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Modern C++ Design is an important book. Fundamentally, it demonstrates ‘generic
patterns' or 'pattern templates as a powerful new way of creating extensible designsin
C++--anew way to combine templates and patterns that you may never have dreamt was
possible, but is. If your work involves C++ design and coding, you should read this book.
Highly recommended.-Herb Sutter

What's left to say about C++ that hasn't already been said? Plenty, it turns out.-From the
Foreword by John Vlissides

In Modern C++ Design, Andrei Alexandrescu opens new vistas for C++ programmers.
Displaying extraordinary creativity and programming virtuosity, Alexandrescu offers a
cutting-edge approach to design that unites design patterns, generic programming, and
C++, enabling programmers to achieve expressive, flexible, and highly reusable code.

This book introduces the concept of generic components-reusable design templates that
produce boilerplate code for compiier consumption-all within C++. Generic components
enable an easier and more seamless transition from design to application code, generate
code that better expresses the criginal design intention, and support the reuse of design
structures with minimal recoding.

The author describes the specific C++ techniques and features that are used in building
generic components and goes on to implement industrial strength generic components for
real-world applications. Recurring issues that C++ developersface in their day-to-day
activity are discussed in depth and implemented in a generic way. These include:

Policy-based design for flexibility

Partial template specialization

Typelists-powerful type manipulation structures

Patterns such as Visitor, Singleton, Command, and Factories
Multi-method engines

For each generic component, the book presents the fundamental problems and design
options, and finally implements a generic solution.

In addition, an accompanying Web site, http://www.awl.com/cseng/titles/0-201-70431-5,
makes the code implementations available for the generic components in the book and
provides a free, downloadable C++ library, called Loki, created by the author. Loki
provides out-of-the-box functionality for virtually any C++ project.
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Foreword

by Scott Meyers

In 1991, | wrote the first edition of Effective C++. The book contained almost no discussions of templates,
because templates were such arecent addition to the language, | knew almost nothing about them. What
little template code | included, | had verified by e-mailing it to other people, because none of the compilers
to which | had access offered support for templates.

In 1995, | wrote More Effective C++. Again | wrote amost nothing about templates. What stopped me this
time was neither alack of knowledge of templates (my initial outline for the book included an entire
chapter on the topic) nor shortcomings on the part of my compilers. Instead, it was a suspicion that the
C++ community's understanding of templates was about to undergo such dramatic change, anything | had
to say about them would soon be considered trite, superficial, or just plain wrong.

There were two reasons for that suspicion. The first was a column by John Barton and Lee Nackman in the
January 1995 C++ Report that described how templates could be used to perform typesafe dimensional
analysis with zero runtime cost. Thiswas a problem I'd spent some time on myself, and | knew that many
had searched for a solution, but none had succeeded. Barton and Nackman's revolutionary approach made
me realize that templates were good for alot more than just creating containers of T.

As an example of their design, consider this code for multiplying two physical quantities of arbitrary
dimensiona type:

template<int ml, int I1, int tl, int m2, int 12, int t2>

Physical<ml+m2, 11+12, tl1+t2> operator*(Physical<ml, 11, t1> lhs,
Physical<m2, 12, t2> rhs)
{

}

return Physical<ml+m2, 11+12, t1+t2>::unit*lhs.value()*rhs.value();

Even without the context of the column to clarify this code, it's clear that this function template takes six
parameters, none of which represents atype! This use of templates was such arevelation to me, | was

positively giddy.

Shortly thereafter, | started reading about the STL. Alexander Stepanov's elegant li brary design, where
containers know nothing about algorithms; algorithms know nothing about containers; iterators act like
pointers (but may be objects instead); containers and algorithms accept function pointers and function
objects with equal aplomb; and library clients may extend the library without having to inherit from any
base classes or redefine any virtual functions, made me feel—as | had when | read Barton and Nackman's
work—Iike | knew almost nothing about templates.

So | wrote almost nothing about them in More Effective C++. How could 1?7 My understanding of
templates was still at the containers-of-T stage, while Barton, Nackman, Stepanov, and others were
demonstrating that such uses barely scratched the surface of what templates could do.

In 1998, Andrei Alexandrescu and | began an e-mail correspondence, and it was not long before |
recognized that | was again about to modify my thinking about templates. Where Barton, Nackman, and
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Stepanov had stunned me with what templates could do, however, Andrei's work initially made more of an
impression on me for how it did what it did.

One of the simplest things he helped popularize continues to be the example | use when introducing people
to hiswork. It'sthe CTAssert template, analogous in use to the assert macro, but applied to conditions
that can be evaluated during compilation. Hereitis:

template<bool> struct CTAssert;
template<> struct CTAssert<true> {};

That'sit. Notice how the general template, CTAssert, isnever defined. Notice how thereisa
specidization for true, but not for false. Inthisdesign, what's missing is at least asimportant as
what's present. It makes you look at template code in a new way, because large portions of the "source
code" are deliberately omitted. That's a very different way of thinking from the one most of us are used to.
(In thisbook, Andrei discusses the more sophisticated Compi leTimeChecker template instead of
CTAssert.)

Eventually, Andrei turned his attention to the development of template-based implementations of popular
language idioms and design patterns, especially the GoF- patterns. This led to a brief skirmish with the
Patterns community, because one of their fundamental tenetsis that patterns cannot be represented in code.
Once it became clear that Andrei was automating the generation of pattern implementations rather than
trying to encode patterns themselves, that objection was removed, and | was pleased to see Andrei and one
of the GoF (John Vlissides) collaborate on two columnsin the C++ Report focusing on Andrei's work.

1 "GoF" stands for "Gang of Four" and refers to Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides,
authors of the definitive book on patterns, Design Patterns: Elements of Reusable Object-Oriented Software
(Addison-Wesley, 1995).

In the course of developing the templates to generate idiom and pattern implementations, Andrei was
forced to confront the variety of design decisions that all implementers face. Should the code be thread
safe? Should auxiliary memory come from the heap, from the stack, or from a static pool ? Should smart
pointers be checked for nullness prior to dereferencing? What should happen during program shutdown if
one Singleton's destructor tries to use another Singleton that's already been destroyed? Andrei's goal was to
offer his clients all possible design choices while mandating none.

His solution was to encapsul ate such decisionsin the form of policy classes, to allow clients to pass policy
classes as template parameters, and to provide reasonable default values for such classes so that most
clients could ignore them. The results can be astonishing. For example, the Smart Pointer template in this
book takes only 4 policy parameters, but it can generate over 300 different smart pointer types, each with
unique behavioral characteristics! Programmers who are content with the default smart pointer behavior,
however, can ignore the policy parameters, specify only the type of object pointed to by the smart pointer,
and reap the benefits of afinely crafted smart pointer class with virtually no effort.

In the end, this book tells three different technical stories, each compelling in its own way. First, it offers
new insightsinto the power and flexibility of C++ templates. (If the material on typelists doesn't knock
your socks off, it's got to be because you're already barefoot.) Second, it identifies orthogonal dimensions
along which idiom and pattern implementations may differ. Thisis critical information for template
designers and pattern implementers, but you're unlikely to find this kind of analysisin most idiom or
pattern descriptions. Finally, the source code to Loki (the template library described in this book) is
available for free download, so you can study Andrei's implementation of the templates corresponding to
the idioms and patterns he discusses. Aside from providing a nice stress test for your compilers' support for
templates, this source code serves as an invaluabl e starting point for templates of your own design. Of
course, it's also perfectly respectable (and completely legal) to use Andrei's code right out of the box. |
know he'd want you to take advantage of his efforts.
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From what | can tell, the template landscape is changing almost as quickly now asit wasin 1995 when |
decided to avoid writing about it. At the rate things continue to develop, | may never write about templates.
Fortunately for all of us, some people are braver than | am. Andrei is one such pioneer. | think you'll get a
lot out of hisbook. | did.

Scott Meyers
September 2000

Foreword
by John Vlissides

What's |eft to say about C++ that hasn't already been said? Plenty, it turns out. This book documents a
convergence of programming techniques—generic programming, template meta programming, object-
oriented programming, and design patterns—that are well understood in isolation but whose synergies are
only beginning to be appreciated. These synergies have opened up whole new vistas for C++, not just for
programming but for software design itself, with profound implications for software analysis and
architecture as well.

Andrei's generic components raise the level of abstraction high enough to make C++ begin to look and feel
like a design specification language. Unlike dedicated design languages, however, you retain the full
expressiveness and familiarity of C++. Andrel shows you how to program in terms of design concepts:
singletons, visitors, proxies, abstract factories, and more. Y ou can even vary implementation trade-offs
through template parameters, with positively no runtime overhead. And you don't have to blow big bucks
on new development tools or learn reams of methodological mumbo jumbo. All you need is atrusty, late-
model C++ compiler—and this book.

Code generators have held comparable promise for years, but my own research and practical experience
have convinced me that, in the end, code generation doesn't compare. Y ou have the round-trip problem, the
not-enough-code-worth-generating problem, the inflexible-generator problem, the inscrutable-generated-
code problem, and of course the I-can't-i ntegrate-the-bl oody-generated-code-with-my-own-code problem.
Any one of these problems may be a showstopper; together, they make code generation an unlikely
solution for most programming challenges.

Wouldn't it be great if we could realize the theoretical benefits of code generation—quicker, easier
development, reduced redundancy, fewer bugs—without the drawbacks? That's what Andrei's approach
promises. Generic components implement good designs in easy-to-use, mixable-and-matchable templates.
They do pretty much what code generators do: produce boilerplate code for compiler consumption. The
difference is that they do it within C++, not apart from it. The result is seamless integration with
application code. Y ou can also use the full power of the language to extend, override, and otherwise tweak
the designs to suit your needs.

Some of the techniques herein are admittedly tricky to grasp, especially the template metaprogramming in
Chapter 3. Once you've mastered that, however, you'll have a solid foundation for the edifice of generic
componentry, which almost builds itself in the ensuing chapters. In fact, | would argue that the
metaprogramming material of Chapter 3 alone is worth the book's price—and there are ten other chapters
full of insightsto profit from. "Ten" represents an order of magnitude. Even so, the return on your
investment will be far greater.

John Vlissides
IBM T.J. Watson Research
September 2000



Preface

Y ou might be holding this book in a bookstore, asking yourself whether you should buy it. Or maybe you
are in your employer's library, wondering whether you should invest timein reading it. | know you don't
have time, so I'll cut to the chase. If you have ever asked yourself how to write higher-level programsin
C++, how to cope with the avalanche of irrelevant details that plague even the cleanest design, or how to
build reusable components that you don't have to hack into each time you take them to your next
application, then this book is for you.

Imagine the following scenario. Y ou come from a design meeting with a couple of printed diagrams,
scribbled with your annotations. Okay, the event type passed between these objects is not char anymore;
it's int. You change one line of code. The smart pointersto Widget are too slow; they should go
unchecked. Y ou change one line of code. The object factory needs to support the new Gadget class just
added by another department. Y ou change one line of code.

Y ou have changed the design. Compile. Link. Done.

WEéll, there is something wrong with this scenario, isn't there? A much more likely scenario isthis: You
come from the meeting in a hurry because you have a pile of work to do. Y ou fire aglobal search. You
perform surgery on code. Y ou add code. Y ou introduce bugs. Y ou remove the bugs . . . that'sthe way a
programmer's job is, right? Although this book cannot possibly promise you the first scenario, it is
nonetheless a resolute step in that direction. It tries to present C++ as a newly discovered language for
software architects.

Traditionally, code is the most detailed and intricate aspect of a software system. Historically, in spite of
various levels of language support for design methodologies (such as object orientation), a significant gap
has persisted between the blueprints of a program and its code because the code must take care of the
ultimate details of the implementation and of many ancillary tasks. The intent of the design is, more often
than not, dissolved in a sea of quirks.

This book presents a collection of reusable design artifacts, called generic components, together with the
techniques that make them possible. These generic components bring their users the well-known benefits
of libraries, but in the broader space of system architecture. The coding techniques and the
implementations provided focus on tasks and issues that traditionally fall in the area of design, activities
usually done before coding. Because of their high level, generic components make it possible to map
intricate architectures to code in unusually expressive, terse, and easy-to-maintain ways.

Three elements are reunited here: design patterns, generic programming, and C++. These elements are
combined to achieve a very high rate of reuse, both horizontally and vertically. On the horizontal
dimension, asmall amount of library code implements a combinatorial—and essentially open-ended—
number of structures and behaviors. On the vertical dimension, the generality of these components makes
them applicable to a vast range of programs.

This book owes much to design patterns, powerful solutions to ever-recurring problems in object-oriented
development. Design patterns are distilled pieces of good design—recipes for sound, reusable solutions to
problems that can be encountered in many contexts. Design patterns concentrate on providing a suggestive
lexicon for designs to be conveyed. They describe the problem, atime-proven solution with its variants,
and the consequences of choosing each variant of that solution. Design patterns go above and beyond
anything a programming language, no matter how advanced, could possibly express. By following and
combining certain design patterns, the components presented in this book tend to address a large category
of concrete problems.



Generic programming is a paradigm that focuses on abstracting types to a narrow collection of functional
requirements and on implementing algorithms in terms of these requirements. Because algorithms define a
strict and narrow interface to the types they operate on, the same algorithm can be used against awide
collection of types. The implementations in this book use generic programming techniques to achieve a
minimal commitment to specificity, extraordinary terseness, and efficiency that rivals carefully hand
crafted code.

C++ isthe only implementation tool used in this book. Y ou will not find in this book code that implements
nifty windowing systems, complex networking libraries, or clever logging mechanisms. Instead, you will
find the fundamental components that make it easy to implement all of the above, and much more. C++

has the breadth necessary to make this possible. Its underlying C memory model ensures raw performance,
its support for polymorphism enables object-oriented techniques, and its templates unleash an incredible
code generation machine. Templates pervade al the code in the book because they allow close cooperation
between the user and the library. The user of the library literally controls the way code is generated, in
ways constrained by the library. The role of a generic component library isto allow user-specified types
and behaviors to be combined with generic components in a sound design. Because of the static nature of
the techniques used, errorsin mixing and matching the appropriate pieces are usually caught during
compile time.

This book's manifest intent is to create generic components—preimplemented pieces of design whose main
characteristics are flexihility, versatility, and ease of use. Generic components do not form aframework. In
fact, their approach is complementary—whereas a framework defines interdependent classes to foster a
specific object model, generic components are lightweight design artifacts that are independent of each
other, yet can be mixed and matched freely. They can be of great help in implementing frameworks.

Audience

The intended audience of this book falls into two main categories. The first category isthat of experienced
C++ programmers who want to master the most modern library writing techniques. The book presents new,
powerful C++ idioms that have surprising capabilities, some of which weren't even thought possible. These
idioms are of great help in writing high-level libraries. Intermediate C++ programmers who want to go a
step further will certainly find the book useful, too, especialy if they invest abit of perseverance.

Although pretty hard-core C++ code is sometimes presented, it is thoroughly explained.

The second category consists of busy programmers who need to get the job done without undergoing a
steep learning investment. They can skim the most intricate details of implementation and concentrate on
using the provided library. Each chapter has an introductory explanation and ends with a Quick Facts
section. Programmers will find these features a useful reference in understanding and using the
components. The components can be understood in isolation, are very powerful yet safe, and are ajoy to
use.

Y ou need to have a solid working experience with C++ and, above al, the desire to learn more. A degree
of familiarity with templates and the Standard Template Library (STL) is desirable.

Having an acquaintance with design patterns (Gamma et al. 1995) is recommended but not mandatory. The
patterns and idioms applied in the book are described in detail. However, this book is not a pattern book—
it does not attempt to treat patternsin full generality. Because patterns are presented from the pragmatic
standpoint of alibrary writer, even readers interested mostly in patterns may find the perspective
refreshing, if constrained.

Loki



The book describes an actual C++ library called Loki. Loki isthe god of wit and mischief in Norse
mythology, and the author's hope is that the library's originality and flexibility will remind readers of the
playful Norse god. All the elements of the library live in the namespace Loki. The namespace is not
mentioned in the coding examples because it would have unnecessarily increased indentation and the size
of the examples. Loki isfreely available; you can download it from http://www.awl.com/cseng/titles/O-
201-70431-5.

Except for its threading part, Loki iswritten exclusively in standard C++. This, alas, means that many
current compilers cannot cope with parts of it. | implemented and tested Loki using Metrowerks
CodeWarrior Pro 6.0 and Comeau C++ 4.2.38, both on Windows. It islikely that KAl C++ wouldn't have
any problem with the code, either. As vendors release new, better compiler versions, you will be able to
exploit everything Loki has to offer.

Loki's code and the code samples presented throughout the book use a popular coding standard originated
by Herb Sutter. I'm sure you will pick it up easily. In anutshell,

Classes, functions, and enumerated typeslook LikeThis.

Variables and enumerated valueslook likeThis.

Member variableslook likeThis_.

Template parameters are declared with class if they can be only a user-defined type, and with
typename if they can also be a primitive type.

Organization

The book consists of two major parts: techniques and components. Part | (Chapters 1 to 4) describes the
C++ techniques that are used in generic programming and in particular in building generic components. A
host of C++-specific features and techniques are presented: policy-based design, partial template
speciadization, typelists, local classes, and more. Y ou may want to read this part sequentially and return to
specific sections for reference.

Part |1 builds on the foundation established in Part | by implementing a number of generic components.
These are not toy examples; they are industrial-strength components used in real-world applications.
Recurring issues that C++ developersface in their day-to-day activity, such as smart pointers, object
factories, and functor objects, are discussed in depth and implemented in a generic way. The text presents
implementations that address basic needs and solve fundamental problems. Instead of explaining what a
body of code does, the approach of the book isto discuss problems, take design decisions, and implement
those decisions gradually.

Chapter 1 presents policies—a C++ idiom that helps in creating flexible designs.
Chapter 2 discusses general C++ techniques related to generic programming.
Chapter 3 implements typelists, which are powerful type manipulation structures.
Chapter 4 introduces an important ancillary tool: a small-object allocator.

Chapter 5 introduces the concept of generalized functors, useful in designs that use the Command
design pattern.

Chapter 6 describes Singleton objects.

Chapter 7 discusses and implements smart pointers.
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Chapter 8 describes generic object factories.

Chapter 9 treats the Abstract Factory design pattern and provides implementations of it.
Chapter 10 implements several variations of the Visitor design pattern in a generic manner.
Chapter 11 implements several multimethod engines, solutions that foster various trade-offs.

The design themes cover many important situations that C++ programmers have to cope with on aregular
basis. | personally consider object factories (Chapter 8) a cornerstone of virtually any quality polymorphic
design. Also, smart pointers (Chapter 7) are an important component of many C++ applications, small and
large. Generalized functors (Chapter 5) have an incredibly broad range of applications. Once you have
generalized functors, many complicated design problems become very simple. The other, more specialized,
generic components, such as Visitor (Chapter 10) or multimethods (Chapter 11), have important niche
applications and stretch the boundaries of language support.
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Chapter 1. Policy-Based Class Design

This chapter describes policies and policy classes, important class design techniques that enable the
creation of flexible, highly reusable libraries—as Loki aimsto be. In brief, policy-based class design
fosters assembling a class with complex behavior out of many little classes (called policies), each of which
takes care of only one behavioral or structural aspect. Asthe name suggests, a policy establishes an
interface pertaining to a specific issue. Y ou can implement policiesin various ways as long as you respect
the policy interface.

Because you can mix and match policies, you can achieve a combinatorial set of behaviors by using a
small core of elementary components.

Policies are used in many chapters of this book. The generic SingletonHolder classtemplate (Chapter
6) uses policies for managing lifetime and thread safety. SmartPtr (Chapter 7) isbuilt aimost entirely
from policies. The double-dispatch engine in Chapter 11 uses policies for selecting various trade-offs. The
generic Abstract Factory (Gamma et al. 1995) implementation in Chapter 9 uses a policy for choosing a
creation method.

This chapter explains the problem that policies are intended to solve, provides details of policy-based class
design, and gives advice on decomposing a class into policies.

1.1 The Multiplicity of Software Design

Software engineering, maybe more than any other engineering discipline, exhibits arich multiplicity: You
can do the same thing in many correct ways, and there are infinite nuances between right and wrong. Each
path opens up a new world. Once you choose a solution, a host of possible variants appears, on and on at
al levels—from the system architecture level down to the smallest coding detail. The design of a software
system is a choice of solutions out of a combinatorial solution space.

Let'sthink of asimple, low-level design artifact: a smart pointer (Chapter 7). A smart pointer class can be
single threaded or multithreaded, can use various ownership strategies, can make various trade-offs
between safety and speed, and may or may not support automatic conversions to the underlying raw
pointer type. All these features can be combined freely, and usually exactly one solution is best suited for a
given area of your application.

The multiplicity of the design space constantly confuses apprentice designers. Given a software design
problem, what's a good solution to it? Events? Objects? Observers? Callbacks? Virtuals? Templates? Up to
acertain scale and level of detail, many different solutions seem to work equally well.

The most important difference between an expert software architect and a beginner is the knowledge of
what works and what doesn't. For any given architectural problem, there are many competing ways of
solving it. However, they scale differently and have distinct sets of advantages and disadvantages, which
may or may not be suitable for the problem at hand. A solution that appears to be acceptable on the
whiteboard might be unusable in practice.

Designing software systems is hard because it constantly asks you to choose. And in program design, just
asin life, choiceis hard.

Good, seasoned designers know what choices will lead to a good design. For a beginner, each design
choice opens adoor to the unknown. The experienced designer is like a good chess player: She can see



more moves ahead. This takes time to learn. Maybe this is the reason why programming genius may show
at an early age, whereas software design genius tends to take more time to ripen.

In addition to being a puzzle for beginners, the combinatorial nature of design decisionsis amajor source
of trouble for library writers. To implement a useful library of designs, the library designer must classify
and accommodate many typical situations, yet still leave the library open-ended so that the application
programmer can tailor it to the specific needs of a particular situation.

Indeed, how can one package flexible, sound design componentsin libraries? How can one let the user
configure these components? How does one fight the "evil multiplicity" of design with areasonably sized
army of code? These are the questions that the remainder of this chapter, and ultimately this whole book,
triesto answer.

1.2 The Failure of the Do-It-All Interface

Implementing everything under the umbrella of ado-it-all interface is not a good solution, for several
reasons.

Some important negative consequences are intellectual overhead, sheer size, and inefficiency. Mammoth
classes are unsuccessful because they incur a big learning overhead, tend to be unnecessarily large, and
lead to code that's much slower than the equivalent handcrafted version.

But maybe the most important problem of an overly rich interface isloss of static type safety. One essential
purpose of the architecture of a systemis to enforce certain axioms "by design"—for example, you cannot
create two Singleton objects (see Chapter 6) or create objects of digoint families (see Chapter 9). Ideally, a
design should enforce most constraints at compile time.

In alarge, all-encompassing interface, it is very hard to enforce such constraints. Typically, once you have
chosen acertain set of design constraints, only certain subsets of the large interface remain semantically
valid. A gap grows between syntactically valid and semantically valid uses of the library. The programmer
can write an increasing number of constructs that are syntactically valid, but semantically illegal.

For example, consider the thread-saf ety aspect of implementing a Singleton object. If the library fully
encapsulates threading, then the user of a particular, nonportable threading system cannot use the Singleton
library. If the library gives access to the unprotected primitive functions, thereis the risk that the
programmer will break the design by writing code that's syntactically—but not semantically—valid.

What if the library implements different design choices as different, smaller classes? Each class would
represent a specific canned design solution. In the smart pointer case, for example, you would expect a
battery of implementations. SingleThreadedSmartPtr, MultiThreadedSmartPtr,
RefCountedSmartPtr, RefLinkedSmartPtr, and so on.

The problem that emerges with this second approach is the combinatorial explosion of the various design
choices. The four classes just mentioned lead necessarily to combinations such as
SingleThreadedRefCountedSmartPtr. Adding athird design option such as conversion support
leads to exponentially more combinations, which will eventually overwhelm both the implementer and the
user of thelibrary. Clearly thisis not the way to go. Never use brute force in fighting an exponential.

Not only does such alibrary incur an immense intellectual overhead, but it also is extremely rigid. The
dlightest unpredicted customization—such astrying to initialize default-constructed smart pointers with a
particular value—renders all the carefully crafted library classes useless.



Designs enforce constraints; consequently, design-targeted libraries must help user-crafted designs to
enforce their own constraints, instead of enforcing predefined constraints. Canned design choices would be
as uncomfortable in design-targeted libraries as magic constants would be in regular code. Of course,
batteries of "most popular” or "recommended” canned solutions are welcome, as long as the client
programmer can change them if needed.

These issues have led to an unfortunate state of the art in the library space: Low-level general-purpose and
specialized libraries abound, while libraries that directly assist the design of an application—the higher-
level structures—are practically nonexistent. This situation is paradoxical because any nontrivial
application has adesign, so adesign-targeted library would apply to most applications.

Frameworks try to fill the gap here, but they tend to lock an application into a specific design rather than
help the user to choose and customize a design. If programmers need to implement an original design, they
have to start from first principles—classes, functions, and so on.

1.3 Multiple Inheritance to the Rescue?

A TemporarySecretary classinherits both the Secretary and the Temporary classes
TemporarySecretary hasthe features of both a secretary and a temporary employee, and possibly
some more features of its own. This leads to the idea that multiple inheritance might help with handling the
combinatorial explosion of design choices through a small number of cleverly chosen base classes. In such
a setting, the user would build a multi-threaded, reference-counted smart pointer class by inheriting some
BaseSmartPtr class and two classes: Mul ti Threaded and RefCounted. Any experienced class
designer knows that such a naive design does not work.

M This example is drawn from an old argument that Bjarne Stroustrup made in favor of multiple inheritance,
in the first edition of The C++ Programming Language. At that time, multiple inheritance had not yet been
introduced in C++.

Analyzing the reasons why multiple inheritance fails to allow the creation of flexible designs provides
interesting ideas for reaching a sound solution. The problems with assembling separate features by using
multiple inheritance are as follows:

1. Mechanics. Thereisno boilerplate code to assemble the inherited components in a controlled
manner. The only tool that combines BaseSmartPtr, MultiThreaded, and RefCounted isa
language mechanism called multiple inheritance. The language applies simple superpositionin
combining the base classes and establishes a set of simple rules for accessing their members. This
is unacceptable except for the simplest cases. Most of the time, you need to carefully orchestrate
the workings of the inherited classes to obtain the desired behavior.

2. Typeinformation. The base classes do not have enough type information to carry out their tasks.
For example, imagine you try to implement deep copy for your smart pointer class by deriving
from aDeepCopy base class. What interface would DeepCopy have? It must create objects of a
type it doesn't know yet.

3. Sate manipulation. Various behavioral aspects implemented with base classes must manipulate
the same state. This means that they must use virtual inheritance to inherit a base class that holds
the state. This complicates the design and makes it more rigid because the premise was that user
classesinherit library classes, not vice versa.

Although combinatorial in nature, multiple inheritance by itself cannot address the multiplicity of design
choices.



1.4 The Benefit of Templates

Templates are a good candidate for coping with combinatorial behaviors because they generate code at
compile time based on the types provided by the user.

Class templates are customizable in ways not supported by regular classes. If you want to implement a
specia case, you can specialize any member functions of a class template for a specific instantiation of the
classtemplate. For example, if the template is SmartPtr<T>, you can specialize any member function for,
say, SmartPtr<Widget>. Thisgivesyou good granularity in customizing behavior.

Furthermore, for class templates with multiple parameters, you can use partial template specialization (as
you will seein Chapter 2). Partial template specialization gives you the ability to speciaize a class
template for only some of its arguments. For example, given the definition

template <class T, class U> class SmartPtr { ... };

you can specidlize SmartPtr<T, U>for Widget and any other type using the following syntax:
template <class U> class SmartPtr<Widget, U> { ... };

The innate compile-time and combinatorial nature of templates makes them very attractive for creating
design pieces. As soon as you try to implement such designs, you stumble upon several problemsthat are
not self-evident:

1. You cannot specialize structure. Using templates alone, you cannot specialize the structure of a
class (its data members). Y ou can specialize only functions.

2. Specialization of member functions does not scale. Y ou can specialize any member function of a
class template with one template parameter, but you cannot specialize individual member
functions for templates with multiple template parameters. For example:

template <class T> class Widget

void Fun() { --. generic implementation ... }
}:
// OK: specialization of a member function of Widget
template <> Widget<char>::Fun()
{

}

template <class T, class U> class Gadget

. specialized implementation ...

void Fun() { .. generic implementation ... }

// Error! Cannot partially specialize a member class of Gadget
template <class U> void Gadget<char, U>::Fun(Q)

{
}

. specialized implementation ...

3. Thelibrary writer cannot provide multiple default values. At best, a class template implementer
can provide a single default implementation for each member function. Y ou cannot provide
several defaults for atemplate member function.

Now compare the list of drawbacks of multiple inheritance with the list of drawbacks of templates.
Interestingly, multiple inheritance and templates foster complementary trade-offs. Multiple inheritance has
scarce mechanics; templates have rich mechanics. Multiple inheritance loses type information, which



aboundsin templates. Specialization of templates does not scale, but multiple inheritance scales quite
nicely. Y ou can provide only one default for atemplate member function, but you can write an unbounded
number of base classes.

This analysis suggests that a combination of templates and multiple inheritance could engender a very
flexible device, appropriate for creating libraries of design elements.

1.5 Policies and Policy Classes

Policies and policy classes help in implementing safe, efficient, and highly customizable design elements.
A policy defines a class interface or a class template interface. The interface consists of one or al of the
following: inner type definitions, member functions, and member variables.

Policies have much in common with traits (Alexandrescu 2000a) but differ in that they put less emphasis
on type and more emphasis on behavior. Also, policies are reminiscent of the Strategy design pattern
(Gamma et al. 1995), with the twist that policies are compile-time bound.

For example, let's define a policy for creating objects. The Creator policy prescribes a class templ ate of
type T. This class template must expose a member function called Create that takes no arguments and
returns a pointer to T. Semantically, each call to Create should return a pointer to a new object of typeT.
The exact mode in which the object is created is left to the latitude of the policy implementation.

Let's define some policy classes that implement the Creator policy. One possible way is to use the new
operator. Another way isto use mal loc and a call to the placement new operator (Meyers 1998b). Y et
another way would be to create new objects by cloning a prototype object. Here are examples of al three
methods:

template <class T>
struct OpNewCreator

{ static T* Create()
{
return new T;
}
}:

template <class T>
struct MallocCreator

{
static T* Create()
{
void* buf = std::malloc(sizeof(T));
it (buf) return O;
return new(buf) T;
3
};

template <class T>
struct PrototypeCreator

{
PrototypeCreator(T* pObj = 0)

:pPrototype_(pObj)
{
T* Create()

{



return pPrototype_ ? pPrototype ->Clone() : O;

}
T* GetPrototype() { return pPrototype ; }

void SetPrototype(T* pObj) { pPrototype_ = pObj; }
private:

T* pPrototype._;
}:

For a given policy, there can be an unlimited number of implementations. The implementations of a policy
are called policy classes.2 Policy classes are not intended for stand-alone use; instead, they are inherited
by, or contained within, other classes.

2! This name is slightly inaccurate because, as you will see soon, policy implementations can be class
templates.

An important aspect is that, unlike classic interfaces (collections of pure virtual functions), policies
interfaces are loosely defined. Policies are syntax oriented, not signature oriented. In other words, Creator
specifies which syntactic constructs should be valid for a conforming class, rather than which exact
functions that class must implement. For example, the Creator policy does not specify that Create must
be static or virtual—the only requirement is that the class template define aCreate member function.
Also, Creator says that Create should return a pointer to a new object (as opposed to must). Consequently,
it is acceptable that in special cases, Create might return zero or throw an exception.

Y ou can implement several policy classes for agiven policy. They al must respect the interface as defined
by the policy. The user then chooses which policy classto usein larger structures, as you will see.

The three policy classes defined earlier have different implementations and even slightly different
interfaces (for example, PrototypeCreator hastwo extrafunctions: GetPrototype and
SetPrototype). However, they al define afunction called Create with the required return type, so
they conform to the Creator policy.

Let's see now how we can design a class that exploits the Creator policy. Such a classwill either contain or
inherit one of the three classes defined previously, as shown in the following:

// Library code
template <class CreationPolicy>
class WidgetManager : public CreationPolicy

The classes that use one or more policies are called hosts or host classes®! In the example above,
WidgetManager isahost class with one policy. Hosts are responsible for assembling the structures and
behaviors of their policiesin a single complex unit.

3] Although host classes are technically host class templates, let's stick to a unique definition. Both host
classes and host class templates serve the same concept.

When instantiating the Wi dgetManager template, the client passes the desired policy:

// Application code
typedef WidgetManager< OpNewCreator<Widget> > MyWidgetMgr;

Let's analyze the resulting context. Whenever an object of type MyWidgetMgr needsto create aWidget,
itinvokes Create() for itsOpNewCreator<Widget> policy subobject. How ever, it isthe user of



WidgetManager who chooses the creation policy. Effectively, through its design, WidgetManager
allows its users to configure a specific aspect of WidgetManager's functionality.

Thisisthe gist of policy-based class design.
1.5.1 Implementing Policy Classes with Template Template Parameters

Often, asisthe case above, the policy's template argument is redundant. It is awkward that the user must
pass OpNewCreator's template argument explicitly. Typically, the host class already knows, or can easily
deduce, the template argument of the policy class. In the example above, WidgetManager aways
manages objects of type Widget, so requiring the user to specify Widget again in the instantiation of
OpNewCreator isredundant and potentially dangerous.

In this case, library code can use template template parameters for specifying policies, as shown in the
following:

// Library code
template <template <class Created> class CreationPolicy>
class WidgetManager : public CreationPolicy<Widget>

{
¥

In spite of appearances, the Created symbol does not contribute to the definition of WidgetManager.
Y ou cannot use Created inside WidgetManager—it isaforma argument for CreationPolicy (not
WidgetManager) and simply can be omitted.

Application code now need only provide the name of the template in instantiating Wi dgetManager:

// Application code
typedef WidgetManager<OpNewCreator> MyWidgetMgr;

Using template template parameters with policy classes is not simply a matter of convenience; sometimes,
itisessential that the host class have access to the template so that the host can instantiate it with a
different type. For example, assume WidgetManager aso needsto create objects of type Gadget using
the same creation policy. Then the code would look like this:

// Library code
template <template <class> class CreationPolicy>
class WidgetManager : public CreationPolicy<Widget>

{
Qéid DoSomething()
{ Gadget* pW = CreationPolicy<Gadget>().Create();
. -

}:

Does using policies give you an edge? At first sight, not alot. For one thing, all implementations of the
Creator policy are trivialy simple. The author of WidgetManager could certainly have written the
creation code inline and avoided the trouble of making WidgetManager atemplate.

But using policies gives great flexibility to WidgetManager. First, you can change policies from the
outside as easily as changing a template argument when you instantiate Wi dgetManager. Second, you



can provide your own policies that are specific to your concrete application. Y ou can use new, mal loc,
prototypes, or a peculiar memory alocation library that only your system uses. It isasif WidgetManager
were a little code generation engine, and you configure the ways in which it generates code.

To ease the lives of application developers, WidgetManager's author might define a battery of often-used
policies and provide a default template argument for the policy that's most commonly used:

template <template <class> class CreationPolicy = OpNewCreator>
class WidgetManager ...

Note that policies are quite different from mere virtual functions. Virtual functions promise a similar effect:
The implementer of a class defines higher-level functionsin terms of primitive virtua functions and lets
the user override the behavior of those primitives. As shown above, however, policies come with enriched
type knowledge and static binding, which are essential ingredients for building designs. Aren't designs full
of rules that dictate before runtime how types interact with each other and what you can and what you
cannot do? Policies alow you to generate designs by combining simple choicesin atypesafe manner. In
addition, because the binding between a host class and its policiesis done at compile time, the code is tight
and efficient, comparable to its handcrafted equivalent.

Of course, policies features also make them unsuitable for dynamic binding and binary interfaces, soin
essence policies and classic interfaces do not compete.

1.5.2 Implementing Policy Classes with Template Member Functions

An aternative to using template template parametersis to use template member functions in conjunction
with simple classes. That is, the policy implementation is a simple class (as opposed to a template class)
but has one or more templated members.

For example, we can redefine the Creator policy to prescribe aregular (nontemplate) class that exposes a
template function Create<T>. A conforming policy class looks like the following:

struct OpNewCreator

{
template <class T>
static T* Create()
{
return new T;
}
};

Thisway of defining and implementing a policy has the advantage of being better supported by older
compilers. On the other hand, policies defined this way are often harder to talk about, define, implement,
and use.

1.6 Enriched Policies

The Creator policy prescribes only one member function, Create. However, PrototypeCreator
defines two more functions: GetPrototype and SetPrototype. Let's anayze the resulting context.

Because WidgetManager inheritsits policy class and because GetPrototype and Set-Prototype
are public members of PrototypeCreator, the two functions propagate through WidgetManager and
are directly accessible to clients.



However, WidgetManager asksonly for the Create member function; that's all WidgetManager
needs and uses for ensuring its own functionality. Users, however, can exploit the enriched interface.

A user who uses a prototype-based Creator policy class can write the following code:

typedef WidgetManager<PrototypeCreator>
MyWidgetManager ;

Widget* pPrototype = ...;

MyWidgetManager mgr;

mgr .SetPrototype(pPrototype);
. use mgr ...

If the user later decides to use acreation policy that does not support prototypes, the compiler pinpoints the
spots where the prototype-specific interface was used. Thisis exactly what should be expected from a
sound design.

The resulting context is very favorable. Clients who need enriched policies can benefit from that rich
functionality, without affecting the basic functionality of the host class. Don't forget that users—and not
the library—decide which policy class to use. Unlike regular multiple interfaces, policies give the user the
ability to add functionality to a host class, in atypesafe manner.

1.7 Destructors of Policy Classes

There is an additional important detail about creating policy classes. Most often, the host class uses public
inheritance to derive from its policies. For this reason, the user can automatically convert a host classto a
policy and later de lete that pointer. Unless the policy class defines avirtual destructor, applying
delete to apointer to the policy class has undefined behavior,*! as shown below.

U n Chapter 4, Small-Object Allocation, you can find a discussion on exactly why this happens.

typedef WidgetManager<PrototypeCreator>
MyWidgetManager ;

M&WidgetManager wm;
PrototypeCreator<Widget>* pCreator = &wm; // dubious, but legal
delete pCreator; // compiles fine, but has undefined behavior

Defining a virtual destructor for a policy, however, works against its static nature and hurts performance.
Many policies don't have any data members, but rather are purely behavioral by nature. The first virtual
function added incurs some size overhead for the objects of that class, so the virtual destructor should be
avoided.

A solution is to have the host class use protected or private inheritance when deriving from the policy class.
However, this would disable enriched policies as well (Section 1.6).

The lightweight, effective solution that policies should use is to define a nonvirtual protected destructor:

template <class T>
struct OpNewCreator

{
static T* Create()
{

return new T;
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}
protected:

~OpNewCreator() {}
}:

Because the destructor is protected, only derived classes can destroy policy objects, so it'simpossible for
outsidersto apply de lete to a pointer to a policy class. The destructor, however, is not virtual, so thereis
no size or speed overhead.

1.8 Optional Functionality Through Incomplete Instantiation

It gets even better. C++ contributes to the power of policies by providing an interesting feature. If a
member function of a class template is never used, it is not even instantiated—the compiler does not ook
at it at all, except perhaps for syntax checking.!

5] According to the C++ standard, the degree of syntax checking for unused template functions is up to the
implementation. The compiler does not do any semantic checking—for example, symbols are not looked up.

This gives the host class a chance to specify and use optional features of a policy class. For example, let's
define aSwitchPrototype member function for WidgetManager

// Library code
template <template <class> class CreationPolicy>
class WidgetManager : public CreationPolicy<Widget>

{
Qéid SwitchPrototype(Widget* pNewPrototype)
{
CreationPolicy<Widget>& myPolicy = *this;
delete myPolicy.GetPrototype();
myPolicy.SetPrototype(pNewPrototype);
b
3

The resulting context is very interesting:

e If theuser instantiates Wi dgetManager with a Creator policy class that supports prototypes, she
can use SwitchPrototype.

e If theuser instantiates Wi dgetManager with a Creator policy class that does not support
prototypes and triesto use SwitchPrototype, a compile-time error occurs.

e If theuser instantiates Wi dgetManager with a Creator policy class that does not support
prototypes and does not try to use SwitchPrototype, the programisvalid.

Thisal meansthat Wi dgetManager can benefit from optional enriched interfaces but still work correctly
with poorer interfaces—as long as you don't try to use certain member functions of WidgetManager.

The author of WidgetManager can define the Creator policy in the following manner:

Creator prescribes a class template of one type T that exposes a member function Create. Create should
return a pointer to a new object of type T. Optionally, the implementation can define two additional
member functions—T* GetPrototype() and SetPrototype (T*)—having the semantics of getting
and setting a prototype object used for creation. In this case, WidgetManager exposes the
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SwitchPrototype (T* pNewPrototype) member function, which deletes the current prototype and
setsit to the incoming argument.

In conjunction with policy classes, incomplete instantiation brings remarkable freedom to you as alibrary
designer. Y ou can implement lean host classes that are able to use additional features and degrade
graciously, allowing for Spartan, minimal policies.

1.9 Combining Policy Classes

The greatest usefulness of policiesis apparent when you combine them. Typically, a highly configurable
class uses several policies for various aspects of its workings. Then the library user selects the desired
high-level behavior by combining several policy classes.

For example, consider designing a generic smart pointer class. (Chapter 7 builds afull implementation.)
Say you identify two design choices that you should establish with policies: threading model and checking
before dereferencing. Then you implement a SmartPtr classtemplate that uses two policies, as shown:

template
<

class T,
template <class> class CheckingPolicy,

template <class> class ThreadingModel
>

class SmartPtr;

SmartPtr hasthree template parameters: the pointee type and two policies. Inside SmartPtr, you
orchestrate the two policies into a sound implementation. SmartPtr be comes a coherent shell that
integrates several policies, rather than arigid, canned implementation. By designing SmartPtr thisway,
you allow the user to configure SmartPtr with asimple typedef:

typedef SmartPtr<Widget, NoChecking, SingleThreaded>
WidgetPtr;

Inside the same application, you can define and use several smart pointer classes:

typedef SmartPtr<Widget, EnforceNotNull, SingleThreaded>
SafeWidgetPtr;

The two policies can be defined as follows:

Checking: The CheckingPolicy<T> classtemplate must expose a Check member function, callable
with an Ivalue of type T*. SmartPtr calsCheck, passing it the pointee object before dereferencing it.

ThreadingModel: The ThreadingMode I<T> class template must expose an inner type called Lock,
whose constructor accepts a T&. For the lifetime of a Lock object, operations on the T object are serialized.

For example, here is the implementation of the NoChecking and EnforceNotNul I policy classes:

template <class T> struct NoChecking
{

static void Check(T*) {}
}:

template <class T> struct EnforceNotNull
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{

class NullPointerException : public std::exception { ... };
static void Check(T* ptr)

it (Iptr) throw NullPointerException();
}:

By plugging in various checking policy classes, you can implement various behaviors. Y ou can even
initialize the pointee object with a default value by accepting a reference to a pointer, as shown:

template <class T> struct EnsureNotNull

{
static void Check(T*& ptr)

if (Iptr) ptr = GetDefaultValue();
}:
SmartPtr usesthe Checking policy this way:

template
<
class T,
template <class> class CheckingPolicy,
template <class> class ThreadingModel
>
class SmartPtr
: public CheckingPolicy<T>
, public ThreadingModel<SmartPtr>

{
T* operator->()
{
typename ThreadingModel<SmartPtr>::Lock guard(*this);
CheckingPolicy<T>::Check(pointee );
return pointee_;
3
private:
T* pointee_;
}:

Notice the use of both the CheckingPolicy and ThreadingModel policy classesin the same function.
Depending on the two template arguments, SmartPtr : :operator-> behaves differently on two
orthogonal dimensions. Such is the power of combining policies.

If you manage to decompose a class in orthogonal policies, you can cover alarge spectrum of behaviors
with asmall amount of code.

1.10 Customizing Structure with Policy Classes

One of the limitations of templates, mentioned in Section 1.4, isthat you cannot use templates to
customize the structure of a class—only its behavior. Policy-based designs, however, do support structural
customization in a natural manner.
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Suppose that you want to support nonpointer representations for SmartPtr. For example, on certain
platforms some pointers might be represented by a handle—an integral value that you pass to a system
function to obtain the actual pointer. To solve this you might "indirect” the pointer access through a policy,
say, a Structure policy. The Structure policy abstracts the pointer storage. Consequently, Structure should
expose types called PointerType (the type of the pointed-to object) and ReferenceType (the typeto
which the pointer refers) and functions such asGetPointer and SetPointer.

The fact that the pointer type is not hardcoded to T* has important advantages. For example, you can use
SmartPtr with nonstandard pointer types (such as near and far pointers on segmented architectures),
or you can easily implement clever solutions such asbefore and after functions (Stroustrup 2000a).
The possibilities are extremely interesting.

The default storage of a smart pointer is a plain-vanilla pointer adorned with the Structure policy interface,
as shown in the following code.

template <class T>
class DefaultSmartPtrStorage

public:
typedef T* PointerType;
typedef T& ReferenceType;
protected:
PointerType GetPointer() { return ptr_; }
void SetPointer(PointerType ptr) { pointee_ = ptr; }
private:
PointerType ptr_;
}:

The actual storage used is completely hidden behind Structure'sinterface. Now SmartPtr can usea
Storage policy instead of aggregating aT*.

template
<

class T,

template <class> class CheckingPolicy,

template <class> class ThreadingModel,

template <class> class Storage = DefaultSmartPtrStorage
>

class SmartPtr;

Of course, SmartPtr must either derive from Storage<T> or aggregate a Storage<T> object in order
to embed the needed structure.

1.11 Compatible and Incompatible Policies

Suppose you create two instantiations of SmartPtr: FastWidgetPtr, apointer with out checking, and
SafeWidgetPtr, apointer with checking before dereference. An interesting question is, Should you be
ableto assign FastWidgetPtr objectsto SafeWidgetPtr objects? Should you be able to assign them
the other way around? If you want to allow such conversions, how can you implement that?

Starting from the reasoning that SafeWidgetPtr is morerestrictive than FastWidgetPtr, it isnatura

to accept the conversion from FastWidgetPtr to SafeWidgetPtr. Thisis because C++ aready
supportsimplicit conversions that increase restrictions—namely, from non-const to const types.
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On the other hand, freely converting SafeWidgetPtr objectsto FastWidgetPtr objectsis dangerous.
Thisis because in an application, the mgjority of code would use SafeWidgetPtr and only asmall,
speed-critical core would use FastWidgetPtr. Allowing only explicit, controlled conversions to
FastWidgetPtr would help keep FastWidgetPtr's usage to a minimum.

The best, most scalable way to implement conversions between policiesisto initialize and copy
SmartPtr objects policy by policy, as shown below. (Let's simplify the code by getting back to only one
policy—the Checking policy.)

template
<
class T,

template <class> class CheckingPolicy
>

class SmartPtr : public CheckingPolicy<T>
{

template
<

class T1,
template <class> class CP1,
>

SmartPtr(const SmartPtr<T1l, CP1>& other)
: pointee_(other.pointee_ ), CheckingPolicy<T>(other)

{--- %}
¥

SmartPtr implements atemplated copy constructor, which accepts any other instantiation of SmartPtr.
The code in bold initializes the components of SmartPtr with the components of the other
SmartPtr<T1, CP1> received asarguments.

Here's how it works. (Follow the constructor code.) Assume you have a class ExtendedWidget, derived
fromWidget. If you initialize aSmartPtr<Widget, NoChecking> witha
SmartPtr<ExtendedWidget, NoChecking>, thecompiler attemptsto initialize aWidget™ with an
ExtendedWiget* (which works), and aNoChecking with aSmartPtrExtended <Widget,
NoChecking>. This might look suspicious, but don't forget that SmartPtr derivesfromits policy, soin
essence the compiler will easily figure out that you initialize aNoChecking with aNoChecking. The
whole initialization works.

Now for the interesting part. Say you initiadlize aSmartPtr<Widget, EnforceNotNul I> witha
SmartPtr<kExtendedWidget, NoChecking>. The ExtendedWidget™* toWidget* conversion
worksjust as before. Then the compiler triesto match SmartPtr<ExtendedWidget, NoChecking>
to EnforceNotNul I's constructors.

If EnforceNotNul I implements a constructor that accepts aNoChecking object, then the compiler
matches that constructor. If NoChecking implements a conversion operator to EnforceNotNul I, that
conversion isinvoked. In any other case, the code fails to compile.

Asyou can see, you have two-sided flexibility in implementing conversions between policies. Y ou can
implement a conversion constructor on the left-hand side, or you can implement a conversion operator on
the right-hand side.

The assignment operator looks like an equally tricky problem, but fortunately, Sutter (2000) describes a
very nifty technique that allows you to implement the assignment operator in terms of the copy constructor.
(It's so nifty, you have to read about it. Y ou can see the technique at work in Loki's SmartPtr
implementation.)
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Although conversions from NoChecking to EnforceNotNul I and even vice versa are quite sensible,
some conversions don't make any sense at al. Imagine converting a reference-counted pointer to a pointer
that supports another ownership strategy, such as destructive copy (ala std: auto_ptr). Such a
conversion is semantically wrong. The definition of reference counting isthat al pointers to the same
object are known and tracked by a unique counter. As soon as you try to confine a pointer to another
ownership policy, you break the invariant that makes reference counting work.

In conclusion, conversions that change the ownership policy should not be allowed implicitly and should
be treated with maximum care. At best, you can change the ownership policy of areference-counted
pointer by explicitly calling afunction. That function succeeds if and only if the reference count of the
source pointer is 1.

1.12 Decomposing a Class into Policies

The hardest part of creating policy-based class design isto correctly decompose the functionality of a class
in policies. The rule of thumb isto identify and name the design decisions that take part in aclass's
behavior. Anything that can be done in more than one way should be identified and migrated from the
classto apolicy. Don't forget: Design constraints buried in a class's design are as bad as magic constants
buried in code.

For example, consider aWidgetManager class. If WidgetManager creates new Widget objects
internally, creation should be deferred to a policy. If WidgetManager stores acollection of Widgets, it
makes sense to make that collection a storage policy, unless there is a strong preference for a specific
storage mechanism.

At an extreme, ahost class is totally depleted of any intrinsic policy. It delegates all design decisions and
constraints to policies. Such ahost classis a shell over acollection of policies and deals only with
assembling the policies into a coherent behavior.

The disadvantage of an overly generic host class is the abundance of template parameters. In practice, it is
awkward to work with more than four to six template parameters. Still, they justify their presence if the
host class offers complex, useful functionality.

Type definitions—typedef statements—are an essential tool in using classes that rely on policies. Using
typedeTf isnot merely a matter of convenience; it ensures ordered use and easy maintenance. For
example, consider the following type definition:

typedef SmartPtr

<
Widget,
RefCounted,
NoChecked

>

WidgetPtr;

It would be very tedious to use the lengthy specialization of SmartPtr instead of WidgetPtr in code.
But the tediousness of writing code is nothing compared with the major problems in under standing and
maintaining that code. Asthe design evolves, WidgetPtr " s definition might change—for example, to
use a checking policy other than NoChecked in debug builds. It is essential that al the code use
WidgetPtr instead of ahardcoded instantiation of SmartPtr. It'sjust like the difference between caling
afunction and writing the equivalent inline code: The inline code technically does the same thing but fails
to build an abstraction behind it.
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When you decompose a classin policies, it is very important to find an orthogonal decomposition. An
orthogonal decomposition yields policies that are completely independent of each other. Y ou can easily
spot a nonorthogonal decomposition when various policies need to know about each other.

For example, think of an Array policy in asmart pointer. The Array policy is very simple—it dictates
whether or not the smart pointer points to an array. The policy can be defined to have a member function
T& ElementAt(T* ptr, unsigned int index), plusasimilar version for const T. Thenon-
array policy simply does not define an ElementAt member function, so trying to use it would yield a
compile-time error. The ElementAt function is an optional enriched behavior as defined in Section 1.6.

The implementations of two policy classes that implement the Array policy follow.

template <class T>
struct IsArray

{
T& ElementAt(T* ptr, unsigned int index)
{
return ptr[index];
}
const T& ElementAt(T* ptr, unsigned int index) const
{
return ptr[index];
}
}:

template <class T> struct IsNotArray {};

The problem is that purpose of the Array policy—specifying whether or not the smart pointer points to an
array—interacts unfavorably with another policy: destruction. Y ou must destroy pointers to objects using
the del ete operator, and destroy pointers to arrays of objects using the de lete[] operator.

Two policiesthat do not interact with each other are orthogonal. By this definition, the Array and the
Destroy policies are not orthogonal .

If you still need to confine the qualities of being an array and of destruction to separate policies, you need
to establish away for the two policies to communicate. Y ou must have the Array policy expose a Boolean
constant in addition to afunction, and pass that Boolean to the Destroy policy. This complicates and
somewhat constrains the design of both the Array and the Destroy policies.

Nonorthogonal policies are an imperfection you should strive to avoid. They reduce compile-time type
safety and complicate the design of both the host class and the policy classes.

If you must use nonorthogonal policies, you can minimize dependencies by passing a policy class as an
argument to another policy classs template function. Thisway you can benefit from the flexibility specific
to template-based interfaces. The downside remains that one policy must expose some of its
implementation details to other policies. This decreases encapsulation.

1.13 Summary

Design is choice. Most often, the struggle is not that there is no way to solve a design problem, but that
there are too many ways that apparently solve the problem. Y ou must know which collection of solutions
solves the problem in a satisfactory manner. The need to choose propagates from the largest architectural
levels down to the smallest unit of code. Furthermore, choices can be combined, which confers on design
an evil multiplicity.



To fight the multiplicity of design with areasonably small amount of code, awriter of a design-oriented
library needs to develop and use special techniques. These techniques are purposely conceived to support
flexible code generation by combining a small number of primitive devices. The library itself provides a
number of such devices. Furthermore, the library exposes the specifications from which these devices are
built, so the client can build her own. This essentially makes a policy-based design open-ended. These
devices are called policies, and the implementations thereof are called policy classes.

The mechanics of policies consist of a combination of templates with multiple inheritance. A class that
uses policies—a host class—is atemplate with many template parameters (often, template template
parameters), each parameter being a policy. The host class "indirects' parts of its functionality through its
policies and acts as a receptacle that combines severa policies in a coherent aggregate.

Classes designed around policies support enriched behavior and graceful degradation of functionality. A
policy can provide supplemental functionality that propagates through the host class due to public
inheritance. Furthermore, the host class can implement enriched functionality that uses the optional
functionality of apolicy. If the optional functionality is not present, the host class still compiles
successfully, provided the enriched functionality is not used.

The power of policies comes from their ability to mix and match. A policy-based class can accommodate
very many behaviors by combining the simpler behaviors that its policies implement. This effectively
makes policies a good weapon for fighting against the evil multiplicity of design.

Using policy classes, you can customize not only behavior but also structure. Thisimportant feature takes
policy-based design beyond the simple type genericity that's specific to container classes.

Policy-based classes support flexibility when it comes to conversions. If you use policy-by-policy copying,
each policy can control which other policies it accepts, or converts to, by providing the appropriate
conversion constructors, conversion operators, or both.

In breaking a classinto policies, you should follow two important guidelines. One is to localize, name, and
isolate design decisions in your class—things that are subject to a trade-off or could be sensibly
implemented in other ways. The other guidelineisto look for orthogonal policies, that is, policies that
don't need to interact with each other and that can be changed independently.
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Chapter 2. Techniques

This chapter presents a host of C++ techniques that are used throughout the book. Because they are of help
in various contexts, the techniques presented tend to be general and reusable, so you might find
applications for them in other contexts. Some of the techniques, such as partial template specialization, are
language features. Others, such as compile-time assertions, come with some support code.

In this chapter you will get acquainted with the following techniques and tools:

Compile-time assertions

Partial template specialization

Local classes

M appings between types and values (the Int2Type and Type2Type class templates)
The Select classtemplate, atool that chooses a type at compile time based on a Boolean
condition

Detecting convertibility and inheritance at compile time

e Typelnfo, ahandy wrapper around std: : type_info

e Traits, acollection of traits that apply to any C++ type

Taken in isolation, each technique and its support code might look trivial; the normisfive to ten lines of
easy-to-understand code. However, the techniques have an important property: They are "nonterminal™;
that is, you can combine them to generate higher-level idioms. Together, they form a strong foundation of
services that helpsin building powerful architectural structures.

The techniques come with examples, so don't expect the discussion to be dry. Asyou read through the rest
of the book, you might want to return to this chapter for reference.

2.1 Compile-Time Assertions

As generic programming in C++ took off, the need for better static checking (and better, more
customizable error messages) emerged.

Suppose, for instance, you are developing a function for safe casting. Y ou want to cast from one type to
another, while making sure that information is preserved; larger types must not be cast to smaller types.

template <class To, class From>
To safe_reinterpret_cast(From from)

assert(sizeof(From) <= sizeof(To));
return reinterpret_cast<To>(from);

}
Y ou call this function using the same syntax as the native C++ casts:

int i = _._;
char* p = safe_reinterpret_cast<char*>(i);

Y ou specify the To template argument explicitly, and the compiler deduces the From template argument
from i'stype. By asserting on the size comparison, you ensure that the destination type can hold all the
bits of the source type. Thisway, the code above yields either an allegedly correct cast! or an assertion at
runtime.
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™ on most machines, that is—with reinterpret_cast, you can never be sure.

Obviously, it would be more desirable to detect such an error during compilation. For one thing, the cast

might be on a seldom-executed branch of your program. As you port the application to a new compiler or
platform, you cannot remember every potential nonportable part and might leave the bug dormant until it
crashes the program in front of your customer.

There is hope; the expression being evaluated is a compile-time constant, which means that you can have
the compiler, instead of runtime code, check it. The ideaisto pass the compiler alanguage construct that is
legal for anonzero expression and illegal for an expression that evaluates to zero. Thisway, if you pass an
expression that evaluates to zero, the compiler will signal a compile-time error.

The simplest solution to compile-time assertions (Van Horn 1997), and one that worksin C aswell asin
C++, relies on the fact that a zero-length array isillegal.

#define STATIC _CHECK(expr) { char unnamed[(expr) ? 1 : 0]; }
Now if you write

template <class To, class From>
To safe_reinterpret_cast(From from)

{
STATIC_CHECK(sizeof(From) <= sizeof(To));
return reinterpret_cast<To>(from);

}

void* somePointer = _._;

char c = safe_reinterpret_cast<char>(somePointer);

and if on your system pointers are larger than characters, the compiler complains that you are trying to
create an array of length zero.

The problem with this approach is that the error message you receive is not terribly informative. "Cannot
create array of size zero" does not suggest "Type char istoo narrow to hold a pointer.” It is very hard to
provide customized error messages portably. Error messages have no rules that they must obey; it'sall up
to the compiler. For instance, if the error refers to an undefined variable, the name of that variable does not
necessarily appear in the error message.

A better solution isto rely on atemplate with an informative name; with luck, the compiler will mention
the name of that template in the error message.

template<bool> struct CompileTimeError;
template<> struct CompileTimeError<true> {};

#define STATIC_CHECK(expr) \
(CompileTimeError<(expr) = 0>0))

Compi leTimeError isatemplate taking a nontype parameter (a Boolean constant). Compi le-
TimeError isdefined only for the true vaue of the Boolean constant. If you try to instantiate

Compi leTimeError<false>, the compiler utters a message such as "Undefined specialization
CompileTimeError<false>." This messageisadightly better hint that the error isintentional and not
acompiler or aprogram bug.

Of course, there's alot of room for improvement. What about customizing that error message? Anideais

to pass an additional parameter to STATIC_CHECK and some how make that parameter appear in the error
message. The disadvantage that remainsis that the custom error message you pass must be alegal C++
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identifier (no spaces, cannot start with adigit, and so on). Thisline of thought |eads to an improved
Compi leTimeError, asshown in the following code. Actually, the name Compi leTimeError isno
longer suggestive in the new context; as you'll seein aminute, Compi leTimeChecker makes more
sense.

template<bool> struct CompileTimeChecker

CompileTimeChecker(...);
}:
template<> struct CompileTimeChecker<false> { };
#define STATIC_CHECK(expr, msg) \
A
class ERROR_##msg {}: \
(void)sizeof(CompileTimeChecker<(expr) != 0>((ERROR_##msg()))):\

}

Assumethat sizeof(char) < sizeof(void*). (The standard does not guarantee that thisis
necessarily true.) Let's see what happens when you write the following:

template <class To, class From>
To safe_reinterpret_cast(From from)

{
STATIC_CHECK(sizeof(From) <= sizeof(To),
Destination_Type_Too_Narrow);
return reinterpret_cast<To>(from);
}
void* somePointer = _.._;

char ¢ = safe_reinterpret_cast<char>(somePointer);

After macro preprocessing, the code of safe_reinterpret_cast expands to the following:

template <class To, class From>
To safe_reinterpret_cast(From from)

{
{
class ERROR Destination_Type Too Narrow {};
(void)sizeof(
CompileTimeChecker<(sizeof(From) <= sizeof(To))>(
ERROR_Destination_Type Too_Narrow()));
b
return reinterpret_cast<To>(from);
3

The code defines alocal class called ERROR_Destination_Type Too_Narrow that has an empty
body. Then, it creates atemporary value of type Compi leTimeChecker< (sizeof(From) <=
sizeof(To))>, initialized with atemporary value of type ERROR_

Destination_Type_Too_ Narrow. Finadly, sizeof gaugesthe size of the resulting temporary
variable.

Now here'sthe trick. The Compi leTimeChecker<true> specidization has a constructor that accepts
anything; it's an ellipsis function. This means that if the compile-time expression checked evaluates to
true, theresulting program isvalid. If the comparison between sizes evaluates to fal se, a compile-time
error occurs. The compiler cannot find a conversion from an
ERROR_Destination_Type_Too_Narrow to aCompileTimeChecker<false>. And the nicest
thing of al isthat a decent compiler outputs an error message such as "Error: Cannot convert
ERROR_Destination_Type Too_Narrow to CompileTimeChecker <false>."
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Bingo!

2.2 Partial Template Specialization

Partial template specialization allows you to specialize a class template for subsets of that template's
possible instantiations set.

Let'sfirst recap total explicit template speciaization. If you have a class template Widget,

template <class Window, class Controller>
class Widget

{
3

. generic implementation ...

then you can explicitly specialize the Widget class template as shown:

template <>
class Widget<ModalDialog, MyController>

{
3

. specialized implementation ...

ModalDialog and MyControl ler are classes defined by your application.

After seeing the definition of Widget's speciaization, the compiler uses the specialized implementation
wherever you define an object of type Widget<ModalDialog,My Controller> and usesthe generic
implementation if you use any other instantiation of Widget.

Sometimes, however, you might want to specialize Widget for any Window and MyControl ler. Here
iswhere partial template specialization comesinto play.

// Partial specialization of Widget
template <class Window>
class Widget<Window, MyController>

{
3

. partially specialized implementation ...

Typically, in apartial specialization of a class template, you specify only some of the template arguments
and leave the other ones generic. When you instantiate the class template in your program, the compiler
tries to find the best match. The matching algorithm isvery intricate and accurate, allowing you to partialy
specialize in innovative ways. For instance, assume you have a class template Button that accepts one
template parameter. Then, even if you specialized Widget for any Window and a specific
MyController, you can further partially specialize Widgetsfor all Button instantiations and My
Controller:

template <class ButtonArg>
class Widget<Button<ButtonArg>, MyController>

{
3

. Ffurther specialized implementation ...
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Asyou can see, the capabilities of partial template specialization are pretty amazing. When you instantiate
atemplate, the compiler does a pattern matching of existing partial and total specializations to find the best
candidate; this gives you enormous flexibility.

Unfortunately, partial template specialization does not apply to functions—be they member or
nonmember—which somewhat reduces the flexibility and the granularity of what you can do.

e Although you can totally specialize member functions of a class template, you cannot partially
specialize member functions.

e You cannot partialy speciaize namespace-level (nonmember) template functions. The closest
thing to partial specialization for namespace-level template functionsis overloading. For practical
purposes, this means that you have fine-grained specialization abilities only for the function
parameters—not for the return value or for internally used types. For example,

template <class T, class U> T Fun(U obj); // primary template
template <class U> void Fun<void, U>(U obj); // illegal partial
// specialization

template <class 7> T Fun (Window obj); // legal (overloading)

Thislack of granularity in partial specialization certainly makes life easier for compiler writers, but has
bad effects for developers. Some of the tools presented later (such as Int2Type and Type2Type)
specifically address this limitation of partial specialization.

This book uses partial template specialization copioudly. Virtually the entire typelist facility (Chapter 3) is
built using this feature.

2.3 Local Classes

Local classes are an interesting and little-known feature of C++. Y ou can define classes right inside
functions, asfollows:

void Fun(Q)
{
class Local
{ i
. member variables ...
. member function definitions ...
3

. code using Local

}

There are some limitations—local classes cannot define static member variables and cannot access
nonstatic local variables. What makes local classestruly interesting is that you can use them in template
functions. Local classes defined inside template functions can use the template parameters of the enclosing
function.

The template function MakeAdapter in the following code adapts one interface to another.
MakeAdapter implements an interface on the fly with the help of alocal class. The local class stores
members of generic types.

class Interface

{
public:
virtual void Fun() = 0;
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}:
template <class T, class P>
Interface* MakeAdapter(const T& obj, const P& arg)

{
class Local : public Interface
{
public:
Local(const T& obj, const P& arg)
: obj_(oby), arg_(arg) {}
virtual void Fun(Q)
{
obj .Call(arg));
3
private:
T obj_;
P arg_;
}:
return new Local(obj, arg);
}

It can be easily proven that any idiom that uses alocal class can be implemented using atemplate class
outside the function. In other words, local classes are not an idiom-enabling feature. On the other hand,
local classes can simplify implementations and improve locality of symbols.

Local classes do have a unique feature, though: They are final. Outside users cannot derive from a class
hidden in afunction. Without local classes, you'd have to add an unnamed namespace in a separate
translation unit.

Chapter 11 useslocal classes to create trampoline functions.

2.4 Mapping Integral Constants to Types

A simple template, initialy described in Alexandrescu (2000b), can be very helpful to many generic
programming idioms. Hereit is:

template <int v>
struct Int2Type

{
enum { value = v };
}:
Int2Type generates a distinct type for each distinct constant integral value passed. Thisis because

different template instantiations are distinct types; thus, Int2Type<0> isdifferent from Int2Type<1>,
and so on. In addition, the value that generates the type is "saved" in the enum member value.

You can use Int2Type whenever you need to "typify" an integral constant quickly. Thisway you can
select different functions, depending on the result of a compile-time calculation. Effectively, you achieve
static dispatching on a constant integral value.

Typically, you use Int2Type when both these conditions are satisfied:

e Youneedto call one of several different functions, depending on a compile-time constant.
e You need to do this dispatch at compile time.
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For dispatching at runtime, you can use simple i f-e I se statements or the swi tch statement. The runtime
cost is negligible in most cases. However, you often cannot do this. The i f-e I se statement requires both
branches to compile successfully, even when the condition tested by i f is known at compile time.
Confused? Read on.

Consider this situation: Y ou design a generic container Ni ftyContainer, which istemplated by the type
contained:

template <class T> class NiftyContainer

{
¥

Say NiftyContainer contains pointersto objects of type T. To duplicate an object contained in
NiftyContainer, you want to call either its copy constructor (for nonpolymorphic types) or aClone ()
virtual function (for polymorphic types). Y ou get this information from the user in the form of a Boolean
template parameter.

template <typename T, bool isPolymorphic>
class NiftyContainer

{
void DoSomething()
{
T* pSomeObj = ...;
iT (isPolymorphic
T* pNewObj = pSomeObj->Clone();
- polymorphic algorithm ...
}
else
{
T* pNewObj = new T(*pSomeObj);
- nonpolymorphic algorithm ...
}
}
}:

The problem is that the compiler won't let you get away with this code. For example, because the
polymorphic algorithm uses pObj->Clone (), NiftyContainer: :DoSomething does not compile
for any type that doesn't define a member function Clone(). True, it is obvious at compile time which
branch of the i f statement executes. However, that doesn't matter to the compiler—it diligently triesto
compile both branches, even if the optimizer will later eliminate the dead code. If you try to call
DoSomething for NiftyContainer<int, false>, the compiler stops at the pObj->Clone() call
and says, "Huh?"

It isalso possible for the nonpolymorphic branch of the code to fail to compile. If T is a polymorphic type
and the nonpolymorphic code branch attempts new T(*pObj), the code might fail to compile. This
might happen if T has disabled its copy constructor (by making it private), as a well-behaved polymorphic
class should.

It would be niceif the compiler didn't bother about compiling code that's dead anyway, but that's not the
case. So what would be a satisfactory solution?

Asit turns out, there are a number of solutions, and Int2Type provides a particularly clean one. It can
transform ad hoc the Boolean value i sPollymorphi c into two distinct types corresponding to
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isPolymorphic'strue and false values. Then you can use Int2Type<isPolymorphic> with
simple overloading, and voilal

template <typename T, bool isPolymorphic>
class NiftyContainer

{
private:
void DoSomething(T* pObj, Int2Type<true>)
T* pNewObj = pObj->Clone();
- polymorphic algorithm ...
void DoSomething(T* pObj, Int2Type<false>)
T* pNewObj = new T(*pObj);
- nonpolymorphic algorithm ...
}
public:
void DoSomething(T* pObj)
{
DoSomething(pObj, Int2Type<isPolymorphic>());
}
}:

Int2Type comesin very handy as a means to trandate a value into atype. Y ou then pass a temporary
variable of that type to an overloaded function. The overloads implement the two needed algorithms.

The trick works because the compiler does not compile template functions that are never used—it only
checks their syntax. And, of course, you usually perform dispatch at compile time in template code.

Youwill see Int2Type at work in severa placesin Loki, notably in Chapter 11, Multimethods. There,
the template class is a double-dispatch engine, and the boo I template parameter provides the option of
supporting symmetric dispatch or not.

2.5 Type-to-Type Mapping

As Section 2.2 mentions, partial specialization for template functions does not exist. At times, however,
you might need to simulate similar functionality. Consider the following function.

template <class T, class U>
T* Create(const U& arg)

{
}

return new T(arg);

Create makes anew object, passing an argument to its constructor.

Now say thereisarulein your application: Objects of type Widget are untouchable legacy code and must
take two arguments upon construction, the second being a fixed value such as-1. Y our own classes,
derived from Widget, don't have this problem.

How can you specialize Create so that it treats Wi dget differently from all other types? An obvious
solution is to make a separate CreateWidget function that copes with the particular case. Unfortunately,
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now you don't have a uniform interface for creating Wi dgets and objects derived from Widget. This
renders Create unusablein any generic code.

Y ou cannot partially specialize afunction; that is, you can't write something like this:

// lllegal code — don"t try this at home
template <class U>
Widget* Create<Widget, U>(const U& arg)

{
}

return new Widget(arg, -1);

In the absence of partial specialization of functions, the only tool availableis, again, overloading. A
solution would be to pass a dummy object of type T and rely on overloading:

template <class T, class U>
T* Create(const U& arg, T /* dummy */)

{
}

template <class U>
Widget* Create(const U& arg, Widget /* dummy */)

{
}

return new T(arg);

return new Widget(arg, -1);

Such a solution would incur the overhead of constructing an arbitrarily complex object that remains unused.
We need alight vehicle for transporting the type information about T to Create. Thisistherole of
Type2Type: It isatype's representative, alight identifier that you can pass to overloaded functions.

The definition of Type2Type isasfollows.

template <typename T>
struct Type2Type

typedef T OriginalType;
};

Type2Type isdevoid of any value, but distinct types lead to distinct Type2Type instantiations, which is
what we need.

Now you can write the following:

// An implementation of Create relying on overloading
// and Type2Type

template <class T, class U>

T* Create(const U& arg, Type2Type<T>)

{
}

template <class U>
Widget* Create(const U& arg, Type2Type<Widget>)

{

return new T(arg);

return new Widget(arg, -1);

3

// Use Create()

String* pStr = Create('Hello", Type2Type<String>());
Widget* pW = Create(100, Type2Type<Widget>());

)
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The second parameter of Create serves only to select the appropriate overload. Now you can speciaize
Create for various instantiations of Type2Type, which you map to various typesin your application.

2.6 Type Selection

Sometimes generic code needs to select one type or another, depending on a Boolean constant.

Inthe NiftyContainer example discussed in Section 2.4, you might want to use an std: :vector as
your back-end storage. Obviously, you cannot store polymorphic types by value, so you must store

pointers. On the other hand, you might want to store nonpolymorphic types by value, because thisis more
efficient.

In your class template,

template <typename T, bool isPolymorphic>
class NiftyContainer

you need to store either avector<T*> (if isPolymorphicistrue) or avector<T> (if
isPolymorphic isfalse). Inessence, you need atypedef ValueType that iseither T* or T,
depending on the value of isPolymorphic.

Y ou can use atraits class template (Alexandrescu 20004), as follows.

template <typename T, bool isPolymorphic>
struct NiftyContainerValueTraits

{
typedef T* ValueType;
}:
template <typename T>
struct NiftyContainerValueTraits<T, false>

typedef T ValueType;
}:
template <typename T, bool isPolymorphic>
class NiftyContainer

{
typedef NiftyContainerValueTraits<T, isPolymorphic>
Traits;
typedef typename Traits::ValueType ValueType;
}:

Thisway of doing things is unnecessarily clumsy. Moreover, it doesn't scale: For each type selection, you
must define anew traits class templ ate.

Thelibrary class template Se lect provided by Loki makes type selection available right on the spot. Its
definition uses partial template specialization.

template <bool flag, typename T, typename U>
struct Select

{
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typedef T Result;
}:
template <typename T, typename U>
struct Select<false, T, U>

{
typedef U Result;
};

Here's how it works. If Flag evaluatesto true, the compiler uses the first (generic) definition and
therefore Resul t evaluatesto T. If Flag is false, then the specialization entersinto action and therefore
Result evauatesto U.

Now you can define Ni ftyContainer: :ValueType much more easily.

template <typename T, bool isPolymorphic>
class NiftyContainer

{

typedef typename Select<isPolymorphic, T*, T>::Result
ValueType;

2.7 Detecting Convertibility and Inheritance at Compile Time

When you're implementing template functions and classes, a question arises every so often: Given two
arbitrary types T and U that you know nothing about, how can you detect whether or not U inherits from T?
Discovering such relationships at compile time is key to implementing advanced optimizationsin generic
libraries. In a generic function, you can rely on an optimized agorithm if a class implements a certain
interface. Discovering this at compile time means not having to use dynamic_cast, which iscostly at
runtime.

Detecting inheritance relies on a more general mechanism, that of detecting convertibility. The more
general problemis, How can you detect whether an arbitrary type T supports automatic conversion to an
arbitrary type U?

Thereisasolution to this problem, and it relies on sizeof. Thereis a surprising amount of power in
sizeof: You can apply sizeof to any expression, no matter how complex, and sizeof returnsits size
without actually evaluating that expression at runtime. This meansthat sizeof isaware of overloading,
template instantiation, conversion rules—everything that can take part in a C++ expression. In fact,
sizeof conceals acomplete facility for deducing the type of an expression; eventually, sizeof throws
away the expression and returns only the size of its result.2

@ There is a proposal for adding a typeoT operator to C++, that is, an operator returning the type of an
expression. Having typeof would make much template code easier to write and understand. Gnu C++
already implements typeof as an extension. Obviously, typeof and sizeof share the same back end,
because sizeof has to figure out the type anyway.

Theidea of conversion detection relies on using sizeof in conjunction with overloaded functions. We
provide two overloads of afunction: One accepts the type to convert to (U), and the other accepts just
about anything else. We call the overloaded function with atemporary of type T, the type whose
convertibility to U we want to determine. If the function that accepts aU gets called, we know that T is
convertible to U; if the fallback function gets called, then T is not convertible to U. To detect which
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function gets called, we arrange the two overloads to return types of different sizes, and then we
discriminate with sizeof. The types themselves do not matter, as long as they have different sizes.

Let'sfirst create two types of different sizes. (Apparently, char and long double do have different
sizes, but that's not guaranteed by the standard.) A foolproof scheme would be the following:

typedef char Small;
class Big { char dummy[2]; };

By definition, sizeof(Small) is 1. Thesize of Big isunknown, but it's certainly greater than 1, which
is the only guarantee we need.

Next, we need the two overloads. One accepts aU and returns, say, aSmal l:
Small Test(U);

How can we write afunction that accepts "anything else"? A template is not a solution because the
template would always qualify as the best match, thus hiding the conversion. We need a match that's
"worse" than an automatic conversion—that is, a conversion that kicksin if and only if there's no
automatic conversion. A quick look through the conversion rules applied for afunction call yields the
ellipsis match, which is the worst of all—the bottom of the list. That's exactly what the doctor prescribed.

Big Test(...);

(Passing a C++ object to afunction with ellipses has undefined results, but this doesn't matter. Nothing
actually callsthe function. It's not even implemented. Recall that sizeof does not evaluate its argument.)

Now we need to apply sizeof to thecall of Test, passingitaT:

const bool convExists = sizeof(Test(T())) == sizeof(Small);

That'sit! The call of Test gets a default-constructed object—T ()—and then sizeoT extracts the size of
the result of that expression. It can be either sizeof(Small) or sizeof(Big), depending on whether
or not the compiler found a conversion.

Thereisone little problem. If T makes its default constructor private, the expression T() failsto compile
and so does all of our scaffolding. Fortunately, there is a simple solu-tion—just use a strawman function
returning a T. (Remember, were in the sizeof wonderland where no expression is actually evaluated.) In
this case, the compiler is happy and so are we.

T MakeT(); // not implemented
const bool convExists = sizeof(Test(MakeT())) == sizeof(Small);

(By the way, isn't it nifty just how much you can do with functions, like MakeT and Test, that not only
don't do anything but don't even really exist at all?)

Now that we have it working, let's package everything in a class template that hides all the details of type
deduction and exposes only the resuilt.

template <class T, class U>
class Conversion
{
typedef char Small;
class Big { char dummy[2]; };
static Small Test(U);
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static Big Test(...);
static T MakeT(Q);
public:
enum { exists =
sizeof(Test(MakeT())) == sizeof(Small) };
}:

Now you can test the Conversion class template by writing

int main()
{
using namespace std;
cout
<< Conversion<double, int>::exists <<
<< Conversion<char, char*>::exists <<
<< Conversion<size t, vector<int> >::exists << " *;

}

Thislittle program prints "1 0 0." Note that although std: : vector doesimplement a constructor taking
asize_t, the conversion test returns O because that constructor is explicit.

We can implement one more constant inside Conversion: sameType, whichistrue if T and U
represent the same type:

template <class T, class U>
class Conversion

{

... as above ...
enum { sameType = false };

}:
We implement sameType through a partial specialization of Conversion:

template <class T>
class Conversion<T, T>

{
public:
enum { exists = 1, sameType = 1 };

}:
Finaly, we're back home. With the help of Conversion, it isnow very easy to determine inheritance:

#define SUPERSUBCLASS(T, U) \
(Conversion<const U*, const T*>::exists && \
IConversion<const T*, const void*>::sameType)

SUPERSUBCLASS(T, U) evaluatesto true if U inheritsfrom T publicly, or if T and U are actualy the
same type. SUPERSUBCLASS does its job by evaluating the convertibility fromaconst U* toaconst
T*. There are only three casesin which const U* convertsimplicitly to const T*:

1. TisthesametypeasU.
2. T isan unambiguous public base of U.
3. Tisvoid.
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Thelast caseis eliminated by the second test. In practice it's useful to accept thefirst case (T isthe same as
U) as a degenerated case of "is-a" because for practical purposes you can often consider aclassto beits
own superclass. If you need a stricter test, you can write it this way:

#define SUPERSUBCLASS_STRICT(T, U) \
(SUPERSUBCLASS(T, U) && \
IConversion<const T, const U>::sameType)

Why does the code add all those const modifiers? The reason is that we don't want the conversion test to
fail dueto const issues. If template code applies const twice (to atype that's already const), the
second const isignored. In anutshell, by using const in SUPERSUBCLASS, we're always on the safe
side.

Why use SUPERSUBCLASS and not the cuter BASE_OF or INHERITS? For avery practical reason.
Initially Loki used INHERITS. But with INHERITS(T, U) it wasaconstant struggle to say which way
the test worked—did it tell whether T inherited U or vice versa? Arguably, SUPERSUBCLASS(T, U)
makes it clearer which one isfirst and which one is second.

2.8 A Wrapper Around type_info

Standard C++ providesthe std: : type_info class, which gives you the ability to investigate object
types at runtime. Y ou typically use type_info in conjunction with the typeid operator. The typeid
operator returns areferenceto a type_info object:

void Fun(Base* pObj)

{
// Compare the two type_info objects corresponding
// to the type of *pObj and Derived
it (typeid(*pObj) == typeid(Derived))
{
. aha, pObj actually points to a Derived object ...
¥
}

The typeid operator returns a reference to an object of type type_info. In addition to supporting the
comparison operators operator== and operator!=, type_info providestwo more functions:

e Thename member function returns atextual representation of atype, in the form of const
char*. Thereis no standardized way of mapping class names to strings, so you shouldn't expect
typeid(Widget) to return "Widget". A conforming (but not necessarily award-winning)
implementation can have type_info: : name return the empty string for all types.

e Thebefore member function introduces an ordering relationship for type_info objects. Using
type_info: :before, you can perform indexing on type_info objects.

Unfortunately, type_info'suseful capabilities are packaged in away that makes them unnecessarily hard
to exploit. The type_info class disables the copy constructor and assignment operator, which makes
storing type_info objectsimpossible. However, you can store pointersto type_info objects. The
objects returned by typeid have static storage, so you don't have to worry about lifetime issues. Y ou do
have to worry about pointer identity, though.
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The standard does not guarantee that each invocation of, say, typeid(int) returns areference to the
same type_info object. Consequently, you cannot compare pointersto type_info objects. What you
should do isto store pointersto type_info objects and compare them by applying

type_info: :operator== to the dereferenced pointers.

If you want to sort type_info objects, again you must actually store pointersto type_info, and this
time you must use the before member function. Consequently, if you want to use STL's ordered
containers with type_info, you must write alittle functor and deal with pointers.

All thisis clumsy enough to mandate a wrapper class around type_info that stores a pointer to a
type_info object and provides

e All the member functions of type_info
e Vaue semantics (public copy constructor and assignment operator)
e  Seamless comparisons by defining operator< and operator==

Loki defines the wrapper class Type Info which implements such a handy wrapper around type_info.
The synopsis of Type Info follows.

class Typelnfo

public:

// Constructors/destructors

Typelnfo(); // needed for containers

Typelnfo(const std::type_info&);

Typelnfo(const Typelnfo&);

Typelnfo& operator=(const Typelnfo&);

// Compatibility functions

bool before(const Typelnfo&) const;

const char* name() const;
private:

const std::type_info* plInfo_;
};
// Comparison operators
bool operator==(const Typelnfo&, const Typelnfo&);
bool operator!=(const Typelnfo&, const Typelnfo&);
bool operator<(const Typelnfo&, const Typelnfo&);
bool operator<=(const Typelnfo&, const Typelnfo&);
bool operator>(const Typelnfo&, const Typelnfo&);
bool operator>=(const Typelnfo&, const Typelnfo&);

Because of the conversion constructor that acceptsastd: : type_info asaparameter, you can directly
compare objects of type Type Info and std: :type_info, as shown:

void Fun(Base* pObj)

{ Typelnfo info = typeid(Derived);
if (typeid(*pObj) == info)
{ . pBase actually points to a Derived object ...
}

X -

The ability to copy and compare Type I nfo objectsis important in many situations. The cloning factory in
Chapter 8 and one double-dispatch engine in Chapter 11 put Type Info to good use.
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2.9 nul IType and EmptyType

Loki defines two very simple types: Nul IType and EmptyType. You can use them in type calculations
to mark certain border cases.

Nul IType isaclassthat serves asanull marker for types:

class NullType {};

Y ou usually don't create objects of type Nul I Type—itsonly useisto indicate "l am not an interesting
type." Section 2.10 uses Nul I Type for cases in which atype must be there syntactically but doesn't have a
semantic sense. (For example: "To what type does an int point?') Also, the typelist facility in Chapter 3
uses Nul I Type to mark the end of atypelist and to return "type not found" information.

The second helper type is EmptyType. Asyou would expect, EmptyType'sdefinition is
struct EmptyType {};

EmptyType isalegal type to inherit from, and you can pass around values of type EmptyType. You can
use thisinsipid type as a default ("don't care”) type for atemplate. The typelist facility in Chapter 3 uses
EmptyType in such away.

2.10 Type Traits

Traits are a generic programming technique that allows compile-time decisions to be made based on types,
much as you would make runtime decisions based on values (Alexandrescu 2000a). By adding the
proverbial "extralevel of indirection” that solves many software engineering problems, traits let you take
type-related decisions outside the immediate context in which they are made. This makes the resulting
code cleaner, more readable, and easier to maintain.

Usually you will write your own trait templates and classes as your generic code needs them. Certain traits,
however, are applicable to any type. They can help generic programmers to tailor template code better to
the capabilities of atype.

Supposg, for instance, that you implement a copying agorithm:

template <typename Inlt, typename Outlt>
Outlt Copy(Inlt first, Inlt last, Outlt result)

for (; first I= last; ++First, ++result)
*result = *first;

}

In theory, you shouldn't have to implement such an algorithm, because it duplicates the functionality of
std: :copy. But you might need to specialize your copying routine for specific types.

Let's say you develop code for a multiprocessor machine that has a very fast Bi tBlast primitive function,
and you would like to take advantage of that primitive whenever possible.



// Prototype of BitBlast in "SIMD Primitives.h"
void BitBlast(const void* src, void* dest, size t bytes);

BitBlast, of course, works only for copying primitive types and plain old data structures. Y ou cannot
use BitBlast with types having anontrivial copy constructor. Y ou would like, then, to implement Copy
so as to take advantage of BitBlast whenever possible, and fall back on a more general, conservative
algorithm for elaborate types. This way, Copy operations on ranges of primitive types will "automagically”
run faster.

What you need here are two tests:

e ArelnltandOutlt regular pointers (as opposed to fancier iterator types)?
e Isthetypetowhich Inlt and Outlt point copyable with bitwise copy?

If you can find answers to these questions at compile time and if the answer to both questionsis yes, you
can use BitBlast. Otherwise, you must rely on the generic for loop.

Type traits help in solving such problems. The type traits in this chapter owe alot to the type traits
implementation found in the Boost C++ library (Boost).

2.10.1 Implementing Pointer Traits

Loki defines a class template TypeTrai ts that collects ahost of generic typetraits. TypeTraits uses
template specialization internally and exposes the results.

The implementation of most type traits relies on total or partial template specialization (Section 2.2). For
example, the following code determines whether atype T is a pointer:

template <typename T>
class TypeTraits

private:
template <class U> struct PointerTraits

{

enum { result = false };
typedef NullType PointeeType;

3

template <class U> struct PointerTraits<U*>

{
enum { result = true };
typedef U PointeeType;

public:
enum { isPointer = PointerTraits<T>::result };
typedef PointerTraits<T>::PointeeType PointeeType;

3

Thefirst definition introduces the PointerTrai ts classtemplate, which says, "T is not a pointer, and a
pointee type doesn't apply." Recall from Section 2.9 that Null I Type is a placeholder type for "doesn't

apply" cases.

The second definition (the line in bold) introduces a partial specialization of PointerTraits, a
specialization that matches any pointer type. For pointers to anything, the specialization in bold qualifies as
a better match than the generic template for any pointer type. Consequently, the specialization enters into
action for apointer, so resul t evaluates to true. In addition, PointeeType is defined appropriately.
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Y ou can now gain someinsight into the std: :vector: : iterator implementation—isit aplan
pointer or an elaborate type?

int main()

{

const bool

iterlsPtr = TypeTraits<vector<int>::iterator>::isPointer;
cout << "vector<int>::iterator is " <<

iterlsPtr ? "fast” : "smart” << "\n-";

}

Similarly, TypeTraits implements an i sReference constant and aReferencedType type definition.
For areference type T, ReferencedType isthetypeto which T refers; if T isa straight type,
ReferencedType isT itsdlf.

Detection of pointers to members (consult Chapter 5 for a description of pointers to members) is abit
different. The specialization needed is as follows:

template <typename T>
class TypeTraits

private:
template <class U> struct PToMTraits

{

enum { result = false };
}:
template <class U, class V>
struct PToMTraits<U V::*>

{
enum { result = true };
¥
public:
enum { isMemberPointer = PToMTraits<T>::result };

2.10.2 Detection of Fundamental Types

TypeTraits<T> implements an isStdFundamental compile-time constant that says whether or not T
is astandard fundamental type. Standard fundamental types consist of the type void and al numeric types
(which in turn are floating-point and integral types). TypeTrai ts defines constants that reveal the
categories to which a given type belongs.

At the price of anticipating abit, it should be said that the magic of typelists (Chapter 3) makes it easy to
detect whether atype belongs to a known set of types. For now, all you should know is that the expression

TL::IndexOf<T, TYPELIST nn(comma-separated list of types)>::value

(where nn isthe number of typesin the list of types) returns the zero-based position of T inthelist, or -1 if
T does not figure in the list. For example, the expression

TL::IndexOf<T, TYPELIST 4(signed char, short int,
int, long int)>::value

is greater than or equal to zero if and only if T isasigned integral type.
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Following is the definition of the part of TypeTraits dedicated to primitive types.

template <typename T>
class TypeTraits

{
. as above ...
public:
typedef TYPELIST_4(
unsigned char, unsigned short int,
unsigned int, unsigned long int)
Unsignedlints;
typedef TYPELIST 4(signed char, short int, int, long int)
Signedints;
typedef TYPELIST 3(bool, char, wchar_t) Otherlints;
typedef TYPELIST 3(float, double, long double) Floats;
enum { isStdUnsignedInt =
TL::IndexOf<T, Unsignedints>::value >= 0 };
enum { isStdSignedint = TL::IndexOf<T, Signedlnts>::value >= 0 };
enum { isStdintegral = isStdUnsignedInt || isStdSignedint ||
TL::IndexOf <T, OtherlInts>::value >= 0 };
enum { isStdFloat = TL::IndexOf<T, Floats>::value >= 0 };
enum { isStdArith = isStdintegral || isStdFloat };
enum { isStdFundamental = isStdArith |] isStdFloat ||
Conversion<T, void>::sameType };
}:

Using typelistsand TL : : IndexOT gives you the ability to infer information quickly about types, without
having to specialize a template many times. If you cannot resist the temptation to delve into the details of
typelistsand TL : - IndexOT, take a peek at Chapter 3-——but don't forget to return here.

The actual implementation of detection of fundamental typesis more sophisticated, allowing for vendor-
specific extension types (such as int64 or iong long).

2.10.3 Optimized Parameter Types

In template code, you sometimes need to answer the following question: Given an arbitrary type T, what is
the most efficient way of passing and accepting objects of type T as arguments to functions? In general, the
most efficient way isto pass elaborate types by reference and scalar types by value. (Scalar types consist of
the arithmetic types described earlier aswell as enums, pointers, and pointers to members.) For elaborate
types you avoid the overhead of an extratemporary (constructor-plus-destructor calls), and for scalar types
you avoid the overhead of the indirection resulting from the reference.

A detail that must be carefully handled is that C++ does not allow references to references. Thus, if T is
already areference, you should not add one more referencetoit.

A bit of analysis on the optimal parameter type for afunction call engenders the following algorithm. Let's
call the parameter type that we look for ParameterType.

If T isareference to some type, ParameterType isthe same as T (unchanged). Reason: Referencesto

references are not allowed.

Else:
If Tisascaar type (int, float, etc.), ParameterType is T. Reason: Primitive types are

best passed by value.

Else ParameterType isconst T&. Reason: In general, nonprimitive types are best

passed by reference.
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One important achievement of this algorithm is that it avoids the reference-to-reference error, which might
appear if you combined bind2nd with mem_fun standard library functions.

Itiseasy to implement TypeTraits: :ParameterType using the techniques we aready have in hand
and the traits defined earlie—ReferencedType and isPrimitive.

template <typename T>
class TypeTraits

{
... as above ...
public:
typedef Select<isStdArith || isPointer || isMemberPointer,
T, ReferencedTypeé&>::Result
ParameterType;
};

Unfortunately, this scheme fails to pass enumerated types (enums) by value because there is no known
way of determining whether or not atypeisan enum.

The Functor classtemplate defined in Chapter 5 uses TypeTraits: :ParameterType.

2.10.4 Stripping Qualifiers

Given atype T, you can easily get to its constant sibling by simply typing const T. However, doing the
opposite (stripping the const off atype) is slightly harder. Similarly, you sometimes might want to get rid
of thevolati le qudlifier of atype.

Consider, for instance, building a smart pointer class SmartPtr (Chapter 7 discusses smart pointersin
detail). Although you would like to allow users to create smart pointers to const objects—asin
SmartPtr<const Widget>—you still need to modify the pointer to Widget you hold internally. In
this casg, inside SmartPtr you need to obtain Widget from const Widget.

Implementing a"const stripper" is easy, again by using partial template specialization:

template <typename T>
class TypeTraits

{
. as above ...
private:
template <class U> struct UnConst
{
typedef U Result;
template <class U> struct UnConst<const U>
{
typedef U Result;
public:
typedef UnConst<T>::Result NonConstType;
}:

2.10.5 Using TypeTraits

TypeTraits can help you do alot of interesting things. For one thing, you can now implement the Copy
routineto use Bi tBlast (the problem mentioned in Section 2.10) by simply assembling techniques
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presented in this chapter. Y ou can use TypeTrai ts to figure out type information about the two iterators
and the Int2Type template for dispatching the call either to BitBlast or to a classic copy routine.

enum CopyAlgoSelector { Conservative, Fast };

// Conservative routine-works for any type

template <typename Inlt, typename Outlt>

Outlt Copylmpl(Inlt first, Inlt last, Outlt result,
Int2Type<Conservative>)

{
for (; first I= last; ++First, ++result)
*result = *first;
return result;
}

// Fast routine-works only for pointers to raw data
template <typename Inlt, typename Outlt>
Outlt Copylmpl(Inlt first, Inlt last, Outlt result,

Int2Type<Fast>)
{
const size t n = last-first;
BitBlast(first, result, n * sizeof(*first));
return result + n;
}

template <typename Inlt, typename Outlt>
Outlt Copy(Inlt first, Inlt last, Outlt result)

typedef TypeTraits<Inlt>::PointeeType SrcPointee;

typedef TypeTraits<Outlt>::PointeeType DestPointee;

enum { copyAlgo =
TypeTraits<Inlt>::isPointer &&
TypeTraits<Outlt>::isPointer &&
TypeTraits<SrcPointee>: :isStdFundamental &&
TypeTraits<DestPointee>: :isStdFundamental &&
sizeof(SrcPointee) == sizeof(DestPointee) ? Fast :

Conservative };
return Copylmpl(First, last, result, Int2Type<copyAlgo>);

}

Although Copy itself doesn't do much, the interesting part is right in there. The enum value copyAlgo
selects one implementation or the other. Thelogic isasfollows: UseBitBlast if the two iterators are
pointers, if both pointed-to types are fundamental, and if the pointed-to types are of the same size. The last
condition is an interesting twist. If you do this:

int* pl e
int* p2 e
unsigned Int* p3 = ...

Copy(pl, p2, p3);

then Copy callsthe fast routine, as it should, although the source and destination types are different.

The drawback of Copy isthat it doesn't accelerate everything that could be accelerated. For example, you
might have a plain C-like struct containing nothing but primitive data—a so-called plain old data, or
POD, structure. The standard allows bitwise copying of POD structures, but Copy cannot detect
"PODness," so it will call the slow routine. Here you have to rely, again, on classic traits in addition to
TypeTraits. For instance:

template <typename T> struct SupportsBitwiseCopy
{
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enum { result = TypeTraits<T>::isStdFundamental };
}:
template <typename Inlt, typename Outlt>
Outlt Copy(Inlt first, Inlt last, Outlt result,
Int2Type<true>)
{

typedef TypeTraits<Inlt>::PointeeType SrcPointee;
typedef TypeTraits<Outlt>::PointeeType DestPointee;
enum { useBitBlast =
TypeTraits<Inlt>::isPointer &&
TypeTraits<Outlt>::isPointer &&
SupportsBitwiseCopy<SrcPointee>::result &&
SupportsBitwiseCopy<DestPointee>: :result &&
sizeof(SrcPointee) == sizeof(DestPointee) };
return Copylmpl(First, last, Int2Type<useBitBlast>);

}

Now, to unleash BitBlast for your POD types of interest, you need only specialize
SupportsBitwiseCopy and put atrue in there:

template<> struct SupportsBitwiseCopy<MyType>

{
enum { result = true };

}:
2.10.6 Wrapping Up

Table 2.1 defines the complete set of traits implemented by Loki.

2.11 Summary

A number of techniques form the building blocks of the components presented in this book. Most of the
techniques are related to template code.

e Compile-time assertions (Section 2.1) help libraries to generate meaningful error messagesin
templated code.

e Partial template specialization (Section 2.2) alows you to specialize atemplate, not for a specific,
fixed set of parameters, but for afamily of parameters that match a pattern.

e Local classes (Section 2.3) let you do interesting things, especialy inside template functions.

e Mapping integral constantsto types (Section 2.4) eases the compile-time dispatch based on
numeric values (notably Boolean conditions).

e Type-to-type mapping (Section 2.5) allows you to substitute function overloading for function
template partial specialization, afeature missing in C++.

e Type selection (Section 2.6) allows you to select types based on Boolean conditions.

e Detecting convertibility and inheritance at compile time (Section 2.7) gives you the ability to
figure out whether two arbitrary types are convertible to each other, are aliases of the same type,
or inherit one from the other.

e Typelnfo (Section 2.8) implements awrapper around std: : type_ info, featuring value
semantics and ordering comparisons.

e TheNullType and EmptyType classes (Section 2.9) function as placeholder types in template
metaprogramming.

e TheTypeTraits template (Section 2.10) offers a host of general-purpose traits that you can use
to tailor code to specific categories of types.
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Table 2.1. TypeTraits<T> Members

Name \Kind |Comments
isPointer Boolean True if T is a pointer.
constant
PointeeType Type Evaluates to the type to which T points, if T is a pointer.
Otherwise, evaluates to Nul I Type.
isReference Boolean True if T is a reference.
constant
ReferencedType |Type If T is a reference, evaluates to the type to which T refers.
Otherwise, evaluates to the type T itself.
ParameterType Type The type that's most appropriate as a parameter of a
nonmutable function. Can be either T or const T&.
isConst Boolean True if T is a const-qualified type.
constant
\NonConstType \Type |Removes the const qualifier, if any, from type T.
isVolatile Boolean True if T is a volati le-qualified type.
constant
‘NonVolati leType \Type |Removes the volati le qualifier, if any, from type T.
NonQualifiedType|Type Removes both the const and volati le qualifiers, if any, from
type T.
isStdUnsignedInt|Boolean True if T is one of the four unsigned integral types (unsigned
constant  |char, unsigned short int, unsigned int, or unsigned
long int).
isStdSignedInt |Boolean True if T is one of the four signed integral types (signed
constant  |char, short int, int, or long int).
isStdintegral Boolean True if T is a standard integral type.
constant
isStdFloat Boolean True if T is a standard floating-point type (Float, double, or
constant long double).
isStdArith Boolean True if T is a standard arithmetic type (integral or floating
constant point).
isStdFundamental |Boolean True if T is a fundamental type (arithmetic or void).
constant
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Chapter 3. Typelists

Typelists are a C++ tool for manipulating collections of types. They offer for types all the fundamental
operations that lists of values support.

Some design patterns specify and manipulate collections of types, either related by inheritance or not.
Notable examples are Abstract Factory and Visitor (Gamma et al. 1995). If you use traditional coding
techniques, you can manipulate collections of types by sheer repetition. This repetition leads to a subtle
form of code bloating. Most people don't think it could get any better than that. However, typdlists let you
automate tasks that you usually confine to your editor's macro capability. Typelists bring power from
another planet to C++, enabling it to support new, interesting idioms.

This chapter is dedicated to presenting a complete typelist facility for C++, together with a couple of
examples of their use. After reading this chapter, you will

Understanding the typelist concept

Understand how typelists can be created and processed

Be able to manipulate typelists effectively

Know the main uses of typelists and the programming idioms they enable and support

Chapters 9, 10, and 11 use typelists as an enabling technology.

3.1 The Need for Typelists

Sometimes you must repeat the same code for a number of types, and templates cannot be of help.
Consider, for instance, implementing an Abstract Factory (Gamma et al. 1995). Here you define one
virtual function for each type in a collection of types known at design time:

class WidgetFactory

{

public:
virtual Window* CreateWindow() = O;
virtual Button* CreateButton() = O;
virtual ScrollBar* CreateScrollBar() =

}:

If you want to generalize the concept of Abstract Factory and put it into alibrary, you have to make it
possible for the user to create factories of arbitrary collections of types—not just Window, Button, and
Scrol IBar. Templates don't support this feature out of the box.

Although at first Abstract Factory may not seem to provide much opportunity for abstraction and
generalization, there are a few things that make the investigation worthwhile:

1. If you cannot take a stab at generalizing the fundamental concept, you won't be given a chance to
generalize the concrete instances of that concept. Thisisacrucial principle. If the essence escapes
generalization, you continue to struggle with the concrete artifacts of that essence. In the Abstract
Factory case, athough the abstract base classis quite ssmple, you can get a nasty amount of code
duplication when implementing various concrete factories.

2. You cannot easily manipulate the member functions of WidgetFactory (see the previous code).
A collection of virtual function signatures is essentially impossible to handle in a generic way. For
instance, consider this;
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template <class T>
T* MakeRedWidget(WidgetFactory& factory)

T* pW = factory.CreateT(); // huh???
pW->SetColor(RED);
return pW;

}

You need to call CreateWindow, CreateButton, or CreateScrol IBar, dependingon T
being aWindow, Button, or Scrol IBar, respectively. C++ doesn't allow you to do this kind of
text substitution.

3. Last, but not least, good libraries have the nice side effect of putting aside endless debates about
naming conventions (createWindow, create_window, or CreateWindow?) and little tweaks
like that. They introduce a preferred, standardized way of doing things. Abstracting, well, Abstract
Factory would have this nice side effect.

Let's put together awish list. For addressing item 1, it would be nice if we could create a
WidgetFactory by passing a parameter list to an AbstractFactory template:

typedef AbstractFactory<Window, Button, ScrollBar> WidgetFactory;

For addressing item 2, we need atemplate-like invocation for various CreateXxx functions, such as
Create<Window>(), Create<Button>(), and so on. Then we can invoke it from generic code:

template <class T>
T* MakeRedWidget(WidgetFactory& factory)

T* pW = factory.Create<T>(); // aha!
pW->SetColor(RED);
return pW;

}

However, we cannot fulfill these needs. First, the typedef for WidgetFactory above isnot possible
because templates cannot have a variable number of parameters. Second, the template syntax
Create<Xxx>() isnot legal because virtual functions cannot be templates.

By this point, you should see what good abstraction and reuse opportunities we have, and how badly we
are constrained in exploiting these opportunities due to language limitations.

Typelists make it possible to create generic Abstract Factories and much more.

3.2 Defining Typelists

For avariety of reasons, C++ is alanguage that leads its users sometimes to say, "These are the smartest
fivelines of code | ever wrote." Maybe it isits semantic richness or the ever-exciting (and surprising?) way
its features interact. In line with this tradition, typelists are fundamentally very simple:

template <class T, class U>
struct Typelist

typedef T Head;
typedef U Tail;
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3

namespace TL

{
.. .typelist algorithms ...

Everything related to typelists, except the definition of Typel ist itsdf, livesin the TL namespace. In
turn, TL isinside the Lok i namespace, asisall of Loki's code. To simplify examples, this chapter omits
mentioning the TL namespace. Y ou'll have to remember it when using the Typel ist.h header. (If you
forget, the compiler will remind you.)

Typelist holdstwo types. They are accessible through the Head and Tai I inner names. That'sit! We
don't need typelists that hold three or more elements, because we already have them. For instance, here'sa
typelist of three elements holding the three char variants of C++:

typedef Typelist<char, Typelist<signed char, unsigned char> >
CharList;

(Notice the annoying, but required, space between the two > tokens at the end.)

Typelists are devoid of any value: Their bodies are empty, they don't hold any state, and they don't define
any functionality. At runtime, typelists don't carry any value at al. Their only raison d'atreisto carry type
information. It follows that any typelist processing must necessarily occur at compile time, not at runtime.
Typelists are not meant to be instantiated, although there's no harm in doing this. Thus, whenever this book
talks about "atypelist,” it really isreferring to atypelist type, not atypelist value. Typelist values are not
interesting; only their types are of use. (Section 3.13.2 shows how to use typelists to create collections of
values.)

The property of templates used here is that atemplate parameter can be any type, including another
instantiation of the same template. Thisis an old, well-known property of templates, often used to
implement ad hoc matrices as vector< vector<double> >. Because Typel ist acceptstwo
parameters, we can always extend a given Type l i st by replacing one of the parameters with another
Typelist, ad infinitum.

Thereis alittle problem, though. We can express typelists of two types or more, but we're unable to
express typelists containing zero or one type. What's needed isanull list type, and the Nul I Type class
described in Chapter 2 is exactly suited for such uses.

We establish the convention that every typelist must end with aNul I Type. Nul I Type serves as a useful
termination marker, much like the \O0 that helps traditional C string functions. Now we can define a
typelist of only one element:

// See Chapter 2 for the definition of NullType
typedef Typelist<int, NullType> OneTypeOnly;

Thetypelist containing the three char variants becomes

typedef Typelist<char, Typelist<signed char,
Typelist<unsigned char, NullType> > > AllCharTypes;

Therefore, we have obtained an open-ended Type | i st template that can, by compounding abasic cell,
hold any number of types.



Let's see now how we can manipulate typelists. (Again, this means Typel i st types, not Typelist
objects.) Prepare for an interesting journey. From here on we delve into the underground of C++, aworld
with strange, new rules—the world of compile-time programming.

3.3 Linearizing Typelist Creation

Right off the bat, typelists are just too LISP-ish to be easy to use. LI1SP-style constructs are great for LISP
programmers, but they don't dovetail nicely with C++ (to say nothing about the spaces between >s that you
have to take care of). For instance, here's atypelist of integral types:

typedef Typelist<signed char,
Typelist<short int,
Typelist<int, Typelist<long int, NullType> > > >
Signedintegrals;

Typelists might be a cool concept, but they definitely need nicer packaging.

In order to linearize typelist creation, the typelist library (see Loki'sfile Typelist.h) defines a plethora
of macros that transform the recursion into simple enumeration, at the expense of tedious repetition. Thisis
not a problem, however. The repetition is done only once, in the library code, and it scales typeliststo a
large library-defined number (50). The macros look like this:

#define TYPELIST _1(T1) Typelist<T1l, NullType>
#define TYPELIST_2(T1, T2) Typelist<Tl, TYPELIST_1(T2) >
#define TYPELIST_3(T1, T2, T3) Typelist<Tl, TYPELIST_2(T2, T3) >
#define TYPELIST 4(T1, T2, T3, T4) \
Typelist<Tl, TYPELIST_3(T2, T3, T4) >

#define TYPELIST 50(...) ...

Each macro uses the previous one, which makes it easy for the library user to extend the upper limit,
should this necessity emerge.

Now the earlier type definition of SignedIntegrals can be expressed in a much more pleasant way:

typedef TYPELIST 4(signed char, short int, int, long int)
Signedintegrals;

Linearizing typelist creation is only the beginning. Typelist manipulation is still very clumsy. For instance,
accessing the last element in Signed Integrals requires using
Signedintegrals::Tail::Tail::Head. It'snot yet clear how we can manipulate typelists
genericaly. It'stime, then, to define some fundamental operations for typelists by thinking of the primitive
operations available to lists of values.

3.4 Calculating Length

Here's asimple operation. Given atypelist TList, obtain a compile-time constant that evaluates its length.
The constant ought to be a compile-time one because typelists are static constructs, so we'd expect al
calculations related to typelists to be performed at compile time.
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The idea underlying most typelist manipulations isto exploit recursive templates, which are templates that
use instantiations of themselves as part of their definition. While doing this, they pass a different template
argument list. The recursion obtained this way is stopped with an explicit specialization for a border case.

The code that computes atypelist's length is, again, quite concise:

template <class TList> struct Length;
template <> struct Length<NullType>

{
enum { value = 0 };
};
template <class T, class U>
struct Length< Typelist<T, U> >

{
enum { value = 1 + Length<U>::value };

¥

Thisisthe C++ way of saying, "The length of anull typélist is 0. The length of any other typelistis 1 plus
the length of the tail of that typelist.”

The implementation of Length uses partial template specialization (see Chapter 2) to distinguish between
anull type and atypelist. The first specialization of Length istotally specialized and matches only

Nul IType. The second, partial, speciaization of Length matchesany Typelist<T, U>,including
compound typelists, that is, thoseinwhich U isinturn aTypelist<V, W>.

The second specialization performs the computation by recursion. It defines value as 1 (which counts the
head T) plusthe length of the tail of the typelist. When the tail becomes Nul I Type, the first definitionis
matched, the recursion is stopped, and so is the length calculation, which comes back nicely with the resuilt.
Suppose, for example, that you want to define a C-style array that collects pointersto std: : type_info
objectsfor al signed integrals. Using Length, you can write

std: :type_info* intsRtti[Length<Signedintegrals>::value];
Y ou allocate four elements for intsRtti through acompile-time calculation.

™ You can also initialize the array without code repetition. Doing this is left as an exercise for the reader.

3.5 Intermezzo

Y ou can find early examples of template metaprograms in V eldhuizen (1995). Czarnecki and Eisenecker
(2000) discuss this problem in depth and provide afull collection of compile-time simulations for C++
Statements.

The conception and implementation of Length resembles a classic recursion example given in computer
science classes: the algorithm that computes the length of asingly linked list structure. (There are two
major differences, though: The algorithm for Length is performed at compile time, and it operates on
types, not on values.)

This naturally leads to the following question: Couldn't we develop aversion of Length that'siterative,
instead of recursive? After al, iteration is more natural to C++ than recursion. Getting an answer to this
guestion will guide us in implementing the other Typel ist facilities.
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The answer is no, and for interesting reasons.

Our tools for compile-time programming in C++ are templates, compile-time integer calculations, and type
definitions (typedeTs). Let's see in what ways each of these tools serves us.

Templates—more specifically, template specialization—provide the equivalent of i f statements at
compile time. As seen earlier in the implementation of Length, template specialization enables
differentiation between typelists and other types.

Integer calculations allow you to make true value computations, to jump from typesto values. However,
thereis apeculiarity: All compile-time values areimmutable. After you've defined an integral constant, say
an enumerated value, you cannot change it (that is, assign another valueto it).

Type definitions (typedefs) can be seen as introducing named type constants. Again, after definition,
they are frozen—you cannot later redefine a typedef'd symbol to hold another type.

These two peculiarities of compile-time calculation make it fundamentally incompatible with iteration.
Iteration is about holding an iterator and changing it until some condition is met. Because we don't have
mutable entities in the compile-time world, we cannot do any iteration at all. Therefore, athough C++ is
mostly an imperative language, any compile-time computation must rely on techniques that definitely are
reminiscent of pure functional languages—languages that cannot mutate values. Be prepared to recurse
heavily.

3.6 Indexed Access

Having access by index to the elements of atypelist would certainly be a desirable feature. 1t would
linearize typelist access, making it easier to manipulate typelists comfortably. Of course, as with all the
entities we manipulate in our static world, the index must be a compile-time value.

The declaration of atemplate for an indexed operation would look like this:
template <class TList, unsigned int index> struct TypeAt;

Let's define the algorithm. Keep in mind that we cannot use mutable, modifiable values.

TypeAt
Inputs: Typelist TList, index i
Output: Inner type Resul t

If TListisnon-null and i iszero, then Result isthehead of TList.
Else
If TListisnon-null andindex i isnonzero, then Resul t isobtained by applying
TypeAt to thetail of TList and i-1.
Else there is an out-of-bound access that translates into a compile-time error.

Here's the incarnation of the TypeAt agorithm:

template <class Head, class Tail>
struct TypeAt<Typelist<Head, Tail>, 0>

typedef Head Result;



}:
template <class Head, class Tail, unsigned int i>
struct TypeAt<Typelist<Head, Tail>, i>

typedef typename TypeAt<Tail, i - 1>::Result Result;
};

If you try an out-of-bound access, the compiler will complain that there's no specialization defined for
TypeAt<NulIType, x>, wherex isthe amount by which you bypass the list size. This message could
be a bit more informative, but it's not bad, either.

Loki (file Typelist.h) aso definesavariant of TypeAt, called TypeAtNonStrict.
TypeAtNonStrict implements the same functionality as TypeAt, with the difference that an out-of-
bound accessis more forgiving, yielding a user-chosen default type as the result instead of a compile-time
error. The generalized callback implementation described in Chapter 5 uses TypeAt-NonStrict.

Indexed access in typelists takes linear time according to the size of the typelist. For lists of values, this
method isinefficient (for thisreason, std: : 1 i st does not define an operator[]). However, in the case
of typelists, the time is consumed during compilation, and compiletimeisin a sense "free."2!

(2] Actually, this is not quite true for large projects. It is possible, at least in theory, that heavy typelist
manipulation could slow down compilation time considerably. Anyway, a program that contains very large
typelists is either runtime speed-hungry—in which case you are willing to accept slower compilations—or too
coupled, in which case a design review would be in order.

3.7 Searching Typelists

How would you search atypelist for a given type? Let's try to implement an 1ndexOT agorithm that
computes theindex of atypein atypedlist. If the typeis not found, the result will be aninvalid value, say -
1. The algorithm is a classic linear search implemented recursively.

IndexOf
Inputs: Typelist TList, type T
Output: Inner compile-time constant value

If TListisNullType, thenvaueis-1.
Else
If thehead of TList isT, thenvalueisO.
Else
Compute the result of IndexOf appliedto TList'stail and T into atemporary
value temp.
If tempis-1,thenvalueis-1
Elsevalue is1 plus temp.

IndexOf isarelatively simple algorithm. Special care is given to propagate the "not found" value (-1) to
the result. We need three specializations—one for each branch in the algorithm. The last branch (value's
computation from temp) is a numeric calculation that we carry with the conditional operator ?:. Here's
the implementation:

template <class TList, class T> struct IndexOf;

template <class T>

48



struct IndexOf<NullType, T>

{
enum { value = -1 };

¥

template <class T, class Tail>
struct IndexOf<Typelist<T, Tail>, T>

{
enum { value = 0 };

3

template <class Head, class Tail, class T>
struct IndexOf<Typelist<Head, Tail>, T>

L
private:

enum { temp = IndexOf<Tail, T>::value };
public:

enum { value = temp == -1 ? -1 - 1 + temp };
}:

3.8 Appending to Typelists

We need a means to append atype or atypelist to atypelist. Because modifying atypelist is not possible,
as discussed previously, we will "return by value" by creating a brand new typelist that contains the resuilt.

Append
Inputs: Typelist TList, type or typelist T
Output: Inner type definition Resul t

If TListisNullTypeand T isNulIType, thenResultisNul I Type.
Else
If TListisNullType and T isasingle (nontypelist) type, then Resul t isatypelist hav-
ing T asits only element.
Else
If TListisNullType and T isatypelist, Result isT itsdlf.
Elseif TList isnon-null, then Resul t isatypelist having TList: :Head asits
head and the result of appending Tto TList: :Tail asitstail.

This algorithm maps naturally to the following code:

template <class TList, class T> struct Append;
template <> struct Append<NullType, NullType>

typedef NullType Result;
}:

template <class T> struct Append<NullType, T>

{
typedef TYPELIST_1(T) Result;
}:

template <class Head, class Tail>
struct Append<NullType, Typelist<Head, Tail> >
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{
typedef Typelist<Head, Tail> Result;
};

template <class Head, class Tail, class T>
struct Append<Typelist<Head, Tail>, T>

{
typedef Typelist<Head,
typename Append<Tail, T>::Result>
Result;
}:

Note, again, how the last partialy speciaized version of Append instantiates the Append template
recursively, passing it the tail of the list and the type to append.

Now we have a unified Append operation for single types and typelists. For instance, the statement

typedef Append<Signedintegrals,
TYPELIST_3(float, double, long double)>::Result
SignedTypes;

defines alist containing all signed numeric typesin C++.

3.9 Erasing a Type from a Typelist

Now for the opposite operation— erasing a type from a typelist—we have two options: Erase only the first
occurrence, or erase all occurrences of a given type.

Let's think of removing only the first occurrence.

Erase
Input: Typelist TList, typeT
Output: Inner type definition Resul t

If TListisNullType, thenResultisNullType
Else
If TisthesameasTList: :Head, thenResultisTList::Tail.
ElseResul t isatypelist having TList: :Head asits head and the result of applying
Eraseto TList::Tail and T asitstail.

Here's how this algorithm maps to C++.

template <class TList, class T> struct Erase;

template <class T> // Specialization 1
struct Erase<NullType, T>

typedef NullType Result;
}:
template <class T, class Tail> // Specialization 2

struct Erase<Typelist<T, Tail>, T>

{
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typedef Tail Result;
};

template <class Head, class Tail, class T> // Specialization 3
struct Erase<Typelist<Head, Tail>, T>

{
typedef Typelist<Head,
typename Erase<Tail, T>::Result>
Result;
}:

Asin the case of TypeAt, there isno default version of the template. This means you can instantiate
Erase only with certain types. For instance, Erase<double, int> yieldsacompile-time error because
there's no match for it. Erase needsitsfirst parameter to be atypelist.

Using our SignedTypes definition, we can now say the following:

// SomeSignedTypes contains the equivalent of

// TYPELIST_6(signed char, short int, int, long int,

// double, long double)

typedef Erase<SignedTypes, float>::Result SomeSignedTypes;

Let'stap into the recursive erase algorithm. The EraseAl | template erases all occurrences of atypein a
typelist. Theimplementation is similar to Erase's, with one difference. When detecting a type to erase, the
algorithm doesn't stop. EraseAl I continues looking for and removing matches down the tail of thelist by
recursively applying itself:

template <class TList, class T> struct EraseAll;

template <class T>
struct EraseAll<NullType, T>

{
typedef NullType Result;
}:

template <class T, class Tail>
struct EraseAll<Typelist<T, Tail>, T>

// Go all the way down the list removing the type
typedef typename EraseAll<Tail, T>::Result Result;

¥

template <class Head, class Tail, class T>
struct EraseAll<Typelist<Head, Tail>, T>

// Go all the way down the list removing the type
typedef Typelist<Head,
typename EraseAll<Tail, T>::Result>
Result;

3.10 Erasing Duplicates

An important operation on typelistsis to erase duplicate values.
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The need is to transform a typelist so that each type appears only once. For example, from this:
TYPELIST_6(Widget, Button, Widget, TextField, ScrollBar, Button)
we need to obtain this;

TYPELIST 4(Widget, Button, TextField, ScrollBar)

This processing is a bit more complex, but, as you might guess, we can use Erase to help.

NoDuplicates
Input: Typelist TList
Output: Inner type definition Resul t

If TListisNullType, thenResultisNullType

Else
Apply NoDuplicatesto TList: :Tail, obtaining atemporary typelist L1.
Apply ErasetoLl and TList: :Head. Obtain L2 asthe result.
Resultisatypelist whoseheadisTList: :Head and whosetail isL2.

Here's how this algorithm trandlates to code:

template <class TList> struct NoDuplicates;
template <> struct NoDuplicates<NullType>

{
typedef NullType Result;
}:

template <class Head, class Tail>
struct NoDuplicates< Typelist<Head, Tail> >

{
private:
typedef typename NoDuplicates<Tail>::Result L1;
typedef typename Erase<Ll, Head>::Result L2;
public:
typedef Typelist<Head, L2> Result;
}:

Why was Erase enough when EraseAl I would have seemed appropriate? We want to remove all
duplicates for atype, right? The answer isthat Erase is applied after the recursion to NoDuplicates.
This means we erase atype from alist that already has no duplicates, so at most one instance of the type to
be erased will appear. This recursive programming is quite interesting.

3.11 Replacing an Element in a Typelist

Sometimes a replacement is needed instead of aremoval. Asyou'll seein Section 3.12, replacing atype
with another is an important building block for more advanced idioms.

We need to replace type T with type U in atypelist TList.
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Replace
Inputs: Typelist TList, type T (to replace), and type U (to replace with)
Output: Inner type definition Resul t

If TListisNullType, thenResultisNullType
Else
If the head of the typelist TList isT, then Result isatypelist with U asits head and
TList::Tail asitstail.
ElseResul t isatypelist with TList: :Head asits head and the result of applying
ReplacetoTList, T,and U asitstalil.

After you figure out the correct recursive algorithm, the code writes itself:

template <class TList, class T, class U> struct Replace;

template <class T, class U>
struct Replace<NullType, T, U>

typedef NullType Result;
};

template <class T, class Tail, class U>
struct Replace<Typelist<T, Tail>, T, U>

{
typedef Typelist<U, Tail> Result;

template <class Head, class Tail, class T, class U>
struct Replace<Typelist<Head, Tail>, T, U>

{
typedef Typelist<Head,
typename Replace<Tail, T, U>::Result>
Result;
}:

We easily obtain the ReplaceAl I agorithm by changing the second specialization for one that
recursively appliesthe algorithmto Tai l.

3.12 Partially Ordering Typelists

Suppose we want to order atypelist by inheritance relationship. Wed like, for instance, derived types to
appear before base types. For example, say we have a class hierarchy like the one in Figure 3.1:

Figure 3.1. A simple class hierarchy
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Widget

ScrollBar Button

GraphicButton

If we have this typelist:

TYPELIST _4(Widget, ScrollBar, Button, GraphicButton)

the challenge isto transform it into

TYPELIST_4(ScrollBar, GraphicButton, Button, Widget)

That is, we need to bring the most derived types to the front and leave the order of sibling types unaltered.

This seems like an exercise of intellectual value only, but there are important practical applicationsfor it.
Scanning atypelist ordered with the most derived typesfirst ensures a bottom-up traversal of a class
hierarchy. The double-dispatch engine in Chapter 11 applies thisimportant property for figuring out
information about types.

When ordering a collection, we need an ordering function. We already have a compile-time meansto
detect inheritance relationships, described in detail in Chapter 2. Recall that we have a handy macro,
SUPERSUBCLASS(T, U), which evaluatesto true if U isderived from T. We just have to combine the
inheritance detection mechanism with typelists.

We cannot use a full-fledged sorting algorithm here because we don't have atotal ordering relationship; we
don't have the equivalent of operator< for classes. Two sibling classes cannot be ordered by
SUPERSUBCLASS(T, U).Wewill therefore use a custom algorithm that will bring derived classes to the
front and will let other classes remain in the same relative positions.

DerivedToFront
Input: Typelist TList
Output: Inner type definition Resul t

If TListisNullType, thenResultisNullType.
Else



Find the most derived typefrom TList: :Head in TList: :Tail. Storeitina

temporary variable TheMostDerived.
Replace TheMostDerived in TList: :Tail with TList: :Head, obtaining L as the result.
Build the result as atypelist having TheMostDerived asits head and L asitstail.

When this algorithm is applied to atypelist, derived types will migrate to the top of the typelist, and base
types will be pushed to the bottom.

There is a piece missing here—the algorithm that finds the most derived type of a given type in atypelist.
Because SUPERSUBCLASS yields a compile-time Boolean value, well find the little Select class
template (also presented in Chapter 2) to be useful. Recall that Select is atemplate that selects one of
two types based on a compile-time Boolean constant.

TheMostDerived agorithm accepts atypelist and atype Base and returns the most derived type from
Base in thetypelist (or possibly Base itself, if no derived typeisfound). It looks like this:

MostDerived
Input: Typelist TList, typeT
Output: Inner type definition Resul t

If TListisNullType,theresultisT.

Else
Apply MostDerived to TList: :Tail and Base. Obtain Candidate.
If TList: :Head isderived from Candidate, theresultisTList: :Head.
Else, theresult isCandidate.

The implementation of MostDer ived isasfollows:

template <class TList, class T> struct MostDerived;

template <class T>
struct MostDerived<NullType, T>

{
typedef T Result;
};

template <class Head, class Tail, class T>
struct MostDerived<Typelist<Head, Tail>, T>

{

private:
typedef typename MostDerived<Tail, T>::Result Candidate;
public:
typedef typename Select<
SUPERSUBCLASS(Candidate, Head),
Head, Candidate>::Result Result;

¥

TheDerivedToFront agorithm usesMostDerived asaprimitive. HereisDerivedToFront's
implementation:

template <class T> struct DerivedToFront;

template <>
struct DerivedToFront<NullType>

{
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typedef NullType Result;
};

template <class Head, class Tail>
struct DerivedToFront< Typelist<Head, Tail> >

{

private:
typedef typename MostDerived<Tail, Head>::Result
TheMostDerived;
typedef typename Replace<Tail,
TheMostDerived, Head>::Result L;
public:
typedef Typelist<TheMostDerived, L> Result;
}:

This complex typelist manipulation is of considerable strength. The Der ivedToFront transformation
effectively automates type processing that otherwise can be performed only with much discipline and
attention. Automatic maintenance of parallel class hierarchies, anyone?

3.13 Class Generation with Typelists

If, until now, you found typelists intriguing, interesting, or just ugly, you haven't seen anything yet. This
section is dedicated to defining fundamental constructs for code generation with typelists. That is, we don't
write code anymore; instead, we put the compiler to work generating code for us. These constructs use one
of the most powerful constructs of C++, afeature unmatched by any other language—template template
parameters.

So far, typelist manipulation has not yielded actual code; the processing has produced only typelists, types,
or compile-time numeric constants (as was the case with Length). Let's tap into generating some real
code, that is, stuff that leaves traces in the compiled code.

Typelist objects have no use as they are; they are devoid of any runtime state or functionality. An
important need in programming with typelistsis to generate classes from typelists. Application
programmers sometimes need to fill a class with code—be it virtua function signatures, data declarations,
or function implementations—in ways directed by atypelist. We will try to automate such processes with
typelists.

Because C++ lacks compile-time iteration or recursive macros, the task of adding some code for each type
inatypelist isdifficult. You can use partial template specialization in ways resembling the algorithms
described earlier, but implementing this solution in user code is clumsy and complicated. Loki should be of
help with this task.

3.13.1 Generating Scattered Hierarchies

A powerful utility template provided by Loki makesit easy to build classes by applying each typein a
typelist to a basic template, provided by the user. Thisway, the clumsy process of distributing typesin the
typelist to user code is encapsulated in the library; the user need only define a simple template of one
parameter.

Thelibrary class templateis called GenScatterHierarchy. Although it has a simple definition,
GenScatterHierarchy has amazing horsepower under its hood, as you'll see soon. For now, let's look
at its definition.
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B) This is one of those situations in which presenting the idea before its potential applications (as opposed to
a problem-solution sequence) is more appropriate.

template <class TList, template <class> class Unit>
class GenScatterHierarchy;

// GenScatterHierarchy specialization: Typelist to Unit
template <class T1, class T2, template <class> class Unit>
class GenScatterHierarchy<Typelist<T1l, T2>, Unit>

: public GenScatterHierarchy<T1l, Unit>

, public GenScatterHierarchy<T2, Unit>

{

public:
typedef Typelist<T1l, T2> TList;
typedef GenScatterHierarchy<Tl, Unit> LeftBase;
typedef GenScatterHierarchy<T2, Unit> RightBase;

3

// Pass an atomic type (non-typelist) to Unit
template <class AtomicType, template <class> class Unit>
class GenScatterHierarchy : public Unit<AtomicType>

{
typedef Unit<AtomicType> LeftBase;
};

// Do nothing for NullType
template <template <class> class Unit>
class GenScatterHierarchy<NullType, Unit>

{
¥

Template template parameters work much as you would expect (see also Chapter 1). Y ou pass atemplate
classUnit to GenScatterHierarchy asits second argument. Internally, GenScatterHierarchy
uses its template template parameter Uni t just as it would have used any regular template class with one
template parameter. The power comes from your ability—as the user of GenScatterHierarchy—to
pass it atemplate written by you.

What does GenScatterHierarchy do? If itsfirst template argument is an atomic type (as opposed to a
typelist), GenScatterHierarchy passesthat type to Unit, and inherits from the resulting class
Unit<T>. If GenScatterHierarchy'sfirst template argument isatypelist TList,
GenScatterHierarchy recursesto GenScatterHierarchy<TList::Head, Unit>and
GenScatterHierarchy<TList::Tail, Unit>, andinherits both.
GenScatterHierarchy<NullType, Unit>isanempty class.

Ultimately, an instantiation of GenScatterHierarchy ends up inheriting Uni t instantiated with every
type in the typelist. For instance, consider this code:

template <class T>
struct Holder

{
T value_;

3

typedef GenScatterHierarchy<
TYPELIST _3(int, string, Widget),
Holder>
Widgetinfo;
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The inheritance hierarchy generated by WidgetInfo looks like Figure 3.2. We call the class hierarchy in
Figure 3.2 scattered, because the typesin the typelist are scattered in distinct root classes. Thisisthe gist
of GenScatteredHierarchy: It generates a class hierarchy for you by repeatedly instantiating a class
template that you provide as amodel. Then it collects all such generated classesin asingle leaf class—in
our case, WidgetlInfo.

Figure 3.2. The inheritance structure of WidgetiInfo

Holder<Widget>

Holder<int> GenScatterHierarchy<Widget, GenScatterHlerarchy<NullType,
Holders Holder=

Holder<string>

GenScalterHierarchy <siring, GenScatterHierarchy<TYPELIST _1(Widget),
Holder> Holder>

GenScatterHierarchy<int, GenScatterHierarchy<TYPELIST_2{string, Widget),
Holder> Holder>

Widgetinto

As an effect of inheriting Holder<int>, Holder<string>, and Holder<Widget>, Widgetinfo
has one member variable value_ for each type in the typelist. Figure 3.3 shows alikely binary layout of a
WidgetlInfo object. The layout assumes that empty classes such as
GenScatterHierarchy<NullType, Holder> are optimized away and do not occupy any storagein
the compound object.

Figure 3.3. Memory layout for WidgeInfo

Widgetinfo
A A
Holdar<int= int value_; LA
, . ) GenScatterHierarchy<TYPELIST_2(string, Widget),
Hnlder-:;strung:- . string value_; LA Holder>
Holder<\Widget= Widget value._: >

Y ou can do interesting things with Wi dget Info objects. Y ou can, for instance, access the string stored
inaWidgetlInfo object by writing
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Widgetinfo obj;
string name = (static_cast<Holder<string>&>(obj)).value_;

The explicit cast is necessary to disambiguate the member variable name value_. Otherwise, the compiler
is confused asto which value__ member you are referring to.

Thiscast is quite ugly, so let'stry to make GenScatterHierarchy easer to use by providing some
handy access functions. For instance, a nice member function would access a member by itstype. Thisis

quite easy.

// Refer to HierarchyGenerators.h for FieldTraits™ definition
template <class T, class H>

typename Private::FieldTraits<H>::Rebind<T>::Result&

Field(H& obj)

{

}

return obj;

Field relieson implicit derived-to-base conversion. If you call Field<Widget>(obj) (obj being of
type WidgetInfo), the compiler figures out that Holder<Widget> isabase class of WidgetInfo and
simply returns areference to that part of the compound object.

Why is Field anamespace-level function and not a member function? Well, such highly generic
programming must play very carefully with names. Imagine, for instance, that Uni t itself definesa
symbol with the name Field. Had GenScatterHierarchy itself defined amember function Field, it
would have masked Unit's Field member. This would be a major source of annoyance to the user.

There is one more major source of annoyance with Field: You cannot use it when you have duplicate
typesin your typelists. Consider this slightly modified definition of WidgetInfo:

typedef GenScatterHierarchy<
TYPELIST 4(int, int, string, Widget),
Value>

Widgetinfo;

Now WidgetlInfo hastwo value membersof type int. If youtry tocal Field<int>fora
WidgetInfo object, the compiler complains about an ambiguity. There is no easy way to solve the
ambiguity, because the WidgetInfo ends up inheriting Ho Ider<int> twice through different paths, as
shown in Figure 3.4.

Figure 3.4. Widgelnfo inherits Holder<int> twice
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Same as in Figure 3.2
Holder<int=

GenScatterHierarchy<TYPELIST_2{string, Widget), Holder>

GenScatterHierarchy <int, Holders

GenScatterHierarchy<int, Holder= ‘GeﬂScaﬂarHlmmhM“rPELlsT“a{Int, string, Widget), Holder>

We need a means of selecting fieldsin an instantiation of GenScatterHierarchy by positional index,
not by type name. If you could refer to each of the two fields of type int by its position in the typelist
(that is, asField<0>(obj) and Field<1>(obj)), you would get rid of the ambiguity.

Let'simplement an index-based field access function. We have to dispatch at compile time between the
field index zero, which accesses the head of the typelist, and nonzero, which accesses the tail of the typelist.
Dispatching is easy with the help of thelittle Int2Type template defined in Chapter 2. Recall that
Int2Type simply transforms each distinct constant integral into a distinct type. Also, we use Type2Type
to transport the result type appropriately, as shown below.

template <class H, typename R>
inline R& FieldHelper(H& obj, Type2Type<R>, Int2Type<0>)
{

typename H::LeftBase& subobj = obj;

return subobj;

}

template <class H, typename R, int i>
inline R& FieldHelper(H& obj, Type2Type<R> tt, Int2Type<i>)
{
typename H::RightBase& subobj = obj;
return FieldHelper(subobj, tt, Int2Type<i- 1>(0));
}
//Refer to HierarchyGenerators.h for FieldTraits® definition
template <int i, class H>
typename Private::FieldTraits<H>::At<i>::Result&
Field(H& obj)

{
typedef typename Private::FieldTraits<H>::At<i>::Result
Result;
return FieldHelper(obj, Type2Type<Result>(), Int2type<i>());
}
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It takes awhile to figure out how to write such an implementation, but fortunately explaining it is quite
easy. Two overloaded functions called Fiel dHe I per do the actual job. The first one accepts a parameter
of type Int2Type<0>, and the second is atemplate that accepts Int2Type<any integer>.
Consequently, the first overload returns the value corresponding to the Uni t<T1>§&, and the other returns
the type at the specified index in the typelist. Field uses a helper template FieldTrai ts to figure out
what type it must return. Field passesthat type to FieldHe I per through Type2Type.

The second overload of FieldHelper recursesto FieldHelper, passing it the right-hand base of
GenScatterHierarchy and Int2Type<index - 1>.Thisisbecausefield N inatypdlistisfield N -
linthetail of that typelist, for anon-zero N. (And indeed, the N = 0 case is handled by the first overload
of FieldHelper.)

For a streamlined interface, we need two additional Field functions: the const versions of the two
Field functions defined above. They are similar to their non-const counterparts, except that they accept
and return references to const types.

Field makesGenScatterHierarchy very easy to use. Now we can write
Widgetinfo obj;

int x
inty

Field<O>(obj).value_; // first int
Field<l1>(obj).value_; // second int

The GenScatterHierarchy template is very suitable for generating elaborate classes from typelists by
compounding a simple template. Y ou can use GenScatterHierarchy to generate virtual functions for
each typein atypelist. Chapter 9, Abstract Factory, uses GenScatterHierarchy to generate abstract
creation functions starting from a type list. Chapter 9 also shows how to implement hierarchies generated
by GenScatterHierarchy.

3.13.2 Generating Tuples

Sometimes you might need to generate a small structure with unnamed fields, known in some languages
(suchas ML) asatuple. A tuple facility in C++ was first introduced by Jakko Jarvi (1999a) and then
refined by Jarvi and Powell (1999b).

What are tuples? Consider the following example.

template <class T>
struct Holder

T value_;

3

typedef GenScatterHierarchy<
TYPELIST _3(int, int, int),
Holder>

Point3D;

Working with Point3D isabit clumsy, because you have to write. value__ after any field access
function. What you need here is to generate a structure the same way GenScatterHierarchy does, but
with the Fielld access functions returning referencesto the value_ members directly. That is,
Field<n> should not return aHolder<int>&, but an int& instead.

Loki definesa Tuple template classthat isimplemented similarly to GenScatterHierarchy but that
provides direct field access. Tup e works as follows:
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typedef Tuple<TYPELIST_3(int, int, int)>

Point3D;
Point3D pt;
Field<O>(pt) = 0;
Field<l>(pt) = 100;
Field<2>(pt) = 300;

Tuples are useful for creating small anonymous structures that don't have member functions. For example,
you can use tuples for returning multiple values from a function:

Tuple<TYPELIST_3(int, int, int)>
GetWindowPlacement(Window&) ;

The fictitious function GetWindowP lacement allows users to get the coordinates of awindow and its
position in the window stack using asingle function call. The library implementer does not have to provide
adistinct structure for tuples of three integers.

Y ou can see other tuple-related functions offered by Loki by looking in the file Tuple.h.

3.13.3 Generating Linear Hierarchies

Consider the following simple template that defines an event handler interface. It only defines an
OnEvent member function.

template <class T>
class EventHandler

{

public:
virtual void OnEvent(const T&, int eventld) = O;
virtual void ~EventHandler() {}

}:

To be palitically correct, EventHand I er also defines avirtua destructor, which is not germane to our
discussion, but necessary nonetheless (see Chapter 4 on why).

We can use GenScatterHierarchy to distribute EventHand ler to each typein atypelist:

typedef GenScatterHierarchy

<
TYPELIST_3(Window, Button, ScrollBar),
EventHandler

>

WidgetEventHandler;

The disadvantage of GenScatterHierarchy isthat it uses multiple inheritance. If you care about
optimizing size, GenScatterHierarchy might beinconvenient, because Widget-EventHandler
contains three pointers to virtual tables® one for each EventHand ler instantiation. If
sizeof(EventHandler) is4 bytes, then sizeof(WidgetEventHandler) will likely be 12 bytes,
and it grows as you add types to the typelist. The most space-efficient configuration isto have all virtual
functions declared right inside Wi dgetEventHand ler, but this dismisses any code generation
opportunities.

“ An implementation does not need to use virtual tables, but most implementations do. For a description of

virtual tables, refer to Lippman (1994).
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A nice configuration that decomposes WidgetEventHandler into one class per virtua functionisa
linear inheritance hierarchy, as shown in Figure 3.5. By using single inheritance, WidgetEventHandler
would have only one vtable pointer, thus maximizing space efficiency.

Figure 3.5. A size-optimized structure for WidgetEventHandler

HandlerScrollbar

OnEvent(scrl : ScrollBar&, eventld :int)

HandlerButton

OnEvent(btn : Button&, eventld :int)

HandlerWindow

OnEvent(wnd : Window&, eventld :int)

WidgetEventHandler

How can we provide a mechanism that automatically generates a hierarchy like this? A recursive template
similar to GenScatterHierarchy can be of help here. Thereis a difference, though. The user-provided
class template must now accept two template parameters. One of them is the current type in the typelist, as
in GenScatterHierarchy. The other one is the base from which the instantiation derives. The second
template parameter is needed because, as shown in Figure 3.5, the user-defined code now participatesin
the middle of the class hierarchy, not only at its roots (as was the case with GenScatterHierarchy).

Let'swrite arecursive template GenLinearHierarchy. It bears asimilarity to
GenScatterHierarchy, the difference being the way it handles the inheritance relationship and the
user-provided template unit.

template
<
class TList,
template <class AtomicType, class Base> class Unit,
class Root = EmptyType // For EmptyType, consult Chapter 2
>
class GenLinearHierarchy;

template

<
class T1,
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class T2,

template <class, class> class Unit,

class Root
>
class GenLinearHierarchy<Typelist<T1l, T2>, Unit, Root>

: public Unit< T1l, GenLinearHierarchy<T2, Unit, Root> >
{

¥

template
<
class T,
template <class, class> class Unit,
class Root
>
class GenLinearHierarchy<TYPELIST 1(T), Unit, Root>
: public Unit<T, Root>
{

¥

This code is slightly more complicated than GenScatterHierarchy's, but the structure of a hierarchy
generated by GenLinearHierarchy issimpler. Let's verify the adage that an image is worth 1,024
words by looking at Figure 3.6, which shows the hierarchy generated by the following code.

template <class T, class Base>
class EventHandler : public Base
r
public:
virtual void OnEvent(T& obj, int eventld);
}:
typedef GenLinearHierarchy
<
TYPELIST _3(Window, Button, ScrollBar),
EventHandler
>
MyEventHandler;

Figure 3.6. The class hirarchy generated by GenLinearHierarchy



EmptyType

EventHandler<ScrollBar,
EmptyType=>

OnEvent{scrl : ScrollBar&, eventld ; int)

GenLinearHierarchy<TYPELIST_1(ScrollBar),
EventHandler=

EventHandler<Button, GenLinearHierarchy<TYPELIST_1(ScrollBar), EventHandler>x>

OnEvent(btn : Button&, eventld : int)

GenLinearHierarchy<TYPELIST2({Button, ScrollBar),
EventHandler>

EventHandler<Window, GenLinearHierarchy<TYPELIST2(Button, ScroliBar),
EventHandler> =

OnEvent{wnd : Windows, eventld : int)

WidgetEventHandler

In conjunction with EventHandler, GenLinearHierarchy defines alinear, rope-shaped, single-
inheritance class hierarchy. Each other node in the hierarchy defines one pure virtual function, as
prescribed by EventHand ler. Consegquently, MyEventHand I er defines three virtual functions, as
needed. GenLinearHierarchy adds arequirement to its template template parameter: Unit (in our
example, EventHandler) must accept a second template argument, and inherit from it. In compensation,
GenLinearHierarchy doesthe laborious task of generating the class hierarchy.

GenScatterHierarchy and GenLinearHierarchy work great in tandem. In most cases, you would
generate an interface with GenScatterHierarchy and implement it with GenLinearHierarchy.
Chapters 9 and 10 demonstrate concrete uses of these two hierarchy generators.

3.14 Summary

Typelists are an important generic programming technique. They add new capabilities for library writers:
expressing and manipulating arbitrarily large collections of types, generating data structures and code from
such collections, and more.

At compile time, typelists offer most of the primitive functions that lists of valuestypically implement: add,
erase, search, access, replace, erase duplicates, and even partial ordering by inheritance relationship. The
code that implements typelist manipulation is confined to a pure functional style because there are no
compile-time mutable values—atype or compile-time constant, once defined, cannot be changed. For this
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reason, most typelist processing relies on recursive templates and pattern matching through partia
template specialization.

Typelists are useful when you have to write the same code—either declarative or imperative—for a
collection of types. They enable you to abstract and generalize entities that escape al other generic
programming techniques. For this reason, typelists are the enabling means for genuinely new idioms and
library implementations, as you will see in Chapters 9 and 10.

Loki provides two powerful primitives for automatic generation of class hierarchies from typelists:
GenScatterHierarchy and GenLinearHierarchy. They generate two basic class structures:
scattered (Figure 3.2) and linear (Figure 3.6). The linear class hierarchy structure is the more size efficient
one. A scattered class hierarchy has a useful property: All instantiations of the user-defined template
(passed as an argument to GenScatter Hierarchy) areroots of thefina class, as Figure 3.2 shows.

3.15 Typelist QUiCk Facts

e Header file Typelist.h.

e All typelist utilities reside in namespace Loki - - TL.

e Classtemplate Typelist<Head, Tail> isdefined.

e Typelist creation: Macros TYPELIST 1 to TYPELIST_50 are defined. They accept the number
of parameters stated in their name.

e  Theupper limit of macros (50) can be extended by the user. For instance:

#define TYPELIST 51(T1l, repeat here up to T51) \
Typelist<T1l, TYPELIST 50(T2, repeat here up to T51) >

e By convention, typelists are proper—they always have a simple type (nontypelist) as the first
element (the head). The tail can only be atypelist or Nul I Type.

e The header defines a collection of primitives that operate on typelists. By convention, all the
primitives return the result in a nested (inner) public type definition called Resul t. If the result of
the primitive isavalue, then itsnameisvalue.

e Theprimitives are described in Table 3.1.

e Synopsisof classtemplate GenScatterHierarchy:

template <class TList, template <class> class Unit>
class GenScatterHierarchy;

e GenScatterHierarchy generates ahierarchy that instantiates Uni t with each typein the
typelist TList. Aninstantiation of GenScatterHierarchy directly or indirectly inherits
Unit<T>foreachTinTList.

e The structure of ahierarchy generated by GenScatterHierarchy isdepicted in Figure 3.2.

e Synopsisof classtemplate GenLinearHierarchy:

template <class TList, template <class, class> class Unit>
class GenLinearHierarchy;

e GenLinearHierarchy generates alinear hierarchy, depicted in Figure 3.6.

e GenLinearHierarchy instantiates Uni t by passing each typeinthetypelist TList asUnit's
first template argument. | mportant: Unit must derive publicly from its second template
parameter.

e Theoverloaded Field functions provide by-type and by-index access to the nodes of the
hierarchies.

66



e Field<Type>(obj) returnsareferenceto the Unit instantiation that corresponds to the

specified type Type.

e Field<index>(obj) returnsareferenceto the Unit instantiation that corresponds to the type
found in the typelist at the position specified by the integral constant index.

Table 3.1. Compile-Time Algorithms Operating on Typelists

Primitive Name

Description

Length<TList>

Computes the length of TList.

TypeAt<TList, idx>

Returns the type at a given position (zero-based) in TList. If the
index is greater than or equal to the length of TList, a compile-
time error occurs.

TypeAtNonStrict<TList,
idx>

Returns the type at a given position (zero-based) in a typelist. If
the index is greater than or equal to the length of TList, Nul'l
Type is returned.

IndexOf<TList, T>

Returns the index of the first occurrence of type T in typelist
TList. If the type is not found, the result is -1.

\Append<TList, T>

|Appends atype or atypelistto TList.

‘Erase<TList, T>

|Erases the first occurrence, if any, of Tin TList.

‘EraseAll<TList, T>

|Erases all occurrences, if any, of T in TList.

INoDuplicates<TList>

|EIiminates all the duplicates from TList.

Replace<TList, T, U>

Replaces the first occurrence, if any, of T in TList with U.

ReplaceAll<TList, T, U>

Replaces all occurrences, if any, of T in TList with U.

MostDerived<TList, T>

Returns the most derived type from T in TList. If no such type is
found, T is returned.

DerivedToFront<TList>

Brings the most derived types to the front of TList.
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Chapter 4. Small-Object Allocation

This chapter discusses the design and that of implementation of afast allocator for small objects. If you use
this allocator, the extra cost of dynamically allocated objects compared with stack-allocated objects often
becomes negligible.

In various places, Loki uses very small objects—as small as afew bytes. Chapter 5 (Generalized Functors)
and Chapter 7 (Smart Pointers) use small objects heavily. For various reasons, polymorphic behavior being
the most important, these small objects cannot be stored on the stack and must live on the free store.

C++ provides the operators new and de lete as the primary means of using the free store. The problemis,
these operators are general purpose and perform badly for alocating small objects. To give anidea of just
how bad "badly" is when it comes to small objects, some standard free store allocators may perform up to
an order of magnitude slower, and also eat up twice as much memory, as the alocator that is the subject of
this chapter.

"Early optimization is the root of all evils," Knuth said, but on the other hand, "belated pessimization is the
leaf of no good," according to Len Lattanzi. A pessimization of one order of magnitude in the runtime of a
core object like afunctor, a smart pointer, or a string can easily make the difference between success and
failure for awhole project. The benefit of cheap, fast, dynamic allocation for small objects can be
enormous because it allows you to apply advanced techniques without worrying about significant lossin
performance. This provides alot of incentive for looking into optimizing free store allocation for small
objects.

Many books on C++, such as Sutter (2000) and Meyers (1998a), mention the usefulness of writing your
own specialized memory alocator. Meyers, after describing an implementation, leaves some details "in the
form of the dreaded exercise for the reader,” and Sutter sends you to "your favorite advanced C++ or
general-purpose programming textbook." The book you're now reading doesn't pretend to become your
favorite; however, this chapter does go down to the metal and implement a standard C++ custom allocator
in every detail.

After reading this chapter, you will understand the subtle, interesting issues associated with tuning memory
alocators. You will aso know how to use Loki's heavy-duty small-object allocator, the workhorse of smart
pointers and generalized functors.

4.1 The Default Free Store Allocator

For occult reasons, the default allocator is notoriously slow. A possible reason isthat it isusually
implemented as a thin wrapper around the C heap allocator (mal loc/real loc/ free). The C heap
allocator is not focused on optimizing small chunk allocations. C programs usually make ordered,
conservative use of dynamic memory. They don't naturally foster idioms and techniques that lead to
numerous allocations and deallocations of small chunks of memory. Instead, C programs usually allocate
medium-to large-sized objects (hundreds to thousands of bytes). Consequently, thisis the behavior for
which mal loc/free isoptimized.

In addition to being slow, the genericity of the default C++ allocator makes it very space inefficient for
small objects. The default alocator manages a pool of memory, and such management often requires some
extramemory. Usualy, the bookkeeping memory amounts to afew extra bytes (4 to 32) for each block
allocated with new. If you allocate 1024-byte blocks, the per-block space overhead isinsignificant (0.4%
to 3%). If you allocate 8-byte objects, the per-object overhead becomes 50% to 400%, a figure big enough
to make you worry if you allocate many such small objects.
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In C++, dynamic allocation is very important. Runtime polymorphism is most often associated with
dynamic allocation. Strategies such as "the pimpl idiom™" (Sutter 2000) prescribe replacing stack allocation
with free store allocation.

Therefore, the poor performance of the default allocator makes it a bump on the road toward efficient C++
programs. Seasoned C++ programmers instinctively avoid constructs that foster using free store allocation
because they know its costs from experience. Not only is the default allocator a concrete problem, but it
also might become a psychological barrier.

4.2 The Workings of a Memory Allocator

Studying memory usage trends of programs is a very interesting activity, as proven by Knuth's seminal
work (Knuth 1998). Knuth established many fundamental memory allocation strategies, and even more
were invented later.

How does a memory allocator work? A memory allocator manages a pool of raw bytes and is able to
allocate chunks of arbitrary size from that pool. The bookkeeping structure can be a simple control block
having a structure like the following:

struct MemControlBlock

{
std::size_t size ;
bool available_;

3

The memory managed by aMemControlBlock object liesright after it and hassize_ bytes. After the
chunk of memory, there is another MemControlBlock, and so on.

When the program starts, there is only one MemControlBlock at the beginning of the pool, managing
the entire memory as a big chunk. Thisisthe root control block, which will never move from its origina
location. Figure 4.1 shows the memory layout for a IMB memory pool at startup.

Figure 4.1. The memory map at program startup

avallable_ :true size_: 1048571
1 Byte 4 Byles 1048571 Byles

1048576 Bytes (1 MByte)

For each allocation request, alinear search of memory blocks finds a suitable block for the requested size.
Its size must be equal to or larger than the size requested. It is amazing just how many strategies for fitting
requests with available blocks exist, and how oddly they perform. Y ou can go for first fit, best fit, worst fit,
or even arandom fit. Interestingly, worst fit is better than best fit—how's that for an oxymoron?

Each deallocation incurs, again, alinear search for figuring out the memory block that precedes the block
being deallocated, and an adjustment of its size.

Asyou can see, this strategy is not terribly time efficient. However, the overhead in size is quite small—

only onesize_t plusabool per memory block. In most concrete cases, you can even give up abit in
size_and store avai lable_ there, thus squeezing MemControl Block to the ultimate:
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// Platform- and compiler-dependent code
struct MemControlBlock

{
std::size_t size : 31;
bool available : 1;

3

If you store pointers to the previous and next MemControlBlock in each MemControlBlock, you can
achieve constant-time deallocation. Thisis because a block that's freed can access the adjacent blocks
directly and adjust them accordingly. The necessary memory control block structureis

struct MemControlBlock

bool available_ ;
MemControlBlock* prev_;
MemControlBlock* next_;

3

Figure 4.2 shows the layout of a memory pool fostering such a doubly linked list of blocks. As you can see,
the size_ member variable is not needed anymore because you can compute the size as this->next_

- this. Still, you have the overhead of two pointers and abool for each allocated memory block.

(Again, you can do some system-dependent tricks to pack that bool together with one of the pointers.)

Figure 4.2. An allocator with constant-time deallocations

v ) \ 4 _|
; . / . W

available_  prev_ nexi available_  prev_ | next_

Still, alocations take linear time. There are many neat techniques for mitigating that, each fostering a
different set of trade-offs. Interestingly, there's no perfect memory allocation strategy; each of them hasa
memory use trend that makes it perform worse than others.

We don't need to optimize genera allocators. Let's focus on specialized allocators—allocators that deal
best with small objects.

4.3 A Small-Object Allocator

The small-object allocator described in this chapter sports a four-layered structure, shown in Figure 4.3.
The upper layers use functionality provided by the lower layers. At the bottom isaChunk type. Each
object of type Chunk contains and manages a chunk of memory consisting of an integral number of fixed-
size blocks. Chunk contains logic that alows you to allocate and deallocate memory blocks. When there
are no more blocks available in the chunk, the allocation function fails by returning zero.

Figure 4.3. The layered structure of the small-object allocator
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SmallObject * Object-level services
* Transparent — you derive your
classes only from SmallObject

SmallObjAllocator * Able to allocate small objects of
various sizes
* Configurable parameters

FixedAllocator
* Allocates only objects of one

given size

Chunk * Allocates objects of one given size
* Has a fixed upper limit of number
of objects allocated

The next layer features the FixedAl locator class. A FixedAl locator object usesChunk asa
building block. FixedAl locator's primary purpose is to satisfy memory requests that go beyond a
Chunk's capacity. FixedAl locator does this by aggregating an array of Chunks. Whenever a request
for memory comes and al existing Chunks are occupied, FixedAl locator createsanew Chunk and
appends it to the array. Then it satisfies the request by forwarding the request to that new Chunk.

Smal 10bjAllocator provides general allocation and deallocation functions. A Smal 10bjAl locator
holds several FixedAl locator objects, each speciaized for alocating objects of one size. Depending
on the number of bytes requested, Smal 10bjAl locator dispatches memory allocation requests to one
of itsFixedAl locatorsor to the default : -operator new if the size requested istoo large.

Finaly, Smal 10bject wraps FixedAl locator to offer encapsulated alocation services for C++
classes. Smal l0bject overloadsoperator new and operator delete and passesthemto a
Smal 10bjAl locator object. Thisway, you make your objects benefit from specialized alocation by
simply deriving them from Smal 10bject.

You can aso use Smal 10bjAl locator and FixedAl locator directly. (Chunk istoo primitive and
unsafe, so it isdefined in the private section of FixedAl locator.) Most of the time, however, client

code will simply derive from the Smal 10b ject base class to take advantage of efficient allocation. That's
guite an easy-to-use interface.

4.4 chunks

Each abject of type Chunk contains and manages a chunk of memory containing a fixed amount of blocks.
At construction time, you configure the block size and the number of blocks.

A Chunk contains logic that alows you to allocate and deallocate memory blocks from that chunk of
memory. When there are no more blocks available in the chunk, the alocation function returns zero.

The definition of Chunk is asfollows:

// Nothing is private — Chunk is a Plain Old Data (POD) structure
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// structure defined inside FixedAllocator
// and manipulated only by it
struct Chunk

{
void Init(std::size_t blockSize, unsigned char blocks);
void* Allocate(std::size_t blockSize);
void Deallocate(void* p, std::size_t blockSize);
unsigned char* pData_;
unsigned char
firstAvailableBlock ,
blocksAvailable_;
}:

In addition to a pointer to the managed memory itself, a chunk stores the following integral values:

e TirstAvailableBlock , which holdstheindex of the first block available in this chunk
e blocksAvailable_, the number of blocksavailable in this chunk

Theinterface of Chunk isvery simple. Init initializes aChunk object, and Re lease releases the
allocated memory. The Al locate function alocates ablock, and Deal locate deallocates a block. You
haveto passasizeto Al locate and Deal locate because Chunk does not hold it. Thisis because the
block sizeis known at a superior level. Chunk would waste space and time if it redundantly kept a
blockSize_ member. Don't forget we are at the very bottom here—everything matters. Again for
efficiency reasons, Chunk does not define constructors, destructors, or assignment operator. Defining
proper copy semantics at this level hurts efficiency at upper levels, where we store Chunk objectsin a
vector.

The Chunk structure reveals important trade-offs. Because blocksAvai lable_ and
firstAvailableBlock_ areof typeunsigned char, it follows that you cannot have a chunk that
contains more than 255 blocks (on a machine with 8-bit characters). Asyou will soon see, thisdecision is
not bad at all and saves us alot of headaches.

Now for the interesting part. A block can be either used or unused. We can store whatever we want in an
unused block, so we take advantage of this. The first byte of an unused block holds the index of the next
unused block. Because we hold the first available index in firstAvailableBlock , we have afull-
fledged singly linked list of unused blocks without using any extra memory.

At initialization, a chunk looks like Figure 4.4. The code that initializes a Chunk object looks like this:

void Chunk::Init(std::size_t blockSize, unsigned char blocks)
{

pData_ = new unsigned char[blockSize * blocks];

firstAvailableBlock = 0;

blocksAvailable = blocks;

unsigned char 1 = 0;

unsigned char* p = pData_;

for (; 1 '= blocks; p += blockSize)

{

}

*p = ++i;
3

Figure 4.4. A chunk of 255 blocks of 4 bytes each
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pData_ /
firstAvailableBlock_ : 0 ... 253 blocks...
blocksAvailable : 255 /
254
255

Thissingly linked list melted inside the data structure is an essential goodie. It offers afast, efficient way
of finding available blocks inside a chunk—without any extra cost in size. Allocating and deallocating a
block inside a Chunk takes constant time, which is exclusively thanks to the embedded singly linked list.

Now you see why the number of blocksislimited to avalue that fitsin an unsigned char. Suppose we
used alarger type instead, such asunsigned short (which is 2 bytes on many machines). We would
now have two problems—allittle one and a big one.

e We cannot alocate blocks smaller than sizeof(unsigned short), whichisawkward
because we're building a small-object allocator. Thisisthe little problem.

e Werun into alignment issues. Imagine you build an alocator for 5-byte blocks. In this case,
casting a pointer that points to such a 5-byte block to unsigned int engenders undefined
behavior. Thisisthe big problem.

The solution issimple: We use unsigned char asthe type of the "stealth index." A character type has
size 1 by definition and does not have any alignment problem because even the pointer to the raw memory
pointsto unsigned char.

This setting imposes a limitation on the maximum number of blocksin a chunk. We cannot have more than
UCHAR_MAX blocksin a chunk (255 on most systems). Thisis acceptable even if the size of the block is
really small, such as 1 to 4 bytes. For larger blocks, the limitation doesn't make a difference because we
don't want to allocate chunks that are too big anyway.

The alocation function fetches the block indexed by firstAvailableBlock and adjusts
firstAvailableBlock_ torefer to the next available block—typical list stuff.

void* Chunk::Allocate(std::size_t blockSize)

{
it (IblocksAvailable ) return O;
unsigned char* pResult =
pData_ + (FirstAvailableBlock * blockSize);
// Update firstAvailableBlock to point to the next block
FfirstAvailableBlock = *pResult;
—blocksAvailable_;
return pResult;
}

The cost of Chunk: : Al locate isone comparison, one indexed access, two dereference operations, an
assignment, and a decrement—aquite asmall cost. Most important, there are no searches. Were in pretty
good shape so far. Figure 4.5 shows the layout of a Chunk object after the first allocation.
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Figure 4.5. A Chunk object after the one allocation. The allocated memory is shown in
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The deallocation function does exactly the opposite: It passes the block back to the free blocks list and
increments blocksAvai lable_. Don't forget that because Chunk is agnostic regarding the block size,
you must pass the size as a parameter to Deal locate.

void Chunk::Deallocate(void* p, std::size_t blockSize)

{
assert(p >= pbata );
unsigned char* toRelease = static_cast<unsigned char*>(p);
// Alignment check
assert((toRelease - pData_) % blockSize == 0);
*toRelease = firstAvailableBlock ;
FfirstAvailableBlock = static_cast<unsigned char>(
(toRelease - pData ) / blockSize);
// Truncation check
assert(firstAvailableBlock ==
(toRelease - pbata ) / blockSize);
++blocksAvailable_;
}

The deallocation function is lean, but it does alot of assertions (which still don't catch all error conditions).
Chunk respects the grand C and C++ tradition in memory allocation: Prepare for the worst if you pass the
wrong pointer to Chunk: :Deal locate.

4.5 The Fixed-Size Allocator

The next layer of our small-object allocator consists of FixedAl locator. FixedAl locator knows
how to allocate and deallocate blocks of afixed size but is not limited to a chunk’s size. Its capacity is
limited only by available memory.

To achieve this, FixedAl locator aggregates a vector of Chunk objects. Whenever an allocation
request occurs, FixedAl locator looksfor aChunk that can accommodate the request. If al Chunks
arefilled up, FixedAl locator appends anew Chunk. Hereisthe relevant part of the definition of
FixedAl locator:

class FixedAllocator
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{
private:
std::size_t blockSize_;
unsigned char numBlocks ;
typedef std::vector<Chunk> Chunks;
Chunks chunks_;
Chunk* allocChunk_;
Chunk* deallocChunk_;
};

To achieve a speedy lookup, FixedAl locator does not iterate through chunks_ looking for a space for
each allocation. Instead, it holds a pointer to the last chunk that was used for an allocation
(allocChunk_). Whenever an alocation request comes, FixedAl locator: : Al locate first checks
allocChunk_ for available space. If al locChunk_ hasaslot available, the allocation request is
satisfied—presto—using al locChunk_. If not, alinear search occurs (and, possibly, anew Chunk is
appended to the chunks__ vector). In any case, al locChunk_ is updated to point to that found or added
chunk. Thisway we increase the likelihood of afast allocation next time. Here's the code that implements
this algorithm:

void* FixedAllocator::Allocate()

it (allocChunk_ == 0 ||
allocChunk_->blocksAvailable_ == 0)
{

// No available memory in this chunk
// Try to find one

Chunks::iterator i = chunks_.begin();
for (;; ++i)

if (i == chunks_.end())

{
// All filled up-add a new chunk
chunks_.reserve(chunks _.size()+1);
Chunk newChunk;
newChunk. Init(blockSize , numBlocks );
chunks_.push_back(newChunk) ;
allocChunk_ = &chunks_.back();
deallocChunk_ = &chunks_.back();
break;

}
if (i->blocksAvailable_ > 0)

// Found a chunk
allocChunk_ = &*i;
break;

}
3
3
assert(allocChunk_ 1= 0);

assert(allocChunk_->blocksAvailable_ > 0);
return allocChunk_->Allocate(blockSize );

}

Using this strategy, FixedAl locator satisfies most of the allocations in constant time, with occasional
dowdowns caused by finding and adding a new block. Some memory allocation trends make this scheme
work inefficiently; however, they tend not to appear often in practice. Don't forget that every alocator has
an Achilles hedl.
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Memory deallocation is more problematic, because at deallocation time there's a piece of information
missing—all we have is a pointer to deallocate, and we don't know to what Chunk that pointer belongs.
We can walk through chunks__ and check whether the given pointer fallsin between pData_ and
pData_ + blockSize_ * numBlocks_. If that's the case, then we pass the pointer to that Chunk's
Deal locate member function. The problem is, thistakes time. Although allocations are fast,
deallocations take linear time. We need an additional device that speeds up deallocations.

We could use a supplemental cache memory for freed blocks. When user code frees ablock using
FixedAllocator: :Deallocate(p), the FixedAl locator does not pass p back to the
corresponding Chunk; instead, it adds p to an internal memory—a cache that holds available blocks.
When a new allocation request comes, FixedAl locator first looks up the cache. If the cacheis not
empty, FixedAl locator fetchesthe last available pointer from cache and returns it right away. Thisisa
very fast operation. Only when the cache is depleted does FixedAl locator need to go the standard
route by forwarding the allocation reguest to aChunk. Thisis a promising strategy, but it works badly
with certain allocation and deallocation trends that are common to small-object use.

There are four main trendsin allocating small objects:

e Bulk allocation. Many small objects are allocated at the same time. For example, thisis the case
when you initialize a collection of pointersto small objects.

e Deallocation in same order. Many small objects are deallocated in the same order as they were
allocated. This happens when most STL containers are destroyed.!

[ Standard C++ does not define the order of destruction of objects within a standard container.
Therefore, each implementer has to make a choice. Usually, containers are destroyed through a
simple forward iteration. However, some implementers go for the more "natural" order by destroying
objects in reverse order. The rationale is that in C++ objects are destroyed in reverse order of their
creation.

e Deallocation in reverse order. Many small objects are deallocated in the reverse order of their
alocation. Thistrend occurs naturally in C++ programs as you call functions that manipulate
small objects. Function arguments and temporary stack variables follow this trend.

o Butterfly allocation and deallocation. Objects are created and destroyed without following a
certain order. This happens as your program is running and has occasional need for small objects.

A caching strategy serves the butterfly trend very well because it can sustain quick allocations and
deallocations if they arrive randomly. However, for bulk allocation and deallocation, caching is not of help.
Worse, caching slows down deallocations because clearing the cache memory takes its own time. 2!

2| could not come up with a reasonable caching scheme that works equally well for same-order
deallocation and reverse-order deallocation. Caching hurts either one or the other. Because both trends are
likely to occur in real programs, caching is not a good choice.

A better strategy is to rely on the same concept as with allocation. The member variable
FixedAllocator: :deal locChunk_ pointsto the last Chunk object that was used for a deallocation.
Whenever adeallocation occurs, deal locChunk_ is checked first. Then, if it's the wrong chunk,

Deal locate performs alinear search, satisfies the request, and updates deal locChunk_.

Two important tweaks increase the speed of Deal locate for the alocation trends enumerated earlier.
First, the Deall locate function searches the appropriate Chunk starting from deal locChunk_'s
vicinity. That is, chunks__is searched starting from deal locChunk__ and going up and down with two
iterators. This greatly improves the speed of bulk deallocations in any order (normal or reversed). During a
bulk alocation, Al locate adds chunksin order. During deallocation, either deal locChunk_ hitsright
away or the correct chunk isfetched in the next step.
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The second tweak is the avoidance of borderline conditions. Say both al locChunk_ and
deal locChunk_ point to the last Chunk in the vector, and there is no space l€eft in the current set of
chunks. Now imagine the following code is run:

for (...)

// Some smart pointers use the small-object
// allocator internally (see Chapter 7)
SmartPtr p;

... usep ...

}

Each pass through the loop creates and destroys a SmartPtr object. At creation time, because there's no
more memory, FixedAl locator: :Al locate creates anew Chunk and appendsit to the chunks_
vector. At destruction time, FixedAl locator: :Deal locate detects an empty block and freesit. This
costly cycle gets repeated for each iteration of the for loop.

Thisinefficiency is unacceptable. Therefore, during deallocation, a chunk is freed only when there are two
empty chunks. If there's only one empty chunk, it is efficiently swapped to the end of the chunks__ vector.
Thus, we avoid costly vector<Chunk>: :erase operations by aways deleting the last element.

Of course, some situations defeat this simple heuristic. If you alocate a vector of SmartPtrs of
appropriate size in aloop, you are back to the same problem. However, such situations tend to appear more
rarely. Besides, as mentioned in the introduction of this chapter, any allocator may perform worse than
others under specific circumstances.

The deall ocation strategy chosen aso fits the butterfly allocation trend acceptably. Even if not allocating
datain an ordered manner, programs tend to foster a certain locality; that is, they access a small amount of
dataat atime. Theal locChunk_ and deal locChunk__ pointers deal nicely with such memory use
because they act as a cache for the latest allocations and deall ocations.

In conclusion, we now have aFixedAl locator classthat can satisfy fixed-memory allocation requests
in an acceptably fast and memory-efficient manner. FixedAl locator isoptimized for typical trendsin
small-object alocation.

4.6 The Small0ObjAllocator Class

Thethird layer in our alocator architecture consists of Smal 10bjAl locator, aclass capable of
allocating objects of any size. Smal 10bjAl locator does so by aggregating several FixedAl locator
objects. When Smal 10bjAl locator receives an allocation request, it either forwards it to the best
matching FixedAl locator object or passesit to the default : zoperator new.

Thefollowing isa synopsis of Smal 10bjAl locator. Explanations follow the code.

class SmallObjAllocator

public:
SmallObjAllocator(
std::size_t chunkSize,
std::size_t maxObjectSize);
void* Allocate(std::size_t numBytes);
void Deallocate(void* p, std::size t size);



private:
std: :vector<FixedAl locator> pool_;

The constructor takes two parameters that configure Smal 10bjAl locator. The chunkSi ze parameter
isthe default chunk size (the length in bytes of each Chunk object), and maxObjectSize isthe
maximum size of objects that must be considered to be "small." Smal 10bjAl locator forwards requests
for blocks larger than maxOb jectSize directly to : zoperator new.

Oddly enough, Deal Iocate takes the size to dedllocate as an argument. Deallocations are much faster
thisway. Otherwise, Smal 10bjAl locator: :Deal locate would have to search through all
FixedAllocatorsinpool _ to find the oneto which the pointer belongs. Thisistoo expensive, so
Smal 10bjAl locator requires you to pass the size of the block to deallocate. Asyou'll seein the next
section, this task is graciously handled by the compiler itself.

What's the mapping between the block size of FixedAl locator and pool_7? In other words, given a
size, what's the FixedAl locator that handles allocations and deallocations for blocks of that size?

A simple and efficient ideaisto have pool_[i] handle objects of size i. You initialize pool_ to havea
size of maxObjectSize, and theninitialize each FixedAl locator accordingly. When an alocation
request of size numBytes comes, Smal 10bjAl locator forwardsit either to pool _[numBytes]—a
constant-time operation—or to : -operator new.

However, this solution is not as clever asit seems. "Efficient” is not always "effective.” The problem s,
you might need allocators only for certain sizes, depending on your application. For instance, maybe you
create only objects of size 4 and 64—nothing else. In this case, you allocate 64 or more entries for pool
although you use only 2.

Alignment and padding issues further contribute to wasting spacein pool _. For instance, many compilers
pad all user-defined types up to a multiple of anumber (2, 4, or more). If the compiler pads all structures to
amultiple of 4, for instance, you can count on using only 25% of pool _—therest is wasted.

A better approach isto sacrifice a bit of lookup speed for the sake of memory conservation.2! We store
FixedAllocatorsonly for sizesthat are requested at least once. Thisway pool _ can accommodate
various object sizes without growing too much. To improve lookup speed, pool_ is kept sorted by block
size.

3] Actually, on modern systems, you can count on an increase in speed when you use less memory. This is
due to the big difference in speed between the main memory (large and slow) and the cache memory (small
and fast).

To improve lookup speed, we can rely on the same strategy asin FixedAl locator.

Smal 10bjAl locator keeps apointer to thelast FixedAl locator used for allocation and a pointer to
the last FixedDeal locator used for deallocation. The following is the complete set of member
variablesin Smal 10bjAl locator.

class SmallObjAllocator

{

private:
std: :vector<FixedAl locator> pool_;
FixedAllocator* pLastAlloc_;
FixedAl locator* pLastDealloc_;

¥
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When an allocation request arrives, pLastAl loc_ ischecked first. If it is not of the correct size,
SmallObjAllocator: :Allocate performsabinary search in pool . Deal location regquests are
handled in asimilar way. The only differenceisthat Smal 10bjAl locator: :Al locate can end up
inserting anew FixedAl locator object in pool _.

As discussed with FixedAl locator, this simple caching scheme favors bulk allocations and
deallocations, which take place in constant time.

4.7 A Hat Trick

The last layer of our architecture consists of Smal 10bject, the base class that conveniently wraps the
functionality provided by Smal 10bjAl locator.

Smal lI0bject overloads operator new and operator delete. Thisway, whenever you create an
object derived from Smal 10b ject, the overloads enter into action and route the request to the fixed
allocator object.

The definition of Smal I0bject isquite ssimple, if abit intriguing.

class SmallObject

{

public:
static void* operator new(std::size t size);
static void operator delete(void* p, std::size_t size);
virtual ~SmallObject() {}

}:

Smal 10bject looks perfectly kosher, except for alittle detail. Many C++ books, such as Sutter (2000),
explain that if you want to overload the default operator delete inaclass, operator delete must
take a pointer to void asits only argument.

C++ offersakind of aloophole that is of great interest to us. (Recall that we designed

Smal 10bjAl locator to take the size of the block to be freed as an argument.) In standard C++ you can
overload the default operator delete intwo ways—either as

void operator delete(void* p);

or as

void operator delete(void* p, std::size_ t size);

Thisissue is thoroughly explained in Sutter (2000), page 144.

If you use the first form, you choose to ignore the size of the memory block to deallocate. But we badly
need that block size so that we can passit to Smal 10bjAlloc. Therefore, Smal 10bject usesthe

second form of overloading operator delete.

How does the compiler provide the object size automagicaly? It seems asif the compiler isadding al by
itself a per-object memory overhead that we have tried to avoid all through this chapter.

No, thereis no overhead at all. Consider the following code:
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class Base

{

int a_[100];
public:

virtual ~Base() {}
}:

class Derived : public Base

int b_[200];

public:

virtual ~Derived() {}
};
Base* p = new Derived;
delete p;

Base and Derived have different sizes. To avoid the overhead of storing the size of the actual object to
which p points, the compiler does a hat trick: It generates code that figures out the size on the fly. Four
possible techniques of achieving that are listed here. (Wearing a compiler writer hat from timeto timeis
fun—you suddenly can do little miracles inaccessible to programmers.)

1. PassaBoolean flag to the destructor meaning "Call/don't call operator delete after
destroying the object.” Base's destructor isvirtual, so, in our example, delete p will reach the
right object, Derived. At that time, the size of the object is known statically—it's
sizeof(Derived)—and the compiler simply passes this constant to operator delete.

2. Havethe destructor return the size of the object. Y ou can arrange (you're the compiler writer,
remember?) that each destructor, after destroying the object, returns sizeof(Class). Again,
this scheme works because the destructor of the base classisvirtual. After invoking the destructor,
the runtime cals operator delete, passing it the "result" of the destructor.

3. Implement a hidden virtual member function that gets the size of an object, say _Size(). Inthis
case, the runtime calls that function, stores the result, destroys the object, and invokes operator
delete. Thisimplementation might look inefficient, but its advantage is that the compiler can
use _Size() for other purposes as well.

4. Storethe size directly somewhere in the virtual function table (vtable) of each class. This solution
is both flexible and efficient, but less easy to implement.

(Compiler writer hat off.) Asyou see, the compiler makes quite an effort in passing the appropriate size to
your operator delete. Why, then, ignoreit and perform a costly search each time you deallocate an
object?

It al dovetails so nicely. Smal 10bjAl locator needsthe size of the block to de allocate. The compiler
providesit, and Smal I0bject forwardsit to FixedAl locator.

Most of the solutions listed assume you defined a virtual destructor for Base, which explains again why it
is so important to make all of your polymorphic classes destructors virtual. If you fail to do this,
deleteing a pointer to abase class that actually points to an object of a derived class engenders undefined
behavior. The alocator discussed herein will assert in debug mode and crash your program in NDEBUG
mode. Anybody would agree that this behavior fits comfortably into the realm of "undefined.”

To protect you from having to remember al this (and from wasting nights debugging if you don't),
Smal 10bject definesavirtual destructor. Any class that you derive from Smal 10bject will inherit its
virtual destructor. This brings us to the implementation of Smal I0bject.

We need aunique Smal 10bjAl locator object for the whole application. That Smal 10bjAl locator
must be properly constructed and properly destroyed, which is athorny issue on its own. Fortunately, Loki
solves this problem thoroughly with its SingletonHo lder template, described in Chapter 6. (Referring
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you to subsequent chaptersis a pity, but it would be even more pitiful to waste this reuse opportunity.) For
now, just think of SingletonHolder asadevice that offers you advanced management of a unique
instance of aclass. If that classis X, you instantiate Sing leton<X>. Then, to access the unique instance
of that class, you call Singleton<X>: : Instance(). The Singleton design pattern isdescribed in
Gamma et al. (1995).

Using SingletonHolder renders Smal 10b ject's implementation extremely simple:

typedef Singleton<SmallObjAllocator> MyAlloc;
void* SmallObject::operator new(std::size_ t size)

{

return MyAlloc::Instance().-Allocate(size);

void SmallObject: :operator delete(void* p, std::size_t size)

{
}

MyAlloc: : Instance() .Deal locate(p, size);

4.8 Simple, Complicated, Yet Simple in the End

The implementation of Smal 10b ject turned out to be quite smple. However, it cannot remain that
simple because of multithreading issues. The unique Smal 10bjAl locator isshared by al instances of
Smal 10bject. If these instances belong to different threads, we end up sharing the

Smal 10bjAl locator between multiple threads. As discussed in the appendix, in this case we must take
specia measures. It seems as if we must go back to al layers implementations, figure out the critical
operations, and add locking appropriately.

However, although it's true that multithreading complicates things a bit, it's not that complicated because
Loki already defines high-level object synchronization mechanisms. Following the principle that the best
step toward reuse isto use, let'sinclude Loki's Threads . h and make the following changes to

Smal 10bject (changes are shown in bold):

template <template <class T> class ThreadingModel>
class SmallObject : public ThreadingModel<SmallObject>

{
. as before ...

}:
The definitions of operator new and operator delete also undergo abit of surgery:

template <template <class T> class ThreadingModel>
void* SmallObject<ThreadingModel>::operator new(std::size_t size)

Lock lock;
return MyAlloc::Instance() -Allocate(size);

}

template <template <class T> class ThreadingModel>
void SmallObject<ThreadingModel>::operator delete(void* p, std::size t size)

Lock lock;
MyAlloc: : Instance() .Deal locate(p, size);

}
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That'sit! We don't have to modify any of the previous layers—their functionality will be properly guarded
by locking at the highest level.

Using the Singleton management and the multithreading features of Loki right inside Loki iswitnessto the
power of reuse. Each of these two domains—global variables' lifetimes and multithreading—has its own
complications. Trying to handlethem al in Smal 10bject starting from first principles would have been
overwhelmingly difficult—just try to get peace of mind for implementing FixedAl locator'sintricate
caching while facing the spectrum of multiple threads spurioudly initializing the same object. . .

4.9 Administrivia
This section discusses how to use the Smal 10bj - h filein your applications.

Touse Smal 10bject, you must provide appropriate parameters to Smal 10b jAl locator's constructor:
the chunk size and the maximum size of a small object. How is a small object defined? What is the size
under which an object can be considered small?

To find an answer to this question, let's go back to the purpose of building a small-object allocator. We
wanted to mitigate the inefficiencies in size and time introduced by the default allocator.

The size overhead imposed by the default allocator varies largely. After al, the default alocator can use
similar strategies to the ones discussed in this chapter. For most generic allocators, however, you can
expect a per-object overhead that varies between 4 and 32 bytes per object in typical desktop machines.
For an allocator with 16 bytes of overhead per object, an object of 64 bytes wastes 25% of memory; thus, a
64-byte object should be considered small.

On the other hand, if Smal 10bjAl locator handles objects that are too large, you end up allocating
much more memory than needed (don't forget that FixedAl locator tends to keep one chunk allocated
even after you have freed all small objects).

Loki gives you a choice and tries to provide appropriate defaults. The Smal 10bj - h file uses three
preprocessor symbols, described in Table 4.1. Y ou should compile all the source filesin a given project
with the same preprocessor symbols defined (or don't define them at all and rely on the defaults). If you
don't do this, nothing lethal happens; you just end up creating more FixedAl locatorstuned to different
sizes.

The defaults are targeted toward a desktop machine with a reasonable amount of physical memory. If you
#deFine either MAX_SMALL_OBJECT SIZE or DEFAULT CHUNK_SI1ZE to be zero, then Smal 10bj - h
uses conditional compilation to generate code that simply uses the default : operator new

and : :operator delete, without incurring any overhead at al. The interface of the objects defined
remains the same, but their functions are inline stubs that forward to the default free store allocator.

The class template Smal 10b ject used to have one parameter. To support different chunk sizes and
object sizes, Smal 10b ject gets two more template parameters. They default to DEFAULT _CHUNK_SI1ZE
and MAX_SMALL_OBJECT_SIZE, respectively.

template
<
template <class T>
class ThreadingModel = DEFAULT_THREADING,
std::size_t chunkSize = DEFAULT_CHUNK SIZE,
std::size_t maxSmallObjectSize = MAX_SMALL_OBJECT_SIZE
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>
class SmallObject;

If you just say Smal 10bject<>, you get a class that can work with your default threading model,
garnished with the default choices concerning memory management.

Table 4.1. Preprocessor Symbols Used by SmallObj .h

Symbol Meaning Default Value
DEFAULT_CHUNK_SIZE The default size (in bytes) of a memory chunk. 4096
MAX_SMALL_OBJECT_SIZE|The maximum value that is handled by 64

SmallObjAllocator.

DEFAULT_THREADING The default threading model used by the application. |Inherited from
A multithreaded application should define this Threads.h
symbol to ClassLevellLockable.

4.10 Summary

Some C++ idioms make heavy use of small objects allocated on the free store. Thisis because in C++,
runtime polymorphism goes hand in hand with dynamic allocation and pointer/reference semantics.
However, the default free store allocator (accessible through the global : zoperator new

and : :operator delete) isoften optimized for allocating large objects, not small ones. This renders
the default free store allocator unsuitable for allocating small objects because it is often slow and brings
nonnegligible per-object memory overhead.

The solution isto rely on small-object alocators—specialized allocators that are tuned for dealing with
small memory blocks (tens to hundreds of bytes). Small-object allocators use larger chunks of memory and
organize them in ingenious ways to reduce space and time penalties. The C++ runtime support helps by
providing the size of the block to be released. Thisinformation can be grabbed by ssimply using aless-
known overloaded form of operator delete.

Is Loki's small-object allocator the fastest possible? Definitely not. Loki's allocator operates only within
the confines of standard C++. Asyou saw throughout this chapter, issues such as alignment must be treated
very conservatively, and being conservative spells being less than optimal. However, Loki is a reasonably
fast, simple, and robust alocator that has the advantage of portability.

4.11 Small-Object Allocator Quick Facts

e Theallocator implemented by Loki has afour-layered architecture. The first layer consists of a
private type Chunk, which deals with organizing memory chunksin equally sized blocks. The
second layer is FixedAl locator, which uses a variable-length vector of chunksto satisfy
memory allocation to the extent of the available memory in the system. In the third layer,

Smal 10bjAllocator uses multiple FixedAl locator objectsto provide allocations of any
object size. Small objects are allocated using a FixedAl locator, and requests for large objects
areforwarded to : operator new. Finaly, the fourth layer consists of Smal I0bject, aclass
template that wrapsa Smal 10bjAl locator object.

e SmallObject classtemplate synopsis:

template
<
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template <class T>
class ThreadingModel = DEFAULT_THREADING,
std::size_t chunkSize = DEFAULT_CHUNK SIZE,
std::size_t maxSmallObjectSize = MAX_SMALL_OBJECT_SIZE
>
class SmallObject

{

public:
static void* operator new(std::size t size);
static void operator delete(void* p, std::size_t size);
virtual ~SmallObject() {}

}:

Y ou can benefit from a small-object allocator by deriving from an instantiation of Small0Object.
Y ou can instantiate the Smal 10b ject class template with the default parameters

(Smal 10bject<>) or tweak its threading model or its memory allocation parameters.

If you create objects with new in multiple threads, you must use a multithreaded model as the
ThreadingModel parameter. Refer to the appendix for information concerning
ThreadingModel.

The default value of DEFAULT _CHUNK_SIZE is4096.

The default value of MAX_SMALL_OBJECT SIZE is64.

You can #define DEFAULT CHUNK_SIZE or MAX_SMALL_OBJECT_SIZE, or both, to
override the default values. After expansion, the macros must expand to constants of type
(convertibleto) std: :size_t.

If you #define either DEFAULT_CHUNK_SIZE or MAX_SMALL_OBJECT_SIZE to zero, then
the Smal 1Al loc.h file uses conditional compilation to generate code that forwards directly to
the free store allocator. The interface remains the same. Thisis useful if you need to compare how
your program behaves with and without specialized memory alocation.
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Chapter 5. Generalized Functors

This chapter describes generalized functors, a powerful abstraction that allows decoupled interobject
communication. Generalized functors are especially useful in designs that need requests to be stored in
objects. The design pattern that describes encapsulated requests, and that generalized functors follow, is
Command (Gamma et al. 1995).

In brief, ageneralized functor is any processing invocation that C++ allows, encapsulated as a typesafe
first-class object. In amore detailed definition, a generalized functor

e Encapsulates any processing invocation because it accepts pointers to simple functions, pointers
to member functions, functors, and even other generalized functors—together with some or all of
thelr respective arguments.

e Istypesafe because it never matches the wrong argument types to the wrong functions.

e Isan object with value semantics because it fully supports copying, assignment, and pass by value.
A generalized functor can be copied freely and does not expose virtual member functions.

Generalized functors allow you to store processing requests as values, pass them as parameters, and invoke
them apart from the point of their creation. They are a much-modernized version of pointersto functions.
The essential differences between pointers to functions and generalized functors are that the latter can store
state and invoke member functions.

After reading this chapter, you will

e Understand the Command design pattern and how generalized functors relate to it

e Know when the Command pattern and generalized functors are useful

e Grasp the mechanics of various functional entitiesin C++ and how to encapsulate them under a
uniform interface

e Know how to store a processing request and some or all of its parameters in an object, passiit
around, and invoke it freely

e Know how to chain multiple such delayed calls and have them performed in sequence

e Know how to use the powerful Functor classtemplate that implements the described
functionality

5.1 The Command Design Pattern

According to the Gang of Four (GoF) book (Gamma et al. 1995), the Command pattern'sintent is to
encapsulate a request in an object. A Command object is a piece of work that is stored away from its
actual executor. The general structure of the Command pattern is presented in Figure 5.1.

Figure 5.1. The Command design pattern
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Command
Client Invoker =
Execute()
Receiver
Action() < ConcreteCommand
‘state
Execute()

The pattern's main pieceisthe Command classitself. Its most important purposeis to reduce the
dependency between two parts of a system—the invoker and the receiver.

A typical sequence of actionsis asfollows:

1. Theapplication (client) creates a ConcreteCommand object, passing it enough information to
carry on atask. The dotted line in Figure 5.1 illustrates the fact that the Client influences
ConcreteCommand's state.

2. The application passes the Command interface of the ConcreteCommand object to the invoker.
Theinvoker stores this interface.

3. Later, theinvoker decidesit's time to execute the action and fires Command's Execute virtual
member function. The virtual call mechanism dispatches the call to the Concrete-Command
object, which takes care of the details. ConcreteCommand reachesthe Receiver object (the
one that isto do the job) and uses that object to perform the actual processing, such as calling its
Action member function. Alternatively, the ConcreteCommand object might carry the
processing al by itself. In this case, the receiver in Figure 5.1 disappears.

The invoker can invoke Execute at itsleisure. Most important, at runtime you can plug various actions
into the invoker by replacing the Command object that the invoker holds.

Two things are worth noting here. First, the invoker is not aware of how the work is done. Thisis not a
new concept—to use a sorting algorithm, you don't need to know its implementation. But what's particular
to Command isthat the invoker doesn't even know what kind of processing the Command object is
supposed to do. (By contrast, you certainly would expect the sorting algorithm to have a certain effect.)
Theinvoker only callsfor Execute for the Command interface it holds when certain circumstances occur.
On the other side, the receiver itself is not necessarily aware that its Action member function was called
by an invoker or otherwise.

The Command object thus ensures an important separation between the invoker and the receiver: They
might be completely invisible to each other, yet communicate via Commands. Usualy, an Application
object decides the wiring between invokers and receivers. This means that you can use different invokers
for agiven set of receivers, and that you can plug different receiversinto a given invoker—all without their
knowing anything about each other.

Second, let's look at the Command pattern from atiming perspective. In usual programming tasks, when
you want to perform an action, you assemble an object, a member function of it, and the arguments to that
member function into a call. For example:



window.Resize(0, 0, 200, 100); // Resize the window

Command
Client Invoker =
Execute()
Receiver
Action() < ConcreteCommand
‘state :
Execute()

The moment of initiating such acall is conceptually indistinguishable from the moment of gathering the
elements of that call (the object, the procedure, and the arguments). In the Command pattern, however, the
invoker has the elements of the call, yet postpones the call itself indefinitely. The Command pattern
enables delayed calls asin the following example:

Command resizeCmd(
window, // Object
&Window: :Resize, // Member function
0, 0, 200, 100); // Arguments
// Later on...
resizeCmd.Execute(); // Resize the window

(We will dwell on the dlightly less-known C++ construct &Window: :Resize abit later.) In the
Command pattern, the moment of gathering the environment necessary to perform a processing is different
from the moment of performing the processing. Between the two moments, the program stores and passes
around the processing request as an object. Had thistiming-related desire not existed, there would have
been no Command pattern. From this standpoint, the very existence of the Command object isa
consequence of the timing issue: Because you need to perform processing later, there has to be an object
that holds the request until then.

These points lead to two important aspects of the Command pattern:

e Interface separation. Theinvoker isisolated from the receiver.
e Time separation. Command stores a ready-to-go processing request that's to be started | ater.

The notion of environment is also important. The environment of apoint of execution isthe set of entities
(variables and functions) that are visible from that point of execution. When the processing is actually
started, the necessary environment must be available or else the processing cannot take place. A
ConcreteCommand object might store part of its necessary environment as its own state and access part
of it during Execute. The more environment a ConcreteCommand stores, the more independence it has.

From an implementation standpoint, two kinds of concrete Command classes can be identified. Some
simply delegate the work to the receiver. All they do is call amember function for aReceiver object. We
call them forwarding commands. Others do tasks that are more complex. They might call member
functions of other objects, but they also embed logic that's beyond simple forwarding. Let's call them
active commands.
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Separating commands into active and forwarding isimportant for establishing the scope of a generic
implementation. Active commands cannot be canned—the code they contain is by definition application-
specific—but we can develop hel pers for forwarding commands. Because forwarding commands act much
like pointers to functions and their C++ colleagues, functors, we call them generalized functors.

The aim of the rest of this chapter isto obtain a Functor classtemplate that encapsulates any object, any
member function of that object, and any set of arguments pertaining to that member function. Once
executed, the Functor animates all these little things to obtain a function call.

A Functor object can be of tremendous help to adesign that uses the Command pattern. In hand-coded
implementations, the Command pattern doesn't scale well. Y ou must write lots of small concrete Command
classes (one for each action in the application: CmdAddUser, CmdDe leteUser, CmdModi fyUser, and
so on), each having atrivial Execute member function that just calls a specific member function of some
object. A generic Functor class that can forward a call to any member function of any object would be of
great help to such adesign.

Some particular active commands are also worth implementing in Functor, such as the sequencing of
multiple actions. Functor should be able to assemble multiple actions and execute them in order. The
GoF book mentions such a useful object, Macro Command.

5.2 Command in the Real World

A popular example associated with the Command pattern is tied to windowing environments. Good object-
oriented GUI frameworks have used one form or another of the Command pattern for years.

Windowing-system writers need a generic way to transmit user actions (such as mouse clicks and
keystrokes) to the application. When the user clicks a button, selects a menu option, or the like, the
windowing system must notify the underlying application logic. From the windowing system's standpoint,
the Options command under the Tools menu does not hold any special meaning. If it did, the application
would have been locked into avery rigid framework. An effective way to decouple the windowing system
from the application isto use Command objects for passing user actions. Commands serve as generic
vehicles that transport actions from the windows to the application logic.

In the windowing example, the invokers are user interface elements (such as buttons, checkboxes, menu
items, and widgets), and the receiver is the object responsible for reacting to user interface commands (for
example, adialog or the application itsalf).

Command objects constitute the lingua franca that the user interface and the application use. As discussed
in the previous section, Command offers double-ended flexibility. First, you can plug in new kinds of user
interface elements without changing the application logic. Such aprogram is known as skinnable because
you can add new "skins" without changing the design of the product itself. Skins do not encompass any
architecture—they only provide slots for Commands and knowledge to fire them appropriately. Second,
you can easily reuse the same user interface elements across different applications.

5.3 C++ Callable Entities

To put together a generic implementation for forwarding commands, let's try to get Command-specific
notions closer to terms familiar to C++ programming.
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A forwarding command is a callback on steroids, a generalized callback. A callback isa pointer to a
function that can be passed around and called at any time, asillustrated in the following example.

void Foo();
void Bar();

int main()

// Define a pointer to a function that takes no
// parameters and returns void.

// Initialize that pointer with the address of Foo
void (*pF)() = &Foo;

FooQ); // call Foo directly

Bar(); // call Bar directly

PP O: // Call Foo via pF

void (*pF2)() = pF; // Create a copy of pF

pF = &Bar; // Change pF to point to Bar
PR O; // Now call Bar via pF
CPF2)O; // Call Foo via pF2

}

Thereisan essential difference between calling Foo and calling (*pF) I The differenceisthat in the
latter case you can copy and change pointers to functions. Y ou can take a pointer to a function, store it
somewhere, and call it when the right time comes—hence, the similarity with forwarding Commands,
which are essentially a piece of work that is stored away from its actual executor and processed later.

M The compiler offers a syntactic shortcut: (*pF) () is equivalent to pF(). However, (*pF) ) is more

suggestive of what actually happens—pF is dereferenced, and the function-call operator () is applied to the
dereferenced pointer.

In fact, callbacks are the C way of using the Command pattern in many windowing systems. X Windows,
for instance, stores such a callback in each menu item and in each widget. The widget calls the callback
when the user does something (like clicking on the widget). The widget does not know what the callback
actually does.

In addition to simple callbacks, C++ defines many more entities that support the function-call operator.
Let's enumerate al the things that support operator() in C++.

e C-likefunctions

e C-like pointersto functions

e Referencesto functions (which essentialy act like const pointers to functions)

e Functors, that is, objects that define an operator()

e Theresult of applying operator .* or operator->* having a pointer to a member function in
the right-hand side of the expression

You can add apair of parentheses to the right of any of the enumerated items, put an appropriate list of
arguments inside, and get some processing done. No other objectsin C++ allow this except the ones just
listed.

The objects that support operator () are known as callable entities. The goal of this chapter isto
implement a set of forwarding commands that store and can forward a call to any callable entity.2 The
Functor classtemplate will encapsulate the forwarding commands and provide a uniform interface.

2 Note the avoidance of the notion of type here. We could have simply said, "Types that support
operator () are callable entities.” But, incredible as it seems, in C++ there are things to which you can
apply operator () although they don't have a type, as you will soon see.
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The implementation must handle the three essential cases: simple function calls, functor calls (including
Functor cdls; that is, you should be able to forward calls from one Functor to another), and member
function calls. Y ou might think to define an abstract base class and create a subclass for each case. All this
sounds like straightforward C++. Asyou launch your favorite editor and start to type, however, an
abundant crop of problems appears.

5.4 The runctor Class Template Skeleton

For Functor'simplementation, were certainly looking at the handle-body idiom (Coplien 1992). As
Chapter 7 discussesin detail, in C++ abald pointer to a polymorphic type does not strictly have first-class
semantics because of the ownership issue. To lift the burden of lifetime management from Functor's
clients, it's best to provide Functor with value semantics (well-defined copying and assignment).
Functor does have a polymorphic implementation, but that's hidden inside it. We name the
implementation base class Functorimpl.

Let's now make an important observation. Command : : Execute in the Command pattern should become
auser-defined operator () in C++. There is a sound argument in favor of using operator () here: For
C++ programmers, the function-call operator has the exact meaning of "execute,”" or "do your stuff.” But
there's a much more interesting argument for this: syntactic uniformity. A forwarding Functor not only
delegatesto a callable entity, but also is a callable entity itself. Thisrenders a Functor ableto hold other
Functors. So from now on Functor congtitutes part of the callable entities set; thiswill alow usto treat
things in a more uniform manner in the future.

The problems start to crop up as soon as we try to define the Functor wrapper. The first shot might look
like the following:

class Functor

public:

void operator((Q);

// other member functions
private:

// implementation goes here

¥

Thefirst issueis the return type of operator (). Should it be void? In certain cases, you would like to
return something else, such asabool or astd: :string. There's no reason to disallow parameterized
return values.

Templates are intended to solve this kind of problem, so, without further ado:

template <typename ResultType>
class Functor

public:
ResultType operator((Q);
// other member functions
private:
// implementation

¥
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This looks acceptable, although now we don't have one Functor; we have afamily of Functors. Thisis
quite sensible because Functorsthat return strings are functionally different from Functorsthat return
integers.

Now for the second issue: Shouldn't Functor'soperator () accept arguments too? Y ou might want to
pass to the Functor someinformation that was not available at Functor's construction time. For
example, if mouse clicks on awindow are passed viaaFunctor, the caller should pass position
information (available exactly and only at call time) to the Functor object when calling its operator().

Moreover, in the generic world, parameters can be of any number, and each of them can have any type.
There is no ground for limiting either the types that can be passed or their number.

The conclusion that stems from these factsis that each Functor isdefined by its return type and its
arguments' types. The language support needed here sounds a bit scary: variable template parameters
combined with variable function-call parameters.

Unfortunately, such language support is very scarce. Variable template parameters simply don't exist.
There are variable-argument functionsin C++ (asthere arein C), but although they do a decent job for C if
you're really careful, they don't get along as well with C++. Variable arguments are supported viathe
dreaded elipsis (ala printf or scanf). Caling printf or scanf without matching the format
specification with the number and types of the arguments is a common and dangerous mistake illustrating
the shortcomings of elipsisfunctions. The variable-parameter mechanism is unsafe, islow level, and does
not fit the C++ object model. To make along story short, once you use ellipses, you're left in aworld with
no type safety, no object semantics (using full-fledged objects with ellipses engenders undefined behavior),
and no support for reference types. Even the number of arguments is not accessible to the called function.
Indeed, where there are ellipses, there's not much C++ |eft.

The dternativeis to limit the number of arguments a Functor can take to an arbitrary (yet reasonably
large) number. Choosing something in an arbitrary way is one of the most unpleasant tasks a programmer
has to do. However, the choice can be made based on experimental grounds. Libraries (especially older
ones) commonly use up to 12 parameters for their functions. Let's limit the number of argumentsto 15. We
cast this embarrassing arbitrary decision in stone and don't think about it again.

Even after making this decision, lifeis not alot easier. C++ does not allow templates with the same name
and different numbers of parameters. That is, the following codeisinvalid:

// Functor with no arguments
template <typename ResultType>
class Functor

{
}:
// Functor with one argument

template <typename ResultType, typename Parml>
class Functor

{

}:

Naming the template classes Functorl, Functor2, and so on, would be a hassle.

Chapter 3 defines typelists, ageneral facility for dealing with collections of types. Functor's parameter

types do form a collection of types, so typdlistsfit here nicely. The definition of Functor with typelists
looks like this:
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// Functor with any number and types of arguments
template <typename ResultType, class TList>
class Functor

{

}:
A possible instantiation is as follows:

// Define a Functor that accepts an int and a double and
// returns a double
Functor<double, TYPELIST 2(int, double)> myFunctor;

An appealing advantage of this approach is that we can reuse all the goodies defined by the typdlist facility
instead of developing similar ones for Functor.

Asyou will soon see, typelists, although helpful, still require the Functor implementation to do
painstaking repetition to encompass any humber of arguments. From now on, let's focus on a maximum of
2 arguments. Theincluded Functor . h file scales up to 15 arguments, as established.

The polymorphic class Functor Impl, wrapped by Functor, has the same template parameters as
Functor:&

[mUgngtypenameorclassfmspaﬁﬁngatanmmepammemrm&esnodﬁemnaaTMsbomgby
convention, uses typename for template parameters that can be primitive types (such as int), and
class for template parameters that must be user-defined types.

template <typename R, class TList>
class Functorimpl;

FunctorImpl defines a polymorphic interface that abstracts a function call. For each number of
parameters, we definea FunctorImpl explicit speciaization (see Chapter 2). Each specialization defines
apure virtual operator () for the appropriate number and types of parameters, as shown in the following:

template <typename R>
class Functorlimpl<R, NullType>

public:
virtual R operator(Q() = 0;
virtual Functorlmpl* Clone() const = 0;
virtual ~Functorimpl() {}

¥

template <typename R, typename P1>
class Functorlmpl<R, TYPELIST 1(P1)>
{
public:
virtual R operator()(P1) = O;
virtual Functorlmpl* Clone() const
virtual ~Functorimpl() {}

3

template <typename R, typename P1l, typename P2>
class FunctorlImpl<R, TYPELIST 2(P1, P2)>

I
o

{

public:
virtual R operator()(P1, P2) = 0;
virtual Functorlmpl* Clone() const = 0;
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virtual ~Functorimpl() {}
};

The FunctorImpl classes are partial specializations of the primary Functor Impl template. Chapter 2
describes the partial template specialization feature in detail. In our situation, partial template
specidization allows usto define different versions of Functor Impl, depending on the number of
elementsin the typelist.

In addition to operator (), FunctorImpl defines two scaffolding member functions—Clone and a
virtual destructor. The purpose of Clone isthe creation of a polymorphic copy of the Functorimpl
object. (Refer to Chapter 8 for details on polymorphic cloning.) The virtual destructor alows us to destroy
objects derived from Functor Impl by invoking de lete on apointer to aFunctorImpl. Chapter 4
provides an extensive discussion of why this do-nothing destructor is vital.

Functor follows a classic handle-body implementation, as shown here.

template <typename R, class TList>
class Functor

{
public:
Functor();
Functor(const Functor&);
Functor& operator=(const Functor&);
explicit Functor(std::auto_ptr<Iimpl> splmpl);
private:
// Handy type definition for the body type
typedef FunctorlImpl<R, TList> Impl;
std: zauto_ptr<impl> splmpl_;
}:

Functor holds asmart pointer to Functorimpl<R, TList>, whichisitscorresponding body type, as
a private member. The smart pointer chosen isthe standard std: :auto_ptr.

The previous code aso illustrates the presence of some Functor artifacts that prove its value semantics.
These artifacts are the default constructor, the copy constructor, and the assignment operator. An explicit
destructor is not needed, because auto_ptr cleans up resources automatically.

Functor also defines an "extension constructor” that accepts an auto_ptr to Functor Impl. The
extension constructor alows you to define classes derived from Functor Impl and to initialize Functor
directly with pointers to those classes.

Why does the extension constructor take as its argument an auto_ptr and not a simple pointer?
Constructing from auto_ptr isaclear statement to the outside world that Functor takes ownership of
the Functor Impl object. Users of Functor will actually have to type auto_ptr whenever they invoke
this constructor; we assume that if they type auto_ptr, they know what auto_ptr is about !

4 of course, this is not necessarily true. However, it's better than just silently choosing one option (here,
copying versus taking ownership). Good C++ libraries sport this interesting feature: Whenever something
ambiguous may appear, they allow the user to disambiguate it by writing some explicit code. At the other end
of the spectrum are libraries that misuse silent C++ features (especially conversions and pointer ownership).
They allow the user to type less, but at the cost of making dubious assumptions and decisions on the user's
behalf.
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5.5 Implementing the Forwarding Functor: :operator()

Functor needs an operator() that forwardsto Functorimpl : :operator (). We can use the same
approach as with Functor Impl itself: Provide abunch of Functor partial specializations, one for each
parameter count. However, this approach is not appropriate here. Functor defines a considerable amount
of code, and it would be wasteful to duplicateit al only for the sake of operator().

But first, let's define the parameter types. Typelists are of great help here:

template <typename R, class TList>
class Functor

{
typedef TList ParmList;

typedef typename TypeAtNonStrict<TList, 0, EmptyType>::Result
Parml;

typedef typename TypeAtNonStrict<TList, 1, EmptyType>::Result
Parm2;
. as above ...

¥

TypeAtNonStrict isatemplate that accesses the type at a given position in atypelist. If no typeis
found, the result (i.e., theinner class TypeAtNonStrict<...>: :Result) evaluates to the third
template argument of TypeAtNonStrict. We chose EmptyType asthat third argument. EmptyType is,
asits name hints, a class that holds nothing between its brackets. (Refer to Chapter 3 for details on
TypeAtNonStrict and to Chapter 2 for adescription of EmptyType.) In conclusion, ParmN will be
either the Nth type in the typelist, or EmptyType if the typelist has fewer than N elements.

To implement operator(), let'srely on an interesting trick. We define all versions of operator()—
for any number of parameters—inside Functor's definition, as follows.

template <typename R, class TList>
class Functor

{

... as above ...
public:

R operator(Q

.

return (*splmpl_)Q;
operator(Q)(Parml pl)

return (*splmpl_ )(pl);
operator()(Parml pl, Parm2 p2)

return (*spimpl_)(pl, p2);

N - L =S, [

3

Where's the trick? For a given Functor instantiation, only one operator () iscorrect. All others
constitute compile-time errors. Y ou would expect Functor not to compile at al. Thisis because each
FunctorImpl specialization defines only one operator (), not abunch of them as Functor does. The
trick relies on the fact that C++ does not instantiate member functions for templates until they are actually
used. Until you call the wrong operator (), the compiler doesn't complain. If you try to call an overload
of operator () that doesn't make sense, the compiler triesto generate the body of operator () and
discovers the mismatch. Here's an example.
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// Define a Functor that accepts an int and a double and
// returns a double.

Functor<double, TYPELIST 2(int, double)> myFunctor;
// Invoke it.

// operator()(double, int) is generated.

double result = myFunctor(4, 5.6);

// Wrong invocation.

double result = myFunctor(); // error!

// operator()() is invalid because

// Functorimpl<double, TYPELIST_2(int, double)>

// does not define one.

Because of this neat trick, we don't have to speciaize Functor partialy for zero, one, two, and so forth
parameters—specializations that would have led to much code duplication. We just define al versions and
let the compiler generate only the ones that are used.

Now that the necessary scaffolding isin place, we're ready to start defining concrete classes derived from
Functorimpl.

5.6 Handling Functors

Let's start with handling functors. Functors are loosely defined as instances of classes that define
operator(), just as Functor itself does (that is, Functor isafunctor). Consequently, Functor's
constructor that accepts a functor object will be atemplate parameterized with the type of that functor.

template <typename R, class TList>
class Functor

{
... as above ...

public:
template <class Fun>
Functor(const Fun& fun);

¥

To implement this constructor we need a simple class template FunctorHandler derived from
Functorlimpl<R, TList>. That classstoresan object of type Fun and forwards operator() toit.
We resort to the sametrick asin the previous section for implementing operator () properly.

To avoid defining too many template parameters for FunctorHandler, we make the Functor
instantiation itself atemplate parameter. This single parameter collects all the others because it provides
inner typedefs.

template <class ParentFunctor, typename Fun>
class FunctorHandler
: public Functorlimpl
<
typename ParentFunctor::ResultType,
typename ParentFunctor::ParmList
>

public:
typedef typename ParentFunctor::ResultType ResultType;

FunctorHandler(const Fun& fun) : fun_(fun) {}
FunctorHandler* Clone() const
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{ return new FunctorHandler(*this); }

ResultType operator(()
{

}
ResultType operator() (typename ParentFunctor::Parml pl)

{

}
ResultType operator() (typename ParentFunctor::Parml p1l,

typename ParentFunctor::Parm2 p2)
{

}

private:
Fun fun_;

3

return fun_Q;

return fun_(pl);

return fun_(pl, p2);

FunctorHandler looks much like Functor itself: It forwards requests to a stored member variable.
The main difference isthat the functor is stored by value, not by pointer. Thisis because, in general,
functors are meant to be this way—nonpolymorphic types with regular copy semantics.

Notice the use of the inner types ParentFunctor: :Resul tType, ParentFunctor: :Parml, and
ParentFunctor: : Parm2 where needed. FunctorHandler implements a simple constructor, the
cloning function, and multiple operator () versions. The compiler picks up the appropriate one. If you
use anillegal overload of operator (), acompile-time error occurs, asit should.

There is nothing special about FunctorHandler'simplementation. This doesn't mean it didn't require a
lot of thought. Y ou will seein the next section just how much genericity thislittle class template brings us.

Given FunctorHandler's declaration, it's easy to write the templated constructor of Functor declared
earlier in this section.

template <typename R, class TList>
template <typename Fun>
Functor<R, TList>::Functor(const Fun& fun)
: splmpl_(new FunctorHandler<Functor, Fun>(fun));

}

There's no copyediting error here. The two template parameter sets are necessary: The template <class
R, class TList> standsfor the classtemplate Functor, and template <typename Fun> stands
for the parameter that the constructor itself takes. In standardese, this type of code is known as an "out-of -
class member template definition."

The body of the constructor initializes the spImpl_ member to point to a new object of type
FunctorHandler, instantiated and initialized with the proper arguments.

There's something worth mentioning here, something that's germane to understanding the Functor
implementation we're building. Note that upon entering this constructor of Functor, we have full type
knowledge via the template parameter Fun. Upon exiting the constructor, the type information islost as far
as Functor is concerned, because al that Functor knowsissplImpl_, which points to the base class
FunctorlImpl. Thisapparent loss of type information is interesting: The constructor knows the type and
acts like afactory that transformsit in polymorphic behavior. The type information is preserved in the
dynamic type of the pointer to FunctorImpl.
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Although we haven't written much code (just a bunch of one-line functions), we're ready for atest drive.
Hereitis:

// Assume Functor.h includes the Functor implementation
#include "Functor.h"

#include <iostream>

// The using directive is acceptable for a small C++ program
using namespace std;

// Define a test functor
struct TestFunctor

{
void operator(QQ(int i, double d)
{
cout << "TestFunctor::operatorQ (" << i
<< M, " << d << ") called\n";
}
}:
int main()
{
TestFunctor f;
Functor<void, TYPELIST_2(int, double)> cmd(f);
cmd(4, 4.5);
}

This little program will reliably print
TestFunctor: :operator() (4, 4.5) called.

This means we've achieved our goal. We can now proceed to the next step.

5.7 Build One, Get One Free

Reading the previous section, you may have asked yourself, Why didn't we start with implementing
support for pointersto regular functions, which seemsto be the simplest case? Why did we jump directly
to functors, templates, and so on? The answer is simple: By now, support for regular functionsis already
implemented. Let's modify the test program a bit:

#include "Functor.h"
#include <iostream>
using namespace std;

// Define a test function
void TestFunction(int i, double d)

{
cout << "TestFunction(’ << i
<< ", " << d<< ") called.” << endl;
}
int main()
{

Functor<void, TYPELIST 2(int, double)> cmd(
TestFunction);

// will print: "TestFunction(4, 4.5) called.”

cmd(4, 4.5);
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}

The explanation for this nice surprise comes from the workings of template parameter deduction. When the
compiler sees a Functor constructed from TestFunction, it has no choice but to try the templated
constructor. The compiler will then instantiate the template constructor with the template argument void
(&) (int, double), whichisthetype of TestFunction. The constructor instantiates
FunctorHandler<Functor<...> void (&) (int, double)>. Consequently, thetype of fun_in
FunctorHandler isvoid (&) (int, double) aswell. When you invoke
FunctorHandler<...>::operator(), it forwardsto fun_(), whichislegal syntax for invoking a
function through a pointer to function. Thus, FunctorHandler supports pointers to functions out of the
box because of two things: the syntactic similarity between pointers to functions and functors and the type
inference mechanism that C++ uses.

There is a problem, though. (It couldn't be perfect, could it?) If you overload Test-Function—or any
function that you passto Functor<. . .>—you have to help a bit with some disambiguation. The reason
isthat if TestFunction isoverloaded, the type of the symbol TestFunction isno longer defined. To
illustrate this, let's add an overloaded version of TestFunction just beforemain:

// Declare an overloaded test function
// (no definition necessary)
void TestFunction(int);

Suddenly the compiler complains it cannot figure out which overload of TestFunction it should use.
Because there are two functions called TestFunction, this name alone no longer suffices for
identification.

In essence, in the presence of overloading, there are two ways to identify a specific function: by using
initialization (or an assignment) and by using a cast. Let'sillustrate both methods:

// as above, TestFunction is overloaded
int main()

// Typedef used for convenience
typedef void (*TpFun)(int, double);
// Method 1: use an initialization
TpFun pF = TestFunction;
Functor<void, TYPELIST 2(int, double)>
cmdl(4, 4.5);
// Method 2: use a cast
Functor<void, int, double> cmd2(
static_cast<TpFun>(TestFunction)); // Ok

cmd2(4, 4.5);

}

Both the initialization and the static cast let the compiler know that you're actually interested in the
TestFunction that takesan int and adouble and returns void.

5.8 Argument and Return Type Conversions

In an ideal world, we would like conversions to work for Functor just as they work for regular function
calls. That is, we'd like to see this running:

#include <string>
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#include <iostream>
#include "Functor.h"
using namespace std;

// lgnore arguments-not of interest
// in this example
const char* TestFunction(double, double)

{
static const char buffer[] = "Hello, world!";
// 1t"s safe to return a pointer to a static buffer
return buffer;

}

int main()

{
Functor<string, TYPELIST_2(int, int)> cmd(TestFunction);
// Should print "world!"
cout << cmd(10, 10).substr(7);

}

Although the actual TestFunction hasadlightly different signature (it takes two doublesand returns a
const char *),itdtill should be bindableto aFunctor<string, TYPELIST 2(int, int)>.We
expect this to happen because int can be implicitly converted to doublle, and const char *is
implicitly convertibleto string. If Functor does not accept the same conversions that C++ accepts,
Functor would be unnecessarily rigid.

To satisfy this new requirement, we don't have to write any new code. The previous example compiles and
runs as expected with our current codebase. Why? The answer is found, again, in the way we defined
FunctorHandler.

Let's see what happens with the code in the example after al the dust of template instantiation has settled.
The function

string Functor<.._>::operator(QQ(int i, int j)

forwards to the virtual function

string FunctorHandler<...>::operator(QQ(int i, int j)

whose implementation ultimately calls

return fun_(i, j);

where fun_ hastype const char* (*)(double, double) and evaluatesto TestFunction.

When the compiler encountersthe call to fun_, it compilesit normally, just asif you had written it by
hand. "Normally" here means that conversion rules apply as usua. The compiler then generates code to
convert i and j todouble, and theresult to std: :string.

The generaity and flexibility of FunctorHandler illustrate the power of code generation. The syntactic
replacement of template arguments for their respective parametersis typical of generic programming.
Template processing predates compiling, allowing you to operate at source-code level. In object-oriented
programming, in contrast, the power comes from late (after compilation) binding of names to values. Thus,
object-oriented programming fosters reuse in the form of binary components, whereas generic
programming fosters reuse at the source-code level. Because source code is inherently more information
rich and higher level than binary code, generic programming allows richer constructs. This richness,

100



however, comes at the expense of lowered runtime dynamism. Y ou cannot do with STL what you can do
with CORBA, and vice versa. The two techniques complement each other.

We are now able to handle functors of al kinds and regular functions using the same small codebase. Asa
bonus, we have implicit conversion for arguments and for the return value.

5.9 Handling Pointers to Member Functions

Although not very common in day-to-day programming activities, pointers to member functions can
sometimes be of help. They act much like pointers to functions, but when you want to invoke them, you
must pass an object (in addition to the arguments). The following example depicts the syntax and the
semantics of pointersto member functions.

#include <iostream>
using namespace std;

class Parrot

{

public:
void Eat()
{

cout << "Tsk, knick, tsk...\n";
}
void Speak()

cout << "Oh Captain, my Captain!\n";
}
}:

int main()

// Define a type: pointer to a member function of
// Parrot, taking no arguments and

// returning void.

typedef void (Parrot::* TpMemFun)();

// Create an object of that type

// and initialize it with the address of
// Parrot::Eat.

TpMemFun pActivity = &Parrot::eat;

// Create a Parrot...

Parrot geronimo;

// ...and a pointer to it

Parrot* pGeronimo = &geronimo;

// Invoke the member function stored in Activity
// via an object. Notice the use of operator.*
(geronimo.*pActivity)();

// Same, via pointer. Now we use operator->*
(pGeronimo->*pActivity)();

// Change the activity

pActivity = &Parrot::Speak;

// Wake up, Geronimo!
(geronimo.*pActivity)();
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A closer look at pointers to member functions and their two related operators—. * and ->*—reveals
strange features. There is no C++ type for the result of geronimo.*p-Activity and pGeronimo-
>*pActivity. Both are binary operations al right, and they return something to which you can apply the
function-call operator immediately, but that "something" does not have atype® Y ou cannot store the
result of operator.* or operator->* in any way, athough there is an entity that holds the fusion
between your object and the pointer to a member function. This fusion seemsto be very unstable. It
appears from chaos just as you invoke operator.* or operator->*, exists just long enough to apply
operator (), and then goes back to chaos. There's nothing el se you can do with it.

B! The standard says, "If the result of .* or —>* is a function, then that result can be used only as the
operand for the function call operator()."

In C++, where every object has a type, the result of operator->* or operator.* isaunique exception.
It's even trickier than the ambiguity of pointers to functions introduced by overloading (discussed in the
previous section). There we had too many types to choose from, but we could disambiguate the choice;
here, we don't have any type to start with. For this reason, pointers to member functions and the two

related operators are a curiously half-baked concept in C++. And by the way, you cannot have references
to member functions (although you can have references to regular functions).

Some C++ compiler vendors define a new type and allow you to store the result of operator .* by using
asyntax likethis:

// __closure is a language extension

// defined by some vendors

void (__closure:: * geronimosWork)() =
geronimo.*pActivity;

// Invoke whatever Geronimo is doomed to do

geronimosWork();

There's nothing about Parrot in the type of geronimosWork. This means that later, you can bind
geronimosWork to something that's not geronimo, and even to something that's not aParrot. All you
have to commit to is the return type and the arguments of the pointer to a member function. In fact, this
language extension isakind of Functor class, but restricted to objects and member functions only (it
does not allow regular functions or functors).

Let's implement support for bound pointers to member functionsin Functor. The experience with
functors and functions suggests that it's good to keep things generic and not to jump too early into
specificity. In the implementation of MemFunHand I er, the object type (Parrot in the previous exampl€)
is atemplate parameter. Furthermore, let's make the pointer to a member function a template parameter as
well. By doing this, we get automatic conversions for free, as happened with the implementation of
FunctorHandler.

Here's the implementation of MemFunHand I er. It incarnates the ideas just discussed, plus the ones
already exploited in FunctorHandler.

template <class ParentFunctor, typename PointerToObj,
typename PointerToMemFn>
class MemFunHandler
: public Functorimpl
<
typename ParentFunctor::ResultType,
typename ParentFunctor::ParmList
>
{
public:
typedef typename ParentFunctor::ResultType ResultType;
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MemFunHandler(const PointerToObj& pObj, PointerToMemFn pMemFn)
: pObj_(pObj), pMemFn_(pMemFn) {}

MemFunHandler* Clone() const
{ return new MemFunHandler(*this); }
ResultType operator()

{
return ((*pObj_).*pMemFn_ )Q);

ResultType operator() (typename ParentFunctor::Parml pl)

return ((*pObj_).*pMemFn_)(pl);
}

ResultType operator() (typename ParentFunctor::Parml p1l,
typename ParentFunctor::Parm2 p2)

{
return ((*pObj_).*pMemFn_)(pl, p2);

private:
PointerToObj pObj_;
PointerToMemFn pMemFn_;

3

Why isMemFunHand I er parameterized with the type of the pointer (PointerToObj) and not with the
type of the object itself? A more straightforward implementation would have looked like this:

template <class ParentFunctor, typename Obj,
typename PointerToMemFn>

class MemFunHandler
: public Functorimpl

<
typename ParentFunctor::ResultType,
typename ParentFunctor::ParmList
>
L
private:
Obj* pObj_;
PointerToMemFn pMemFn_;
public:
MemFunHandler(Obj* pObj, PointerToMemFn pMemFn)
: pObj_(pObj), pMemFn_(pMemFn) {}
}:

This code would have been easier to understand. However, the first implementation is more generic. The
second implementation hardwires the pointer-to-object type in itsimplementation. It stores abare, bald,
unadorned pointer to Ob j. Can this be a problem?

Yesitis, if you want to use smart pointers with MemFunHandler. Ahal The first implementation supports
smart pointers; the second does not. The first implementation can store any type that acts as a pointer to an
object; the second is hardwired to store and use only simple pointers. Moreover, the second version does
not work for pointersto const. Such isthe negative effect of hardwiring types.

Let's put in place atest run for the newly implemented feature. Parrot gets reused.

#include "Functor.h"
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#include <iostream>
using namespace std;

class Parrot

{
public:
void Eat(Q)
{
cout << "Tsk, knick, tsk...\n";
}
void Speak()
{
cout << '"Oh Captain, my Captain!\n';
¥
};
int main()
{ _
Parrot geronimo;
// Define two Functors
Functor<>
cmdl(&geronimo, &Parrot::Eat),
cmd2(&geronimo, &Parrot::Speak);
// Invoke each of them
cmdl1();
cmd2();
}

Because MemFunHand I er took the precaution of being as generic as possible, automatic conversions
come for free—just asthey did for FunctorHandler.

5.10 Binding

We could stop here. By now, we have everything in place—Functor supports al the C++ calable
entities defined in the beginning of the discussion, and in a nice manner. However, as Pygmalion might
have remarked, sometimes the actual outcome of work isimpossible to predict when you start doing it.

As soon as Functor isready, new ideas come to mind. For instance, weld like to be able to convert from
atype of Functor to another. One such conversion is binding: Given aFunctor that takes two integers,
you want to bind one integer to some fixed value and let only the other one vary. Binding yields a
Functor that takes only one integer, because the other one is fixed and therefore known, asillustrated in
the following example.

void Q)

{
// Define a Functor of two arguments
Functor<void, TYPELIST_2(int, int)> cmdl(something);
// Bind the first argument to 10
Functor<void, int> cmd2(BindFirst(cmdl, 10));
// Same as cmdl1(10, 20)
cmd2(20);
// Further bind the first (and only) argument
// of cmd2 to 30
Functor<void> cmd3(BindFirst(cmd2, 30));
// Same as cmdl1(10, 30)
cmd3Q);
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}

Binding is a powerful feature. Y ou can store not only callable entities but also part (or al) of their
arguments. This greatly increases the expressive power of Functor because it alows packaging of
functions and arguments without requiring glue code.

For instance, think of implementing redo support in atext editor. When the user types an "a," you execute
the member function Document: : InsertChar("a"). Then you append a canned Functor that
contains the pointer to Document, the member function InsertChar, and the actua character. When the
user selects Redo, all you have to do isfire that Functor and you're finished. Section 5.14 provides
further discussion of undo and redo.

Binding is powerful from another, more profound, standpoint. Think of aFunctor asacomputation, and
of its arguments as the environment necessary to perform that computation. So far, Functor delaysthe
computation by storing pointers to functions and pointers to methods. However, Functor stores only the
computation and nothing about the environment of that computation. Binding allows Functor to store
part of the environment together with the computation and to reduce progressively the environment
necessary at invocation time.

Before jJumping into the implementation, let's recap the requirement. For an instantiation Functor<Rr,
TList>, wewant to bind the first argument (TList: :Head) to afixed value. Therefore, the return type
isFunctor<R, TList::Tail>.

This being said, implementing the BinderFirst classtemplate is a breeze. We have to pay specia
attention only to the fact that there are two instantiations of Functor involved: the incoming Functor
and the outgoing Functor. Theincoming Functor typeis passed as the ParentFunctor parameter.
The outgoing Functor type is computed.

template <class Incoming>
class BinderFirst
: public Functorimpl<typename Incoming::ResultType,
typename Incoming::Arguments::Tail>

{
typedef Functor<typename Incoming::ResultType,
Incoming: :Arguments::Tail> Outgoing;
typedef typename Incoming::Parml Bound;
typedef typename Incoming::ResultType ResultType;
public:

BinderFirst(const Incoming& fun, Bound bound)
: fun_(fun), bound_(bound)

{
}

BinderFirst* Clone() const
{ return new BinderFirst(*this); }
ResultType operator()Q

return fun_(bound );

}
ResultType operator() (typename Outgoing::Parml pl)

return fun_(bound_, pl);

}
ResultType operator() (typename Outgoing::Parml p1l,

typename Outgoing::Parm2 p2)
{

return fun_(bound_, pl, p2);
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}

private:
Incoming fun_;
Bound bound_;

3

The class template BinderFirst worksin conjunction with the template function BindFirst. The
merit of BindFirst isthat it automatically deduces its template parameters from the types of the actua
arguments that you passiit.

// See Functor.h for the definition of BinderFirstTraits
template <class Fctor>
typename Private::BinderFirstTraits<Fctor>::BoundFunctorType
BindFirst(

const Fctor& fun,

typename Fctor::Parml bound)

{
typedef typename
private: :BinderFirstTraits<Fctor>::BoundFunctorType
Outgoing;
return Outgoing(std::auto_ptr<typename Outgoing::Impl>(
new BinderFirst<Fctr>(fun, bound)));
}

Binding dovetails nicely with automatic conversion, conferring incredible flexibility on Functor. The
following example combines binding with automatic conversions.

const char* Fun(int i, int j)

{
cout << Fun(” << 1 << ", " << j << ") called\n";
return "0";

}

int main()
Functor<const char*, TYPELIST_2(char, int)> f1(Fun);
Functor<std::string, TYPELIST_1(double)> T2(

BindFirst(fl, 10));

// Prints: Fun(10, 15) called
2(15);

}

5.11 Chaining Requests

The GoF book (Gamma et al. 1995) gives an example of aMacroCommand class, acommand that holds a
linear collection (such as alist or avector) of Commands. When aMacroCommand is executed, it executes
in sequence each of the commands that it holds.

This feature can be very useful. For instance, let's refer to the undo/redo example again. One "do"
operation might be accompanied by multiple "undo” operations. For example, inserting a character may
automatically scroll the text window (some editors do this to ensure better text visibility). On undoing that
operation, you'd like the window to "unscroll” back to where it was. (Most editors don't unscroll correctly.
What anuisance.) To unscroll, you need to store multiple Commandsin asingle Functor object and
execute them as asingle unit. The Document: : InsertChar member function pushes a
MacroCommand onto the undo stack. The MacroCommand would be composed of
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Document: :Delete-Char and Window: : Scrol I. The latter member function would be bound to an
argument that holds the old position. (Again, binding comesin very handy.)

Loki defines a class FunctorChain and the helper function Chain. Chain's declaration looks like this:

template <class Funl, class Fun2>
Fun2 Chain(

const Funl& funl,

const Fun2& fun2);

FunctorChain's classimplementation istrivia—it stores the two functors, and
FunctorChain: :operator () calsthem in sequence. Y ou can chain multiple functors by issuing
repeated callsto Chain.

Let's have Chain conclude the support for macro commands. One thing about "nice to have" featuresis
that the list can go on forever. However, there's plenty of room to grow. Neither BindFirst nor Chain
incurred any change to Functor, which is proof that you can build similar facilities on your own.

5.12 Real-World Issues |: The Cost of Forwarding Functions

The Functor classtemplate is conceptually finished. Now we concentrate on optimizing it so that it
works as efficiently as possible®!

(6] Usually, premature optimization is not recommended. One reason is that programmers are not good at
estimating which parts of the program should be optimized and (most important) which should not. However,
library writers are in a different situation. They don't know whether or not their library will be used in a critical
part of some application, so they should take their best shot at optimizing.

Let'sfocus on one of Functor'soperator () overloads, which forwards the call to the smart pointer.

// inside Functor<R, TList>
R operator(Q)(Parml pl, Parm2 p2)
{

return (*spimpl )(pl, p2);
¥

Each time you call operator (), an unnecessary copy is performed for each argument. If Parml and
Parm?2 are expensive to copy, you might have a performance problem.

Oddly enough, even if Functor'soperator () isinline, the compiler is not allowed to optimize the
extra copies away. ltem 46 in Sutter (2000) describes this late language change, made just before
standardization. What's called eliding of copy construction was banned for forwarding functions. The only
situation in which a compiler can elide a copy constructor is for the returned value, which cannot be
optimized by hand.

Are references an easy fix for our problem? Let'stry this:

// inside Functor<R, TList>
R operator()(Parml& pl, Parm2& p2)
{

return (*spimpl_)(pl, p2);
}



All looks fine, and it might actually work, until you try something like this:

void testFunction(std::string&, int);

Functor<void, TYPELIST_2(std::string&, int)> cmd(testFunction);
string s;

cmd(s, 5); //error!

The compiler will choke on the last line, uttering something like "References to references are not
allowed." (Actually, the message may be slightly more cryptic.) The fact is, such an instantiation would
render Parml asareferenceto std: : string, and consequently p1 would be areference to areference
to std: :string. Referencesto references are illegal g

" This problem appears with the standard binders, too. Bjarne Stroustrup has submitted a defect report to
the Standards Committee. His proposal for a fix is to allow references to references and simply to treat them
as references. At the time of this writing, the report was available at
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/cwg_active.html#106.

Fortunately, Chapter 2 provides atool that addresses exactly this kind of problem. Chapter 2 features a
classtemplate TypeTraits<T> that defines a bunch of types related to the type T. Examples of such
related types are the non-const type (if T isaconst type), the pointed-to type (if T isa pointer), and many
others. The type that can be safely and efficiently passed as a parameter to afunction isParameterType.
The following tableillustrates the link between the type you passto TypeTraits and the inner type
definition ParameterType. Consider U to be aplain type, such asaclass or a primitive type.

T TypeTraits<T>::ParameterType

U U if U is primitive; otherwise, const U &
const U U if U is primitive; otherwise, const U &
U & U &

lconst U & lconst U &

If you substitute the typesin the right column for the arguments in the forwarding function, it will work
correctly for any case—and without any copy overhead:

// Inside Functor<R, TList>

R operator()(
typename TypeTraits<Parml>::ParameterType pl,
typename TypeTraits<Parm2>::ParameterType p2)

return (*splmpl_)(pl, p2);
}

What's even nicer is that references work great in conjunction with inline functions. The optimizer
generates optimal code easier because al it hasto do is short-circuit the references.

5.13 Real-World Issues Il: Heap Allocation

Let's concentrate now on the cost of constructing and copying Functors. We have implemented correct
copy semantics, but at a cost: heap allocation. Every Functor holds a (smart) pointer to an object
allocated with new. When aFunctor is copied, adeep copy is performed by using
Functorimpl: :Clone.
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Thisis especialy bothersome when you think of the size of the objects were using. Most of the time,
Functor will be used with pointers to functions and with pairs of pointersto objects and pointers to
member functions. On typical 32-bit systems, these objects occupy 4 and 20 bytes, respectively (4 for the
pointer to an object and 16 for the pointer to amember function). When binding is used, the size of the
concrete functor object increases roughly with the size of the bound argument (it may actually increase
dlightly more because of padding).

® you might expect a pointer to a member function to occupy 4 bytes, just as pointers to functions do.
However, pointers to methods are actually little tagged unions. They deal with multiple virtual inheritance and
virtual/nonvirtual functions.

Chapter 4 introduces an efficient small-object alocator. Functor Impl and its derivatives are perfect
candidates for taking advantage of that custom allocator. Recall from Chapter 4 that one way to use the
small-object alocator isto derive your class from the Smal I -Ob ject class template.

Using Smal 10bject isvery simple. We need, however, to add a template parameter to Functor and
FunctorImpl that reflects the threading model used by the memory allocator. Thisis not troublesome,
because most of the time you'll use the default argument. In the following code, changes are shown in bold:

template

<
class R,
class TL,

template <class T>
class ThreadingModel = DEFAULT_THREADING,

>
class Functorlimpl : public SmallObject<ThreadingModel>
{
public:
... as above ...
};

That'sal it takes for Functor Impl to take full advantage of the custom alocator.

Similarly, Functor itself adds a third template parameter:

template

<
class R,
class TL,

template <class T>
class ThreadingModel = DEFAULT_THREADING,
>

class Functor

{

private:
// Pass ThreadingModel to Functorlimpl
std::auto_ptr<FunctorlImpl<R, TL, ThreadingModel> plImpl_;

}:
Now if you want to use Functor with the default threading model, you don't have to specify its third

template argument. Only if your application needs Functors that support two or more different threading
models will you need to specify ThreadingModel explicitly.
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5.14 Implementing Undo and Redo with Functor

The GoF book (Gamma et al. 1995) recommends that undo be implemented as an additional Unexecute
member function of the Command class. The problem is, you cannot ex press Unexecute in ageneric
way because the relation between doing something and undoing something is unpredictable. The
Unexecute solution is appealing when you have a concrete Command class for each operation in your
application, but the Functor-based approach favors using a single class that can be bound to different
objects and member function calls.

Al Stevenssarticle in Dr. Dobb's Journal (Stevens 1998) is of great help in studying generic
implementations of undo and redo. He has built a generic undo/redo library that you certainly should check
out before rolling your own, with Functor or not.

It's all about data structures. The basic ideain undo and redo is that you have to keep an undo stack and a
redo stack. Asthe user "does' something, such astyping a character, you push adifferent Functor on the
undo stack. This means the Document: : InsertChar member function is responsible for pushing the
action that appropriately undoes the insertion (such asDocument: : DelleteChar). This puts the burden
on the member function that does the stuff and frees the Functor from knowing how to undo itself.

Optionally, you may want to push on the redo stack a Functor consisting of the Document and a pointer
tothe Document: : InsertChar member function, all bound to the actual character type. Some editors
allow "retyping": After you type something and select Redo, that block of typing is repeated. The binding
we built for Functor greatly helpswith storing acall to Document: : InsertChar for agiven character,
all encapsulated in asingle Functor. Also, not only should the last character typed be repeated—that
wouldn't be much of afeature—but the whole sequence of typing after the last nontyping action should be
repeated. Chaining Functors entersinto action here: Aslong as the user types, you append to the same
Functor. Thisway you can treat later multiple keystrokes as a single action.

Document: : InsertChar essentially pushes a Functor onto the undo stack. When the user selects
Undo, that Functor will be executed and pushed onto the redo stack.

Asyou see, binding arguments and composition allows usto treat Functorsin avery uniform way: No
matter what kind of call thereis, it's ultimately packed in a Functor. This considerably eases the task of
implementing undo and redo.

5.15 Summary

Using good librariesin C++ is (or at least ought to be) alot easier than writing them. On the other hand,
writing librariesisalot of fun. Looking back at all the implementation details, there are afew lessonsto
keep in mind when writing generic code:

e When it comesto types, templatize and postpone. Be generic. FunctorHandler and
MemFunHand ler gain alot from postponing type knowledge by using templates. Pointers to
functions came for free. In comparison with what it offers, the codebase is remarkably small. All
this comes from using templates and letting the compiler infer types as much as possible.

e Encourage first-class semantics. It would have been an incredible headache to operate only with
FunctoriImpl pointers. Imagine yourself implementing binding and chaining.

Clever techniques should be applied for the benefit of simplicity. After al this discussion on templates,
inheritance, binding, and memory, we ditill asimple, easy-to-use, well-articulated library.
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In anutshell, Functor isadelayed call to afunction, afunctor, or amember function. It stores the callee
and exposes operator () for invoking it. Let's highlight some quick facts about it.

5.16 Functor Quick Facts

e Functor isatemplate that allows the expression of calls with up to 15 arguments. The first
parameter is the return type, and the second is atypelist containing the parameter types. The third
template parameter establishes the threading model of the allocator used with Functor. Refer to
Chapter 3 for details on typelists, the appendix for details on threading models, and Chapter 4 for
details on small-object alocation.

e YouinitiaizeaFunctor with afunction, afunctor, another Functor, or a pointer to an object
and a pointer to a method, as exemplified in the following code:

void Function(int);

struct SomeFunctor

{
void operator()(int);
}:
struct SomeClass
{
void MemberFunction(int);
}:
void example()
{
// Initialize with a function
Functor<void, TYPELIST_1(int)> cmdl(Function);
// Initialize with a functor
SomeFunctor fn;
Functor<void, TYPELIST 1(int)> cmd2(fn);
// Initialize with a pointer to object
// and a pointer to member function
SomeClass myObject;
Functor<void, TYPELIST 1(int)> cmd3(&myObject,
&SomeClass: :MemberFunction);
// Initialize a Functor with another
// (copying)
Functor<void, TYPELIST_1(int)> cmd4(cmd3);
}

e Youadsocaninitiadize Functor withastd: :auto_ptr< Functorlmpl<R,TList> >.
This enables user-defined extensions.

e Functor supports automatic conversions for arguments and return values. For instance, in the
previous example, Function, SomeFunctor: :operator(), and SomeClass: :
MemberFunction might takeadouble, instead of an int, asan argument.

e Manua disambiguation is needed in the presence of overloading.

e Functor fully supports first-class semantics: copying, assigning to, and passing by value.
Functor isnot polymorphic and is not intended to be derived from. If you want to extend
Functor, derive from Functorimpl.

e Functor supports argument binding. A call to BindFirst bindsthe first argument to afixed
value. Theresult isaFunctor parameterized with the rest of the arguments. Example:

void O
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// Define a Functor of three arguments

Functor<void, TYPELIST 3(int, int, double)> cmdl1(
someEntity);

// Bind the first argument to 10

Functor<void, TYPELIST_2(int, double)> cmd2(
BindFirst(cmdl, 10));

// Same as cmd1(10, 20, 5.6)

cmd2(20, 5.6);

}

Multiple Functors can be chained in asingle Functor object by using the Chain function.

void Q)
{

Functor<> cmdl(something);
Functor<> cmd2(somethingElse);

// Chain cmdl and cmd2

// as the container

Functor<> cmd3(Chain(cmd1, cmd2));
// Equivalent to cmd1(); cmd2();
cmd3Q);

}

The cost of using Functor isoneindirection (call via pointer) for simple Functor objects. For
each binding, thereis an extravirtual call cost. For chaining, thereisan extravirtua call cost.
Parameters are not copied, except when conversion is necessary.

FunctorImpl usesthe small-object alocator defined in Chapter 4.
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Chapter 6. Implementing Singletons

The Singleton design pattern (Gamma et al. 1995) is unique in that it's a strange combination: its
description is simple, yet its implementation issues are complicated. Thisis proven by the abundance of
Singleton discussions and implementations in books and magazine articles (e.g., Vlissides 1996, 1998).
Singleton's description in the GoF book is as simple as it gets. "Ensure a class only has one instance, and
provide aglobal point of accesstoit.”

A singleton is an improved global variable. The improvement that Singleton bringsis that you cannot
create a secondary object of the singleton's type. Therefore, you should use Singleton when you model
types that conceptually have a unique instance in the application, such asKeyboard, Display,
PrintManager, and SystemClock. Being able to instantiate these types more than once is unnatural at
best, and often dangerous.

Providing aglobal point of access has a subtle implication—from aclient's standpoint, the Singleton object
owns itself. There is no special client step for creating the singleton. Consequently, the Singleton object is
responsible for creating and destroying itself. Managing a singleton's lifetime causes the most
implementation headaches.

This chapter discusses the most important issues associated with designing and implementing various
Singleton variantsin C++:

The features that set apart a singleton from a simple global object

The basic C++ idioms supporting singletons

Better enforcement of a singleton’s uniqueness

Destroying the singleton and detecting postdestruction access

Implementing solutions for advanced lifetime management of the Singleton object
Multithreading issues

We will develop techniques that address each issue. In the end, we will use these techniques for
implementing ageneric SingletonHolder classtemplate.

Thereisno "best" implementation of the Singleton design pattern. Various Singleton implementations,
including nonportable ones, are most appropriate depending on the problem at hand. This chapter's
approach isto develop afamily of implementations on a generic skeleton, following a policy-based design
(see Chapter 1). SingletonHolder aso provides hooks for extensions and customizations.

By the end of this chapter, we will have developed aSingletonHolder classtemplate that can generate
many different types of singletons. SingletonHolder givesyou fine-grained control over how the
Singleton object is alocated, when it is destroyed, whether it is thread safe, and what happensif a client
attemptsto use it after it's been destroyed. The SingletonHolder classtemplate provides Singleton-
specific services and functionality over any user-defined type.

6.1 Static Data + Static Functions != Singleton

At first glance, it seemsthat the need for Singleton can be easily obviated by using static member functions
and static member variables:

class Font { ... };
class PrinterPort { ... };
class PrintJob { ... };

113



class MyOnlyPrinter

{
public:
static void AddPrintJob(PrintJob& newJob)
{
if (printQueue_.empty() && printingPort_.available())
{
printingPort_.send(newJob.Data());
}
else
{
printQueue_.push(newJob);
}
3
private:

// All data is static

static std::queue<PrintJob> printQueue_;
static PrinterPort printingPort_;

static Font defaultFont_;

3

PrintJob somePrintJob(*'"MyDocument._txt™);
MyOnlyPrinter: :AddPrintJob(somePrintJob);

However, this solution™™! has a number of disadvantages in some situations. The main problem is that static
functions cannot be virtual, which makesiit difficult to change behavior without opening
MyOnlyPrinter's code.

™ This code actually illustrates another pattern, the Monostate pattern (Ball and Crawford 1998).

A subtler problem of this approach isthat it makes initialization and cleanup difficult. Thereisno centra
point of initialization and cleanup for MyOnlyPrinter'sdata Initialization and cleanup can be nontrivial
tasks—for instance, defaultFont_ can depend on the speed of printingPort_.

Singleton implementations therefore concentrate on creating and managing a unique object while not
allowing the creation of another one.

6.2 The Basic C++ Idioms Supporting Singletons

Most often, singletons are implemented in C++ by using some variation of the following idiom:

// Header file Singleton.h
class Singleton

public:
static Singleton* Instance() // Unique point of access

if (Iplnstance )
plnstance_ = new Singleton;

return plnstance_;
¥ i
... operations ...

private:

Singleton(); // Prevent clients from creating a new Singleton
Singleton(const Singleton&); // Prevent clients from creating

114



// a copy of the Singleton
static Singleton* plnstance ; // The one and only instance

¥

// Implementation Ffile Singleton.cpp
Singleton* Singleton::plnstance_ = 0;

Because all the constructors are private, user code cannot create Singletons. However, Singleton's
own member functions—and Instance in particular—are allowed to create objects. Therefore, the
uniqueness of the Singleton object is enforced at compile time. Thisis the essence of implementing the
Singleton design pattern in C++.

If it's never used (no call to Instance occurs), the Singleton object is not created. The cost of this
optimization is the (usually negligible) test incurred at the beginning of Instance. The advantage of the
build-on-first-request solution becomes significant if Singleton isexpensive to create and seldom used.

Anill-fated temptation is to simplify things by replacing the pointer pInstance_ in the previous example
with afull Singleton object.

// Header file Singleton.h
class Singleton

{
public:
static Singleton* Instance() // Unique point of access
{
return &instance_;
}
int DoSomething();
private:
static Singleton instance_;
}s

// Implementation file Singleton.cpp
Singleton Singleton::instance_;

Thisisnot agood solution. Although instance_ isastatic member of Singleton (just as
plnstance_ wasin the previous example), there is an important difference between the two versions.
instance_ isinitialized dynamically (by calling Singleton's constructor at runtime), whereas
plnstance_ benefits from static initialization (it is a type without a constructor initialized with a
compile-time constant).

The compiler performs static initialization before the very first assembly statement of the program gets
executed. (Usually, static initializers are right in the file containing the executable program, so loading is
initializing.) On the other hand, C++ does not define the order of initialization for dynamically initialized
objects found in different translation units, which is amajor source of trouble. (A trandation unit is,
roughly speaking, a com-pilable C++ source file.) Consider this code:

// SomeFile.cpp
#include "Singleton.h"
int global = Singleton::Instance()->DoSomething();

Depending on the order of initialization that the compiler choosesfor instance_ and global, thecal to

Singleton: : Instance may return an object that has not been constructed yet. This means that you
cannot count on instance_ being initialized if other external objects are using it.
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6.3 Enforcing the Singleton's Uniqueness

A few language-related techniques are of help in enforcing the singleton’s uniqueness. We've already used
acouple of them: The default constructor and the copy constructor are private. The latter measure disables
code such asthis:

Singleton sneaky(*Singleton::Instance()); // error!
// Cannot make “sneaky®" a copy of the (Singleton) object
// returned by Instance

If you don't define the copy constructor, the compiler doesiits best to be of help and defines a public one
for you (Meyers 19984). Declaring an explicit copy constructor disables automatic generation, and placing
that constructor in the private section yields a compile-time error on sneaky's definition.

Ancther dlight improvement is to have Instance return areference instead of a pointer. The problem
with having Instance return a pointer is that callers might be tempted to delette it. To minimize the
chances of that happening, it's safer to return areference:

// inside class Singleton
static Singleton& Instance();

Anaother member function silently generated by the compiler is the assignment operator. Uniqueness is not
directly related to assignment, but one obvious consequence of uniquenessis that you cannot assign one
object to another because there aren't two objects to start with. For aSingleton object, any assignment is
a self-assignment, which doesn't make much sense anyway; thus, it is worthwhile to disable the assignment
operator (by making it private and never implementing it).

The last coat of the armor is to make the destructor private. This measure prevents clients that hold a
pointer to the Singleton object from deleting it accidentally.

After the enumerated measures are added, Singleton'sinterface looks like the following.

class Singleton

{
Singleton& Instance();
. operations ...
private:
Singleton();
Singleton(const Singleton&);
Singleton& operator=(const Singleton&);
~Singleton();
}:

6.4 Destroying the Singleton

Asdiscussed, Singleton iscreated on demand, when Instance isfirst called. Thefirst cal to
Instance defines the construction moment but leaves the destruction problem open: When should the
singleton destroy its instance? The GoF book doesn't discuss thisissue, but, as John Vlissides's book
Pattern Hatching (1998) witnesses, the prablem is thorny.

Actualy, if Singleton isnot deleted, that's not a memory leak. Memory leaks appear when you allocate
accumulating data and lose al referencestoit. Thisis not the case here: Nothing is accumulating, and we
hold knowledge about the allocated memory until the end of the application. Furthermore, all modern
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operating systems take care of completely deallocating a processs memory upon termination. (For an
interesting discussion on what is and is not a memory leak, refer to Item 10 in Effective C++ [Meyers

19984].)

However, thereis aleak, and amore insidious one: aresource leak. Singleton's constructor may acquire
an unbound set of resources: network connections, handles to OS-wide mutexes and other interprocess
communication means, references to out-of-process CORBA or COM objects, and so on.

The only correct way to avoid resource leaks is to delete the Singleton object during the application's
shutdown. The issue is that we have to choose the moment carefully so that no onetries to access the
singleton after its destruction.

The simplest solution for destroying the singleton isto rely on language mechanisms. For example, the
following code shows a different approach to implementing a singleton. Instead of using dynamic
alocation and a static pointer, the Instance function relies on alocal static variable.

Singleton& Singleton::Instance()

{
static Singleton obj;

return obj;

}

This simple and elegant implementation was first published by Scott Meyers (Meyers 1996a, Item 26);
therefore, well refer to it as the Meyers singleton.

The Meyers singleton relies on some compiler magic. A function-static object isinitialized when the
control flow isfirst passing its definition. Don't confuse static variables that are initialized at runtime with
primitive static variables initialized with compile-time constants. For example:

int FunQ

{
static int x = 100;

return ++x;

}

In this case, x isinitialized before any code in the program is executed, most likely at load time. For all
that Fun can tell when first called, x has been 100 since time immemorial. In contrast, when the initializer
is not a compile-time constant, or the static variable is an object with a constructor, the variable is
initialized at runtime during the first pass through its definition.

In addition, the compiler generates code so that after initialization, the runtime support registers the
variable for destruction. A pseudo-C++ representation of the generated code may ook like the following
code. (The variables starting with two underscores should be thought of as hidden, that is, variables
generated and managed only by the compiler.)

Singleton& Singleton::Instance()

{
// Functions generated by the compiler
extern void _ ConstructSingleton(void* memory);
extern void _ DestroySingleton();
// Variables generated by the compiler
static bool _ initialized = false;
// Buffer that holds the singleton
// (We assume it is properly aligned)
static char _ _buffer[sizeof(Singleton)];
if (1__initialized)
{
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// First call, construct object
// Will invoke Singleton::Singleton
// In the _ buffer memory
__ConstructSingleton(__buffer);
// register destruction
atexit(__DestroySingleton);
__initialized = true;

}

return *reinterpret_cast<Singleton *>(__ buffer);

}

The coreisthe cal to the atexit function. The atexi t function, provided by the standard C library,
allows you to register functions to be automatically called during a program's exit, in alast in, first out
(L1FO) order. (By definition, destruction of objectsin C++ isdone in a LIFO manner: Objects created first
are destroyed last. Of course, objects you manage yourself with new and de lete don't obey thisrule.)
The signature of atexitis

// Takes a pointer to function

// Returns 0 if successful, or

// a nonzero value if an error occurs
int atexit(void (*pFun)Q);

The compiler generates the function _ DestroySingleton—whose execution destroys the
Singleton object seated in ___buffer’'s memory—and passes the address of that function to atexi t.

How does atex it work? Each call to atexit pushesits parameter on a private stack maintained by the
C runtime library. During the application’s exit sequence, the runtime support calls the functions registered
with atexit.

WEe'l see in ashort while that atexi t hasimportant—and sometimes unfortunate—links with
implementing the Singleton design pattern in C++. Likeit or not, it's going to be with us until the end of
this chapter. No matter what solution for destroying singletons we try, it has to play nice with atexit or
else we break programmers expectations.

The Meyers singleton provides the simplest means of destroying the singleton during an application's exit
sequence. It works fine in most cases. We will study its problems and provide some improvements and
alternate implementations for special cases.

6.5 The Dead Reference Problem

To make the discussion concrete, let's refer to an example that will be used throughout the rest of this
chapter to validate various implementations. The example has the same traits as the Singleton pattern itself:
It's easy to express and understand, but hard to implement.

Say we have an application that uses three singletons: Keyboard, Display, and Log. Thefirst two
model their physical counterparts. Log isintended for error reporting. Itsincarnation can be atext file, a
secondary console, or even a scrolling marquee on the LCD display of an embedded system.

We assume that Log's construction implies a certain amount of overhead, so it is best to instantiate it only
if an error occurs. Thisway, in an error-free session, the program doesn't create Log at all.

The program reports to Log any error in instantiating Keyboard or Display. Log also collects errorsin
destroying Keyboard or Display.
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Assuming we implement these three singletons as Meyers singletons, the program is incorrect. For
example, assume that after Keyboard is constructed successfully, Display failstoinitialize. Display's
constructor creates Log, the error islogged, and it's likely the application is about to exit. At exit time, the
language rule enters into action: The runtime support destroys local static objectsin the reverse order of
their creation. Therefore, Log is destroyed before Keyboard. If for some reason Keyboard fails to shut
down and triesto report an error to Log, Log: : Instance unwittingly returns a reference to the "shell" of
adestroyed Log aobject. The program steps into the shady realm of undefined behavior. Thisisthe dead-
reference problem.

The order of construction and destruction of Keyboard, Log, and Display is hot known beforehand.
The need isto have Keyboard and Display follow the C++ rule (last created isfirst destroyed) but also
to exempt Log from this rule. No matter when it was created, Log must be always destroyed after both
Keyboard and Display so that it can collect errors from the destruction of either of these.

If an application uses multiple interacting singletons, we cannot provide an automated way to control their
lifetime. A reasonable singleton should at least perform dead-reference detection. We can achieve this by
tracking destruction with a static Boolean member variable destroyed_. Initialy, destroyed_ is
false. Singleton'sdestructor setsdestroyed_ to true.

Before jumping to the implementation, it's time for an overhaul. In addition to creating and returning a
reference to the Singleton object, Singleton: : Instance now hasan additiona responsibility—
detecting the dead reference. Let's apply the design guideline that says, One function, one responsihility.
We therefore define three distinct member functions: Create, which effectively creates the Singleton
object; OnDeadReference, which performs error handling; and the well-known Instance, which gives
access to the unique Singleton object. Of these, only Instance ispublic.

Let's implement a Singleton that performs dead-reference detection. First, we add a static boo I member
variable called destroyed tothe Singleton class. Itsroleis to detect the dead reference. Then we
change the destructor of Singleton to set plnstance_ to zero and destroyed_ to true. Here'sthe new
class and the OnDeadReference function:

// Singleton.h
class Singleton

{
public:
Singleton& Instance()
iT (Iplnstance )
{
// Check for dead reference
if (destroyed )
OnDeadReference();
}
else
{
// First call-initialize
Create();
}
return plnstance_;
3
private:

// Create a new Singleton and store a
// pointer to it in plnstance_
static void Create();

{
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// Task: initialize plnstance_
static Singleton thelnstance;
plnstance_ = &thelnstance;

// Gets called if dead reference detected
static void OnDeadReference()

{

throw std::runtime_error(*'Dead Reference Detected™);

}
virtual ~Singleton()

{
plnstance_ = O;
destroyed_ = true;
}
// Data

Singleton plnstance_;
bool destroyed ;
. disabled "tors/operator= ...

}:

// Singleton.cpp

Singleton* Singleton::plnstance_ = 0;
bool Singleton::destroyed = false;

It works! As soon as the application exits, Singleton'sdestructor gets called. The destructor sets
plnstance_ tozero and destroyed_ to true. If some longer-living object tries to access the singleton
afterward, the control flow reaches OnDeadReference, which throws an exception of type
runtime_error. Thissolution isinexpensive, simple, and effective.

6.6 Addressing the Dead Reference Problem (I):
The Phoenix Singleton

If we apply the solution in the previous section to the KDL (Keyboard, Display, Log) problem, the
result is unsatisfactory. If Display's destructor needs to report an error after Log has been destroyed,
Log: : Instance throws an exception. We got rid of undefined behavior; now we have to deal with
unsatisfactory behavior.

We need Log to be available at any time, no matter when it was initialy constructed. At an extreme, we'd
even prefer to create Log again (although it's been destroyed) so that we can useit for error reporting at
any time. Thisisthe idea behind the Phoenix Singleton design pattern.

Just as the legendary Phoenix bird rises repeatedly from its own ashes, the Phoenix singleton is ableto rise
again after it has been destroyed. A single instance of the Singleton object at any given moment is still
guaranteed (no two singletons ever exist simultaneoudly), yet the instance can be created again if the dead
reference is detected. With the Phoenix Singleton pattern, we can solve the KDL problem easily:
Keyboard and Display can remain "regular” singletons, while Log becomes a Phoenix singleton.

The implementation of the Phoenix Singleton with a static variable is simple. When we detect the dead
reference, we create anew Singleton object in the shell of the old one. (C++ guarantees thisis possible.
Static objects memory lasts for the duration of the program.) We also register this new object's destruction
with atexit. We don't have to change Instance; the only changeisin the OnDeadReference
primitive.

class Singleton
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{

... as before ...
void KillPhoenixSingleton(); // Added

¥

void Singleton::OnDeadReference()

{
// Obtain the shell of the destroyed singleton
Create();
// Now plnstance_ points to the "ashes"™ of the singleton
// - the raw memory that the singleton was seated in.
// Create a new singleton at that address
new(plnstance_) Singleton;
// Queue this new object"s destruction
atexit(KillPhoenixSingleton);
// Reset destroyed_ because we"re back in business

destroyed_ = false;
}
void Singleton: :KillPhoenixSingleton()
{
// Make all ashes again
// - call the destructor by hand.
// 1t will set plnstance_ to zero and destroyed_ to true
plnstance ->~Singleton();
}

The new operator that OnDeadReference usesis called the placement new operator. The placement
new operator does not allocate memory; it only constructs a new object at the address passed—in our case,
plnstance_. For an interesting discussion about the placement new operator, you may want to consult

Meyers (1998b).

The Singleton above added a new member function, Ki I IPhoenixSingleton. Now that we use
new to resurrect the Phoenix singleton, the compiler magic will no longer destroy it, asit does with static
variables. We built it by hand, so we must destroy it by hand, which is what
atexit(KillPhoenixSingleton) ensures.

Let's analyze the flow of events. During the application exit sequence, Singleton's destructor is called.
The destructor resets the pointer to zero and sets destroyed_ to true. Now assume some global object
triesto access Singleton again. Instance calsOnDeadReference. OnDeadReference
reanimates Singleton and queues acall to Ki I IPhoenixSingleton, and Instance successfully
returns areferenceto avalid Singleton object. From now on, the cycle may repeat.

The Phoenix Singleton class ensures that global objects and other singletons can get avalid instance of it,
at any time. Thisis astrong enough guarantee to make the Phoenix singleton an appealing solution for
robust, all-terrain objects, like the Log in our problem. If we make Log a Phoenix singleton, the program
will work correctly, no matter what the sequence of failuresis.

6.6.1 Problems with atexit

If you compared the code given in the previous section with Loki's actual code, you would notice a
difference: The call to atexit issurrounded by an #i fde T preprocessor directive:

#ifdef ATEXIT_FIXED
// Queue this new object"s destructor
atexit(KillPhoenixSingleton);

#endif
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If you don't #define ATEXIT_FIXED, the newly created Phoenix singleton will not be destroyed, and it
will leak, which is exactly what we are striving to avoid.

This measure has to do with an unfortunate omission in the C++ standard. The standard fails to describe
what happens when you register functions with atex it during a call made as the effect of another
atexit registration.

To illustrate this problem, let's write a short test program:

#include <cstdlib>

void Bar(Q)

{

void Foo()

{ std: :atexit(Bar);
%nt main()

i std: :atexit(Foo);

This little program registers Foo with atexit. Foo calsatexit(Bar), acase in which the behavior is
not covered by the two standards. Because atex it and destruction of static variables go hand in hand,
once the application exit sequence has started, we're left on shaky ground. Both the C and C++ standards
are self-contradictory. They say that Bar will be called before Foo because Bar was registered last, but at
the time it's registered, it's too late for Bar to be first because Foo is already being called.

Does this problem sound too academic? Let's put it another way: At the time of this writing, on three
widely used compilers, the behavior ranges from incorrect (resource leaks) to application crashes.2!

2| have had a newsgroup (comp.std.c++) and e-mail discussion with Steve Clamage, chairman of the
ANSI/ISO C++ Standards Committee, regarding the state of affairs with atexit. He was well aware of the
problem and had already submitted a defect report for both C9X and C++. The submittal can be found at
http://anubis.dkuug.dk/jtcl/sc22/wg21/docs/lwg-issues.html#3. Fortunately, the current proposed resolution
favors the Singleton implementation discussed in this chapter: Even for functions called during exit
processing, atexit still behaves in a stack manner, which is what is wanted. At the time of this writing, the
resolution is approved and ready to be committed to the standard.

Compilerswill take some time to catch up with the solution to this problem. As of this moment, the macro
isin there. On some compilers, if you create a Phoenix singleton the second time, it will eventually leak.
Depending on what your compiler's documentation says, you may want to #define ATEXIT_FIXED
prior to including the Singleton . h header file.

6.7 Addressing the Dead Reference Problem (lI):
Singletons with Longevity

The Phoenix singleton is satisfactory in many contexts but has a couple of disadvantages. The Phoenix
singleton breaks the normal lifetime cycle of a singleton, which may confuse some clients. If the singleton
keeps state, that state islost after a destruction-creation cycle. The implementer of a concrete singleton that
uses the Phoenix strategy must pay extra attention to keeping state between the moment of destruction and
the moment of reconstruction.
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Thisis annoying especialy because in situations such as the KDL example, you do know what the order
should be: No matter what, if Log gets created, it must be destroyed after both Keyboard and Display.
In other words, in this case we need Log to have alonger lifetime than Keyboard and Display. We
need an easy way to control the lifetime of various singletons. If we can do that, we can solve the KDL
problem by assigning Log alonger lifetime than both Display and Keyboard.

But wait, there's more: This problem applies not only to singletons but also to global objectsin general.
The concept emerging here is that of longevity control and is independent of the concept of a singleton:
The greater longevity an object has, the later it will be destroyed. It doesn't matter whether the object isa
singleton or some global dynamically allocated object. We need to write code like this:

// This is a Singleton class

class SomeSingleton { ... };
// This is a regular class
class SomeClass { ... };

SomeClass* pGlobalObject(new SomeClass);

int main()

{
SetLongevity(&SomeSingleton() . Instance(), 5);

// Ensure pGlobalObject will be deleted
// after SomeSingleton®s instance
SetLongevity(pGlobalObject, 6);

}

The function SetLongevi ty takes areference to an object of any type and an integral value (the
longevity).

// Takes a reference to an object allocated with new and
// the longevity of that object

template <typename T>

void SetlLongevity(T* pDynObject, unsigned int longevity);

SetLongevity ensuresthat pDynObject will outlive all objects that have lesser longevity. When the
application exits, all objects registered with SetLongevity are deleted in decreasing order of their
longevity.

Y ou cannot apply SetLongevi ty to objects whose lifetimes are controlled by the compiler, such as
regular global objects, static objects, and automatic objects. The compiler already generates code for
destroying them, and calling SetLongevity for those objects would destroy them twice. (That never
helps.) SetLongevi ty isintended for objects alocated with new only. Moreover, by calling
SetLongevity for an object, you commit to not calling de I ete for that object.

An alternative would be to create a dependency manager, an object that controls dependencies between
other abjects. DependencyManager would expose a generic function SetDependency as shown:

class DependencyManager

{
public:
template <typename T, typename U>
void SetDependency(T* dependent, U& target);
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DependencyManager's destructor would destroy the objectsin an ordered manner, destroying
dependents before their targets.

The DependencyManager-based solution has a major drawback—both objects must be in existence.
This means that if you try to establish a dependency between Keyboard and Log, for example, you must
create the Log object—even if you are not going to need it at all.

In an attempt to avoid this problem, you might establish the Keyboard-Log dependency inside Log's
constructor. This, however, tightens the coupling between Keyboard and Log to an unacceptable degree:
Keyboard depends on Log's class definition (because Keyboard uses the Log), and Log depends on
Keyboard's class definition (because Log sets the dependency). Thisisacircular dependency, and, as
discussed in detail in Chapter 10, circular dependencies should be avoided.

Let's get back then to the longevity paradigm. Because SetLongevi ty hasto play nice with atexit, we
must carefully define the interaction between these two functions. For example, |et's define the exact
sequence of destructor calls for the following program.

class SomeClass { ... };

int main()

{
// Create an object and assign a longevity to it
SomeClass* pObjl = new SomeClass;
SetLongevity(pObjl, 5);
// Create a static object whose lifetime
// follows C++ rules
static SomeClass obj2;
// Create another object and assign a greater
// longevity to it
SomeClass* pObj3 = new SomeClass;
SetLongevity(pObj3, 6);
// How will these objects be destroyed?

}

main defines amixed bag of objects with longevity and objects that obey C++ rules. Defining a
reasonabl e destruction order for these three objects is hard because, aside from using atexit, we don't
have any means of manipulating the hidden stack maintained by the runtime support.

A careful constraints analysis leads to the following design decisions.

e EachcdltoSetLongevity issuesacal to atexit.

e Destruction of objectswith lesser longevity takes place before destruction of objects with greater
longevity.

e Destruction of objects with the same longevity follows the C++ rule: last built, first destroyed.

In the example program, the rules lead to the following guaranteed order of destruction: *pObj1, obj2,
*pObj3. Thefirst call to SetLongevity will issue acal to atexi t for destroying *pObj 3, and the
second call will correspondingly issue acall to atexit for destroying *pObj1.

SetLongevity gives developers agreat deal of power for managing objects lifetimes, and it has well-
defined and reasonable ways of interacting with the built-in C++ rules related to object lifetime. Note,
however, that, like many other powerful tools, it can be dangerous. Therule of thumb inusingitisas
follows: Any object that uses an object with longevity must have a shorter longevity than the used object.
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6.8 Implementing Singletons with Longevity

Once SetLongevity's specification is complete, the implementation is not that complicated.
SetLongevity maintains a hidden priority queue, separate from the inaccessible atexi t stack. In turn,
SetlLongevity calsatexit, adways passing it the same pointer to afunction. This function pops one
element off the stack and deletesiit. It's that simple.

The coreisthe priority queue data structure. The longevity value passed to SetLongevi ty establishes
the priorities. For a given longevity, the queue behaves like a stack. Destruction of objects with the same
longevity followsthelast in, first out rule. In spite of its name, we cannot use the standard
std::priority_queue classbecause it does not guarantee the ordering of the el ements having the
same priority.

The elements that the data structure holds are pointersto the type Li fetimeTracker. Itsinterface
consists of avirtual destructor and a comparison operator. Derived classes must override the destructor.
(You will seein aminute what Compare isgood for.)

namespace Private

{

class LifetimeTracker

{
public:
LifetimeTracker(unsigned int x) : longevity (xX) {}
virtual ~LifetimeTracker() = 0O;
friend inline bool Compare(
unsigned int longevity,
const LifetimeTracker* p)
{ return p->longevity_ > longevity; }
private:
unsigned int longevity ;
}:
// Definition required
inline LifetimeTracker::~LifetimeTracker() {}

}

The priority queue data structure is a simple dynamically allocated array of pointersto
LifetimeTracker:

namespace Private

{
typedef LifetimeTracker** TrackerArray;
extern TrackerArray pTrackerArray;
extern unsigned int elements;

}

There isonly one instance of the Tracker type. Consequently, pTrackerArray isexposed to al the
Singleton problems just discussed. We are caught in an interesting chicken-and-egg problem:
SetLongevity must be available at any time, yet it has to manage private storage. To deal with this
problem, SetLongevity carefully manipulates pTrackerArray with the low-level functionsin the
std: :malloc family (mal loc, real loc, and free).2! Thisway, we transfer the chicken-and-egg
problem to the C heap allocator, which fortunately is guaranteed to work correctly for the whole lifetime of
the application. Thisbeing said, SetLongevity'simplementation issimple: It creates a concrete tracker
object, addsit to the stack, and registers a call to atexit.

3] Actually, SetLongevity uses std: :real loc only. The real loc function can replace both
mal loc and Free: If you call it with a null pointer, it behaves like std: :mal loc; if you call it with a zero
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size, it behaves like std: : free. Basically, std: :real loc is a one-stop shop for mal loc-based
allocation.

The following code makes an important step toward generalization. It introduces a functor that takes care
of destroying the tracked object. The rationale is that you don't always use de l ete to deallocate an object;
it can be an object allocated on an alternate heap, and so on. By default, the destroyer is a pointer to a
function that calls dellete. The default function is called De lete and istemplated with the type of the
object to be deleted.

//Helper destroyer function
template <typename T>
struct Deleter
{
static void Delete(T* pObj)
{ delete pObj; }
};

// Concrete lifetime tracker for objects of type T
template <typename T, typename Destroyer>
class ConcreteLifetimeTracker : public LifetimeTracker

public:

ConcreteLifetimeTracker(T* p,
unsigned int longevity,
Destroyer d)
:LifetimeTracker(longevity),

,pTracked_(p)

,destroyer_(d)

O

~ConcreteLifetimeTracker()

{
}

private:
T* pTracked_;
Destroyer destroyer_;
}:
void AteExitFn(); // Declaration needed below

destroyer_(pTracked );

}

template <typename T, typename Destroyer>

void SetLongevity(T* pDynObject, unsigned int longevity,
Destroyer d = Private::Deleter<T>::Delete)

{

TrackerArray pNewArray = static_cast<TrackerArray>(
std: :realloc(pTrackerArray, sizeof(T) * (elements + 1)));
if (IpNewArray) throw std::bad_alloc();
pTrackerArray = pNewArray;
LifetimeTracker* p = new ConcreteLifetimeTracker<T, Destroyer>(
pDynObject, longevity, d);
TrackerArray pos = std::upper_bound(
pTrackerArray, pTrackerArray + elements, longevity, Compare);
std: :copy_backward(pos, pTrackerArray + elements,
pTrackerArray + elements + 1);
*pos = p;
++elements;
std: atexit(AtExitFn);
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It takes awhile to get used to things like std: zupper_bound and std: :copy_backward, but indeed
they make nontrivial code easy to write and read. The function above inserts a newly created pointer to
ConcretelLifetimeTracker inthe sorted array pointed to by pTrackerArray, keepsit ordered, and
handles errors and exceptions.

Now the purpose of LifetimeTracker: :Compare isclear. The array to which pTrackerQueue
points is sorted by longevity. Objects with longer longevity are toward the beginning of the array. Objects
of the same longevity appear in the order in which they were inserted. SetLongevity ensures al this.

The AtExi tFn function pops the object with the smallest longevity (that is, the one at the end of the array)
and deletesit. Deleting the pointer to LifetimeTracker invokes ConcretelLifetimeTracker's
destructor, which in turn deletes the tracked object.

static void AtExitFn()
{
assert(elements > 0 && pTrackerArray 1= 0);
// Pick the element at the top of the stack
LifetimeTracker* pTop = pTrackerArray[elements - 1];
// Remove that object off the stack
// Don"t check errors-realloc with less memory
// can"t fail
pTrackerArray = static_cast<TrackerArray>(std::realloc(
pTrackerArray, sizeof(T) * --elements));
// Destroy the element
delete pTop;

}

Writing AtExitFn requires abit of care. AtExitFn must pop the top element off the stack and dellete
it. In its destructor, the element de I etes the managed object. Thetrick is, AtExitFn must pop the stack
before del eting the top object because destroying some object may create another one, thus pushing
another element onto the stack. Although thislooks quite unlikely, it's exactly what happens when
Keyboard's destructor tries to use the Log.

The code conveniently hides the data structures and AtEx i tFn in the Private namespace. The clients see
only the tip of the iceberg—the SetLongevi ty function.

Singletons with longevity can use SetLongevi ty in the following manner:

class Log
{
public:
static void Create()
{
// Create the instance
pInstance_ = new Log;
// This line added
SetLongevity(*this, longevity );

// Rest of implementation omitted
// Log::Instance remains as defined earlier

private:
// Define a fixed value for the longevity
static const unsigned int longevity_ = 2;
static Log* plnstance_;

}:



If you implement Keyboard and Display inasimilar fashion, but define longevity tobel, thelLog
will be guaranteed to be alive at the time when both Keyboard and Display are destroyed. This solves
the KDL problem—or does it? What if your application uses multiple threads?

6.9 Living in a Multithreaded World

Singleton has to deal with threads, too. Suppose we have an application that has just started, and two
threads access the following Singleton:

Singleton& Singleton::Instance()

{
iT (Iplnstance ) // 1
plnstance_ = new Singleton; // 2
}
return *plnstance_; // 3
}

Thefirst thread enters Instance and tests the i T condition. Because it's the very first access,
plnstance_ isnull, and the thread reaches the line marked // 2 and isready to invoke the new operator.
It might just happen that the OS scheduler unwittingly interrupts the first thread at this point and passes
control to the other thread.

The second thread enters the stage, invokes Singleton: : Instance(), andfindsanull plnstance_
aswell because the first thread hasn't yet had a chance to modify it. So far, the first thread has managed
only to test pInstance_. Now say the second thread manages to call the new operator, assigns
plnstance_ in peace, and gets away withit.

Unfortunately, as the first thread becomes conscious again, it remembers it was just about to execute line 2,
soit reassigns p Instance_ and gets away with it, too. When the dust settles, there aretwo Singleton
objects instead of one, and one of them will leak for sure. Each thread holds a distinct instance of
Singleton, and the application is surely slipping toward chaos. And that's only one possible situation—
what if multiple threads scramble to access the singleton? (Imagine yourself debugging this.)

Experienced multithreaded programmers will recognize a classic race condition here. It isto be expected
that the Singleton design pattern meets threads. A singleton object is a shared global resource, and all
shared global resources are aways suspect for race conditions and threading issues.

6.9.1 The Double-Checked Locking Pattern

A thorough discussion of multithreaded singletons was first presented by Douglas Schmidt (1996). The
same article describes a very nifty solution, called the Double-Checked Locking pattern, devised by Doug
Schmidt and Tim Harrison.

The obvious solution works but is not appealing:

Singleton& Singleton::Instance()
{
// mutex_ is a mutex object
// Lock manages the mutex
Lock guard(mutex_);
if (Iplnstance )
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plnstance_ = new Singleton;

}

return *plnstance_;

}

Class Lock isaclassic mutex handler (refer to the appendix for details on mutexes). Lock's constructor
locks the mutex, and its destructor unlocks the mutex. While mutex__ islocked, other threads that try to
lock the same mutex are waiting.

We got rid of the race condition: While athread assignsto plnstance_, al others stop in guard's
constructor. When another thread locks the lock, it will find pInstance_ aready initiaized, and
everything works smoothly.

However, a correct solution is not always an appealing one. The inconvenience isits lack of efficiency.
Each call to Instance incurs locking and unlocking the synchronization object, although the race
condition occurs only, so to say, once in alifetime. These operations are usualy very costly, much more
costly thanthesimple i f (Iplnstance_) test. (On today's systems, the times taken by a test-and-
branch and a critical-section lock differ typically by a couple of orders of magnitude.)

A would-be solution that attempts to avoid the overhead is presented in the following code:

Singleton& Singleton::Instance()

it (Iplnstance )

{
Lock guard(mutex_);
plnstance_ = new Singleton;

}

return *plnstance_;

}

Now the overhead is gone, but the race condition is back. The first thread passes the i f test, but just when
it is about to enter the synchronized portion of code, the OS scheduler interrupts it and passes control to the
other thread. The second thread passes the i f test itself (and to no one's surprise, finds a null pointer),
enters the synchronized portion, and completesit. When the first thread is reactivated, it also enters the
synchronized portion, but it's just too late—again, two Singleton objects are constructed.

This seems like one of those brainteasers with no solution, but in fact there is avery ssimple and elegant
one. It's called the Double-Checked Locking pattern.

Theideais simple: Check the condition, enter the synchronized code, and then check the condition again.
By thistime, rien ne va plus—the pointer is either initialized or null all right. The code that will help you
to understand and savor the Double-Checked pattern follows. Indeed, there is beauty in computer
engineering.

Singleton& Singleton::Instance()

{
if (Iplnstance ) // 1
{ // 2
Guard myGuard(lock ); // 3
iT (Iplnstance ) // 4
{
plnstance_ = new Singleton;
}
}
return *plnstance_;
}
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Assume the flow of execution of athread enters the twilight zone (commented line 2). Here several threads
may enter at once. However, in the synchronized section only one thread makes it at atime. On line 3,
there's no twilight anymore. All is clear: The pointer has been either fully initialized or not at al. The first
thread that entersinitializes the variable, and all othersfail the test on line 4 and do not create anything.

Thefirst test is quick and coarse. If the Singleton object isavailable, you get it. If not, further
investigation is necessary. The second test is slow and accurate: It tells whether Singleton was indeed
initialized or the thread is responsible for initializing it. Thisis the Double-Checked Locking pattern. Now
we have the best of both worlds: Most of the time the access to the singleton is asfast asit gets. During
construction, however, no race conditions occur. Awesome. But . . .

Very experienced multithreaded programmers know that even the Double-Checked Locking pattern,
although correct on paper, is not aways correct in practice. In certain symmetric multiprocessor
environments (the ones featuring the so-called relaxed memory model), the writes are committed to the
main memory in bursts, rather than one by one. The bursts occur in increasing order of addresses, not in
chronological order. Due to this rearranging of writes, the memory as seen by one processor at atime
might look as if the operations are not performed in the correct order by another processor. Concretely, the
assignment to plnstance_ performed by a processor might occur before the Singleton object has been
fully initialized! Thus, sadly, the Double-Checked Locking pattern is known to be defective for such
systems.

In conclusion, you should check your compiler documentation before implementing the Double-Checked
Locking pattern. (This makesit the Triple-Checked Locking pattern.) Usually the platform offers
aternative, nonportable concurrency-solving primitives, such as memory barriers, which ensure ordered
access to memory. At least, put avolati le quaifier next to pInstance_. A reasonable compiler
should generate correct, nonspeculative code around volati I e objects.

6.10 Putting It All Together

This chapter has wandered around various possible implementations of Singleton, commenting on their
relative strengths and weaknesses. The discussion doesn't lead to a unique implementation because the
problem at hand is what dictates the best Singleton implementation.

The SingletonHolder classtemplate defined by Loki isa Singleton container that assists you in using
the Singleton design pattern. Following a policy-based design (see Chapter 1), SingletonHolder isa
specialized container for a user-defined Singleton object. When using SingletonHolder, you pick the
features needed, and maybe provide some code of your own. In extreme cases, you might still need to start
all over again—which is okay, aslong as those are indeed extreme cases.

This chapter visited quite afew issues that are mostly independent of each other. How, then, can Singleton
implement so many cases without utter code bloating? The key is to decompose Singleton carefully into
policies, as discussed in Chapter 1. By decomposing SingletonHolder into severa policies, we can
implement all the cases discussed previoudly in asmall number of lines of code. By using template
instantiation, you select the features needed and don't pay anything for the unneeded ones. Thisis
important: The implementation of Singleton put together here is not the do-it-all class. Only the features
used are ultimately included in the generated code. Plus, the implementation leaves room for tweaks and
extensions.

6.10.1 Decomposing SingletonHolder into Policies
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Let's start by delimiting what policies we can distinguish for the implementations discussed. We identified
creation issues, lifetime issues, and threading issues. These are the three most important aspects of
Singleton development. The three corresponding polices therefore are as follows:

1. Creation. You can create asingleton in various ways. Typically, the Creation policy invokes the
new operator to create an object. Isolating creation as a policy is essential because it enables you
to create polymorphic objects.

2. Lifetime. Weidentified the following lifetime policies:

a. Following C++ rules—last created, first destroyed

b. Recurring (Phoenix singleton)

c. User controlled (singleton with longevity)

d. Infinite (the "leaking" singleton, an object that's never destroyed)

3. ThreadingModel. Whether singleton is single threaded, is standard multithreaded (with a mutex
and the Double-Checked Locking pattern), or uses a nonportable threading model.

All Singleton implementations must take the same precautions for enforcing unigueness. These are not
policies, because changing them would break the definition of Singleton.

6.10.2 Defining Requirements for singletonHolder's Policies
L et's define the necessary requirements that SinglletonHollder imposes on its policies.

The Creation policy must create and destroy objects, so it must expose two corresponding functions.
Therefore, assuming Creator<T> isa class compliant with the Creation policy, Creator<T> must
support the following calls:

T* pObj = Creator<T>::Create();
Creator<T>::Destroy(pObj);

Notice that Create and Destroy must be two static membersof Creator. Singleton does not hold a
Creator object—this would perpetuate the Singleton lifetime issues.

The Lifetime policy essentially must schedule the destruction of the Singleton object created by the
Creation policy. In essence, Lifetime policy's functionality boils down to its ability to destroy the Singleton
object at a specific time during the lifetime of the application. In addition, Lifetime decides the action to be
taken if the application violates the lifetime rules of the Singleton object. Hence:

e If you need the singleton to be destroyed according to C++ rules, then Lifetime uses a mechanism
similar to atexit.

e For the Phoenix singleton, Lifetime still uses an atexi t-like mechanism but acceptsthe re-
creation of the Singleton object.

e For asingleton with longevity, Lifetimeissues acall to SetLongevity, described in Sections
6.7 and 6.8.

e Forinfinite lifetime, Lifetime does not take any action.

In conclusion, the Lifetime policy prescribes two functions: ScheduleDestruction, which takes care
of setting the appropriate time for destruction, and OnDeadReference, which establishes the behavior in
case of dead-reference detection.

If Li fetime<T> isaclassthat implements the Lifetime policy, the following expressions make sense:

void (*pDestructionFunction)();

Lifetime<T>::ScheduleDestruction(pDestructionFunction);
Lifetime<T>::0OnDeadReference();
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The ScheduleDestruction member function accepts a pointer to the actual function that performs the
destruction. This way, we can compound the Lifetime policy with the Creation policy. Don't forget that
Lifetime is not concerned with the destruction method, which is Creation's charter; the only preoccupation
of Lifetime istiming—that is, when the destruction will occur.

OnDeadReference throws an exception in all cases except for the Phoenix singleton, a casein which it
does nothing.

The ThreadingModel policy is the one described in the appendix. SingletonHolder does not support
object-level locking, only class-level locking. Thisis because you have only one object anyway.

6.10.3 Assembling SingletonHolder

Now let's begin defining the SingletonHolder class template. As discussed in Chapter 1, each policy
mandates one template parameter. In addition to it, we prepend a template parameter (T) that's the type for
which we provide singleton behavior. The SingletonHolder classtemplate is not itself a Singleton.
SingletonHolder provides only singleton behavior and management over an existing class.

template
<
class T,
template <class> class CreationPolicy = CreateUsingNew,
template <class> class LifetimePolicy = DefaultLifetime,
template <class> class ThreadingModel = SingleThreaded
>
class SingletonHolder
{
public:
static T& Instance();
private:
// Helpers
static void DestroySingleton();
// Protection
SingletonHolder();
// Data
typedef ThreadingModel<T>::VolatileType InstanceType;
static InstanceType* plnstance_;
static bool destroyed ;
}:

The type of the instance variable is not T* as you would expect. Instead, it's
ThreadingModel<T>::VolatileType*. The ThreadingModel<T>: :VolatileType type
definition expands either to T or to volati le T, depending on the actual threading model. The
volati le qualifier applied to atype tells the compiler that values of that type might be changed by
multiple threads. Knowing this, the compiler avoids some optimizations (such as keeping valuesin its
internal registers) that would make multithreaded code run erratically. A safe decision would be then to
defineplnstance_ to betypevolatile T*: It workswith multithreaded code (subject to your
checking your compiler's documentation) and doesn't hurt in single-threaded code.

On the other hand, in a single-threaded model, you do want to take advantage of those optimizations, so T*
would be the best type for pInstance_. That'swhy the actual type of pInstance_ isdecided by the
ThreadingModel palicy. If ThreadingModel isasingle-threaded policy, it simply defines
VolatileType asfollows:

template <class T> class SingleThreaded
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{

public:
typedef T VolatileType;
}:

A multithreaded policy would have a definition that qualifies T with volati le. See the appendix for
more details on threading models.

Let's now define the Instance member function, which wires together the three policies.

template <...>
T& SingletonHolder<...>::Instance()

{
if (Iplnstance )
{
typename ThreadingModel<T>::Lock guard;
iT (Iplnstance )
{
if (destroyed )
LifetimePolicy<T>::0OnDeadReference();
destroyed = false;
}
plnstance_ = CreationPolicy<T>::Create();
LifetimePolicy<T>::ScheduleCall(&DestroySingleton);
}
}
return *plnstance_;
}

Instance isthe one and only public function exposed by SingletonHolder. Instance implements
ashell over CreationPolicy, LifetimePolicy, and ThreadingModel. The

ThreadingMode I <T> policy class exposes an inner class Lock. For the lifetime of aLock object, all
other threads trying to create objects of type Lock will block. (Refer to the appendix.)

DestroySingleton simply destroys the Singleton object, cleans up the allocated memory, and sets
destroyed_to true. SingletonHolder never calsDestroySingleton; it only passes its address
toLifetimePolicy<T>::ScheduleDestruction

template <...>
void SingletonHolder<..._.>::DestroySingleton()

{
assert(!destroyed );
CreationPolicy<T>::Destroy(plnstance );
plnstance_ = 0;
destroyed_ = true;

}

SingletonHolder passesplnstance_ and the address of DestroySingleton to
LifetimePolicy<T>. Theintentisto give LifetimePolicy enough information to implement the
known behaviors: C++ rules, recurring (Phoenix singleton), user controlled (singleton with longevity), and
infinite. Here's how:

e Per C++rules. LifetimePolicy<T>::ScheduleDestruction cadlsatexit, passing it the
address of DestroySingleton. OnDeadReference throwsastd: : logic_error
exception.
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¢ Recurring. Same as above, except that OnDeadReference does not throw an exception.
SingletonHolder'sflow of execution continues and will re-create the object.

e User controlled. LifetimePolicy<T>::ScheduleDestruction cals
SetLongevity(GetLongevity(plnstance)).

e Infinite. LifetimePolicy<T>::ScheduleDestruction hasan empty implementation.

SingletonHolder handles the dead-reference problem as the responsibility of LifetimePolicy. It's
very simple: If SingletonHolder: : Instance detects a dead reference, it calls

LifetimePolicy: :OnDeadReference. If OnDeadReference returns, Instance continues with
re-creating a new instance. In conclusion, OnDeadReference should throw an exception or terminate the
program if you do not want Phoenix Singleton behavior. For a Phoenix singleton, OnDeadReference
does nothing.

WEéll, that isthe whole SingletonHolder implementation. Of course, now much work gets delegated to
the three policies.

6.10.4 Stock Policy Implementations

Decomposition into policiesis hard. After you do that, the policies are easy to implement. Let's collect the
policy classes that implement the common types of singletons. Table 6.1 shows the predefined policy
classesfor SingletonHolder. The policy classesin bold are the default template parameters.

Table 6.1. Predefined Policies for SingletonHolder

Policy Predefined Class Comment
Template
Creation CreateUsingNew Creates an object by using the new operator and
the default constructor.
CreateUsingMalloc Creates an object by using std: :mal loc and its
default constructor.
CreateStatic Creates an object in static memory.
Lifetime DefaultLifetime Manages the object's lifetime by obeying C++
rules. Uses atexit to get the job done.
PhoenixSingleton Same as DefaultLifetime but allows re-

creation of the Singleton object.

SingletonWithLongevity |Assigns longevity to the Singleton object.
Assumes the existence of a namespace-level
function GetLongevi ty that, called with
plnstance_, returns the longevity of the Singleton

object.
NoDestroy Does not destroy the Singleton object.
ThreadingModel|SingleThreaded See the appendix for details about threading
models.

ClassLevelLockable

What remains is only to figure out how to use and extend this small yet mighty SingletonHolder
template.

6.11 Working With singletonHolder
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The SingletonHolder classtemplate does not provide application-specific functionality. It merely
provides Singleton-specific services over another class—T in the code in this chapter. We call T the client
class.

The client class must take all the precautionary measures against unattended construction and destruction:
The default constructor, the copy constructor, the assignment operator, the destructor, and the address-of
operator should be made private.

If you take these protective measures, you also have to grant friendship to the Creator policy class that
you use. These protective measures and the friend declaration are all the changes needed for aclassto
work with SingletonHolder. Note that these changes are optional and constitute a trade-off between
the inconvenience of touching existing code and the risk of spurious instances.

The design decisions concerning a specific Singleton implementation usually are reflected in atype
definition like the following one. Just as you would pass flags and options when calling some function, so
you pass flags to the type definition selecting the desired behavior.

class A { ... };
typedef SingletonHolder<A, CreateUsingNew> SingleA;
// from here on you use SingleA::Instance()

Providing a singleton that returns an object of aderived classis as simple as changing the Creator policy
class:

class A { ... };
class Derived : public A { ... };

template <class T> struct MyCreator : public CreateUsingNew<T>

{
static T* Create()

{

}
¥

typedef SingletonHolder<A, StaticAllocator, MyCreator> SingleA;

return new Derived;

Similarly, you can provide parameters to the constructor or use a different allocation strategy. Y ou can
tweak Singleton along each policy. Thisway you can largely customize Singleton, while still
benefiting from default behavior when you want to.

TheSingletonWithLongevity policy class relies on you to define a namespace-level function
GetLongevity. The definition would look something like this:

inline unsigned int GetLongevity(A*) { return 5; }
Thisisneeded only if you use SingletonWithLongevity inthe type definition of SingleA.

Theintricate KDL problem has driven our tentative implementations. Here's the KDL problem solved by
making use of the Singleton class template. Of course, these definitions go to their appropriate header
files.

class Keyboardimpl { ... };
class Displaylmpl { ... };

class Loglmpl { ... };
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inline unsigned int GetLongevity(KeyboardImpl*) { return 1; }
inline unsigned int GetLongevity(Displaylmpl*) { return 1; }
// The log has greater longevity

inline unsigned int GetLongevity(Loglmpl*) { return 2; }

typedef SingletonHolder<KeyboardImpl, SingletonWithLongevity> Keyboard;
typedef SingletonHolder<Displaylmpl, SingletonWithLongevity> Display;
typedef SingletonHolder<Loglmpl, SingletonWithLongevity> Log;

It's arather easy-to-grasp and self-documenting solution, given the complexity of the problem.

6.12 Summary

The introduction to this chapter describes the most popular C++ implementations of Singleton. It's
relatively easy to protect Singleton against multiple instantiations because there is good language support
in this area. The most complicated problem is managing a singleton's lifetime, especially its destruction.

Detecting postdestruction accessis easy and inexpensive. This dead-reference detection ought to be part of
any Singleton implementation.

We discussed four main variations on the theme: the compiler-controlled singleton, the Phoenix singleton,
the singleton with longevity, and the "leaking” singleton. Each of these has different strengths and
weaknesses.

There are serious threading issues surrounding the Singleton design pattern. The Double-Checked Locking
pattern is of great help in implementing thread-safe singletons.

In the end, we collected and classified the variations, which helped usin defining policies and
decomposing Singleton along these policies. We identified three policies with Singleton: Creation,
Lifetime, and ThreadingModel. We harnessed the policiesin a classtemplate SingletonHolder
with four template parameters (the client type plus one parameter for each policy) that cover al the
combinations among these design choices.

6.13 singletonHolder Class Template Quick Facts

e SingletonHolder'sdeclaration isasfollows:

template <
class T,
template <class> class CreationPolicy = CreateUsingNew,
template <class> class LifetimePolicy = DefaultLifetime,
template <class> class ThreadingModel = SingleThreaded
>
° class SingletonHolder;

e Youinstantiate SingletonHolder by passing it your class as the first template parameter. Y ou
select design variations by combining the other four parameters. Example:

class MyClass { ... };
typedef Singleton<MyClass, CreateStatic>
MySingleClass;
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Y ou must define the default constructor, or you must use a creator other than the stock
implementations of the Creator policy.

The canned implementations of the three policies are described in Table 6.1. Y ou can add your
own policy classes as long as you respect the requirements.
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Chapter 7. Smart Pointers

Smart pointers have been the subject of hecatombs of code written and rivers of ink consumed by
programmers and writers around the world. Perhaps the most popular, intricate, and powerful C++ idiom,
smart pointers are interesting in that they combine many syntactic and semantic issues. This chapter
discusses smart pointers, from their simplest aspects to their most complex ones and from the most obvious
errors in implementing them to the subtlest ones—some of which also happen to be the most gruesome.

In brief, smart pointers are C++ objects that simulate simple pointers by implementing operator-> and
the unary operator. In addition to sporting pointer syntax and semantics, smart pointers often perform
useful tasks—such as memory management or locking—under the covers, thus freeing the application
from carefully managing the lifetime of pointed-to objects.

This chapter not only discusses smart pointers but also implements a SmartPtr classtemplate.
SmartPtr isdesigned around policies (see Chapter 1), and the result is a smart pointer that has the exact
levels of safety, efficiency, and ease of use that you want.

After reading this chapter, you will be an expert in smart pointer issues such as the following:

The advantages and disadvantages of smart pointers
Ownership management strategies

Implicit conversions

Tests and comparisons

Multithreading issues

This chapter implements a generic SmartPtr classtemplate. Each section presents one implementation
issuein isolation. At the end, the implementation puts all the pieces together. In addition to understanding
the design rationale of SmartPtr, you will know how to use, tweak, and extend it.

7.1 Smart Pointers 101

So what's a smart pointer? A smart pointer is a C++ class that mimics aregular pointer in syntax and some
semantics, but it does more. Because smart pointers to different types of objects tend to have alot of code
in common, almost al good-quality smart pointers in existence are templated by the pointee type, as you
can see in the following code:

template <class T>

class SmartPtr

{

public:
explicit SmartPtr(T* pointee) : pointee_(pointee);
SmartPtr& operator=(const SmartPtr& other);
~SmartPtr();
T& operator*() const

{

return *pointee_;
}

T* operator->() const

{

return pointee_;
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}

private:
T* pointee_;

3

SmartPtr<T> aggregates a pointer to T in its member variable pointee_. That's what most smart
pointers do. In some cases, a smart pointer might aggregate some handles to data and compute the pointer
on thefly.

The two operators give SmartPtr pointer-like syntax and semantics. That is, you can write

class Widget

{
public:
void Fun(Q);

SmartPtr<Widget> sp(new Widget);
sp->Fun(Q);
(*sp) .FunQ;

Aside from the definition of sp, nothing revealsit as not being a pointer. Thisis the mantra of smart
pointers: Y ou can replace pointer definitions with smart pointer definitions without incurring major
changes to your application’'s code. Y ou thus get extra goodies with ease. Minimizing code changesis very
appealing and vital for getting large applications to use smart pointers. As you will soon see, however,
smart pointers are not afree lunch.

7.2 The Deal

But what's the deal with smart pointers? you might ask. What do you gain by replacing simple pointers
with smart pointers? The explanation is ssimple. Smart pointers have value semantics, whereas some simple
pointers do not.

An object with value semantics is an object that you can copy and assign to. Type int isthe perfect
example of afirst-class object. You can create, copy, and change integer values freely. A pointer that you
useto iterate in a buffer aso has value semantics—you initialize it to point to the beginning of the buffer,
and you bump it until you reach the end. Along the way, you can copy its value to other variables to hold
temporary results.

With pointers that hold values allocated with new, however, the story is very different. Once you have
written

Widget* p = new Widget;
the variable p not only points to, but also owns, the memory allocated for the Widget object. Thisis
because later you must issue dellete p to ensure that the Widget object is destroyed and its memory is

released. If in the line after the line just shown you write

p = 0; // assign something else to p

you lose ownership of the object previously pointed to by p, and you have no chance at all to get agrip on
it again. Y ou have aresource leak, and resource leaks never help.
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Furthermore, when you copy p into another variable, the compiler does not automatically manage the
ownership of the memory to which the pointer points. All you get istwo raw pointers pointing to the same
object, and you have to track them even more carefully because double deletions are even more
catastrophic than no deletion. Consequently, pointers to alocated objects do not have value semantics—
you cannot copy and assign to them at will.

Smart pointers can be of great help in this area. Most smart pointers offer owner ship management in
addition to pointer-like behavior. Smart pointers can figure out how ownership evolves, and their
destructors can release the memory according to awell-defined strategy. Many smart pointers hold enough
information to take full initiative in releasing the pointed-to object.

Smart pointers may manage ownership in various ways, each appropriate to a category of problems. Some
smart pointers transfer ownership automatically: After you copy a smart pointer to an object, the source
smart pointer becomes null, and the destination points to (and holds ownership of) the object. Thisisthe
behavior implemented by the standard-provided std: :auto_ptr. Other smart pointers implement
reference counting: They track the total count of smart pointers that point to the same object, and when this
count goes down to zero, they de lete the pointed-to object. Finally, some others duplicate their pointed-
to object whenever you copy them.

In short, in the smart pointers world, ownership is an important topic. By providing ownership
management, smart pointers are able to support integrity guarantees and full value semantics. Because
ownership has much to do with constructing, copying, and destroying smart pointers, it's easy to figure out
that these are the most vital functions of a smart pointer.

The following few sections discuss various aspects of smart pointer design and implementation. The goal
isto render smart pointers as close to raw pointers as possible, but not closer. It's a contradictory goal:
After all, if your smart pointers behave exactly like dumb pointers, they are dumb pointers.

In implementing compatibility between smart pointers and raw pointers, thereis athin line between nicely
filling compatibility checklists and paving the way to chaos. Y ou will find that adding seemingly
worthwhile features might expose the clients to costly risks. Much of the craft of implementing good smart
pointers consists of carefully balancing their set of features.

7.3 Storage of Smart Pointers

To start, let's ask a fundamental question about smart pointers. Ispointee_'stype necessarily T*? If not,
what else could it be? In generic programming, you should always ask yourself questions like these. Each
type that's hardcoded in a piece of generic code decreases the genericity of the code. Hardcoded types are
to generic code what magic constants are to regular code.

In severa situations, it is worthwhile to allow customizing the pointee type. One situation is when you deal
with nonstandard pointer modifiers. In the 16-bit Intel 80x86 days, you could qualify pointers with
modifierslike __near, _ far,and __huge. Other segmented memory architectures use similar
modifiers.

Ancther situation is when you want to layer smart pointers. What if you have alLegacySmartPtr<T>
smart pointer implemented by someone else, and you want to enhance it? Would you derive from it? That's
arisky decision. It's better to wrap the legacy smart pointer into a smart pointer of your own. Thisis
possible because the inner smart pointer supports pointer syntax. From the outer smart pointer's viewpoint,
the pointee typeis not T* but LegacySmartPtr<T>.

140



There are interesting applications of smart pointer layering, mainly because of the mechanics of
operator->. When you apply operator-> to atype that's not a built-in pointer, the compiler does an
interesting thing. After looking up and applying the user-defined operator-> to that type, it applies
operator-> again to the result. The compiler keeps doing this recursively until it reaches a pointer to a
built-in type, and only then proceeds with member access. It follows that a smart pointer's operator->
does not have to return a pointer. It can return an object that in turn implements operator->, without
changing the use syntax.

Thisleadsto avery interesting idiom: pre-and postfunction calls (Stroustrup 2000). If you return an object
of type PointerType by value from operator->, the sequence of execution is asfollows:

1. Constructor of PointerType

2. PointerType: :operator-> called; likely returns a pointer to an object of type
PointeeType

3. Member accessfor PointeeType—likely afunction call

4. Destructor of PointerType

In anutshell, you have a nifty way of implementing locked function calls. Thisidiom has broad uses with
multithreading and locked resource access. Y ou can have PointerType's constructor lock the resource,
and then you can access the resource; finally, Pointer Type'sdestructor unlocks the resource.

The generalization doesn't stop here. The syntax-oriented "pointer” part might sometimes palein
comparison with the powerful resource management techniques that are included in smart pointers. It
follows that, in rare cases, smart pointers could drop the pointer syntax. An object that does not define
operator-> and operator™ violates the definition of a smart pointer, but there are objects that do
deserve smart pointer—ike treatment, although they are not, strictly speaking, smart pointers.

Look at real-world APIs and applications. Many operating systems foster handles as accessors to certain
internal resources, such as windows, mutexes, or devices. Handles are intentionally obfuscated pointers;
one of their purposes isto prevent their users from manipulating critical operating system resources
directly. Most of the time, handles are integral values that are indicesin a hidden table of pointers. The
table provides the additional level of indirection that protects the inner system from the application
programmers. Although they don't provide an operator->, handles resemble pointers in semantics and
in the way they are managed.

For such asmart resource, it does not make sense to provide operator-> or operator*. However, you
do take advantage of all the resource management techniques that are specific to smart pointers.

To generalize the type universe of smart pointers, we distinguish three potentialy distinct typesin a smart
pointer:

e Thestoragetype. Thisisthetype of pointee . By "default"—in regular smart pointers—it isa
raw pointer.

e The pointer type. Thisisthe type returned by operator->. It can be different from the storage
type if you want to return a proxy object instead of just a pointer. (Y ou will find an example of
using proxy objects later in this chapter.)

e Thereferencetype. Thisisthe type returned by operator™.

It would be useful if SmartPtr supported this generalization in aflexible way. Thus, the three types
mentioned here ought to be abstracted in a policy called Storage.

In conclusion, smart pointers can, and should, generalize their pointee type. To do this, SmartPtr
abstracts three typesin a Storage policy: the stored type, the pointer type, and the reference type. Not al
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types necessarily make sense for agiven SmartPtr instantiation. Therefore, in rare cases (handles), a
policy might disable accessto operator-> or operator™ or both.

7.4 Smart Pointer Member Functions

Many existing smart pointer implementations allow operations through member functions, such as Get for
accessing the pointee object, Set for changing it, and Re lease for taking over ownership. Thisisthe
obvious and natural way of encapsulating SmartPtr'sfunctionality.

However, experience has proven that member functions are not very suitable for smart pointers. The
reason is that the interaction between member function calls for the smart pointer for the pointed-to object
can be extremely confusing.

Suppose, for instance, that you have aPrinter class with member functions such as Acquire and
Release. With Acqui re you take ownership of the printer so that no other application printsto it, and
with Re lease you relinquish ownership. As you use a smart pointer to Printer, you may notice a
strange syntactical closeness to things that are very far apart semantically.

SmartPtr<Printer> spRes = ...;
spRes->Acquire(); // acquire the printer
- print a document ...
spRes->Release(); // release the printer
spRes.Release(); // release the pointer to the printer

The user of SmartPtr now has access to two totally different worlds: the world of the pointed-to object
members and the world of the smart pointer members. A matter of adot or an arrow thinly separates the
two worlds.

On the face of it, C++ does force you routinely to observe certain slight differencesin syntax. A Pascal
programmer learning C++ might even fedl that the slight syntactic difference between & and && isan
abomination. Y et C++ programmers don't even blink at it. They are trained by habit to distinguish such
syntax matters easily.

However, smart pointer member functions defeat training by habit. Raw pointers don't have member
functions, so C++ programmers eyes are not habituated to detect and distinguish dot calls from arrow calls.
The compiler does agood job at that: If you use adot after araw pointer, the compiler will yield an error.
Therefore, it is easy to imagine, and experience proves, that even seasoned C++ programmers find it
extremely disturbing that both sp.Release() and sp->Release () compile flag-free but do very
different things. The cureissimple: A smart pointer should not use member functions. SmartPtr uses
only nonmember functions. These functions become friends of the smart pointer class.

Overloaded functions can be just as confusing as member functions of smart pointers, but thereisan
important difference. C++ programmers already use overloaded functions. Overloading is an important
part of the C++ language and is used routinely in library and application development. This means that
C++ programmers do pay attention to differencesin function call syntax—such asRelease(*sp) versus
Release(sp)—in writing and reviewing code.

The only functions that necessarily remain members of SmartPtr are the constructors, the destructor,
operator=, operator->, and unary operator*. All other operations of SmartPtr are provided
through named nonmember functions.
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For reasons of clarity, SmartPtr does not have any named member functions. The only functions that
access the pointee object are GetImpl, GetImplRef, Reset, and Release, which are defined at the
namespace level.

template <class T> T* Getlmpl(SmartPtr<T>& sp);

template <class T> T*& GetlmplRef(SmartPtr<T>& sp);

template <class T> void Reset(SmartPtr<T>& sp, T* source);
template <class T> void Release(SmartPtr<T>& sp, T*& destination);

e GetlImpl returnsthe pointer object stored by SmartPtr.

e GetlImplRef returns areference to the pointer object stored by SmartPtr. GetImpIRef
allows you to change the underlying pointer, so it requires extreme care in use.

e Reset resets the underlying pointer to another value, releasing the previous one.

e Release releases ownership of the smart pointer, giving its user the responsibility of managing
the pointee object's lifetime.

The actual declarations of these four functionsin Loki are slightly more elaborate. They don't assume that
the type of the pointer object stored by SmartPtr isT*. Asdiscussed in Section 7.3, the Storage policy
defines the pointer type. Most of the time, it's a straight pointer, except in exotic implementations of
Storage, when it might be a handle or an elaborate type.

7.5 Ownership-Handling Strategies

Ownership handling is often the most important raison d'atre of smart pointers. Usualy, from their clients
viewpoint, smart pointers own the objects to which they point. A smart pointer is afirst-class value that
takes care of deleting the pointed-to object under the covers. The client can intervene in the pointee
object's lifetime by issuing calls to hel per management functions.

For implementing self-ownership, smart pointers must carefully track the pointee object, especially during
copying, assignment, and destruction. Such tracking brings some overhead in space, time, or both. An
application should settle on the strategy that best fits the problem at hand and does not cost too much.

The following subsections discuss the most popular ownership management strategies and how SmartPtr
implements them.

7.5.1 Deep Copy
The ssimplest strategy applicable isto copy the pointee object whenever you copy the smart pointer. If you

ensure this, there is only one smart pointer for each pointee object. Therefore, the smart pointer's destructor
can safely de l ete the pointee object. Figure 7.1 depicts the state of affairs if you use smart pointers with

deep copy.

Figure 7.1. Memory lay out for smart pointers with deep copy
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At first glance, the deep copy strategy sounds rather dull. It seems asif the smart pointer does not add any
value over regular C++ value semantics. Why would you make the effort of using a smart pointer, when
simple pass by value of the pointee object works just as well?

The answer is support for polymorphism. Smart pointers are vehicles for transporting polymorphic objects
safely. You hold asmart pointer to a base class, which might actually point to a derived class. When you
copy the smart pointer, you want to copy its polymorphic behavior, too. It'sinteresting that you don't
exactly know what behavior and state you are dealing with, but you certainly need to duplicate that
behavior and state.

Because deep copy most often deals with polymorphic objects, the following naive implementation of the
copy constructor iswrong:

template <class T>
class SmartPtr

{
public:
SmartPtr(const SmartPtré& other)
: pointee_(new T(*other.pointee ))
{
¥
3

Say you copy an object of type SmartPtr<Widget>. If other pointsto an instance of aclass
ExtendedWidget that derives from Widget, the copy constructor above copies only the Widget part of
the ExtendedWidget object. This phenomenon is known as sicing—only the Widget "dlice" of the
object of the presumably larger type ExtendedWidget gets copied. Slicing is most often undesirable. It
isapity that C++ allows slicing so easily—a simple call by value dlices objects without any warning.

Chapter 8 discusses cloning in depth. As shown there, the classic way of obtaining a polymorphic clone for
ahierarchy isto define avirtual Clone function and implement it as follows:

class AbstractBase

{

virtual Base* Clone() = 0;

¥

class Concrete : public AbstractBase

{

virtual Base* Clone()

{

return new Concrete(*this);

144



}
3

The Clone implementation must follow the same pattern in al derived classes; in spite of its repetitive
structure, there is no reasonable way to automate defining the Clone member function (beyond macros,
that is).

A generic smart pointer cannot count on knowing the exact name of the cloning member function—maybe
it's clone, or maybe MakeCopy. Therefore, the most flexible approach is to parameterize SmartPtr
with a policy that addresses cloning.

7.5.2 Copy on Write

Copy on write (COW, asit isfondly called by its fans) is an optimization technique that avoids
unnecessary object copying. The ideathat underlies COW isto clone the pointee object at the first attempt
of modification; until then, severa pointers can share the same object.

Smart pointers, however, are not the best place to implement COW, because smart pointers cannot
differentiate between callsto const and non-const member functions of the pointee object. Hereisan
example:

template <class T>
class SmartPtr

{
public:
T* operator->() { return pointee_; }

3

class Foo

i

public:
void ConstFun() const;
void NonConstFun();

¥

SmartPtr<Foo> sp;
sp->ConstFun(); // invokes operator->, then ConstFun
sp->NonConstFun(); // invokes operator->, then NonConstFun

The same operator-> getsinvoked for both functions called; therefore, the smart pointer does not have
any clue whether to make the COW or not. Function invocations for the pointee object happen somewhere
beyond the reach of the smart pointer. (Section 7.11 explains how const interacts with smart pointers and
the objects they point to.)

In conclusion, COW is effective mostly as an implementation optimization for full-featured classes. Smart
pointers are at too low alevel to implement COW semantics effectively. Of course, smart pointers can be
good building blocks in implementing COW for aclass.

The SmartPtr implementation in this chapter does not provide support for COW.

7.5.3 Reference Counting
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Reference counting is the most popular ownership strategy used with smart pointers. Reference counting
tracks the number of smart pointers that point to the same object. When that number goes to zero, the
pointee object is deleted. This strategy works very well if you don't break certain rules—for instance, you
should not keep dumb pointers and smart pointers to the same object.

The actual counter must be shared among smart pointer objects, leading to the structure depicted in Figure
7.2. Each smart pointer holds a pointer to the reference counter (pRefCount_ in Figure 7.2) in addition to
the pointer to the object itself. This usually doubles the size of the smart pointer, which may or may not be
an acceptable amount of overhead, depending on your needs and constraints.

Figure 7.2. Three reference counted smart pointers pointing to the same object
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There is another, subtler overhead issue. Reference-counted smart pointers must store the reference counter
on the free store. The problem is that in many implementations, the default C++ free store allocator is
remarkably slow and wasteful of space when it comes to allocating small objects, as discussed in Chapter 4.
(Obviousdly, the reference count, typically occupying 4 bytes, does qualify as a small object.) The overhead
in speed stems from slow algorithmsin finding available chunks of memory, and the overhead in sizeis
incurred by the bookkeeping information that the alocator holds for each chunk.

Therelative size overhead can be partially mitigated by holding the pointer and the reference count
together, asin Figure 7.3. The structure in Figure 7.3 reduces the size of the smart pointer to that of a
pointer, but at the expense of access speed: The pointee object is an extralevel of indirection away. Thisis
a considerable drawback because you typically use a smart pointer several times, whereas you obviously
construct and destroy it only once.

Figure 7.3. An alternate structure of reference counted pointers

146



( f y 7

pointee_ ol
SPImpl Object

A

pointee_ —— E pObj_

refCount_ =3

. —

pointee_

The most efficient solution isto hold the reference counter in the pointee object itself, as shown in Figure
7.4. Thisway SmartPtr isjust the size of apointer, and thereis no extraoverhead at all. This technique
is known as intrusive reference counting, because the reference count is an "intruder” in the pointee—it
semantically belongs to the smart pointer. The name also gives a hint about the Achilles heel of the
technique: Y ou must design up front or modify the pointee class to support reference counting.

Figure 7.4. Intrusive reference counting
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A generic smart pointer should use intrusive reference counting where available and implement a
nonintrusive reference counting scheme as an acceptable alternative. For implementing nonintrusive
reference counting, the small-object allocator presented in Chapter 4 can help agreat deal. The SmartPtr
implementation using nonintrusive reference counting leverages the small-object allocator, thus slashing
the performance overhead caused by the reference counter.

7.5.4 Reference Linking

Reference linking relies on the observation that you don't really need the actual count of smart pointer
objects pointing to one pointee object; you only need to detect when that count goes down to zero. This
leads to the idea of keeping an "ownership list," as shown in Figure 7.5.12

[ Risto Lankinen described the reference-linking mechanism on the Usenet in November 1995.

Figure 7.5. Reference linking in action
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All SmartPtr objectsthat point to a given pointee form a doubly linked list. When you create a new
SmartPtr from an existing SmartPtr, the new object is appended to the list; SmartPtr's destructor
takes care of removing the destroyed object from the list. When the list becomes empty, the pointee object
is deleted.

The doubly linked list structure fits reference tracking like a glove. Y ou cannot use asingly linked list
because removals from such alist take linear time. Y ou cannot use a vector because the SmartPtr objects
are not contiguous (and removals from vectors take linear time anyway). Y ou need a structure sporting
constant-time append, constant-time remove, and constant-time empty detection. Thisbill isfit precisely
and exclusively by doubly linked lists.

In areference-linking implementation, each SmartPtr object holds two extra pointers—one to the next
element and one to the previous element.

The advantage of reference linking over reference counting is that the former does not use extra free store,
which makes it morereliable: Creating areference-linked smart pointer cannot fail. The disadvantageis
that reference linking needs more memory for its bookkeeping (three pointers versus only one pointer plus
one integer). Also, reference counting should be a bit speedier—when you copy smart pointers, only an
indirection and an increment are needed. The list management is slightly more elaborate. In conclusion,
you should use reference linking only when the free store is scarce. Otherwise, prefer reference counting.

To wrap up the discussion on reference count management strategies, |et's note a significant disadvantage
that they have. Reference management—nbe it counting or linking—is a victim of the resource leak known
as cyclic reference. Imagine an object A holds a smart pointer to an object B. Also, object B holds a smart
pointer to A. These two objects form a cyclic reference; even though you don't use any of them anymore,
they use each other. The reference management strategy cannot detect such cyclic references, and the two
objects remain allocated forever. The cycles can span multiple objects, closing circles that often reveal
unexpected dependencies that are very hard to debug.

In spite of this, reference management is arobust, speedy ownership-handling strategy. If used with
precaution, reference management makes application development significantly easier.
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7.5.5 Destructive Copy

Destructive copy does exactly what you think it does: During copying, it destroys the object being copied.
In the case of smart pointers, destructive copy destroys the source smart pointer by taking its pointee object
and passing it to the destination smart pointer. The std: :auto_ptr classtemplate features destructive

copy.

In addition to being suggestive about the action taken, "destructive” also vividly describes the dangers
associated with this strategy. Misusing destructive copy may have destructive effects on your program data,
your program correctness, and your brain cells.

Smart pointers may use destructive copy to ensure that at any time there is only one smart pointer pointing
to agiven object. During the copying or assignment of one smart pointer to another, the "living" pointer is
passed to the destination of the copy, and the source's pointee_ becomes zero. The following code
illustrates a copy constructor and an assignment operator of asimple SmartPtr featuring destructive copy.

template <class T>
class SmartPtr

t
public:
SmartPtr(SmartPtr& src)
{
pointee = src.pointee_;
src.pointee_ = 0;
}
SmartPtr& operator=(SmartPtré& src)
{
if (this != &src)
{
delete pointee_;
pointee_ = src.pointee_;
src.pointee_ = 0;
}
return *this;
}
}:

C++ etiquette calls for the right-hand side of the copy constructor and the assignment operator to be a
reference to a const object. Classes that foster destructive copy break this convention for obvious reasons.
Because etiquette exists for a reason, you should expect negative consequences if you break it. Indeed,

here they are:

void Display(SmartPtr<Something> sp);

SmartPtr<Something> sp(new Something);
Display(sp); // sinks sp

Although Display means no harm to its argument (accepts it by value), it acts like a maelstrom of smart
pointers: It sinks any smart pointer passed to it. After Display(sp) iscalled, sp holds the null pointer.

Because they do not support value semantics, smart pointers with destructive copy cannot be stored in
containers and in general must be handled with almost as much care as raw pointers.

The ability to store smart pointersin acontainer is very important. Containers of raw pointers make
manual ownership management tricky, so many containers of pointers can use smart pointers to good
advantage. Smart pointers with destructive copy, however, do not mix with containers.
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On the bright side, smart pointers with destructive copy have significant advantages:

e They incur amost no overhead.

e They aregood at enforcing ownership transfer semantics. In this case, you use the "maelstrom
effect” described earlier to your advantage: Y ou make it clear that your function takes over the
passed-in pointer.

e They aregood as return values from functions. If the smart pointer implementation uses a certain
trick,”2! you can return smart pointers with destructive copy from functions. Thisway, you can be
sure that the pointee object gets destroyed if the caller doesn't use the return value.

) |nvented by Greg Colvin and Bill Gibbons for std: zauto_ptr.

e They are excellent as stack variables in functions that have multiple return paths. Y ou don't have
to remember to delete the pointee object manually—the smart pointer takes care of this for you.

The destructive copy strategy is used by the standard-provided std: :auto_ptr. This brings destructive
copy another important advantage:

e Smart pointers with destructive copy semantics are the only smart pointers that the standard
provides, which means that many programmers will get used to their behavior sooner or later.

For these reasons, the SmartPtr implementation should provide optional support for destructive copy
semantics.

Smart pointers use various ownership semantics, each having its own trade-offs. The most important
techniques are deep copy, reference counting, reference linking, and destructive copy. SmartPtr
implements all these strategies through an Ownership policy, alowing its users to choose the one that best
fits an application's needs. The default strategy is reference counting.

7.6 The Address-of Operator

In striving to make smart pointers as indistinguishable as possible from their native counterparts, designers
stumbled upon an obscure operator that is on the list of overloadable operators: unary operatorg, the
address-of operator 2!

3] Unary operatoré& is to differentiate it from binary operatoré&, which is the bitwise AND operator.

Animplementer of smart pointers might choose to overload the address-of operator like this:

template <class T>
class SmartPtr

{

public:
T** operator&()
{
¥

3

return &pointee_;

After all, if asmart pointer isto simulate a pointer, then its address must be substitutable for the address of
aregular pointer. This overload makes code like the following possible:
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void Fun(Widget** pWidget);

é&értPtr<Widget> spWidget(-..);
Fun(&spWidget); // okay, invokes operator* and obtains a
// pointer to pointer to Widget

It seems very desirable to have such an accurate compatibility between smart pointers and dumb pointers,
but overloading the unary operator& is one of those clever tricks that can do more harm than good.
There are two reasons why overloading unary operatoré& isnot avery good idea.

Onereason is that exposing the address of the pointed-to object implies giving up any automatic ownership
management. When a client freely accesses the address of the raw pointer, any helper structures that the
smart pointer holds, such as reference counts, becomeinvalid for all purposes. While the client deals
directly with the address of the raw pointer, the smart pointer is completely unconscious.

The second reason, a more pragmatic one, is that overloading unary operatoré& makes the smart pointer
unusable with STL containers. Actually, overloading unary operatoré& for atype pretty much makes
generic programming impossible for that type, because the address of an object is too fundamental a
property to play with naively. Most generic code assumes that applying & to an object of type T returns an
object of type T*—you see, address-of is afundamental concept. If you defy this concept, generic code
behaves strangely either at compile time or—worse—at runtime.

Thus, it is not recommended that unary operatoré& be overloaded for smart pointers or for any objectsin
general. SmartPtr does not overload unary operatoré.

7.7 Implicit Conversion to Raw Pointer Types
Consider this code:

void Fun(Something* p);

SmartPtr<Something> sp(new Something);
Fun(sp); // OK or error?

Should this code compile or not? Following the "maximum compatibility" line of thought, the answer is
yes.

Technically, it is very simple to render the previous code compilable by introducing a user-defined
conversion:

template <class T>
class SmartPtr

{
public:
operator T*() // user-defined conversion to T*
return pointee_;
}
}:

However, thisis not the end of the story.
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User-defined conversionsin C++ have an interesting history. Back in the 1980s, when user-defined
conversions were introduced, most programmers considered them a great invention. User-defined
conversions promised a more unified type system, expressive semantics, and the ability to define new
types that were indistinguishable from built-in ones. With time, however, user-defined conversions
reveal ed themselves as awkward and potentially dangerous. They might become dangerous especialy
when they expose handles to internal data (Meyers 1998a, Item 29), which is precisely the case with the
operator T* inthe previous code. That's why you should think carefully before allowing automatic
conversions for the smart pointers you design.

One potential danger comes inherently from giving the user unattended access to the raw pointer that the
smart pointer wraps. Passing the raw pointer around defeats the inner workings of the smart pointer. Once
unleashed from the confines of its wrapper, the raw pointer can easily become athreat to program sanity
again, just as it was before smart pointers were introduced.

Ancther danger is that user-defined conversions pop up unexpectedly, even when you don't need them.
Consider the following code:

SmartPtr<Something> sp;

// A gross semantic error
// However, it goes undetected at compile time
delete sp;

The compiler matches operator de lete with the user-defined conversion to T*. At runtime, operator
T* iscaled, and delete isapplied to itsresult. Thisis certainly not what you want to do to a smart
pointer, because it is supposed to manage ownership itself. An extra unwitting de lette call throws out the
window all the careful ownership management that the smart pointer performs under the covers.

There are quite afew waysto prevent the de lete call from compiling. Some of them are very ingenious
(Meyers 1996). One that's very effective and easy to implement is to make the call to dellete
intentionally ambiguous. Y ou can achieve this by providing two automatic conversions to types that are
susceptibleto acall to delete. Onetypeis T* itself, and the other can be void*.

template <class T>
class SmartPtr

{
public:
operator T*() // User-defined conversion to T*
return pointee_;
}
operator void*() // Added conversion to void*
{
return pointee_;
}
}:

A call to delete against such asmart pointer object is ambiguous. The compiler cannot decide which
conversion to apply, and the trick above exploits this indecision to good advantage.

Don't forget that disabling the de lete operator was only a part of the issue. Whether to provide an
automatic conversion to araw pointer remains an important decision in implementing a smart pointer. It's
too dangerousjust to let it in, yet too convenient to ruleit out. The final SmartPtr implementation will
give you a choice about that.
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However, forbidding implicit conversion does not necessarily eliminate all access to the raw pointer; itis
often necessary to gain such access. Therefore, all smart pointers do provide explicit access to their
wrapped pointer viaa call to afunction:

void Fun(Something* p);

SmartPtr<Something> sp;
Fun(GetImpl(sp)); 7/ OK, explicit conversion always allowed

It's not a matter of whether you can get to the wrapped pointer; it's how easy it is. Thismay seem like a
minor difference, but it's actually very important. An implicit conversion happens without the programmer
or the maintainer noticing or even knowing it. An explicit conversion—asisthe call to Get Impl—passes
through the mind, the understanding, and the fingers of the programmer and remains written in the code for
everybody to seeit.

Implicit conversion from the smart pointer type to the raw pointer type is desirable, but sometimes
dangerous. SmartPtr provides thisimplicit conversion as a choice. The default is on the safe side—no
implicit conversions. Explicit access is aways available through the GetImp1 function.

7.8 Equality and Inequality

C++ teaches its users that any clever trick such as the one presented in the previous section (intentional
ambiguity) establishes a new context, which in turn may have unexpected ripples.

Consider tests for equality and inequality of smart pointers. A smart pointer should support the same
comparison syntax that raw pointers support. Programmers expect the following tests to compile and run
asthey do for araw pointer.

SmartPtr<Something> spl, sp2;
Something* p;

i%-(spl) // Test 1: direct test for non-null pointer

if iiépl) // Test 2: direct test for null pointer

if iéél == 0) // Test 3: explicit test for null pointer
if iéél == sp2) // Test 4: comparison of two smart pointers

if (spl == p) // Test 5: comparison with a raw pointer

There are more tests than depicted here if you consider symmetry and operator!=. If we solve the
equality tests, we can easily define the corresponding symmetric and inequality tests.

There is an unfortunate interference between the solution to the previous issue (preventing de lete from
compiling) and a possible solution to thisissue. With one user-defined conversion to the pointee type, most
of the test expressions (except test 4) compile successfully and run as expected. The downside isthat you
can accidentally call the delete operator against the smart pointer. With two user-defined conversions
(intentional ambiguity), you detect wrongful de lete calls, but none of these tests compiles anymore—
they have become ambiguous too.

An additional user-defined conversion to bool helps, but this, to nobody's surprise, introduces new trouble.
Given this smart pointer:
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template <class T>
class SmartPtr

{
public:
operator bool() const
{
return pointee_ 1= 0;
}
};

the four tests compile, but so do the following nonsensical operations:

SmartPtr<Apple> spl;

SmartPtr<Orange> sp2; // Orange is unrelated to Apple

it (spl == sp2) // Converts both pointers to bool
// and compares results

iT (spl 1= sp2) // Ditto

booi-B = spl; // The conversion allows this, too

if (spl * 5 == 200) // Ouch! SmartPtr behaves like an integral
// typel

Asyou can see, it's either not at all or too much: Once you add a user-defined conversion to bool, you
allow SmartPtr to act asabool in many more situations than you actually wanted. For all practica
purposes, defining an operator bool for asmart pointer is not a smart solution.

A true, complete, rock-solid solution to this dilemmaisto go all the way and overload each and every
operator separately. This way any operation that makes sense for the bare pointer makes sense for the
smart pointer, and nothing else. Here is the code that implements this idea.

template <class T>
class SmartPtr

{
public:
bool operator!() const // Enables "if (Isp) ..."
{
return pointee_ == 0;

inline friend bool operator==(const SmartPtr& lhs,
const T* rhs)
{

return lhs_pointee_ == rhs;

(o]

inline friend bool operator==(const T* lhs,
const SmartPtr& rhs)

{
return lhs == rhs.pointee_;
}
inline friend bool operator!=(const SmartPtr& lhs,
const T* rhs)

{
return lhs_pointee_ != rhs;
}
inline friend bool operator!=(const T* lhs,
const SmartPtr& rhs)

{
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return lhs = rhs.pointee_;

}
¥

Yes, it'sapain, but this approach solves the problems with almost all comparisons, including the tests
against the literal zero. What the forwarding operators in this code do is to pass operators that client code
applies to the smart pointer on to the raw pointer that the smart pointer wraps. No simulation can be more
realistic than that.

We till haven't solved the problem completely. If you provide an automatic conversion to the pointee type,
there till isthe risk of ambiguities. Suppose you have a classBase and aclass Derived that inherits
Base. Then the following code makes practical sense yet isill formed due to ambiguity.

SmartPtr<Base> sp;
Derived* p;

i%-(sp == p) {+ // error! Ambiguity between:
// "(Base*)sp == (Base*)p”
// and "operator==(sp, (Base*)p)"

Indeed, smart pointer development is not for the faint of heart.

We're not out of bullets, though. In addition to the definitions of operator== and operator!=, we can
add templated versions of them, as you can see in the following code:

template <class T>
class SmartPtr

public:
. as above ...
template <class U>
inline friend bool operator==(const SmartPtr& lhs,
const U* rhs)
{

}

template <class U>

inline friend bool operator==(const U* lhs,
const SmartPtr& rhs)

{

}
¥

return lhs.pointee_ == rhs;

return lhs == rhs.pointee_;

- similarly defined operator!= ...

The templated operators are "greedy” in the sense that they match comparisons with any pointer type
whatsoever, thus consuming the ambiguity.

If that's the case, why should we keep the nontemplated operators—the ones that take the pointee type?
They never get a chance to match, because the template matches any pointer type, including the pointee
type itself.

Therule that "never" actually means "almost never" applies here, too. Inthetest if (sp == 0), the
compiler tries the following matches.
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e Thetemplated operators. They don't match because zero is not a pointer type. A literal zero can be
implicitly converted to a pointer type, but template matching does not include conversions.

e The nontemplated operators. After eliminating the templated operators, the compiler tries the
nontemplated ones. One of these operators kicks in through an implicit conversion from the litera
zero to the pointee type. Had the nontemplated operators not existed, the test would have been an
error.

In conclusion, we need both the nontemplated and the templated comparison operators.

Let's see now what happens if we compare two SmartPtrsinstantiated with different types.

SmartPtr<Apple> spl;
SmartPtr<Orange> sp2;
iT (spl == sp2)

The compiler chokes on the comparison because of an ambiguity: Each of the two SmartPtr
instantiations defines an operator==, and the compiler does not know which one to choose. We can
dodge this problem by defining an "ambiguity buster" as shown:

template <class T>
class SmartPtr
{
public:
// Ambiguity buster
template <class U>
bool operator==(const SmartPtr<U>& rhs) const

{
}

// Similarly for operator!=

return pointee_ == rhs.pointee_;

¥

This newly added operator is a member that specializes exclusively in comparing SmartPtr<...>
objects. The beauty of this ambiguity buster is that it makes smart pointer comparisons act like raw pointer
comparisons. If you compare two smart pointersto App le and Orange, the code will be essentialy
equivalent to comparing two raw pointersto Apple and Orange. If the comparison makes sense, then the
code compiles; otherwise, it's a compile-time error.

SmartPtr<Apple> spl;

SmartPtr<Orange> sp2;

it (spl == sp2) // Semantically equivalent to
// spl_pointee_ == sp2.pointee_

There is one unsatisfied syntactic artifact left, namely, the direct test i f (sp). Herelife becomes redly
interesting. The i T statement applies only to expressions of arithmetic and pointer type. Consequently, to
alow if (sp) to compile, we must define an automatic conversion to either an arithmetic or a pointer

type.

A conversion to arithmetic type is not recommended, as the earlier experience with operator bool
witnesses. A pointer is not an arithmetic type, period. A conversion to a pointer type makes alot more
sense, and here the problem branches.
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If you want to provide automatic conversions to the pointee type (see previous section), then you have two
choices: Either you risk unattended calls to operator de lete, or you forgo the i ¥ (sp) test. The
ticbreaker is between the lack of convenience and arisky life. The winner is safety, so you cannot write i ¥
(sp). Instead, you can choose between i F(sp = 0) and the more baroque i ¥ (!!sp). End of story.

If you don't want to provide automatic conversions to the pointee type, there is an interesting trick you can
useto make i (sp) possible. Inside the SmartPtr classtemplate, define an inner class Tester and
define aconversionto Tester™, as shown in the following code:

template <class T>
class SmartPtr

{
class Tester
{
void operator delete(void*);
3
public:
operator Tester*() const
{
ifT (Ipointee_) return O;
static Tester test;
return &test;
¥
}:

Now if you write i f (sp), operator Tester™ entersinto action. This operator returns anull value if
and only if pointee_isnull. Tester itself disables operaior delete, so if somebody calsdelete sp,
acompile-time error occurs. Interestingly, Tester's definition itself liesin the private part of SmartPtr,
so the client code cannot do anything else withit.

SmartPtr addresses the issue of tests for equality and inequality as follows:

e Define operator==and operator!=intwo flavors (templated and nontemplated).

e Defineoperator!.

e If you alow automatic conversion to the pointee type, then define an additional conversion to
void* to ambiguate a call to the de lete operator intentionally; otherwise, define a private inner
class Tester that declares aprivate operator delete, and define aconversionto Tester*
for SmartPtr that returns anull pointer if and only if the pointee object is null.

7.9 Ordering Comparisons

The ordering comparison operators are operator<, operator<=, operator>, and operator>=. You
can implement them all in terms of operator<.

Whether to allow ordering of smart pointers is an interesting question in and of itself and relates to the dual
nature of pointers, which consistently confuses programmers. Pointers are two conceptsin one; iterators
and monikers. The iterative nature of pointers allows you to walk through an array of objectsusing a
pointer. Pointer arithmetic, including comparisons, supports this iterative nature of pointers. At the same
time, pointers are monikers—inexpensive object representatives that can travel quickly and access the
objectsin a snap. The dereferencing operators * and —> support the moniker concept.



The two natures of pointers can be confusing at times, especially when you need only one of them. For
operating with a vector, you might use both iteration and dereferencing, whereas for walking through a
linked list or for manipulating individual objects, you use only dereferencing.

Ordering comparisons for pointersis defined only when the pointers belong to the same contiguous
memory. In other words, you can use ordering comparisons only for pointers that point to elementsin the
same array.

Defining ordering comparisons for smart pointers boils down to this question: Do smart pointersto the
objects in the same array make sense? On the face of it, the answer isno. Smart pointers main featureisto
manage object ownership, and objects with separate ownership do not usually belong to the same array.
Therefore, it would be dangerous to allow users to make nonsensical comparisons.

If you really need ordering comparisons, you can always use explicit access to the raw pointer. The issue
hereis, again, to find the safest and most expressive behavior for most situations.

The previous section concludes that an implicit conversion to araw pointer typeis optional. If
SmartPtr'sclient choosesto allow implicit conversion, the following code compiles:

SmartPtr<Something> spl, sp2;
if (spl < sp2) // Converts spl and sp2 to raw pointer type,
// then performs the comparison

This means that if we want to disable ordering comparisons, we must be proactive, disabling them
explicitly. A way of doing thisisto declare them and never define them, which means that any use will
trigger alink-time error.

template <class T>
class SmartPtr

{--- X

template <class T, class U>
bool operator<(const SmartPtr<T>&, const U&); // Not defined
template <class T, class U>
bool operator<(const T&, const SmartPtr<U>&); // Not defined

However, it iswiser to define all other operatorsin terms of operator<, as opposed to leaving them
undefined. Thisway, if SmartPtr'susersthink it's best to introduce smart pointer ordering, they need
only define operator<.

// Ambiguity buster
template <class T, class U>
bool operator<(const SmartPtr<T>& lhs, const SmartPtr<U>& rhs)

{
return lhs < Getimpl(rhs);

// All other operators
template <class T, class U>
bool operator>(SmartPtr<T>& lhs, const U& rhs)

{
}

... similarly for the other operators ...

return rhs < lhs;

Note the presence, again, of an ambiguity buster. Now if some library user thinks that
SmartPtr<Widget> should be ordered, the following code is the ticket:
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inline bool operator<(const SmartPtr<Widget>& lhs,
const Widget* rhs)
{

}

inline bool operator<(const Widget* lhs,
const SmartPtr<Widget>& rhs)
{

}

return Getlmpl(lhs) < rhs;

return lhs < Getlmpl(rhs);

It's a pity that the user must define two operators instead of one, but it's so much better than defining eight.

Thiswould conclude the issue of ordering, were it not for an interesting detail. Sometimesit is very useful
to have an ordering of arbitrarily located objects, not just objects belonging to the same array. For example,
you might need to store supplementary per-object information, and you need to access that information
quickly. A map ordered by the address of objects is very effective for such atask.

Standard C++ helps in implementing such designs. Although pointer comparison for arbitrarily located
objects is undefined, the standard guaranteesthat std: : Iess yields meaningful results for any two
pointers of the same type. Because the standard associative containers use std: : Iess as the default
ordering relationship, you can safely use maps that have pointers as keys.

SmartPtr should support thisidiom, too; therefore, SmartPtr speciaizesstd: : less. The
speciaization smply forwards the call to std: : less for regular pointers:

namespace std
{
template <class T>
struct less<SmartPtr<T> >
: public binary_ function<SmartPtr<T>, SmartPtr<T>, bool>
{

bool operator()(const SmartPtr<T>& lhs,
const SmartPtr<T>& rhs) const
{

}
¥

return less<T*>()(Getimpl(lhs), Getlmpl(rhs));

}

In summary, SmartPtr does not define ordering operators by default. It declares—without
implementing—two generic operator<sand implements all other ordering operators in terms of
operator<. The user can define either specialized or generic versions of operator<.

SmartPtr specidlizes std: : Iess to provide an ordering of arbitrary smart pointer objects.

7.10 Checking and Error Reporting

Applications need various degrees of safety from smart pointers. Some programs are computation-
intensive and must be optimized for speed, whereas some others (actually, most) are input/output intensive,
which allows better runtime checking without degrading performance.
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Most often, right inside an application, you might need both models: low safety/high speed in some critical
areas, and high safety/lower speed elsewhere.

We can divide checking issues with smart pointers into two categories: initialization checking and
checking before dereference.

7.10.1 Initialization Checking
Should a smart pointer accept the null (zero) value?

It is easy to implement a guarantee that a smart pointer cannot be null, and it may be very useful in practice.
It means that any smart pointer is aways valid (unless you fiddle with the raw pointer by using
GetlImplRef). Theimplementation is easy with the help of a constructor that throws an exception if
passed a null pointer.

template <class T>
class SmartPtr

{
public:
SmartPtr(T* p) : pointee_ (p)
it (Ip) throw NullPointerException();
}:

On the other hand, the null value is a convenient "not avalid pointer” placeholder and can often be useful.

Whether to allow null values affects the default constructor, too. If the smart pointer doesn't allow null
values, then how would the default constructor initialize the raw pointer? The default constructor could be
lacking, but that would make smart pointers harder to deal with. For example, what should you do when
you have a SmartPtr member variable but don't have an appropriate initializer for it at construction time?
In conclusion, customizing initialization involves providing an appropriate default value.

7.10.2 Checking Before Dereference

Checking before dereference is important because dereferencing the null pointer engenders undefined
behavior. For many applications, undefined behavior is not acceptable, so checking the pointer for validity
before dereference is the way to go. Checks before de reference belong to SmartPtr's operator-> and
unary operator*.

In contrast to theinitialization check, the check before dereference can become a mgjor performance
bottleneck in your application, because typical applications use (dereference) smart pointers much more
often than they create smart pointer objects. Therefore, you should keep a balance between safety and
speed. A good rule of thumb isto start with rigorously checked pointers and remove checks from selected
smart pointers as profiling demonstrates a need for it.

Can initialization checking and checking before dereference be conceptually separated? No, because there
are links between them. If you enforce strict checking upon initialization, then checking before dereference
becomes redundant because the pointer is always valid.

7.10.3 Error Reporting

The only sensible choice for reporting an error isto throw an exception.
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Y ou can do something in the sense of avoiding errors. For example, if apointer isnull upon dereference,
you can initialize it on the fly. Thisisavalid and valuable strategy called lazy initialization—you construct
the value only when you first need it.

If you want to check things only during debugging, you can use the standard assert or similar, more
sophisticated macros. The compiler ignores the tests in release mode, so, assuming you remove all null
pointer errors during debugging, you reap the advantages of both checking and speed.

SmartPtr migrates checking to a dedicated Checking policy. This policy implements checking functions
(which can optionally provide lazy initialization) and the error reporting strategy.

7.11 Smart Pointers to const and const Smart Pointers

Raw pointers allow two kinds of constness: the constness of the pointed-to object and that of the
pointer itself. The following is an illustration of these two attributes:

const Something* pc = new Something; // points to const object
pc->ConstMemberFunction(); // ok

pc->NonConstMemberFunction(); // error

delete pc; // ok (surprisingly)[ﬂ

Something* const cp = new Something; // const pointer
cp->NonConstMemberFunction(); // ok

cp = new Something; // error, can"t assign to const pointer
const Something* const cpc = new Something; // const, points to const
cpc->ConstMemberFunction(); // ok
cpc->NonConstMemberFunction(); // error

cpc = new Something; // error, can"t assign to const pointer

4 Every once in a while, the question "Why can you apply the de lete operator to pointers to const?"
starts a fierce debate in the comp.std.c++ newsgroup. The fact is, for better or worse, the language allows it.

The corresponding uses of SmartPtr look likethis:

// Smart pointer to const object

SmartPtr<const Something> spc(hew Something);

// const smart pointer

const SmartPtr<Something> scp(hew Something);

// const smart pointer to const object

const SmartPtr<const Something> scpc(new Something);

The SmartPtr class template can detect the constness of the pointed-to object either through partia
specialization or by using the TypeTrai ts template defined in Chapter 2. The latter method is preferable
because it does not incur source-code duplication as partial specialization does.

SmartPtr imitates the semantics of pointersto const objects, const pointers, and the combinations
thereof.

7.12 Arrays
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In most cases, instead of dealing with heap-allocated arrays and using new[] and delete[], youre
better off with std: : vector. The standard-provided std: : vector class template provides everything
that dynamically allocated arrays provide, plus much more. The extra overhead incurred is negligiblein
most cases.

However, "most cases' is not "always." There are many situations in which you don't need and don't want
afull-fledged vector; adynamically alocated array is exactly what you need. It is awkward in these cases
to be unable to exploit smart pointer capabilities. Thereis a certain gap between the sophisticated

std: :vector and dynamically allocated arrays. Smart pointers could close that gap by providing array
semantics if the user needs them.

From the viewpoint of a smart pointer to an array, the only important issueisto call delete[]
pointee_initsdestructor instead of delete pointee_. Thisissueisaready tackled by the
Ownership policy.

A secondary issue is providing indexed access, by overloading operator[] for smart pointers. Thisis
technically feasible; in fact, a preliminary version of SmartPtr did provide a separate policy for optional
array semantics. However, only in very rare cases do smart pointers point to arrays. In those cases, there
already isaway of providing indexed accessing if you use GetImpl:

SmartPtr<Widget> sp = .._;
// Access the sixth element pointed to by sp
Widget& obj = GetImpl(sp)[5];

It seems like a bad decision to strive to provide extra syntactic convenience at the expense of introducing a
new policy.

SmartPtr supports customized destruction via the Ownership policy. Y ou can therefore arrange array-
specific destruction viade lete[]. However, SmartPtr does not provide pointer arithmetic.

7.13 Smart Pointers and Multithreading

Most often, smart pointers help with sharing objects. Multithreading issues affect object sharing. Therefore,
multithreading issues affect smart pointers.

The interaction between smart pointers and multithreading takes place at two levels. One is the pointee
object level, and the other is the bookkeeping data level.

7.13.1 Multithreading at the Pointee Object Level

If multiple threads access the same object and if you access that object through a smart pointer, it can be
desirable to lock the object during a function call made through operator->. Thisis possible by having
the smart pointer return a proxy object instead of araw pointer. The proxy object's constructor locks the
pointee object, and its destructor unlocks it. The techniqueisillustrated in Stroustrup (2000). Some code
that illustrates this approach is provided here.

First, let's consider aclass Widget that has two locking primitives: Lock and Unlock. After acall to
Lock, you can access the object safely. Any other threads calling Lock will block. When you call
Unlock, you let other threads lock the object.

class Widget
{
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void Lock();
void Unlock();

¥

Next, we define a class template LockingProxy. Itsroleisto lock an object (using the Lock/Unlock
convention) for the duration of LockingProxy'slifetime.

template <class T>
class LockingProxy

{
public:
LockingProxy(T* pObj) : pointee_ (pObj)
{ pointee_->Lock(); }
~LockingProxy()
{ pointee_->Unlock(Q); }
T* operator->() const
{ return pointee_; }
private:
LockingProxy& operator=(const LockingProxy&);
T* pointee_;

3

In addition to the constructor and destructor, LockingProxy defines an operator-> that returns a
pointer to the pointee object.

Although LockingProxy looks somewhat like a smart pointer, thereis one more layer to it—the
SmartPtr classtemplate itself.

template <class T>
class SmartPtr

{

LockingProxy<T> operator->() const

{ return LockingProxy<T>(pointee ); }
private:

T* pointee_;

3

Recall from Section 7.3, which explains the mechanics of operator->, that the compiler can apply
operator-> multiple timesto one -> expression, until it reaches a native pointer. Now imagine you
issue the following call (assuming Widget defines afunction DoSomething):

SmartPtr<Widget> sp = ...;
sp->DoSomething();

Here'sthetrick: SmartPtr'soperator-> returns atemporary LockingProxy<T> object. The
compiler keeps applying operator->. LockingProxy<T>'soperator->returnsaWidget*. The
compiler uses this pointer to Wi dget to issue the call to DoSomething. During the call, the temporary
object LockingProxy<T> isalive and locks the object, which means that the object is safely locked. As
soon as the call to DoSomething returns, the temporary LockingProxy<T> object is destroyed, so the
Widget object is unlocked.

Automatic locking is agood application of smart pointer layering. Y ou can layer smart pointers this way
by changing the Storage policy.
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7.13.2 Multithreading at the Bookkeeping Data Level

Sometimes smart pointers manipulate data in addition to the pointee object. Asyou read in Section 7.5,
reference-counted smart pointers share some data—namely the reference count—under the covers. If you
copy areference-counted smart pointer from one thread to another, you end up having two smart pointers
pointing to the same reference counter. Of course, they also point to the same pointee object, but that's
accessi ble to the user, who can lock it. In contrast, the reference count is not accessible to the user, so
managing it is entirely the responsibility of the smart pointer.

Not only reference-counted pointers are exposed to multithreading-related dangers. Reference-tracked
smart pointers (Section 7.5.4) internally hold pointers to each other, which are shared data as well.
Reference linking leads to communities of smart pointers, not al of which necessarily belong to the same
thread. Therefore, every time you copy, assign, and destroy a reference-tracked smart pointer, you must
issue appropriate locking; otherwise, the doubly linked list might get corrupted.

In conclusion, multithreading issues ultimately affect smart pointers' implementation. Let's see how to
address the multithreading issue in reference counting and reference linking.

7.13.2.1 Multithreaded Reference Counting

If you copy a smart pointer between threads, you end up incrementing the reference count from different
threads at unpredictable times.

As the appendix explains, incrementing a value is not an atomic operation. For incrementing and
decrementing integral valuesin a multithreaded environment, you must use the type
ThreadingModel<T>: : IntType and the Atomiclncrement and AtomicDecrement functions.

Here things become a bit tricky. Better said, they become tricky if you want to separate reference counting
from threading.

Policy-based class design prescribes that you decompose a class into elementary behavioral elements and
confine each of them to a separate template parameter. In an ideal world, SmartPtr would specify an
Ownership policy and a ThreadingModel policy and would use them both for a correct implementation.

In the case of multithreaded reference counting, however, things are much too tied together. For example,
the counter must be of type ThreadingModel<T>: : IntType. Then, instead of using operator++
and operator—, you must use Atomiclncrement and AtomicDecrement. Threading and reference
counting melt together; it is unjustifiably hard to separate them.

The best thing to do isto incorporate multithreading in the Ownership policy. Then you can have two
implementations: RefCounting and RefCountingMT.

7.13.2.2 Multithreaded Reference Linking

Consider the destructor of areference-linked smart pointer. It likely looks like this:

template <class T>
class SmartPtr

{
public:
~SmartPtr()
iT (prev_ == next))
{

delete pointee_;
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}

else
{
prev_->next_ = next_;
next_->prev_ = prev_;
}
}
private:

T* pointee_;
SmartPtr* prev_;
SmartPtr* next_;

¥

The code in the destructor performs a classic doubly linked list deletion. To make implementation ssimpler
and faster, the list is circular—the last node points to the first node. This way we don't haveto test prev_
and next_ against zero for any smart pointer. A circular list with only one element hasprev_ and next__
equal to this.

If multiple threads destroy smart pointersthat are linked to each other, clearly the destructor must be
atomic (uninterruptible by other threads). Otherwise, another thread can interrupt the destructor of a
SmartPtr, for instance, between updating prev_->next_ and updating next_->prev_. That thread
will then operate on a corrupt list.

Similar reasoning appliesto SmartPtr's copy constructor and the assignment operator. These functions
must be atomic because they manipulate the ownership list.

Interestingly enough, we cannot apply object-level locking semantics here. The appendix divides locking
strategies into class-level and object-level strategies. A class-level locking operation locks all objectsin a
given class during that operation. An object-level locking operation locks only the object that's subject to
that operation. The former technique leads to less memory being occupied (only one mutex per class) but
is exposed to performance bottlenecks. The latter is heavier (one mutex per object) but might be speedier.

We cannot apply object-level locking to smart pointers because an operation manipulates up to three
objects: the current object that's being added or removed, the previous object, and the next object in the
ownership list.

If we want to introduce object-level locking, the starting observation is that there must be one mutex per
pointee object—because there's one list per pointee object. We can dynamically allocate a mutex for each
object, but this nullifies the main advantage of reference linking over reference counting. Reference
linking was more appealing exactly because it didn't use the free store.

Alternatively, we can use an intrusive approach: The pointee object holds the mutex, and the smart pointer
mani pul ates that mutex. But the existence of a sound, effective alternative—reference-counted smart
pointers—removes the incentive to provide this feature.

In summary, smart pointers that use reference counting or reference linking are affected by multithreading
issues. Thread-safe reference counting needs integer atomic operations. Thread-safe reference linking
needs mutexes. SmartPtr provides only thread-safe reference counting.

7.14 Putting It All Together
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Not much to go! Here comes the fun part. So far we have treated each issue in isolation. It's now time to
collect al the decisions into a unique SmartPtr implementation.

The strategy we'll use is the one described in Chapter 1: policy-based class design. Each design aspect that
doesn't have a unique solution migrates to a policy. The SmartPtr classtemplate accepts each policy asa
separate template parameter. SmartPtr inherits al these template parameters, allowing the corresponding
policiesto store state.

Let's recap the previous sections by enumerating the variation points of SmartPtr. Each variation point
tranglates into a policy.

e Sorage policy (Section_7.3). By default, the stored typeis T* (T isthe first template parameter of
SmartPtr), the pointer typeisagain T*, and the reference type is T&. The means of destroying
the pointee object isthe de l ete operator.

e Ownership policy (Section_7.5). Popular implementations are deep copy, reference counting,
reference linking, and destructive copy. Note that Ownership is not concerned with the mechanics
of destruction itself; thisis Storage's task. Ownership controls the moment of destruction.

e Conversion policy (Section_7.7). Some applications need automatic conversion to the underlying
raw pointer type; others do not.

e Checking poalicy (Section_ 7.10). This policy controls whether an initializer for SmartPtr isvalid
and whether a SmartPtr isvalid for dereferencing.

Other issues are not worth dedicating separate policies to them or have an optimal solution:

e The address-of operator (Section 7.6) is best not overloaded.

e Equality and inequality tests are handled with the tricks shown in Section 7.8.

e Ordering comparisons (Section 7.9) are left unimplemented; however, Loki specializes
std: : less for SmartPtr objects. The user may define an operator<, and Loki helps by
defining all other ordering comparisonsin terms of operator<.

e Loki defines const-correct implementations for the SmartPtr object, the pointee object, or both.

e Thereisno specia support for arrays, but one of the canned Storage implementations can dispose
of arraysby using operator delete[].

The presentation of the design issues surrounding smart pointers made these issues easier to understand
and more manageabl e because each issue was discussed in isolation. It would be very helpful, then, if the
implementation could decompose and treat issues in isolation instead of fighting with all the complexity at
once.

Divide et Impera— this old principle coined by Julius Caesar can be of help even today with smart
pointers. (I'd bet money he didn't predict that.) We break the problem into small component classes, called
policies. Each policy class deals with exactly one issue. SmartPtr inherits all these classes, thus
inheriting all their features. It's that ssmple—yet incredibly flexible, as you will soon see. Each policy is
also atemplate parameter, which means you can mix and match existing stock policy classes or build your
own.

The pointed-to type comesfirst, followed by each of the policies. Here is the resulting declaration of
SmartPtr:

template

<
typename T,
template <class> class OwnershipPolicy = RefCounted,
class ConversionPolicy = DisallowConversion,
template <class> class CheckingPolicy = AssertCheck,
template <class> class StoragePolicy = DefaultSPStorage
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>
class SmartPtr;

The order in which the policies appear in SmartPtr's declaration puts the ones that you customize most
often at the top.

The following four subsections discuss the requirements of the four policies we have defined. A rule for al

policiesisthat they must have value semantics; that is, they must define a proper copy constructor and
assignment operator.

7.14.1 The Storage Policy

The Storage policy abstracts the structure of the smart pointer. It provides type definitions and stores the
actual pointee_ object.

If Storagelmpl isan implementation of the Storage policy and storage Impl isan object of type
Storage ImplI<T>, then the constructsin Table 7.1 apply.

Here is the default Storage policy implementation:

template <class T>
class DefaultSPStorage

{
protected:
typedef T* StoredType; //the type of the pointee_object
typedef T* PointerType; //type returned by operator->
typedef T& ReferenceType; //type returned by operator*
public:
DefaultSPStorage() : pointee_(Defauit())
O

DefaultSPStorage(const StoredType& p): pointee (p) {}+
PointerType operator->() const { return pointee_; }
ReferenceType operator*() const { return *pointee_ ; }
friend inline PointerType Getlmpl(const DefaultSPStorage& sp)
{ return sp.pointee_; }
friend inline const StoredType& GetlmplRef(
const DefaultSPStorage& sp)
{ return sp.pointee_; }
friend inline StoredType& GetlmplRef(DefaultSPStorage& sp)
{ return sp.pointee_; }
protected:
void Destroy()
{ delete pointee_; }
static StoredType Default()
{ return 0O; }
private:
StoredType pointee_;

};
In addition to Defaul tSPStorage, Loki also defines the following:

e ArrayStorage, whichusesoperator delete[] insideRRelease

e LockedStorage, which uses layering to provide a smart pointer that locks data while
dereferenced (see Section 7.13.1)

e HeapStorage, which uses an explicit destructor call followed by std: : free to release the data



Table 7.1. Storage Policy Constructs

Expression Semantics
Storagelmpl<T>::StoredType The type actually stored by the implementation. Default:
T*.

Storagelmpl<T>::PointerType |The pointer type defined by the implementation.

Thisisthetype returned by SmartPtr'soperator->. Default:
T*. Can be different from Storage ImpI<T>: :StoredType
when you're using smart pointer layering (see Sections 7.3 and
7.13.1).

StoragelmpI<T>::ReferenceType|The reference type. This is the type returned by
SmartPtr's operator®. Default: T&.

Getlmpl(storagelmpl) Returns an object of type
Storagelmpl<T> ::StoredType.
GetlmplRef(storagelmpl) Returns an object of type

Storagelmpl<T> ::StoredTypeg&, qualified with const
if storagelmpl is const.

storagelmpl.operator->() Returns an object of type
Storagelmpl<T> ::PointerType. Used by SmartPtr's
own operator—>.

storagelmpl .operator*() Returns an object of type
Storagelmpl<T> ::ReferenceType. Used by
SmartPtr's own operator¥.

Storagelmpl<T>::StoredType p; |Returns the default value (usually zero).

p = storagelmpl_Default();

istoragelmpl .Destroy() Destroys the pointee object.

7.14.2 The Ownership Policy

The Ownership policy must support intrusive as well as nonintrusive reference counting. Therefore, it uses
explicit function calls rather than constructor/destructor techniques, as Koenig (1996) does. The reason is
that you can call member functions at any time, whereas constructors and destructors are called
automatically and only at specific times.

The Ownership policy implementation takes one template parameter, which is the corresponding pointer
type. SmartPtr passes StoragePolicy<T>::PointerType to OwnershipPolicy. Note that
OwnershipPolicy'stemplate parameter is a pointer type, not an object type.

If OwnershiplImpl isanimplementation of Ownership and ownershiplImpl isan object of type
OwnershiplImpl<P>, then the constructsin Table 7.2 apply.

Table 7.2. Ownership Policy Constructs

Expression Semantics

P vall; P val2 = Ownershiplmplimpl. |Clones an object. It can modify the source value
Clone(vall); if ownershiplImpl uses destructive copy.
const P vall; P val2 = ownershiplmpl. |Clones an object.

Clone(vall);

P val ;bool unique = ownershiplmpl. Releases ownership of an object. Returns true if
Release(val); the last reference to the object was released.
lbool dc = 'States whether OwnershiplImpl uses
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Ownershiplmpl<P>::destructiveCopy; destructive copy. If that's the case, SmartPtr
uses the Colvin/Gibbons trick (Meyers 1999)
used in std: :auto_ptr.

An implementation of Ownership that supports reference counting is shown in the following:

template <class P>
class RefCounted

{
unsigned int* pCount_;

protected:
RefCounted() : pCount_(new unsigned int(1)) {}
P Clone(const P & val)

{
++*pCount_;
return val;
}
bool Release(const P&)
{
if (I--*pCount )
{
delete pCount_;
return true;
}

return false;

enum { destructiveCopy = false }; // see below

{;

Implementing a policy for other schemes of reference counting is very easy. Let's write an Ownership
policy implementation for COM objects. COM objects have two functions: AddRef and Rellease. Upon
the last Release call, the abject destroys itself. Y ou need only direct Clone to AddRef and Release to
COM'sRelease:

template <class P>
class COMRefCounted

r
public:
static P Clone(const P& val)

val->AddReT();
return val;

}

static bool Release(const P& val)

{

val->Release();
return false;

}

enum { destructiveCopy = false }; // see below

};
Loki defines the following Ownership implementations:

e DeepCopy, described in Section 7.5.1. DeepCopy assumes that pointee class implements a
member function Clone.

e RefCounted, described in Section 7.5.3 and in this section.

e RefCountedMT, amultithreaded version of RefCounted.

e COMRefCounted, avariant of intrusive reference counting described in this section.
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e RefLinked, described in Section 7.5.4.

e DestructiveCopy, described in Section 7.5.5.

e NoCopy, which does not define Clone, thus disabling any form of copying.

7.14.3 The Conversion Policy

Conversion isasimple policy: It defines a Boolean compile-time constant that says whether or not
SmartPtr alowsimplicit conversion to the underlying pointer type.

If Conversionlmpl isan implementation of Conversion, then the construct in Table 7.3 applies.

The underlying pointer type of SmartPtr isdictated by its Storage policy and is

Storagelmpl<T>::PointerType.

Asyou would expect, Loki defines precisely two Conversion implementations:

e AllowConversion
e DisallowConversion

Table 7.3. Conversion Policy Construct

Expression Semantics
bool allowConv = If al low is true, SmartPtr allows implicit
Conversionlmpl<P>::allow; conversion to its underlying pointer type.

Table 7.4. Checking Policy Constructs

[Expression

'Semantics

S value; checkinglmpl._OnDefault(value);

SmartPtr calls OnDefault in the default
constructor call. If CheckinglImpl does
not define this function, it disables the
default constructor at compile time.

S value; checkinglmpl.Onlnit(value);

SmartPtr calls Onlnit upon a
constructor call.

S value; checkinglmpl._OnDereference
(value);

SmartPtr calls OnDereference before
returning from operator-> and
operator*.

const S
value;checkinglImpl .OnDereference(value);

SmartPtr calls OnDereference before
returning from the const versions of
operator-> and operator™.

7.14.4 The Checking Policy

Asdiscussed in Section 7.10, there are two main places to check a SmartPtr object for consistency:
during initialization and before dereference. The checks themselves might use assert, exceptions, or lazy

initialization or not do anything at all.

The Checking policy operates on the StoredType of the Storage policy, not on the PointerType. (See

Section 7.14.1 for the definition of Storage.)

If S isthe stored type as defined by the Storage policy implementation, and if CheckinglImpl isan
implementation of Checking, and if checkinglImpl isan object of type CheckingImpl<S>, then the

constructsin Table 7.4 apply.
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Loki defines the following implementations of Checking:

e AssertCheck, which uses assert for checking the value before dereferencing.

e AssertCheckStrict, which usesassert for checking the value upon initialization.

e RejectNullStatic, which does not define OnDefaul t. Consequently, any use of
SmartPtr's default constructor yields a compile-time error.

e RejectNull, which throws an exception if you try to dereference anull pointer.

e RejectNullStrict, which does not accept null pointers asinitializers (again, by throwing an
exception).

e NoCheck, which handles errorsin the grand C and C++ tradition—that is, it does no checking at
all.

7.15 Summary

Congratulations! Y ou have just read one of the longest, wildest chapters of this book—an effort that we
hope has paid off. Now you know alot of things about smart pointers and are equipped with a pretty
comprehensive and configurable SmartPtr classtemplate.

Smart pointers imitate built-in pointers in syntax and semantics. In addition, they perform a host of tasks
that built-in pointers cannot. These tasks might include ownership management and checking against
invalid values.

Smart pointer concepts go beyond actual pointer behavior; they can be generalized into smart resources,
such as monikers (handles that don't have pointer syntax, yet resemble pointer behavior in the way they
enabl e resource access).

Because they nicely automate things that are very hard to manage by hand, smart pointers are an essential
ingredient of successful, robust applications. As small asthey are, they can make the difference between a
successful project and afailure—or, more often, between a correct program and one that leaks resources
likeasieve.

That's why a smart pointer implementer should invest as much attention and effort in this task as possible;
the investment islikely to pay in the long term. Similarly, smart pointer users should understand the
conventions that smart pointers establish and use them in accordance with those conventions.

The presented implementation of smart pointers focuses on decomposing the areas of functionality into
independent policies that the main class template SmartPtr mixes and matches. Thisis possible because
each policy implements a well-defined interface.

7.16 smartptr Quick Facts

e SmartPtr declaration:

template

<
typename T,
template <class> class OwnershipPolicy = RefCounted,
class ConversionPolicy = DisallowConversion,
template <class> class CheckingPolicy = AssertCheck,
template <class> class StoragePolicy = DefaultSPStorage
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>
class SmartPtr;

T isthe type to which SmartPtr points. T can be a primitive type or a user-defined type. The
void typeisallowed.

For the remaining class template parameters (OwnershipPolicy, ConversionPolicy,
CheckingPolicy, and StoragePolicy), you can implement your own policies or choose
from the defaults mentioned in Sections 7.14.1 through 7.14.4.

OwnershipPolicy controls the ownership management strategy. Y ou can select from the
predefined classes DeepCopy, RefCounted, RefCountedMT, COMRefCounted, RefLinked,
DestructiveCopy, and NoCopy, described in Section 7.14.2.

ConversionPolicy controls whether implicit conversion to the pointee typeis allowed. The
default isto forbid implicit conversion. Either way, you can still access the pointee object by
calling GetlImpl. You can usethe Al lowConversion and Disal lowConversion
implementations (Section 7.14.3).

CheckingPolicy defines the error checking strategy. The defaults provided are AssertCheck,
AssertCheckStrict, RejectNul IStatic, RejectNull, RejectNul IStrict, and
NoCheck (Section 7.14.4).

StoragePol icy defines the details of how the pointee object is stored and accessed. The default
isDefaul tSPStorage, which, when instantiated with atype T, defines the reference type as T&,
the stored type as T*, and the type returned from operator-> as T* again. Other storage types
defined by Loki are ArrayStorage, LockedStorage, and HeapStorage (Section 7.14.1).
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Chapter 8. Object Factories

Object-oriented programs use inheritance and virtual functions to achieve powerful abstractions and good
modularity. By postponing until runtime the decision regarding which specific function will be called,
polymorphism promotes binary code reuse and extensibility. The runtime system automatically dispatches
virtual member functions to the appropriate derived object, allowing you to implement complex behavior
in terms of polymorphic primitives.

Y ou can find this kind of paragraph in any book teaching object-oriented techniques. Thereasonit is
repeated here isto contrast the nice state of affairsin "steady mode" with the unpleasant "initialization
mode" situation in which you must create objects in a polymorphic way.

In the steady state, you already hold pointers or references to polymorphic objects, and you can invoke
member functions against them. Their dynamic type iswell known (although the caller might not know it).
However, there are cases when you need to have the same flexibility in creating objects—subject to the
paradox of "virtual constructors." Y ou need virtual constructors when the information about the object to
be created is inherently dynamic and cannot be used directly with C++ constructs.

Most often, polymorphic objects are created on the free store by using the new operator:

class Base { ... };
class Derived : public Base { ... };
class AnotherDerived : public Base { ... };

// Create a Derived object and assign it to a pointer to Base
Base* pB = new Derived;

Theissue here isthe actual Derived type name appearing in the invocation of the new operator. In away,
Derived hereis much like the magic numeric constants we are advised not to use. If you want to create
an object of the type AnotherDerived, you haveto go to the actual statement and replace Derived
with AnotherDerived. You cannot make the new operator act more dynamically: Y ou must passit a
type, and that type must be exactly known at compile time.

This marks a fundamental difference between creating objects and invoking virtual member functionsin
C++. Virtual member functions are fluid, dynamic—you can change their behavior without changing the
call site. In contrast, each object creation is a stumbling block of statically bound, rigid code. One of the
effectsis that invoking virtual functions binds the caller to the interface only (the base class). Object
orientation tries to break dependency on the actual concrete type. However, at least in C++, object creation
binds the caller to the most derived, concrete class.

Actually, it makes alot of conceptual sense that things are this way: Even in everyday life, creating
something is very different from dealing with it. Y ou are supposed, then, to know exactly what you want to
do when you embark on the creation of an object. However, sometimes

e Youwant to leave this exact knowledge up to another entity. For instance, instead of invoking
new directly, you might call avirtual function Create of some higher-level object, thus allowing
clients to change behavior through polymorphism.

e You do have the type knowledge, but not in aform that's expressible in C++. For instance, you
might have a string containing *'Derived", so you actually know you have to create an object of
type Derived, but you cannot pass a string containing a type name to new instead of atype name.

These two issues are the fundamental problems addressed by object factories, which well discussin detalil
in this chapter. The topics of this chapter include the following:
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Examples of situations in which object factories are needed

Why virtual constructors are inherently hard to implement in C++
How to create objects by substituting values for types

An implementation of a generic object factory

By the end of this chapter, well put together a generic object factory. Y ou can customize the generic
factory to alarge degree—by the type of product, the creation method, and the product identification
method. Y ou can combine the factory thus created with other components described in this book, such as
Singleton (Chapter 6)—for creating an application-wide object factory—and Functor (Chapter 5)—
for tweaking factory behavior. We'll also introduce a clone factory, which can duplicate objects of any type.

8.1 The Need for Object Factories

There are two basic cases in which object factories are needed. The first occurs when alibrary needs not
only to manipulate user-defined objects, but also to create them. For example, imagine you develop a
framework for multiwindow document editors. Because you want the framework to be easily extensible,
you provide an abstract class Document from which users can derive classes such as TextDocument and
HTMLDocument. Another framework component may be aDocumentManager classthat keepsthe list
of all open documents.

A good ruleto introduce is that each document that existsin the application should be known by the
DocumentManager. Therefore, creating a new document istightly coupled with adding it to
DocumentManager'slist of documents. When two operations are so coupled, it is best to put them in the
same function and never perform them separately:

class DocumentManager

{
public:
Document* NewDocument();
private:
virtual Document* CreateDocument() = 0O;
std: : list<Document*> listOfDocs_;
}:
Document* DocumentManager : :NewDocument()
{
Document* pDoc = CreateDocument();
listOfDocs_.push_back(pDoc);
return pDoc;
}

The CreateDocument member function replaces a call to new. NewDocument cannot use the new
operator because the concrete document to be created is not known by the time DocumentManager is
written. In order to use the framework, programmers will derive from DocumentManager and override
the virtual member function CreateDocument (whichislikely to be pure). The GoF book (Gamma et al.
1995) calls CreateDocument afactory method.

Because the derived class knows exactly the type of document to be created, it can invoke the new
operator directly. Thisway, you can remove the type knowledge from the framework and have the
framework operate on the base class Document only. The overrideis very smple and consists essentially
of acall to new; for example:
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Document* GraphicDocumentManager : :CreateDocument()

{
}

return new GraphicDocument;

Alternatively, an application built with this framework might support creation of multiple document types
(for instance, bitmapped graphics and vectorized graphics). In that case, the overridden
CreateDocument function might display a dialog to the user asking for the specific type of document to
be created.

Thinking of opening a document previously saved on disk in the framework just outlined brings usto the
second—and more complicated—case in which an object factory may be needed. When you save an object
to afile, you must save its actual type in the form of a string, an integral value, an identifier of some sort.
Thus, athough the type information exists, its form does not alow you to create C++ objects.

The genera concept underlying this situation is the creation of objects whose type information is genuinely
postponed to runtime; entered by the end user, read from a persistent storage or network connection, or the
like. Here the binding of types to values is pushed even further than in the case of polymorphism: When
using polymorphism, the entity manipulating an object does not know its exact type; however, the object
itself is of awell-determined type. When reading objects from some storage, the type comes "aone" at
runtime. Y ou must transform type information into an object. Finally, you must read the object from the
storage, which is easy once an empty object is created, by invoking avirtual function.

Creating objects from "pure” type information, and consequently adapting dynamic information to static
C++ types, isan important issue in building object factories. Let's focus on it in the next section.

8.2 Object Factories in C++: Classes and Objects

To come up with a solution, we need a good grasp of the problem. This section tries to answer the
following questions: Why are C++ constructors so rigid? Why don't we have flexible means to create
objects in the language itself?

Interestingly, seeking an answer to this question takes us directly to fundamental decisions about C++'s
type system. To find out why a statement such as

Base* pB = new Derived;

issorigid, we must answer two related questions: What is a class, and what isan object? Thisis because
the culprit in the given statement is Derived, which is aclass name, and we'd like it to be avalue, that is,
an object.

In C++, classes and objects are different beasts. Classes are what the programmer creates, and objects are
what the program creates. Y ou cannot create a new class at runtime, and you cannot create an object at
compile time. Classes don't have first-class status: Y ou cannot copy a class, storeit in avariable, or return
it from afunction.

In contrast, there are languages in which classes are objects. In those languages, some objects with certain
properties are simply considered classes by convention. Consequently, in those languages, you can create
new classes at runtime, copy aclass, storeit in avariable, and so on. If C++ were such alanguage, you
could have written code like the following:

// Warning-this is NOT C++
// Assumes Class is a class that"s also an object
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Class Read(const char* fileName);
Document* DocumentManager : :OpenDocument(const char* fileName)
{
Class theClass
Document* pDoc

Read(fileName);
new theClass;

}

That is, we could pass a variable of type Class to the new operator. In such a paradigm, passing a known
class name to new is the same as using a hardcoded constant.

Such dynamic languages trade off some type safety and performance for the sake of flexibility, because
static typing is an important source of optimization. C++ took the opposite approach, sticking to a static
type system, yet trying to provide as much flexibility as possible in this framework.

The bottom lineis that creating object factoriesis a complicated problem in C++. In C++ there isafracture
between types and values: A value has atype attribute, but a type cannot exist on its own. If you want to
create an object in atotally dynamic way, you need a means to express and pass around a "pure" type and
build avalue from it on demand. Because you cannot do this, you somehow must represent types as
objects—integers, strings, and so on. Then, you must employ some trick to exchange the value for the right
type, and finally to use that type to create an object. This object-type-object trade is fundamental for object
factoriesin statically typed languages.

We will call the object that identifies atype atype identifier. (Don't confuse it with typeid.) Thetype
identifier helps the factory in creating the appropriate type of object. Aswill be shown, sometimes you
make the type identifier—object exchange without knowing exactly what you have or what you will get. It's
like afairy tale: You don't know exactly how the token works (and it's sometimes dangerous to try to
figureit out), but you passit to the wizard, who gives you a valuable object in exchange. The details of
how the magic happens must be encapsulated in the wizard . . . the factory, that is.

We will explore asimple factory that solves a concrete problem, try various implementations of it, and
then extract the generic part of it into a class template.

8.3 Implementing an Object Factory

Say you write a simple drawing application, allowing editing of simple vectorized drawings consisting of
lines, circles, polygons, and so on.2! In a classic object-oriented manner, you define an abstract Shape
class from which all your figures will derive:

M This "Hello, world" of design is a good basis for C++ interview questions. Although many candidates
manage to conceive such a design, few of them know how to implement the loading of files, which is a rather
important operation.

class Shape
{
public:
virtual void Draw() const = O;

virtual void Rotate(double angle) = O;
virtual void Zoom(double zoomFactor) = O;

3

Y ou might then define a class Drawiing that contains a complex drawing. A Drawing essentially holds a
collection of pointersto Shape—such asalist, avector, or ahierarchical structure—and provides
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operations to manipulate the drawing as awhole. Two typical operations you might want to do are saving a
drawing as afile and loading a drawing from a previously saved file.

Saving shapesis easy: Just provide a pure virtual function such as Shape: :Save(std: : ostream&).
Then the Drawing : : Save operation might look like this:

class Drawing

{
public:
void Save(std::ofstream& outFile);
void Load(std::ifstream& inFile);
}:
void Drawing::Save(std::ofstream& outFile)
{
write drawing header
for (each element in the drawing)
{
(current element)->Save(outFile);
}
}

The Shape-Drawiing example just described is often encountered in C++ books, including Bjarne
Stroustrup's classic (Stroustrup 1997). However, most introductory C++ books stop when it comes to
loading graphics from afile, exactly because the nice model of having separate drawing objects breaks.
Explaining the gory details of reading objects makes for a big parenthesis, which understandably is often
avoided. On the other hand, this is exactly what we want to implement, so we have to bite the bullet. A
straightforward implementation is to require each Shape-derived object to save an integral identifier at the
very beginning. Each object should have its own unigue ID. Then reading the file would look like this:

// a unique ID for each drawing object type
namespace DrawingType

{ _
const int
LINE = 1,
POLYGON = 2,
CIRCLE = 3
}:
void Drawing::Load(std::ifstream& inFile)
{

// error handling omitted for simplicity
while (inFile)
{

// read object type

int drawingType;

inFile >> drawingType;

// create a new empty object
Shape* pCurrentObject;
switch (drawingType)

{
using namespace DrawingType;
case LINE:
pCurrentObject = new Line;
break;

case POLYGON:
pCurrentObject = new Polygon;
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break;
case CIRCLE:
pCurrentObject = new Circle;
break;
default:
handle error—unknown object type
by

// read the object®s contents by invoking a virtual fn
pCurrentObject->Read(inFile);
add the object to the container

}
}

Thisisindeed an object factory. It reads a type identifier from thefile, creates an object of the appropriate
type based on that identifier, and invokes a virtual function that |oads that object from the file. The only
problem is that it breaks the most important rules of object orientation:

e It performsaswitch based on atype tag, with the associated drawbacks, which is exactly what
object-oriented programs try to eliminate.

e It collectsin asingle source file knowledge about all Shape-derived classesin the program,
which again you must strive to avoid. For one thing, the implementation file of Drawing: : Save
must include all headers of all possible shapes, which makes it a bottleneck of compile
dependencies and maintenance.

e Itishard to extend. Imagine adding a new shape, such asEl lipse, to the system. In addition to
creating the class itself, you must add a distinct integral constant to the namespace DrawingType,
you must write that constant when saving an E1 11 pse object, and you must add a label to the
switch statement in Drawing: : Save. Thisis an awful lot more than what the architecture
promised—total insulation between classes—and all for the sake of a single function!

We'd like to create an object factory that does the job without having these disadvantages. One practical
goal worth pursuing isto break the switch statement apart—so that we can put the Line creation
statement in the file implementation for L i ne—and do the same for Polygon and Circle.

A common way to keep together and manipulate pieces of code isto work with pointers to functions, as
discussed at length in Chapter 5. The unit of customizable code here (each of the entriesin the switch
statement) can be abstracted in a function with the signature

Shape* CreateConcreteShape();

The factory keeps a collection of pointers to functions with this signature. In addition, there hasto be a
correspondence between the IDs and the pointer to the function that creates the appropriate object. Thus,
what we need is an associative collection—a map. A map offers access to the appropriate function given
the type identifier, which is precisely what the swi tch statement offers. In addition, the map offersthe
scalability that the switch statement, with its fixed compile-time structure, cannot provide. The map can
grow at runtime—you can add entries (tuples of IDs and pointers to functions) dynamically, which is
exactly what we need. We can start with an empty map and have each Shape-derived object add an entry
toit.

Why not use a vector? IDs are integral numbers, so we can keep a vector and have the ID betheindex in
the vector. This would be simpler and faster, but a map is better here. The map doesn't require its indices to
be adjacent, plusit's more general—vectors work only with integral indices, whereas maps accept any
ordered type as an index. This point will become important when we generalize our example.

We can start designing a ShapeFactory class, which has the responsibility of managing the creation of
all Shape-derived objects. In implementing ShapeFactory, we will use the map implementation found
in the standard library, std: - map:
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class ShapeFactory

{
public:
typedef Shape* (*CreateShapeCallback)();
private:
typedef std::map<int, CreateShapeCallback> CallbackMap;
public:
// Returns “true® if registration was successful
bool RegisterShape(int Shapeld,
CreateShapeCal lback CreateFn);
// Returns "true” if the Shapeld was registered before
bool UnregisterShape(int Shapeld);
Shape* CreateShape(int Shapeld);
private:
CallbackMap callbacks_;
}:

Thisisabasic design of a scalable factory. The factory is scalable because you don't have to modify its
code each time you add a new Shape-derived class to the system. ShapeFactory divides responsibility:
Each new shape hasto register itself with the factory by calling RegisterShape and passing it its
integral identifier and a pointer to a function that creates an object. Typically, the function has asingle line
and looks like this:

Shape* CreatelLine()
{

}

return new Line;

The implementation of Line aso must register this function with the ShapeFactory that the application
uses, which is typically aglobally accessible object.2 The registration is usually performed with startup
code. The whole connection of Line withthe Shape Factory isasfollows:

2 This brings us to the link between object factories and singletons. Indeed, more often than not, factories
are singletons. Later in this chapter is a discussion of how to use factories with the singletons implemented
in Chapter 6.

// Implementation module for class Line

// Create an anonymous namespace

// to make the function invisible from other modules
namespace

Shape* CreatelLine()
{

return new Line;

}

// The 1D of class Line

const int LINE = 1;

// Assume TheShapeFactory is a singleton factory

// (see Chapter 6)

const bool registered =

TheShapeFactory: : Instance() -RegisterShape(

LINE, CreatelLine);

}

Implementing the ShapeFactory is easy, given the amenities std: :map hasto offer. Basicaly,
ShapeFactory member functions forward only to the cal Ibacks_ member:

bool ShapeFactory: :RegisterShape(int shapeld,
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CreateShapeCal lback createFn)

{

return callbacks .insert(

CallbackMap: :value_type(shapeld, createFn)).second;

}
bool ShapeFactory::UnregisterShape(int shapeld)
{

return callbacks_ .erase(shapeld) == 1;
}

If you're not very familiar with the std: - map class template, the previous code might need a bit of
explanation:

e std::map holds pairs of keys and data. In our case, keys areintegral shape IDs, and the data
consists of apointer to function. The type of our pairisstd: :pair<const int,
CreateShapeCal Iback>. Y ou must pass an object of thistype when you call insert.
Because that's alot to write, it's better to use the typedef found inside std: - map, which provides
ahandy name—value_type—for that pair type. Alternatively, you can use std: :make_pair.

e The insert member function we called returns another pair, this time containing an iterator
(which refersto the element just inserted) and abool that is true if the value didn't exist before,
and false otherwise. The. second field access after the call to insert selectsthisbool and
returnsit in a single stroke, without our having to create a named temporary.

e erase returnsthe number of elements erased.

The CreateShape member function simply fetches the appropriate pointer to a function for the ID
passed in, and callsit. In the case of an error, it throws an exception. Here it is:

Shape* ShapeFactory: :CreateShape(int shapeld)

CallbackMap: :const_iterator i = callbacks_.find(shapeld);
it (i == callbacks_.end())

{
// not found

throw std::runtime_error('Unknown Shape ID'™);

// Invoke the creation function
return (i->second)();

}

Let's see what this simple class brought us. Instead of relying on the large, know-it-all switch statement,
we obtained a dynamic scheme requiring each type of object to register itself with the factory. This moves
the responsibility from a centralized place to each concrete class, where it belongs. Now whenever you
define anew Shape-derived class, you can just add files instead of modifying files.

8.4 Type ldentifiers

The only problem that remains is the management of type identifiers. Still, adding type identifiers requires
afair amount of discipline and centralized control. Whenever you add a hew shape class, you must check
all the existing type identifiers and add one that doesn't clash with them. If a clash exists, the second call to
RegisterShape for the same ID fails, and you won't be able to create objects of that type.

We can solve this problem by choosing a more generous type than int for expressing the type identifier.
Our design doesn't require integral types, only typesthat can be keysin amap, that is, types that support

180



operator== and operator<. (That's why we can be happy we chose maps instead of vectors.) For
example, we can store type identifiers as strings and establish the convention that each classis represented
by its name: Line'sidentifieris"Line", Polygon'sidentifier is"Polygon", and so forth. This
minimizes the chance of clashing names because class hames are unique.

If you enjoy spending your weekends studying C++, maybe the previous paragraph rang a bell for you.
Let'suse type_info! Thestd: :type_info classispart of the runtime type information (RTTI)
provided by C++. You get areferencetoastd: : type_info by invoking the typeid operator on a
type or an expression. What seems niceisthat std: : type_info provides aname member function that
returnsaconst char* pointing to a human-readable name of the type. For your compiler, you might
have seen that typeid(Line) .name() pointsto the string "class Line", which is exactly what we
wanted.

The problem is, this does not apply to all C++ compiler implementations. Theway type_info: :nameis
defined makes it unsuitable for anything other than debugging purposes (such as printing it in a debug
console). Thereis no guarantee that the string is the actual class name, and worse, there is no guarantee
that the string is unique throughout the application. (Y es, you can have two classes that have the same
name according to std: : type_info: :name.) And the shotgun argument is that there's no guarantee
that the type name will be unique in time. Thereis no guarantee that typeid(Line) .name() pointsto
the same string when the application is run twice. Implementing persistence is an important application of
factories, and std: : type_info: :name isnot persistent. All thismakes std: : type info
deceptively close to being useful for our object factory, but it isnot area solution.

Back to the management of type identifiers. A decentralized solution for generating type identifiersisto
use a unigue value generator—for instance, a random number or random string generator. Y ou would use
this generator each time you add a new class to the program, then hardcode that random value in the source
file and never change it.2! This sounds like a brittle solution, but think of it thisway: If you have a random
string generator that has a 10%° probability of repeating a value in athousand years, you get arate of error
smaller than that of a program using a "perfect” factory.

B Microsoft's COM factory uses such a method. It has an algorithm for generating unique 128-bit identifiers
(called globally unique identifiers, or GUIDs) for COM objects. The algorithm relies on the uniqueness of the
network card serial number or, in the absence of a card, the date, time, and other highly variable machine
states.

The only conclusion that can be drawn hereis that type identifier management is not the business of the
object factory itself. Because C++ cannot guarantee a unique, persistent type 1D, type ID management
becomes an extra-linguistic issue that must be left to the programmers.

We have described all the elementsin atypical object factory, and we have a prototype implementation.
It's time now for the next step—the step from concrete to abstract. Then, enriched with new insights, well
go back to concrete.

8.5 Generalization

Let's enumerate the elements involved in our discussion of object factories. This gives us the intellectual
workout necessary for putting together a generic object factory.

e Concrete product. A factory delivers some product in the form of an object.

e Abstract product. Products inherit a base type (in our example, Shape). A product is an object
whose type belongs to a hierarchy. The base type of the hierarchy is the abstract product. The
factory behaves polymorphically in the sense that it returns a pointer to the abstract product,
without conveying knowledge of the concrete product type.
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e Product type identifier. Thisisthe object that identifies the type of the concrete product. As
discussed, you have to have atype identifier to create a product because of the static C++ type
system.

e Product creator. The function or functor is specialized for creating exactly one type of object. We
modeled the product creator using a pointer to function.

The generic factory will orchestrate these elements to provide awell-defined interface, as well as defaults
for the most used cases.

It seems that each of the notions just enumerated will transform into a template parameter of aFactory
template class. There's only one exception: The concrete product doesn't have to be known to the factory.
Had this been the case, we'd have different Factory types for each concrete product were adding, and we
aretrying to keep Factory insulated from the concrete types. We want only different Factory typesfor
different abstract products.

Thisbeing said, let's write down what we've grabbed so far:

template
<
class AbstractProduct,
typename ldentifierType,
typename ProductCreator
>
class Factory
{
public:
bool Register(const ldentifierType& id, ProductCreator creator)
{
return associations_.insert(
AssocMap: :value_ type(id, creator)).second;

}
bool Unregister(const ldentifierType& id)
{
return associations_.erase(id) == 1;
}

AbstractProduct* CreateObject(const ldentifierType& id)
{
typename AssocMap::const_iterator i =
associations_.find(id);
it (i '= associations_.end())

{
return (i->second)();
}
handle error
3
private:
typedef std::map<ldentifierType, AbstractProduct>
AssocMap;
AssocMap associations_;
}:

The only thing left out is error handling. If we didn't find a creator registered with the factory, should we
throw an exception? Return anull pointer? Terminate the program? Dynamically load some library,
register it on the fly, and retry the operation? The actual decision depends very much on the concrete
situation; any of these actions makes sense in some cases.

Our generic factory should let the user customize it to do any of these actions and should provide a
reasonable default behavior. Therefore, the error handling code should be pulled out of the

182



CreateObject member function into a separate FactoryError policy (see Chapter 1). This policy defines
only one function, OnUnknownType, and Factory gives that function afair chance (and enough
information) to make any sensible decision.

The policy defined by FactoryError is very simple. FactoryError prescribes a template of two parameters:
IdentifierType and AbstractProduct. If FactoryErrorimpl isanimplementation of
FactoryError, then the following expression must apply:

FactoryErrorimpl<ldentifierType, AbstractProduct> factoryErrorimpl;
IdentifierType id;
AbstractProduct* pProduct = factoryErrorimpl.OnUnknownType(id);

Factory usesFactoryErroriImpl asalast-resort solution: If CreateObject cannot find the
association in itsinternal map, it uses FactoryErrorimpl<ldentifierType, Abstract-
Product>: :OnUnknownType for fetching a pointer to the abstract product. If OnUnknownType throws
an exception, the exception propagates out of Factory. Otherwise, CreateObject simply returns
whatever OnUnknownType returned.

Let's code these additions and changes (shown in bold):

template
<
class AbstractProduct,
typename ldentifierType,
typename ProductCreator,
template<typename, class>
class FactoryErrorPolicy
>
class Factory
: public FactoryErrorPolicy<ldentifierType, AbstractProduct>

public:
AbstractProduct* CreateObject(const IdentifierType& id)
{
typename AssocMap::const _iterator i = associations_.find(id);
if (i = associations_.end())

{
return (i->second)();
}
return OnUnknownType(id);
}
private:

... rest of functions and data as above ...

3

The default implementation of FactoryError throws an exception. This exception's class is best made
distinct from al other types so that client code can detect it separately and make appropriate decisions.
Also, the class should inherit one of the standard exception classes so that the client can catch al kinds of
errors with one catch block. DefaultFactoryError defines a nested exception class (called Excepti on)™
that inherits std: :exception.

“ There is no need to make the name distinctive (like FactoryException), because the type is already
inside class template Defaul tFactoryError.

template <class ldentifierType, class ProductType>
class DefaultFactoryError

{
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public:
class Exception : public std::exception
{
public:
Exception(const ldentifierType& unknownld)
> unknownld_(unknownlid)
{

}

virtual const char* what(Q)

{

}
const ldentifierType Getld()

{
return unknownld_;
e
private:
IdentifierType unknownld_;
};
protected:
StaticProductType* OnUnknownType(const ldentifierType& id)

{

}
3

return "Unknown object type passed to Factory."';

throw Exception(id);

Other, more advanced implementations of FactoryError can look up the type identifier and return a pointer
to avalid object, return anull pointer (if the use of exceptionsis undesirable), throw some exception object,
or terminate the program. Y ou can tweak the behavior by defining new FactoryError implementations and
specifying them as the fourth argument of Factory.

8.6 Minutiae

Actually, Loki's Factory implementation does not use std: :map. It uses a drop-in replacement for map,
AssocVector, which is optimized for rare inserts and frequent lookups, the typical usage pattern of
Factory. AssocVector isdescribed in detail in Chapter 11.

Inaninitial draft of Factory, the map type was customizable by virtue of its being a template parameter.
However, often AssocVector fitsthe bill exactly; in addition, using standard containers as template
template parametersis not, well, standard. Thisis because implementers of standard containers are free to
add more template arguments, as long as they provide defaults for them.

Let'sfocus now on the ProductCreator template parameter. Its main requirement isthat it have
functional behavior (accept operator () and take no arguments) and return a pointer convertible to
AbstractProduct®. In the concrete implementation shown earlier, ProductCreator wasasmple
pointer to afunction. This sufficesif al we need isto create objects by invoking new, which is the most
common case. Therefore, we choose

AbstractProduct* (*)(Q

asthe default type for ProductCreator. The type looks abit like a confusing emoticon because its
nameis missing. If you put a name after the asterisk within the parentheses,

AbstractProduct* (*PointerToFunction)()
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the type revealsitself as a pointer to afunction taking no parameters and returning a pointer to
AbstractProduct. If this still looks unfamiliar to you, you may want to refer to Chapter 5, which
includes a discussion on pointers to functions.

By the way, speaking of that chapter, there is avery interesting template parameter you can passto
Factory asProductCreator, namely Functor<AbstractProduct*>. If you choose this, you gain
great flexibility: Y ou can create objects by invoking a simple function, a member function, or afunctor,
and bind appropriate parameters to any of them. The glue code is provided by Functor.

Our Factory classtemplate declaration now looks like this:

template
<

class AbstractProduct,

class ldentifierType,

class ProductCreator = AbstractProduct* (*)(Q),

template<typename, class>

class FactoryErrorPolicy = DefaultFactoryError

>

class Factory;

Our Factory classtemplate is now ready to be of use.

8.7 Clone Factories

Although genetic factories producing clones of the universal soldier are quite a scary prospect, cloning
C++ objectsis aharmless and useful activity most of the time. Here the goal is dightly different from what
we have dealt with so far: We no longer have to create objects from scratch. We have a pointer to a
polymorphic object, and we'd like to create an exact copy of it. Because we don't exactly know the type of
the polymorphic object, we don't exactly know what new object to create, and thisis the actual issue.

Because we do have an object at hand, we can apply classic polymorphism. Thus, the usual idiom used for
object cloning isto declare avirtual Clone member function in the base class and to have each derived
class override it. Here's an example using our geometric shapes hierarchy:

class Shape

r
public:
virtual Shape* Clone() const = 0O;
}:
class Line : public Shape
{
public:
virtual Line* Clone() const
{
return new Line(*this);
}
}:

Thereason that Line: :Clone does not return a pointer to Shape isthat we took advantage of a C++
feature called covariant return types. Because of covariant return types, you can return a pointer to a
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derived classinstead of a pointer to the base class from an overridden virtual function. From now on, the
idiom goes, you must implement a similar Clone function for each class you add to the hierarchy. The
contents of the functions are the same: Y ou create aPolygon, you return anew Polygon(*this), and
SO on.

Thisidiom works, but it has a couple of major drawbacks:

e |f the base class wasn't designed to be cloneable (didn't declare a virtual function equivalent to
Clone) and is not modifiable, the idiom cannot be applied. Thisis the case when you write an
application using a class library that requires you to derive from its base classes.

e Evenif al the classes are changeabl e, the idiom requires a high degree of discipline. Forgetting to
implement Clone in some derived classes will remain undetected by the compiler and may cause
runtime behavior ranging from bizarre to pernicious.

Thefirst point is obvious; let's discuss the second one. Imagine you derived a class DottedL ine from
Line and forgot to override DottedLine: :Clone. Now say you have a pointer to a Shape that actualy
pointsto aDottedLine, and you invoke Clone onit:

Shape* pShape;

éﬁépe* pDuplicateShape = pShape->Clone();

TheLine: :Clone function will beinvoked, returning aL ine. Thisisavery unfortunate situation
because you assume pDup I i cateShape to have the same dynamic type as pShape, when in fact it
doesn't. Thismight lead to alot of problems, from drawing unexpected types of lines to crashing the
application.

There's no solid way to mitigate this second problem. Y ou can't say in C++: "I define thisfunction, and |
require any direct or indirect classinheriting it to overrideit.” Y ou must shoulder the painful, repetitive
task of overriding Clone in every shape class, and you're doomed if you don't.

If you agree to complicate the idiom a bit, you can get an acceptable runtime check. Make Clone apublic
nonvirtual function. From inside it call a private virtual function called, say, DoClone, and then enforce
the equality of the dynamic types. The code is simpler than the explanation:

class Shape

{
public:
Shape* Clone() const//nonvirtual
{
// delegate to DoClone
Shape* pClone = DoClone();
// Check for type equivalence
// (could be a more sophisticated test than assert)
assert(typeid(*pClone) == typeid(*this));
return pClone;
3
private:
virtual Shape* DoClone() const = 0; // private
¥

The only downside is that you can no longer use covariant return types.
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Shape derivees would always override DoClone, leave it private so that clients cannot call it, and leave
Clone done. Clients use Clone only, which performs the runtime check. As you have certainly figured
out, programming errors, such as overriding Clone or making DoClone public, can still sneak in.

Don't forget that, no matter what, if you cannot change all the classesin the hierarchy (the hierarchy is
closed) and if it wasn't designed to be cloneable, you don't have any chance of implementing thisidiom.
Thisis quite a dismissive argument in many cases, so we should look for aternatives.

Here a special object factory may be of help. It leads to a solution that doesn't have the two problems

mentioned earlier, at the cost of a dight performance hit—instead of avirtual call, there is amap lookup
plus acal viaa pointer to a function. Because the number of classesin an application is never really big
(they are written by people, aren't they?), the map tendsto be small, and the hit should not be significant.

It al starts from the ideathat in a clone factory, the type identifier and the product have the same type. Y ou
receive as atype identifier the object to be duplicated and pass as output a new object that is a copy of the
type identifier. To be more precise, they're not quite the same type: A cloning factory's IdentifierType
isapointer to AbstractProduct. The exact dedl isthat you pass a pointer to the clone factory, and you
get back another pointer, which points to a cloned object.

But what's the key in the map? It can't be a pointer to AbstractProduct because you don't need as
many entries as the objects we have. Y ou need only one entry per type of object to be cloned, which brings
usagain to the std: : type_info class. Thetype identifier passed when the factory is asked to create a
new object is different from the type identifier that's stored in the association map, and that makes it
impossible for us to reuse the code we've written so far. Another consequence is that the product creator
now needs the pointer to the object to be cloned; in the factory we created earlier from scratch, no
parameter was needed.

Let's recap. The clone factory gets a pointer to an AbstractProduct. It appliesthe typeid operator to
the pointed-to object and obtains areferenceto astd: - type_info object. It then looks up that object in
its private map. (The before member function of std: : type_info introduces an ordering over the set
of std: : type_info objects, which makesit possible to use amap and perform fast searches.) If an
entry is not found, an exception is thrown. If it isfound, the product creator will be invoked, with the
pointer to the AbstractProduct passed in by the user.

Because we already have the Factory class template handy, implementing the CloneFactory class
template isasimple exercise. (You can find it in Loki.) There are a few differences and new elements:

e CloneFactory uses Typelnfo instead of std: :type_info. Theclass Type Info, discussed
in Chapter 2, isawrapper around a pointer to std: : type_ info, having the purpose of defining
proper initialization, assignment, operator==, and operator<, which are all needed by the
map. The first operator delegatesto std: : type_info: :operator==; the second operator
delegatesto std: : type_info: :before.

e Thereisnolonger an IdentifierType because the identifier type isimplicit.

e TheProductCreator template parameter defaultsto AbstractProduct*

(*) (Abstract-Product®™).
e The IdToProductMap isnow AssocVector<Typelnfo, ProductCreator>.

The synopsis of CloneFactory isasfollows:

template
<
class AbstractProduct,
class ProductCreator =
AbstractProduct* (*)(AbstractProduct*),
template<typename, class>



class FactoryErrorPolicy = DefaultFactoryError
>

class CloneFactory

{
public:
AbstractProduct* CreateObject(const AbstractProduct* model);
bool Register(const Typelnfo&,
ProductCreator creator);
bool Unregister(const Typelnfo&);
private:
typedef AssocVector<Typelnfo, ProductCreator>
IdToProductMap;
IdToProductMap associations_;

¥

The CloneFactory classtemplate is a complete solution for cloning objects belonging to closed class
hierarchies (that is, class hierarchies that you cannot modify). Its simplicity and effectiveness stem from
the conceptual clarifications made in the previous sections and from the runtime type information that C++
provides through typeid and std: : type_info. Had RTTI not existed, clone factories would have
been much more awkward to implement—in fact, so awkward that putting them together wouldn't have
made much sense in the first place.

8.8 Using Object Factories with Other Generic Components

Chapter 6 introduced the SingletonHolder class, which was designed to provide specific servicesto
your classes. Because of the global nature of factories, it is natural to use Factory with
SingletonHolder. They are very easy to combine by using typedef. For instance:

typedef SingletonHolder< Factory<Shape, std::string> > ShapeFactory;

Of course, you can add arguments to either SingletonHolder or Factory to choose different trade-
offsand design decisions, but it'sal in one place. From now on, you can isolate a bunch of important
design choices in one place and use ShapeFactory throughout the code. Within the simple type
definition just shown, you can select the way the factory works and the way the singleton works, thus
exploiting al the combinations between the two. With asingle line of declarative code, you direct the
compiler to generate the right code for you and nothing more, just as at runtime you'd call afunction with
various parameters to perform some action in different ways. Because in our case it al happens at compile
time, the emphasis is more on design decisions than on runtime behavior. Of course, runtime behavior is
affected aswell, but in amore global and subtle way. By writing "regular" code, you specify what's going
to happen at runtime. When you write a type definition such as the one above, you specify what's going to
happen during compile time—in fact, you kind of call code-generation functions at compile time, passing
arguments to them.

As dluded to in the beginning of this chapter, an interesting combination isto use Factory with
Functor:

typedef SingletonHolder

<
Factory
<
Shape, std::string, Functor<Shape*>
>
>
ShapeFactory;
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This gives you great flexibility in creating objects, by leveraging the power of Functor (for which
implementation we took great pains in Chapter 5). Y ou can now create Shapes in almost any way
imaginable by registering various Functorswith the Factory, and the whole thingisaSingleton.

8.9 Summary

Object factories are an important component of programs that use polymorphism. Object factorieshelp in
creating objects when their types are either not available or are available only in aform that's incompatible
for use with language constructs.

Object factories are used mostly in object-oriented frameworks and libraries, as well as in various object
persistence and streaming schemes. The latter case was analyzed in depth with a concrete example. The
solution essentially distributes a switch of type across multiple implementation files, thus achieving low
coupling. Although the factory remains a central authority that creates objects, it doesn't have to collect
knowledge about all the static typesin a hierarchy. Instead, it's the responsibility of each type to register
itself with the factory. This marks afundamental difference between the "wrong" and the "right" approach.

Type information cannot be easily transported at runtime in C++. Thisis afundamental feature of the
family of languages to which C++ belongs. Because of this, type identifiers that represent types have to be
used instead. They are associated with creator objects that are callable entities, as described in Chapter 5
on generalized functors (pointers to functions or functors). A concrete object factory starting from these
ideas was implemented and was then generalized into a class template.

Finally, we discussed clone factories (factories that can duplicate polymorphic objects).

8.10 ractory Class Template Quick Facts

e Factory declaration:

template
<

class AbstractProduct,
class IdentifierType,
class ProductCreator = AbstractProduct* (*)Q),
template<typename, class>
class FactoryErrorPolicy = DefaultFactoryError
>

class Factory;

e AbstractProduct isthe base class of the hierarchy for which you provide the object factory.

e IdentifierType isthetype of the "cookie" that represents atype in the hierarchy. It hasto be
an ordered type (able to be stored in astd: :map). Commonly used identifier types are strings
and integral types.

e ProductCreator isthe callable entity that creates objects. This type must support
operator(), taking no parameters and returning a pointer to AbstractProduct. A
ProductCreator object is always registered together with atype identifier.

e Factory implementsthe following primitives:

bool Register(const ldentifierType& id, ProductCreator creator);
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Registers a creator with atype identifier. Returns true if the registration was successful; false
otherwise (if there already was a creator registered with the same type identifier).

bool Unregister(const IldentifierType& id);

Unregisters the creator for the given type identifier. If the type identifier was previously registered, the
function returns true.

AbstractProduct* CreateObject(const IdentifierType& id);

Looks up the type identifier in the internal map. If it isfound, it invokes the corresponding creator for the
type identifier and returnsiits result. If the type identifier is not found, the result of
FactoryErrorPolicy<ldentifierType, AbstractProduct>:: OnUnknownType is returned.
The default implementation of FactoryErrorPol icy throws an exception of its nested type
Exception

8.11 croneractory Class Template Quick Facts

CloneFactory declaration:

template
<

class AbstractProduct,
class ProductCreator =
AbstractProduct* (*)(const AbstractProduct*),
template<typename, class>
class FactoryErrorPolicy = DefaultFactoryError
>

class CloneFactory;

e AbstractProduct isthe base class of the hierarchy for which you want to provide the clone
factory.

e ProductCreator hastherole of duplicating the object received as a parameter and returning a
pointer to the clone.

e CloneFactory implements the following primitives:

° bool Register(const Typelnfo&, ProductCreator creator);

Registers a creator with an object of type Type Info (which accepts an implicit conversion constructor
from std: : type_info). Returns true if the registration was successful; false otherwise.

bool Unregister(const Typelnfo& typelnfo);
Unregisters the creator for the given type. If the type was previoudy registered, the function returns true.

AbstractProduct* CreateObject(const AbstractProduct* model);

Looks up the dynamic type of model in the internal map. If it isfound, it invokes the corresponding
creator for the type identifier and returns its result. If the type identifier is not found, the result of
FactoryErrorPolicy<OrderedTypelnfo, AbstractProduct> ::0nUnknownType is
returned.
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Chapter 9. Abstract Factory

This chapter discusses a generic implementation of the Abstract Factory design pattern (Gamma et al.
1995). An abstract factory is an interface for creating afamily of related or dependent polymorphic objects.

Abstract factories can be an important architectural component because they ensure that the right concrete
objects are created throughout a system. Y ou don't want a FunkyButton to appear on a
ConventionalDialog; you can use the Abstract Factory design pattern to ensure that a FunkyButton
can appear only on a FunkyDialog. You do this by controlling a small piece of code; the rest of the
application works with the abstract typesDial og and Button.

After reading this chapter, you will

e Understand the area of applicability of the Abstract Factory design pattern

e Know how to define and implement Abstract Factory components

e Know how to use the generic Abstract Factory facility provided by Loki and how to extend it to
suit your needs

9.1 The Architectural Role of Abstract Factory

Let's say you are in the enviable position of designing a "find 'em and kill ‘em" game, like Doom or Quake.

Y ou want to entice regular taxpayers to enjoy your game, so you provide an Easy level. On the Easy level,
the enemy soldiers are rather dull, the monsters move like molasses, and the super-monsters are quite
friendly.

Y ou aso want to entice hardcore gamers to play your game, so you provide a Diehard level. On thislevel,
enemy soldiers fire three times a second and are karate pros, monsters are cunning and deadly, and really
bad super-monsters appear once in awhile.

A possible modeling of this scary world would include defining a base class Enemy and deriving the
refined interfaces Soldier, Monster, and SuperMonster fromit. Then, you derive SillySoldier,
SillyMonster, and Si Il lySuperMonster from these interfaces for the Easy level. Finally, you
implement BadSoldier, BadMonster, and BadSuperMonster for the Diehard level. The resulting
inheritance hierarchy is shown in Figure 9.1.

Figure 9.1. A hierarchy for a game with two levels of difficulty

Enemy

| Soldier ‘ Marster ‘ SuperMonster

SillySoldier BrdSoldier SillyMonster BadMonster SillySuperMonster  |BadSuperMonster

191



It isworth noting that in your game, an instantiation of BadSoldier and an instantiation of
SillyMonster never "live" at the sametime. It wouldn't make sense; the player plays either the easy
ganewith SillySoldiers, SillyMonsters, and Si Il lySuperMonsters, or the tough game in the
company of BadSoldiers, BadMonsters, and Bad SuperMonsters.

The two categories of types form two families; during the game, you always use objects in one of the two
families, but you never combine them.

It would be niceif you could enforce this consistency. Otherwise, if you're not careful enough throughout
the application, the beginner happily punching Si I lySoldiers could suddenly meet aBadMonster
around the corner, get whacked, and exercise that money-back guarantee.

Because it's better to be careful once than a hundred times, you gather the creation functions for all the
game objects into asingle interface, as follows:

class AbstractEnemyFactory

{
public:

virtual Soldier* MakeSoldier() = O;

virtual Monster* MakeMonster() = O;

virtual SuperMonster* MakeSuperMonster() = O;
};

Then, for each play level, you implement a concrete enemy factory that creates enemies as prescribed by
the game strategy.

class EasylLevelEnemyFactory : public AbstractEnemyFactory
{
public:

Soldier* MakeSoldier()

{ return new SillySoldier; }

Monster* MakeMonster()

{ return new SillyMonster; }

SuperMonster* MakeSuperMonster()

{ return new SillySuperMonster; }

¥

class DieHardLevelEnemyFactory : public AbstractEnemyFactory
{
public:

Soldier* MakeSoldier()

{ return new BadSoldier; }

Monster* MakeMonster()

{ return new BadMonster; }

SuperMonster* MakeSuperMonster()

{ return new BadSuperMonster; }

}:
Finaly, you initialize a pointer to AbstractEnemyFactory with the appropriate concrete class:

class GameApp

{

void SelectLevel ()
{

it (user chooses the Easy level)

{

pFactory_ = new EasylevelEnemyFactory;
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}

else
{ _
pFactory_ = new DieHardLevelEnemyFactory;
3
private:

// Use pFactory_ to create enemies
AbstractEnemyFactory* pFactory_;

3

The advantage of this design isthat it keeps all the details of creating and properly matching enemies
inside the two implementations of AbstractEnemyFactory. Because the application uses pFactory
asthe only object creator, consistency is enforced by design. Thisisatypica usage of the Abstract Factory
design pattern.

The Abstract Factory design pattern prescribes collecting creation functions for families of objectsin a
unique interface. Then you must provide an implementation of that interface for each family of objects you
want to create.

The product types advertised by the abstract factory interface (Soldier, Monster, and SuperMonster)
are caled abstract products. The product types that the implementation actually creates (Sil lySoldier,
BadSoldier, SillyMonster, and so on) are called concrete products. These terms should be familiar
to you from Chapter 8.

The main disadvantage of Abstract Factory isthat it is type intensive: The abstract factory base class
(AbstractEnemyFactory in the example) must know about every abstract product that's to be created.
In addition, at least in the implementation just provided, each concrete factory class depends on the
concrete products it creates.

Y ou can reduce dependencies by applying the techniques described in Chapter 8. There, you created a
concrete object not by knowing its type but by knowing its type identifier (such asan int or astring).
Such a dependency is much weaker.

However, the more you reduce dependencies, the more you also reduce type knowledge, and consequently
the more you undermine the type safety of your design. Thisis yet another instance of the classic dilemma
of better type saf ety versus lesser dependencies that often appearsin C++.

As often happens, getting the right solution involves a trade-off between competing benefits. Y ou should
choose the setting that best suits your needs. As arule of thumb, try to go with a static model when you
can, and rely on a dynamic model when you must.

The generic implementation of Abstract Factory presented in the following sections sports an interesting
feature that reduces static dependencies without compromising type safety.

9.2 A Generic Abstract Factory Interface

As hinted in Chapter 3, the Typelist facility makes implementing generic Abstract Factories a slam-
dunk. This section describes how to define a generic AbstractFactory interface with the help of
typelists.

The example shown in the previous section is atypical use of the Abstract Factory design pattern. To recap:
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e You define an abstract class (the abstract factory class) that has one pure virtual function for each
product type. The virtual function corresponding to type T usually returnsa T*, and its nameis
CreateT, MakeT, or something similar.

e You define one or more concrete factories that implement the interface defined by the abstract
factory. Y ou implement each member function by creating a new object of a derived type, usualy
by invoking the new operator.

All this seems simple enough, but as the number of products created by the abstract factory grows, the
code becomes less and less maintainable. Furthermore, at any moment you might decide to plug in an
implementation that uses a different alocation, or a prototype object.

A generic Abstract Factory would be of help here, but only if it's flexible enough to easily accommodate
things such as custom allocators and passing arguments to constructors.

Recadll the class template GenScatterHierarchy from Chapter 3. GenScatterHierarchy
instantiates a basic template—provided by the user—with each type in atypelist. By its structure, the
resulting instantiation of GenScatterHierarchy inherits al the instantiations of the user-provided
template. In other words, if you have atemplate Unit and atypelist TList,
GenScatterHierarchy<TList, Unit>isaclassthat inheritsUnit<T> for eachtype TinTList.

GenScatterHierarchy can be very useful for defining an abstract factory interface—you define an
interface that can create objects of one type, and then you apply that interface to multiple types with
GenScatterHierarchy.

The "unit" interface, which can create objects of ageneric typeT, isasfollows.

template <class T>
class AbstractFactoryUnit

{

public:
virtual T* DoCreate(Type2Type<T>) = O;
virtual ~AbstractFactoryunit() {}

}:

This little template looks perfectly kosher—virtual destructor and all—but what's that Type2Type
business? Recall from Chapter 2 that Type2Type is asimple template whose unique purpose is to
disambiguate overloaded functions. Okay, but then where are those ambiguous functions?
AbstractFactoryUnit defines only one DoCreate function. There will be several
AbstractFactoryUni t instantiations in the same inheritance hierarchy, as you'll seein amoment. The
Type2Type<T> helpsin disambiguating the various DoCreate overloads generated.

1] See Chapter 4 for an extended discussion of virtual destructors.

The generic AbstractFactory interface uses GenScatterHierarchy in conjunction with
AbstactFactoryUnit, asfollows:

template
<
class TList,
template <class> class Unit = AbstractFactoryUnit
>
class AbstractFactory : public GenScatterHierarchy<TList, Unit>
{
public:
typedef TList ProductList;
template <class T> T* Create()
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{
Unit <T>& unit = *this;
return unit.DoCreate(Type2Type<T>());

}
3

Aha, there's Type2Type in action to make it clear which DoCreate functionis called by Create. Let's
analyze what happens when you type the following:

// Application code
typedef AbstractFactory
<

TYPELIST _3(Soldier, Monster, SuperMonster)
>

AbstractEnemyFactory;

As Chapter 3 explains, the AbstractFactory template generates the hierarchy depicted in Figure 9.2.
AbstractEnemyFactory inherits AbstractFactoryUnit<Soldier>,
AbstractFactoryUnit<Monster>, and AbstractFactoryUnit<SuperMonster>. Each defines
one pure virtual member function Create, so AbstractEnemyFactory hasthree Create overloads.
In anutshell, AbstractEnemyFactory is pretty much equivalent to the abstract class of the same name
defined in the previous section.

Figure 9.2. The class hierarchy generated for AbstractEnemyFactory

AbstractFactoryUnit
<SuperMonsters
AbstractFactoryUnit GenScatterHierarchy<SuperMonster, GenScatterHierarchy<MullType,
<Soldiers AbstractFactoryUnits AbstractFactoryUnit>
AbstractFactorylUnit
<Monsters
GenScatterHierarehy <Maonster, GenScatterHierarchy <TYPELIST_1(SuperMonster),
AbstractFactorylnit= AbstractFacioryUnit=
GenScatterHierarchy<Soldier, GenScatterHierarchy<TYPELIST_3(Monster, SuperMonsier),
AbstractFactoryunit AbstractFactoryUnits
\AbstractEnemyFactory

The template member function Create of AbstractFactory isadispatcher that routes the creation
request to the appropriate base class:

AbstractEnemyFactory* p = ...;
Monster* pOgre = p->Create<Monster>();
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One important advantage of the automatically generated version isthat AbstractEnemyFactoryisa
highly granular interface. Y ou can automatically convert areference to an AbstractEnemyFactory to
areferenceto an AbstractFactory<Soldier>, AbstractFactory <Monster>,or
AbstractFactory<SuperMonster>. Thisway, you can pass only small subunits of the factory to
various parts of your application. For instance, a certain module (Surprises.cpp) needs only to create
SuperMonsters. You can communicate to that module in terms of pointers or references to
AbstractFactory<SuperMonster>, sothat Surprises. cpp isnot coupled with Soldier and
Monster.

Using AbstractFactory's granularity, you can reduce the coupling that affects the Abstract Factory
design pattern. Y ou gain this decoupling without sacrificing the safety of your abstract factory interface
because only the interface, not the implementation, is granular.

This brings us to the implementation of the interface. The second important advantage of the automatically
generated AbstractEnemyFactory isthat you can automate the implementation, too.

9.3 Implementing Abstractractory

Now that we have defined the interface, we should look into ways to make implementation as easy as
possible.

Given the use of typelistsin defining the interface, a natural way of building a generic implementation of
AbstractFactory would be to employ typelists of concrete products. In practical terms, building the
Easy level concrete factory should be as simple as the following:

// Application code
typedef ConcreteFactory
<
// The abstract factory to implement
AbstractEnemyFactory,
// The policy for creating objects
// (for instance, use the new operator)
OpNewFactoryUnit,
// The concrete classes that this factory creates
TYPELIST _3(SillySoldier, SillyMonster, SillySuperMonster)
>

EasylLevelEnemyFactory;

The three arguments to the (now hypothetical) ConcreteFactory classtemplate are enough information
to implement a complete factory:

e AbstractEnemyFactory providesthe abstract factory interface to implement and, implicitly,
thelist of products.

e OpNewFactoryUnit isthe policy that dictates how objects are actually created. (Chapter 1
discusses the policy class concept in detail.)

e Thetypelist provides the collection of concrete classes that the factory is supposed to create. Each
concrete type in the typelist maps to the abstract type of the same index in AbstractFactory's
typelist. For example, Si l lyMonster (index 1) isthe concrete type for Monster (sameindex in
the definition of AbstractEnemyFactory).

Now that we have established the synopsis of ConcreteFactory, let's figure out how we can implement
it. Simple math leads us to the conclusion that there should be as many pure virtual function overrides as
there are definitions. (Otherwise we wouldn't be able to instantiate ConcreteFactory, and by definition,
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ConcreteFactory must be ready to serve.) Consequently, ConcreteFactory should inherit
OpNewFactoryUnit (which isresponsible for implementing DoCreate) instantiated with every typein
the typelist.

Here the GenLinearHierarchy classtemplate, which complements GenScatterHierarchy (see
Chapter 3), can be of great use because it takes care of al the details of generating the instantiations for us.

AbstractEnemyFactory must be the root of the hierarchy. All DoCreate implementations and
ultimately EasylLeve lEnemyFactory must derive from it. Each instantiation of OpNewFactoryUnit
overrides one of the three DoCreate pure virtual functions defined by AbstractEnemyFactory.

Let's proceed by defining OpNewFactoryUni t. Obviously, OpNewFactoryUnit isaclasstemplate
having the type to create as atemplate parameter. In addition, GenLinearHierarchy requires that
OpNewFactoryUnit accept an additional template parameter and derive from it.
(GenLinearHierarchy usesthis second parameter to generate the string-shaped inheritance hierarchy
shown in Figure 3.6.)

template <class ConcreteProduct, class Base>
class OpNewFactoryUnit : public Base

{

typedef typename Base::ProductList BaseProductList;
protected:

typedef typename BaseProductList::Tail ProductList;
public:

typedef typename BaseProductList::Head AbstractProduct;

ConcreteProduct* DoCreate(Type2Type<AbstractProduct>)

{

return new ConcreteProduct;

}

}:

OpNewFactoryUnit must do only some type calculations for figuring out which abstract product to
implement.

Each OpNewFactoryUni t instantiation is a component in afood chain. Each OpNewFactoryUnit
instantiation "eats" the head of the product list by overriding the appropriate DoCreate function, and
passes the beheaded ProductL i st down the class hierarchy. Thus, the topmost OpNewFactoryUnit
instantiation (the one just below AbstractEnemyFactory) implements
DoCreate(Type2Type<Soldier>), and the bottommost OpNewFactoryUni t instantiation
implements DoCreate (Type2Type<SuperMonster>).

Let's recap how OpNewFactoryUnit honorsits position in the food chain. First, OpNewFactoryUnit
imports the ProductList type from its base class and renames it BaseProductList. (If you look at
AbstractFactory'sdefinition, you'll seethat indeed it exportsthe ProductList type.) The abstract
product that OpNewFactoryUnit implementsisthe head of BaseProductList, hence
AbstractProduct's definition. Finally, OpNewFactoryUni t reexports BaseProductList::Tail
asProductList. Thisway the remaining list is passed down the inheritance hierarchy.

Notice that OpNewFactoryUnit: :DoCreate does not return a pointer to AbstractProduct, asits
pure counterpart does. Instead, OpNewFactoryUnit: :DoCreate returns a pointer to a
ConcreteProduct object. Doesit still qualify as an implementation of the pure virtual function? The
answer isyes, thanks to a C++ language feature called covariant return types. C++ allows you to override
afunction that returns a pointer to a base class with a function that returns a pointer to aderived class. It
makes alot of sense. With covariant return types, you either know the exact type of the concrete factory



and you get maximum type information, or you know only the base type of the factory and you get lesser
type information.

ConcreteFactory must generate a hierarchy using GenL inearHierarchy. Itsimplementation is
straightforward:

template
<
class AbstractFact,
template <class, class> class Creator = OPNewFactoryUnit
class TList = typename AbstractFact::ProductList
>
class ConcreteFactory
: public GenLinearHierarchy<
typename TL::Reverse<TList>::Result, Creator, AbstractFact>

{

public:
typedef typename AbstractFact: :ProductList ProductList;
typedef TList ConcreteProductList;

};

The class hierarchy that GenLinearHierarchy generatesfor ConcreteFactory isshown in Figure
9.3.

Figure 9.3. The class hierarchy generated for EasyLevelEnemyFactory

OphiewFacionylinil<SillySoldier, AbstractEnarmyF atiory=

GenLinearHiararchy < TYPELIST_1(SilySokder). OphewFacionyUnil, AbsiraciEnemyFaciony=

OpherwCraalce<Sillydonstor, GonLinearHisranchy<TYPELIST 1 (SdlySoldiar), OpNewFactonyLini, AbstactEnemyFaciongs =

GaonLinaarHiorarchy < T¥ PELIST2(SillpMorstar, SliySoldiar), OpNewCrator, AbstraciEnamyFaciory>

CipMewFaciondnil<SilySupaiionsier, GenLinearHigrarchy<TYPELEST2{SilyMonsier, SillySolder), OpMewCroator. AbstractEnemyFactany: »

GanlLingarHprerchy<TYPELIST _3{SalySuporMonsior, SiyMonstor, SilyScidier), OpNowFactorylinit, AbstractEnomyFactony>
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Thereisonly onetwist: ConcreteFactory must reverse the concrete product list when passing it to
GenLinearHierarchy. Why? Well, we have to go back to Figure 3.6, which shows how
GenLinearHierarchy generates ahierarchy. GenLinearHierarchy distributes typesin the typelist
to itsUni t template argument from the bottom up; the first element in the typelist is passed to the Unit
instantiation that's at the bottom of the class hierarchy. However, OpNewFactoryUni t implements the
DoCreate overloadsin atop-down fashion. In conclusion, ConcreteFactory reverses the typelist
TList usingthe TL: :Reverse compile-time algorithm (see Chapter 3) before passing it to
GenLinearHierarchy.

If, a this point, you till find AbstractFactory and ConcreteFactory abit confusing or too
complicated, take heart. It is because the two class templates make nonchaant use of typelists. Typelists
themselves are likely a new concept to you, and it will take some time to get used to them. If you think of
typelists as a black-box concept—"typelists are to types what regular lists are to values'—the
implementations in this chapter are very simple. And once you truly get used to typelists, the sky's the limit.
Unconvinced? Read on.

9.4 A Prototype-Based Abstract Factory Implementation

The Prototype design pattern (Gamma et al. 1995) describes a method for creating objects starting from a
prototype, an archetypal object. Y ou obtain new objects by cloning the prototype. And the gist of it al is
that the cloning function is virtual.

As Chapter 8 discussesin detail, the essential problem in creating polymorphic objects is the virtual
constructor dilemma: Creation from scratch needs knowledge about the type of object being created, yet
polymorphism fosters not knowing the exact type.

The Prototype pattern avoids the dilemma by using a prototype object. If you have one object—a
prototype—you can take advantage of virtual functions. The virtual constructor dilemmastill appliesto the
prototype itself, but it's much more localized.

A prototype-based approach to building enemies for the game in our example would prescribe holding
pointers to the base classes Soldier, Monster, and SuperMonster. Then we would write code like the
following:2

[2] Warning—this code has trouble with exception safety. Fixing it is left as an exercise for the reader.

class GameApp

{
void SelectLevel ()
{
iT (user chooses Diehard level)
{
protoSoldier_.reset(new BadSoldier);
protoMonster_.reset(new BadMonster);
protoSuperMonster_.reset(new BadSuperMonster);
}
else
{
protoSoldier_.reset(new SillySoldier);
protoMonster_.reset(new SillyMonster);
protoSuperMonster_.reset(new SillySuperMonster);
}
}
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Soldier* MakeSoldier()

// Each enemy class defines a Clone virtual function
// that returns a pointer to a new object
return pProtoSoldier_ ->Clone();

- .. MakeMonster and MakeSuperMonster similarly defined ...
private:

// Use these prototypes to create enemies

auto_ptr<Soldier> protoSoldier_;

auto_ptr<Monster> protoMonster_;

auto_ptr<SuperMonster> protoSuperMonster_;

¥

Of course, real-world code would better separate the interface and the implementation. The basic ideais
that GameApp holds pointers to base enemy classes—the prototypes. GameApp uses these prototypes to
create enemy objects by calling the virtual function Clone on the prototypes.

A prototype-based Abstract Factory implementation would collect a pointer for each product type and use
the Clone function to create new products.

InaConcreteFactory that uses prototypes, there's no longer a need to provide the concrete types. In
our example, building Si I lySoldiersor BadSoldiersisonly amatter of providing the appropriate
prototypes to the factory object. The prototype's static type isthe base (Soldier) class. The factory does
not have to know the concrete types of the objects; it just calls the Clone virtual member function for the
appropriate prototype object. This reduces the concrete factory's dependency on the concrete types.

For the GenLinearHierarchy expansion mechanism to work correctly, however, there hasto be a
typelist. Recall ConcreteFactory's declaration:

template

<
class AbstractFact,
template <class, class> class Creator,
class TList

>

class ConcreteFactory;

TList isthe concrete product list. Inthe EasyLevelEnemyFactory, TList was

TYPELIST _3(SillySoldier, SillyMonster, SillySuperMonster). If we usethe Prototype
design pattern, TList becomesirrelevant. However, GenLinearHierarchy needs TList for
generating one class for each product in the abstract product list. What to do?

In this case, anatural solution isto pass ConcreteFactory the abstract product list asthe TList
argument. Now GenL inearHierarchy generates the right number of classes, and there's no need to
change ConcreteFactory'simplementation.

ConcreteFactory's declaration now becomes

template
<
class AbstractFact,
template <class, class> class Creator,
class TList = typename AbstractFact::ProductList
>
class ConcreteFactory;
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(Recall from AbstractFact'sdefinition in Section 9.3 that it defines the inner type ProductList.)

Let's now implement PrototypeFactoryUnit, the unit template that holds the prototype and calls
Clone. Theimplementation is straightforward and is actually simpler than OpNewFactoryUnit. Thisis
because OpNewFactoryUnit had to maintain two typelists (the abstract products and the concrete
products), whereas PrototypeFactoryUnit deals only with the abstract product list.

template <class ConcreteProduct, class Base>
class PrototypeFactoryUnit : public Base

typedef typename Base::ProductList BaseProductList;
protected;

typedef typename Base::ProductList TailProductList;
public;

typedef typename Base::ProductList::Head AbstractProduct;

PrototypeFactoryUnit(AbstractProduct* p = 0)

pPrototype_(p)

O
friend void DoGetPrototype(const PrototypeFactoryUnit& me,

AbstractProduct*& pPrototype)
{
pPrototype = me.pPrototype_;

friend void DoSetPrototype(PrototypeFactoryUnit& me,
AbstractProduct* pObj)
{

3

template <class U>
void GetPrototype(AbstractProduct*& p)

{
}

template <class U>
void SetPrototype(U* pObj)

me.pPrototype =pObj ;

return DoGetPrototype(*this, p);

DoSetPrototype(*this, pObj);

}
AbstractProduct* DoCreate(Type2Type<AbstractProduct>)

{
assert(pPrototype );

return pPrototype_->Clone();
}

private:
AbstractProduct* pPrototype_;

¥

The PrototypeFactoryUnit class template makes some assumptions that may or may not apply to
your concrete situation. First, PrototypeFactoryUnit doesn't own its prototype; sometimes, you

might want SetPrototype to delete the old prototype before reassigning it. Second,
PrototypeFactoryUnit usesaClone function that supposedly clones the product. In your application
you might use a different name, either because you are constrained by another library or because you

prefer another naming convention.

If you need to customize your prototype-based factory, you need only write atemplate ssmilar to
PrototypeFactoryUnit. You caninherit PrototypeFactoryUnit and override only the functions
you want. For example, say you want to implement DoCreate so that it returns anull pointer if the
prototype pointer is null.
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template <class AbstractProduct, class Base>
class MyFactoryUnit
: public PrototypeFactoryUnit<AbstractProduct, Base>

{
public:
// Implement DoCreate so that it accepts a null prototype
// pointer
AbstractProduct* DoCreate(Type2Type<AbstractProduct>)
{
return pPrototype_ ? pPrototype_ ->Clone() : O;
}
};

Let's get back to our game example. To define a concrete factory, all you have to write in the application
code isthe following:

// Application code
typedef ConcreteFactory

<
AbstractEnemyFactory,
PrototypeFactoryUnit
>
EnemyFactory;

To conclude, the AbstractFactory/ConcreteFactory duo offersyou the following features:

e You can easily define factories with the help of typelists.

e Because AbstractFactory inherits each of its units, the interface is very granular. Y ou can
pass individua "creator units’ (pointers or referencesto AFUnit<T> sub objects) to different
modules, thus reducing coupling.

e YoucanuseConcreteFactory to implement the AbstractFactory by providing a policy
template that dictates the creation method. For statically bound creation policies (such as
OpNewFactoryUnit, which uses the new operator), you need to pass the typelist of concrete
products that the factory creates.

e A popular creation policy isto apply the Prototype design pattern; you can easily use Prototype
with ConcreteFactory by using the canned PrototypeFactoryUnit classtemplate.

Try to obtain all these benefits with a handcrafted implementation of the Abstract Factory design pattern.

9.5 Summary

The Abstract Factory design pattern fosters an interface for creating afamily of related or dependent
polymorphic objects. Using Abstract Factory, you can divide implementation classes into digoint families.

It is possible to implement a generic abstract factory interface by using typelists and policy templates. The
typelists provide the product list (both concrete and abstract) and the policy templates.

The AbstractFactory classtemplate provides a skeleton for defining abstract factories and works in
conjunction with the AFUni t classtemplate. AbstractFactory requires a user-provided abstract
product typelist. Internally, AbstractFactory uses GenScatterHierarchy (see Chapter 3) to
generate a granular interface that inherits AFUN i t<T> for each product T in the abstract product typelist.
This structure gives you the opportunity to reduce coupling by passing only individual factory unitsto
various parts of an application.
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The ConcreteFactory template helps with implementing the AbstractFactory interface.
ConcreteFactory usesaFactoryUnit policy for creating objects. Internally, Concrete Factory
uses GenLinearHierarchy (see Chapter 3). Loki provides two predefined implementations of the
FactoryUnit policy: OpNewFactoryUnit, which creates objects by calling the new operator, and
PrototypeFactoryUnit, which creates objects by cloning a prototype.

9.6 AbstractFactory and ConcreteFactory QUiCk Facts

e AbstractFactory synopsis.

template
<

class TList,

template <class> class Unit = AbstractFactoryUnit
>

class AbstractFactory;

where TList isthe typelist of abstract products that the factory creates, and Uni t is the template
that definesthe interface for each type in TList. For example,

typedef AbstractFactory<TYPELIST_3(Soldier, Monster, SuperMonster>
AbstractEnemyFactory;

defines an abstract factory capable of creating Soldiers, Monsters, and SuperMonsters.

e AbstractFactoryUnit<T> defines an interface consisting of apure virtual function with the
signature T* DoCreate(Type2Type<T>). Usually you don't call DoCreate directly; instead,
you use AbstractFactory: :Create.

e AbstractFactory exposesaCreate template function. Y ou can instantiate Create with any
of the types of the abstract products. For example:

AbstractEnemyFactory *pFactory = ...;
Soldier *pSoldier = pFactory->Create<Soldier>();

e For implementing the interface that AbstractFactory defines, Loki provides the
ConcreteFactory template. ConcreteFactory's synopsisis

template
<

class AbstractFact,
template <class, class> class FactoryUnit = OpNewFactoryUnit,

class TList = AbstractFact::ProductList
>

class ConcreteFactory;

where AbstractFact isthe instantiation of AbstractFactory that isto be implemented,
FactoryUnit istheimplementation of the FactoryUnit creation policy, and TList isthe
typelist of concrete products.

e TheFactoryUnit policy implementation has access to both the abstract product and the
concrete product that it must create. Loki definestwo Creator policies: OpNewFactoryUnit
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(Section 9.3) and PrototypeFactoryUnit (Section 9.4). They can also serve as examples for
implementing custom implementations of the FactoryUnit policy.

OpNewFactoryUnit usesthe new operator for creating objects. If you use
OpNewFactoryUnit, you must provide a concrete product typelist as the third parameter to
ConcreteFactory. For example:

typedef ConcreteFactory
<

AbstractEnemyFactory,

OpNewFactoryUnit,

TYPELIST _3(SillySoldier, SillyMonster, SillySuperMonster)
>

EasylLevelEnemyFactory;

PrototypeFactoryUnit stores pointersto abstract product types and creates new objects by
calling the Clone member function of their respective prototypes. Thisimplies that
PrototypeFactoryUnit requires each abstract product T to define a virtual member function
Clone that returns a T* and whose semantics is to duplicate the object.
When using PrototypeFactoryUnit with ConcreteFactory, you don't provide the third
template argument to ConcreteFactory. For example:

typedef ConcreteFactory
<

AbstractEnemyFactory,
PrototypeFactoryUnit,
>

EnemyFactory;
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Chapter 10. Visitor

This chapter discusses generic components that use the Visitor design pattern (Gamma et al. 1995). Visitor
is apowerful—if controversial—design pattern that changes the dependency trade-offsinvolved in class
design.

Visitor gives you a surprising amount of flexibility in a certain area: Y ou can add virtual functionsto a
class hierarchy without recompiling them or their existing clients. However, this flexibility comes at the
expense of disabling features that designers take for granted: Y ou cannot add a new leaf classto the
hierarchy without recompiling the hierarchy and all its clients. Therefore, Visitor's operationa areais
limited to very stable hierarchies (you seldom add new classes) and heavy processing needs (you often add
new virtual functions).

Visitor goes against programmers' intuition; therefore, a careful implementation and rigorous discipline are
essentia to using it successfully. This chapter's goal isto craft a dependable generic implementation of
Visitor that leaves as little burden on the application programmer as possible.

After reading this chapter, you will

Understand how Visitor works

Know when to apply the Visitor pattern and, equally important, when not to

Understand the basic implementation of a visitor (the GoF implementation)

Know how to overcome some drawbacks of the GoF Visitor implementation

Learn how most of the decisions that pertain to implementing Visitor can be moved up to alibrary
Be armed with powerful generic components that will help you greatly in implementing visitors
that specifically solve your problems

10.1 Visitor Basics

Let's consider a class hierarchy whose functionality you want to enhance. To do this, you can either add
new classes or add new virtual member functions.

Adding new classesis easy. Y ou derive from aleaf class and implement the needed virtual functions. Y ou
don't need to change or recompile any existing classes. It's code reuse at its best.

In contrast, adding new virtual functionsis difficult. To be able to manipulate objects polymorphically (via
pointers to the root class), you must add virtual member functions to the root class, and possibly to many
other classesin the hierarchy. Thisisamajor operation. It modifies the root class on which all the
hierarchy and clients are dependent. As the ultimate result, you have to recompile the world.

In anutshell, from a dependency standpoint, new classes are easy to add, and new virtual member
functions are difficult to add.

But suppose that you have a hierarchy to which you seldom add new classes, but to which you often need
to add virtual member functions. In this case, you have an advantage that you don't need, namely, the ease
of adding classes. Y ou also have a drawback that's annoying, namely, the difficulty of adding new virtua
member functions. Here's where Visitor can be of help. Visitor trades the advantage you don't care about
for an advantage you need. Visitor enables you to add new virtual functionsto a hierarchy easily, while
also making it more difficult to add new classes. The runtime cost of thiswizardry is at least an extra
virtual call, asyou will see.
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Visitor applies best when operations on objects are distinct and unrelated. The "state and operations®
paradigm for each class becomes of little relevance. A view that separates types from operations is more
appropriate. For such cases, it makes more sense to keep various implementations of a conceptual
operation together, rather than spread them over the class hierarchy.

Suppose, for example, that you devel op a document editor. Document elements such as paragraphs, vector
drawings, and bitmaps are represented as classes derived from a common root, say, DocElement. The
document is a structured collection of pointers to DocE lements. Y ou need to iterate through this structure
and perform operations such as spell checking, reformatting, and statistics gathering. In an ideal world, you
should implement those operations mostly by adding code, not by modifying existing code. Furthermore,
you ease maintenance if you put all the code pertaining to, say, getting document statistics in one place.

Document statistics may include the number of characters, nonblank characters, words, and images. These
would naturally belong to aclass called DocStats.

class DocStats
{
unsigned int
chars_,
nonBlankChars_,
words_,
images_;
public:
void AddChars(unsigned int charsToAdd)

{

}
-..similarly defined AddWords, AddImages..

// Display the statistics to the user in a dlalog box
void Display(Q);
}:

chars_ += charsToAdd;

If you used a classic object-oriented approach to grabbing statistics, you would define a virtual functionin
DocElement that deals with gathering statistics.

class DocElement

{

// This member function helps the "Statistics" feature
virtual void UpdateStats(DocStats& statistics) = O;

¥

Then each concrete document element would define the function in its own way. For example, class
Paragraph and class RasterBitmap, which are derived from DocE lement, would implement
UpdateStats asfollows:

void Paragraph::UpdateStats(DocStats& statistics)
{

statistics.AddChars(number of characters in the paragraph);
statistics.AddWords(number of words in the paragraph);

}

void RasterBitmap::UpdateStats(DocStats& statistics)
// A raster bitmap counts as one image

// and nothing else (no characters etc.)
statistics.AddImages(1);
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}

Finaly, the driver function would look like this:

void Document: :DisplayStatistics()

{
DocStats statistics;
for (each DocElement in the document)
{
element->UpdateStats(statistics);
}
statistics.Display();
}

Thisisafairly good implementation of the Statistics feature, but it has a number of disadvantages.

e ItrequiresDocElement and its derivees to have access to the DocStats definition.
Consequently, every time you modify DocStats, you must recompile the whole DocE lement
hierarchy.

e Theactua operations of gathering statistics are spread throughout the UpdateStats
implementations. A maintainer debugging or enhancing the Statistics feature must search and edit
multiple files.

e Theimplementation technique does not scale with respect to adding other operations that are
similar to gathering statistics. To add an operation such as "increase font size by one point," you
will have to add another virtual function to DocElement (and suffer al of the hassles that this
implies).

A solution that breaks the dependency of DocElement on DocStats isto move al operations into the
DocStats classand let it figure out what to do for each concrete type. Thisimplies that DocStats hasa
member function void UpdateStats(DocE¥ement&). The document then simply iterates through its
elements and calls UpdateStats for each of them.

This solution effectively makes DocStats invisible to Docklement. However, now DocStats depends
on each concrete DocE lement that it needs to process. If the object hierarchy is more stable than its
operations, the dependency is not very annoying. Now the problem is that the implementation of
UpdateStats hasto rely on the so-called type switch. A type switch occurs whenever you query a
polymorphic object on its concrete type and perform different operations with it depending on what that
concrete type is. DocStats: :UpdateStats is bound to do such atype switch, asin the following:

void DocStats: :UpdateStats(DocElement& elem)

{
ifT (Paragraph* p = dynamic_cast<Paragraph*>(&elem))
{
chars_ += p->NumChars();
words_ += p->NumWords();
else if (dynamic_cast<RasterBitmap*>(&elem))
{
++images_;
}
else ...
add one "if" statement for each type of object you inspect
}

(The definition of p inside the i T test islegal because of to alittle-known addition to C++. Y ou can define
and test avariableright in an i f statement. The lifetime of that variable extendsto that i f statement and



itselse part, if any. Although it's not an essential feature and writing cute code per seis not
recommended, the feature was invented especially to support type switches, so why not reap the benefits?)

Whenever you see something like this, a mental alarm bell should go off. Type switching isnot at all a
desirable solution. (Chapter 8 presents a detailed argument.) Code that relies on type switching is hard to
understand, hard to extend, and hard to maintain. It's also open to insidious bugs. For example, what if you
put the dynamic_cast for abase class before the dynamic_cast for aderived class? Thefirst test will
match derived objects, so the second one will never succeed. One of the goals of polymorphismisto
eliminate type switches because of al the problems they have.

Here's where the Visitor pattern can be helpful. Y ou need new functions to act virtual, but you don't want
to add anew virtual function for each operation. To effect this, you must implement a unigue bouncing
virtual function in the DocElement hierarchy, afunction that "teleports* work to a different hierarchy.
The DocElement hierarchy is called the visited hierarchy, and the operations belong to a new visitor
hierarchy.

Each implementation of the bouncing virtual function calls a different function in the visitor hierarchy.
That's how visited types are selected. The functionsin the visitor hierarchy called by the bouncing function
arevirtual. That's how operations are selected.

Following are afew lines of codeto illustrate thisidea. First, we define an abstract class
DocElementVisitor that defines an operation for each type of object in the DocE lement hierarchy.

class DocElementVisitor

{
public:
virtual void VisitParagraph(Paragraph&) = 0;
virtual void VisitRasterBitmap(RasterBitmap&) = O;
. other similar functions ...
}:

Next we add the bouncing virtual function, called Accept, to the class DocE lement hierarchy, one that
takesaDocElementVisitor& and invokes the appropriate Vi sitXxx function on its parameter.

class DocElement

{
public:
virtual void Accept(DocElementVisitor&) = 0;
}:
void Paragraph::Accept(DocElementVisitor& Vv)
{
v.VisitParagraph(*this);
}
void RasterBitmap::Accept(DocElementVisitoré& v)
{
v.VisitRasterBitmap(*this);
}

Now heré'sDocStats in al its splendor:

class DocStats : public DocElementVisitor

{
public:
virtual void VisitParagraph(Paragraph& par)
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{

chars_ += par.NumChars();
words_ += par _NumWords();

irtual void VisitRasterBitmap(RasterBitmap&)

++images_;

P MmN

3

(Of course, areal-world implementation would likely pull out the functions' implementations from the
class definition to a separate source file))

Thissmall example also illustrates a drawback of Visitor: Y ou don't really add virtual member functions.
True virtual functions have full access to the object for which they're defined, whereas frominside
VisitParagraph you can access only the public part of Paragraph.

Thedriver function Document: :DisplayStatistics createsaDocStats object and invokes
Accept on each DocElement, passing that DocStats object as a parameter. Asthe DocStats object
visits various concrete DocE lements, it gets nicely filled up with the appropriate data—no type switching
needed!

void Document: :DisplayStatistics()

{
DocStats statistics;
for (each DocElement in the document)
{
element->Accept(statistics);
}
statistics.Display();
}

Let's analyze the resulting context. We have added a new hierarchy, rooted in DocElementVisitor.
Thisisahierarchy of operations—each of its classesis actually an operation, like DocStatsis. Adding a
new operation becomes as easy as deriving a new class from DocElementVisitor. No element of the
DocElement hierarchy needs to be changed.

For instance, let's add a new operation, IncrementFontSize, asahelper in implementing an Increase
Font Size hot key or toolbar button.

class IncrementFontSize : public DocElementVisitor

{
public:
virtual void VisitParagraph(Paragraph& par)

{
par.SetFontSize(par.GetFontSize() + 1);
virtual void VisitRasterBitmap(RasterBitmap&)

// nothing to do
}
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That'sit. No change to the DocE lement class hierarchy is needed, and there is no change to the other
operations. You just add anew class. DocElement: : Accept bounces IncrementFontSize objects
just aswell asit bounces DocStats objects. The resulting class structureis represented in Figure 10.1.

Figure 10.1. The visitor and visited hierarchies, and how operations are teleported
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Recall that, by default, new classes are easy to add, whereas new virtual member functions are not easy.
We transformed classes into functions by bouncing back from the DocElement hierarchy to the
DocElementVisitor hierarchy; thus, DocElementVisitor's derivatives are objectified functions.
Thisis how the Visitor design pattern works.

10.2 Overloading and the Catch-All Function

Although not germane to the Visitor pattern, leveraging C++ overloading (or not) has a tremendous impact
on implementing designs that use Visitor.

In DocElementVisitor, we defined one member function per type visited:
VisitParagraph(Paragraph&), VisitRasterBitmap(RasterBitmap&), and so on. These
functions foster akind of redundancy. The name of the element visited is also encoded in the function
name.

Usually it's best to avoid redundancy. We can get rid of it by leveraging C++ overloading. We simply
name al the functions Visit and leave it to the compiler to figure out which overload of Visit to cal
based on the type of the parameter passed to it. So an aternative DocElementVisitor definition looks
like this:

class DocElementVisitor

{

public:
virtual void Visit(Paragraph&) = 0O;
virtual void Visit(RasterBitmap&) =
... other similar functions ...

¥

0;

It a'so becomes ssimpler to define al the Accept member functions. They now exhibit a nice uniformity.

void Paragraph::Accept(DocElementVisitor& Vv)

{
v.Visit(*this);
}
void RasterBitmap::Accept(DocElementVisitoré& v)
{
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v.Visit(*this);
}

They look so similar that you might be tempted to factor them out in the base class DocElement. Wrong.
The similarity isonly amirage. Actually, the functions are quite different: The static type of *this in
Paragraph: :AcceptisParagraph&, andinRasterBitmap:: Acceptit'sRasterBitmapé&. Itis
this static type that helps the compiler figure out which overload of DocElementVisitor::Visitto
call. If you implement Accept in DocElement, the static type of *this would be DocElementg,
which doesn't provide the compiler with the needed type information. So base class factoring is not an
option. It actually invalidates our design.

Using overloading introduces an interesting idea. Let's assume that all DocElement derivatives
implement Accept by simply bouncing to DocElementVisitor: :Visit. Then we can provide
DocElementVisitor with thefollowing catch-all overload.

class DocElementVisitor

{
public:
. as above ...
virtual void Visit(DocElement&) = 0O;
}:

When will this overload be called? If you directly derive anew class from DocE lement and don't provide
an appropriate Visit overload for it in DocElementVisitor, then overloading rules and automatic
derived-to-base conversions come into play. The reference to the unknown class will be automatically
converted to areference to the DocElement base class, and the catch-all member function will be called.
If you don't put the catch-al in there, you'll get a compile-time error. Whether you prefer thisway or the
other depends on the concrete situation.

Y ou can do alot of things inside the catch-all overload. Refer, for example, to John Vlissides work
(Vlissides 1998, 1999). Y ou can take contingency measures, do something very generic, or fall back to a
type switch (hack by using dynamic_cast) to find out the actual type of the DocElement.

10.3 An Implementation Refinement: The Acyclic Visitor

So you have decided to use Visitor. Let's get pragmatic. In areal-life project, how should you organize the
code?

A dependency analysis of the earlier example reveals the following:

e For the DocElement class definition to compile, it must know about the DocElementVisitor
because DocElementVisitor appearsin the DocElement: : Accept member function
signature. A forward declaration would suffice.

e FortheDocElementVisitor classdefinition to compile, it hasto know about all the concrete
classes (at least) in the DocE lement hierarchy because the class names appear in
DocElementVisitor'sVisitXxx member functions.

This type of dependency is called a cyclic dependency. Cyclic dependencies are well-known maintenance
bottlenecks. DocElement needsDocElementVisitor, and Doc ElementVisitor needsall of
DocElement's hierarchy. Consegquently, DocE lement depends on its own subclasses. Actudly, thisisa
cyclic name dependency; that is, the class definitions depend only on their names in order to compile. Thus,
asensible division of classesinto fileswould look like this:
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// File DocElementVisitor.h

class DocElement;

class Paragraph;

class RasterBitmap;

... Fforward declarations for all DocElement derivatives ...

class DocElementVisitor

{
virtual void VisitParagraph(Paragraph&) = 0;
virtual void VisitRasterBitmap(RasterBitmap&) = O;
... other similar functions ...

}:

// File DocElement.h
class DocElementVisitor;

class DocElement

{
public:
virtual void Accept(DocElementVisitor&) = 0;

3

Furthermore, each one-line Accept implementation needs the definition of DocElement Visitor, and
each concrete visitor has to include its classes of interest. All this leads to an intricate map of dependencies.

What becomes really cumbersome is adding new derivatives to DocElements. But hold on, we're not
supposed to add any new elements to the DocElement hierarchy. Visitor applies best to stable hierarchies
to which you want to add operations without touching them. Recall, however, that Visitor can do thisfor
you at the expense of making it hard to add derivatives to the visited hierarchy (in our example, the
hierarchy rooted in DocElement).

But lifeis change. Let's faceiit, here on Earth, there's no such thing as a stable hierarchy. Occasionally you
will have to add a new class to the DocE lement hierarchy. For the previous example, here's what you
must do to add a class VectorGraphic derived from DocE lement:

e GotoDocElementVisitor.h and add anew forward declaration for VectorGraphic.
e Addanew pure overload to DocElementVisitor, asfollows:

class DocElementVisitor

{

... as before ...
virtual void VisitVectorGraphic(VectorGraphic&) = 0;

3

e Goto every concrete visitor and implement VisitVectorGraphic. Depending on the task, the
function can be a do-nothing function. Alternatively, you can define
DocElementVisitor::VisitVectorGraphic asado-nothing, as opposed to a pure,
function, but in this case, the compiler won't remind you if you don't implement it in concrete
visitors.

e Implement Accept intheVectorGraphic class. Don't forget to do this. If you derive directly
from DocElement and forget to implement Accept, there's no problem—you'll get a compile-
time error. But if you derive from another class, such asGraphic, and if that class defines
Accept, the compiler won't utter aword about your forgetting to make VectorGraphic
visitable. This bug won't be detected until runtime, when you notice that your Visitor framework
refusesto call any implementation of VisitVectorGraphic. Quite anasty bug to deal with.
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Corallary: All of the DocElement and DocElementVisitor hierarchies will be recompiled, and you
need to add a considerable amount of mechanical code, all ssimply to keep things working. Depending on
the size of the project, this requirementcould range from being annoying to being totally unacceptable.

Robert Martin (1996) invented an interesting variation of the Visitor pattern that leverages
dynamic_cast to eliminate cyclicity. His approach defines a strawman base class, BaseVisitor, for
the visitor hierarchy. BaseVisitor isonly acarrier of type information. It doesn't have any content;
therefore, it istotally decoupled. The visited hierarchy's Accept member function accepts areference to
BaseVisitor and appliesdynamic_cast against it to detect a matching visitor. If Accept findsa
match, it jumps from the visited hierarchy to the visitor hierarchy.

This might sound weird at first, but it's very simple. Let's see how we can implement an acyclic visitor for
our DocElement/DocElementVisitor design. First, we define avisitor archetypal base class, the
strawman.

class DocElementVisitor

{
public:
virtual void ~DocElementVisitor() {}

3

The do-nothing virtual destructor does two important things. First, it givesDocElementVisitor RTTI
(runtime type information) capabilities. (Only types with at least one virtual function support
dynamic_cast.) Second, the virtual destructor ensures correct polymorphic destruction of
DocElementVisitor objects. A polymorphic hierarchy without virtual destructors engenders undefined
behavior if aderived object is destroyed via a pointer to a base object. Thus, we nicely solve two
dangerous problems with one line of code.

The DocElement class definition remains the same. Of interest to usisits definition of the
Accept(DocElementVisitor&) purevirtual function.

Then, for each derived class in the visited hierarchy (the one rooted in DocE lement), we define a small
visiting class that has only one function, VisitXxxx. For instance, for Paragraph, we define the
following:

class ParagraphVisitor

{
public:
virtual void VisitParagraph(Paragraph&) = 0;

}:
The Paragraph: : Accept implementation looks like this:

void Paragraph::Accept(Visitoré& v)

{ if (ParagraphVisitor* p =
dynamic_cast<ParagraphVisitor*>(&v))
{ p->VisitParagraph(*this);
}
else
{
optionally call a catch-all function
}
}
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The prima donna hereis dynamic_cast, which enables the runtime system to figure out whether v is
actually a subobject of an object that also implements ParagraphVisitor and, if so, to obtain a pointer
tothat ParagraphVisitor.

RasterBitmap and the other DocE lement-derived classes define similar implementations of Accept.
Finally, a concrete visitor derives from DocElementVisitor and the archetypal visitors of all classes
that are of interest to it. For instance:

class DocStats :
public DocElementVisitor, // Required
public ParagraphVisitor, // Wants to visit Paragraph objects
public RasterBitmapVisitor // Wants to visit RasterBitmap

// objects
{
public:
void VisitParagraph(Paragraph& par)
{

chars_ += par_.NumChars();
words_ += par.NumWords();

}
void VisitRasterBitmap(RasterBitmap&)
{

}
3

++images_;

The resulting class structure is presented in Figure 10.2. The horizontal dotted lines depict dependency
layers, and the vertical ones depict the insulation between hierarchies. Notice how dynamic_cast
provides the means to jump magically from one hierarchy to the other by leveraging the strawman
DocElementVisitor class.

Figure 10.2. Class structure for an acyclic visitor

DocElemant
DacElementVisitor

shcoeplivision : DocElementVisitond)

RasterBitmapVisitor ParagraphVisitor
RasterBitmap agraph
Accept{visitor | DocElmeniVigitons)
Paragragh
Accept{vis : DocElementVisitors)
DocSiats

The described structure encompasses a lot of details and interactions. However, the basic structure is
simple. Let's recap everything by analyzing an event flow. We assume that we have a pointer, pDocElem,
to aDocElement whose dynamic ("rea") typeis Paragraph. Then we do the following:

DocStats stats;
pDocElem->Accept(stats);
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The following events happen, in order.

1. Thestats object isautomatically converted to areference to DocElementVisitor because it
inherits this class publicly.

2. Thevirtual function Paragraph: :Acceptiscalled.

3. Paragraph: :Accept attemptsadynamic_cast<ParagraphVisitor*> aganst the
address of the DocElementVisitor object that it received. Because that object's dynamic
typeisDocStats and because DocStats inherits publicly from both
DocElementVisitor and ParagraphVisitor, the cast succeeds. (Hereiswhere the
teleporting occurs!)

4. Now Paragraph: :Accept has obtained a pointer to the ParagraphVisitor part of the
DocStats object. Paragraph: : Accept will invoke the virtual function VisitParagraph
on that pointer.

5. Thevirtua call reachesDocStats: :VisitParagraph. DocStats: :VisitParagraph aso
receives as its parameter areference to the visited paragraph. The visit is completed.

Let's examine the new dependency chart.

e DocElement's class definition depends on DocElementVisitor by name. Dependency by
name means that a forward declaration of DocElementVisitor isenough.

e ParagraphVisitor—and, in general, all XxxVisitor base classes—depends by name on the
classesthat it visits.

e TheParagraph: : Accept implementation fully depends on ParagraphVisitor. Full
dependency means that the full class definition is needed in order to compile the code.

e Any concrete visitor's class definition fully depends on DocElementVisitor and on al of the
base visitors XxxVisitor that it wantsto visit.

The Acyclic Visitor pattern eliminates cyclic dependencies but in exchange leaves you with even more
work to do. Basically, from now on, you must maintain two parallel sets of classes: the visited hierarchy
rooted in DocElement; and the visitor classes XxxVisitor, onefor each concrete visited class.
Maintaining two paralléel class hierarchies is not desirable because it requires much discipline and attention.

A note on efficiency in comparing the "plain” Visitor with the Acyclic Visitor: In the latter, there's one
extra dynamic cast in the path. Its cost in time might be constant or might increase logarithmically or
linearly with the number of polymorphic classes in the program, depending on your compiler vendor. The
cost might be important if efficiency isan issue. So in some cases you might be forced to use the "plain”
Visitor and to maintain cyclic dependencies.

Because of thisoverall grim picture, Visitor is, unsurprisingly, a controversial pattern. Even Ralph Gamma
of GoF fame saysthat on hislist of bottom-ten patterns, Visitor is at the very bottom (Vlissides 1999).

Visitor is clumsy, rigid, hard to extend, and hard to maintain. However, with perseverance and diligence
we can put together a Visitor library implementation that is win-win: easy to use, extend, and maintain.
The next sections show how.

10.4 A Generic Implementation of Visitor
Let's divide the implementation into two major units:

e Visitable classes. These are the classes belonging to the hierarchy that we want to visit (add
operations to).
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e Visitor classes. These classes define and implement the actual operations.

Table 10.1. Component Names

Name Belongs To Represents
BaseVisitable Library The root of all hierarchies that can be visited
Visitable Library A mix-in class that confers visitable properties to
a class in the visitable hierarchy
DocElement Application A sample class—the root of the hierarchy we
want to make visitable
Paragraph,RasterBitmap Application Two sample visitable concrete classes, derived
from DocElement
Accept Library and The member function that's called for visiting the
application visitable hierarchy
BaseVisitor Library The root of the visitor hierarchy
Visitor Library A mix-in class that confers visitor properties to a
class in the visitor hierarchy
Statistics Application A sample visitor concrete class
Visit Library and The member function that is called back by the
application visitable elements, for its visitors

The approach is simple and consistent: We try to factor out as much code as possible into the library. If we
succeed in doing that, we will be rewarded with simplified dependencies. That is, instead of the two
parts—visitor and visitable—depending on each other, both will depend on the library. Thisis good
because the library is supposed to be much more immutable than the application.

Wefirst try to implement a generic Acyclic Visitor, since it has better behavior with regard to dependency
and insulation. Later, well tweak it for performance. In the end, we return to implementing a classic GoF
Visitor that is speedier at the expense of some flexibility.

In the discussion on implementation, the names listed and defined in Table 10.1 apply. Some of the names
in the table actually describe class templates, or, better said, will become class templates as we increasingly
make our code more generic. For now, it'simportant to define the entities that the names represent.

Let'sfocus on the visitor hierarchy first. Here things are quite simple—we must provide some base classes
for the user, classes that define aVisit operation for a given type. In addition, we must provide the
strawman class that's used by the dynamic cast as required by the Acyclic Visitor pattern. Hereitis:

class BaseVisitor

{
public:
virtual ~BaseVisitor() {}

¥
That's not alot of reuse, but somebody has to write thislittle class.

Now we provide asimple classtemplate Visitor. Visitor<T> defines a pure virtual function for
visiting an object of type T.

template <class T>
class Visitor

{
public:
virtual void Visit(T&) = 0;
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In the general case, Visitor<T>::Visit might return something other than void.
Visitor<T>::Visit canpassauseful result viaVisitable: :Accept. Consequently, let'sadd a
second template parameter to Visitor:

template <class T, typename R = void>
class Visitor
{
public:
typedef R ReturnType;
virtual ReturnType Visit(T&) = 0;

3

Whenever you want to visit a hierarchy, you first derive your ConcreteVisitor fromBaseVisitor,
and as many Visitor instantiations as types you want to visit.

class SomeVisitor :
public BaseVisitor // required
public Visitor<RasterBitmap>,
public Visitor<Paragraph>

{

public:
void Visit(RasterBitmap&); // visit a RasterBitmap
void Visit(Paragraph &); // visit a Paragraph

};

The code looks clean, simple, and easy to use. Its structure makes it clear which classes your code visits.
Even better, the compiler does not allow you to instantiaie SomeVisitor if you don't define all the
Visit functions. Thereis a name dependency between SomeVisi tor's class definition and the names of
the classesit visits (RasterBitmap and Paragraph). This dependency is quite understandable, because
SomeVisitor knows about these types and needs to do specific operations on them.

We have now concluded the visitor side of the implementation. We defined a simple base class that acts as
the boot for dynamic_cast (BaseVisitor) and aclasstemplate (Visitor) that generates a pure
virtual function (Visit) for each visited type.

The code we have written so far, in spite of its small quantity, has fairly good reuse potential. The
Visitor classtemplate generates a separate type for each visited class. The library client is relieved of
the burden of littering the implementation with all those little classes such asParagraphVisitor and
RasterBitmapVisitor. Thetypes generated by the Visitor classtemplate will ensure the link with
theVisitable classes.

This brings us to the visitable hierarchy. As discussed in the previous section, the visitable hierarchy in an
Acyclic Visitor implementation has the following responsibilities:

e Declareavirtual pure Accept function that takes areferenceto aVisitor in the base class.
e Override and implement that Accept function in each derived class.

To carry thefirst responsibility we add a pure virtual function to the BaseVisitable class and require
DocElement—and in general any root of avisitable hierarchy in the application space—to inherit fromiit.
BaseVisitable lookslikethis:

template <typename R = void>
class BaseVisitable

{

)
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public:
typedef R ReturnType;
virtual ~BaseVisitable() {}
virtual ReturnType Accept(BaseVisitor&) = 0;

3

Trivia. Things become interesting when we try to carry the second responsibility, that is, to implement
Accept in thelibrary (not in the client). The Accept function implementation is not big, but it's annoying
to have each client classtake care of it. It would be niceif its code belonged to the library. As prescribed
by the Acyclic Visitor pattern, if T isavisited class, T: : Accept'simplementation applies
dynamic_cast<Vistor<T>*>totheBaseVisitor. If the cast succeeds, T: : Accept bounces back
totheVisitor<T>::Visit. However, asmentioned in Section 10.2, simply defining Accept in the
Base Visitable classdoes not work, because the static type of *this in BaseVisitable does not
provide the appropriate information to visitors.

We need away to implement Accept in the library and to inject this function into the application's
DocElement hierarchy. Alas, C++ has no such direct mechanism. There are workarounds that use virtua
inheritance, but they are less than stellar and have non-negligible costs. We have to resort to a macro and
require each class in the visitable hierarchy to use that macro inside the class definition.

Using macros, with all the clumsiness they bring, is not an easy decision to make, but any other solution
does not add much commodity, at considerable expense in time and space. Because C++ programmers are
known to be practical people, efficiency is reason enough for relying on macros from time to time instead
of using esoteric but ineffective techniques.

The single most important rule in defining amacro isto let it do aslittle as possible by itself and to
forward to a"real" entity (function, class) as quickly as possible. We define the macro for visitable classes
asfollows:

#define DEFINE_VISITABLEQ \
virtual ReturnType Accept(BaseVisitor& guest) \
{ return Acceptimpl(*this, guest); }

The client must insert DEFINE_VISITABLE() in each class of the visitable hierarchy.
DEFINE_VISITABLE(Q) definesthe Accept member function to forward to another function—
Acceptimpl. Acceptimpl isatemplate function parameterized with the type of *this. Thisway
AcceptlImpl gains access to the much-needed static type. We define Acceptimpl in the very base of
the hierarchy, in BaseVisitor. Thisway, all derivatives will have accessto it. Here's the changed
BaseVisitable class.

template <typename R = void>
class BaseVisitable
{
public:
typedef R ReturnType;
virtual ~BaseVisitable() {}
virtual ReturnType Accept(BaseVisitor&) = 0;
protected: // Give access only to the hierarchy
template <class T>
static ReturnType Acceptimpl(T& visited, BaseVisitor& guest)
{
// Apply the Acyclic Visitor
iT (Visitor<T>* p = dynamic_cast<Visitor<T>*>(&guest))

{

}
return ReturnType();

return p->Visit(visited);
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}
3

The fact that we have managed to move AcceptlImpl to the library isimportant. It's not only a matter of
automating the client's job. The presence of AcceptiImpl inthelibrary gives us the opportunity to adjust
itsimplementation depending on various design constraints, as will become clear later.

Theresulting design of Visitor/Visitable hides agreat many details from the user, doesn't have
annoying usage caveats, and works like a charm. Here's the current codebase for our generic Acyclic
Visitor implementation.

// Visitor part
class BaseVisitor
{
public:
virtual ~BaseVisitor() {}
};
template <class T, typename R = void>
class Visitor

{

public:
typedef R ReturnType; // Available for clients
virtual ReturnType Visit(T&) = 0;

}:

// Visitable part
template <typename R = void>
class BaseVisitable
{
public:
typedef R ReturnType;
virtual ~BaseVisitable() {}
virtual R Accept(BaseVisitor&) = 0;
protected:
template <class T>
static ReturnType Acceptimpl(T& visited, BaseVisitor& guest)
{
// Apply the Acyclic Visitor
it (Visitor<T>* p =
dynamic_cast<Visitor<T>*>(&guest))
{

}
return ReturnType();

return p->Visit(visited);

}
3

#define DEFINE_VISITABLEQ) \
virtual ReturnType Accept(BaseVisitor& guest) \
{ return Acceptimpl(*this, guest); }

Ready for atest drive? Herelitis:

class DocElement : public BaseVisitable<>

t
public:
DEFINE_VISITABLEQ)

3
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class Paragraph : public DocElement

{
public:
DEFINE_VISITABLEQ

3

class MyConcreteVisitor :
public BaseVisitor, // required
public Visitor<DocElement>,// visits DocElements
public Visitor<Paragraph> // visits Paragraphs

{
public:
void Visit(DocElement&) { std::cout << "Visit(DocElement&) \n"; }
void Visit(Paragraph&) { std::cout << "Visit(Paragraph&) \n"; }
}:
int main()

{

MyConcreteVisitor visitor;
Paragraph par;
DocElement* d = &par; // "hide" the static type of "par”
d->Accept(visitor);
}

This little program will output
Visit(Paragraph&)
which means that everything works just fine.

Of course, thistoy example doesn't show very much about the power of the codebase we've put together.
However, given al the pains we've been through in implementing visitors from scratch in the previous
sections, it's clear we now have a device that makes it easy to create visitable hierarchies correctly and to
visit them.

Let usreview the actions you must carry out to define avisitable hierarchy.

e Derivetheroot of your hierarchy from BaseVisitable<YourReturnType>.

e Addto each class SomeClass in the visitable hierarchy the DEFINE_VISITABLE() macro. (By
now your hierarchy is ready to be visited—however, no dependency of any Visitor classisin
sight!)

e Derive each concrete visitor SomeVisitor fromBaseVisitor. Also, for each class X that you
need to visit, derive SomeVisitor fromVisitor<X, YourReturnType>. Provide overrides
for the Visit member function for each visited type.

The resulting dependency chart is simple. The class definition of SomeVisitor depends by name on each
visited class. The implementations of the Visit member functions fully depend on the classes they
mani pul ate.

That's pretty much it. Compared with the previously discussed implementations, this one leaves us much
better off. With the help of our Visitor implementation, we now have an ordered way to make visitable
hierarchies, and we have reduced client code and dependencies to the bare necessity.

In special cases, you might prefer to implement Accept directly rather than to use the
DEFINE_VISITABLE macro. Suppose you define aSection class, derived from DocElement, which
contains several Paragraphs. For aSection object, you would like to visit each Paragraph in that

Section. Inthis case, you might want to implement Accept manually: class Section : public
DocElement
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// Won"t use the DEFINE_VISITABLE() macro
// because it"s going to implement Accept by itself

{
Qi;tual ReturnType Accept(BaseVisitoré& v)
{
for (each paragraph in this section)
{
current_paragraph->Accept(v);
}
}
}:

Asyou can see, there's nothing you cannot do when you use the Visitor implementation. The code we
defined only frees you from the grunt work you would have to do if you started from scratch.

We have finished defining the kernel Visitor implementation, which includes pretty much anything that is
germane to basic visiting needs. But read on, there's alot more to come.,

10.5 Back to the "Cyclic" Visitor

The generic Acyclic Visitor implementation defined in the previous section should be satisfactory in most
situations. However, if you are devel oping a speed-hungry application, that dynamic cast in Accept might
render you pensive and your speed measurements could make you downright depressed. Here's why. If you
use dynamic_cast against some object, the runtime support has quite afew thingsto do. The RTTI code
must figure out whether the conversion to the target typeislegal and, if it is, must compute a pointer to
that target type.

Let's detail abit how a compiler writer can achieve this. One reasonable solution isto assign a unique
integral identifier to each type in the program. Theintegral identifier also comes in handy when it comes to
exception handling, so it's quite a wise integrating solution. Then in each class's virtual table, the compiler
puts (a pointer to) atable of identifiers of al its subtypes. Together with these identifiers, the compiler has
to store the offsets of the relative positions of the subobjects within the big object. Thiswould be enough
information to perform a dynamic cast correctly. When adynamic_cast <T2*>(pl) occursand plis
of type "pointer to T1," the runtime support code walks through the table of typesfor p1. If amatch with
T2 isfound, the runtime support code will perform the needed pointer arithmetic and pass back the result.
Otherwise, the result is anull pointer. Details—such as multiple inheritance—render the dynamic cast
code even more complicated and slower.

The solution just outlined has O(n) complexity with respect to the number of base classes of aclass. In
other words, the time taken by a dynamic cast increases linearly as you use deeper and broader inheritance
hierarchies.

Another solution is to use hash tables, thus offering increased speed at the expense of memory use. Y et
another solution might use a big matrix for the whole application, thus making the dynamic cast take
constant time, but at a significant cost in size, especially for programs with many classes. (A possibleidea
would be to compress that matrix; al this reveals the wonderful life of C++ compiler writers.)

The bottom lineisthat dynamic_cast does have a cost, which is unpredictable and can become
unacceptable for some particular needs of an application. This means we should extend our Visitor
implementation to accommodate the GoF "cyclic" Visitor, which is faster because it doesn't use
dynamic_cast, but is harder to maintain.
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Recall from the opening of this chapter how the GoF Visitor works. The following list summarizes the
main differences between the GoF Visitor and the Acyclic Visitor asimplemented by Loki.

e TheBaseVisitor classisno longer astrawman; it defines one Visi t pure virtual member
function for each visited type (assuming we decide to rely on overloading).

e TheAcceptimpl function must change. Ideally, the DEFINE_VISITABLE() macro remains
unchanged.

Now, it al boils down to this: We have a collection of types we want to visit. Say they are DocElement,
Paragraph, and RasterBitmap. How can we express and manipulate a collection of types? The
guestion is atransparent hint to refer to Chapter 3, which describes typelists in detail and defines a
complete typelist facility.

Typelists are exactly what we need here. We want to pass atypelistto aCyclicVisitor templateasa
template argument, thus saying, "I want thisCyclicVisitor to be able to visit the following types.” It
would be elegant to say

// Forward declarations needed by the typelist below
class DocElement;

class Paragraph;

class RasterBitmap;

// Visits DocElement, Paragraph, and RasterBitmap
typedef CyclicVisitor

<

void, // return type

TYPELIST_3(DocElement, Paragraph, RasterBitmap)
>
MyVisitor;

CyclicVisitor depends by name on DocElement, Paragraph, and RasterBitmap

Let's see which additions we need to make to the current codebase. We use the same procedure we used in
Chapter 9 for defining a generic Abstract Factory implementation:

// Consult Visitor.h for the definition of Private::VisitorBinder<R>
template <typename R, class TList>
class CyclicVisitor : public GenScatterHierarchy<TList,

Private: :VisitorBinder<R>: :Result>

{
typedef R ReturnType;
template <class Visited>
ReturnType Visit(Visited& host)
Visitor<Visited>& subObj = *this;
return subObj.Visit(host);
}
}:

Remarkably, CyclicVisitor usesVisitor asabuilding block. Refer to Chapter 3 for the technique
and to Chapter 9 for asimilar example. Essentialy, CyclicVisitor inheritsaVisitor<T> for each
type T inthetypelist TList.

The net effect isthat if you passCyclicVisitor atypelist, it ends up inheriting from Visitor
instantiated with every typein that typelist, thus declaring one Visit pure virtua function per type. In
other words, it's functionally equivalent to the base Visitor as prescribed by the GoF Visitor pattern.
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After you specify your CyclicVisitor of choice through atypedef, say MyVisitor, al you haveto do
isusethe DEFINE_CYCLIC_VISITABLE(MyVisitor) macro inyour visitable classes appropriately.
For example:

typedef CyclicVisitor

<
void, // return type
TYPELIST_3(DocElement, Paragraph, RasterBitmap)
>
MyVisitor;
class DocElement
{
public:
virtual void Visit(MyVisitor&) = 0;
};
class Paragraph : public DocElement
{
public:
DEFINE_CYCLIC_VISITABLE(MyVisitor);
};

That'sit! Just asin a handmade implementation of the GoF Visitor, you still have to contribute some
discipline. The difference now is that the number of things you have to remember and implement yourself
is much smaller. To make a hierarchy visitable with our GoF Visitor implementation, do the following:

e Forward declare al the classesin the hierarchy.

e Writeatypedef for CyclicVisitor, instantiated with the return type and with the list of the
types you want to visit. (Let'scal it MyVisitor.)

e Defineavirtual purefunction Visit for your base class.

e AddDEFINE_CYCLIC_VISITABLE(MyVisitor) toeach class of your hierarchy, or
implement Accept by hand for classes that you want to sport a different behavior.

e Have each of your concrete visitors inherit from MyVisitor.

e Update the MyVisitor template instantiation (the typedef) whenever you add a new classto
the visitable hierarchy, then—sigh—recompile.

Compared with a handmade GoF Visitor implementation, the generic approach is cleaner. The number of
points of maintenance is reduced to your MyVisitor type definition.

Asapractical piece of advice for designing with Visitor, it's best to start with the Acyclic Visitor, which is
easier to maintain, and switch to the GoF Visitor only if you really must optimize. The nice part isthat the
generic componentry makes it very easy to experiment—you need change only one declaration. There's no
code to hack into. The details of implementing Visitor are in the library. Y ou need adjust only the

declarative link between the client and library in order to achieve two different implementations of Visitor.

10.6 Hooking Variations

Visitor has a number of variations and customizations. This section is dedicated to mapping the hooks that
you might need so that you can add these to the implementation that we've put in place.

10.6.1 The Catch-All Function
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We discussed the catch-all functionin Section 10.2. A Visitor may encounter an unknown type derived
from the base class (in our example, DocE lement). In this case, you may want either a compile-time error
to occur or adefault action to be carried out at runtime.

Let's analyze the catch-all issue for the GoF Visitor and the Acyclic Visitor implementations provided by
our generic components.

For the GoF Visitor, things are quite simple. If you include the root class of your hierarchy in the typelist
you passto CyclicVisitor, then you give yourself the opportunity to implement the catch-all function.
Otherwise, you take the compile-time error route. The following code illustrates the two options:

// Forward declarations needed for the GoF Visitor
class DocElement; // Root class

class Paragraph;

class RasterBitmap;

class VectorizedDrawing;

typedef CyclicVisitor
<
void, // Return type
TYPELIST_3(Paragraph, RasterBitmap, VectorizedDrawing)
>
StrictVisitor; // No catch-all operation;
// will issue a compile-time error if you try
// visiting an unknown type

typedef CyclicVisitor

<
void, // return type
TYPELIST_4(DocElement, Paragraph, RasterBitmap,
VectorizedDrawing)
>

NonStrictVisitor; // Declares Visit(DocElement&), which will be
// called whenever you try visiting
// an unknown type

All thiswas quite easy. Now let'stalk about the catch-all function within our Acyclic Visitor generic
implementation.

In Acyclic Visitor an interesting twist occurs. Although essentially catch-all is al about visiting an
unknown class by a known visitor, the problem appears reversed: An unknown visitor visits a known class!

Let'slook again at our AcceptiImpl implementation for Acyclic Visitor.

template <typename R = void >
class BaseVisitable
{
... as above ...
template <class T>
static ReturnType Acceptimpl(T& visited,
BaseVisitor& guest)
{

ifT (Visitor<T>* p =
dynamic_cast<Visitor<T>*>(&guest))
{

}
return ReturnType(); // Attention here!

return p->Visit(visited);
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}
3

Suppose you add aVectorizedDrawing to your DocElement hierarchy in a sneaky way—you don't
notify any concrete visitors about it. Whenever VectorizedDrawing isvisited, the dynamic cast to
Visitor<VectorizedDrawing> fals. Thisisbecause your existing concrete visitors are not aware of
the new type, so they didn't derive from Visitor<VectorizedDrawing>. Because the dynamic cast
fails, the code takes the aternate route and returns the default value of ReturnType. Here's the exact
place where the catch-all function can enter into action.

Because our AcceptlImpl function hardcodesthe return ReturnType() action, it quiterigidly
imposes a design constraint without leaving room for variation. Therefore, let's put apolicy in place that
dictates the catch-all behavior:

template
<
typename R = void,
template <typename, class> class CatchAll = DefaultCatchAll

>
class BaseVisitable
{
... as above ...
template <class T>
static ReturnType Acceptimpl(T& visited,
BaseVisitor& guest)
{
if (Visitor<T>* p =
dynamic_cast<Visitor<T>*>(&guest))
{
return p->Visit(visited);
ks
// Changed
return CatchAll<R, T>::OnUnknownVisitor(visited, guest);
3
};

The CatchAll policy can do whatever the design requires. It can return a default value or error code, throw
an exception, call avirtual member function for the visited object, try more dynamic casts, and so on. The
implementation of OnUnknownVisitor depends largely on the concrete design needs. In some cases,
you might want to enforce visitation for al the typesin the hierarchy. In other cases, you might want to
visit some types freely and to ignore all others silently. The Acyclic Visitor implementation favors the
second approach, so the default CatchAl 1 looks like this:

template <class R, class Visited>
struct DefaultCatchAll

{
static R OnUnknownVisitor(Visited&, BaseVisitor&)
{
// Here®"s the action that will be taken when
// there is a mismatch between a Visitor and a Visited.
// The stock behavior is to return a default value
return RQ;
b
¥

Should you need a different behavior, all you haveto do is plug a different template into
BaseVisitable.
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10.6.2 Nonstrict Visitation

Maybe it's human nature, but the have-your-cake-and-eat-it-too ideal is every programmer's mantra. If
possible, programmers would like a fast, noncoupled, flexible visitor that would read their minds and
figure out whether an omission is a simple mistake or a deliberate decision. On the other hand, unlike their
customers, programmers are practical, down-to-earth people, with whom you can haggle about trade-offs.

Following this line of thought, the flexibility of CatchAll renders users of GoF Visitor envious. Asit is
now, the GoF Visitor implementation is strict—it declares one pure virtual function for each type visited.
Y ou must derive from BaseVisitor and implement each and every Visi t overload, and if you don',
you cannot compile your code.

However, sometimes you don't really want to visit each type in the list. Y ou don't want the framework to
be so strict about it. Y ou want options: Either you implement Visit for atype, or OnUnknownVisitor
will be automatically called for your CatchAll implementation.

For thiskind of situation, Loki introduces a class called BaseVisitorImpl. ItinheritsBaseVisitor
and uses typelist techniques for accommodating typelists. Y ou can look up itsimplementation in Loki (file
Visitor.h).

10.7 Summary

This chapter discussed the Visitor pattern and the problems it addresses. Essentially, Visitor allows you to
add virtual functions to a class hierarchy without modifying the classes in that hierarchy. In some cases,
Visitor can lead to a clever, extensible design.

However, Visitor has a bunch of problems, to the point that its use with any but the most stable class
hierarchiesis unjustifiably hard. Acyclic Visitor is of help, at the expense of a decrease in efficiency.

By using careful design and advanced implementation technigques, you can ensure that the generic Visitor
components get the best out of the Visitor pattern. Although the implementation fully preserves Visitor's
power, it mitigates most of its shortcomings.

In an application, Acyclic Visitor should be the variant of choice, unless you need all the speed you can get.
If speed isimportant, you can use a generic implementation of the GoF Visitor that keeps maintenance low
(asingle, clear point of maintenance) and compile-time cost reasonable.

The generic implementation leverages advanced C++ programming techniques, such as dynamic casts,
typelists, and partial specialization. The outcome isthat all the common, repetitive parts of implementing
visitors for any concrete need have been absorbed by the library.

10.8 Visitor Generic Components Quick Facts

e Toimplement the Acyclic Visitor, use BaseVisitor (asthe strawman base class), Visi tor,
and Visitable:

class BaseVisitor;

template <class T, typename R = void>
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class Visitor;

template
<

typename R = void,

template<class, class> CatchAll = DefaultCatchAll
>

class BaseVisitable;

Thefirst template parameter of Visitor and BaseVisitable isthereturn type of theVisit
and Accept member functions, respectively. It defaultsto void (thisisthe return type assumed
in the GoF book examples and in most Visitor descriptions).

The second template parameter of BaseVisitable isthe policy for handling the catch-all issue
(see Section 10.2).

Derive the root of your hierarchy from BaseVisitable. Then use the macro
DEFINE_VISITABLE(Q) ineach classin the hierarchy, or provide a handmade implementation of
Accept(BaseVisitorg).

Derive your concrete Visitor classes from BaseVisitor. Also derive your concrete visitor from
Visitor<T>, for eachtype T you are interested in visiting.

For the GoF Visitor, usethe CyclicVisitor template:

template <typename R, class TList>
class CyclicVisitor;

Specify the types visited in the TLi st template argument.

Use CyclicVisitor with your codejust as you would use a classic GoF visitor.

If you need to implement only part of a GoF Visitor (the nonstrict variant), derive your visitable
hierarchy from BaseVisitorimpl. BaseVisitorImpl implementsall theVisit overloads
to call OnUnknownVisitor. You can override part of this behavior.

The OnUnknownVisi tor static member function of the CatchAll policy provides a catch-all
sink for Acyclic Visitor. If you use BaseVisitorImpl, it will provide a catch-all for the GoF
Visitor, too. The stock implementation of OnUnknownVisitor returns a default-constructed
value of the return type you chose. Y ou can override this behavior by providing custom
implementations of CatchAll.



Chapter 11. Multimethods

This chapter defines, discusses, and implements multimethods in the context of C++.

The C++ virtual function mechanism allows dispatching of a call depending on the dynamic type of one
object. The multimethods feature allows dispatching of afunction call depending on the types of multiple
objects. A universally good implementation requires language support, which is the route that languages
such as CLOS, ML, Haskell, and Dylan have taken. C++ lacks such support, so its emulation is left to
library writers.

This chapter discusses some typical solutions and some generic implementations of each. The solutions
feature various trade-offs in speed, flexibility, and dependency management. To describe the technique of
dispatching a function call depending on multiple objects, this book uses the terms multimethod (borrowed
from CLOS) and multiple dispatch. A particularization of multiple dispatch for two objects is known as
double dispatch.

Implementing multimethods is a problem that's as fascinating asit is dreaded, one that has stolen lots of
hours of good, healthy sleep from designers and programmers.!

(¢ you have trouble implementing multimethods, you can look at this chapter as a sleep aid—which | hope
doesn't mean it has an actual soporific effect.

Thetopics of this chapter include

Defining multimethods

Identifying situations in which the need for multiobject polymorphism appears
Discussing and implementing three double dispatchers that foster different trade-offs
Enhancing double-dispatch engines

After reading this chapter, you will have afirm grasp of the typical situations for which multimethods are
the way to go. In addition, you will be able to use and extend several robust generic components, provided
by Loki, that implement multimethods.

This chapter limits discussion to multimethods for two objects (double dispatch). Y ou can use the
underlying techniques to extend the number of supported objects to three or more. It islikely, though, that
in most situations you can get away with dispatching depending on two objects, and therefore you'll be
ableto use Loki directly.

11.1 What Are Multimethods?

In C++, polymorphism essentially means that a given function call can be bound to different
implementations, depending on compile-time or runtime contextual issues.

Two types of polymorphism are implemented in C++:
Compile-time polymorphism, supported by overloading and template functions

2l A more generous view of polymorphism would qualify automatic conversions as the crudest form
of polymorphism. They allow, for example, std: :sin to be called with an int although it was
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written for a double. This polymorphism through coercion is only apparent, because the same
function call will be issued for both types.

¢ Runtime polymorphism, implemented with virtual functions

Overloading is asimple form of polymorphism that allows multiple functions with the same name to
coexist in ascope. If the functions have different parameter lists, the compiler can differentiate among
them at compile time. Overloading is simple syntactic sugar, a convenient syntactic abbreviation.

Template functions are a static dispatch mechanism. They offer more sophisticated compile-time
polymorphism.

Virtual member function calls allow the C++ runtime support, instead of the compiler, to decide which
actual function implementation to call. Virtual functions bind a name to a function implementation at
runtime. The function called depends on the dynamic type of the object for which you make the virtual call.

Let's now see how these three mechanisms for polymorphism scale to multiple objects. Overloading and
template functions scale to multiple objects naturally. Both features allow multiple parameters, and
intricate compile-time rules govern function selection.

Unfortunately, virtual functions—the only mechanism that implements runtime polymorphism in C++—
aretailored for one abject only. Even the call syntax—obj . Fun (arguments)—givesobj aprivileged
role over arguments. (In fact, you can think of ob j as nothing more than one of Fun's arguments,
accessible inside Fun as *this. The Dylan language, for example, accepts the dot call syntax only asa
particular expression of a genera function-call mechanism.)

We define multimethods or multiple dispatch as the mechanism that dispatches afunction call to different
concrete functions depending on the dynamic types of multiple objects involved in the call. Because we
can take compile-time multiobject polymorphism for granted, we need only implement runtime multiobject
polymorphism. Don't be worried; there's alot left to talk about.

11.2 When Are Multimethods Needed?

Detecting the need for multimethods is simple. Y ou have an operation that manipul ates multiple
polymorphic objects through pointers or references to their base classes. Y ou would like the behavior of
that operation to vary with the dynamic type of more than one of those objects.

Collisionsform atypical category of problems best solved with multimethods. For instance, you might
write a video game in which moving objects are derived from aGame Object abstract class. Y ou would
like their collision to behave differently depending on which two types collide: a space ship with an
asteroid, a ship with a space station, or an asteroid with a space station.2!

Bl This example and names were borrowed from Scott Meyers's More Effective C++ (1996a), Item 31.

For example, suppose you want to mark overlapping areas of drawing objects. Y ou write adrawing
program that allows its users to define rectangles, circles, ellipses, polygons, and other shapes. The basic
design is an object-oriented classic: Define an abstract class Shape and have all the concrete shapes derive
from it; then manipulate a drawing as a collection of pointersto Shape.

Now say the client comes and asks for a nice-to-have feature: If two closed shapes intersect, the
intersection should be drawn in away different from each of the two shapes. For instance, the intersection
area could be hatched, asin Figure 11.1.
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Figure 11.1. Hatching the intersection of two shapes

Finding a single algorithm that will hatch any intersection is difficult. For instance, the algorithm that
hatches the intersection between an ellipse and arectangle is very different (and much more complex)
from the one that hatches the intersection between two rectangles. Besides, an overly general agorithm
(for instance, one that operates at a pixel level) islikely to be highly inefficient, since some intersections
(such as rectangle-rectangle) aretrivial.

What you need here is a battery of algorithms, each specialized for two shape types, such as rectangle-
rectangle, rectangle-polygon, polygon-polygon, ellipse-rectangle, ellipse-polygon, and ellipse-ellipse. At
runtime, as the user moves shapes on the screen, you'd like to pick up and fire the appropriate algorithms,
which in turn will quickly compute and hatch the overlapping areas.

Because you manipulate all drawing objects as pointers to Shape, you don't have the type information
necessary to select the suitable algorithm. Y ou have to start from pointersto Shape only. Because you
have two objectsinvolved, simple virtual functions cannot solve this problem. Y ou have to use double
dispatch.

11.3 Double Switch-on-Type: Brute Force

The most straightforward approach to a double dispatch implementation is to implement a double switch-
on-type. You try to dynamic cast the first object against each of the possible |eft-hand types in succession.
For each branch, you do the same with the second argument. When you have discovered the types of both
objects, you know which function to call. The code looks like this:

// various intersection algorithms

void DoHatchAreal(Rectangle&, Rectangle&);
void DoHatchArea2(Rectangle&, Ellipsed&);
void DoHatchArea3(Rectangle&, Poly&);

void DoHatchArea4(Ellipseé&, Poly&);

void DoHatchArea5(Ellipse&, Ellipse&);
void DoHatchArea6(Polyé&, Poly&);

void DoubleDispatch(Shape& lIhs, Shape& rhs)
{
iT (Rectangle* pl = dynamic_cast<Rectangle*>(&lhs))
{
iT (Rectangle* p2 = dynamic_cast<Rectangle*>(&rhs))
DoHatchAreal(*pl, *p2);
else if (Ellipse p2 = dynamic_cast<tEllipse*>(&rhs))
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DoHatchArea2(*pl, *p2);

else if (Poly p2 = dynamic_cast<Poly*>(&rhs))
DoHatchArea3(*pl, *p2);

else
Error(*"'Undefined Intersection™);

else if (Ellipse* pl = dynamic_cast<Ellipse*>(&lhs))
{
iT (Rectangle* p2 = dynamic_cast<Rectangle*>(&rhs))
DoHatchArea2(*p2, *pl);
else if (Ellipse* p2 = dynamic_cast<Ellipse*>(&rhs))
DoHatchArea5(*pl, *p2);
else if (Poly* p2 = dynamic_cast<Poly*>(&rhs))
DoHatchAread(*pl, *p2);
else
Error(*'Undefined Intersection™);

}
else if (Poly* pl = dynamic_cast<Poly*>(&lhs))

{
iT (Rectangle* p2 = dynamic_cast<Rectangle*>(&rhs))
DoHatchArea2(*p2, *pl);
else if (Ellipse* p2 = dynamic_cast<Ellipse*>(&rhs))
DoHatchAread(*p2, *pl);
else if (Poly* p2 = dynamic_cast<Poly*>(&rhs))
DoHatchArea6(*pl, *p2);
else
Error(*'Undefined Intersection™);
}
else
Error(*'Undefined Intersection™);
}

}

Whew! It's been quite afew lines. Asyou can see, the brute-force approach asks you to write alot of
(allegedly trivial) code. Y ou can count on any dependable C++ programmer to put together the appropriate
web of if statements. In addition, the solution has the advantage of being fast if the number of possible
classesis not too high. From a speed perspective, DoubleDispatch implements alinear search in the set
of possible types. Because the search is unrolled—a succession of if-e lse statements as opposed to a
loop—the speed is very good for small sets.

One problem with the brute-force approach is sheer code size, which makes the code unmaintainable as the
number of classes grows. The code just given deals with only three classes, yet it's already of considerable
size. The size grows exponentially as you add more classes. Imagine how the code of DoubleDispatch
would look for a hierarchy of 20 classes!

Ancther problem isthat DoubleDispatch is adependency bottleneck—its implementation must know
of the existence of al classesin ahierarchy. It is best to keep the dependency net as loose as possible, and
DoubleDispatch isadependency hog.

Thethird problem with DoubleDispatch isthat the order of the i f statements matters. Thisisavery
subtle and dangerous problem. Imagine, for instance, you derive class RoundedRectangle (arectangle
with rounded corners) from Rectangle. You then edit DoubleDispatch and insert the additional i f
statement at the end of each i f-e I se statement, right before the Error call. Y ou have just introduced a
bug.

Thereasonisthat if you pass DoubleDispatch apointer to aRoundedRectangle, the
dynamic_cast<Rectangle*> succeeds. Because that test is before the test for
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dynamic_cast<RoundedRectangle*>, thefirst test will "eat" both Rectanglesand Rounded
Rectangles. The second test will never get achance. Most compilers don't warn about this.

A candidate solution would be to change the tests as follows:

void DoubleDispatch(Shape& lhs, Shape& rhs)

{
if (typeid(lhs) == typeid(Rectangle))
{
Rectangle* pl = dynamic_cast<Rectangle*>(&lhs);
}
else ...
}

Thetests are now for the exact type instead of the exact or derived type. The typeid comparison shown
inthiscodefailsif Ihs isaRoundedRectangle, so the tests continue. Ultimately, the test against
typeid(RoundedRectangle) succeeds.

Alas, this fixes one aspect but breaks another: DoubleDispatch istoo rigid now. If you didn't add
support for atypein DoubleDispatch, you would like DoubleDispatch to fire on the closest base
type. Thisiswhat you'd normally expect when using inheritance—by default, derived objects do what base
objects do unless you override some behavior. The problem isthat the type i d-based implementation of
DoubleDispatch failsto preserve this property. The rule of thumb that results from this fact isthat you
must still use dynamic_cast in DoubleDispatch and "sort" the i f tests so that the most derived
classes are tried first.

This adds two more disadvantages to the brute-force implementation of multimethods. First, the
dependency between DoubleDispatch and the Shape hierarchy deepens—Doub leDispatch must
know about not only classes but a so the inheritance rel ationshi ps between classes. Second, maintaining
the appropriate ordering of dynamic casts puts a supplemental burden on the shoulders of the maintainer.

11.4 The Brute-Force Approach Automated

Because in some situations the speed of the brute-force approach can be unbeatable, it's worth paying
attention to implementing such a dispatcher. Here's where typelists can be of help.

Recall from Chapter 3 that Loki defines atypelist facility—a collection of structures and compile-time
algorithms that allow you to manipulate collections of types. A brute-force implementation of
multimethods can use a client-provided typelist that specifies the classesin the hierarchy (in our example,
Rectangle, Poly, EIllipse, etc.). Then arecursive template can generate the sequence of i f-else
Statements.

In the general case, we can dispatch on different collections of types, so the typelist for the left-hand
operand can differ from the one for the right-hand operand.

Let'stry outlining aStaticDispatcher classtemplate that performs the type deduction algorithm and
then fires afunction in another class. Explanations follow the code.

template
<

class Executor,
class Baselhs,

232



class TypesLhs,
class BaseRhs = Baselhs,
class TypesRhs = TypesLhs
typename ResultType = void
>
class StaticDispatcher
{
typedef typename TypeslLhs::Head Head;
typedef typename TypesLhs::Tail Tail;
public:
static ResultType Go(BaselLhs& lhs, BaseRhs& rhs,
Executor exec)

{
if (Head* pl = dynamic_cast<Head*>(&lhs))
{
return StaticDispatcher<Executor, Baselhs,
NulIType, BaseRhs, TypesRhs>::DispatchRhs(
*pl, rhs, exec);
}
else
{
return StaticDispatcher<Executor, Baselhs,
Tail, BaseRhs, TypesRhs>::Go(
lhs, rhs, exec);
}

¥

If you are familiar with typelists, the workings of StaticDispatcher are seen to be quite simple.
StaticDispatcher hassurprisingly little code for what it does.

StaticDispatcher hassix template parameters. Executor isthe type of the object that does the
actual processing—in our example, hatching the intersection area. Well discuss what Executor looks
like abit later.

Baselhs and BaseRhs are the base types of the arguments on the |eft-hand side and the right-hand side,
respectively. TypeslLhs and TypesRhs are typelists containing the possible derived types for the two
arguments. The default values of BaseRhs and TypesRhs foster a dispatcher for types in the same class
hierarchy, asis the case with the drawing program example.

ResultType isthetype of the result of the double-dispatch operation. In the general case, the dispatched
function can return an arbitrary type. StaticDispatcher supports this dimension of genericity and
forwards the result to the caller.

StaticDispatcher: :Go triesadynamic cast to the first type found in the TypesLhs typelist, against
the address of Ihs. If the dynamic cast fails, Go delegates to the remainder (tail) of TypesLhs ina
recursive call to itself. (Thisis not atrue recursive call, because each time we have a different instantiation
of StaticDispatcher.)

The net effect isthat Go performs a suite of i f-else statements that apply dynamic_cast to each type
in the typdlist. When amatch is found, Go invokes DispatchRhs. DispatchRhs does the second and
last step of the type deduction—finding the dynamic type of rhs.

template <...>
class StaticDispatcher

{
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... as above ...

template <class Somelhs>

static ResultType DispatchRhs(SomeLhs& lhs, BaseRhs& rhs,
Executor exec)

{

typedef typename TypesRhs::Head Head;
typedef typename TypesRhs::Tail Tail;

ifT (Head* p2 = dynamic_cast<Head*>(&rhs))
{

}

else

{

return exec.Fire(lhs, *p2);

return StaticDispatcher<Executor, SomelLhs,
Nul IType, BaseRhs, Tail>::DispatchRhs(
lhs, rhs, exec);

DispatchRhs performs the same algorithm for rhs as Go applied for 1hs. In addition, when the
dynamic cast on rhs succeeds, DispatchRhs cals Executor: :Fire, passing it the two discovered
types. Again, the code that the compiler generates is a suite of if-e lse statements. Interestingly, the
compiler generates one such suite of i f-else statements for each type in TypesLhs. Effectively,
StaticDispatcher managesto generate an exponential amount of code with two typelists and afixed
codebase. Thisis an asset, but also a potential danger—too much code can hurt compile times, program
size, and total execution time.

To treat the limit conditions that stop the compile-time recursion, we need to specialize
StaticDispatcher for two cases: Thetype of Ihs isnot found in TypesLhs, and thetype of rhs is
not found in TypesRhs.

Thefirst case (error on 1hs) appears when you invoke Go on aStaticDispatcher with Nul I Type as
TypesLhs. Thisisthe sign that the search depleted TypesLhs. (Recall from Chapter 3 that Nul I Type is
used to signal the last element in any typelist.)

template
<
class Executor,
class BaselLhs,
class BaseRhs,
class TypesRhs,
typename ResultType
>
class StaticDispatcher<Executor, BaselLhs, NullType,
BaseRhs, TypesRhs, ResultType>

{
static void Go(BaseLhs& lhs, BaseRhs& rhs, Executor exec)
{
exec.OnError(lhs, rhs);
¥
}:

Error handling is elegantly delegated to the Executor class, asyou will see later in the discussion on
Executor.
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The second case (error on rhs) appears when you invoke DispatchRhs onaStatic Dispatcher
with Nul IType as TypesRhs. Hence the following speciaization:

template
<
class Executor,
class BaselLhs,
class TypesLhs,
class BaseRhs,
class TypesRhs,
typename ResultType
>
class StaticDispatcher<Executor, BaselLhs, TypesLhs,
BaseRhs, NullType, ResultType>

public:
static void DispatchRhs(BaselLhs& lhs, BaseRhs& rhs,
Executoré& exec)
{

}
¥

exec.OnError(lhs, rhs);

It istime now to discuss what Executor must implement to take advantage of the double-dispatch engine
we have just defined.

StaticDispatcher deals only with type discovery. After finding the right types and objects, it passes
themto acal of Executor: :Fire. To differentiate these calls, Executor must implement several
overloads of Fire. For example, the Executor classfor hatching shape intersectionsis as follows:

class HatchingExecutor

{

public:
// Various intersection algorithms
void Fire(Rectangleé&, Rectangle&);
void Fire(Rectangleé&, Ellipse&);
void Fire(Rectangle&, Poly&);
void Fire(Ellipse&, Poly&);
void Fire(Ellipse&, Ellipse&);
void Fire(Poly&, Poly&);

// Error handling routine
void OnError(Shape&, Shape&);
};

You use HatchingExecutor with StaticDispatcher as shown in the following code:

typedef StaticDispatcher<HatchingExecutor, Shape,
TYPELIST_3(Rectangle, Ellipse, Poly)> Dispatcher;

Shape *pl = ...;

Shape *p2 = _...;

HatchingExecutor exec;

Dispatcher::Go(*pl, *p2, exec);

This code invokes the appropriate Fi re overload in the HatchingExecutor class. Y ou can seethe
StaticDispatcher classtemplate as a mechanism that achieves dynamic overloading—it defers
overloading rules to runtime. This makes StaticDispatcher remarkably easy to use. You just
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implement HatchingExecutor with the overloading rulesin mind, and then you use
StaticDispatcher asablack box that does the magic of applying overloading rules at runtime.

Asanice side effect, StaticDispatcher will unveil any overloading ambiguities at compile time. For
instance, assume you don't declare HatchingExecutor: :Fire(EIllipse&, Poly&). Instead, you
declareHatchingExecutor: :Fire(Ellipse&, Shape&) andHatching

Executor: :Fire(Shape&, Polyé&). CalingHatchingExecutor::FirewithanEllipse anda
Poly would result in an ambiguity—both functions compete to handle the call. Remarkably,
StaticDispatcher signasthe same error for you and with the same level Multimethods Chapter 11 of
detail. StaticDispatcher isatool that's very consistent with the existing C++ overloading rules.

What happensin the case of aruntime error—for instance, if you passaCircle asone of the arguments
of StaticDispatcher: :Go? Ashinted earlier, StaticDispatcher handles border cases by simply
calling Executor : :OnError with the origina (not cast) 1hs and rhs. This means that, in our example,
HatchingExecutor: :OnError (Shape&, Shape&) isthe error handling routine. Y ou can usethis
routine to do whatever you find appropriate—when it's called, it meansthat StaticDispatcher gave
up on finding the dynamic types.

As discussed in the previous section, inheritance adds problems to a bruteforce dispatcher. That is, the
following instantiation of StaticDispatcher hasabug:

typedef StaticDispatcher
<

SomeExecutor,

Shape,

TYPELIST _4(Rectangle, Ellipse, Poly, RoundedRectangle)
>
MyDispatcher;

If you pass aRoundedRectangle to MyDispatcher, it will be considered aRectangle. The
dynamic_cast<Rectangle*> succeeds on a pointer to aRoundedRectangl e, and because the
dynamic_cast<RoundedRectangle*> islower on the food chain, it will never be given a chance.
The correct instantiation is

typedef StaticDispatcher

<

SomeExecutor,

Shape,

TYPELIST_4(RoundedRectangle, Ellipse, Poly, Rectangle)
>
Dispatcher;

The genera ruleisto put the most derived types at the front of the typelist.

It would be niceif this transformation could be applied automatically, and typelists do support that. We
have a means to detect inheritance at compile time (Chapter 2), and typelists can be sorted. Thisled to the
DerivedToFront compile-time agorithm in Chapter 3.

All we have to do to take advantage of automatic sorting is to modify the implementation of
StaticDispatcher asfollows:

template <...>
class StaticDispatcher

typedef typename DerivedToFront<
typename TypeslLhs::Head>::Result Head;
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typedef typename DerivedToFront<
typename TypesLhs::Tail>::Result Tail;
public:
. as above ...
};

After all this handy automation, don't forget that all we have obtained is the code generation part. The
dependency problems are still with us. Although it makes it very easy to implement brute-force
multimethods, StaticDispatcher still has adependency on all the typesin the hierarchy. Its
advantages are speed (if there are not too many types in the hierarchy) and nonintrusiveness—you don't
have to modify a hierarchy to use StaticDispatcher with it.

11.5 Symmetry with the Brute-Force Dispatcher

When you hatch the intersection between two shapes, you might want to do it differently if you have a
rectangle covering an ellipse than if you have an €llipse covering arectangle. Or, on the contrary, you
might need to hatch the intersection area the same way when an ellipse and a rectangle intersect, no matter
which covers which. In the latter case, you need a symmetric multimethod—a multimethod that is
insensitive to the order in which you pass its arguments.

Symmetry applies only when the two parameter types are identical (in our case, BaselLhs isthe same as
BaseRhs, and LhsTypes isthe same asRhsTypes).

The brute-force StaticDispatcher defined previously is asymmetric; that is, it doesn't offer any built-
in support for symmetric multimethods. For example, assume you define the following classes:

class HatchingExecutor

i

public:
void Fire(Rectangle&, Rectangle&);
void Fire(Rectangle&, Eflipsed&);

}}-Error handler
void OnError(Shape&, Shape&);

3

typedef StaticDispatcher
<

HatchingExecutor,

Shape,

TYPELIST_3(Rectangle, Ellipse, Poly)
>
HatchingDispatcher;

TheHatchingDispatcher does not fire when passed an EI 1 i pse as the left-hand parameter and a
Rectangle asthe right-hand parameter. Even though from your HatchingExecutor's viewpoint it
doesn't matter who's first and who's second, HatchingDispatcher will insist that you pass objectsin a
certain order.

We can fix the symmetry in the client code by reversing arguments and forwarding from one overload to
another:

class HatchingExecutor

{



public:
void Fire(Rectangle&, Ellipsed&);
// Symmetry assurance
void Fire(Ellipse& lhs, Rectangle& rhs)

{
// Forward to Fire(Rectangle&, Ellipse&)
// by switching the order of arguments
Fire(rhs, 1hs);
}
}:

These little forwarding functions are hard to maintain. Idedlly, StaticDispatcher would provide itself
optional support for symmetry through an additional bool template parameter, which is worth looking
into.

The need isto have StaticDispatcher reverse the order of arguments when invoking the callback, for
certain cases. What are those cases? L et's analyze the previous example. Expanding the template argument
lists from their default values, we get the following instantiation:

typedef StaticDispatcher

<
HatchingExecutor,
Shape,
TYPELIST _2(Rectangle, Ellipse, Poly), // TypesLhs
Shape,
TYPELIST_2(Rectangle, Ellipse, Poly), // TypesRhs
void

>

HatchingDispatcher;

An algorithm for selecting parameter pairs for a symmetric dispatcher can be as follows. Combine the first
typein thefirst typelist (TypesLhs) with each typein the second typelist (TypesRhs). This gives three
combinations: Rectangle-Rectangle, Rectangle-El lipse, and Rectangle-Poly. Next, combine
the second typein Types Lhs (EIl1ipse) with typesin TypesRhs. However, because the first
combination (Rectangle-El lipse) has aready been made in the first step, this time start with the
second element in Types Rhs. Thisstep yieldsEl lipse-Ellipse and Ellipse-Poly. The same
reasoning applies to the next step: Polly in TypesLhs must be combined only with types starting with the
third onein TypesRhs. This gives only one combination, Poly-Poly, and the algorithm stops here.

Following this agorithm, you implement only the functions for the selected combination, as follows:

class HatchingExecutor

{

public:
void Fire(Rectangle&, Rectangle&);
void Fire(Rectangle&, Ellipsed);
void Fire(Rectangle&, Poly&);
void Fire(Ellipse&, Ellipse&);
void Fire(Ellipse&, Poly&);
void Fire(Poly&, Poly&);
// Error handler
void OnError(Shape&, Shape&);

¥

StaticDispatcher must detect all by itself the combinations that were eliminated by the agorithm just
discussed, namely EI lipse-Rectangle, Poly-Rectangle, and Poly-El lipse. For these three
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combinations, StaticDispatcher must reverse the arguments. For all others, StaticDispatcher
forwards the call just asit did before.

What's the Boolean condition that determines whether or not argument swapping is needed? The algorithm
selectsthe typesin TL2 only at indices greater than or equal to the index of the typein TL1. Therefore,
the condition is as follows:

For two types T and U, if theindex of U in TypesRhs islessthan theindex of T in TypesLhs, then the
arguments must be swapped.

For example, say TisEllipse and U isRectangle. Then T'sindex in TypesLhs is1and U'sindex in
TypesRhs is0. Consequently, EIlipse and Rectangle must be swapped before invoking
Executor: :Fire, whichiscorrect.

Thetypelist facility already provides the IndexOf compile-time algorithm that returns the position of a
type in atypelist. We can then write the swapping condition easily.

First, we must add a new template parameter that says whether the dispatcher is symmetric. Then, we add a
simple little traits class template, InvocationTraits, which either swaps the arguments or does not
swap them when calling the Executor : : Fire member function. Here is the relevant excerpt.

template
<
class Executor,
bool symmetric,
class Baselhs,
class TypesLhs,
class BaseRhs = Baselhs,
class TypesRhs = TypesLhs,
typename ResultType = void

>
class StaticDispatcher
{
template <bool swapArgs, class SomelLhs, class SomeRhs>
struct InvocationTraits
{
static void DoDispatch(SomeLhs& lhs, SomeRhsé& rhs,
Executoré& exec)
{
exec.Fire(lhs, rhs);
}
}:
template <class SomelLhs, class SomeRhs>
struct InvocationTraits<True, SomeLhs, SomeRhs>
{
static void DoDispatch(SomeLhs& lhs, SomeRhsé& rhs,
Executoré& exec)
exec.Fire(rhs, 1hs); // swap arguments
}
3
public:

static void DispatchRhs(BaselLhs& lhs, BaseRhs& rhs,
Executor exec)

if (Head* p2 = dynamic_cast<Head*>(&rhs))

enum { swapArgs = symmetric &&

239



IndexOf<Head, TypesRhs>::result <
IndexOf<BaselLhs, TypesLhs>::result };

typedef InvocationTraits<swapArgs, BaselLhs, Head>
CallTraits;

return CallTraits::DoDispatch(lhs, *p2);

}
else
{
return StaticDispatcher<Executor, Baselhs,
NulIType, BaseRhs, Tail>::DispatchRhs(
lhs, rhs, exec);
}

}
¥

Support for symmetry adds some complexity to StaticDispatcher, but it certainly makes things much
easier for StaticDispatcher's user

11.6 The Logarithmic Double Dispatcher

If you want to avoid the heavy dependencies accompanying the brute-force solution, you must look into a
more dynamic approach. Instead of generating code at compile time, you must keep a runtime structure
and use runtime agorithms that help in dynamically dispatching function calls depending on types.

RTTI (runtime type information) can be of further help here because it provides not only dynamic_cast
and type identification, but also a runtime ordering of types, through the before member function of

std: :type_info. What before offersisan ordering relationship on all typesin a program. We can use
this ordering relationship for fast searches of types.

The implementation hereis similar to the one found in Item 31 of Scott Meyers's More Effective C++
(1996a), with some improvements. The casting step when invoking a handler is automated, and the
implementation herein aims at being generic.

We will avail ourselves of the OrderedType Info class, described in Chapter 2. OrderedTypelnfois
awrapper providing exactly the same functionality as std: - type_info. In addition,

OrderedType Info provides value semantics and a caveat-free less-than operator. Y ou can thus store
OrderedType Info objectsin standard containers, which is of interest to this chapter.

Meyers's approach was simple: For each pair of std: :type_info objects you want to dispatch upon,
you register a pointer to afunction with the double dispatcher. The double dispatcher stores the
information in astd: :map. At runtime, when invoked with two unknown objects, the double dispatcher
performs afast search (logarithmic time) for type discovery, and if it finds an entry, fires the appropriate
pointer to a function.

Let's define the structure of a generic engine operating on these principles. We must templatize the engine
with the base types of the two arguments (left-hand side and right-hand side). We call this engine
BasicDispatcher, because we will use it as the base device for several more advanced double
dispatchers.

template <class BaselLhs, class BaseRhs = BaselLhs,
typename ResultType = void>
class BasicDispatcher

{
typedef std::pair<OrderedTypelnfo, OrderedTypelnfo>
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KeyType;
typedef ResultType (*CallbackType)(BaseLhs&, BaseRhs&);
typedef CallbackType MappedType;
typedef std::map<KeyType, MappedType> MapType;
MapType callbackMap_;
public:
}:

The key typeinthemapisastd: :pair of two OrderedType Info objects. The std: :pair class
supports ordering, so we don't have to provide a custom ordering functor.

BasicDispatcher can be more general if we templatize the callback type. In genera, the callback does
not have to be afunction. It can be, for example, afunctor (refer to the introduction of Chapter 5 for a
discussion of functors). BasicDispatcher can accommodate functors by transforming its inner

Cal IbackType type definition into atemplate parameter.

An important improvement is to change the std: : map type to a more efficient structure. Matt Austern
(2000) explains that the standard associative containers have a sightly narrower area of applicability than
one might think. In particular, a sorted vector in combination with binary search algorithms (such as

std: : lower_bound) might perform much better, in both space and time, than an associative container.
This happens when the number of accesses is much larger than the number of insertions. So we should take
aclose look at the typical usage pattern of a double-dispatcher object.

Most often, a double dispatcher is awrite-once, read-many type of structure. Typically, a program sets the
callbacks once and then uses the dispatcher many, many times. Thisis in keeping with the virtual functions
mechanism, which double dispatchers extend. Y ou decide, at compile time, which functions are virtual and
which are not.

It seems as if we're better off with a sorted vector. The disadvantages of a sorted vector are linear-time
insertions and linear-time deletions, and a double dispatcher is not typically concerned about the speed of
either. In exchange, a vector offers about twice the lookup speed and a much smaller working set, soitis
definitely a better choice for a double dispatcher.

Loki saves the trouble of maintaining a sorted vector by hand by defining an AssocVector class
template. AssocVector isadrop-in replacement for std: :map (it supports the same set of member
functions), implemented on top of std: : vector. AssocVector differsfrom amap in the behavior of
itserase functions (AssocVector : :erase invalidates al iterators into the object) and in the
complexity guarantees of insert and erase (linear as opposed to constant). Because of the high degree
of compatibility of AssocVector with std: :map, we'll continue to use the term map to describe the
data structure held by the double dispatcher.

Hereisthe revised definition of BasicDispatcher:

template
<

class Baselhs,

class BaseRhs = BaselLhs,

typename ResultType = void,

typename CallbackType = ResultType (*)(BaselLhsé&, BaseRhs&)
>
class BasicDispatcher
{

typedef std::pair<Typelnfo, Typelnfo>

KeyType;
typedef CallbackType MappedType;
typedef AssocVector<KeyType, MappedType> MapType;
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MapType callbackMap_;
public:
};
Theregistration function is easy to define. Thisisall we need:

template <...>
class BasicDispatcher

{
. as above ...
template <class SomelLhs, SomeRhs>
void Add(CallbackType fun)
{
const KeyType key(typeid(SomeLhs), typeid(SomeRhs));
callbackMap_[key] = fun;
3
3

Thetypes SomelLhs and SomeRhs are the concrete types for which you need to dispatch the call. Just like
std: :map, AssocVector overloads operator[] to find akey's corresponding mapped type. If the
entry ismissing, anew element isinserted. Then operator[] returns areference to that new or found
element, and Add assigns fun toit.

Thefollowing is an example of using Add:

typedef BasicDispatcher<Shape> Dispatcher;
// Hatches the intersection between a rectangle and a polygon
void HatchRectanglePoly(Shape& lhs, Shape& rhs)

{
Rectangle& rc = dynamic_cast<Rectangle&>(lhs);
Poly& pl = dynamic_cast<Poly&>(rhs);
. use rc and pl
}

biépatcher disp;
disp.Add<Rectangle, Poly>(HatchRectanglePoly);

The member function that does the search and invocation is ssimple:

template <...>
class BasicDispatcher

{
. as above ...
ResultType Go(BaselLhsé& lhs, BaseRhs& rhs)
{
MapType::iterator i = callbackMap_.find(
KeyType(typeid(lhs), typeid(rhs));
if (i == callbackMap_.end())
{
throw std::runtime_error(*'Function not found™);
}
return (i->second)(lhs, rhs);
}
}:

11.6.1 The Logarithmic Dispatcher and Inheritance
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BasicDispatcher does not work correctly with inheritance. If you register only
HatchRectanglePoly(Shape& lhs, Shape& rhs) withBasicDispatcher, you get proper
dispatching only for objects of type Rectangle and Poly—nothing else. If, for instance, you pass
referencesto aRoundedRectangle and aPoly to BasicDispatcher: :Go, BasicDispatcher
will reject the call.

The behavior of BasicDispatcher isnot in keeping with inheritance rules, according to which derived
types must by default act like their base types. It would be nice if BasicDispatcher accepted calls with
objects of derived classes, as long as these calls were unambiguous per C++'s overloading rules.

There are quite a few things you can do to correct this problem, but to date there is no complete solution.
Y ou must be careful to register all the pairs of typeswith Basic Dispatcher.

1 I am convinced there is a solution to the inheritance problem. But, alas, writers of books have deadlines,
too

11.6.2 The Logarithmic Dispatcher and Casts

BasicDispatcher isusable, but not quite satisfactory. Although you register a function that handles the
intersection between aRectangle and aPoly, that function must accept arguments of the base type,
Shape&. It isawkward and error-prone to ask client code (HatchRectanglePoly'simplementation) to
cast the Shape references back to the correct types.

On the other hand, the callback map cannot hold a different function or functor type for each element, so
we must stick to a uniform representation. Item 31 in More Effective C++ (Meyers 1996a) discusses this
issue, too. No function-pointer-to-function-pointer cast hel ps because after you exit
FnDoubleDispatcher: :Add, you've lost the static type information, so you don't know what to cast to.
(If this sounds confusing, try spinning some code and you'll immediately figureit out.)

We will implement a solution to the casting problem in the context of simple callback functions (not
functors). That is, the Cal IbackType template argument is a pointer to a function.

Anideathat could help is using atrampoline function, also known as a thunk. Trampoline functions are
small functions that perform little adjustments before calling other functions. They are commonly used by
C++ compiler writers to implement features such as covariant return types and pointer adjustments for
multiple inheritance.

We can use atrampoline function that performs the appropriate cast and then calls a function of the proper
signature, thus making life much easier for the client. The problem, however, isthat cal IbackMap_ must
now store two pointers to functions: one to the pointer provided by the client, and one to the pointer to the
trampoline function. This is worrisome in terms of speed. Instead of an indirect call through a pointer, we
have two. In addition, the implementation becomes more complicated.

An interesting bit of wizardry saves the day. A template can accept a pointer to a function as a nontype
template parameter. (Most often in this book, nontype template parameters are integral values.) A template
is alowed to accept pointersto global objects, including functions, as nontype template parameters. The
only condition is that the function whose address is used as a template argument must have external
linkage. Y ou can easily transform static functions in functions with external linkage by removing static
and putting them into unnamed namespaces. For example, what you would write as

static void Fun();

in pre-namespace C++, you can write using an anonymous hamespace as
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namespace

void Fun(Q);
}

Using a pointer to a function as a nontype template argument means that we no longer need to storeit in
the map. This essential aspect needs thorough understanding. The reason we don't need to store the pointer
to afunction is that the compiler has static knowledge about it. Thus, the compiler can hardcode the
function address in the trampo line code.

We implement thisideain a new classthat uses BasicDispatcher asitsback end. The new class,
FnDispatcher, istuned for dispatching to functions only—not to functors. FnDispatcher aggregates
BasicDispatcher privately and provides appropriate forwarding functions.

The FnDispatcher: : Add template function accepts three template parameters. Two represent the left-
hand-side and the right-hand-side types for which the dispatch is registered (ConcretelLhs and
ConcreteRhs). Thethird template parameter (cal Iback) isthe pointer to a function. The added
FnDispatcher: : Add overloads the template Add with only two template parameters, defined earlier.

template <class BaselLhs, class BaseRhs = BaselLhs,
ResultType = void>
class FnDispatcher

{
BaseDispatcher<BaselLhs, BaseRhs, ResultType> backEnd_;
public:
template <class ConcretelLhs, class ConcreteRhs,
ResultType (*callback)(ConcretelLhsé&, ConcreteRhs&)>
void AddQ)
{
struct Local // see Chapter 2
{
static ResultType Trampoline(BaseLhs& lhs, BaseRhs& rhs)
{
return callback(
dynamic_cast<ConcretelLhs&>(lhs),
dynamic_cast<ConcreteRhs&>(rhs));
}
}:
return backeEnd_.Add<ConcretelLhs, ConcreteRhs>(
&Local::Trampoline);
}
}:

Using alocal structure, we define the trampoline right inside Add. The trampoline casts the arguments to
the right types and then forwards to cal Iback. Then, the Add function uses backEnd_'s Add function
(defined by BaseDispatcher) to add the trampoline to cal IbackMap_.

Asfar as speed is concerned, the trampoline does not incur additional overhead. Although it looks like an
indirect call, the call to cal Iback is not. As explained before, the compiler hardwires cal Iback's
addressright into Trampol ine so thereis no second indirection. A clever compiler can even inline the
call to cal Iback if possible.

Using the newly defined Add function is simple:

typedef FnDispatcher<Shape> Dispatcher;

244



// Possibly in an unnamed namespace
void HatchRectanglePoly(Rectangle& lhs, Poly& rhs)

Dispatcher disp;
disp.-Add<Rectangle, Poly, Hatch>();

Because of its Add member function, FnDispatcher iseasy to use. FnDispatcher also exposes an
Add function similar to the one defined by BaseDispatcher, so you till can use this function if you
need to.*!

E]OnecasehwwhmhyoucanmnuseFnDiSpatCher::Addismmenyouneedtoremswrdynwnmww
loaded functions. Even in this case, however, you can make slight changes to your design so that you can
take advantage of trampolines.

11.7 Fnpispatcher and Symmetry

Because of FnDispatcher's dynamism, adding support for symmetry is much easier than it was with the
dtatic StaticDispatcher.

All we have to do to support symmetry isto register two trampolines: one that calls the executor in normal
order, and one that swaps the parameters before calling. We add a new template parameter to Add, as
shown.

template <class BaselLhs, class BaseRhs = BaselLhs,
typename ResultType = void>
class FnDispatcher

{
template <class ConcretelLhs, class ConcreteRhs,
ResultType (*callback)(ConcretelLhsé&, ConcreteRhs&),
bool symmetric>
bool Add(Q)
{
struct Local
{
--.. Trampoline as before ...
static void TrampolineR(BaseRhs& rhs, BaselLhs& 1hs)
{
return Trampoline(lhs, rhs);
}
33 )
Add<ConcretelLhs, ConcreteRhs>(&Local::Trampoline);
ifT (symmetric)
Add<ConcreteRhs, ConcretelLhs>(&Local::TrampolineR);
}
}
}:

Symmetry with FnDispatcher has function-level granularity—for each function you register, you can
decide whether or not you want symmetric dispatching.
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11.8 Double Dispatch to Functors

As described earlier, the trampoline trick works nicely with pointers to nonstatic functions. Anonymous
namespaces provide a clean way to replace static functions with nonstatic functions that are not visible
outside the current compilation unit.

Sometimes, however, you need your callback objects (the Cal IbackType template parameter of
BasicDispatcher) to be more substantial than simple pointers to functions. For instance, you might
want each callback to hold some state, and functions cannot hold much state (only static variables).
Consequently, you need to register functors, and not functions, with the double dispatcher.

Functors (Chapter 5) are classes that overload the function call operator, operator (), thusimitating
simple functions in call syntax. Additionally, functors can use member variables for storing and accessing
state. Unfortunately, the trampoline trick cannot work with functors, precisely because functors hold state
and simple functions do not. (Where would the trampoline hold the state?)

Client code can use BasicDispatcher directly, instantiated with the appropriate functor type.

struct HatchFunctor

{
void operator() (Shape&, Shape&)
{
)

}:

typedef BasicDispatcher<Shape, Shape, void, HatchFunctor>
HatchingDispatcher;

HatchFunctor: :operator() itself cannot be virtual, because BasicDispatcher needsafunctor
with value semantics, and value semantics don't mix nicely with runtime polymorphism. However,
HatchFunctor: :operator() canforward acall to avirtual function.

Thereal disadvantage is that the client |oses some automation that the dispatcher could do—namely,
taking care of the casts and providing symmetry.

It seems as if we're back to square one, but only if you haven't read Chapter 5 on generalized functors.
Chapter 5 defines a Functor class template that can aggregate any kind of functor and pointers to
functions, even other Functor objects. Y ou can even define specialized Functor objects by deriving
from the FunctorImpl class. We can define aFunctor to take care of the casts. Once the casts are
confined to the library, we can implement symmetry easily.

Let'sdefineaFunctorDispatcher that dispatches to any Functor objects. This dispatcher will
aggregate aBasicDispatcher that stores Functor objects.

template <class BaselLhs, class BaseRhs = BaselLhs,
typename ResultType = void>
class FunctorDispatcher

typedef Functor<ResultType,
TYPELIST_2(BaselLhs&, BaseRhs&)>
FunctorType;
typedef BasicDispatcher<BaselLhs, BaseRhs, ResultType,
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FunctorType>
BackEndType;
BackEndType backEnd_;
public:

¥

FunctorDispatcher usesaBasicDispatcher instantiation asits back end. BasicDispatcher
stores objects of type FunctorType, which are Functorsthat accept two parameters (BaselLhs and
BaseRhs) and return aResul tType.

The FunctorDispatcher : : Add member function defines a specialized FunctorImpl class by
deriving from it. The specialized class (Adapter, shown below) takes care of casting the arguments to the
right types; in other words, it adapts the argument types from BaselLhs and BaseRhs to SomeLhs and
SomeRhs.

template <class BaselLhs, class BaseRhs = Baselhs,
ResultType = void>
class FunctorDispatcher
{
... as above ...
template <class SomeLhs, class SomeRhs, class Fun>
void Add(const Funé& fun)
{
typedef
Functorimpl<ResultType, TYPELIST 2(BaselLhsé&, BaseRhs&)>
FunctorimplType;
class Adapter : public FunctorimplType
{
Fun fun_;
virtual ResultType operator()(BaseLhs& lhs, BaseRhs& rhs)
{
return fun_(
dynamic_cast<SomeLhs&>(lhs),
dynamic_cast<SomeRhs&>(rhs));

virtual FunctorImplType* Clone()const
{ return new Adapter; }
public:
Adapter(const Fun& fun) : fun_(fun) {}
}:
backEnd_.Add<SomelLhs, SomeRhs>(
FunctorType((FunctorImplType*)new Adapter(fun));

}
¥

The Adapter class does exactly what the trampoline function did. Because functors have state, Adapter
aggregates a Fun object—something that was impossible with a simple trampoline function. The Clone
member function, with obvious semantics, is required by Functor.

FunctorDispatcher : : Add has remarkably broad uses. Y ou can useit to register not only pointers to
functions, but also almost any functor you want, even generalized functors. The only requirements for the
Fun typein Add isthat it accept the function-call operator with arguments of types SomeLhs and
SomeRhs and that it return atype convertible to Resul tType. The following example registers two
different functorsto aFunctorDispatcher object.

typedef FunctorDispatcher<Shape> Dispatcher;
struct HatchRectanglePoly



{
void operator()(Rectangle& r, Poly& p)

{
}
}:
struct HatchEllipseRectangle
{
void operator()(Ellipse& e, Rectangle& r)
{
}

¥

biépatcher disp;
disp.Add<Rectangle, Poly>(HatchRectanglePoly());
disp.Add<Ellipse, Rectangle>(HatchEllipseRectangle());

The two functors don't have to be related in any way (as with inheriting from a common base). All they
have to do isto implement operator () for the types that they advertise to handle.

Implementing symmetry with FunctorDispatcher issimilar to implementing symmetry in
FnDispatcher. FunctorDispatcher : : Add definesanew ReverseAdapter object that doesthe
casts and reverses the order of calls.

11.9 Converting Arguments: static_cast Ol dynamic_cast?

All the previous code has performed casting with the safe dynamic_cast. But in the case of
dynamic_cast, safety comes at a cost in runtime efficiency.

At registration time, you already know that your function or functor will fire for apair of specific, known
types. Through the mechanism it implements, the double dispatcher knows the actual types when an entry
in the map isfound. It seems awaste, then, to have dynamic_cast check again for correctness when a

simple static_cast achieves the same result in much lesstime.

There are, however, two casesin which static_cast may fail and the only cast torely onis
dynamic_cast. Thefirst occurs when you're using virtual inheritance. Consider the following class
hierarchy:

class Shape { ... };
class Rectangle : virtual public Shape { -.. };
class RoundedShape : virtual public Shape { ... };
class RoundedRectangle : public Rectangle,

public RoundedShape { ... };

Figure 11.2 displays a graphical representation of the relationships between classes in this hierarchy.

Figure 11.2. A diamond-shaped class hierarchy using virtual inheritance
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This may not be a very smart class hierarchy, but one thing about designing class libraries is that you never
know what your clients might need to do. There are definitely reasonable situations in which a diamond-
shaped class hierarchy is needed, in spite of al its caveats. Consequently, the double dispatchers we
defined should work with diamond-shaped class hierarchies.

The dispatchers actually work fine as of now. But if you try to replace the dynamic_castswith
static_casts, you will get compile-time errors whenever you try to cast a Shapeé& to any of
Rectangle&, RoundedShape&, and RoundedRectangle&. The reason is that virtual inheritance
works very differently from plain inheritance. Virtual inheritance provides a means for several derived
classes to share the same base class object. The compiler cannot just lay out a derived object in memory by
gluing together a base object with whatever the derived class adds.

In some implementations of multiple inheritance, each derived object stores a pointer to its base object.
When you cast from derived to base, the compiler uses that pointer. But the base object does not store
pointers to its derived objects. From a pragmatic viewpoint, all this means that after you cast an object of
derived typeto avirtual base type, there's no compile-time mechanism for getting back to the derived
object. You cannot static_cast from avirtual base to an object of derived type.

However, dynamic_cast uses more advanced means to retrieve the rel ationships between classes and
works nicely even in the presence of virtual bases. In anutshell, you must use dynamic_cast if you have
ahierarchy using virtual inheritance.

Second, let's analyze the situation with asimilar class hierarchy, but one that doesn't use virtual
inheritance—only plain multiple inheritance.

class Shape { ... };

class Rectangle : public Shape { ... };

class RoundedShape : public Shape { ... };

class RoundedRectangle : public Rectangle,
public RoundedShape { ... };

Figure 11.3 shows the resulting inheritance graph.

Figure 11.3. A diamond-shaped class hierarchy using nonvirtual inheritance
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Although the shape of the class hierarchy is the same, the structure of the objectsis very different.
RoundedRectangle now has two distinct subobjects of type Shape. This means that converting from
RoundedRectangle to Shape is how ambiguous. Which Shape do you mean—that in the
RoundedShape or that in the Rectangle? Similarly, you cannot even static cast a Shapeé& to a
RoundedRectangle& because the compiler doesn't know which Shape subobject to consider.

We're facing trouble again. Consider the following code:

RoundedRectangle roundRect;
Rectangle& rect = roundRect; // Unambiguous implicit conversion
Shape& shapel = rect;
RoundedShapeé& roundShape = roundRect; // Unambiguous implicit
// conversion
Shape& shape2 = roundShape;
SomeDispatcher d;
Shape& someOtherShape = .._;
d.Go(shapel, someOtherShape);
d.Go(shape2, someOtherShape);

Here, it is essential that the dispatcher use dynamic_cast to convert the Shape& to aRounded
Shape&. If you try to register atrampoline for converting a Shape& to aRoundedRectangleé&, a
compile-time error occurs due to ambiguity.

Thereisno trouble at al if the dispatcher usesdynamic_cast. A dynamic_cast<Rounded
Rectangleé&> applied to any of the two base Shape subobjects of aRoundedRectangle leadsto the
correct object. Asyou can see, nothing beats a dynamic cast. The dynamic_cast operator is designed to
reach the right object in a class hierarchy, no matter how intricate its structure is.

The conclusion that consolidates these findings is this: Y ou cannot use static_cast with adouble
dispatcher in a class hierarchy that has multiple occurrences of the same base class, whether or not it is
through virtual inheritance.

This might give you a strong incentive to use dynamic_cast in al dispatchers. However, there are two
supplemental considerations.
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e Very few class hierarchiesin the real world foster a diamond-shaped inheritance graph. Such class
hierarchies are very complicated, and their problems tend to outweigh their advantages. That's
why most designers avoid them whenever possible.

e dynamic_cast ismuch slower than static_cast. Its power comes at a cost. There are many
clients who have simple class hierarchies and who require high speed. Committing the double
dispatcher to dynamic_cast leaves these clients with two options. Reimplement the whole
dispatcher from scratch, or rely on some embarrassing surgery into library code.

The solution that Loki adopts is to make casting a policy—CastingPolicy. (Refer to Chapter 1 for a
description of policies.) Here, the policy is a class template with two parameters: the source and the
destination type. The only function the policy exposesis a static function called Cast. The following isthe
DynamicCaster policy class.

template <class To, class From>
struct DynamicCaster

{
static To& Cast(From& obj)
{
return dynamic_cast<To&>(obj);
}
}:

The dispatchers FnDispatcher and FunctorDispatcher use CastingPolicy according to the
guidelines described in Chapter 1. Here isthe modified FunctorDispatcher class. The changes are
shown in bold.

template
<

class Baselhs,

class BaseRhs = BaselLhs,

ResultType = void,

template <class, class> class CastingPolicy = DynamicCaster
>

class FunctorDispatcher

{
iéﬁplate <class SomelLhs, class SomeRhs, class Fun>
void Add(const Funé& fun)
{
class Adapter : public FunctorType::Impl
{
Fun fun_;
virtual ResultType operator()(BaselLhs& lhs,
BaseRhs& rhs)
{
return fun_(
CastingPolicy<SomelLhs, BaselLhs>::Cast(lhs),
CastingPolicy<SomeRhs, BaseRhs>::Cast(rhs));
... as before ...
}:
backEnd_.Add<SomelLhs, SomeRhs>(
FunctorType(new Adapter(fun));
}
}:

Cautioudly, the casting policy defaultsto DynamicCaster.
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Finaly, you can do avery interesting thing with casting policies. Consider the hierarchy in Figure 11.4.
There are two categories of casts within this hierarchy. Some do not involve a diamond-shaped structure,
sostatic_cast issafe. Namely, static_cast sufficesfor castingaShape& toaTriangle&. On
the other hand, you cannot static_cast aShapeé& to Rectangle& and any of its derivatives; you
must use dynamic_cast.

Figure 11.4. A class hierarchy with a diamond-shaped portion

Shape

Triangle Rectangle RoundedShape

RoundedRectangle

Suppose you define your own casting policy template for this class hierarchy, namely ShapeCast. You
can make it default to dynamic_cast. Y ou can then specialize the policy for the special cases:

template <class To, class From>
struct ShapeCaster

{
static To& Cast(From& obj)
{
return dynamic_cast<To&>(obj);
}
}:

template<>
class ShapeCaster<Triangle, Shape>

{
static Triangle& Cast(Shape& obj)
{
return static_cast<Triangle&>(obj);
}
}:

Y ou now get the best of both worlds—speedy casts whenever you can, and safe casts whenever you must.

11.10 Constant-Time Multimethods: Raw Speed

Maybe you have considered the static dispatcher but found it too coupled, have tried the map-based
dispatcher but found it too slow. Y ou cannot settle for less: Y ou need absolute speed and absolute
scalability, and you're ready to pay for it.
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The priceto pay in this case is changing your classes. Y ou are willing to allow the double dispatcher to
plant some hooksin your classes so that it leverages them later.

This opportunity gives afresh perspective to implementing a double-dispatch engine. The support for casts
remains the same. The means of storing and retrieving handlers must be changed, however—logarithmic
timeis not constant time.

To find a better dispatching mechanism, let's ask ourselves again, What is double dispatching? Y ou can see
it as finding a handler function (or functor) in atwo-dimensional space. On one axis are the types of the
left-hand operator. On the other axis are the types of the right-hand operator. At the intersection between
two types, you find their respective handler function. Figure 11.5 illustrates double dispatch for two class

hierarchies—one of Shapes and one of DrawingDev i ces. The handlers can be drawing functions that
know how to render each concrete Shape object on each concrete DrawingDevice object.

Figure 11.5. Dispatching on Shaped and DrawingDevices
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It doesn't take long to figure out that if you need constant-time searches in this two-dimensional space, you
must rely on indexed access in atwo-dimensional matrix.

The idea takes off swiftly. Each class must bear a unique integral value, which isthe index in the
dispatcher matrix. That integral value must be accessible for each class in constant time. A virtual function
can help here. When you issue a double-dispatch call, the dispatcher fetches the two indices from the two
objects, accesses the handler in the matrix, and launches the handler. Cost: two virtual calls, one matrix
indexing operation, and a call through a pointer to afunction. The cost is constant.

It seems asif the idea should work quite nicely, but some of its details are not easy to get right. For
instance, maintaining indices is very likely to be uncomfortable. For each class, you must assign a unique
integral 1D and hope that you can detect any duplicates at compile time. The integral 1Ds must start from
zero and have no gaps—otherwise, we would waste matrix storage.

A much better solution is to move index management to the dispatcher itself. Each class stores a static
integral variable; initially, itsvalueis -1, meaning "unassigned.” A virtual function returns areference to
that static variable, allowing the dispatcher to change it at runtime. As you add new handlers to the matrix,
the dispatcher accessesthe ID and, if itis -1, assigns the next available slot in the matrix to it.

Here's the gist of this implementation—a simple macro that you must plant in each class of your class
hierarchy.

#define IMPLEMENT INDEXABLE_CLASS(SomeClass)
static int& GetClasslndexStatic()\
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static int index = -1;\
return index;\

n

virtual int& GetClassindex(O\
i\

assert(typeid(*this) == typeid(SomeClass));\
return GetClasslndexStatic();\
}

Y ou must insert this macro in the publ i c portion of each class for which you want to support multiple
dispatch.’®!

(6] Yes, multiple, not only double, dispatch. You can easily generalize the index-based solution to support
multiple dispatch.

TheBasicFastDispatcher classtemplate exposes exactly the same functionality as the previously
defined BasicDispatcher but uses different storage and retrieval mechanisms.

template
<
class Baselhs,
class BaseRhs = Baselhs,
typename ResultType = void,
typename CallbackType = ResultType (*)(BaselLhsé&, BaseRhs&)
>
class BasicFastDispatcher
{
typedef std::vector<CallbackType> Row;
typedef std::vector<Row> Matrix;
Matrix callbacks_;
int columns_;
public:
BasicFastDispatcher() : columns_(0) {}
template <class SomelLhs, SomeRhs>
void Add(CallbackType pFun)
{
int& idxLhs = SomelLhs::GetClassIndexStatic();
it (idxLhs < 0)
{
callbacks_ .push_back(Row());
idxLhs = callbacks_ .size() - 1;

}
else if (callbacks_ .size() <= idxLhs)

callbacks .resize(idxLhs + 1);

}
Row& thisRow = callbacks_[idxLhs];

int& i1dxRhs = SomeRhs::GetClasslIndexStatic();
ifT (idxRhs < 0)
{

thisRow.resize(++columns );
idxRhs = thisRow.size() - 1;

}
else if (thisRow.size() <= 1dxRhs)
{

thisRow.resize(idxRhs + 1);

}
thisRow[1dxRhs] = pFun;
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The callback matrix isimplemented as a vector of vectors of MappedType. The
BasicFastDispatcher: : Add function performs the following sequence of actions:

1. Fetchesthe ID of each class by calling GetClassIndexStatic.

2. Performsinitiaization and adjustments if one or both indices were not initialized. For uninitialized
indices, Add expands the matrix to accommodate one extra el ement.

3. Insertsthe callback at the correct position in the matrix.

The columns_ member variable tallies the number of columns added so far. Strictly speaking, columns__
is redundant; a search for the maximum row length in the matrix would yield the same result. However,
collumn_'s convenience justifies its presence.

TheBasicFastDispatcher: :Go is easy to implement now. The main differenceis that Go uses the
virtual function GetClassIndex.

template <...>
class BasicFastDispatcher
{
... as above ...
ResultType Go(BaselLhsé& lhs, BaseRhs& rhs)
{
int& idxLhs lhs.GetClassIndex();
int& idxRhs rhs._GetClassIndex();
iT (idxLhs < 0 |] 1dxRhs < 0 ||
idxLhs >= callbacks_.size() ||
idxRhs >= callbacks_[idxLhs].size() ||
callbacks_[idxLhs][idxRhs] == 0)

{

}
return callbacks [idxLhs][idxRhs].callback (lhs, rhs);

... error handling goes here ...

}
3

Let's recap this section. We defined a matrix-based dispatcher that reaches callback objectsin constant
time by assigning an integral index to each class. In addition, it performs automatic initiaization of its
support data (the indices corresponding to the classes). Users of BasicFastDispatcher must add a
one-macro line, IMPLEMENT _INDEXABLE_CLASS (YourClass), to each classthat isto use
BasicFastDispatcher.

11.11 BasicDispatcher and BasicFastDispatcher S Policies

BasicFastDispatcher (matrix based) is preferable to BasicDispatcher (map based) when speed
isaconcern. However, the nice advanced classes FnDispatcher and FunctorDispatcher are built
around BasicDispatcher. Should we develop two new classes—FnFastDispatcher and
FunctorFastDispatcher—that use BasicFastDispatcher astheir back end?

A better ideaisto try to adapt FnDispatcher and FunctorDispatcher to use either
BasicDispatcher or BasicFastDispatcher, depending on atemplate parameter. That is, make the
dispatcher apolicy for the classes FnDispatcher and FunctorDispatcher, much aswe did with the
casting strategy.
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The task of morphing the dispatcher into apolicy is eased by the fact that Basic Dispatcher and
BasicFastDispatcher have the same call interface. This makes replacing one with the other as easy as
changing a template argument.

The following is the revised declaration of FnDispatcher (FunctorDispatcher'sdeclarationis
similar). The changes are shown in bold.

template
<
class Baselhs,
class BaseRhs = BaselLhs,
typename ResultType = void,
template <class, class>
class CastingPolicy = DynamicCaster,
template <class, class, class, class>
class DispatcherBackend = BasicDispatcher
>
class FnDispatcher; // similarly for FunctorDispatcher

Table 11.1. DispatcherBackend Policy Requirements

Expression Return Notes

Type
copy, assign, swap, destroy \ Value semantics.
backEnd.Add<SomeLhs, void Add a callback to the backEnd object for
SomeRhs>(cal Iback) types SomeLhs and SomeRhs.

backEnd.Go(BaselLhs&, BaseRhs&) ResultType Performs a lookup and a dispatch for the
two objects. Throws
std: :runtime_error if a handler is not

found.
backEnd.Remove<SomelLhs, bool Removes the callback for the types
SomeRhs>() SomeLhs and SomeRhs. Returns true if
there was a callback.
backEnd.HandlerExists<SomeLhs, |bool Returns true if a callback is registered
SomeRhs>() for the types SomeLhs and SomeRhs. No

callback is added.

The two classes themselves undergo very few changes.

Let's clarify the DispatcherBackend policy requirements. First of all, obviously, DispatcherBackend must
be atemplate with four parameters. The parameter semantics are, in order

Left-hand operand type
Right-hand operand type
Return type of the callback
The callback type

In Table 11.1, BackendType represents an instantiation of the dispatcher back-end template, and
backEnd represents avariable of that type. The table contains functions that we haven't mentioned yet—
don't worry. A complete dispatcher must come with functions that remove callbacks and that do a
"passive" lookup without calling the callback. These are trivial to implement; you can see themin Loki's
source code, file Mul tiMethods.h.
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11.12 Looking Forward

Generalization is right around the corner. We can take our findings regarding double dispatch and apply
them to implementing true generic multiple dispatch.

It's actually quite easy. This chapter defines three types of double dispatchers:

e A static dispatcher, driven by two typelists
o A map-based dispatcher, driven by amap keyed by apair of std: :type_info objects”

[ Dressed as OrderedTypelInfo to ease comparisons and copying.

e A matrix-based dispatcher, driven by a matrix indexed with unique numeric class IDs

It's easy to generalize these dispatchers as follows. Y ou can generalize the static dispatcher to one driven
by atypelist of typelists, instead of two typelists. Y es, you can define atypelist of typelists because any
typelist isatype. Thefollowing typedef defines atypelist of three typelists, possible participantsin a
triple-dispatch scenario. Remarkably, the resulting typelist is actually easy to read.

typedef TYPELIST 3

TYPELIST_3(Shape, Rectangle, Ellipse),
TYPELIST_3(Screen, Printer, Plotter),
TYPELIST _3(File, Socket, Memory)

)
ListOfLists;

Y ou can generalize the map-based dispatcher to one that is keyed by avector of std:: type_info
objects (as opposed to astd: :pair). That vector's size will be the number of objectsinvolved in the
multiple-dispatch operation. A possible synopsis of ageneralized BasicDispatcher isasfollows:

template
<

class ListOfTypes,

typename ResultType,

typename CallbackType
>

class GeneralBasicDispatcher;

The ListOfTypes template parameter is atypelist containing the base types involved in the multiple
dispatch. For instance, our earlier example of hatching intersections between two shapes would have used
aTYPELIST_2(Shape, Shape).

Y ou can generalize the matrix-based dispatcher by using a multidimensional array. Y ou can build a
multidimensional array with arecursive class template. The existing scheme of assigning numeric IDsto
typesworksjust asit is. This has the nice effect that if you modify a hierarchy once to support double
dispatch, you don't have to modify it again to support multiple dispatch.

All these possible extensions need the usual amount of work to get al the detailsright. A particularly nasty
problem related to multiple dispatch and C++ isthat there's no uniform way to represent functions with a
variable number of arguments.

As of now, Loki implements double dispatch only. The interesting generalizations just suggested are left in
the dreaded form of the exercisefor . . . you know.

=)
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11.13 Summary

Multimethods are generalized virtual functions. Whereas the C++ runtime support dispatches virtual
functions on a per-class basis, multimethods are dispatched depending on multiple classes simultaneously.
This allows you to implement virtual functions for collections of types instead of one type at atime.

By their nature, multimethods are best implemented as a language feature. C++ lacks such afeature, but
there are several waysto implement it in libraries.

Multimethods are needed in applications that call agorithms that depend on the type of two or more
objects. Typical examples include collisions between polymorphic objects, intersections, and displaying
objects on various target devices.

This chapter limits discussion to the defining of multimethods for two objects. An object that takes care of
selecting the appropriate function to call is called a double dispatcher. The types of dispatchers discussed
areasfollows:

e The brute-force dispatcher. This dispatcher relies on static type information (provided in the form
of atypelist) and does alinear unrolled search for the correct types. Once the types are found, the
dispatcher calls an overloaded member function in a handler object.

e The map-based dispatcher. This uses amap keyed by std: : type_info objects. The mapped
valueisacallback (either a pointer to afunction or afunctor). The type discovery agorithm
performs a binary search.

e The constant-time dispatcher. Thisis the fastest dispatcher of all, but it requires you to modify the
classes on which it acts. The change is to add a macro to each class that you want to use with the
constant-time dispatcher. The cost of adispatch istwo virtual calls, a couple of numeric tests, and
amatrix element access.

On top of the last two dispatchers, higher-level facilities can be implemented:

e Automated conversions. (Not to be confused with automatic conversions.) Because of their
uniformity, the dispatchers above require the client to cast the objects from their base types to
their derived types. A casting layer can provide atrampoline function that takes care of these
conversions.

e  Symmetry. Some double-dispatch applications are symmetric in nature. They dispatch on the same
base type on both sides of the double-dispatch operation, and they don't care about the order of
elements. For instance, in a collision detector it doesn't matter whether a spaceship hits a torpedo
or atorpedo hits a spaceship—the behavior is the same. Implementing support for symmetry in the
library makes client code smaller and less exposed to errors.

The brute-force dispatcher supports these higher-level features directly. Thisis possible because the brute-
force dispatcher has extensive type information available. The other two dispatchers use different methods
and add an extra layer to implement automated conversions and symmetry. Double dispatchers for

functions implement this extralayer differently (and more efficiently) than double dispatchers for functors.

Table 11.2 compares the three dispatcher types defined in this chapter. As you can see, none of the
presented implementationsisideal. Y ou should choose the solution that best fits your needs for a given
situation.

Table 11.2. Comparison of Various Implementations of Double Dispatch

Static Dispatcher Logarithmic Constant-Time Dispatcher
(StaticDispatcher) |Dispatcher (BasicFastDispatcher)
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|

\(BasicDispatcher)

Speed for few |Best Modest Good
classes

Speed for Low Good Best
many classes

Dependency |Heavy Low Low
introduced

Alteration of  |None None Add a macro to each class
existing

classes

needed

Compile-time |Best Good Good
safety

\Runtime safety\Best \Good \Good

11.14 Double Dispatcher Quick Facts

e Loki definesthree basic double dispatchers. StaticDispatcher, BasicDispatcher, and

BasicFastDispatcher.
StaticDispatcher'sdeclaration:

template
<
class Executor,
class Baselhs,
class TypesLhs,
class BaseRhs = BaselLhs,
class TypesRhs = TypesLhs,
typename ResultType = void
>

class StaticDispatcher;
where
BaselL hs isthe base |eft-hand type.

TypesLhs isatypelist containing the set of concrete types involved in the double dispatch on the
left-hand side.

BaseRhs is the base right-hand type.

TypesRhs isatypelist containing the set of concrete types involved in the double dispatch on the
right-hand side.

Executor isaclassthat provides the functions to be invoked after type discovery. Executor
must provide an overloaded member function Fi re for each combination of typesin TypesLhs
and TypesRhs.

ResultType isthetype returned by the Executor : : Fire overloaded functions. The returned
value will be forwarded asthe result of StaticDispatcher: :Go.
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Executor must provide a member function OnError(BaseLhs&, BaseRhs&) for error
handling. StaticDispatcher calsExecutor: :OnError when it encounters an unknown

type.

Example (assume Rectangle and EI i pse inherit Shape, and Printer and Screen inherit
OutputDevice):

struct Painter

{
bool Fire(Rectangle&, Printeré&);
bool Fire(Ellipse&, Printer&);
bool Fire(Rectangle&, Screen&);
bool Fire(Ellipse&, Screen&);
bool OnError(Shape&, OutputDeviced);

}:

typedef StaticDispatcher

<
Painter,
Shape,
TYPELIST _2(Rectangle, Ellipse),
OutputDevice,
TYPELIST_2(Printeré&, Screen),
bool

>

Dispatcher;

StaticDispatcher implementsthe Go member function, which takes aBaselLhsg, a
BaseRhs&, and an Executoré&, and executes the dispatch. Example (using the previous
definitions):

Dispatcher disp;

Shape* pSh = ...;

OutputDevice* pDev = ...;

bool result = disp.-Go(*pSh, *pDev);

BasicDispatcher and BasicFastDispatcher implement dynamic dispatchers that allow
users to add handler functions at runtime.

BasicDispatcher findsahandler in logarithmic time. BasicFastDispatcher findsa
handler in constant time but requires the user to change the definitions of all dispatched classes.
Both classes implement the same interface, illustrated here for BasicDispatcher.

template
<

class Baselhs,

class BaseRhs = BaselLhs,

typename ResultType = void,

typename CallbackType = ResultType (*)(BaselLhsé&, BaseRhs&)
>

class BasicDispatcher;

where

Cal IbackType isthetype of object that handles the dispatch.

BasicDispatcher and BasicFastDispatcher store and invoke objects of this type.

All other parameters have the same meaning asfor StaticDispatcher.
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The two dispatchers implement the functions described in Table 11.1.

In addition to the three basic dispatchers, Loki also defines two advanced layers. FnDispatcher
and FunctorDispatcher. They use one of BasicDispatcher or BasicFastDispatcher
asapolicy.

FnDispatcher and FunctorDispatcher have similar declarations, as shown here.

template
<
class BaselLhs,
class BaseRhs = Baselhs,
ResultType = void,
template <class To, class From>
class CastingPolicy = DynamicCast
template <class, class, class, class>
class DispatcherBackend = BasicDispatcher
>

class FnDispatcher;
where

BaselLhs and BaseRhs are the base classes of the two hierarchies involved in the double
dispatch.

ResultType isthetype returned by the callbacks and the dispatcher.

CastingPolicy isaclass template with two parameters. It must implement a static member
function Cast that accepts a reference to From and returns areference to To. The stock
implementations DynamicCaster and StaticCaster use dynamic_cast and
static_cast, respectively.

DispatcherBackend is aclass template that implements the same interface as
BasicDispatcher and BasicFastDispatcher, described in Table 11.1.

Both FnDispatcher and FunctorDispatcher provide an Add member function or their
primitive handler type. For FnDispatcher the primitive handler typeisResul tType

(*) (BaselLhs&, BaseRhs&). For FunctorDispatcher, the primitive handler typeis
Functor<ResultType, TYPELIST 2(BaselLhs&, Base Rhs&)>. Refer to Chapter 5 for
adescription of Functor.

In addition, FnDispatcher provides atemplate function to register callbacks with the engine:

void Add<SomelLhs, SomeRhs,
ResultType (*callback)(SomeLhs&, SomeRhs&),
bool symmetric>();

If you register handlers with the Add member function shown in the previous code, you benefit
from automated casting and optional symmetry.
FunctorDispatcher provides atemplate Add member function:

template <class SomeLhs, class SomeRhs, class F>
void Add(const F& fun);

F can be any of the types accepted by the Functor object (see Chapter 5), including another
Functor instantiation. An object of type F must accept the function-call operator with arguments
of types Basel.hs& and BaseRhs& and return atype convertible to Resul tType.

If no handler isfound, all dispatch engines throw an exception of type std: : runtime_error.
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Appendix A. A Minimalist Multithreading Library

A multithreaded program has multiple points of execution at the same time. Practically, this meansthat in
amultithreaded program you can have multiple functions running at once. On a multiprocessor computer,
different threads might run literally simultaneously. On a single-processor machine, a multithreading-
capable operating system will apply time slicing—it chops each thread at short time intervals, suspendsit,
and gives another thread some processor time. Multithreading gives the user the impression that multiple
things happen at once. For instance, aword processor can verify grammar while letting the user enter text.

Users don't like to see the hourglass cursor, so we programmers must write multithreaded programs.
Unfortunately, as pleasing asit is to users, multithreading is traditionally very hard to program, and even
harder to debug. Moreover, multithreading pervades application design. Making alibrary work safely in
the presence of multiple threads cannot be done from the outside; it must be built in, even if the library
does not use threads of its own.

It follows that the components provided in this book cannot ignore the threading issue. (Well, they actually
could, in which case most of them would be useless in the presence of multiple threads.) Because modern
applications increasingly use multithreaded execution, it would be a pity to sweep multithreading under the
rug out of laziness.

This appendix provides tools and techniques that establish a sound ground for writing portable
multithreaded object-oriented applicationsin C++. It does not provide a comprehensive introduction to
multithreaded programming—a fascinating domain in itself. Trying to discuss a complete threading library
en passant in this book would be afutile, doomed effort. The focus hereis on figuring out the minimal
abstractions that allow us to write multithreaded components.

Loki's threading abilities are scarce compared with the host of amenities that a modern operating system
provides, because its concern is only to provide thread-safe components. On the bright side, the
synchronization concepts defined in this appendix are higher level than the traditional mutexes and
semaphores and might help in the design of any object-oriented multithreaded application.

A.1 A Critique of Multithreading

The advantages of multithreading on multiprocessor machines are obvious. But when executed on asingle
processor, multithreading may seem a bit silly. Why would you want to slow down the processor with
time-dlicing algorithms? Obviously, you won't get any net gain. No miracle can occur—there's still only
one processor, so overall multithreading will actually dightly reduce efficiency because of the additional
swapping and bookkeeping.

The reason that multithreading is important even on single-processor machines is efficient resource use. In
atypical modern computer, there are many more resources than the processor. Y ou have devices such as
disk drives, modems, network cards, and printers. Because they are physically independent, these
resources can work at the same time. For instance, there is no reason why the processor cannot compute
while the disk spins and while the printer prints. However, thisis exactly what would happen if your
application and operating system committed exclusively to a single-threaded execution model. And you
wouldn't be happy if your application didn't allow you to do anything while transferring data from the
Internet through the modem.

In the same vein, even the processor might be unused for extended periods of time. Asyou are editing a
3D image, the short intervals between your mouse moves and clicks are little eternities to the processor. It
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would be niceif the drawing program could use those idle times to do something useful, such as ray
tracing or computing hidden lines.

The main aternative to multithreading is asynchronous execution. Asynchronous execution fosters a
callback model: Y ou start an operation and register a function to be called when the operation completes.
The main disadvantage of asynchronous execution compared with using multithreading is that it leads to
state-rich programs. By using asynchronous execution, you cannot follow an algorithm from one point to
another; you can only store a state and let the callbacks change that state. Maintaining such stateis
troublesome in all but the simplest operations.

True threads don't have this problem. Each thread has an implicit state given by its execution point (the
statement where the thread currently executes). Y ou can easily follow what athread does because it's just
like following a simple function. The execution point is exactly what you have to manage by hand in
asynchronous execution. (The main question in asynchronous programming is "Where am | now?') In
conclusion, multithreaded programs can follow the synchronous execution model, which is good.

On the other hand, threads are exposed to big problems as soon as they start sharing resources, such as data
in memory. Because threads can be interrupted at any time by other threads (yes, that's any time, including
in the middle of an assignment to a variable), operations that you thought were atomic are not.

Unorganized access of threads to a piece of datais always letha to that data.

In single-threaded programming, data health is usually guaranteed at the entry and at the exit of afunction.
For instance, the assignment operator (operator=) of aString class assumesthe String object is
valid upon entry and at exit of the operator. With multithreaded programming, you must make sure that the
String object isvalid even during the assignment operation, because another thread may interrupt an
assignment and do another operation against the String object. Whereas single-threaded programming
accustoms you to think of functions as atomic operations, in multithreaded programming you must state
explicitly which operations are atomic. In conclusion, multithreaded programs have big trouble sharing
resources, which is bad.

Most programming techniques for multithreading focus on providing synchronization objects that enable
you to serialize access to shared resources. Whenever you do an operation that must be atomic, you lock a
synchronization object. If other threads try to lock the same synchronization object, they are put on hold.

Y ou modify the data (and leave it in a coherent state) and then unlock the synchronization object. At that
moment, some other thread will be able to lock the synchronization object and gain access to the data. This
effectively makes every thread work on consistent data.

The following sections define various locking objects. The synchronization objects provided herein are not
comprehensive, yet you can do agreat deal of multithreaded programming by using them.

A.2 Loki's Approach

To deal with threading issues, Loki defines the ThreadingModel policy. ThreadingModel prescribes a
template with one argument. That argument is a C++ type for which you need to access threading
amenities:

template <typename T>
class SomeThreadingModel

{
¥
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The following sections progressively fill ThreadingModel with concepts and functionality. Loki defines a
single threading model that is the default for most of Loki.

A.3 Atomic Operations on Integral Types

Assuming x isavariable of type int, consider this statement:

++X

It might seem awkward that a book focused on design analyzes a simple increment statement, but thisis
the thing with multithreading—Ilittle issues affect big designs.

To increment x, the processor has to do three operations:

1. Fetch the variable from memory.

2. Increment the variable inside the arithmetic logic unit (ALU) of the processor. The ALU isthe
only place where an operation can take place; memory does not have arithmetic capabilities of its
own.

3.  Writethe variable back to memory.

Because the first operation reads, the second modifies, and the third writes the data, this troikais known as
aread-modify-write (RMW) operation.

Now suppose this increment happens in a multiprocessor architecture. To maximize efficiency, during the
modify part of the RMW operation the processor unlocks the memory bus. Thisway another processor can
access the memory while the first increments the variable, leading to better resource use.

Unfortunately, another processor can start an RMW operation against the same integer. For instance,
assume there are two increments on x, which initialy has value 0, performed by two processors P1 and P2
in the following sequence:

1. P1locksthe memory bus and fetches x.

2. P11 unlocks the memory bus.

3. P2 locksthe memory bus and fetches x (which isstill 0). At the sametime, P1 increments x inside
itsALU. Theresultis 1.

4. P2 unlocks the memory bus.

5. P11 locks the memory bus and writes 1 to x. At the sametime, P2 increments x inside its ALU.
Because P2 fetched a0, theresult is, again, 1.

6. P1 unlocksthe memory bus.

7. P2 locksthe memory bus and writes 1 to x.

8. P2 unlocks the memory bus.

The net result is that although two increment operations have been applied to x starting from 0, the final
valueis 1. Thisisan erroneous result. Worse, neither processor (thread) can figure out that the increment
failed and will retry it. In amultithreaded world, nothing is atomic—not even a simple increment of an
integer.

There are a number of ways to make the increment operation atomic. The most efficient way isto exploit
processor capabilities. Some processors offer |ocked-bus operations—the RMW operation takes place as
described previoudly, except that the memory bus islocked throughout the operation. Thisway, when P2
fetches x from memory, it will be after its increment by P1 has completed.
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Thislow-level functionality is usually packaged by operating systemsin C functions that provide atomic
increment and atomic decrement operations.

If an OS defines atomic operations, it usually does so for the integral type that has the width of the memory
bus—most of thetime, int. The threading subsystem of Loki (file Threads . h) defines the type
IntType inside each ThreadingModel implementation.

The primitives for atomic operations, still inside ThreadingModel, are outlined in the following:

template <typename T>
class SomeThreadingModel

{
public:
typedef int IntType; // or another type as dictated by the platform
static IntType AtomicAdd(volatile IntType& lval, IntType val);
static IntType AtomicSubtract(volatile IntType & Ival, IntType val);
- similar definitions for AtomicMultiply, AtomicDivide,
- Atomiclncrement, AtomicDecrement ...
static void AtomicAssign(volatile IntType & lval, IntType val);
static void AtomicAssign(IntType & lval, volatile IntType & val);

¥

These primitives get the value to change as the first parameter (notice the pass by non-const reference
and the use of volati le), and the other operand (absent in the case of unary operators) as the second
parameter. Each primitive returns a copy of the volati I e destination. The returned value is very useful
when you're using these primitives because you can inspect the actual result of the operation. If you inspect
the volati le value after the operation,

volatile int counter;

SomeThreadingModel<Widget>: :AtomicAdd(counter, 5);
if (counter == 10) ...

then your code does not inspect counter immediately after the addition because another thread can
modify counter between the call to AtomicAdd and the i T statement. Most of the time, you need to see
what value counter hasimmediately after your call to AtomicAdd, in which case you write

if (AtomicAdd(counter, 5) == 10) ...
Thetwo Atomi cAssign functions are necessary because even the copy operation can be nonatomic. For

instance, if your machine busis 32 bitswide and Iong has 64 bits, copying a long value involves two
MEMOry aCcCesses.

A.4 Mutexes

Edgar Dijkstra has proven that in the presence of multithreading, the thread scheduler of the operating
system must provide certain synchronization objects. Without them, writing correct multithreaded
applicationsisimpossible.

Mutexes are fundamental synchronization objects that allow threads to access shared resourcesin an
ordered manner. This section defines the notion of a mutex. The rest of Loki does not use mutexes directly;
instead, it defines higher-level means of synchronization that can be easily implemented with mutexes.
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Mutex is a collocation of Mutual Exclusive, a phrase that describes the functioning of this primitive object:
A mutex allows threads mutually exclusive access to aresource.

The basic functions of a mutex are Acqui re and Release. Each thread that needs exclusive accessto a
resource (such as a shared variable) acquires the mutex. Only one thread can acquire the mutex. After one
thread acquiresit, all other threads that invoke Acqui re block in await state (the function Acqui re does
not return). When the thread that owns the mutex calls the Re lease function, the thread scheduler
chooses one of the threads that isin await state on the same mutex and gives that thread the ownership of
the mutex.

The observabl e effect is that mutexes are access serialization devices. The portion of code between a call
tomtx.Acquire() and acall tomtx.Release() isatomic with respect to the mtx object. Any other
attempt to acquire the mtx object must wait until the atomic operation finishes.

It follows that you should allocate one mutex object for each resource you want to share between threads.
The resources you might want to share include, notably, C++ objects. Every nonatomic operation with
these resources must start with acquiring the mutex and end with releasing the mutex. The nonatomic
operations that you might want to perform include, notably, non-const member functions of thread-safe
objects.

For instance, imagine you have a BankAccount class that provides functions such as Deposit and
Withdraw. These operations do more than add to and subtract from adoub le member variable; they also
log additional information regarding the transaction. If BankAccount isto be accessed from multiple
threads, the two operations must certainly be atomic. Here's how you can do this:

class BankAccount

i
public:
void Deposit(double amount, const char* user)

{
mtx_.Acquire();
... perform deposit transaction ...
mtx_.Release();

void Withdraw(double amount, const char* user)

{
mtx_.Acquire();
... perform withdrawal transaction ...
mtx_.Release();

}

private:
Mutex mtx_;

3

Asyou probably have figured out (if you didn't know already), failing to call Release for each Acquire
you issue has deadly effects. Y ou lock the mutex and leave it locked— all other threads trying to acquire it
block forever. In the previous code, you must implement Deposi t and Wi thdraw very carefully with
regard to exceptions and premature returns.

To mitigate this problem, many C++ threading APIs define a Lock object that you can initialize with a
mutex. The Lock object's constructor calls Acqui re, and its destructor calls Re lease. Thisway, if you
allocate a Lock object on the stack, you can count on correct pairing of Acquire and Release, evenin
the presence of exceptions.
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For portability reasons, Loki does not define mutexes onits own. It's likely you aready use a
multithreading library that defines its own mutexes. It would be awkward to duplicate their functionality.
Instead, Loki relies on higher-level locking semantics that are implemented in terms of mutexes.

A.5 Locking Semantics in Object-Oriented Programming

Synchronization objects are associated with shared resources. In an object-oriented program, resources are
objects. Therefore, in an object-oriented program, synchronization objects are associated with application
objects.

It follows that each shared object should aggregate a synchronization object and lock it appropriately in
every mutating member function, much as the BankAccount example does. Thisis a correct way to
structure an object supporting multithreading. The structure fostering one synchronization object per object
is known as object-level locking.

However, sometimes the size and the overhead of storing one mutex per object are too big. In thiscase, a
synchronization strategy that keeps only one mutex per class can help.

Consider, for example, aString class. From time to time, you might need to perform alocking operation
on aString object. However, you don't want each String to carry a mutex object; that would make
Stringsbig and their copying costly. In this case, you can use a static mutex object for all Strings.
Whenever a String object performs alocking operation, that operation will block all locking operations
for al String objects. This strategy fosters class-level locking.

Loki defines two implementations of the ThreadingModel policy: ClassLevelLockable and
ObjectLevelLockable. They encapsulate class-ievel locking and object-level locking semantics,
respectively. The synopsisis presented here.

template <typename Host>
class ClassLevellLockable
{
public:
class Lock
{
public:
Lock(Q);
Lock(Hosté& obj);

¥

template <typename Host>
class ObjectLevellLockable

{
public:
class Lock

public:
Lock(Hosté& obj);

3 N

[E9)
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Technically, Lock keeps a mutex locked. The difference between the two implementationsis that you
cannot construct an ObjectLevelLockable<T>: :Lock without passing aT object to it. Thereason is
that ObjectLevelLockable uses per-object locking.

The Lock nested class locks the object (or the entire class, in the case of ClassLevelLockable) for the
lifetime of aLock object.

In an application, you inherit one of the implementations of ThreadingModel. Then you use the inner class
Lock directly. For example,

class MyClass : public ClassLevellLockable <MyClass>

{
}:
Table A.1. Implementations of ThreadingModel
\Class Template \Semantics
SingleThreaded No threading strategy at all. The Lock and ReadLock classes are

empty mock-ups.

ObjectLevelLockable|Object-level locking semantics. One mutex per object is stored. The
Lock inner class locks the mutex (and implicitly the object).

ClasslLevelLockable |Class-level locking semantics. One mutex per class is stored. The Lock
inner class locks the mutex (and implicitly all objects of a type).

The exact locking strategy depends on the ThreadingM odel implementation you choose to derive from.
Table A.1 summarizes the available implementations.

Y ou can define synchronized member functions very easily, as outlined in the following example:

class BankAccount : public ObjectLevellLockable<BankAccount>

t
public:
void Deposit(double amount, const char* user)
Lock lock(*this);
. perform deposit transaction ...
void Withdraw(double amount, const char* user)
Lock lock(*this);
- perform withdrawal transaction ...
}
}:

Y ou no longer have any problem with premature returns and exceptions; the correct pairing of lock/unlock
operations on the mutex is guaranteed by language invariants.

The uniform interface supported by the dummy interface SingleThreaded gives syntactic consistency.
Y ou can write your code assuming a multithreading environment, and then easily change design decisions
by modifying the threading model.

The ThreadingModel policy is used in Chapter 4 (Small-Object Allocation), Chapter 5 (Generalized
Functors), and Chapter 6 (Implementing Singletons).
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A.6 Optional volatite Modifier

C++ providesthe volati I e type modifier, with which you should qualify each variable that you share
with multiple threads. However, in asingle-threaded model, it's best not to use volati le because it
prevents the compiler from performing some important optimizations.

That'swhy Loki definesthe inner class Volati leType. Inside SomeThreadingMode l<Widget>,
VolatileType evaluatesto volatile Widget for ClassLevellLockable and
ObjectLevellLockable, andto plain Widget for SingleThreaded. You can see VolatileType at
work in Chapter 6.

A.7 Semaphores, Events, and Other Good Things

Loki's support for multithreading stops here. General multithreading libraries provide aricher set of
synchronization objects and functions such as semaphores, events, and memory barriers. Also, the function
that starts a new thread is conspicuously absent from Loki—witness to the fact that Loki aims to be thread
safe but not to use threads itself.

It is possible that afuture version of Loki will provide a complete threading model. Multithreading isa
domain that can greatly benefit from generic programming techniques. However, competition is heavy
here—check out ACE (Adaptive Communication Environment) for a great, very portable multithreading
library (Schmidt 2000).

A.8 Summary

Threads are absent from standard C++. However, synchronization issues in multithreaded programs
pervade application and library design. The trouble is, the threading models supported by various operating
systems are very different. Therefore, Loki defines a high-level synchronization mechanism having a
minimal interaction with a threading model provided from the outside.

The ThreadingModel policy and the three class templates that implement ThreadingModel define a
platform for building generic components that support different threading models. At compile time, you
can select support for object-level locking, class-level locking, or no locking at all.

The object-level locking strategy allocates one synchronization object per application object. The class-
level locking strategy allocates one synchronization object per class. The former strategy is faster; the
second uses a smaller amount of resources.

All implementations of ThreadingModel support a unique syntactic interface. This makes it easy for the
library and for client code to use a uniform syntax. Y ou can adjust locking support for a class without
incurring changes to its implementation. For the same purpose, Loki defines a do-nothing implementation
that supports a single-threaded model.
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