THE ART OF
COMPUTER PROGRAMMING

VOLUME 4 PRE-FASCICLE 1B

A DRAFT OF SECTION 7.1.4:
BINARY DECISION DIAGRAMS

DONALD E. KNUTH Stanford University

A
ADDISON-WESLEY vv

KNUTH

Internet page http://www-cs-faculty.stanford.edu/ knuth/taocp.html contains
current information about this book and related books.

See also http://www-cs-faculty.stanford.edu/ knuth/sgb.html for information
about The Stanford GraphBase, including downloadable software for dealing with
the graphs used in many of the examples in Chapter 7.

Copyright © 2008 by Addison—Wesley

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior consent of the publisher, except
that the official electronic file may be used to print single copies for personal (not
commercial) use.

Burn after reading.

Zeroth printing (revision 6), 22 December 2008

Internet
Stanford GraphBase

PREFACE

How can Knuth finish the series,
given all that has happened in computing
since volume 1 appeared in 19687

— P. E. CERUZZI, Computing Reviews 8805-0370 (May 1988)

THIS BOOKLET contains draft material that I'm circulating to experts in the
field, in hopes that they can help remove its most egregious errors before too
many other people see it. I am also, however, posting it on the Internet for
courageous and/or random readers who don’t mind the risk of reading a few
pages that have not yet reached a very mature state. Beware: This material has
not yet been proofread as thoroughly as the manuscripts of Volumes 1, 2, and 3
were at the time of their first printings. And those carefully-checked volumes,
alas, were subsequently found to contain thousands of mistakes.

Given this caveat, I hope that my errors this time will not be so numerous
and/or obtrusive that you will be discouraged from reading the material carefully.
I did try to make the text both interesting and authoritative, as far as it goes.
But the field is huge; I cannot hope to have surrounded it enough to corral it
completely. So I beg you to let me know about any deficiencies that you discover.

To put the material in context, this pre-fascicle contains Section 7.1.4 of a
long, long chapter on combinatorial algorithms. Chapter 7 will eventually fill at
least three volumes (namely Volumes 4A, 4B, and 4C), more likely four, assuming
that I'm able to remain healthy. It will begin with a short review of graph
theory, with emphasis on some highlights of significant graphs in the Stanford
GraphBase, from which I will be drawing many examples. Then comes Section
7.1: Zeros and Ones, beginning with basic material about Boolean operations
in Section 7.1.1 and Boolean evaluation in Section 7.1.2. Section 7.1.3 applies
those ideas to make computer programs run fast. And Section 7.1.4, which you’re
about to read here, discusses the representation of Boolean functions.

The next part, 7.2, is about generating all possibilities, and it begins with
Section 7.2.1: Generating Basic Combinatorial Patterns. Section 7.2.2 will deal
with backtracking in general. And so it will continue, if all goes well; an outline
of the entire Chapter 7 as currently envisaged appears on the taocp webpage
that is cited on page ii. Fascicles for everything that precedes Section 7.2.2 have
already been published, except for Sections 7.1.3 and 7.1.4 (which will soon be
packaged into Volume 4 Fascicle 1, filling the gap between Volume 4 Fascicle 0
and Volume 4 Fascicle 2). The pre-fascicle for Section 7.1.3 is available on the
Internet for beta-testing.

iii

Knuth

CERUZZI

Internet

Stanford GraphBase
Internet

iv PREFACE

This part of The Art of Computer Programming gave me many more Sur-
prises than anything else so far. It deals with a topic that burst on the scene in
1986, long after old-timers like me thought that we had already seen all of the
basic data structures that would ever prove to be of extraspecial importance.
I didn’t actually learn about binary decision diagrams until 1995 or so, because
I was preoccupied with other things. At that time I wrote some experimental
programs and realized that I must try to “shoehorn” this topic into Section 7.1
somehow. I kept seeing more and more papers about it in the literature, and
I filed them away with the evergrowing pile of things-to-read-before-revising-
Section-7.1. (My first draft of Section 7.1, written in 1977, included a dozen or
so pages of material about “decision tables,” which I’ve now discarded because
the new ideas are much more important.)

I began to write Section 7.1.4 in May of 2007, thinking that it would
eventually fill roughly 35 pages, and that I could easily draft it in three months.
Now, more than a year later, I'm looking at more than 130 completed pages —
even though I've constantly had to cut, cut, cut! Every week I've been coming
across fascinating new things that simply cry out to be part of The Art.

Binary decision diagrams (BDDs) are wonderful, and the more I play with
them the more I love them. For fifteen months I’ve been like a child with a new
toy, being able now to solve problems that I never imagined would be tractable.
(Just last week I was finally able to answer research problem 7.1.1-68 for n < 15,
resolving a question that had been bugging me for years.) Every time I've tried
a new application, I’ve learned more. I suspect that many readers will have
the same experience, and that there will always be more to learn about such a
fertile subject. Already I know that I could easily teach a one-semester college
course about binary decision diagrams, at either the undergraduate or graduate
level, with more than enough important material to cover. Many aspects of this
subject are still ripe for further investigation and improvement.

Most of the theory and practice related to BDDs is due to researchers in
the areas of hardware design, testing, and verification. I have, however, tried to
present it from the standpoint of a programmer who is primarily interested in
combinatorial algorithms. The topic of Boolean functions and binary decision
diagrams can of course be interpreted so broadly that it encompasses the entire
subject of computer programming. The real goal of this fascicle is to focus
on concepts that appear at the lowest levels, concepts on which we can erect
significant superstructures. And even these apparently lowly notions turn out
to be surprisingly rich, with explicit ties to sections 2.2.1, 2.3.2, 2.3.3, 2.3.4.1,
2.3.4.2,3.2.2,34.1,4.3.2,4.6.4, 5.1.4, 5.3.1, 5.3.4, 6.3, and 6.4 of the first three
volumes. I strongly believe in building up a firm foundation, so I have discussed
Boolean topics much more thoroughly than I will be able to do with material that
is newer or less basic. Section 7.1.4 presented me with an extreme embarrassment
of riches: After typing the manuscript I was astonished to discover that I had
come up with 264 exercises, even though — believe it or not —I had to eliminate
quite a lot of the interesting material that appears in my files. In fact, I know
that I’ve only begun to scratch the surface in some areas of this topic.

decision tables

PREFACE v

The published literature about binary decision diagrams is vast, and still
growing rapidly. Most of it appears in the proceedings of conferences that I have
never attended, or in specialized journals that I rarely have occasion to read.
So I fear that in several respects my knowledge is woefully behind the times,
although I've tried my best. Please look, for example, at the exercises that I've
classed as research problems (rated with difficulty level 46 or higher), namely
exercises 127, 169, 179, 206, 251, and 264; I’ve also implicitly mentioned or posed
additional unsolved questions in the answers to exercises 41, 74, 118, 121(c), 129,
136, 142, 145, 158, 182, 184, 212, 215, 237, 241, and 245. Are those problems
still open? Please inform me if you know of a solution to any of these intriguing
questions. And of course if no solution is known today but you do make progress
on any of them in the future, I hope you’ll let me know.

I urgently need your help also with respect to dozens of ideas that occurred
to me as I was preparing this material. I couldn’t help thinking of basic questions
whose answers were not given in any of the publications I had seen. I certainly
don’t like to receive credit for things that have already been published by others,
and most of these results are quite natural “fruits” that were just waiting to be
“plucked.” Therefore please tell me if you know who deserves to be credited,
with respect to Theorem P, or to the ideas found in exercises 2, 15, 17, 23, 29,
30, 32, 33, 34, 36, 38, 40, 55, 59(b), 60, 61, 63, 64, 72, 74, 76, 77, 88, 92, 100,
107, 110, 111, 119, 120, 124, 125, 126, 132, 135, 146, 156, 157, 160, 161, 162, 164,
174(a,b), 175, 181, 183, 184, 190, 191, 192, 193, 196, 207, 221, 222, 226, 232, 233,
244, 247, 252, 254, 258, or 259, and/or the implementation of f* in the answer
to exercise 236. Have any of those results appeared in print, to your knowledge?

The experimental toolkits that I wrote for working with BDDs and ZDDs
while writing this section are available (in unpolished form) on the Internet from
my “downloadable programs” page.

I owe a great debt of gratitude to Randy Bryant, Rick Rudell, and Fabio
Somenzi, who helped me significantly at several crucial stages as I was preparing
Section 7.1.4. Andy Kacsmar generously provided guest accounts on some of
Stanford InfoLab’s ever-changing computers, and held my hand as I ran some of
the larger programs described herein. And as usual I thank dozens of people who
have patiently read what I've written and corrected dozens of dozens of mistakes.

I happily offer a “finder’s fee” of $2.56 for each error in this draft when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32¢ each. (Furthermore, if
you find a better solution to an exercise, I’ll actually do my best to give you
immortal glory, by publishing your name in the eventual book:—)

Cross references to yet-unwritten material sometimes appear as ‘00’; this
impossible value is a placeholder for the actual numbers to be supplied later.

Happy reading!

Stanford, California D. E. K.
28 August 2008

Internet
Bryant
Rudell
Somenzi
Kacsmar
Stanford
Knuth

vi PREFACE

| at last deliver to the world a Work which | have long promised,

and of which, | am afraid, too high expectations have been raised.

The delay of its publication must be imputed, in a considerable degree,
to the extraordinary zeal which has been shown by distinguished persons
in all quarters to supply me with additional information.

— JAMES BOSWELL, The Life of Samuel Johnson, LL.D. (1791)

A note on notation. Several formulas in Section 7.1.4 use the notation (zyz),
for the median function (aka majority function) that is discussed extensively in
Section 7.1.1. If you run across other notations that may be unfamiliar, please
look at the Index to Notations at the end of Volumes 1, 2, or 3, and/or the entries
under “Notation” in the index to the present booklet. Of course Volume 4 will
some day contain its own Index to Notations.

A note on references. References to IEEE Transactions include a letter code
for the type of transactions, in boldface preceding the volume number. For
example, ‘IEEE Trans. C-35" means the IEEE Transactions on Computers,
volume 35. The IEEE no longer uses these convenient letter codes, but the
codes aren’t too hard to decipher: ‘EC’ once stood for “Electronic Computers,”
‘IT’ for “Information Theory,” ‘SE’ for “Software Engineering,” and ‘SP’ for
“Signal Processing,” etc.; ‘CAD’ meant “Computer-Aided Design of Integrated
Circuits and Systems.”

BOSWELL
Johnson

notation <.TyZ>
median function
majority function
Notation

IEEFE Transactions

PREFACE vii

An external exercise. This fascicle refers to exercise 6.4-78, which did not
appear in the second edition of Volume 3 until the 24th printing. Here is a copy
of that exercise and its answer. (Please don’t peek at the answer until you've
worked on the exercise.)

78. [M26] (P. Woelfel.) If 0 < z < 2™, let hap(z) = [(az + b)/2%] mod 2"~ F. Show
that the set {hap | 0 < a < 2", a odd, and 0 < b < 2*} is a universal family of hash
functions from n-bit keys to (n — k)-bit keys. (These functions are particularly easy to
implement on a binary computer.)

78. Let g(z) = |z/2*| mod 2"7* and §(zx,z') = zigl[g(m +b)=g(z' +b)]. Then
5z + 1,2 +1) = 8(z,2') + lg(e +2°) = g(a’ +2°)] — l9(z) = 9(2")] = 6(z,2"). Also
§(x,0) = (2F = (x mod 2™)) + (2F = ((—z) mod 2™)) when 0 < z < 2™, where a = b =
max(a — b,0). Therefore §(z,z') = (2* = ((z — 2") mod 2™)) + (2* = ((z’ —) mod 2"))
when z Z 2’ (modulo 2").

Now let A ={a|0<a<2" aodd} and B={b|0 < b < 2*}. We want to
show that 3° ., >, cglg(az + b) =g(az’ +b)] < R/M = an—i+k/on=k — 92k=1 when
0<z <z <2". And indeed, if 2’ — z = 2Pq with ¢ odd, then we have

Z Z [g(az +b) =g(az’ +b)] = Z §(az,az') = 2 Z(Zk = ((2Pag) mod 2™))

a€A beEB a€cA acA
gn—p-1_3 ok—p—1_4

=27 3 (2P e2Pi+1) =2 YD (25272 +1)lp<k] =27 [p<k].
j=0 j=0

[See Lecture Notes in Computer Science 1672 (1999), 262-272.]

Woelfel

universal hashing
saturating subtraction
monus

0 COMBINATORIAL ALGORITHMS (F1B)

In popular usage, the term BDD almost always refers to
Reduced Ordered Binary Decision Diagram (ROBDD in the literature,
used when the ordering and reduction aspects need to be emphasized).

— WIKIPEDIA, The Free Encyclopedia (7 July 2007)

7.1.4. Binary Decision Diagrams

Let’s turn now to an important family of data structures that have rapidly be-
come the method of choice for representing and manipulating Boolean functions
inside a computer. The basic idea is a divide-and-conquer scheme somewhat like
the binary tries of Section 6.3, but with several new twists.

Figure 21 shows the binary decision diagram for a simple Boolean function
of three variables, the median function (z;zsz3) of Eq. 7.1.1-(43). We can un-
derstand it as follows: The node at the top is called the root. Every internal node
@, also called a branch node, is labeled with a name or index j = V(@) that
designates a variable; for example, the root node @ in Fig. 21 designates z;.
Branch nodes have two successors, indicated by descending lines. One of the
successors is drawn as a dashed line and called LO; the other is drawn as a solid
line and called HI. These branch nodes define a path in the diagram for any values
of the Boolean variables, if we start at the root and take the LO branch from
node @ when z; = 0, the HI branch when z; = 1. Eventually this path leads
to a sink node, which is either (denoting FALSE) or (denoting TRUE).

BDD

ROBDD
WIKIPEDIA

binary decision diagrams—
tries

median function+-++4
root

branch node

dashed line

LO

HI

sink node

7.14 BINARY DECISION DIAGRAMS 1

Fig. 21. The binary decision diagram (BDD)
for the majority or median function (z1z2z3).

In Fig. 21 it’s easy to verify that this process yields the function value FALSE
when at least two of the variables {1, x2,z3} are 0, otherwise it yields TRUE.

Many authors use @ and to denote the sink nodes. We use and
instead, hoping to avoid any confusion with the branch nodes @ and @

Inside a computer, Fig. 21 would be represented as a set of four nodes in
arbitrary memory locations, where each node has three fields[V][L0 [HI |.
The V field holds the index of a variable, while the LO and HI fields each point
to another node or to a sink:

ROOT—>[1] o [o |
e ™
(2] L | « (2] » [T | (1)

N

(3] L [T |

With 64-bit words, we might for example use 8 bits for V, then 28 bits for LO
and the other 28 bits for HI.

Such a structure is called a “binary decision diagram,” or BDD for short.
Small BDDs can readily be drawn as actual diagrams on a piece of paper
or a computer screen. But in essence each BDD is really an abstract set of
linked nodes, which might more properly be called a “binary decision dag” —a
binary tree with shared subtrees, a directed acyclic graph in which exactly two
distinguished arcs emanate from every nonsink node.

We shall assume that every BDD obeys two important restrictions. First, it
must be ordered: Whenever a LO or HI arc goes from branch node @ to branch
node @, we must have ¢ < j. Thus, in particular, no variable z; will ever be
queried twice when the function is evaluated. Second, a BDD must be reduced,
in the sense that it doesn’t waste space. This means that a branch node’s LO
and HI pointers must never be equal, and that no two nodes are allowed to have
the same triple of values (V,L0,HI). Every node should also be accessible from
the root. For example, the diagrams

©)

and

are not BDDs, because the first one isn’t ordered and the other one isn’t reduced.
Many other flavors of decision diagrams have been invented, and the liter-
ature of computer science now contains a rich alphabet soup of acronyms like

FALSE

TRUE

BDD

binary decision dag
binary tree

shared subtrees
directed acyclic graph
dag

Ordered BDD
Reduced BDD

2 COMBINATORIAL ALGORITHMS (F1B) 7.14

EVBDD, FBDD, IBDD, OBDD, OFDD, OKFDD, PBDD, ..., ZDD. In this
book we shall always use the unadorned code name “BDD” to denote a binary
decision diagram that is ordered and reduced as described above, just as we
generally use the word “tree” to denote an ordered (plane) tree, because such
BDDs and such trees are the most common in practice.

Recall from Section 7.1.1 that every Boolean function f(z1,...,z,) cor-
responds to a truth table, which is the 2™-bit binary string that starts with
the function value f(0,...,0) and continues with f(0,...,0,1), f(0,...,0,1,0),
f(0,...,0,1,1), ..., f(1,...,1,1,1). For example, the truth table of the median
function (z1z273) is 00010111. Notice that this truth table is the same as the se-
quence of leaves in the unreduced decision tree of (2), with 0 — and 1 — [T].
In fact, there’s an important relationship between truth tables and BDDs, which
is best understood in terms of a class of binary strings called “beads.”

A truth table of order n is a binary string of length 2™. A bead of order n is
a truth table 8 of order n that is not a square; that is, 8 doesn’t have the form
aa for any string a of length 2"~ 1. (Mathematicians would say that a bead is a
“primitive string of length 2".”) There are two beads of order 0, namely 0 and 1;
and there are two of order 1, namely 01 and 10. In general there are 22" —22"""
beads of order n when n > 0, because there are 22" binary strings of length 2"
and 22"7" of them are squares. The 16 — 4 = 12 beads of order 2 are

0001, 0010, 0011, 0100, 0110, 0111, 1000, 1001, 1011, 1100, 1101, 1110; (3)

these are also the truth tables of all functions f(z1,x2) that depend on z, in
the sense that f(0,x2) is not the same function as f(1, z2).

Every truth table 7 is a power of a unique bead, called its root. For if 7 has
length 2™ and isn’t already a bead, it’s the square of another truth table 7'; and
by induction on the length of 7, we must have 7/ = 8% for some root . Hence
7 = B2, and S is the root of T as well as 7. (Of course k is a power of 2.)

A truth table 7 of order n > 0 always has the form 7977, where 79 and 7 are

truth tables of order n — 1. Clearly 7 represents the function f(z1,zo,...,2,)
if and only if 7y represents f(0,zs,...,T,) and 71 represents f(1,zs,...,T,).
These functions f(0, zs,...,z,) and f(1,zs,...,z,) are called subfunctions of f;

and their truth tables, 79 and 71, are called subtables of 7.

Subtables of a subtable are also considered to be subtables, and a table is
considered to be a subtable of itself. Thus, in general, a truth table of order n
has 2 subtables of order n — k, for 0 < k < n, corresponding to 2* possible
settings of the first k variables (z1,...,zx). Many of these subtables often turn
out to be identical; in such cases we’re able to represent 7 in a compressed form.

The beads of a Boolean function are the subtables of its truth table that hap-
pen to be beads. For example, let’s consider again the median function (zzsx3),
with its truth table 00010111. The distinct subtables of this truth table are
{00010111, 0001, 0111, 00,01,11,0,1}; and all of them except 00 and 11 are
beads. Therefore the beads of (z1zax3) are

{00010111,0001,0111,01,0, 1}. (1)

acronyms
EVBDD

FBDD

IBDD

OBDD

OFDD

OKFDD

PBDD

ZDD

truth table+4

bead+

square+

primitive

stringology

dependency on a variable
root

subfunctions

subtables

compression of data
beads

7.14 BINARY DECISION DIAGRAMS 3

And now we get to the point: The nodes of a Boolean function’s BDD are in
one-to-one correspondence with its beads. For example, we can redraw Fig. 21
by placing the relevant bead inside of each node:

In general, a function’s truth tables of order n + 1 — k correspond to its sub-
functions f(e1, ..., Ck—1,Zk, - - -, T) Of that order; so its beads of order n+1—k
correspond to those subfunctions that depend on their first variable, . There-
fore every such bead corresponds to a branch node @ in the BDD. And if @ is
a branch node corresponding to the truth table 7' = 7471, its LO and HI branches
point respectively to the nodes that correspond to the roots of 7§ and 5.

This correspondence between beads and nodes proves that every Boolean
function has one and only one representation as a BDD. The individual nodes
of that BDD might, of course, be placed in different locations inside a computer.

If f is any Boolean function, let B(f) denote the number of beads that it has.
This is the size of its BDD — the total number of nodes, including the sinks. For
example, B(f) = 6 when f is the median-of-three function, because (5) has size 6.

To fix the ideas, let’s work out another example, the “more-or-less random”
function of 7.1.1—(22) and 7.1.2—(6). Its truth table, 1100100100001111, is a
bead, and so are the two subtables 11001001 and 00001111. Thus we know that
the root of its BDD will be a @ branch, and that the LO and HI nodes below the
root will both be @s. The subtables of length 4 are {1100, 1001,0000,1111};
here the first two are beads, but the others are squares. To get to the next level,
we break the beads in half and carry over the square roots of the nonbeads,
identifying duplicates; this leaves us with {11,00,10,01}. Again there are two
beads, and a final step produces the desired BDD:

(In this diagram and others below, it’s convenient to repeat the sink nodes
and in order to avoid excessively long connecting lines. Only one node
and one node are actually present; so the size of (6) is 9, not 13.)

An alert reader might well be thinking at this point, “Very nice, but what
if the BDD is huge?” Indeed, functions can easily be constructed whose BDD is
impossibly large; we’ll study such cases later. But the wonderful thing is that a
great many of the Boolean functions that are of practical importance turn out
to have reasonably small values of B(f). So we shall concentrate on the good

B(f)
size of its BDD
pi as random ex

4 COMBINATORIAL ALGORITHMS (F1B) 7.14

news first, postponing the bad news until we’ve seen why BDDs have proved to
be so popular.

BDD virtues. If f(z) = f(z1,...,%,) is a Boolean function whose BDD is
reasonably small, we can do many things quickly and easily. For example:

e We can evaluate f(x) in at most n steps, given any input vector = 1 .. . Zp,
by simply starting at the root and branching until we get to a sink.

e We can find the lexicographically smallest x such that f(z) = 1, by start-
ing at the root and repeatedly taking the LO branch unless it goes directly
to [L]. The solution has z; = 1 only when the HI branch was necessary at @
For example, this procedure gives zjxox3 = 011 in the BDD of Fig. 21, and
z1222324 = 0000 in (6). (It locates the value of z that corresponds to the
leftmost 1 in the truth table for f.) Only n steps are needed, because every
branch node corresponds to a nonzero bead; we can always find a downward
path to without backing up. Of course this method fails when the root itself
is . But that happens only when f is identically zero.

e We can count the number of solutions to the equation f(z) = 1, using
Algorithm C below. That algorithm does B(f) operations on n-bit numbers; so
its running time is O(nB(f)) in the worst case.

e After Algorithm C has acted, we can speedily generate random solutions
to the equation f(z) =1, in such a way that every solution is equally likely.

e We can also list all solutions x to the equation f(z) = 1. The algorithm in
exercise 16 does this in O(nN) steps when there are N solutions.

e We can solve the linear Boolean programming problem: Find x such that

w1T + + - + W Ty 18 maximum, subject to f(zy,...,z,) =1, (7)

given constants (wy, . .., w,). Algorithm B (below) does this in O(n+B(f)) steps.
e We can compute the generating function ag+ a1z + - -+ + anz™, where there
are a; solutions to f(z1,...,z,) =1 with 21 4+ -+ + z, = j. (See exercise 25.)
e We can calculate the reliability polynomial F(p,...,pn), which is the prob-
ability that f(z1,...,2,) = 1 when each z; is independently set to 1 with a
given probability p;. Exercise 26 does this in O(B(f)) steps.
Moreover, we will see that BDDs can be combined and modified efficiently. For
example, it is not difficult to form the BDDs for f(z1,...,Zn) A g(z1,--.,Zp)
and f(z1,...,2-1,9(%1,...,%n), &j+1,...,Z,) from the BDDs for f and g.
Algorithms for solving basic problems with BDDs are often described most
easily if we assume that the BDD is given as a sequential list of branch instruc-
tions Is_1, Is_o, ..., I1, Iy, where each Ij has the form (o3 ? l: hy). For example,
(6) might be represented as a list of s = 9 instructions

Ig = (i? 7. 6), I5 = (3? 1:0), Iz = (4_1:? 0: 1),
Iy = (375:4), I,=(373:2), I, =(571:1), (8)
-[6 = (2? 0: 1), I3 = (Zl:? 1:0), IO = (5? 0: 0),

With’vgzl, l8:7, h8:6,’U7:2, l7:5, h7:4, ...,’U025, lthoZO. In
general the instruction ‘(97 [: h)’ means, “If z,, = 0, go to I;, otherwise go to Ij,”

evaluation

lexicographically smallest

truth table

count the number of solutions
enumeration of solutions
SAT-counting, see enumeration of solutions
random solutions

list all solutions

Boolean programming problem
linear Boolean programming
generating function

reliability polynomial

sequential representation of BDDs+

7.14 BINARY DECISION DIAGRAMS 5

except that the last cases I3 and I are special. We require that the LO and HI
branches I and hy satisfy

Iy <k, hi < k, v, > vk, and wvp, > Vg, fors>k>2, (9

in other words, all branches move downward, to variables of greater index. But
the sink nodes and are represented by dummy instructions I; and Iy, in
which Il = hy = k and the “variable index” v has the impossible value n + 1.

These instructions can be numbered in any way that respects the topological
ordering of the BDD, as required by (9). The root node must correspond to I 1,
and the sink nodes must correspond to I; and I, but the other index numbers
aren’t so rigidly prescribed. For example, (6) might also be expressed as

I,=(77:2), I,=(@70:1), I,=(370:1),
IL = (27 4:6), I, = (371:0), I = (571:1), (10)
Iy = (373:5), 5= (471:0), I{ = (570:0),

and in 46 other isomorphic ways. Inside a computer, the BDD need not actu-
ally appear in consecutive locations; we can readily traverse the nodes of any
acyclic digraph in topological order, when the nodes are linked as in (1). But
we will imagine that they’ve been arranged sequentially as in (8), so that various
algorithms are easier to understand.

One technicality is worth noting: If f(z) = 1 for all z, so that the BDD
is simply the sink node , we let s = 2 in this sequential representation.
Otherwise s is the size of the BDD. Then the root is always represented by Is_1.

Algorithm C (Count solutions). Given the BDD for a Boolean function f(z) =
f(z1,...,%), represented as a sequence Is_1, ..., Iy as described above, this
algorithm determines |f|, the number of binary vectors £ = z; ...z, such that
f(z) = 1. It also computes the table co, c1, ..., cs—1, where ¢, is the number
of 1s in the bead that corresponds to Ij.

C1. [Loop over k.] Set cog < 0,¢; < 1, and dostep C2for k=2,3,...,s—1.

Then return the answer 2%-1~l¢, ;.

C2. [Compute ck.] Set I < lg, h < hg, and cj < 2V ~Le, 2vh—ve—1c, -

For example, when presented with (8), this algorithm computes
a1, c34 1, c442,c542,c6+ 4, cr+4, cg +38§;

the total number of solutions to f(z1, %2, %3, z4) =1 is 8.
The integers ci in Algorithm C satisfy

0<cp < 2nTi=ve for 2 <k < s, (11)

and this upper bound is best possible. Therefore multiprecision arithmetic may
be needed when n is large. If extra storage space for high precision is problematic,
one could use modular arithmetic instead, running the algorithm several times
and computing ¢ mod p for various single-precision primes p; then the final
answer would be deducible with the Chinese remainder algorithm, Eq. 4.3.2—(24).
On the other hand, floating point arithmetic is usually sufficient in practice.

topological ordering
counting solutions
satisfiability counting
notation |f

multiprecision arithmetic
modular arithmetic

Chinese remainder algorithm
floating point arithmetic

6 COMBINATORIAL ALGORITHMS (F1B) 7.14

Let’s look at some examples that are more interesting than (6). The BDDs

Independent sets

represent functions of six variables that correspond to subsets of vertices in the
cycle graph Cg. In this setup a vector such as z7 ...z¢ = 100110 stands for the
subset {1,4,5}; the vector 000000 stands for the empty subset; and so on. On the
left is the BDD for which we have f(z) = 1 when z is independent in Cg; on the
right is the BDD for mazimal independent subsets, also called the kernels of Cg
(see exercise 12). In general, the independent subsets of C,, correspond to ar-
rangements of Os and 1s in a circle of length n, with no two 1s in a row; the kernels
correspond to such arrangements in which there also are no three consecutive Os.

Algorithm C decorates a BDD with counts ¢, working from bottom to top,
where ¢ is the number of paths from node & to . When we apply that
algorithm to the BDDs in (12) we get

"o T [Me

hence Cg has 18 independent sets and 5 kernels.

These counts make it easy to generate uniformly random solutions. For
example, to get a random independent set vector z; ...xg, we know that 13 of
the solutions in the left-hand BDD have z; = 0, while the other 5 have z; = 1.
So we set 21 < 0 with probability 13/18, and take the LO branch; otherwise we
set x1 < 1 and take the HI branch. In the latter case, ;1 = 1 forces x5 < 0, but
then z3 could go either way.

Suppose we’ve chosen to set zy < 1, zo < 0, 3 < 0, and z4 < 0; this case

5 3 2 2

occurs with probability % “2 %3 = 75- Then there’s a branch from @ to

@, so we flip a coin and set x5 to a completely random value. In general, a

cycle graph
independent

maximal indep subsets
kernels

consecutive 1s forbidden
two-in-a-row function

random solutions to f(l‘) = 1+

7.14 BINARY DECISION DIAGRAMS 7

branch from @ to @ means that the j — ¢ — 1 intermediate bits z;11 ... ;1
should independently become 0 or 1 with equal probability. Similarly, a branch
from @ to should assign random values to z;41...Zp.

Of course there are simpler ways to make a random choice between 18
solutions to a combinatorial problem. Moreover, the right-hand BDD in (13)
is an embarrassingly complex way to represent the five kernels of Cg: We could
simply have listed them, 001001, 010010, 010101, 100100, 101010! But the point
is that this same method will yield the independent sets and kernels of C,, when
n is much larger. For example, the 100-cycle C1og has 1,630,580,875,002 kernels,
yet the BDD describing them has only 855 nodes. One hundred simple steps will
therefore generate a fully random kernel from this vast collection.

Boolean programming and beyond. A bottom-up algorithm analogous to
Algorithm C is also able to find optimum weighted solutions (7) to the Boolean
equation f(z) = 1. The basic idea is that it’s easy to deduce an optimum solution
for any bead of f, once we know optimum solutions for the LO and HI beads
that lie directly below it.

Algorithm B (Solutions of mazimum weight). Let I;_1, ..., Iy be a sequence
of branch instructions that represents the BDD for a Boolean function f, as in
Algorithm C, and let (ws,...,w,) be an arbitrary sequence of integer weights.
This algorithm finds a binary vector x = x1 ...z, such that wixy + -+ - + wpx,
is maximum, over all z with f(z) = 1. We assume that s > 1; otherwise f(x)
is identically 0. Auxiliary integer vectors my ... ms_; and Wi ... W, 1 are used
in the calculations, as well as an auxiliary bit vector t5...t5 1.

B1. [Initialize.] Set Wy41 < 0 and W; <= Wj41 + max(w;,0) for n > j > 1.

B2. [Loop on k.] Set m; < 0 and do step B3 for 2 < k < s. Then do step B4.

B3. [Process Ix.] Set v « wvg, | < lg, h < hg, t,, < 0. If I # 0, set my, +
m; + Wys1 — Wy,. Then if h # 0, compute m < mp, + Wyp1 — Wy, + wo;
and if [l = 0 or m > my, set mg < m and t < 1.

B4. [Compute the z’s.] Set j < 0, k + s — 1, and do the following operations
until j = n: While j < v — 1, set j - j+ 1 and z; « [w; >0]; if k > 1,
set 7 < 7+ 1 and Tj 4 g and k + (thO? lg: hk). 1

A simple case of this algorithm is worked out in exercise 18. Step B3 does tech-

nical maneuvers that may look a bit scary, but their net effect is just to compute

mg < max(m; + Wy — Wy, mp + Wy — W, +wy), (14)

and to record in t; whether [or h is better. In fact, v; and vy are usually both
equal to v + 1; then the calculation simply sets my < max(m;, mp + w,), cor-
responding to the cases z, = 0 and z,, = 1. Technicalities arise only because we
want to avoid fetching mg, which is —oo, and because v; or vy might exceed v+1.

With this algorithm we can, for example, quickly find an optimum set of ker-
nel vertices in an n-cycle C,, using weights based on the “Thue-Morse” sequence,

Boolean programming problem+-+

binate covering problem, see Boolean programmi
weighted

Thue sequence+

Morse sequence+

8 COMBINATORIAL ALGORITHMS (F1B) 7.14

here vj denotes sideways addition, Eq. 7.1.3-(59). In other words, w; is —1 or
+1, depending on whether j has odd parity or even parity when expressed as
a binary number. The maximum of wyx; + --- + wy,z, occurs when the even-
parity vertices 3, 5, 6, 9, 10, 12, 15, ... most strongly outnumber the odd-parity
vertices 1, 2, 4, 7, 8, 11, 13, ... that appear in a kernel. It turns out that

{1,3,6,9,12,15, 18,20, 23, 25,27, 30, 33, 36, 39, 41, 43, 46, 48,
51,54, 57,60, 63, 66, 68, 71,73, 75, 78, 80, 83, 86, 89, 92, 95, 97,99} (16)

is an optimum kernel in this sense when n = 100; only five vertices of odd parity,
namely {1, 25,41,73,97}, need to be included in this set of 38 to satisfy the kernel
conditions, hence max(wyz1+- - -+w100Z100) = 28. Thanks to Algorithm B, a few
thousand computer instructions are sufficient to select (16) from more than a tril-
lion possible kernels, because the BDD for all those kernels happens to be small.

Mathematically pristine problems related to combinatorial objects like cycle
kernels could also be resolved efficiently with more traditional techniques, which
are based on recurrences and induction. But the beauty of BDD methods is that
they apply also to real-world problems that don’t have any elegant structure. For
example, let’s consider the graph of 49 “united states” that appeared in 7—(17)
and 7—(61). The Boolean function that represents all the maximal independent
sets of that graph (all the kernels) has a BDD of size 780 that begins as follows:

(17)

Algorithm B quickly discovers the following kernels of minimum and maximum
weight, when each state vertex is simply weighted according to the sum of letters
in its postal code (wep =3+ 1, wpec =4+ 3, ..., wyy = 23+ 25):

Minimum weight = 155 Maximum weight = 492 (18)

This graph has 266,137 kernels; but with Algorithm B, we needn’t generate them
all. In fact, the right-hand example in (18) could also be obtained with a smaller
BDD of size 428, which characterizes the independent sets, because all weights

vj

sideways addition

parity

United States of America, contiguous
contiguous USA

New England

independent sets+

7.14 BINARY DECISION DIAGRAMS 9

are positive. (A kernel of maximum weight is the same thing as an independent
set of maximum weight, in such cases.) There are 211,954,906 independent sets
in this graph, many more than the number of kernels; yet we can
find an independent set of maximum weight more quickly than
a kernel of maximum weight, because the BDD is smaller.

Fig. 22. The grid P; O P3, and
a BDD for its connected subgraphs.

A quite different sort of graph-related BDD is shown in
Fig. 22. This one is based on the 3 x 3 grid P;0FPs; it characterizes
the sets of edges that connect all vertices of the grid together. Thus,
it’s a function f(z12,%13,...,%s9) of the twelve edges 1 —2,1—3, ...,

8 — 9 instead of the nine vertices {1,...,9}. Exercise 55 describes one way to
construct it. When Algorithm C is applied to this BDD, it tells us that exactly
431 of the 22 = 4096 spanning subgraphs of P30 Ps are connected.

A straightforward extension of Algorithm C (see exercise 25) will refine this

total and compute the generating function of these solutions, namely

G(z) = Z 2T f(x) = 1922° 4+ 1642° 4 62210 + 1221 4 212, (19)
x
Thus P; 0O P; has 192 spanning trees, plus 164 spanning subgraphs that are
connected and have nine edges, and so on. Exercise 7.2.1.6-106(a) gives a formula
for the number of spanning trees in P, O P, for general m and n; but the
full generating function G(z) contains considerably more information, and it
probably has no simple formula unless min(m, n) is small.

Suppose each edge u — v is present with probability p,,, independent of
all other edges of P30 P;. What is the probability that the resulting subgraph
is connected? This is the reliability polynomial, which also goes by a variety
of other names because it arises in many different applications. In general, as
discussed in exercise 7.1.1-12, every Boolean function f(z1,...,,) has a unique
representation as a polynomial F(zy,...,z,) with the properties that

l) F (.’L'l, ..
11) F (.7,‘ 1;--
This polynomial F' has integer coefficients and satisfies the basic recurrence

- ,.’En) == (]. - xl)Fo(.’IJQ, ..

where Fy and F; are the integer multilinear representations of f(0,za,...,%,)
and f(1,z3,...,2,). Indeed, (20) is George Boole’s “law of development.”

Two important things follow from recurrence (20). First, F' is precisely
the reliability polynomial F(p1, ..., p,) mentioned earlier, because the reliability

. &p) = f(z1,...,2,) whenever each z; is 0 or 1;
., &p) is multilinear: Its degree in x; is <1 for all j.

F(,’El,.. -,xn)‘i‘xlFl(an--':w’n)a (20)

grid

connectedness+

spanning subgraphs

generating function

reliability polynomial+

availability polynomial of a Boolean function, se
characteristic polynomial of a Boolean function,
polynomial

multilinear

integer multilinear representations

Boole

10 COMBINATORIAL ALGORITHMS (F1B) 7.14

polynomial obviously satisfies the same recurrence. Second, F is easily calculated
from the BDD for f, working upward from the bottom and using (20) to compute
the reliability of each bead. (See exercise 26.)

The connectivity function for an 8 x 8 grid Py Ps is, of course, much more
complicated than the one for P30Ps; it is a Boolean function of 112 variables and
its BDD has 43790 nodes, compared to only 37 in Fig. 22. Still, computations
with this BDD are quite feasible, and in a second or two we can compute

G(z) = 1262313229124985396825948162%3
+ 10066111400354110626007613442%*
4+ 46212210 4112211 4 Z112)
as well as the probability F(p) of connectedness

and its derivative F'(p), when each of the edges is
present with probability p (see exercise 29):

LT

F(p): ; F'(p): . (21)

0 p 1 0 p 1

*A sweeping generalization. Algorithms B and C and the algorithms we’ve
been discussing for bottom-up BDD scanning are actually special cases of a much
more general scheme that can be exploited in many additional ways. Consider
an abstract algebra with two associative binary operators o and e, satisfying the
distributive laws

ae(foy)=(axef)o(xery), (Boy)ea=(Bea)o(yea). (22)

Every Boolean function f(x1,...,Zy) corresponds to a fully elaborated truth table
involving the symbols o, e, 1, and T, together with Z; and z; for 1 < j <n, in
a way that’s best understood by considering a small example: When n = 2 and
when the ordinary truth table for f is 0010, the fully elaborated truth table is

(TioTye l)o(Tiexse l)o(rieToeT)o(ryex00e L), (23)

The meaning of such an expression depends on the meanings that we attach to
the symbols o, e, L, T, and to the literals z; and z;; but whatever the expression
means, we can compute it directly from the BDD for f.

For example, let’s return to Fig. 21, the BDD for (z12223). The elaborations
of nodes and are o, = 1 and a+ = T, respectively. Then the elaboration
of @ is a3 = (T3 e) o (z3 @ ar); the elaborations of the nodes labeled @ are
ab = (z2e(Zz0r3)ea,)o(xaeaz) on the left and af = (Toeaz)o(z2e(Z3073)0a)
on the right; and the elaboration of node @ isa; = (Z1 @ alg) o (z1 e af).
(Exercise 31 discusses the general procedure.) Expanding these formulas via the
distributive laws (22) leads to a full elaboration with 2™ = 8 “terms”:

a1 = (T10Ty0T30)0 (T1eT20x30)0 (T10x30T30 1) 0 (T10x00230T)
o(xz1eZoeTze)0 (r1eTgex38T)0 (z10z0T30T)0 (z10z002350T). (24)

derivative

generalization, sweeping+
abstract algebra+

fully elaborated truth table+
associative

distributive laws

fully elaborated truth table
truth table

literals

median function

7.14 BINARY DECISION DIAGRAMS 11

Algorithm C is the special case where ‘o’ is addition, ‘e’ is multiplication,
‘1’is 0, ‘T’ is 1, ‘z;” is 1, and ‘z;’ is also 1. Algorithm B arises when ‘o’ is the
mazximum operator and ‘e’ is addition; the distributive laws

a +max(8,v) = max(a+pB,a+y), max(f,y)+a =max(f+a,y+a) (25)

)

are easily checked. We interpret ‘1’ as —oo, ‘T’ as 0, ‘Z;’ as 0, and ‘z;’ as w;.
Then, for example, (24) becomes

max(—00, —00, —00, Wz + W3, —0C, W1 + W3, W1 + W2, w1 + wa + W3);

and in general the full elaboration under this interpretation is equivalent to the
expression max{wiz; + -+ - + wpx, | f(z1,...,7,) = 1}.

Friendly functions. Many families of functions are known to have BDDs of
modest size. If f is, for example, a symmetric function of n variables, it’s easy
to see that B(f) = O(n?). Indeed, when n = 5 we can start with the triangular
pattern

and set the leaves to or depending on the respective values of f when the
value of v = 14 - -+x5 equals 0, 1, 2, 3, 4, or 5. Then we can remove redundant

or equivalent nodes, always obtaining a BDD whose size is (";’2) or less.
Suppose we take any function f(z1,...,z,) and make two adjacent variables
equal:
9(Z1,. . yn) = f(@1,. o The1, Ty Ty T2y - - - Ty)- (27)

Exercise 40 proves that B(g) < B(f). And by repeating this condensation
process, we find that a function such as f(z1, 1, z3, 23, z3,Z6) has a small BDD
whenever B(f) is small. In particular, the threshold function [2z1 + 323 + z¢ > t]
must have a small BDD for any value of ¢, because it’s a condensed version of
the symmetric function f(zi,...,zs) = [z1 + - - - + z¢ > t]. This argument shows
that any threshold function with nonnegative integer weights,

f(.’l)l,.’l?f_),...,.’l?n) = [lU1.’l71+’lU2-’l72+“'+wnwn2t]a (28)

can be obtained by condensing a symmetric function of wi + we + --- + wy
variables, so its BDD size is O(w; + w2 + - -+ + wy)%

Threshold functions often turn out to be easy even when the weights grow
exponentially. For example, suppose ¢t = (t1t3...t,)2 and consider

fi(z1, e, ... xp) = [2" toy + 2" 220 + -+ 3y > E]. (29)

maximum operator
symmetric function
sideways addition
condensation
threshold function

12 COMBINATORIAL ALGORITHMS (F1B) 7.14

This function is true if and only if the binary string x5 . . . z,, is lexicographically
greater than or equal to t1ts...%,, and its BDD always has exactly n + 2 nodes
when ¢, = 1. (See exercise 170.)

Another kind of function with small BDD is the 2™-way multiplexer of
Eq. 7.1.2—(31), a function of n = m + 2™ variables:

My (21, Zm; Tmt 15+ 1 Tn) = Tmgit(r.m)s- (30)

Its BDD begins with 25~ branch nodes @ for 1 < k < m. But below that com-
plete binary tree, there’s just one @ for each z in the main block of variables
with m < k < n. Hence B(M,,) = 1+2+---+2m"1 4 2m 4 2 =2mF1 1 1 < 2p.

A linear network model of computation, illustrated in Fig. 23, helps to
clarify the cases where a BDD is especially efficient. Consider an arrangement
of computational modules My, Ms, ..., M,, in which the Boolean variable xj
is input to module My; there also are wires between neighboring modules, each
carrying a Boolean signal, with ay wires from M}, to My41 and bg wires from
M1 to My for 1 < k < n. A special wire out of M,, contains the output of
the function, f(z1,...,z,). We define a9 = by = b, = 0 and a, = 1, so that
module M}, has exactly ¢, = 1+ag_1+bg input ports and exactly dx = ax+bg_1
output ports for each k. It computes di Boolean functions of its ¢ inputs.

The individual functions computed by each module can be arbitrarily com-
plicated, but they must be well defined in the sense that their joint values are
completely determined by the z’s: Every choice of (zy,...,z,) must lead to
exactly one way to set the signals on all the wires, consistent with all of the
given functions.

Theorem M. If f can be computed by such a network, then B(f)< Y ;_, 9ar2",

Proof. We will show that the BDD for f has at most 2312”1 branch nodes
@, for 1 < k < n. This is clear if by_1; = 0, because at most 2%*-* subfunctions
are possible when x; through xx_; have any given values. So we will show that
any network that has ai_; forward wires and bg_; backward wires between My_,
and M}, can be replaced by an equivalent network that has ay_12%-* forward
wires and none that run backward.

For convenience, let’s consider the case k = 4 in Fig. 23, with a3 = 4 and
bs = 2; we want to replace those 6 wires by 16 that run only forward. Suppose
Alice is in charge of M3 and Bob is in charge of M,. Alice sends a 4-bit signal, a,
to Bob while he sends a 2-bit signal, b, to her. More precisely, for any fixed
value of (z1,...,%,), Alice computes a certain function A and Bob computes a
function B, where

Ab)=a and B(a) =b. (31)

Alice’s function A depends on (1,2, z3), so Bob doesn’t know what it is; Bob’s
function B is, similarly, unknown to Alice, since it depends on (z4,...,T,).
But those unknown functions have the key property that, for every choice of
(21,...,Tn), there’s exactly one solution (a,b) to the equations (31).

lexicographically
-way multiplexer
storage access function, see 2m — way multiple
Notation Mm
complete binary tree
network model of computation+
modules in a network+
subfunctions

7.14 BINARY DECISION DIAGRAMS 13

@@@ @

s —> > —>
Ll —>
—> 4 s }a4 an—1 { —
M, M, Ms— My [/) - M,, —> Output
P—
k— ” <
k— — < ¢ } by ..., bn—1 { <

Fig. 23. A generic network of Boolean modules for which Theorem M is valid.

So Alice changes the behavior of module Mj: She sends Bob four 4-bit
values, A(00), A(01), A(10), and A(11), thereby revealing her A function. And
Bob changes the behavior of M,: Instead of sending any feedback, he looks at
those four values, together with his other inputs (namely x4 and the by bits
received from Ms), and discovers the unique a and b that solve (31). His new
module uses this value of a to compute the a4 bits that he outputs to Ms. 1

Theorem M says that the BDD size will be reasonably small if we can
construct such a network with small values of aj and b,. Indeed, B(f) will be
O(n) if the a’s and b’s are bounded, although the constant of proportionality
might be huge. Let’s work an example by considering the three-in-a-row function,

f(@1,. . 2n) = 210223V 222374V -V Ty 2Tp_1Tn V Tn_1TpT1 V TnT122, (32)

which is true if and only if a circular necklace labeled with bits =1, ..., z, has

three consecutive 1s. One way to implement it via Boolean modules is to give My

three inputs (ug, vg, wg) from My and two inputs (yg, zx) from My, where
Vg = Tp—2Tk—1,

Yk = Tn, (33)

Here subscripts are treated modulo n, and appropriate changes are made at the
left or right when £k =1 or £k > n — 1. Then M} computes the functions

U = Tk-1, Wk = Tp-1TpT1 V *++V T_3Tk—2Tk—1;

2k = Tp_1Tp-

Uk+1 = Tk, Vg1 = UkTk, Wgt1 = Wk V VkTk, Yk—1 = Yk, Zk—1 = 2k (34)

for nearly all values of k; exercise 45 has the details. With this construction we
have aj < 3 and by < 2 for all k, hence Theorem M tells us that B(f) < 2!?n =
4096n. In fact, the truth is much sweeter: B(f) is actually < 9n (see exercise 46).

Shared BDDs. We often want to deal with several Boolean functions at once,
and related functions often have common subfunctions. In such cases we can
work with the “BDD base” for {fi(z1,...,%n),---, fm(Z1,...,Zn)}, which is
a directed acyclic graph that contains one node for every bead that occurs
within the truth tables of any of the functions. The BDD base also has m
“root pointers,” F}, one for each function f;; the BDD for f; is then the set of
all nodes reachable from node F;. Notice that node Fj itself is reachable from
node F; if and only if f; is a subfunction of f;.

For example, consider the problem of computing the n 4 1 bits of the sum
of two n-bit numbers,

(Fnt1fafn-1.. . f1)2 = (z123.. . Ton—1)2 + (T2Za ... T2p)2. (35)

three-in-a-row function
necklace

Shared BDDs, see BDD base
BDD base+

bead

truth tables

root pointers

subfunction

addition, binary

14 COMBINATORIAL ALGORITHMS (F1B) 7.14

The BDD base for those n + 1 bits looks like this when n = 4:

T1T3T5T7
+ Tax4Texs

fsfafsfe fu

(36)

The way we’ve numbered the ’s in (35) is important here (see exercise 51). In
general there are exactly B(f1,..., fn+1) = 9n—5 nodes, when n > 1. The node
just to the left of F}, for 1 < j < n, represents the subfunction for a carry c; out
of the jth bit position from the right; the node just to the right of F}; represents
the complement of that carry, ¢;; and node F;, 1 represents the final carry c,.

Operations on BDDs. We’ve been talking about lots of things to do when a
BDD is given. But how do we get a BDD into the computer in the first place?

One way is to start with an ordered binary decision diagram such as (26) or
the right-hand example in (2), and to reduce it so that it becomes a true BDD.
The following algorithm, based on ideas of D. Sieling and I. Wegener [Information
Processing Letters 48 (1993), 139-144], shows that an arbitrary N-node binary
decision diagram whose branches are properly ordered can be reduced to a BDD
in O(N + n) steps when there are n variables.

Of course we need some extra memory space in order to decide whether
two nodes are equivalent, when doing such a reduction. Having only the three
fields (V,L0,HI) in each node, as in (1), would give us no room to maneuver.
Fortunately, only one additional pointer-size field, called AUX, is needed, together
with two additional state bits. We will assume for convenience that the state bits
are implicitly present in the signs of the LO and AUX fields, so that the algorithm
needs to deal with only four fields: (V,LO,HI,AUX). The fact that the sign is
preempted does mean that a 28-bit L0 field will accommodate only 227 nodes at
most — about 134 million— instead of 228. (On a computer like MMIX, we might
prefer to assume that all node addresses are even, and to add 1 to a field instead
of complementing it as done here.)

Algorithm R (Reduction to a BDD). Given a binary decision diagram that
is ordered but not necessarily reduced, this algorithm transforms it into a valid
BDD by removing unnecessary nodes and rerouting all pointers appropriately.
Each node is assumed to have four fields (V,L0, HI, AUX) as described above, and
ROOT points to the diagram’s top node. The AUX fields are initially irrelevant, ex-
cept that they must be nonnegative; they will again be nonnegative at the end of
the process. All deleted nodes are pushed onto a stack addressed by AVAIL, linked
together by the HI fields of its nodes. (The LO fields of these nodes will be neg-
ative; their complements point to equivalent nodes that have not been deleted.)

carry
binary decision diagram
Sieling

‘Wegener

MMIX

ordered

reduction to a BDD++
AVATL stack+

7.14 BINARY DECISION DIAGRAMS 15

The V fields of branch nodes are assumed to run from V(ROOT) up to vpax,
in increasing order from the top downwards in the given dag. The sink nodes
and are assumed to be nodes 0 and 1, respectively, with nonnegative LO and
HI fields. They are never deleted; in fact, they are left untouched except for their
AUX fields. An auxiliary array of pointers, HEAD[v] for V(ROOT) < v < vpax, 1S
used to create temporary lists of all nodes that have a given value of V.

R1. [Initialize.] Terminate immediately if ROOT < 1. Otherwise, set AUX(0) <
AUX(1) < AUX(ROOT) < —1, and HEAD[v] < —1 for V(ROOT) < v < Upax-
(We use the fact that —1 = ~0 is the bitwise complement of 0.) Then set
s < ROOT and do the following operations while s # 0:

Set p < s, s + ~AUX(p), AUX(p) < HEAD[V(p)], HEAD[V(p)] + ~p.
If AUX(LO(p)) > 0, set AUX(LO(p)) < ~s and s + LO(p).
If AUX(HI(p)) > 0, set AUX(HI(p)) < ~s and s < HI(p).

(We’ve essentially done a depth-first search of the dag, temporarily marking
all nodes reachable from ROOT by making their AUX fields negative.)

R2. [Loop on v.] Set AUX(0) < AUX(1) « 0, and v < Umax.

R3. [Bucket sort.] (At this point all remaining nodes whose V field exceeds v
have been properly reduced, and their AUX fields are nonnegative.) Set
p < ~HEAD[v], s < 0, and do the following steps while p # 0:

Set p’ <+ ~AUX(p).

Set ¢ «— HI(p); if LO(g) < 0, set HI(p) < ~LO(q).

Set g + LO(p); if LO(g) < 0, set LO(p) + ~L0O(q) and q + LO(p).

If ¢ =HI(p), set LO(p) < ~q, HI(p) < AVAIL, AUX(p) < 0, AVAIL < p;
otherwise if AUX(g) > 0, set AUX(p) < s, s < ~q, and AUX(q) < ~p;
otherwise set AUX(p) < AUX(~AUX(q)) and AUX(~AUX(q)) < p.

Then set p + p'.

RA4. [Clean up.] (Nodes with LO = z # HI have now been linked together via
their AUX fields, beginning with ~AUX(z).) Set r ~s, s < 0, and do the
following while 7 > 0:

Set q < ~AUX(r) and AUX(r) < 0.

If s = 0 set s + g; otherwise set AUX(p) < q.

Set p < g; then while AUX(p) > 0, set p < AUX(p).
Set r + ~AUX(p).

R5. [Loop on p.] Set p < s. Go to step R9 if p = 0. Otherwise set g « p.

R6. [Examine a bucket.] Set s <~ LO(p). (At this point p = gq.)

R7. [Remove duplicates.] Set r < HI(g). If AUX(r) > 0, set AUX(r) + ~g;
otherwise set LO(g) < AUX(r), HI(q) < AVAIL, and AVAIL < q. Then set
q < AUX(q). If ¢ # 0 and LO(q) = s, repeat step RT.

R8. [Clean up again.] If LO(p) > 0, set AUX(HI(p)) < 0. Then set p < AUX(p),
and repeat step R8 until p = gq.

R9. [Done?] If p # 0, return to R6. Otherwise, if v > V(ROOT), set v + v — 1
and return to R3. Otherwise, if LO(RO0T) < 0, set ROOT < ~LO(ROOT). |

bitwise complement
depth-first search
reachable

Bucket sort

16 COMBINATORIAL ALGORITHMS (F1B) 7.14

The intricate link manipulations of Algorithm R are easier to program than to
explain, but they are highly instructive and not really difficult. The reader is
urged to work through the example in exercise 53.

Algorithm R can also be used to compute the BDD for any restriction of a
given function, namely for any function obtained by “hardwiring” one or more
variables to a constant value. The idea is to do a little extra work between steps
R1 and R2, setting HI(p) < LO(p) if variable V(p) is supposed to be fixed at 0,
or LO(p) < HI(p) if V(p) is to be fixed at 1. We also need to recycle all nodes
that become inaccessible after restriction. Exercise 57 fleshes out the details.

Synthesis of BDDs. We're ready now for the most important algorithm on
binary decision diagrams, which takes the BDD for one function, f, and combines
it with the BDD for another function, g, in order to obtain the BDD for further
functions such as f A g or f @ g. Synthesis operations of this kind are the
principal way to build up the BDDs for complex functions, and the fact that
they can be done efficiently is the main reason why BDD data structures have
become popular. We will discuss several approaches to the synthesis problem,
beginning with a simple method and then speeding it up in various ways.

The basic notion that underlies synthesis is a product operation on BDD
structures that we shall call melding. Suppose a = (v,l,h) and o = (v',I', h’)
are BDD nodes, each containing the index of a variable together with LO and
HI pointers. The “meld” of o and o/, written a ¢ o/, is defined as follows when
a and o' are not both sinks:

(v,lol'y hoh'), ifv=1;
aoca = (v,lod, hod), ifv<; (37)
(v, aoll, aoh’), ifv>v.
For example, Fig. 24 shows how two small but typical BDDs are melded. The
one on the left, with branch nodes (a,f,~,d), represents f(z1,z2,T3,T4) =
(z1 V x2) A (T3 V 74); the one in the middle, with branch nodes (w, %, x, ¢, v, T),
represents g(z1, T2, %3, T4) = (v1 D T2) V (z3Dx4). Nodes § and 7 are essentially
the same, so we would have § = 7 if f and g were part of a single BDD base; but
melding can be applied also to BDDs that do not have common nodes. At the
right of Fig. 24, a ¢ w is the root of a decision diagram that has eleven branch
nodes, and it essentially represents the ordered pair (f,g).

restriction of a Boolean function
restriction, see also subfunctions
replacement of variables by constants
substitution of constants for variables
melding+

notation & & o'

Fig. 24. Two BDDs can be melded together with the ¢ operation (37).

7.14 BINARY DECISION DIAGRAMS 17

An ordered pair of two Boolean functions can be visualized by placing the
truth table of one above the truth table of the other. With this interpretation,
o ¢ w stands for the ordered pair 2090011101110111 514 3 v stands for 99900111

0110111111110110° 011011117
etc. The melded BDD of Fig. 24 corresponds to the diagram
0000011101110111
0110111111110110
(38)

which is analogous to (5) except that each node denotes an ordered pair of
functions instead of a single function. Beads and subtables are defined on ordered
pairs just as before. But now we have four possible sinks instead of two, namely

lol, loT, Tol, and ToT, (39)
corresponding to the ordered pairs 8, (1), (1), and }

To compute the conjunction f A g, we AND together the truth tables of f
and g. This operation corresponds to replacing 8, (1), é, and i by 0,0, 0, and 1,
respectively; so we get the BDD for f A g from f ¢ g by replacing the respective
sink nodes of (39) by [L], [L], [L], and [T], then reducing the result. Similarly,
the BDD for f @ g is obtained if we replace the sinks (39) by [L], [T], [T],
and . (In this particular case f @ g turns out to be the symmetric function
S1.4(x1, 2, 3, x4), as computed in Fig. 9 of Section 7.1.2.) The melded diagram
f © g contains all the information needed to compute any Boolean combination
of f and g; and the BDD for every such combination has at most B(f ¢g) nodes.

Clearly B(f ¢ g) < B(f)B(g), because each node of f ¢ g corresponds to
a node of f and a node of g. Therefore the meld of small BDDs cannot be
extremely large. Usually, in fact, melding produces a result that is considerably
smaller than this worst-case upper bound, with something like B(f) + B(g)
nodes instead of B(f)B(g). Exercise 60 discusses a sharper bound that sheds
some light on why melds often turn out to be small. But exercises 59(b) and 63
present interesting examples where quadratic growth does occur.

Melding suggests a simple algorithm for synthesis: We can form an array of
B(f)B(g) nodes, with node a ¢ &' in row a and column o' for every « in the
BDD for f and every o in the BDD for g. Then we can convert the four sink
nodes (39) to or as desired, and apply Algorithm R to the root node
f ¢ g. Voila—we’ve got the BDD for f Ag or f & g or fV g or whatever.

The running time of this algorithm is clearly of order B(f)B(g). We can
reduce it to order B(f ¢ g), because there’s no need to fill in all of the matrix
entries aoa’; only the nodes that are reachable from fog are relevant, and we can
generate them on the fly when necessary. But even with this improvement in the

ordered pair of two Boolean functions
truth table

Beads

subtables

sinks

conjunction

symmetric function

18 COMBINATORIAL ALGORITHMS (F1B) 7.14

running time, the simple algorithm is unsatisfactory because of the requirement
for B(f)B(g) nodes in memory. When we deal with BDDs, time is cheap but
space is expensive: Attempts to solve large problems tend to fail more often
because of “spaceout” than because of “timeout.” That’s why Algorithm R was
careful to perform its machinations with only one auxiliary link field per node.

The following algorithm solves the synthesis problem with working space of
order B(f¢g); in fact, it needs only about sixteen bytes per element of the BDD
for fog. The algorithm is designed to be used as the main engine of a “Boolean
function calculator,” which represents functions as BDDs in compressed form on
a sequential stack. The stack is maintained at the lower end of a large array
called the pool. Each BDD on the stack is a sequence of nodes, which each have
three fields (V,L0,HI). The rest of the pool is available to hold temporary results
called templates, which each have four fields (L, H, LEFT,RIGHT). A node typically
occupies one octabyte of memory, while a template occupies two.

The purpose of Algorithm S is to examine the top two Boolean functions
on the stack, f and g, and to replace them by the Boolean combination f o g,
where o is one of the 16 possible binary operators. This operator is identified by
its 4-bit truth table, op. For example, Algorithm S will form the BDD for f & g
when op is (0110) = 6; it will deliver f A g when op = 1.

When the algorithm begins, operand f appears in locations [fo..go) of
the pool, and operand g appears in locations [go .. NTOP). All higher locations
[NTOP..POOLSIZE) are available for storing the templates that the algorithm
needs. Those templates will appear in locations [TBOT ..POOLSIZE) at the high
end of the pool; the boundary markers NTOP and TBOT will change dynamically
as the algorithm proceeds. The resulting BDD for f o g will eventually be placed
in locations [fo .. NTOP), taking over the space formerly occupied by f and g. We
assume that a template occupies the space of two nodes. Thus, the assignments
“t «— TBOT — 2, TBOT <« t” allocate space for a new template, pointed to by t; the
assignments “p <— NTOP, NTOP < p + 1” allocate a new node p. For simplicity of
exposition, Algorithm S does not check that the condition NTOP < TBOT remains
valid throughout the process; but of course such tests are essential in practice.
Exercise 69 remedies this oversight.

The input functions f and g are specified to Algorithm S as sequences of
instructions (I,_,...,1I;,1,) and (I.,_,,...,I{,I}), as in Algorithms B and C
above. The lengths of these sequences are s = B*(f) and s’ = B*(g), where

BY(f) = B(f) + [f is identically 1] (40)
is the number of BDD nodes when the sink is forced to be present. For
example, the two BDDs at the left of Fig. 24 could be specified by the instructions
I = (17 5:6), Iy=(3?2:3),

e =(271:4), I;=(471:0), (41)
IL=(274:1), I,=(4?0:1);

.[5 = (I? 4: 3), _[3 = (37 2: 1),
I, =(270:3), Iy=(4?0:1);

as usual, I, I,, I, and I} are the sinks. These instructions are packed into
nodes, so that if Iy, = (937 lx: hy) we have V(fo + k) = vg, LO(fo + k) = lg, and

time versus space

space versus time

Boolean function calculator
sequential stack

pool

templates+++

binary operators

truth table

op+

7.14 BINARY DECISION DIAGRAMS 19

HI(fo+ k) = hg for 2 < k < s when Algorithm S begins. Similar conventions
apply to the instructions I, that define g. Furthermore

V(fo) =V(fo+1) =V(go) =V(go+1) = vmax + 1, (42)

where we assume that f and g depend only on the variables x,, for 1 < v < vypax-

Like the simple but space-hungry algorithm described earlier, Algorithm S
proceeds in two phases: First it builds the BDD for f¢ g, constructing templates
so that every important meld a ¢ o' is represented as a template ¢ for which

LEFT(#) = o, RIGHT(¢) = o/, L() =LO(aoa’), H(t) = HI(a o). (43)

(The L and H fields point to templates, not nodes.) Then the second phase
reduces these templates, using a procedure similar to Algorithm R; it changes
template ¢ from (43) to

LEFT(¢) = ~k(t), RIGHT(¢) = 7(¢t), (44)
L(t) = 7(LO(ao '), H(®) = r(HIl(a o '), 44

where 7(¢) is the unique template to which ¢ has been reduced, and where k()
is the “clone” of t if 7(¢t) = t. Every reduced template ¢ corresponds to an
instruction node in the BDD of f o g, and x(t) is the index of this node relative
to position fy in the stack. (Setting LEFT(¢) to ~k(t) instead of x(t) is a sneaky
trick that makes steps S7-S10 run faster.) Special overlapping templates are
permanently reserved for sinks at the bottom of the pool, so that we always have

LEFT(0) = ~0, RIGHT(0) =0, LEFT(1) =~1, RIGHT(1) =1, (45)

in accord with the conventions of (42) and (44).

We needn’t make a template for oo @’ when the value of o @’ is obviously
constant. For example, if we’re computing f A g, we know that a ¢ o will
eventually reduce to if @ =0 or @’ = 0. Such simplifications are discovered
by a subroutine called find_level(f, g), which returns the positive integer j if the
root of fog begins with the branch @, unless fog clearly has a constant value;
in the latter case, find_level(f,g) returns the value —(f o g), which is 0 or —1.
The procedure is slightly technical, but simple, using the global truth table op:

Subroutine find_level(f, g), with local variable ¢:

If f <1land g <1, return —((op> (3 —2f —g)) & 1), which is —(f o g).
Iff<landg>1,sett<+ (f? op&3: op>2);return 0 if t =0, —1if ¢t = 3.
Iff>1and g <1,sett<+ (g? op: op>1)&5;return 0if t =0, —1 if ¢ = 5.
Otherwise return min(V(fo + f),V(go + ¢)). (46)

The main difficulty that faces us, when generating a template for a descen-
dant of o ¢ o' according to (37), is to decide whether or not such a template
already exists—and if so, to link to it. The best way to solve such problems is
usually to use a hash table; but then we must decide where to put such a table,
and how much extra space to devote to it. Alternatives such as binary search
trees would be much easier to adapt to our purposes, but they would add an
unwanted factor of log B(f ¢ g) to the running time. The synthesis problem can

clone

trick

hash table+-4
binary search trees

20 COMBINATORIAL ALGORITHMS (F1B) 7.14

actually be solved in worst-case time and space O(B(f ¢ g)) by using a bucket
sort method analogous to Algorithm R (see exercise 72); but that solution is
complicated and somewhat awkward.

Fortunately there’s a nice way out of this dilemma, requiring almost no extra
memory and only modestly complex code, if we generate the templates one level
at a time. Before generating the templates for level [, we’ll know the number
N; of templates to be requested on that level. So we can temporarily allocate
space for 2° templates at the top of the currently free area, where b = [lg N;],
and put new templates there while hashing into the same area. The idea is to
use chaining with separate lists, as in Fig. 38 of Section 6.4; the H and L fields of
our templates and potential templates play the roles of heads and links in that
illustration, while the keys appear in (LEFT,RIGHT). Here’s the logic, in detail:

Subroutine make_template (f, g), with local variable ¢:

Set h < HBASE + 2(((314159257f + 271828171g) mod 2%) > (d — b)), where d
is a convenient upper bound on the size of a pointer (usually d = 32). Then
set ¢ < H(h). While t # A and either LEFT(¢) # f or RIGHT(¢) # g, set
t < L(t). If t = A, set t « TBOT — 2, TBOT « t, LEFT(¢) « f, RIGHT(¢) « g,
L(t) <+ H(h), and H(h) < t. Finally, return the value ¢. (47)

The calling routine in steps S4 and S5 ensures that NTOP < HBASE < TBOT.

This breadth-first, level-at-a-time strategy for constructing the templates
has an added payoff, because it promotes “locality of reference”: Memory ac-
cesses tend to be confined to nearby locations that have recently been seen, hence
controlled in such a way that cache misses and page faults are significantly
reduced. Furthermore, the eventual BDD nodes placed on the stack will also
appear in order, so that all branches on the same variable appear consecutively.

Algorithm S (Breadth-first synthesis of BDDs). This algorithm computes the

BDD for f o g as described above, using subroutines (46) and (47). Auxiliary

arrays LSTART[/], LCOUNT[/], LLIST[I], and HLIST[I] are used for 0 <[< vpax.

S1. [Initialize.] Set f < go — 1 — fo, g NTOP — 1 — go, and I < find_level(f, g).
See exercise 66 if [< 0. Otherwise set LSTART[/ — 1] < POOLSIZE, and
LLIST[k] <« HLIST[k] <« A, LCOUNT[k] < O for I < k < vpax- Set
TBOT <« POOLSIZE — 2, LEFT(TBOT) <« f, and RIGHT (TBOT) < g.

S2. [Scan the level-l templates.] Set LSTART[I] «+ TBOT and ¢ - LSTART[] — 1].
While ¢ > TBOT, schedule requests for future levels by doing the following;:

Set t + t—2, f <+ LEFT(t), g + RIGHT (%), vf + V(fo+S), vg + V(go+g),
Il + find level ((uf < vg? LO(fo+ f): f),(vf > vg? LOCgo + @): g)),
Ih + find_level ((vf < vg? HI(fo+ f): f), (uf > vg? HI(go + g): g)).

If 1 <0, set L(¢) + —II; otherwise set L(¢) < LLIST[/], LLIST[lI] + ¢,
LCOUNT[Il] < LCOUNTLI] + 1. If [< 0, set H(t) < —Ih; otherwise set
H(t) < HLIST[/h], HLIST[Ih] < ¢, LCOUNT[/h] < LCOUNT[I/h] + 1.

S3. [Done with phase one?] Go to S6 if | = vpax. Otherwise set I < [+ 1, and
return to S2 if LCOUNT[I] = 0.

bucket sort

chaining

breadth-first synthesis+
locality of reference

7.14 BINARY DECISION DIAGRAMS 21

S4.

S5.

Sé.

S7.

S8.

S9.

S10.

S11.

S12.

[Initialize for hashing.] Set b < [IgLCOUNT[I]], HBASE ¢« TBOT — 2°*1,
and H(HBASE + 2k) < A for 0 < k < 2°.

[Make the level-l templates.] Set t < LLIST[I]. While t # A, set s «+
L(t), f < LEFT(#), g < RIGHT(®), vf < V(fo+ f), vg < V(go+ ¢,
L(#) + make_template((vf < vg? LO(fo+S): f), (vf > vg? LO(go+9): g)),
t + s. (Were half done.) Then set t < HLIST[I]. While ¢t # A, set
s« H(t), f « LEFT(t), g < RIGHT(t), vf < V(fo+ f), vg + V(go+ g),
H(t) + make_template((vf < vg? HI(fo+f): f), (vf > vg? HI(go+9): g)),
t < s. (Now the other half is done.) Go back to step S2.

[Prepare for phase two.] (At this point it’s safe to obliterate the nodes of f
and g, because we’ve built all the templates (43). Now we’ll convert them
to form (44). Note that V(fo) = V(fo + 1) = vmax +1.) Set NTOP «+ fo + 2.

[Bucket sort.] Set t «— LSTART[I — 1]. Do the following while ¢ > LSTART[/]:

Set t «+ t— 2, L(t) < RIGHT(L(%)), and H(t) < RIGHT(H(¢)).
If L(¢) = H(¢), set RIGHT (¢) < L(¢). (This branch is redundant.)
Otherwise set RIGHT (¢) <— —1, LEFT(¢) <~ LEFT(L(¢)), LEFT(L(¢)) < t.

[Restore clone addresses.] If ¢ = LSTART[I — 1], set ¢ + LSTART[I] — 2
and go to S9. Otherwise, if LEFT(¢#) < 0, set LEFT(L(¢)) < LEFT(¢). Set
t < t+ 2 and repeat step S8.

[Done with level?] Set ¢t < t+2. If t = LSTART [l — 11, go to S12. Otherwise,
if RIGHT (¢) > 0 repeat step S9.

[Examine a bucket.] (Suppose L(t;) = L(f2) = L(¢3), where t; > t3 >
ts = t and no other templates on level [have this L value. Then at this point
we have LEFT(t3) = to, LEFT(¢3) = t;, LEFT(#;) < 0, and RIGHT(¢;) =
RIGHT (t3) = RIGHT(¢3) = —1.) Set s « t. While s > 0, do the following:
Set r < H(s), RIGHT(s) < LEFT(r); if LEFT(r) < 0, set LEFT(r) <+ s; and
set s «— LEFT(s). Finally set s < ¢ again.

[Make clones.] If s < 0, go back to step S9. Otherwise if RIGHT(s) > O,
set s < LEFT(s). Otherwise set r < LEFT(s), LEFT(H(s)) < RIGHT(s),
RIGHT(s) < s, q < NTOP, NTOP < ¢ + 1, LEFT(s) + ~(q — fo), LO(q)
~LEFT(L(s)), HI(q) < ~LEFT(H(s)), V(g) < [, s + r. Repeat step S11.

[Loop on l.] Set ! < I — 1. Return to S7 if LSTART[I] < POOLSIZE.

Otherwise, if RIGHT(POOLSIZE —2) = 0, set NTOP « NTOP — 1 (because
f o g is identically 0). 1

As usual, the best way to understand an algorithm like this is to trace through
an example. Exercise 67 discusses what Algorithm S does when it is asked to
compute f A g, given the BDDs in (41).

Algorithm S can be used, for example, to construct the BDDs for interesting

functions such as the “monotone-function function” p,(z1,...,Zsn), which is
true if and only if 7 ...xz2~ is the truth table of a monotone function:

Pn(Z1,. .., Ton) = /\ [Tit1 <zjy1]. (48)
0<iCj<2n

monotone-function function+
truth table

22 COMBINATORIAL ALGORITHMS (F1B) 7.14

Fig. 25. /.Lz(ml, r3,Ts, $7) N [Lg(mz, T4, we,its) N Gs(ml, ce ,Z‘s) = /.L3(l‘1, ... ,.’Es),
as computed by Algorithm S.

Starting with po(z1) = 1, this function satisfies the recursion relation

,u’n(-rla s 7-1'2") =
un_l(:cl,acg, - ,wzn_l) A Mn_1($2,$4, - ,.’L'zn) A Gzn (CL’l, . .,.’Egn), (49)

where Gon(21,...,220) = [21<@2] A [23<Ta] A -+ A [Zan_1 <x2n]. So its
BDD is easy to obtain with a BDD calculator like Algorithm S: The BDDs for
Un—1(T1,Z3,...,Tan_1) and pn_1(T2,T4,...,Ton) are simple variants of the one
for pp—1(z1,Z2,...,Zon—1), and Gz~ has an extremely simple BDD (see Fig. 25).

Repeating this process six times will produce the BDD for ug, which has
103,924 nodes. There are exactly 7,828,354 monotone Boolean functions of six
variables (see exercise 5.3.4-31); this BDD nicely characterizes them all, and we
need only about 4.8 million memory accesses to compute it with Algorithm S.
Furthermore, 6.7 billion mems will suffice to compute the BDD for u7, which
has 155,207,320 nodes and characterizes 2,414,682,040,998 monotone functions.

We must stop there, however; the size of the next case, B(us), turns out to

be a whopping 69,258,301,585,604 (see exercise 77).

Synthesis in a BDD base. Another approach is called for when we’re dealing
with many functions at once instead of computing a single BDD on the fly.
The functions of a BDD base often share common subfunctions, as in (36).
Algorithm S is designed to take disjoint BDDs and to combine them efficiently,
afterwards destroying the originals; but in many cases we would rather form
combinations of functions whose BDDs overlap. Furthermore, after forming a
new function f A g, say, we might want to keep f and g around for future use;
indeed, the new function might well share nodes with f or g or both.

Let’s therefore consider the design of a general-purpose toolkit for manip-
ulating a collection of Boolean functions. BDDs are especially attractive for

mems
combinatorial explosion

7.14 BINARY DECISION DIAGRAMS 23

this purpose because most of the necessary operations have a simple recursive
formulation. We know that every nonconstant Boolean function can be written

f(:El;xZ,"""I;n) = (i'v? fl: fh)7 (50)

where v = f, indexes the first variable on which f depends, and where we have

i=100,...,0,Zp41,--,2n); fo=f(1,..., 1, Zps1,...,Zp). (51)

This rule corresponds to branch node @ at the top of the BDD for f; and
the rest of the BDD follows by using (50) and (51) recursively, until we reach
constant functions that correspond to or [T]. A similar recursion defines any
combination of two functions, fog: For if f and g aren’t both constant, we have

f(xla"'awn)z(jv? fl: fh) and g(.’El,...,.’En):(iv? ai: gh)7 (52)
where v = min(f,, g») and where fi, fa, g1, gn are given by (51). Then, presto,

fog = (Z? fiogi: faogn)- (53)

This important formula is another way of stating the rule by which we defined
melding, Eq. (37)-

Caution: The notations above need to be understood carefully, because the
subfunctions f; and fp, in (50) might not be the same as the f; and f3 in (52).
Suppose, for example, that f = z3 V 3 while g = 1 @ £3. Then Eq. (50) holds
with f, = 2 and f = (Z2? fi: fn), where f; = z3 and f = 1. We also have
gy =1 and g = (%17 z3: Z3). But in (52) we use the same branch variable z,, for
both functions, and v = min(f,, g,) = 1 in our example; so Eq. (52) holds with
fF=(Z1? fi: fr) and fi = fn = 22 V z3.

Every node of a BDD base represents a Boolean function. Furthermore, a
BDD base is reduced; therefore two of its functions or subfunctions are equal
if and only if they correspond to exactly the same node. (This convenient
uniqueness property was not true in Algorithm S.)

Formulas (51)—(53) immediately suggest a recursive way to compute f A g:

If f A g has an obvious value, return it.
Otherwise represent f and g as in (52);
. (54)
compute r; < AND(f7,9;) and 7, < AND(fr, gn);
return the function (z,? r;: 7p).

AND(f,g) =

(Recursions always need to terminate when a sufficiently simple case arises. The
“obvious” values in the first line correspond to the terminal cases f A1l = f,
1Ng=¢g, fANO=0Ag=0,and fAg= f when f =g.) When f and g are
the functions in our example above, (54) reduces f A g to the computation of
(zaVzs)Azg and (z2Ve3)AZs. Then (zoVas)Azs reduces to z3Azs and 1Az3; ete.

But (54) is problematic if we simply implement it as stated, because every
nonterminal step launches two more instances of the recursion. The computation
explodes, with 2% instances of AND when we’re k levels deep!

Fortunately there’s a good way to avoid that blowup. Since f has only B(f)
different subfunctions, at most B(f)B(g) distinctly different calls of AND can

recursive formulation

depth-first synthesis—

melding

reduced

equality testing of Boolean functions
sorcerer’s apprentice

exponential growth

24 COMBINATORIAL ALGORITHMS (F1B) 7.14

arise. To keep a lid on the computations, we just need to remember what we’ve
done before, by making a memo of the fact that f A g = r just before returning
r as the computed value. Then when the same subproblem occurs later, we
can retrieve the memo and say, “Hey, we’ve already been there and done that.”
Previously solved cases thereby become terminal; only distinct subproblems can
generate new ones. (Chapter 8 will discuss this memoization technique in detail.)

The algorithm in (54) also glosses over another problem: It’s not so easy to
“return the function (Z,? r;: ry),” because we must keep the BDD base reduced.
If r; = rp, we should return the node r;; and if 7, # 7, we need to decide
whether the branch node (Z,? r;: 71,) already exists, before creating a new one.

Thus we need to maintain additional information, besides the BDD nodes
themselves. We need to keep memos of problems already solved; we also need
to be able to find a node by its content, instead of by its address. The search
algorithms of Chapter 6 now come to our rescue by telling us how to do both of
these things, for example by hashing. To record a memo that f A g = r, we can
hash the key ‘(f, A, g)” and associate it with the value r; to record the existence
of an existing node (V,LO, HI), we can hash the key ‘(V,LO, HI)’ and associate
it with that node’s memory address.

The dictionary of all existing nodes (V,LO, HI) in a BDD base is traditionally
called the unique table, because we use it to enforce the all-important uniqueness
criterion that forbids duplication. Instead of putting all that information into
one giant dictionary, however, it turns out to be better to maintain a collection
of smaller unique tables, one for each variable V. With such separate tables we
can efficiently find all nodes that branch on a particular variable.

The memos are handy, but they aren’t as crucial as the unique table entries.
If we happen to forget the isolated fact that f Ag = r, we can always recompute
it again later. Exponential blowup won’t be worrisome, if the answers to the
subproblems f; A g; and fp A gp are still remembered with high probability.
Therefore we can use a less expensive method to store memos, designed to do
a pretty-good-but-not-perfect job of retrieval: After hashing the key ‘(f, A, g)’
to a table position p, we need look for a memo only in that one position, not
bothering to consider collisions with other keys. If several keys all share the same
hash address, position p will record only the most recent relevant memo. This
simplified scheme will still be adequate in practice, as long as the hash table is
large enough. We shall call such a near-perfect table the memo cache, because
it is analogous to the hardware caches by which a computer tries to remember
significant values that it has dealt with in relatively slow storage units.

Okay, let’s flesh out algorithm (54) by explicitly stating how it interacts with
the unique tables and the memo cache:

If f A g has an obvious value, return it.

Otherwise, if f A g = r is in the memo cache, return r.
Otherwise represent f and g as in (52);

compute r; < AND(f;,g;) and r < AND(fr, gn); (55)
set 7 < UNIQUE (v, r;, 73,), using Algorithm Uj

put ‘f A g =r’ into the memo cache, and return r.

AND(f,g) =

memoization

reduced

hashing

dictionary

unique table+

collisions

memo cache+

cache memory

computed table, see memo cache

7.14 BINARY DECISION DIAGRAMS 25

Algorithm U (Unique table lookup). Given (v,p,q), where v is an integer while
p and ¢ point to nodes of a BDD base with variable rank > v, this algorithm re-
turns a pointer to a node UNIQUE (v, p, q) that represents the function (Z,? p: q).
A new node is added to the base if that function wasn’t already present.

U1l. [Easy case?] If p = g, return p.
U2. [Check the table.] Search variable z,’s unique table using the key (p, q). If
the search successfully finds the value r, return r.

U3. [Create a node.] Allocate a new node r, and set V(r) + v, LO(r) < p,
HI(r) < ¢. Put r into z,’s unique table using the key (p,q). Return r. |

Notice that we needn’t zero out the memo cache after finishing a top-level
computation of AND(f, g). Each memo that we have made states a relationship
between nodes of the structure; those facts are still valid, and they might be
useful later when we want to compute AND(f, g) for new functions f and g.

A refinement of (55) will enhance that method further, namely to swap
f < g if we discover that f > g when f A g isn’t obvious. Then we won’t have
to waste time computing f A g when we’ve already computed g A f.

With simple changes to (55), the other binary operators OR(f, g), XOR(f, g),
BUTNOT(f,g), NOR(f,g), ... can also be computed readily; see exercise 81.

The combination of (55) and Algorithm U looks considerably simpler than
Algorithm S. Thus one might well ask, why should anybody bother to learn the
other method? Its breadth-first approach seems quite complex by comparison
with the “depth-first” order of computation in the recursive structure of (55); yet
Algorithm S is able to deal only with BDDs that are disjoint, while Algorithm U
and recursions like (55) apply to any BDD base.

Appearances can, however, be deceiving: Algorithm S has been described
at a low level, with every change to every element of its data structures spelled
out explicitly. By contrast, the high-level descriptions in (55) and Algorithm U
assume that a substantial infrastructure exists behind the scenes. The memo
cache and the unique tables need to be set up, and their sizes need to be carefully
adjusted as the BDD base grows or contracts. When all is said and done, the
total length of a program that implements Algorithms (55) and U properly “from
scratch” is roughly ten times the length of a similar program for Algorithm S.

Indeed, the maintenance of a BDD base involves interesting questions of
dynamic storage allocation, because we want to free up memory space when
nodes are no longer accessible. Algorithm S solves this problem in a last-in-first-
out manner, by simply keeping its nodes and templates on sequential stacks, and
by making do with a single small hash table that can easily be integrated with
the other data. A general BDD base, however, requires a more intricate system.

The best way to maintain a dynamic BDD base is probably to use reference
counters, as discussed in Section 2.3.5, because BDDs are acyclic by definition.
Therefore let’s assume that every BDD node has a REF field, in addition to V, LO,
and HI. The REF field tells us how many references exist to this node, either
from LO or HI pointers in other nodes or from external root pointers F; as in (36).
For example, the REF fields for the nodes labeled @ in (36) are respectively 4,

UNIQUE

depth-first

breadth-first versus depth-first+-+
dynamic storage allocation
garbage collection+

reference counters

26 COMBINATORIAL ALGORITHMS (F1B) 7.14

1, and 2; and all of the nodes labeled @ or @ or @ in that example have
REF = 1. Exercise 82 discusses the somewhat tricky issue of how to increase
and decrease REF counts properly in the midst of a recursive computation.

A node becomes dead when its reference count becomes zero. When that
happens, we should decrease the REF fields of the two nodes below it; and then
they too might die in the same manner, recursively spreading the plague.

But a dead node needn’t be removed from memory immediately. It still
represents a potentially useful Boolean function, and we might discover that we
need that function again as our computation proceeds. For example, we might
find a dead node in step U2, because pointers from the unique table don’t get
counted as references. Likewise, in (55), we might accidentally stumble across a
cache memo telling us that f A g = r, when r is currently dead. In such cases,
node r comes back to life. (And we must increase the REF counts of its LO and
HI descendants, possibly resurrecting them recursively in the same fashion.)

Periodically, however, we will want to reclaim memory space by removing
the deadbeats. Then we must do two things: We must purge all memos from
the cache for which either f, g, or r is dead; and we must remove all dead
nodes from memory and from their unique tables. See exercise 84 for typical
heuristic strategies by which an automated system might decide when to invoke
such cleanups and when to resize the tables dynamically.

Because of the extra machinery that is needed to support a BDD base,
Algorithm U and top-down recursions like (55) cannot be expected to match the
efficiency of Algorithm S on one-shot examples such as the monotone-function
function p, in (49). The running time is approximately quadrupled when the
more general approach is applied to this example, and the memory requirement
grows by a factor of about 2.4.

But a BDD base really begins to shine in numerous other applications.
Suppose, for example, that we want the formulas for each bit of the product
of two binary numbers,

(21 2Zmyn)2 = (1. Tm)2 X (Y1---Yn)2- (56)
Clearly 2z1...25, =0...0 when n = 0, and the simple recurrence
(@1 Tm)2 X (Y1 UnYnt1)2 = (21++-Zm4n0)2 + (L1 ... Tm)2Ynt1 (57)

allows us to increase n by 1. This recurrence is easy to code for a BDD base.
Here’s what we get when m = n = 3, with subscripts chosen to match the
analogous diagram for binary addition in (36):

135

X ToX4Tg

fefsfafafafr

dead

monotone-function function
product

multiplication, binary

7.14 BINARY DECISION DIAGRAMS 27

Clearly multiplication is much more complicated than addition, bitwise. (Indeed, gigamems .

if it weren’t, factorization wouldn’t be so hard.) The corresponding BDD base g’ﬁé’l‘;’r{)i“bfuncmns

for binary multiplication when m = n = 16 is huge, with B(f1,..., f32) = ternary operations+
multiplexing

136,398,751 nodes. It can be found after doing about 56 gigamems of calculation
with Algorithm U, in 6.3 gigabytes of memory—including some 1.9 billion
invocations of recursive subroutines, with hundreds of dynamic resizings of the
unique tables and the memo cache, plus dozens of timely garbage collections.
A similar calculation with Algorithm S would be almost unthinkable, although
the individual functions in this particular example do not share many common
subfunctions: It turns out that B(f;) + --- + B(fs2) = 168,640,131, with the
maximum occurring at the “middle bit,” B(f1s) = 38,174,143.

*Ternary operations. Given three Boolean functions f = f(z1,...,%,), g =
g(z1,...,2pn), and h = h(z1,...,2,), not all constant, we can generalize (52) to

F=(&? fir fn) and ¢ =(Zy? gi: gn) and h = (Z,? hi: hp), (59)
by taking v = min(fy, gv, hy). Then, for example, (53) generalizes to

(fgh) = (27 (figiht): (fagnhn)); (60)
and similar formulas hold for any ternary operation on f, g, and h, including
(f?g:h) = (iv? (7 g1z)z (fn? gn: hh)). (61)

(The reader of these formulas will please forgive the two meanings of ‘h’ in ‘hyp’.)
Now it’s easy to generalize (55) to ternary combinations like multiplexing:

If (f? g: h) has an obvious value, return it.

Otherwise, if (f? g: h) = r is in the memo cache, return 7.
Otherwise represent f, g, and h as in (59); (62)
compute r; < MUX(fi, gi, hi) and rp < MUX(fn, g, hn);

set 7 <~ UNIQUE(v, 1y, 7), using Algorithm U,

put ‘(f? g: h) = r’ into the memo cache, and return 7.

(See exercises 86 and 87.) The running time is O(B(f)B(g)B(k)). The memo
cache must now be consulted with a more complex key than before, including
three pointers (f,g,h) instead of two, together with a code for the relevant
operation. But each memo (op, f, g, h,) can still be represented conveniently in,
say, two octabytes, if the number of distinct pointer addresses is at most 23!.
The ternary operation f A g A h is an interesting special case. We could
compute it with two invocations of (55), either as AND(f, AND(g,h)) or as
AND(g, AND(h, f)) or as AND(h,AND(f,g)); or we could use a ternary sub-
routine, ANDAND(f, g, h), analogous to (62). This ternary routine first sorts
the operands so that the pointers satisfy f < g < h. Then if f = 0, it returns 0;
if f=1or f =g, it returns AND(g, h); if g = h it returns AND(f, g); otherwise
1 < f < g < h and the operation remains ternary at the current level of recursion.
Suppose, for example, that f = us(z1,xs,-..,Z63), g = p5(T2, 4, .., Tea),
and h = Gga(z1,...,%64), as in Eq. (49). The computation AND(f, AND(g,h))

MUX(f,g,h) =

28 COMBINATORIAL ALGORITHMS (F1B) 7.14

costs 0.2 4+ 6.8 = 7.0 megamems in the author’s experimental implementation; ternary ANDAND
AND(g, AND(h, f)) costs 0.1 + 7.0 = 7.1; AND(h, AND(f, g)) costs 24.4 + 5.6 = duantified formulas++
30.0(!); and ANDAND(f,g,h) costs 7.5. So in this instance the all-binary universal quantification
approach wins, if we don’t choose a bad order of computation. But sometimes notation: \g
ternary ANDAND beats all three of its binary competitors (see exercise 88). g%t;f;:: atrix
Rudell
*Quantifiers. If f = f(z1,...,z,) is a Boolean function and 1 < j < n, logicians

traditionally define ezistential and universal quantification by the formulas

Az f(z1,...,2zn) = foV f1 and Vz; f(z1,...,2n) = fo A f1, (63)

where f. = f(z1,...,2j-1,¢,%j4+1,...,2,). Thus the quantifier ‘Jz;’, pro-
nounced “there exists x;,” changes f to the function of the remaining variables
(1,---,%j-1,Zj41,---,%n) that is true if and only if at least one value of x;
satisfies f(z1,...,%n); the quantifier ‘Vz;’, pronounced “for all z;,” changes f
to the function that is true if and only if both values of x; satisfy f.

Several quantifiers are often applied simultaneously. For example, the for-
mula dz Izs Iz6 f(21,...,2T,) stands for the OR of eight terms, representing
the eight functions of (z1, 24, z5, 27, . .., Z,) that are obtained when we plug the
values 0 or 1 into the variables x5, z3, and xg in all possible ways. Similarly,
Vea Va3 Vag f(x1,...,2,) stands for the AND of those same eight terms.

One common application arises when the function f(i1,...,%;751,---,5m)
denotes the value in row (i ...4;)2 and column (j1 ...Jm)2 of a 2t x 2™ Boolean
matrix F. Then the function h(iy,...,4; k1,...,kn) given by

Fj1 e Fgm (Flis i,y Gm) AG(1s s Ims ks K)) (64)

represents the matrix H that is the Boolean product F' G.

A convenient way to implement multiple quantification in a BDD base has
been suggested by R. L. Rudell: Let g = x;, A--- A xj,, be a conjunction of
positive literals. Then we can regard Jzj, ...dxz; f as the binary operation
f E g, implemented by the following variant of (55):

(If f E g has an obvious value, return it.
Otherwise represent f and g as in (52);
if v # fy, return EXISTS(f, gn)-
Otherwise, if f E g = r is in the memo cache, return 7. (65)
Otherwise, 7 < EXISTS(f1, gr) and 7, < EXISTS(f1, gn); 5
if v # gy, set 7 < UNIQUE (v, r,7) using Algorithm U,
otherwise compute r <= OR(ry, 73);

\ put ‘f E g = 7’ into the memo cache, and return 7.

EXISTS(f,g) =

(See exercise 94.) The E operation is undefined when g does not have the stated
form. Notice how the memo cache nicely remembers existential computations
that have gone before.

The running time of (65) is highly variable—not like (55) where we know
that O(B(f)B(g)) is the worst possible case— because m OR operations are
invoked when g specifies m-fold quantification. The worst case now can be as

7.14 BINARY DECISION DIAGRAMS 29

bad as order B(f)2™, if all of the quantification occurs near the root of the BDD
for f; this is only O(B(f)?) if m = 1, but it might become unbearably large as m
grows. On the other hand, if all of the quantification occurs near the sinks, the
running time is simply O(B(f)), regardless of the size of m. (See exercise 97.)

Several other quantifiers are worthy of note, and equally easy, although they
aren’t as famous as 3 and V. The Boolean difference and the yes/no quantifiers
are defined by formulas analogous to (63):

Az f = fo @ f1; Az f = fo A fr; Naj f = fo A fr- (66)

The Boolean difference, J, is the most important of these: Jz; f is true for
all values of {x1,...,2; 1,%41,...,2,} such that f depends on z;. If the
multilinear representation of f is f = (z;g + h) mod2, where g and h are
multilinear polynomials in {z1,...,2; 1,%41,...,Z,}, then dz; f = g mod 2.
(See Eq. 7.1.1-(19).) Thus J acts like a derivative in calculus, over a finite field.

A Boolean function f(z1,...,2Zy) is monotone (nondecreasing) if and only
if \/;.l:1 Nz; f = 0, which is the same as saying that Nx; f = 0 for all j. However,
exercise 105 presents a faster way to test a BDD for monotonicity.

Let’s consider now a detailed example of existential quantification that is
particularly instructive. If G is any graph, we can form Boolean functions IND ()
and KER (z) for its independent sets and kernels as follows, where z is a bit vector
with one entry z,, for each vertex v of G:

IND(z) =~ \/ (@uAz); KER(z) =IND(@@)A N\(z0 vV \/ 7). (67)

u—uv u—7v

We can form a new graph G whose vertices are the kernels of G, namely the
vectors z such that KER(z) = 1. Let’s say that two kernels x and y are adjacent
in G if they differ in just the two entries for v and v, where (z,,z,) = (1,0) and
(Yu,Yv) = (0,1) and u—wv. In other words, kernels can be considered as certain
ways to place markers on vertices of G; moving a marker from one vertex to a
neighboring vertex produces an adjacent kernel. Formally we define

a(z) = [v(z) =2] A ~IND(z); (68)
ADIJ(z,y) = a(z ® y) AKER(z) A KER(y). (69)

Then £ —y in G if and only if ADJ(z,y) = 1.

Notice that, if z = ...z, the function [v(z)=2] is the symmetric func-
tion Sa(z1,...,2,). Furthermore a(z @ y) has at most 3 times as many nodes
as a(z), if we interleave the variables zipperwise so that the branching order is
(Z1,Y1,-- -, Tn,Yn). Thus B(a) and B(ADJ) will not be extremely large unless
B(IND) or B(KER) is large. It’s now easy to express the condition that z is an
isolated vertex of G (a vertex of degree 0):

ISO(z) = KER(z) A -3y ADJ(z,y). (70)

For example, suppose G is the graph of contiguous states in the USA, as
n (18). Then each kernel vector x has 49 entries z,, for v € {ME,NH,...,CA}. The
graph G has 266,137 vertices, and we have observed earlier that the BDD sizes

Boolean difference

yes/no quantifiers
depends on

multilinear representation
monotone

independent sets+
kernels+

adjacent subsets of vertices
symmetric function
interleave

zipperwise

isolated vertices+
contiguous states+

30 COMBINATORIAL ALGORITHMS (F1B) 7.14

for IND(x) and KER(z) are respectively 428 and 780 (see (17)). In this case the
BDD sizes for a(z) and ADJ(z,y) in (68) and (69) turn out to be only 286 and
7260, respectively, even though ADJ(z,y) is a function of 98 Boolean variables.
The BDD for 3y ADJ(z,y), which describes all kernels = of G that have at least
one neighbor, turns out to have 842 nodes; and the one for ISO(z) has only 77.
The latter BDD proves that graph G has exactly three isolated kernels, namely

o)
(

NN
‘.un. o
NN

and another that is a blend of these two. Using the algorithms above, this entire
calculation, starting from a list of the vertices and edges of G (not G), can be
carried out with a total cost of about 4 megamems, in about 1.6 megabytes of
memory; that’s only about 15 memory accesses per kernel of G.

In a similar fashion we can use BDDs to work with other “implicit graphs,”
which have more vertices than could possibly be represented in memory, if those
vertices can be characterized as the solution vectors of Boolean functions. When
the functions aren’t too complicated, we can answer queries about those graphs
that could never be answered by representing the vertices and arcs explicitly.

*Functional composition. The piéce de résistance of recursive BDD algorithms
is a general procedure to compute f(g1, g2, - .-, gn), Where f is a given function of
{z1,z2,...,2,} and so is each argument g;. Suppose we know a number m > 0
such that g; = x; for m < j < n; then the procedure can be expressed as follows:

(If f=0o0r f =1, return f.
Otherwise suppose f = (Z,? fi: fr), as in (50);
if v > m, return f; otherwise, if f(g1,...,g9n)=r
is in the memo cache, return 7.
Compute r; <+ COMPOSE(f;,91,---,9n) (72)
and rp < COMPOSE(fr, g1,---,9n);
set 7 < MUX(gy, 71, 7h) using (62);
\ put ‘f(g1,-.-,9n) =’ into the cache, and return r.

COMPOSE(f, 91, ---,0n) =

The representation of cache memos like ‘f(g1,...,gn) = r’ in this algorithm is a
bit tricky; we will discuss it momentarily.

Although the computations here look basically the same as those we’ve been
seeing in previous recursions, there is in fact a huge difference: The functions 7
and r in (72) can now involve all variables {z1,...,z,}, not just the z’s near
the bottom of the BDDs. So the running time of (72) might actually be huge.
But there also are many cases when everything works together harmoniously and
efficiently. For example, the computation of a(z @ y) in (69) is no problem.

implicit graphs
functional composition+
composition of functions+

7.14 BINARY DECISION DIAGRAMS 31

The key of a memo like ‘f(g1,...,9n) = 7’ should not be a completely
detailed specification of (f,g1,...,9n), because we want to hash it efficiently.
Therefore we store only ‘f[G] = r’, where G is an identification number for the
sequence of functions (g, .., grn). Whenever that sequence changes, we can use a
new number G; and we can remember the G’s for special sequences of functions
that occur repeatedly in a particular computation, as long as the individual
functions g; don’t die. (See also the alternative scheme in exercise 102.)

Let’s return to the graph of contiguous states for one more example. That
graph is planar; suppose we want to color it with four colors. Since the colors
can be given 2-bit codes {00,01,10,11}, it’s easy to express the valid colorings
as a Boolean function of 98 variables that is true if and only if the color codes
ab are different for each pair of adjacent states:

COLOR.(aug, bug, - . ., @ca, ben) =

IND (aME A bME7 ...,0cp N bCA) A IND (aME A BME, h ,aca A I_)CA) _ (73)
A IND(ELME A bMEa ey aca A bCA) A IND(&ME A bMEa ey aca A\ bCA)-

Each of the four INDs has a BDD of 854 nodes, which can be computed via (72)
with a cost of about 70 kilomems. The COLOR function turns out to have only
25,579 BDD nodes. Algorithm C now quickly establishes that the total number
of ways to 4-color this graph is exactly 25,623,183,458,304 —or, if we divide
by 4! to remove symmetries, about 1.1 trillion. The total time needed for this
computation, starting from a description of the graph, is less than 3.5 megamems,
in 2.2 megabytes of memory. (We can also find random 4-colorings, etc.)

Nasty functions. Of course there also are functions of 98 variables that aren’t
nearly so nice as COLOR. Indeed, the total number of 98-variable functions is
22°%; exercise 108 proves that at most 22°° of them have a BDD size less than
a trillion, and that almost all Boolean functions of 98 variables actually have
B(f) ~ 2%/98 ~ 3.2 x 10%". There’s just no way to compress 2% bits of data
into a small space, unless that data happens to be highly redundant.

What'’s the worst case? If f is a Boolean function of n variables, how large
can B(f) be? The answer isn’t hard to discover, if we consider the profile of

a given BDD, which is the sequence (bo,...,bn_1,b,) when there are by nodes
that branch on variable zx; and b,, sinks. Clearly
B(f)=bo+- " +bp_1+bn. (74)
We also have bg < 1, b; < 2, bs <4, bg < &, and in general
be < 2%, (75)

because each node has only two branches. Furthermore b,, = 2 whenever f isn’t
constant; and b,_1 < 2, because there are only two legal choices for the LO and
HI branches of @ Indeed, we know that by is the number of beads of order
n — k in the truth table for f, namely the number of distinct subfunctions of
(Tk+1,---,%n) that depend on zg,1 after the values of (z1,...,zx) have been
specified. Only 22™ — 22™7" beads of order m are possible, so we must have

be < 227" -2 for0<k<n. (76)

contiguous states

planar

colorings

4-color

—depth-first synthesis
random

profile+++

analysis of algorithms++
beads

truth table

32 COMBINATORIAL ALGORITHMS (F1B) 7.14

When n = 11, for instance, (75) and (76) tell us that (bo,...,b11) is at most
(1,2, 4, 8, 16, 32, 64, 128, 240, 12, 2, 2). (77)

Thus B(f) <1+2+---4+128+240+---+ 2 = 255 + 256 = 511 when n = 11.
This upper bound is in fact obtained with the truth table

00000000 00000001 00000010 ... 11111110 11111111, (78)

or with any string of length 2! that is a permutation of the 256 possible 8-bit
bytes, because all of the 8-bit beads are clearly present, and because all of the
subtables of lengths 16, 32, ..., 2!! are clearly beads. Similar examples can be
constructed for all n (see exercise 110). Therefore the worst case is known:

Theorem U. Every Boolean function f(z1,...,z,) has B(f) < U, where
n—1
Up =2+ min(25,22" "= 22777y = 2nAam) 92 (g
k=0

Furthermore, explicit functions f,, with B(f,) = U, exist for alln. |

If we replace A by lg, the right-hand side of (79) becomes 2"/(n — lgn) +
2"/n — 1. In general, U, is u, times 2"/n, where the factor u,, lies between 1
and 2+ 0(105"). A BDD with about 2"%/n nodes needs about n+ 1 —lgn bits
for each of two pointers in every node, plus lgn bits to indicate the variable for
branching. So the total amount of memory space taken up by the BDD for any
function f(zy,...,%,) is never more than about 22 bits, which is four times
the number of bits in its truth table, even if f happens to be one of the worst
possible functions from the standpoint of BDD representation.

The average case turns out to be almost the same as the worst case, if we
choose the truth table for f at random from among all 22" possibilities. Again the
calculations are straightforward: The average number of nodes is exactly

be = (22T (@ @Y 27 (80)

because there are 22" '— 22" *"" beads of order n — k and (22"%— 1)21c truth

tables in which any particular bead does not occur. Exercise 112 shows that this
complicated-looking quantity by always lies extremely close to the worst-case
estimate min(2¥, 22"7"- 22"7"7"), except for two values of k. The exceptional
levels occur when k ~ 2"~ and the “min” has little effect. For example, the

~ ~

average profile (130, «eeybp_1,b,) when n = 11 is approximately
(1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 127.4, 151.9, 12.0, 2.0, 2.0) (81)

when rounded to one decimal place, and these values are virtually indistinguish-
able from the worst case (77) except when k =7 or 8.

A related concept called a quasi-BDD, or “QDD,” is also important. Every
function has a unique QDD, which is similar to its BDD except that the root
node is always @, and every @ node for k < n branches to two nodes;
thus every path from the root to a sink has length n. To make this possible,

truth table
subtables
beads
quasi-BDD
QDD

7.14 BINARY DECISION DIAGRAMS 33

we allow the LO and HI pointers of a QDD node to be identical. But the QDD
must still be reduced, in the sense that different nodes cannot have the same two
pointers (LO, HI). For example, the QDD for (z1zoz3) is

it has two more nodes than the corresponding BDD in Fig. 21. Notice that the
V fields are redundant in a QDD, so they needn’t be present in memory.

The quasi-profile of a function is (go, - - - , gn—1,Gn), Where gg_1 is the number
of @ nodes in the QDD. It’s easy to see that g is also the number of distinct
subtables of order n — k in the truth table, just as by is the number of distinct
beads. Every bead is a subtable, so we have

qr > b, for 0 <k <n. (83)

Furthermore, exercise 115 proves that
gp <14+byg+---+bp_1 and g <bp +---+b,, for0<k<n. (84)
Consequently each element of the quasi-profile is a lower bound on the BDD size:
B(f) > 2q,x—1, for 0 <k <m. (85)

Let Q(f) = go + -+ + qn_1 + gn be the total size of the QDD for f. We
obviously have Q(f) > B(f), by (83). On the other hand Q(f) can’t be too
much bigger than B(f), because (84) implies that

n+1

QU < "5 (BN +1). (56)

Exercises 116 and 117 explore other basic properties of quasi-profiles.

The worst-case truth table (78) actually corresponds to a familiar function
that we’ve already seen, the 8-way multiplexer

Mz($9,$10,$11;$1,---,$8) = Ti4(zoz10%11)2" (87)

But we’'ve renumbered the variables perversely so that the multiplexing now
occurs with respect to the last three variables (zg, 10, Z11), instead of the first
three as in Eq. (30). This simple change to the ordering of the variables raises
the BDD size of M3 from 17 to 511; and an analogous change when n = 2™ +m
would cause B(M,,) to make a colossal leap from 2n — 2m + 1 to 27~ ™*! — 1,

R. E. Bryant has introduced an interesting “navel-gazing” multiplexer called
the hidden weighted bit function, defined as follows:

ho(Z1,. ., Tn) = Tpytetz, = Tys, (88)

with the understanding that zo = 0. For example, hy(z1, T2, T3, 74) has the truth
table 000001111001 1011. He proved [IEEE Trans. C-40 (1991), 208-210] that
h, has a large BDD, regardless of how we might try to renumber its variables.

reduced
quasi-profile
subtables

truth table
be?ds)

Qf
multiplexer
Bryant
omphaloskepsis
sideways addition

34 COMBINATORIAL ALGORITHMS (F1B) 7.14

With the standard ordering of variables, the profile (b, ...,b11) of hyy is
(1,2,4,8,15,27,46,40,18,7,2, 2); (89)

hence B(hy1) = 172. The first half of this profile is actually the Fibonacci se-
quence in slight disguise, with by = Fi14 — k — 2. In general, h,, always has this
value of by, for k& < n/2; thus its initial profile counts grow with order ¢* instead of
the worst-case rate of 2¢. This growth rate slackens after k surpasses /2, so that,
for example, B(hsz) is only a modest 86,636. But exponential growth eventually
takes over, and B(higg) is out of sight: 17,530,618,296,680. (When n = 100, the
maximum profile element is bsg = 2,947,635,944,748, which dwarfs bg+- - -+bgg =
139,583,861,115.) Exercise 125 proves that B(h,,) is asymptotically cx™ +O(n?),

where \
V27 — /621 + v/27 + /621
V54

1.3247179572 44746 02596 09088 54478 09734 07344+ (90)

is the so-called “plastic constant,” the positive root of x> = x + 1, and the
coefficient c is 7y — 1 + 14/(3 + 2x) = 10.75115.

On the other hand we can do substantially better if we change the order
in which the variables are tested in the BDD. If f(z1,...,zy) is any Boolean
function and if 7 is any permutation of {1,...,n}, let us write

fﬂ-(mla"'ax‘n) = f(‘rlwa---a-rnw)- (91)
For example, if f(z1,22,23,24) = (23 V (21 A 24)) A (2 V Z4) and if (17,2,
3m,4m) = (3,2,4,1), then f™(z1,2,%3,%4) = (x4 V (xz3 Az1)) A (Z2 V Z1); and
we have B(f) =10, B(f™) = 6 because the BDDs are

e

The BDD for f™ corresponds to a BDD for f that has a nonstandard ordering,
in which a branch is permitted from @ to @ only if i < jm:

(93)

fo Q@

The root is @, where 7 = 17~ is the index for which 4w = 1. When the branch
variables are listed from the top down, we have (4x, 2w, 17, 37) = (1,2,3,4).

Fibonacci sequence

exponential growth
plastic constant
permutation
notation fﬂ'
nonstandard ordering

7.14 BINARY DECISION DIAGRAMS 35

Applying these ideas to the hidden weighted bit function, we have

hZ(xlv"'vwn) = T(zy+-4zn)ms (94)
with the understanding that O = 0 and zp = 0. For example, h3(0,0,1) =1 if
(1m,2m,3m) = (3,1,2), because (4, 4z,425)r = €3 = 1. (See exercise 120.)

Element g of the quasi-profile counts the number of distinct subfunctions
that arise when the values of z; through z are known. Using (94), we can

represent all such subfunctions by means of a slate of options [ro,...,Tn—k],
where r; is the result of the subfunction when xg4; + -+ + 2, = j. Suppose
Ty =c1,..., Tk = Cy,and let s = ¢+ - -+ cx. Then r; = c(syj)x if (s+75)m < k;

otherwise r; = z(s4j)r- However, we set ro <— 0 if s7 > k, and 7, < 1 if
(s +n — k)m > k, so that the first and last options of every slate are constant.

For example, calculations show that the following permutation 17 ... 1007
reduces the BDD size of higo from 17.5 trillion to B(h],,) = 1,124,432,105:

2 4 6 8 10 12 14 16 18 20 97 57 77 37 87 47 67 27 92 52

72 32 82 42 62 22 100 60 80 40 90 50 70 30 95 55 75 35 85 45

65 25 98 58 78 38 88 48 68 28 93 53 73 33 83 43 63 23 99 59 (95)

79 39 89 49 69 29 94 54 74 34 84 44 64 24 96 56 76 36 86 46

66 26 91 51 71 31 81 41 61 21 19 17 15 13 11 9 7 5 3 1
Such calculations can be based on an enumeration of all slates that can arise, for
0 < s <k < n. Suppose we’ve tested 1, ..., zg3 and found that z; = [j <42],
say, for 1 < j < 83. Then s = 42; and the subfunction of the remaining 17
variables (zga, ..., Z100) is given by the slate [ro,...,717] = [c25, Tos, C58, C78, C38,
T'g8,C48, C68,C28, L93, C53, C73, €33, C83, €43, C63, 023,3399], which reduces to

[15I985070a]-aISSaOaOa 15I9350707]-aoaoaov 1? 1] (96)

This is one of the 24 subfunctions counted by gg3 when s = 42. Exercise 124
explains how to deal similarly with the other values of k and s.
We’re ready now to prove Bryant’s theorem:

Theorem B. The BDD size of hT exceeds 21"/%1, for all permutations 7.

Proof. Observe first that two subfunctions of h] are equal if and only if they
have the same slate. For if [r,...,r,] # [rg,...,7;,], suppose r; # rj. If
both T, and r;- are constant, the subfunctions differ when zg 1 + - 4+ z, = j.
If r; is constant but r;- = z,;, we have 0 < j < n — k; the subfunctions differ
because 1 + -+ -+ z, can equal j with z; # ;. And if r; = z; but r;- =z,
with ¢ #£ 4/, we can have zq1 + - - + zn, = j with z; # z;. (The latter case can
arise only when the slates correspond to different offsets s and s'.)

Therefore qi is the number of different slates [rg,...,7,_k]. Exercise 123
proves that this number, for any given k, n, and s as described above, is exactly

() * (o) 0 G2 = () 70 () + () o0

where w is the number of indices j such that s < j < s+n—k and jnm < k.
Now consider the case k = [3n/5|+1, and let s = k—[n/2], s’ = |[n/2] +1.
(Think of n = 100, k = 61, s = 11, s’ = 51. We may assume that n > 10.) Then

quasi-profile
slate of options
Bryant

36 COMBINATORIAL ALGORITHMS (F1B) 7.14

w+w' =k — w"”, where w" counts the indices with jm < k and either j < s
orj>s +n—k. Sincew” < (s—1)+ (k—s') =2k —2 —n, we must have
w+w >n+2—k=[2n/5] + 1. Hence either w > |n/5| or w’ > |n/5]; and
in both cases (97) exceeds 2L7/5/=1. The theorem follows from (85). 1

Conversely, there’s always a permutation 7 such that B(hT) = O(20-2029n),

although the constant hidden by O-notation is quite large. This result was proved
by B. Bollig, M. Lobbing, M. Sauerhoff, and I. Wegener, Theoretical Informatics
and Applications 33 (1999), 103-115, using a permutation like (95): The first
indices, with jm < n/5, come alternately from j > 9n/10 and j < n/10; the
others are ordered by reading the binary representation of 9n/10 — j from right
to left (colex order).

Let’s also look briefly at a much simpler example, the permutation function
Prp(21,...,%m2), which equals 1 if and only if the binary matrix with z(;_1)m4;
in row % and column j is a permutation matrix:

Pr(z1,...,2m2) = /\51(£¢(i-1)m+1,$(i—1)m+2,---,x(i—l)m+m)
i=1

m
VAN /\ Sl(xj,$m+j,...,$m2,m+j). (98)
j=1
In spite of its simplicity, this function cannot be represented with a small BDD,
under any reordering of its variables:

Theorem K. The BDD size of PT. exceeds m2™ ™1, for all permutations 7.

Proof. [See 1. Wegener, Branching Programs and Binary Decision Diagrams
(SIAM, 2000), Theorem 4.12.3.] Given the BDD for P, notice that each of the
m! vectors = such that PT(z) = 1 traces a path of length n = m? from the root
to ; every variable must be tested. Let vg(z) be the node from which the
path for x takes its kth HI branch. This node branches on the value in row 7 and
column j of the given matrix, for some pair (Z,7) = (ix(z), jk(z)).

Suppose vg(z) = vg/(z'), where z # z’. Construct z” by letting it agree
with z up to vi(z) and with ' thereafter. Then f(z”) = 1; consequently we
must have k = k’. In fact, this argument shows that we must also have

{(1,1(21,‘),_]1(.’1))), (7‘2(1")7]2(37))7 LR (ikfl(x)vjkfl(x))}

= {(ir(), j1(2")), (i2(2), j2(2)), - ., (ik—1(2"), Ge—1(=)) }. (99)

Imagine m colors of tickets, with m! tickets of each color. Place a ticket of
color k on node v (z), for all k£ and all . Then no node gets tickets of different
colors; and no node of color k gets more than (k—1)! (m — k)! tickets altogether,
by Eq. (99). Therefore at least m!/((k — 1)! (m — k)!) = k('}) different nodes
must receive tickets of color k. Summing over k gives m2™ ! non-sink nodes. |
Exercise 184 shows that B(P,,) is less than m2™*! so the lower bound in
Theorem K is nearly optimum except for a factor of 4. Although the size grows
exponentially, the behavior isn’t hopelessly bad, because m = y/n. For example,
B(Py) is only 38,797,317, even though Py is a Boolean function of 400 variables.

O-notation

Bollig

Lobbing

Sauerhoff

Wegener

colex order
permutation function
0-1 matrices
permutation matrix
Wegener
exponential growth

7.14 BINARY DECISION DIAGRAMS 37

*Optimizing the order. Let Bpin(f) and Bmax(f) denote the smallest and
largest values of B(f™), taken over all permutations 7 that can prescribe an
ordering of the variables. We’ve seen several cases where B, and Bp.x are
dramatically different; for example, the 2™-way multiplexer has Byin (M) = 2n
and Bpax(Mp) = 2"/n, when n = 2™ + m. And indeed, simple functions for
which a good ordering is crucial are not at all unusual. Consider, for instance,

f(@1,22,...,20) = (TaVa2) A(@Z3V2a) Avo - A(Tpn-1V Tn), 7 even; (100)

this is the important subset function [z1x3...%Tn_1 CTaTq...T,], and we have
B(f) = Buin(f) = n+ 2. But the BDD size explodes to B(f™) = Bpax(f) =
2n/2+1 when 7 is “organ-pipe order,” namely the ordering for which

[Tz, 22,...,20) = (Z1Van) A(@2VTn_1) Ao A (Znj2 V Tnj241). (101)

And the same bad behavior occurs for the ordering [1 ... %n/2 C ZTp/2t1 - - - Tn)-
In these orderings the BDD must “remember” the states of n/2 variables, while
the original formulation (100) needs very little memory.

Every Boolean function f has a master profile chart, which encapsulates the
set of all its possible sizes B(f™). If f has n variables, this chart has 2" vertices,
one for each subset of the variables; and it has n2"~! edges, one for each pair of
subsets that differ in just one element. For example, the master profile chart for
the function in (92) and (93) is

Every edge has a weight, illustrated here by the number of lines; for example,
the weight between {1,2} and {1,2, 3} is 3. The chart has the following interpre-
tation: If X is a subset of k variables, and if x ¢ X, then the weight between X
and X Uz is the number of subfunctions of f that depend on x when the variables
of X have been replaced by constants in all 2* possible ways. For example, if
X = {17 2}, we have f(0707$3a$4) = 3, f(07 1,1,‘3,5174) = f(17].,.’133,1,‘4) = T34,
and f(1,0,z3,%4) = 3 V x4; all three of these subfunctions depend on z3, but
only two of them depend on z4, as shown in the weights below {1,2}.

There are n! paths of length n from @ to {1,...,n}, and we can let the path
0 — {a1} — {a1,a2} = - = {a1,...,a,} correspond to the permutation m
if aym =1, agm = 2, ..., a,m = n. Then the sum of the weights on path 7 is
B(f™), if we add 2 for the sink nodes. For example, the path § — {4} — {2,4} —
{1,2,4} — {1,2, 3,4} yields the only way to achieve B(f™) = 6 as in (93).

optimizing the order of variables+
-way multiplexer

subset function

organ-pipe order

master profile chart

38 COMBINATORIAL ALGORITHMS (F1B) 7.14

Notice that the master profile chart is a familiar graph, the n-cube, whose
edges have been decorated so that they count the number of beads in various sets
of subfunctions. The graph has exponential size, n2"~!; yet it is much smaller
than the total number of permutations, n!. When n is, say, 25 or less, exercise 138
shows that the entire chart can be computed without great difficulty, and we can
find an optimum permutation for any given function. For example, the hidden
weighted bit function turns out to have Bpin(h2s) = 2090 and Bpax(has) =
35441; the minimum is achieved with (1, ...,257) = (3, 5, 7, 9, 11, 13, 15, 17,
25, 24, 23, 22, 21, 20, 19, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1), while the maximum
results from a strange permutation (22, 19, 17, 25, 15, 13, 11, 10, 9, 8, 7, 24, 6,
5,4, 3,2, 12, 1, 14, 23, 16, 18, 20, 21) that tests many “middle” variables first.

Instead of computing the entire master profile chart, we can sometimes save
time by learning just enough about it to determine a path of least weight. (See
exercise 140.) But when n grows and functions get more weird, we are unlikely
to be able to determine B, (f) exactly, because the problem of finding the best
ordering is NP-complete (see exercise 137).

We’ve defined the profile and quasi-profile of a single Boolean function f, but
the same ideas apply also to an arbitrary BDD base that contains m functions
{f1,.-.-, fm}- Namely, the profile is (bo,...,b,) when there are by nodes on
level k, and the quasi-profile is (qo, - - -, ¢») when there are g; nodes on level k of
the corresponding QDD base; the truth tables of the functions have by different
beads of order n — k, and ¢ different subtables. For example, the profile of the
(4 + 4)-bit addition functions {fi, f2, f3, f4, f5} in (36) is (2,4,3,6,3,6,3,2,2),
and the quasi-profile is worked out in exercise 144. Similarly, the concept of
master profile chart applies to m functions whose variables are reordered simul-
taneously; and we can use it to find Bmin(f1,-- -, fm) and Bmax(f1,-- -, fm), the
minimum and maximum of by + - - - + b, taken over all profiles.

*Local reordering. What happens to a BDD base when we decide to branch
on zo first, then on z1, 3, ..., ,7 Figure 26 shows that the structure of the
top two levels can change dramatically, but all other levels remain the same.

A closer analysis reveals, in fact, that this level-swapping process isn’t
difficult to understand or to implement. The @ nodes before swapping can
be divided into two kinds, “tangled” and “solitary,” depending on whether they
have @ nodes as descendants; for example, there are three tangled nodes at
the left of Fig. 26, pointed to by s;, s2, and sz, while s4 points to a solitary
node. Similarly, the @ nodes before swapping are either “visible” or “hidden,”
depending on whether they are independent source functions or accessible only
from @ nodes; all four of the @ nodes at the left of Fig. 26 are hidden.

After swapping, the solitary @ nodes simply move down one level, but
the tangled nodes are transmogrified according to a process that we shall explain
shortly. The hidden @ nodes disappear, and the visible ones simply move up
to the top level. Additional nodes might also arise during the transmogrification
process; such nodes, labeled @, are called “newbies.” For example, two newbies
appear at the right of Fig. 26. This process decreases the total number of nodes
if and only if the hidden nodes outnumber the newbies.

T-cube

hidden weighted bit function
master profile chart
NP-complete

profile

quasi-profile

beads

subtables

Bmin(fh .. afm)

Bmax Iy:++sJm

swapping adjacent levels—
interchanging adjacent variables—
tangled nodes++

solitary nodes++

visible nodes++

hidden nodes++
transmogrification+

newbies++

7.14 BINARY DECISION DIAGRAMS 39

81 89 83 S4

&0

Fig. 26. Interchanging the top two levels of a BDD base. Here (s1, s2, $3, S4) are source
functions; (t1,t2,ts,t4) are target nodes, representing subfunctions at lower levels.

The reverse of a swap is, of course, the same as a swap, but with the roles of
@ and @ interchanged. If we begin with the diagram at the right of Fig. 26,
we see that it has three tangled nodes (labeled (2)) and one that’s visible (la-
beled @), two of its nodes are hidden, none are solitary. The swapping process
in general sends (tangled, solitary, visible, hidden) nodes into (tangled, visible,
solitary, newbie) nodes, respectively — after which newbies would become hidden
in a reverse swap, and the originally hidden nodes would reappear as newbies.

Transmogrification is easiest to understand if we treat all nodes below the
top two levels as if they were sinks, having constant values. Then every source
function f(z1,z2) depends only on x; and z3; hence it takes on four values
a = f(0,0), b = f(0,1), ¢ = f(1,0), and d = f(1,1), where a, b, ¢, and d
represent sinks. We may suppose that there are ¢ sinks, , , ceny @, and
that 1 < a,b,¢,d < q. Then f(x1,z2) is fully described by its extended truth
table, £(0,0)f(0,1)f(1,0)f(1,1) = abed. And after swapping, we’re left with
f(z2,21), which has the extended truth table acbd. For example, Fig. 26 can be
redrawn as follows, using extended truth tables to label its nodes:

1224 2324 1324 3344 1224 2234 1234 3434

Fig. 27. Another way to represent the transformations in Fig. 26.

In these terms, the source function abcd points to a solitary node when a = b #
¢ = d, and to a visible node when a = ¢ # b = d; otherwise it points to a tangled
node (unless a = b = ¢ = d, when it points directly to a sink). The tangled node
abced usually has LO = ab and HI = cd, unless a = b or ¢ = d; in the exceptional
cases, LO or HI is a sink. After transmogrification it will have LO = ac and
HI = bd in a similar way, where latter nodes will be either newbies or visibles
or sinks (but not both sinks). One interesting case is 1224, whose children 12
and 24 on the left are hidden nodes, while the 12 and 24 on the right are newbies.

Exercise 147 discusses an efficient implementation of this transformation,
which was introduced by Richard Rudell in IEEE/ACM International Conf.
Computer-Aided Design CAD-93 (1993), 42-47. It has the important property
that no pointers need to change, except within the nodes on the top two levels:

sinks
extended truth table
Rudell

40 COMBINATORIAL ALGORITHMS (F1B) 7.14

All source nodes s; still point to the same place in computer memory, and all
sinks retain their previous identity. We have described it as a swap between @s
and @s, but in fact the same transformation will swap @s and @s whenever
the variables z; and z correspond to branching on adjacent levels. The reason
is that the upper levels of any BDD base essentially define source functions for
the lower levels, which constitute a BDD base in their own right.

We know from our study of sorting that any reordering of the variables of
a BDD base can be produced by a sequence of swaps between adjacent levels.
In particular, we can use adjacent swaps to do a “jump-up” transformation,
which brings a given variable zj to the top level without disturbing the relative
order of the other variables. It’s easy, for instance, to jump z4 up to the top:
We simply swap @ & @, then @ < @, then @ & @, because x4 will be
adjacent to x; after it has jumped past z,.

Since repeated swaps can produce any ordering, they are sometimes able
to make a BDD base grow until it is too big to handle. How bad can a single
swap be? If exactly (s,t,v, h,v) nodes are solitary, tangled, visible, hidden, and
newbie, the top two levels end up with s + ¢ + v 4+ v nodes; and this is at most
m+v < m+ 2t when there are m source functions, because m > s+t +v. Thus
the new size can’t exceed twice the original, plus the number of sources.

If a single swap can double the size, a jump-up for z; threatens to increase
the size exponentially, because it does k — 1 swaps. Fortunately, however, jump-
ups are no worse than single swaps in this regard:

Theorem J*. B(fF,...,f*) <m+2B(fi,...,fm) after a jump-up operation.

Proof. Let ajas...aqx_ja9x be the extended truth table for a source function
f(z1,...,2), with lower-level nodes regarded as sinks. After the jump-up, the
extended truth table for f™(z1,...,2%) = f(@1n, -+, Tka) = f(@2y- .-, Tk, 21) 18
@1a3 . ..Ggk 10204 - .. Gor, Which incidentally can be written a; ...agr |- pg o in
the “sheep-and-goats” notation of 7.1.3-(81). Thus we can see that each bead
on level j of f™ is derived from some bead on level j — 1 of f, for 1 < j < k;
but every such bead spawns at most two beads of half the size in f™. Therefore,
if the respective profiles of {f1,..., fm} and {fT,..., f*} are (bo,...,b,) and
(bg,...,bl,), we must have by < m, by < 2by, ..., bj_; < 2b,_,, b}, = b, ...,

b., = b,,. The total is therefore < m+ B(f1,...,fm)+bo+ - +bg—2—br_1. 1

The opposite of a jump-up is a “jump-down,” which demotes the topmost
variable by k£ — 1 levels. As before, this operation can be implemented with & —1
swaps. But we have to settle for a much weaker upper bound on the resulting size:

Theorem J~. B(fT,...,fr) < B(f1,...,fm)? after a jump-down operation.

Proof. Now the extended truth table in the previous proof changes from a; . . . aox
t0 @1 ...00k—1 § Gok—141...Q0c = G1G9k-111...0Qqk—-109k, the “zipper function”
7.1.3-(76). In this case we can identify every bead after the jump with an
ordered pair of original subfunctions, as in the melding operation (37) and (38).
For example, when k& = 3 the truth table 12345678 becomes 15263748, whose
bead 1526 can be regarded as the meld 12 ¢56. |

sorting

adjacent interchanges
jump-up
exponentially
sheep-and-goats
jump-down

zipper function
melding operation

7.14 BINARY DECISION DIAGRAMS 41

This proof indicates why quadratic growth might occur. If, for example,

f(xla .. '7$n) = $1? Mm(l‘% co ey Tm415; T2m+4-25 - - 'axn):

Moy (Tma2s -+ - s T2ma1; Tama2, -+, Tn), (103)

where n = 14 2m + 2™, a jump-down of 2m levels changes B(f) = 4n—8m — 3
to B(f™) = 2n*> —8m(n—m) —2(n—2m)+1 =~ 1B(f)%

Since jump-up and jump-down are inverse operations, we can also use Theo-
rems J* and J~ in reverse: A jump-up operation might conceivably decrease the
BDD size to something like its square root, but a jump-down cannot reduce the
size to less than about half. That’s bad news for fans of jump-down, although
they can take comfort from the knowledge that jump-downs are sometimes the
only decent way to get from a given ordering to an optimum one.

Theorems J* and J~ are due to B. Bollig, M. Lobbing, and 1. Wegener, Inf.
Processing Letters 59 (1996), 233-239. (See also exercise 149.)

*Dynamic reordering. In practice, a natural way to order the variables often
suggests itself, based on the modules-in-a-row perspective of Fig. 23 and Theo-
rem M. But sometimes no suitable ordering is apparent, and we can only hope
to be lucky; perhaps the computer will come to our rescue and find one. Fur-
thermore, even if we do know a good way to begin a computation, the ordering
of variables that works best in the first stages of the work might turn out to be
unsatisfactory in later stages. Therefore we can get better results if we don’t
insist on a fixed ordering. Instead, we can try to tune up the current order of
branching whenever a BDD base becomes unwieldy.

For example, we might try to swap x;_1 <+ x; in the order, for 1 < j < n,
undoing the swap if it increases the total number of nodes but letting it ride
otherwise; we could keep this up until no such swap makes an improvement.
That method is easy to implement, but unfortunately it’s too weak; it doesn’t
give much of a reduction. A much better reordering technique was proposed by
Richard Rudell at the same time as he introduced the swap-in-place algorithm of
exercise 147. His method, called “sifting,” has proved to be quite successful. The
idea is simply to take a variable zy and to try jumping it up or down to all other
levels—that is, essentially to remove xy from the ordering and then to insert it
again, choosing a place for insertion that keeps the BDD size as small as possible.
All of the necessary work can be done with a sequence of elementary swaps:

Algorithm J (Sifting a variable). This algorithm moves variable zj, into an
optimum position with respect to the current ordering of the other variables
{z1,--.,Tk—1,Tk+1,---,Tn} in a given BDD base. It works by repeatedly calling
the procedure of exercise 147 to swap adjacent variables x;_; <+ x;. Throughout
this algorithm, S denotes the current size of the BDD base (the total number of
nodes); the swapping operation usually changes S.

J1. [Initialize.] Set p < 0, j < k, and s « S. If k > n/2, go to J5.
J2. [Sift up.] While j > 1, swap z;_ 14> x; and set j < j — 1, s < min(S, s).

2™ _way mux

Bollig

Lobbing

Wegener

dynamic reordering of variables+++
Rudell

sifting

42 COMBINATORIAL ALGORITHMS (F1B) 7.14

J3. [End the pass.] If p = 1, go to J4. Otherwise, while j # k, set j + j+1 and
swap T;_1 4> x;; then set p <~ 1 and go to J5.

J4. [Finish downward.] While s # S, set j < j + 1 and swap x; 14> ;. Stop.
J5. [Sift down.] While j<n, set j < j+1, swap z,;_14>x;, and set s <~ min(S, s).

J6. [End the pass.] If p =1, go to J7. Otherwise, while j # k, swap z; 1 > &;
and set j < j — 1; then set p < 1 and go to J2.

J7. [Finish upward.] While s # S, swap x; 14> x; and set j < j — 1. Stop. 1

Whenever Algorithm J swaps x;_1 <+ x;, the variable that is currently called x;
is the original variable z;. The total number of swaps varies from about n to
about 2.5n, depending on k and the optimum final position of zy. But we can
improve the running time substantially, without seriously affecting the outcome,
if steps J2 and J5 are modified to proceed immediately to J3 and J6, respectively,
whenever S becomes larger than, say, 1.2s or even 1.1s or even 1.05s. In such
cases, further sifting in the same direction is unlikely to decrease s.

Rudell’s sifting procedure consists of applying Algorithm J exactly n times,
once for each variable that is present; see exercise 151. We could continue sifting
again and again until there is no more improvement; but the additional gain is
usually not worth the extra effort.

Let’s look at a detailed example, in order to make these ideas concrete.
We’ve observed that when the contiguous United States are arranged in the order

ME NH VT MA RI CT NY NJ PA DE MD DC VA NC SC GA FL AL TN KY WV OH MI IN (10)
IL WI MN IA MO AR MS LA TX OK KS NE SD ND MT WY CO NM AZ UT ID WA OR NV CA 4

as in (17), they lead to a BDD of size 428 for the independent-set function
_'((a:AL AN IL'FL) \Y (mAL N ZEGA) Vv (CEAL A .’Ens) VeV (.’EUT A .’Ewy) Vv (ZEVA A .’va)). (105)

The author chose the ordering (104) by hand, starting with the historical/geo-
graphical listing of states that he had been taught as a child, then trying to
minimize the size of the boundary between states-already-listed and states-to-
come, so that the BDD for (105) would not need to “remember” too many partial
results at any level. The resulting size, 428, is pretty good for a function of 49
variables; but sifting is able to make it even better. For example, consider WV:
Some of the possibilities for altering its position, with varying sizes S, are

|RI|CT|NY|NJ|PA|DE|MD|DC|VA|NC|SC|GA|FL|AL|TN|KY|0H|MI|IN|IL|

424 422 417 415 414 412 411 410 412 412 415 420 421 426 425 427 428 428 436 442 453

so we can save 428 — 410 = 18 nodes by jumping WV up to a position between MD
and DC. By using Algorithm J to sift on all the variables—first on ME, then on
NH, then ..., then on CA— we end up with the ordering

VT MA ME NH CT RI NY NJ DE PA MD WV VA DC KY OH NC GA SC AL FL MS TN IN

106
ILMIARTXLADKMUIAWIMNCDNEKSMTNDWYSDU’I‘AZNMIDCAURWANV()

and the BDD size has been reduced to 345(!). That sifting process involves a
total of 4663 swaps, requiring less than 4 megamems of computation altogether.

Rudell
contiguous USA++

7.14 BINARY DECISION DIAGRAMS 43

Instead of choosing an ordering carefully, let’s consider a lazier alternative:
‘We might begin with the states in alphabetic order

AL AR AZ CA CO CT DC DE FL GA IA ID IL IN KS KY LA MA MD ME MI MN MO MS
MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY

and proceed from there. Then the BDD for (105) turns out to have 306,214
nodes; it can be computed either via Algorithm S (with about 380 megamems of
machine time) or via (55) and Algorithm U (with about 565 megamems). In this
case sifting makes a dramatic difference: Those 306,214 nodes become only 2871,
at a cost of 430 additional megamems. Furthermore, the sifting cost goes down
from 430 My to 210 My if the loops of Algorithm J are aborted when S > 1.1s.
(The more radical choice of aborting when S > 1.05s would reduce the cost of
sifting to 155 My; but the BDD size would be reduced only to 2946 in that case.)
And we can actually do much, much better, if we sift the variables while
evaluating (105), instead of waiting until that whole long sequence of disjunctions
been entirely computed. For example, suppose we invoke sifting automatically
whenever the BDD size surpasses twice the number of nodes that were present
after the previous sift. Then the evaluation of (105), starting from the alphabetic
ordering (107), runs like a breeze: It automatically churns out a BDD that has
only 419 nodes, after only about 60 megamems of calculation! Neither human
ingenuity nor “geometric understanding” are needed to discover the ordering

(107)

NV OR ID WA AZ CA UT NM WY CO MT OK TX NE MO KS LA AR MS TN IA ND MN SD

108
GA FL AL NC SC KY WI MI IL OH IN WV MD VA DC PA NJ DE NY CT RI NH ME VT MA (108)

which beats the author’s (104). For this one, the computer just decided to invoke
autosifting 39 times, on smaller BDDs.

What is the best ordering of states for the function (105)? The answer to
that question will probably never be known for sure, but we can make a pretty
good guess. First of all, a few more sifts of (108) will yield a still-better ordering

OR ID NV WA AZ CA UT NM WY CO MT SD MN ND IA NE OK KS TX MO LA AR MS TN (

10
GA FL AL NC SC KY WI MI IL OH IN WV MD DC VA PA NJ DE NY CT RI NH ME VT MA 9)

with BDD size 354. Sifting will not improve (109) further; but sifting has only
limited power, because it explores only (n — 1)? alternative orderings, out of
n! possibilities. (Indeed, exercise 134 exhibits a function of only four variables
whose BDD cannot be improved by sifting, even though the ordering of its
variables is not optimum.) There is, however, another arrow in our quiver: We
can use master profile charts to optimize every window of, say, 16 consecutive
levels in the BDD. There are 34 such windows; and the algorithm of exercise 139
optimizes each of them rather quickly. After about 9.6 gigamems of computation,
that algorithm discovers a new champion

OR ID NV WA AZ CA UT NM WY CO MT SD MN ND IA NE OK KS TX MO LA AR MS WI

110
KY MI IN IL AL TN FL NC SC GA WV OH MD DC VA PA NJ DE NY CT RI NH ME VT MA ()

by cleverly rearranging 16 states within (109). This ordering, for which the BDD
size is only 339, might well be optimum, because it cannot be improved either
by sifting or by optimizing any window of width 25. However, such a conjecture

megamems
M

sifting, partial
sifting automatically
autosifting

master profile charts
window

44 COMBINATORIAL ALGORITHMS (F1B) 7.14

rests on shaky ground: The ordering
AL GA FL TN NC SC VA MS AR TX LA OK KY MO NM WV MD DC PA NJ DE OH IL MI (111)
IN IA NE KS WI SD WY ND MN MT UT CO ID CA AZ OR WA NV NY CT RI NH ME VT MA

also happens to be unimprovable by sifting and by width-25 window optimiza-
tion, yet its BDD has 606 nodes and is far from optimum.

With the improved ordering (110), the 98-variable COLOR function of (73)
needs only 22037 BDD nodes, instead of 25579. Sifting reduces it to 16098.

*Read-once functions. Boolean functions such as (21 D z2) ® ((z3=z4) Axs),
which can be expressed as formulas in which each variable occurs exactly once,
form an important class for which optimum orderings of variables can easily be
computed. Formally, let us say that f(x1,...,2,) is a read-once function if either

(i) n=1and f(z1) = z1; or (ii) f(z1,...,2Zn) = g(z1,--.,Zk) O h(Tht1,s- - Tn),
where o is one of the binary operators {A,V,A,V,D,C,D,C,®, =} and where
both g and h are read-once functions. In case (i) we obviously have B(f) = 3.

And in case (ii), exercise 163 proves that
B() = {B(g)—l-B(h)_—Q, ifoe {A,v_,/‘\,v,a,c,s,é};
B(g) + B(h,h) — 2, ifo e {®,=}.
In order to get a recurrence, we also need the similar formulas
4, ifn=1;
B(f,f) =1 2B(g) + B(h,h) — 4, ifoe{A,V,A,V,D,C,D,Ck (113)
B(g,g9) + B(h,h) — 2, ifoe€ {®,=}.

A particularly interesting family of read-once functions arises when we define

(112)

Uma1(T1, - -y Togmt1) = U (T1, - -+, Tam) A U (Tam a1, ..., Tomt1),
(114)
’Um+1(.271, . ,.’I,'2m+1) = um(azl, . ,.Tgm) D um($2m+1, ... ,.’I,'2m+1)7
and ug(x1) = vo(w1) = z1; for example, ug(z1, ..., xs) = ((z1 Az2) B (x3A24)) A

((z5Az6)® (w7 Axs)). Exercise 165 shows that the BDD sizes for these functions,
calculated via (112) and (113), involve Fibonacci numbers:

B(uam) = 2™ Famya + 2, B(uzmi1) = 2™ Fypyo + 25
B(U2m) = 2mF2m+2 + 27 B(U2m+1) = 2m’-F'2m—}—4 + 2.

Thus u,, and v,, are functions of n = 2™ variables whose BDD sizes grow as

(115)

0(2m2¢™) = O(nf), where 8 =1/2 +1g¢ ~ 1.19424. (116)

In fact, the BDD sizes in (115) are optimum for the u and v functions,
under all permutations of the variables, because of a fundamental result due to
M. Sauerhoff, I. Wegener, and R. Werchner:

Theorem W. If f(z1,...,2n) = g(®1,...,%k) © K(Tkt1,-..,Tn) is a read-
once function, there is a permutation m that minimizes B(f™) and B(f™, f™)
simultaneously, and in which the variables {z1,...,x} occur either first or last.

optimal versus optimum
coloring

4-coloring

read-once funcs++
Fibonacci numbers
Sauerhoff

Wegener

Werchner

7.14 BINARY DECISION DIAGRAMS 45

Proof. Any permutation (1m,...,n7) leads naturally to an “unshuffled” per-
mutation (1o,...,n0) in which the first k elements are {1,...,k} and the last
n — k elements are {k +1,...,n}, retaining the 7w order within each group. For

example, if k = 7, n = 9, and (1m,...,97) = (3,1,4,5,9,2,6,8,7), we have
(1o,...,90) = (3,1,4,5,2,6,7,9,8). Exercise 166 proves that, in appropriate
circumstances, we have B(f°) < B(f™) and B(f?, f°) < B(f™, f"). 1

Using this theorem together with (112) and (113), we can readily optimize
the ordering of variables for the BDD of any given read-once function. Consider,
for example, (z1Vzs)®(z3AT4AT5) = g(T1, T2)Dh(T3, T4, T5). We have B(g) =4
and B(g,3) = 6; B(h) =5 and B(h,h) = 8. For the overall formula f = g @ h,
Theorem W says that there are two candidates for a best ordering (1, ...,5m),
namely (1,2,3,4,5) and (4,5,1,2,3). The first of these gives B(f™) = B(g) +
B(h,h) — 2 = 10; the other one excels, with B(f™) = B(h) + B(g,g) —2 = 9.

The algorithm in exercise 167 finds an optimum 7 for any read-once function
f(z1,...,2,) in O(n) steps. Moreover, a careful analysis proves that B(f™) =
O(nP) in the best ordering, where f is the constant in (116). (See exercise 168.)

*Multiplication. Some of the most interesting Boolean functions, from a math-
ematical standpoint, are the m + n bits that arise when an m-bit number is
multiplied by an n-bit number:

(Tm---2221)2 X (Yn - - Y2y1)2 = (Zmtn - .- 2221)2. (117)

In particular, the “leading bit” 2,4, and the “middle bit” z, when m = n, are
especially noteworthy. To remove the dependence of this notation on m and n,
we can imagine that m = n = oo by letting z; = y; =0 for all ¢ > m and j > n;
then each zy is a function of 2k variables, z, = Zi(z1, ..., Zk; Y1, - - -, Yk), namely
the middle bit of the product (z ...z1)2 X (Yk ---y1)2-

The middle bit turns out to be difficult, BDDwise, even when y is constant.
Let Z, o(®1, .., %n) = Zp(X1, ..., &n;01,--.,0y), Where a = (ay, - ..a1)2.
Theorem X. There is a constant a such that Buin(Zy,q) > 25@ .oln/2l 9,

Proof. [P. Woelfel, J. Computer and System Sci. 71 (2005), 520-534.] We may
assume that n = 2t is even, since Zaty124 = Zatq- Let & = (2, ...21)2 and
m = ([nr<t]...[1mr <t])2. Then x = p + ¢, where ¢ = z & m represents the
“known” bits of x after ¢ branches have been taken in a BDD for Z,, , with the
ordering m, and p = = & T represents the bits yet unknown. Let

P={z&m|0<z<2"} and Q = {z&m|0<z<2"}. (118)
For any fixed a, the function Z, , has 2* subfunctions
fop) = ((patga)>(n-1))&1, q€Q. (119)

We want to show that some n-bit number a will make many of these subfunctions
differ; in other words we want to find a large subset @* C @ such that

g € Q* and ¢’ € Q* and g # ¢ implies fy(p) # fo(p) for some p € P. (120)

Exercise 176 shows in detail how this can be done. |

pi, as source of "random” data
multiplication++

middle bit++

leading bit

Zn(,y)
Z

n,a
Woelfel

46 COMBINATORIAL ALGORITHMS (F1B) 7.14

Table 1
BEST AND WORST ORDERINGS FOR THE MIDDLE BIT 2z, OF MULTIPLICATION
T11Z10T9T7L8L6L13T15 T10T11T9T8L7T16L6L15
X T16T14T12TL5T4T3L2T1 X T5TaT3T12T13T2L1T14
Bmin(Zg) = 756 Bmax(Zs) = 6791
2472021816 L9T8L10L11T7TL12L14T21 L16T17T15214T24L13212L11220L10L9T23
X T22T19L17215L6L5L4T3T2L1T13T23 X TL7TeL5L18L4T22T3L2L19T1T21
Bmnin(Z12) = 21931 Bmax(Z12) = 866283
Table 2
BEST AND WORST ORDERINGS FOR ALL BITS {z1,...,2m+n} OF MULTIPLICATION
T11T16L15T14L13212L10T9 Z10T8T9T13T2L1X11T7
X T8T7TL5T4TIT2T1 X T16T5L15T6L4L14T3T12
Bumin(29, .., 289 = 9700 Bmax(Z3,..., 2815)) = 28678
T15T17T24T23T22T21T20L19L18T16L14T13 T17T22T14T13T16L10L20T3T2L1T19T12
X T1T2XL3T4T5L6L7LILIT10L11T12 X T24T15L9T8T21L7L6L11L23L5L4TL18
24 24
Bumin(Z{3 19, -+ Z{315) = 648957 Bmax(Z{3) 15, -, Z{315) = 4224195
T17L16L10L9T11L12 - - - LT15L18L19L24L23 - - - T20 T13T14T12T15T16L17L22L10T8L7L18L9T2L1L19T6
X T1T2T3T4T5T6TT7IL8 X 24T11T21T5T4TL23T3T20
1 24 1 24
Bumin(Z{g)s, - .., Z{a3) = 157061 Bumax(Z{g)g, - ., Z\a3) = 1236251

A good upper bound for the BDD size of the middle bit function when
neither operand is constant has been found by K. Amano and A. Maruoka,
Discrete Applied Math. 155 (2007), 1224-1232:

Theorem A. Let f(z1,...,%2n) = Zn(T1, T3, .., Ton_1;T2, T4, ..., Tan). Then

B(f) < Q(f) < %2%”/5]. (121)

Proof. Consider two n-bit numbers z = 28z, +z; and y = 2Fy, + 5, withn — k
unknown bits in each of their high parts (zn,ys), while their k-bit low parts
(z1,y1) are both known. Then the middle bit of zy is determined by adding
together three (n — k)-bit quantities when k& > n/2, namely x5y mod 2"k,
zyp, mod 2"k and (z;y; > k) mod 2"~F. Hence level 2k of the QDD needs to
“remember” only the least significant n — k bits of each of the prior quantities
x1, yi, and 3y > k, a total of 3n — 3k bits, and we have go, < 23773F in f’s
quasi-profile. Exercise 177 completes the proof. |

Amano and Maruoka also discovered another important upper bound. Let
(p) n(T1,. .., Tm;Y1,. .., Yn) denote the pth bit z, of the product (117).

Theorem Y. For all constants (a, ...a1)2 and for all p, the BDD and QDD
for the function Z,(,f,)n (a1,-..,am;T1,...,Ty) have fewer than 3 - 27/2 podes.

Proof. Exercise 180 proves that g, < 2"+~ for this function. The theorem
follows when we combine that result with the obvious upper bound g, < 2%. |

Amano
Maruoka

7.14 BINARY DECISION DIAGRAMS 47

Theorem Y shows that the lower bound of Theorem X is best possible, except
for a constant factor. It also shows that the BDD base for all m + n product

functions Z,(,’L’?n(xl, ey T Tt 1y - - Tman) 18 Ot nearly as large as ©(2m*7"),
which we get for almost all instances of m + n functions of m + n variables:
Corollary Y. Ifm <n, B(Z%,, ..., Z0™) < 3(m + n)2m+(+D/2

The best orderings of variables for the middle-bit function Z, and for the
complete BDD base remain mysterious, but empirical results for small m and n
give reason to conjecture that the upper bounds of Theorem A and Corollary Y
are not far from the truth; see Tables 1 and 2. Here, for example, are the
optimum results of Z,, when n < 12:

n=123 4 5 6 7 8 9 10 11 12
Bnin(Z,)= 4 8 14 31 63 136 315 756 1717 4026 9654 21931
20n/5 2 5 12 28 64 147 338 776 1783 4096 9410 21619

The ratios Buax/Bmin With respect to the full BDD base {Z,(ﬁl,)n, . Z,(n"f;r ")}
are surprisingly small in Table 2. Therefore all orderings for that problem might
turn out to be roughly equivalent.

Zero-suppressed BDDs: A combinatorial alternative. When BDDs are
applied to combinatorial problems, a glance at the data in memory often reveals
that most of the HI fields simply point to [L]. In such cases, we're better
off using a variant data structure called a zero-suppressed binary decision dia-
gram, or “ZDD” for short, introduced by Shin-ichi Minato [ACM/IEEE Design
Automation Conf. 30 (1993), 272-277]. A ZDD has nodes like a BDD, but its
nodes are interpreted differently: When an @ node branches to a @ node for
j > i+1, it means that the Boolean function is false unless z; 41 = -+ = x;_1 = 0.

For example, the BDDs for independent sets and kernels in (12) have many
nodes with HI = . Those nodes go away in the corresponding ZDDs, although
a few new nodes must also be added:

Independent sets Kernels

Notice that we might have LO = HI in a ZDD, because of the new conventions.
Furthermore, the example on the left shows that a ZDD need not contain at
alll About 40% of the nodes in (12) have been eliminated from each diagram.

zero-suppressed BDDs—
ZDDs—

Minato

independent sets
kernels

48 COMBINATORIAL ALGORITHMS (F1B) 7.14

One good way to understand a ZDD is to regard it as a condensed repre-
sentation of a family of sets. Indeed, the ZDDs in (122) represent respectively
the families of all independent sets and all kernels of Cs. The root node of a
ZDD names the smallest element that appears in at least one of the sets; its HI
and LO branches represent the residual subfamilies that do and don’t contain that
element; and so on. At the bottom, represents the empty family ‘@’, and
represents ‘{(}}’. For example, the rightmost ZDD in (122) represents the fam-
ily {{1,3,5}, {1,4}, {2,4,6}, {2,5}, {3,6} }, because the HI branch of the root
represents {{3,5}, {4}} and the LO branch represents {{2,4, 6}, {2,5}, {3,6}}.

Every Boolean function f(z1,...,%,) is, of course, equivalent to a fam-
ily of subsets of {1,...,n}, and vice versa. But the family concept gives us
a different perspective from the function concept. For example, the family
{{1,3}, {2}, {2,5}} has the same ZDD for all n > 5; but if, say, n = 7, the
BDD for the function f(z1,...,27) that defines this family needs additional
nodes to ensure that z4 = g = x7 = 0 when f(z) = 1.

Almost every notion that we’ve discussed for BDDs has a counterpart in the
theory of ZDDs, although the actual data structures are often strikingly different.
We can, for example, take the truth table for any given function f(z1,...,z,) and
construct its unique ZDD in a straightforward way, analogous to the construction
of its BDD as illustrated in (5). We know that the BDD nodes for f correspond
to the “beads” of f’s truth table; the ZDD nodes, similarly, correspond to zeads,
which are binary strings of the form a8 with |a| = |8]| and 8 # 0...0, or with
|a| = |B] — 1. Any binary string corresponds to a unique zead, obtained by
lopping off the right half repeatedly, if necessary, until the string either has odd
length or its right half is nonzero.

Dear reader, please take a moment now to work exercise 187. (Really.)

The z-profile of f(z1,...,%s) i (20, .., 2n), Where zj is the number of zeads
of order n—k in f’s truth table, for 0 < k < n, namely the number of nodes
in the ZDD; also z, is the number of sinks. We write Z(f) = zo + - -+ + 2z, for
the total number of nodes. For example, the functions in (122) have z-profiles
(1,1,2,2,2,1,1) and (1,1,2,2,1,1,2), respectively, so Z(f) = 10 in each case.

The basic relations (83)—(85) between profiles and quasi-profiles hold true
also for z-profiles:

q > 2k, for 0 <k <m; (123)
G <1l4+z0+ - -+zr1 and g <zpx+---+2,, for0<k<n; (124)
Z(f) > 2q,—1, for 0 < k < m. (125)

Consequently the BDD size and the ZDD size can never be wildly different:
n—+1 n+1
2() < "EEBU)+1) and B() < "2 +1). (126)

On the other hand, a factor of 50 when n = 100 is nothing to sneeze at.

When ZDDs are used to find independent sets and kernels of the contiguous
USA, using the original order of (17), the BDD sizes of 428 and 780 go down to
177 and 385, respectively. Sifting reduces these ZDD sizes to 160 and 335. Is any-
body sneezing? That’s amazingly good, for complicated functions of 49 variables.

family of sets
set of combinations, see family of sets
empty case
truth table
beads

zeads

Z-profile
quasi-profiles
independent sets
kernels
contiguous USA
Sifting

7.14 BINARY DECISION DIAGRAMS 49

When we know the ZDDs for f and g, we can synthesize them to obtain
the ZDDs for f Ag, fV g, f® g, etc., using algorithms that are very much like
the methods we’ve used for BDDs. Furthermore we can count and/or optimize
the solutions of f, with analogs of Algorithms C and B; in fact, ZDD-based
techniques for counting and optimization turn out to be a bit easier than the
corresponding BDD-based algorithms are. With slight modifications of BDD
methods, we can also do dynamic variable reordering via sifting. Exercises 197—
209 discuss the nuts and bolts of all the basic ZDD procedures.

In general, a ZDD tends to be better than a BDD when we're dealing with
functions whose solutions are sparse, in the sense that vz tends to be small
when f(z) =1. And if f(z) itself happens to be sparse, in the sense that it has
comparatively few solutions, so much the better.

For example, ZDDs are well suited to exact cover problems, defined by an
m X n matrix of Os and 1s: We want to find all ways to choose rows that sum to
(1,1,...,1). Our goal might be, say, to cover a chessboard with 32 dominoes, like

[H

, , or . (127)

H

This is an exact cover problem whose matrix has 8 x 8 = 64 columns, one for
each cell; there are 2 x 7 x 8 = 112 rows, one for each pair of adjacent cells:

110000000000...00000000000
100000001000...00000000000
011000000000...00000000000
010000000100...00000000000

(128)

000000000000...00000001100
000000000000...00000000110
000000000000...00000000011

Let variable z; represent the choice (or not) of row j. Thus the three so-
lutions in (127) have (ml, T2,L3,T4y..+,L110, 1‘111,3}112) = (1, 0, 0, O, ey 1, O, 1),
(1,0,0,0,...,1,0,1), and (0,1,0,1,...,1,0,0), respectively. In general, the so-
lutions to an exact cover problem are represented by the function

f(z1,. oy Tm) = ASl(X]‘): /\[ijzl], (129)

where X; = {z; | a;; = 1} and (a;;) is the given matrix.

The dominoes-on-a-chessboard ZDD turns out to have only Z(f) = 2300
nodes, even though f has m = 112 variables in this case. We can use it to prove
that there are exactly 12,988,816 coverings such as (127).

synthesize

counting

optimization

dynamic variable reordering
sifting

solutions

sparse

tiling, see exact cover problems
exact cover problems+
matrix of Os and 1s
chessboard

50 COMBINATORIAL ALGORITHMS (F1B) 7.14

Similarly, we can investigate more exotic kinds of covering. In monominoes
dominoes

J H polyominoes

trominoes
rookwise-connected
J perfect matchings
120 grid graph
(3) bipartite
matchings

HL hypergraph
— mutilated chessboard
T Black

. . . . five-letter words-+
for instance, a chessboard has been covered with monominoes, dominoes, and/or Stanford GraphBase

trominoes— that is, with rookwise-connected pieces that each have either one,
two, or three cells. There are exactly 92,109,458,286,284,989,468,604 ways to
do this(!); and we can compute that number almost instantly, doing only about
75 megamems of calculation, by forming a ZDD of size 512,227 on 468 variables.

A special algorithm could be devised to find the ZDD for any given exact
cover problem; or we can synthesize the result using (129). See exercise 212.

Incidentally, the problem of domino covering as in (127) is equivalent to
finding the perfect matchings of the grid graph Pg 0O Py, which is bipartite. We
will see in Section 7.5.1 that efficient algorithms are available by which perfect
matchings can be studied on graphs that are far too large to be treated with
BDD/ZDD techniques. In fact, there’s even an explicit formula for the number
of domino coverings of an m x n grid. By contrast, general coverings such as
(130) fall into a wider category of hypergraph problems for which polynomial-
time methods are unlikely to exist as m,n — oo.

An amusing variant of domino covering called the “mutilated
chessboard” was considered by Max Black in his book Critical
Thinking (1946), pages 142 and 394: Suppose we remove opposite
corners of the chessboard, and try to cover the remaining cells
with 31 dominoes. It’s easy to place 30 of them, for example -
as shown here; but then we’re stuck. Indeed, if we consider the I
corresponding 108 x 62 exact cover problem, but leave out the last
two constraints of (129), we obtain a ZDD with 1224 nodes from which we can
deduce that there are 324,480 ways to choose rows that sum to (1,1,...,1,1, %, %).
But each of those solutions has at least two 1s in column 61; therefore the ZDD
reduces to after we AND in the constraint [vXg; =1]. (“Critical thinking”
explains why; see exercise 213.) This example reminds us that (i) the size of the
final ZDD or BDD in a calculation can be much smaller than the time needed
to compute it; and (ii) using our brains can save oodles of computer cycles.

[[[]

ZDDs as dictionaries. Let’s switch gears now, to note that ZDDs are advanta-
geous also in applications that have an entirely different flavor. We can use them,
for instance, to represent the five-letter words of English, the set WORDS(5757)
from the Stanford GraphBase that is discussed near the beginning of this chapter.
One way to do this is to consider the function f(z1,...,z2s5) that is defined to
be 1 if and only if the five numbers (z1 ...x5)2, (z6...T10)2, ---, (T21...T25)2
encode the letters of an English word, where a = (00001)s, ..., z = (11010)a.

7.1.4 BINARY DECISION DIAGRAMS 51

For example, f(0,0,1,1,1,0,1,1,1,1,0,1,1,1,1,0,0,1,1,0,1,1,0,0, z25) = x25.
This function of 25 variables has Z(f) = 6233 nodes — which isn’t bad, since it
represents 5757 words.

Of course we’ve studied many other ways to represent 5757 words, in Chap-
ter 6. The ZDD approach is no match for binary trees or tries or hash tables,
when we merely want to do simple searches. But with ZDDs we can also retrieve
data that is only partially specified, or data that is only supposed to match a
key approximately; many complex queries can be handled with ease.

Furthermore, we don’t need to worry very much about having lots of vari-
ables when ZDDs are being used. Instead of working with the 25 variables z;
considered above, we can also represent those five-letter words as a sparse func-
tion F(ay,...,21,a2,...,23,...,0s5,...,25) that has 26 x5 = 130 variables, where
variable ag (for example) controls whether the second letter is ‘a’. To indicate
that crazy is a word, we make F' true when ¢; = ro = as = 24 = y5 = 1 and
all other variables are 0. Equivalently, we consider F' to be a family consisting
of the 5757 subsets {wi,h2,13,ca,h5}, {t1,ho,e3,14,e5}, etc. With these 130
variables the ZDD size Z(F) turns out to be only 5020 instead of 6233.

Incidentally, B(F') is 46,189 — more than nine times as large as Z(F). But
B(f)/Z(f) is only 8870/6233 =~ 1.4 in the 25-variable case. The ZDD world is
different from the BDD world in many ways, in spite of having similar algorithms
and a similar theory.

One consequence of this difference is a need for new primitive operations by
which complex families of subsets can readily be constructed from elementary
families. Notice that the simple subset {1, uz,n3,n4,y5} is actually an extremely
long-winded Boolean function:

al/\---/\él/\f1/\gl/\---/\fg/\u2A172/\---/\aE5/\y5/\25, (131).

a minterm of 130 Boolean variables. Exercise 203 discusses an important family
algebra, by which that subset is expressed more naturally as ‘f;LluslinglinglLlys’.
With family algebra we can readily describe and compute many interesting
collections of words and word fragments (see exercise 222).

ZDDs to represent simple paths. An important connection between arbi-
trary directed, acyclic graphs (dags) and a special class of ZDDs is illustrated in
Fig. 28. When every source vertex of the dag has out-degree 1 and every sink
vertex has in-degree 1, the ZDD for all oriented paths from a source to a sink
has essentially the same “shape” as the original dag. The variables in this ZDD
are the arcs of the dag, in a suitable topological order. (See exercise 224.)

Fig. 28. A dag, and the ZDD for its
source-to-sink paths. Arcs of the dag
correspond to vertices of the ZDD. All
branches to have been omitted from
the ZDD in order to show the structural
similarities more clearly.

tries

hash tables
sparse function
minterm

family algebra
simple paths++
acyclic graphs
dags

source vertex
sink vertex
oriented paths
topological order

52 COMBINATORIAL ALGORITHMS (F1B) 7.1.4
We can also use ZDDs to represent simple paths in an undirected graph.

grid to the lower right corner, without visiting any point twice:

B HBEDE SRR

These paths can be represented by the ZDD shown at the right, which charac-
terizes all sets of suitable edges. For example, we get the first path by taking
the HI branches at (13), 36), (68), and of the ZDD. (As in Fig. 28,
this diagram has been simplified by omitting all of the uninteresting
LO branches that merely go to .) Of course this ZDD isn’t a truly
great way to represent (132), because that family of paths has only 12
members. But on the larger grid Py O Py, the number of simple paths
from corner to corner turns out to be 789,360,053,252; and they can all
be represented by a ZDD that has at most 33580 nodes. Exercise 225
explains how to construct such a ZDD quickly.

A similar algorithm, discussed in exercise 226, constructs a ZDD
that represents all cycles of a given graph. With a ZDD of size 22275,
we can deduce that Py Pg has exactly 603,841,648,931 simple cycles.
This ZDD may well provide the best way to represent all of those cycles within
a computer, and the best way to generate them systematically if desired.

The same ideas work well with graphs from the “real world” that don’t
have a neat mathematical structure. For example, we can use them to answer
a question posed to the author in 2008 by Randal Bryant: “Suppose I wanted
to take a driving tour of the Continental U.S., visiting all of the state capitols,
and passing through each state only once. What route should I take to minimize
the total distance?” The following diagram shows the shortest distances between
neighboring capital cities, when restricted to local itineraries that each cross only
one state boundary:

139—(ME)

s

624 215 435

04 25%&614@@\

438 675 455 392 490 244 279 249 244 237

29%@ @1742

415 145 186 160 354 103 124 108

%?{ @fm) (133)

203 532 302 129

392 282 255 530_156

153 236 68

165—MA)

268 193 111 101 45

ﬂb

160 619

535 663 541 338 435 100 486 165 343 255 192

755 713 652

@ 476

T4

2
%
&

187

&

9

12

=
»

36 204

&

e
s

355 626 293 416 340

585

;z}

697 388 504 416 253

30—~LA) @4260 GR)- 434

205 252 212 200

ﬁ
i

The problem is to choose a subset of these edges that form a Hamiltonian path
of smallest total length.

O-@®@
For example, there are 12 ways to go from the upper left corner of a 3 x 3 @90
ple, ys to g PP &

grid

self-avoiding walks

cycles

Cycles of a graph, generation of all
Knuth

Bryant

state capitols+
contiguous USA+
Capitol, Montana
Hamiltonian path
traveling salesrep problem

7.14 BINARY DECISION DIAGRAMS 53

Every Hamiltonian path in this graph must clearly either start or end
at Augusta, Maine (ME). Suppose we start in Sacramento, California (CA).
Proceeding as above, we can find a ZDD that characterizes all paths from CA
to ME; this ZDD turns out to have only 7850 nodes, and it quickly tells us that
exactly 437,525,772,5684 simple paths from CA to ME are possible. In fact, the
generating function by number of edges turns out to be

4z 4+ 1242'% + 1539212 + - .. + 3338546126 + 270707527 ; (134)

so the longest such paths are Hamiltonian, and there are exactly 2,707,075 of
them. Furthermore, exercise 227 shows how to construct a smaller ZDD, of size
4726, which describes just the Hamiltonian paths from CA to ME.

We could repeat this experiment for each of the states in place of California.
(Well, the starting point had better be outside of New England, if we are going
to get past New York, which is an articulation point of this graph.) For example,
there are 483,194 Hamiltonian paths from NJ to ME. But exercise 228 shows how
to construct a single ZDD of size 28808 for the family of all Hamiltonian paths
from ME to any other final state — of which there are 68,656,026. The answer to
Bryant’s problem now pops out immediately, via Algorithm B. (The reader may
like to try finding a minimum route by hand, before turning to exercise 230 and
discovering the absolutely optimum answer.)

*ZDDs and prime implicants. Finally, let’s look at an instructive application
in which BDDs and ZDDs are both used simultaneously.

According to Theorem 7.1.1Q, every monotone Boolean function f has a
unique shortest two-level representation as an OR of ANDs, called its “disjunctive
prime form” —the disjunction of all of its prime implicants. The prime impli-
cants correspond to the minimal points where f(z) = 1, namely the binary
vectors z for which we have f(z') =1 and 2’ C z if and only if 2’ = z. If

f(z1,z2,23) = z1 V (22 A z3), (135)

for example, the prime implicants of f are z; and z2 A x3, while the minimal
solutions are zixex3 = 100 and 011. These minimal solutions can also be
expressed conveniently as e; and ey Ll e3, using family algebra (see exercise 203).

In general, z;; A -+ Ax;, is a prime implicant of a monotone function f if
and only if e;, LI--- Ll e;, is a minimal solution of f. Thus we can consider f’s
prime implicants PI(f) to be its family of minimal solutions. Notice, however,
that z;, A--- Az, Cxj A---Axj, if and only if e;, LI---Lle;, D ej, Li---Lej,; so
it’s confusing to say that one prime implicant “contains” another. Instead, we
say that the shorter one “absorbs” the longer one. ’

A curious phenomenon shows up in example (135): The diagram '4
is not only the BDD for f, it’s also the ZDD for PI(f)! Similarly, Fig. 21 at the
beginning of this section illustrates not only the BDD for (z;z2z3) but also the
ZDD for PI({z1z2x3)). On the other hand, let ¢ = (z1 Az3)Vx2. Then the BDD

for g is but the ZDD for PI(g) is What’s going on here?

generating function
Hamiltonian

New England

articulation point

Bryant

prime implicants of monotone+
monotone Boolean function
two-level representation
disjunctive prime form
prime implicants

minimal solutions

family algebra

absorption+

54 COMBINATORIAL ALGORITHMS (F1B) 7.14

The key to resolving this mystery lies in the recursive structure on which
BDDs and ZDDs are based. Every Boolean function can be represented as

f(.’El,...,.Z‘n) = (i‘l? f(): fl) = (.i'l/\fo) \% (.’El/\fl), (136)

where f. is the value of f when z; is replaced by c. When f is monotone we also
have f = fo V (21 A f1), because fo C fi. If fo # f1, the BDD for f is obtained
by creating a node @ whose LO and HI branches point to the BDDs for fy
and f;. Similarly, it’s not difficult to see that the prime implicants of f are

PI(f) = PI(fo) U (ex U (P1(f1) \ P1(fo)))- (137)

(See exercise 253.) This is the recursion that defines the ZDD for PI(f), when
we add the termination conditions for constant functions: The ZDDs for PI(0)
and PI(1) are and [T].

Let’s say that a Boolean function is sweet if it is monotone and if the ZDD
for PI(f) is exactly the same as the BDD for f. Constant functions are clearly
sweet. And nonconstant sweetness is easily characterized:

Theorem S. A Boolean function that depends on x1 is sweet if and only if its
prime implicants are P U (z1 U Q), where P and Q are sweet and independent
of ¢1, and every member of P is absorbed by some member of Q.

Proof. See exercise 246. (To say that “P and @Q are sweet” means that they
each are families of prime implicants that define a sweet Boolean function.) 1

Corollary S. The connectedness function of any graph is sweet.

Proof. The prime implicants of the connectedness function f are the spanning
trees of the graph. Every spanning tree that does not include arc x; has at least
one subtree that will be spanning when arc z; is added to it. Furthermore, all
subfunctions of f are the connectedness functions of smaller graphs. |

Thus, for example, the BDD in Fig. 22, which defines all 431 of the connected
subgraphs of P30 Ps, also is the ZDD that defines all 192 of its spanning trees.

Whether f is sweet or not, we can use (137) to compute the ZDD for PI(f)
whenever f is monotone. When we do this we can actually let the BDD nodes and
the ZDD nodes coezist in the same big base of data: Two nodes with identical
(V, LO, HI) fields might as well appear only once in memory, even though they
might have complete different meanings in different contexts. We use one routine
to synthesize f A g when f and g point to BDDs, and another routine to form
f\ g when f and g point to ZDDs; no trouble will arise if these routines happen
to share nodes, as long as the variables aren’t being reordered. (Of course the
cache memos must distinguish BDD facts from ZDD facts when we do this.)

For example, exercise 7.1.1-67 defines an interesting class of self-dual func-
tions called the Y functions, and the BDD for Yis (which is a function of 91
variables) has 748,416 nodes. This function has 2,178,889,774 prime implicants;
yet Z(P1(Yi12)) is only 217,388. (We can find this ZDD with a computational
cost of about 13 gigamems and 660 megabytes.)

recursive

sweet

monotone

spanning trees

ZDDs mixed with BDDs
cache memos

Y functions
—zero-suppressed

ZDDs

7.14 BINARY DECISION DIAGRAMS 55

A brief history. The seeds of binary decision diagrams were implicitly planted
by Claude Shannon [Trans. Amer. Inst. Electrical Engineers 57 (1938), 713-723],
in his illustrations of relay-contact networks. Section 4 of that paper showed that
any symmetric Boolean function of n variables has a BDD with at most ("‘2"1)
branch nodes. Shannon preferred to work with Boolean algebra; but C. Y. Lee, in
Bell System Tech. J. 38 (1959), 985-999, pointed out several advantages of what
he called “binary-decision programs,” because any n-variable function could be
evaluated by executing at most n branch instructions in such a program.

S. Akers coined the name “binary decision diagrams” and pursued the ideas
further in IEEE Trans. C-27 (1978), 509-516. He showed how to obtain a
BDD from a truth table by working bottom-up, or from algebraic subfunctions
by working top-down. He explained how to count the paths from a root to
or , and observed that these paths partition the n-cube into disjoint subcubes.

Meanwhile a very similar model of Boolean computation arose in theoret-
ical studies of automata. For example, A. Cobham [FOCS 7 (1966), 78-87]
related the minimum sizes of branching programs for a sequence of functions
fn(x1,...,Tn) to the space complexity of nonuniform Turing machines that
compute this sequence. More significantly, S. Fortune, J. Hopcroft, and E. M.
Schmidt [Lecture Notes in Comp. Sci. 62 (1978), 227-240] considered “free B-
schemes,” now known as FBDDs, in which no Boolean variable is tested twice
on any path (see exercise 35). Among other results, they gave a polynomial-time
algorithm to test whether f = g, given FBDDs for f and g, provided that at
least one of those FBDDs is ordered consistently as in a BDD. The theory of
finite-state automata, which has intimate connections to BDD structure, was also
being developed; thus several researchers worked on problems that are equivalent
to analyzing the size, B(f), for various functions f. (See exercise 261.)

All of this work was conceptual, not implemented in computer programs,
although programmers had found good uses for binary tries and Patrician trees —
which are similar to BDDs except that they are trees instead of dags (see Sec-
tion 6.3). But then Randal E. Bryant discovered that binary decision diagrams
are significantly important in practice when they are required to be both reduced
and ordered. His introduction to the subject [IEEE Trans. C-35 (1986), 677—691]
became for many years the most cited paper in all of computer science, because
it revolutionized the data structures used to represent Boolean functions.

In his paper, Bryant pointed out that the BDD for any function is essentially
unique under his conventions, and that most of the functions encountered in
practice had BDDs of reasonable size. He presented efficient algorithms to
synthesize the BDDs for fAg and f®g, etc., from the BDDs for f and g. He also
showed how to compute the lexicographically least = such that f(z) =1, etc.

Lee, Akers, and Bryant all noted that many functions can profitably co-
exist in a BDD base, sharing their common subfunctions. A high-performance
“package” for BDD base operations, developed by K. S. Brace, R. L. Rudell,
and R. E. Bryant [ACM/IEEE Design Automation Conf. 27 (1990), 40-45], has
strongly influenced all subsequent implementations of BDD toolkits. Bryant
summarized the early uses of BDDs in Computing Surveys 24 (1992), 293-318.

Shannon
relay-contact networks

symmetric Boolean function

Lee

Akers

truth table
subfunctions
count

T-cube
subcubes
automata
Cobham
branching programs
space complexity

nonuniform Turing machines

Turing machines
Fortune

Hopcroft

Schmidt

free

B-schemes

FBDDs

finite-state automata
tries

Patrician trees

dags

overlapping subtrees
Bryant

reduced

ordered

synthesize
lexicographically least
Lee

Akers

Bryant

BDD base

package

Brace

Rudell

Bryant

toolkits

56 COMBINATORIAL ALGORITHMS (F1B) 7.14

Shin-ichi Minato introduced ZDDs in 1993, as noted above, to improve
performance in combinatorial work. He gave a retrospective account of early
ZDD applications in Software Tools for Technology Transfer 3 (2001), 156-170.

The use of Boolean methods in graph theory was pioneered by K. Maghout
[Comptes Rendus Acad. Sci. 248 (Paris, 1959), 3522-3523], who showed how
to express the maximal independent sets and the minimal dominating sets of
any graph or digraph as the prime implicants of a monotone function. Then
R. Fortet [Cahiers du Centre d’Etudes Recherche Operationelle 1,4 (1959), 5-44]
considered Boolean approaches to a variety of other problems; for example, he
introduced the idea of 4-coloring a graph by assigning two Boolean variables to
each vertex, as we have done in (73). P. Camion, in that same journal [2 (1960),
234-289], transformed integer programming problems into equivalent problems in
Boolean algebra, hoping to resolve them via techniques of symbolic logic. This
work was extended by others, notably P. L. Hammer and S. Rudeanu, whose
book Boolean Methods in Operations Research (Springer, 1968) summarized
the ideas. Unfortunately, however, their approach foundered, because no good
techniques for Boolean calculation were available at the time. The proponents
of Boolean methods had to wait until the advent of BDDs before the general
Boolean programming problem (7) could be resolved, thanks to Algorithm B.
The special case of Algorithm B in which all weights satisfying w; > 0 was in-
troduced by B. Lin and F. Somenzi [[EEE/ACM International Conf. Computer-
Aided Design CAD-90 (1990), 88-91]. S. Minato [Formal Methods in System
Design 10 (1999), 221-242] developed software that automatically converts linear
inequalities between integer variables into BDDs that can be manipulated con-
veniently, somewhat as the researcher of the 1960s had hoped would be possible.

The classic problem of finding a minimum size DNF for a given function also
became spectacularly simpler when BDD methods became understood. The
latest techniques for that problem are beyond the scope of this book, but Olivier
Coudert has given an excellent overview in Integration 17 (1994), 97-140.

A fine book by Ingo Wegener, Branching Programs and Binary Decision
Diagrams (SIAM, 2000), surveys the vast literature of the subject, develops the
mathematical foundations carefully, and discusses many ways in which the basic
ideas have been generalized and extended.

Caveat. We've seen dozens of examples in which the use of BDDs and/or
ZDDs has made it possible to solve a wide variety of combinatorial problems
with amazing efficiency, and the exercises below contain dozens of additional
examples where such methods shine. But BDD and ZDD structures are by no
means a panacea; they’re only two of the weapons in our arsenal. They apply
chiefly to problems that have more solutions than can readily be examined one by
one, problems whose solutions have a local structure that allows our algorithms
to deal with only relatively few subproblems at a time. In later sections of The
Art of Computer Programming we shall be studying additional techniques by
which other kinds of combinatorial problems can be tamed.

Minato

ZDDs

graph theory

Maghout

maximal independent sets
minimal dominating sets
kernels

prime implicants
monotone function

Fortet

4-coloring

Camion

integer programming problems
Hammer

Rudeanu

Boolean programming problem
Lin

Somenzi

Minato

linear inequalities

integer variables

DNF

Coudert

Wegener

7.14 BINARY DECISION DIAGRAMS 57

EXERCISES
» 1. [20] Draw the BDDs for all 16 Boolean functions f(z1,z2). What are their sizes?
» 2. [21] Draw a planar dag with sixteen vertices, each of which is the root of one of
the 16 BDDs in exercise 1.
3. [16] How many Boolean functions f(z1,...,zn) have BDD size 3 or less?

4. [21] Suppose three fields have been packed into a 64-bit word z,

where V occupies 8 bits and the other two fields occupy 28 bits each. Show that five
bitwise instructions will transform x — z’, where z’ is equal to = except that a LO or
HI value of 0 is changed to 1 and vice versa. (Repeating this operation on every branch
node z of a BDD for f will produce the BDD for the complementary function, f.)

5. [20] If you take the BDD for f(z1,...,z,) and interchange the LO and HI pointers
of every node, and if you also swap the two sinks > , what do you get?

6. [10] Let g(z1,z2,x3,%4) = f(z4,%3,T2,71), where f has the BDD in (6). What
is the truth table of g, and what are its beads?

7. [21] Given a Boolean function f(z1,...,zn), let

gk(zo,z1,...,2n) = f(Zo,. .., Th—2,Zk—1V Tk, Thkep1,---,Tn) for 1<k <n.

Find a simple relation between (a) the truth tables and (b) the BDDs of f and g.
8. [22] Solve exercise 7 with zx_1 @ z in place of zx_1V k.
9. [16] Given the BDD for a function f(z) = f(z1,...,%n), represented sequentially
as in (8), explain how to determine the lexicographically largest z such that f(z) = 0.
» 10. [21] Given two BDDs that define Boolean functions f and f’, represented sequen-
tially as in (8) and (10), design an algorithm that tests f = f'.
11. [20] Does Algorithm C give the correct answer if it is applied to a binary decision
diagram that is (a) ordered but not reduced? (b) reduced but not ordered?
> 12. [M21] A kernel of a digraph is a set of vertices K such that
v € K implies v-/u for all u € K;
v¢ K implies v—u for some u € K.

a) Show that when the digraph is an ordinary graph (that is, when u — v if and only
if v—u), a kernel is the same as a maximal independent set.

b) Describe the kernels of the oriented cycle Cy.

c) Prove that an acyclic digraph has a unique kernel.

13. [M15] How is the concept of a graph kernel related to the concept of (a) a maximal
clique? (b) a minimal vertex cover?

14. [M24] How big, exactly, are the BDDs for (a) all independent sets of the cycle
graph Cy, and (b) all kernels of C,, when n > 3?7 (Number the vertices as in (12).)

15. [M28] How many (a) independent sets and (b) kernels does C,, have, when n > 3?7

» 16. [22] Design an algorithm that successively generates all vectors z .. . z, for which
f(z1,...,2n) =1, when a BDD for f is given.
17. [82] If possible, improve the algorithm of exercise 16 so that its running time is
O(B(f)) + O(N) when there are N solutions.

18. [138] Play through Algorithm B with the BDD (8) and (w+, ..., ws) = (1,—2,-3,4).

Binary Boolean operations

Two-variable functions

BDD base

bitwise instructions

broadword chains

truth table

beads

substituting an expression for a variable

lexicographically largest

sequential representation of BDDs

isomorphism of BDDs

equality testing of Boolean functions

counting solutions

satisfiability counting

ordered

reduced

kernel

maximal independent set
"

oriented cycle

acyclic digraph

dag

maximal clique

minimal vertex cover

clique

vertex cover

cycle graph Ch,

consecutive 1s forbidden

two-in-a-row function

cycle graph C),

generating all solutions

58 COMBINATORIAL ALGORITHMS (F1B) 7.14

19. [20] What are the largest and smallest possible values of variable m; in Algo-
rithm B, based only on the weights (w1, ...,w»), not on any details of the function f?

20. [15] Devise a fast way to compute the Thue-Morse weights (15) for 1 < j < n.
21. [05] Can Algorithm B minimize wiz1 + - -+ + WnZn, instead of maximizing it?

22. [M21] Suppose step B3 has been simplified so that ‘W11 —W,,” and ‘Wy 1 —W,,’
are eliminated from the formulas. Prove that the algorithm will still work, when applied
to BDDs that represent kernels of graphs.

23. [M20] All paths from the root of the BDD in Fig. 22 to have exactly eight
solid arcs. Why is this not a coincidence?

24. [M22] Suppose twelve weights (w12, w13, . .., wse) have been assigned to the edges
of the grid in Fig. 22. Explain how to find a minimum spanning tree in that graph
(namely, a spanning tree whose edges have minimum total weight), by applying Algo-
rithm B to the BDD shown there.

25. [M20] Modify Algorithm C so that it computes the generating function for the so-
lutions to f(z1,...,Zn) = 1, namely G(z) = 3} L gebeten),

x1=0) xn=0

26. [M20] Modify Algorithm C so that it computes the reliability polynomial for given
probabilities, namely

1 1
Forr) = 3 o 30 (1= p) ™93 (1= pa) "= o,).

z1=0 Tn=0

27. [M26] Suppose F(pi,...,pn) and G(p1,...,pn) are the reliability polynomials
for Boolean functions f(z1,...,2,) and g(z1,...,2Zs), where f # g. Let ¢ be a prime
number, and choose independent random integers g1, ..., gn, uniformly distributed
in the range 0 < gr < g. Prove that F(q1,...,qn) modq # G(q,...,qn) mod g with
probability > (1—1/q)™. (In particular, if n = 1000 and q = 23" — 1, different functions
lead to different “hash values” under this scheme with probability at least 0.9999995.)

28. [M16] Let F(p) be the value of the reliability polynomial F(p1,...,pn) when p; =
-+- = pp = p. Show that it’s easy to compute F'(p) from the generating function G(z).

29. [HM20] Modify Algorithm C so that it computes the reliability polynomial F'(p)
of exercise 28 and also its derivative F'(p), given p and the BDD for f.

30. [M21] The reliability polynomial is the sum, over all solutions to f(z1,...,zn)=1,

of contributions from all “minterms” (1—p;)'~'p?* ... (1 =p,)' “"pZ". Explain how

to find a solution z; ...z, whose contribution to the total reliability is maximum, given
a BDD for f and a sequence of probabilities (p1,...,pn).

31. [M21] Modify Algorithm C so that it computes the fully elaborated truth table
of f, formalizing the procedure by which (24) was obtained from Fig. 21.

32. [M20] What interpretations of ‘o’, ‘@’, ‘1’ ‘T’ ‘Z;’, and ‘z;’ will make the general
algorithm of exercise 31 specialize to the algorithms of exercises 25, 26, 29, and 307

33. [M22] Specialize exercise 31 so that we can efficiently compute
Z (wiz1 + -+ +wnzs) and Z (wiz1 + + + wnzn)?
f(z)=1 f(z)=1
from the BDD of a Boolean function f(z) = f(z1,...,Zn).

Thue—Morse

minimize

kernels

grid

minimum spanning tree
spanning tree
generating function
reliability polynomial
multilinear int rep
hash values

derivative

minterms

fully elaborated truth table

7.14 BINARY DECISION DIAGRAMS 59

34. [M25] Specialize exercise 31 so that we can efficiently compute

max{ max (wye1+ -+ W1 Tk_1 + WLk + W 1T o+ WaTa +wi) | fz) =1}

from the BDD of f, given 3n arbitrary weights (wy, ..., w,,wl,...,wp,w!,...,wy).

> 35. [22] A free binary decision diagram (FBDD) is a binary decision diagram such as

where the branch variables needn’t appear in any particular order, but no variable is
allowed to occur more than once on any downward path from the root. (An FBDD is
“free” in the sense that every path in the dag is possible: No branch constrains another.)
a) Design an algorithm to verify that a supposed FBDD is really free.
b) Show that it’s easy to compute the reliability polynomial F'(p1,...,pn) of a Bool-
ean function f(z1,...,zn), given (p1,...,pn) and an FBDD that defines f, and
to compute the number of solutions to f(z1,...,zn) = 1.

36. [25] By extending exercise 31, explain how to compute the elaborated truth table
for any given FBDD, if the abstract operators o and e are commutative as well as
distributive and associative. (Thus we can find optimum solutions as in Algorithm B, or
solve problems such as those in exercises 30 and 33, with FBDDs as well as with BDDs.)

37. [M20] (R.L.Rivest and J. Vuillemin.) A Boolean function f(z1,...,z,) is called
evasive if every FBDD for f contains a downward path of length n. Let G(z) be the
generating function for f, as in exercise 25. Prove that f is evasive if G(—1) # 0.

» 38. [27] Let Is_1, ..., I be branch instructions that define a nonconstant Boolean
function f(z1,...,2s) asin (8) and (10). Design an algorithm that computes the status
variables ti . ..tn, where

+1, if f(z1,...,2n) =1 whenever z; = 1;
t; = ¢ =1, if f(z1,...,zn) =1 whenever z; = 0;
0, otherwise.

(Ift1...tn #0...0, the function f is therefore canalizing as defined in Section 7.1.1.)
The running time of your algorithm should be O(n + s).

39. [M20] What is the size of the BDD for the threshold function [z1 + - -+ + zn > k]?

> 40. [22] Let g be the “condensation” of f obtained by setting zx41 < zi as in (27).
a) Prove that B(g) < B(f). [Hint: Consider subtables and beads.]

b) Suppose h is obtained from f by setting zx42 « zx. Is B(h) < B(f)?
41. [M25] Assuming that n > 4, find the BDD size of the Fibonacci threshold func-
tions (a) (mflzzFZ ...mf’jgszﬁjlmfl‘"*z) and (b) (mfl mi‘z_l .. mf"*sz"*lmf"”).
42. [22] Draw the BDD base for all symmetric Boolean functions of 3 variables.
> 43. [22] What is B(f) when (a) f(z1,...,Z2n) =[z1+ - + Tn =Tn41 + - + T22]7
(b) f(xlv'--ax?n) = [xl+753+"'+ﬂ’32n—1:$2+$4+~--+$2n]?

> 44. [M32] Determine the maximum possible size, Sn, of B(f) when f is a symmetric
Boolean function of n variables.

free binary decision diagram
FBDD

read-once branching program, see FBDD
reliability polynomial
elaborated truth table
commutative

distributive

associative

Boolean programming

Rivest

Vuillemin

evasive

elusive function, see evasive
exhaustive function, see evasive
generating function

canalizing

threshold function
condensation

substituting one variable for another
subtables

beads

Fibonacci threshold functions
BDD base

symmetric Boolean functions

60 COMBINATORIAL ALGORITHMS (F1B) 7.14

45. [22] Give precise specifications for the Boolean modules that compute the three-
in-a-row function as in (33) and (34), and show that the network is well defined.

46. [M23] What is the true BDD size of the three-in-a-row function?

47. [M21] Devise and prove a converse of Theorem M: Every Boolean function f with
a small BDD can be implemented by an efficient network of modules.

48. [M22] Implement the hidden weighted bit function with a network of modules
like Fig. 23, using ar = 2+ Ak and by = 1 + A(n — k) connecting wires for 1 < k < n.
Conclude from Theorem B that the upper bound in Theorem M cannot be improved
t0 Y po 27(ak:%) for any polynomial p.

49. [20] Draw the BDD base for the following sets of symmetric Boolean functions:
(a) {82k (@1, 32,73, 24) | 1 < k < 4}; (b) {Sk(z1,22,23,24) [0 < k < 4}

50. [22] Draw the BDD base for the functions of the r,‘—segment display (7.1.2—(42)).

51. [22] Describe the BDD base for binary addition when the input bits are numbered
from right to left, namely (frnt+1fnfn-1...f1)2 = (Z2n—-1...2321)2 + (T2n ... T422)2,
instead of from left to right as in (35) and (36).

52. [20] There’s a sense in which the BDD base for m functions {fi,..., fm} isn’t
really very different from a BDD with just one root: Consider the junction function
J(U1y ey Unj V1, e ey Un) = (U1? 1 u2? V2! - URT Un: 0), and let

f(tl,. .. ,tm+1,:l}1, P ,acn) = J(tl, e ,fm(.’El, e ,.’En), 1),
where (t1,...,tm+1) are new “dummy” variables, placed ahead of (z1, ..., z,) in the or-
dering. Show that B(f) is almost the same as the size of the BDD base for {f1,..., fm}-

53. [23] Play through Algorithm R, when it is applied to the binary decision diagram
with seven branch nodes in (2).

54. [17] Construct the BDD of f(x1,...,2s) from f’s truth table, in O(2") steps.

,tm+1;f1(:121,...,:l}n),...

55. [M30] Explain how to construct the “connectedness BDD” of a graph (like Fig. 22).

56. [20] Modify Algorithm R so that, instead of pushing any unnecessary nodes onto
an AVAIL stack, it creates a brand new BDD, consisting of consecutive instructions
Is_1, ..., I, Iy that have the compact form (ox? lx: hi) assumed in Algorithms B
and C. (The original nodes input to the algorithm can then all be recycled en masse.)
57. [25] Specify additional actions to be taken between steps R1 and R2 when Algo-
rithm R is extended to compute the restriction of a function. Assume that FIX[v] =
t € {0,1} if variable v is to be given the fixed value ¢; otherwise FIX[v] < 0.

58. [20] Prove that the “melded” diagram defined by recursive use of (37) is reduced.
59. [M28] Let h(z1,...,zn) be a Boolean function. Describe the melded BDD fog in
terms of the BDD for h, when (a) f(z1,...,%2n) = h(z1,...,zn) and g(z1,...,Tan) =
h(Znt1,...,22n); (b) f(z1,22,...,2Z2n) = h(Z1,23,...,T2n—1) and g(z1,Z2,...,Z2n) =
h(z2,z4,...,22n). [In both cases we obviously have B(f) = B(g) = B(h).]

60. [M22] Suppose f(z1,...,zn) and g(z1,...,zn) have the profiles (bo,...,b,) and
(bp, - - -,by), respectively, and let their respective quasi-profiles be (qo,...,qn) and
(40 - - - +qn)- Show that their meld fo g has B(fog) < 377 (g;b; +b;q; — b;b}) nodes.
61. [M27] If a and B are nodes of the respective BDDs for f and g, prove that

in-degree(a ¢ 8) < in-degree(c) - in-degree(3)
in the melded BDD f ¢ g. (Imagine that the root of a BDD has in-degree 1.)

three-in-a-row

network model of computation
modules in a network

hidden weighted bit function
Notation: lambda n

BDD base

symmetric Boolean functions
threshold functions

seven-segment display

binary addition

BDD base

junction function

conditional expression, nested, see junction funct
notation J(ul, ey UniVly. .., Uy
truth table

connectedness

AVATIL stack

sequential representation of BDDs
restriction

melded

reduced

profiles

quasi-profiles

meld

in-degree

7.1.4 BINARY DECISION DIAGRAMS 61

> 62. [M?I] If f(:v) = VJ"z/]_ZJ (CEzj_l /\iL'zj) and g(m) = ((El /\a}n)VVJ[Z/lz]_l(itzj /\x2]-+1),
what are the asymptotic values of B(f), B(g), B(f ¢ g), and B(fV g) as n — oo?

63. [M27] Let f(z1,--.,%n) = Mm(z1 ® T2, 23 D T4y - - -, T2m—1 D Tam; T2m+1,---,Tn)
and g(z1,...,Zn) = Mm(z2 ® 23,...,Z2m—2 ® Tam—1, L2m; T2m+1,-..,ZIn), Where n =
2m + 2™. What are B(f), B(g), and B(f A g)?

64. [M21] We can compute the median (fi f2 f3) of three Boolean functions by forming
fa=hHVi, fos=fiNfe, fo=FfsNfa, fr=1FfsV fe

Then B(f1) = O(B(f1)B(f2)), B(fs) = O(B(f1)B(f2)), B(fs) = O(B(f3) B(f1)) =
O(B(f1)B(f2) B(f3)); therefore B(f7) = O(B(fs)B(fs)) = O(B(f1)*B(f2)*B(fs))-
Prove, however, that B(f7) is actually only O(B(f1)B(f2)B(fs)), and the running
time to compute it from fs and f is also O(B(f1) B(f2) B(f3)).

» 65. [M25] If h(z1,...,zn) = f(z1,-..,2j-1,9(21,- .-, @n), Tjt1,.-.,Tn), prove that
B(h) = O(B(f)?B(g)). Can this upper bound be improved to O(B(f)B(g)) in general?

66. [20] Complete Algorithm S by explaining what to do in step S1 if f o g turns out
to be trivially constant.

67. [24] Sketch the actions of Algorithm S when (41) defines f and g, and op = 1.
68. [20] Speed up step S10 by streamlining the common case when LEFT(¢) < 0.

69. [21] Algorithm S ought to have one or more precautionary instructions such as
“if NTOP > TBOT, terminate the algorithm unsuccessfully,” in case it runs out of room.
Where are the best places to insert them?

70. [21] Discuss setting b to |lg LCOUNTL[!] | instead of [IgLCOUNT[/1] in step S4.
71. [20] Discuss how to extend Algorithm S to ternary operators.
72. [25] Explain how to eliminate hashing from Algorithm S.

» 73. [25] Discuss the use of “virtual addresses” instead of actual addresses as the links
of a BDD: Each pointer p has the form 7(p)2° 4+ o(p), where 7(p) = p>>e is p’s “page”
and o(p) = pmod 2° is p’s “slot”; the parameter e can be chosen for convenience. Show
that, with this approach, only two fields (LO,HI) are needed in BDD nodes, because
the variable identifier V (p) can be deduced from the virtual address p itself.

> 74. [M23] Explain how to count the number of self-dual monotone Boolean functions
of n variables, by modifying (49).

75. [M20] Let pn(z1,...,z2») be the Boolean function that is true if and only if
Z1...22n is the truth table of a regular function (see exercise 7.1.1-110). Show that
the BDD for p, can be computed by a procedure similar to that of u, in (49).

> 76. [M22] A “clutter” is a family S of mutually incomparable sets; in other words,
S ¢ S’ whenever S and S’ are distinct members of S. Every set S C {0,1,...,n — 1}
can be represented as an n-bit integer s =) {2° | e € S}; so every family of such sets
corresponds to a binary vector xzoxi ...zT2n_1, with s = 1 if and only if s represents a
set of the family.
Show that the BDD for the function ‘[zoz1 ...z2n_1 corresponds to a clutter]’ has
a simple relation to the BDD for the monotone-function function p,(z1,...,z2n).

> 77. [M30] Show that there’s an infinite sequence (bo,b1,b2,...) = (1,2,3,5,6,...)
such that the profile of the BDD for uy is (bo,b1,...,ban—1_1,b3n-1_1,...,b1,b0,2).
(See Fig. 25.) How many branch nodes of that BDD have LO = [L1]?

consecutive 1s forbidden
two-in-a-row function

Qm—way multiplexer

median

replacement of variables by functions
substitution of functions for variables
composition of Boolean functions
ternary operators

hashing

virtual addresses

page

slot

self-dual

truth table

regular

monotone Boolean functions
clutter

antichain of subsets, see clutter
mutually incomparable sets
family of sets

monotone-function function
profile

62 COMBINATORIAL ALGORITHMS (F1B) 7.14

> 78. [25] Use BDDs to determine the number of graphs on 12 labeled vertices for which
the maximum vertex degree is d, for 0 < d < 11.

79. [20] For 0 < d < 11, compute the probability that a graph on vertices {1,...,12}
has maximum degree d, if each edge is present with probability 1/3.

80. [23] The recursive algorithm (55) computes f A g in a depth-first manner, while
Algorithm S does its computation breadth-first. Do both algorithms encounter the same
subproblems f' A ¢’ as they proceed (but in a different order), or does one algorithm
consider fewer cases than the other?

» 81. [20] By modifying (55), explain how to compute f @ g in a BDD base.

» 82. [25] When the nodes of a BDD base have been endowed with REF fields, explain
how those fields should be adjusted within (55) and within Algorithm U.

83. [M20] Prove that if f and g both have reference count 1, we needn’t consult the
memo cache when computing AND(f, g) by (55).

84. [24] Suggest strategies for choosing the size of the memo cache and the sizes of
the unique tables, when implementing algorithms for BDD bases. What is a good way
to schedule periodic garbage collections?

85. [16] Compare the size of a BDD base for the 32 functions of 16 x 16-bit binary mul-
tiplication with the alternative of just storing a complete table of all possible products.

» 86. [21] The routine MUX in (62) refers to “obvious” values. What are they?

87. [20] If the median operator (fgh) is implemented with a recursive subroutine
analogous to (62), what are its “obvious” values?

» 88. [M25] Find functions f, g, and h for which the recursive ternary computation of
f A g A h outperforms any of the binary computations (f Ag)Ah, (gAR)ASf, (RAf)Ag.

89. [15] Are the following quantified formulas true or false? (a) 3z13z2 f = Jz23z1 f.
(b) Vz1Vao f =VaoVar f. (c) VaiIzo f < JzoVar f. (d) VziTzo f > JzoVay f.

90. [M20] When | =m = n = 3, Eq. (64) corresponds to the MOR operation of MMIX.
Is there an analogous formula that corresponds to MXOR (matrix multiplication mod 2)?

» 91. [26] In practice we often want _to simplify a Boolean function f with respect to a
“care set” g, by finding a function f with small B(f) such that

f@ Agl@) < f@) < fl@) Vi)

In other words, f(z) must agree with f(z) whenever z satisfies g(z) = 1, but we
don’t care what value f(x) assumes when g(z) = 0. An appealing candidate for such
an f is provided by the function flg, “f constrained by g,” defined as follows: If g(z) is
identically 0, f | g = 0. Otherwise (f] g)(z) = f(y), where y is the first element of
the sequence z, z @ 1, z @ 2, ..., such that g(y) = 1. (Here we think of z and y as
n-bit numbers (z1...2zn)2 and (y1...yn)2. Thusz@®1 =2 0...01 = z1...Tp_1Zn;
z2@®2=2®0...010 =21 ...Zn_2Tn_1Tn; etc.)

a) What are fl1, flz;,and flz;7

b) Prove that (f A f')lg=(flg)A(f 19)

¢) True or false: flg=flg.

d) Simplify the formula f(z1,...

e) Simplify the formula f(z1,...

f) Simplify the formula f(z4,...

g) Simplify the formula f(z1,...

for all z.

,CEn)J,(xz/\Cf:a /\3755/\336)-

o) L (31 @22 ® - B).

y)L (@I A Axp) V(B1 A ATp)).
yZn) (1 A g(z2,. .., T0)).

graphs

vertex degree
recursive algorithm
depth-first
breadth-first
reference counters
memo cache
unique tables
garbage collections
binary multiplication
median operator
ternary

quantified formulas

MOR
MXOR

matrix multiplication mod 2

care set
don’t care

7.14 BINARY DECISION DIAGRAMS 63

h) Find functions f(z1,z2) and g(z1,z2) such that B(f | g) > B(f).
i) Devise a recursive way to compute f | g, analogous to (55).

92. [M27] The operation f|g in exercise 91 sometimes depends on the ordering of the
variables. Given g = g(z1,...,2n), prove that (f™] ¢g™) = (f} g)™ for all permutations
7 of {1,...,n} and for all functions f = f(z1,...,z,) if and only if g = 0 or g is a
subcube (a conjunction of literals).

93. [36] Given a graph G on the vertices {1,...,n}, construct Boolean functions f
and g with the property that an approximating function f exists as in exercise 91 with

small B(f) if and only if G can be 3-colored. (Hence the task of minimizing B(f) is
NP-complete.)

94. [21] Explain why (65) performs existential quantification correctly.

95. [20] Improve on (65) by testing if r; = 1 before computing 4.

96. [20] Show how to achieve (a) universal quantification Vz;, ...Vz;,, f = fAg, and
(b) differential quantification Qzj, ...0z;,, f = f D g, by modifying (65).

97. [M20] Prove that it’s possible to compute arbitrary bottom-of-the-BDD quantifi-
cations such as 3z,—5VTn—40Tn_33Tn_2 ATn_1VZn f(z1,...,Zs) in O(B(f)) steps.
98. [22] In addition to (70), explain how to define the vertices ENDPT(z) of G that
have degree < 1. Also characterize PAIR(z, y), the components of size 2.

99. [20] (R. E. Bryant, 1984.) Every 4-coloring of the US map considered in the text
corresponds to 24 solutions of the COLOR function (73), under permutation of colors.
What’s a good way to remove this redundancy?

100. [24] In how many ways is it possible to 4-color the contiguous USA with exactly
12 states of each color? (Eliminate DC from the graph.)

101. [20] Continuing exercise 100, with colors {1,2,3,4}, find such a coloring that
maximizes), (state weight) x (state color), where states are weighted as in (18).
102. [23] Design a method to cache the results of functional composition using the fol-
lowing conventions: The system maintains at all times an array of functions [g4, .- ., gn],
one for each variable z;. Initially g; is simply the projection function z;, for 1 < j < n.
This array can be changed only by the subroutine NEWG (3, g), which replaces g; by g.
The subroutine COMPOSE(f) always performs functional composition with respect to

the current array of replacement functions.

103. [20] Mr. B. C. Dull wanted to evaluate the formula

Jy1 - Fym((y1 = fi(@1,- - 20)) Ao A (Ym = Fm(@1, -3 20)) AG(Y1,- - Ym)),

for certain functions fi, ..., fm, and g. But his fellow student, J. H. Quick, found a
much simpler formula for the same problem. What was Quick’s idea?

104. [21] Devise an efficient way to decide whether f < g or f > g or f || g, where
f || g means that f and g are incomparable, given the BDDs for f and g.

105. [25] A Boolean function f(z1,...,zx) is called unate with polarities (y1,...,yn)
if the function h(z1,...,2n) = f(z1 D Y1,...,Zn ® Yn) is monotone.
a) Show that f can be tested for unateness by using the A and N quantifiers.
b) Design a recursive algorithm to test unateness in at most O(B(f)?) steps, given
the BDD for f. If f is unate, your algorithm should also find appropriate polarities.

subcube

approximating function
3-colored

NP-complete
existential quantification
universal quantification
differential quantification
components

Bryant

symmetry breaking
4-color

contiguous USA

cache

functional composition
projection function
replacement functions
Dull

Quick

notation: f || g

unate

monotone

yes/no quantifiers
recursive algorithm

64 COMBINATORIAL ALGORITHMS (F1B) 7.14

106. [25] Let fgh denote the relation “f(z) = g(y) = 1 implies h(z A y) = 1, for
all z and y.” Show that this relation can be evaluated in at most O(B(f)B(g)B(h))
steps. [Motivation: Theorem 7.1.1H states that f is a Horn function if and only if
88 f; thus we can test Horn-ness in O(B(f)?) steps.]

107. [26] Continuing exercise 106, show that it’s possible to determine whether or not
f is a Krom function in O(B(f)*) steps. [Hint: See Theorem 7.1.1S.]

108. [HM24] Let b(n,s) be the number of n-variable Boolean functions with B(f) < s.
Prove that (s — 3)!b(n,s) < (n(s — 1)%)*~? when s > 3, and explore the ramifications
of this inequality when s = [2"/(n + 1/In2)|. Hint: See the proof of Theorem 7.1.2S.

> 109. [HM17] Continuing exercise 108, show that almost all Boolean functions of n var-
iables have B(f™) > 2"/(n + 1/In2), for all permutations 7 of {1,...,n}, as n — oco.

110. [25] Construct explicit worst-case functions f, for which f, = U, in Theorem U.
111. [M21] Verify the summation formula (79) in Theorem U.

112. [HM23] Prove that min(2¥, 22" " 22nik71) — by, is very small, where by, is the
number defined in (80), except whenn —lgn —1<k<n—lgn+1.

113. [20] Instead of having sink nodes, one for each Boolean constant, we could have
216 sinks, one for each Boolean function of four variables. Then a BDD could stop four
levels earlier, after branching on z,—4. Would this be a good idea?

114. [20] Is there a function with profile (1,1,1,1,1,2) and quasi-profile (1,2,3,4,3,2)?
> 115. [M22] Prove the quasi-profile inequalities (84) and (124).

116. [M21] What is the (a) worst case (b) average case of a random quasi-profile?

117. [M20] Compare Q(f) to B(f) when f = My (z1,...,Tm;Tmt1,---, Tmt2m).

118. [M23] Show that, from the perspective of Section 7.1.2, the hidden weighted bit
function has cost C'(hn,) = O(n). What is the exact value of C(h4)?

119. [20] True or false: Every symmetric Boolean function of n variables is a special
case of hany1. (For example, 1 ® z2 = h5(0,1,0, 21, 22).)

120. [18] Explain the hidden-permuted-weighted-bit formula (94).
» 121. [M22] If f(z1,...,,) is any Boolean function, its dual fP is f(Z1,...,%x.), and
its reflection f%is f(zn ...,z1). Notice that fPP = fFR = f and fPR = fEP,
a) Show that hDR(z1,...,zn) = hn(2a, ..., Zn,T1).
b) Furthermore, the hidden weighted bit function satisfies the recurrence
hl(xl) = 1, hn+1(1‘1, . 7xn+1) = ($n+1? hn($2, . ,xn,xl): hn($1, . ,xn)).

c¢) Define z1), a permutation on the set of all binary strings z, by the recursive rules

ep=¢ (z1...2,0)0 = (z1...2,9)0, (Z1...2,1)¢ = (z2...2nz1)9Y1.

For example, 11019 = (101+)1 = (01%)11 = (0¢)111 = (3)0111 = 0111; and we
also have 0111y = 1101. Is % an involution?
d) Show that hy,(z) = hn (1), where the function h, has a very small BDD.

122. [27] Construct an FBDD for h, that has fewer than n® nodes, when n > 1.
123. [M20] Prove formula (97), which enumerates all slates of offset s.

> 124. [27] Design an efficient algorithm to compute the profile and quasi-profile of A7,
given a permutation 7. Hint: When does the slate [rq, . ..,Tn—] correspond to a bead?

Horn function

sinks, more than two
Qm—way multiplexer

hidden weighted bit function
cost

C(f), see cost of a Boolean function
symmetric Boolean function
dual

reflection

recurrence

recursive

involution

FBDD

profile

quasi-profile

slate

bead

7.14 BINARY DECISION DIAGRAMS 65

> 125. [HM34] Prove that B(hy,) can be expressed exactly in terms of the sequences
n n
n—k n—k
A, = B, = .
Z(2k)’ Z(Zk—l—l)
k=0 k=0
126. [HM42] Analyze B(hy) for the organ-pipe permutation = = (2,4,...,n,...,3,1).
127. [46] Find a permutation m that minimizes B(h{q).
128. [25] Given a permutation 7 of {1,...,m + 2™}, explain how to compute the
profile and quasi-profile of the permuted 2"-way multiplexer
M:;(xl, ey Ty Tm41y - - - ,xm+2m) = Mm(xlﬂ-, ey Ty x(m+1)7,, e ,CE(m_;’_gm),,r).
129. [M25] Define Qm(z1,...,%,2) to be 1 if and only if the 0-1 matrix (z(;—1)m+;)

has no all-zero row and no all-zero column. Prove that B(Q7F,) = Q(2™/m?) for all =.

130. [HM31] The adjacency matrix of an undirected graph G on vertices {1,...,m}
consists of () variable entries zuy = [u — v in G], for 1 < u < v < m. Let Cp

2
be the Boolean function [G has a k-clique], for some ordering of those (') variables.

2
a) If 1 < k < \/m, prove that B(Cm) > (°*1*), where s = (§) -1 and t = m+2—Fk.
b) Consequently B(Cpy,[m/2]) = Q(2™/%//m), regardless of the variable ordering.

131. [M28] (The covering function.) The Boolean function

C(x17x27 s Tpy Y11, Y125 - -y Y1gy Y215 - - - 5 Y295 - - - Ypl, Yp2, - - - 7yP¢1)
= ((@1Ay11)V (Z2AY21)V - V(TpAYp1)) A -+ A ((21AY19) V (22AY24) V - -+ V (TpAYpg))

is true if and only if all columns of the matrix product

Y11 Y12 ... Yig

Y21 Y22 ... Y2q
z-Y = (z122...2p)

Yp1 Yp2 ... Ypg

are positive, i.e., when the rows of Y selected by z “cover” every column of that matrix.
The reliability polynomial of C is important in the analysis of fault-tolerant systems.

a) When a BDD for C tests the variables in the order

T1,Y11,Y125 - - -y Y1q, T2, Y21,Y22,5 - - -, Y2q5- - -5 Tps Yply Yp2,y - - -, Ypg;

show that the number of nodes is asymptotically pg2?~! for fixed q as p — oo.
b) Find an ordering for which the size is asymptotically pg2?~* for fixed p as ¢ — oo.
¢) Prove, however, that Bmin(C) = Q(2™("9/2) in general.

132. [32] What Boolean functions f(x1,%2,%3,%4,25) have the largest Bmin(f)?
133. [20] Explain how to compute Bmin(f) and Bmax(f) from f’s master profile chart.

134. [24] Construct the master profile chart, analogous to (102), for the Boolean
function z1 @ ((.772 @ (z1V (T2 A :c;;))) A(zs @ af:4)). What are Bmin(f) and Bmax(f)?
Hint: The identity f(z1,z2,z3,T4) = f(z1,T2,Z4,Z3) saves about half the work.

135. [M27] For all n > 4, find a Boolean function 0, (z1,. .., z,) that is uniquely thin,
in the sense that B(f;) = n + 2 for exactly one permutation 7. (See (93) and (102).)

Analyze

organ-pipe permutation
permuted 2™ -way multiplexer
0-1 matrix

all-zero row

adjacency matrix

clique

covering function

2-level redundancies function, see covering funct:
reliability polynomial
fault-tolerant systems
five-variable functions

master profile chart

uniquely thin

66 COMBINATORIAL ALGORITHMS (F1B) 7.14

> 136. [M34] What is the master profile chart of the median-of-medians function

<<$11$12 . .’I,'1-,—,,><IE21$22 . $2n> . <.’I,‘m1$m2 . a:mn)>,

when m and n are odd integers? What is the best ordering? (There are mn variables.)

137. [M38] Given a graph, the optimum linear arrangement problem asks for a permu-
tation 7 of the vertices that minimizes), _ , |um—wvn|. Construct a Boolean function f
for which this minimum value is characterized by the optimum BDD size Bmin(f).

> 138. [M86] The purpose of this exercise is to develop an attractive algorithm that
computes the master profile chart for a function f, given f’s QDD (not its BDD).
a) Explain how to find (njl) weights of the master profile chart from a single QDD.
b) Show that the jump-up operation can be performed easily in a QDD, without
garbage collection or hashing. Hint: See the “bucket sort” in Algorithm R.
c) Consider the 2"~" orderings of variables in which the (i + 1)st is obtained from
the ith by a jump-up from depth pi + vi to depth vi — 1. For example, we get

12345 21345 32145 31245 43125 41325 42135 42315 54231 52431 53241 53421 51342 51432 51243 51234

when n = 5. Show that every k-element subset of {1,...,n} occurs at the top k
levels of one of these orderings.
d) Combine these ideas to design the desired chart-construction algorithm.

e) Analyze the space and time requirements of your algorithm.

139. [22] Generalize the algorithm of exercise 138 so that (i) it computes a common
profile chart for all functions of a BDD base, instead of a single function; and (ii) it
restricts the chart to variables {zq,Zq+1,...,Zs}, preserving {z1,...,Zq—1} at the top
and {Zp41,-..,Zn} at the bottom.
140. [27] Explain how to find Bmin(f) without knowing all of f’s master profile chart.
141. [30] True or false: If X1, Xa, ..., Xm are disjoint sets of variables, then an opti-
mum BDD ordering for the variables of g(h1(X1), h2(Xz2),...,hm(Xm)) can be found
by restricting consideration to cases where the variables of each X; are consecutive.
> 142, [HM32] The representation of threshold functions by BDDs is surprisingly myste-
rious. Consider the self-dual function f(z) = (z}*...z%™), where each w; is a positive
integer and w1 +- - -+-wn, is odd. We observed in (28) that B(f) = O(wi+- - -+wy)?; and
B(f) is often O(n) even when the weights grow exponentially, as in (29) or exercise 41.
a) Prove that when wy = 1, wi = 2k=2 for 1 < k < m, and wr = 2™ — 27~k for
m < k < 2m =n, B(f) grows exponentially as n — 0o, but Bmin(f) = O(n?).
b) Find weights {ws,...,w,} for which Bmin(f) = Q(2V™?).

143. [24] Continuing exercise 142(a), find an optimum ordering of variables for the

8,.16,.32 64 128 1256, 512 _ 768 _ 896 960 992 1008 1016 1020 1022 1023
T17 T18 Ti9 T20 >

function <m1z2m3m41‘5:ﬂ6 Ty g g X109 L11 T12 T13 14 T15 Tig
144. [16] What is the quasi-profile of the addition functions { f1, f2, f3, f4, fs} in (36)7
145. [24] Find Bumin(f1, f2, f3, f4, f5) and Bmax(f1, f2, f3, f4, f5) of those functions.
> 146. [M22] Let (bo,...,bs) and (go,...,qn) be a BDD base profile and quasi-profile.
a) Prove that bo < min(qo, (b1 +g2)(b1 + g2 — 1)), b1 < min(bo + go,g2(g2 — 1)), and
bo + b1 > qo — go-
b) Conversely, if bo, b1, go, and g2 are nonnegative integers that satisfy those in-
equalities, there is a BDD base with such a profile and quasi-profile.

» 147. [27] Flesh out the details of Rudell’s swap-in-place algorithm, using the conven-
tions of Algorithm U and the reference counters of exercise 82.

median-of-medians function
optimum linear arrangement problem
QDD

ruler function p

v function

Analyze

disjoint decomposition
decomposition of functions
threshold functions
self-dual

exponentially

quasi-profile

Rudell

swap-in-place

reference counters

7.14 BINARY DECISION DIAGRAMS 67

148. [M21] Trueor false: B(f,..., fr) < 2B(f1,---, fm), after swapping @ “~ @

149. [M20] (Bollig, Lébbing, and Wegener.) Show that, in addition to Theorem J7,
we also have B(fT,..., fr) < (28 —2)bo + B(f1, ..., fm) after a jump-down operation
of k — 1 levels, when (bo,...,by) is the profile of {f1,..., fm}-

150. [30] When repeated swaps are used to implement jump-up or jump-down, the
intermediate results might be much larger than the initial or final BDD. Show that
variable jumps can actually be done more directly, with a method whose worst-case
running time is O(B(f1,..., fm) + B(fT', -, fm))-

151. [20] Suggest a way to invoke Algorithm J so that each variable is sifted just once.

152. [25] The hidden weighted bit function higo has more than 17.5 trillion nodes
in its BDD. By how much does sifting reduce this number? Hint: Use exercise 124,
instead of actually constructing the diagrams.

153. [30] Put the tic-tac-toe functions {y1,...,ys} of exercise 7.1.2-65 into a BDD
base. How many nodes are present when variables are tested in the order z1, z2, .. ., 9,
01, 02, ..., 09, from top to bottom? What is Bmin(Yy1,...,¥s)?

154. [20] By comparing (104) to (106), can you tell how far each state was moved
when it was sifted?

155. [25] Let fi1 be the independent-set function (105) of the contiguous USA, and
let f2 be the corresponding kernel function (see (67)). Find orderings 7 of the states
so that (a) B(f7) and (b) B(fT, f5) are as small as you can make them. (Note that
the ordering (110) gives B(f{") = 339, B(fs) = 795, and B(fT, f7) = 1129.)

156. [30] Theorems J* and J~ suggest that we could save reordering time by only
jumping up when sifting, not bothering to jump down. Then we could eliminate steps
J3, J5, J6, and J7 of Algorithm J. Would that be wise?

157. [M24] Show that if the m + 2™ variables of the 2™-way multiplexer M,, are ar-
ranged in any order such that B(M®%,) > 2™*! 41, then sifting will reduce the BDD size.

158. [M24] When a Boolean function f(zi,...,z,) is symmetrical in the variables
{z1,...,zp}, it’s natural to expect that those variables will appear consecutively in at
least one of the reorderings f™ (1, ..., z,) that minimize B(f"). Show, however, that if

@, wn) = [an 4 wp= [p/3]] + a1 + -+ mp = [20/31 g(@pi1, .. Tpam),

where p =n—m and g(y1, ..., Ym) is any nonconstant Boolean function, then B(f™) =
3n?+0(n) as n — oo when {z1,...,z,} are consecutive in 7, but B(f") = 1n’+0(n)
when 7 places about half of those variables at the beginning and half at the end.
159. [20] John Conway’s basic rule for Life, exercise 7.1.3-167, is a Boolean function
L(zxw, Zn, TNg, Tw, L, T, Tsw, Ts, Lsg). What ordering of those nine variables will
make the BDD as small as possible?

160. [24] (Chess Life.) Consider an 8 X 8 matrix X = (z;;) of Os and 1s, bordered by
infinitely many Os on all sides. Let L;;(X) = L(Z(i—1)(j—=1)s- - +»Zijs - - - » L(i+1)(j+1)) DE
Conway’s basic rule at position (4, j). Call X “tame” if L;;(X) = 0 whenever i ¢ [1..8]
or j ¢ [1..8]; otherwise X is “wild,” because it activates cells outside the matrix.

a) How many tame configurations X vanish in one Life step, making all L;; = 07

b) What is the maximum weight °5_, Z?:l zi; among all such solutions?

¢) How many wild configurations vanish within the matrix after one Life step?

d) What are the minimum and maximum weight, among all such solutions?

e) How many configurations X make L;;(X) =1 for 1 <4,j < 8?7

Bollig

L&bbing

‘Wegener

jump-up

jump-down

sifted

hidden weighted bit function
tic-tac-toe

sifted

independent-set function
contiguous USA

kernel function

jumping up

jump down

Qm-way multiplexer
partially symmetric funcs
symmetric functions, partial
reorderings

Conway

Life

0-1 matrices

tame

wild

68 COMBINATORIAL ALGORITHMS (F1B) 7.14

f) Investigate the tame 8 x 8 predecessors of the following patterns:

W@ E R

(Here, as in Section 7.1.3, black cells denote 1s in the matrix.)

161. [28] Continuing exercise 160, write L(X) =Y = (y;;) if X is a tame matrix such
that L”(X) = Yij for 1 S Z,] S 8.

a) How many X’s satisfy L(X) = X (“still Life”)?

b) Find an 8 x 8 still Life with weight 35.

c) A “flip-flop” is a pair of distinct matrices with L(X)=Y, L(Y)=X. Count them.

d) Find a flip-flop for which X and Y both have weight 28.

> 162. [30] (Caged Life.) If X and L(X) are tame but L(L(X)) is wild, we say that X

“escapes” its cage after three steps. How many 6 x 6 matrices escape their 6 x 6 cage
after exactly k steps, for k=1,2,...7

163. [23] Prove formulas (112) and (113) for the BDD sizes of read-once functions.
> 164. [M27] What is the maximum of B(f), over all read-once functions f(z1,...,2n)?

165. [M21] Verify the Fibonacci-based formulas (115) for B(um) and B(vm).

166. [M29] Complete the proof of Theorem W.

167. [21] Design an efficient algorithm that computes a permutation 7 for which both
B(f™) and B(f™, f™) are minimized, given any read-once function f(z1,...,Zx).

> 168. [HM40] Consider the following binary operations on ordered pairs z = (z,y):
z0z' = (z,y) o (z',y') = (z+ 2',min(z + ¢, 2" + v));
zez = (z,y) ® (m',y') = (z +z + min(y,y')7 max(y, y/)).

(These operations are associative and commutative.) Let S; = {(1,0)}, and

n—1 n—1
Sn = U{zoz' | 2 € Sk, 2 € Sp—i} U U{zoz' | z € Sk, 2’ € Sp—i} for n > 1.
k=1 k=1

Thus 52 = {(25 0)7 (27 1)}; S = {(37 0)7 (37 1)7 (37 2)}; Ss = {(470)7) (47 3)7 (57 1)}; etc.
a) Prove that there exists a read-once function f(z1,...,z,) for which we have
ming B(f") = ¢ and ming B(f”, f*) = ¢’ ifand only if (¢’ —1,c—1c' — 1) € S.

b) True or false: 0 <y < z for all (z,y) € Sn.
c) If 27 = (x4 y,z —y)/V/2, show that 27 02’7 = (ze2')" and 27 2’7 = (z02")".
d) Prove that 2* 4+ y* < n?® for all (z,y) € Sn, if B is the constant in (116). Hints:
Let |2|2 = 22442, it suffices to prove that |zez'| < 2° = 1/2¢ whenever 0 < y < «,
0<y <a',|z|=r=(1-8)|2|=r=(1+6)° and 0<§ < 1. Ifalso y = ¢/,
ze2' lies inside the ellipse (a cos 6+ bsin 6,bsin), where a = r+7’ and b = v/rr’.
169. [M46] Is ming B(f™) < B(v2m+1) for every read-once function fof 2™+ variables?

> 170. [M25] Let’s say that a Boolean function is “skinny” if its BDD involves all the
variables in the simplest possible way: A skinny BDD has exactly one branch node @
for each variable z;, and either LO or HI is a sink node at every branch.
a) How many Boolean functions f(z1,...,z,) are skinny in this sense?
b) How many of them are monotone?

¢) Show that fi(z1,...,%Zn) =[(z1...2Tn)2 >t] is skinny when 0 < t < 2" and t is odd.

still Life

flip-flop

Caged Life

escapes

read-once functions

associative

commutative

read-once function

skinny

positive Boolean function, see monotone

7.14 BINARY DECISION DIAGRAMS 69

d) What is the dual of the function f; in part (c)?
e) Explain how to find the shortest CNF and DNF formulas for f;, given ¢.

171. [M26] Continuing exercise 170, show that a function is read-once and regular if
and only if it is skinny and monotone.

172. [M27] How many skinny functions f(z1,...,2n) are also Horn functions? How
many of them have the property that f and f both satisfy Horn’s condition?

» 173. [HM28] Exactly how many Boolean functions f(z1,...,2zx) are skinny after some
reordering of the variables, f(Z1ix,...,Znx)?

> 174. [M39] Let S, be the number of Boolean functions f(z1,...,zn) whose BDD is
“thin” in the sense that it has exactly one node labeled @ for 1 < j < n. Show
that S, is also the number of combinatorial objects of the following types:

a) Dellac permutations of order 2n (namely, permutations pips...pan such that
(/2] < pi < -+ [k/2] for 1 < k < 2n).

b) Genocchi derangements of order 2n + 2 (namely, permutations g¢iga...g2n+2
such that g > k if and only if £ is odd, for 1 < k < 2n+2; also gx # k
in a derangement).

¢) Irreducible Dumont pistols of order 2n+ 2 (namely, sequences 7172 . .. T2n4+2 such
that £k <7, < 2n+2for 1 < k < 2n+2 and {r1,72,...,72nt2} = {2,4,6,...,
2n,2n + 2}, with the special property that 2k € {ry,...,r2x_1} for 1 <k < n).

d) Paths from (1,0) to (2n + 2,0) in the directed graph

(7,3)—(8,3)—

(5,2)—(6,2)—(7,2) — (55{{2)H

BN —=>E)—(6,1)—>(7,1)— (8‘}1)H
(1,0)7>(2,0) = (3,0) = (4,0) = (5,0) — (6,0) — (7,0) — (8{{0)H

(Notice that objects of type (d) are very easy to count.)

175. [M30] Continuing exercise 174, find a way to enumerate the Boolean functions
whose BDD contains exactly b;_1 nodes labeled @, given a profile (bo,...,bn_1,bn).
176. [M35] To complete the proof of Theorem X, we will use exercise 6.4-78, which
states that {hq | @ € A and b € B} is a universal family of hash functions from n bits
to I bits, when h,(z) = ((az +b)>(n—1)) mod 2, A={a|0< a< 2" aodd}, B=
{b|0<b<2" '}, and 0 <1< n. Let I = {hap(p) | p € P} and J = {ha(q) | g € Q}.

a) Show that if 28 — 1 < 2¢7'¢/(1 — €), there are constants a € A and b € B for
which |I| > (1 —€)2' and |J| > (1 — €)2.

b) Given such an a, let J = {j1,...,5,7} where 0 = ji < -+ < j}s, and choose
Q' ={aq1,...,q95} C Q so that hap(gr) = ji for 1 < k < |J|. Let g(g) denote the
middle [—1 bits of ag, namely (ag>> (n—1+1)) mod 2'~1. Prove that g(q) # g(q')
whenever ¢ and ¢’ are distinct elements of the set Q" = {q1,¢3,...,q2[7/21-1}-

¢) Prove that the following set Q™ satisfies condition (120), when ! > 3 and y = a:

Q" = {qlq€Q", g(q) is even, and g(p) + g(q) = 2'~" for some p € P}.
d) Finally, show that |Q*| is large enough to prove Theorem X.

177. [M22] Complete the proof of Theorem A by bounding the entire quasi-profile.

178. [M24] (Amano and Maruoka.) Improve the constant in (121) by using a better
variable ordering: Z,(T2n—1,T1,%3,...,T2n—3;Tan, T2, Td, . - -, Tan—2)-

dual

CNF

DNF

read-once

regular

Horn functions
reordering

thin

Dellac permutations
permutations
Genocchi derangements
Dumont pistols
profile

universal hashing
multiplication
quasi-profile

Amano

Maruoka

70 COMBINATORIAL ALGORITHMS (F1B) 7.14

179. [M47] Does the middle bit of multiplication satisfy Bmin(Zn) = ©(2°"/%)?
180. [M27] Prove Theorem Y, using the hint given in the text.
181. [M21] Let Lm,n be the leading bit function Z&Tjn) (z1,---,Zm;Y1,---,Yn). Prove

1
that Bmin(Lm,n) = O(2™n) when m < n.
M38] (1. Wegener.) Does Buin(Ln,n) grow exponentially as n — oo?
M25] Draw the first few levels of the BDD for the “limiting leading bit function”

[(1z3ws ...)2 - (@2@ams ...)2 > 3],

which has infinitely many Boolean variables. How many nodes by are there on level k7
(We don’t allow (.z1z32s ...)2 or (.Z2Z4Ze - ..)2 to end with infinitely many 1s.)
184. [M23] What are the BDD and ZDD profiles of the permutation function Pp,?

185. [M25] How large can Z(f) be, when f is a symmetric Boolean function of
n variables? (See exercise 44.)

186. [10] What Boolean function of {z1,z2,z3, 24, T5,z6} has the ZDD "?

187. [20] Draw the ZDDs for all 16 Boolean functions f(z1,z2) of two variables.

]
188. [16] Express the 16 Boolean functions f(z1,z2) as families of subsets of {1, 2}.
189. [18] What functions f(z1,...,zn) have a ZDD equal to their BDD?
190. [20] Describe all functions f for which (a) Q(f) = B(f); (b) Q(f) = Z(f).
191. [HM25] How many functions f(z1,...,2,) have no in their ZDD?
192. [M20] Define the Z-transform of binary strings as follows: €Z = ¢, 0% = 0,

17 =1, and
aZa?, if |a| =n and g = 0"
(aﬁ)z =< o%0", if|a|=nand 8 =q;
a?B?, if la|=|B| -1, orif |a| = |8 =n and a # B # O™

a) What is 11001001000011111%?

b) True or false: (r%)Z = for all binary strings 7.

c) If f(z1,...,%,) is a Boolean function with truth table 7, let fZ(z1,...,%,) be
the Boolean function whose truth table is 7Z. Show that the profile of f is almost
identical to the z-profile of fZ, and vice versa. (Therefore Theorem U holds for
ZDDs as well as for BDDs, and statistics such as (80) are valid also for z-profiles.)

193. [M21] Continuing exercise 192, what is SZ(z1,...,%n) when 0 < k < n?

194. [M25] How many f(z1,...,zn) have the z-profile (1,...,1)7 (See exercise 174.)

195. [24] Find Z(M3), Zmin(Mz2), and Zmax(Mz), where M> is the 4-way multiplexer.

196. [M21] Find a function f(z1,...,zns) for which Z(f) = O(n) and Z(f) = Q(n?).
[

197. [25] Modify the algorithm of exercise 138 so that it computes the “master z-
profile chart” of f. (Then Zmin(f) and Zmax(f) can be found as in exercise 133.)

198. [28] Explain how to compute AND(f,g) with ZDDs instead of BDDs (see (55)).
199. [21] Similarly, implement (a) OR(f,g), (b) XOR(f,g), (c) BUTNOT(f,g).
200. [21] And similarly, implement MUX(f, g, h) for ZDDs (see (62)).

201. [22] The projection functions z; each have a simple 3-node BDD, but their ZDD
representations are more complicated. What’s a good way to implement these functions
in a general-purpose ZDD toolkit?

leading bit function

Wegener

ZDD profile

permutation function Py,

symmetric Boolean function

ZDD

Binary Boolean operations

Two-variable functions

families of subsets
-transform

pi, as source

.fZ(:E17 e 7m‘ﬂ)

2z-profile

average nodes on level k

multiplexer

complementation

master z-profile chart

ternary operation

MUX

projection functions

ZDD versus BDD

ZDD toolkit

714

202.

BINARY DECISION DIAGRAMS 71

[24] What changes are needed to the swap-in-place algorithm of exercise 147,

when levels @ “ @ are being interchanged in a ZDD base instead of a BDD base?

» 203.

[M24] (Family algebra.) The following algebraic conventions are useful for deal-

ing with finite families of finite subsets of positive integers, and with their representation
as ZDDs. The simplest such families are the empty family, denoted by () and represented
by [L]; the unit family {0}, denoted by € and represented by [T]; and the elementary
families {{j}} for 7 > 1, denoted by e; and represented by a branch node @ with
LO = and HI = [T]. (Exercise 186 illustrates the ZDD for es.)

Two families f and g can be combined with the usual set operations:

The union fUg={a|a € f or a € g} is implemented by OR(f, g);

The intersection fNg={a|a € f and a € g} is implemented by AND(f, g);
The difference f\ g={a|a € f and a ¢ g} is implemented by BUTNOT(f, g);
The symmetric difference f ® g = (f\ g)U (g)\ f) is implemented by XOR(f, g).

And we also define three new ways to construct families of subsets:

The join fUg={aUB|a € f and B € g}, sometimes written just fg;
The meet fT1g={anp|a€ fandp € g};
The delta fBg={a® B | a € f and B € g}.

All three are commutative and associative: flUg=gU f, fU(gUh) = (fUg)ULh, etc.

a)

b)

©)

d)

Suppose f = {07{172}7{173}} = eU(e1U (e2Ues)) and g = {{1,2},{3}} =
(e1Ue2)Ues. What are flLigand (fMg)\ (fHe1)?

Any family f can also be regarded as a Boolean function f(z1,z2,...), where
a € f < f([1€a],[2€a],...) = 1. Describe the operations LI, 1, and H in
terms of Boolean logical formulas.

Which of the following formulas hold for all families f, g, and h? (i) fU(gUh) =
(fug)u(fuh); (ii) Fr(gUh) = (fMg)U(fMh); (iii) fU(gMh) = (fUg)N(fUA);
(iv) fU(@UR)=(fUgU(fUR);(v) FBO=0Ng=hU0D; (vi) fMe=¢
We say that f and g are orthogonal, written f L g, if an B = 0 for all o« € f
and all B € g. Which of the following statements is true for all families f and g7
() fLlg<=frig=¢ (i) f Lg = [fUg|l=I[fllgl; (i) [fUg]=I[fllg] =
flg(v)flg<=fug=rFag

Describe all families f for which the following statements hold: (i) f U g = g for
all g; (ii) fUg = g for all g; (ili) fMg = g for all g; (iv) fU (ex Uez) = f;
(v) fu(erUes) = f; (vi) fE((exler) Ues) = f; (vil) fBf = e (vii) fNf = f.
[M25] Continuing exercise 203, two further operations are also important:

the quotient f/g={a|aUB € fand anpB =10, for all B € g}.

the remainder f modg= f\ (gU (f/9g))-

The quotient is sometimes also called the “cofactor” of f with respect to g.

a)
b)
c)
d)
e)
f)
g)
205.

Prove that f/(gUh) = (f/g9) N (f/h).

Suppose f = {{1,2},{1,3},{2},{3},{4}}. What are f/e; and f/(f/e2)?
Simplify the expressions f/@, f/e, f/f, and (f mod g)/g, for arbitrary f and g.
Show that f/g = f/(f/(f/g))- Hint: Start with the relation g C f/(f/g)-
Prove that f/g can also be defined as |J{h | gUh C f and g L h}.

Given f and j, show that f has a unique representation (e;Lig)Uh with e; L (gUh).
True or false: (fUg) mod e;=(f mod e;)LI(g mod e;); (fMg)/e;=(f/e;)M(g/ej).-
[M25] Implement the five basic operations of family algebra, namely (a) f L g,

(b) frg, (c) fmAg, (d) f/g, and (e) f mod g, using the conventions of exercise 198.

swap-in-place
Family algebra
unate cube set algebra, see family algebra
empty family

unit family

€

elementary families
€j)

union

intersection
difference
symmetric difference
notation f LI g

join

notation f g

meet

notation f B g
delta

commutative
associative

Boolean functions versus families
distributive law
orthogonal

quotient

notation f / g
remainder

notation f mod g
cofactor

72 COMBINATORIAL ALGORITHMS (F1B) 7.14

206. [M46] What are the worst-case running times of the algorithms in exercise 2057
207. [M25] When one or more projection functions z; are needed in applications, as
in exercise 201, the following “symmetrizing” operation turns out to be very handy:

(es; Uei, U---Uey) 8§k = Si(iy, Tigy. . T4y), integer k > 0.

For example, e; §1 = z;; ;80 = Z;; (esUej)8§1 = z; D zj; (e2UesUes) §2 =
(z2 Nzs ATs5) V (z2 AZTs Axs) V (T2 A xs A zs). Show that it’s easy to implement this
operation. (Notice that e;; U---Ue;, has a very simple ZDD of size [4+ 2, when [> 0.)

208. [16] By modifying Algorithm C, show that all solutions of a Boolean function
can readily be counted when its ZDD is given instead of its BDD.

209. [M21] Explain how to compute the fully elaborated truth table of a Boolean
function from its ZDD representation. (See exercise 31.)

210. [28] Given the ZDD for f, show how to construct the ZDD for the function

9(z) = [f(z) =1 and vz =max{vy| f(y) = 1}].
. [M20] When f describes the solutions to an exact cover problem, is Z(f) < B(f)?
212. [25] What’s a good way to compute the ZDD for an exact cover problem?
213. |

211

16] Why can’t the mutilated chessboard be perfectly covered with dominoes?

214. [21] When some shape is covered by dominoes, we say that the covering is
faultfree if every straight line that passes through the interior of the shape also passes
through the interior of some domino. For example, the right-hand covering in (127)
is faultfree, but the middle one isn’t; and the left-hand one has faults galore.

How many domino coverings of a chessboard are faultfree?

215. [21] Japanese tatami mats are 1x 2 rectangles that are traditionally used to cover
rectangular floors in such a way that no four mats meet at any corner. For example,
Fig. 29(a) shows a 6 x 5 pattern from the 1641 edition of Mitsuyoshi Yoshida’s Jinkaki,
a book first published in 1627.

Find all domino coverings of a chessboard that are also tatami tilings.

Fig. 29. Two nice examples:
(a) A 17th-century tatami tiling; (a) |_| | (b)
(b) a tricolored domino covering. ”

216. [30] Figure 29(b) shows a chessboard covered with red, white, and blue domi-
noes, in such a way that no two dominoes of the same color are next to each other.

a) In how many ways can this be done?
b) How many of the 12,988,816 domino coverings are 3-colorable?
217. [29] The monomino/domino/tromino covering illustrated in (130) happens to

satisfy an additional constraint: No two congruent pieces are adjacent. How many of
the 92 sextillion coverings mentioned in the text are “separated,” in this sense?

218. [24] Apply BDD and ZDD techniques to the problem of Langford pairs, discussed
at the beginning of this chapter.

analysis of algs
projection functions
symmetrizing
symmetric functions
fully elaborated truth table
ZDD

exact cover problem
mutilated chessboard
dominoes

faultfree

Yoshida

tatami tilings
3-colorable
monomino

tromino

polyominoes
separated

Langford pairs

v

7.14 BINARY DECISION DIAGRAMS 73

219. [20] What is Z(F') when F is the family (a) WORDS(1000); . ..; (e) WORDS(5000)?
220. [21] The z-profile of the 5757 SGB words, represented with 130 variables as . . z5
as discussed in (131),is (1,1,1,...,1,1,1,23,3,...,6,2,0,3,2,1,1, 2).

a) Explain the entries 23 and 3, which correspond to the variables az and bs.
b) Explain the final entries 0, 3, 2, 1, 1, 2, which correspond to vs, ws, zs, etc.

221. [M27] Only 5020 nodes are needed to represent the 5757 most common five-letter
words of English, using the 130-variable representation, because of special linguistic
properties. But there are 26° = 11,881,376 possible five-letter words. Suppose we
choose 5757 of them at random; how big will the ZDD be then, on average?

222. [27] When family algebra is applied to five-letter words as in (131), the 130
variables are called a1, b1, ..., z5 instead of z1, x2, ..., X130; and the corresponding
elementary families are denoted by the symbols a;, b1, ..., zs instead of e1, e2, .. ., e130.

Thus the family F' = WORDS(5757) can be constructed by synthesizing the formula
F = (wlLthLligLJC4Llh5)U---U(f1|_|u2|_|n3Un4lJy5)U---U(pll_lugl_lplea4lJ15).

a) Let p denote the universal family of all subsets of {a1,...,25}, also called the
“power set.” What does the formula F' M p signify?

b) Let X = X;U---UXs, where X; = {a;j,b;,...,2;}. Interpret the formula FX.

¢) Find a simple formula for all words of F' that match the pattern t*u*h.

d) Find a formula for all SGB words that contain exactly k vowels, for 0 < k < 5
(considering only a, e, i, o, and u to be vowels). Let V; = a; Ue; Uij Uo; Uuj.

e) How many patterns in which exactly three letters are specified are matched by
at least one SGB word? (For example, m¥tc* is such a pattern.) Give a formula.

f) How many of those patterns are matched at least twice (e.g., *atcx)?

g) Express all words that remain words when a ‘b’ is changed to ‘o’.

h) What’s the significance of the formula F/V,?

i) Contrast (X1 U V2 UVaUVyUX5)NF with (X1 UXs)\ ((p\F)/(VaUVzUW)).

223. [28] A “median word” is a five-letter word p = p1 ... pus that can be obtained
from three words @ = a1 ...a5, 8 = B1...85, ¥ = Y1...75 by the rule [a; =p;] +
[Bi=pi] + [vi=pi] =2 for 1 < i < 5. For example, mixed is a median of the words
{fixed,mixer,mound}, and also of {mated,mixup,nixed}. But noted is not a median
of {notes, voted,naked}, because each of those words has e in position 4.

a) Show that {d(a, p),d(8, p),d(~y,)} is either {1,1,3} or {1, 2,2} whenever p is a

median of {&, 3,7}. (Here d denotes Hamming distance.)

b) How many medians can be obtained from WORDS (n), when n = 1007 10007 57577

¢) How many of those medians belong to WORDS (m), when m = 1007 10007 57577
224. [20] Suppose we form the ZDD for all source-to-sink paths in a dag, as in Fig. 28,
when the dag happens to be a forest; that is, assume that every non-source vertex of
the dag has in-degree 1. Show that the corresponding ZDD is essentially the same as
the binary tree that represents the forest under the “natural correspondence between
forests and binary trees,” Egs. 2.3.2—(1) through 2.3.2—(3).
225. [30] Design an algorithm that will produce a ZDD for all sets of edges that form
a simple path from s to t, given a graph and two distinct vertices {s,t} of the graph.
226. [20] Modify the algorithm of exercise 225 so that it yields a ZDD for all of the
simple cycles in a given graph.

227. [20] Similarly, modify it so that it considers only Hamiltonian paths from s to t.

z-profile

SGB words
family algebra
five-letter words

universal family

power set

vowels

SGB word: A word in WORDS (5757)
median word

Hamming distance

forest

binary tree

natural correspondence between forests and bina
cycles

Hamiltonian paths

74 COMBINATORIAL ALGORITHMS (F1B) 7.14

228. [21] And mutate it once more, for Hamiltonian paths from s to any other vertex.

229. [15] There are 587,218,421,488 paths from CA to ME in the graphs (18), but only
437,525,772,584 such paths in (133). Explain the discrepancy.
230. [25] Find the Hamiltonian paths of (133) that have minimum and maximum
total length. What is the average length, if all Hamiltonian paths are equally likely?
231. [23] In how many ways can a king travel from one corner of a chessboard to
the opposite corner, never occupying the same cell twice? (These are the simple paths
from corner to corner of the graph Pz & Ps.)
232. [28] Continuing exercise 231, a king’s tour of the chessboard is an oriented
Hamiltonian cycle of Psx Ps. Determine the exact number of king’s tours. What is the
longest possible king’s tour, in terms of Euclidean distance traveled?
233. [25] Design an algorithm that builds a ZDD for the family of all oriented cycles
of a given digraph. (See exercise 226.)
234. [22] Apply the algorithm of exercise 233 to the directed graph on the 49 postal
codes AL, AR, ..., WY of (18), with XY — YZ as in exercise 7-54(b). For example, one
such oriented cycle is NC — CT — TN — NC. How many oriented cycles are possible?
What are the minimum and maximum cycle lengths?
235. [22] Form a digraph on the five-letter words of English by saying that z — y
when the last three letters of z match the first three letters of y (e.g., crown — owner).
How many oriented cycles does this digraph have? What are the longest and shortest?
236. [M25] Many extensions to the family algebra of exercise 203 suggest themselves
when ZDDs are applied to combinatorial problems, including the following five opera-
tions on families of sets:

e The mazimal elements f1 = {a€ f|BE€ fand a C S implies a = 8};

o The minimal elements f* = {a € f | B € f and a D B implies a = B};

e The nonsubsets f "g={a € f|B € g implies o Z B};

e The nonsupersets f g ={a € f| B € g implies a 2 B};

o The cross elements f* = {a | B € f implies a N B # P}*.
For example, when f and g are the families of exercise 203(a) we have fT = e;Li(eaUes),
fr=eff=0,g"=g"=g,¢" = (e1Ues)Ues, f.7g = erlles, g =€, g f = g\ f = 0.

a) Prove that f.~g= f\ (fMg), and give a similar formula for f \ g.

b) Let f¢ ={a|a€ f} = fBU, where U = e; Uea LI --- is the “universal set.”
Clearly f°° = f, (fUg)® = fUg®, (fNg)° = f°Ng®, (f\g)¢ = f°\g°. Show
that we also have the duality laws f1¢ = fO4 ¢ = 7T, (fLU¢)° = f€ N ¢,
(fn9)°=fug% (fr9)%=1Ng% (FN9)° = Fr g% 1= (0o~ fO

¢) True or false? (i) zt = e1; (i) z] = eq; (iii) 2% = e1; (iv) (z1 V 22)* = e1 Uey;
(v) (z1 A z2) = e Ues.

d) Which of the following formulas hold for all families f, g, and h? (i) T = fT;
(i) f™ = f4 Gi) /™= 1N Gv) o=) Y=) T =
(vii) fH = f% (viii) f1 = f% (ix) f* = 1% x) F 7 (@UR) = (f 7g) N (f ~h);
(xi) Fx(gUh) = (Fg)N(Fh); (xii) Fx(9UR) = (Fug)h; (xiii) f g = fg;
(xiv) f gt = f g (xv) (fFUg)f = (FFUght; (xvi) (FUg)f = (FFugh)t.

e) Suppose g = |J,,_,(ew U ey) is the family of all edges in a graph, and let f be
the family of all the independent sets. Using the operations of extended family
algebra, find simple formulas that express (i) f in terms of g; (ii) g in terms of f.

average solution

king

chessboard

strong product of graphs
king’s tour

Hamiltonian cycle
oriented cycles

postal codes

five-letter words of English
family algebra

notation fT

maximal elements
notation f‘L

minimal elements
notation f g
nonsubsets

notation f \(g
nonsupersets

notation fli

cross elements

universal set
duality laws

7.14 BINARY DECISION DIAGRAMS 75

237. [25] Implement the five operations of exercise 236, in the style of exercise 205.

238. [22] Use ZDDs to compute the mazimal induced bipartite subgraphs of the con-
tiguous-USA graph G in (18), namely the maximal subsets U such that G | U has no
cycles of odd length. How many such sets U exist? Give examples of the smallest and
largest. Consider also the maximal induced tripartite (3-colorable) subgraphs.

239. [21] Explain how to compute the mazimal cliques of a graph G using family
algebra, when G is specified by its edges g as in exercise 236(e). Find the maximal sets
of vertices that can be covered by k cliques, for k =1, 2, ..., when G is the graph (18).
240. [22] A set of vertices U is called a dominating set of a graph if every vertex is
at most one step away from U.

a) Prove that every kernel of a graph is a minimal dominating set.

b) How many minimal dominating sets does the USA graph (18) have?

c¢) Find seven vertices of (18) that dominate 36 of the others.
241. [28] The queen graph Qs consists of the 64 squares of a chessboard, with u —wv
when squares u and v lie in the same row, column, or diagonal. How large are the ZDDs
for its (a) kernels? (b) maximal cliques? (c) minimal dominating sets? (d) minimal
dominating sets that are also cliques? (e) maximal induced bipartite subgraphs?

Illustrate each of these five categories by exhibiting smallest and largest examples.

242. [24] Find all of the maximal ways to choose points on an 8 x 8 grid so that no
three points lie on a straight line of any slope.

243. [M23] The closure f” of a family f of sets is the family of all sets that can be
obtained by intersecting one or more members of f.

a) Prove that f” = {a|a=N{B|B € f and B D a}}.

b) What’s a good way to compute the ZDD for f", given the ZDD for f?

c) Find the generating function for F™ when F' = WORDS(5757) as in exercise 222.
244. [25] What is the ZDD for the connectedness function of P;0Ps (Fig. 22)7 What
is the BDD for the spanning tree function of the same graph? (See Corollary S.)

245. [M22] Show that the prime clauses of a monotone function f are PI(f)*.

246. [M21] Prove Theorem S, assuming that (137) is true.

247. [M27]

248. [M22] True or false: If f and g are sweet, so is f(z1,...,Zn) A g(Z1,...,Zn).
249. [HM31] The connectedness function of a graph is “ultrasweet,” in the sense that

it is sweet under all permutations of its variables. Is there a nice way to characterize
ultrasweet Boolean functions?

Determine the number of sweet Boolean functions of n variables for n < 7.

250. [28] There are 7581 monotone Boolean functions f(z1,z2, 3,4, 2s5). What are
the average values of B(f) and Z(PI(f)) when one of them is chosen at random? What
is the probability that Z(PI(f)) > B(f)? What is the maximum of Z(PI(f))/B(f)?

251. [M46] Is Z(P1(f)) = O(B(f)) for all monotone Boolean functions f?

252. [M380] When a Boolean function isn’t monotone, its prime implicants involve
negative literals; for example, the prime implicants of (z1? z2: z3) are z1Az2, T1Azs,
and z2Az3. In such cases we can conveniently represent them with ZDDs if we consider
them to be words in the 2n-letter alphabet {ej,ei,...,e,,en}. A “subcube” such
as 01x0% is then e} Ll ey Ll €} in family algebra (see 7.1.1-29); and PI(z1? z2: z3) =
(e1 Uep) U (eh Ues)U (eg Les).

maximal induced bipartite subgraphs
bipartite subgraphs
tripartite

3-colorable

maximal cliques

clique covering
dominating set

absorbent sets, see dominating sets
minimal dominating set
USA graph

queen graph

chessboard

kernels

maximal cliques

cliques

no-three-on-a-line problem
collinear points

closure

notation fm

closed item sets, see fﬂ
five-letter words
connectedness function
spanning tree function
prime clauses

CNF

sweet Boolean functions
connectedness function
ultrasweet

monotone Boolean functions
MUX

prime implicants in general+
negative literals+

subcube

family algebra

76 COMBINATORIAL ALGORITHMS (F1B) 7.14

Exercise 7.1.1-116 shows that symmetric functions of n variables might have
Q(3"/n) prime implicants. How large can Z(PI(f)) be when f is symmetric?

253. [M26] Continuing exercise 252, prove that if f = (Z1Afo) V (z1Af1) we have
PI(f) = AU (efUB) U (e;UC), where A = PI(fo A f1), B = PI(fo) \ 4, and C =
PI(f2) \ A. (Equation (137) is the special case when f is monotone.)

254. [M23] Let the functions f and g of (52) be monotone, with f C g. Prove that

PI(g) \ PI(f) = (PL(g:) \P1(f1)) U (PL(gn) \ P1(fn U g1))-

255. [25] A multifamily of sets, in which members of f are allowed to occur more
than once, can be represented as a sequence of ZDDs (fo, f1, fz,...) in which fi is the
family of sets that occur (...aza1a0)2 times in f where ar = 1. For example, if «
appears exactly 9 = (1001)2 times in the multifamily, & would be in f5 and fo.
a) Explain how to insert and delete items from this representation of a multifamily.
b) Implement the multiset union h = f W g for multifamilies.

256. [M32] Any nonnegative integer z can be represented as family of subsets of
the binary powers U = {22k | k> 0} = {2,2%,2%,2% ...}, in the following way: If
r=2%+..-4+2% where e; > --- > e; > 0 and t > 0, the corresponding family has
t sets E; C U, where 2% = [[{u | v € E;}. Conversely, every finite family of finite
subsets of U corresponds in this way to a nonnegative integer x. For example, the
number 41 = 2° + 2% + 1 corresponds to the family {{2,2}, {2*,2?},0}.
a) Find a simple connection between the binary representation of z and the truth
table of the Boolean function that corresponds to the family for x.
b) Let Z(z) be the size of the ZDD for the family that represents z, when the ele-
ments of U are tested in reverse order ..., 2%, 22, 2! (with highest exponents near-
est to the root); for example, Z(41) = 5. Show that Z(z) = O(log z/loglog z).
c) The integer z is called “sparse” if Z(x) is substantially smaller than the upper
bound in (b). Prove that the sum of sparse integers is sparse, in the sense that
Z(z+y) = 0(Z(x) Z(y))-
d) Is the saturating difference of sparse integers, z — y, always sparse?
e) Is the product of sparse integers always sparse?

257. [40] (S.Minato.) Explore the use of ZDDs to represent polynomials with nonneg-
ative integer coefficients. Hint: Any such polynomial in z, y, and z can be regarded as
a family of subsets of {2,22,2* ... =, 2% z*, ...y, 9% v, ..., 2, 2%, 2%, ... }; for exam-

ple, z® 4+ 3wy + 2z corresponds naturally to the family {{z, z*}, {z,v},{2,z,v},{2, 2} }.

258. [25] Given a positive integer n, what is the minimum size of a BDD that has
exactly n solutions? Answer this question also for a ZDD of minimum size.

259. [25] A sequence of parentheses can be can be encoded as a binary string by
letting O represent ‘(’ and 1 represent ‘)’. For example, ()) (() is encoded as 011001.

Every forest of n nodes corresponds to a sequence of 2n parentheses that are
properly nested, in the sense that left and right parentheses match in the normal way.
(See, for example, 2.3.3—(1) or 7.2.1.6—(1).) Let

Nyp(z1,...,Tan) = [Z1... T2, Tepresents properly nested parentheses].

For example, N3(0,1,1,0,0,1) = 0 and N3(0,0,1,0,1,1) = 1; in general, N, has C, &
4™/ (/7 n3/?) solutions, where Cy, is a Catalan number. What are B(N,,) and Z(N,)?

symmetric functions
monotone

multifamily

transaction database, see multifamily of sets
multiset union

Mathews, Edwin Lee (= 41)
truth table

Z(x)

sparse

sum

saturating subtraction
monus

Minato

polynomials

family of subsets

solutions

parentheses

forest

nested

Catalan number

7.14 BINARY DECISION DIAGRAMS 77

> 260. [M27] We will see in Section 7.2.1.5 that every partition of {1,...,n} into disjoint set partitions
subsets corresponds to a “restricted growth sequence” aj .. .an, which is a sequence of reilt"i“ed growth sequence
. . . oraerin,
nonnegative integers with BDD bise
finite-state automaton
ar =0 and aj41 <1+ max(as,...,aq;) for1<j<n. regular language
automata theory
Elements j and k belong to the same subset of the partition if and only if a; = ag. BOOlealn chains
norma.

a) Let zjx = [a;j=k] for 0 < k < j < n, and let R, be the function of these ("'ZH) complement links
variables that is true if and only if a; .. .a, is a restricted growth sequence. (By normalized BDDs
studying this Boolean function we can study the family of all set partitions, and AND

y g o y y o p . > attributed edges, see complement links
by placing further restrictions on R, we can study set partitions with special linear block code
properties. There are wigo & 5 X 10''® set partitions when n = 100.) Calculate parity check matrix

Hamming code

B(R100) and Z(R100). Approximately how large are B(R,) and Z(R,) as n — error-correcting codes
oo? profile

b) Show that, with a proper ordering of the variables z;, the BDD base for rb?sgﬁ code
{Rz1,...,Rn} has the same number of nodes as the BDD for R,, alone. maximum likelihood

¢) We can also use fewer variables, approximately nlgn instead of ("'2"1), if we
represent each ax as a binary integer with [lg k] bits. How large are the BDD

and ZDD bases in this representation of set partitions?

261. [HM21] “The deterministic finite-state automaton with fewest states that ac-
cepts any given regular language is unique.” What is the connection between this
famous theorem of automata theory and the theory of binary decision diagrams?

262. [M26] The determination of optimum Boolean chains in Section 7.1.2 was greatly
accelerated by restricting consideration to Boolean functions that are normal, in the
sense that f(0,...,0) = 0. (See Eq. 7.1.2—(10).) Similarly, we could restrict BDDs so
that each of their nodes denotes a normal function.
a) Explain how to do this by introducing “complement links,” which point to the
complement of a subfunction instead of to the subfunction itself.
b) Show that every Boolean function has a unique normalized BDD.
¢) Draw the normalized BDDs for the 16 functions in exercise 1.
d) Let B°(f) be the size of the normalized BDD for f. Find the average and worst
case of B%(f), and compare B°(f) to B(f). (See (80) and Theorem U.)
e) The BDD base for 3 x 3 multiplication in (58) has B(Fi,...,Fs) = 52 nodes.
What is B°(F1, ..., Fs)?
f) How do (54) and (55) change, when AND is implemented with complement links?

263. [HM25] A linear block code is the set of binary column vectors z = (21,...,2,)"
such that Hz = 0, where H is a given m X n “parity check matrix.”

a) The linear block code with n = 2™ — 1, whose columns are the nonzero binary
m-tuples from (0,...,0,1)” to (1,...,1,1)%, is called the Hamming code. Prove
that the Hamming code is 1-error correcting in the sense of exercise 7-23.

b) Let f(z) = [Hx=0], where H is an m X n matrix with no all-zero columns. Show
that the BDD profile of f has a simple relation to the ranks of submatrices of H
mod 2, and compute B(f) for the Hamming code.

¢) In general we can let f(z) = [z is a codeword] define any block code. Suppose
some codeword x = x1...ZT, has been transmitted through a possibly noisy
channel, and that we’ve received the bits y = y1 ... yn, where the channel delivers
Yr = xx with probability px for each k independently. Explain how to determine
the most likely codeword z, given y, p1, ..., pn, and the BDD for f.

78 COMBINATORIAL ALGORITHMS (F1B) 7.14

264. [M46] The text’s “sweeping generalization” of Algorithms B and C, based on (22),

embraces many important applications; but it does not appear to include quantities
such as

n n—1
max (Z WETr + Zwkxkka) or max
Fl@)=1\ & — Fz)=14

n— n—j
(wj E xk...xk_,_j),
k=1

which also can be computed efficiently from the BDD or ZDD for f.
Develop a generalization that is even more sweeping.

1
0

We dare not lengthen this book much more,
lest it be out of due proportion,
and repel men by its size.

— AELFRIC, Catholic Homilies 11 (c.1000)

There are a thousand hacking at the branches of evil
to one who is striking at the root.

— HENRY D. THOREAU, Walden; or, Life in the Woods (1854)

generalization, sweeping
optimization

Boolean programming, generalized
ELFRIC

THOREAU

7.14 ANSWERS TO EXERCISES 79

SECTION 7.1.4
1. Here are the BDDs for truth tables 0000, 0001, ..., 1111, showing the sizes below:

4 3 4 3 5 4 4 5 3 4 3 4

2. (The ordering property determines the direction of each arc.)

=

4 1

3. There are two with size 1 (namely the two constant functions); none with size 2
(because two sinks cannot both be reachable unless there’s also a branch node); and
2n with size 3 (namely z; and z; for 1 < j < n).

4. Sety <+ *Offffffeffffffe&z+%20000002,y < (y>>28)&*10000001, ' + zdy.
(See 7.1.3—(93).)

5. You get f(Z1,-..,Zn) = f2(21,---,%n), the dual of f (see exercise 7.1.1-2).

6. The largest subtables of 1011000110010011, namely 10110001, 10010011, 1011,
0001, 1001, 0011, are all distinct beads; squares and duplicates don’t appear until we
look at the subtables {10,11,00,01} of length 2. So g has size 11.

7. (a) If the truth table of f is aoai ...ayk_;, where each «; is a binary string of
length 2n—k:, the truth table of g is Bof2 ... ﬂzk o, where ,32]' = Q202410025 4+10025 41
(b) Thus the beads of f and gi are closely related. We get the BDD for gj from

the BDD for f by changing @ to for 1 < j < k, and replacing @ by G&=D-
oo
a o

8. (a) Now f2; = azjazj4102j4102;. (b) Again change (5) to for1<j<k. If
@ is present in f but not @ , replace @ by ; otherwise replace @ @ by
r” r”’ ; ’ r” r"

o« o o oo (k) adda

a o

. [E. Dubrova and L. Macchiarulo, IEEE Trans. C-49 (2000), 1290-1292.]

9. There is no solution if s = 1. Otherwise set k <+ s—1, 7 « 1, and do the following
steps repeatedly: (i) While j < vg, set z; < 1 and j + j + 1; (ii) stop if k = 0; (iii) if
hi # 1, set z; < 1 and k + hy, otherwise set z; « 0 and k « li; (iv) set j < j + 1.

4

dual
Dubrova
Macchiarulo

80 ANSWERS TO EXERCISES 7.14

10. Let Iy = (k7 lk:hy) for 0 < k < s and I, = (03,7 li: hy,) for 0 < k < s'. We may
assume that s = s’; otherwise f # f’. The following algorithm either finds indices
(to,...,ts—1) such that Iy corresponds to Ij, , or concludes that f # f':

I1. [Initialize and loop.] Set ts—1 < s — 1, t1 < 1, to « 0, and t; « —1 for
2<k<s—2 Dosteps I12-14 for k = s—1, s — 2, ..., 2 (in this order). If
those steps “quit” at any point, we have f # f'; otherwise f = f’.

I2. [Test vi.] Set t < tx. (Now ¢ > 0; otherwise I would have no predecessor.)
Quit if vy # vg.

I3. [Test lx.] Set I+ lx. If t; < 0, set t; + li; otherwise quit if I} # ;.

I4. [Test hi.] Set h « hi. If t, < 0, set t;, < hi; otherwise quit if hy #t,. |

11. (a) Yes, since ¢ correctly counts all paths from node & to node 1. (In fact, many
BDD algorithms will run correctly —but more slowly —in the presence of equivalent
nodes or redundant branches. But reduction is important when, say, we want to test
quickly if f = f’ as in exercise 10.)

(b) No. For example, suppose Is = (1?72:1), I, = (170:1), I = (271:1), I =
(270:0); then the algorithm sets cz + 1, c3 < 3. (But see exercise 35(b).)
)

12. (a) The first condition makes K independent; the second makes it maximally so.
(b) None when n is odd; otherwise there are two sets of alternate vertices.
(c) A vertex is in the kernel if and only if it is a sink vertex or in the kernel of the
graph obtained by deleting all sink vertices and their immediate predecessors.
[Kernels represent winning positions in nim-like games, and they also arise in
n-person games. See J. von Neumann and O. Morgenstern, Theory of Games and Eco-
nomic Behavior (1944), §30.1; C. Berge, Graphs and Hypergraphs (1973), Chapter 14.]

13. (a) A maximal clique of G is a kernel of G, and vice versa. (b) A minimal vertex
cover U is the complement V \ W of a kernel W, and vice versa (see 7—(61)).

14. (a) The size is 4(n — 2) + 2[n=3]. When n > 6 these BDDs form a pattern in

which there are four branch nodes for variables 4, 5, ..., n — 2, together with a fixed
pattern at the top and bottom. The four branches are essentially
(:clzj_l = 00) (mle_l = 01) (mlmj_l = 10) (mlzj_l = 11)

(b) Here the numbers for 3 < n < 10 are (7,9, 14,17, 22,30, 37,45); then a fixed
pattern at the top and bottom develops as in (a), with nine branch nodes for each
variable in the middle, and the total size comes to 9(n — 5). The nine nodes on each
middle level fall into three groups of three,

(zj—2wj—1 =00) (zj_2z;—1=10) (zj-1=1)

P @\\)
T oy 103 =00 oy vy Ty =

with one group for z;z2 = 00, one for x1z2 = 01, and one for z; = 1.

15. Both cases lead by induction to well known sequences of numbers: (a) The Lucas
numbers L, = Fp41 + F_1 [see E. Lucas, Théorie des Nombres (1891), Chapter 18].
(b) The Perrin numbers, defined by Ps =3, Py =2, Ps =5, P, = Pp_2 + P,_3. [See
R. Perrin, L’Intermédiaire des Mathématiciens 6 (1899), 76-77.]

nim-like

games

von Neumann
Morgenstern
Berge

Lucas numbers
Fibonacci numbers
Perrin numbers
recurrences

Perrin

7.14 ANSWERS TO EXERCISES 81

16. When the BDD isn’t , all solutions are generated by calling List(1, root), where
List(4,p) is the following recursive procedure: If v(p) > j, set z; < 0, call List(5+1,p),
set z; < 1, and call List(j + 1,p). Otherwise if p is the sink node , visit the
solution z1...zn. (The idea of “visiting” a combinatorial object while generating
them all is discussed at the beginning of Section 7.2.1.) Otherwise set z; < 0; call
List(j +1,LO(p)) if LO(p) # [L]; set z; < 1; and call List(j + 1, HI(p)) if HI(p) # [L].
The solutions are generated in lexicographic order. Suppose there are NV of them.
If the kth solution agrees with the (k—1)st solution in positions 1 ... z;_1 but not in z;,
let ¢(k) = n—j; and let ¢(1) = n. Then the running time is proportional to 31, c(k),
which is O(nNN) in general. (This bound holds because every branch node of a BDD
leads to at least one solution. In fact, the running time is usually O(N) in practice.)

17. That mission is impossible, because there’s a function with N = 22* and B(f) =
O(22*) for which every two solutions differ in more than 2¥~* bit positions. The running
time for any algorithm that generates all solutions for such a function must be Q(23k),
because 9(2’“) operations are needed between solutions. To construct f, first let

9(@15 - Ty Y0s -y Yok 1) = [Y(t1..t0)2 = T1t1 D -+ - ® Tty for 0< by, .., tp < 1.

(In other words, g asserts that yo...y,x_4 is row (z1...zx)2 of an Hadamard matrix;
see Eq. 4.6.4—(38).) Now we let f(Z1,.--, %k, Yo, -1 Yok _15 810+ 1 Ths Yoo+« Yk _1) =
9(Z1y - T Yoy -+ r Yge_q) A g(TL, e Tl Yoy - - s y;k_l). Clearly B(f) = O(22k) when
the variables are ordered in this way. Indeed, T. Dahlheimer observes that B(f) =
2B(g) — 2, where B(g) = 2* + 1+ Ejil gmin(k,1+lg 1) _ g2zk—1 4+ ok 4 s,

18. First, (W1,...,Ws) = (5,4,4,4,0). Then mo = wy =4 and t2 = 1; mg = t3 = 0;
myeg = max(mg,m2+w3) =1,ta=1,ms =Wy—Ws=4,t5 =0; meg = wa+ W3 —W;s =
2, te = 1; m7 = max(ms, ma + w2) = 4, t7 = 0; mg = max(mz,me + w1) = 4, tg = 0.
Solution z1z2x324 = 0001.

19. 7, min(w;,0) <377 min(w;,0) <myk < 37T max(wj,0) = Wy, < Wi
20. Set wy + —1, then wa; < w; and wajt+1 + —w; for 1 < j < n/2. [This method
may also compute wy41. The sequence is named for works of A. Thue, Skrifter udgivne
af Videnskabs-Selskabet i Christiania, Mathematisk-Naturvidenskabelig Klasse (1912),
No. 1, §7, and H. M. Morse, Trans. Amer. Math. Soc. 22 (1921), 84-100, §14.]

21. Yes; we just have to change the sign of each weight w;. (Or we could reverse the
roles of LO and HI at each vertex.)

22. If f(z) = f(z') = 1 when f represents a graph kernel, the Hamming distance
v(z @ z') cannot be 1. In such cases v; = v+ 1 when [# 0 and v, = v+ 1 when h # 0.

23. The BDD for the connectedness function of any connected graph will have exactly
n — 1 solid arcs on every root-to- path, because that many edges are needed to con-
nect n vertices, and because a BDD has no redundant branches. (See also Theorem S.)
24. Apply Algorithm B with weights (wis,...,wse) = (—w12—2,..., —ws9—x), where
z is large enough to make all of these new weights w;, negative. The maximum of
> Wiy Tuw Will then occur with Y x4, = 8, and those edges will form a spanning tree
with minimum Y wyyZuy. (We’ve seen a better algorithm for minimum spanning trees
in exercise 2.3.4.1-11, and other methods will be studied in Section 7.5.4. However, this
exercise indicates that a BDD can compactly represent the set of all spanning trees.)

25. The answer in step C1 becomes (1 + z)”“’*l_lcs_l; the value of ¢ in step C2
becomes (1 + z)"t %k 1e; + (14 2)7h "% "1z,

recursive

visiting
lexicographic order
Hadamard matrix
Dahlheimer

Thue

Morse

Hamming distance

82 ANSWERS TO EXERCISES 7.14

26. In this case the answer in step C1 is simply c¢s—1; and the value of ¢x in step C2
is simply (1 — pv,)¢ + Do Ch-
27. The multilinear polynomial H(z1,...,zn) = F(z1,...,%Zn) — G(z1,...,%s) is
nonzero modulo g, because it is =1 for some choice of integers with each zx € {0,1}.
If it has degree d (modulo g), we can prove that there are at least (g — 1)%¢" ¢ sets of
values (q1,...,gn) with 0 < ¢gx < g such that H(q,...,gn) mod g # 0. This statement
is clear when d = 0. And if zj is a variable that appears in a term of degree d > 0, the
coefficient of z is a polynomial of degree d — 1, which by induction on d is nonzero for
at least (g —1)% g™ % choices of (q1,...,qk—1,qk+1,--,Gn); for each of those choices
there are ¢ — 1 values of g such that H(qi,...,qn) mod g # 0.

Hence the stated probability is > (1 — 1/¢)% > (1 — 1/q)". [See M. Blum, A. K.
Chandra, and M. N. Wegman, Information Processing Letters 10 (1980), 80-82.]

28. F(p) = (1 —p)"G(p/(1 —p)). Similarly, G(2) = (1 + 2)"F(z/(1 + 2)).
29. In step Cl1, also set c¢; < 0, ¢i < 0; return c,_; and c;_;. In step C2, set
¢k + (1= p)er +pen and ¢, < (1 —p)e; — ¢; + pey, + cp-
30. The following analog of Algorithm B does the job (assuming exact arithmetic):
Al. [Initialize.] Set Ppy1 < 1 and P; < Pj41 max(1l — pj,p;) forn > j > 1.
A2, [Loop on k.] Set m1 < 1 and do step A3 for 2 < k < s. Then do step A4.

A3. [Process I.] Set v + vk, | < lg, h < hi, tx < 0. If I # 0, set mp <«
mi(1 — py)Pyy1/Py,. Then if h # 0, compute m < mppyPys1/Py,; and if
I =0 or m > myg, set mg < m and ty < 1.

Ad4. [Compute the z’s.] Set j < 0, k + s — 1, and do the following operations
until j = n: While j < vg — 1, set j « j + 1 and z; « [p; > 3]; if k& > 1, set
j+j+1and z; + tx andk(—(tk:O? lkhk) 1

31. C1'. [Loop over k.] Set ag + L, a3 < T, and do step C2' fork=2,3,...,s— 1.
Then go to C3'.

C2'. [Compute ay.] Set v + vk, | < lx, and h < hy. Set 8+ a; and j < v; — 1;
then while j > v set 8 « (Zjoz;) e and j < j— 1. Set v < ap and
j < vn — 1; then while j > v set v < (Zj ox;) @y and j « j — 1. Finally set
ak (To e B) o (zy 7).
C3'. [Finish.] Set @ < as_1 and j + vs—1—1; then while j > 0set a + (Z;joz;)ec
and j «+ j — 1. Return the answer a. |
This algorithm performs o and e operations at most O(nB(f)) times. The upper bound
can often be lowered to O(n) + O(B(f)); but shortcuts like the calculation of Wy in
step B1 aren’t always available. [See O. Coudert and J. C. Madre, Proc. Reliability and
Maint. Conf. (IEEE, 1993), 240-245, §4; O. Coudert, Integration 17 (1994), 126-127.]
32. For exercise 25, ‘o’ is addition, ‘e’ is multiplication, ‘1’ is 0, ‘T’ is 1, ‘z;’ is 1, ‘x;’
is z. Exercise 26 is similar, but ‘z;’ is 1 — p; and ‘z;’ is p;.

In exercise 29 the objects of the algebra are pairs (c,c’), and we have (a,a’) o
(b,b") = (a+ b,a’ + V'), (a,a') e (b,b') = (ab,ab’ + a’b). Also ‘L’ is (0,0), ‘T’ is (1,0),
‘z; is (1—p,—1), and ‘z;’ is (p, 1).

In exercise 30, ‘o’ is max, ‘e’ is multiplication, ‘1’ is —oco, ‘T’ is 1, ‘@;’ is 1 — p;,
‘z;’ is pj. Multiplication distributes over max in this case because the quantities are
either nonnegative or —oco; we must define 0 @ (—oo) = —oo in order to satisfy (22).

(Additional possibilities abound, because associative and distributive operators are
ubiquitous in mathematics. The algebraic objects need not be numbers or polynomials

R

Blum
Chandra
Wegman
Coudert
Madre
Coudert

7.14 ANSWERS TO EXERCISES 83

or pairs; they can be strings, matrices, functions, sets of numbers, sets of strings, sets
or multisets of matrices of pairs of functions of strings, etc., etc. We will see many
further examples in Section 7.3. The min-plus algebra, with o = min and e = +, is
particularly important, and we could have used it in exercise 21 or 24. It is often called
tropical, implicitly honoring the Brazilian mathematician Imre Simon.)

33. Operate on triples (c,c’,c"), with (a,a’,a") o (b,0',8") = (a + b,a’ + b',a” +b")
and (a,a’,a") e (b,b',b") = (ab,a'b+ b'a,a”b + 2a'b’ + ab”). Interpret ‘L’ as (0,0,0),
‘T’ as (1,0,0), ‘z;” as (1,0,0), and ‘z;’ as (1,w;,w]).

34. Let zVy = max(z,y). Operate on pairs (¢, c'), with (a,a’) o (b,0') = (aVb,a’ Vb')
and (a,a’) e (b,b') = (a+b,(a’ +b) V (a +b")). Interpret ‘L’ as (—oo, —o0), ‘T’ as
(0,—00), ‘z;" as (0,w}), and ‘z;’ as (w;,w; + w}). The first component of the result
will agree with Algorithm Bj; the second component is the desired maximum.

35. (a) The supposed FBDD can be represented by instructions Is_1, ..., Ip as in
Algorithm C. Start with Ry < R; < 0, then do the following for k = 2, ..., s — 1:
Report failure if vy € Ry, U Ry, ; otherwise set Ry < {vk} U R, U Rp,. (The set Ry
identifies all variables that are reachable from Ij.)

(b) The reliability polynomial can be calculated just as in answer 26. To count
solutions, we essentially set p1 = -+ = pp, = % and multiply by 2™: Start with cg < 0
and c; < 2", then set ¢y < (i, +cn,)/2 for 1 < k < s. The answer is ¢cs_1.

36. Compute the sets Ry as in answer 35(a). Instead of looping on j as stated in step
C2' of answer 31, set 8 < o and then 8+ (Zjoz;)e B for all j € R \ R; \ {v}; treat
v in the same manner. Similarly, in step C3' set a < (Zjoz;) e a for all j ¢ Rs_1.

37. Given any FBDD for f, the function G(z) is the sum of (14z)"~'ength P solidarcsin P
over all paths P from the root to [T]. [See Theoretical Comp. Sci. 3 (1976), 371-384.]

38. The key fact is that z; = 1 forces f = 1 if and only if we have (i) hy = 1 whenever
vk = j; (ii) vx = Jj in at least one step k; (iii) there are no steps with (v < j < v, and
Il #1) or (v < j < vp, and hy # 1).

K1. [Initialize.] Set t; < 2 and p; < 0 for 1 < j <n.

K2. [Examine all branches.] Do the following operations for 2 < k < s: Set j + vk
and g < 0. If Iy = 1, set ¢ — —1; otherwise set p; < max(p;, vy,). If hx =1,
set ¢ < +1; otherwise set p; < max(p;,vs,). If t; = 2, set t; < ¢; otherwise
if t; # g set t; < 0.

K3. [Finish up.] Set m < vs_1, and do the following for j = 1,2, ..., n: If j < m,
set t; < 0; then if p; > m, set m + p;. |

[See S.-W. Jeong and F. Somenzi, in Logic Synthesis and Optimization (1993), 154-156.]
39. k(n+1—k)+2,for1<k<n. (See (26).)

40. (a) Suppose the BDDs for f and g have respectively a; and b; branch nodes @,
for 1 < j < n. Each subtable of f of order n + 1 — k has the form aB8v§, where «,
B, v, and § are subtables of order n — 1 — k. The corresponding subtables of g are
aadd; hence they are beads if and only if a # §, in which case either a8+d is a bead or
aff =6 is a bead. Consequently by < ar + ax+1, and bg+1 = 0. We also have b; < a;
for 1 < j < k, because every bead of g of order > n+1—k is “condensed” from at least
one such bead of f. And b; < a; for j > k+1, because the subtables on (zx42,...,Zn)
are identical although they might not appear in g.

min-plus algebra
tropical

Simon

Jeong

Somenzi

84 ANSWERS TO EXERCISES 7.14

(b) Not always. The simplest counterexample is f(z1,z2,23,24) = T2 A (z3 V Z4),
h(z1,z2,21,24) = 2 A (21 V 24), when B(f) = 5 and B(h) = 6. (We do, however,
always have B(h) < 2B(f).)

41. (a) 3n — 3; (b) 2n. (The general pat-
terns are illustrated here for n = 6. One can
also show that the “organ-pipe ordering”

Fy F> F3 _Fy Fpn_1 Fr_a
(T 17 T2 122" . T3] 4 [neven] Tlny2])

produces the profile 1, 2, 4, ..., 2[n/2]-2,
2|n/2] -1, ..., 5, 3, 1, 2, giving the total
BDD size (72”) + 3; this ordering appears to
be the worst for the Fibonacci weights.)
The functions [Frz1 + - - + Fizn > t]
have been studied by J. T. Butler and T. Sasao, Fibonacci Quart. 34 (1996), 413-422.

42. (Compare with exercise 2.) The sixteen roots are the @ nodes and the two sinks:

0011

1100

43. (a) Since f(z1,...,%2,) is the symmetric function S, (z1,...,Tn, Tnt1,--.,T2n),
we have B(f) =1+2+---+(n+1)+---+3+2+2=n’+2n+2.

(b) By symmetry, the size is the same for [>_{z; |i € I} =Y {z: | i & I}], |I| = n.
44. There are at most min(k, 2" 2~% — 2) nodes labeled @, for 1 < k < n, because
there are 2"727% — 2 symmetric functions of (z,...,z,) that aren’t constant. Thus
S, is at most 2 + Y, _, min(k,2"*>~* — 2), which can be expressed in closed form as
(n+2—b,)(n+1—b,)/2+2(2% —b,), where b, = A(n+4—A(n+4)) and An = |lgn].

A symmetric function that attains this worst-case bound can be constructed in
the following way (related to the de Bruijn cycles constructed in exercise 3.2.2-7):
Let p(z) = 2%+ az® '+ ... +ag be a primitive polynomial modulo 2. Set tx « 1
for 0 < k < d; tx + (a1tk—1+ -+ + aatk—a) mod 2 for d < k < 29 4 d— 2ty
(1+aite—1+-+++aate—a) mod 2 for 2% +d—2 < k < 2" +d—3; and tyas1,4 5 < 1.
For example, when p(z) = 24+ z+1 we get to...t16 = 11100101101000111.

Then (i) the sequence ti...tya 4 5 contains all d-tuples except 0 and 1% as
substrings; (ii) the sequence tya 4 o ...ta+144_4 is a cyclic shift of #o...%a_,; and
(iii) tx = 1 for 29 _1<k<294d—3and 2971 —2 < k < 29+ 4 d—3. Consequently the
sequence to . . .tyat+1,4 3 contains all (d+1)-tuples except 0°*" and 147" as substrings.
Set f(z) = tyz to maximize B(f) when 2¢+d —4 <n <21 44— 3.

Asymptotically, S, = in®> —nlgn + O(n). [See I. Wegener, Information and
Control 62 (1984), 129-143; M. Heap, J. Electronic Testing 4 (1993), 191-195.]

45. Module M; has only three inputs (21, y1, z1), and only three outputs us = 1, v2 =
Y121, w2 = z1z1. Module M,_; is almost normal, but it has no input port for z,_1,

organ-pipe ordering
reordering

Butler

Sasao

symmetric function
Az

binary logarithm
de Bruijn cycles
primitive polynomial modulo 2
‘Wegener

Heap

7.14 ANSWERS TO EXERCISES 85

and it doesn’t output un; it sets zn—2 = Tn—1Yyn—1. Module M,, has only three inputs
(Vn,Wn, Zn), and one output yn,—1 = z, together with the main output, wn V vpzn.
With these definitions the dependencies between ports form an acyclic digraph.

(Modules could be constructed with all by = 0 and a; < 5, or even with a; < 4 as
we’ll see in exercise 47. But (33) and (34) are intended to illustrate backward signals
in a simple example, not to demonstrate the tightest possible construction.)

46. For 6 < k < n — 3 there are nine branches on @, corresponding to three cases
(Z1,21T2,z122) times three cases (Tk—1,Tk—2Tk—1,Tk—3Tk—2Tk—1). The total BDD
size turns out to be exactly 9n — 38, if n > 6.

47. Suppose f has gi subtables of order n—£k, so that its QDD has gx nodes that branch
on zxt1. We can encode them in ar = [lg gx| bits, and construct a module M1 with
bk = br+1 = 0 that mimics the behavior of those gx branch nodes. Thus by (86),

ZQakgbk _ ZQI'ngk'I < Z(qu —-1) =2Q(f) - (n+1) < (n+1)B(f)-
k=0 k=0 k=0

(The 2™-way multiplexer shows that the additional factor of (n+1) is necessary; indeed,
Theorem M actually gives an upper bound on Q(f).)

48. The sums ux = 1+ -+ and vy = Tx4+1+- -+, can be represented on 1+ Ak
and 1+ A(n — k) wires, respectively. Let tx = 2 A [ur + v =k] and wg, = €1V -+ - V .
‘We can construct modules M} having inputs ui_1 and wg_1 from M} _; together with
inputs vy from Mj41; module My outputs ur = ug—1 +xx and wr = wr—1 Vi to Mgy
as well as v 1 = vk + Tk to My _1.

Ifpi lynomial, 3 7 2P(@k:bk) — 20e8m ™ i asymptotically less than 22

p 1s a polynomial,) ,_q ymp y

[See K. L. McMillan, Symbolic Model Checking (1993), §3.5, where Theorem M was
introduced, with extensions to nonlinear layouts. The special case by = --- = b, =0
had been noted previously by C. L. Berman, IEEE Trans. CAD-10 (1991), 1059-1066.]

49.

subtables

QDD

QT'E—viray multiplexer
Q(f

McMillan

Berman

Semba

Yajima

86 ANSWERS TO EXERCISES 7.14

51. In this case B(f;) =3j+2 for 1 < j <n, and B(fn+1) = 3n+1; so the individual
BDDs are only about 1/3 as big as they are within (36). But almost no nodes are
shared — only the sinks and one branch. So the total BDD size comes to (3n* 4 9n)/2.

52. If the BDD base for {f1,..., fm} has s nodes, then B(f) =s+m+1+ [s=1].

53. Call the branch nodes a, b, ¢, d, e, f, g, with ROOT = a. After step R1 we
have HEAD[1] = ~a, AUX(a) = ~0; HEAD[2] = ~b, AUX(D) = ~c, AUX(c) = ~0;
HEAD[3] = ~d, AUX(d) = ~e, AUX(e) = ~f, AUX(f) = ~g, AUX(g) = ~0.

After R3 with v = 3 we have s = ~0, AUX(0) = ~e, AUX(e) = f, AUX(f) = 0; also
AVAIL = g, LO(g) = ~1, HI(g) = d, L0O(d) = ~0, and HI(d) = o, where o was the
initial value of AVAIL. (Nodes g and d have been recycled in favor of 1 and 0.) Then R4
sets s «— e and AUX(0) < 0. (The remaining nodes with V = v start at s, linked via AUX.)

Now R7, starting with p = ¢ = e and s = 0, sets AUX(1) <« ~e, LO(f) « ~e,
HI(f) < g, AVAIL « f; and R8 resets AUX(1) « 0.

Then step R3 with v = 2 sets LO(b) <« 0, LO(c) < e, and HI(c) < 1. No
further changes of importance take place, although some AUX fields temporarily become
negative. We end up with Fig. 21.

54. Create nodes j for 1 < j < 2"7! by setting V(j) « [lgj], LO() <+ 25 — 1, and
HI(j) « 2j; also for 2"! < j < 2™ by setting V(j) < n, LO() + f(z1,...,2Zn_1,0),
and HI(j) < f(z1,-..,Zn-1,1) when j = (1z1...2n—_1)2+1. Then apply Algorithm R
with ROOT = 2. (We can bypass step R1 by first setting AUX(j) < —j for 4 < j < 27,
then HEAD[k] + ~(2%) and AUX(2F"' + 1) « —1for 1 <k <n.)

55. It suffices to construct an unreduced diagram, since Algorithm R will then finish
the job. Number the vertices 1, ..., n in such a way that no vertex except 1 appears
before all of its neighbors. Represent the edges by arcs aq, ..., ae, where ay, is uy — v
for some u; < vg, and where the arcs having uy = j are consecutive, with s; < k < s;41
and 1 = 81 < -+ < 8p = Spt1 = e + 1. Define the “frontier” Vi, = {1,v1,...,vx} N
{uk,...,n} for 1 <k < e, and let Vo = {1}. The unreduced decision diagram will have
branches on arc ay, for all partitions of V;_; that correspond to connectedness relations
that have arisen because of previous branches.

For example, consider P; O P3, where (s1,...,s10) = (1,3,5,7,8,10,11,12,13,13)
and Vo = {1}, Vi = {1,2}, Vo = {1,2,3}, Vs = {2,3,4}, ..., Viz = {8,9}. The branch
on ai goes from the trivial partition 1 of Vo to the partition 1|2 of V; if 12, or to
the partition 12 if 1 — 2. (The notation ‘1|2’ stands for the set partition {1} U {2},
as in Section 7.2.1.5.) From 1|2, the branch on a2 goes to the partition 1|2|3 of V2 if
1/ 3, otherwise to 13|2; from 12, the branches go respectively to partitions 12|3 and
123. Then from 1|2|3, both branches on a3 go to , because vertex 1 can no longer
be connected to the others. And so on. Eventually the partitions of V., = Vi5 are all
identified with , except for the trivial one-set partition, which corresponds to .
56. Start with m < 2 in step R1, and vo <= v1 <= Umax+ 1, lo <~ ho <=0, l1 < h1 < 1
as in (8). Assume that HI(0) = 0 and HI(1) = 1. Omit the assignments that involve
AVAIL in steps R3 and R7. After setting AUX(HI(p)) < O in step R8, also set v < v,
lm < HI(LO(p)), hm < HI(HI(p)), HI(p) < m, and m < m + 1. At the end of
step R9, set s + m — [ROOT =0].

57. Set LO(ROOT) < ~LO(ROOT). (We briefly complement the L0 field of nodes that are
still accessible after restriction.) Then for v = V(ROOT), ..., Umax, Set p < ~HEAD[v],
HEAD [v] < ~0, and do the following while p # 0: (i) Set p’ +— ~AUX(p). (ii) If LO(p) >
0, set HI(p) <+ AVAIL, AUX(p) < 0, and AVAIL < p (node p can no longer be reached).
Otherwise set LO(p) <+ ~L0(p); if FIX[v] = 0, set HI(p) <« LO(p); if FIX[v] = 1, set

common subfunctions
frontier

partitions of a set

set partition

7.14 ANSWERS TO EXERCISES 87

LO(p) « HI(p); if LO(LO(p)) > 0, set LO(LO(p)) « ~LO(LO(p)); if LOCHI(p)) > O,
set LO(HI(p)) < ~LO(HI(p)); and set AUX(p) < HEAD[v], HEAD[v] < ~p. (iii) Set
p < p'. Finally, after finishing the loop on v, restore L0O(0) « 0, LO(1) <« 1.

58. Since l£hand ' 21k, wehave lol' Zhoh’,lod’ #hoa’,and aol #acoh'.

Suppose a oo’ = 8o ', where 8 = (v",I"”,h") and B = (", 1", h""). If 0" ="
we have v = v, lol' =1" 01", and hoh' = h" o h"'. If v < v" we have v = v",
loo' =1"opB,and hoao' = h" ¢pB’. Otherwise we have v' = v"', aol’' = Bo1", and
aoh' =B oh". By induction, therefore, we have o = 8 and o’ = 8’ in all cases.

59. (a) If h isn’t constant we have B(fog) = 3B(h) —2, essentially obtained by taking
a copy of the BDD for A and replacing its sink nodes by two other copies.

(b) Suppose the profile and quasi-profile of h are (bo,...,bn) and (qo,-..,qn),

where b, = ¢n = 2. Then there are bygr branches on z3ry1 in f ¢ g, and grbr—1
branches on z2k, corresponding to ordered pairs of beads and subtables of h. When
the BDD for h contains a branch from « to 8 and from o' to B’, where V(a) = j,
V(B) =k, V(a') = j', and V(B’) = k', the BDD for f ¢ g contains a corresponding
branch with V(aoa') = 2j — 1 from a oo’ to S oo’ when j < j' < k, and with
V(oo o) =25 from ao o to ao B when j' < j <k’
60. Every bead of order n—j of the ordered pair (f, g) is either one of the b;b} ordered
pairs of beads of f and g, or one of the b; (g} — b}) + (g; — b;)b} ordered pairs that have
the form (bead, nonbead) or (nonbead, bead). [This upper bound is achieved in the
examples of exercises 59(b) and 63.]

61. Assume that v = V(a) < V(B). Let a, ..., ar be the nodes that point to «,
and let B1, ..., Bi be the nodes with V(3;) < v that point to 8; an imaginary node is
assumed to point to each root. (Thus k = in-degree(a) and ! < in-degree(8).) Then
the melded nodes that point to a0 are of three types: (i) a;¢8;, where V(as) = V(8;)
and either (LO(a;) = a and LO(B;) = B) or (HI(aw;) = a and HI(B;) = B); (ii) a ¢ B;,
where V(a;) < V(B;) for some ¢; or (iii) oy ¢ 8, where V(a;) > V(B;) for some j.

62. The BDD for f has one node on each level, and the BDD for g has two, except at
the top and bottom. The BDD for fV g has four nodes on nearly every level, by exercise
14(a). The BDD for f ¢ g has seven nodes @ when 5 < 57 < n — 3, corresponding
to ordered pairs of subtables of (f,g) that depend on z; when (z1,...,z;-1) have
fixed values. Thus B(f) = n + O(1), B(g) = 2n+ O(1), B(f ¢ g) = Tn+ O(1), and
B(fVvg)=4n+0(1). (Also B(fAg) =Tn+O(1), B(f®g) = Tn+ O(1).)

63. The profiles of f and g are respectively (1,2,2,...,2m~1 2™~ 2™ 1.1,...,1,2)
and (0,1,2,2,...,2™7 1 2m71 1.1,...,1,2); so B(f) = 2™"? —1 = 4n and B(g) =
2™+ 1 9™ 1 ~ 3n. The profile of f Ag begins with (1,2,4,...,2*™2 2?m~1 _gm~1)
because there’s a unique solution i ... zZ2m to the equations

(w1 @ z2) (3 @ @4) - .- (T2m—1 D T2m))2 =D, (T2 D x3) ... (T2m—2 D Tam—1)Tam)2 = ¢

for 0 < p,g < 2™, and p=gq if and only if 1 = 23 = --- = xom_1 = 0. After that the
profile continues (2™*! —2,2m+1 2 om+l _4 om+l _ g . 4 2 2); the subfunctions
are Tam+4j N Tom+k OF Tom+tj N\ Tomik for 1 < 7 < k< 2m, together with T2am+j and
Tomts for 2 < j < 2™. All in all, we have B(f A g) = 2*™T! 2™~ _ 1~ 2n2,

64. The BDD for any Boolean combination of fi, f2, and f3 is contained in the meld
f1 ¢ fz2 0 fs, whose size is at most B(f1) B(f2)B(f3)-

65. h = g? fi: fo, where fc is the restriction of f obtained by setting z; <— ¢. The
first upper bound follows as in answer 64, because B(f.) < B(f). The second bound

profile

quasi-profile

beads

subtables

bead

depend on

meld

mux

if-then-else function
restriction

88 ANSWERS TO EXERCISES 7.14

fails when, for example, n = 2™ + 3m and h = Mn(z;y)? Mn(z';y): Mn(z";y),
where z = (z1,...,%Zm), T = (Z1,..., %), 2" = (z7,...,zm), and y = (Yo, .. .,Yam_1);
but such failures appear to be rare. [See R. E. Bryant, IEEE Trans. C-35 (1986), 685;
J. Jain, K. Mohanram, D. Moundanos, I. Wegener, and Y. Lu, ACM/IEEE Design
Automation Conf. 37 (2000), 681-686.]

66. Set NTOP < fo + 1 — [and terminate the algorithm.

67. Let t; denote template location POOLSIZE — 2k. Step S1 sets LEFT(¢;) < 5,
RIGHT(t1) < 7,1 < 1. Step S2 for [= 1 puts ¢; into both LLIST[2] and HLIST[2].
Step S5 for | = 2 sets LEFT(t2) < 4, RIGHT(t2) < 5, L(t1) < to; LEFT(t3) «
3, RIGHT(t3) <« 6, H(t1) < t3. Step S2 for | = 2 sets L(¢2) < 0 and puts t2 in
HLIST[3]; then it puts ¢3 into LLIST[3] and HLIST[3]. And so on. Phase 1 ends with
(LSTART[O], ..., LSTART[4]) = (to, 1, t3,t5,s) and

k LEFT(tx) RIGHT(#x) L(tx) H(tx) k LEFT(tx) RIGHT(#x) L(tx) H(tx)

1 5 [a] 7wt ts 5 3 [v] 4[p] g ts
2 4 [A] 5 [x] 0 ta 6 2 [4] 2 [7] 0 1
3 3 [] 6[¥] ts 7 2 (4] 1[T] o 1
4 3 [1[T] tr 1 8 1 [T] 3 [v] 1 0

representing the meld a ¢ w in Fig. 24 but with L ox=2¢ 1l =1L and ToT =T.
Let fr = fo+ k. In phase 2, step S7 for [= 4 sets LEFT(t¢) < ~0, LEFT(t7) < ts,
LEFT(ts) < ~1, and RIGHT (t5) < RIGHT (¢7) < RIGHT(#g) < —1. Step S8 undoes the
changes made to LEFT(0) and LEFT(1). Step S11 with s = tg sets LEFT (tg) <+ ~2,
RIGHT (t3) < ts, V(f2) < 4, LO(f2) < 1, HI(f2) + 0. With s = t; that step sets
LEFT(¢7) < ~3, RIGHT(t7) < t7, V(f3) <« 4, LO(f3) < 0, HI(f3) < 1; meanwhile
step S10 has set RIGHT (t6) < t7. Eventually the templates will be transformed to

k LEFT(#x) RIGHT(tx) L(#x) H(tx) k LEFT(¢x) RIGHT(¢x) L(tx) H(tx)
1 ~8 t1 to t3 5 ~4 ts t7 ts
2 ~7 2 0 t4 6 ~0 tr 0 1
3 ~6 ts 14 ts 7 ~3 tr 0 1
4 ~5 ta t7 1 8 ~2 ts 1 0
(but they can then be discarded). The resulting BDD for f A g is

k V(fe) LOCfx) HI(fr) k V(fx) LOC(frx) HI(fx)

2 4 1 0 6 2 5 4

3 4 0 1 7 2 0 5

4 3 3 2 8 1 7 6.

5 3 3 1

68. If LEFT(#) < 0 at the beginning of step S10, set RIGHT (¢) < t, ¢ <~ NTOP, NTOP <«
q+ 1, LEFT(¢) « ~(q — fo), LO(g) < ~LEFT(L(%)), HI(q) < ~LEFT(H(%)), V(q) «+ I,
and return to S9.

69. Make sure that NTOP < TBOT at the end of step S1 and when going from S11 to
S9. (It’s not necessary to make this test inside the loop of S11.) Also make sure that
NTOP < HBASE just after setting HBASE in step S4.

70. This choice would make the hash table a bit smaller; memory overflow would
therefore be slightly less likely, at the expense of slightly more collisions. But it also
would slow down the action, because make_template would have to check that NTOP <
TBOT whenever TBOT decreases.

71. Add a new field, EXTRA(t) = o, to each template t (see (43))-

2™ _way multiplexer
notation My, (Z‘; y)
Bryant

Jain

Mohanram
Moundanos
Wegener

Lu

7.14 ANSWERS TO EXERCISES 89

72. In place of steps S4 and S5, use the approach of Algorithm R to bucket-sort the
elements of the linked lists that begin at LLIST[!] and HLIST[/]. This is possible if an
extra one-bit hint is used within the pointers to distinguish links in the L fields from
links in the H fields, because we can then determine the LO and HI parameters of t’s
descendants as a function of ¢ and its “parity.”

73. If the BDD profile is (bo, ..., bn), we can assign p; = [b;j_1/2%] pages to branches
on z;. Auxiliary tables of p1 + -+ + pny1 < [B(f)/2°] + n short integers allow us to
compute V(p) = T[r(p)], LO(p) = LO(M[r(p)] + o(p)), HI(p) = HI(M[r(p)] + o(p)).
For example, if e = 12 and n < 2'%, we can represent arbitrary BDDs of up to
232 _ 928 | 916 | 912 nodes with 32-bit virtual LO and HI pointers. Each BDD requires
appropriate auxiliary T and M tables of size < 22°, constructible from its profile.
[This method can significantly improve caching behavior. It was inspired by the
paper of P. Ashar and M. Cheong, Proc. International Conf. Computer-Aided Design
(IEEE, 1994), 622—627, which also introduced algorithms similar to Algorithm S.]

74. The required condition is now pin (21, ..., Ten)A[Z1 =Tan |A+ - AlTgn-1 = Ton—1,1].
If we set y1 = @1, y2 = T3, ..., Ygn-2 = Tyn-1_3, Ypn-24; = Tan-1, Ygn-249 =
Togn—1_g9, --., Ygn—1 = T2, (49) yields the equivalent condition pn—1(y1,--.,Ysn—-1) A

[Yan—2 <Yan-241]A[Yan—2_1 <Pan—2,9] A---A[y1 < Ppn—1], which is eminently suitable
for evaluation by Algorithm S. (The evaluation should be from left to right; right-to-left
would generate enormous intermediate results.)

With this approach we find that there are respectively 1, 2, 4, 12, 81, 2646,
1422564, 229809982112 monotone self-dual functions of 1, 2, ..., 8 variables. (See
Table 7.1.1-3 and answer 7.1.2-88.) The 8-variable functions are characterized by a
BDD of 130,305,082 nodes; Algorithm S needs about 204 gigamems to compute it.

75. Begin with pi1(z1,22) = [z1 <z2], and replace Gan(21,...,22n) in (49) by the
function Hzn (.’El, e ,mzn) = [Il S xTr2 S 3 S I4] VANRERIAN [Izn_s S Iron_2 S Tron_1 S mzn].

(It turns out that B(pe) = 3,683,424; about 170 megamems suffice to compute
that BDD, and p1o is almost within reach. Algorithm C now quickly yields the exact
numbers of regular n-variable Boolean functions for 1 < n < 9, namely 3, 5, 10, 27,
119, 1173, 44315, 16175190, 284432730176. Similarly, we can count the self-dual ones,
as in exercise 74; those numbers, whose early history is discussed in answer 7.1.1-123,
are 1,1, 2, 3, 7, 21, 135, 2470, 319124, 1214554343, for 1 < n < 10.)

76. Say that zo...x;_1 forces x; if x; = 1 for some 7 C j with 0 < 7 < j. Then
ZToZ1 - .. Tan—1 corresponds to a clutter if and only if ; = 0 whenever zo . .. z;_1 forces
zj,for 0 < j < 2". And pn(zo,...,2z2n—1) = lifand only if z; = 1 whenever zo ... z;_1
forces z;. So we get the desired BDD from that of pn(x1,...,z2n) by (i) changing each
branch @ to , and (ii) interchanging the LO and HI branches at every branch
node that has LO = . (Notice that, by Corollary 7.1.1Q, the prime implicants of
every monotone Boolean function correspond to clutters.)

77. Continuing the previous answer, say that the bit vector z¢...xr_1 is consistent
if we have x; = 1 whenever zo...x;_1 forces z;, for 0 < j < k. Let by be the
number of consistent vectors of length k. For example, by = 6 because of the vectors
{0000,0001,0011,0101,0111,1111}. Notice that exactly cx = bg+1 — b clutters S have
the properly that k represents their “largest” set, max{s | s represents a set of S}.
The BDD for pn(z1,...,z2n) has by_1 branch nodes @ when 1 < k < 2771,
Proof: Every subfunction defined by z1, ..., xx—1 is either identically false or defines
a consistent vector z1...xx—1. In the latter case the subfunction is a bead, because
it takes different values under certain settings of zx41, ..., 2. Indeed, if 1 ... zx—1

profile

caching

Ashar

Cheong

regular functions, enumerated
prime implicants

clutters

90 ANSWERS TO EXERCISES 7.14

forces zk, we set Tp41 ¢ -+ < x2n 1; otherwise we set z; « y; for k < j < 27,
where y;4+1 = [Zi+1=1 for some ¢ C j with 7 + 1 < k], noting that yanyr = 0.

On the other hand there are by branches @ when k =2"—k' and 0 < k' < 271,
In this case the nonconstant subfunctions arising from z1, ..., zx—1 lead to values y;
as above, where the vector §o'Jy/ ... is consistent. (Here 0' = 2", 1' = 2" — 1,
etc.) Conversely, every such consistent vector describes such a subfunction; we can, for
example, set z; < 0 when j < k—2""' or 2! < j < k, otherwise z; + Yon—14;. This
subfunction is a bead if and only if yxr = 1 or or ... gr_1) forces Fr,. Thus the beads
correspond to consistent vectors of length &'; and different vectors define different beads.

This argument shows that there are bx_1 —cr_1 branches @ with LO = when
1< k < 2" ' and cyn_j such branches when 2"~ ! < k < 2™. Hence exactly half of the
B(pin) — 2 branch nodes have LO = [L].

78. To count graphs on n labeled vertices with maximum degree < d, construct the
Boolean function of the (g) variables in its adjacency matrix, namely A7_, S<a(Xk),
where X} is the set of variables in row k£ of the matrix. For example, when n = 5
there are 10 variables, and the function is S<q(z1,z2,z3,z4) A S<a(z1,25,T6,27) A
S<a(z2,s, 8, T9) A S<a(z3, e, zs, T10) A S<d(z4, 7,29, T10). When n = 12 the BDDs
for d = (1,2,...,10) have respectively (5960, 137477, 1255813, 5295204, 10159484,
11885884, 9190884, 4117151, 771673, 28666) nodes, so they are readily computed with
Algorithm S. To count solutions with maximum degree d, subtract the number of solu-
tions for degree < d—1 from the number for degree < d; the answers for 0 < d < 11 are:

1 3038643940889754 29271277569846191555

140151 211677202624318662 17880057008325613629
3568119351 3617003021179405538 4489497643961740521
8616774658305 17884378201906645374 430038382710483623

[In general there are t, — 1 graphs on n labeled vertices with maximum degree 1, where
t, is the number of involutions, Eq. 5.1.4—(40).]

The methods of Section 7.2.3 are superior to BDDs for enumerations such as these,
when n is large, because labeled graphs have n! symmetries. But when n has a moderate
size, BDDs produce answers quickly, and nicely characterize all the solutions.

79. In the following counts, obtained from the BDDs in the previous answer, each
graph with & edges is weighted by 2%6~%. Divide by 3% to get probabilities.
73786976294838206464 11646725483430295546484263747584

553156749930805290074112 7767741687870924305547518803968
598535502868315236548476928 2514457534558975918608668688384
68379835220584550117167595520 452733615636089939218193403904
1380358927564577683479233298432 45968637738881805341545676736
7024096376298397076969081536512 2093195580480313818292294985

80. If the original functions f and g have no BDD nodes in common, both algorithms
encounter almost exactly the same subproblems: Algorithm S deals with all nodes of
f © g that aren’t descended from nodes of the forms « ¢ or © 3, while (55) also
avoids nodes that descend from the forms a ¢ or o . Furthermore, (55) takes
shortcuts when it meets nontrivial subproblems AND(f’, g') with f' = ¢'; Algorithm S
cannot recognize the fact that such cases are easy. And (55) can also win if it happens
to stumble across a relevant memo left over from a previous computation.

81. Just change ‘AND’ to ‘XOR’ and ‘A’ to ‘@’ throughout. The simple cases are now
fO0=f,0Dg=g,and f®g=0if f =g. We should also swap f +> g if f > g # 0.

adjacency matrix
involutions

7.14 ANSWERS TO EXERCISES 91

Notes: The author experimentally inserted further memos ‘f@r = g’ and ‘g®r =
f’ in the bottom line; but these additional cache entries seemed to do more harm
than good. Considering other binary operators, there’s no need to implement both
BUTNOT(f,g) = f A § and NOTBUT(f,g) = f A g, since the latter is BUTNOT(g, f).
Also, XOR(1,0R(f, g)) may be better than an implementation of NOR(f,g) = =(fVg).

82. A top-level computation of F' <— AND(f,g) begins with f and g in computer
registers, but REF(f) and REF(g) do not include “references” such as those. (We do,
however, assume that f and g are both alive.)

If (55) discovers that f A g is obviously r, it increases REF(r) by 1.

If (55) finds f A g = r in the memo cache, it increases REF(r), and recursively
increases REF (LO(r)) and REF(HI(7)) in the same way if » was dead.

If step U1 finds p = g, it decreases REF (p) by 1 (believe it or not); this won’t kill p.

If step U2 finds 7, there are two cases: If r was alive, it sets REF(r) < REF(r) + 1,
REF(p) < REF(p) — 1, REF(g) + REF(g) — 1. Otherwise it simply sets REF(r) <« 1.

When step U3 creates a new node r, it sets REF(r) + 1.

Finally, after the top-level AND returns a value r that we wish to assign to F,
we must first dereference F, if F' # A; this means setting REF(F') < REF(F) — 1,
and recursively dereferencing LO(F) and HI(F') if REF(F') has become 0. Then we set
F + r (without adjusting REF(7r)).

[Furthermore, in a quantification routine such as (65) or in the composition rou-
tine (72), both r; and rj should be dereferenced after the OR or MUX has computed 7.]

83. Exercise 61 shows that the subproblem f A g occurs at most once per top-level
call, when REF(f) = REF(g) = 1. [This idea is due to F. Somenzi; see the paper
cited in answer 84. Many nodes have reference count 1, because the average count
is approximately 2, and because the sinks usually have large counts. However, such
cache-avoidance did not improve the overall performance in the author’s experiments,
possibly because of the examples investigated, or possibly because “accidental” cache
hits in other top-level operations can be useful.]

84. Many possibilities exist, and no simple technique appears to be a clear winner.
The cache and table sizes should be powers of 2, to facilitate calculating the hash
functions. The size of the unique table for z, should be roughly proportional to the
number of nodes that currently branch on z, (alive or dead). It’s necessary to rehash
everything when a table is downsized or upsized.

In the author’s experiments while writing this section, the cache size was doubled
whenever the number of insertions since the beginning of the most recent top-level
command exceeded In2 times the current cache size. (At that point a random hash
function will have filled about half of the slots.) After garbage collection, the cache
was downsized, if necessary, so that it either had 256 slots or was at least 1/4 full.

It’s easy to keep track of the current number of dead nodes; hence we know at
all times how much memory a garbage collection will reclaim. The author obtained
satisfactory results by inserting a new step UZ% between U2 and U3: “Increase C by 1,
where C is a global counter. If C mod 1024 = 0, and if at least 1/8 of all current
nodes are dead, collect garbage.”

[See F. Somenzi, Software Tools for Technology Transfer 3 (2001), 171-181 for
numerous further suggestions based on extensive experience.]

85. The complete table would have 232 entries of 32 bits each, for a total of 23*
bytes (& 17.2 gigabytes). The BDD base discussed after (58), with about 136 million

Knuth
BUTNOT
NOTBUT
dead
dereference
Somenzi
Knuth, Don
Somenzi

92 ANSWERS TO EXERCISES 7.14

nodes using zip-ordered bits, can be stored in about 1.1 gigabyte; the one discussed in
Corollary Y, which ranks all of the multiplier bits first, needs only about 400 megabytes.

86. If f=0o0rg=h,return g. If f =1, return h. If g = 0 or f = g, return AND(f, h).
If h =1 or f = h, return OR(f,g). If g = 1, return IMPLIES(f, h); if h = 0, return
BUTNOT(g, f). (If binary IMPLIES and/or BUTNOT aren’t implemented directly, it’s
OK to let the corresponding cases propagate in ternary guise.)

87. Sort so that f < g < h. If f =0, return AND(g,h). If f = 1, return OR(g, h). If
f=gor g=h,return g.
88. The trio of functions (f, g, h) = (Ro, R1, R2) makes an amusing example, when

Ro(z1,.--,Zn) = [(xn ...z1)2 mod 3 # a] = R(2a+21) mod 3(T2,-- -, Tn).

Thanks to the memos, the ternary recursion finds f A g A h = 0 by examining only one
case at each level; the binary computation of, say, f A g = h definitely takes longer.

More dramatically, let f = z1 A (22?7 F: G), g = z2 A (21?7 G: F), and h =
21?7 Ta A F: 22 A G, where F and G are functions of (zs,...,z,) such that B(FAG) =
O(B(F)B(G)) as in exercise 63. Then f Ag, gAh, and h A f all have large BDDs, but
the ternary recursion immediately discovers that f Ag A h = 0.

89. (a) True; the left side is (foonol)\/(flov‘fu)7 the right side is (foonlo)V(f()lVfu).

(b) Similarly true. (And O’s are commutative too.)

(c) Usually false; see part (d).

(d) Vi 3z2 f = (foo V for) A (fro V f11) = (3z2Vz1 f) V (foo A f11) V (for A fr0).
90. Change Jj1...3jm to Jj1...0jm
91. (a) fll1=f, flz; = f1,and f] Z; = fo, in the notation of (63).

(b) This distributive law is obvious, by the definition of |.. (Also true for Vv, @, etc.)

(c) True if and only if g is not identically zero. (Consequently the value of
f(z1,...,20) | g for g # 0 is determined solely by the values of z; | g for 1 < j < n.)

(d) f(21,1,0,24,0,1,27,...,2,). This is the restriction of f with respect to
z2 =1,23 =0, z5s = 0, 6 = 1 (see exercise 57), also called the cofactor of f with
respect to the subcube g. (A similar result holds when g is any product of literals.)

(e) f(z1,...,Zn-1, 21D+ ®zn—1D1). (Consider the case f = z;, for 1 < j < n.)

(f) =17 f(1,...,1): f(0,...,0).

(g) f(17x27 o ,CEn) ng(iU2, s ,In)-

(h) If f =22 and g = z1 V z2 we have f | g=Z1 V z2.

(i) CONSTRAIN(f,g) = “If f] g has an obvious value, return it. Otherwise, if
f g = risin the memo cache, return r. Otherwise represent f and g as in (52);
set 7 < CONSTRAIN(fr,gsn) if g = 0, r « CONSTRAIN(f;,q) if g = 0, otherwise
r < UNIQUE (v, CONSTRAIN(f, g;), CONSTRAIN(fn,gr)); put ‘f L g = r’ into the
memo cache, and return r.” Here the obvious values are f J]0=0)¢g=0; fl1=f;
1lg=glg=1[9#0].

[The operator f | g was introduced in 1989 by O. Coudert, C. Berthet, and J. C.
Madre. Examples such as the functions in (h) led them to propose also the modified
operator f |} g, “f restricted to g,” which has a similar recursion except that it uses
FfU(3zvg) instead of (Z,7 filgi: frnlgn) when fi = fn. See Lecture Notes in Computer
Science 407 (1989), 365-373.]

92. See answer 91(d) for the “if” part. Notice also that (i) 1 | g = z1 if and only if

go # 0 and g1 # 0, where g. = g(c, z2,...,2n); (ii) Zn L g = z» if and only if dz,g =0
and g # 0.

zip-ordered
IMPLIES
BUTNOT
remainders mod 3
associative law
commutative
distributive law
restriction
cofactor

literals

Coudert
Berthet

Madre
restricted to

7.14 ANSWERS TO EXERCISES 93

Suppose f"lg" = (flg)” for all f and 7. If g # 0 isn’t a subcube, there’s an index j
such that go # 0 and g1 # 0 and Oz; g # 0, where gc = g(z1,. .., Zj—1,C, Zj41,...,Zn).
By the previous paragraph, we have (i) z; g = z; and (ii) z; | g # z;, a contradiction.
93. Let f = J(z1,...,Zn; f1,...,fn) and g = J(z1,...,Zn;G1,...,9n), Where

fU =Zpnt1 V- ---VZI5pV J($5n+1,. .., T6n; [1}—1], . [v—n]),
Go = Tnt1 V- Vs VI (Tsnt1,- .., Zen; [v=1]+[v—1],..., [v=n]+[v—n]),

and J is the junction function of exercise 52.
If G can be 3-colored, let f = J(z1,. .. T fa,... ,fn), where

fo=Tnt1 V- V50 V J(T5nt1,. - Ton; for, oo fon),

and fuw = [v and w have different colors]. Then B(f) < n + 3(5n) + 2.

Conversely, suppose there’s an approximating f such that B(f) < 16n + 2, and
let 7, be the subfunction with 1 = [v=1], ..., zn = [v=n]. At most three of
these subfunctions are distinct, because every distinct fv must branch on each of 41,

.., Tsn. Color the vertices so that v and v get the same color if and only if fu = f,,;

this can happen only if u —- v, so the coloring is legitimate.
[M. Sauerhoff and 1. Wegener, IEEE Transactions CAD-15 (1996), 1435-1437.]

94. Case 1: v # g,. Then we aren’t quantifying over z,; hence g = gn, and f Eg =
z,7 fiEg: fnEg.

Case 2: v=g,. Theng=z,Agnand fEg=(fiEgh)V(fnEgr) =m Vrp In
the subcase v # f,, we have fi = fn = f; hence r; = r4, and we can directly reduce
fEg to fE gn (an instance of “tail recursion”).

[Rudell observes that the order of quantification in (65) corresponds to bottom-
up order of the variables. That order is convenient, but not always best; sometimes
it’s better to remove the ds one by one in another order, based on knowledge of the
functions involved.]

95. If r, =1 and v = g,, we can set 7 < 1 and forget about 7. (This change led to a
100-fold speedup in some of the author’s experiments.)

96. For V, just change E to A and OR to AND. For (, change E to D and OR to XOR;
also, if v # fy, return 0. [Routines for the yes/no quantifiers A and N are analogous to d.
Yes/no quantifiers should be used only when m = 1; otherwise they make little sense.]

97. Proceeding bottom-up, the amount of work on each level is at worst proportional
to the number of nodes on that level.

98. The function NOTEND(z) = Jy32(ADI(z,y) A ADI(z,2) A [y# z]) identifies all
vertices of degree > 2. Hence ENDPT(z) = KER(z) A—NOTEND(z). And PAIR(z,y) =
ENDPT(z) A ENDPT(y) A ADJ(z,y).

[For example, when G is the contiguous-USA graph, with the states ordered as
in (104), we have B(NOTEND) = 992, B(ENDPT) = 264, and B(PAIR) = 203. Before
applying dy3z the BDD size is 50511. There are exactly 49 kernels of degree 1. The
nine components of size 2 are obtained by mixing the following three solutions:

Q44N
IEVENZEN

J(m; f) function
junction function
3-colored
Sauerhoff
‘Wegener

tail recursion
Rudell

yes/no quantifiers
contiguous-USA

94 ANSWERS TO EXERCISES 7.14

The total cost of this calculation, using the stated algorithms, is about 14 megamems,
in 6.3 megabytes of memory —only about 52 memory references per kernel.]

99. Find a triangle of mutually adjacent states, and fix their colors. The BDD size
also decreases substantially if we choose states of high degree in the “middle” levels.
For example, by setting amg = bug = atn = bty = @ap = bar = 1 we reduce the 25,579
nodes to only 4642 (and the total execution time also drops below 2 megamems).

[Bryant’s original manuscript about BDDs discussed graph coloring in detail, but
he decided to substitute other material when his paper was published in 1986.]

100. Replace IND(zug,...,2zca) by IND(xug,...,Zca) A S12(Zyg, ..., Zca), to get the
12-node independent sets; this BDD has size 1964. Then use (73) as before, and the
trick of answer 99, getting a COLOR function with 184,260 nodes and 12,554,677,864
solutions. (The running time is approximately 26 megamems.)

101. If a state’s weight is w, assign 2w and w as the
respective weights of its ¢ and b variables, and use
Algorithm B. (For example, variable a,y gets weight
2(23 + 25) = 96.) The solution, shown here with

color codes D)2 @ @), is unique.

102. The main idea is that, when g; changes, all results in the cache for functions
with f, > j remain valid. To exploit this principle we can maintain an array of “time
stamps” G1 > G2 > --- > G, > 0, one for each variable. There’s a master clock time
G > G4, representing the number of distinct compositions done or prepared; another
variable G’ records whether G has changed since COMPOSE was last invoked. Initially
G =G =G1=+-+= G, =0. The subroutine NEWG (3, g) is implemented as follows:

N1. [Easy case?] If g; = g, exit the subroutine. Otherwise set g; + g.

N2. [Can we reset?] If g # z;, or if j < n and Gj41 > 0, go to N4.

N3. [Reset stamps.] While j > 0 and g; = zj, set Gj < 0 and j - 7 — 1. Then
if j =0,set G+ G —G', G’ + 0, and exit.

N4. [Update G?] If G’ =0, set G < G+ 1 and G’ + 1.

N5. [New stamps.] While j > 0 and G; # G, set G < G and j + j — 1.
Exit. |

(Reference counts also need to be maintained appropriately.) Before launching a top-
level call of COMPOSE, set G’ < 0. Change the COMPOSE routine (72) to use f[Gy]
in references to the cache, where v = f,; the test ‘v > m’ becomes ‘G, = 0’.

103. The equivalent formula g(f1(z1,...,%n),- .., fm(z1,...,%x)) can be implemented
with the COMPOSE operation (72). (However, Dull was vindicated when it turned out
that his formula could be evaluated more than a hundred times faster than Quick’s, in
spite of the fact that it uses twice as many variables! In his application, the computation
of (y1 = fi(z1,--,Zn)) A A (Ym = fm(Z1,.--,2n)) Ag(y1,- - -, ym) turned out to be
much easier than COMPOSE’s computation of g;(f1,..., fm) for every subfunction g;
of g; see, for example, exercise 162.)

104. The following recursive algorithm COMPARE(f, g) needs at most O(B(f)B(g))
steps when used with a memo cache: If f = g, return ‘=’. Otherwise, if f = 0 or
g = 1, return ‘<’; if f = 1 or g = 0, return ‘>’. Otherwise represent f and g as
in (52); compute 7 < COMPARE(f;,9:). If v is ‘||, return ‘||’; otherwise compute
rh COMPARE(fhr,gn). If m is ‘|’, return ¢||’. Otherwise if r; is ‘=", return 74; if rp
is ‘=7, return 7y; if r; = 74, return r;. Otherwise return ||’.

Bryant
symmetric func
time stamps
Reference counts
composition
memo cache

7.14 ANSWERS TO EXERCISES 95

105. (a) A unate function with polarities (y1,...,yn) has Az;f = 0 when y; = 1 and
Nz;f = 0 when y; = 0, for 1 < j < n. Conversely, f is unate if these conditions hold
for all j. (Notice that Az;f =Nz;f = 0if and only if Qz; f = 0, if and only if f doesn’t
depend on z;. In such cases y; is irrelevant; otherwise y; is uniquely determined.)

(b) The following algorithm maintains global variables (p1, ..., pn), initially zero,
with the property that p; = +1 if y; must be 0 and p; = —1 if y; must be 1; p; will
remain zero if f doesn’t depend on z;. With this understanding, UNATE(f) is defined as
follows: If f is constant, return true. Otherwise represent f asin (50). Return false if ei-
ther UNATE(f;) or UNATE(f#) is false; otherwise set 7 <+ COMPARE(fi, fr) using exer-
cise 104. If r is ‘||, return false. If r is ‘<’, return false if p, < 0, otherwise set p, < +1
and return true. If ris ‘>’ return false if p, > 0, otherwise set p, < —1 and return true.

This algorithm often terminates quickly. It relies on the fact that f(z) < g(z) for
all z if and only if f(z®y) < g(z®y) for all z, when y is fixed. If we simply want to test
whether or not f is monotone, the p variables should be initialized to 41 instead of 0.

106. Define HORN(f, g, h) thus: If f > g, interchange f <> g. Then if f =0o0or h =1,
return true. Otherwise if ¢ = 1 or h = 0, return false. Otherwise represent f, g,
and h as in (59). Return true if HORN(f1, g1, hi), HORN(fi, gn, i), HORN(fn, g1, hi),
and HORN(fh, gn, hn) are all true; otherwise return false. [This algorithm is due to
T. Horiyama and T. Ibaraki, Artificial Intelligence 136 (2002), 189-213, who also
introduced an algorithm similar to that of answer 105(b).]
107. Let efg8h mean that e(z) = f(y) = g(z) = 1 implies h({(zyz)) = 1. Then
f is Krom if and only if fff$f, and we can use the following recursive algorithm
KROM(e, f, g, h): Rearrange {e, f,g} so that e < f < g. Then if e = 0 or h = 1, return
true. Otherwise if f =1 or h = 0, return false. Otherwise represent e, f, g, h with the
quaternary analog of (59). Return true if KROM(ey, f1, g1, i), KROM(e, f1, gn, hi),
KROM(ey, fn, g1, 1), KROM(ei, fn,gn,hn), KROM(en, fi, g1, h1), KROM(en, fi, gn, hn),
KROM(en, fr, g1, hn), and KROM(en, fr,gn, hn) are all true; otherwise return false.
108. Label the nodes {1,...,s} with root 1 and sinks {s— 1, s}; then (s — 3)! permuta-
tions of the other labels give different dags for the same function. The stated inequality
follows because each instruction (o? Ix: ki) has at most n(s — 1)* possibilities, for
1 <k < s—2. (In fact, it holds also for arbitrary branching programs, namely for
binary decision diagrams in general, whether or not they are ordered and/or reduced.)
Since 1/(s — 3)! < (s — 1)%s! and s! > (s/e)®, we have (generously) b(n,s) <
(nse)®. Let s, = 2"/(n + 6), where 0 = lge = 1/In2; then lgb(n, sn) < snlg(nsne) =
2™(1 — (Ig(1 + 6/n))/(n + 0)) = 2™ — Q(2"/n”). So the probability that a random n-
variable Boolean function has B(f) < s, is at most 1/22(2"/7*), And that is really tiny.

109. 1/29(2"/"2) is really tiny even when multiplied by n!.

110. Let frn = Mm(Tn—m+1,---,Zn;0,...,0,Z1,...,Zn—m) V (Zn—m+1 A - A Tn A
[0...0%1...2Zn—m is a square]), when 2™ ' 4+ m — 1 < n < 2™ + m. Each term of
this formula has 2™ + m — n zeros; the second term destroys all of the 2™-bit squares.
[See H.-T. Liaw and C.-S. Lin, IEEE Transactions C-41 (1992), 661-664; Y. Breitbart,
H. Hunt ITI, and D. Rosenkrantz, Theoretical Comp. Sci. 145 (1995), 45-69.]

111. Let un = A(n — An), and notice that un = m if and only if 2™ +m < n <
2™t L+ 1. The sum for 0 < k < n— pn is 2" 7#™ — 1; the other terms sum to 22"".

112. Suppose k =n — lgn + lga. Then

n—k k
27 -1 2" 1 _ 2n /g 1
S =G0 gm)) = e (e o(R))

depend on
boolean difference
global variables
Horiyama

Ibaraki

branching programs
ordered

reduced

2m—way multiplex
Liaw

Lin

Breitbart

Hunt
Rosenkrantz

96 ANSWERS TO EXERCISES 7.14

If @ < 1 we have 2"/ *a/n < 1/(n2™*"); hence b, = (2> — 27/ @) (an=n/a g /n) x
(1+0(2 ™) =2F1 — 02 ™2)). And if a > 2 we have 2" "/ *a/n > 2™/2+1/n;
thus by = (22" 22" 7% 1) (1 4 O(exp(—2"/2/n))).

[For the variance of by, see I. Wegener, IEEE Trans. C-43 (1994), 1262-1269.]

113. The idea looks attractive at first glance, but loses its luster when examined closely.
Comparatively few nodes of a BDD base appear on the lower levels, by Theorem U;
and algorithms like Algorithm S spend comparatively little of their time dealing with
those levels. Furthermore, nonconstant sink nodes would make several algorithms more
complicated, especially those for reordering.

114. For example, the truth table might be 01010101 00110011 00001111 00001111.

115. Let Ny = bg+- -+ brx_1 be the number of nodes @ of the BDD for which 5 < k.
The sum of the in-degrees of those nodes is at least Ni; the sum of the out-degrees is
2Ng; and there’s an external pointer to the root. Thus at most Nj + 1 branches can
cross from the upper k levels to lower levels. Every such branch corresponds to some
subtable of order n — k. Therefore qx < N + 1.

Moreover, we must have g < bg + - - - + b, because every subtable of order n — k
corresponds to a unique bead of order < n — k.

For (124), change ‘BDD’ to ‘ZDD’, ‘b;’ to ‘zi’, ‘bead’ to ‘zead’ in these arguments.

116. (a) Let v = 22° 422" " 4 ... 4 22°. Then Q(f) < 0 min(2¥~1,2""" %) =
Un 4 Ya(n—-an)—1- Examples like (78) show that this upper bound cannot be improved.

(b) Gr/bx = 22"7F/(22"7F — 22" 7* ") for 0 < k < 1} Gn = bn.

117. g = 2% for 0 < k < m, and gmyr = 2™ +2 —k for 1 < k < 2™. Hence
Q(f) = 2> +7.2™' —1 ~ B(f)?/8. (Such fs make QDDs unattractive in practice.)
118. If n = 2™ — 1 we have h,(z1,...,Zn) = Mm(zZm-1,---,20;0,Z1,...,Zn), where
(#m—=1...20)2 = &1 + -+ + zn is computable in 5n — 5m steps by exercise 7.1.2-30,
and M,, takes another 2n + O(y/n) by exercise 7.1.2-39. Since h,(z1,...,Zn) =
hote(z1,-..,2n,0,...,0), we have C(h,) < 14n + O(y/n) for all n. (A little more
work will bring this down to 7n + O(y/n logn); can the reader do better?)

The cost of h4 is 6 = L(h4), and o ED ((1E1 GB (332 A 54)) A (123 GB (3_32 A $4))) is a
formula of shortest length. (Also C'(hs) = 10 and L(hs) = 11.)

119. True. For example, Sz 35(1,...,26) = his(z1,22,0,0,1,1,0,1,0, 3, z4, T5, T6).
120. We have A} (z1,...,Zn) = hn(y1,...,Yn), where y; = zjr for 1 < j < n. And
ho(y1,- -3 Yn) = Yyrttun = Yor4tan = T(og+tan)r

121. (a) If yr =Zny1-k we have hn(Y1,...,Yn) = Yoy = Yn—ve = Ent1—(n—ve) = Tvati-

(b) If z = (z1,...,zn) and t € {0,1} we have hny1(z,t) = (t7 Toot1: Tuz)-

(¢) No. For example, 1 sends 0¥11 — 0¥71101 — 0721021 = - - - = 10%1 = 0F11.
(In spite of its simple definition, 9 has remarkable properties, including fixed points
such as 10011010000101011000111001011 and 11101111011001011101111101111.)

(d) In fact, hn(z1...7n) = z1(!), by induction using recurrence (b).

(If f(z1,...,2zn) is any Boolean function and 7 is any permutation of the binary
vectors z1 ... Zn, we can write f(z) = f (z7), and the transformed function f may well
be much easier to work with. Since f(z) A g(z) = f(x7) A §(x7), the transform of the
AND of two functions is the AND of their transforms, etc. The vector permutations
(z1...Tn)T = ZT1x . .. Tny that merely transform the indices, as considered in the text,
are a simple special case of this general principle. But the principle is, in a sense, too
general, because every function f trivially has at least one 7 for which f is skinny

variance
Wegener
subtable
bead

zead

QDD

2™ _way mux

transformed BDDs

7.14 ANSWERS TO EXERCISES 97

in the sense of exercise 170; all the complexity of f can be transferred to 7. Even
simple transformations like v have limited utility, because they don’t compose well;
for example, 7 is not a transformation of the same type. But linear transformations,
which take = +— zT for some nonsingular binary matrix 7', have proved to be useful
ways to simplify BDDs. [See S. Aborhey, IEEE Trans. C-37 (1988), 1461-1465; J. Bern,
C. Meinel, and A. Slobodovd, ACM/IEEE Conf. Design Automation 32 (1995), 408—
413; C. Meinel, F. Somenzi, and T. Theobald, IEEE Trans. CAD-19 (2000), 521-533.])

122, For example, when n = 7 the recurrence in answer 121(b) gives

hDR

where shaded nodes compute the subfunction on the variables that haven’t yet been
tested. Simplifications occur at the bottom, because ha(z1,z2) = z1 and hYT (z1,z2) =
z2. [See D. Sieling and I. Wegener, Theoretical Comp. Sci. 141 (1995), 283-310.]

123. Lett =k — s =1z, +--- + Zx. There’s a slate for every combination of s’ 1s and
t' Os such that s’ +¢ = w, s’ < s, and ¢ < t. The sum of (%)) = (},) over all such
(s',t') is (97). (Notice furthermore that it equals 2% if and only if w < min(s,t).)

124. Let m = n—k. Each slate [ro, ..., 7m] corresponds to a function of (zx41,...,Zn),
whose truth table is a bead except in four cases: (i) [0,...,0] = 0; (ii) [1,...,1] = 1;
(iii) [0, Zn, 1] = zn (which doesn’t depend on z,—1); (iv) [1,...,1,Zk+1,0,...,0], where

there are p 1s so that zx41 = 7p, is S<p(Th42,.-.,Tn).
The following polynomial-time algorithm computes qx = ¢ and by = q — ¢’ by
counting all slates. A subtle aspect arises when the entries of [ro,...,rm] are all 0 or 1,

because such slates can occur for different values of s; we don’t want to count them
twice. The solution is to maintain four sets

Cap={r1+---+7rm-1]|r0 =a and rn = b in some slate}.

The value of 07 should be artificially set to n 4+ 1, not 0. Assume that 0 < k < n.
H1. [Initialize.] Set m <~ n — k, ¢ + ¢' < s+ 0, Coo + Co1 <+ Cio + C11 + 0.
H2. [Find v and w.] Set v = .7 '[(s+j)r<k] and w « v + [sm<k] +

=1
[(s+m)r<Ek]. If v =m — 1, go to step H5.

H3. [Check for nonbeads.] Set p + —1. If v # m — 2, go to H4. Otherwise, if
m =2 and (s + 1)m = n, set p « [(s + 2)7w <k]. Otherwise, if w = m and
(s+j)mr =k+1 for some j € [1..m—1], set p < j.

H4. [Add binomials.] For all s’ and ' such that s' +¢ = w, 0 < s’ < s, and
0<t <k—s,set ¢ g+ (%) and ¢ + ¢’ +[s' =p]. Then go to H6.

H5. [Remember 0-1 slates.] Do the following for all s’ and ¢’ as in step H4: If
(s +m)m <k, set Coo < Coo U {s'} and Co1 « Co1 U {s'—1}; otherwise set

linear transformations
Aborhey

Bern

Meinel

Slobodova

Meinel

Somenzi

Theobald

Sieling

Wegener

98 ANSWERS TO EXERCISES 7.14

Co1 + Cor U{s'}. If st < k and (s+ m)w < k, set Cyo + CioU{s'—1} and
Ci1 + C11U{s'—2}. If sm < k and (s + m)7 > k, set C11 < C11 U {s'—1}.
H6. [Loop on s.] If s < k, set s < s+ 1 and return to H2.
H7. [Finish.] For ab =00, 01, 10, and 11, set ¢ < ¢+ (m;l) for all 7 € Cgp. Also
set ql<—q’+[06000]+[m—16011]. 1
125. Let S(n,m) = (§) + -+ (). There are S(k+ 1 —s,s) — 1 nonconstant slates
when 0 < s < k and s > 2k — n + 2. The only other nonconstant slates, one each,
arise when s = 0 and k£ < (n — 1)/2. The constant slates are trickier to count, but
there usually are S(n + 1 — k,2k + 1 — n) of them, appearing when s = 2k — n or
s = 2k+1 —n. Taking account of nitpicky boundary conditions and nonbeads, we find
n—k
be = S(n—k,2k—n)+ Y S(n—k—s, 2k+1—n+s)
5=0

—min(k,n — k) —[n=2k] - [8k>2n—-1] -1

for 0 < k < n. Although S(n,m) has no simple form, we can express E:;; b as
B2+ Y ocmen—sr<n(m +3 —m — 2k) (:L) + (small change) when n is even, and the
same expression works when n is odd if we replace By, /2 by A(nt1)/2. The double sum
can be reduced by summing first on k, since (k +1)(*) = (m + 1)(51}):

m 1
mi_()((n+5—m)(|.(n—77:7,—+_—i-12)/2j) B (2m+2)<L(n—nzn++24)/2J)>.

And the remaining sum can be tackled by breaking it into four parts, depending on
whether m and/or n is odd. Generating functions are helpful: Let A(2) =), . n(";kk) z"
and B(z) = Zk<n(2k+1) - Then A(2) =1+ 3 4 cn (n_zi_l) "+ ken (nz_kk:ll)zn =
1+ Zk<n () ntl 4 Ek<n (2k+1)z"+2 =14 zA(2) + zzB(z) A similar derivation
proves that B(z) = zB(z) + zA(z). Consequently
1—2 1-22 z 2422
A = B = = .
(2) = 1—-22422—-23 1—2—22—24’ (2) 1—2z4+22—-23 1—2z—22—24
Thus An, = 2An—1 — An—2 + An—3 = An—1 + Ap—2 + Ap—4 for n > 4, and B,
satisfies the same recurrences. In fact, we have A, = (3Pant1 + TPan — 2P2,—1)/23
and B, = (3P2n+2 + TPan+1 — 2P2,,) /23, using the Perrin numbers of exercise 15.
Furthermore, setting A™(2) = 3, ., k ("r)z and B*(2) =Y, .. k (2k+1)z , we
find A*(2) = 2°A(2) B(z) and B*(z) = z B(z:)2 Putting it all together now yields the
remarkable exact formula
56 Ppi2 + TTPny1 + 47P, {n_zJ B {m +1
23 4 3
Historical notes: The sequence (A,) was apparently first studied by R. Austin
and R. K. Guy, Fibonacci Quarterly 16 (1978), 84-86; it counts binary z ... zn_1 with
each 1 next to another. The plastic constant x was shown by C. L. Siegel to be the
smallest “Pisot number,” namely the smallest algebraic integer > 1 whose conjugates
all lie inside the unit circle; see Duke Math. J. 11 (1944), 597-602.
126. When n > 6, we have by = F|(k47)/2) + Fikt7)/2] —4 for 1 < k < 2n/3, and
b = 2" Ft2 6 — [k=n — 2] for 4n/5 < k < n. But the main contributions to B(hT)
come from the 2n/15 profile elements between those two regions, and the methods of

B(hy) =

J + (nmod 2) — 10.

binomial coefficient summation techniques
summation of binomial coefs

Generating functions

recurrences

Perrin numbers

Austin

Guy

plastic constant

Siegel

Pisot number

7.14 ANSWERS TO EXERCISES 99

answer 125 can be extended to deal with them. The interesting sequences

[n/2] [n/2] [n/2]
n — 2k n — 2k n — 2k
A"_Z< 3k) B"_Z(3k+l)’ C"_Z(sku)

k=0 k=0 k=0

have respective generating functions (1 — 2)%/p(2), (1 — 2)z/p(2), 2*/p(z), where p(z) =
(1 — 2)® — 2. These sequences arise in this problem because Ezzo(tnfik/‘”) = A, +
Bp—1 + Cy—2. They grow as o™, where a ~ 1.7016 is the real root of (a—1)3a® = 1.

The BDD size can’t be expressed in closed form, but there is a closed form in terms
of A|n/3) through A|,/3)14 that is accurate to O(2"/*/\/n). Thus B(h}) = ©(a™/?).
127. (The permutation 7 = (3,5, 7, ...,2n ' — 1, n,n—1,n—2, ..., 2n', 2n' — 2,
..oy 4,2, 1), ' = |2n/5], turns out to be optimum for h, when 12 < n < 24; but it
gives B(hg0) = 1,366,282,025. Sifting does much better, as shown in answer 152; but
still better permutations almost surely exist.)

128. Consider, for example, Ms(z4, 2, Z7;Z6, L1, T8, L3, L9, L11, L5, L10). The first m
variables {z4, 2,27} are called “address bits”; the other 2™ are called “targets.” The
subfunctions corresponding to 1 = ci1, ..., £x = ck can be described by slates of
options analogous to (96). For example, when k = 2 there are three slates [zs, 0, 29, Z11],
[z6,1, 9, Z11], [zs,Z3,Ts5,Z10], where the result is obtained by using (zsz7)2 to select
the appropriate component. Only the third of these depends on z3; hence g2 = 3 and
bo = 1. When k = 6 the slates are [0,0], [0,1], [1,0], [1,1], [zs,0], [zs,1], [z9,Z11],
[0, z10], and [1, z10], with components selected by z7; hence g¢ = 9 and bs = 7.

In general, if the variables {z1,...,2;} include a address bits and ¢ targets, the
slates will have A = 2™~ ® entries. Divide the set of all 2™ targets into 2% subsets,
depending on the known address bits, and suppose s; of those subsets contain 7 known
targets. (Thus so +s1 + -+ sa = 2% and s1 + 252 + -+ + Asa = t. We have
(s0y...,84) = (1,1,0,0,0) when £ = 2 and a = t = 1 in the example above; and
(so,81,82) = (1,2,1) when k = 6, a = 2, ¢ = 4.) Then the total number of slates, g,
is 2969 4+ 2's; + -+ 247154 1 + 2A[SA >0]. If zx4+1 is an address bit, the number
by, of slates that depend on zgy1 is gx — 2A/2[5A >0]. Otherwise by, = 2°, where c is
the number of constants that appear in the slates containing target zx41.

129. (Solution by M. Sauerhoff; see I. Wegener, Branching Programs (2000), Theorem
6.2.13.) Since Pn(Z1,..-,Zm2) = Qm(T1,---,Zm2) A Sm(Z1,--.,Tpm2) and B(Sm) =
m3 + 2, we have B(PY) < (m® + 2)B(QT,). Apply Theorem K.

(A stronger lower bound should be possible, because Qm seems to have larger
BDDs than P,,. For example, when m = 5 the permutation (17,...,257) = (3, 1, 5,
7,9, 2,4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 20, 23, 17, 21, 19, 18, 22, 24, 25) is optimum
for Qs; but B(Q5) = 535, while B(Ps) = 229.)

130. (a) Each path that starts at the root of the BDD and takes s HI branches and ¢
LO branches defines a subfunction that corresponds to graphs in which s adjacencies
are forced and t are forbidden. We shall show that these (si’t) subfunctions are distinct.

If subfunctions g and h correspond to different paths, we can find k vertices W
with the following properties: (i) W contains vertices w and w' with w — w’ forced
in g and forbidden in h. (ii) No adjacencies between vertices of W are forced in h or
forbidden in g. (iii) If w € W and v ¢ W and u — v is forced in h, then u = w or
u = w'. (These conditions make at most 2s+t = m — k vertices ineligible to be in W.)

We can set the remaining variables so that u — v if and only if {u, v} C W, when-
ever adjacency is neither forced nor forbidden. This assignment makes g =1, h = 0.

generating functions
Sifting

pi, as source

address bits

targets

slates of options
Sauerhoff

Wegener

symmetric function Spm

100 ANSWERS TO EXERCISES 7.14

(b) Consider the subfunction of C,, [m/27 in which vertices {1, ..., k} are required
to be isolated, but u — v whenever £ < u < [m/2] < v < m. Then a k-clique on
the [m/2] vertices {[m/2] +1,...,m} is equivalent to an [m/2]-clique on {1,...,m}.
In other words, this subfunction of Cy, (m/27 is Cim/2] k-

Now chose k ~ y/m/3 and apply (a). [I. Wegener, JACM 35 (1988), 461-471.]

131. (a) The profile can be shown to be (1, 1,2, 4, ...,277 1, (p—2)x (29—1, ¢x2971),

29 —1,2971 ... 4,2, 1, 2), where r x b denotes the r-fold repetition of b. Hence the
total size is (pg + 2p — 2¢ +2)277' —p + 2.

(b) With the ordering z1, z2, ..., Tp, Y11, Y21, ---» Ypls -- -5 Yia» Y2a> - - - > Ypas
the profile comes to (1, 2, 4, ..., 2P7% (g—1)p x (2P™1), 2P71 ... 4, 2, 1, 2), making

the total size (pg — p + 4)2P7 .

(c) Suppose exactly m = |min(p,q)/2] x’s occur among the first k variables in
some ordering; we may assume that they are {z1,...,zm}. Consider the 2™ paths in
the QDD for C such that ; = Zmyj for 1 < j<p—mand y;; =[i=j or i=j+m
or j>m]. These paths must pass through distinct nodes on level k. Hence g > 2™;
use (85). [See M. Nikolskaia and L. Nikolskaia, Theor. Comp. Sci. 255 (2001), 615-625.]

Optimum orderings for (p,q) = (4,4), (4,5), and (5,4), via exercise 138, are:

T1Y1122Y21T3Y31Y41Y12Y22Y32Y42Y13Y23Y33Y43Y14Y24Y34Ya4Z4 (size 108);
T1Y1122Y2122Y31Y41Y12Y22Y32Y42Y13Y23Y33Y43Y14Y24Y34Y44Y15Y25Y35Y45T4 (size 140);
T1Y1122Y21Y12Y22Y13Y23Y14Y24T3Y31Y32Y33Y34L2Y41Y42Y51Y52Y43Y53Y44Y54T5 (SiZG 167)-

132. There are 616,126 essentially different classes of 5-variable functions, by Table
7.1.1-5. The maximum Bmin(f), 17, is attained by 38 of those classes. Three classes
have the property that B(f™) = 17 for all permutations ; one such example, ((z2 ®
24 ® (21 A (23 V Za))) A ((z2 ® z5) V (23 D 24))) © (25 A (23 ® (21 V T2))), has the
interesting symmetries f(z1, z2, z3, z4,25) = f(Z2,Z3,Z4,T1,T5) = f(z2,Ts5, 21,23, T4a).

Incidentally, the maximum difference Bmax(f) — Bmin(f) = 10 occurs only in the
“junction function” class z1? x2: 3?7 x4: x5, when Bpin = 7 and Bmax = 17.

(When n = 4 there are 222 classes; and Bmin(f) = 10 in 25 of them, including S,
and Sz 4. The class exemplified by truth table 16ad is uniquely hardest, in the sense
that Bmin(f) = 10 and most of the 24 permutations give B(f") = 11.)

133. Represent each subset X C {1,...,n} by the n-bit integer i(X) = > 2°-1
and let b;(x),, be the weight of the edge between X and X Uz. Set co < 0, and for
1 <4< 2" set ¢; + min{cig; + bigjz | 7 = 2° * and i & j # 0}. Then Bumin(f) =
can_1 + 2, and an optimum ordering can be found by remembering which z = z(7)
minimizes each ¢;. For Bmax, replace ‘min’ by ‘max’ in this recipe.

Wegener

Nikolskaia

Nikolskaia

symmetries

junction function
symmetric functions
four-variable functions

7.14 ANSWERS TO EXERCISES 101

The maximum profile, (1,2,4,2,2), occurs on paths such as § — {2} — {2,3} —
{2,3,4} — {1,2,3,4}. The minimum profile, (1,2,2,1,2), occurs only on the paths
0 — ({3} or {4}) — {3,4} — {1,3,4} — {1,2,3,4}. (Five of the 24 possible paths
have the profile (1,2,3,2,2) and are unimprovable by sifting on any variable.)

135. Let 6o =1, 01 = z1, 2 = 1 A z2, and 0, = 2,7 Op_1: Op—3 for n > 3. One can
prove that, when n > 4, B(0;;) = n+2 if and only if (n«,...,17) = (1,...,n). The key
fact is that if £ < n and n > 5, the subfunctions obtained by setting xj < 0 or xx +
1 are distinct, and they both depend on the variables {z1,...,Zr—1,Zk+1,---,Zn},
except that the subfunction for z,_1 < 0 does not depend on z,_2. Thus the weights
{zx} — {zr,z:} in the master profile chart are 2 except when £ = n or (k,l) =
(n—1,n—2). Below {zn_1,Zn_2} there are three subfunctions, namely z,? 0,,_4: 0,3,
Zn? Op—s: On_3, and O,_3; all of them depend on {z1,...,zn_3}, and two of them on z,.
136. Let n = 2n’ — 1 and m = 2m’ — 1. The inputs form an m x n matrix, and we’re
computing the median of m row-medians. Let V; be the variables in row 7. If X is
a subset of the mn variables, let X; = X N'V; and r; = |X;|. Subfunctions of type
(s1,---,8m) arise when exactly s; elements of X; are set to 1; these subfunctions are

(5182 ...5m), where S; = S>n/—s, (Vi\Xi) and 0 < s5; < 7; for 1 <4 < m.

When z ¢ X, we want to count how many of these subfunctions depend on z. By
symmetry we may assume that £ = x,,,. Notice that the symmetric threshold function
S>¢(x1,...,%n) equals 0 if t > n, or 1if t < 0; it depends on all n variablesif 1 <t < n.
In particular, S,, depends on z for exactly r»,$n = min(ry, + 1,7 — 1) choices of sp,.

Let a; = 3" *[ri=7] for 0 < j < n. Then a, of the functions {S1,...,Sm_1}
are constant, and ap—1 + -+ + a,s of them might or might not be constant. Choosing

¢; to be nonconstant gives us (Tm$n)((an+an—1+---+ap —cn_1—-+-—cyr)$m) times
(82 e (0 oozes oyt ! = 1 (0 = 2 1o
Cn—1 Cpt
distinct subfunctions that depend on z. Summing over {cp—1, ..., ¢y} gives the answer.

When variables have the natural row-by-row order, these formulas apply with
rm = kmodn, an = |k/n|, ao = m — 1 —ay. The profile element b, for 0 < k < mn is
therefore (|k/n)$m)((k mod n)$n), and we have > ;%% bx = (m'n’)? + 2. This ordering
is optimum, although no easy proof is apparent; for example, some orderings can
decrease by,42 or ba,_o from 4 to 3 while increasing by, for other k.

Every path from top to bottom of the master chart can be represented as ag —
Qi1 — - -+ = Qmn, Where each «; is a string 751 ...7jm With 0 < rj; <--- < 7rjm < n,
rj1+-+++7jm = j, one coordinate increasing at each step. For example, one path when
m =5 and n = 3 is 00000 — 00001 — 00011 — 00111 — 00112 — 00122 — 00123 —
01123 — 11123 — 11223 — 12223 — 12233 — 12333 — 22333 — 23333 — 33333. We
can convert this path to the “natural” path by a series of steps that don’t increase the
total edge weight, as follows: In the initial segment up to the first time rj, = n, do
all transitions on the rightmost coordinate first. (Thus the first steps of the example
path would become 00000 — 00001 — 00002 — 00003 — 00013 — 00113 — 00123.)
Then in the final segment after the last time 7;; = 0, do all transitions on the leftmost
coordinate last. (The final steps would thereby become 01123 — 01223 — 02223 —
02233 — 02333 — 03333 — 13333 — 23333 — 33333.) Then, after the first n steps,
normalize the second-last coordinates in a similar fashion (00003 — 00013 — 00023 —
00033 — 00133 — 01133 — 01233 — 02233); and before the last n steps, normalize the
second coordinates (00133 — 00233 — 00333 — 01333 — 02333 — 03333). Et cetera.

sifting

recurrences

master profile chart

0-1 matrices

symmetric threshold function

102 ANSWERS TO EXERCISES 7.14

[This back-and-forth proof technique was inspired by the paper of Bollig and
Wegener cited below. Can every nonoptimal ordering be improved by merely sifting?]
137. If we add a clique of ¢ new vertices and (g) new edges, the cost of the opti-
mum arrangement increases by (c'gl). So we may assume that the given graph has
m edges and n vertices {1,...,n}, where m and n are odd and sufficiently large. The
corresponding function f, which depends on mn 4 m + 1 variables z;; and s for
1<i<m,1<j<mnand0<k<m,is J(so,51,---,5m;h,g1,---,9m), Where
9i = (Tiu; D Tiv;) A N{Ziw | w & {us,v:}} when the ith edge is u; — wv;, and where
h = <(a:11 e Tm1) - T1n .. mmn» is the transpose of the function in exercise 136.

One can show that Bmin(f) = ming >, [ur—vr|+ (=) (28)? +mn+m+2;
the optimum ordering uses (42)?(241)? nodes for h, n+ |u;m — v;7w| nodes for g;, one
node for each s, and two sink nodes, minus one node that is shared between h and
some g;. [See B. Bollig and I. Wegener, IEEE Trans. C-45 (1996), 993-1002. D. Sieling,
in J. Computer and System Sci. 74 (2008), 394-403, has proved that Bmin(f) can’t be
approximated within a constant factor in polynomial time, unless P = NP.]

138. (a) Let Xy = {z1,...,zx}. The QDD nodes at depth & represent the subfunctions
that can arise when constants replace the variables of X;. We can add an n-bit field
DEP to each node, to specify exactly which variables of X,, \ X it depends on. For
example, the QDD for f in (92) has the following subfunctions and DEPs:

depth 0: 0011001001110010 [1111];

depth 1: 00110010 [0111], 01110010 [0111];

depth 2: 0010 [0011], 0011 [0010], 0111 [0011];
depth 3: 00 [0000], 01 [0001], 10 [0001], 11 [0000].

An examination of all DEP fields at depth k tells us the master profile weights between
Xrand XUz, for0< k<l <n.

(b) Represent the nodes at depth k as triples Nigp = (lgp, hip, dip) for 0 < p < gy,
where (lgp, hxp) are the (LO,HI) pointers and dip records the DEP bits. If £ < n,
these nodes branch on zxy1, so we have 0 < lzp, hgp < gr41; but if £ = n, we have
Ino = hno = 0 and l,1 = hn1 = 1 to represent and . We define di, = E{Zt_k_l |
Ni,p depends on z;}; hence 0 < di, < 2" 7%, For example, the QDD (82) is equivalent
to Noo = (07 177)v Ny = (07 173)7 N = (17273)’ Nao = (07070)7 Nox = (0717 1)7
sz = (1,1,0); N30 = (0,07 0), N31 = (1, 1,0)

To jump up from depth b to depth a, we essentially make two copies of the nodes
at depths b—1,b—2, ..., a, one for the case zp+1 = 0 and one for the case zp4+1 = 1.
Those copies are moved down to depths b, b— 1, ..., a + 1, and reduced to eliminate
duplicates. Then every original node at depth a is replaced by a node that branches on
Zp+1; its LO and HI fields point respectively to the 0-copy and the 1-copy of the original.

This process involves some simple (but cool) list processing to update DEPs while
bucket sorting: Nodes are unpacked into a work area consisting of auxiliary arrays r, s,
t, u, and v, initially zero. Instead of using lx, and hg, for LO and HI, we store HI in cell
up of the work area, and we let v, link to the previous node (if any) with the same LO
field; furthermore we make s; point to the last node (if any) for which LO = [. The algo-
rithm below uses UNPACK(p, [, h) as an abbreviation for “u, < h, vp « si, 51 + p+1.7

When nodes of depth k& have been unpacked in this way to arrays s, u, and v,
the following subroutine ELIM(k) packs them back into the main QDD structure with
duplicates eliminated. It also sets 7, to the new address of node p.

Bollig
Wegener
sifting

clique

Bollig
‘Wegener
Sieling

bucket sorting

7.14 ANSWERS TO EXERCISES 103

E1l. [Loopon l.] Set ¢ + 0 and ¢, < 0 for 0 < h < g+1. Do step E2 for 0 < < gp41-
Then set gx + q and terminate.

E2. [Loop on p.] Set p « s; and s; + 0. While p > 0, do step E3 and set p < vp_1.
Then resume step E1.

E3. [Pack node p — 1.] Set h < up_1. (The unpacked node has (LO,HI) = (I, h).) If
tp # 0 and Iy, —1) = I, set 751 < tp — 1. Otherwise set lxg < [, hxq < h, drq
(dk+1ytldps1yn) KL)+[L#R], Tp1 4= ¢, q <= q+1, th < q. Resume step E2. |
We can now use ELIM to jump up from bto a. (i) For k=b6—-1,b6-2, ..., a,

do the following steps: For 0 < p < gk, set | « lgp, h « hgp; it k. = b — 1,
UNPACK(2p, lpi, hei) and UNPACK(2p+1, lpn, hon), otherwise UNPACK(2p, 721, 721) and
UNPACK(2p + 1,72141,72n+1) (thereby making two copies of Ni, in the work area).
Then ELIM(k + 1). (ii) For 0 < p < ga, UNPACK(p,T2p,72p+1). Then ELIM(a).
(111) Ifa > 07 set | l(afl)py h « h(afl)p, l(afl)p T, h(afl)p < Th, for 0 <p<dga-1-

This jump-up procedure garbles the DEP fields above depth a, because the vari-
ables have been reordered. But we’ll use it only when those fields are no longer needed.

(¢) By induction, the first 2”2 steps account for all subsets that do not contain n;
then comes a jump-up from n — 1 to 0, and the remaining steps account for all subsets
that do contain n.

(d) Start by setting yy, < k and wy < 2*¥ — 1 for 0 < k < n. In the following
algorithm, the y array represents the current variable ordering, and the bitmap wix =
>{2% | 0 < j < k} represents the set of variables on the top k levels.

We augment the subroutine ELIM(k) so that it also computes the desired edge
weights of the master profile: Counters ¢; are initially 0 for 0 < j < n — k; after
setting diq in step E3, we set ¢; < ¢; + 1 for each j such that 27 C dig; finally we set
buwy,yp;+1 < ¢ for 0 < j < n—k, using the notation of answer 133. [To speed this up,
we could count bytes not bits, increasing ¢; (4, sj)e#ss by 1 for 0 <j < (n—k)/8.]

We initialize the DEP fields by doing the following for k =n—-1,n—2, ..., 0:
UNPACK(p7 lkp,hkp) for 0 < p < gx; ELIM(k); if k>0, set [+ l(k—l)p7 h h(k—l)p7
l(k—1)p < 71, and h(g_1)p < Th, for 0 < p < gr—1.

The main loop of the algorithm now does the following for 1 < i < 2"7': Set
a <+ vi—1and b+« vi+pi. Set (Ya,.--,Ys) < (Yb,Yas .-, Yo—1) and (Wat1,...,Wp)
(2% + waq,...,2Y% + wp_1). Jump up from b to a with the procedure of part (b); but
use the original (non-augmented) ELIM routine for ELIM(a) in step (ii).

(e) The space required for nodes at depth k is at most Qj = min(2¥, 22n_k); we
also need space for 2max(Q1,...,Qn) elements in arrays r, u, v, plus max(Q1,...,Qn)
elements in arrays s and t. So the total is dominated by O(2"n) for the outputs by o.

Subroutine ELIM(k) is called (}) times in augmented form, for 0 < k < n, and
(Z;}) times non-augmented. Its running time in either case is O(gx(n — k)). Thus the
total comes to O(>_, (Z)2k(n —k)) = O(3"n), and it will be substantially less if the
QDD never gets large. (For example, it’s O((1 + +/2)™n) for the function h,.)

[The first exact algorithm to determine optimum variable ordering in a BDD was

introduced by S. J. Friedman and K. J. Supowit, IEEE Trans. C-39 (1990), 710-713.
They used extended truth tables instead of QDDs, obtaining a method for m = 1 that
required ©(3"/y/n) space and ©(3"n?) time, improvable to ©(3"n).]
139. The same algorithm applies, almost unchanged: Consider all QDD nodes that
branch on z, to be at level 0, and all nodes that branch on z+1 to be sinks. Thus
we do 2°7% jump-ups, not 2771, (The algorithm doesn’t rely on the assumptions that
go = 1 and ¢, = 2, except in the space and time analyses of part (e).)

hidden weighted bit
Friedman

Supowit

truth tables

104 ANSWERS TO EXERCISES 7.14

140. We can find shortest paths in a network without knowing the network in advance,
by generating vertices and arcs “on the fly” as needed. Section 7.3 points out that the
distance d(X,Y) of each arc X — Y can be changed to d'(X,Y) = d(X,Y)—(X)+I(Y)
for any function {(X), without changing the shortest paths. If the revised distances d’'
are nonnegative, [(X) is a lower bound on the distance from X to the goal; the trick is
to find a good lower bound that focuses the search yet isn’t difficult to compute.

If | X| = I, and if a QDD for f with X on its top [levels has g nonconstant nodes
on the next level, then [(X) = max(g,n — [) is a suitable lower bound for the Bmin
problem. [See R. Drechsler, N. Drechsler, and W. Glinther, ACM/IEEE Conf. Design
Automation 35 (1998), 200-205.] However, a stronger lower bound is needed to make
this approach competitive with the algorithm of exercise 138, unless f has a relatively
short BDD that cannot be attained in very many ways.

141. False. Consider g(z1 V- V&e, 7V -V 12, (T13V -V Z16) D T18, T17, T19 V
<o+ V Za2), where g(y1,..-,Y5) = (1 VYs) Aya) Dys) A (y1 Ay2) Dya D ys)) D ys.
Then B(g) = 40 = Bmin(g) can’t be achieved with {z13,...,z16,218} consecutive.
[M. Teslenko, A. Martinelli, and E. Dubrova, IEEE Trans. C-54 (2005), 236-237.]

142. (a) Suppose m is odd. The subfunctions that arise after (z1,...,Zm+1) are known
are [Wm42Lm+2 + -+« + WnTp > oM~y —ogm-Z_ t], where 0 < t < 2™. The subcases
Tm42 + - -+ xn = (m — 1)/2 show that at least ((m":)l/z) of these subfunctions differ.

But organ-pipe order, (mlmgm_lméxim_zmg . ..miﬁ;Qm*zm{ifmﬁmil), is much
better: Let tx = z1+(2™—1)z2+z3+- - -+(2m—2k71)x2k—|—2k71m2k+1, forl1<k<m-—1.
The remaining subfunction depends on at most 2k + 2 different values, [tz/2*].

(b) Let n = 1+ 4m?. The variables are xo and x;; for 0 < 4,5 < 2m; the weights
are wo = 1 and w;; = 2t 4 22m+1+i, Let X be the first [variables in some ordering,
and suppose X; includes elements in 4; rows and j; columns of the matrix (z;;). If
max(i;, ;) = m, we will prove that ¢; > 2™; hence B(f) > 2™ by (85).

Let I and J be subsets of {1,...,2m} with |I| = |J| = m and X; C zo U {z;; |
i € I,j € J}; let I' and J' be the complementary subsets. Choose m elements
X' C X; \ zo, in different rows (or, if i; < m, in different columns). Consider 2™
paths in the QDD defined as follows: zo = 0, and z;; = 0 if z;; € X; \ X'; also
Ty = Ty = Tyy = Zy; for i € I, j € J, where i <> i’ and j «> j' are matchings
between I <> I' and J <+ J'. Then there are 2™ distinct values t = 33, ; i ; wijTij;
but 3 oc; i com WiiTi; = (2°™—1)(1+2°™*'m) on each path. The paths must pass
through distinct nodes on level . Otherwise, if ¢t # t', one of the lower subpaths would
lead to [L], the other to [T].

[These results are due to K. Hosaka, Y. Takenaga, T. Kaneda, and S. Yajima,
Theoretical Comp. Sci. 180 (1997), 47-60, who also proved that |Q(f) — Q(fF)| < n.
Do self-dual threshold functions always satisfy also |B(f) — B(f®)| < n?)

143. In fact, the algorithm of exercises 133 and 138 proves that organ-pipe order is
best for these weights: (1, 1023, 1, 1022, 2, 1020, 4, 1016, 8, 1008, 16, 992, 32, 960, 64,
896, 128, 768, 256, 512) gives the profile (1, 2, 2, 4, 3, 6, 4, 8, 5, 10, 4, 8, 3, 6, 2, 4,
1,2, 2,1, 2) and B(f) = 80. The worst ordering, (1022, 896, 512, 64, 8, 1, 4, 32, 1008,
1020, 768, 992, 1016, 1023, 960, 256, 128, 16, 2, 1), makes B(f) = 1913.

(One might think that properties of binary notation are crucial to this example.
But (z,z,z3zieses’e 28025 el 211 213058 211 205 288 2172 e85 ° 283" 230°) is actu-
ally the same function, by exercise 7.1.1-103(!).)

144. (5,7,7,10,6,9,5,4,2); the QDD-not-BDD nodes correspond to f1, f2, f3, 0, 1.

shortest paths
Drechsler
Drechsler
Giinther
Teslenko
Martinelli
Dubrova
organ-pipe order
Hosaka
Takenaga
Kaneda
Yajima

fR

organ-pipe order

7.14 ANSWERS TO EXERCISES 105

145. Bmin = 31 is attained in (36). The worst ordering for (z3z2z120)2 + (Y3y2y1Y0)2
is Yo, Y1, Y2, Y3, T2, T1, o, 3, making Bmax = 107. Incidentally, the worst ordering
for the 24 inputs of 12-bit addition, (z11...20)2 + (¥11 . ..Y0)2, turns out to be yo, y1,
.+, Y11, T10, T8, L6, T4, L3, L5, T2, L7, T1, T9, L0, T11, yielding Bmax = 39111.
[B. Bollig, N. Range, and 1. Wegener, Lecture Notes in Comp. Sci. 4910 (2008),
174-185, have proved that Bmin = 9n — 5 for addition of two n-bit numbers whenever
n > 1, and also that Bmin(Mm) = 2n — 2m + 1 for the 2™-way multiplexer.]

146. (a) Obviously by < qo; and if go = bg + ag, then by < 2bg + ap = bg + ¢o. Also
qo—bo = ao < bi+qz < ¢2, the number of strings of length 2 on a gz-letter alphabet; sim-
ilarly bo+b1+g2 < (b1 +q2)2. (The same relations hold between g, qk+2, bk, and bg41.)

(b) Let the subfunctions at level 2 have truth tables a; for 1 < j < g2, and use
them to construct beads S, ..., B, at level 1. Let (y1,...,7Yq+5,) be the truth tables
(o101, .oy gy 0ge s By oy By). If bo < b1/2, let the functions at level 0 have truth
tables {B2i—182: | 1 <4 < bo} U{BiBi | 200 < j < b1} U{vvi |1 <5< bo+qo—bi}.
Otherwise it’s not difficult to define by beads that include all the 8’s, and use them at
level 0 together with the nonbeads {v;v; |1 < j < go — bo}.

147. Before doing any reordering, we clear the cache and collect all garbage. The
following algorithm interchanges levels @ ~ @ when v = u+1. It works by creating
linked lists of solitary, tangled, and hidden nodes, pointed to by variables S, T, and
H (initially A), using auxiliary LINK fields that can be borrowed temporarily from the
hash-table algorithm of the unique lists as they are being rebuilt.

T1. [Build S and T'.] For each @—node p, set g < LO(p), r + HI(p), and delete p
from its hash table. If V(¢) # v and V(r) # v (p is solitary), set LINK(p) < S and
S + p. Otherwise (p is tangled), set REF(g) < REF(g) —1, REF(r) + REF(r) —1,
LINK(p) «+ T, and T « p.

T2. [Build H and move the visible nodes.] For each @-node p, set ¢ < LO(p),
r « HI(p), and delete p from its hash table. If REF(p) = 0 (p is hidden), set
REF(¢) < REF(g) —1,REF(r) < REF(r) —1, LINK(p) < H, and H < p; otherwise
(p is visible) set V(p) < u and INSERT(u, p).

T3. [Move the solitary nodes.] While S # A, set p < S, S « LINK(p), V(p) « v,
and INSERT(v, p).

T4. [Transmogrify the tangled nodes.] While T # A, set p + T, T < LINK(p), and
do the following: Set ¢ <+ LO(p), r + HI(p). If V(¢) > v, set go < q1 + g;
otherwise set go < LO(g) and ¢1 + HI(g). If V(r) > v, set ro « 71 < 7}
otherwise set 7o < LO(r) and 71 < HI(r). Then set LO(p) < UNIQUE(v, qo, 7o),
HI(p) + UNIQUE(v,qi,71), and INSERT(u, p).

T5. [Kill the hidden nodes.] While H # A, set p «+ H, H «+ LINK(p), and recycle
node p. (All of the remaining nodes are alive.) |

The subroutine INSERT (v, p) simply puts node p into z,’s unique table, using the key
(LD (p),HI (p)); this key will not already be present. The subroutine UNIQUE in step
T4 is like Algorithm U, but instead of using answer 82 it treats reference counts quite
differently in steps Ul and U2: If Ul finds p = gq, it increases REF(p) by 1; if U2 finds r,
it simply sets REF(r) <— REF(r) + 1.

Internally, the branch variables retain their natural order 1, 2,..., n from top to
bottom. Mapping tables p and 7 represent the current permutation from the external
user’s point of view, with p = 7~ ; thus the user’s variable z, appears on level v — 1,

Bollig

Range

Wegener

Zm—way multiplexer
clear the cache
collect all garbage
linked lists
Transmogrify
UNIQUE

106 ANSWERS TO EXERCISES 7.14

and node UNIQUE(v, p, q) on level v — 1 represents the user’s function (z,,? p: ¢). To
maintain these mappings, set j < up, k < vp, up < k, vp < j, jm < v, km < u.

148. False. For example, consider six sinks and nine source functions, with extended
truth tables 1156, 2256, 3356, 4456, 5611, 5622, 5633, 5644, 5656. Eight of the nodes
are tangled and one is visible, but none are hidden or solitary. There are 16 newbies:
15, 16, 25, 26, 35, 36, 45, 46, 51, 61, 52, 62, 53, 63, 54, 64. So the swap takes 15 nodes
into 31. (We can use the nodes of B(z3 @ x4,z3 @ Z4) for the sinks.)

149. The successive profiles are bounded by (bo, b1,...,bn), (bo + b1,2bo,b2,...,bn),
(bo + b1, 2bo + by, 4bo, b3, ..., by), ..., (20 + b1,...,28 2bg 4+ by _1,2% b, by, ..., bn).

Similarly, we also have B(fT,..., f;m) < B(f1,..., fm)+2(bo+- - -+br—1) in addi-
tion to Theorem J*, because swaps contribute at most 2bg_1, 2bx_a, . . ., 2bp new nodes.

150. We may assume that m = 1, as in exercise 52. Suppose we want to jump zj to
the position that is jth in the ordering, where j # k. First compute the restrictions
of f when zx = 0 and zr = 1 (see exercise 57); call them g and h. Then renumber
the remaining variables: If j < k, change (zj,...,zk-1) to (zj+1,...,Tr); otherwise
change (zg+1,...,2;5) to (Tk,...,2j—1). Then compute f < (Z; A g)V (z; A h), using
the linear-time variant of Algorithm S in exercise 72.

To show that this method has the desired running time, it suffices to prove the
following: Let g(x1,...,2zn) and h(z1,...,Zn) be functions such that g(xz) = 1 implies
z; = 0 and h(z) = 1 implies z; = 1. Then the meld g o h has at most twice as many
nodes as g V h. But this is almost obvious, when truth tables are considered: For
example, if n = 3 and j = 2, the truth tables for g and h have the respective forms
ab00cd00 and 00st00uv. The beads 8 of gV h on levels < j correspond uniquely to the
beads B’ ¢ 8" of g ¢ h on those levels, because 8 = 8’ V 8" can be “factored” in only
one way by putting Os in the appropriate places. And the beads 8 of g V h on levels
> j correspond to at most two beads of g ¢ h, namely to ¢ and/or o f.

[See P. Savicky and I. Wegener, Acta Informatica 34 (1997), 245-256, Theorem 1.]

151. Set tx < 0 for 1 < k < n, and make the swapping operation z;_; ¢+ z; also swap
tj—1 <> tj. Then set k <— 1 and do the following until & > n: If tz = 1set k < k + 1;
otherwise set t < 1 and sift zx.

(This method repeatedly sifts on the topmost variable that hasn’t yet been sifted.
Researchers have tried fancier strategies, such as to sift the largest level first; but no
such method has turned out to dominate the simple-minded approach proposed here.)

152. Applying Algorithm J as in answer 151 yields B(hipo) = 1,382,685,050 after
17,179 swaps, which is almost as good as the result of the “hand-tuned” permuta-
tion (95). Another sift brings the size down to 300,451,396; and further repetitions
converge down to just 231,376,264 nodes, after a total of 232,951 swaps.

If the loops of steps J2 and J5 are aborted when S > 1.05s, the results are
even better(!), although fewer swaps are made. The first sift reduces the size to
1,342,191,700, and iteration produces B(h{o) = 208,478,228 after 139,245 swaps, where
7 is the following permutation:

3 4 6 8 10 12 14 16 18 20 22 24 27 28 30 32 35 67 37 39
43 41 45 51 47 49 55 80 53 83 85 92 93 94 78 75 77 95 73 T1
96 98 97 68 57 58 60 65 63 62 61 87 64 59 66 88 56 69 70 99
10072 76 91 79 74 90 89 86 84 52 82 81 48 54 50 46 44 42 40
38 36 34 33 31 29 26 25 23 21 19 17 15 13 11 9 7 5 2 1

extended truth tables
tangled

visible

hidden

solitary

meld

Savicky

Wegener

7.14 ANSWERS TO EXERCISES 107

Incidentally, if we sift the variables hioo in order of profile size, so that xzeo is
sifted first, then zs9, Z61, 58, T57, Te2, Ts6, €tc. (Wherever they currently happen to
be), the resulting BDD turns out to have 2,196,768,534 nodes.

Simple “downhill swapping” instead of full sifting is of no use whatever for higo:
The (130) swaps 1 <> T2, L3 <> T1, T3 <> X2, ..., Ti00 <> T1, -.., 100 > Tog
completely reverse the order of all variables without changing the BDD size at any step.

153. Each gate is easily synthesized using recursions like (55). About 1 megabyte of
memory and 3.5 megamems of computation suffice to construct the entire BDD base of
8242 nodes. Using exercise 138 we may conclude that the ordering z7, x3, 9, 1, 09, 01,
03, 07, T4, Te, O6, 04, 02, 08, T2, Ts, 05, T5 is optimum, and that Bmin(y1, .- .,ys) = 5308.

Reordering of variables is not advisable for a problem such as this, since there
are only 18 variables. For example, autosifting whenever the size doubles would require
more than 100 megamems of work, just to reduce 8242 nodes to about 6400.

154. Yes: CA was moved between ID and OR at the last sifting step, and we can work
backwards all the way to deduce that the first sift moved ME between MA and RI.
155. The author’s best attempt for (a) is

ME NH VT MA CT RI NY DE NJ MD PA DC VA OH WV KY NC SC GA FL AL IN MI IA

IL MO TN AR MS TX LA CO WI KS SD ND NE OK WY MN ID MT NM AZ OR CA WA UT NV

giving B(f{') = 403, B(f5) = 677, B(f{, f3) = 1073; and for (b) the ordering

NH ME MA VT CT RI NY DE NJ MD PA VA DC OH WV KY TN NC SC GA FL AL IN MI

IL IA AR MO MS TX LA CO KS OK WI SD NE ND MN WY ID MT AZ NM UT OR CA WA NV
gives B(fT) = 352, B(f§) = 702, B(fT, f§) = 1046,
156. One might expect two “siftups” to be at least as good as a single sifting process
that goes both up and down. But in fact, benchmark tests by R. Rudell show that siftup
alone is definitely unsatisfactory. Occasional jump-downs are needed to compensate for
variables that temporarily jump up, although their optimum final position lies below.
157. A careful study of answer 128 shows that we always improve the size when the first
address bit that follows a target bit is jumped up past all targets. [But simple swaps
are too weak. For example, Mz(z1, z6; %2, T3, T4, x5) and Ms(z1, z10, T11; T2, T3, - - -, T9)
are locally optimal under the swapping of z;_1 <> z; for any j.]
158. Consider first the case when m = 1 and n = 3t — 1 > 5. Then if nmt = k, the
number of nodes that branch on j is a; if j7 < k, b; if j7 =k, and anto—; if j7m >k,
where
a; = j —3max(j — 2t,0), b; = min(j,t,n+ 1 — j).

The cases with {z1,...,2n—1} consecutive are k = 1 and B(f™) = 3t +2; k= n and
B(f™) = 3t®+1. But when k = [n/2] we have B(f™) = |3t/2]([3t/2]—1)+n—|t/2]+2.
Similar calculations apply when m > 1: We have B(f™) > 6(”43) + B(g™)
when 7w makes {z1,...,zp} consecutive, but B(f") =~ 2(”é2) + £B(g"™) when 7 puts
{Zp+1,...,Tp+m} in the middle. Since g is fixed, pB(g") = O(n) as n — oo.

[If g is a function of the same kind, we obtain examples where symmetric variables
within g are best split up, and so on. But no Boolean functions are known for which
the optimum B(f™) is less than 3/4 of the best that is obtainable under the constraint
that no blocks of symmetric variables are split. See D. Sieling, Random Structures &
Algorithms 13 (1998), 49-70.]

159. The function is almost symmetric, so there are only nine possibilities. When
the center element z is placed in position (1,2,...,9) from the top, the BDD size is
respectively (43,43,42, 39, 36, 33,30, 28, 28).

autosifting

Knuth

Rudell

swaps

Sieling

almost symmetric

108 ANSWERS TO EXERCISES 7.14

160. (a) Compute A}, /\?:o(_‘Lij (X)), a Boolean function of 64 variables—for ex-
ample, by applying COMPOSE to the relatively simple L function of exercise 159,
100 times. With the author’s experimental programs, about 320 megamems and 35
megabytes are needed to find this BDD, which has 251,873 nodes with the normal
ordering. Then Algorithm C quickly finds the desired answer: 21,929,490,122. (The
number of 11 x 11 solutions, 5,530,201,631,127,973,447, can be found in the same way.)

(b) The generating function is 1464z +20162° +397402° + - - - +802"° + 826 and
Algorithm B rapidly finds the eight solutions of weight 46. Three of them are distinct
under chessboard symmetry; the most symmetric solution is shown as (A0Q) below.

(c) The BDD for A7, Aj_,(=Li;(X)) has 305,507 nodes and 21,942,036,750
solutions. So there must be 12,546,628 wild ones.

(d) Now the generating function is 402'* +9362% + 1050026 + - - - +1625° + 2°¢;
examples of weight 14 and 56 appear below as (Al) and (A2).

(e) Exactly 28 of weight 27 and 54 of weight 28, all tame; see (A3).

(f) There are respectively (26260, 5, 347, 0, 122216) solutions, found with about
(228, 3, 32, 1, 283) megamems of calculation. Among the lightest and heaviest solutions
to (1) are (A4) and (A5); the nicest solution to (2) is (A6); (A7) and (A9) solve (3)
lightly and (5) heavily. Pattern (4), which is based on the binary representation of ,
has no 8 x 8 predecessor; but it does, for example, have the 9 x 8 in (A8):

T T
i H H
T T

(A0) (A1) (A2) (A3) (A4) (A5) (A6) (A7) (A8) (A9)

161. (a) With the normal row-by-row ordering (z11,Z12,...,Zn(n-1), Znn), the BDD
has 380,727 nodes and characterizes 4,782,725 solutions. The computational cost is
about 2 gigamems, in 100 megabytes. (Similarly, the 29,305,144,137 still Lifes of size
10 x 10 can be enumerated with 14,492,923 nodes, after fewer than 50 gigamems.)

(b) This solution is essentially unique; see (B1) below. There’s also a unique (and
obvious) solution of weight 36.

(¢) Now the BDD has 128 variables, with the ordering (11, ¥11,- .-, Znn;,Ynn)-
We could first set up BDDs for [L(X)=Y] and [L(Y) = X], then intersect them; but
that turns out to be a bad idea, requiring some 36 million nodes even in the 7 x 7
case. Much better is to apply the constraints L;;(X) = ys;; and L;;(Y) = z;; row by
row, and also to add the lexicographic constraint X < Y so that still Lifes are ruled
out early. The computation can then be completed with about 20 gigamems and 1.6
gigabytes; there are 978,563 nodes and 582,769 solutions.

(d) Again the solution is unique, up to rotation; see the “spark plug” (B2) <+ (B3).
(And (B4) < (B5) is the unique 7% 7 flip-flop of constant weight 26. Life is astonishing.)

M F OB OBE om

(B1) (B2) (B3) (B4) (B5) (B6)

162. Let T(X) = [X is tame] and Ex(X) = [X escapes after k steps]. We can compute
the BDD for each Ej by using the recurrence

Ei(X)=-T(X); Exa(X) =3V (T(X)A[L(X)=Y] A Ex(Y)).

Knuth

generating function
symmetry

™

spark plug
recurrence

7.14 ANSWERS TO EXERCISES 109

(Here 3Y stands for Jyi1 Jy12 --- Jyse. As noted in answer 103, this recurrence turns
out to be much more efficient than the rule Exy1 = T(X) A Ex(L11(X),. .., Les (X)),
although the latter looks more “elegant.”) The number of solutions, |Ex|, is found
to be (806544 - 2%, 657527179 - 2%, 2105885159, 763710262, 331054880, 201618308,
126169394, 86820176, 63027572, 41338572, 30298840, 17474640, 9797472, 5258660,
3058696, 1416132, 523776, 204192, 176520, 62456, 13648, 2776, 2256, 440, 104, 0)
for k = (1, 2, ..., 26); thus 320 | |Ex| = 67,166,017,379 of the 2°¢ = 68,719,476,736
possible configurations eventually escape from the 6 X 6 cage. (One of the 104 procras-
tinators in Eys is shown in (B6) above.)

BDD techniques are excellent for this problem when k is small; for example,
B(E1) =101 and B(E2) = 14441. But Ej eventually becomes a complicated “nonlocal”
function: The size peaks at B(Es) = 28,696,866, after which the number of solutions
gets small enough to keep the size down. More than 80 million nodes are present in the
formula T(X)A[L(X) =Y]|AE5(Y) before quantification; this stretches memory limits.
Indeed, the BDD for \/;°, Ex(X) takes up more space than its 233-byte truth table.
Therefore a “forward” method for this exercise would be preferable to the use of BDDs.

(Cages larger than 6 x 6 appear to be impossibly difficult, by any known method.)

163. Suppose first that o is A. We obtain the BDD for f = g A h by taking the BDD
for g and replacing its sink by the root of the BDD for h. To represent also f, make
a separate copy of the BDD for g, and use a BDD base for both h and h; replace the
in the copy by , and replace the in the copy by the root of the BDD for h.
This decision diagram is reduced because h isn’t constant.

Similarly, if o is @, we obtain a BDD for f = g®h (and possibly f) from the BDD
for g (and possibly g) after replacing and by the roots of BDDs for h and h.

The other binary operations o are essentially the same, because B(f) = B(f). For
example, if f = gDh = gAh, we have B(f) = B(f) = B(g)+B(h)—2 = B(g)+B(h)—2.
164. Let Ul(:r,l) = Vvl(ﬂ}l) = I, Un+1(ﬂ}1, P 7$n+1) = T GB Vn(ﬂ,‘z, - 7$n+1)7 and
Vot1(21,...,Znt1) = Un(21,...,Zn) A Tny1. Then one can show by induction that
B(f) < B(Uy) = 2l(+D/21 L ol(n+1D/2] _1 for all read-once f, and also that we always
have B(f, f) < B(Va, Vo) = 2Mn/2141 4 gln/2]+1 _o (But an optimum ordering reduces
these sizes dramatically, to B(U;) = | 3n +2] and B(V,7,Va™) = 2n+ 2.)

165. By induction, we prove also that B(uzm, iam) = 2" Fam+3+2, B(vom+1, Gam+1) =
2™ By i3 4 2, B(vam, Tam) = 2™ Fomi1 + 2, B(vam+1, Bam+1) = 27 Fomis + 2.

166. We may assume as in answer 163 that o is either A or @. By renumbering,
we can also assume that jo = j for 1 < j < n, hence f° = f. Let (bo,...,bn)
be the profile of f, and (bp,...,b;,) the profile of (f,f); let (cim,...,Cn+1)=) and
(ims- -+ Ciny1)r) be the profiles of f™ and (f7, ™), where (n+ 1) = n+ 1. Then
¢jx is the number of subfunctions of f™ = g" o h™ that depend on z;, after setting
the variables {Z1x,...,T(j_1)=} to fixed values. Similarly, c}, is the number of such
subfunctions of f™ or f*. We will try to prove that bjr_1 < ¢ and b}, _; < cj, forall j.

Case 1: o is A. We may assume that nm = n, since A is commutative. Case
la: 1 < jm < k. Then b;,_; and bj,_, count subfunctions in which only the variables
T with 1 < 7 < j and 1 < iw < k are specified. These subfunctions of g A h or
gV h have counterparts that are counted in ¢;jr and ¢, because h™ is not constant in
any subfunction when nm = n. Case 1b: k < jm < n. Then b;,_, and b},_; count
subfunctions of h or h, which have counterparts counted in ¢jr and ¢,

Case 2: ois ®@. We may assume that 17 = 1, since @ is commutative. Then an
argument analogous to Case 1 applies. [Discrete Applied Math. 103 (2000), 237-258.]

quantification
truth table

110 ANSWERS TO EXERCISES 7.14

167. Let f = fin; proceed recursively to compute ¢ij = Bmin(fij), ¢ij = Bmin(fij, fii)s

and a permutation ;; of {7,...,5} for each subfunction f;;(zs,...,z;) as follows: If
i = j, we have fi;j(x:) = x4 let ¢;; = 3, cgj = 4, m; = i. Otherwise ¢ < j, and
we have fi;(zi,...,z;) = fie(zi,...,2k) © fikt1)j(@rs1,...,2;) for some k and some

operator o. If o is like A, let ¢ij = cik + c(r41); — 2, and either (cj; = 2c;;, + c’(k+1)j —4,
Tij = TikM(k+1);) OF (Cij = 2€(ky1); + Cik — 4, Tij = MW(k41);Tik), Whichever minimizes
cij- If o is like @, let ¢j; = ciy + C(ry1y; — 2, and either (c;; = ¢, + C(gy1); — 2
Tij = TikT(k+1);) OF (Cij = C(pp1y; + Cik — 2, Tij = T(k41);Tik), whichever minimizes c;;.

(The permutations 7;; represented as strings in this description would be repre-
sented as linked lists inside a computer. We could also construct an optimum BDD
for f recursively in O(Bmin(f)) steps, using answer 163.)

168. (a) This statement transforms and simplifies the recurrences (112) and (113).

(b) True by induction; also z > n.

(c) Easily verified. Notice that T is a reflection about the 221° line y = (v2—1)z.

(d) If z € S and 2' € Sp_i we have |z| = ¢® and |2'| = ¢'?, where ¢ < k and
q¢' < n—k by induction. By symmetry we may let ¢ = (1 —§)t and ¢’ = (1+ 6)t, where
t = 1(g+q') < in. Then if the first hint is true, we have [ze 2’| < (2t)’ < n”. And we
also will have |z 0 2’| < n?, by (c), since |27 | = |z|.

To prove the first hint, we note that the maximum |z e 2| occurs when y = y'.
For when y > o' we have |ze2'|> = (z 42’ +4')2 +v* = r?+2(2' +y')z + (2’ +')?; the
largest value, given z’, occurs when y = 3’. A similar argument applies when 3’ > y.

Now when y = y' we have y = /7' sin@ for some 6; and one can show that
z+x' < (r+r')cosd. Thus ze2' = (z+ ' +y,y) lies in the ellipse of the second hint.
On that ellipse we have (a cosd + bsin)% 4 (bsin 6)? = a*/2 + b* 4 usin 20 + v cos 20 =
a’/2 4+ b® + wsin(20 + 1), where u = ab, v = 2a® — b°, w? = v® + v°, and cosT = u/w.

Hence |zoz'|2 < %az—i—bz—i—w. And 4w? = (T+r')4—|—4(rr')2 < (T2+(2\/5—2)rr'+r'2)2, so
|zez' > <7 + (VB +1)rr + 7', r=(1-0)" r =1+~

The remaining task is to prove that this quantity is at most 2%% = 2¢?; equivalently,
f:(2) < f:(2B), where fi(a) = (e/* + e */*)* — 2% and t = B1In((1 — 8)/(1 + §)). One
can show, in fact, that f; is an increasing function of & when o > 2.

[The O(n®) bound on S, seems to require a delicate analysis; an earlier attempt
by Sauerhoff, Wegener, and Werchner was flawed. The proof given here is due to A. X.
Chang and V. I. Spitkovsky in 2007.]

169. This conjecture has been verified for m < 7. [Many other curious properties also
remain unexplained. A paper that describes what is known so far is currently being
prepared by members of the “curious research group.”]

170. (a) 2°"~'. There are four choices at @ when 1 < j < n, namely LO = or
LO = or HI = or HI = ; and there are two choices for @

(b) 2™~ since half the choices at each branch are ruled out.

(c) Indeed, ift = (t1...tn)2 we have LO = at @ when ¢t; = 1 and HI = at

when ¢; = 0. (This idea was applied to random bit generation in exercise 3.4.1-25.

Since there are 2™ ! such values of ¢, we’ve shown that every monotone, skinny function
is a threshold function, with weights {2"~',...,2,1}. The other skinny functions are
obtained by complementing individual variables.)

(d) fe(®) = [(@)2 <t] = [(x)2 >] = [(x)2>2" — 1 = t] = fan_ ().

(e) By Theorem 7.1.1Q, the shortest DNF is the OR of the prime implicants, and
its general pattern is exhibited by the case n = 10 and ¢t = (1100010111)3: (z1Az2Az3)V

recursively

Sauerhoff

Wegener

Werchner

Chang

Spitkovsky

curious properties
random bit generation
threshold function
prime implicants

7.14 ANSWERS TO EXERCISES 111

(z1AT2AZ4) V (B1AT2AT5) V (21 AT2ATeAT7) V (21 AT2AZeAZ8AT9AT10). (One term for
each 0 in ¢, and one more.) The shortest CNF is the dual of the shortest DNF of the
dual, which corresponds to 2™ —t = (0011101001)2: (z1) A (z2) A (z3VzaVasVzs) A
(z3VzaVasVarVes) A (z3VzaVesVerVee) A (z3VrsVesVerVeio).

171. Note that the classes of read-once, regular, skinny, and monotone functions are
each closed under the operations of taking duals and restrictions. A skinny function is
clearly read-once; a monotone threshold function with wy > --- > w, is regular; and a
regular function is monotone. We must show that a regular read-once function is skinny.

Suppose f(z1,...,Zn) = g(Tiy,..., %4) © A(zjy,...,2;), where o is a nontriv-
ial binary operator and we have i1 < --- < ik, j1 < -+ < Ji, k+1 = n, and
{i1,.. ik, 91,---» 51} = {1,...,n}. (This condition is weaker than being “read-once.”)
We can assume that i; = 1. By taking restrictions and using induction, both g and h
are skinny and monotone; thus their prime implicants have the special form in exercise
170(e). The operator o must be monotone, so it is either V or A. By duality we can
assume that o is V.

Case 1: f has a prime implicant of length 1. Then z; is a prime implicant of f,
by regularity. Hence f(z1,...,2n) =21V f(0,z2,...,2,), and we can use induction.

Case 2: All prime implicants of g and h have length > 1. Then z;, A---Az;, is a
prime implicant, for some p > 2, but z;, 1Az, A -+ Azx;, is not, contradicting regular-
ity. [See T. Eiter, T. Ibaraki, and K. Makino, Theor. Comp. Sci. 270 (2002), 493-524.]

172. By examining the CNF for f; in exercise 170(e), we see that when t = (t1...tn)2
the number of Horn functions obtainable by complementing variables is one more than
the number for (t2...tn)2 when t; = 0, but twice that number when t; = 1. Thus the
example t = (1100010111), corresponds to 2% (2x (14 (14+(1+(2x (1+(2x(2x2))))))))
Horn functions. Summing over all ¢ gives s,, where s, = (2"_2 + Sn—1) + 28p—1, where
s1 = 2; and the solution to this recurrence is 3" — on-1,

To make both f and f Horn functions, assume (by duality) that ¢ mod 4 = 3.
Then we must complement z; if and only if ¢; = 0, except for the string of 1s at the
right of ¢. For example, when ¢ = (1100010111)2, we should complement zs, z4, zs,
z7, and then at most one of {zs,x9,z10}. This gives p(t + 1) + 1 > 3 choices related
to f;. Summing over all ¢t with ¢ mod 4 = 3 gives 2" — 1; so the answer is 2"*1 — 2.

173. Consider monotone functions first. We can write t = (091192 ...0%2k-119%2k),,
where a1+ +asx =n,a1 >0,a; > 1forl < j <2k, and azx > 2 when t mod 4 = 3.
When t mod 4 = 1, 2" — t has this form. Then f; has a1!asz! ... az2x! automorphisms, so
it is equivalent to n!/(a1!az! ...az2x!) — 1 others, none of which are skinny. Summing
over all ¢ gives 2(P, — nP,_1) monotone Boolean functions that are reorderable to
skinny form, when n > 2, where P, is the number of weak orderings (exercise 5.3.1-3).
[See J. S. Beissinger and U. N. Peled, Graphs and Combinatorics 3 (1987), 213-219.]
Every such monotone function corresponds to 2" different unate functions that
are equally skinny, when variables are complemented. (These are the functions with the
property that all of their restrictions are canalizing, known also as “unate cascades,”
“l-decision list functions,” or “generalized read-once threshold functions.”)

174. (a) Assign the numbers 0, ..., n—1, n, n+1 to nodes @, R @, [T], [1]; and
let the (LO, HI) branches from node k go to nodes (asx+1,a2k+2) for 0 < k < n. Then
define pi as follows, for 1 < k < 2n: Let [= |(k —1)/2| and P, = {p1,...,pu}. Set
pr ai if ax ¢ P;; otherwise, if aj is the mth smallest element of P,N{l+1,...,n+1},
set pr to the mth smallest element of {n +2,...,n+ 1+ 1} \ P;. (This construction is
due to T. Dahlheimer.)

duals

restrictions

read-once functions, generalized
Eiter

Ibaraki

Makino

recurrence

automorphisms

weak orderings

Beissinger

Peled

restrictions

canalizing

unate cascades

1-decision list functions
read-once threshold functions
Dahlheimer

112 ANSWERS TO EXERCISES 7.1.4

(b) The inverse p1 " ...pz of a Dellac permutation satisfies 2(k —n) —1 < pp' <
2k. It corresponds to a Genocchi derangement ¢ . .. g2n+2 When g2 = 1, gany1 = 2n+2,
and gopqp =1 +Pl;17 Gor—1 =1 +P1;-}-n for 1 <k <n.

(c) Given a permutation g ...¢2n+2, let 7, be the first element of the sequence
at, q,jz, ... that is > k. This transformation takes Genocchi permutations into
Dumont pistols, and has the property that g, = k if and only if 1, = k ¢ {r1,...,76—1}-

(d) Each node (j, k) represents a set of strings 71 .. .r;, where (1,0) = {1} and the
other sets are defined by the following transition rules: Suppose r1...7; € (j,k), and let
I =2k. If k =0 then (j + 1, k) contains 17} . r;" when j is even, 2] . r;" when j is
odd, where 7+ denotes 7+ 1. If k > 0 then (j + 1,k) contains 75 ...7 (I+1)r, ...rf
when j is even, r{ . ..1"lj51(l)rljE . r;t when j is odd, where r* denotes r + 1 when
r > 1, 7—1 when r < I. Going vertically, if | < j — 3 and j is odd, (j,k + 1)
contains 71 ...771427143(143)7144 .. .7;. On the other hand if kK = 1 and j is even,
(4,0) contains rgrirs...r;. Finally if & > 1 and j is even, (j,k — 1) contains the
string 77 ...7_3(I—=2)7_o7]_17141 ... 75, where v’ denotes | when 7 = [— 2, otherwise
r' = 7. (One can show that the elements of (27, k) are the Dumont pistols for Genocchi
permutations of order 25 whose largest fixed point is 2k.)

All of these constructions are invertible. For example, the path (1,0) — (2,0) —
(3,0) = (3,1) = (4,1) = (5,1) = (6,1) = (7,1) = (7,2) = (7,3) = (8,3) = (8,2) —
(8,1) — (8,0) corresponds to the pistols 1 — 22 — 133 — 333 — 4244 — 53355 —
624466 — 7335577 — 7355577 — 7355777 — 82448688 — 82646888 — 82466888 —
28466888. The latter pistol, which can be represented by the diagram , cor-
responds to the Genocchi derangement ¢;...gs = 61537482. And this derangement
corresponds to pr'...pg" = 231546 and the Dellac permutation p ...ps = 312546.
That permutation, in turn, corresponds to ai...as = 312343, which stands for the

thin BDD

Let djx be the number of pistols in (4, k), which is also the number of directed
paths from (1, 0) to (j, k). These numbers are readily found by addition, beginning with

38227 38227
2073 2073 38227 76454
155 155 2073 4146 36154 112608
17 17 155 310 1918 6064 32008 144616
3 17 34 138 448 1608 7672 25944 170560
1 6 14 48 104 552 1160 8832 18272 188832 ---
11 2 8 8 56 56 608 608 9440 9440 198272 ---

and the column totals D; = >, djx are (D1, Do,...) = (1,1,2,3,8,17,56, 155, 608,
2073,9440, 38227,198272,929569, ...). The even-numbered elements of this sequence,
Doy, have long been known as the Genocchi numbers Gan+2. The odd-numbered
elements, Dp41, have therefore been called “median Genocchi numbers.” The number
S, of thin BDDs is d(2’n+2)0 = Dont1-

References: L. Euler discussed the Genocchi numbers in the second volume of
his Institutiones Calculi Differentialis (1755), Chapter 7, where he showed that the
odd integers G2, are expressible in terms of the Bernoulli numbers: In fact, Gan, =
(2°"*' — 2)|Bay|, and ztanZ = 3.2 G2,2°"/(2n)!. A. Genocchi examined these
numbers further in Annali di Scienze Matematiche e Fisiche 3 (1852), 395-405; and
L. Seidel, in Sitzungsberichte math.-phys. Classe, Akademie Wissen. Miinchen 7 (1877),

N W W

1
1

Genocchi numbers
median Genocchi numbers
Euler

Bernoulli numbers
Genocchi

Seidel

7.14 ANSWERS TO EXERCISES 113

157-187, discovered that they could be computed additively via the numbers d;x. Their
combinatorial significance was not discovered until much later; see D. Dumont, Duke
Math. J. 41 (1974), 305-318; D. Dumont and A. Randrianarivony, Discrete Math. 132
(1994), 37-49. Meanwhile H. Dellac had proposed an apparently unrelated problem,
equivalent to enumerating what we have called Dellac permutations; see L’Intermédiaire
des Math. 7 (1900), 9-10, 328; Annales de la Faculté sci. Marseille 11 (1901), 141-164.

There’s also a direct connection between thin BDDs and the paths of (d), discov-
ered in 2007 by Thorsten Dahlheimer. Notice first that unrestricted Dumont pistols of
order 2n + 2 correspond to thin BDDs that are ordered but not necessarily reduced,
because we can let 71 ...72pTont172n+2 = (2a1) ... (2a2,)(2n+2)(2n+2). The number
of such pistols in which min{3 | ro; 1 = 72:} = I turns out to be dzn42)(nt+1-1)-

To prove this, we can use new transition rules instead of those in answer (d):
Suppose 71 ...7; € (j,k), and let | = j —2k. Then (j +1,k) contains rj ...r}r;5 ... r;."
when j is odd, ri ...rE (I-1)rf ... r]-i when j is even. If j is odd, (j,k + 1) contains
1rirs...7; when I = 3, and when ! > 3 it contains 77 ...7j_s(I—4)r|_371]_p7;...T},
where 7' = r + 2[r=1—4]. Finally, if j is even and k > 0, (j,k — 1) contains
T1...T1—1qTi42T142 - .. Tj, where ¢ = [if r; = 741, otherwise ¢ = ry41.

With these magic transitions the path above corresponds to 1 — 22 — 313 —
133 — 2244 — 31355 — 424466 — 5153577 — 5135577 — 1535577 — 22646688 —
26446688 — 26466688 — 26466888; so a1 ...as = 132334.

175. This problem seems to require a different approach from the methods that worked
when by = -+ - = b,_1 = 1. Suppose we have a BDD base of N nodes including the two
sinks and together with various branches labeled @, AU @, and assume that
exactly s of the nodes are sources (having in-degree zero). Let ¢(b, s,t, N) be the number
of ways to introduce b additional nodes labeled @ , in such a way that exactly s+b—t
source nodes remain. (Thus 0 < t < 2b; exactly ¢t of the old source nodes are now
reachable from a @ branch.) Then the number of nonconstant Boolean functions
f(z1,...,zn) having the BDD profile (bo,...,br) is equal to T'(bo,...,bn_1;1), where

T'(bo; s) = 2[s=bo =1] + [s=2][bo =0] + [s =2][bo =2];
2bg

T(bo,...,bn-1;8) = > c(bo,s+t—=bo,t,bi+ - +bo_1+2) T(b1,...,ba_1;5+t—bo).

t=max(0,bp—s)
One can show that ¢(b, s,t, N) = 3% a,psr-(s, N)/b!, where we have (N (N — 1))Q =
Zfio arpN" and pir(s,N) = >, (;){’:}sﬁ(N -8k =3, {;}(’z)sz(N —s)k=t =
rwtz"] e =% (we* — w4 1)°.
176. (a) If p # p' we have 3, 4 ye plha,o(p) =has(p')] < |A||B|/2', by the definition
of universal hashing. Let r;(a,b) be the number of p € P such that hg(p) = i. Then

o> ri@b)?= D D> [hap(p) =hap()]

a€A,beB 0<i<2! a€A,bEBpEP p/EP
|A||B] 2'—1
<IPIAIBI+ Y Y w15 = 2418 (1+ 20).
pEP p'EP

On the other hand Ef;l ri(a,b)? = Ezl:?]l (ri(a,b) — 2Y|1|)® + 2%/|1| > 22|, for
any a and b. Similar formulas apply when there are s;(a,b) solutions to hq(g) = j.

Dumont

Dumont
Randrianarivony
Dellac
Dahlheimer
ordered

reduced

BDD base

114 ANSWERS TO EXERCISES 7.1.4
So there must be a € A and b € B such that

92t 92t)) 1 9t_1 92t 92t
242 < i(a,b i(a,b)® < 2 (1) I E—
T S @bt s’ < T) S Tt a—az

(b) The middle [bits of agx + b and agr+2 + b differ by at least 2, so the middle
[— 1 bits of agr and aqi+2 must be different.

(c) Let ¢ and ¢’ be different elements of Q* with (g(q’) — g(¢)) mod 2!~1 > 212,
(Otherwise we can swap g <> ¢'.) If [> 3, the condition g(p) + g(g¢) = 2! implies
that f,(p) = 0. Now (g(p) +9(¢)) mod (2'™") = (9(¢') — g(q)) mod (2'~"); furthermore
g(q') and g(p) are both even. Therefore no carry can propagate to change the middle
bit, and we have fy/(p) = 1.

(d) The set Q" has at least (1—¢€)2'~" elements, and so does the analogous set P"'.
At most 272 elements of Q" have g(g) odd; and at most 2/ =1 4+ 1 —|P"| of the elements
with g(q) even are not in Q*. Thus |Q*| > (1—¢€)2"" ' —2172 - 271 14 (1—¢)2' ' =
(1 —4€)2'"2 — 1, and we have Bmin(Zn,y) > (1 —4€)2'"* — 2 by (85).

Finally, choose l =t — 4 and € = 1/9. The theorem is obvious when n < 14.
177. Suppose k > n/2 and z = 2Tz, 4+ z1, y = 2%yn + y1. Then (zy > k) mod 2"~F
depends on 2zxy1, 1Yk, and zy; > k, modulo 2" ¥ so gopyq < 2RIk TE,

Summing up, we get ZZZO B < Yock<on,s ok 4 o /s<k<n 93n—2|k/2]-k/2]
If n = 5t + (0,1,2,3,4) the total comes to exactly (2/*"/51.(19,10,12,13,17) — 12)/7.

178. We can write z = 2*z;, + z; as in the proof of Theorem A; but now z; = &; +
(z mod 2), where &; is even and £ mod 2 is not yet known. Similarly y = 2Fy, +y =
2%y, + 9 + (y mod 2). Let 2 = #;9; mod 2*. At level 2k — 2, for n/2 < k < n, we need
only “remember” three (n — k)-bit numbers ; mod 2"~ %, §; mod 2" %, (&4 > k) mod
2"~ and three “carries” c1 = (Z1+ %) >k, co = (i +2) >k, ca = (G + G+ 2) >k
These six quantities will suffice to determine the middle bit, after =5, yn, £ mod 2, and
y mod 2 become known.

There are only six possibilities for the carries: c¢ic2c3 = 000, 001, 011, 101, 111,
or 112. Thus gak—_2 < 6.2 k= DH(—k=1+(n—k) Gimilarly, when n/2<k<n-—1,we
have gop,_1 < 620 7F=2+(—k=1)+(n—k) With these estimates, together with g < 2*,
we get 32704 g < (2% - (37,86, 184,464, 1024) — 268)/28 when n = 5t + (0,1, 2,3, 4).

The actual BDD sizes, for the function f of Theorem A and the function g of this
exercise, are B(f) = (169, 381, 928, 2188, 5248, 12373, 29400, 68777, 162768, 377359,
879709) and B(g) = (165, 352, 806, 1802, 4195, 9774, 22454, 52714, 121198, 278223,
650188) for 6 < n < 16; so this variant appears to save about 25%. A slightly better
ordering is obtained by testing (lo-bit(z), hi-bit(y), hi-bit(z), lo-bit(y)) on the last four
levels, giving B(h) = B(g) —20 for n > 6. Then B(h)/Bmin(f) ~ (1.07, 1.05, 1.04, 1.04,
1.04, 1.01, 1.02) for 6 < n < 12, so this ordering may be close to optimal as n — co.

180. By letting am+1 = amy2 = -+ = 0, we may assume that m > p. Let a =
(ap...a1)2, and write z = 2%z;, + z; as in the proof of Theorem A. If p < n, we have
qr < 2P7F for 0 < k < p, because the given function f = Z,(f,)n(a; z) depends only on
a, zn,, and (az; > k) mod 2P 7%, We may therefore assume that p > n.

Consider the multiset A = {2*zpamod 2P~ | 0 < z, < 2%}, Write 4 =
{277 —@q,...,2P" — g}, where s = 2" Fand 0 < a1 < -+ < @ = 2P7%, and let
ayi = a; +2P 1 for 0 < i < s. Then qx < 2s, because f depends only on a, z, and
the index 7 € [0..2s) such that a; < az; mod 2P < q;t1.

Consequently 3°7_o gk < Yop_, min(2¥, 271 7F) = aln/2l+1 4 ofn/2141 _ 3

carries

7.1.4 ANSWERS TO EXERCISES 115

181. For every (z1,...,Zm) the remaining function of (y1, ..., yn) requires O(n) nodes, Bollig
by exercise 170. zeads

de Bruijn cycle
182. Yes; B. Bollig [Lecture Notes in Comp. Sci. 4978 (2008), 306-317] has shown braces

that it is ©(2"/432). Incidentally, Bmin(L12,12) = 1158 is obtained with the strange or-
dering L132,12(z18, 17, T16, Z15, £14, T12, T10, L8, T6, L4, T2, T1; T19, T20, T21, T22, T23, L13,
r11,29,T7,Ts5,I3, 3)24); and Bmax(le,lz) = 9302 arises Wlth L12712($247 I23,T20,T19,
22, %11, T6, L7, T8, L9, L10, L13; T1, L2, T3, T4, T5,T21, T18, T17, LT16, LT15, T14, CL‘12). Simi-
larly Bmin(Ls,16) = 606 and Bmax(Ls,16) = 3415 aren’t terribly far apart. Could
Bumin(Lm,») and Bmax(Lm,») both conceivably be ©(2min(m:n)y?

183. The profile (bo, b1,...) begins (1, 1, 1, 2, 3,
5,7, 11, 15, 23, 31, 47, 63, 95, ...). When k > 0
there’s a node on level 2k for every pair of inte-
gers (a,b) such that 287! < a,b < 2% and ab <
22k=1 < (a4 1)(b+ 1); this node represents the
function [((a + z)/2%)((b+ y)/2*) > 3]. When
b is given, in the appropriate range, there are
[22F=1/p] — |2%*~ /(b + 1)] choices for a; hence

bak = D gk—1<peqn ([27°71 /0] = [22571 /(b + 1)),
which telescopes to 2F _ 1. A similar argument shows that begy1 = ok 4 ok—1 _ 1,

184. Two kinds of beads contribute to by,(;—1)+;—1: One for every choice of i columns,
at least one of which is < j; and one for every choice of —1 columns, missing at least one
element > j. Thus by (;_1)4+j—1 = ((T) - (m+1.1_j)) + ((f_nl) - (mﬂ__ll_z)) Summing over
1< 4,5 < m gives B(Py,) = (2m—3)2m+5. (Incidentally, gx = by + 1 for 2 < k < m?.)

The ZDD has simply zm(i—1)+j-1 = (Z 1) for 1 < 4,5 < m, one for every choice
of 4 — 1 columns # j; hence Z(Pp) = m2m~1+ 2 ~ 1B(Pn). (The lower bound of
Theorem K applies also to ZDD nodes, because only such nodes get tickets; therefore
the natural ordering of variables is optimum for ZDDs. The natural ordering might be
optimum also for BDDs; this conjecture is known to be true for m < 5.)
185. Suppose f(z) = t,, for some binary vector ¢...t,. Then the subfunctions
of order d > 0 correspond to the distinct substrings ¢;...%;+4. Such substrings 7
correspond to beads if and only if 7 # 09t and 7 # 191!, they correspond to zeads if
and only if 7 # 0%+ and 7 # 10

Thus the maximum Z(f) is the function S, of answer 44. To attain this worst
case we need a binary vector of length 24+1 4 d—2 that contains all (d+1)-tuples except
09! and 10¢ as substrings; such vectors can be characterized as the first 2471 +d—2
elements of any de Bruijn cycle of period 24, beginning with 0%1.

186 jl/\fg/\ms/\9_34/\f5/\je

187. (These diagrams should be compared with the answer to exercise 1.)

AAatAg. Al0sdpd

1 2 3 2 5 3
188. To avoid nested braces, let €, a, b, and ab stand for the subsets 0, {1}, {2},
and {1,2}. The families are then 0, {ab}, {a}, {a,ab}, {b}, {b,ab}, {a,b}, {a,b,ab},
{e}, {€, ab}, {¢,a}, {€,a,ab}, {¢, b}, {¢,b,ab}, {e€,a,b}, {€,a,b,ab}, in truth-table order.
189. When n = 0, only the constant functions; when n > 0, only 0 and z1 A -+ A zn.
(But there are many functions, such as zz A (z1V Z3), with (bo,...,bn) = (20,-..,2n).)

—
w [

116 ANSWERS TO EXERCISES 7.1.4

190. (a)Only 1@ P zn and 1D z1 @ - - - D Ty, for n > 0. (b) This condition holds
if and only if all subtables of order 1 are either 01 or 11. So there are 22"~ " solutions
when n > 0, namely all functions such that f(z1,...,2n-1,1) = 1.

191. The language Ly, of truth tables for all such functions has the context-free gram-
mar Lo = 1; Lny1 — LnLy | Ln02". The desired number I, = |L,| therefore satisfies
lo =1, lny1 = ln(ln +1); so (lo,l1,12,...) is the sequence (1, 2, 6, 1806, 3263442, ...).
Asymptotically, I, = 62" — 1 — ¢, where 0 < € < 6—2"/8 and

0 =1.5979102180 3187317833 80701 18157 45531 23622+-.

[See CMath exercises 4.37 and 4.59, where [, +1 is called en+1 (a “Euclid number”) and
0 is called E®. The numbers I, 4+ 1 were introduced by J. J. Sylvester in connection with
his study of Egyptian fractions, Amer. J. Math. 3 (1880), 388. Notice that a monotone
decreasing function, like a function representing independent sets, always has z, = 1.]

192. (a) 10101101000010110.

(b) True, by induction on |7, because o # 8 # 0™ if and only if o # BZ # 0™

(c) The beads of f of order k are the zeads of fZ of order k, for 0 < k < n.
Hence the beads of fZ are also the zeads of (fZ?)% = f. Therefore, if (bo,...,bs) and
(205 - - -, 2n) are the profile and z-profile of f while (bg,...,b},) and (2q,...,2,) are the
profile and z-profile of fZ, we have b, = z; and z;, = b}, for 0 < k < n.

(We also have z, = z,,, but they might both be 1 instead of 2. The quasi-profiles
of f and fZ may differ, but only by at most 1 at each level, because of all-0 subtables.)
193. S>k(z1,...,2Zn), by induction on n. (Hence we also have SZ (x1,...,2n) =
Sk(z1,...,zn). Exercise 249 gives similar examples.) -

194. Define a; ...a2, as in answer 174, but use the ZDD instead of the BDD. Then
(1,...,1) is the z-profile if and only if (2a1) ... (2a2x) is an unrestricted Dumont pistol
of order 2n. So the answer is the Genocchi number Gapn42.

195. The z-profile is (1,2,4,4,3,2,2). We get an optimum z-profile (1,2,3,2,3,2,2)
from M (z4,x2; x5, %6, Z3,21), and a pessimum z-profile (1,2,4,8,12,2,2) comes from
M, (x5, x6; 21,22, T3, 24) as in (78). (Incidentally, the algorithm of exercise 197 can be
used to show that Zmin(M4) = 116 is obtained with the strikingly peculiar ordering
My (zs, z5, 17, T2; 20, L19, T18, £16, L15, £13, £14, £12, £11, L9, £10, T4, L7, L6, L3, Z1)!)
196. For example, My (z1,-..,Zm;€m+1,--.,€n), where n = m + 2™ and e; is the
elementary function of exercise 203. Then we have Z(f) = 2(n —m) + 1 and Z(f) =
(n=—m+T)(n—m)/2—2.

197. The key idea is to change the significance of the DEP fields so that di, is now
S {2t7%7! | Nip supports z;}, where we say that g(z1,...,2m) supports x; if there is

a solution to g(z1,...,Zm) =1 with z; = 1.
To implement this change, we introduce an auxiliary array (o, .. .,(n), where we
will have (x = q if Niq denotes the subfunction 0 and (= —1 if that subfunction

does not appear on level k. Initially ¢, <+ 0, and we set (, + —1 at the beginning
of step E1. In step E3, the operation of setting dirq should become the following: “If
d(k+1)h # Ci+1, set dgg < ((d(k+1)l | d(k+1)h) < 1) + 1; otherwise set diq d(k+1)l <L 1.
Also set Ck «—q if d(k+1)l = d(k+1)h = Ck-}—l-”

(The master z-profile chart can be used as before to minimize zo + - + z5_1;
but additional work is needed to consider z, if the absolute minimum is important.)

198. Reinterpreting (50), we represent an arbitrary family of sets f as (Z.? fi: fa),
where v = f, indexes the first variable that f supports; see answer 197. Thus f; is the

subtables
context-free grammar
Asymptotically
CMath

Euclid number
Sylvester

Egyptian fractions
monotone decreasing function
independent sets
zeads

quasi-profiles
subtables

Dumont pistol
Genocchi number

2™ _way mux
elementary function
supports

family of sets
supports

7.1.4 ANSWERS TO EXERCISES 117

subfamily of f that doesn’t support z,, and f5 is the subfamily that does (but with z,
deleted). We also let f, = oo if f has no support (i.e., if f is either) or {#}, represented
internally by or ; see answer 200). In (52), v = min(fy, g») now indexes the
first variable supported by either f or g; thus fy = 0 if f, > g», and gr = 0 if f, < gy.

Subroutine AND(f, g), ZDD-style, is now the following instead of (55): “Repre-
sent f and g as in (52). While f, # g», return @ if either f = @ or g = (; otherwise
set f < fiif fu < gu, set g < g1 if fo > g». Swap f < g if f > g. Return f if
f=gor f =0. Otherwise, if f A g = r is in the memo cache, return r. Otherwise
compute r; < AND(fi,g1) and rn < AND(fn,gn); set r < ZUNIQUE(v, 71, 74), using
an algorithm like Algorithm U except that the first step returns p when g =) instead
of when ¢ = p; put ‘f A g = r’ into the memo cache, and return r.” (See also the
suggestion in answer 200.)

Reference counts are updated as in exercise 82, with slight changes; for example,
step Ul will now decrease the reference count of (and only of this node), when
q = 0. Tt is important to write a “sanity check” routine that double-checks all reference
counts and other redundancies in the entire BDD/ZDD base, so that subtle errors are
nipped in the bud. The sanity checker should be invoked frequently until all subroutines
have been thoroughly tested.

199. (a) If f =g, return f. If f > g,swap f < g. If f=0, return g. If fVg=risin
the memo cache, return r. Otherwise

set v < fu, 1 < OR(f1,91), Th < OR(fn,9n), if fu = go;
set v < fu, 11 4 OR(f1,9), Th < [, increase REF(f3) by 1, if fu < go;
set v < gy, 11 < OR(f,q1), Th < gn, increase REF(gs) by 1, if fu > go.

Then set r < ZUNIQUE (v, r,74); cache it and return it as in answer 198.
(b) If f = g, return 0. Otherwise proceed as in (a), but use (@, XOR) not (V, OR).
(c)If f=0or f =g, return §. If g = @, return f. Otherwise, if g, < fo, set
g < g1 and begin again. Otherwise

set 7 < BUTNOT(fl,gl), Th BUTNOT(fh,gh), if fv = Gv;
set 7y < BUTNOT(f1,9), 7h < fn, increase REF(f3) by 1, if fu < go-

Then set r < ZUNIQUE(fy,71,75) and finish as usual.

200. If f = 0, return g. If f = h, return OR(f,g). If g = h, return g. If g = 0 or
f = g, return AND(f,h). If h = @), return BUTNOT(g, f). If f, < g» and f, < hy, set
f < fi and start over. If h, < f, and h, < gv, set h < h; and start over. Otherwise
check the cache and proceed recursively as usual.

201. In applications of ZDDs where projection functions and/or the complementation
operation are permitted, it’s best to fix the set of Boolean variables at the beginning,
when everything is being initialized. Otherwise, every external function in a ZDD base
must change whenever a new variable enters the fray.

Suppose therefore that we’ve decided to deal with functions of (z1,...,zn), where
N is prespecified. In answer 198, we let f, = N 4+ 1, not oo, when f = 0 or f = {0}.

which we construct as soon as N is known. Let t; be node @ of this structure, with

tnv+1 =[T]. The ZDD for z; is now (1)~ SR t]+1’ thus the ZDD base for the
set of all z; will occupy (N ;‘ 1) nodes in addition to the representations of) and p.
If N is small, all N projection functions can be prepared in advance. But N is

large in many applications of ZDDs; and projection functions are rarely needed when

ZUNIQUE
Reference counts
sanity check
debugging
complementation
tautology

power set

g (power set)

118 ANSWERS TO EXERCISES 7.1.4

“family algebra” is used to build the structures as in exercises 203—-207. So it’s generally
best to wait until a projection function is actually required, before creating it.
Incidentally, the partial-tautology functions ¢; can be used to speed up the synthe-
sis operations of exercises 198-199: If v = f, < g, and f = t,, we have AND(f,g) =g,
OR(f,9) = f, and (if v < h,) also MUX(f, g, h) = h, MUX(g, h, f) = OR(g, h).

202. In the transmogrification step T4, change ‘go < g1 + ¢’ t0 ‘qo < @, g1 < ’ and
‘rg <= 11 < 1’ to ‘rg < 7, 11 + 0’. Also use ZUNIQUE instead of UNIQUE; within T4,
this subroutine increases REF (p) by 1 if step Ul finds q = 0.

A subtler change is needed to keep the partial-tautology functions of answer 201
up to date, because of their special meaning. Correct behavior is to keep ¢, unchanged
and set t, < LO(%.).

203. (a) fUg = 4{{1,2},{1,3},{1,2,3},{3}} = (e1 LU ((e2 L (es U €)) Ues)) U es; the
other is (e1 Uez) Ue, because fMg=(e1U(e2Ue))UesUeand fHer =e1 Uez Ues.

(b) (fU9)(2) =3Iy (f(z) Ag(y) A (z = zVy)); (fNg)(z) = Fz3y(f(z) A
g A(z=zAy); (fE)(2) =3zIy(f(z) Ag(y) A (2 =z dy)). Another formula is
(FEg)(z) =V{fz@y) [9(y) = 1} = V{g(z @ 2) | f(z) = 1}.

(c) Both (i) and (ii) are true; also f @ (g Uh) = (f B g) U (f B h). Formula (iii)
fails in general, although we do have fLI(gMh) C (fUg)MN(fUh). Formula (iv) makes
little sense; the right-hand side is (fU f) U (fUh)U (gU f) U (g U h), by (i). Formula
(v) is true because all three parts are §. And (vi) is true if and only if f # 0.

(d) Only (ii) is always true. For (i), the condition should be f g C e, since
fTg=0 implies f 1 g. For (iii), notice that |[f U g| = |f Mg| = |f B g| = 1 whenever
|| = |g| = 1. Finally, in statement (iv), we do have f L ¢ = fLlg = f B g; but the
converse fails when, say, f =g =e1 Ue.

(¢) f=01n (i) and f = € in (ii); also e H g = g for all g. There’s no solution
to (iii), because f would have to be {{1,2,3,...}} and we are considering only finite
sets. But in the finite universe of answer 201 we have f = {{1,..., N}}. (This family U
has the property that (f BU)U (g BU) = (fMg) BU.) The general solution to (iv)
is f = e1 Uea U f, where f' is an arbitrary family; similarly, the general solution
to(v)is f=(eaUf YU (eal f")YU (ex Uea LI (ff U f" U f")), where f', f”, and f"
are arbitrary. In (vi), f = ((((ex Uez) Ue) L f') U ((ex Uez) U ")) Ll (e3 U€), where
f'Uf" L e1 Uea Ues; this representation follows from exercise 204(f). In (vii), | f| = 1.
Finally, (viii) characterizes Horn functions (Theorem 7.1.1H).

204. (a) This relation is obvious from the definition. (Also (fUg)/h D (f/h)U(g/h).)
(b) f/e2 ={{1},0} = e1Ue; f/e1 = eaUes; f/e = f; hence f/(e1Ue) = ez Ues.
(c) Division by @ gives trouble, because all sets « belong to f/0. (But if we
restrict consideration to families of subsets of {1,..., N}, as in exercises 201 and 207,
we have f/0 = gp; also p/p = €, and f/p = 0 when f # p.) Clearly f/e = f. And
f/f = € when f # 0. Finally, (f mod g)/g = 0@ when g # 0, because a € (f mod g)/g
and B € g implies that aUB € f, a € f/g, and a U B ¢ (f/g) Ll g—a contradiction.
(d) If B € g, we have BUa € f and BN a =0 for all a € f/g; this proves the
hint. Hence f/g C f/(f/(f/g)). Also f/h C f/g when h D g, by (a); let b = f/(f/g).
(e) Let f//g be the family in the new definition. Then f/g C f//g, because
gU(f/g9) C fand g L (f/g). Conversely, if o € f//g and B € g, we have a € h for
some h with g LIh C f and g L h; consequently cUB € f and anN B = 0.
(f) If f has such a representation, we must have g = f/e; and h = f mode;.
Conversely, those families satisfy e; L g U h. (This law is the fundamental recursive

family algebra

partial-tautology

AND

OR

MUX

transmogrification

Horn functions

power set

recursive principle, underlying ZDDs+

7.1.4 ANSWERS TO EXERCISES 119

principle underlying ZDDs—just as the unique representation f = (z;? g: h), with g
and h independent of z;, underlies BDDs.)

(g) Both true. (To prove them, represent f and g as in part (f).)

[R. K. Brayton and C. McMullen introduced the quotient and remainder opera-
tions in Proc. Int. Symp. Circuits and Systems (IEEE, 1982), 49-54, but in a slightly
different context: They dealt with families of incomparable sets of subcubes.]

205. In all cases we construct a recursion based on exercise 204(f). For example, if
fo =go =v, we have flUg= (v filge: (filgn)U(frUg)U(falign)); fNg=
(@7 (fiNg)U(fiNgr)U(faNgi): frMgn); fiBg = (07 (fiBg)U(fatBgn): (fnBg)U(fiEgn)).

(a) If fo < govor (fy =gy and f > g), swap f <> g. If f =0, return f; if f =,
return g. If f L1 g = r is in the memo cache, return r. If f, > go, set r; < JOIN(f, g1)
and 7, < JOIN(f,gp); otherwise set r; « JOIN(fi,q), mirn < JOIN(fi,9n), Thi <
JOIN(fh,91); Thh < JOIN(fhr,gn), Th OROR(Tin,Thi, Thi), and dereference rip, T,
Thh. Finish with r < ZUNIQUE(gy, 71, 7h); cache it and return it as in exercise 198.

(We could also compute r, via the formula OR (75, JOIN(fr, OR(g1,9n))), or via
OR/(7hi, JOIN(OR(f1, fr), gn)). Sometimes one way is much better than the other two.)

The DISJOIN operation, which produces the family of disjoint unions {a U S |
a € f, B €g,an P =0}, is similar but with r,, omitted.

(b) If fu < gv or (fo = gv and f > g), swap f ¢ g. If f < ¢, return f. (We
consider @) < € and € < all others.) Otherwise, if MEET(f, g) hasn’t been cached, there
are two cases. If f, > gu, set 7h < OR(g1,grn), 7 < MEET(f,74), and dereference 4;
otherwise proceed analogously to (a) but with [<> h. Cache and return r as usual.

(c) This operation is similar to (a), but 7, < OR(7ru,The) and 7, < OR(71n, Thi)-

(d) First we implement the important simple cases f/e, and f mod e,:

If f, = v, return f; if f, > v, return §. Otherwise look for
EZDIV(f,v) = f/es = r in the cache; if it isn’t present, compute it via
r < ZUNIQUE(f,, EZDIV (fi,v), EZDIV (f,v)).

If f, = v, return fi; if f, > v, return f. Otherwise look for
EZMOD(f,v) = fmod e, = r in the cache; if it isn’t present, compute it via
7 < ZUNIQUE(f,, EZMOD (fi,v), EZMOD (f3,v)).

Now DIV(f,g) = “If g = 0, see below; if g = ¢, return f. Otherwise, if f < ¢, return §;
if f =g, return e. If g = 0 and gp = ¢, return EZDIV(f, g,). Otherwise, if f/g = r is
in the memo cache, return r. Otherwise set 7 < EZDIV(f, gv), r DIV(7,gn), and
dereference r;. If r £ 0 and g; # 0, set rp < EZMOD(f, g») and 7 < DIV (74, 1), deref-
erence rp, set 7, < r and r < AND(ry,rp), dereference r; and ry. Insert f/g = r in the
memo cache and return r.” Division by @) returns p if there is a fixed universe {1,..., N}
as in exercise 201. Otherwise it’s an error (because the universal family p doesn’t exist).
(e) If g = 0, return f. If g = €, return 0. If (g1, gn) = (0, €), reburn EZMOD (f, g)-
If f mod g = r is cached, return it. Otherwise set r < DIV(f,g) and rs < JOIN(r, g),
dereference r, set 7 < BUTNOT(f,rs), and dereference 7. Cache and return r.
[S.Minato gave EZDIV(f,v), EZREM(f,v), and DELTA(f,ey) in his original
paper on ZDDs. His algorithms for JOIN(f, g) and DIV(f,g) appeared in the sequel,
ACM/IEEE Design Automation Conf. 31 (1994), 420-424.]
206. The upper bound O(Z(f)3Z(g)?) is not difficult to prove for cases (a) and (b),
as well as O(Z(f)*Z(g)?) for case (c). But are there examples that take such a long
time? And can the running time for (d) be exponential? All five routines seem to be
reasonably fast in practice.

Brayton

McMullen

subcubes

clutters

OROR

dereference

disjoint unions, family of
dereference

Y
Minato

120 ANSWERS TO EXERCISES 7.1.4

207. If f =€;, U---Ue;, and k > 0, let SYM(f,v,k) be the Boolean function that is
true if and only if exactly k of the variables {z;,,..., s} N {Zv,Zv41,...} are 1 and
Ty =---=Zy_1 = 0. We compute (e;; U---Uey) § k by calling SYM(f,1,k).

SYM(f,v,k) = “While f, < v, set f « fi. If f, = N+ 1 and k > 0, return 0.
If fu = N+ 1 and k = 0, return the partial-tautology function ¢, (see answer 201). If
f8v8k = r is in the cache, return 7. Otherwise set 7 < SYM(f, fo +1,k). If k > 0, set
q < SYM(fi, fo+1,k—1) and r + ZUNIQUE(f,,r,q). While f, > v, set f, + fo — 1,
increase REF(r) by 1, and set r < ZUNIQUE(fy,r, 7). Put f§v§k = r in the cache,
and return r.” The running time is O((k + 1) N). Notice that # § 0 = p.

208. Just omit the factors 2%s-171 2vi=vk—=1 and 2¥~%~! from steps C1 and C2.
(And we get the generating function by setting cy < c¢;+zcp, in step C2; see exercise 25.)
The number of solutions equals the number of paths in the ZDD from the root to .

209. Initially compute 6, < L and §; « (Zj4+1 0z;+1) ® 41 for n > 5 > 1. Then,
where answer 31 says ‘a < (Z; o z;) ® @’, change it to ‘a + (Z; e @) o (z; @ §;)’. Also
make the analogous changes with 8 and v in place of a.

210. In fact, when z = z1 ...z, we can replace vz in the definition of g by any linear
function ¢(z) = c1z1 + - - - + cnZn, thus characterizing all of the optimal solutions to
the general Boolean programming problem treated by Algorithm B.

For each branch node z of the ZDD, with fields V(z), LO(z), HI(z), we can com-
pute its optimum value M(z) and new links L(z), H(z) as follows: Let m; = M(L0(z))
and mp = cy(z) +MHI(z)), where M() = —oo and M() = 0. ThenL(z) + LO(x)
if m; > my, otherwise L(x) + ; H(z) + HI(z) if m; < mp, otherwise H(z) «+ .
The ZDD for g is obtained by reducing the L and H links accessible from the root.
Notice that Z(g) < Z(f), and the entire computation takes O(Z(f)) steps. (This nice
property of ZDDs was pointed out by O. Coudert; see answer 237.)

211. Yes, unless the matrix has all-zero rows. Without such rows, in fact, the profile
and z-profile of f satisfy by > qx — 1 > 2 for 0 < k < n, because the only level-k
subfunction independent of 41 is the constant 0.

212. The best alternative in the author’s experiments was to make ZDDs for each
term T; = S1(X;) in (129), using the algorithm of exercise 207, and then to AND them
together. For example, in problem (128) we have X1 = {z1,z2}, X2 = {z1,z3, 24},
..., X6a = {Z105, T112}; to make the term S1(X2) = S1(z1, 23, z4), whose ZDD has 115
nodes, just form the 5-node ZDD for e; U (e3 Ues) and compute T> <+ (e1Uez Ues) § 1.

But in what order should the ANDs be done, after we’ve got the individual terms
T, ..., Tn of (129)? Counsider problem (128). Method 1: Ty < Ty AT, Ty < T1 A T,
..., IT1 < T1 A Tes. This “top-down” method fills in the upper levels first, and takes
about 6.2 megamems. Method 2: Tes < Tea N Te3, Tea < Tea N Te2, ..., Tea +
Tes A Ti. By filling in the lower levels first (“bottom-up”), the time goes down to
about 1.75 megamerns. Method 3: T2 < T2 A Tl, T4 L T4 A T"s7 ey T64 < T64 A Tes;
T4 (—T4/\T2, Ts (—Tg/\Te, ey T64 (—T64/\T62; Tg (—Ts/\T4, T16 (—Tle/\T12, ey
Tea < Tea NTeo; - .. ; Tea < Tea NTs2. This “balanced” approach also takes about 1.75
megamers. Method 4.’ Ts33 < T33 A Tl, T34 < T34 A TQ, ey Tea < Tea A\ T32; Tag <+
Tyo /\T33, Tso < Ts0 /\T‘347 ceey Teq < To4 /\T48; Ts7 < Ts7 /\T49, Tsg < Tss /\T50, ey
Tea < Tea NTs6; - .. Tea < Tea N Tez. This is a much better way to balance the work,
needing only about 850 kilomems. Method 5: An analogous balancing strategy that uses
the ternary ANDAND operation turns out to be still better, costing just 675 kilomems.
(In all five cases, add 190 kilomems for the time to form the 64 initial terms Tj.)

partial-tautology
power set

o

generating function from ZDD
solutions

linear function
Boolean programming
Coudert

profile

Z-profile

Knuth

top-down

bottom-up

balanced

ternary ANDAND

7.1.4 ANSWERS TO EXERCISES 121

Incidentally, we can reduce the ZDD size from 2300 to 1995 by insisting that
z1 = 0 and zz = 1 in (128) and (129), because the “transpose” of every covering is
another covering. This idea does not, however, reduce the running time substantially.

The rows of (128) appear in decreasing lexicographic order, and that may not be
ideal. But dynamic variable ordering is unhelpful when so many variables are present.
(Sifting reduces the size from 2300 to 1887, but takes a long time.)

Further study, with a variety of exact cover problems, would clearly be desirable.

213. It is a bipartite graph with 30 vertices in one part and 32 in the other. (Think of
a chessboard as a checkerboard: Every domino joins a white square to a black square,
and we’ve removed two black squares.) A row sum of (1,...,1,1,%,x) has 1s in at least
31 “white” positions, so its last two coordinates must be either (2,1) or (3, 2).

214. Add further constraints to the covering condition (128), namely /\;4=1 S>1(Y5),
where Yj is the set of z; that cross the jth potential fault line. (For example, Y7 =
{z2, 24,6, Ts, T10, T12, T14, T15 } is the set of ways to place a domino vertically in the
top two rows of the board; each |Y;| = 8.) The resulting ZDD has 9812 nodes, and
characterizes 25,506 solutions. Incidentally, the BDD size is 26622. [Faultfree domino
tilings of m x n boards exist if and only if mn is even, m > 5, n > 5, and (m,n) #
(6,6); see R. L. Graham, The Mathematical Gardner (Wadsworth International, 1981),
120-126. The solution in (127) is the only 8 x 8 example that is symmetric under both
horizontal and vertical reflection; see Fig. 29(b) for symmetry under 90° rotation.]

215. This time we add the constraints /\;%i1 S>1(Z;), where Z; is the set of four place-
ments z; that surround an internal corner point. (For example, Z; = {z1,z2, z4,z16}.)
These constraints reduce the ZDD size to 66. There are just two solutions, one the
transpose of the other, and they can readily be found by hand. [See Y. Kotani, Puzzlers’
Tribute (A. K. Peters, 2002), 413-420.]

Conjecture: The generating function for the number of m X n tatami tilings,
when n >m —2 > 0 and m is even, is (14 2)%(z™ 2 +2™)/(1 — 2™~ ' — 2™,

216. (a) Assign three variables (a;,b;,¢;) to each row of (128), corresponding to the
domino’s color if row ¢ is chosen. Every branch node of the ZDD for f in (129) now
becomes three branch nodes. We can take advantage of symmetry under transposition
by replacing f by f A z2; this reduces the ZDD size from 2300 to 1995, which grows to
5981 when each branch node is triplicated.

Now we AND in the adjacency constraints, for all 682 cases {i,i } where rows i
and 7' are adjacent domino positions. Such constraints have the form —|((ai Aayr)V
(b; A bir) V (c; Acir)), and we apply them bottom-up as in Method 2 of answer 212.
This computation inflates the ZDD until it reaches more than 800 thousand nodes; but
eventually it settles down and ends up with size 584,205.

The desired answer turns out to be 13,343,246,232 (which, of course, is a multiple
of 3! = 6, because each permutation of the three colors yields a different solution).

(b) This question is distinct from part (a), because many coverings (including
Fig. 29(b)) can be 3-colored in several ways; we want to count them only once.

Suppose f(ai,b1,¢1,-.-,am,bm,cm) = f(x1,...,23m) is a function with a; =
T3;—2, b = x3i—1, and ¢; = x3i, such that f(xl, A ,J,‘gm) =1 implies a; +b; +c; <1
for 1 < i < m. Let’s define the uncoloring $f of f to be

$f($17---793m) = 3?}1 "'3y3m(f(y17'--7y3m)
ANzi=y1+y2+ys) A A(Tm = Ysm—2 + Yam—1 +y3m))-

transpose

symmetry breaking
lexicographic order
dynamic variable ordering
Sifting

bipartite graph
checkerboard

BDD versus ZDD
Graham

Kotani

symmetry under transposition
bottom-up

uncoloring

122 ANSWERS TO EXERCISES 7.1.4

A straightforward recursive subroutine will compute the ZDD for $f from the ZDD
for f. This process transforms the 584,205 nodes obtained in part (a) into a ZDD of
size 33,731, from which we deduce the answer: 3,272,232.

(The running time is 1.2 gigamems for part (a), plus 1.3 gigamems to uncolor;
the total memory requirement is about 44 megabytes. A similar computation based on
BDDs instead of ZDDs cost 13.6 + 1.5 gigamems and occupied 185 megabytes.)

217. The separation condition adds 4198 further constraints of the form —(z; A z;/),
where rows i and i’ specify adjacent placements of congruent pieces. Applying these
constraints while also evaluating /\?isl S1(Xj;) turned out to be a bad idea, in the
author’s experiments; even worse was an attempt to construct a separate ZDD for the
new constraints alone. Much better was to build the 512,227-node ZDD as before, then
to incorporate the new constraints one by one, first constraining the variables at the
lowest levels. The resulting ZDD of size 31,300,699 was finally completed after 286
gigamems of work, proving that exactly 7,099,053,234,102 separated solutions exist.

We might also ask for strongly separated solutions, where congruent ﬂL ﬂ
pieces are not allowed to touch even at their corners; this requirement |— — |—]

adds 1948 more constraints. There are 42,159,777,732 strongly separated ?i‘j‘F

coverings, found after 304 gigamems with a ZDD of size 20,659,124. |
(Other methods may well be better than ZDDs for this problem.) LS

218. This is an exact cover problem. For example, the matrix when n = 3 is

001001010 (——2——2)
010001001 (-3———3)
010010010 (-2——2-)
010100100 (-1-1--)
100010001 (3———3-)
100100010 (2--2--)
101000100 (1-1-—)

and in general there are 3n columns and (*", 1) — (3) rows. Consider the case n = 12:
The ZDD on 187 variables has 192,636 nodes. It can be found with a cost of 300
megamems, using Method 4 of answer 212 (binary balancing); Method 5 turns out to
be 25% slower than Method 4 in this case. The BDD is much larger (2,198,195 nodes)
and it costs more than 900 megamems.

Thus the ZDD is clearly preferable to the BDD for this problem, and it identifies
the L1z = 108,144 solutions with reasonable efficiency. (However, the “dancing links”
technique of Section 7.2.2 is about four times faster, and it needs far less memory.)

219. (a) 1267; (b) 2174; (c) 2958; (d) 3721; (e) 4502. (To form the ZDD for WORDS(n)
we do n — 1 ORs of the 7-node ZDDs for wyLlhy LligLl callhs, tiUholleszlirslles, etc.)

220. (a) There is one az node for the descendants of each initial letter that can be
followed by a in the second position (aargh, babel, ..., zappy); 23 letters qualify,
all except q, u, and x. And there’s one b2 node for each initial letter that can be followed
by b (abbey, ebony, oboes). However, the actual rule isn’t so simple; for example, there
are three z2 nodes, not four, because of sharing between czars and tzars.

(b) There’s no vs because no five-letter word ends with v. (The SGB collection
doesn’t include arxiv or webtv.) The three nodes for ws arise because one stands for
cases where the letters < ws must be followed by w (aglo and many others); another
node stands for cases where either w or y must follow (stra, or resa, or when we’ve
seen allo but not allot); and there’s also a ws node for the case when unse is not

BDDs instead of ZDDs
Knuth

bottom-up

balancing

ZDD versus BDD
dancing links

7.1.4 ANSWERS TO EXERCISES 123

followed by e or t, because it must then be followed by either w or x. Similarly, the
two nodes for x5 represent the cases where x is forced, or where the last letter must be
either x or y (following rela). There’s only one ys node, because no four letters can
be followed by both y and z. Of course there’s just one zs node, and two sinks.

221. We compute, for every possible zead (, the probability that ¢ will occur, and
sum over all . For definiteness, consider a zead that corresponds to branching on rs,
and suppose it represents a subfamily of 10 three-letter suffixes. There are exactly
(6(1)24) - (5‘1188) ~ 1.3 x 10%! such zeads, and by the principle of inclusion and exclusion
they each arise with probability EkZI (GZG)(—l)k‘H (118§;§;i;gzs4k)/(nigé:fs) ~ 2.5 %
1072, [Hint: |{r,s,t,u,v,w,z,y,2}| = 9, 676 = 262, and 6084 = 9 x 262.] Thus such
zeads contribute about 0.33 to the total. The r3-zeads for subfamilies of sizes 1, 2, 3, 4,
5, ..., contribute approximately 11.5, 32.3, 45.1, 41.9, 29.3, ..., by a similar analysis;

so we expect about 188.8 branches on r3 altogether, on average. The grand total

5 26 5757

SRS ((FTET) - (e

=1 j=1 s=1
(261 ka1 [26° — 26571 (27—j)k 26°
-1
XZ(k >() (5757 — sk)/(5757)’

k=1

plus 2 for the sinks, comes to &~ 7151.986. The average z-profile is & (1.00, ..., 1.00;
25.99, ..., 25.99; 188.86, ..., 171.43; 86.31, ..., 27.32; 3.53, ..., 1.00; 2).

222. (a) It’s the set of all subsets of the words of F. (There are 50,569 such subwords,
out of 27° = 14,348,907 possibilities. They are described by a ZDD of size 18,784,
constructed from F and g via answer 205(b) at a cost of about 15 megamems.)

(b) This formula gives the same result as F I g, because every member of F
contains exactly one element of each X;. But the computation turns out to be much
slower —about 370 megamems—in spite of the fact that Z(X) = 132 is almost as
small as Z(p) = 131. (Notice that |p| = 2'3° while |X| = 26° ~ 22°5))

(¢) (F/P)U P, where P = t; Llus Ll hy is the pattern. (The words are touch,
tough, truth. This computation costs about 3000 mems with the algorithms of answer
205.) Other contenders for simple formulas are FNQ, where @ describes the admissible
words. If we set Q = t1 L X, Llug LI X4 LIhs, we have Z(Q) = 57 and the cost once
again is & 3000x. With @Q = (t1 Uus Uhs) § 3, on the other hand, we have Z(Q) = 132
and the cost rises to about 9000 mems. (Here |Q| is 267 in the first case, but 2'*7 in
the second — reversing any intuition gained from (a) and (b)! Go figure.)

(d) FN((ViU---UV5)8k). The number of such words is (24, 1974, 3307, 443, 9, 0)
for k = (0, ..., 5), respectively, from ZDDs of sizes (70, 1888, 3048, 686, 34, 1). (“See
exercise 7-34 for the words F' mod y, mod y, mod --- mod yy,” said the author wryly.)

(e) The desired patterns satisfy P = (FMp)NQ, where @ = ((X1U---UX5)§3).
We have Z(Q) = 386, Z(P) = 14221, and |P| = 19907.

(f) The formula for this case is trickier. First, P, = FMF gives F together with
all patterns satisfied by two distinct words; we have Z(P,) = 11289, | P;| = 21234, and
|[PoNQ| = 7753. But P,NQ is not the answer; for example, it omits the pattern *atc*,
which occurs eight times but only in the context *atch. The correct answer is given by
P;NQ, where P, = (P \F)Mp. Then Z(P;) = 8947, Z(P,NQ) = 7525, | P,NQ| = 10472.

(g) G1U---UGSs, where G; = (F/(bjUo;))LIb;). The answers are bared, bases,
basis, baths, bobby, bring, busts, herbs, 1limbs, tribs.

zead

inclusion and exclusion
Knuth

joke

124 ANSWERS TO EXERCISES 7.1.4

(h) Patterns that admit all vowels in second place: b*1ls, b*nds, m*tes, p*cks.

(i) The first gives all words whose middle three letters are vowels. The second
gives all patterns with first and last letter specified, for which there’s at least one
match with three vowels inserted. There are 30 solutions to the first, but only 27 to
the second (because, e.g., louis and luaus yield the same pattern). Incidentally, the
complementary family p \ F has 2'3° — 5757 members, and 46316 nodes in its ZDD.

223. (a) d(a, p) + d(B, 1) + d(7, 1) = 5, since d(a,) = [ar #pa] + - + [as # ps].
(b) Given families f, g, h, the family {y | p = (aBy) for some o € f, B € g,
v € hwitha#pu, 8#up,v#u and anBny = 0} can be defined recursively to
allow ZDD computation, if we consider eight variants in which subsets of the inequality
constraints are relaxed. In the author’s experimental system, the ZDDs for medians
of WORDS(n) for n = (100, 1000, 5757) have respectively (595, 14389, 71261) nodes
and characterize (47, 7310, 86153) five-letter solutions. Among the 86153 medians
when n = 5757 are chads, stent, blogs, ditzy, phish, bling, and tetch; in fact,
tetch = (fetch teach total) arises already when n = 1000. (The running times of
about (.01, 2, 700) gigamems, respectively, were not especially impressive; ZDDs are
probably not the best tool for this problem. Still, the programming was instructive.)
(c) When n = 100, exactly (1, 14, 47) medians of WORDS(n) belong to WORDS (100),
WORDS (1000), WORDS(5757), respectively; the solution with most common words is
while = (white whole still). When n = 1000, the corresponding numbers are (38,
365, 1276); and when n = 5757 they are (78, 655, 4480). The most common English
words that aren’t medians of three other English words are their, first, and right.

224. Every arc u —> v of the dag corresponds to a vertex v of the forest. The ZDD
has exactly one branch node for every arc. The LO pointer of that node leads to the
right sibling of the corresponding vertex v, or to if v has no right sibling. The HI
pointer leads to the left child of v, or to if v is a leaf. The arcs can be ordered in
many ways (e.g., preorder, postorder, level order), without changing this ZDD.

225. As in exercise 55, we try to number the vertices in such a way that the “frontier”
between early and late vertices remains fairly small; then we needn’t remember too
much about what decisions were made on the early vertices. In the present case we
also want the source vertex s to be number 1.

In answer 55, the relevant state from previous branches corresponded to an
equivalence relation (a set partition); but now we express it by a table mate[:] for
j <1 <, where j = uy is the smaller vertex of the current edge ux — vr and where
| = max{v1,...,vk—1}. Let mate[:] =1 if vertex ¢ is untouched so far; let mate[i] = 0
if vertex ¢ has been touched twice already. Otherwise mate[i]| = r and mate[r] = i, if
previous edges form a simple path with endpoints {z,r}. Initially we set mate[i] + ¢ for
1 <1 < n, except that mate[1] + t and mate[t] + 1. (If t > [, the value of mate[t] need
not be stored, because it can be determined from the values of matel[i] for 7 <7 <1.)

Let ' = ugt1 and I = max{v1,...,vr} be the values of j and [after edge k
has been considered; and suppose ux = j, vy = m, mate[j] = j, mate[m] = m. We
cannot choose edge j — m if 7 = 0 or m = 0. Otherwise, if 7 # m, the new mate table
after choosing edge j — m can be computed by doing the assignments mate[j] « 0,
mate[m] < 0, mate[j] + 7, mate[n] + 7 (in that order).

Otherwise we have 5 = m and " = j; we must contemplate the endgame. Let
i be the smallest integer such that i > j, i # m, and either ¢ > I’ or mate[i] # 0 and
mate[i] # i. The new state after choosing edge j— m is 0 if 7 < I’, otherwise it is €.

complementary family
Knuth

left-child /right-sibling links
right-sibling/left-child links
frontier

7.1.4 ANSWERS TO EXERCISES 125

Whether or not the edge is chosen, the new state will be @ if mate[i] # 0 and
mate[i] # i for some i in the range j < i < j'.
For example, here are the first steps for paths from 1 to 9 in a 3x 3 grid (see (132)):

kE 7 1 m mate[l]...mate[9] 7 1 mate'[l]...mate'[9]
1 1 1 2 923456781 9 2 093456782
21 2 3 923456781 9 3 029456783
21 2 3 093456782 0 3 —

32 3 4 029456783 2 4 049256783
3 2 3 4 093456782 9 4 003956784

where mate’ describes the next state if edge j — m is chosen. The state transitions
mate; ; — mate), , are 9 — (127 92: 09); 92 — (137 0: 29); 09 — (137 93: 0);
29 > (247 294: 492); 93 — (247 934: 039).

After all reachable states have been found, the ZDD can be obtained by reducing
equivalent states, using a procedure like Algorithm R. (In the 3 x 3 grid problem,
57 branch nodes are reduced to 28, plus two sinks. The 22-branch ZDD illustrated in
the text was obtained by subsequently optimizing with exercise 197.)

226. Just omit the initial assignments ‘mate[1] < t, mate[t] - 1.7

227. Change the test ‘mate[i] # 0 and mate[i] # ¢’ to just ‘mate[i] # 0’ in two places.
Also, change ‘i < 1" to ‘4 < n'.

228. Use the previous answer with the following further changes: Add a dummy vertex
d=n+ 1, with new edges v —d for all v # s; accepting this new edge will mean “end
at v.” Initialize the mate table with mate[l] < d, mate[d] < 1. Leave d out of the
maximization when calculating ! and I’. When beginning to examine a stored mate
table, start with mate[d] < 0 and then, if encountering mate[i] = d, set mate[d] < 3.
229. 149,692,648,904 of the latter paths go from VA to MD; graph (133) omits DC.
(However, the graphs of (18) have fewer Hamiltonian paths than (133), because (133)
has 1,782,199 Hamiltonian paths from CA to ME that do not go from VA to MD.)

230. The unique minimum and maximum routes from ME both end at WA:

18040 miles.

11698 miles;

Let g(z) = 3 2z™() summed over all routes r. The average cost, g'(1)/g(1) =
1022014257375/68656026 ~ 14886.01, can be computed rapidly as in answer 29.
(Similarly, g" (1) = 15243164303013274, so the standard deviation is ~ 666.2.)

231. The algorithm of answer 225 gives a proto-ZDD with 8,062,831 branch nodes; it
reduces to a ZDD with 3,024,214 branches. The number of solutions, via answer 208,
is 50,819,542,770,311,581,606,906,543.

232. With answer 227 we find h = 721,613,446,615,109,970,767 Hamiltonian paths
from a corner to its horizontal neighbor, and d = 480,257,285,722,344,701,834 of them
to its diagonal neighbor; in both cases the relevant ZDD has about 1.3 million nodes.
The number of oriented Hamiltonian cycles is 2h 4+ d = 1,923,484,178,952,564,643,368.
(Divide by 2 to get the number of undirected Hamiltonian cycles.)

Hamiltonian
generating function
standard deviation
variance

126 ANSWERS TO EXERCISES 7.1.4

Essentially only two king’s tours achieve the maximal length 8 + 56/2:

233. A similar procedure can be used but with mate[i]| = r and mate[r] = —i when
the previous choices define an oriented path from i to r. Process all arcs uy — vy and
U, <— Uk consecutively when uy = j < vy = m. Define § = —j if mate[j] = j, otherwise

7 = mate[j]. Choosing j — m is illegal if 7 > 0 or m < 0. The updating rule for that
choice, when legal, is: mate[j] < 0, mate[m] < 0, mate[—j] « 1, mate[rh] < j.

234. The 437 oriented cycles can be represented by a ZDD of ~ 800 nodes. The short-
est are, of course, AL — LA — AL and MN — NM — MN. There are 37 of length 17 (the
maximum), such as (ALARINVTNMIDCOKSC) —i.e., AL—>LA—>---—SC—> CA—> AL.

Incidentally, the directed graph in question is the arc-digraph D* of the digraph D
on 26 vertices {A,B,...,Z} whose 49 arcs are A—L, A—R, ..., W— Y. Every oriented
walk of D* is an oriented walk of D, and conversely (see exercise 2.3.4.2-21); but the
oriented cycles of D* are not necessarily simple in D. In fact, D has only 37 oriented
cycles, the longest of which is unique: (ARINMOKSDC).

If we extend consideration to the 62 postal codes in exercise 7-54(c), the number
of oriented cycles rises to 38336, including the unique 1-cycle (&), as well as 192 that
have length 23, such as (APRIALASCTNMNVINCOKSDCA). About 17000 ZDD nodes suffice
to characterize the entire family of oriented cycles in this case.

235. The digraph has 7912 arcs; but we can prune them dramatically by removing
arcs from vertices of in-degree zero, or arcs to vertices of out-degree zero. For example,
owner —nerdy goes away, because nerdy is a dead end; in fact, all successors of owner
are likewise eliminated, so crown is out too. Eventually we’re left with only 112 arcs
among 85 words, and the problem can basically be done by hand.

There are just 74 oriented cycles. The unique shortest one, slant — antes —
tesla— slant, can be abbreviated to ‘(slante)’ as in the previous answer. The two
longest are (aw) and (Bw), where @ = picastepsomaso, 3 = pointrotherema, and
w = nicadrearedidoserumoreliciteslabsitaresetuplenactoricedarerunichesto.

236. (a) Suppose o € fand B € g. f a C B, then a € fMg. f anNPB € f, then
anB ¢ f.~g. A similar argument, or the use of part (b), shows that f~g = f\(fUg).

Notes: The complementary operations “f g = f\ (fNg) ={a€ f|aDB
for some 3 € g}” for supersets, and “f v g = f\ (f 7 g9) = {a € f | a C B for some
B € g} for subsets, are also important in applications. They were omitted from this
exercise only because five operations are already rather intimidating. The superset
operation was introduced by O. Coudert, J. C. Madre, and H. Fraisse [ACM/IEEE
Design Automation Conference 30 (1993), 625—630]. The identity f~g= fN(fUg)
was noted by H. G. Okuno, S. Minato, and H. Isozaki [Information Processing Letters
66 (1998), 195-199], who also listed several of the laws in (d).

(b) Elementary set theory suffices. (The first six identities appear in pairs, each
of which is equivalent to its mate. Strictly speaking, f€ involves infinite sets, and U
is the AND of infinitely many variables; but the formulas hold in any finite universe.
Notice that, when cast in the language of Boolean functions, f€(z) = f(Z) is the
complement of P, the Boolean dual; see exercise 7.1.1-2. Is there any use for the dual
of f%, namely {a | 8 € f implies o U 8 # U}T? If so, we might denote it by f°.)

arc-digraph
notation f g
notation f ' g
Coudert

Madre

Fraisse

Okuno

Minato

Isozaki
Boolean functions versus families of sets
Boolean dual
notation

7.1.4 ANSWERS TO EXERCISES 127

(c) All true except (i), which should have said that z] = 254 = z}¢ = ¢ = U.

(d) The “identities” to cross out here are (ii), (viii), (ix), (xiv), and (xvi); the
others are worth remembering. Regarding (ii)—(vi), notice that f = fT if and only if
f = f% if and only if f is a clutter. Formula (xiv) should be f ~ g* = f \. g, the dual
of (xiii). Formula (xvi) is almost right; it fails only when f = 0 or g = 0. Formula (ix)
is perhaps the most interesting: We actually have f* = f if and only if f is a clutter.

(e) Assuming that the universe of all vertices is finite, we have (i) f = p . g and
(ii) g = (p \ f)*, where p is the universal family of exercises 201 and 222, because g is
the family of minimal dependent sets. (Purists should substitute pv = | |, (e U ey)
for p in these formulas. The same relations hold in any hypergraph for which no edge
is contained in another.)

237. MAXMAL(f) = “If f =0 or f = ¢, return f. If fT = r is cached, return r. Oth-
erwise set 7 « MAXMAL(f1), rn + MAXMAL(f1), 1 < NONSUB(r,74), dereference r,
and r < ZUNIQUE(fy, ri, 74); cache and return r.”

MINMAL(f) = “If f =@ or f = ¢, return f. If f* = r is cached, return r. Oth-
erwise set 7; « MINMAL(f;), 7 + MINMAL(f3), rn < NONSUP(r,r;), dereference r,
and 1 < ZUNIQUE(fu, 71, 71r); cache and return 7.”

NONSUB(f,g) = “If g = 0, return f. If f = 0 or f = € or f = g, return 0.
If f ~g = r is cached, return r. Otherwise represent f and g as in (52). If v < g,
set 7, < NONSUB(fi,g), *» « fn, and increase REF(fn) by 1; otherwise set r, <
NONSUB(fi,g1), 7 < NONSUB(fi, gn), 71 < AND(r,74), dereference r and rp, and set
rh <~ NONSUB(fr, gn). Finally r + ZUNIQUE (v, r,73); cache and return r.”

NONSUP(f,g9) = “If g = 0, return f. If f = 0 or g = € or f = g, return 0.
If fu > gv, return NONSUP(f,¢:). If f v g = r is cached, return r. Otherwise set
v =fy. If v < gy, set 1 < NONSUP(f;,g) and 7, + NONSUP(fr,g); otherwise set
ry < NONSUP(fn,gn), 7 < NONSUP(frn,q), rn < AND(r,r;), dereference r and 7,
and set r; « NONSUP(fi, gi). Finally r < ZUNIQUE(v, r;, 74); cache and return r.”

CROSS(f) = “If f = 0, return e. If f = ¢, return §. If f* = r is cached,
return r. Otherwise set 7 < OR(fi, fx), r1 ¢ CROSS(r), dereference 7, r < CROSS(fi),
rh <— NONSUP(r, 1), dereference 7, and r < ZUNIQUE(fy, 71, 7); cache and return r.”

As in exercise 206, the worst-case running times of these routines are unknown.
Although NONSUB and NONSUP can be computed via JOIN or MEET and BUTNOT,
by exercise 236(a), this direct implementation tends to be faster. It may be preferable
to replace ‘f = €’ by ‘€ € f” in MINMAL and CROSS; also ‘g = €’ by € € g’ in NONSUP.

[Olivier Coudert introduced and implemented the operators f, f g, and f\g
in Proc. Europ. Design and Test Conf. (IEEE, 1997), 224-228. He also gave a recursive
implementation of the interesting operator f ® g = (f L g)T; however, in the author’s
experiments, much better results have been obtained without it. For example, if f is
the 177-node ZDD for the independent sets of the contiguous USA, the operation g <
JOIN(f, f) costs about 350 kilomems and h < MAXMAL(g) costs about 3.6 megamems;
but more than 69 gigamems are needed to compute h +— MAXJOIN(f, f) all at once.
Improved caching and garbage-collection strategies may, of course, change the picture.]

238. We can compute the 177-node ZDD for the family f of independent sets, using
the ordering (104), in two ways: With Boolean algebra (67), f = -V, (%u A zv);
the cost is about 1.1 megamems with the algorithms of answers 198-201. With family
algebra, on the other hand, we have f = p N\ \/ ew L ey) by exercise 236(e); the
cost, via answer 237, is less than 175 kilomems.

u—v(

clutter

power set

g

hypergraph
recurrences
Coudert

Knuth

contiguous USA
caching
garbage-collection

128 ANSWERS TO EXERCISES 7.1.4

The subsets that give 2-colorable and 3-colorable subgraphs are g = f LI f and
h = g U f, respectively; the maximal ones are g7 and AT. We have Z (g) = 1009,
Z(g") = 3040, Z(h) = 179, Z(h") = 183, |g| = 9,028,058,789,780, |¢T| = 2,949,441,
|h| = 543,871,144,820,736, and |hT| = 384. The successive costs of computing g, g',
h, and h" are approximately 350 Ky (kilomems), 3.6 My, 1.1 My, and 230 Ku. (We
could compute h' by, say, (g7 L)T; but that turns out to be a bad idea.)

The maximal induced bipartite and tripartite subgraphs have the respective
generating functions 765422° 4 - .. 4+ 9040z%% + 6892%* and 1282*3 4 842** 4+ 1122*° +
362%6 4 2427, Here are typical examples of the smallest and largest:

AN N AN PN

N Nl NN NZ SR N

NN

(Compare with the smallest and largest “l-partite” subgraphs in 7—(61) and 7—(62).)
Notice that the families g and h tell us exactly which induced subgraphs can be
2-colored and 3-colored, but they don’t tell us how to color them.

239. Since h = ((e1 U -+ U esg) §2) \ g is the set of nonedges of G, the cliques are
f = @ h, and the maximal cliques are fT. For example, we have Z(f) = 144 for the
214 cliques of the USA graph, and Z(f") = 130 for the 60 maximal ones. In this case
the maximal cliques consist of 57 triangles (which are easily visible in (18)), together
with three edges that aren’t part of any triangle: AZ — NM, WI — MI, NH— ME.

Let fi describe the sets coverable by k cliques. Then f1 = f, and fr+1 = fiu U f
for £ > 1. (It’s not a good idea to compute fi6 as fs LI fs; much faster is to do each
join separately, even if the intermediate results are not of interest.)

The maximum elements of fr in the USA graph have sizes 3, 6, 9, ..., 36, 39,
41, 43, 45, 47, 48, 49 for 1 < k < 19; these maxima can readily be determined by hand,
in a small graph such as this. But the question of maximal elements is much more
subtle, and ZDDs are probably the best tool for investigating them. The ZDDs for

f1, ..., f19 are quickly found after about 30 megamems of calculation, and they aren’t
large max Z(fix) = Z(f11) = 9547. Another 400 megamems produces the ZDDs for
f1 Y eees f197 which likewise are small: max Z(fk) Z(f11) = 9458.

We find, for example, that the generating function for f1s N

is 12247 + 132*®; eighteen cliques suffice to cover all but one of
the 49 vertices, if we leave out CA, DC, FL, IL, LA, MI, MN, MT,
SC, TN, UT, WA, or WV. There also are twelve cases where we can
maximally cover 47 vertices; for example, if all but NE and NM are
covered by 18 cliques, then neither of those states are covered. An unusual example of
maximal clique covering is illustrated here: If the 29 “black” states are covered by 12
cliques, none of the “white” states will also be covered.

240. (a) In fact, the subformula f(z) = A (v VV,_, Zu) of (67) precisely character-
izes the dominating sets . And if any element of a kernel is removed, it isn’t dominated
by the others. [C. Berge, Théorie des graphes et ses applications (1958), 44.]

(b) The Boolean formula of part (a) yields a ZDD with Z(f) = 888 after about
1.5 My of computation; then another 1.5 My with the MINMAL algorithm of answer
237 gives the minimal elements, with Z(f*) = 2082.

A more clever way is to start with h =\/ (e, U|],_, ex), and then to compute
h¥, because hf = f*. However, cleverness doesn’t pay in thls case: About 80 Ky suffice
to compute h, but the computation of A¥ by the CROSS algorithm costs about 350 M.

generating functions
maximum versus maximal
Berge

7.1.4 ANSWERS TO EXERCISES 129

Either way, we deduce that there are exactly 7,798,658 minimal dominating sets.
More precisely, the generating function has the form 1922z 45885522 4. . . 4417028 +
402" (which can be compared to 80z + 785122 4 - - - 4 44128 + 182'° for kernels).

(c) Proceeding as in answer 239, we can determine the sets of vertices dj, that are

dominated by subsets of size k = 1, 2, 3, ..., because di+1 = di U di. Here it’s much
faster to start with di = g M h instead of di = h, even though
Z(pMh) = 313 while Z(h) = 213, because we aren’t interested in /g:

details about the small-cardinality members of di. Using the fact <1
that the generating function for d7 is - - -4+612*2+2*3, one can ver-
ify that the illustrated solution is unique. (Total cost &~ 300 Myu.)

241. Let g the family of all 728 edges. Then, as in previous exercises, f = p N\ g is
the family of independent sets, and the cliques are ¢ = p~\ (((U, €v) §2) \ g). We have
Z(g) = 699, Z(f) = 20244, Z(c) = 1882.

(a) Among |f| = 118969 independent sets, there are |fT| = 10188 kernels, with
Z(f1) = 8577 and generating function 7282°+69122542456274-922%. The 92 maximum
independent sets are the famous solutions to the classic 8-queens problem, which we
shall study in Section 7.2.2; example (C1) is the only solution with no three queens in a
straight line, as noted by Sam Loyd in the Brooklyn Daily Eagle (20 December 1896).
The 728 = 91 X 8 minimum kernels were first listed by C. F. de Jaenisch, Traité des ap-
plications de I’analyse math. au jeu des échecs 3 (1863), 255—259, who ascribed them to
“M* de Rxx#x.” The upper left queen in (CO0) can be replaced by king, bishop, or pawn,
still dominating every open square [H. E. Dudeney, The Weekly Dispatch (3 Dec 1899)].

W\ \ | 1 T
(] "
@ W %:
(C8)
NG i
Véx 7&7
||
i :‘:@w wg
] . M&g‘%‘ﬂ“”
(C1) (C3) (C5) (Cn) (C9)

(b) Here Z(c") = 866; the 310 maximal cliques are described in exercise 7-129.

(c) These subsets are computationally more difficult: The ZDD for all dominating
sets d has Z(d) = 12,663,505, |d| = 18,446,595,708,474,987,957; the minimal ones have
Z(d%) = 11,363,849, |d| = 28,281,838, and generating function 48602° + 10755802° +
1433802827 +119785182°+8732002°+116162'°+362"'. One can compute the ZDD for d
in 1.5 Gy by Boolean algebra, and then the ZDD for d* in another 680 Gp; alternatively,
the “clever” approach of answer 240 obtains d*¥ in 775 Gpu without computing d. The
11-queen arrangement in (C5) is the only such minimal dominating set that is confined
to three rows. H. E. Dudeney presented (C4), the only 5-queen solution that avoids the
central diamond, in Tit Bits (1 Jan 1898), 257. The set of all 4860 minimum solutions
was first enumerated by K. von Szily [Deutsche Schachzeitung 57 (1902), 199]; his com-
plete list appears in W. Ahrens, Math. Unterhaltungen und Spiele 1 (1910), 313-318.

generating function

kernels

8-queens problem

no three queens in a straight line
Loyd

de Jaenisch

Dudeney

Dudeney

von Szily

Ahrens

130 ANSWERS TO EXERCISES 7.14

(d) Here it suffices to compute (c N d)¥ instead of ¢ N (d*), if we don’t already
know d*, because cMp = c¢. We have Z(cNd*¥) = 342 and |cNd*| = 92, with generating
function 20z° + 562% 4+ 1627. Once again, Dudeney was first to discover all 20 of the
5-queen solutions [The Weekly Dispatch (30 July 1899)].

(e) We have Z(f LU f) = 91,780,989 at a cost of 24 Gpu; then Z((fU f)") =
11,808,436 after another 290 Gu. There are 27,567,390 maximal induced bipartite sub-
graphs, with generating function 1098942° +25614922'" +138334742"% 4+ 91622322"% +
179926424 4+994082'° +16262'¢. Any 8 independent
queens can be combined with their mirror reflection
to obtain a 16-queen solution, as (C1) yields (C9).
But the disjoint union of minimum kernels is not al-
ways a maximal induced bipartite subgraph; for ex-
ample, consider the union of (C0) with its reflection:

Parts (a), (b), (d), and possibly (c) can be solved just as well without the use
of ZDDs; see, for example, exercise 7.1.3-132 for (a) and (b). But the ZDD approach
seems best for (e). And the computation of all the maximal tripartite subgraphs of Qs
may be beyond the reach of any feasible algorithm.

[In larger queen graphs Q,, the smallest kernels and the minimum dominating
sets are each known to have sizes either [n/2] or [n/2] + 1 for 12 < n < 120. See
P. R. J. Ostergérd and W. D. Weakley, Electronic J. Combinatorics 8 (2001), #R29;
D. Finozhenok and W. D. Weakley, Australasian J. Combinatorics 37 (2007), 295-200.
The largest minimal dominating sets have been investigated by A. P. Burger, E. J.
Cockayne, and C. M. Mynhardt, Discrete Mathematics 163 (1997), 47-66.]

242. These are the kernels of an interesting 3-regular hypergraph with 1544 edges. Its
4,113,975,079 independent subsets f (that is, its subsets with no three collinear points)
have Z(f) = 52,322,105, computable with about 12 gigamems using family algebra
as in answer 236(e). Another 575 Gpu will compute the kernels f7, for which we have
Z(f%) = 31,438,750 and |f"| = 66,509,584; the generating function is 2282% +82402° +
7289562'° +98889002"" +322159082"2 +207399202"3 + 28531642 +738882'° +3802'°.

0000@®®00
[eJeXeRoX ¥ YeXo]

00000000000
O0000O@e0000e

[eXeX XeXele] Yo
[e)eX JeoX JeleXe]

00000000

[e]
®®000000 ®0000000 [efeX JeX JeleXe] O®@0®e0000 ®@0®00000000
®0000000 [eXeXeXoX NeX Yo [eXeXeXel X JeXol [eYeXeX XeX JeXeol O00@0000000
000000 ee O00®@0000 O0®e0000 [eXeX XeX YeJeXel O@e0@0000000
[e)eXeRoXokeX X] [eleXelele) JeoX J [eleXoX JoX YeXe] 00000000 ®0O®@00000000
O0O®@eO0000 ®00®@0000 00000000 00000000 O000O0O@e0000e
00®ee0000 [eXeXeXeoXel JeX] 00000000 00000000 00000000000

[The problem of finding an independent set of size 16 was first posed by H. E. Dudeney
in The Weekly Dispatch (29 Apr 1900 and 13 May 1900), where he gave the leftmost
pattern shown above. Later, in the London Tribune (7 Nov 1906), Dudeney asked
puzzlists to find the second pattern, which has two points in the center. The full set of
maximum kernels, including 51 that are distinct under symmetry, was found by M. A.
Adena, D. A. Holton, and P. A. Kelly, Lecture Notes in Math. 403 (1974), 6-17, who
also noted the existence of an 8-point kernel. The middle pattern above is the only such
kernel with all points in the central 4 x 4. The other two patterns yield kernels that
have respectively (8,8,10,10,12,12,12) points in n X n grids for n = (8,9, ..., 14); they
were found by S. Ainley and described in a letter to Martin Gardner, 27 Oct 1976.]
243. (a) This result is readily verified even for infinite sets. (Notice that, as a Boolean
function, f” is the least Horn function that is D f, by Theorem 7.1.1H.)

(b) We could form f@ = fr1f, then f@ = f@O @ . until F& = @5
using exercise 205. But it’s faster to devise a recurrence that goes to the limit all at
once. If f = foU (e1 U f1) we have f7 = f' U (e1 U f1'), where f' = f§' U (f§ 11).

Dudeney
5-queen
Ostergéard
Weakley
Finozhenok
Burger
Cockayne
Mynhardt
kernels
3-regular hypergraph
independent subsets of a hypergraph
family algebra
Dudeney
symmetry
Adena

Holton

Kelly

Ainley
Gardner
infinite sets
Horn function
recurrence

7.1.4 ANSWERS TO EXERCISES 131

[An alternative formula is f' = (fo U f1)" \ (fi' . fo); see S. Minato and H. Arimura,
Transactions of the Japanese Society for Artificial Intelligence 22 (2007), 165-172.]

(c) With the first suggestion of (b), the computation of F®, F*) and F® =
F® costs about (610 + 450 4+ 460) megamems. In this example it turns out that
F@ = F(S)7 and that just three patterns belong to F® \F(Z)7 namely cx**f xk¥tx*,
and ***sp. (The words that match ***sp are clasp, crisp, and grasp.) A direct
computation of F” using the recurrence based on f§' M f{' costs only 320 My; and
in this example the alternative recurrence based on (fo U f1)” costs 470 Mu. The
generating function is 1 4 124z + 278222 + 775323 + 48202 + 575725.

244. To convert Fig. 22 from a BDD to a ZDD, we add appropriate nodes with LO = HI
where links jump levels, obtaining the z-profile (1, 2, 2, 4, 5, 5, 5, 5, 5, 2, 2, 2). To
convert it from a ZDD to a BDD, we add nodes in the same places, but with HI = [L],
obtaining the profile (1, 2, 2, 4, 5, 5, 5, 5, 5, 2, 2, 2). (In fact, the connectedness function
and the spanning tree function are Z-transforms of each other; see exercise 192.)

245. See exercise 7.1.1-26. (It should be interesting to compare the performance of
the Fredman—Khachiyan algorithm in exercise 7.1.1-27 with the ZDD-based algorithm
CROSS in answer 237, on a variety of different functions.)

246. If a nonconstant function doesn’t depend on z1, we can replace x; in the formulas
by z», as in (50). Let P and @ be the prime implicants of functions p and ¢. (For
example, if P = e, U (esLles) then p =z V (3 A z4).) By (137) and induction on | f|,
the function f described in the theorem is sweet if and only if p and g are sweet and
PI(fo) NPI(f1) = 0. The latter equality holds if and only if p C q.

247. We can characterize them with BDDs as in (49) and exercise 75; but this time

O'n(l'l,...,:vzn)ZO'n_l(:Ul,...,xzn_l)/\ o1
ok—
((3_32 JANKIERIAY ﬂ_lzn) \Y% (0'”_1(:132,. .. ,l‘gn) N /\ (52]‘4_1 \Y% V £L'21'+2>)).
3=0 iCj

The answers |oy,| for 0 < n < 7 are (2, 3, 6, 18, 106, 2102, 456774, 7108935325). (This
computation builds a BDD of size B(o7) = 7,701,683, using about 900 megamems and
725 megabytes altogether.)

248. False; for example, (z1Vz2)A(z2Vz3) isn’t sweet. (But the conjunction is sweet
if f and g depend on disjoint sets of variables, or if z; is the only variable on which
they both depend.)

249. (Solution by Shaddin Dughmi and Ian Post.) A nonzero monotone Boolean
function is ultrasweet if and only if its prime implicants are the bases of a matroid; see
Section 7.6.1. By extending answer 247 we can determine the number of ultrasweet
functions f(z1,...,an) for 0 <n < 7: (2, 3, 6, 17, 69, 407, 3808, 75165).

250. Exhaustive analysis shows that ave B(f) = 76726/7581 =~ 10.1; ave Z(PI(f)) =
71513/7581 ~ 9.4; Pr(Z(PI(f)) > B(f)) = 151/7581 ~ .02; and max Z(PI(f))/B(f) =
8/7 occurs uniquely when f is (z1Az4) V (z1AZ5) V (22AZ3AZ4) V (Z2AZ5).

251. More strongly, could it be that limsup Z(PI(f))/B(f) = 17

252. The ZDD should describe all words on {ey,el,...,e,,e,} that have exactly j
unprimed letters and k — j primed letters, and no occurrences of both e; and e} in the

same word, for some set of pairs (j, k). For example, if n = 9 and f(z) = vye, where
v = 110111011, the pairs are (0,8), (3,6), and (8,8). Regardless of the set of pairs, the

Minato
Arimura
Z-transforms
Fredman
Khachiyan
Dughmi

Post

bases
matroid

132 ANSWERS TO EXERCISES 7.1.4

z-profile elements will all be O(n?), hence Z(PI(f)) = O(n®). (We order the variables
so that z; and z; are adjacent.) And f(z) = S|n/3),...,|2n/3) (z) has Z(PI(f)) = Q(n®).

253. Let I(f) be the family of all implicants of f; then PI(f) = I(f)i. The formula
1(f) = 1(fo A f1) U (&4 U1(fo)) U (e1UI(f1)) is easy to verify. Thus I(f)* = AU (e} U
(PI(fo) A)) U (ex U (PI(f1) \ A)), as in exercise 237. But PI(fo) ~x A = PI(fo) \ 4,
since A C I(f).

[This recurrence for prime implicants is due to O. Coudert and J. C. Madre,
ACM/IEEE Design Automation Conf. 29 (1992), 36-39. Partial results had previously
been formulated by B. Reusch, IEEE Trans. C—24 (1975), 924-930.]

254. By (53) and (137), we need to show that PI(gs) \ PI(f» U g1) = (PI(gn)\PI(g1)) \
(PI(f»)\PI(fi)). But both of these are equal to PI(gsn) \ (PI(f») U PI(g:)), because
fi € frn Cgn and fi C g1 C gn.

[This recurrence produces a ZDD directly from the BDDs for f and g, and it
yields PI(g) when f = 0. Thus it is easier to implement than (137), which requires also
the set-difference operator on ZDDs. And it sometimes runs much faster in practice.]

255. (a) A typical item « like ez Ll es Ll e has a very simple ZDD. We can readily
devise a BUMP routine that sets g < g ® o and returns [« € g], given ZDDs g and a.

To insert « into the multifamily f, start with & < ¢ < 0; then while ¢ = 0, set
¢ < BUMP(f%) and k « k + 1. To delete «, assuming that it is present, start with
k < 0 and c « 1; while ¢ = 1, set ¢ + BUMP(f) and k « k + 1.

(b) Suppose fr and gi are @ for k > m. Set k < 0 and ¢t « 0 (the ZDD [L]).
While k < m, set hi < fr ® g @t and t < (frgrt). Finally set hm « t.

[This representation and its insertion algorithm are due to S. Minato and H. Ari-
mura, Proc. Workshop, Web Information Retrieval and Integration (IEEE, 2005), 3-10.]

256. (a) Reflect the binary representation from left to right, and append Os until the
number of bits is 2" for some n. The result is the truth table of the corresponding
Boolean function f(z1,...,%n), with zx corresponding to 22" " ¢ U. When z = 41,
for example, 10010100 is the truth table of (z1AZ2Az3) V (Z1Az2AZ3) V (T1AT2AZ3).

(b) If © < 22", we have Z(z) < U, = O(2"/n), by (79) and exercise 192.

(c) There’s a simple recursive routine ADD(z,y, ¢), which takes a “carry bit” ¢
and pointers to the ZDDs for z and y and returns a pointer to the ZDD for z + y + c.
This routine is invoked at most 4Z(z) Z(y) times.

(d) We cannot claim that Z(z —~ y) = O(Z(z)Z(y)), because Z(z ~y) =n+1
and Z(z) = 3 and Z(y) = 1 when z = 22" and y = 1. But by computing z -y =
(+14+ (27" —1) @ y)) — 22" when y < & < 22", we can show that Z(z - y) =
O(Z(z)Z(y) loglogz). (See the ZDD nodes t; in answer 201.) So the answer is “yes.”

(e) No. For example, if z = (222k+k - 1)/(22k — 1), we have Z(z) = 2* + 1 but
Z(®) =3-(22" - 1) = Usk g1 — 2, where Uy 1, is the largest possible ZDD size
for numbers with lglgz® < 2% + k + 1 (see part (b)).

[This exercise was inspired by Jean Vuillemin, who began to experiment with
such sparse integers about 1993. Unfortunately the numbers that are of greatest im-
portance in combinatorial calculations, such as Fibonacci numbers, factorials, binomial
coefficients, etc., rarely turn out to be sparse in practice.]

257. See Proc. Europ. Design and Test Conf. (IEEE, 1995), 449-454. With signed coef-
ficients one can use {—2,4,—8, ... } instead of {2,4,8, ...}, as in negabinary arithmetic.

[In the special case where the degree is at most 1 in each variable and where
addition is done modulo 2, the polynomials of this exercise are equivalent to the

implicants
Coudert

Madre

Reusch

Minato

Arimura

Reflect

carry bit

partial tautology
Vuillemin
Fibonacci numbers
negabinary arithmetic

7.1.4 ANSWERS TO EXERCISES 133

multilinear representations of Boolean functions (see 7.1.1-(19)), and the ZDDs are
equivalent to “binary moment diagrams” (BMDs). See R. E. Bryant and Y.-A. Chen,
ACM/IEEE Design Automation Conf. 32 (1995), 535-541.]

258. If n is odd, the BDD must depend on all its variables, and there must be at least
[lgn] of them. Thus B(f) > [lgn]+2 when n > 1, and the skinny functions of exercise
170(c) achieve this bound. If n is even, add an unused variable to the solution for n/2.

The ZDD question is easily seen to be equivalent to finding a shortest addition
chain, as in Section 4.6.3. Thus the smallest Z(f) for | f| = n is {(n) + 1, including [T].

259. The theory of nested parentheses (see, for example, exercise 2.2.1-3) tells us that
Np(z) =1if and only if Z1 + -+ + T > =1 + -+ + @ for 0 < k < 2n, with equality
when k = 2n. Equivalently, kK —n < z1 + -+ zx < k/2 for 0 < k < 2n. So the
BDD for N, is rather like the BDD for S, (z), but simpler; in fact, the profile elements
are b, = |k/2| +1for 0 < k < nand by =n+1-—[k/2] for n < k < 2n. Hence
B(Nn) = bo+ -+ +ban1 +2 = ("}?) + 1. The z-profile has z; = by, — [k even] for
0 < k < 2n, because of HI branches to on even levels; hence Z(N,) = B(N,) — n.

[An interesting BDD base for the n+1 Boolean functions that correspond to Cpn,
C(n=1)(n+1)s - - -» Co(2n) in 7.2.1.6—(21) can be constructed by analogy with exercise 49.]
260. (a,b) Arrange the variables zn,0, Zn,1, ---, Zn,n—1, Tn—1,0, -- -, 1,0, from top
to bottom. Then the HI branch from the ZDD root of R, is the ZDD root of R,_1.
(This ordering actually turns out to minimize Z(R,) for n < 6, probably also for
all n.) The z-profileis 1, ..., I; n—2,...,2,1,1;, n—3, ..., 2,1, 1; ...; hence
Z(Ryn) = (g) +2n+1=~ %ng‘ and Z(Rio0) = 161,901. The ordinary profile is 1, 2, 2,
3,4,...,n—1;n—1,2n—4,2n—-5,...,n—1;,n—2,2n—6, ..., n—2; ...; altogether
B(Rn) =3(3) + ("§') 4+ 3 for n > 5, and B(Ri00) = 490,153.

[See I. Semba and S. Yajima, Trans. Inf. Proc. Soc. Japan 35 (1994), 1666-1667.
Incidentally, the method of exercise 7.2.1.5-26 leads to a ZDD for set partitions that has
only (g) variables and (g) + 1 nodes. But the connection between that representation
and the partitions themselves is less direct, thus harder to restrict in a natural way.]

(c) Now there are 573 variables instead of 5050 when n = 10; the number of
variables in general is nl — 2! 4+ 1, where I = [lgn], by Eq. 5.3.1-(3). We examine the
bits of an, a@n_1, ..., with the most significant bit first. Then B(R}q,) = 31,861, and
one can show that B(R;,) = (3)i—24' — 12! —y(n—1)+1+ § for n > 2. The ZDD size
is more complicated, and appears to be roughly 60% larger; we have Z(R}qo) = 50,154.

261. Given a Boolean function f(z1,...,Zn), the set of all binary strings z1...zn
such that f(z1,...,z,) = 1 is a finite language, so it is regular. The minimum-state
deterministic automaton A for this language is the QDD for f. (In general, when L is
regular, the state of A after reading z1 . .. zx accepts the language {a | z1 ... zra € L}.)

[The quoted theorem was discovered in a more general context by D. A. Huffman,
Journal of the Franklin Institute 257 (1954), 161-190, and independently by E. F.
Moore, Annals of Mathematics Studies 34 (1956), 129-153.]

An interesting example of the connection between this theory and the theory of
BDDs can be found in early work by Yuri Breitbart that is summarized in Doklady
Akad. Nauk SSSR 180 (1968), 1053-1055. Lemma 7 of Breitbart’s paper states, in es-
sence, that Bmin (%) = Q(2™*), where 1) is the function of 2n variables & = (z1,...,Zn)
and y = (y1,...,yn) defined by ¥(z,y) = zvy ® yvz, with the understanding that
zo = yo = 0. (Notice that ¢ is sort of a “two-sided” hidden weighted bit function.)

262. (a) If a denotes the function or subfunction f, we can for example let C(a) =
a ® 1 denote f, assuming that each node occupies an even number of bytes. Then

multilinear representations
binary moment diagrams
BMDs

Bryant

Chen

skinny

addition chain

ballot numbers Chypn
Semba

Yajima

QDD

Huffman

Moore

Breitbart

hidden weighted bit function

134 ANSWERS TO EXERCISES 7.1.4

C(C(a)) = a, and a link to a denotes a nonnormal function if and only if a is odd;
a & —2 always points to a node, which always represents a normal function.

The LO pointer of every node is even, because a normal function remains normal
when we replace any variable by 0. But the HI pointer of any node might be comple-
mented, and an external root pointer to any function of a normalized BDD base might
also be complemented. Notice that the sink is now impossible.

(b) Uniqueness is obvious because of the relation to truth tables: A bead is either
normal (i.e., begins with 0) or the complement of a normal bead.

(¢) In diagrams, each complement link is conveniently indicated by a dot:

1

2

(d) There are 22™~1—-22"""~1 normal beads of order m. The worst case, B®(f) <
B°(fn) = 1+ Y 0Ze min(2¥,22" 7 "-1_ 22" *71-1) — (U4 — 1)/2, occurs with the
functions of answer 110. For the average normalized profile, change 22" — 1 in (80)
to 22" * — 2, and divide the whole formula by 2; again the average case is very close
to the worst case. For example, instead of (81) we have

(1.0,2.0,4.0, 8.0, 16.0, 32.0, 64.0, 127.3, 103.9, 6.0, 1.0, 1.0).

(e) We save , one @, two @s, and three @s, leaving 45 normalized nodes.

(f) It’s probably best to have subroutines AND, OR, BUTNOT for the case where
f and g are known to be normal, together with a subroutine GAND for the general case.
The routine GAND (f, g) returns AND(f,g) if f and g are even, BUTNOT(f,C(g)) if f
is even but g is odd, BUTNOT(g, C(f)) if g is even but f is odd, C(OR(C(f),C(g))) if
f and g are odd. The routine AND(f,g) is like (55) except that rp < GAND(fr,gn);
only the cases f =0, g =0, and f = g need be tested as “obvious” values.

Notes: Complement links were proposed by S. Akers in 1978, and independently
by J. P. Billon in 1987. Although such links are used by all the major BDD packages,
they are hard to recommend because the computer programs become much more
complicated. The memory saving is usually negligible, and never better than a factor
of 2; furthermore, the author’s experiments show little gain in running time.

With ZDDs instead of BDDs, a “normal family” of functions is a family that
doesn’t contain the empty set. Shin-ichi Minato has suggested using C(a) to denote
the family f @ e, instead of f, in ZDD work.

263. (a) If Hx = 0 and = # 0, we can’t have vz = 1 or 2 because the columns of H
are nonzero and distinct. [R. W. Hamming, Bell System Tech. J. 29 (1950), 147-160.]
(b) Let rx be the rank of the first k£ columns of H, and sj the rank of the last &
columns. Then by, = 27k TSn—k—"n for (< k < n, because this is the number of elements
in the intersection of the vector spaces spanned by the first k£ and last n — k columns.
In the Hamming code, ry, = 1+ Ak and sx = min(m, 2+ A(k — 1)) for & > 1; so we find
B(f) = (n® 4 5)/2. [See G. D. Forney, Jr., IEEE Trans. TT-34 (1988), 1184-1187.]

(c) Let g = 1—pg. Maximizing [,_, p,[f’“:y’“]q,[f"’#y’“] is the same as maximizing
> ke Wk, where wy = (2yx — 1) log(pk/gx), so we can use Algorithm B.

Notes: Coding theorists, beginning with unpublished work of Forney in 1967,
have developed the idea of a code’s so-called trellis. In the binary case, the trellis is the
same as the QDD for f, but with all nodes for the constant subfunction 0 eliminated.
(Useful codes have distance > 1; then the trellis is also the BDD for f, but with

root pointer
truth tables
bead

Akers

Billon

Knuth

ZDD

normal family
Minato
Hamming
vector spaces
Forney
Coding theorists
trellis

QDD

7.1.4 ANSWERS TO EXERCISES 135

eliminated.) Forney’s original motivation was to show that the decoding algorithm of
A. Viterbi [IEEE Trans. IT-13 (1967), 260-269] is optimum for convolutional codes.
A few years later, L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv [I[EEE Trans. IT-20
(1974), 284-287] extended trellis structure to linear block codes and presented further
optimization algorithms. See also the papers of G. B. Horn and F. R. Kschischang
[IEEE Trans. IT-42 (1996), 2042-2047]; J. Lafferty and A. Vardy [IEEE Trans. C-48
(1999), 971-986].

264. Procedures that combine the “bottom-up” methods of Algorithm B with “top-
down” methods that optimize over predecessors of a node might be more efficient than
methods that go strictly in one direction.

Viterbi
Bahl
Cocke
Jelinek
Raviv
Horn
Kschischang
Lafferty
Vardy
bottom-up
top-down

INDEX AND GLOSSARY

WHEATLEY

Indexes need not necessarily be dry.

— HENRY B. WHEATLEY, How to Make an Index (1902)

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

0-1 matrices, 28, 36, 49, 62, 65, 67-68,
77, 81, 90, 101, 122.

1-decision list functions, 111.

2-level redundancies function, see
Covering function.

2-variable functions, 57, 70, 77.

2M.-way multiplexer (M (z;y)), 12, 41, 61,
64, 70, 85, 88, 95, 96, 105, 116.

permuted, 33, 37, 65, 67.

3-colorable graphs, 63, 75.

3-colorable tilings, 72.

3-colored tilings, 93.

3-regular hypergraphs, 130.

4-colored graphs, 31, 44, 56, 63.

4-variable functions, 100.

5-queens problem, 130.

5-variable functions, 65, 75.

8-queens problem, 129.

4], 0-6, 47, 48, 51-52, 57, 70, 71, 134.

[T], 0-7, 48, 57, 71, 134.

€ (the empty string), 64, 70.

€ (the unit family {0}), 71, 115, 119, 127.

A (the null link), 2021, 105.

An ([lgn)), 32, 60, 84, 95, 96, 135.

p (memory accesses), 43.

vn (sideways sum), 7-9, 11, 29, 33,
49, 66, 72, 81.

m (circle ratio), as source of “random”
data, 3, 45, 70, 99, 108.

pn (ruler function), 66.

¢ (golden ratio), 34, 44, 68.

Aborhey, Samuel Edmund Nii Sai, 97.

Absorbent sets, see Dominating sets.

Absorption, 53-54.

Abstract algebra, 10-11, see also
Family algebra.

ACop complexity class, 62.

Acronyms, 1.

Acyclic digraphs, 1, 13, 51, 55, 57.

Addition, binary, 13-14, 60.

Addition chains, 133.

Addition of sparse integers, 76.

Address bits, 99, 107.

Adena, Michael Anthony, 130.

Adjacency matrices, 65, 90.

Adjacent interchanges, 38-44, 107.

Adjacent subsets of vertices, 29-30, 93.

AElfric Grammaticus, abbot of Eynsham, 78.

136

Ahrens, Wilhelm Ernst Martin Georg, 129.
Ainley, Stephen, 130.
Akers, Sheldon Buckingham, Jr., 55, 134.
All-zero row or column, 65.
Almost symmetric Boolean function, 107.
Amano, Kazuyuki (K¥p—3E), 46, 69.
Analysis of algorithms, 31-33, 40-41, 4448,
61, 65—68, 72, 95-96.
AND subroutine, 23-25, 27-28, 62, 70,
71, 77, 92, 117, 118, 120.
ANDAND, 27-28, 62, 120.
Antichains of subsets, see Clutters.
Approximating function, 62-63.
Arc-digraph, 126.
Arimura, Hiroki (FF4118%0), 131, 132.
Articulation point, 53.
Ashar, Pranav Navinchandra
(store =% IATAY), 89.
Associative laws, 10, 59, 68, 71, 92.
Asymptotic methods, 32, 34, 61, 65,
84, 98, 110, 116.
Attributed edges, see Complement links.
Austin, Richard Bruce, 98.
Automata theory, 55, 77.
Automorphisms, 111.
Autosifting, 43, 107.
AVAIL stack, 14-15, 60.
Availability polynomial of a Boolean
function, see Reliability polynomials.
Average nodes on level k, 32, 70, 134.
Average weight of a solution, 74.

B-schemes, 55.
B(f) (the BDD size of f), 3, 31-33.

B(f1,---,fm) (the BDD size of
{flv"'vfm})7 147 277 38.

Bmax(fl,n.,fm), 38.

Bmin(flv---vfm)v 38.

Bahl, Lalit Rai (@fola T/ 98¢7), 135.

Balanced ANDing, 120, 122.

Ballot numbers Cp,p, 133.

Bases of a matroid, 131.

BDD: A reduced, ordered binary decision
diagram, O, 1.

BDD base: One or more BDDs having
no duplicate nodes, 13-14, 55, 57,
59, 60, 62, 77, 113.

Beads, 2-3, 13, 17, 31-33, 38, 48, 57,
59, 64, 87, 96, 134.

Beissinger, Janet Simpson, 111.

Berge, Claude, 80, 128.

Berman, Charles Leonard, 85.

Bern, Jochen, 97.

Bernoulli, Jacques (= Jakob = James),
numbers, 112.

Berthet, Christian, 92.

Billon, Jean-Paul, 134.

Binary addition, 13-14, 60.

Binary Boolean operations, see Synthesis of
BDDs, Two-variable functions.

Binary decision dags, 1.

Binary decision diagrams, 0—-134.

compared to ZDDs, 48-51, 70, 71,
120-122.
mixed with ZDDs, 54.

Binary logarithm function (An), 32, 60,
84, 95, 96, 135.

Binary moment diagrams, 133.

Binary multiplication, 2627, 45-47,
62, 69-70, 76.

Binary search trees, 19.

Binary trees, 1, 73.

Binate covering problem, see Boolean
programming.

Binomial coefficient summation techniques,
98-99.

Bipartite graphs and subgraphs, 50, 75, 121.

Bitwise complement, 15.

Bitwise instructions, 57.

Black, Max, 50.

Block codes, 77.

Blum, Manuel, 82.

BMD: A binary moment diagram, 133.

Bollig, Beate Barbara, 36, 41, 67,
102, 105, 115.

Boole, George, 9.

Boolean chains, 77.

Boolean difference quantifier (J), 29,
63, 92, 95.

Boolean function calculator, 18.

Boolean functions versus families of sets,
48, 51, 71-74, 126.

Boolean matrices, 28, 62.

Boolean programming, 4, 7-9, 56, 59, 120.

generalized, 59, 78.

Boswell, James, vi.

Bottom-up algorithms, 5, 7, 10, 55,
93, 120-122, 135.

Brace, Karl Steven, 55.

Branch nodes, 0, 7, 47, 78.

Branching programs, 4-5, 55, 95.

Brayton, Robert King, 119.

Breadth-first synthesis, 2021, 62.

compared to depth-first, 25-27.

Breitbart, Yuri (Bpeiit6apt, FOpuit
AxkoBnesnu), 95, 133.

Broadword chains, 57.

Bruijn, Nicolaas Govert de, cycles, 84, 115.

INDEX AND GLOSSARY 137

Bryant, Randal Everitt, v, 33, 35, 52-53,
55, 63, 88, 94, 133.

Bucket sort, 15, 20-21, 89, 102.

Burger, Alewyn Petrus, 130.

Butler, Jon Terry, 84.

BUTNOT subroutine, 70, 71, 91, 92,
117, 119, 134.

C(f): Length of shortest Boolean
chain for f, 64.

Cy (oriented cycle of order n), 57.

Cache memory, 24, 89.

Cache memos, 24-28, 30-31, 54, 62, 63,
94, 105, 117, 127.

Caged Life, 68.

Camion, Paul Frédéric Roger, 56.

Canalizing functions, 59, 111.

Capitol, Montana, 52.

Care set, 62.

Carries, 14, 114, 132.

Catalan, Eugéne Charles, numbers, 76.

Ceruzzi, Paul Edward, iii.

Chaining with separate lists, 20.

Chandra, Ashok Kumar (FATT
THAT), 82.

Chang, Angel Xuan (E7%), 110.

Characteristic polynomial of a Boolean
function, see Reliability polynomials.

Checkerboard, 121.

Chen, Yirng-An (ffi#%), 133.

Cheong, Matthew Chao (5%), 89.

Chessboard, 49-50, 67-68, 72, 74, 75.

Chinese remainder algorithm, 5.

Circuit complexity, 62.

Clearing the cache, 105.

Cliques, 57, 65, 75, 102.

covering by, 75.

Clone of a node, 19, 21.

Closed item sets, see f.

Closure of a family, 75.

Clutters, 61, 89, 119, 127.

CMath: Concrete Mathematics, a book
by R. L. Graham, D. E. Knuth, and
O. Patashnik, 116.

CNF (conjunctive normal form), 69, 75.

Cobham, Alan, 55.

Cockayne, Ernest James, 130.

Cocke, John, 135.

Coding theorists, 134—-135.

Cofactor, 71, 92.

Colex order, 36.

Collinear points, 75.

Collisions in a hash table, 20, 24.

Colorings, 31, 44, 56, 63, 72, 75, 93.

Combinatorial explosion, 22, 130.

Common subfunctions, 14, 22, 27,
85, 86, 132.

Commutative law, 25, 59, 68, 71, 92,
109, 119.

Complement links, 77.

138 INDEX AND GLOSSARY

Complementary family, 124.
Complementation, 44-45, 77.
in a ZDD, 70, 117.

Complete binary tree, 12.

Complexity theory, 62.

Components of size two, 63.

COMPOSE subroutine, 30, 63.

Composition of Boolean functions,
30-31, 61, 63, 94.

Compression of data, 2, 31.

Computed table, see Memo cache.

Condensation, 11, 59.

Conditional expression, seeIf-then-else
function.

Conjunction, 17, see AND subroutine.

Connectedness function, 9-10, 54, 60, 75, 81.

Consecutive 1s forbidden, 6, 57, 61.

Constrained-by operation (f | g), 62-63.

Context-free grammar, 116.

Contiguous United States of America,
8-9, 29-31, 4244, 48, 5253, 63,
67, 74, 75, 93, 127.

Conway, John Horton, 67.

Coolean algebra: An undiscovered sequel
to Boolean algebra.

Coudert, Olivier René Raymond, 56, 82,
92, 120, 126, 127, 132.

Counting the number of solutions,
4-5, 49, 55, 57.

Covering function (C(z;y)), 65.

Cross elements of a family, 74.

Curious properties, 110.

Cycle graph Cp, 6, 47, 57.

Cycles of a graph, generation of all, 52, 73.

d (differential quantification), 29, 63, 92, 95.
Dags, 1, 13, 51, 55, 57.
Dahlheimer, Thorsten, 81, 111, 113.
Dancing links, 122.
Dashed lines in diagrams, 0.
de Bruijn, Nicolaas Govert, cycles, 84, 115.
de Jaenisch, Carl Friedrich Andreevitch
(Slanms, Kapas Arppeesnas), 129.

Dead nodes, 26, 91.
Debugging, 117.
Decision tables, iv.
Decomposition of functions, 66.
Dellac, Hippolyte, 113.

permutations, 69.
Delta operation (f H g), 71.
Dependency on a variable, 2, 23, 29, 87,

95, 102, 131, 132.

Depth-first search, 15.
Depth-first synthesis, 23-31, 62.
Derangements, 69.
Dereferencing, 91, 119, 127.

Derivative of a reliability polynomial, 10, 58.

Dictionary, 24, 50-51.
Difference operation (f \ g), 71.

Differential quantification (J), 29, 63, 92, 95.
Directed acyclic graphs, 1, 13, 51, 55, 57.
Disjoint decomposition, 66.
Disjoint unions, family of, 119.
Disjunctive prime form, 53.
Distributive laws, 10-11, 59, 71, 92.
DNF (disjunctive normal form), 56, 69.
Dominating sets, 56, 75.
Dominoes, 49-50, 72.
Don’t-cares, 62.
Drechsler, Nicole, 104.
Drechsler, Rolf, 104.
Dual of a Boolean function, 64, 69,
79, 111, 126.
Duality laws, 74.
Dubrova, Elena Vladimirovna (dy6posa,
Enena Brnagmvumpossa), 79, 104.
Dudeney, Henry Ernest, 129, 130.
Dughmi, Shaddin Faris
(el Guyle (uls), 131.
Dull, Brutus Cyclops, 63.
Dumont, Dominique, 113.
pistols, 69, 116.
Dynamic reordering of variables, 4144,
49, 66-67, 121.
Dynamic storage allocation, 25-26, 62.

ex (an elementary family), 71-73, 116.
Egyptian fractions, 116.
Eiter, Thomas Robert, 111.
Elaborated truth tables, 10-11, 58-59, 72.
Elementary families (eg), 71, 116.
Elusive functions, see Evasive functions.
Empty case, 48.
Empty family, 71.
Enumeration of solutions, 4-5, 49, 55, 57.
Equality testing of Boolean functions,
23, 55, 57.
probabilistic, 58.
Error-correcting codes, 77.
Euclid (EdxAeidng), numbers, 116.
Euler, Leonhard (Eiineps, Jleonapas =
Sitnep, Jleonapn), 112.
Evaluation of Boolean functions, 4, 59.
Evasive functions, 59.
EVBDD, 2.
Exact cover problems, 49-50, 72, 122.
Exhaustive functions, see Evasive functions.
Existential quantification (3), 28, 63.
Exponential growth, 23, 34, 36, 40, 66.
Extended truth tables, 39, 106.

fC (complements of f), 74.

fP (dual of f), 64, 69, 79, 111, 126.
FE (reflection of f), 64, 104.
fZ(x1,.-.,2n) (Z-transform of f), 70.
FALSE, 0.

Families of sets, 48, 51, 61, 70-76, 116, 126.

elementary (eg), 71-73, 116.
unit (e), 71, 115, 119, 127.

universal (p), 73, 117, 119, 120, 123, 127.
Family algebra, 51, 53, 71, 73-75, 118, 130.

Fault-tolerant systems, 65.

Faultfree tilings, 72.

FBDDs: Free BDDs, 2, 55, 59, 64.

Fibonacci, Leonardo, of Pisa (= Leonardo
filio Bonacii Pisano), numbers, 34,
44, 68, 80, 132.

Fibonacci threshold functions, 59.

Finite-state automata, 77.

Finozhenok, Dmitriy Nikolaevich (®uno-
keHOK, Jmurpuii Hukosnaesma), 130.

Five-letter words, 50-51, 73-75.

Five-variable functions, 65, 75.

Flip-flops in Life, 68.

Floating point arithmetic, 5.

Forests, 73, 76.

Forney, George David, Jr., 134-135.

Fortet, Robert Marie, 56.

Fortune, Steven Jonathon, 55.

Four-variable functions, 100.

Fraisse, Henri, 126.

Fredman, Michael Lawrence, 131.

Free binary decision diagrams, 55, 59, 64.

Friedman, Steven Jeffrey, 103.

Frontiers, 86, 124.

Fully elaborated truth tables, 10-11,
58-59, 72.

Functional composition, 30-31, 61, 63, 94.

Gpu: One billion memory accesses, 129-130.

Games, 80.

Garbage collection, 25-27, 62, 66, 105, 127.

Gardner, Martin, 130.

Generalization, sweeping, 10-11, 58-59, 78.

Generating all solutions, 4, 57.
Generating functions, 98-99, 112.
for solutions to Boolean equations, 4, 9,
53, 58, 59, 108, 125, 128, 129.
from ZDD for f, 120.
Genocchi, Angelo, 112.
derangements, 69.
numbers, 112, 116.
Gigamems (Gu): One billion memory
accesses, 27, 54, 129-130.
Global variables, 18, 19, 91, 95.
Graham, Ronald Lewis (E37{f), 121, 137.
Graph theory, 56, 62.
Grid graphs, 9-10, 50, 52, 54, 58, 75, 86.
Giinther, Wolfgang Albrecht, 104.
Guy, Richard Kenneth, 98.

hn, see Hidden weighted bit function.
Hadamard, Jacques Salomon, matrices, 81.
Hamilton, William Rowan, cycles, 74.
Hamiltonian paths, 52-53, 73-74, 125.

INDEX AND GLOSSARY 139

Hammer, Péter Liszl6 (= Peter Leslie =
Iv3nescu, Petru Ladislav), 56.
Hamming, Richard Wesley, 134.
code, 77.
distance, 73, 81.
Hash tables, 1921, 24-25, 51, 66, see
also Universal hashing.
Hash values, 58.
Hastad, Johan Torkel, 92.
Heap, Mark Andrew, 84.
HI field, 0-1, 14, 19, 24, 39, 47, 48, 57, 61.
Hidden nodes, 38—40, 106.
Hidden weighted bit function (hy), 33-36,
38, 60, 64-65, 67, 103.
two-way, 133.
Holton, Derek Allan, 130.
Hopcroft, John Edward, 55.
Horiyama, Takashi (J& L&), 95.
Horn, Alfred, functions, 64, 69, 118, 130.
Horn, Gavin Bernard, 135.
Hosaka, Kazuhisa ({f£3R#13F), 104.
Huffman, David Albert, 133.
Hunt, Harry Bowen, III, 95.
Hypergraphs, 50, 127.
3-regular, 130.

Ibaraki, Toshihide (RAREF), 95, 111.
IBDD, 2.
IEEE Transactions, vi.
If-then-else function (f? g: h), 4-5, 27,
see also MUX subroutine.
nested, see Junction function.
Implicants, 132, see also Prime implicants
of Boolean functions.
Implicit graphs, 30.
IMPLIES subroutine, 92.
In-degree of a vertex, 60.
Inclusion and exclusion principle, 123.
Independent-set function, 29-31, 42, 67.
Independent subsets, 6, 89, 29-30,
47, 48, 116.
maximal, see Kernels.
of a hypergraph, 130.
Infinite sets, 130.
Integer multilinear representation, 9, see
Reliability polynomials.
Integer programming problems, 56.
Integer variables, 56.
Interchanging adjacent variables, 38—44, 107.
Interleaved bits (z f y), 29, 40, 92.
Intersection operation (f N g), 71, see
also AND subroutine.
Involutions: Self-inverse permutations,
64, 90.
Isolated vertices, 29-30, 100.
Isomorphism of BDDs, 57.
Isozaki, Hideki (BIZi35181), 126.

ITE, seelIf-then-else function.

140 INDEX AND GLOSSARY

J(z; f) function, 60, 93, 100.

Jaenisch, Carl Friedrich Andreevitch de
(Aanmsb, Kapabs Arnpeesuys), 129.

Jain, Jawahar (STETEY I+), 88.

Jelinek, Frederick, 135.

Jeong, Seh-Woong (%4 4]-%-), 83.

Johnson, Samuel, vi.

Join operation (f U g), 71, 73-76.

Joke, 123.

Jump-down, 4041, 67.

Jump-up, 4041, 67.

Junction function (J(z; f)), 60, 93, 100.

Kacsmar, Andrew Charles, v.

Kaneda, Takayuki (4 HE3E), 104.

Kelly, Patrick Arthur, 130.

Kernels, 6-9, 29-30, 47, 48, 56-58, 67,
75, 129, 130.

Khachiyan, Leonid Genrikhovich (Xaunsn,
Jleonunn I'empuxosud), 131.

King paths, simple, 74.

King’s tours, 74.

Knuth, Donald Ervin (F&1#4Y), i, iii, v,
52, 91, 93, 107, 108, 120, 122-124,
127, 134, 137.

Kotani, Yoshiyuki (\NAE4T), 121.

Krom, Melven Robert, function, 64.

Kschischang, Frank Robert, 135.

Lafferty, John David, 135.

Langford, Charles Dudley, pairs, 72.

Leading bit of a product, 45, 70.

Lee, Chester Chi Yuan (Z2#f76) = Chi
Lee (Zj%), 55.

Left-child /right-sibling links, 124.

Lexicographic order, 12, 81, 121.

Lexicographically largest solution, 57.

Lexicographically smallest solution, 4, 55.

Liaw, Heh-Tyan (B H), 95.

Life game, 67—68.

Lin, Bill Chi Wah (#kZ3E = #hE4e), 56.

Lin, Chen-Shang (FREEFE), 95.

Linear block codes, 77.

Linear Boolean programming, 4, 7-9,
56, 59, 120.

Linear inequalities, 56.

Linear transformations, 97.

Linked lists, 89, 105, 110.

Listing all solutions, 4, 57.

Literals, 10, 92.

LO field, 0-1, 14, 18-19, 24, 39, 47,
48, 57, 61.

Lobbing, Martin, 36, 41, 67.

Locality of reference, 20, 61.

Loyd, Samuel, 129.

Lu, Yuan (£ i), 88.

Lucas, Frangois Edouard Anatole,
numbers, 80.

Mp: One million memory accesses, 43.

Macchiarulo, Luca, 79.

Madre, Jean Christophe, 82, 92, 126, 132.

Maghout, Khaled (Lsls alls), 56.

Majority function (zyz), vi, 0-3, 10, 27,
33, 53, 61, 62, 95.

Makino, Kazuhisa (48¥F#1X), 111.

Martinelli, Andrés, 104.

Maruoka, Akira (FL[FEE), 46, 69.

Master profile chart, 37, 38, 43, 65-66, 101.

Master z-profile chart, 70.

Matchings, perfect, 50.

Mathews, Edwin Lee (= 41), 76.

Matrices of Os and 1s, 28, 36, 49, 62, 65,
67-68, 77, 81, 90, 101, 122.

Matrix multiplication mod 2, 62.

Matroids, 131.

Maximal cliques, 57, 75.

Maximal elements (f1), 74.

Maximal independent subsets, see Kernels.

Maximal induced bipartite subgraphs, 75.

Maximization, 4, 7-9, 56, 59, 77, 120.

Maximum likelihood, 77.

Maximum operator (max(z,y)), 11.

Maximum versus maximal, 128.

McMillan, Kenneth Lauchlin, 85.

McMullen, Curtis Tracy, 119.

Median function (zyz), vi, 0-3, 10, 27,
33, 53, 61, 62, 95.

median-of-medians, 66, 102.

Median Genocchi numbers, 112.

Median words, 73.

Meet operation (f Mg), 71, 73, 74, 129-131.

Megamems (Mg): One million memory
accesses, 30, 43.

Meinel, Christoph, 97.

Melding operation (f ¢ g), 16-17, 29,
23, 40, 60-61, 87, 106.

Memo cache, 24-28, 30-31, 54, 62, 63,
94, 105, 117, 127.

Memoization technique, 24, 31.

Mems: Memory accesses, 22.

Middle bit of a product, 27, 45-47, 69-70.

Min-plus algebra, 83.

Minato, Shin-ichi (RE—), 47, 56, 76,
119, 126, 131, 132, 134.

Minimal dominating sets, 56, 75.

Minimal elements (fV), 74.

Minimal solutions, 53.

Minimal vertex covers, 57.

Minimization reduced to maximization, 58.

Minimum spanning trees, 58, 75.

Minterms, 51, 58.

MMIX, 14.

Modular arithmetic, 5.

Modules in a network, 12-13, 60.

Mohanram, Kartik (::08 dwobmsd), 87.

Monominoes, 50, 72.

Monotone Boolean functions, 29, 53, 54,
56, 61, 63, 68-69, 75, 76.
decreasing, 116.
prime implicants of, 53-54, 89, 110,
111, 131.
self-dual, 54, 61, 66, 89, 104.

Monotone-function function (pn),
21-22, 26, 61, 89.

Monus operation (z — y), vii, 76.

Moore, Edward Forrest, 133.

MOR (multiple or), 62.

Morgenstern, Oskar, 80.

Morse, Harold Marston, 81.

sequence, 7-8, 58.

Moundanos, Konstantinos (= Dinos;
Mouwvdévog, Kwvotavtivoe), 88.

Multifamily of sets, 76.

Multilinear representation of a Boolean
function, 29, 133, see also Reliability
polynomials.

Multiplex operation (f? g: h), 4-5, 27, 75,
see also MUX subroutine.

2M.-way multiplexer (Mm (z;y)), 12,
33, 37, 41, 61, 64, 65, 67, 70, 85,
88, 95, 96, 105, 116.

Multiplication, binary, 2627, 4547,
62, 69-70, 76.

Multiprecision arithmetic, 5.

Multiset union (f & g), 76.

Mutilated chessboard, 50, 72.

Mutually incomparable sets, 61.

MUX subroutine, 27, 30, 62, 70, 87, 118.

MXOR (multiple xor), 62.

Mynhardt, Christina (Kieka) Magdalena,
130.

n-cube, 38, 55.

Natural correspondence between forests
and binary trees, 73.

Necklaces, 13.

Negabinary arithmetic, 132.

Negative literals, 75-76.

Nested parentheses, 76.

Network model of computation, 12-13, 60.

Neumann, John von (= Margittai
Neumann Jénos), 80.

New England, 8, 53.

Newbies, 38-40, 106.

Nikolskaia, Ludmila Nikolaievna
(Hukoun’ckas, Jlrommuia Hukosnaesra),
100.

Nikolskaia, Maria (= Macha) Nikolaievna
(Hukoun’ckas, Mapusa HukosaesHa),
100.

Nim-like games, 80.

No-three-on-a-line problem, 75.

with no two queens attacking, 129.

Nonstandard ordering of variables, 34.

Nonsubsets (f .~ g), 74, 131.

INDEX AND GLOSSARY 141

Nonsupersets (f . g), 74, 127-129, 132.
Nonuniform Turing machines, 55.
Normal Boolean functions, 77.

Normal families of sets, 134.

Normalized BDDs, 77.

Notational conventions, vi, 126.
J(u1,..-,Un;v1,-..,vn) (junction), 60.
My, (z;y) (2™-way multiplexer), 12, 88.
a o 3 (meld), 16.

(zyz) (median), vi.

|f| (number of solutions), 5.
f+ (minimal elements), 74.
f™ (permuted variables), 34.
f¥ (cross elements), 74.

f1 (maximal elements), 74.
f7 (closure), 75.

f || g (incomparability), 63.
f 1 g (constrained-by), 62.
f U g (join), 71.

f N g (meet), 71.

f @ g (delta), 71.

f/g (quotient), 71.

f mod g (remainder), 71.

f /g (nonsubsets), 74.

f « g (subsets), 126.

f “« g (nonsupersets), 74.

f N g (supersets), 126.

a § k (symmetrizing), 72.

NOTBUT subroutine, 91.

NP-complete problems, 38, 63.

O-notation, 36.
OBDD, 2.
OFDD, 2.
OKFDD, 2.
Okuno, Hiroshi “Gitchang” (BLJ4{H), 126.
Omphaloskepsis, 33.
op: Four-bit binary operation code, 18-19.
Optimal versus optimum, 44.
Optimizing the order of variables, 3738,
43, 44, 65-67, 101.
for ZDDs, 70.
Optimum linear arrangement problem, 66.
Optimum solutions to Boolean equations,
4, 7-9, 49, 56, 59, 77, 120.
OR subroutine, 70, 71, 117, 118, 134.
Ordered BDDs, 0, 1, 14, 55, 57, 95, 113.
Ordered pair of two Boolean functions, 17.
Ordering of variables, 14, 34, 69, 77, 84.
by local transformations, 38—44, 107.
optimum, 37-38, 43, 46, 6568, 70,
101, 115, 116.
Organ-pipe order, 37, 65, 84, 104.
Oriented cycles, 57, 74.
Oriented paths, 51.
OROR, 119, see ANDAND.
Orthogonal families of sets, 71.
Ostergard, Patric Ralf Johan, 130.
Overlapping subtrees, 1, 55.

142 INDEX AND GLOSSARY

e (power set, the family of all subsets),
73, 117-120, 123, 127.

P = NP(?), 102.

Packages for BDD operations, v, 22, 55, 134.

Packages for ZDD operations, v, 70,

71, 74, 134.

Page in a virtual address, 61.

Parentheses, nested, 76.

Parity, 8.

Parity check matrix, 77.

Partial-tautology functions (¢;), 117-118,

120, 132.
Partially symmetric functions, 67, 100, 107.
Partitions of a set, 77, 86.
Patashnik, Oren, 137.
Patricia, 55.
PBDD, 2.
Peled, Uri Natan (799 ym »MN), 111.
Perfect matchings, 50.
Permutation function (Pr,), 36, 70.
Permutation matrices, 36.
Permutation of variables, 14, 34, 69, 77, 84.
by local transformations, 38—44, 71, 107.
optimum, 37-38, 43, 65—67, 70, 101.
Permutations, 69.
Permuted 2™ -way multiplexer, 33,
37, 65, 70.

Perrin, Francois Olivier Raoul, numbers,
80, 98.

Phi (¢, 34, 44, 68.

Pi (), as source of “random” data, 3,
45, 70, 99, 108.

PI(f): The prime implicants of f,
53-54, 75-76.

Pisot, Charles, number, 98.

Pistols, 69, 116.

Planar graphs, 31.

Plastic constant, 34, 98.

Polynomials, computed from BDDs,

9-10, 58.

Polynomials, represented by ZDDs, 76.

Polyominoes, 50, 72.

Pool of available memory, 18.

Positive Boolean functions, see Monotone

Boolean functions.

Post, Ian Thomas, 131.

Postal codes, 74.

Power set (), 73, 117-120, 123, 127.

Prime clauses, 75.

Prime implicants of Boolean functions,

56, 75-76.
monotone, 53-54, 89, 110, 111, 131.
Primitive polynomials modulo 2, 84.
Primitive strings: Not a power of
shorter strings, 2.
Product of binary numbers, 26-27,
45-47, 69-70, 76.
Profile (b, ..., bn) of a function, 31-34, 38,
60, 61, 64, 69, 77, 87, 89, 120.

Projection functions (zr), 63, 70, 72.

Q(f) (the QDD size of f), 33, 46, 70, 85.
QDD: A quasi-BDD, 32.
Quantified formulas, 28-30, 62-63, 109.
Quasi-BDDs, 32-33, 46, 66, 85, 96,
100, 133, 134.
Quasi-profile (qo, - - -, gn) of a function, 33,
35, 38, 48, 60, 64, 66, 69, 87, 116.
Queen graphs Qn, 75.
Quick, Jonathan Horatio, 63.
Quotient operation (f/g), 71.

Random bit generation, 110.

Random solutions to Boolean equations,
4, 6-7, 31.

Randrianarivony, Arthur, 113.

Range, Niko, 105.

Rank of a matrix mod 2, 77.

Raviv, Josef (29327 90v), 135.

Reachable nodes, 15.

Read-once branching programs, see FBDDs.

Read-once functions, 44-45, 68, 69.

generalized, 111.

Read-once threshold functions, 111.

Recurrence relations, 9, 22, 26, 44, 64, 68,
80, 98, 101, 108, 111, 127, 130.

Recursive algorithms, 23-31, 54, 6264,
70-71, 74-75, 81, 110.

Recursive principle underlying BDDs, 23, 27.

Recursive principle underlying ZDDs,

116-119.
Reduced BDDs, 0-1, 23, 24, 33, 55,
57, 60, 95, 113.

Reduction to a BDD, 14-16.
Reference counters, 25-26, 62, 66, 91,
94, 117, 119, 127.

Reflection of a binary representation, 132.

Reflection of a Boolean function, 64, 104.

Regular Boolean functions, 61, 69.
enumeration of, 89.

Regular hypergraphs, 130.

Regular languages, 77.

Relay-contact networks, 55.

Reliability polynomials, 4, 9-10, 58, 59, 65.

Remainder operation (f mod g), 71,

118, 123.

Remainders mod 3, 92.

Reordering of variables, 14, 34, 69, 77, 84.
by local transformations, 38-44, 71, 107.
optimum, 37-38, 43, 65—-67, 70, 101.

Replacement functions, 63.

Replacement of variables by constants,

16, 60, 92.

Replacement of variables by functions, 61.

Restricted growth sequences, 77.

Restricted-to operation (f | g), 92.

Restriction of a Boolean function, 16, 60, 87,

92, 111, see also Subfunctions.

Reusch, Bernd, 132.

Right-sibling/left-child links, 124.

Rivest, Ronald Linn, 59.

ROBDD: A reduced, ordered binary
decision diagram, 0.

Rookwise-connected, 50.

Root of a BDD, 0-2, 5, 13, 25, 78, 96, 134.

Rosenkrantz, Daniel Jay, 95.

Rudeanu, Sergiu, 56.

Rudell, Richard Lyle, v, 28, 39, 41, 42,
55, 66, 93, 107.

Ruler function (pn), 66.

Sanity check routine, 117.
Sasao, Tsutomu (FE/EH)), 84.
SAT-counting, see Enumeration of solutions.
Saturating subtraction (z — y), vii, 76.
Sauerhoff, Martin Paul, 36, 44, 93, 99, 110.
Savicky, Petr, 106.
Schmidt, Erik Meineche, 55.
Seidel, Philipp Ludwig von, 112-113.
Self-avoiding walks, 52.
Self-dual Boolean functions, monotone,
54, 61, 66, 89, 104.
Semba, Ichiro (filigZ—E8FR), 85, 133.
Separated tilings, 72.
Sequential representation of BDDs,
4-5, 57, 59, 60.
Sequential stacks, 18, 25.
Set partitions, 77, 86.
Sets of combinations, see Families of sets.
Seven-segment display, 60.
SGB word: A word in WORDS(5757), 73.
Shannon, Claude Elwood, Jr., 55.
Shared BDDs, 13, 55, see BDD base.
Shared subtrees, 1, 55.
Sheep-and-goats operation (a -|- 8), 40.
Shortest paths, 104.
Sideways addition, 7-9, 11, 29, 33,
49, 66, 72, 81.
Siegel, Carl Ludwig, 98.
Sieling, Detlef Hermann, 14, 97, 102, 107.
Sifting, 41-44, 48, 49, 67, 99, 101, 102, 121.
automatic, 43, 107.
partial, 43.
Simon, Imre, 83.
Simple paths, 51-53, 73-74.
Sink nodes, 0-1, 5, 17, 39.
L], 0-6, 47, 48, 51-52, 57, 70, 71, 134.
[T], 0-7, 48, 57, 71, 134.
more than two, 64.
Sink vertices, 51, 80.
Size of a BDD (B(f)), 3, 31-33.
Size of a BDD base (B(f1,.--,fm)),
14, 27, 38.
Skinny Boolean functions, 68—69, 132.
Slates of options, 35, 64, 99.
Slobodova, Anna MiklaSovéa, 97.
Slot in a virtual address, 61.
Solitary nodes, 38—40, 106.

INDEX AND GLOSSARY 143

Solutions to Boolean equations, 4,
49, 76, 120.
average weight of, 74.
computing the generating functions for, 4,
9, 53, 58, 59, 108, 120, 125, 128, 129.
enumerating, 4-5, 49, 55, 57.
generating all, 4, 57.
lexicographically least, 4, 55.
lexicographically greatest, 57.
minimal, 53.
optimum, 4, 7-9, 49, 56, 59, 79, 120.
random, 4, 6-7, 31.
weighted, 7-9, 57-59, 79.
Somenzi, Fabio, v, 56, 83, 91, 97.
Sorcerer’s apprentice, 23.
Sorting, 40.
Source vertices, 51.
Space complexity, 55.
Space versus time, 18.
Spanning subgraphs, 9.
Spanning tree function, 75.
Spanning trees, 9, 54, 58.
Spark plug, 108.
Sparse Boolean functions, 49, 51.
Sparse integers, 76.
Spitkovsky, Valentin Ilyich (CnurkoBckwmii,
Banentun Unbuy), 110.
Square routes, 52, 74.
Square strings, 2-3.
Standard deviation, 125.

Stanford University, v.

State capitols, 52-53, 74.

Still Life, 68.

Storage access function, see 2™-way
multiplexer.

Stringology, 2.

Strong product of graphs (G ® H), 74.

Subcubes, 55, 63, 75, 119.

Subfunctions, 2-3, 12, 13, 55.

Subset function, 37.

Substituting an expression for a variable, 57.

Substituting one variable for another, 59.

Substitution of constants for variables,
16, 60, 92.

Substitution of functions for variables, 61.

Subtables, 2-3, 17, 32, 33, 38, 59, 85,
87, 96, 116.

Subtraction of sparse integers, 76.

Sum of squares, 58.

Sum of sparse integers, 76.

Summation of binomial coefficients, 98—99.

Supowit, Kenneth Jay, 103.

Support of a family, 116.

Swap-in-place algorithm, 38—40, 66, 71.

Swapping adjacent levels, 38-44, 107.

Sweet Boolean functions, 54, 75.

Sylvester, James Joseph, 116.

144 INDEX AND GLOSSARY

Symmetric Boolean functions, 11, 17, 29, 55,
59, 60, 64, 70, 72, 76, 84, 94, 100, 101.

partially, 67, 100, 107.

Sm, 60, 70, 72, 84, 94, 99.
Symmetric difference operation (f @ g), 71.
Symmetries of a Boolean function, 67, 100.
Symmetries of a chessboard, 108, 121, 130.
Symmetrizing operation (a § k), 72.
Symmetry breaking, 63, 121.
Synthesis of BDDs, 16-31, 55.

breadth-first versus depth-first, 25-27.
Synthesis of ZDDs, 49, 70, 71, 74, 134.
Szily, Koloman von, 129.

Tail recursion, 93.
Takenaga, Yasuhiko (K FEEE), 104.
Tame configurations of Life, 67—68.
Tangled nodes, 38-40, 106.
Target bits, 99, 107.
Tatami tilings, 72.
Tautology function, 117.
Templates, 18-21, 88.
Ternary operations, 27-28, 61-62, 70.
ANDAND, 27-28, 62, 120.
OROR, 119.
Teslenko, Maxim Vasilyevich (Tecsenxo,
Makcum Bacuibesua), 104.
Theobald, Thorsten, 97.
Thin BDDs, 65, 69.
Thin ZDDs, 70.
Thoreau, David Henry (= Henry David), 78.
Three-in-a-row function, 13, 60.
Threshold functions, 11-12, 59, 60, 66, 110.
Thue, Axel, 81.
sequence, 7-8, 58.
Tic-tac-toe, 67.
Tilings, see Exact cover problems.
Time stamps, 94.
Time versus space, 18.
Toolkits for BDD operations, v, 22, 55, 134.
Toolkits for ZDD operations, v, 70,
71, 74, 134.
Top-down algorithms, 26, 55, 120, 135.
Topological ordering, 5, 51.
Transaction database, see Multifamily
of sets.
Transformed BDDs, 96.
Transmogrification, 38-39, 105, 118.
Transpose of a tiling, 121.
Traveling Salesrep Problem, 52-53, 74.
Trellis of a code, 134-135.
Trick, sneaky, 19.
Tries, 0, 51, 55.
Tripartite subgraphs, maximal induced, 75.
Trominoes, 50, 72.
Tropical algebra, 83.
TRUE, 0.

Truth tables, 2-4, 10, 13, 17-19, 21,
31-33, 48, 55, 57, 60, 61, 76, 79,
103, 105, 109, 134.

extended, 3940, 106.
fully elaborated, 10-11, 58-59, 72.

Turing, Alan Mathison, machines, 55.

Two-in-a-row function, 6, 57, 61.

Two-level (CNF or DNF) representation,
53, 56, 69, 75.

Two-variable functions, 57, 70, 77.

U (universal set), 74.
Ultrasweet Boolean functions, 75.
Unate Boolean functions, 63.
Unate cascades, 111.
Unate cube set algebra, see Family algebra.
Uncoloring, 121-122.
Union operation (f U g), 71, see also
OR subroutine.
UNIQUE subroutine, 24-25, 105.
Unique tables, 2427, 62.
Uniquely thin BDDs, 65.
Unit family (e), 71, 115, 119, 127.
United States of America graph, 8-9, 29-31,
42-44, 48, 52-53, 63, 67, 74, 75, 93, 127.
Universal family (p), 73, 117, 119,
120, 123, 127.
Universal hashing, vii, 69.
Universal quantification (V), 28, 63.
Universal set (U), 74.

V field, 0-1, 14, 18-19, 24, 57, 61.

Vardy, Alexander (*T1 7MTD2ON), 135.

Variance, 96, 125.

Vector spaces, binary, 134.

Vertex cover, minimal, 57.

Vertex degree, 62.

Virtual addresses, 61.

Visible nodes, 38—40, 106.

Visiting an object, 81.

Viterbi, Andrew (= Andrea) James, 135.

von Neumann, John (= Margittai
Neumann Jénos), 80.

von Szily, Koloman, 129.

Vowels, 73.

Vuillemin, Jean Etienne, 59, 132.

‘Weak orderings, 111.

Weakley, William Douglas, 130.
Wegener, Ingo Werner, 14, 36, 41, 44, 56,
67, 70, 84, 88, 93, 96, 97, 99, 100,

102, 105, 106, 110.
‘Wegman, Mark N, 82.
‘Weighted solutions, 7-9, 57-59, 77.
‘Werchner, Ralph, 44, 110.
Wheatley, Henry Benjamin, 136.
Wikipedia, 0.
Wild configurations of Life, 67.
Window optimization, 43—44.
Wolfel (= Woelfel), Peter Philipp, vii, 45.

XOR subroutine, 70, 71, 90.

Y functions, 54.

Yajima, Shuzo (& E{§=), 85, 104, 133.
Yes/no quantifiers (A, N), 29, 63, 93.
Yoshida, Mitsuyoshi (FHJEH), 72.

z-profile (2o, ..., 2n) of a function,
48, 70, 73, 120.

Z-transform of a function, 70, 131.

Z(f) (the ZDD size of f), 48, 70, 76.

Zn(z;y) (bit n of zy), 45.

INDEX AND GLOSSARY 145

Zn,a(z) (middle bit of az), 45.
ZDD: A zero-suppressed BDD, 2, 47.
Zeads, 48, 96, 115, 116, 123.
Zero-suppressed BDDs, 47-54, 56,
70-77, 134.
compared to BDDs, 48-51, 70, 71,
120-122.
mixed with BDDs, 54.
profiles of, 48, 70, 73, 120.
toolkit, 70, see also Family algebra.
Zipper function (z { y), 29, 40, 92.
ZUNIQUE subroutine, 117.

