—1, 11.
Remainders mod 2™, 4.
Remainders of polynomials mod 2,
51, 57, 67-68.
Removal of bits, 8.
Replication of bits, 17, 58, 88.
Representation,
of graphs, 27, 62.
of permutations, 57.
of sets as integers, 11, 18, 28, 58,
62-63, 75.
of three states with two bits, 28-31, 63.
Reversal of bits, 12-13, 25, 27, 55,
56, 96, 97.
Right-to-left minimum, 95.
Rightmost bits, 8-10, 54.
Rochdale, Simon, 1.
Rokicki, Tomas Gerhard, v, 55, 79.
Rook-neighbors, 40, 100.
Rookwise connected components,
41-43, 66, 97.
Rosenfeld, Azriel (779317 Dxony), 41.
Rotation of square bitmaps, 67.
Rote, Giinter (= Rothe, Gilinther Alfred
Heinrich), 66.
Rounding, 33, 86.
to an odd number, 2, 59, 86.
Ruler function (pz), 8, 20, 21, 25, 26, 28, 32,
33, 35, 53, 55, 56, 60, 64, 78, 100.
summed, 95.
Runlength encoding, 100, see also Edges
between pixels.
Runs of 1s, 8, 11, 22-23, 55, 61.
Rutovitz, Denis, 40.

S, the letter, 48.
S18, 74-75.
Saccheri, Giovanni Girolamo, 36.
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SADD (sideways addition), 9, 28, 76,
78, 79, 108.
Samet, Hanan (000 ))N), 85.
Saturating addition, 92.
Saturating subtraction, see Monus operation.
Scattered arithmetic, 18, 58.
addition, 18, 57.
shifting, 58.
subtraction, 58.
Scattering bits, 83.
Schieber, Baruch Menachem
("2>w b a), 33.
Schlafli, Ludwig, 97.
Schroeppel, Richard Crabtree, 26, 52, 82.
Seal, David, 10.
Second-order logic, 74-75.
Security holes, 69.
Segmented broadcasting, see Stretching bits.
Segmented sieves, 77.
Sequential allocation, 91.
SET, the game, 93.
Sets, represented as integers, 11, 18,
27-28, 58, 62-63, 75.
maximal proper subsets of, 58.
Shades of gray, 67.
Shallit, Jeffrey Outlaw, 78.
Sheep-and-goats operation, 17-18, 57-58.
Shi, Zhi-Jie Jerry (&), 83.
Shift instructions, 3, 19, 21, 52, 61.
signed, 10, 49, 76, 78.
table lookup via, 5, 23, 69, 77, 88.
Shift sets, 24-25.
Shirakawa, Isao (F9)I[Z)]), 92.
Shrinking of images, 42—43, 66.
Shuffle network for routing, 56.
Sibling links, 32, 63.
Sibson, Robin, 92.
Sideways addition, 2, 11-12, 55, 62, 79, 94.
bytewise, 11, 88.
function vz, 11, 27, 55, 78.
summed, 55, 82.
Sideways heaps, 32-35, 63-64.
Sieve of Eratosthenes, 5, 54.
Signed bits, representation of, 29, 55.
Signed right shifts, 10, 49, 76, 78.
SIMD (single instruction, multiple data)
architecture, 19.
Simply connected components, 43.
Singmaster, David Breyer, 106.
Six-register algorithm, 103.
Sjostrand, Jonas Erik, 106.
Slanina, Matteo, 74.
Sleator, Daniel Dominic Kaplan, 4, 98.
Slepian, David, 13.
SLU (shift left unsigned), 5, 107.
Smallest element of a set, 11.
Smearing bits to the right, 8, 11, 78.
Sorted data, 54.
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Sorting, 60, 75, 83.
networks for, 58.
Soule, Stephen Parke, 87.
Sprague, Roland Percival, 71.
Squaring a polynomial, 57.
Squines, 48, 66, 103.
SR (shift right, preserving the sign),
10, 49, 76, 78.
SRU (shift right unsigned), 5, 9, 78.
Standard networks of comparators, 58.
Steele, Guy Lewis, Jr., v, 16, 57, 80, 83.
Sterne, Laurence, iii.
Stockmeyer, Larry Joseph, 81, 84.
Stockton, Fred G., 102.
Stolfi, Jorge, v, 103.
Storage allocation, 16, 22, 54, 59.
Strachey, Christopher, 12.
Straight lines, digitizing, 66.
Stretching bits, 58, 88.
Strings, searching for special bytes
in, 20, 70.
Strong broadword chains, 61.
STTU (store tetra unsigned), 103.
Subcubes, 18, 63.
Subset sum, first missing, 70.
Subsets, 11, 27-28, 62-63, 75.
generating all, 18.
maximal proper, 58.
Subtraction, 3, 52, 59.
bytewise, 59, 87.
modulo 5, 60.
saturating, see Monus operation.
scattered, 58.
unary, 60.
Suffix parity function, 55, 69, 91.
Sum of bits, see Sideways addition.
weighted, 55.
Surrogates, 107.
Surroundedness tree, 43, 66.
Sutner, Klaus, 106.
Swapping bits, 12-15, 55-56, 107.
between variables, 71.
SWAR methods, 19-23, 59-61.
SWARC compiler, 86.
Swift, Jonathan, 108.
Sylow, Peter Ludvig Mejdell, 2-subgroup, 74.
Symmetric functions, Boolean, 62, 107.
Symmetric group, 74.
Symmetric order of nodes, 33.

Table lookup, 9, 10, 85.
by shifting, 5, 23, 69, 77, 88.
Tarjan, Robert Endre, 33, 95.
Ternary vectors, 31.
Tessellation, 36, 47, 64.
Tetrabyte or tetra: A 32-bit quantity, 7-8.
Text processing, 19-21, 59-60, 69-70.
Theory meets practice, 21-22.

Thinning an image, 40-41, 65.
Thompson, Kenneth Lane, 68.
Thorup, Mikkel, 88, 103.
Three-register algorithm, 45-48, 66—67.
Three-state encodings, 28-31, 63.
Three-valued logic, 31, 63.
Tiling, 36, 47, 64.
Time, mixed-radix representation of, 60.
Tocher, Keith Douglas, 2, 59, 85.
Toruses, 65, 87.
Trailing zeros, 8, see Ruler function.
Transdichotomous methods, see Broadword
computations.

Transitive closure, 27, 33.
Transposed allocation, 70, 77.
Transposing a 0—1 matrix, 15, 56, 67, 69, 80.
Traversal in postorder, 95, 100-101.
Traversal in preorder, 94, 100-101.
Treaps, 79.
Triangularizing a 0—1 matrix, 68.
Tricks versus techniques, 2, 104.
Trinomials, 57.
Triple zipper function, 69, 85.
Triply linked trees, 94-95, 100.
TrueType, 103.
Truth tables, 9, 29-30, 70.
Tsukiyama, Shuji (ZEILEIE), 92.
Turing, Alan Mathison, 2.

machines, 98.
Two’s complement notation, 2, 26, 71.
Typesetting, 39.

UCS (Universal Character Set), 69.
Ulam, Stanistaw Marcin, 93.
numbers, 63.

Ultraparallel lines, 36.

Unary notation, 60.

Unbiased rounding, 59, 86.

Uncompressing bits, 57.

Underflow mask, 90.

Unger, Stephen Herbert, 19.

Unicode, 69.

Universal Character Set, 69.

Unpacking of data, 2, 4-6, 57, 83.

Unsigned 2-adic integers, 71.

Unsolvable problems, 75.

Upper halfplane, 97.

Uppercase letters, 59.

Urban, Genevie Hawkins, 40.

Uri, Dario, 105.

UTF-8: 8-bit UCS Transformation
Format, 69.

UTF-16: 16-bit UCS Transformation
Format, 69.



van Emde Boas, Peter, 32.

Van Wyk, Christopher John, 99.

Variance, 57.

Veblen, Oswald, 44.

Vector space, basis for, 74, 106.

Vertex covers, minimal, 63.

Vishkin, Uzi Yehoshua (pPpwn yein »y), 33.
Vitale, Fabio, 35.

Vuillemin, Jean Etienne, 95.

Wada, Eiiti (f1[H3E—), 76.

Warren, Henry Stanley, Jr., v, 8, 11, 12,
25, 51, 52, 71, 78, 83, 86, 107.

Wegner, Peter (= Weiden, Puttilo Leonovich
= Beiinen, IIyrruio Jleorosuu), 8, 12.

Weighted sum of bits, 55.

‘Welter, Cornelis P., 74, 75.

Weste, Neil Harry Earle, 44.

Wheeler, David John, 11.

‘White pixels, 4, 40, 67.

Wilkes, Maurice Vincent, 11.

Willard, Dan Edward, 22, 60.

‘Wilson, David Whitaker, 93.

Wise, David Stephen, 85.

‘Wolfram, Stephen, 106.

Wong, Chak-Kuen (F{EHE), 17, 58.
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Woodrum, Luther Jay, 77.
‘Woods, Donald Roy, 85.
‘Wraparound parity patterns, 67.
‘Wunderlich, Charles Marvin, 93.
Wyde: A 16-bit quantity, 7-8.

XL25 game, 106.
XOR (bitwise exclusive-or), 1-2.
identities involving, 3, 53, 55, 75.

Yannakakis, Mihalis (Tavvoaxdxng,
MuydAng), 92.

Z order, see Zip.

Zero-byte test, 20-21, 59.

Zero-one principle, 54.

Zero-or-set instructions, 9, 10, 88.

Zeta function, 78.

Zijlstra, Erik, 32.

Zimmermann, Paul Vincent Marie, 83.

Zip: The zipper function, 16, 50, 57,
66, 77, 80, 83, 85.

triple (three-way), 69, 85.

Zip-fastener method, 85.

ZSNZ (zero or set if nonzero), 10, 88.

ZSZ (zero or set if zero), 9.
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ASCII CHARACTERS

#0 | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #a | #b | #c | #4 | #e | #f
#2x ! " # $ % & ’ ( ) * + s - / #2x
#3x 0 1 2 3 4 5 6 7 8 9 ; < = > ? #3x
#4x e A B c D E F G H I J K L M N 0 #4x
#5x P qQ R S T U v W X Y z [ \ 1 - _ #5x
#6x ¢ a b c d e f g h i j k 1 m n o #6x
#Tx P q r s t u v w b4 y z { | - #Tx
#0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #a #b #c #d #e #f
MMIX OPERATION CODES
#0 #1 #2 #3 #4 #5 #6 #7
TRAP 5v FCMP v FUN v FEQL » FADD 4v FIX av FSUB 4v FIXU 4v
#0x #0x
FLOT[I] 4v FLOTU[I] 4v SFLOT[I] 4v SFLOTU[I] 4v
“ FMUL 4v FCMPE 4v FUNE » FEQLE 4v FDIV 40v FSQRT 40v FREM 4v FINT 40 “
1x 1x
MUL[I] 10v MULU[I] 10v DIV[I] 60w DIVU[I] 60w
ADD[I] » ADDU[I] v SUB[I] v SUBU[I] v
#2x #2x
2ADDU[I] » 4ADDU[I] v 8ADDU[I] v 16ADDU[I] »
CMP[I] v CMPU[I] v NEGLI] v NEGU[I] v
#3x #3x
SL[I] » SLU[I] v SR[I] v SRU[I] v
BN[B] v+n BZ[B] v+~ BP[B] v+~ BOD[B] v+=
#4x #4x
BNN[B] v+ BNZ[B] v+= BNP[B] v+ BEV[B] v+n
PBN[B] 3v—n PBZ[B] 3v—= PBP[B] 3v—n PBOD[B] 3v—n
#Bx #Bx
PBNN[B] 3v—n PBNZ[B] 3v—= PBNP[B] 3v—m PBEV[B] 3v—n
CSN[I] v CSZ[I] v CSP[I] v CSOD[I] v
#6x #6x
CSNN[I] v CSNZ[I] v CSNP[I] v CSEVI[I] v
ZSN[I] » ZSZ[I] » ZSP[I] v ZSOD[I] v
#Tx #Tx
ZSNN[I] » ZSNZ[I] v ZSNP[I] v ZSEV[I] v
LDBILI] p+v LDBU[I] p+tv LDW[I] p+o LDWU[I] p+tv
#8x #8x
LDTLI] p+v LDTULI] p+v LDO[I] p+v LDOU[I] p+v
LDSF[I] p+tv LDHT[I] p+tv CSWAP[I] 2u+2v LDUNC[I] p+v
#9x #9x
LDVTS[I] v PRELD[I] v PREGO[I] v GO[I] 3v
STB[I] pu+v STBU[I] u+v STW[I] p+v STWU[I] p+v
#Ax #Ax
STTLI] p+tv STTULI] ptv STOL[I] p+tv STOULI] ptv
STSFII] putv STHT[I] p+tv STCO[I] p+v STUNC[I] p+v
#Bx #Bx
SYNCDII] v PREST[I] v SYNCID[I] v PUSHGO[I] 3v
OR[I] » ORN[I] v NOR[I] v XOR[I] v
#Cx #Cx
AND[I] » ANDN[I] » NAND[I] v NXOR[I] v
BDIF[I] v WDIF[I] » TDIF[I] v ODIF[I] »
#Dx #Dx
MUXLI] » SADD[I] v MOR[I] v MXOR[I] v
SETH » SETMH v SETML v SETL v INCH v INCMH » INCML » INCL v
#Ex #Ex
ORH v ORMH v ORML » ORL v ANDNH v ANDNMH v ANDNML v ANDNL v
JMP[B] v PUSHJ[B] v GETA[B] v PUT[I] »
#Fx #Fx
POP 3v RESUME 5v [UN]SAVE 20u+v SYNC v SWYM v GET v TRIP 5v
#8 #9 #A #B #c #D #E #F

7w = 2v if the branch is taken, 7 = 0 if the branch is not taken



