

Absolute BSD—The Ultimate Guide to FreeBSD

Table of Contents
Absolute BSD—The Ultimate Guide to FreeBSD..1

Dedication..3

Foreword..4

Introduction..5
What Is FreeBSD?...5
How Did FreeBSD Get Here?..5
The BSD License: BSD Goes Public...6
The Birth of Modern FreeBSD...6
FreeBSD Development..7

Committers...7
Contributors..8
Users..8

Other BSDs..8
NetBSD..8
OpenBSD...9
BSD/OS..9
Mac OS X...9

Other UNIXes...9
Solaris..9
AIX...10
Linux..10
IRIX, HPUX, etc...10

FreeBSD's Strengths...10
Portability...10
Power...10
Simplified Software Management..11
Optimized Upgrade Process..11
Filesystem..11

Who Should Use FreeBSD..11
FreeBSD as Your Desktop...11
Who Should Run Another BSD..12
Who Should Run a Proprietary Operating System..12
How to Read This Book...13
What Must You Know?..13
How to Think About UNIX..14

Channels of Communication..14
Working with Channels..14
The Command Line..14

Chapter 1: Installation...16
FreeBSD Hardware..16

Processor...16
Memory (RAM)...16
Hard Drives..16

Downloading FreeBSD..17
Installing by FTP..18
Other FTP Install Information...19

i

Table of Contents
Chapter 1: Installation

Hardware Setup...19
Actually Installing FreeBSD...20

Configuring the Kernel for ISA Cards...21
Sysinstall: The Ugly FreeBSD Installer..21
Disk Usage...22

Partitioning...24
Root...25
Swap Space...25

Swap Splitting..26
/var, /usr, and /home..26
A Second Hard Drive...27

Soft Updates..28
Block Size..28
What to Install..28
Installation Media...29
Committing...30

Post−Install Setup..30
Root Password...30
Adding Users..31
Time Zone..32
Mouse..32
Configuring Network Cards..33
Xfree86..35
Software...35

Restart...36
A Note on Editors...37

Chapter 2: Getting More Help...38
Why Not Mail First?..38
The FreeBSD Attitude..38
Man Pages...39

The FreeBSD Manual..40
Man Page Headings...41

The FreeBSD Documentation..42
The Mailing List Archives...42
Other Web Sites...43
Using FreeBSD Problem−Solving Resources..43

Checking the Handbook/FAQ..43
Checking the Man Pages...43
Checking the Mailing List Archives..45
Using Your Answer..45
Mailing for Help..45

Chapter 3: Read This Before You Break Something Else! (Backup and Recovery).................48
Overview..48
System Backups..48
Tape Devices...49

How to Read Dmesg.boot..49
Controlling Your Tape Drive...50

ii

Table of Contents
Chapter 3: Read This Before You Break Something Else! (Backup and Recovery)

Device Nodes...50
Using the TAPE Variable...50
The mt Command..51

Backup Programs..52
Tar..52
Dump/Restore..55

Restoring from an Archive...58
Checking the Contents of an Archive...58
Extracting Data from an Archive..58
Restoring Interactively..59

Recording What Happened..60
Revision Control...61

Getting Older Versions...63
Breaking Locks...64
Viewing Log Messages..64
Reviewing a File's Revision History...65
Ident and ident Strings...65
Going Further...66

Single−User Mode...66
The Fixit Disk...68

Chapter 4: Kernel Games..70
Overview..70
What Is the Kernel?...70
Configuring Your Kernel...71

Sysctl..71
Changing Sysctls...74
Setting Sysctls at Boot...74
Kernel Configuration with Loader.conf...75
Manually Configuring the Loader...77

Loading and Unloading Modules in Multi−User Mode...78
Viewing Loaded Modules...78
Loading and Unloading Modules..79

Customizing the Kernel..79
Preparation...79
Your Backup Kernel...80
Editing Kernel Files..80
Basic Options...83
Multiple Processors..86
Device Entries..86

Building Your Kernel..89
Troubleshooting Kernel Builds...90

Booting an Alternate Kernel...91
Adding to the Kernel..92

LINT...92
Fixing Errors with Options..93

Tweaking Kernel Performance...94
Sharing Kernels...96

iii

Table of Contents
Chapter 5: Networking..97

Overview..97
Network Layers..97

The Physical Layer...98
The Physical Protocol Layer..98
The Logical Protocol Layer..99
The Application Layer..100

The Network in Practice...100
Mbufs...101
What Is a Bit?...101

Ethernet...102
Broadcasting..103
Address Resolution..103
Hubs and Switches..103
Netmasks...104
Netmask Tricks..105
Hexadecimal Netmasks...105
Unusable IP Addresses..106
Routing...106
UDP and TCP..107
Network Ports...107

Connecting to an Ethernet Network...108
Multiple IP Addresses on One Interface...110
Using Netstat..111

Chapter 6: Upgrading FreeBSD..116
Overview..116
FreeBSD Versions...116

Release..116
FreeBSD−current...117
FreeBSD−stable...117
Snapshots..118
Security Updates..118
Which Release Should You Use?..119

Upgrade Methods..119
Upgrading via Sysinstall...119
Upgrading via CVSup...120
Simplifying the CVSup Upgrade Process...130

Building a Local CVSup Server..132
Controlling Access...134
Authentication..135
Combining Authentication and Access...137

Chapter 7: Securing Your System..138
Overview..138
Who Is the Enemy?..138

Script Kiddies...139
Disaffected Users...139
Skilled Attackers...139

FreeBSD Security Announcements...139

iv

Table of Contents
Chapter 7: Securing Your System

Subscribing..140
What You'll Get..140

Installation Security Profiles...141
Moderate..141
Extreme..141

Root, Groups, and Permissions...141
The root Password...142
Groups of Users...142
Primary Group..143
Some Interesting Default Groups...143
Group Permissions...144

Changing Permissions...145
Changing File Ownership...146
Assigning Permissions...147

File Flags...148
Viewing a File's Flags..149
Setting Flags..149

Securelevels..150
Setting Securelevels..150
Which Securelevel Do You Need?...152
What Won't Securelevel and File Flags Do?..152
Living with Securelevels...153

Programs That Can Be Hacked...153
Putting It All Together..156

Chapter 8: Advanced Security Features..157
Traffic Control..157

Default Accept vs. Default Deny..157
TCP Wrappers...158

Configuring Wrappers..158
Daemon Name...158
The Client List..159
Putting It All Together...165

Packet Filtering..166
IPFilter..166
IPFW..167
Default Accept and Default Deny in Packet Filtering...167
Basic Concepts of Packet Filtering..167
Implementing IPFilter...168
Configuring Your Server to Use Jail...176
Configuring Your Kernel to Use Jail...177
Client Setup..178
Final Jail Setup...181
Starting the Jail..182
Managing Jails...182
Shutting Down a Jail..183

Monitoring System Security...183
If You're Hacked...184

v

Table of Contents
Chapter 9: Too Much Information About /etc..185

Overview..185
Varieties of /etc Files..185
Default Files...185

/etc/defaults/rc.conf..186
/etc/adduser.conf..186
/etc/crontab..188
/etc/csh.*..191
/etc/dhclient.conf..191
/etc/fstab..192
/etc/ftp.*..192
/etc/hosts.allow...193
/etc/hosts.equiv..193
/etc/hosts.lpd..193
/etc/inetd.conf...194
/etc/locate.rc...194
/etc/login.access...194
/etc/login.conf...197
Specifying Default Environment Settings...199
/etc/mail/mailer.conf...202
/etc/make.conf and /etc/defaults/make.conf...202
/etc/master.passwd..207
/etc/motd..208
/etc/mtree/*...208
/etc/namedb/*...208
/etc/newsyslog.conf..208
/etc/passwd..209
/etc/periodic.conf and /etc/defaults/periodic.conf...209
/etc/printcap..210
Working with Printcap Entries..210
/etc/profile...212
/etc/protocols..213
/etc/pwd.db...213
/etc/rc...214
/etc/rc.conf and /etc/defaults/rc.conf..215
/etc/resolv.conf...221
/etc/security..221
/etc/services...222
/etc/shells...222
/etc/spwd.db...222
/etc/ssh...222
/etc/sysctl.conf..222
/etc/syslog.conf..222

Chapter 10: Making Your System Useful...223
Overview..223
Making Software..223

The Pain and Pleasure of Source Code...224
Debugging..225

The Ports and Packages System...225

vi

Table of Contents
Chapter 10: Making Your System Useful

Ports...225
Finding Software..227
Legal Restrictions...229

Using Packages...229
Installing from CD−ROM..230
Installing via FTP..231
What Does a Package Install?...232
Uninstalling Packages..234
Package Information..234
Controlling Pkg_add...235
Package Problems...236
Forcing an Install..237

Using Ports..238
Installing a Port..239
Using Make Install..239
Built−In Port Features..240
Uninstalling and Reinstalling..243
Cleaning Up with Make Clean..244
Building Packages..244
Changing the Install Path...245
Setting Make Options Permanently..245

Upgrading Ports and Packages...245
Upgrading the Ports Collection..246
Ports Collection Upgrade Issues..247
Checking Software Versions..247
Hints for Upgrading..248

Chapter 11: Advanced Software Management..250
Overview..250
Startup and Shutdown Scripts...250

Typical Startup Script...251
Using Scripts to Manage Running Programs...252

Managing Shared Libraries..252
Ldconfig...253

Running Software from the Wrong OS..256
Recompilation..256
Emulation...257
ABI Implementation..257
Foreign Software Libraries...259

Installing and Enabling Linux Mode...259
Identifying Programs..260
What Is Linux_base?..261
Adding to Linux_base...261
Configuring Linux Shared Libraries..262
Installing Extra Linux Packages as RPMs..263

Using Multiple Processors—SMP..263
What Is SMP?..263
Kernel Assumptions...264
FreeBSD 3.0 SMP..265

vii

Table of Contents
Chapter 11: Advanced Software Management

FreeBSD 5 SMP...265
Using SMP...266
SMP and Upgrades..266

Chapter 12: Finding Hosts With DNS...268
How DNS Works..268
Basic DNS Tools..269

The Host Command...269
Getting Detailed Information with Dig...269
Looking Up Hostnames with Dig..271
More Dig Options...272

Configuring a DNS Client: The Resolver...273
Domain or Search Keywords...274
The Nameserver List..275

DNS Information Sources..275
The Hosts File..275
The Named Daemon..276
Zone Files..282

A Real Sample Zone..286
named.conf..286
/var/named/master/absolutebsd.com...286

Making Changes Work...288
Starting Named at Boottime...289
Checking DNS...289

Named Configuration Errors..290
Named Security...290
Controlling Information Order...291
More About BIND...292

Chapter 13: Managing Small Network Services..293
Bandwidth Control..293

Configuring IPFW...294
Reviewing IPFW Rules..297
Dummynet Queues..297
Directional Traffic Shaping...298

Public−Key Encryption...298
Certificates...299
Create a Request...299
Being Your Own CA...302

SSH..303
Testing SSH...304
Enabling SSH...304
Basics of SSH..304
Creating Keys...304
Confirming SSH Identity...305
SSH Clients..305
Connecting via SSH...306
Configuring SSH..306

System Time..309

viii

Table of Contents
Chapter 13: Managing Small Network Services

Setting the Time Zone..309
Network Time Protocol...309
Ntpdate..310
Ntpd...310

Inetd...311
/etc/inetd.conf...311
Configuring Programs in Inetd...312
Inetd Security...313
Starting Inetd..313
Changing Inetd's Behavior...314

Chapter 14: Email Services...315
Email Overview..315

Where FreeBSD Fits In..315
The Email Protocol...315

Email Programs...318
Who Needs Sendmail?..319
Replacing Sendmail...319
Installing Postfix...319
Pieces of Postfix...319
Configuring Postfix...320
Email Aliases..323
Email Logging..324
Virtual Domains..325
Postfix Commands...326
Finding the Correct Mail Host...326
Undeliverable Mail..326

POP3...327
Installing POP3..327
Testing POP3...327
POP3 Logging..328
POP3 Modes..328
Qpopper Preconfiguration Questions...329
Default Qpopper Configuration..329
APOP Setup...332
Configuring Pop3ssl...333
Qpopper Security...334

Chapter 15: Web and FTP Services...335
Overview..335
How a Web Server Works..335
The Apache Web Server..336

Apache Configuration Files..336
Configuring Apache..337
Controlling Apache...352

Virtual Hosting..355
Name−Based Virtual Hosts..356
IP−Based Virtual Hosts..357
Tweaking Virtual Hosts..357

ix

Table of Contents
Chapter 15: Web and FTP Services

.NET on FreeBSD..359
Installing the SSCLI..359

FTP..360
FTP Security..360
The FTP Client...360
The FTP Server..362

Chapter 16: Filsystems and Disks...367
Device Nodes...367

Hard Disks and Partitions...367
The /etc/fstab File..368
Disk Basics..369
The Fast File System...370

Vnodes...371
FFS Mount Types...371
FFS Mount Options..372

What's Mounted Now?...373
Dirty Disks..373

Fsck..373
Mounting and Unmounting Disks...375

Mounting Standard Filesystems...375
Mounting with Options..375
Forcing Read−Write Mounts..375
Mounting All Standard Filesystems..376
Mounting at Nonstandard Locations..376
Unmounting..376

Soft Updates..376
Enabling Soft Updates...377
IDE Write Caching and Soft Updates...377

Virtual Memory Directory Caching...378
Mounting Foreign Filesystems...378

Using Foreign Mounts..378
Foreign Filesystem Types..379
Mount Options and Foreign Filesystems..380

Filesystem Permissions...380
Removable Media and /etc/fstab...381
Creating a Floppy...381

Low−Level Formatting..381
Creating an FFS Filesystem...381
Creating an MS−DOS Filesystem..382

The Basics of SCSI..382
SCSI Types..383
SCSI Adapters...383
SCSI Buses..383
Termination and Cabling..383
SCSI IDs and LUNs...384

FreeBSD and SCSI..384
Boot−Time Delay...384
Wiring Down Devices...385

x

Table of Contents
Chapter 16: Filsystems and Disks

Adding New Hard Disks...386
Creating Slices...386
Creating Partitions..387
Configuring /etc/fstab...388
Installing Existing Files onto New Disks...388
Temporary Mounts...388
Moving Files...389
Stackable Mounts...389

Chapter 17: RAID...391
Hardware vs. Software RAID...391
RAID Levels...391
Software RAID...392

Vinum Disk Components..392
Vinum Plex Types..393
RAID−5 Plex..393
Preparing Vinum Drives...393
Dedicating Partitions to Vinum...394
Configuring Vinum..395
Concatenated Plex...396
Removing Vinum Configuration...398
Striped Volumes...399
Mirrored Volumes...400
Starting Vinum at Boot...401
Other Vinum Commands..402
Replacing a Failed Mirrored Plex...402

Chapter 18: System Performance..406
Overview..406
Computer Resources...406
Disk Input/Output...407
Network Bandwidth..407
CPU and Memory..407

Using Top...408
Memory Usage...411
Swap Space Usage..411
CPU Usage..412

When Swap Goes Bad...414
Paging..414
Swapping...415
Are You Swapping or Paging?...415

Real−World Performance Tuning...418
Fairness in Benchmarking..418
The Initial Test..418
Using Both CPUs...420
Directory Caching...421
Moving /usr/obj...421

Lessons Learned...423

xi

Table of Contents
Chapter 19: Now What's It Doing?...424

Status Mails...424
Forwarding Reports..424

Logging with Syslogd...424
Facilities...424
Levels...425
Syslog.conf...426
Wildcards...426
Rotating Logs with Newsyslog.conf...429

Reporting with SNMP...433
Basics of SNMP...433
MIBs...433
Net−snmp...434
Snmpwalk...435
Specific Snmpwalk Queries...435
Translating Between Numbers and Names...436
Setting Up Snmpd..437
Index Numbers...441

Long−Term Monitoring with MRTG..441
Configuring MRTG...442
Sample mrtg.cfg Entry..442
Testing MRTG..444
Tracking Other System Values..445
Useful Net−snmp MIBs..445
Monitoring a Single MIB...446
Customizing MRTG..447
MRTG Index Page...448
Sample MRTG Configurations...448
Monitoring Non−BSD Systems..450

Chapter 20: System Crashes and Panics..452
What Causes Panics?..452

What Does a Panic Look Like?..452
Responding to a Panic...453

Prerequisites..454
Crash Dump Process...454
The Debugging Kernel...454
Post−Panic Behavior..455
kernel.debug..455
Dumpon..456
Savecore..456
Upon a Crash...456
Dumps and Bad Kernels..456

Using the Dump...457
Advanced Kernel Debugging...459
Examining Lines...460
Examining Variables..460
Apparent Gdb Weirdness...462
Results...462
Vmcore and Security..463

xii

Table of Contents
Chapter 20: System Crashes and Panics

Symbols vs. No Symbols...463
Serial Consoles..465

Hardware Serial Console...465
Software Serial Console...465
Changing the Configuration...466
Using a Serial Console...467
Serial Login..469
Emergency Logon Setup..469
Disconnecting the Serial Console..470

Submitting a Problem Report...471
Problem Report System...471
What's in a PR?...471
Using Send−pr...471
Filling Out the Form..472
PR Results...474

Chapter 21: Desktop FreeBSD..475
Overview..475
Accessing File Shares...475

Prerequisites..475
Character Sets...476
Kernel Support for CIFS...476
SMB Tools..476
Configuring CIFS..476
Minimum Configuration: Name Resolution...478
Other smbutil Functions...478
Mounting a Share...479
Other mount_smbfs Options..480
Sample nsmb.conf Entries...480
CIFS File Ownership..481

Serving Windows File Shares..481
Accessing Print Servers...482

Lpd...482
Running a Local Lpd..483
Printer Testing..483

Local Printers...484
X: A Graphic Interface..484

X Prerequisites...484
X Versions..484
Configuring X...485
Making X Look Decent...485

Desktop Applications...486
Web Browsers..486
Email Readers..486
Office Suites...487
Music..488
Graphics...488
Desk Utilities..488
Games..489

xiii

Table of Contents
Afterword..491

Overview..491
The Community..491
What Can You Do?..492

If Nothing Else …...492
Getting Things Done..493

Second Opinions..493
Do It!..494

Appendix: Some Useful SYSCTL MIBs..495

List of Figures..507
Chapter 1: Installation..507
Chapter 5: Networking...507
Chapter 6: Upgrading FreeBSD...507
Chapter 19: Now What's It Doing?...507

List of Tables..508
Chapter 4: Kernel Games..508
Chapter 5: Networking...508
Chapter 8: Advanced Security Features..508
Chapter 9: Too Much Information About /etc...508

List of Sidebars..509
Chapter 15: Web and FTP Services..509

xiv

Absolute BSD—The Ultimate Guide to FreeBSD
Michael Lucas
NO STARCH PRESS San Francisco

Copyright © 2002 Michael Lucas

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system, without the prior written permission of the copyright owner and the publisher.

1 2 3 4 5 6 7 8 9 10–05 04 03 02

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

Publisher: William Pollock
Editorial Director: Karol Jurado
Cover and Interior Design: Octopod Studios
Composition: 1106 Design, LLC
Copyeditor: Andy Carroll
Proofreader: Robyn Brode
Indexer: Kevin Broccoli

Distributed to the book trade in the United States by Publishers Group West, 1700 Fourth Street,
Berkeley, CA 94710; phone: 800−788−3123; fax: 510−658−1834.

Distributed to the book trade in Canada by Jacqueline Gross & Associates, Inc., One Atlantic
Avenue, Suite 105, Toronto, Ontario M6K 3E7 Canada; phone: 416−531−6737; fax 416−531−4259.

For information on translations or book distributors outside the United States, please contact No
Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415−863−9900; fax: 415−863−9950; info@nostarch.com; http://www.nostarch.com/

The information in this book is distributed on an "As Is" basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch Press,
Inc. shall have any liability to any person or entity with respect to any loss or damage caused or
alleged to be caused directly or indirectly by the information contained in it.

Library of Congress Cataloguing−in−Publication Data

Lucas, Michael, 1967−

Absolute BSD : the ultimate guide to FreeBSD / Michael Lucas.

p. cm.

1

Includes index.

1−886411−74−3 (pbk.)

1. FreeBSD. 2. UNIX (Computer file) 3. Internet service

providers−−Computer programs. 4. Web servers−−Computer programs. 5.

Client/server computing. I. Title.

QA76.76.O63 L83 2002

005.4'4769−−dc21

2

Dedication
As always, for Liz

ACKNOWLEDGMENTS

I would like to thank all the members of the FreeBSD community for their hard work, dedication, and
friendship. FreeBSD has saved my hide on numerous occasions, and has taught me immense
amounts about how computers and the Internet really work. I have yet to speak with the president of
a software company, whereas I've spent many hours discussing FreeBSD with project leaders.

Having said that, there are a few people in that community who deserve my particular thanks for
reviewing the book in your hands. They are, in order, Szilvester Adam, John Baldwin, Wilko Bulte,
Chris Dillon, Giorgos Keramidas, Chris Knight, and Joel Wilsson. Any errors in this book were
introduced by myself, despite their best efforts.

The folks at No Starch Press also deserve my heartfelt thanks for actually bringing this to print. My
original manuscript needed a lot of work to become something that looks decent on the printed
page. Thanks, guys, and I'll make it easier next time. I would also like to thank Chris Coleman, my
editor at http://onlamp.com/, who brought No Starch Press and I together in the first place.

Most of all I want to thank my wife, Liz, for her patience and support while I sat in the corner and
muttered under my breath for months at a time while writing this book.

Michael Lucas
St. Claire Shores, Michigan

3

Foreword
Twenty five years. My god, has it really been that long? In 1976, the first BSD release was produced
by U.C. Berkeley's CSRG, it and subsequent releases of BSD having either spawned or
substantially influenced every Unix operating system to come after, including Linux and AT&T's
System V, through a commitment to innovation and to adding all the "missing pieces" that Unix was
lacking. Features like Virtual Memory, TCP/IP networking, job control, and even the venerable vi
screen editor (before which there was simply ed(1)) all came out of BSD. Not just operating
systems, but a number of POSIX and X/Open standards also owe their existence to it—an
influential "little project" indeed!

We started FreeBSD in 1992, a project that you'll read quite a bit about in this book, as a means of
carrying this work forward after the CSRG was disbanded and it looked like the BSD project, for all
its history and promise, might be coming to an end. This was not a state of affairs that BSD's many
fans were willing to settle for, and I'm happy to say that they rallied magnificently to the cause.

Far from being the end of BSD, the last 10 years have seen an almost explosive amount growth in
the BSD community, with FreeBSD operating systems powering some of the most significant
companies and sites on the Internet, setting new bandwidth and "uptime"; records and making the
acronym BSD almost synonymous with high performance, security, and reliability for those in the
Internet service industry.

FreeBSD's success has also hardly been limited to servers. With Apple's adoption of FreeBSD as a
key open−source technology for its Mac OS X operating system, it has since been introduced to a
whole new generation of enthusiastic users, many of whom would never have considered
themselves Unix users before but are now enjoying the benefits of a powerful operating system
combined with Apple's legendary user interface technology and a world−class suite of applications.
Even the most jaded Unix experts have been impressed at what BSD has grown into, and I suspect
that, at this point, it has surpassed even the wildest dreams of its creators.

Whether you're a Unix expert or someone who has never touched Unix before, you'll find this book
to be an excellent introduction to the unique and impressive world that is BSD. If you enjoy it even
half as much as I have, you're in for a great time!

Jordan Hubbard

Co−Founder, The FreeBSD Project

4

Introduction
Welcome to Absolute BSD! This book is a one−stop shop for new UNIX administrators who want to
build, configure, and manage dedicated FreeBSD servers. It will also be useful for those folks who
want to run FreeBSD on their desktop or combined desktop/server systems.

By the time you finish this book, you should be able to use FreeBSD to provide network services.
You should also understand how to manage, patch, and maintain your FreeBSD systems, and have
a basic understanding of networking, system security, and software management. We will discuss
FreeBSD version 4, which is the version recommended for production use as this book is being
released. Most of this book will be applicable to earlier and later versions, as well. Much of this book
is also applicable to NetBSD and OpenBSD.

What Is FreeBSD?

FreeBSD is a UNIX−like operating system,[1] available freely over the Internet, that is used
extensively in the ISP (Internet service provider) world, embedded devices, and anywhere reliability
is paramount. It's based directly on the original UNIX produced by AT&T in the 1970s.

Many years ago AT&T needed a lot of computer software to run their business. They were not
allowed to compete in the computer business, however. As a result, they licensed various pieces of
software, and the source code for it, to universities at low, low prices. University students with
access to this nifty technology could read the source code to learn how it worked. In return, AT&T
got free exposure, some pocket change, and a generation of computer scientists who cut their teeth
on their equipment. Everyone was happy. The best−known software distributed under this licensing
plan was UNIX.

[1]Why UNIX−like? Well, the word UNIX is a trademark that belongs to The Open Group. For an
operating system to be certified "UNIX," someone must pay The Open Group large chunks of
money. Since FreeBSD is developed in a not−for− profit manner, this isn't likely.

How Did FreeBSD Get Here?

Compared with modern operating systems, the original UNIX wasn't very good. But, since so many
students had the source code for UNIX, and so many teachers needed projects for their students,
UNIX was quickly improved by their efforts. Gradually, useful commands were built. The ability to
control running programs (also known as job control) was added. A filesystem appeared that
supported features we take for granted now. Over many years, entire chunks of the original UNIX
operating system were extracted and replaced.

The various universities that worked on UNIX shared their improvements and enhancements, with
the Computer Systems Research Group (CSRG) at the University of California, Berkeley, acting as
a central clearinghouse for UNIX code improvements. The CSRG distributed this code for free to
anyone with a valid AT&T UNIX license.

The resulting collection of patches for UNIX came to be known as the Berkeley Software
Distribution, or BSD UNIX. (It didn't hurt Berkeley's status any that the Defense Advanced Research
Projects Agency (DARPA) contributed funding to the CSRG to implement TCP/IP in UNIX.)

This development process continued for a long, long time. In fact, if you look at the copyright
statement on FreeBSD, you'll see this:

5

..
Copyright 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
 The Regents of the University of California. All rights reserved.
..

Yep, 15 years of work—a lifetime in software development. In fact, so much development went into
the original UNIX that the CSRG found that over the years they had replaced almost all of UNIX with
code created by the CSRG and their contributors. What remained of AT&T's work was actually
pretty small.

The BSD License: BSD Goes Public

Eventually, the CSRG's funding started running out. After some political wrangling within the
University of California, in 1992 the code was released to the general public under what became
known as the BSD license. Today, the BSD license has three clauses that can be summarized as
follows:

Don't claim you wrote this.•
Don't blame us if it breaks.•
Don't use our name to promote your product.•

(The original license required that every time someone used the software, they had to include a
notice that it included software copyrighted by the University of California. This requirement was
dropped a few years later. Today, people can use BSD code without having to announce it or notify
anyone.)

The BSD license may be the most liberal software license ever used. People are free to take BSD
and include it in proprietary products, free products, and open−source products, or print it out on
punch cards and cover the lawn with it. Instead of "copyright," the BSD license is sometimes
referred to as "copy− center," as in "take this down to the copy center and run off a few for yourself."
Not surprisingly, companies such as Sun Microsystems jumped right on it because, well, it was free.

The Birth of Modern FreeBSD

During the CSRG's heyday, however, UNIX work proceeded apace at AT&T. AT&T took parts of the
BSD UNIX distribution and integrated them with their UNIX, then turned around and relicensed the
result.

This worked well for AT&T until the grand breakup, when the mother of all telephone companies
suddenly was permitted to compete in the software business. They had one particularly valuable
property: a high−end operating system that had been extensively debugged by thousands of people
all over the world. They happily started selling UNIX to enterprises and charging very high fees for
it, all the while maintaining the university relationships that had given them such an advanced
operating system.

6

Berkeley's 1992 release of the BSD code met with great displeasure from AT&T's subsidiary USL
(UNIX System Laboratories). Almost immediately they took some of the software users, and the
university, to court. USL claimed that Berkeley had given away their intellectual property. The
University of California said that it was their intellectual property. In the meantime, various people
picked up on the code released by Berkeley and began building commercial and free products out
of it. One of these products was 386BSD, which would eventually be used as the core of FreeBSD
1.0.

In 1994, after two years of legal wrangling, the case was settled out of court once it was proved that
a great deal of the code in AT&T UNIX was actually taken in its entirety from BSD, rather than the
other way around! A half−dozen files were the only sources of contention, and to resolve these
outstanding issues some of the files were donated and others were kept proprietary. Unfortunately,
FreeBSD 1.X contained some of these files, so various BSD users worked frantically to rebuild
these missing components.

Once the dust settled, this new version of UNIX was released to the world as BSD4.4−Lite. A
subsequent update, BSD4.4−Lite2, is the grandfather of the current FreeBSD source, as well as the
ancestor of many other operating systems, such as NetBSD, OpenBSD, and Mac OS X.

Today FreeBSD is used throughout the Internet by some of the most vital and visible
Internet−oriented companies. For example, at this writing, Yahoo! is run almost entirely on
FreeBSD. The "baby Bell" US West uses FreeBSD to power its Internet operations. IBM, Nokia, and
many other hardware companies use FreeBSD in embedded systems where you'd never even
know it's there.

The fact is, if a company needs to pump some serious Internet bandwidth, it's probably running
FreeBSD. FreeBSD is all around you; you just may not see it because it rarely crashes.

FreeBSD Development

There's an old saying that managing programmers is like herding cats. However, despite what you
might think, for the most part these FreeBSD developers work well together as members of the
FreeBSD team. And, unlike some other projects, all FreeBSD development happens openly. Two
groups of people develop FreeBSD: contributors and committers.

Committers

Today, FreeBSD has almost 300 developers, or committers. Committers have read− and−write
access to the FreeBSD master source−code repository and can develop, debug, or enhance any
piece they deem necessary.

To plug yourself in to the beehive of FreeBSD development, consider subscribing to the mailing list
FreeBSD−hackers@FreeBSD.org, which contains most of the technical discussion. Some of the
technical talk is broken out into more specific mailing lists—for example, the networking
development is discussed on FreeBSD−net@FreeBSD.org. There are also a few IRC channels
where the FreeBSD crew hangs out and discusses things. Visitors and eavesdroppers are
welcome, so long as they don't interfere. (Yes, Internet chat can be used for a variety of useful
technical purposes!) The committers are responsible for keeping FreeBSD working, adding new
features, and evaluating patches from contributors. Most of these developers are volunteers; only a
handful are actually paid to do this painstaking work.

7

Contributors

In addition to the committer team, FreeBSD has thousands of contributors. Contributors don't have
to worry about breaking the main operating system repository; they just submit patches for
consideration by committers. Committers evaluate submissions and decide what to accept and what
to reject. A contributor who submits consistently acceptable code will frequently be asked by the
committers he works with to become a committer himself.

For example, I spent several years as a contributor. Any time I feel that I've wasted my life, I can go
look at the FreeBSD Web page and see where my work has been accepted by the committers and
used by thousands of users. (It helps. Sort of.) Between submitting this book and getting it back
from the editor, however, I had some spare time. I spent a while submitting patches to the FreeBSD
FAQ. Eventually, some members of the FreeBSD Project approached me and asked me to become
a committer. I initially refused, but finally allowed a few developers to persuade me.[2]

Users

Finally, FreeBSD has a mob of users, though it's impossible to realistically estimate their number.
After all, you can download the whole of FreeBSD for free, and never register, upgrade, or mail to a
mailing list.

Estimates are that somewhere between 5 and 10 percent of the machines on the Internet are
BSD−based. That's 5–10 percent of all the systems connected to the Internet, including the
countless Windows systems sitting on office desks. If you remove those systems from the count and
only count Internet servers, the percentage rises.

Since FreeBSD is by far the most popular open−source BSD, that's not an inconsiderable number
of machines. And since one FreeBSD server can handle hundreds or thousands of Internet
domains, a disproportionate number of sites uses FreeBSD compared to the number of servers.

[2]And some day I might forgive Will, Wilko, and Bruce for that. But I'll never let them live it down.

Other BSDs

FreeBSD is the most popular BSD, but it's not the only one. BSD 4.4−Lite spawned several different
projects, each with its own focus and purpose.

NetBSD

NetBSD is similar to FreeBSD in many ways, and the teams share developers and code. NetBSD's
main purpose is to provide an operating system that can be ported to any hardware platform.

As such, NetBSD runs on VAXes, PocketPC devices, and high−end Alpha servers, as well as the
Compaq iPaq. It even runs on hardware that doesn't exist yet—as I write this, the AMD
Sledgehammer is fully supported even though you can't get sample chips. Now that's portable.

The NetBSD code is specifically licensed to be freely reusable, just like the original BSD 4.4−Lite
code it's based on.

8

OpenBSD

OpenBSD branched off from NetBSD in 1996 with the goal of becoming the most secure BSD.
OpenBSD was the first to support hardware−accelerated cryptography (allowing it to encrypt and
decrypt information at a remarkable rate), and the developers are rather proud of the fact that their
default install hasn't been hacked remotely for over four years.

The OpenBSD people have audited the entire BSD code base, fixing most (but not all) potential
security holes before they can be exploited. OpenBSD is not as friendly or as easy to use as
FreeBSD, however.

BSD/OS

BSD/OS, produced by Wind River Systems, is a commercial, closed−source operating system that
greatly resembles FreeBSD. Some hardware manufacturers will not release hardware specifications
without nondisclosure agreements, and developers for a freely available operating system cannot
develop device drivers for such proprietary hardware. BSD/OS supports much of this hardware.

A great deal of the BSD/OS code is available to FreeBSD committers, and FreeBSD absorbs
BSD/OS enhancements that don't break nondisclosure agreements.

Mac OS X

Mac OS X? That's right. Large chunks of FreeBSD were incorporated into Apple's Mac OS X. If
you're looking for a stable operating system with a friendly face and a powerful core, Mac OS X is
unquestionably for you. While FreeBSD makes an excellent desktop for a computer professional, I
wouldn't put it in front of grandma. I would put Mac OS X in front of grandma without a second
thought, and even feel that I was doing the right thing.

Mac OS X includes a lot of things that aren't at all necessary for an Internet server, however, and it
only runs on Apple hardware, so I don't recommend it for an inexpensive, high−powered server.

While you cannot get the user interface source code for Mac OS X, you can view the operating
system's BSD core and Mach kernel; Apple has released them under the code name Darwin.

Other UNIXes

There are several other UNIX operating systems out there, some of which have even rented the
trademark UNIX so they can label themselves as such. This list is by no means exhaustive, but we'll
touch the high points.

Solaris

The best−known UNIX is Sun Microsystems' Solaris. Solaris runs on high−end hardware that
supports dozens of processors and gobs of disks. (Yes, "gobs" is a technical term.) It's used by
many enterprise−level applications, such as Oracle.

Solaris runs mainly on the SPARC hardware platform, which is manufactured by Sun. Since Sun
controls both the hardware and software, they can make their systems support many interesting
features, such as hot−swappable memory and main boards.

9

AIX

Another UNIX contender is IBM's AIX. AIX's main claim to fame is the journaling filesystem, which
records all disk transactions as they happen. It allows you to recover from system crashes without
much trouble, providing great reliability. AIX is based largely on BSD.

Linux

Linux is a clone of UNIX, written from the ground up in the last decade or so. Linux is similar to BSD
in many ways, though BSD has a much longer heritage, and is more friendly to commercial use
than Linux. Linux includes a requirement that a commercial user contribute all changes back to
Linux, while BSD has no such restriction.

Among many UNIX users, there's a perception of conflict between the BSD and Linux camps. If you
dig a little deeper, however, you'll find that most of the developers of these platforms communicate
and cooperate in a friendly and open manner. It's just a hard fringe of users and a very few
developers that generate friction.

IRIX, HPUX, etc.

Other UNIXes include Silicon Graphics' IRIX, a solid UNIX for graphics applications, and
Hewlett−Packard's HP−UX, popular in large enterprises. Many high− end software packages, such
as Informix, are specially designed for HP−UX.

If you look around you'll also find smaller contenders, such as SCO and UnixWare. They aren't
unimportant, they just aren't as popular. You'll also find old castoffs, such as Apple's A/UX and
Microsoft's Xenix. (Yes, Microsoft was a licensed UNIX vendor, very, very long ago.) Xenix was
eventually sold to SCO and became SCO UNIX.

FreeBSD's Strengths

So, after all this, how can we summarize FreeBSD?

Portability

FreeBSD's goal is to provide a freely redistributable operating system that runs on popular
hardware. While system security is a vital concern, FreeBSD's main goal is to run on the hardware
people are most likely to have. Today, this means the Intel x86−compatible systems (386, 486,
Pentium I through IV, Celeron, and AMD). FreeBSD also supports the Alpha processor, and work is
underway to support Intel's new IA64, AMD's new 64−bit chips, and Motorola's PowerPC, as well as
Sun's SPARC. (These platforms aren't afterthoughts; the hardware is just now coming out, or only
now becoming popular enough to port to.)

Power

Since FreeBSD runs adequately on 386 hardware, it runs quite well on modern computers. It's
rather nice to have an operating system that doesn't demand a Pentium III and a half−gig of RAM
just to power the user interface. As a result, you can actually use all that computing power to do the
work you want, rather than to run tasks you don't care about. If you choose to run a pretty graphical
interface with all sorts of spinning geegaws and fancy whistles, FreeBSD will support you, it just

10

won't require you to do so.

Simplified Software Management

FreeBSD also simplifies software management through its ports collection. Traditionally, tuning
software for a UNIX system has required considerable expertise. The ports collection simplifies this
considerably by automating and documenting the install, uninstall, and configuration process for
thousands of software packages. (Several other BSD operating systems have built their own
packaging systems based on the ports collection.)

Optimized Upgrade Process

Unlike operating systems that require painful and risky upgrade procedures, such as Windows,
FreeBSD's simple upgrade process builds an operating system that is optimized for your hardware
and application. This lets FreeBSD use every feature your hardware supports, instead of just the
lowest common denominator. If you change hardware, you can rebuild your system for that
particular hardware. Vendors such as Sun and Apple do exactly this, since they create both the
hardware and the operating system, but FreeBSD doesn't lock you in to a particular hardware
platform.

Filesystem

A filesystem is how information is stored on the physical disk—it is what maps "My Web Page" to a
series of zeros and ones on the metal disk in your hard drive. FreeBSD includes very sophisticated
filesystems. It can support files up to a petabyte (one thousand thousand gigabytes) in size, it is
highly damage−resistant, and it reads and writes files extremely quickly. The BSD filesystem is so
advanced that it has been adopted by many commercial UNIX vendors, such as Sun and HP.

Who Should Use FreeBSD

While FreeBSD can be used as a very powerful desktop or development machine, its history shows
a strong bias toward Web, mail, file, and support services. In fact, FreeBSD's main strength is on
Internet servers, and it is an excellent choice for any Internet service.

If you're thinking of running FreeBSD (or any UNIX) on your desktop, you'll need to understand how
your computer works. FreeBSD is not your best choice if you're looking for point−and−click
simplicity. If that's your goal, get a Macintosh computer and use Mac OS X, which has a BSD core,
so you can access the power of UNIX when you want it and not worry about it the rest of the time.
Or, if you want to use the lowest common denominator, there's always the various iterations of
Microsoft Windows. You won't have to understand your computer, but Windows is easy.

FreeBSD as Your Desktop

You can, of course, use FreeBSD as a powerful desktop OS.

There's a concept in computing called "eating your own dog food." If you ran a dog food company,
you'd want to make a product that your own dog would eat. If your dog turns up his nose at your
latest recipe, your company has a problem. The point here is that if you work with a product, you
should actually use it.

11

This total immersion method provides the fastest possible training and is the approach I took to
learn UNIX. By running FreeBSD exclusively on my desktop, I learned how to make a UNIX system
do anything I needed, and I became a much more powerful server administrator as a result.

In fact, I even wrote this book on my FreeBSD laptop, using an open−source word processor
(Emacs) and a business suite called StarOffice. I also use FreeBSD to watch MPEG video from
unencrypted video CDs and DVDs, burn MP3s from my own CDs, and listen to the MP3s when I
should be working. This is a fairly exhaustive sample of desktop tasks.

Desktop operating systems also allow you to do all sorts of silly things. At the moment, I have a
small animated BSD daemon sleeping under my mouse pointer. When I move the mouse, the
daemon awakens, chases down the pointer, and stabs it with his pitchfork. If this doesn't count as a
Stupid Desktop Trick, I don't know what does.

Who Should Run Another BSD

NetBSD is FreeBSD's closest competitor. However, unlike competitors in the commercial world, this
competition is mostly friendly. NetBSD and FreeBSD share code and developers freely; some
people even maintain the same subsystem in both operating systems. For example, NetBSD and
FreeBSD share their USB support. In fact, as I write this, work is actively underway to integrate the
FTP server used in both operating systems.

NetBSD's main advantage is that it runs on anything. For example, I have an ancient Silicon
Graphics workstation running NetBSD that I use as an NFS (Network File System) and DNS
(Domain Name System) server. It does the job. If you have old or weird hardware, NetBSD is a
good choice for you.

OpenBSD seems to stand apart from the rest of the BSD projects. While its code is available for
general use, the developers appear to be more interested in security than in making their system
approachable. OpenBSD has features that make it easy to do tasks such as bridging firewalls,
however, so if you find you can't do some security work in FreeBSD, check out OpenBSD.

Who Should Run a Proprietary Operating System

Proprietary operating systems like Sun's Solaris, Microsoft's Windows NT, IBM's AIX, and their ilk
are still quite popular despite the BSDs and Linux gnawing at their market share. Solaris, in
particular, holds a great deal of the UNIX market.

High−end enterprises (the Fortune 500) are fairly closely shackled to Solaris and Windows NT.
While this is slowly changing, it is true for now, and in such environments you're probably stuck with
those operating systems. But slipping in an occasional FreeBSD machine to handle basic services
such as DNS and file serving can make your life much easier at a much lower cost.

Of course, if your software will only run on a proprietary UNIX, your choice of operating system is
probably clear. Still, always ask a vendor if a FreeBSD version is available; you may be pleasantly
surprised.

12

How to Read This Book

Many computer books are thick enough to stun an ox, if you can lift them high enough without an
athletic supporter and a back brace. Plus, they're either encyclopedic in scope or so painfully
detailed that they're difficult to read. Do you really need a screenshot when you're told to "click OK"
or "accept the license agreement"? And when was the last time you actually sat down and read the
encyclopedia?

Absolute BSD is a little different. It's designed to be read once, from front to back. You can skip
around if you want to, but each chapter builds on what comes before. It's also short enough to be
digestible. After you've read it once, you can easily use it as a reference.

(If you're a frequent buyer of computer books, please feel free to insert all the usual stuff about
"read a chapter at a time for best learning" and so on. I'm not going to coddle you—if you picked up
a book on computing, you probably have two brain cells to rub together. Follow the examples, and
you'll learn.)

What Must You Know?

This book is aimed at the new UNIX administrator. Several years ago the new UNIX administrator
was already a skilled UNIX user with real programming skills and a degree in computer science, or
at least most of one. Today, UNIX−like operating systems are freely available from the Internet and
even 12−year−old children can run UNIX, read the source code, and learn enough to intimidate us
older folks. As such, I don't expect you to know a huge amount about UNIX before firing it up.

To use this book to its full potential, you should be familiar with some of the basic UNIX commands,
such as how to change directories (cd), list files in a directory (ls), and log in with a username and
password. If you're not familiar with basic commands and running UNIX from the shell, I recommend
you begin with a book like UNIX System Administration Handbook by Evi Nemeth, Garth Snyder,
Scott Seebass, and Trent R. Hein (Prentice Hall PTR).

You'll also need to know something about PC hardware. (Not a huge amount, mind you, but some.)
For example, it will help to know what an IRQ (interrupt request) is and how to differentiate between
a SCSI and IDE hard drive. Your need for hardware knowledge will, of course, depend on the
hardware you're using, but if you're interested enough to pick up this book and read this far, you
probably have the hardware knowledge that you need. We'll make this a little easier by assuming
you're dedicating a system to FreeBSD; very few network servers dual−boot Windows and
FreeBSD, after all!

Note Absolute BSD is about how to administer FreeBSD, not about how to redirect
output from a shell command. To make it easier for newer administrators, however,
I include the exact shell commands needed to produce the desired results. If you
learn best by example, you should find everything you need right here.

Many new system administrators these days come from a Windows background.
They learn that "ls" is like "dir", and "cd" is the same on both platforms. You can
learn the commands by rote, reading, and experience. What you cannot learn,
coming from this background, is how a UNIX machine thinks. It will not adjust to
you; you must accommodate it. With that in mind, we're going to spend a little time
discussing how you must think about your FreeBSD system.

13

How to Think About UNIX

If you'll be working with FreeBSD, you should understand some of the UNIX ways of thinking. Users
from a Windows background might very well go into shock during their first attempts to administer a
FreeBSD system if they don't understand how UNIX behaves, and how it expects you to behave.

People who are used to GUI environments, such as Windows and Macintosh, are probably
unfamiliar with how UNIX handles input and output. If you are new to UNIX, you may be used to
clicking something and seeing either an "OK" message, an error, nothing, or (all too often) a pretty
blue screen with nifty high−tech letters explaining exactly where the system crashed. UNIX does
things a little differently.

Channels of Communication

UNIX programs have three "channels" of communication: standard input, standard output, and
standard error. Once you understand how each of these channels work, you're a good way along to
understanding how a computer works.

Standard input is the source of information. When you're at the console typing a command, the
standard input is the keyboard. If your program is listening to the network, the standard input is the
network. Many programs can rearrange standard input to accept data from the network, a file, the
keyboard, or any other source.

The standard output is where the program's output is displayed. This is frequently the console
(screen). Network programs usually return the output to the network.

Finally, standard error is where error messages are sent. Frequently, console programs return
errors to the console; others log errors to a file.

Working with Channels

The channels just described can be arbitrarily arranged, a concept that is perhaps the biggest
hurdle for new UNIX users and admins. While it seems simple enough, it's slightly more difficult to
grow accustomed to than you might think.

For example, if you don't like the error messages appearing on the terminal, you can redirect them
to a file. If you don't want to type a list of information into a command, you can put the information in
a file (so you can reuse it), and dump the file into the standard input of your command. Or better
still, run a command to generate that information and put it in a file, or just pipe (send) it directly to
your second command.

The Command Line

Taken to its logical extreme, these input/output channels can overwhelm a new user. The first time I
saw someone type something like the following on a command line during my UNIX admin training,
I wanted to change careers.

..
tail −f /var/log/messages | grep −v sudo | grep −v named &
..

14

Lines of incomprehensible text began spilling across the screen. And worse still, my trainer kept
typing as this output poured out!

If you're coming from a point−and−click environment, a long string of commands like this is definitely
intimidating. What do all those funky words mean, let alone the symbols?

Think of learning to use the command line as learning a language. When learning a language, we
start with simple words. As we increase our vocabulary, we also learn how to string words together.
Learning to use the UNIX command line is like learning a language. You begin with simple single
commands and only later string them together into monstrosities like the one shown earlier.

Another difficulty people have is with the general UNIX program function philosophy. Most
consumer operating systems have monolithic software packages that try to be all things to all
people. UNIX programs are small, simple tools. That's in part because of the redirectable
input/output channels, and in part because of UNIX's heritage. Remember, at one time you needed
to be a programmer to run a UNIX system. Programmers don't mind building their own tools.
Assembling a tool on the command line is fairly easy compared to compiling a whole software
package.

These smaller programs also provide unparalleled flexibility. Have you ever wished you could use a
function from one program in another program? By using a variety of smaller programs and
arranging the inputs and outputs as you like, you can make the system behave in any manner that
amuses you. Many modern platforms have only started catching up with this idea of small, reusable
tools in the last few years.

15

Chapter 1: Installation
Before you can learn to run FreeBSD, you need to install it. A successful installation requires both
the software (FreeBSD) and supported hardware. You can get FreeBSD easily enough by visiting
http://www.FreeBSD.org/ and clicking the link that says "Getting FreeBSD," or by ordering it from
any of several vendors, such as FreeBSD Mall (http://www.freebsdmall.com/) or Daemon News
(http://www.daemonnews.org/).[1]

Hardware is another issue entirely.

FreeBSD Hardware

FreeBSD runs on several different hardware platforms, the most popular of which are
Intel−compatible systems 80386 and better. It also runs on the late and lamented Compaq Alpha,
and ports are in process to the SPARC, StrongARM, and PowerPC as well.

This book discusses the Intel platform (aka X86 or i386) because they're the most common and
best supported, and you probably have one around. In fact, even your old systems can run
FreeBSD; you probably have something in storage that would do nicely. Since our focus is on
network servers, the instructions given here discuss installing FreeBSD on a dedicated machine. To
learn how to make FreeBSD coexist with other operating systems, see the FreeBSD online
documentation.

Stil l, FreeBSD will run best with certain minimum configurations. Here are some basic
recommendations.

Processor

Your brand of processor is really irrelevant to FreeBSD; FreeBSD won't care if you're running an
Intel, AMD, IBM, or Cyrix CPU. It probes the CPU on booting, and uses whatever chip features it
recognizes. I've run effective servers on 486 machines before—in fact, I've filled a T1 Internet circuit
with a 486. However, I would still recommend that you get a Pentium or faster CPU. Some of the
demonstrations in this book take less than an hour on my twin 1 GHz Pentium system, but take
almost three days on my ancient 25 MHz 486.

Memory (RAM)

First, memory (as in RAM) is good, and the more memory, the better. In fact, adding RAM will do
more than anything else to accelerate your system. You should have at least 16MB of RAM at a
bare minimum.

Hard Drives

Hard drives can be a big performance bottleneck. While IDE drives are dirt cheap, they don't
perform as well as SCSI drives. A SCSI system can transfer data to and from each and every drive
at the full speed of the SCSI controller, while an IDE controller splits its available speed between the
drives. Also, a SCSI controller can have up to 15 drives, while an IDE controller can have no more
than 2. Having 15 drives, each running at full speed, versus 2 drives averaging half speed makes a
big difference in the amount of data throughput!

16

Still, if all you use are IDE drives, put multiple hard disks on separate controllers. Many systems
now have a hard drive on one IDE controller and a CDROM on the other. When you add a second
hard drive, put it on the second controller. (You won't be using the CD−ROM nearly as often as you
use the hard drive, after all.)

You'll be happiest with at least 1GB of disk on your system, though I'm assuming for purposes of
this book that you have at least 10GB.

[1]I recommend these vendors in particular, since they both contribute a portion of their proceeds
back to the FreeBSD community. You will find cheaper distributors, but they keep all the money for
themselves.

Downloading FreeBSD

If you choose to download FreeBSD via FTP instead of buying it on CD, you'll find a comprehensive
mirror list at http://www.freebsd.org/, though you can pick out mirrors easily enough without the
mirror list. Each mirror server has a name following this pattern:

..
ftp<number>.<country>.FreeBSD.org
..

The trailing country code is optional; if there is no country code, it's usually assumed to be in the
continental United States. For example, you can have http://ftp3.freebsd.org/,
http://ftp2.uk.freebsd.org/, http://ftp.ru.freebsd.org/, and so on, and so on.

As a rule, the FTP mirrors with the lower numbers are more heavily loaded than those with higher
numbers. Try a site down around http://ftp5.freebsd.org/,[2] or some high−numbered server under
your country code, and see if you can get a nice fast connection.

Many FreeBSD mirrors also mirror other software, and they store all the FreeBSD content under
/pub/FreeBSD. Let's take a look there:

..
 ..
.message
.notar
CERT
CTM
CVSup
FreeBSD−current
FreeBSD−stable
README.TXT
branches
development
dir.sizes
distfiles
doc
index.html
ls−lR.gz
ports
releases
snapshots
tools
updates

17

..

That's a lot of stuff! Fortunately, you don't have to worry about what most of it does. For your initial
install, the important directory is releases/i386. There you'll find a complete listing of all current
FreeBSD releases that the mirror carries, as well as a directory of ISO images for burning your own
bootable CDROM. (See your CD recorder documentation for help in doing so.)

Installing by FTP

Downloading an entire ISO image is a waste for many people, because that ISO will include things
you really don't need, such as dozens of packages you probably won't install. A better bet, if you
have a reasonable amount of bandwidth— meaning a cable modem, corporate LAN, or reliable 56K
line and a lot of time—is to install FreeBSD via FTP.

If you choose to install by FTP you'll need to download two floppy disk images first and make the
floppies. Why floppies? Well, booting from floppy can take a while—floppy drives are slow by
modern standards—but most systems have them and they usually work without a hitch. These
floppy images are like old−fashioned DOS boot disks; they contain just enough information to boot
FreeBSD, run the installation program, read information from a CD or an FTP server, and write to
disk.

You'll find the floppy disk images in the directory for the release you want (that is, 4.5−RELEASE) in
the floppies subdirectory. In there, you'll see the following:

boot.flp This is a disk image for 2.88MB disks. If you don't have a 2.88MB floppy drive or a
CD burner, it's useless to you.

•

fixit.flp This disk holds some basic commands that you can use for system recovery. See
Chapter 3 for more information.

•

kern.flp This is the boot disk image. It contains the basic kernel and will actually talk to your
hardware during the installation process.

•

mfsroot.flp This is the second boot disk image. It contains the programs that will be used to
install FreeBSD on a compressed memory−based filesystem.

•

Of the preceding floppy images, all you need to get are the kern.flp and mfsroot.flp files. Once you
have these files, you'll need to copy them onto floppy disks. The catch is, you cannot use basic
filesystem−level copying, like the typical Windows drag and drop. These are image files and must
be copied onto the disk in a particular way.

If you're already running a UNIX system, the dd command will do everything you need. But first,
you'll need your floppy drive's device name, which is probably /dev/fd0, /dev/floppy, or /dev/rfd0.

If the device name was /dev/fd0, you'd enter

..
dd if=kern.flp of=/dev/fd0
..

18

to write the kern.flp floppy image to disk.

Repeat the preceding process to copy mfsroot.flp to a second floppy disk, substituting mfsroot.flp for
kern.flp.

If you're running Microsoft Windows, you'll need a special utility that will copy disk images for you.
Microsoft doesn't provide one, but FreeBSD does, and you'll find it in the "tools" subdirectory of the
main directory for your release— it is called fdimage.exe.

Fdimage.exe is a free program that you can run under Windows to copy disk images, and it's quite
easy to use. For example, to copy the floppy image kern.flp to the floppy in your a: drive, enter the
following at a DOS prompt:

..
c:> fdimage kern.flp a:
..

Once the floppy drive finishes churning (which may take a while), repeat the process for mfsroot.flp
using a second floppy disk.

Other FTP Install Information

If your local network uses DHCP (Dynamic Host Configuration Protocol) to assign IP addresses and
other network information, things should Just Work. If your network administrators assign IP
addresses by hand, however, you will need to get the following information from your network
administrator:

IP address for your FreeBSD system•
IP addresses of nameservers used by your network•
Your network's default gateway•

[2]Since I've now mentioned a particular FTP server by name, it's going to be overloaded by those
folks who follow instructions to the absolute letter. Pick a server. Pick any server. Poke around until
you find one that works well for you.

Hardware Setup

In order to continue with your hardware setup, you'll need to make a quick trip to the BIOS. Most
computers let you enter the BIOS setup screen immediately after booting, usually by pressing F2 or
the DELETE key.

Once you're in the setup screen, set the computer to boot from your chosen media, either floppy
disk or CD. Floppy disks are shown either as "floppy" or "A:". CD−ROMs are usually listed as
"CDROM".

19

Note If you need help using your BIOS, see your manual or visit the BIOS publisher's site online.

While you're in the system BIOS, set the "Plug and Play OS" option to "no." This tells the BIOS to
do some basic hardware setup, rather than relying on the operating system to do everything.
Modern versions of Microsoft Windows expect the hardware to do as it is told, and hence expect full
access to the hardware. FreeBSD, on the other hand, expects a system to perform as the hardware
standards and specifications demand, and hence can take advantage of some setup work that is
most easily done in the BIOS.

Note Many devices (particularly network cards) will behave poorly if you don't change this option.

Actually Installing FreeBSD

When you have either a bootable CD−ROM or your two floppy disks, it's time to reboot your
machine using one or the other. When you reboot, you should see a message offering you a chance
to continue with the install, to configure your kernel in a visual menu, or to configure your kernel in a
text menu, as shown in Figure 1.1.

Figure 1.1: First boot menu
If you have old hardware, you might have to configure the kernel, which means telling the kernel
about your hardware. For example, FreeBSD supports ISA network cards from the early 1990s but
requires a very particular configuration to work properly. (This is a limitation of the hardware, not of
FreeBSD.)

If you don't have any ISA cards, you can just continue with the install, but if you're using ISA cards,
you'll need to configure your kernel to use them. Personally, I recommend replacing ISA cards with
PCI whenever possible; they're easier to manage and have much better throughput. If you're
running FreeBSD on a very old system, however, that might not be an option.

Note If you have problems, check the FreeBSD Handbook (online at http://www.freebsd.org/) for
help. If your hardware is less than a few years old, you should be able to continue with
installation without configuring the kernel.

20

Configuring the Kernel for ISA Cards

If you have any ISA cards, you'll need to know how to identify and adjust their hard−jumpered IRQs
(interrupt requests) and memory port addresses. (If not, you'll need to learn, or better yet upgrade,
your ISA cards.) Once you tell FreeBSD the card's proper IRQ and memory address, it should work.

At the initial boot menu (shown in Figure 1.1), choose the option to configure the kernel in
full−screen visual mode. That will bring up a menu like the one shown in Figure 1.2.

Figure 1.2: ISA card configuration
Devices are grouped into rough categories: storage, network, and so on. Select the category your
ISA card belongs to, and press ENTER to expand it. If your device is listed, FreeBSD supports it. If
your device is not listed, it either does not require configuration or FreeBSD does not support it.
Select your device, and enter your card's IRQ, port number, and memory address in the spaces
provided.

Once you finish telling the FreeBSD kernel about your card, type Q. You will be asked if you want to
save your configuration and exit. Type Y to continue. This will bring you to sysinstall.

Sysinstall: The Ugly FreeBSD Installer

The FreeBSD installer (shown in Figure 1.3) is a notoriously ugly, menu−driven system called
sysinstall. While other operating systems have pretty graphical installers with mouse−driven menus
and multicolor pie charts, FreeBSD's looks like an old DOS program. Even the system's author has
referred to the underlying library as "genuinely evil." (While a replacement is in the works, as I write
this it looks like sysinstall will be with FreeBSD for some time.)

21

Figure 1.3: Sysinstall main menu
Despite its looks, sysinstall is fairly simple to use, and it works well. While I won't present a
step−by−step walkthrough of the interface (that shouldn't be necessary), I will discuss the various
options presented during installation so you can make sensible choices.

You will need one very important instruction when dealing with sysinstall: Use the space bar to
select. The funny thing is, even though this simple bit of information is displayed on several screens
in sysinstall, in the help file, and in the instructions, people keep missing it. Then, once it's pointed
out, they spend the rest of their days wondering how they missed it. If you don't use the space bar
to select what you want, the install will fail.

Oh yes: The first time through, choose Standard install. Arrow down one line, and press ENTER.

Disk Usage

Many people have a computer that boots multiple operating systems. They divide their hard disk
into sections by OS, using one chunk for Windows and another for their other operating systems.
FreeBSD works well in such a setup. However, since we're building Internet servers, you should use
the entire disk for FreeBSD. Internet servers have to be up all the time, and you won't be shutting
down the company mail server to, say, play Civilization on a Windows partition!

The standard FreeBSD install leaves tiny partitions at the beginning and end of the disk, marked
"unused." This blank space is present when a disk is formatted for use with any operating system;
FreeBSD just shows you it's there. (As usual, the FreeBSD−hackers mailing list archive contains a
painful amount of detail on just why things work this way.)

Note If you're installing FreeBSD 3.X or earlier, you might see an option for
"dangerously dedicated" mode. This eliminates the tiny partitions and the
beginning and end of the drive. Some very, very old hard drives perform best
in dangerously dedicated mode. Don't use it unless you've researched the
issues involved and are ready to deal with the consequences. The
FreeBSD−hackers mailing list archives at http://www.FreeBSD.org/ search
are a good source of information on this topic (see Chapter 2).

The installer will first display a list of all the partitions on your hard drive. Arrow down and delete
them by pressing D. The example shown in Figure 1.4 shows four partitions: the two "unused"

22

partitions discussed previously, one FAT partition (for Windows), and one Windows Extended
partition.

Figure 1.4: Fdisk with Windows partitions
Once you've deleted all of the old partitions, use the A key to assign the entire disk to FreeBSD.
The resulting screen will look something like Figure 1.5.

Figure 1.5: Fdisk with one FreeBSD partition
Type Q to finish. The installer will drop you into the Boot Manager screen, shown in Figure 1.6.
Install a standard master boot record (MBR), which removes any existing boot manager that your
computer would use if you booted into multiple operating systems. (We're building Internet servers
and won't be sharing the hard drive with, say, Windows Me.) Just arrow down to "Standard", press
the space bar, and press ENTER to leave the screen.

23

Figure 1.6: Boot Manager selection
Once you do this, the installer will take you to the Disklabel menu.

Partitioning

Now we come to the first tricky part: how to partition the hard drive. Unlike other operating systems
that just hack up the drive in various sections, FreeBSD allows you to control where each partition
lies on the hard drive. This is important for a variety of reasons.

Each partition is accessible to the user as a mount point. In Windows, each partition has a mount
point of a letter, (such as C: or D:). In UNIX, all partitions and disks are part of a single directory
tree. A partition is assigned a directory and is said to be "mounted" at that directory. You can have
one partition for the root of your directory tree (/), and can assign others arbitrarily. For example, if
you're building a large−capacity Web server, you might have a hard drive partition dedicated to Web
sites, and mount it as /www. We'll discuss how to assign mount points and partition your drive.

FreeBSD normally uses four different basic partitions: / (or root), swap space, /var, and /usr. If
you're already familiar with UNIX, you might wish to create additional partitions and assign them
mount points of your choosing. We'll discuss each of the main partitions, as well as some
considerations for their size and placement.

Note Here and there we'll mention another possible partition you might create. If you're not familiar
with that partition, just skip over it; more experienced administrators can take or ignore that
advice as they choose.

The first thing to note is that the outer edge of the disk moves more quickly; thus, the closer a file is
to the edge of the disk, the faster it can be accessed or altered. Place your most important files
close to the edge so you can read and write to them more quickly, and put your more static data
closer to the center. (Data access on a spinning hard drive is much like a merry−go−round; you can
sit in the middle and hardly feel anything, but lie with your head dangling over the edge, and in a few
minutes you won't be able to stand up.[3])

You edit partitions on a drive with the Disklabel menu (shown in Figure 1.7).

24

Figure 1.7: The Disklabel menu
Note In the disk partitioning menu, partitions that appear closer to the top are closer to the edge of

the disk. If you're partitioning multiple disks, do them one at a time to help keep the order
straight in your mind.

We'll discuss each of the standard partitions in turn. You cannot change the partitions on a running
system, so it's important to get them correct the first time.

[3]Okay, a lot of that dizzy feeling has to do with centrifugal force, but the outside edge does move
more feet per minute than the inside edge. Now quit picking on my analogies.

Root

Your system should have fast access to its root filesystem (/), which contains the kernel and just
enough utilities and programs to boot the computer into its most basic running status, single−user
mode (explained in Chapter 3). Therefore, place the root at the outer edge of the disk, and make it
at least 128MB in size, no matter how big your disk is.

Some other UNIX−like operating systems, such as some distributions of Linux, use a large root
partition that contains more of the operating system or, worse, use nothing but a single large root
partition for all files on the disk. This is a bad idea for a variety of reasons. First, you can't control
which files are put where in a partition. This hurts performance. Second, in the event of disk
damage, you're most likely to have a bootable system if you have a small root partition. This gives
you a fighting chance to recover any surviving data.

Your root partition should be about 128MB. Press C to create the partition, type in 128M, and press
ENTER. The installer will ask you if you're creating a filesystem or swap space. Select "filesystem",
and it will ask you for a mount point. Type / and press ENTER.

Swap Space

Next, create your swap space, the disk space used by virtual memory. When your computer fills its
physical memory, it will start to put information that hasn't been used for a while into swap. Putting
swap toward the outer edge of the disk measurably improves performance.

So, how much swap space do you need? This is a matter of long debates between sysadmins. The

25

short answer is, "it depends on the system." General wisdom says that you should have at least
twice as much swap as you have physical memory. This isn't a bad rule, so long as you understand
that it's very general. More won't hurt. Less might, if your system runs out of RAM. FreeBSD's virtual
memory system assumes that you have at least twice your physical memory in swap space, and
makes certain choices and optimizations based on that assumption.

It's difficult to add swap space when you add memory because this is a disk partition, after all. To
change it you'd have to resize the partition—always a bit risky! As a general rule, try to create at
least twice as much swap as you think you will have memory. If your system currently has 128MB of
RAM, but you expect to increase it to 1GB, use 2GB of swap space.

Swap Splitting

If you have multiple disks, you can vastly improve the efficiency of your swap space by splitting it
among multiple drives. Put the first swap on the second−outermost partition of your boot drive (the
one with the root partition), and other swaps on the outermost partition of the other drives. (This
works well for up to four partitions on four drives; if you create more than four swap partitions, the
partitions after the first four will be used as optimally as the first four.)

For swap−space splitting to work best, however, the disks must be SCSI. If you have IDE drives, the
drives need to be on different IDE controllers. Remember, each IDE controller splits its total data
throughput among all the connected hard drives. If you have two hard drives on the same IDE
controller, and you're accessing both simultaneously, each disk will only be half as fast. The major
bottleneck in using swap space is data throughput speed, so you won't gain anything.

If you split your swap space among multiple drives, create partitions that are roughly the same size.
FreeBSD has some optimizations for four swap partitions.

Four swap partitions leads to a conflicting problem, however. Upon a system crash, FreeBSD can
write a copy of its physical memory image to a swap partition. This allows a developer to try to
debug and fix whatever caused the crash.To dump a memory image, however, at least one swap
partition must be at least the same size as the system's physical memory. If you have four swap
partitions, each as large as the system's physical memory, you'll wind up with four times as much
swap as physical memory. That's a lot of swap, especially on modern systems. That's even twice
the standard "twice−physical−memory" rule of thumb. Extra swap won't hurt, mind you, and disk
space is very cheap these days. If you really need your swap, you'll have it. If you find you're
continually using swap, you'll want to buy more RAM anyway.

Once you decide how much swap space to allocate, create a partition by pressing C. Enter the size
you want—for example, for a 1,000MB swap partition you would enter 1000m. When the installer
asks if you want to create a swap partition or a filesystem, choose "Swap".

/var, /usr, and /home

The next step is to create the /var partition, which holds rapidly changing data, such as log files,
databases, mail spools, and the like. If your system will have a lot of logs or mail files, this partition
might very well need to be 1GB or more. On a small server, I'll frequently make this 20 percent of
the remaining disk space. On a mail server, I'll kick that up to 70 percent or more.

The /usr partition holds the operating system programs, source code, and other little details like that.
Many people use the rest of their disk for the /usr partition; it's frequently the most populated.

26

Note If you're building a Web server, where each Web site has its own user and home
directory, assigning the rest of the disk to /usr might not be a great idea. In such a
case, using 3GB of hard drive space for /usr will more than suffice for just about any
use, and you can assign the remainder to /home, the partition for users' home
directories. Doing so segregates their files from the system, and file access speed is
generally unimportant once it exceeds a certain acceptable minimum.

When you finish, the Disklabel menu will look something like Figure 1.8.

Figure 1.8: Disklabel after partitioning

A Second Hard Drive

If you have a second hard drive of comparable quality to your main drive, you can make good use of
it if you plan properly. First, use the outer edge of the drive for swap, as discussed earlier in the
"Swap Splitting" section. Use the rest of the drive to segregate your data from your operating
system. Do this by assigning the remainder of the drive to the partition that stores files for whatever
your server is for. If it's a mail server, use the second drive for /var or /var/mail. If it's a Web server,
make it /www or /home. If it's a network logging host, assign the second drive to /var/log.

In general, segregating your operating system from the data you're serving will increase system
efficiency. Like all rules of thumb, this is debatable. But no sysadmin will tell you that this is an
actively bad or dangerous idea, whereas they can argue endlessly about other variations on drive
usage.

If you have no idea what your server will be for, make your second drive for /usr and use most of the
space on your first drive for /var.

If your second drive is much slower than your main system drive, don't bother using it. Not only will
its performance not be that good, chances are that it is much older than your main drive and more
likely to fail.

The FreeBSD installer will detect all of your system hard drives when it boots, and it will give you
the opportunity to partition each and every one.

27

Soft Updates

FreeBSD includes a bunch of fancy filesystem tricks collectively known as soft updates. We'll learn
more about soft updates in Chapter 13. For now, just accept that enabling them during the install is
a good idea. If you learn about soft updates and decide that you don't like them, you can easily
disable them. We'll learn about that in Chapter 13 as well.

Arrow down to select each partition, and press S. This will enable soft updates.

Block Size

This section contains options that can really impair system performance. If you're new to FreeBSD,
take the defaults! This is for experienced UNIX administrators who know exactly what they're doing.

Block size refers to the minimum size of a file. If you have a file that contains just one tiny character,
it uses one whole block, even if it barely fills that block. By the same token, if your file is just over
the block size, it takes up one block and a fragment of another. Each block can be divided into
fragments, so that multiple, slightly oversized files can use one block to store their extra tidbits.

FreeBSD defaults to 8KB blocks. If you're creating a large partition—say, 1GB or more—use 16KB
blocks. When you do this, you also need to change your fragment size. The FreeBSD file system
(UFS, or UNIX File System) works best with fragments one−eighth the size of a block. This would
be 16,384−byte blocks and 2,048−bit fragments.

Set the block size with the newfs program. From the Disklabel screen, press N while on a partition
to display a pop−up dialog box containing newfs options. To use 16KB blocks and 2KB fragments,
enter

..
newfs −f 2048 −b 16384
..

What to Install

The next menu gives you a choice of what to install. While there are quite a few options, I'll simplify
them. If you're building an Internet server, choose the "Developer" option. If you're building a
desktop or general−purpose experimental machine, choose the "All" option (as shown in Figure
1.9). (Remember to use the space bar to select your choice, and the ENTER key to proceed!)

28

Figure 1.9: Distributions menu
Install will then ask you if you want to install the Ports Collection. You do, even if you don't know it
yet. Select "Yes".

If you're installing the X Window System, or X for short, accept the options to install everything in X.
(It's much simpler to add them now than to add them later.) Again, once you have a good grip on
FreeBSD, you can always go back and remove pieces if you need to.

Installation Media

You'll have a variety of options for installation media, as shown in Figure 1.10. The most popular are
CD−ROM and FTP. If you have a FreeBSD CD−ROM, use it. If you don't have a CD, but you have a
live network connection, you can install via FTP. This is probably the option you want if you created
the floppy disks. If you're behind a firewall, choose to either install via FTP "through a firewall" or
"through a http proxy." Be sure your network cable is plugged in before you choose any FTP install
options.

Figure 1.10: Installation media menu
You can also install FreeBSD from tape backup, NFS, several dozen floppy disks, or a few other
media. If you're using one of these, you're either already a UNIX sysadmin (NFS, tape), or you have

29

probably been brained by falling masonry and are just waiting for the kind gents in white coats to
cart you off to your padded room (floppy disks).

If you are using an FTP install, the system will pop up a menu asking you to choose which interface
you want to use. Choose your Ethernet card. You'll then be asked for the IP address information
you gathered back when you started preparing for an FTP install.

Committing

Once you choose your installation media, sysinstall will ask you if you're sure. If you choose "Yes",
the hard drive will start to spin, your CD drive will light up, and you can go get lunch. When you
come back, most of the install will be complete.

Finally, you'll see a dialog box asking you if you want to do any post−install setup. Choose "Yes".

Post−Install Setup

The post−install FreeBSD Configuration menu provides some basic options for setting up your
computer (see Figure 1.11). We'll discuss how to configure everything later, but your life will be
easier if you do some basic setup now.

Figure 1.11: Post−Install configuration
Root Password

To begin, set a root password. If you don't have one, any doofus can log into the system as root
without using any password. (Since root has absolute control over your hardware and software, this
would be bad.) Choose the third option in the Configuration menu, "Set the system manager's
password". It will ask you to enter the root password twice (as shown in Figure 1.12). Remember
your root password, as it's a bit of an annoyance to recover it if you lose it.

30

Figure 1.12: Setting the root password
Adding Users

You should do everything possible while signed on as a regular user, and only use the root account
when you must change the system. That will happen frequently at first, but will grow less common
as time passes. Before you can sign on as a regular user, though, you need to set one up for your
use.

To add a regular user, select the User Management option in the Configuration menu. It will pop up
a brief menu offering you a chance to add a new user, add a new group, or exit back to the
Configuration menu. Choose "User", and you'll see the screen shown in Figure 1.13.

Figure 1.13: Adding a user
Your first selection in this screen should be the Login ID, or username. Your company might have a
standard for usernames. I prefer to use first initial, middle initial, and last name (not using the middle
initial creates a surprising number of conflicts).

The UID (user ID) is assigned by the system. If you're an experienced systems administrator you
can alter this, but it's not recommended and there's generally not much point.

31

The FreeBSD default is to have the user in a "Group" of the same name as the username; for
example, the user "mwlucas" is automatically in the Group "mwlucas". If you know what you're
doing, you can change this.

"Full name" is, simply enough, the user's name. Other system users can see this name, so you
don't want to set it arbitrarily. I've seen new systems administrators get in trouble when they gave a
customer a full name of, say, "Pain in the Tuckus."

The "Home directory" is where the user's files are kept. The default is generally fine.

"Member groups" is just a list of other system groups this account is part of. If you want this user to
be able to use the root password and become root, add your user to the group "wheel" under the
"Member groups" space. Administrators need to be in the wheel group, users don't. (Make sure your
personal user account is in wheel!)

Finally, choose a shell for your new user. Older admins and greybeards−in−training frequently
prefer /bin/sh. The examples in this book are written assuming your shell is /bin/tcsh, which is the
modern BSD standard and much friendlier.

Select OK when you're done, and your user will be created.

Time Zone

Set your time zone by selecting the Time Zone option from the Configuration screen (shown in
Figure 1.11). You'll be asked if the system clock is set to UTC; answer "No", and walk through the
menus presented. You'll be asked to choose a continent, a country (as shown in Figure 1.14), and
then a time zone.

Figure 1.14: Time selection by country
Mouse

If you have a mouse, it's easy to set it up now. If you have a dead−standard two−or three−button
PS/2 mouse or trackball plugged in, just choose Mouse from the Configuration menu, and then
choose Enable. You should see a mouse pointer on your screen, and it should wiggle when you
move it.

32

If your mouse isn't dead−standard, that's okay. By using the menu shown in Figure 1.15, you can
change the port your mouse runs on and the type it is.

Figure 1.15: Mouse management
Once you have set the mouse type and port, choose Enable and you will get a pop−up menu asking
you if the mouse is working. Wiggle your mouse, and enter "Yes" or "No" as appropriate (see Figure
1.16). If it doesn't work, your settings probably don't match your mouse. I've had more than one
mouse surprise me by being something other than what I thought it was. To change your settings
and try again choose "No".

Figure 1.16: Mouse test menu
Configuring Network Cards

If your machine has a network card, and you did a CD−ROM install, you probably want to configure
your network card now. It'll save you trouble later. Be sure your card is plugged into the network,
and then choose Networking from the Configuration menu, and then Interfaces from the Network
Services menu shown in Figure 1.17.

33

Figure 1.17: Network Services menu
You'll get a choice of network interfaces to configure. (If you're fairly new to computing, you might
not have realized that your parallel port can be a network interface!) Look for an entry that includes
Ethernet, and choose it. In Figure 1.18, we see an Ethernet card called fxp0.

Figure 1.18: Network interface information menu
You'll get a pop−up dialog box asking if you want to try IPv6 configuration of the interface. If you
don't know what IPv6 is, don't choose it. A second popup will offer to try DHCP configuration of the
interface. If you are on a network with DHCP, you can try it; otherwise, choose "No". You'll get a
network interface configuration screen as shown in Figure 1.19.

34

Figure 1.19: Network Configuration menu
Your Host name is a unique name for your computer. It might be something like "Webserver" or
"test". It should be all one word.

The Domain name is the domain your computer is a part of. This computer was set up to test
examples for Absolute BSD, so I made it part of http://absolutebsd.com/. If you don't have a local
domain name, ask your network administrator.

Earlier in the install I suggested that you get an IP address, netmask, default gateway, and
nameserver IP address from your network administrator. Enter this information here.

Even if DHCP configuration works, you will still need to set your Host name and Domain name.
Otherwise, your system will boot calling itself "Amnesiac."

Xfree86

If you're an experienced UNIX administrator, you'll probably notice a couple of menu items that say
"Configure XFree86". XFree86 is the GUI that generates pretty pictures on your monitor. Take my
advice; don't go there now. I've had several installs fail at this point because my XFree86
configuration went bad. You can always configure X after a reboot, using xf86cfg or your preferred
tool. And X isn't useful on a server, in any event. All it does is consume system resources.

We aren't going to discuss X in this book. If you're really interested in X, I suggest you get The New
Xfree86, by Bill Ball (Premier Press). X is not just a window system, like the Microsoft Windows
GUI; it's an entire protocol.

Software

If you're an experienced UNIX hand, you probably know what software you want to install. One
popular choice is the Emacs text editor, for example. You can choose to install these programs
under the Packages option on the Configuration menu. The Packages option will bring up the
Package Selection menu shown in Figure 1.20.

35

Figure 1.20: Package Selection menu
If you're already familiar with UNIX, you probably know the names of several packages you would
like to install. One popular choice is bash, a command shell. Arrow down to "shells", press ENTER
to open that category, arrow down to "bash", and press the space bar to select it. Then press
ENTER to go back to the Package Selection menu.

If you're not familiar with UNIX software, there's one package you need to install to use this book
properly. Select Packages from the Configuration menu, select "net" from the Package Selection
menu, and then select "cvsup" (see Figure 1.21). We'll use the cvsup tool in Chapter 6.

Figure 1.21: Individual package listings
When you have chosen all the packages you want to install, return to the main Package Selection
menu. Press TAB to move the cursor from OK to Install, then press ENTER. Your system will begin
installing packages.

Restart

This last step should get you up and running! Remove any CD−ROMs or floppy disks from your
computer, exit the installer, and reboot. You should now have a complete FreeBSD system,

36

configured properly for most Internet operations and for all the examples in this book.

If you find that you need to do some configuration later, you can always reenter sysinstall:

..
/stand/sysinstall
..

Throughout the course of this book, you'll learn how to work more quickly and efficiently by avoiding
sysinstall and manipulating the configuration files directly. The sysinstall program can act as a
crutch to get you through the worst parts, however.

A Note on Editors

No, I'm not talking about the fine editors of this excellent book: text editors. Which is the "best" UNIX
text editor has been a matter of prolonged debate over many years. FreeBSD includes vi, as its
licensing terms are the same as FreeBSD's. Vi terrifies many newcomers, however; it's from an
earlier aeon of UNIX. It's a dinosaur—specifically, a velociraptor, small and deadly and very
powerful if you have mastered its arcane syntax.

If vi is not your bag, try the Easy Editor, ee. It holds your hand and is much more approachable for
the newcomer. The ee program is also much more limited than vi; when you're tired of those
limitations, you can graduate to vi or install Emacs. (I use both, and prefer Emacs.) Vi has the
unquestioned advantage of being available on all UNIX platforms, however, and is well worth
knowing.

You can tell most programs to use your editor of choice by adding the following line to the .cshrc file
in your home directory. Substitute your preferred editor for vi.

..
setenv EDITOR vi
..

37

Chapter 2: Getting More Help
As thick as this book is, it can't possibly cover everything you might need to know. After all, UNIX
itself has a 30−year heritage, BSD UNIX is over 20 years old, and FreeBSD is pushing 10. Even if
you memorize this book, it won't be enough to cover every possible situation.

The FreeBSD project maintains a wide variety of information resources, including numerous
FreeBSD mailing lists, the http://www.freebsd.org/ Web site, the Handbook, the FAQ, man pages,
and assorted user Web sites. The flood of information can be overwhelming and difficult to wade
through. But before you send a question to a mailing list, make sure that the information you want
isn't already available in one of these resources.

Why Not Mail First?

The FreeBSD mailing lists are excellent resources for technical support. Many people who frequent
them are very knowledgeable and can answer your questions very quickly. But remember: When
you mail a question to a FreeBSD mailing list, you are requesting that one or more people take the
time to help you rather than watch a favorite TV show, enjoy dinner with family, or catch up on
sleep. Problems arise when these experts answer the same question 10, 50, or even 100 times, or
more. They become grumpy. Some get downright cranky.

What makes matters worse is that these same people have spent a great deal of time making the
answers to most of these questions available elsewhere. If you make it clear that you have
accessed the various information resources the FreeBSD project makes available, and your answer
really can't be found there, you will probably receive a polite, helpful answer. However, if you ask a
question that has been answered several hundred times already, the expert on that topic just might
snap and go bonkers on you.

Also, remember that the FreeBSD project only maintains FreeBSD. If you're having trouble with
some other piece of software, a FreeBSD mailing list is not the place to ask advice. FreeBSD
developers are generally proficient in a variety of software; but that doesn't mean that they want to
help you, say, configure the WindowMaker X window manager—harass the folks who handle
WindowMaker instead.

Do your homework, and chances are you will get an answer more quickly than the mailing list can
provide.

The FreeBSD Attitude

To use FreeBSD successfully, you'll need to do a bit of homework.

"Homework? What do you mean, homework? Am I back in school? What do you want, burnt
offerings on bended knee?" Yes, you are back in school. With FreeBSD, even the teachers are still
in school. Burnt offerings, on the other hand, are difficult to transmit digitally, and really aren't
relevant today.

Commercial operating systems such as Windows 9x/NT conceal their inner workings. The only
access you have to the computer are the options presented by the GUI, plus a few command−line
tools that are almost an afterthought. Even if you want to learn how something works, you can't.
When something breaks, you have little choice but to phone the vendor and grovel for help. Worse,

38

the people paid to help you frequently know little more than you do.

FreeBSD, on the other hand, is completely open, allowing you to learn exactly how things behave,
in intimate detail. As an open operating system, you can read the source code for commands, as
well as the kernel. And people in the FreeBSD community overwhelmingly want to learn. The
community welcomes people who want to learn, and will be delighted to help you if you're willing.

There are other parts of the FreeBSD community that you should be aware of: segments who are
not as interested in learning how FreeBSD works. These include a group that doesn't care how
FreeBSD works, just that it works well. For example, many ISPs don't care what serves up their
Web pages; they just care that their Web pages are being served reliably. Embedded systems
programmers as a group are often not as interested in FreeBSD's inner workings; for the most part,
they are attracted by FreeBSD's power and its commerce−friendly license. This is not to say that
there is anything wrong with these groups whatsoever, just that these people aren't likely to be
found hanging around FreeBSD mailing lists answering user questions.

As a grossly overgeneralized rule, people help those like themselves. As a FreeBSD user, you
should make the jump from eating what you're served to reading the cookbook and creating your
own dinner. If you're willing to learn what really goes on in your computer, you will be welcomed with
open arms. If you just want to know which box to click, read the Handbook and FAQ. The general
FreeBSD community simply isn't motivated to help those who won't help themselves or who can't
follow instructions. If you need more hand−holding than the community provides, you'd do best to
invest in a commercial support contract. (Several good support vendors are available; check the
FreeBSD Web site for details.)

The fact is, the number of people familiar with everything that FreeBSD offers are few enough to be
counted on one hand. Just the week before I wrote this chapter, I saw one of the FreeBSD Project's
founders express surprise when he learned that a program worked in a particular way. That made
me feel good; even the masters are still learning.

The first part of your homework, then, will be to learn what resources the FreeBSD Project has
available.

Man Pages

Man pages, short for "manual," are the original UNIX documentation. While they have the reputation
of being obtuse, difficult, or even impossible to read, they're quite user−friendly—for particular
users. When man pages were first created, the average systems administrator was a C programmer
and, as a result, they're written by programmers, for programmers. If you can think like a
programmer, man pages are perfect for you. I've tried thinking like a programmer but have only
achieved real success after remaining awake for two days straight. (A high fever helps, too, and lots
of Coke.)

Over the last several years, the skill level required for systems administration has dropped, and you
no longer need to be a programmer. Similarly, man pages have become more and more readable.
As such, they should be your first line of attack in learning how something works. If you send a
message to a mailing list without checking the man page, you're likely to get a terse "man whatever"
in response.

39

The FreeBSD Manual

The FreeBSD manual is divided into nine sections. Each man page (page of the manual) appears in
only one section. Roughly speaking, these sections are:

1 General commands
2 System calls and error numbers
3 The C libraries
4 Devices and device drivers
5 File formats
6 Game instructions
7 Miscellaneous information
8 System maintenance commands
9 Kernel system interfaces

When reading man pages, you'll usually see the section number in parentheses after the command,
like this: reboot(8). This represents both the name of the command (reboot) and the man page
(8). When you see something in this format, you can check the man page for detailed information.
(You can view a manual page with the man(1) command.)

Almost every topic has a man page. For example, to see the man page for the editor vi, enter this
command:

..
#man vi
..

In response, you should see the following:

..
VI(1) VI(1)

NAME
 ex, vi, view − text editors

SYNOPSIS
 ex [−eFGRrSsv] [−c cmd] [−t tag] [−w size] [file ...]
 vi [−eFGlRrSv] [−c cmd] [−t tag] [−w size] [file ...]
 view [−eFGRrSv] [−c cmd] [−t tag] [−w size] [file ...]

LICENSE
 The vi program is freely redistributable. You are welcome
 to copy, modify and share it with others under the condi−
 tions listed in the LICENSE file. If any company (not
 individual!) finds vi sufficiently useful that you would
 have purchased it, or if any company wishes to redis−
 tribute it, contributions to the authors would be appreci−
 ated.

DESCRIPTION
 Vi is a screen oriented text editor. Ex is a line−ori−
:
..

40

The first bit of information shown on the top line gives the title of the man page and the relevant
section number. (The title isn't necessarily the same as what you typed; for example, man ex would
also lead you to the vi man page.)

Man Page Headings

Man pages have a variety of headings. While just about any section name can appear in a man
page, several are standard. (See mdoc(7) for a partial list and other man page standards.) Like
book authors, man page authors generally arrange their content in a manner that makes sense for
the program they're discussing. Still, there are standard headings you will see:

NAME tells you the commands' various names. In this case, vi, ex, and view are all
intertwined, and share a man page. (A little digging would show that they're the same
program whose behavior depends on how they're activated.) The NAME also includes a
brief description of the program.

•

SYNOPSIS lists the possible command−line options and their arguments. Frequently, you'll
find that this header is enough to spark your memory and remind you of a flag you've used
before that caused the program to behave appropriately.

•

DESCRIPTION contains a brief synopsis of the item described by the man page. The
contents of this section vary depending on what the man page covers—programs, files, and
kernel interfaces all have very disparate requirements.

•

OPTIONS describes a program's various command−line options and their effects.•

Further discussion of the program generally follows these basic headings. Two sections that
commonly follow are BUGS and SEE ALSO.

The BUGS section describes known problems with the code and can frequently save a lot of
headaches. How many times have you wrestled with a computer problem, only to find out that it
doesn't work the way one would expect from the happy, cheerful documentation? The goal of the
BUGS section is to describe known errors and other weird behavior.[1]

SEE ALSO is traditionally the last section. Remember, UNIX is like a language, and the system is
an interrelated whole. Like the Force from Star Wars, or duct tape, the SEE ALSO links will show
you how everything holds together.

Sometimes, too, one name will appear in multiple sections of the manual. For example, there's a
man page for amd, the AMD SCSI driver, in section 4 of the manual, and a man page for amd(8), a
program that automatically mounts file systems. To read a page from a particular section of the
manual, put the number between the man command and the name of the page, like this: man 4
amd. (This is the first thing to look for when you get a page that seems completely irrelevant.)

To see all man pages related to a particular subject, use man −k to do a keyword search on all the
man page titles. You can also use the apropos(1) command to do the same thing, which may be
easier to remember if you already know what "apropos" means.

To search a man page for a word, type / followed by the word. You'll jump down to the first

41

appearance of that word in the page. Typing n subsequently will jump you to the next occurrence of
that word.

[1]It's called "honesty" as opposed to the "marketing" included in many other software products.

The FreeBSD Documentation

If you installed the FreeBSD documentation, you'll find it under/usr/share/doc. You'll find several
directories there, including one for each language that FreeBSD's documentation has been
translated to. If your language of choice is English, you'll probably want the "en" directory.

The FreeBSD documentation is divided into articles and books. The difference between the two is
highly arbitrary: As a rule, books are longer than articles, and cover broader topics; articles are short
and focus on one topic. The two books that should most interest new users are the Handbook and
the FAQ, both of which are available online at http://www.freebsd.org/.

The Handbook is the FreeBSD Project's continually changing guidebook. It describes how to
perform basic system tasks and is a good reference when you're starting on a project. The FAQ
(Frequently Asked Questions), like the Handbook, is divided by topics, but also contains answers to
mailing list questions. Some of the FAQ's information is duplicated in the Handbook, but most is not.

If you think you know what you're doing and have a particular question about an error you're
encountering, check the FAQ. If you don't have a clue about what you're doing, check the
Handbook. If the Handbook doesn't help, search for an article about what you're trying to
accomp l i sh . (You can search the en t i re ty o f the F reeBSD documenta t ion se t a t
http://www.FreeBSD.org/search/. If that doesn't help, you can use that same page to check the
mailing list archives.)

The Mailing List Archives

Unless you're really on the bleeding edge, someone has probably struggled with your problem
before, and likely posted to the mailing lists about it. After all, the archives go back to 1994 and
contain about a million messages. Of course, the challenge of having a million messages is finding
what you want.

When you're stumped, take your error message and copy it into the mailing list archive search box
at http://www.FreeBSD.org/search/. Remove common words such as "and," "or," "but," and so on,
and hit the search button. (This page defaults to searching the FreeBSD−questions mailing list.) If
you don't get a result right away, try entering another message or phrase the computer is giving you
during your troubleshooting. I usually get an answer within two or three searches.

If you can't find anything useful in the FreeBSD−questions archives, try another mailing list that
seems appropriate. Some good ones include FreeBSD−hackers, FreeBSD−stable, and
FreeBSD−current. If you're having a problem with a particular subsystem, check for a mailing list
devoted to it.

Note The entry fields for searching the documentation and the mailing list archives are
on the same page! More than once, I've searched the documentation when
meaning to search the mailing list archives.

42

Other Web Sites

If you haven't found your answer by this point, there are a variety of other Web sites you might try.

FreeBSD Diary (http://www.freebsddiary.org/) This site details users' experiences with
FreeBSD. The articles include detailed descriptions of how they make everything work.

•

Google (http://www.google.com/) This site archives Usenet news on many topics,
including FreeBSD. Try a power search on mailing.FreeBSD.* or comp.unix.bsd.FreeBSD.*,
which will give you both the mailing lists and the newsgroups. (Google also hosts a
BSD−specific search engine at http://www.google.com/bsd.)

•

Daemonnews (http://www.daemonnews.org/) This is a popular BSD news site. Their
monthly issue contains a variety of articles on various BSD topics.

•

The FreeBSD 'zine (http://www.freebsdzine.org/) This is a bimonthly FreeBSD article site,
and includes many useful articles.

•

Defcon1 (http://www.defcon1.org/) Another FreeBSD article site.•
BSD Today (http://www.bsdtoday.com/) This http://internet.com/ site hosts BSD articles
and news links.

•

O'Reilly Network BSD Developer Center (http://www.onlamp.com/bsd) This site hosts a
variety of BSD articles, including the column "Big Scary Daemons" by yours truly.

•

Using FreeBSD Problem−Solving Resources

Okay, now let's pick a common problem and use the FreeBSD resources to solve it. We'll use
severa l d i f f e ren t me thods to f i nd an answer . Take th i s t yp ica l message sen t to
FreeBSD−questions@FreeBSD.org.

"I've just installed FreeBSD and my network isn't working. When I try to ping, the console shows the
message ed0: device timeout. What's wrong?"

Checking the Handbook/FAQ

A scan of the handbook shows nothing related to the problem. In the FAQ, however, there's an
entry under Troubleshooting:

..
I keep seeing messages like ed1: device timeout
..

That's close enough. Read that entry, and try the solution presented.

Checking the Man Pages

As we go on, you'll learn that the numbers after device names are simply instances of a particular
device. ed0 is simply device ed, unit number 0. So, type man ed. You will see the following:

43

..
ED(1) FreeBSD General Commands Manual ED(1)

NAME
 ed, red − text editor

SYNOPSIS
 ed [−] [−sx] [−p string] [file]

DESCRIPTION
 Ed is a line−oriented text editor. It is used to create, display, modify
 and otherwise manipulate text files.

 If invoked with a file argument, then a copy of file is read into the
 editor's buffer. Changes are made to this copy and not directly to file
 itself. Upon quitting ed, any changes not explicitly saved with a w
 command are lost.

 Editing is done in two distinct modes: command and input. When first
 invoked, ed is in command mode. In this mode commands are read from the
 standard input and executed to manipulate the contents of the editor
 buffer. A typical command might look like:

 ,s/old/new/g
:
..

What the heck? Something's obviously amiss here. Every device driver has a man page. Run man
−k ed to get a complete list of all the man pages related to ed. You'll get a whole list of functions, in
slightly skewed alphabetical order. (Capital letters come before lowercase ones.) Scroll down to the
e's, and you'll see this:

..

...
ed(1), −(1) − ed text editor
ed(4) − high performance ethernet device driver
...
..

Aha! There are two different eds, in different sections, each with their own man page. Type man 4
ed and you'll see what you want:

..
ED(4) FreeBSD Kernel Interfaces Manual ED(4)

NAME
 ed − ethernet device driver

SYNOPSIS
 device ed

DESCRIPTION
 The ed driver provides support for 8 and 16bit ethernet cards that are
 based on the National Semiconductor DS8390 and similar NICs manufactured
 by other companies.

 It supports all 80x3 series ethernet cards manufactured by Western Digi−
 tal and SMC, the SMC Ultra, the 3Com 3c503, the Novell NE1000/NE2000 and
 compatible cards, and the HP PC Lan+. ISA, PCI and PC Card devices are
 supported.

44

 The ed driver uses a unique multi−buffering mechanism to achieve high
 transmit performance. When using 16bit ISA cards, as high as 97% of the
 theoretical maximum performance of the IEEE 802.3 CSMA ethernet is possi−
 ble.

:
..

This is what you're looking for. Looking at the error message, you can guess that timeout is a good
keyword. Type /timeout and press ENTER.

..
ed%d: device timeout Indicates that an expected transmitter interrupt
 didn't occur. Usually caused by an interrupt conflict with another card
 on the ISA bus.
..

Voila! Here we have a terse explanation of the problem, and a probable cause (interrupt conflict).
We have a good old−fashioned IRQ problem.

Checking the Mailing List Archives

Searching for "ed0: device timeout" spit out quite a few results from the mailing list archives. On the
day I did the search, the first response gave the solution.

Using Your Answer

Any answer you get for our "ed0 timeout" example assumes that you know what an IRQ is, and how
to adjust one on your hardware. This is fairly typical of the level of expertise required for basic
problems. If you get an answer that is beyond your comprehension, you need to do the research to
understand it.

While an experienced developer or systems administrator is probably not going to be interested in
explaining IRQs to you, he or she might be willing to point you to a Web page that explains IRQs.

Mailing for Help

If the archives, FAQ, Handbook, tutorials, and other assorted resources cannot help you, ask for
help. When you do, be sure that you include all the information you have at your disposal, as
discussed shortly. There's a lot of suggested information to include, and you can choose to skip it
all. But if you do, one of two things will happen:

Your question will be ignored.•
You will receive a barrage of email asking you to gather this information.•

If, on the other hand, you actually want help to solve your problem, include the following in your
message:

45

A complete problem description. A message like "How do I make my modem work?" is going
to generate a multitude of questions, like what do you want your modem to do? What kind of
modem is it? What are the symptoms?

•

It's much better to start with a message like, "My modem isn't dialing my ISP. The modem is
a BleahCorp v.90 model 6789. My OS is version 4.6−stable, on a dual Athlon motherboard.
There are no error log messages in /var/log/ppp.log." You'll shortcut a whole round of email
by doing so. While I have never seen anyone flamed for offering too much information on the
FreeBSD−questions mailing list, the converse is not true.

•

The output from uname −a. This gives the operating system version and platform.•
If you run CVSup and "make world", give the date of the last CVSup, if you have it.•

The CVSup date, in seconds from the epoch, is the third field in the first line of your log file. (Of
course, if you have upgraded your source without building "world", this is moot.) For example, on
m y s y s t e m , C V S u p r e c o r d s i t s d a t a i n / u s r / s u p . T h e f i r s t l i n e o f
/usr/src/src−all/checkouts.cvs:RELENG_3/ is:

..
F 5 939160270
..

Running date −r 939160270 spits out the following:

..
Tue Oct 5 21:51:10 GMT 1999
..

Any error output. Be as complete as possible, and include any messages from your logs,
particularly /var/log/messages.

•

Finally, here are some tips for getting your best results out of a FreeBSD mailing list:

Be polite. Remember, this list is staffed by volunteers who are answering your message out
of sheer kindness. Before you hit that send key, ask yourself, "Would I be late for my date
with the hot twins down the hall to answer a message from someone like this?"[2]

•

Use plain text. Many FreeBSD developers read their email in a command−line environment,
and find reading raw HTML quite annoying. (To see for yourself, install/usr/ports/mail/mutt
and read some HTML email with it.)

•

State up front exactly what you have done to solve this problem or answer this question.
Make it clear that you have done your homework.

•

Be on topic. If you are having a problem with XFree86, check the XFree86 site. If your
window manager isn't working, ask the people who maintain it. Asking the FreeBSD folks to

•

46

help you with your Java Application Server configuration is like complaining to hardware
salespeople about your fast−food lunch. They might have an extra ketchup packet, but it's
not really their problem. On the other hand, if your FreeBSD system starts sendmail on
every boot, and you want to turn it off, check the online resources and then ask.
Send your message to FreeBSD−questions@FreeBSD.org. Yes, there are other FreeBSD
mailing lists, some of which are probably dedicated to what you're having trouble with. As a
new user, however, your question is almost certainly best suited for FreeBSD−questions.
I've lurked FreeBSD−stable, −current, and −hackers for years now, and have yet to see a
new user ask a question there that wouldn't have been better served in FreeBSD−questions.
Generally, the questioner is referred back to −questions.

•

Sending a message to FreeBSD−hackers asking how to fix your dial−up connection is only going to
annoy them. You might get an answer, but you won't make any friends. Conversely, the people on
FreeBSD−questions are there because they are volunteering to answer questions. These people
want to hear from you. Quite a few are FreeBSD developers, and some are even core members.
Many of them are very skilled, and many are new users who have already dealt with your problem.

If those folks can't help you, they'll probably refer you to another mailing list. It's much better to go to
−hackers and say, "The folks on −questions suggested I ask you about this" than to just jump
straight to −hackers. If you respect the FreeBSD community, they'll respect you.

Follow through. If you're asked for more information, provide it. If you don't know how to
provide it, treat it as another problem. Go back to the beginning of this chapter and try to
figure it out. If someone asks you for a debugging dump, go look at Chapter 16 and set your
system up for it. The bottom line is, if you develop a reputation as someone who doesn't
follow up on requests for more information, you won't even get a first reply.

•

Lastly, "how can I learn this" questions are more likely to be answered than "what do I do"
ones. It doesn't matter if the question is about obscure system functions or simple
troubleshooting; being willing to work for your answer is a necessary part of running
FreeBSD. The upside is, when you're done, you will actually understand more about your
computer than you did before.

•

Now that you understand where to go when this book doesn't quite go far enough, let's look at how
you can protect yourself from your own mistakes.

[2]Quite a few developers would accept the phone number for said twins in lieu of politeness. This
isn't guaranteed, and is only supported in the bleeding−edge−current.

47

Chapter 3: Read This Before You Break Something
Else! (Backup and Recovery)

Overview

Computers fail on many levels, and hardware, software, users, and sysadmins all can damage a
system. As such, you should always be ready for the worst; in our case, that means being able to
back up and restore your hard drives.

Because FreeBSD is a continually evolving system, you will inevitably need to upgrade and patch
your system from time to time, and any time you do so, there's a chance you'll damage the
operating environment. If that happens, you'll need to recover or rebuild your system. (Just think of
how many times you've patched a Microsoft server system and found something behaving oddly
afterwards.) On any computer, even small configuration changes can potentially damage data.

Worse still, if you're reading this book, you're probably just learning how to configure your FreeBSD
system and you're probably not well prepared for disaster. As a new user, you'll need to test a
variety of configurations and review the "history" of how your system has been configured. And, if
you learn that some obscure but important system function has been broken for months, you will
need to look up the changes you've made in order to go back and fix it. Will you really remember
what a particular file looked like weeks or months ago? In fact, if you're experimenting hard enough,
you may even utterly destroy your system, so you'll need a way to recover your important data.

This chapter begins with the large−scale approach: backing up the entire computer. However, this
approach won't work well if you only want to back up individual files, so we'll go on to look at ways
to handle those. If a file can change three times a day, and you take weekly backups, you can lose
valuable information if you rely on your weekly backups. Finally, should you encounter a partial
disaster, we'll consider ways to recover and rebuild using single−user mode and the fixit disk.

System Backups

You only need a system backup if you care about your data. The question for you to answer is "how
much would it cost to replace my data?" A low−end SCSI tape backup system, for example, can run
several hundred dollars. IDE systems are less expensive than SCSI, but slower, hold much less
data, and are less well supported.

The questions to ask yourself when choosing a backup solution are how much your time is worth
and how long it would take to restore your system from the install media. If the most important data
on your hard disk is your Web browser's bookmarks file, it might not be worth investing in a backup
system. But if your server is your company's backbone, or part of it, you'll want to take this
investment very seriously.

A complete backup and restore operation requires a tape drive and tape backups. You can also
back up to files, across the network, or to removable media such as CD−ROMs or floppy disk. Since
we're discussing network servers, however, I'll focus on production−grade solutions.

48

Tape Devices

FreeBSD supports both SCSI and IDE tape drives. When compared with IDE drives, SCSI drives
are faster and more reliable, though IDE drives are cheaper. In most cases, either format will
suffice.

Once you've physically installed your tape drive, you'll need to confirm that FreeBSD recognizes it.
The simplest way is to check the /var/run/dmesg.boot file, which displays the system's boottime
messages and shows all the hardware on your system. This is a very long file, so I won't reproduce
it here. I do suggest that you examine the dmesg on your FreeBSD system and become familiar
with it, because you'll have to look at it almost every time you have to troubleshoot hardware.

When you examine this file, you'll see IDE tape drives displayed as "ast" devices, and SCSI tapes
as "sa" devices. Scan this file for your tape drive; if you see it, your system kernel is probably
properly configured. (FreeBSD's GENERIC kernel picks up most tape drives.)

How to Read Dmesg.boot

The first item on each line of the example boot file shown next is the device name. This particular
entry represents a DDS3 tape drive, which is fairly slow by modern standards, but is still adequate.
If your system has multiple tape drives, they will have sequential numbers, such as sa0, sa1, sa2,
and so on. Once you know the device name, you can access the tape drive. SCSI drives are
represented by the initials sa and a trailing number; IDE tape drives show up as astX instead of
saX. If you have multiple identical drives, you should label which is which. If you don't know where
the tape drive is plugged into the physical bus, or the SCSI ID of the device, a bit of trial and error
will identify each drive. (Every time I set up a new backup server, I mean to label the tape drives by
SCSI ID as I physically assemble the machine. Every time, I wind up putting a tape in each drive
and trying to access it under various tape numbers, and labeling the drive that way. Either works.)

Each line for a device contains some information about the device. For example, the tape drive
shown in the following example has three descriptive lines identifying how the tape is hooked into
the computer's SCSI system, the model name, and the maximum speed.

..
sa0 at ahc0 bus 0 target 6 lun 0
sa0: <ARCHIVE Python 04106−XXX 7350> Removable Sequential Access SCSI−2 device
sa0: 10.000MB/s transfers (10.000MHz, offset 15)
..

Every device on your system, from onboard clock chips to PCI busses to sound cards, will have a
similar entry in dmesg.boot.

The dmesg.boot file is an invaluable source of information on what hardware is actually installed.
Take a look at this file on your system; you probably never knew just how much stuff was in that
little beige box.

If your tape drive doesn't appear in the /var/run/dmesg.boot file, check the release notes for the
version of FreeBSD you're running to be sure it's supported. If it's listed as supported, but is not in
the dmesg.boot file, ask for help (see Chapter 2). You'll probably be told to rebuild your kernel (this
is covered in Chapter 4).

49

Controlling Your Tape Drive

Tape drives have been around for many years, and the way FreeBSD handles them reflects that
history. As with many old−fashioned UNIX devices, the way you access a tape drive controls how it
behaves, and before you can use your tape drive for a backup you'll need to know how to control it.
The most basic tape−control mechanism is the device node you use to access it.

Device Nodes

Device nodes, found in the /dev directory, are files that are tied to a physical device in your
computer. You can use UNIX commands on the device node to control the hardware, but you
shouldn't arbitrarily run commands on device nodes; doing something like cat /dev/console might
not do anything, or it might damage your hardware or data. In most cases, device nodes have the
same name or one similar to what appears in dmesg.boot.

Each type of tape drive has several device nodes, but for your average SCSI tape drive, you only
need to worry about three nodes: /dev/esa0, /dev/nsa0, and /dev/sa0. Similarly, if you have an IDE
drive, you only need concern yourself with /dev/east0, /dev/nast0, and /dev/ast0.

If you use the node name that matches the device name, the tape will automatically rewind when
you're finished. For example, our sample SCSI drive is sa0, so if you run a command using /dev/sa0
as the device node, the tape will automatically rewind when the command finishes. Depending on
the operating system you're used to, this might or might not match what you expect. Different
versions of UNIX, with different tape management software, handle tapes differently.

REMEMBER Tapes are sequential access devices; data is stored on the tape linearly. To access a
particular piece of data on a tape, you must roll the tape forward or backward. To
rewind or not to rewind is an important consideration.

To have a tape eject automatically when you've finished with it, use the node that begins with "e".
For example, if all you're doing is running a full system backup, you can use the /dev/esa0 device to
automatically eject the tape after the job finishes. (Some older tape drives may not support
automatic ejection; they'll require you to push the physical button to work the lever that winches the
tape out of the drive The simplest way to find this out is to simply try it.)

If you don't want the tape to automatically rewind when you're finished (because you need to
append a second backup from a different machine onto the tape, or something similar), stop it from
rewinding by using the node name that starts with an "n". In our example, if you use /dev/nsa0 in
your command, the tape drive will not rewind.

Using the TAPE Variable

Many programs assume that your tape drive is /dev/sa0, but that choice isn't always appropriate.
Even if you have only one SCSI tape drive, you might not want it to automatically rewind upon
completion (/dev/nsa0), or you might want it to eject after the backup (/dev/esa0). Or, you might
have an IDE drive, which uses an entirely different device node.

Many programs use the environment variable $TAPE to control which device node they use, which
you can always override on the command line. Most backup programs will use the device node
specified in $TAPE as a default.

You can set the $TAPE variable with the following command:

50

..
setenv TAPE /dev/sa0
..

Note Not all programs recognize $TAPE, but it's generally worth setting.

The mt Command

Once you know which device node you want to use to talk to your tape drive, you can make it do
basic things (such as rewind, retension, erase, and so on) with mt(1). The mt command is most
commonly used for checking the status of a tape drive, as follows:

..
mt status
Mode Density Blocksize bpi Compression
Current: 0x25:DDS−3 variable 97000 DCLZ
−−−−−−−−−available modes−−−−−−−−−
0: 0x25:DDS−3 variable 97000 DCLZ
1: 0x25:DDS−3 variable 97000 DCLZ
2: 0x25:DDS−3 variable 97000 DCLZ
3: 0x25:DDS−3 variable 97000 DCLZ
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Current Driver State: at rest.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
File Number: 0 Record Number: 0 Residual Count 0
#
..

−−−−−−−−−−−−−−−− You won't need to worry about most of the information in this output, but if you
want to go through it line−by−line, the mt(1) man page contains a good description of all the
features. The first thing to note in this output is that mt can find your tape drive, which means that
your system is set up properly to actually use the tape drive. (In this example, mt recognizes that
the tape drive is a DDS−3.) The various "modes" shown are ways that the tape drive can run.
Current Driver State tells you what the drive is doing at this moment.

The first time you run mt status, you might get something like this:

..
mt status
mt: /dev/nsa0: Device not configured
..

This means that you don't actually have a tape device at the device node your $TAPE variable is set
to. You can experiment with device nodes and mt(1) by using the −f flag to specify a device node
(for example, mt −f /dev/nsa1 status), though you should get this information from
dmesg.boot.

Other useful mt commands are mt rewind, mt offline, and mt retension. As you might
guess, mt rewind rewinds the tape, mt offline ejects it, and mt retension tightens it by
running it through its complete length, both forward and back. (Retensioning is often necessary
because tapes tend to stretch on their first use; retensioning prestretches the tape before you write

51

data to it.)

Note Not all tape drives support all mt functions, and many older drives are quite temperamental. If
you have a problem with a drive, check the FreeBSD−questions mailing list archive for
messages from others who have used it. You'll probably find your answer there.

Now that you know your tape's device name and how to control it, you're ready to back up your
system.

Backup Programs

Two popular packages for backing up systems are tar(1) and dump(8). You'll certainly hear of other
backup tools besides dump when working with FreeBSD, such as Amanda, pax, and cpio. Tools like
these are all well−suited for certain environments, but aren't as universally useful as tar and dump.
If you have mastered dump and tar, however, any of the other programs will be easy by
comparison.

Tar is designed to work on files, and tar backups can be restored on almost any operating system.
Dump works on disk partitions and filesystems, and can only be restored on the same operating
system that the dump was made on. If you're backing up an entire computer, use dump. If you're
performing small backups, or might have to restore on a very foreign computer, use tar.

Tar

The tar package, short for "tape archiver," can back up anything from a single file to your entire
system. Tar works on the files and directories only and has no idea of the underlying filesystem
(which has its advantages and disadvantages). Tar is a common standard recognized by almost
every UNIX and software vendor. You can find tar programs that run on Windows, Linux, UNIX,
BSD, and just about every other operating system. You can even extract tar files on a Windows
machine!

Tar can back up files to tape, or to a file. A tar backup file is known as a tar−ball. Since tar works on
files, it's very easy to extract just one file from your tar−ball and restore it.

FreeBSD uses GNU tar, which is based on an old public domain tar program. GNU tar might have
problems with unusual files (such as files that are mostly empty). If you have a program that writes
such unusual files, the program documentation generally says to use something other than tar for
your backups. And if your filesystem is corrupt in any way, heaven knows what tar will back up.

One of tar's disadvantages is that it can be dumb; for example, it will happily restore files that were
damaged during the original backup (although this rarely happens in practice).

Tar's Modes

Tar has several common modes, set by command−line flags. (See tar(1) for a description of all the
modes; we'll discuss the most common ones here.)

−v (verbose) One useful option is −v, or verbose mode, which tells tar to list every file it touches.
You can use verbose mode to create a complete list of all the files that are backed up or restored. If
you are backing up your entire system, this will be a very long list, in which it can be difficult to see
errors.

52

−c (create a new archive) Use create mode (−c) to create a new tar archive. Unless you specify
otherwise, this flag backs up everything on the tape drive specified in your $TAPE environment
variable. To back up your entire system, tell tar to archive everything from the root directory down:

..
tar −c * /
..

In response, your tape drive should light up, and, if your tape is big enough, eventually present you
with a complete backup of your system.

Of course, many hard drives today are considerably larger than most tapes, often by many
gigabytes. As such, it will often make sense to back up only portions of your system. For example, if
all the files that change on your system are under /home, /usr/local, and /var, you could specify
those directories on the command line:

..
tar −c /home /usr/local /var
..

−t (list all files in an archive) List mode (−t) lists all the files in an archive. Once the drive finishes
running, you can use this flag to list the tape's contents:

..
tar −t
COPYRIGHT
bin/
bin/cat
bin/chio
bin/chmod
bin/cp
bin/date
bin/dd
bin/df
...
..

In the output above, note that the initial slashes are missing from every filename. For example,
/COPYRIGHT shows up as COPYRIGHT. This becomes important during restores, which we'll
discuss under the −x flag, next.

−x (extract all files from an archive) In extract mode (−x), tar retrieves files from the archive and
copies them to the disk.

Tar extracts files in your current location; to overwrite the existing system /etc with the backup, go to
the root directory first. For example, to restore my /etc directory under /home/mwlucas/etc, use the
following commands:

..
cd /home/mwlucas

53

tar −x etc
..

Remember when I said that the missing initial slash would be important? Here's why. You might
want to restore a system to some location on disk other than where it came from. I've had old
servers that were backed up and shut down, their hard drives thrown in the trash or donated to
charity. If the backup included the initial slashes, tar would consider the filenames to be absolute
path names and would restore the files exactly where they originally were; /kernel on the backup
would be restored over the current system's / kernel! This would be bad.

Without the initial slash in the backup, tar will restore the file in the current directory. If I really
wanted to restore the backed−up files to their original locations, I would just have to type cd / to
take me to the system's root directory and then run tar.

−d (diff an archive) Finally, verify the backup with the −d (diff) flag. If everything on your tape
matches everything on your system, tar −d will run silently. It will be a surprise, though, if
absolutely everything matches: If nothing else, log files usually grow while a backup runs, so the
backed−up ones won't compare properly. Or, if you have a system with a live database, the
database files might not match.

You'll need to decide which errors you can live with, and which need fixing. For example, while you
may decide that you need to shut down your database before running a backup, you might not care
about log files. (If you encounter problems when verifying your backups, check the documentation
for the program that is giving you trouble.)

Other tar Flags

Tar has several other useful flags that you can add to one of the previously mentioned ones to
enhance its operation.

−z (gzip) The gzip flag (−z) runs the files though the gzip compression program on their way to and
from the archive. (Compressed tarballs usually have the extension .tar.gz or .tgz, and on rare
occasions .taz.) Compressing files can greatly reduce the size of an archive; in fact, many backups
can be compressed by 50 percent or more. While all modern versions of tar support −z, older
versions don't, so if you want absolutely everyone to be able to read your compressed files, don't
use the −z option.

−Z In contrast, all versions of tar on all versions of UNIX can shrink files with the −Z flag, which
utilizes compress(1). The compress program isn't as efficient as gzip, but it does reduce file size.
Tarballs compressed with −Z have the extension .tar.Z.

−y FreeBSD's tar supports bzip compression, which compresses files more tightly than gzip but is
only readable on a few platforms and uses more CPU time than gzip compression. If you'll only be
reading your files on a FreeBSD system, use the −y flag.

−f The −f flag allows you to specify another device or file as the destination for your archive. For
example, in all of the preceding examples, I've set $TAPE.

If you haven't, you might need to specify the tape drive with −f:

..

54

tar −cz −f/dev/east0 *
..

Instead of writing a backup to tape, you can create a tar file. Source code distributed over the Net is
frequently distributed as tar files, or tarballs. Use the −f flag for this as well. For example, to back
up my chapters for this book as I wrote them, I'd run the following every so often to create the tarball
mybookbackup.tgz:

..
tar −cz −f mybookbackup.tgz /home/mwlucas/absolutebsd/
..

Once complete, I'd FTP the tarball to a server elsewhere so that if my house were to burn down, my
book would be safe. I could then run phone and power lines to the neighbor's house, download the
tarball to my laptop, run tar −xzf mybookbackup.tgz, and work amidst the charred timbers
while waiting for the insurance company. (It's not like I could do much else at that point!)

−v (verbose) To watch tar at work, use the −v flag. Tar will then list every file it touches in verbose
mode. But beware: If you're backing up your entire system, this can lead to a lot of information.

And More

Tar has many, many other options. Some good options include −C (change directories), −p (restore
permission information), and −l (don't span filesystems). Read tar(1) for the full details. This section
has given you enough to start working, however.

Dump/Restore

Dump(8) is a disk−block backup tool. In some ways, dump is similar to tar, with the significant
difference that it's aware of the underlying disk and actually reads what is directly on the disk; the
filesystem is irrelevant. We'll talk more about filesystems in Chapter 16. For now, know that a
filesystem is simply the order in which zeroes and ones are arranged on the physical hard drive.
Different operating systems arrange data in different ways: Windows has the NT File System
(NTFS), Linux has the Second Extended File System (EXT2), and FreeBSD uses UNIX File System
(UFS). A tool like dump doesn't care about whatever goofball contortions the operating system puts
on the physical disk—it just backs up the ones and zeroes on the physical disk. This makes it
possible to create a more reliable backup. New sysadmins aren't as likely to be familiar with dump
as with tar, but dump is more efficient and safer than tar. When you have a choice, use dump.[1]

On the downside, dump works on entire filesystems, not on individual files. Therefore, you can't
dump / etc unless you want to back up the entire/partition. (Though if you do, you can restore
individual files.)

On the positive side, dump uses separate programs for backup and restore (restore is discussed in
"Restoring from an Archive" later in the chapter). This means you don't have to worry about
confusing your flags and accidentally overwriting the file you're trying to recover from. Dump is
considerably faster than tar, too.

55

User Control

Perhaps dump's most significant advantage is that users have a certain amount of control over
dump. For example, they can mark a file as "do not dump," and it won't be backed up. Many users
have stuff that they don't care about, and they will happily agree not to back those things up if it
means that the data they care about is backed up.

To set the nodump flag, use chflags(1):

..
chflags nodump filename
..

When you set chflags on a directory, everything in or below that directory is not backed up. I use
chflags to avoid backing up my downloads directory to save time and space during backups
because I can always re−download those items.

Dump Levels

Dump has a variety of options, the most common of which is the dump level, which ranges from 0 to
9. The default level is 0, which tells dump to copy everything on the disk not marked nodump.
Higher levels of dump mean "back up any files that have changed or been created since a dump of
any lower level." This sequence of levels allows you to do incremental backups—just specify the
desired dump level as a command−line flag:

..
dump −0
..

This command means do a level 0 dump.

For example, say you start each Monday with a level 0 dump. On Tuesday you could do an
incremental dump at level 1, and only files that have changed since Monday will be dumped. If you
then perform a level 2 dump on Wednesday, everything changed since Tuesday will be backed up.
If, however, you were to run another level 1 dump on Thursday, everything that has changed since
Monday will be backed up.

Although you can run incremental backups with dump, I recommend that you run level 0 dumps only
because they are far, far easier to restore from than a series of incremental backups. Level 0 dumps
do take longer to run than incrementals, however, and take up more space, but in most cases,
saving recovery time is more important than the cost of tape. With proper planning, you can simply
run your level 0 dumps overnight.

Other Dump Flags

You can use a variety of other flags to control exactly how dump behaves.

−f Unfortunately, dump doesn't recognize $TAPE, and rather blindly defaults to /dev/sa0. If that is
your tape drive, you're all set. If not, use −f to tell dump where to put the archive.

56

Note −f can point to a file, not just a tape device. If you're experimenting with dump or if
you plan to copy the archive to another machine, it's perfectly legitimate to dump to
a file.

−a The −a flag is another important option. While dump tries to allocate tape space intelligently,
tapes have grown considerably since dump first came out, and the math dump uses isn't really
applicable to the large tapes of today. Dump tends to assume that you have an old−fashioned, and
much smaller, tape, and doesn't really understand that some people have 200GB tapes. In fact,
when you're using −f, you might not even have a tape.

The −a flag tells dump not to bother calculating tape requirements, and to just dump to the tape until
it hits a physical end−of−tape marker. Use −a whenever you dump to a file.

−h As the systems administrator, you can use the −h option to decide when to honor the nodump
file flag. This option takes a dump level as an argument.

By default, files marked nodump will be backed up anyway if the sysadmin runs a level 0 dump. At
dump level 1 or higher, the nodump flag is honored; the −h flag changes this behavior by specifying
the minimum dump level to start obeying the nodump flag. Any dumps of levels below that given by
−h will archive everything, regardless of the dump flag.

For example, I usually back up a system with a command like dump −0 /; this performs a full
dump on my entire system, and even backs up items marked nodump. If my backups suddenly fill
the tape, or start running over a tape, I change this to dump −0 −h0 /. The backup then obeys the
nodump flag, which reduces the backup size. This gives me a bit of breathing room; the backups
are manageable, and I won't lose important data. I immediately order more tapes.

−u The file /etc/dumpdates records everything that you've dumped on your system. If you use −u,
you'll update the file. This is most useful if you decide to do incremental backups, in which case you
will need to know the date of your last full backup to successfully restore the system.

To dump the root partition onto your IDE tape drive, skip fi les marked nodump, update
/etc/dumpdates, and eject the tape afterwards, enter:

..
dump −0ua −h0 −f /dev/east0/
..

Once you issue this command, several fairly self−explanatory messages will pass across your
screen with information on how the dump is going. If the size of your dump exceeds the size of your
tape, dump will tell you when to swap tapes.

Volumes

Hard drives are frequently bigger than tapes, and one hard drive might need several tapes for a
complete backup. When using multiple tapes to back up a hard drive, every tape has a volume
number: The first tape you fill is volume 1, the second is volume 2, and so on.

Dump will tell you each tape's volume number as it finishes filling them. (I strongly recommend
labeling each tape as it is finished!) When you have to restore from your dump, you will either be
prompted for a particular volume or asked which volume you're loading.

57

[1]Some sysadmins will disagree and insist that tar(1) is better. This is a disagreement of epic
proportions in the UNIX community, and any recommendation I make will undoubtedly anger the 49
percent of the sysadmin community that is devoted to the other tool. (The remaining 2 percent
insists that the only way to provide proper backups is via one of a dozen other tools.)

Restoring from an Archive

Archives are nice, but they're useless unless you can use them to recover your system. Dump's
recovery utility, restore(8), can recover either complete filesystems or individual files. As with tar and
dump, the −f flag lets you choose the device or file you wish to restore from.

Checking the Contents of an Archive

To list the contents of an archive, use the −t flag. If you add a filename after −t, restore will check
to see if that file exists, like so:

..
restore −f /dev/ast0 −t /etc/motd
Dump date: Thu Mar 22 13:30:39 2001
Dumped from: the epoch
Level 0 dump of / on turtledawn.blackhelicopters.org:/dev/ad0s2a
Label: none
 18935 ./etc/motd
#
...

In this example, we're using the tape drive device node of /dev/ast0 in the input, which, as we
discussed in the "Device Nodes" section of this chapter, is an IDE drive. Using this device node tells
the command to rewind the tape when it finishes. The −t tells restore to check for the file /etc/motd.
Restore tells us when the dump took place, which system it was taken on, and which disk device
was backed up.

Extracting Data from an Archive

Once you know whether a file is in an archive, you can extract data from the archive in two ways: on
a file−by−file basis or as a complete filesystem.

Restoring a File

If all you want is a few select pieces, use −x and the filename to extract only the named file. For
example, to recover /etc/namedb from a dump archive written to a file, you'd enter the following
command and see the subsequent response :

..
restore −f /var/tmp/slashbackup −x /etc/namedb
You have not read any tapes yet.
Unless you know which volume your file(s) are on you should start
with the last volume and work towards the first.
Specify next volume #:
Specify next volume #: 1
set owner/mode for '.'? [yn] y
#
...

58

Note Notice that restore asks you for a volume number. If you're recovering from a file, this
is irrelevant, but if you're restoring from a series of tapes, you'll need to enter the tape
number. If you only have one tape, enter 1.

Once the preceding command completes, the current directory should have a directory etc,
containing the complete namedb directory.

Restoring a Filesystem

Restoring an entire filesystem is rather straightforward; just bear in mind that it's best not to restore
a filesystem over the existing one. If you need massive restorations, it's safer to erase the partition
and start over.

In the following example, we will completely erase a partition on a second IDE disk and recover
from our backup tape. We won't go into details on the disk work here (see Chapter 13 for more
information), but what we're doing can be summarized like this:

We build a new filesystem with fdisk.1.
We attach that filesystem to the directory system, under/mnt.2.
We go into that directory and run the restore from the tape device/dev/ast0.3.

These are the commands:

..
newfs /dev/ad1s1g
mount /dev/ad1s1g /mnt
cd /mnt
restore −rf /dev/ast0
..

Restoring Interactively

One of dump's most interesting features is interactive mode, −i, which you can use to crack open a
dump (either file or tape) and access it with a commandline tool, marking files that you want to
restore. Interactive mode is terribly useful when a user says something like, "I accidentally erased
my resume. It's somewhere in my home directory, and the name has the word resume in it—I'm not
sure exactly what it's called. Can you get it back?" Obviously the −t flag won't help us; we don't
know exactly what the file is called! Instead, we can wander around in restore's interactive mode
until we find the file.

The following listing shows me interactively opening a dump file called root.dump. (It works just as
well on a dump on tape, mind you!) Restore then presents a restore command prompt, which looks
a lot like your regular FreeBSD command prompt but only supports commands specific to restore.

..
#restore −i −f root.dump

59

restore > ls
.:
.cshrc compat@ kernel.GENERIC modules.good/ sys@
.profile dev/ kernel.good modules.old/ tmp@
COPYRIGHT dist/ kernel.old proc/ usr/
bin/ etc/ laptop−kernel root/ var/
boot/ home@ mnt/ sbin/
cdrom/ kernel modules/ stand/

restore >
..

Once you've opened the dump file, as shown in the listing, you can maneuver through it using ls(1)
to list the contents of a directory, and cd(1) to change directories.

Once you have found the file you want to restore, you need to actually restore it. The interactive
version of restore keeps a list of files that need to be extracted from the dump. When using restore,
you add each file you want to restore to the list, and then tell restore to pull the files from the dump.
You can add a file to this list by entering add and the filename. For example, to restore
/etc/master.passwd and /etc/passwd from the interactive dump shown in the earlier example, enter
the following commands:

..
restore > cd etc
restore > add master.passwd
restore > add passwd
restore > extract
You have not read any tapes yet.
Unless you know which volume your file(s) are on you should
start with the last volume and work towards the first.
Specify next volume #: 1
set owner/mode for '.'? [yn] y
restore > quit
..

The "volume #" referred to in the preceding listing is the number of the tape you have placed in the
machine. Many dumps require several tapes, and each gets a volume number during the dump. If
you're restoring from a file, the volume number is 1. If you were able to fit your entire dump onto a
single tape, the volume number is 1 as well.

Note Whenever you perform a full disk restore, run another level 0 dump before another
incremental dump. Restore rearranges data on the disk, so further incremental
backups won't be useful without a new level 0 backup. And have I mentioned how
much easier your life is when you always run full backups?

Recording What Happened

Script(1) is one of those rarely mentioned but quite useful tools every systems administrator should
know. It records everything you type, as well as everything that appears on the screen, in a file
called typescript. You can then use this type−script file to record errors or long output to be
dissected or analyzed later. Script continues recording until you type exit.

60

For example, if you're running a program that fails at the same spot every time, you can use script
to copy your keystrokes and what the screen says in response. This is particularly useful when
upgrading your system or building software from source code; the last 30 or so lines of the
typescript file make a nice addition to a request for help.

Revision Control

Generally speaking, revision control is the process of tracking changes. In the UNIX world, this
means changes to source code or configuration files. Revision control allows a developer to see
how a piece of code looked on a specific date, or an administrator to see how the system was
configured before things stopped working. Even a lowly writer can use revision control to see how a
manuscript has changed over time. If you're not using revision control, you're making your work
more difficult than it needs to be.[2]

While you'll encounter many revision−control systems, from UNIX's SCCS (Source Code Control
System) to Microsoft's Visual SourceSafe, we'll discuss RCS (Revision Control System), included
with almost all UNIX systems. Once you learn how to work with RCS, you should find it simple to
work with most any other revision−control system.

When using revision control, you're essentially keeping a record of what happened to a file. First,
you mark the file as checked out, which tells the system that you are going to change the file. You
then edit the file as you like, record changes in the system, and release the file for others to edit.
RCS uses three basic commands to accomplish this: ci (check−in), co (check−out), and rcs.

Think of revision control as a library—an old−fashioned brick−and−mortar one. To edit a file, you
must first tell RCS to keep track of it, or give it to the library. To use it you check it out, like removing
a book from a library. Once checked out, nobody else can save or edit that file, though any
legitimate user can view, use, copy, compile, or access that file. Once you finish with the file, you
check it back in, thus releasing it for others to edit. The whole process is called RCS.

Each file in RCS has a version number. Each time you return an edited file to the system, the
Revision Control System compares the returned file with what you checked out. If there is any
change at all, the version number is increased by one, which is the system's way of tracking
changes to the file. You can use the version number to identify specific versions of the file.

Begin the revision−control process by checking in a file with ci(1), which is much like giving a book
to the library. For example, a good file to protect with RCS is /etc/rc.conf. To start the RCS process,
enter ci <path/filename> as shown in the following listing:

..
v # ci /etc/rc.conf
rc.conf,v <−− rc.conf
w enter description, terminated with single '.' or end of file:
NOTE: This is NOT the log message!
x >>System configuration file
y >> .
initial revision: 1.1 done
#
..

When you first check in a file with ci (v), ci creates or edits a revision−control file. You see this in the
second line of the preceding output, where it creates rc.conf,v. It then asks you for a description (w);
enter a descriptive bit of text here (x) for any RCS user to later view the file's description. (While this

61

description isn't very important for standard system files, it can be very helpful for source code or
configuration files for custom or complex programs.) Once you've finished the description, enter a
single period on a line by itself (y) to exit ci.

If you run ls immediately after checking something in, you'll notice that the file appears to have
vanished. Instead you'll see a file with the same name, with a trailing ",v". This is an RCS file, where
the file and its changes are stored. While it's fine for some files to disappear in this fashion, source
code or Web pages can't just vanish. To solve that problem, when checking in a file you can leave a
copy in the working directory with ci −u.

If a file is checked in and has vanished, and you want to put a clean copy in the working directory
without editing it, use the co command. In the following example, you can see that the file test has
been pulled out of the file test,v, and that it's revision 1.1.

..
co test
test,v −−> test
revision 1.1
done
#
..

Looking closely at the directory where the file test lives, you'll see this:

..
ls −l
total 62
−r−−r−−r−− 1 mwlucas mwlucas 12663 Oct 4 18:06 test
−r−−r−−r−− 1 mwlucas mwlucas 12867 Oct 4 17:56 test,v
#
..

I own this file, test, but the permissions have been set to read−only (−r−−r−−r−−, as discussed in
Chapter 7). I no longer have permission to edit my own files! This is because the file isn't checked
out to me. I've checked it in, or handed it over to the Revision Control System librarian. I can view
the file, but if I want to edit it, I have to ask the Revision Control Librarian for it—I need to check it
out, and then lock it for my personal use. I use the −l flag with co.

..
co −l test
test,v −−> test
revision 1.1 (locked)
done
..

Notice the third line of this listing (the second line of output), which specifies locked. This file is
checked out and locked by me, and I am the only one who can save it until I unlock it.

Running another ls at this point will show that the permissions on the file test are now set back to
read and write, allowing me to save.[3] (We'll discuss permissions in Chapter 7.) Anyone else who
tries to check out this file will get a warning that the file is in use and will be told the username of the
person who has locked the file.

62

When finished, I check in the file and, since I want other people to be able to edit the file, I use ci
−u to release my lock.

...
ci −u test
test,v <−− test
new revision: 1.2; previous revision: 1.1
v enter log message, terminated with single '.' or end of file:
>> enable sendmail again
>> .
done
#
..

When you check something in, you are asked for a log message (v). Enter a brief description of
your changes here. (These log messages are comparable to the CVS log messages seen on the
various BSDs’ commit mailing lists.)

These log messages allow others to know what changes you've made to a file without checking
through all the changes—or, alternatively, to see what you were trying to do when your change
broke something and someone has to start debugging. Your own RCS logs can also be useful for
you, months later, when you stare at something and wonder just what was going on inside your
head at the time.

Note If you have lots of files in RCS, the ",v" files can quickly clutter a directory. You can hide them
by creating a directory called RCS. The ci program will then put the ",v" files in that directory,
keeping the working directory cleaner.

Now that you understand the basics of checking files in and out, let's examine some of the more
interesting functions of RCS. These include getting old versions of files, breaking locks, finding
differences between file versions, and putting RCS identifiers in files.

Getting Older Versions

Every file in RCS has a revision number, and each time you check in a file, the revision number
increases. The system remembers what the file looked like during earlier revisions, however, so you
can use the revision number to check out any previous version of a file.

For example, if you're trying to track a bug that's just appeared, you can check out earlier versions
of your code to see if they also exhibit the bug by using co's −r flag. To retrieve version 1.1 of
/etc/rc.conf, enter the following:

..
co −r1.1 rc.conf
RCS/rc.conf,v −−> rc.conf
revision 1.1
done
#
..

63

Breaking Locks

Always check files in once you've finished with them. If you don't, and another user needs to edit
your locked file, they'll have to break your lock, and any changes you've made since locking it will
be lost.

To break a lock on a file, use rcs −u. RCS will ask you to enter a message about why you're
breaking the lock, and this message will be mailed to the lock holder.

Note Be careful when breaking locks: If someone is really editing a file when you force the lock,
they'll be justifiably upset. If they've gone home for the day, that's another thing. Do your best
to find the person before you break his or her lock!

Viewing Log Messages

The rlog command shows you the log messages for the file.

..
rlog /etc/rc.conf

RCS file: /etc/RCS/rc.conf,v
Working file: /etc/rc.conf
head: 1.4
branch:
locks: strict
access list:
symbolic names:
keyword substitution: kv
total revisions: 4; selected revisions: 4
description:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
revision 1.4
vdate: 2000/09/08 17:45:29; wauthor: mwlucas; xstate: Exp; ylines: +2 −0
minor updates
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
revision 1.3
date: 2000/09/07 19:05:30; author: mwlucas; state: Exp; lines: +1 −1
z *** empty log message ***
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
revision 1.2
date: 2000/09/05 16:09:47; author: mwlucas; state: Exp; lines: +1 −1
enable sendmail

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
revision 1.1
date: 2000/09/02 14:53:43; author: mwlucas; state: Exp;
Initial revision
−−−−−−−−−−−−−−−−−−−−−−−−−−−−
==
#
..

All sorts of useful information appear here, including the date each check−in was made (v), the
author of the change (w), the entry's state (x), which we won't worry about here (see ci(1)), and the
number of lines changed (y).

64

Reviewing a File's Revision History

Notice that in the previous section I didn't bother to leave a log message in revision 1.3 (z). To see
what changed, I use rcsdiff, which takes three arguments: two revisions and a filename, as shown
here.

..
rcsdiff −r1.2 −r1.3 /etc/rc.conf
===
RCS file: /etc/RCS/rc.conf,v
retrieving revision 1.2
retrieving revision 1.3
diff −r1.2 −r1.3
6c6
< inetd_enable="NO"
v > inetd_enable="YES"
#
..

Apparently I turned inetd on between the revisions (v), which is important information (especially if
yours is a production system, especially one administered by several people). We'll discuss inetd in
Chapter 13.

You can also use rcsdiff between arbitrary revision numbers, allowing you to view all the changes
made between any two revisions. In the preceding example, we chose the differences between two
consecutive versions. I could have asked for the differences between revisions 1.1 and 1.4,
however, and seen everything that had changed since the file was first checked in.

Ident and ident Strings

Identification strings are used to make it easy for someone to see who has changed a file, and when
it was changed. For example, if I have a server that has been behaving oddly for the last week, I
just want to know what changed a week ago. I could go around running rlog on every system
configuration file to see when things were changed, but that's a bit annoying. It would be much nicer
to just look at the file and have that information presented to me. That's where identification strings
come in. You can put ident strings in your system configuration files. When you check a file out,
RCS will automatically update them.

RCS supports many ident strings, each with the form $string$. For example, the RCS ident string
Id puts information about the last change in the file. I always put #Id in the first line of my
systems’ /etc/rc.conf and check it in. It appears as:

..
#$Id: rc.conf,v 1.5 2000/10/05 18:29:49 mwlucas Exp mwlucas $
..

Note The pound sign (#) is a comment that tells /etc/rc not to try to run the line. Use whatever
comment marker is appropriate for the file.

The following are some typical ident strings.

65

Id is the most commonly used ident string. It shows the location of the RCS file, the revision
number, the date and time of the first check−in, the author, the state, and the person who last
locked it.

NoteRCS state is an arbitrary string that you can assign with ci(1) or rcs(1). You can set arbitrary
states for a file to give a hint about what it's for or what its condition is. Many people will use
this to mark a file as "experimental" or "production" or "don't change for any reason
whatsoever." You don't need to worry about the file state, just accept that it defaults to Exp, or
"experimental." RCS state is not generally used in systems administration.

$Header$ is another common ident string. It's identical to Id, except that it gives the full path for
the RCS file instead of just the filename.

Log is an interesting ident string that adds the RCS log message to the file itself; when you view
the file, you will see the log messages. While the log messages can be overwhelming on heavily
edited files, they can be useful in files that change less frequently. For example, the /etc/rc.conf on
my servers doesn't change at all after a month or so of production use. If I put this ident string in the
file, I will see all RCS log messages in the actual file. This makes it very obvious what's changed,
who has changed it, and why.

There are several more ident strings, but they're basically subsets of the three just described. See
ident(1) for a complete list.

Going Further

Rev i s i on con t ro l i s a power fu l t oo l . You can f i nd a mos t l y comp le te t u to r i a l a t
http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/rcs/.

[2]Some reviewers commented that this section might scare off new sysadmins. Others said that
they'd wished they'd known about revision control when they started. Don't be intimidated; it's not
that difficult and it really will make life better for you.
[3]A warning to vi users; if you or your group owns the file, a w! will force a permission change and
allow you to write to the file even without checking it out. Everything will look fine, but the next
person who checks out the file will overwrite your changes! Be careful using w! anything; if vi
complains that you don't have permission to save, there's a good reason. Listen to it.

Single−User Mode

Unlike many other operating systems, BSD−based systems can perform a minimal boot, which is
important for troubleshooting and system repair.

This minimal boot, also called single−user mode, loads the kernel and finds devices, but doesn't
automatically set up your disk, start the network, enable system security, or run the standard UNIX
services. Single−user mode is the first point at which the system can possibly give you a command
prompt, however, so you can enable any of these services from there.

When a FreeBSD box first starts to boot, it gives you a ten−second countdown and offers you a
chance to pause the system. If you press a key, it drops you to an OK prompt. To boot into
single−user mode from this prompt, enter the following:

..

66

OK> boot −s
..

You'll see the regular device−probe messages flow by, and then the system will offer you a chance
to choose a shell. (You can enter any shell on the root partition; I usually just take the default,
/bin/sh, but you can use /bin/tcsh if you prefer.)

You can use single−user mode to reset a lost root password by simply doing this:

..
fsck −p
mount −a
passwd root
exit
..

The mount −a command mounts the filesystems listed in /etc/fstab (see Chapter 13). If one of
those filesystems is misbehaving and crashing the system, you can mount filesystems individually
by specifying them on the mount command line (for example, mount /usr).

If your system is even more badly damaged, you might not be able to read /etc/fstab. In this case,
you can mount the root partition by using the device name as described in Chapter 13, which is
probably either /dev/ad0s1a (for IDE disks) or /dev/da0s1a (for SCSI disks). You can use this to
mount the partition, specifying the mount point where you want it to be accessible. For example, to
mount your first IDE disk to root, enter this command:

..
mount /dev/ad0s1a/
#
..

Here's how this has worked for me: Once I was experimenting with FreeBSD's Linux mode. I had an
experimental Linux filesystem listed in /etc/fstab. When I upgraded to a recent FreeBSD−current
(see Chapter 6), that filesystem stopped working.[4] When that filesystem was mounted, the
computer crashed. Worse, the computer tried to mount it every time the system booted. The
computer would boot halfway, crash, and try to boot again, over and over and over again. I booted
into single−user mode, manually fsck'd /usr, mounted it, and used vi to edit /etc/fstab to comment
out the offending filesystem.

You can use similar techniques to enable or disable anything on your system before it finishes
booting, just by editing /etc/rc.conf (see Chapter 9) or the appropriate /usr/local/etc/rc.d file (see
Chapter 11). This lets you do things like alter the system's securelevel (explained in Chapter 7)
before the system finishes booting.

Note To activate the network while in single−user mode, use the script /etc/netstart to do so
without starting any network services, such as inetd or httpd.

The commands you have available to you in single−user mode will depend on which partitions you

67

have mounted. Some basic commands are on the root partition, in /bin and /sbin. Others (such as vi
and ee) live on /usr and are inaccessible until you mount that partition. Take a look in /bin and /sbin
on your system to get an idea what you'll have to work with.

If you can't even boot into single−user mode, then you're left with one final option: the fixit disk.

[4]Please note that none of this is recommended. One of the nice things about FreeBSD is that it
doesn't forbid you to do dangerous things; instead, it lets you learn why they're considered
dangerous.

The Fixit Disk

The best way to learn UNIX is to play with it, and the harder you play, the more you learn. If you
play hard enough, you'll break something for sure, and having to fix a badly broken system is
arguably the fastest way of all to learn. If you've just rendered your system unbootable, or plan to
learn quickly enough to risk doing that, this section is for you. You're going to learn a lot
quickly—though mostly on your own.

One of the more interesting portions of FreeBSD is the fixit disk. You can boot off the installation
media but choose to enter fixit mode instead of installing the OS. The choice to use fixit mode is in
the first menu the installer gives you.

You must have some familiarity with systems administration to use the fixit system successfully!
Essentially, the fixit disk gives you a command prompt and a variety of UNIX utilities. You get to use
your brains and the boottime error messages to fix the problem. It's you against the computer. Of
the half−dozen times I've resorted to the fixit disk, the computer won the first three. The time was
well spent, however, as I'm now fairly capable of restoring a damaged system. Definitely finish
reading this book before you even try.

It's impossible to outline a step−by−step fixit process; the exact process you need to follow depends
on exactly what sort of damage you've done to your poor, innocent computer. If you're really
desperate, however, fixit mode gives you a shot at recovery without a complete reinstall. I've had
problems where I've accidentally destroyed my /etc or /dev directories, or fried the "getty" programs
that display a login prompt. Careful use of fixit mode can repair these problems in a fraction of the
time a reinstall would require.

To use fixit mode, you need a set of FreeBSD installation media (either the CD or the two boot
floppies) and either a fixit floppy or the second CD from the FreeBSD release you're using. You can
download the fixit floppy image from any FreeBSD FTP server. You can get recent FreeBSD
release CDs from various vendors, such as Daemon News and the FreeBSD Mall.

It's important to use a fixit disk that's roughly equivalent to the FreeBSD version you're running. A
point or two off won't make much difference, but you won't be happy trying to fix a 4.4−stable
system with a 5.0−current fixit disk.

Boot off the installation media. When you reach the first menu, you'll see a choice to enter fixit
mode. Select it. You'll then get a choice of using the CD or the floppy. Use the CD if you have it.
The fixit floppy only contains the programs that will fit on a single floppy disk. If you have a fixit CD,
you will have the full range of programs available on a default FreeBSD install. While it might not
include your favorite editor or shell, it should have everything you need.

You can mount your existing hard drive under /mnt. Programs are either under /stand or /mnt2. The
exact commands you get vary from one release of FreeBSD to another; run ls /mnt2 and ls

68

/stand to see what you have.

At times, all you can hope for is to get the hard drive mounted so that you can read data from it—the
fixit CD contains all the tools you will need to get the system on the network. One of the good points
of the FreeBSD installer is that you have the option to keep existing partitions. You can tar up
existing data files while running on the fixit disk, and then reinstall. Once you have a running
system, you can extract the tarballs, and have your system back.

Now that you understand how to recover your system, configuration, and files, let's go on and start
customizing your operating system for your computer.

69

Chapter 4: Kernel Games

Overview

The first step in optimizing FreeBSD is to configure the kernel. If you're new to UNIX administration,
the word kernel might be intimidating. After all, the kernel is one of those secret parts of the system
that mere mortals are not meant to dabble in. In fact, in some versions of UNIX, such as Solaris,
going in and tampering directly with the kernel is unthinkable. In the open−source UNIX world,
however, meddling with the kernel is the best way to improve your performance. (It would probably
be the best way to tune other operating systems as well, if you were allowed to.)

The FreeBSD kernel can be dynamically tuned, or changed on the fly, and most aspects of system
performance can be changed as needed. We'll discuss the kernel's sysctl interface, and how you
can use it to alter a running kernel.

At the same time, some parts of the kernel cannot be altered while running, and some kernel
features require extensive reconfiguration. Also, you might want to reduce the size of your kernel by
removing unneeded components. The best way to do this is to build your own kernel, and I'll show
you how.

Finally, we'll discuss loadable kernel modules—kernel subsystems that can be turned on or off as
needed.

What Is the Kernel?

You'll hear many different definitions of kernel. Many are just flat−out confusing. The following
definition isn't complete, but it's good enough for our purposes, and it's comprehensible: The kernel
is the interface between the hardware and the software.

The kernel allows you to write data to disk drives and the network. It handles CPU and memory
operations. It translates an MP3 to a stream of zeros and ones that your sound card understands,
and tells your monitor where to put the little colored dots. The kernel provides interfaces to
programs that need access to the hardware.

While the kernel's job is easy to define (at least in this simplistic manner), it is difficult to actually
perform. Different programs expect the kernel to provide different interfaces to the hardware, and
pieces of hardware provide their resources in varying ways. The kernel has to cope with all of this.
For example, your kernel controls memory usage, and if you have a program that demands that
memory be allocated in a way your kernel doesn't support, you're in trouble. (Programs request
memory in a variety of ways.) Too, if your kernel doesn't know how to talk to your network card, the
network card won't work. The way your kernel investigates some hardware during the boot
sequence defines how the hardware behaves, so you have to control that. Some network cards
identify themselves in a friendly manner, while others lock up hard if sent a simple query.

The actual kernel is a file on disk: /kernel. Kernel modules—the kernel code that can be loaded and
unloaded after boot—lives in /modules. Kernel modules are required in this day of detachable
hardware, such as PC Cards and USB, and they can also provide additional functionality that you
don't want to permanently add to the kernel. Every file you see outside of /kernel and /modules is
not part of the kernel; these files and programs as a group are called the user−land, meaning
they're meant for users. But at the same time, these programs and data use the kernel facilities.

70

On a newly installed system, you'll also see a file /kernel.GENERIC, which is the generic install
kernel. On systems that have been running for a while, you might also find a variety of other
kernels, some of which will be old, while others are alternates for particular circumstances or
experiments that didn't work out. The FreeBSD team makes configuring and installing kernels as
simple as possible. Let's take a look.

Configuring Your Kernel

FreeBSD provides two main ways to configure an existing kernel: sysctl(8) and the boot loader.

Sysctl

The sysctl program allows you to peek at values used by the kernel, and in some cases to set them.
Just to make things confusing, these values are also sometimes known as sysctls. Sysctl is a
powerful feature because, in many cases, it will let you solve performance issues without rebuilding
the kernel or reconfiguring an application. Unfortunately, this power also gives you the ability to kick
the legs out from under a running program and make your users really, really unhappy.

All sysctl operations are performed with the sysctl(8) command. Throughout this book, I will be
pointing out particular sysctls that change system behavior, but you should understand what they
are first.

Before we begin playing with sysctl operations, take a look at the sysctls available on your system.
The following command will save them to a file so you can study them easily:

..

sysctl −A > sysctl.out
..

After running this command, the file sysctl.out will contain hundreds of sysctl variables and their
values, most of which will mean absolutely nothing to you at this point, but some are easily
understood:

..

kern.hostname: bigbox.blackhelicopters.org
..

This particular sysctl is named kern.hostname and has a value of "bigbox.blackhelicopters.org". The
system I ran this command on happens to be called "bigbox.blackhelicopters.org". From the name
of the sysctl, it's fairly easy to guess that this is the kernel's name for the computer it's running on.
Easy enough to figure out, no?

Some are much more curious:

..

p1003_1b.memory_protection: 0
..

71

As a user, I have no idea what this value means. Still, if I'm having trouble and ask for help from a
software vendor or on a mailing list, I can produce this information upon request. They might ask me
to adjust it to better support their software.

The sysctls are organized in a tree format called a Management Information Base, or MIB, with
several broad categories, such as net, vm, and kern. (The Management Information Base tree is
used in several other parts of system administration; we'll see another example later in this book.)
Each of these categories is further subdivided; for example, the net category covers all networking
sysctls and is divided into categories such as IP, ICMP, TCP, and UDP. The terms sysctl MIB and
sysctl are frequently used interchangeably. There are many sorts of MIB—we'll see examples of
SNMP MIBs in Chapter 19—but throughout this chapter, we're only discussing sysctl MIBs.

We saw the kern.hostname MIB earlier, and if you look at the sysctls available on your machine,
you'll see that a whole bunch of them begin with "kern". These are all general kernel values. If you
go down a little further, you'll see a whole bunch that begin with "kern.ipc.", such as these:

..

kern.ipc.maxsockbuf: 262144
kern.ipc.sockbuf_waste_factor: 8
kern.ipc.somaxconn: 128
. . .
..

These sysctls describe the kernel's IPC[1] behavior. This branching of sysctls can go on for several
layers.

You will eventually wind up with individual MIBs, such as net.inet.raw.recv−space. Each MIB has a
value that represents some buffer, setting, or characteristic used by the kernel. By changing the
value, you change how the kernel operates. For example, some sysctls control how much memory
is used for each network connection. If your network performance is poor, you could increase the
amount of system reserved for network connections. Some of the roots of the sysctl MIB tree are
listed in Table 4.1.

Table 4.1: Some roots of the sysctl MIB tree

Sysctl Function

kern core kernel functions

vm virtual memory

vfs filesystems

net networking

72

debug debugging information

hw hardware information

machdep platform−dependent variables (i.e., Alpha,
i386, etc.)

user userland interface information

p1003_1b POSIX behavior
[2]

[2]POSIX is an international standard for UNIX program behavior and kernel features.
Most of FreeBSD complies with POSIX.

Each sysctl value is either a string, integer, binary value, or opaque. Strings are free−format text of
arbitrary length; integers are ordinary whole numbers; binary values are either 0 (off) or 1 (on); and
opaques are in machine code and only specialized programs can interpret them.

Unfortunately, sysctls are not well documented, and rather than there being a single document
listing all available sysctl MIBs and their functions, what MIB documentation there is generally
appears in the man page for what it controls. For example, the original documentation for the MIB
kern.securelevel (discussed more in Chapter 7) is in init(8). Many have no documentation. Appendix
A includes a list of some common sysctls and their uses.

Fortunately, some MIBs are obvious. For example, if you scan your file of saved MIBs, near the top
you'll see this one:

..

kern.bootfile: /kernel
..

This is an important MIB if you regularly boot different kernels. (We'll look later in this chapter at how
to boot an alternate kernel.) If you're debugging a problem and have to reboot with several different
kernels in succession, you can easily identify which kernel you're using by checking this MIB. More
than once I've booted a test kernel, tested a problem and found it fixed, and realized that I had
forgotten which kernel I'd booted.

To view a subtree of the MIBs available in a particular tree, such as kern, enter this command:

..

sysctl kern
kern.ostype: FreeBSD
kern.osrelease: 5.0−CURRENT
kern.osrevision: 199506
...
..

This list goes on for quite some time. If you're just becoming familiar with sysctls, you might want to
look and see what's available. To get the exact value of a particular sysctl, give the full MIB as an
argument:

..
sysctl kern.securelevel

73

kern.securelevel: −1
#
..

In this case, kern.securelevel has the integer value –1. We'll discuss exactly what this means in
Chapter 7).

Changing Sysctls

Some sysctl values are read−only. For example, take a look at the hw (hardware) and machdep
(machine dependencies) MIB trees.

..

hw.machine: i386
..

Since the FreeBSD project has yet to develop the technology to change Intel−based hardware into
PowerPC hardware via a software setting, this setting is read−only; all you'd accomplish by
changing a MIB like this is to hose your system. FreeBSD protects you by making these sorts of
MIBs read−only. Trying to change it won't hurt anything, but you'll just get a warning that the MIB
cannot be changed.

On the other hand, consider the following MIB:

..

MIBvfs.usermount: 0
..

This one, which controls whether or not users can mount media such as CDROMs and floppy disks,
can be changed. By default it is set to 0, or off. To turn it on, use sysctl's −w flag to set it to 1.[3].

..
sysctl −w vfs.usermount=1
vfs.usermount: 0 −> 1
#
..

Sysctl returns a nice little message showing the previous value and the change to the new value.
That's all there is to changing a sysctl.

Setting Sysctls at Boot

Sysctls you want set at boot−time should be entered in /etc/sysctl.conf. To do so, list each sysctl
you want to set, and the desired value, in the sysctl.conf file.

74

For example, to allow users to mount filesystems by setting the vfs.user−mount sysctl, add the
following on a line by itself in sysctl.conf.

..

vfs.usermount=1
..

Kernel Configuration with Loader.conf

Some kernel configuration must take place before the system starts to boot. For example, when the
kernel initially probes an IDE hard drive, the device driver determines whether or not to use write
caching. This decision must be made when the drive is first detected, during boot, and you can't
change your mind after booting. Similarly, you might have a new network card and want to load the
kernel module for its driver before you boot. That's where the system loader comes in.

The loader has many functions: It finds the hard drive that contains the kernel, loads the kernel into
memory, triggers the booting process, and feeds information to the kernel. The most important part
of the information the loader feeds to the kernel is the sysctl MIBs, which must be set at boot.

The most common way to configure the system loader is to edit a configuration file, though you can
also enter configuration commands manually at the loader's ok> prompt. For long−term changes,
you're better off including them in /boot/loader.conf.

There are two important loader.conf files: /boot/loader.conf and /boot/defaults/loader.conf. We'll
have a look at the second of the two in Chapter 8. For now, we'll change /boot/loader.conf only. The
entries in /boot/defaults/loader.conf are the system defaults; anything you put in /boot/loader.conf
will override the default settings.

Loader.conf has two main functions: loading kernel modules and providing hints to device drivers.
The device driver hints are generally sysctl MIBs that can only be set at boot.

When you look at /boot/defaults/loader.conf, you'll see a lot of options that you might find useful in
various circumstances, such as the ability to specify a different kernel rather than the default, or the
ability to specify verbose booting. Just for reference, here's a snippet of /boot/defaults/loader.conf.

..
kernel="/kernel"
kernel_options=""

userconfig_script_load="NO"
userconfig_script_name="/boot/kernel.conf"
userconfig_script_type="userconfig_script"
. . .
..

To change one of these default settings, you would copy the appropriate line from the default file to
/boot/loader.conf, and make the change there.

75

For example, the first entry in the preceding listing is for the kernel filename, which we saw in our
sysctl example earlier. Suppose you were working on a remote machine, and you wanted it to
reboot the next time with a different kernel, but you didn't want to copy this other kernel to /kernel.
You could change the kernel your system will use on boot by editing this one line. This is a sysctl
that, obviously, can only be set at boot.

Let's look at two specific examples: passing hints to device drivers and automatically loading kernel
modules.

Passing Hints to Device Drivers

Loader.conf's first purpose is to pass hints to device drivers. (If a device driver can use these hints,
they're described in the manual page.)

As discussed earlier, the IDE hard drive's device driver must know if it should ask for write caching
before booting the system. (This is documented in the ata(4) man page, and we will discuss write
caching in Chapter 16.) To enable write caching, set the hw.ata.wc flag to 1 by entering the
following in loader.conf:

..
hw.ata.wc="1"
..

That does it.

This type of flag should look familiar; it looks suspiciously like a sysctl MIB. In fact, once the system
boots, check to see if it is a sysctl:

..
sysctl hw.ata.wc
hw.ata.wc: 1
#
..

What do you know, it is!

When the system is running, you cannot change this sysctl. (Go ahead, try it, you won't hurt
anything.) You changed a write−only sysctl by setting it at boot time. While this still won't help you
turn that old Pentium into an Alpha, it does give you added flexibility.

Loading Kernel Modules Automatically

As I mentioned earlier, kernel modules are portions of a kernel that can be started (or loaded) when
needed, and unloaded when unused. This feature can save system memory, and it improves
system flexibility.

Loading a kernel module automatically at boot is fairly straightforward, and the default loader.conf
offers many examples. To do so, copy the module name to loader.conf, cut off the trailing ".ko", and
add the string _load="YES". For example, to load /module/procfs.ko automatically at boot, add the
following to loader.conf:

76

..
procfs_load="YES"
..

The hard part, of course, is knowing which module to load. The easy ones are device drivers; if you
add a new network or SCSI card, you can load the module at boot rather than rebuilding the kernel.
If you're loading kernel modules to solve a particular system problem, you're probably doing this
either from program documentation or someone's advice. Knowing which other modules to load
comes with experience, reading documentation, and knowing what you want your system to do. I'll
give specific pointers to certain kernel modules later.

Manually Configuring the Loader

If you're repeatedly rebooting to experiment with modules and sysctls, you probably don't want to
keep editing /boot/loader.conf because it's just too time−intensive. Instead, adjust the loader
manually at boot time. Then, once you find a configuration you like, you can alter /boot/loader.conf
to your taste.

As discussed earlier, when your FreeBSD system first boots, it displays a 10−second countdown. If
you hit a key and interrupt the countdown, you're brought to a loader command prompt—a simple
command−line system where you can control initial system setup. You'll know you're in the loader
when you see the loader prompt

..
ok
..

The loader is not UNIX—it's actually a small command interpreter written in Forth.[4] While a couple
of loader commands resemble their UNIX counterparts, that's more for convenience than because
of any underlying similarity.

Loader Commands

Entering a question mark (?) at the loader prompt will give you a very brief tutorial. Here are some
of the most useful commands.

ls

The ls command lists files, just like in UNIX. It defaults to displaying the root directory; you can list
another directory by giving the full path.

unload

Unload empties the system memory, which starts off containing the kernel and any modules
specified in loader.conf.

load

The load command copies a file into memory. Use load to add kernel modules or even a new
kernel. (You cannot load one kernel while another is still in memory though; you must unload the old

77

one first.)

For example, you could load the Intel EtherExpress network card driver like this:

..
ok load /modules/if_fxp.ko
ok
..

set

The set command allows you to set the value of a variable. For example, to test IDE write caching,
you need to set hw.ata.wc to 1.

..
ok set hw.ata.wc=1
ok
..

[1]IPC is an acronym for interprocess communication, and various programs need this. Your
program documentation will tell you if this sysctl needs to be altered.
[3]In more recent versions of FreeBSD, the −w is unnecessary; just give the assignment.
[4]Forth is one of the very few programming languages that can fit in the tiny amount of space
available in a computer's boot record. A similar program in C would require much more space.
Every so often, someone volunteers to rewrite the boot loader in C, or BASIC, or some other
language. These people are never heard from again.

Loading and Unloading Modules in Multi−User Mode

Some kernel modules don't need to be loaded in your system at boottime; they can be loaded and
unloaded while the system is running. We'll look at how you can find out what modules you have in
your system, then how to load and unload them.

Viewing Loaded Modules

Once your system is fully booted, you can see which kernel modules are loaded with kldstat(8):

..
kldstat
Id Refs Address Size Name
 1 5 0xc0100000 2d505c kernel
 2 1 0xc0c6c000 13000 linux.ko
#
..

In this listing, the laptop has two modules loaded: the kernel (kernel) and the Linux compatibility
module (linux.ko, discussed in Chapter 10). Each module contains submodules, which you can view
using kldstat −v, but be ready for a couple hundred lines of output.

78

Loading and Unloading Modules

Load and unload software modules with kldload(8) and kldunload(8). For example, to load the warp
console−mode screen saver, enter this command:

..
kldload /modules/warp_saver.ko
#
..

Once you've finished, you can unload the module with this command:

..
kldunload warp_saver.ko
#
..

If all possible functions were compiled into the kernel, the kernel would be much larger than it is.
This way, you can have a smaller, more efficient kernel and only load modules as you need them.

Customizing the Kernel

You'll eventually find that you cannot tweak your kernel as much as you desire using only modules
and sysctl, and your only solution will be to build your own custom kernel. But don't worry, the
process is perfectly straightforward if you take it step by step.

The kernel shipped in a default install is called GENERIC. GENERIC is designed to run on a wide
variety of hardware, though not necessarily to run well or optimally. GENERIC boots nicely on a 486
and later systems, but newer x86 systems have advanced features and optimizations that help them
perform better, and GENERIC doesn't take advantage of these features because it's aiming for the
lowest common denominator.

When you customize your kernel, you'll get better performance, and you can also include new
functionality in it, or support for new hardware.

Preparation

You must have the kernel source code before you can consider building a kernel. If you followed the
advice in Chapter 1, you're all set. If not, you can either go back into the installer and load the kernel
sources or jump ahead to Chapter 6 and use CVSup instead.

If you don't know whether you have the kernel source code installed, look for a /sys directory. If it
exists, and there are a bunch of files and directories in it, you have the kernel sources.

Before building a new kernel, you must know what hardware your system has. This can be difficult
to determine, because the brand name on a component doesn't necessarily have any relationship to
the device's identity or abilities. After all, many different companies made an NE2000−compatible
network card. Even if the box said "3com," the circuits inside the chip said "ne2000."[5] Similarly,
companies such as Linksys rebrand inexpensive network cards that all have very different internals.
The boxes all say "Linksys," but the chip says something else depending on the month of

79

manufacture.

Fortunately, PCI−based systems have sophisticated hardware−recognition systems, and FreeBSD
will almost certainly find these devices at boot. If yours is an older ISA system, on the other hand,
you might have to dig through the component manual to learn what sort of device you have and how
to set IRQs and I/O ports.

The best place to see what hardware your FreeBSD system found is the file /var/run/dmesg.boot,
which contains the boottime kernel messages buffer, also known as all that garbage you saw on
boot. (There's an example of dmesg.boot in Chapter 3.) If you've never looked at your dmesg.boot
file, take a few moments to do so now. You probably never knew that your computer had so much
stuff in it!

When looking at the dmesg.boot file, you'll find the device names at the beginning of the dmesg
lines. Each piece of hardware has a separate device name, typically a few letters followed by a unit
number, such as npx0. The letters are the name of the driver (npx), and each device is numbered,
starting with 0. One device might span several lines, and if you have multiple devices, they'll show
up with sequential unit numbers.

Your Backup Kernel

A bad kernel can render your system unbootable, so you absolutely must keep a good kernel
around at all times. While the kernel install process retains one old kernel, it's easy to overwrite it.

If you don't keep a good, reliable kernel around, here's what can happen: You forget to put a
network driver in your current kernel, so you decide to rebuild it. Your rebuilt kernel becomes the
current kernel, your previous (imperfect) kernel becomes the old kernel, and your old working kernel
goes off to the Land of Oz. When you discover that your new kernel won't keep running for more
than a few hours, you'll really regret the loss of that reliable kernel.

A common place to keep a known good kernel is /kernel.good. Back up your working, reliable kernel
to /kernel.good before tweaking your kernel, like this:

..
mkdir modules.good
cp kernel kernel.good
cp −R modules/;* modules.good/
#
..

Note Don't be afraid to keep a variety of kernels on hand. Some people even put kernels
in directories named by date, so that they can have a long−running history of
kernels. You can have too many kernels on hand, but only if they fill up your root
partition.

Editing Kernel Files

You've now backed up your working kernel and are ready to build a new one. To begin, check out
/sys/i386/conf, where you should find several files. The important ones for your purposes are
GENERIC and LINT. GENERIC is the kernel configuration file for the standard kernel used on first
install. LINT contains all kernel options and the documentation for them, including a variety of really
obscure ones.

80

Do not edit any of the files you find in /sys/i386/conf directly. Instead, copy GENERIC to a new file
and edit the copy, not the original, and name the file after your machine (the most common
convention). For example, if you have a server called "webserver," you would do this:

..
cp GENERIC WEBSERVER
..

Now open the new configuration file in your favorite text editor. Here's a snippet from the part of the
GENERIC configuration that covers IDE (aka ATAPI) drives.

..
ATA and ATAPI devices
device ata0 at isa? port IO_WD1 irq 14
device ata1 at isa? port IO_WD2 irq 15
device ata
device atadisk # ATA disk drives
device atapicd # ATAPI CDROM drives
device atapifd # ATAPI floppy drives
device atapist # ATAPI tape drives
options ATA_STATIC_ID #Static device numbering
..

Each line in the kernel configuration file is either a comment or description of a kernel feature. The
pound sign (#) marks comments and the computer ignores them; they're there for your benefit.

Some lines have comments that start in the middle of the line, describing what appears earlier on
the line. Lines beginning with "device" are device drivers; in this example, you'll see entries for IDE
disks, IDE CD−ROM drives, IDE floppy drives, and IDE tape drives. There are also entries for the
actual IDE bus on the motherboard, and for both of its connectors.

Other lines are for software features, or "options." In this example, the option ATA_STATIC_ID
enables "static device numbering"; you'll learn what that means in Chapter 16. You'll also see a few
special−purpose keywords, such as "pseudo−device" and "cpu," which are either software options
or descriptions of hardware.

Because the GENERIC kernel is designed to run on the greatest variety of equipment, it includes a
huge array of network drivers, disk drivers, controllers, and features. As a general rule, begin
customizing a kernel by commenting out unnecessary entries to shrink and simplify your kernel. Of
course, when you streamline the kernel in this way, you'll have to rebuild it when you change your
hardware, and if you're one of those folks who constantly swaps hardware in and out, you probably
don't want to gut your kernel. On the other hand, if you have a specific server hardware setup and
you mass−produce kernels, strip out anything unnecessary.

Your copied kernel configuration file (WEBSERVER, in our example) starts off with comments
describing the purpose of the configuration file and containing pointers to the official FreeBSD
documentation. Once you skip these comments, the new config file starts with the following:

..
machine i386
cpu I486_CPU
cpu I586_CPU
cpu I686_CPU
ident GENERIC

81

maxusers 0
..

machine

The machine keyword in the preceding listing describes the system architecture. You really don't
want to change this, unless you're building a kernel for your Alpha on an x86.

cpu

The cpu statements describe the on−chip features the kernel can expect to use and support. This is
important because newer CPUs provide instructions that others don't. (For example, consider the
Pentium versus the Pentium with MMX.)

You only need to include the CPU you have. If you're not sure of the CPU in your hardware, check
dmesg.boot. My laptop's dmesg.boot includes the following lines:

..
CPU: Pentium III/Pentium III Xeon/Celeron (497.56−MHz 686−class CPU)
 Origin = "GenuineIntel" Id = 0x681 Stepping = 1

Features=0x383f9ff<FPU,VME,DE,PSE,TSC,MSR,PAE,MCE,CX8,SEP,MTRR,PGE,MCA,CMOV,PAT,PSE3
6,MMX,FXSR,SSE>
..

The important part of this description is the 686−class CPU at the end of the first line. This tells me
that I can remove the cpu statements I486_CPU and I586_CPU to make my kernel smaller and
faster. As a result, the kernel will use 686−class CPU−specific optimizations instead of slower
generic code.

ident

The ident statement is the kernel's name, which is usually the same as the server name. If you build
one kernel and install it on many machines, you might want to give the kernel a name that reflects
its purpose, such as WEBSERVER.

maxusers

The maxusers value is a rough value used to compute the size of various in−kernel tables (not the
maximum number of users). These in−kernel tables control things such as the number of available
network connections and the number of files that can be open at one time.

Beginning with FreeBSD 4.5, the kernel will look at a system's resources and assign a maxusers
value that it believes is appropriate for most users. The maxusers 0 entry means the kernel will
take the defaults, which will be entirely appropriate for most systems. (You can still hard−code a
MAXUSERS value if you wish, however, as I describe below.)

On FreeBSD versions 4.4 and earlier, you needed to hard−code your maxusers value. I typically ran
an X−based laptop with a maxusers value of 16, which is fine for my laptop because I'm the only
user of the system; no matter how many fancy desktop widgets I fire up, or how many Web pages

82

I'm browsing, I'm only one person and cannot possibly open more files or make more network
connections than a maxusers of 16 can support. On a busy Internet server, though, I might kick this
value up to 256; this is high enough that the server will prepare to handle thousands of network
connections and open files.

If your maxusers value is too low, the system will start to be unable to handle all your files and
network connections. The kernel will notice that it cannot handle all these requests, and will log
errors. You'll start to get warnings on the console and in /var/log/messages telling you quite
explicitly to increase maxusers.

Don't raise maxusers above 256, though, unless you have an insane number of files on a single
partition (millions, for example) or you push multiple T1s of bandwidth.

Basic Options

Following the maxusers value in the config file, there are a variety of basic options, including things
like INET for TCP/IP support, and FFS for UNIX filesystem support. You'll also encounter rarely
used ones that you can remove. We won't discuss all the kernel options, but merely some specific
examples from different types of options and some of the more common options. I'll specifically
mention ones that can be trimmed from an Internet server.

Consider the following options:

..

options MATH_EMULATE
..

Older CPUS (specifically the 386 and the 486SSX) have no math co−processor. If your system
lacks a math co−processor, you should leave MATH_EMULATE in so your kernel will emulate a
math co−processor in software. Any modern CPU will have a math co−processor, however, and if
that's true in your case, you can cut it.

..

options INET
..

The INET option provides support for network protocols, such as TCP/IP. Keep this one.

..

options INET6 #IPv6 communications protocols
..

If you're using IPv6, you need INET6. If not, cut it.

..

options FFS
..

83

The FFS option specifies UNIX Fast Filesystem, FreeBSD's default. Keep it.

..

options SOFTUPDATES
..

Softupdates is a method for ensuring disk integrity with FFS. (We'll discuss soft−updates at some
length in Chapter 13.) Keep this line unless you specifically decide against using softupdates.

..
options MD_ROOT
..

If you use MFS to build diskless workstations, you need the MD_ROOT option. Otherwise, give it
the axe.

..

options NFS
options NFS_ROOT
..

These two options support the Network File System. The NFS_ROOT option allows you to boot off
an NFS drive, rarely used in Internet servers. You can delete both entries if you aren't using NFS.

..

options MSDOSFS
..

The MSDOSFS option supports MS−DOS−formatted filesystems and floppies. If you mount or
unmount MS−DOS floppy disks, or if you are sharing your hard drive with a Microsoft operating
system, you might want this option. You can also temporarily load this functionality with the
msdos.ko module.

..

options CD9660
..

The CD9660 option supports the standard CD−ROM filesystem. Like the MSDOS filesystem, you
can temporarily load and unload this functionality with the cd9660.ko module.

..

options PROCFS
options COMPAT_43
..

If you remove the preceding two lines, your system will break. Many user programs rely on BSD4.3
functions. The COMPAT_43 option provides kernel compatibility with BSD4.3. Similarly,

84

process−monitoring programs rely on the process file system (PROCFS).

..

options SCSI_DELAY=15000
..

The SCSI_DELAY option specifies the number of milliseconds FreeBSD waits after finding your
SCSI controllers before probing the SCSI devices, giving them a chance to spin up. If you don't
have any SCSI hardware, you can delete this line. If you have new SCSI hardware, you can reduce
this setting to 5000 (5 seconds) or lower.

..

options UCONSOLE
..

Some programs allow users to look at the system console in an X Windows terminal. The
UCONSOLE option is the kernel support for that feature. You can delete this line if you aren't using
X, or if you don't have this system set up as a desktop.

..

options USERCONFIG
options VISUAL_USERCONFIG
..

These two userconfig lines allow you to enable and disable devices before your kernel boots. While
you don't absolutely need them, when you read some FreeBSD hardware documentation that says
"set this in userconfig," you'll regret not having them.

..

options KTRACE
..

The KTRACE option enables kernel−level tracing. Keep it unless you know exactly what it is and
what you're doing.

..

options SYSVSHM
options SYSVMSG
options SYSVSEM
..

The preceding three options support System V−style interprocess communication, and many
applications expect to have them. They can also be loaded as modules.

..

options P1003_1B
options _KPOSIX_PRIORITY_SCHEDULING

85

..

The two lines support kernel POSIX functions, and many programs expect to find POSIX features in
the kernel.

Multiple Processors

If your system has multiple processors, you need the following kernel options:

..

options SMP # Symmetric MultiProcessor Kernel
options APIC_IO # Symmetric (APIC) I/O
..

The SMP option tells the kernel to use the appropriate code for multiple processors; APIC_IO
handles input and output for SMP kernels.

When you're building an SMP kernel, remove the I386_CPU and I486_CPU from your kernel
configuration. FreeBSD only supports SMP on systems that fit the Intel SMP specification, and this
specification does not support SMP with 386 or 486 chips.

If you do not have multiple processors, leave these options commented out!

Device Entries

After the options entries in the config file, you'll find device entries, which are grouped in fairly
obvious ways.

Bus Entries

The first device entries are bus entries, such as device pci and device isa. Keep these,
unless you truly don't have that sort of bus in your system. (You might be surprised at the number of
"legacy−free" systems that have an ISA bus hidden somewhere in their innards; for example, my
brand−new laptop has an old−fashioned ISA bus hidden in it.) The EISA device, however, can
probably be removed on modern computers.

Interfaces

The IDE/ATAPI interfaces and devices are next (we saw an example of these at the beginning of
the "Editing Kernel Files" section). Even if your system has no IDE devices, it's probably a good
idea to keep the "device ata", especially since most motherboards have an IDE controller or two on
them. You can eliminate entries for any IDE devices you don't have.

Next are the SCSI controllers and cards, used for SCSI features, including those needed by parallel
port Zip disks and USB storage devices. If you don't have any of these devices, this whole section
can go away. If you're using SCSI, just remove the controllers you don't have.

86

..

SCSI Controllers
device ahb # EISA AHA1742 family
device ahc # AHA2940 and onboard AIC7xxx devices
. . .
..

After the SCSI section, you'll find a few lines of device drivers for such mundane things as
keyboards, monitors, your PS/2 port, and so on. Don't delete these.

The network card list comes next; it is quite long and looks much like the SCSI and IDE sections. If
you're not going to replace your network card any time soon, get rid of the drivers from any
hardware you don't have. If your system doesn't have any ISA slots in it, you can certainly delete all
of the ISA drivers.

Pseudo−Devices

Near the bottom of the GENERIC kernel, you'll find a list of pseudo−devices. As the name might
suggest, these are created entirely of software. For example, when you telnet or SSH (see Chapter
13) into the system remotely, the system has to have a way to keep track of your terminal session,
send characters to it, and read what you type. It wants to treat your remote connection just as it
treats the physical monitor and keyboard attached to the system. To do so, it uses a pseudo−device
called a pseudo−terminal. Because the kernel treats these much like devices, we call them
pseudo−devices.

Here's one, for example:

..

pseudo−device loop
..

This is the loopback interface, lo0, a network interface that points back to the local machine. If you
remove it, many pieces of software will break in interesting ways. This can be very educational, but
you don't want to do this in a production system.

..

pseudo−device ether
..

The ether pseudo−device provides general Ethernet support. You probably want it.

..

pseudo−device sl
..

The sl pseudo−device is for Serial Line Internet Protocol (SLIP). It is an old protocol that has been
replaced by Point−to−Point Protocol (PPP). You probably don't need this unless your ISP requires

87

it.

..

pseudo−device ppp 1
..

The ppp pseudo−device is for kernel−based PPP. Kernel−based PPP has fallen out of favor, being
supplanted by userland PPP. You probably don't need this.

If you do want to use kernel PPP, the number after "ppp" is the number of PPP devices to create.

..

pseudo−device tun
..

The tun pseudo−device is the logical packet tunnel. Various programs use this to sneak packets in
and out of the kernel. You need this for userland PPP (regular dial−up connections).

..

pseudo−device pty
..

The pty pseudo−devices are pseudo−terminals, used for things like telnet connections, and so on.
You want these.

..

pseudo−device md
..

The md pseudo−device is for memory disks. Again, if you're not using memory disks, you don't
need them. For most (but not all) Internet servers, memory disks are just a waste of RAM. However,
a very few special−purpose servers (such as, anonymous CVS servers) need memory disks.

..

pseudo−device gif
pseudo−device faith
pseudo−device bpf
..

The bpf pseudo−device is the Berkley Packet Filter, which allows you to examine packets on your
network. It's used for packet sniffers and for the DHCP client and server. If you don't need any of
those, turn this off.

88

USB Devices

Finally, after the pseudo−devices you have USB devices, which can all be dynamically loaded via
kldload. Many Internet servers don't use USB, so you might be able to delete them entirely from
your kernel.

[5]Actually placing such a label on the outside of the chip would be far too convenient, so computer
manufacturers generally don't bother.

Building Your Kernel

The previous sections have shown you how to gut your kernel configuration. Before you start adding
other things in, I recommend trying to build and boot this minimal kernel to learn what your kernel
really needs before adding customizations.

Note Use the steps described in this section when building a kernel without upgrading. If you're
upgrading (as discussed in Chapter 6), you must follow a slightly different procedure.

Once you've selected and modified your kernel options, it's time to build your kernel. To do so, first
use config(8) to assemble the necessary files and check your configuration's syntax. For example,
to run config on MYKERNEL, enter the following command:

..
config MYKERNEL
Kernel build directory is ../../compile/MYKERNEL
Don't forget to do a "make depend"

..

While config cannot detect a good kernel configuration, it will find a variety of configuration mistakes
if they exist. If config detects a problem, it will report an error and stop. For example, if you include a
nonexistent option, config will complain, loudly. (Config always reminds you to run a make depend.
We haven't discussed this yet, but forgetting this step is the single most common error in building a
kernel.)

Some error messages are blatantly obvious—for example, you might have accidentally deleted
support for the Unix File System (UFS), but included support for booting off of UFS. One requires
the other, and config will tell you exactly what's wrong. Other messages are strange and obscure,
and you should investigate them as discussed in Chapter 2.

Assuming that config runs correctly, config tells you which directory it has assembled your kernel
pieces in. In our example, this is ../../compile/ MYKERNEL. Go to the directory shown and do this:

..
make depend && make all install
..

The "make depend" stage of the command ties the pieces of your kernel and the kernel modules
together, making sure that everything has the pieces it needs. The second command, "make all
install", takes all the source code and dependencies and compiles a kernel out of source code.

89

Then wait. The kernel building process will take a few hours on a 25 MHz 486, or a few minutes on
a dual−processor 1 GHz Pentium. You will see all sorts of cryptic compiler messages scrolling down
your screen while this is happening. In the install step, your current kernel will be moved to
/kernel.old, and your new kernel installed as /kernel.

Once the build is finished, reboot your server and watch your boot messages. Near the top of these
messages you should see the directory where your new kernel was compiled, as shown here in
bold:

..
Copyright (c) 1992−2001 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
 The Regents of the University of California. All rights reserved.
FreeBSD 5.0−CURRENT #0: Sun May 20 16:49:05 EDT 2001
mwlucas@turtledawn.blackhelicopters.org:/usr/src/sys/compile/MYKERNEL

...

..

If you see a message like this, you have been successful. You're up on your new kernel!

Troubleshooting Kernel Builds

If your kernel build fails, the first step in troubleshooting is to look at the last lines of the compile
output. You saw the compile output after typing the make depend && make all install
command. You might be able to guess at the meaning of an error, but it can be very cryptic to
people who don't breathe, eat, and live kernel code.[6]

Here's an example of something you might see in a failed kernel build:

..

===> sys/modules/xl
cc −0 −pipe −D_KERNEL −Wall −Wredundant−decls −Wnested−externs −Wstrict−prototy
pes −Wmissing−prototypes −Wpointer−arith −Winline −Wcast−qual −fformat−extensions
−ansi −DKLD_MODULE −nostdinc −I− −I. −I@ −I@/../include −mpreferred−stack−
boundary=2 −c /usr/src/sys/modules/xl/../../pci/if/xl.c
v /usr/src/sys/modules/xl/../../pci/if_.c:155: syntax error before`<'
cpp: output pipe has been closed
*** Error code 1

Stop in /usr/src/sys/modules/xl.
*** Error code 1

Stop in /usr/src/sys/modules.
*** Error code 1

Stop in /usr/src/sys.
*** Error code 1

Stop in /usr/src.
*** Error code 1

Stop in /usr/src.
*** Error code 1
..

90

At the top of this message, the compiler is in the directory sys/modules/xl and is trying to build a
working kernel module out of the source code there. You see the command it's trying to run; it's on
the next few lines, starting with cc −0. What appears as several lines on paper is actually one very,
very long line to the computer; this particular line goes down to just above the v symbol.

On the next line (v), we see the error code (syntax error before ‘<’), as well as the line number and
the filename. This error stops the compile, and we see a cascading series of errors. The kernel
module cannot be built, so the whole range of kernel modules cannot be built, so the kernel cannot
be built, so everything basically comes to a screaming, crashing halt.

Fortunately, FreeBSD will insist upon compiling a complete kernel before installing anything. You
haven't damaged your system by doing this; your failed compile is still sitting in the directory created
by running config.

You know the step in the kernel build where the process stopped (the bit beginning with cc), and
you know what error resulted from that step (syntax error before ‘<’). The cascading errors that
follow are really irrelevant; a failure in one step makes the whole process blow apart.

Don't be embarrassed if you don't understand these errors; most people don't. Just go through the
"Getting More Help" process in Chapter 2. Your first best bet is the FreeBSD−questions mailing list
archive. Take the last lines of your compile output (if_xl.c:155: syntax error before‘<’),
paste it into the search engine, and see who else has had the problem. If you don't find any hits on
that, try the next line of the failure (cpp: output pipe has been closed).

I f n o t h i n g s h o w s u p i n t h e m a i l i n g l i s t a r c h i v e , s e n d a m e s s a g e t o t h e
FreeBSD−questions@FreeBSD.org mailing list. Include the following information:

The end of the output of the failed compile•
Your FreeBSD version number•
The contents of /var/run/dmesg/boot•
The output of uname −a•
The kernel config file•

Chances are, your problem is fairly simple to fix, and if you include all of this, someone will write you
back with suggestions. These sorts of errors are generally the result of an incorrect kernel
configuration.

[6]Personally, I prefer to breathe, eat, and live air, food, and my life, in that order, but some people
seem to get by living on computers.

Booting an Alternate Kernel

So, what do you do if your new kernel doesn't work? Perhaps you forgot a device driver, or cut the
ppp pseudo−device and cannot dial out to the Net. Don't panic, you're not lost. You did keep your
old kernel, right? Okay, here's what to do.

91

First, interrupt the boot, as discussed in the "Manually Configuring the Loader" section earlier in this
chapter, by pressing any key. When you see the loader prompt, the kernel has already been loaded.
You need to unload that kernel and any corresponding modules before you can load another kernel.
To do so, run this command:

..
ok unload
ok
..

Your kernel should now be unloaded and your command prompt at the root directory. If you're not
sure of the kernels you have, use ls to see everything under /.

Next, choose the kernel you want, then load it and boot. (Be sure to also load whatever kernel
modules you require.)

..
ok load /kernel.good
ok load /modules/if_fxp.ko
ok boot
..

Your system should now start booting off your selected kernel.

Note If you didn't back up a good kernel, and both your new and old kernels are bad, don't despair
yet. FreeBSD installs a GENERIC kernel in /kernel.GENERIC. It should at least get you back
to a command prompt, or to single−user mode in the worst case.

Adding to the Kernel

At this point, if everything has gone well, you should have a minimal kernel that works well. Now you
can add features and tweak it.

LINT

You'll find a list of all kernel features in the file /sys/i386/conf/LINT, including every kernel option and
driver, as well as some documentation.

If you have hardware that doesn't appear to be supported in the GENERIC kernel, take a look at
LINT. Some of these features are obscure, but if you have the hardware, you'll appreciate them. For
example, FreeBSD supports the special features of the IBM BlueLightning CPU, which will allow
both of you BlueLightning owners to use your CPU to its full extent.

Let's look at a typical entry from LINT:

..

CPU_PPRO2CELERON enables L2 cache of Mendocino Celeron CPUs. This option

92

is useful when you use Socket 8 to Socket 370 converter, because most Pentium
Pro BIOSs do not enable L2 cache of Mendocino Celeron CPUs.

options CPU_PPRO2CELERON
..

We're told that if you have a Socket 8 to Socket 370 converter on your mother−board, the
CPU_PPRO2CELERON option will enable your L2 cache. Since FreeBSD runs so well on older
hardware, this sort of hardware setup is not uncommon. Many people have taken older hardware
and installed FreeBSD on it, and use adapters to augment this older hardware. While this situation
isn't common enough to warrant inclusion in the GENERIC kernel, the option is there if you look for
it. Skim through LINT some time, just to get an idea of what sorts of things are available.

Note If the LINT kernel configuration includes all possible options, why not just use it? Because
some of the features in that configuration contradict each other. For example, there's the
CPU_PPRO2CELERON option that tells the kernel you're running a Celeron on a Pentium
Pro motherboard. Meanwhile, the kernel option CPU_RSTK_EN enables the return stack on
the Cyrix 5x86 CPUs. There is no such thing as a Cyrix−made Celeron, and if it existed, it
probably wouldn't use this motherboard adapter.

Fixing Errors with Options

You'll use certain options when you get an error. For example, a friend of mine has several Web
servers built on low−end i386 hardware. When one became busy enough to start serving several
hundred Web pages a second, he started getting errors on the console like this:

..

Jun 9 16:23:17 ralph/kernel: pmap_collect: collecting pv entries −−
suggest increasing PMAP_SHPGPERPROC
..

When he ignored the error, the system crashed. He asked for my help.

By reading the error from the log and searching LINT, I found this:

..
Set the number of PV entries per process. Increasing this can
stop panics related to heavy use of shared memory. However, that can
(combined with large amounts of physical memory) cause panics at
boot time due the kernel running out of VM space.
#
If you're tweaking this, you might also want to increase the sysctls
"vm.v_free_min", "vm.v_free_reserved", and "vm.v_free_target".
#
The value below is the one more than the default.
#
options PMAP_SHPGPERPROC=201
..

After reading this explanation, we set out to tackle this problem. First, we backed up the old kernel

93

to /boot/kernel.pmap−crash. (It wasn't exactly a good kernel, but I wanted it on hand in case the
new one was worse.) We then kicked PMAP_SHPGPERPROC up to 400, and increased the
system's RAM to 192MB. (Yes, this cheap system was serving several hundred Web pages a
second on 64MB of RAM, one IDE disk, and a Celeron 433!) After doing the config−make dance,
the problem went away, and the server now has 30 days uptime.

Without the ability to tweak the kernel, we would have had no choice but to buy more hardware.
Admittedly, this piece of hardware is pretty low−end. But if this hardware does the job with just a
little software tweak, why not use it? If you're that desperate to spend money, send the checks to
me.

Tweaking Kernel Performance

And how about improving performance?

The biggest kernel bottleneck is network mbufs. You'll see in Chapter 5 how mbufs are the chunks
of memory that the kernel uses to handle network connections. They aren't the number of network
connections the server can handle, but rather the memory used to hold network connections, and
one connection might consume several mbufs. (You might want to read the discussion of mbufs in
Chapter 5 before you start tuning them, but since we're discussing kernel configuration here, we'll
discuss the mechanics now.)

The number of mbufs scales somewhat with the MAXUSERS kernel option discussed earlier in this
chapter, but you will probably want to increase the setting on a high−production server. While the
auto−scaling of MAXUSERS can help, this is still a very common tweak.

The NMBCLUSTERS option controls the number of mbufs created by the kernel. (This option won't
appear in the GENERIC configuration file; you'll need to add it. NMBCLUSTERS does appear in the
LINT file.)

..
options NMBCLUSTERS=1024
..

Network mbuf clusters are preallocated in kernel memory, so you can't just crank this value up to a
million and forget about it, because that memory won't be available for other uses when the system
gets busy. You do want your kernel to be able to open files and support your Web server, don't you?

One nmbcluster uses about 2KB of memory, so the preceding example reserves 2MB of memory
for networking. (2 times 1024 is 2048, and 1MB is 1024KB.) This might not be much on a modern
computer, but it is a considerable chunk on a 486s that can run FreeBSD. See why we want to
customize this?

To calculate the number of mbuf clusters you need, first check how many network connections you
have open at a fairly busy time. You can do this with the netstat(1) command. Netstat will show you
how many network connections the system has, including TCP, UDP, loopback, and UNIX socket
connections. All you need care about for mbufs clusters are TCP and UDP, so you can pull those

94

out with grep(1). Finally, you can use the wc(1) word−counting program to count the number of lines
in the output, which gives you the number of TCP and UDP connections that the system is using
right now.[7] Here are the commands:

..
netstat −na | grep tcp | wc −l
 427
netstat −na | grep udp | wc −l
 377
#
..

Note If you want to know how many network mbufs you're using at any given time, look at
netstat −m. We'll discuss netstat in some detail in Chapter 5.

As you can see from the results, at this particular moment, the system has 427 running and
available TCP network connections, and 377 active and available UDP network connections. This is
roughly 800 total. To account for possible peaks, plan for twice the number of connections you see
at a typical busy time.

Now that you know how many connections you have to handle, you need to know how much
memory each connection requires. Each TCP connection requires a send buffer and a receive
buffer. You can get their current size (in bits) from the sysctls net.inet.tcp.sendspace and
net.inet.tcp.recvspace.

..
sysctl net.inet.tcp.sendspace
net.inet.tcp.sendspace: 16384
sysctl net.inet.tcp.recvspace
net.inet.tcp.recvspace: 16384
..

Bytes are difficult to work with, so we'll convert them to kilobytes; 16384 divided by 1024 is 16, so
each buffer is 16KB on this system. (The default buffer size changed between FreeBSD 4.4 and
4.5, so you will want to check this on your system!) Since each network connection needs an
incoming and an outgoing buffer, each TCP requires 32KB.

Similarly, each incoming UDP connection requires a buffer. You can't do much tuning with UDP, but
assuming each UDP connection requires as much space as a TCP connection is reasonable for
what we're doing here.

So, we know that each connection requires 32KB, and we know that our "average peak" usage is
800 connections. 800 x 32KB = 25600KB, or about 25MB. (1MB is actually 1024KB, but this is close
enough for our purposes.) Then, to handle peaks and surges, double this to 50MB.

One mbuf cluster is 2KB, or 1024 mbuf clusters are 2MB, and we want 50MB of mbufs, so we
multiply 50MB by 1024 and divide by 2 to get a total of 25600 mbuf clusters. So set the
NMBCLUSTERS option to 25600 like so:

..

options NMBCLUSTERS=25600

95

..

Note If you're running a network server, it's a good idea to set NMBCLUSTERS to roughly a
quarter of your physical RAM. 32MB of RAM set aside for mbufs, with 16KB send and receive
buffers, gives you NMBCLUSTERS = 16384. This might not be adequate, or it might be too
much, but it's a good place to start.

[7]For those of you who are newer UNIX administrators: Remember in the Introduction where we
talked about UNIX commands being a language? Here's a good example. We have combined small
commands to get a final answer without any tedious counting or searching through output
ourselves. You might think that UNIX admins are extremely intelligent. Many of us are just creatively
lazy.

Sharing Kernels

If you have several identical servers, you don't need to manually build a kernel on each; you can
share your custom−built kernel across them. (The kernel file is just a binary, after all.)

To share a kernel, build and install one kernel and test it in every way you can think of. Then tar up
/kernel and /modules and copy the tarball to each of the other servers. Back up the current kernel
on each of the other servers, and decompress your tarball to install the new /kernel and /modules.
Just reboot, and you're set.

96

Chapter 5: Networking

Overview

BSD is famous for its network performance. In fact, the TCP/IP network protocol itself was first
developed on BSD. Many other operating systems have chosen to use the BSD network stack
because of its high performance and liberal licensing.

If you're a system administrator, you must understand how networking works. If you're like most
sysadmins, you're probably familiar with some of the basics, but not many people understand how
all of that networking stuff hangs together. Knowings what an IP address really is, understanding
how a netmask works, and comprehending the symbiotic relationship between IP and TCP is what
separates a novice from a professional. We'll cover some of these issues here.

If you know what makes a /31 network mostly useless, you can skip this chapter. Otherwise, read
on. There will be a test later–not in this book, but in the real world.

Network Layers

Network layers simplify the networking process. Each layer handles a specific part of the networking
process, and information is said to travel down and up through these layers. New users often have
trouble understanding this, but we'll go over it in detail. The important thing to remember is that each
layer only communicates with the layer directly above it and the layer directly beneath it.

The classic ISO network protocol diagram has seven layers, is exhaustively complete, and covers
any situation. The Internet isn't "every situation,"; however, and this isn't a book about networking.
Since we'll limit our discussion to the Internet world, we can simplify this diagram somewhat and
divide the network into four layers: the application, the logical protocol, the physical protocol, and
the physical.

Note The descriptions in this chapter are necessarily generalizations, and very thick
books have been written about this topic. My favorite is Stevens' TCP/IP
Illustrated, volumes 1 through 3 (Addison−Wesley).

97

Figure 5.1: 4−layer network diagram
The Physical Layer

The bottom layer is the physical one, encompassing the network card and the wire (or other
connection) running out of it. This layer also includes the switch (or network hub) and the wire
running to the router, as well as the fiber that carries your packets from your ISP to one of the
Internet switching points (network access points, or NAPs) and on to the destination. It may even
include radio waves, if you're using wireless. Without this link, you have nothing. The physical
protocol is the only thing that needs to recognize how this bottom layer works.

A piece of wire–it's really that simple. If your wire is intact and meets the specifications required by
the physical protocol, you're in business. If not, you're hosed.

Some physical protocols have been implemented over many different physical layers and Ethernet
has been transmitted over half a dozen different sorts of cable. With minor changes in the device
drivers and major changes in the network card, you can change your physical layer and not alter
any other layer.

Similarly, a single connection might travel over several different types of wire. One of the functions
of Internet routers is to convert one sort of physical layer into another.

The physical layer has no decision−making abilities and no intelligence; everything it does is
dictated by the physical protocol.

The Physical Protocol Layer

The physical protocol layer is where things get interesting. The physical protocol talks over the wire.
It encodes transmissions in the actual ones and zeroes that are sent over the physical layer in the

98

appropriate manner for that sort of media. For example, Ethernet uses Media Access Control (MAC)
addresses and the Address Resolution Protocol (ARP); dial−up uses the Point−to−Point Protocol
(PPP, usually used for home connections). The physical protocol has to understand how to speak to
these addresses, and to encode and decode messages for them.

Ethernet and PPP are the main physical protocols, though FreeBSD also supports a variety of other
physical protocols, such as Asynchronous Transfer Mode (ATM) and Integrated Services Digital
Network (ISDN), as well as combinations such as PPP over Ethernet (used by some
home−broadband vendors). Each of these protocols has special requirements, and while we'll only
discuss Ethernet in some detail, you should understand that other connection protocols exist.

The physical protocol passes information to and from the physical layer and the logical protocol
layer.

The Logical Protocol Layer

Logical protocols, such as Internet Protocol (IP) and Transmission Control Protocol (TCP) handle
things like IP addresses and port operations by exchanging information with the physical protocol
and the application. You can use multiple logical protocols simultaneously.

There are many logical protocols. (See the /etc/protocols file for a mostly complete list.) The
protocols we're most concerned with are IP and TCP (both already mentioned), Internet Control
Message Protocol (ICMP), and User Datagram Protocol (UDP).

Logical protocols can work side by side, and can even depend upon one another. When a packet is
transmitted, it includes a flag that identifies which protocol it belongs to.

Internet Protocol

The Internet Protocol (IP) is the baling wire that holds the Internet together, and every device on the
Internet is expected to speak IP. IP provides very basic, core functions, such as network addresses
and packet routing, as well as the fundamental infrastructure used by other logical protocols. You
can live without TCP and other protocols, but if you don't have IP you don't have the Net.

Note In this book, we only discuss IP version 4; IP version 6 is fairly new. While FreeBSD includes
excellent IPv6 support, it's not yet widespread enough to cover here. Hopefully, by the time a
new edition of this book comes out, IPv6 will be widespread, because it fixes many problems
found in IPv4, thus eliminating the gross hacks that have been implemented to work around
them.

IP Addresses

An IP address is a 32−bit number, generally divided into four groups of 8 bits each. Translated into
English, this means that you'll see four numbers, each from 0 to 255, separated by periods. For
example, 192.168.1.87 is a valid IP address, while 192.259.0.87 is not–one of the numbers exceeds
255. 607.322.843.999 is Right Out.

Every device on the Internet has a unique IP address, unless it's using Network Address Translation
(NAT) or some other ugly hack.

99

The Application Layer

Finally, we have the application layer–what the user deals with. The application might be a Web
browser, a word processor, or a shell client. The application only has to worry about the user
interface and the logical protocol. (You might consider the end user to be another layer, but
problems with this layer are beyond the scope of this book.[1])

[1]No matter how desperate or annoyed you are, fsck−ing or BIOS−flashing the user layer is not a
good idea. You can only reconfigure this layer through a process called "education." Don't expect
too much from this.

The Network in Practice

Now that you understand something of each layer, let's look at some of them in detail. Let's
consider how these network layers work for an office desktop connected via Ethernet.

Say you type http://www.absolutebsd.com/ into your Web browser. The Web browser needs to
know how to make requests of the next layer down, so it translates the hostname into an IP address
(a series of numbers like 192.168.1.84).

Note By default, a server delivers services on network ports, or logical identifiers. We'll look more at
ports in a little bit; for now, just understand that each service a computer offers runs on a
unique port. Web servers usually run on TCP port 80. The browser sends a request for a
connection to that IP and that port to the next layer down.

The logical protocol layer then examines the request it has received from the application. Since the
application has requested a TCP/IP connection, the logical protocol allocates the appropriate
system resources for that sort of connection. The request is broken up into chunks of the correct
size to be sent over Internet Protocol, called packets.

From here on, the logical protocol doesn't care about the application's actual request; instead, it
wants to deliver these packets to the specified address. The IP layer checks its internal tables to
see how to reach the requested IP address from this computer. It then bundles up the packets, adds
on the IP layer routing information, and hands the packets to the physical protocol layer.

The physical protocol layer examines the request from the logical protocol layer (it doesn't know
anything about the Web browser; all it cares about is getting each packet to its destination). The
physical protocol layer checks the physical protocol address (the MAC address) for the packet's
destination, and adds Ethernet information to the packet. This packet−plus−physical−protocol chunk
of data is called a segment. Finally, the physical protocol hands the whole mess down to the
physical layer, which converts it to zeros and ones, and feeds it to the wire. Switches and routers
echo those zeros and ones all the way to the final destination.

Your wire can go through various physical changes as your data is transferred. For example, your
Ethernet will probably become a T1 line (your office router will handle that conversion for you).
Then, that T1 will join a piece of optical fiber that runs across the country (the phone company will
handle that transition).

When the segment reaches its destination, the computer at the other end of the transaction, it starts
a return trip back up the protocol stack.

The physical layer gives each segment to the physical protocol, which does some basic
sanity−checking on the segment to make sure that it hasn't been corrupted in transit. Once the

100

physical layer is satisfied that the segment is correct, it removes the Ethernet information to create a
packet, and hands it up to the logical protocol.

The logical protocol, in turn, performs its own sanity−checking. Remember how the logical protocol
broke up the request into packets for easy transmission? Now it assembles the packets of the
answer into a stream of information, and hands that stream off to the application. The application
then has its answer and can display the Web page.

Of course, this is all expected to happen very, very quickly.

This seems like an awful lot of work, but it's an excellent example of interface abstraction. This
means that each layer only knows what it must about the layers above and below, and makes it
possible to swap out entire layers if desired. When a new physical protocol is created, the other
layers don't have to care; the logical protocol just hands the request off to the new physical protocol
layer, and lets it deal with things internally. When you have a new type of network card, all you need
to do is write a driver for the physical protocol; the application and logical protocol layers don't care.

Mbufs

BSD optimizes networking by using mbufs. An mbuf is a discrete chunk of memory set aside for
networking that lives within the kernel. A packet starts off life as an mbuf. Rather than copying the
contents of a packet to the next layer down, each of the OS layers hand the entire mbuf down.
Copying a piece of data consumes more time and resources than handing off the data in its current
location.

What's more, mbufs are carefully designed not to require changes. When the logical protocol
creates an mbuf, it leaves space at the front and back for physical protocol headers, which further
minimizes the amount of copying. A packet becomes a segment within a single mbuf.

Those of you who are C programmers should recognize a pointer here. The pointer to the mbuf is
handed around, while the mbuf itself remains constant. The rest of us just need to have a basic idea
of what an mbuf is. You'll keep tripping across mentions of mbufs throughout any BSD network
stack, so it's important to at least have a vague awareness of what they are.

What Is a Bit?

As a network administrator, you're going to start seeing terms like 32 bit and 48 bit more and more
frequently. You should understand what these terms mean so that you can recognize an illegitimate
number.

You probably already know that a computer treats all data as zeros and ones, and that a single one
or a zero is a bit. When a protocol specifies a number of bits, it's talking about the number as seen
by the computer–this is binary math. (You were probably introduced to binary math, or base 2, back
in elementary school, and promptly forgot about it. It's time to dust that knowledge off. Binary
numbers are just a different way of describing the numbers we work with every day.)

In decimal (meaning base 10) math, the math we typically use every day, digits run from 0 to 9.
When you want to go above the highest digit you have, you add a digit on the left and set your
current digit to 0. (This is the whole "carry the 1" thing you learned many years ago, and now
probably do without conscious thought.) In binary math, digits run from 0 to 1. When you want to go
above the highest digit you have, you add a digit on the left and set your current digit to 0. It's the
same thing, just with fewer digits.

101

Here are the first few decimal numbers converted into binary as an example.

Decimal Binary
0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

When you have a 32−bit number, such as an IP address, you have a string of 32 ones and zeros.
Rather than expressing that 32−bit number as a single number, however, IP addresses are broken
up into four 8−bit numbers. (We'll see why in the next section.)

Note Many calculators have binary−to−decimal conversions. If you don't have such a calculator,
the FreeBSD port math/calctool gives you one. Even the Windows calculator app does this
when you use scientific mode. Take some IP addresses, punch in each of the four numbers,
and convert them to binary to see how they look.

Ethernet

Many devices can share an Ethernet network, and the data your system receives is not necessarily
meant for your system. Systems connected with Ethernet can speak directly with each other, which
gives Ethernet one great advantage over other protocols, such as PPP. However, Ethernet has
physical distance limitations that make it practical only for offices, colocation facilities, and other
comparatively short−range networks.

Many different physical networks have been used to run Ethernet over the years. Once upon a time,
most Ethernet cables were thick chunks of coaxial cable (coax); today most are comparatively thin
Category 5 (cat5) cables with eight strands of very thin wire inside them. You may also encounter
Ethernet over optical fiber or, if you're unlucky, Ethernet over "dark fiber." (Dark fiber is optical fiber
without the light. It seemed like a good idea at the time.)

For the purposes of our discussion, we'll assume that you're working with cat5 cable, which is the
most popular choice today. Either way, the theory is the same for all Ethernet physical layers.

102

Broadcasting

Ethernet is a broadcast medium,[2] which means it expects that each packet you send on the
network is sent to every workstation on the network. (Today this isn't necessarily true, as we'll
discuss later.) Your device driver sorts out the data intended for you from the data you don't care
about.

One side effect of Ethernet's broadcast nature is that you can "sniff" other people's connections,
capturing everything they send and receive. While this ability can be very useful in diagnosing
problems, it's also a major security issue: Capturing passwords is trivial on an old−fashioned
Ethernet.

While Ethernet started out supporting only a couple of megabits per second, it has grown beyond its
original design to handle gigabit speeds. Most people use 10/100 megabit per second (Mbps)
speeds, as gigabit Ethernet cards are still somewhat expensive. A sub−$100 gigabit Ethernet card
came out as this was written.

Address Resolution

Every Ethernet network card has a unique identifier, its MAC address, which it uses to communicate
with other hosts. A MAC address is a 48−bit number. When your system wants to transmit data to
another host on the Ethernet, it sends out an Ethernet request that basically says, "Which MAC
address is responsible for this IP address?" If a host responds, further data is marked for that MAC
address. This process is known as the Address Resolution Protocol, or ARP.

You can view the current MAC and ARP situation with the arp command. The most common form is
the arp −a command, which shows the MAC addresses and hostnames of all hosts on your
network:

...
arp −a
? (192.168.1.1) at 0:a0:cc:35:5b:7 [ethernet]
magpire.blackhelicopters.org (192.168.1.222) at 0:4:5a:41:a4:44 [ethernet]
#
...

Here we see that the host magpire.blackhelicopters.org has an IP address of 192.168.1.222, and a
MAC address of 0:4:5a:41:a4:44. The MAC address is the Ethernet address. If a MAC address is
"incomplete," the host cannot be contacted. In such a case, check your physical layer (the wire) and
your system configuration.

Hubs and Switches

An Ethernet hub is a central piece of hardware with physical connections to many other Ethernet
devices that simply forward Ethernet−layer information to every device hooked to them. Hubs
broadcast all Ethernet traffic that they receive to every attached host.

A switch is a more modern way of connecting Ethernets. A switch improves the speed of Ethernet
by tracking the MAC addresses of each attached device and, for the most part, only forwarding
packets to the device they are meant for. Since each Ethernet host has a finite amount of bandwidth
(for example, a 100 Mbps card can handle 100 megabits per second), switching reduces the load

103

on individual systems by limiting the amount of data transferred to each device. However, switches
do cost more than hubs.

Netmasks

If your company is hooking up to the Internet, your ISP will issue you a block of IP addresses. You
use these addresses for your local Ethernet. Frequently, this is a small block, say, 16 or 32 IP
addresses. If your system is colocated on a server farm, you might only get a few IP addresses. It
all depends on your needs. The size of your IP block determines your netmask.

If you've done networking for any length of time, you've probably seen the netmask 255.255.255.0.
You might even know that the wrong netmask will keep your system from working. In today's world,
that simple netmask is becoming less and less common. To understand why, we need to look at
what a netmask really is and how blocks of IP addresses are issued.

Many years ago, IP addresses were issued in blocks of three sizes: class A, class B, and class C.
This terminology has been obsolete for quite some time, but we'll use it as a starting point.

Class A was very simple: The first of the four numbers in your IP address was fixed. The InterNIC
might issue you a class A like 10.0.0.0. You could assign any of the last three numbers in any
manner you liked. For example, you could assign 10.1.0.0 through 10.1.1.255 to your datacenter,
10.1.2.0 through 10.1.7.255 to your Boston office, and so on. Only very large companies, such as
Ford and Xerox, received class A blocks, as well as influential academic computing institutions.

In a class B block, the first two of the four numbers in the IP address were fixed. Your class B block
would look something like 64.29.0.0. Every IP address you used internally began with 64.29, but
you could assign the last two numbers as you wanted. Many mid−sized companies got class B
blocks.

Similarly, a class C block had the first three numbers fixed. This was the standard for small
companies. The ISP would issue a number like 209.69.9, and let you assign the last number as
needed.

This scheme wasted a lot of IP numbers. Many small companies don't need 256 IP addresses.
Many medium−sized companies need more than 256, but fewer than the 65,000 in a class B block.
And almost nobody needs the full 16 million addresses in a class A block. Still, those were the
choices. Before the Internet boom, they were good enough.

Today, IP addresses are issued by prefix length, commonly called a slash. You will see IP blocks
such as 192.168.1.128/25. While this looks confusing, it's merely a way of using classes with much
greater granularity. You know that each number in an IP address is 8 bits long. By using a class,
what you're saying is that a certain number of bits are "fixed"–you can't change them on your
network. A class A address has 8 fixed bits, a class B has 16, and a class C has 24.

This isn't a class in binary math, so I won't make you draw it out and do the conversion. But think
about an IP address as a string of binary numbers. On your network you can change the bits on the
far right, but not the ones on the far left.

There's no reason that the boundary between the two must be on one of those convenient 8−bit
lines. A prefix length is simply the number of fixed bits you are stuck with. A /25 means that you
have 25 fixed bits, or one more fixed bit than a class C. You can play with 7 bits. In the following
sample, your fixed bits are all ones, and the ones you can change are zeros:

104

...
11111111.11111111.11111111.10000000
...

It's childishly simple. If you think in binary, that is. You won't have to work with this every day, but if
you don't understand the underlying binary concepts, the decimal conversion looks like absolute
gibberish. With practice, you'll learn to recognize some bits of decimal gibberish as legitimate binary
conversions.

What does this mean in practice?

First of all, blocks of IP addresses are issued in multiples of 2. If you have 4 bits to play with, you
have 16 IP addresses (2*2*2*2=16). If you have 8 bits to play with, you have (2^8) 256 IP numbers.
If someone says you have 13 IP addresses, you're either on a shared Ethernet or she's wrong.

A netmask is simply another way of specifying how many fixed bits are set. In the computing world,
an 8−bit number runs from 0 to 255. If you have a /24, your netmask is 255.255.255.0. If you have a
/25, you have all 8 bits set in the first three numbers and 1 bit set in the last number. In the previous
example, the last number is 10000000 in binary. A bit of work with a binary−converting calculator[3]

gives you 255.255.255.128.

It's not uncommon to see a host IP with its attached netmask, i.e.,192.168.3.4/26. When you see a
/32, it does not represent a network, but a single host. You'll see /32 used when someone wants to
make it absolutely clear that he's talking about a single host and not a network.

Netmask Tricks

You probably don't want to have to keep converting from decimal to binary and back. Here's a trick
to calculate your netmask.

Learn how many actual IP addresses you have to play with. This will be a multiple of 2. You'll almost
certainly be issued an amount smaller than a /24 (the traditional class C). Subtract the number of IP
addresses you have from 256. This is the last number of your netmask.

For example, if you have 64 IP addresses, the last part of your netmask is (256 – 64 =) 192. Your
netmask would be 255.255.255.192.

You still need to use a bit of logic to avoid binary conversions. Figuring out legitimate addresses on
your network is a bit of a pain. If your IP address is 192.168.54.187/25, you'll need to know that a
/25 is 25 fixed bits, so you're using a block of 128 IP addresses. Look at the last number of your IP,
187. It certainly isn't between 0 and 127, but it is in the range of 128 to 255. The other hosts on your
IP block have IP addresses ranging from 192.168.54.128 to 192.168.54.255.

Hexadecimal Netmasks

Got all that? Good. Unfortunately, UNIX's standard method of showing netmasks is in hexadecimal
(base 16), not decimal or binary. Some day soon you'll see a netmask of 0xffffff00.

A hexadecimal number is 4 bits long, so each 8−bit portion of a netmask can be expressed as two
hexadecimal numbers. (IP addresses could also be expressed this way, but they're not.)

105

Hexadecimal numbers are always preceded with "0x", so they're easily recognizable.

At this point, the simplest thing to do is use either a calculator or a conversion table. Presented for
your convenience is Table 5.1, a slash−to−hex−to−binary−to−decimal conversion for netmasks /24
and longer.

Table 5.1: Netmask conversions

Prefix Binary mask Decimal mask Hex mask Available IPs
/24 00000000 0 0x00 256

/25 10000000 128 0x80 128

/26 11000000 192 0xc0 64

/27 11100000 224 0xe0 32

/28 11110000 240 0xf0 16

/29 11111000 248 0xf8 8

/30 11111100 252 0xfc 4

/31 11111110 254 0xfe 2

/32 11111111 255 0xff 1

Unusable IP Addresses

You now understand that a /26 has 64 IP addresses. Unfortunately, you can't use them all. The first
IP address is the network number. It's used for internal bookkeeping. And the last number in any
group of IP addresses is the broadcast address. According to the IP specifications, every machine
on a network is supposed to respond to a request to this address. This allows you to ping the
broadcast address and quickly determine which IP addresses are in use. For example, on a typical
/24 network, the broadcast address is x.y.z.255. In the late '90s, this feature was turned into an
attack technique. It's now disabled by default on most operating systems. If you need it to work on
your BSD systems, set the sysctl net.inet.icmp.bmcastecho to 1.

In any case, the point is that you cannot assign either the first or last IP address in a network to an
interface. Go ahead, try it.

If you remember, in the first part of this chapter I mentioned that a /31 is mostly useless. A /31 has
two IP addresses. You cannot use the top or the bottom addresses. This doesn't leave much room
for servers, or even clients.

Routing

So, now you have the IP addresses for your Ethernet, and every host on the local network can find
every other host. You still have to tell those systems how to reach other networks. Generally, every
network has a router or other exterior gateway, and this device is called the default router. A
network should have one and only one default router. Every system on the network needs to know
the IP address of this device.

106

Once you have the default router set, you should be able to ping anything on the Internet by IP
address–and by hostname, if your resolver is configured correctly (see the discussion of
/etc/resolv.conf in Chapter 11).

UDP and TCP

Now that you have IP running, you probably want to transmit some data over it. The User Datagram
Protocol (UDP) is one way programs can do this. UDP is arguably the most bare−bones protocol
possible in IP. It has no error handling, no content verification, no defense whatsoever against data
loss. Despite this, it can be a good protocol choice, and many vital Internet services use it. An
application using UDP most often has its own error−correction requirements that don't jibe with
those provided by other protocols.

When a host transmits data via UDP, it doesn't know if the data reached its destination or not. And
when a host receives data via UDP, it has no way to verify where that data came from. While UDP
packets include a source address, this is easily faked. UDP is called connectionless for this reason.

Another common IP data transport is Transmission Control Protocol (TCP). TCP includes error
correction and packet recovery. Every packet sent must be acknowledged by the receiver, or it will
be retransmitted. Applications that use TCP can expect reliable data transmission unless one of the
lower layers fails.

Unlike UDP, TCP is a connected protocol. For data to be transmitted, the two hosts must set up a
channel for data to flow over. This is known as the three−way handshake. The exact specifics aren't
important right now, but you should know that there is a certain amount of work that must be done
to establish a TCP connection. When the connection is finished, there's some work to be done to
tear it down.

You can compare IP, TCP, and UDP to a family sitting at a table passing dishes back and forth. IP
is like knowing where everybody's sitting and understanding that to hand the peas to Uncle Jim you
pass it by Cousin Colleen. TCP is where one person hands another a dish, and the other must say
"Thank you" before the first person will let go. UDP is like tossing a muffin at Aunt Jane–she might
catch it, or it might get snatched in midair by the dog.

Network Ports

Have you ever noticed that computers have too many ports? Well, we're going to add TCP and UDP
ports to the list. Network ports permit one server to provide many different network services–they
are ways to multiplex connections between machines.

When a packet (either TCP or UDP) arrives at a system, it requests to be delivered to a certain port.
Different ports provide different services. For example, the Internet mail service is called SMTP.
According to /etc/services, SMTP runs on port 25. If a TCP connection request asks for port 25, we
can guess that it's for the mail server. Ports allow multiple connections between multiple machines.

The /etc/services file contains a list of those port numbers and the services that they're generally
associated with. It's possible to run almost any service on an arbitrary port, but by doing so you'll
confuse other Internet hosts that try to connect to your system. The format of the file is very simple:
the official service name, the port number, the protocol, any aliases for that service, and finally
comments, all separated by tabs. For example, one old service that could befound on UNIX hosts
was Quote of the Day, or qotd. If we look in /etc/services, we'll find an entry for it:

107

...
qotd 17/tcp quote #Quote of the Day
qotd 17/udp quote #Quote of the Day
...

Many services have both the TCP and UDP ports of a certain number assigned to them, while
others only have one of the protocols.

Many programs read /etc/services to learn what port to use (or bind to). Depending on the program,
you may have to edit the services file to assign that protocol to that port. In that case, be sure to
check out revision control (see Chapter 3) before starting. Like all standards, the lists in
/etc/services can be violated. I've run sshd, which normally occupies port 22, on port 80 to bypass
some firewall restrictions in very unusual circumstances. This all depends on the program you're
using to provide a service.

The ports 1024 and below are called low−numbered ports. These are the ports reserved for core
Internet infrastructure protocols, such as DNS, telnet, and HTTP. Their standard usage is basically
carved in stone. The ports above 1024 are less standardized, and you'll occasionally see conflicts
where multiple protocols want to use the same port. Generally, a client initiates a connection from a
port above 1024 and requests a connection to a low−numbered port.

Occasionally, protocols that run over something besides TCP and UDP use /etc/services. A few
protocols in the file use DDP (Datagram Delivery Protocol). Don't worry when you stumble across
these; they really aren't anything to worry about. Pretty much any program expects the admin to be
able to make arbitrary entries in /etc/services.

[2]It does not go through the ether, however, or travel like radio. The physical wire is very much a
requirement.
[3]You can also do this on paper, a few times at least. You'll learn a lot more that way. Come on, try
it, be brave.

Connecting to an Ethernet Network

Now that you understand how IP addresses work, properly connecting to your network is much
simpler. You probably set up your network connection during the initial install, but if you changed
something or switched networks, you need to understand how to do this manually. To configure a
network interface, you need the following information:

The network interface name•
An IP address for your server•
The netmask•
The default route•

You use two separate commands to configure your network card: ifconfig(8) and route(8). Ifconfig
manipulates the interface configuration–if you run it without arguments, it will display all the
interfaces on the system.

...

108

ifconfig
dc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 ether 00:04:5a:41:a4:44
 media: Ethernet autoselect (100baseTX <full−duplex>)
 status: active
lp0: flags=8810<POINTOPOINT,SIMPLEX,MULTICAST> mtu 1500
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
 inet 127.0.0.1 netmask 0xff000000
ppp0: flags=8010<POINTOPOINT,MULTICAST> mtu 1500
...

The interfaces are listed along the far left of the output. The system here has five interfaces: dc0
(Ethernet), lp0 (printer), lo0 (loopback), and ppp0 (point−to−point). Each interface has a device
name and a number.

To learn about an interface, check section 4 of the system manual pages:

...
man 4 dc
...

We want to configure the Ethernet interface. Use ifconfig to give the interface an IP address and
netmask, like this:

...
ifconfig dc0 inet 192.168.1.223 netmask 255.255.255.0
#
...

You can also check the configuration of a single interface with ifconfig.

...
ifconfig dc0
dc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 inet 192.168.1.223 netmask 0xffffff00 broadcast 192.168.1.255
 ether 00:04:5a:41:a4:44
 media: Ethernet autoselect (100baseTX <full−duplex>)
 status: active
#
...

Note that the netmask has been converted to the hexadecimal equivalent.

You can configure your Ethernet card automatically at boot with an /etc/rc.conf option (see Chapter
8). The entry has the form ifconfig_interfacename="ifconfig statement". For example,
the configuration shown two paragraphs earlier appears in /etc/rc.conf like this:

...
ifconfig_dc0="inet 192.168.1.223 netmask 255.255.255.0"
...

Now that the interface is configured, try to ping the default gateway IP address. You can interrupt
the ping with CONTROL−C. If you get a response back, as shown in the following listing, you are
actually on the network. If you cannot ping the network, you either have a bad connection or your
card is misconfigured.

...
ping 192.168.1.1

109

PING 192.168.1.1 (192.168.1.1): 56 data bytes
64 bytes from 192.168.1.1: icmp_seq=0 ttl=64 time=0.631 ms
64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.323 ms
^C
−−− 192.168.1.1 ping statistics −−−
2 packets transmitted, 2 packets received, 0% packet loss
round−trip min/avg/max/stddev = 0.323/0.477/0.631/0.154 ms
#
...

The default route has a very simple purpose–this is the address where the system sends any traffic
it can't reach itself. You set this with the route command.

...
route add default 192.168.1.1
...

That's it! You should now be able to ping any IP address on the Internet. You can set the boottime
default router in /etc/rc.conf with the defaultrouter statement (see Chapter 8). Here's a good
example of a defaultrouter statement:

...
defaultrouter="192.168.1.1"
...

You probably want to be able to use hostnames to ping, however. If you cannot ping by name, you
need to set up your resolver. See the section on /etc/resolv.conf in Chapter 11 to do so. This was
probably set during the install process, however.

Multiple IP Addresses on One Interface

One FreeBSD system can respond to multiple IP addresses on one interface. This is a popular
configuration for Internet servers, especially secure Web sites. One server might have to support
hundreds or thousands of domains and need an IP address for each. You can add extra IP
addresses with the ifconfig command:

...
ifconfig dc0 alias 192.168.1.225
...

Once you run the preceding command, your interface will look like this (the primary IP address
always appears first; aliases follow):

...
ifconfig dc0
dc0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 inet 192.168.1.223 netmask 0xffffff00 broadcast 192.168.1.255
 inet 192.168.1.225 netmask 0xffffff00 broadcast 192.168.1.255
 ether 00:04:5a:41:a4:44
 media: Ethernet autoselect (100baseTX <full−duplex>)
 status: active

110

#
...

You can configure the additional IP addresses automatically at boot with another ifconfig statement
in /etc/rc.conf:

...
ifconfig_dc0_alias0="inet 192.168.1.225"
...

The only real difference between this entry and the standard rc.conf ifconfig entry is the "alias0"
chunk. Each alias set in /etc/rc.conf must have a unique number, and the numbers must be
sequential. If you skip a number, aliases after the gap will not be installed at boot. This is the most
common cause of misconfigured interfaces; FreeBSD needs to be rebooted so rarely that errors in
/etc/rc.conf can go unnoticed for months!

All outgoing connections use the system's real IP address. You might have 2,000 IP addresses
bound to one network card, but when you ssh outwards, the connection comes from the primary IP
address. Keep this in mind when writing firewall rules and other access−control filters.

Using Netstat

Netstat(1) is your window into current network conditions. You can view the state of connections,
the number of network buffers your kernel is sucking up, and just about anything else you might be
interested in.

One of the most important netstat flags is −n. By default, netstat shows host−names for each
connec t ion , bu t hos tname lookups take a lo t o f t ime. The −n op t ion tu rns o f f IP
address−to−hostname lookups. If you see an interesting connection, you can easily look up the
hostname yourself.

Another vital flag is −I, which allows you to specify an interface. Some netstat flags allow or require
choosing a particular interface. Remember, you have a variety of interfaces on your machine:
loopback, printer, Ethernet, and so on.

The −f flag allows you to choose a protocol family. If you're only interested in IPv4 connections, use
−f inet. Other valid values for −f include inet6 (IPv6), ipx (Novell IPX), atalk (AppleTalk), ng
(Netgraph), and unix (UNIX sockets). For our examples, you can use −f inet unless specified
otherwise.

First off, let's look at the existing connections:

...
netstat −na
Active Internet connections (including servers)
Proto Recv−Q Send−Q Local Address Foreign Address (state)
tcp4 0 0 192.168.1.222.22 192.168.1.200.1067 ESTABLISHED
tcp4 0 0 *.5999 *.* LISTEN
tcp4 0 0 *.80 *.* LISTEN
tcp4 0 0 *.443 *.* LISTEN
tcp4 0 0 192.168.1.222.25 *.* LISTEN

111

tcp4 0 0 *.22 *.* LISTEN
Active UNIX domain sockets
Address Type Recv−Q Send−Q Inode Conn Refs Nextref Addr
d5ba2200 stream 0 0 0 d5ba2240 0 0
d5ba2240 stream 0 0 0 d5ba2200 0 0
...
...

Every line in the netstat output indicates a network connection of some sort. You'll see quite a few
lines of UNIX domain sockets. These are sockets that run through the kernel, not through the
network. You don't need to be concerned about those right now. Next time, use the −f inet flag to
eliminate them from the output.

The first entry on each line is the protocol. In our example, every connection is TCP, version 4
(tcp4).

The Recv−Q and Send−Q columns show how many bits are waiting to be handled on this
connection. If you see that your system has Recv−Q numbers continually, you know that it cannot
process incoming data quickly enough. Similarly, if the Send−Q keeps having entries, you know that
either the network or the other system in the connection cannot accept data as quickly as you're
sending it. Occasional queued packets are normal. You need to watch your own system to learn
what's normal and what isn't.

The Local Address is, as you might guess, the IP address on the local system. The addresses
shown all have five period−delimited numbers, though! The last number is the port number. For
example, 192.168.1.222.22 is port 22 on 192.168.1.222. If the entry is an asterisk, a period, and a
port number, that means that the system is listening on that port on all available IP addresses.
There is no connection running, but the system is ready to accept one.

The Foreign Address column shows the remote address and port number of any connection.

Finally, the "(state)" column shows the status of the TCP handshake. You don't need to know all of
the possible TCP connection states right now; just become familiar with what's normal.
ESTABLISHED means that a connection is complete, and data is quite probably flowing.
LAST_ACK, FIN_WAIT_1, and FIN_WAIT_2 mean that the connection is being closed.
SYN_RCVD, ACK and SYN+ACK are all parts of normal connection creation. In the preceding
example, one TCP connection is currently running. Five TCP ports are waiting for incoming
connections.

If you want to see the number of packets passed, the number dropped, and the number of errors
you have, you can use netstat's −b option. The output from this command is quite wide; if you're
running in X, you'll want to stretch your display as broad as your screen permits. Some of the more
interesting columns are Ierrs (input errors), Oerrs (output errors), and coll (collision). These should
all be zero, or close to it. If they aren't, something isn't right and you need to investigate. Anything
can generate these errors: bad cables, bad switches, bad network cards, software problems,
firmware errors, whatever.

You can see how many connections the system has recognized with the −L flag, which displays the
listen queues:

...
netstat −Ln

112

Current listen queue sizes (qlen/incqlen/maxqlen)
Listen Local Address
0/0/10 127.0.0.1.1556
0/0/10 127.0.0.1.8080

0/0/10 127.0.0.1.554
0/0/10 127.0.0.1.7070
0/0/10 192.168.10.6.1556
0/0/10 192.168.10.6.8080
0/0/10 192.168.10.6.554
0/0/10 192.168.10.6.7070
#
...

Each line in this output indicates a unique IP address/port pair. The first number in the Listen
column is the number of unaccepted connections that the system has received. The second is the
number of unaccepted, incomplete connections. The third is the maximum number of connections
that address can have in the queue. Once a connection is complete, it moves off the queue.

netstat −m is a different sort of beast. It displays the kernel mbuf statistics. When you run out of
mbufs, you cannot handle any more network data. They're freed as data is processed.

...
netstat −m
211/3216/10240 mbufs in use (current/peak/max):
 44 mbufs allocated to data
 167 mbufs allocated to packet headers
41/1114/2560 mbuf clusters in use (current/peak/max)
3032 Kbytes allocated to network (39% of mb_map in use)
0 requests for memory denied
0 requests for memory delayed
0 calls to protocol drain routines
#
...

This output shows that on this system, we're using 39 percent of our available mbufs. There's plenty
left to deal with any spikes. We haven't ever been denied memory, either. If you start to run out of
mbufs, increase NMBCLUSTERS in your kernel (see Chapter 4).

The −p flag allows you to check protocol−by−protocol statistics. The protocols you're probably most
interested in are IP, TCP, and UDP. This output is fairly long, and unique to each system, but it is
worth looking at simply to get an idea of what's normal on your system. If something starts
misbehaving, it should leave a fingerprint there.

If you want to see the system's routing table, netstat −r is your friend:

...
netstat −r
Routing tables

Internet:
Destination Gateway Flags Refs Use Netif Expire
default 192.168.1.1 UGSc 10 1 wi0
localhost localhost UH 0 2 lo0

113

192.168.1 link#5 UC 2 0 wi0 794
192.168.1.1 0:a0:cc:35:5b:7 UHLW 12 0 wi0 485
magpire 0:4:5a:41:a4:44 UHLW 1 453 wi0 =>
192.168.87 link#1 UC 0 0 fxp0 =>
#
...

Each line in this table is a separate route. When FreeBSD wants to send a packet to a host, it
checks the routing table. Note that this took quite a while to run–netstat tried to find a hostname for
every IP address. The hosts shown by an IP address had to time out. If you want quick−and−dirty
routing information, be sure to use the −n flag!

The first column in the preceding output is the Destination. This is either a host, a network, or the
default route.

The Gateway is where you want to send a packet bound for this host or network.

The Flags column indicates how the routes were generated or used. You can find a full listing of all
route flags in netstat(1), but some of the common ones are listed in Table 5.2. You don't need to
understand what each of these flags mean at this point. Just be familiar with the flags for each route
that normally appears on your system. If something looks different, start digging for more
information.

Table 5.2: Common netstat route flags

Flag Description

U The route is usable

G This is a gateway

S This route is static (i.e., not added dynamically by a
routing protocol)

L This route is a protocol−to−link−address translation
(i.e., the MAC address used to reach an IP address)

H This route is for a particular host

C This route is used when you dynamically create new routes
(i.e., a gateway)

c This route is used for protocol−specific new routes
(i.e., how to reach the gateway)

W This route was cloned from another route

The Refs column shows how many connections are using a particular route entry in netstat −nr
output. The system in our example has two routes in use.

The Use field shows how many packets are being sent via this route.

114

The Netif column shows the system interface the route is reachable through.

The Expire column shows the number of seconds until the route goes away. At that time, the
system will check for a new route. In our example, both routes with Expire values are on the local
Ethernet. The system will use the standard arp process to update the route.

Finally, netstat −w shows you the current system statistics. It keeps updating the display until
you press CONTROL−C. netstat −w takes an additional argument, the number of seconds
between updates:

...
netstat −w 5
 input (Total) output
 packets errs bytes packets errs bytes colls
 1 0 60 1 0 186 0
 1 0 60 1 0 138 0
^C
#
...

This information can help you decide whether errors you saw elsewhere are still occurring.

115

Chapter 6: Upgrading FreeBSD

Overview

Upgrading Internet servers can be quite a pain. While you can probably deal with a bit of
unexplained behavior in your desktop computer after an upgrade, you don't want anything to go
wrong when you have a whole company or hundreds of customers depending on one system.

There have been many times when I've attempted to upgrade a Windows server from NT to 2000,
or 2000 to XP, and found that some portion of the server no longer worked as expected. Linux
upgrades can also inflict gray hair, and other UNIXes can be even worse. Quite a few experienced
UNIX system administrators habitually reinstall their operating systems rather than suffer through an
upgrade. And, though a few UNIX versions have straightforward upgrade procedures, they require
several hours to complete and a certain amount of luck. (The last time I upgraded an HP/UX
machine and the Informix database that it held, I showed up on Friday night with a sleeping bag, an
alarm clock, and a box of meal bars, and I left Monday at noon. I would run a command and set the
alarm clock for an hour or two later, when the command would be finished and I could start the next
step.)

One of FreeBSD's greatest strengths is its upgrade procedure. For example, I have a few servers
that were installed when FreeBSD 2.2.5 was the latest and greatest. They've been successively
upgraded to 2.2.8, past 3.0 to the last version 3, and are now at version 4. The only inconvenience
I've suffered was when jumping major version numbers—that is, from FreeBSD 3 to 4. I spent a
couple of hours making those jumps. Just try that with Solaris or HP/UX, or with Windows.

FreeBSD Versions

Why is upgrading FreeBSD a relatively simple matter? The key lies in FreeBSD's development
method. FreeBSD is a continually evolving operating system. If you download certain versions of
FreeBSD in the afternoon, they're a little different than the morning's version. Developers from
around the world continually add changes and improvements, which makes the traditional release
numbering used by less open software impractical. At any given moment, you can get several
different versions of FreeBSD: releases, −current, −stable, and snapshots.

Release

A FreeBSD release has a conventional version number, like you'd see on any other software: 2.2.7,
3.3, 4.4, 5.0. If you buy FreeBSD in a store, it's a release.

A release is simply a copy of the state of the most stable version of FreeBSD at a particular moment
in time. Three or four times a year, the Release Engineer asks the developers to hold off on making
any major changes and resolves outstanding problems. After thorough testing, the resulting code is
given a release number, after which development returns to full speed, while the BSD department of
your release provider rushes the release to the CD factory.

Always install the release version in a production environment.

116

FreeBSD−current

FreeBSD−current is the bleeding−edge, latest version of FreeBSD and contains code that is just
making its first public appearance. FreeBSD−current is where much initial peer review takes place
and, at times, −current sees radical changes of the sort that give experienced systems
administrators headaches.

FreeBSD−current is made available to developers, testers, and interested parties, but is not
intended for general use. Support for user questions about −current is very slim because the
developers simply don't have time to help a user get a Web browser working when a thousand more
critical issues are begging for attention. Users are expected to help fix these problems, or to
patiently endure until someone else fixes them.

If you can't read C, shell, and Perl, or don't feel like debugging your OS, or don't like computer
functions failing in a seemingly random manner, or just don't like being left hanging until someone
gets around to fixing your problem, −current is not for you.

The brave are certainly welcome to try −current. So is anyone who is willing to devote a large
amount of time to learning and debugging FreeBSD, or who just needs a lesson in humility. This
isn't so much a matter of "you're not allowed to" as "you're on your own."

People running −current must read the FreeBSD−current@FreeBSD.org and cvs−all@FreeBSD.org
mailing lists. These are high−traffic lists, with as many as a couple hundred warnings, alerts, and
comments a day. Read them, especially the warnings. If someone else discovers the latest Bug of
Slow Hideous Death, you might have time to benefit from his experience.

Code Freeze

Every 12 to 18 months or so, FreeBSD−current goes through a month of "code freeze" during which
no non critical changes are allowed, and all remaining problems are fixed. At the end of the code
freeze (or shortly after), −current becomes the new .0 release of FreeBSD−stable.

For a short time during code freeze, −current is treated like an early release of FreeBSD−stable.
This focuses developers on stability and bug fixes for problems exposed by early adopters. After a
release or two, a new −current is branched off the new, mainstream −stable. For example, at this
writing 5−current is expected to become 5.0−release. The −current version will remain 5.0 until
some point after 5.1−release, to help focus developer attention on the new release. At some point
after 5.1−release, a copy of the source code will be labeled 6.0−current and another copy will be
marked 5.1−stable.

FreeBSD−stable

FreeBSD−stable is bleeding edge for the average user—it contains some of the most recent
peer−reviewed code. FreeBSD−stable is expected to be calm and reliable, requiring little user
attention. Once a piece of code is thoroughly tested in −current, it might be merged into −stable in a
process called MFC, or merge from current. The −stable version is the one that is mostly safe to
upgrade to at almost any time; you might think of it as FreeBSD−beta.

As −stable ages, the differences between −stable and −current become greater and greater, to the
point where it becomes necessary to branch a new −stable off of −current. The older −stable is
actively maintained for several months while the new −stable is beaten into shape.

117

Some users will want to upgrade to this new −stable immediately, while others are more cautious.
After a release or two of the new −stable, the older −stable is made obsolete and users are
encouraged to upgrade to the new −stable. Finally, the older −stable receives only critical bug fixes.

Figure 6.1: FreeBSD development branches
Every so often −stable is polished and tested; developers stop MFCing features and focus on
testing. When everyone's happy with the quality, it's released and generally given a "point" after the
main branch. (For example, the fourth release of FreeBSD 4 is FreeBSD 4.4, and you'll see
references to both 4−stable and 4.4−stable–the name 4−stable includes all of the 4.x releases and
−stable branches.)

The word stable describes the code base, not the OS itself. It doesn't guarantee that the operating
system is completely stable and reliable, but that the underlying code won't suffer a radical change.
For example, many people considered FreeBSD 3.5−stable more reliable than FreeBSD 4.0−stable.

Note FreeBSD may be one of the most reliable operating systems available, but beware of any .0
release, from any company. Remember the poor folks who implemented Windows 2000 the
month it came out?

Users of FreeBSD−stable should read the FreeBSD−stable mailing list, a moderate−traffic mailing
list. Important messages from developers generally have a subject beginning with "HEADS UP".
Look for those messages, and take whatever action they recommend.

Snapshots

Every so often, the FreeBSD development team releases a snapshot of −current (available via FTP,
and through some vendors on CD−ROM). The snapshot does not receive the same attention to
quality that −release does, but is intended as a good starting point for people interested in
investigating or testing −current. Generally speaking, developers avoid adding major new features
for a week or so before the snapshot is released, but the snapshot does not undergo quality
analysis. Bugs exist, and while most are known, many aren't. New features are incomplete. You
might call it a bleeding−edge release.

Security Updates

With the advent of FreeBSD 4.3, the project began supporting security−update−only branches.
Previously, a FreeBSD user had to upgrade to the latest −stable to get the security patches, but this
caused problems, as the OS changed between releases. Why upgrade a whole server, and go
through the headaches it can cause, just to get a patch for one small security problem? (Anyone
who's worked through a Windows 2000 Service Pack upgrade can attest to the problems this sort of
upgrade can cause.) Only actual security issues and system−damaging bugs are fixed; new
features are not brought onto these branches, nor are performance enhancements. This might be
considered a very timid −stable version.

118

The names of release security updates are the same as that of the release, with a trailing patch
number–for example, 4.3−RELEASE−p6 is the sixth patch of 4.3−RELEASE.

Which Release Should You Use?

FreeBSD uses the same release system as it does for quality control. Though it may seem like a
complex system, it allows users to rest assured that a release is supported by the community, and
that it has been through peer review and extensive testing. That same user knows that the nifty new
features in −stable and −current are available, if she's willing to pay the price.

So which release should you use?

Production: If you're using FreeBSD in a production setting, track the security branch of a
−release.

•

Test: If you're a network administrator interested in seeing how changes in FreeBSD will
affect your environment, track −stable on a test system.

•

Development: If you're an operating system developer, have too much spare time and too
little excitement, or are a blind idiot, −current is for you. When −current destroys your MP3
collection, debug the problem and submit a patch to correct it.

•

Hobby: If you're a hobbyist, you can run any version! Just keep in mind the limitations of the
branch you're using. If you're just learning UNIX, −release is what you want. Once you have
your feet under you, upgrade to −stable. If you have nothing better to do, and have nothing
but utter contempt for your data, you're welcome to join the masochists over in −current.

•

Upgrade Methods

With all of these releases, upgrading is always an issue. There are two main ways to upgrade:
sysinstall and CVSup.

New and inexperienced users can upgrade with sysinstall, which only allows users to upgrade to a
−release. Experienced users might wish to use CVSup and make world, which allows users to
upgrade to the current, latest version of FreeBSD on any of the −stable, security update, or −current
branches, but requires more effort to set up and use.

When upgrading from one −release to another, or to a snapshot, you can use sysinstall. If you're
tracking −current, −stable, or the security update branches, you must be capable of using source
code to build your system (as described in the "Upgrading via CVSup" section of this chapter).

Note Before upgrading, be sure you have complete backups. While sysinstall upgrade errs
on the side of caution, files can still vanish if you upgrade improperly. See Chapter 3
for instructions on backups. (Of course, if you're reading this book in order, you've
already been there.)

Upgrading via Sysinstall

The easiest way to upgrade via sysinstall is to boot off the install floppy or CD−ROM for the version
of FreeBSD you are upgrading to. Then follow these steps:

119

When you reach the graphic install menu, choose the Upgrade option.1.
Sysinstall will open the upgrade notes for your version of sysinstall. (Be sure to read them
carefully, because many last−minute problems will be documented there. Also check the
online errata, available at http://www.freebsd.org/. Follow the instructions carefully.)

2.

You'll be asked if you want to proceed with the upgrade. If so, it will ask you about
distribution sets. Here, it will be handy to know what distribution sets you originally installed
on your system, because you probably want to replace all of them. At a minimum, you must
replace the bin distribution. You can be greatly confused by not upgrading everything you
originally installed; having the programs from 4.7−release but the documentation from
4.3−release could cause you no end of head−scratching.

3.

The upgrade process continues much like the initial install until you're asked for the directory
where your current /etc directory will be backed up. (Remember, /etc holds most of your
system's configuration information; keep original copies of your configuration in case
something goes wrong.) The default /usr/tmp/etc is generally fine.

4.

Finally, sysinstall will ask you for your installation source. You can use FTP, a FreeBSD
CD−ROM, or any other method available.

5.

After offering you one last chance to change your mind, sysinstall will overwrite all the
system binaries you chose to install. It will replace your kernel with a GENERIC kernel of the
new version, and replace many files in /etc.

6.

Once the upgrade completes, go through /etc and be certain that your vital system files are
in the condition you want. While your password files, group file, and filesystem table will
remain intact, you will want to check rc.conf, inetd.conf, shells, and any other files you've
altered. (This is the most tedious part of the upgrade process.) If you have installed the
source−code collection, you can ease the process with mergemaster(8). (We will discuss
mergemaster in the "/etc and /dev Changes" section later in this chapter.)

After another reboot, your system will be safely upgraded.

7.

Note Do not use the sysinstall included in the version of FreeBSD you are currently running! If you
are running FreeBSD 4.4−release, and want to upgrade to 4.5−release, use the sysinstall
program included in 4.5−release. The simplest way to be sure you are doing this is to boot off
the 4.5−release installation disk or CD−ROM.

Upgrading via CVSup

If you want a more flexible upgrade system, try upgrading your system from source with CVSup.
When a developer releases improvements to FreeBSD, the changes are made available on
FreeBSD servers worldwide within 66 minutes through CVS and CVSup. No non−BSD operating
system in the world makes changes available so rapidly. The FreeBSD master CVS server tracks
source code, all changes made to it, and who made those changes; developers can "check in" new
code, and users can "check out" the latest versions.

CVS (Concurrent Versions System) is a decent tool for source−code management, but an awful tool
for source−code distribution; it requires huge amounts of system resources and bandwidth, and
tends to destroy the server's hard drive.

Since all of the FreeBSD Project's resources are donated, they need to be used as efficiently as
possible. Thus, instead of using CVS, the FreeBSD Project uses CVSup to distribute the source
code—CVSup is a combination of CVS and sup, the Software Update Protocol. Compared with
CVS, the CVSup protocol is much faster, more efficient, easier on the servers, and generally nicer

120

when supporting millions of users scattered across the world. The master CVS source−code
repository is replicated to the worldwide CVSup servers, and users use CVSup to connect and
download the source code.

Because these changes are publicly maintained through this CVS/CVSup server combination, your
FreeBSD machine can connect to a CVSup server, compare its local copy of the FreeBSD source
code to the version available on the server, and copy any changes to the local hard drive. As
complex as this might sound, it's actually very simple. You can install CVSup on your local system
and use it to efficiently download updates.

Installing CVSup

Unlike most of FreeBSD, which is written in C, CVSup is written in Modula−3. Modula−3 is a very
powerful, modern programming language well suited for applications such as CVSup. To build
CVSup from pure source code, you'd need to build Modula−3 first, which takes quite a while. What's
more, you'd probably never need Modula−3 again because very few programs require it. However,
if you followed my suggestions in Chapter 1, you already have CVSup installed on your system.

If CVSup is not installed on your system, you can install it from a precompiled package (see
Chapter 10 for details) or over FTP. To install over FTP, confirm that you have a live Internet
connection and FTP connectivity to the outside world, and enter the following commands as root:

..
cd /usr/ports/net/cvsup
make all install clean
..

You will see lots of compiler messages go by, finally ending with a message confirming that CVSup
has been installed. Once you have installed CVSup, confirm that your system has the FreeBSD
source code installed–you should see something like this:

..
ls /usr/src
COPYRIGHT contrib release
CVS crypto sbin
Makefile etc secure
Makefile.inc0 games share
Makefile.inc1 gnu sys
Makefile.upgrade include tools
README kerberosIV usr.bin
UPDATING lib usr.sbin
bin libexec
#
..

This output is the FreeBSD source tree, which is all of the source code needed to build FreeBSD's
programs and kernel. (We'll discuss source code at some length in Chapter 10.) Go ahead and
browse through these directories if you like, to get an idea of what source code looks like.

If you find that this directory is empty, you haven't installed the source. But don't worry: You can
install the source code from the installation CD by doing the following as root:

..
mount /dev/acd0c /cdrom

121

cd /cdrom/src/
./install.sh all
..

If you don't have an install CD, you can grab the source from a FreeBSD FTP server or, if
bandwidth isn't a concern, you can simply run CVSup without a local source tree. CVSup will
compare what you have to what you need, and will install the latest source code. (The CVSup mirror
maintainers would prefer that you install the source from CD, however; they're donating the
bandwidth and their processor time for this service, and it isn't cheap.) A full source tree uses about
300 MB of disk space.

Whatever method you use to install the source, you will initially start off with the source code for the
version of FreeBSD you installed. For example, the CD−ROMs for FreeBSD 4.5 contain the source
code for FreeBSD 4.5. If you install the source code when you install the system, you'll be installing
the source code for version 4.5. This source code is a useful reference if you're a programmer. This
source code isn't what you want to use to perform an upgrade; if you use the source code for
FreeBSD 4.5 to rebuild and reinstall FreeBSD, you'll wind up reinstalling FreeBSD 4.5! CVSup
compares the source code you have on disk to the source code available on the Internet, and
downloads the changes between the two versions. CVSup then applies these "diffs" to the source
code you have on disk, changing it to the source code of the version you want. This is much more
efficient than re−downloading the entire 300 meg source tree! Even if you skip a release or two
between upgrades, CVSup will only have to download a meg or two of new source code to
complete the changes.

To make CVSup update your source tree, you need to tell it what to update, where to update it from,
and how to perform the updates.

Selecting Your Supfile

CVSup uses a config file, or supfile, which tells CVSup which files to update, and which version of
FreeBSD you want to wind up with. (See /usr/share/examples/cvsup/ for sample supfiles.) The
supfile you need will vary with the section of source code you want to upgrade. Once you've created
a supfile to track −stable, −current, or a security branch, you can continue to use it forever.

A recent /usr/share/examples/cvsup should contain the following supfiles:

cvs−supfile This supfile allows you to download the entire FreeBSD source repository. While most
users have no need for this, FreeBSD developers will think it's nifty. You need this only if you plan to
roll your own releases.

doc−supfile The doc−supfile allows you to retrieve all FreeBSD documentation sources, including
the latest FAQ and Handbook, in all available languages. Don't use this unless you intend to install
/usr/ports/textproc/docproj and build the documentation from source. While building the
documentation is quicker than building FreeBSD itself, building the docproj port can take quite a
while.

gnats−supfile This supfile is for people who wish to have a local copy of the FreeBSD problem
report (PR) database. Again, most users won't need this.

ports−supfile You can use this supfile to upgrade your ports tree to the latest version.

122

stable−supfile This supfile upgrades your source code to the latest −stable version.

standard−supfile This supfile upgrades your source code to the latest −current version.

www−supfile This supfile will download the latest version of the FreeBSD Web site.

The various components that can be updated with CVSup are called collections. For example, there
is the source−code collection, the documentation collection (doc−supfile), the ports collection
(port−supfile), and so on. Many collections are also broken up into subcollections: The source tree
has subcollections for components such as userland programs, the compilers, the kernel, and so
on. Our main concern when upgrading FreeBSD is the source collection.

Modifying Your Supfile

Once you've chosen your supfile, you need to modify it to fit your circumstances. To do so, first copy
your sample supfile under /usr/src and open it in your preferred editor.

Any line beginning with a pound sign (#) is a comment, and all the sample supfiles have more
comments than actual configuration entries. Most supfiles have at least six entries, similar to these
from a recent stable−supfile:

..
v *default host=CHANGE_THIS.FreeBSD.org
w *default release=cvs x tag=RELENG_4
y *default base=/usr
z *default prefix=/usr
{ *default delete use−rel−suffix
 *default | compress
} src−all
..

Your first step is to choose a CVSup server (v). (You'll find a complete list at
http://www.FreeBSD.org/handbook/mirrors−cvsup.html.) At this writing, the servers are
http://cvsup1.freebsd.org/ through http://cvsup17.freebsd.org/, but new ones are added continually,
so check the mirror list. Ping each server to determine which is closest to you–a faster response
time strongly hints that the server is closer. Name the closest in the default host space, where it
currently lists http://change_this.freebsd.org/.

The default release is a label for the version, or collection, you've chosen (w). Put the label for the
branch you want in the tag statement (x). RELENG_4 is the latest 4−stable. Here are some tags you
might wish to use:

Tag tRelease

RELENG_4 FreeBSD 4−stable

RELENG_3 FreeBSD 3−stable

FreeBSD−current

RELENG_4_3 The security updates only for FreeBSD 4.3

RELENG_4_4 Security updates only for FreeBSD 4.4

RELENG_4_5 Security updates only for FreeBSD 4.5

123

The default base is where CVSup will keep its status files, including a list of updated files, which will
accelerate future updates (y).

The default prefix is where the collection you've chosen will go, and the default is almost certainly
correct (z). To install the source somewhere other than /usr/src, you can change this path.

Delete gives CVS permission to remove obsolete, unnecessary source files ({). The use−rel−suffix
entry allows CVSup to share a common base directory among several versions of the source,
without confusing them.

All of the example supfiles include an instruction to compress the CVSup data (|). If your connection
is a T1 or faster, compressing the data isn't that important, and you can remove this entire line,
which will reduce the CPU load while increasing the needed bandwidth. Since today's processors
are usually much cheaper than bandwidth, there are very few circumstances where not using
compression makes sense.

The src−all tag tells CVSup to update the entire source tree (}). The stable−supfile has a list of
commented−out subcollections, such as usr.bin, contrib, sys, and so on, which are all included in
src−all. To use just one part of the source tree, you could use these subcollections. For example, to
just upgrade the source code in /usr/src/usr.bin, you could specify the usr.bin subcollection. This is
a spectacularly bad idea if you want to use this source code to upgrade your system. For example,
installing the /usr/bin directory of a 4.5−release system on a 4.3−releasesystem will cause all sorts
of unpredictable problems, and is certainly not supported.

Specifying Multiple Collections

You can specify multiple collections in one supfile. For example, I need access to the source−code
collection for the latest −stable. As a FreeBSD documentation committer, I need to have the latest
documentation collection. Plus, I want the latest ports tree so I can install the very latest software on
my system.

FreeBSD includes separate example supfiles for each of these collections. Since I want to get
everything at once (I don't want to run CVSup three times to download all of the latest changes), I
use one supfile to get the latest appropriate version of FreeBSD, the latest ports collection, and the
latest documents collection, as shown here:

..
*default host=cvsup16.FreeBSD.org
*default base=/usr
*default prefix=/usr
*default delete use−rel−suffix
*default compress src−all
*default release=cvs tag=RELENG_4
src−all
v ports−all tag=.
doc−all tag=.
..

Everything down to the second−last line (v) is the standard stable−supfile. We can then list
whatever additional collections we want.

124

The last two entries are the interesting bit, where I added the ports−all and doc−all collections.
Non−source collections do not have releases or branches in the same way the source code does,
so if I were to ask for the RELENG_4 version of the ports tree, the server wouldn't know what the
heck I was talking about and I wouldn't get my updates. By adding the tag=. keyword to the end of
the collection name, we are telling CVSup to get the latest version of this collection.

We'll discuss the ports tree further is Chapter 10.

Blocking CVSup Updates with a Refuse File

To refuse to allow updates of certain programs, create a refuse file. For example, I keep my ports
collection up to date so I can easily grab the latest software, but the ports collection includes several
categories I'm not interested in, particularly the non−English software. Looking through the
/usr/ports directory, I see directories for Chinese, German, Japanese, Korean, Russian, and
Vietnamese software. The chances that I will need any of these packages on my server are slim to
none. To tell CVSup not to update these directories, make a file /usr/sup/refuse that looks like this:

..
ports/chinese
ports/german
ports/japanese
ports/korean
ports/russian
ports/vietnamese
..

Note The refuse file cannot contain comments!

You can create a refuse file for any section of FreeBSD, though it's best not to refuse anything
under /usr/src. If you refuse updates to a critical system program, that program will become
incompatible with your system at some point.

This system works on pattern matching, so a refuse file line like sys would block everything that
contained the string "sys", which happens to include the kernel source code available under
/usr/src/sys. Be careful with refuse files; give enough context to only block what you want!

Note If you change the prefix in the supfile to a location other than /usr, you need to move your
refuse file. (The actual location is $PREFIX/sup/refuse.) If you accept the defaults, the
examples will work just fine.

Upgrading System Source Code

Once you've created your supfile, run CVSup by becoming root and entering this command:

..
cvsup supfile
..

If you're running X, CVSup will open a GUI; otherwise, it will just start upgrading your source files.
When CVSup finishes, you should have the very latest FreeBSD source code.

125

Partial Updates

CVSup supports partial updates with the −i ‘pattern’ option. For example, cvsup my−supfile −i
src/etc will update the /usr/src/etc directory using the default settings in my−supfile. You could
also use cvsup my−supfile −i sys to just get the kernel code, or cvsup my−supfile −i
ftpd to grab the latest FTP daemon.

Be careful doing this, however. FreeBSD is designed to work as a unified whole, and you cannot
mix and match different versions of utilities. For example, if the latest FTP daemon expects kernel
features that were only added last month, it won't work well on an older kernel.

Note CVSup only takes care of the base FreeBSD operating system. If you have separate
programs, such as shells, Web servers, or editors, you need to upgrade them
manually. See Chapter 9 for details.

After Upgrading Source Code

Once you've finished upgrading your source code, take a look at the file /usr/src/UPDATING. This
file lists, in reverse chronological order, any warnings and notices about source−code changes. If
you need to take any special action before rebuilding your system from source code, or if any major
system functionality has changed, it will be noted here.

You might also take a moment to examine the new GENERIC or LINT kernel configuration file for
any new options or kernel system changes that you might be interested in.

Building Your New FreeBSD

Once CVSup has completed the source−code update, you can rebuild your system. Different people
do this in different ways, and you'll hear all sorts of anecdotal evidence that one method works
better, faster, and stronger than another. The method recommended by the FreeBSD Project is both
the safest and the least likely to damage your system, and also an excellent script(1) candidate
(script is explained in Chapter 3).

The only recommended way to build FreeBSD is via the following commands.

..
cd /usr/src
make buildworld
..

The make buildworld command first uses the source code to build the tools necessary to build
the system compiler, after which it builds the compiler and the associated libraries. Finally, it uses
the new tools, compiler, and libraries to build all the software included in a core FreeBSD install. (It
does not install these components, however, but puts them under /usr/obj for later use.)

Using make buildworld, FreeBSD literally rebuilds every single piece of itself, which may take
anywhere from one to several hours, depending on your hardware. You can continue working
normally as the buildworld runs; while make buildworld consumes system resources, it won't
take any of your attention. Older hardware will respond quite slowly, however.

126

You can put optimizations in /etc/make.conf (described in Chapter 9). Some parts definitely worth
considering are the CPUTYPE entry and the various NO_ flags. This can create a more efficient
operating system and a faster, smoother upgrade.

Note Be certain that the buildworld completes without errors! If it ends with a bunch of errorcode
messages like those you see during a failed kernel compile, stop immediately. Go to Chapter
2 and see how to get help. Do not attempt, under any circumstances, to install a damaged or
incomplete upgrade.

Updating Your Kernel

When make buildworld finishes successfully, it's time to update your kernel. The catch is, the
latest binaries for the tools to build your kernel are not actually installed; they're sitting off in another
directory tree! The standard kernel−building config, make depend, make install routine
discussed in Chapter 4 won't work well.

If you have a custom kernel configuration, set the variable KERNCONF in /etc/make.conf (this is
explained in Chapter 8). Otherwise, the build process will rebuild the GENERIC kernel.

To build the kernel, stay in /usr/src and run this command:

..
make buildkernel
..

Note For maximum safety, run make buildkernel KERNCONF=GENERIC so that you will have
an updated GENERIC kernel available.

Installing Your System

Once you've completed the make buildkernel, you're ready to install your newly built system.
The first step is to install your new kernel and kernel modules.

The new kernel and associated modules are the easiest parts of an upgrade to test; if it's bad, you
can easily fall back to your old kernel. Install the new kernel and modules by entering this
command:

..
make installkernel
..

To test the new kernel, reboot and check out your system. Do your programs still run? Is your
system still receiving mail and serving up Web pages? If so, your kernel is probably all right. As you
check out the system, various programs that require access to kernel structures (such as top(1))
won't work, but you can test everything else.

Once you're satisfied that your kernel works, and that everything is behaving as you expect, you can
install the rest of the system. Userland installs must be performed in single−user mode. If your
system is running at securelevel 1 or higher, you'll need to shut down and boot into single−user

127

mode. Otherwise, you can just drop the running system down to single−user mode with this
command:

..
shutdown now
..

Once the system is shut down to single−user mode, you can install the userland programs by
entering the following:

..
cd /usr/src
make installworld
..

This will install the various programs included in the FreeBSD core system. You will see numerous
messages scroll up the screen, mostly including the word install. When the process finishes, you will
have completed your upgrade installation, but you still have a couple more steps to complete before
your FreeBSD system is truly upgraded.

/etc and /dev Changes

As you'll recall, your system's personalized configuration lives under /etc. Because no automated
process can know how your machine is supposed to run, you'll have to handle any changes to these
files yourself. The make buildworld through make installworld process won't perform them for
you.

The latest versions of all files and directories under /etc live under /usr/src/etc. You'll need to
compare these files (particularly the "rc" files) to those in your /etc directory to see which changes
you need to add. This is a tedious process that is very difficult to do by hand, so we'll use the
FreeBSD utility mergemaster(8) to cut the merge time considerably.

To use mergemaster, become root and type the following command:

..
mergemaster
..

Mergemaster will copy various configuration files from your source tree, build a temporary /etc and
/dev under /var/tmp, and then compare these configuration files to those in the existing /etc. If the
new file version differs from the file in /etc, mergemaster displays the differences, at which point you
can decide whether to keep the old file, use the new file, or merge the two.

For example, here's the beginning of a typical mergemaster session.

..
*** Beginning comparison

v *** Temp ./dev/MAKEDEV.local and installed have the same $FreeBSD, deleting
w *** Temp ./dev/MAKEDEV and installed have the same $FreeBSD, deleting
 *** Displaying differences between ./etc/defaults/rc.conf and installed version

128

x −−− /etc/defaults/rc.conf Fri Jan 14 08:54:11 2000
+++ ./etc/defaults/rc.conf Sun Feb 27 18:21:29 2000
@@ −9,7 +9,7 @@
 # # All arguments must be in double or single quotes.
 #
−# $FreeBSD: src/etc/defaults/rc.conf,v 1.1.2.18 1999/11/28 16:02:30 brian Exp $

+# $FreeBSD: src/etc/defaults/rc.conf,v 1.1.2.19 2000/02/19 13:11:28 jkh Exp $
##
Important initial Boot−time options
@@ −193,7 +193,7 @@
saver="NO" # screen saver: Uses /modules/${saver}_saver.ko
moused_enable="NO" # Run the mouse daemon.
moused_type="auto" # See man page for rc.conf(5) for available
settings.
−moused_port="/dev/cuaa0" # Set to your mouse port.
+moused_port="/dev/psm0" # Set to your mouse port.
 moused_flags="" # Any additional flags to moused.
 allscreens_flags="" # Set this vidcontrol mode for all virtual screens
 Use 'd' to delete the temporary ./etc/defaults/rc.conf
 Use 'i' to install the temporary ./etc/defaults/rc.conf
 Use 'm' to merge the old and new versions
 Default is to leave the temporary file to deal with by hand

How should I deal with this? [Leave it for later]
..

Let's look at what's happening here. The first couple of lines (v and w) indicate that the version of
/dev/MAKEDEV in /dev is the same as the one in the latest source code. Mergemaster doesn't
bother suggesting any changes, and instead just deleted the temporary copies it made for
comparison purposes.

Then mergemaster comes to a file with some changes, /etc/defaults/rc.conf (x). Mergemaster spits
out a few lines of the file; additions are marked with leading plus signs (+) and deletions are marked
with leading hyphens (−). (A few surrounding lines are provided for context.)[1]

For example, consider these lines:

..
−moused_port="/dev/cuaa0" # Set to your mouse port.
+moused_port="/dev/psm0" # Set to your mouse port.
..

These lines tell us that the default mouse port changed between this upgrade and the previous
upgrade or installation. Lines marked with a minus sign appear in the older version of the file. Lines
marked with a plus sign are in the new version. The port was /dev/cuaa0 (a serial port), but it is now
/dev/psm0 (a PS/2 port).

Mergemaster offers you three options: delete, install, and merge. The thing to do here is to install
the new /etc/defaults/rc.conf file, and make any changes needed in /etc/rc.conf. Press i to install the
file.

Some files should never be replaced via mergemaster, such as files that include system−specific

129

configuration information, like /etc/passwd or /etc/group. Leave such files unchanged by pressing d.

Pressing m will take you through a file and let you merge the changes. This is a powerful option,
and useful once you're comfortable with mergemaster, diff, and the contents of /etc, but beginners
are almost certainly better off simply totally replacing or rejecting files.

You can learn all about /etc in Chapter 9.

Device Entries

In Chapter 3 we briefly discussed device nodes, files in the /dev directory that programs can use to
send data to and from devices. Then, in Chapter 4 I defined a kernel as the interface between the
hardware and the software. When you run an upgrade, these two concepts intersect: The kernel
might very well rearrange how it talks to devices, and the interface for how those devices are
handled might change. So far in this upgrade process, we haven't changed those special files in
/dev, but if you have old device nodes talking to a new kernel, you can get unpredictable behavior.
These changes might not happen with every upgrade, but you have to be aware that they're
possible.

FreeBSD includes a script that creates correct device nodes, /dev/MAKEDEV. The version of
/dev/MAKEDEV distributed with a given kernel is expected to create the correct device nodes for
that kernel. Mergemaster compares the /dev/MAKEDEV script from the updated source code with
the old script still installed in /dev/MAKEDEV, and it offers to install the new one. Do it.[2] Correct
device nodes are not optional. If the /dev/MAKEDEV script has changed, mergemaster will offer to
run /dev/MAKEDEV for you. Do that too. Again, correct device nodes are vital.

Last Steps

Once you have completed mergemaster, your system has every piece of the upgrade in place. Just
reboot, and you will have completed a FreeBSD upgrade!

Any number of things can go wrong with a system upgrade. The make buildworld command
might not finish, or the system might behave oddly afterwards. If something goes wrong, follow a
similar process to what you do during a kernel−build failure. Search for the error in the FreeBSD
mailing list archives. If the problem isn't discussed there, send the last five or six lines of your build
output to FreeBSD−questions@FreeBSD.org, and include the following information:

The end of the output of the failed compile•
Your FreeBSD version number•
The contents of /var/run/dmesg/boot•
The output of uname −a•

Simplifying the CVSup Upgrade Process

Now that you understand how the upgrade process works, you can simplify it somewhat by making
some changes in /etc/make.conf to reduce the CVSup portion of the upgrade process to a
two−word command. While I don't prefer to go this route myself, many people do, so here's what
you do.

130

First, you'll need to set several variables in /etc/make.conf.

..
SUP_UPDATE= yes
..

The preceding line enables the "make" front end to CVSup.

..
SUP= ./usr/local/bin/cvsup
..

The SUP setting is the default location for CVSup on your system. If you have a custom CVSup
replacement, or if you need to specify the full path to the cvsup binary, set it here.

..
SUPFLAGS= −g −L 2
..

This SUPFLAGS setting gives standard flags for your CVSup command. To run CVSup silently,
change this to −g −L 0.

..
SUPHOST= cvsup13.FreeBSD.org
..

List a reasonably close FreeBSD cvsup mirror in the SUPHOST line.

..
SUPFILE= /usr/share/examples/cvsup/stable−supfile
..

The SUPFILE value tells CVSup which configuration file to use.

..
PORTSSUPFILE= /usr/share/examples/cvsup/ports−supfile
..

PORTSSUPFILE specifies which supfile should be used to upgrade ports. Don't define this if you
don't want to upgrade your ports collection.

..
DOCSUPFILE= /usr/share/examples/cvsup/doc−supfile
..

Finally, DOCSUPFILE is the supfile for the source code of the documents collection. Leave this
undefined if you don't want to upgrade your documentation tree (including the Handbook, FAQ,
articles, and so on).

Note DOCSUPFILE does not specify the actual documentation, but rather the source code to the
documentation. If you don't have the documentation building tools, this is almost useless.

Once you have set these values, you can replace the cvsup stable−supfile command with this one:

131

..
make update
..

Some people find it more pleasant to simply go to /usr/src and type make update && make
buildworld && make install than to give the full CVSup command. It's up to you.

[1]This format is called a "diff," and is quite common in the UNIX world.
[2]Unless, of course, strange behavior, weird crashes, and lost data make you happy.

Building a Local CVSup Server

Many people have quite a few FreeBSD systems. During an upgrade from source, however, every
single server must connect to a FreeBSD CVS server and download the latest code, which can be a
pain. For one, all of the mirrors are maintained by volunteers who are donating the servers and
bandwidth. Why download the same bits over and over again?

Also, each server might wind up with slightly different code if they all connect to different servers.
Suppose you log in to each server and start a CVSup. In the few minutes between starting each
source−code upgrade, the code on the CVSup server might change slightly. The mirrors aren't
going to stop updating their code just because you're in the middle of upgrading four machines, and
if you're running several production machines, you'd be best served if all the systems were
absolutely identical. Even if they're running a version of −stable somewhere between 4.4−release
and 4.5−release, being able to eliminate different versions of the software as a potential problem
can help troubleshooting immensely. You don't want to think, "Gee, server 1 keeps dying; could it
be because each server has a slightly different version of FreeBSD?" That way lies madness.

You can address this problem by running a central CVSup server (also known as a "cvsupd"
server), which is essentially your own local mirror. You can control when your local mirror updates,
and you can guarantee that all of your machines have exactly the same code. Doing so will not only
make you popular with the mirror operators (or at least, won't make you unpopular with them), it will
also eliminate a variety of possible problems resulting from having different code on each of your
servers. You can still have problems if you have different settings in /etc/make.conf, but you can
compare those files yourself and see what you're doing differently. It is much easier to compare two
files than several thousand!

It's not particularly easy to run a CVSup server, but there's help to make it simpler. The port
/usr/ports/net/cvsup−mirror handles all the tricky bits of configuring a mirror. When you install the
port, cvsup−mirror asks you some questions; there are default suggestions, but you should change
many of them. We'll discuss software installation in detail in Chapter 9, but installing this port is
pretty straightforward.

First, make sure you have an Internet connection, and enter the following commands:

..
cd /usr/ports/net/cvsup−mirror
make install clean
..

You will see messages scroll up your screen, including the compiler messages you should
recognize by now. (You might not know what they mean, but you should recognize compiling when
you see it.)

132

At some point, the install process will pause and prompt you for information:

..
Master site for your updates [cvsup−master.FreeBSD.org]?
..

The default site, http://cvsup−master.freebsd.org/, is reserved for official FreeBSD mirror use only;
you can use it if you become an official mirror and allow the world access to your system. If not, use
one of the 80−odd public CVSup servers instead. If you're setting up a CVSup mirror, you should
have already identified a public mirror that's close to you. Enter the name of that mirror.

The next prompt will look like this:

..
How many hours between updates of your files [1]?
..

The script updates /etc/crontab (explained in Chapter 9) to run CVSup automatically. You can
accept this default, or change it easily. If you accept the default, your system will upgrade itself once
an hour via cron. This is the way the official mirrors do it. I generally enter 168, which updates the
repository once a week, since I will not be upgrading servers more than weekly! Your first update
will take quite a while, but later updates generally only take a few minutes.

Note In many cases, I only upgrade the CVSup server by hand by running the
script /usr/local/etc/cvsup/update.sh. To upgrade a group of machines all
to the same version of −stable, all you have to do is update your CVSup
server once and upgrade all the machines from the server. I frequently
upgrade one server, put it through several rounds of extensive
quality−assurance testing, and upgrade the rest from the same CVSup
batch, which guarantees good code and identical systems. There is no
requirement for you to be more up to date than you wish; the source
code is yours to do with as you see fit, after all! If you update your server
manually, you will want to edit /etc/crontab to remove the automatic
update! We'll discuss /etc/crontab in Chapter 9.

..
Do you wish to mirror the main source repository [y]?
..

Most people just need the main source repository, so the default is usually fine.

..
Where would you like to put it [/home/ncvs]? /repo
..

This prompt is where you enter the path to the location on disk where you want your mirror kept. I
frequently add a separate, small disk to a system to keep the mirror on, and call that disk /repo. You
can put it in the default location of /home/ncvs without any problems.

133

Since you probably want only the main source repository, answer n to the next three questions:

..
Do you wish to mirror the installed World Wide Web data [y]? n
Do you wish to mirror the GNATS bug tracking database [y]? n
Do you wish to mirror the mailing list archive [y]? n
..

Of course, if you'd prefer to mirror the whole http://www.freebsd.org/ site, including the PR database
and the mailing list archives, answer y. But be warned: the mailing list archives are huge. The
source repository itself is well over 1GB at this writing, and growing continuously.

Use unique user and group IDs for the next series of questions. (Do not use "nobody", "nonroot", or
"nogroup".) You can use the defaults, or change the usernames and group names to fit your local
scheme:

..
Unique unprivileged user ID for running the client [cvsupin]?
Unique unprivileged group ID for running the client [cvsupin]?
Unique unprivileged user ID for running the server [cvsup]?
Unique unprivileged group ID for running the server [cvsup]?
..

Lastly, the maximum simultaneous client connections is easy to change later, so don't sweat it. It's
fine to accept the default:

..
Maximum simultaneous client connections [8]?
..

Once you finish answering the questions, the make install process picks up where you left off,
adds these usernames, sets the configuration, and generally gets you ready to go.

Controlling Access

Just because you want to be a good systems administrator and have a private repository doesn't
mean that you want every Joe Sixpack to download from your CVSup mirror. The CVSup server
allows you to control which computers have access to the mirror.

The file /usr/local/etc/cvsup/cvsupd.access controls which hosts may connect to your CVSup mirror.
Lines beginning with the pound symbol (#) denote a comment; a plus sign (+) means that the client
can connect, and a hyphen (−) means that the client cannot. An asterisk (*) means that the client
must authenticate, as discussed in the following "Authentication" section.

Each rule in cvsupd.access can refer to either a hostname or an IP address; IP addresses are
preferred. You can use netmasks with IP addresses as well.

For example, to allow access from the network 192.168.0.0/16 and explicitly reject clients accessing
from elsewhere, use these lines:

134

..
+192.168.0.0/16
−0.0.0.0/0
..

Controlling access by IP address is good for a static network. For example, an Internet service
provider (ISP) knows the IP addresses of its servers and can easily keep them in cvsupd.access.
You might need a more flexible system, however, if you're connecting from random IP addresses.
When I was consulting, for example, I kept a mirror that accepted connections from any IP address.
Users needed a username and password to connect, however. If your cvsupd.access file is empty,
access is controlled entirely by username and password authentication.

Authentication

Use authentication to allow connections to your CVSup mirror from any location on the Internet. The
CVSup server uses a challenge−response system for authentication, rather than transmitting
passwords in clear text. When a client connects, it combines its shared secret (CVSup for
"password") and the system time, and runs them through a scrambler. The server does the same. In
theory, both the client and the server are performing the same calculations on the same piece of
secret data, and both should get the same answer. If the client's scrambled message matches what
the server computed, the server assumes that the client has the secret data and permits access.

This is a very secure system. For example, if someone drops a packet sniffer on the network, she
cannot grab the password. What's more, since the challenge−response system incorporates the
time, a captured response cannot be used a second time.

Authentication requires a password file, /usr/local/etc/cvsup/cvsupd.passwd, which must only be
readable by the CVSup user so that no one else can grab user information. (You can do this by
running chown cvsup cvsupd.passwd and chmod 600 cvsupd.passwd.) If you don't have
a password file, access will be controlled entirely by the cvsupd.access file.

Blank lines and comment lines (which begin with #) in cvsupd.passwd are ignored. The first code
line in cvsupd.passwd is the server name and a private key, separated by a colon.

..
magpire.AbsoluteBSD.com:testkey
..

The server name is sent back to the client, and the private key is used for additional randomness.
You don't have to have a private key—the CVSup password system is pretty random as is–but you
must have the colon that precedes the private key. The private key cannot contain a colon.

Next in the file, you have your legitimate users. Each user appears on a separate line, in the
following format:

..
user ID:shared secret:class:comment
..

135

CVSup IDs are email addresses, such as mwlucas@AbsoluteBSD.com. The shared secret is based
upon a cryptographic hash saying you're the administrator's chosen password for that user. The
class field is reserved for future use, and should be left blank. Finally, the comment field can be
used by the administrator. For example, if you give someone access to your CVSup mirror, it's a
good idea to put in a comment stating why they have access. (You might remember now, but will
you remember in a year or two?)

The cvpasswd(1) command automates generating these cvsupd.passwd entries. Cvpasswd takes
two arguments: the email address of the user and the server name. It will ask you for the password
for this user twice, and spit out some instructions.

..
cvpasswd mwlucas@AbsoluteBSD.com magpire.AbsoluteBSD.com
Enter password:
Enter same password again:

Send this line to the server administrator at magpire.AbsoluteBSD.com:
−−−
v mwlucas@AbsoluteBSD.com:$md5$bf489b753a0a949a1c63a3f5da0d61b6::
−−−
Be sure to send it using a secure channel!

Add this line to your file "$HOME/.cvsup/auth", replacing "XXX" with the password you typed in:
−−−
magpire.AbsoluteBSD.com:mwlucas@AbsoluteBSD.com:XXX: −−−
Make sure the file is readable and writable only by you!
#
..

The cryptic line in the middle of this output (v) gives the username and the shared secret, based
upon the password. Send this line to the user you want to allow to connect. The "secure channel"
mentioned means that you should send this line in such a way that it cannot be captured by hostile
people on the Internet. You can read the code to the other user over the phone, hand−type it into
the system, copy it to a floppy disk, and hand−deliver it, or encrypt it with PGP and email it. If you
send it via standard unencrypted email, anyone who captures the email en route can use this to try
to access your CVSup server. However, if someone steals this information, the risk of unauthorized
access is not that great; a user still needs the password to access the mirror.

Once the user has this line, he puts it in his home directory in the file .cvsup/auth. This can be
copied to any system he wants to upgrade from this CVSup server. He also needs to make sure
that nobody else can read this file, by running chmod 600 .cvsup/auth.

On the server side, copy that same line into /usr/local/etc/cvsup/cvsupd.passwd. It is formatted to be
a correct, although minimal, password entry. You can add a comment at the end, if you like.

Once you have this entry on both the client and server sides, the user will be prompted for a
password each time he runs CVSup and tries to connect to this server.

Note If you have neither cvsupd.access nor cvsupd.passwd, anyone can connect to
your server from any location on the Internet. The FreeBSD Project is happy to let
anyone run a mirror, but you should be aware that you are doing so!

136

Combining Authentication and Access

Combining authentication and authorization by IP address can be a little tricky because you don't
want hosts that are listed by IP addresses to be asked for passwords, or users with passwords to be
rejected because their IP address is rejected. There is an implicit "authenticate" rule at the end of
cvsupd.access. If your client hasn't been blocked out by an explicit "deny" rule based on an IP
address, you'll be allowed to authenticate. No special configuration is required.

In the example cvsupd.access file shown previously, I explicitly denied access to all IP addresses
that were not in the list. If you wanted to give other users a chance to authenticate, you would list IP
addresses that may always connect, and explicitly reject smaller blocks that you know you will never
connect from. Here's a commented example:

..
#allow anyone inside our company to connect +192.168.0.0/16
#allow anyone from our sister company to connect +10.10.0.0/16
users from here can never connect −24.0.0.0/8
..

In this example, systems with an IP address beginning with 192.168 or 10.10 could always connect.
Computers with an IP address beginning with 24. could never connect, even if they had a username
and password. If a computer with none of the above IP addresses tries to connect, it will be able to
try a username and password.

This gives you complete control over access to your mirror.

137

Chapter 7: Securing Your System

Overview

Securing your system means ensuring that your computer's resources are used only by authorized
people for authorized purposes, because even if you have no important data on your system, you
still have valuable CPU time, memory, and bandwidth. In fact, many folks who thought that their
systems were too unimportant to bother securing found themselves an unwitting relay for an attack
that disabled a major corporation. You don't want to wake up one morning to the delightful sound of
law enforcement agents kicking in your door because your insecure computer was used to break
into a bank.

Sure, there are things worse than having some kid take over your servers— say, having both your
legs broken. Coming in to work one day to discover that the company Web page now says, "Ha, ha,
you've been r00ted!" is a pretty close second.

Sadly, over the last few years, it has become much easier to take over remote computers.
Precanned point−and−click programs for subverting computers are becoming more and more
common, and can be found through an underground search engine like http://astalavista.com/. It
takes just one bright attacker to write an exploit, and several thousand bored teenagers with nothing
better to do than download it and make life difficult for the rest of us. Even if you don't care about
your system, you need to secure it.

Generally speaking, operating systems are not broken in to; the programs running on operating
systems are. Even the most paranoically secure−by−default operating system in the world[1] cannot
protect badly written programs from themselves.

Occasionally, a problem with one of these programs can interact with the operating system in such
a way as to actually compromise the operating system. The most common of these are called buffer
overflows, where an intruder's program is dumped right into the CPU's execution space and the
operating system runs it. FreeBSD has undergone extensive auditing to eliminate buffer overflows,
but that's no guarantee that they are totally eradicated. New functions and programs are being
written all the time, and they can interact with older functions in unexpected ways.

This chapter focuses on patching and securing your systems. (Auditing your network design is a
topic that fills thick books, and isn't really on topic for a book on FreeBSD.) FreeBSD gives you
many tools to help you secure your system against network attackers.

[1]That would be OpenBSD. Or any OS on a computer that's disconnected from any network, buried
under 12 feet of steel−reinforced concrete and, if at all possible, crushed into a billion tiny pieces
and soaked in hydrofluoric acid for several months.

Who Is the Enemy?

First off, I'm going to arbitrarily lump potential attackers into three groups: script kiddies, disaffected
users, and skilled attackers. You will find more fine−grained profiles in books dedicated to security,
but that's not what you're here for. These categories are easily explained, easily understand, and
include 99 percent of all the attackers you're likely to encounter.

138

Script Kiddies

The most numerous attackers are script kiddies. Script kiddies are not sysadmins. They are not
skilled. They download small attack programs that work on a point−and−click basis and go looking
for people to attack. They're the equivalent of drive−by shooters looking for easy pickings.
Fortunately, script kiddies are particularly easy to protect against; you simply have to keep your
system and server programs’ patches up to date.

Disaffected Users

The second group causes the majority of security problems: your own users. The fact is, disaffected
employees cause most security breaches because they're most likely to know where your security
holes are. For example, you might have all your servers patched, but if you have a modem in the
back closet that lets anyone who knows the password into the network behind your firewall, you're
in trouble.

The best way to stop people like these is to not be sloppy. When someone leaves the company,
change all passwords, and tell all employees that the person has left and not to share information
with that person. And get rid of the unsecured modem, or the undocumented telnet server, or
whatever other hurried hack you put into place thinking that nobody would ever find it.

Skilled Attackers

The last group is actually dangerous: skil led attackers. These are competent systems
administrators, security researchers, and penetration specialists who want specific information from
your company. If one of these people wants into your systems, they can probably get there.

Still, the proper security measures that will stop the first two groups of people can change the tactics
that the skilled attacker must use. Rather than breaking into your computers over the network, he'll
have to show up at the door dressed as a telephone company repairman lugging a packet sniffer, or
dumpster−dive searching for old sticky notes with passwords scribbled on them. This raises his
exposure dramatically, and can even make a break−in more trouble than it's worth.

RANT You'll frequently hear the word "hacker" used to describe people who break into computers.
This word has different meanings depending on the speaker. In the technical world, a hacker
is someone who is interested in the inner workings of technological systems. Some hackers
are interested in everything, some have a narrow area of interest—such as computers. In
the FreeBSD community, "hacker" is a title of respect. The main FreeBSD technical list is
called FreeBSD−hackers. In the popular media, a hacker is someone who breaks into
computer systems, end of story. To them, all hackers are bad. I recommend avoiding the
word entirely to avoid confusion. In this book, I call those who break into systems
"intruders."[2] Technical wizards can be called by a variety of names, but they rarely object to
"sir" or "madam."

[2]In person, I call them much less pleasant things.

FreeBSD Security Announcements

The best way to stop all attackers is to keep your system up to date. That means you need to know
when to update your system, and what to update. An outdated system is a script kiddie's best friend.

The FreeBSD project has a team of developers who specialize in auditing source code and

139

watching for security issues with both the base operating system and add−on software. These
developers maintain a very low−volume mailing list, FreeBSD−security−notifications@FreeBSD.org,
and it's a good idea to subscribe to it. While you can monitor other mailing lists (such as BugTraq
and CERT) for general announcements, the security−notifications list is a handy single source for
FreeBSD−specific information.

Subscribing

T o s u b s c r i b e t o t h e s e c u r i t y − n o t i f i c a t i o n s m a i l i n g l i s t , s e n d a m e s s a g e t o
major−domo@FreeBSD.org containing the following:

...
subscribe FreeBSD−security−notifications
...

You'll receive a confirmation message, and buried somewhere in it there'll be a command string
something like this:

...
auth abax55b3 subscribe FreeBSD−security−notifications mwlucas@AbsoluteBSD.com
...

Reply to majordomo@FreeBSD.org with a message containing just that string, and you'll be
subscribed.

To unsubscribe, send a similar message to majordomo@FreeBSD.org with the following body text:

...
unsubscribe FreeBSD−security−notifications
...

You'll get a message back with a confirmation string to send back to the mail server. Return it, and
you'll be unsubscribed.

What You'll Get

Two sorts of messages come across the security−notifications mailing list: FreeBSD security
advisories and FreeBSD ports−collection security advisories. The two have very different purposes.

FreeBSD security advisories apply to the base operating system. When a FreeBSD component has
a security hole, the security team releases a security advisory. Read the advisory carefully to
determine what you need to do.

The ports collection contains literally thousands of programs that can be easily installed on
FreeBSD. While it's not the definitive guide to what can work on the system, it's certainly a big
chunk of it. When the security team finds a hole in one of these software packages, they notify the
vendor and issue a ports−collection security advisory. These pieces of software are beyond the
FreeBSD Project's control, but since they're distributed with FreeBSD, FreeBSD frequently catches
the blame when one of them is broken. The security team issues these advisories in an effort to

140

keep its users secure. If you haven't installed the software discussed by the advisory, you don't
have to worry.

Both types of security advisories generally contain a description of the problem, fixes, and
workarounds. Read advisories carefully, since you can be sure that some script kiddie is looking for
a vulnerable machine to break into. The best thing to do is to be invulnerable to these problems.

Note We will discuss many security tools in this chapter. While none is sufficient, all are
desirable. Treat everything you learn about in this chapter as a tool in a kit, not as
the answer to all of your problems. For example, while simply raising the securelevel
will not make your system secure, it can help when combined with reasonable
permissions, file flags, patching your systems, password control, and all the other
things that make up a good security policy.

Installation Security Profiles

When you first install FreeBSD (version 4.2 or later), you have the option to set a security profile,
which basically enables and disables network services and sets the default system security
according to some common defaults provided by the FreeBSD Project. (Everything the security
profile changes is set in /etc/rc.conf.) In most cases, you should use these profiles as a starting
point and edit the configuration set by the profile to meet your needs. The following sections give a
rough description of the two security profiles: moderate and extreme.

Moderate

The moderate security profile enables inetd, sendmail, and sshd. This way, the system can send
and receive email and allow people to connect remotely via ssh. Also, if you've previously
configured the system to use NFS, portmap will be running so that the system can provide NFS
services. The securelevel remains at the default of −1.

Extreme

With the extreme security profile, no basic system network daemons are running, except for extra
software you specifically install, and the system securelevel is set to 2. The system will not receive
or send email out of the box, and you cannot connect to it remotely. It's unhackable, because it's
sitting there with nothing coming in or out.

While security profiles provide useful templates, you need to know how to configure each of these
services yourself. Take a look at rc.conf (explained in Chapter 9) to learn how.

Root, Groups, and Permissions

UNIX security has been considered somewhat coarse because one superuser, root, can do
anything. Other users are lowly peons who endure the shackles root places upon them. While there
is some truth to this, a decent administrator can combine groups and permissions to handle almost
any security issue in a secure manner.

141

The root Password

Some actions require absolute control of the system, including manipulating core system files such
as the kernel, device drivers, and authentication systems. The root account is designed to perform
these actions.

To use the root password, you can either log in as root at an actual login prompt or, if you are a
member of the group wheel, use the switch user command su(1). (We'll discuss groups in the next
section.) I recommend su; it logs who uses it, and it can be used on a remote system. The
command is very simple to use:

..
su
Password:
#

Next, check your current username with the id(1) command:

..
id
uid=0(root) gid=0(wheel) groups=0(wheel), 2(kmem), 3(sys), 4(tty), 5(operator),
20(staff), 31(guest)
#
..

You now own the system—and I do mean own it. Consider every keystroke very carefully;
carelessness can return your hard drive to the unformatted empty metal it shipped with. And use the
root password sparingly, because anyone who has the root password can inflict unlimited damage
upon the system. Do not give it to anyone who does not strictly need it!

This naturally leads to the question "Who needs root access?" Much of the configuration discussed
in Absolute BSD requires the use of the root password. Once you have the system running the way
you like it, however, you can greatly decrease or discontinue the use of the root password. One of
the simplest ways to do this is with the proper use of groups.

Groups of Users

UNIX classifies users into groups, each group consisting of people who perform similar
administrative functions. You can have a group called "www", which includes the people who edit
Web pages, and a group called "email", which includes the people who manage your mail server.
You can set files and directories to be accessible to specific groups. Most group information is
defined in the file /etc/group.

Each line in the group file contains four colon−delimited fields. The first is the group name. Group
names are fairly arbitrary: You could call a certain group of users "xyzzy" if you wished. It's a good
idea, however, to choose group names that give you some idea of what they're for; while you might
remember that the group xyzzy manages your email system today, will you remember it six months
from now? Choose group names that mean something.

142

The second field contains the group's encrypted password. Group passwords encouraged poor
security practices, so most modern UNIXes don't support them. However, some old software
expects to find a password field in /etc/groups, so rather than leave this field blank or remove it
entirely, use an asterisk (*) as a placeholder.

The third field holds the group's unique numeric ID (GID). Many of FreeBSD's internal programs use
this GID, rather than names, to identify groups.

Last is a list of all the users in that group. To add a user to a group, simply add the username to this
list, separated from other names with commas.

After editing /etc/group, it's a good idea to make sure you haven't made a mistake. To double−check
your work, use chkgrp(8). It will double−check your work for you; if it runs silently, you haven't shot
yourself in the foot.

Primary Group

The group file does not contain a complete list of all users in every group. When you create a new
user, a group is created that contains just that user, and it has the same name as the user. This is
the user's "primary group." A user is automatically a member of his or her primary group, as listed in
/etc/passwd (see Chapter 9).

These primary groups do not appear in /etc/group. The only record of their existence is in the
primary group field of /etc/passwd. This is arguably one of the most annoying things about primary
groups, but adding a line to /etc/group for every single user can make the group file difficult to
manage.

For example, when the user "pbardaville" is added, the system creates a group "pbardaville" and
assigns the user pbardaville to it. This entry appears only in /etc/passwd.

This might seem complicated, but just remember that /etc/passwd trumps /etc/group, and you'll
have it.

Some Interesting Default Groups

FreeBSD ships with several default groups. Most are used by the system, and aren't of huge
concern to a sysadmin. Still, rather than have them remain mysterious, I present for your
amusement the most useful, interesting, and curious. Adding your own groups simplifies
administration, but the groups listed here are available on every FreeBSD system.

bin Group for general programs
daemon Group used by various system services, such as the printing system
dialer Group of users who can access serial ports
games Group for games programs and files
kmem Group used by programs that have to access kernel memory, such as fstat(1), netstat(1),

and so on
mail Group for programs that handle mail operations
man Unused in modern BSD, but corresponds to the man user
news Group for Usenet news programs
nobody Group for user ID with no privileges

143

nogroup Group with no privileges
operator Group that can access drives, generally for backup purposes
staff Group for system staff
tty Group for programs that can write to terminals, such as wall(1)
wheel Group for users permitted to use the root password. If a user has the root password, but

is not in the wheel group, she cannot use su to become root.

Group Permissions

You can assign particular permissions to groups, and all users in that group inherit those
permissions. The permissions on a file are also called its mode.

The UNIX permission scheme says that every file has three sets of permissions: owner, group, and
other. View the existing file permissions with the −l flag to ls(1):

..
ls −l
total 29
−rwxr−xr−− 1 mwlucas admins 1188 Sep 14 09:35 file1
−rw−−−−−−− 1 mwlucas admins 27136 Sep 14 09:36 file2
drwxr−xr−x 2 mwlucas admins 512 Sep 14 09:52 otherstuff
#
..

As seen in this listing, the first line ("total 29") displays the number of 512−byte disk blocks the files
use. (One block in this case is half a KB, or about a two−thousandth of a MB.) This particular
directory has two files, file1 and file2, each of which appears on its own line, with some basic
information and its permissions. The permissions on these files appear at the beginning of each
line, in the long lines with r's, w's, and x's, like "−rwxr−xr−−".

The permissions control how each group can use the file, and they're of three types: read (r), write
(w), and execute (x). The right to read means that you can view or copy the file. Permission to write
means that you can alter or overwrite the file. Execute permission means that you can run the file as
a program—all programs are executable files. Any entry that is a hyphen (−) means that the user
does not have execute permission on that file.

The last entry, otherstuff, is a directory. You can tell it's a directory because the first entry in the
permissions line is the letter "d". Directory permissions control who can use the directory in the
same way file permissions control who can use the file.

Following the permissions is the number of links to the file. We will discuss links in Chapter 13.
Then you'll see the file's owner and group. The number of bytes in the file comes next, followed by
the date and time the file was last modified. Finally, you have the actual filename.

When combined with owners and groups, permissions are very flexible. For example, you could
place a set of files in a group called www, then give the www group permission to read and write to
those files, thereby allowing anyone in the www group to edit them. With this setup, you could give
your webmasters control of your company Web site, not allow other users to tamper with the pages,
and avoid giving root access to the www group.

144

The permissions string is ten characters long, the first character of which indicates whether the item
is a directory. The other nine characters are broken into three groups of three that display privileges:
The first group shows permissions for the file owner, the second group permissions for the group,
and the third permissions for all other users.

The first character in each group represents read, the second write, and the third execute. Consider
this listing:

..
−rwxr−xr−− 1 mwlucas admins 1188 Sep 14 09:35 file1
..

You can see that the first group of three characters is rwx. This tells us that the owner, mwlucas,
can read, write, and execute the file. The second group of characters, r−x, tells us that people in the
admins group can read and execute the file, but cannot write it. And the final group, r−−, tells us that
anyone on the system can read the file, but may not write or execute it.

Changing Permissions

The permissions on a file are also called its mode. Chmod(1), or "change mode," lets anyone with
write permission on a file change its permissions. Chmod can be used in many different ways (see
the man page for a full listing), but we'll concentrate on the most common way to change
permissions. Although this is not necessarily the easiest method to learn, it is the one you'll see
most often and the one that all sysadmins should understand.

The modes as shown in the ls output are kind of clumsy−looking. They're difficult to say, difficult to
type, and just all−around difficult to work with. UNIX professionals don't generally put up with that
sort of thing for long, especially when it's easy to simplify.[3] You have to know how to read the
permissions that were shown earlier, but when you use chmod you can use the short form.

In its short form, the mode is given as a three−digit number, with a range of digits from 0 to 7.[4] The
first number represents the owner's permissions, the second the group permissions, and the third
everyone else's permissions. (This is octal (base−8) math, much like the binary math we played with
in Chapter 5 on networking.) The number 4 means "read," 2 means "write," and 1 means "execute."
To set the permissions on a file, add the appropriate numbers together. Clear as mud, eh? Don't
worry, we're going to go very slowly here; if you already understand modes, you might want to skip
ahead a couple of paragraphs.

Assume that you want a file to be readable, writable, and executable by the owner, readable and
executable by the group, and readable to others. This means that our permissions string would look
like this: rwxr−xr−−.

The first digit of our mode is made up of the owner's permissions, the initial three−letter "rwx" chunk
of the permissions string. Read is 4, write is 2, and execute is 1; 4 + 2 + 1 is 7, so the first digit of
our mode is 7.

The group permissions are read and execute. Read is 4 and execute is 1; 4 + 1 is 5, so the second
digit of our mode is 5.

145

Finally, others can only read the file. Read is 4, giving us a total of 4, so the third digit of our mode is
4. To change the mode, enter the chmod command:

..

chmod 754 file1
ls −l file1
−rwxr−xr−− 1 mwlucas admin 1188 Sep 14 09:35 file1
 #
..

You'll most commonly see permissions documented by their mode. Once you've worked with mode
for a while, it'll be second nature. Log into your FreeBSD box and play with the permissions on a
test file for a while to get the hang of it.

Changing File Ownership

Use chown(1) to change who owns a file, and use chgrp(1) to change the group. Both programs
take two arguments: a username and the filename.

In the following listing, we see that file1 is owned by mwlucas, and it is in the group wheel:

..
ls −l file1
−rwxrwxr−− 1 mwlucas wheel 1188 Sep 14 09:35 file1
#
..

You can change the group with chgrp by entering the following command:

..
chgrp dns file1
ls −l file1
−rwxrwxr−− 1 mwlucas dns 1188 Sep 14 09:35 file1
#
..

Now, the file is in the group dns.

You can change both owner and group with chown. To change the owner, use chown as shown
here:

..
ls −l file1
−rwxrwxr−− 1 mwlucas wheel 1188 Sep 14 09:35 file1
chown bind file1
ls −l file1
−rwxrwxr−− 1 bind wheel 1188 Sep 14 09:35 file1
#
..

To change both the owner and the group with chown, separate the names with a colon:

146

..
#chown bind:wheel file2
#
..

Note Only root can give away files. If you're logged in as a regular user and want
someone else to own your files, you cannot do chown otheruser filename.
Similarly, if you're not in a group, you cannot give that group ownership of the file.

Assigning Permissions

So, now you know how to set permissions and change file owners and groups. What should you set
or change?

Well, for one thing, many sysadmins set files needed by vital system resources, such as DNS
server zone files (see Chapter 11), to be owned by root and writable only by root. Thus, regular
users cannot access them.

While this approach works acceptably when you only have one administrator, it fails when
delegating tasks. Some administrators work around this with add−ons l ike sudo(8) (in
/usr/ports/security/sudo), but these programs are easily misconfigured.

In the past, I've had assistants who, while not yet competent sysadmins, needed to edit vital files,
but under no circumstances could they be given the root password. My solution has been to use
groups, which lets me restrict access to these files without giving out root. (I'll use DNS in this
example, but this approach applies to any system where a restricted list of users needs to edit a set
of files.)

First, consider what sort of access you want people to have to the files. In this DNS example, the file
owner must be able to read and write the files, and people in the group need to be able to read and
write the files as well. Other users must be able to view them but not edit them. Since DNS files are
plain text files, not programs, nobody should be able to execute the files. (It does no harm to set
executable permissions on a file that isn't a program, but it can confuse people.) So our permissions
string will look like rw−rw−r−−. The owner's permissions include read (4) and write (2), the group
has read (4) and write (2), and others have read−only permissions (4). So, we can set the
permissions on the files with chmod 664 filename.

Then you need to assign an owner to the file, bearing in mind that many system programs run as a
particular user. For example, the named DNS server runs as bind, while the Apache Web server
runs as nobody. While you might think that the server user is a logical owner, that's not necessarily
the case, because if someone broke into your DNS server, he could execute commands as the user
bind. You may not mind if someone reads these files, but you don't want anyone unauthorized to
change them. The simplest solution is to create a separate user to own them.

Creating a New User

You can create a new user with adduser(8). (In Chapter 9, we will discuss adduser(8) and some
/etc/login.conf tricks that ensure nobody can actually log in as this user.) Use vipw(8) to disable the
password entirely (we will also discuss vipw(8) in Chapter 9), and then change the group on the
affected file to "dns". Next, set the permissions for the owner and the group to read and write, but
for others to read−only, as shown here:

147

..
#chown dns:dns file1
#chmod 664 file1
#ls −l file1
−rw−rw−r−− 1 root dns 1188 Sep 14 09:35 file1
#
..

Your staff can now do their jobs without the root password, and your files are immune to tampering
by the system process that uses them.

[3]In UNIX, "simplify" frequently means "make easier to say and faster to type, but more difficult to
understand."
[4]You can have four−digit modes in special circumstances. See chmod(1) for details. You don't
normally use four−digit modes except on device nodes and other special files.

File Flags

UNIX filesystem permissions are standard across various versions of UNIX, and BSD extends the
permissions scheme with file flags. These flags work with permissions to increase your system's
security. Some of these flags are used for non−security−related functions, but the ones we're
interested in here are security related.

Note Many of the flags have different effects depending on the system securelevel,
which will be covered shortly in the "Securelevels" section. For the moment, just
nod and smile when you encounter a mention of securelevel; all will become clear
in the next few pages.

The following are the security−related file systems flags:

sappnd The system−level append−only flag can only be set by root. Files with this flag can be
added to, but cannot be removed or otherwise edited (which is particularly useful for log files).
Setting sappnd on a .history file can be interesting if your system is compromised. Since a common
intruder tactic is to remove.history or to symlink it to /dev/null so that the admin cannot see what
was done, sappnd ensures that script kiddies cannot cover their tracks in this manner. It's almost
funny to watch the record of someone trying to remove a sappnd file. You can see the attacker's
frustration grow with the various things she tries. (It is better, of course, for your system not to be
hacked at all!) This flag cannot be altered when the system is running at securelevel 1 or higher.

schg The system−level immutable flag can only be set by root. Files with this flag set cannot be
changed in any way, neither edited, moved, nor replaced. Basically, the filesystem itself will prevent
all attempts to touch this file in any way. This flag cannot be altered when the system is running at
securelevel 1 or higher.

sunlnk The system undeletable flag can only be set by root. The file can be edited or altered, but it
cannot be deleted. This is not as secure as the previous two flags because if a file can be edited, it
can be emptied. It's still useful for certain circumstances, however. I've used it to solve problems
when a program insisted on deleting its own log files when it crashed. It's not generally useful to set
on any standard system flags. This flag cannot be altered when the system is running at securelevel
1 or higher.

148

uappnd The user append−only flag can only be set by the file owner or root. Like the system
append−only flag, sappnd, a file with this flag set can be added to but not otherwise edited or
removed. This is most useful for logs from personal programs and the like, and is primarily a means
to keep users from shooting themselves in the foot. The owner or root can remove this flag at any
time.

uchg The user immutable flag can only be set by the owner or root. Like the schg flag described
earlier, the user immutable flag prevents a user from changing the file. Again, root can override this,
and it can be disabled by the user at any securelevel. This flag helps to prevent mistakes, but not to
secure the system.

uunlnk The user undeletable flag can only be set by the owner or root. A file with this flag set
cannot be deleted by the owner, though root can override that, and this flag can be turned off. This
flag is mostly useless, but like the other user flags can be helpful in preventing mistakes.

Viewing a File's Flags

You can see a file's flags with ls −lo:

..
ls −lo important
−rw−r−−r−− 1 mwlucas mwlucas uchg 0 May 11 19:51 important
..

The uchg in the preceding listing tells us that the user immutable flag is set. In comparison, if a file
has no flags set, it looks like this:

..
ls −lo unimportant
−rw−r−−r−− 1 mwlucas mwlucas − 0 May 11 19:52 unimportant
 #
..

The dash in place of the flag name tells us that no filesystem flag has been set.

An out−of−the−box FreeBSD doesn't have many files marked in this way. You can certainly mark
anything you want in any way desired, however. On one system that I fully expected to be hacked, I
went berserk with chflags −R schg in various system directories to prevent anyone from replacing
system binaries with Trojaned versions. It might not stop an attacker from getting in, but it made me
feel better to imagine how frustrated an attacker would be once he got a command prompt.

Setting Flags

You can set flags with the chflags(1) command. For example, to be sure that your kernel isn't
replaced, you could do this:

..
chflags schg /kernel
..

This would keep anyone from replacing your kernel: both an intruder and you.

149

You can also recursively change the flags on a directory tree with the −R flag. For example, to make
your *bin directory immutable, you could use this command:

..
chflags −R schg /bin
..

And boom! Your basic binaries cannot be changed.

To remove a flag, use chflags and a "no" in front of the flag name. For example, to unset the schg
flag we just set on your kernel, enter this command:

..
chflags noschg /kernel
..

That said, you'd have to be running at securelevel −1 to unset this flag. So, without further ado, we'll
discuss securelevels and what they mean to you.

Securelevels

Securelevels are kernel settings that change basic system behavior to disallow certain actions. The
kernel will behave slightly differently as you raise the securelevel. For example, at low securelevels
the file flags we discussed can be removed. A file might be marked "do not remove," but you can
remove the marker and then delete the file. When you increase the securelevel, the flag cannot be
removed. Similar changes will take place in other parts of the system. Taken as a whole, the
behavior changes that result from increased securelevels will either frustrate or stop an intruder.
Y o u c a n s e t t h e s y s t e m s e c u r e l e v e l a t b o o t w i t h t h e r c . c o n f o p t i o n s
kern_securelevel_enable="YES".

Securelevels make system maintenance difficult by imposing certain restrictive conditions on
system behavior. After all, many actions that you might take during normal administration are also
things that intruders might do to cover their tracks. For example, when using securelevels you will
need to take extra steps to patch your system. On the other hand, securelevels will frustrate the
heck out of your average intruder who wishes to destroy data, plant a Trojan, or damage the system
in some other way.

Setting Securelevels

Securelevels come in five levels: ‘, 0, 1, 2, and 3, with ‘ being the lowest and 3 being the
highest.

Once you enable securelevels with the kern_securelevel_enable="YES" rc.conf option (as
discussed prev ious ly) , you can set the secure level automat ica l ly a t boot wi th the
kern_securelevel=X rc.conf variable. While you can raise the

150

system securelevel at any time, you cannot lower it without rebooting into single−user mode. (If you
could lower the securelevel without rebooting, so could an intruder.)

Securelevel ‘

Securelevel ‘, the default mode, provides no additional kernel security whatsoever. If you're
learning FreeBSD and are frequently changing your configuration, remain at securelevel ‘ and use
BSD's built−in file permissions and other UNIX safeguards as security, which should be adequate
for most situations.

Securelevel 0

The only time securelevel 0 is used is when your system is first booting, and it offers no special
features. When the system reaches multi−user mode, however, the securelevel is automatically
raised to 1. (Setting kern_securelevel=0 in /etc/rc.conf is effectively the same as setting
kern_securelevel=1.) As such, there's really not much reason to use a securelevel of 0.

Securelevel 1

At a securelevel of 1, things become interesting:

You cannot load or unload kernel modules with kldload*kldunload (see Chapter 4).•
Programs cannot write directly to system memory via either the /dev/mem or /dev/kmem
devices.

•

Mounted disks cannot be written to directly, so you cannot format partitions. (You can write
files to disk via the standard kernel interface; you just cannot format disks or address the raw
devices.)

•

You cannot start the X Window System.•

The most obvious effect of securelevel 1 is that the BSD−specific filesystem flags cannot be altered.
If a file is marked immutable and you want to replace it, you're out of luck.

Securelevel 2

A securelevel of 2 gives you all the benefits of securelevel 1 with two additions:

You cannot write directly to either mounted or unmounted filesystems.•
You cannot alter the system time by more than 1 second at a time.•

Both of these can seem irrelevant to a new sysadmin, but they are important tricks in security.
Although UNIX provides handy tools, such as text editors to write to files, it is also possible to
bypass those tools and, indeed, bypass the actual filesystem to access the underlying ones and
zeros encoded on the disk. If you could do this, you could change any file regardless of the
permissions. The only time this happens in common use is when you are installing a new hard disk.

151

Normally, only the root user can write directly to the disk in this manner. With this securelevel set,
even root cannot do this.

Similarly, another hacker trick is to change the system time, edit a file, and change it back. That
way, when the administrator looks for files that might be causing trouble, the tampered file will
appear to have been untouched for months or years, and hence not seem an obvious source of
concern.

Securelevel 3

Securelevel 3 is called network secure mode. It behaves exactly like securelevel 2, but it prevents
changes to IPFW or IPFilter rules. (We discuss these programs in Chapter 11 and Chapter 8,
respectively.) If you have a system with packet filtering or bandwidth management enabled, and
those rules are well tuned and unlikely to change, you can use securelevel 3.

Which Securelevel Do You Need?

The securelevel appropriate to your environment will depend on your situation. For example, if
you've just put a FreeBSD machine into production and you need to fine−tune it, you should leave
the securelevel at ‘. Once your system is fine−tuned, however, you can raise the securelevel, and
most systems will run just fine at a securelevel of 2.

It's a good idea to use the schg and sappnd flags on selected files to help protect yourself, because
the added clock−changing protection throws up still more ways to force a hacker to show herself.

If you use one of FreeBSD's packet−filtering/firewall packages, you might consider using
securelevel 3. However, if you choose to use securelevel 3, be very certain of what you're doing and
why, or you're liable to run into problems. For example, if you're using your FreeBSD system as a
corporate firewall, securelevel 3 will disallow firewall configuration changes without interrupting your
Internet connection. That said, if you're using securelevel 3 to restrict access to certain ports on
your Web server, a securelevel of 3 is probably fine.

What Won't Securelevel and File Flags Do?

Consider a case where someone compromises a CGI script on your Apache Web server, uses that
to bootstrap himself into a shell, and then uses the shell to bootstrap himself into root access.

Perhaps, because you've set the securelevel accordingly, this attacker gets frustrated because he
can't replace your kernel with his specially compiled one. No problem; he can still replace a variety
of system binaries with Trojan−horse versions, so that the next time you log in, your new version of
login will send your password to an anonymous Web−based mailbox or to an Internet newsgroup.

So, to protect your key files, you run around doing schg −R /bin/*, schg −R /usr/lib, and
so on. Fine. If you forget one file—say, something obscure like /etc/rc.i386 or something like
that—your hacker can edit that file to include chflags −R noschg /. He can then reboot your
system some time late at night, when you might not notice. (How often do you sit down and
exhaustively audit your /etc/rc files?)

You think that your system is safe, with every file completely protected. But what about
/usr/local/etc/rc.d, the local program startup directory? The system boot process will try to execute
anything it finds in this directory with a .sh extension. As such, your hypothetical hacker could do a
lot of damage by placing a simple shell script there. After all, /etc/rc raises the securelevel as the

152

last thing, after everything's started. What if he were to create a shell script that kills the running
/e tc / rc be fore i t can ra ise the secure leve l , then tu rns around and s ta r ts h is own
/var/.hidden/rc.rootkit to finish bringing up the network?

Of course, this is only one path—there are others. The thing to remember is that system security is
a thorny problem, with no one easy solution. Once intruders have a command prompt, it's you
against them. And if they're any good, you won't even know that they're there until it's too late. And,
of course, it's always better to keep intruders out of your castle than to try to get them out of the
corridors.

Living with Securelevels

If you've been liberal with the schg flag, you might find that you can't upgrade (or even patch) your
system conveniently. The fact is, the same conditions that make hackers’ lives difficult can make
yours a living hell, if you don't know how to work around them. So how do you work around them?

If you've protected your /etc/rc.conf with schg, you'll first have to lower the securelevel to edit your
system. Of course, the securelevel setting is in that file, so you'll need to take control of the system
before /etc/rc runs in order to edit that file.

To do so, follow the procedure for booting into single−user mode (explained in Chapter 3), and
mount the affected filesystems. Since at that level the securelevel has not been set, you can mount
your filesystems, run chflags noschg on the affected files, and continue booting. You can even
edit /etc/rc.conf to disable securelevels, and let it boot normally. (You'll restore service more quickly
that way, but lose the file flags’ protection.)

Once you've finished maintenance, you can raise (but not lower) the system's securelevel without
rebooting using the sysctl command:

..
sysctl −w kern.securelevel=[desired securelevel]
..

Now that you can control file changes, let's take a look at controlling access to your system from the
network.

Programs That Can Be Hacked

As I mentioned at the beginning of this chapter, it's generally not the operating system that gets
hacked, it's the programs running on it. Of these, network programs are the biggest target, and the
question then becomes, "How do I tell which programs are running on the network?" Answer: with
sockstat(1).

Sockstat(1) is a friendly FreeBSD tool that determines which sockets are open on a system and
which programs are listening on those sockets. It shows both connections that are running right now
and connections that are available for people to talk to.

A socket is simply a "logical device" that is listening for a connection. You can have a socket
listening to the network; those are the network ports I talked about in Chapter 5. You can have

153

sockets listening on IP version 6 networks, which are IPv6 sockets. Finally, you can have sockets
listening on the local computer. Programs can create sockets to communicate with one another.

If you don't have an IPv6 network, you don't need to worry about IPv6 sockets. Similarly, UNIX
sockets aren't an issue over the network; you must be logged on to the computer to talk to a UNIX
socket, and you have to get through all the standard UNIX permissions to do so. If your intruder can
do that, you're already in trouble. So, we'll look at the open IPv4 network sockets by running
sockstat −4 in the following snapshot taken from my laptop:

..
sockstat −4
USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
mwlucas ssh 372 3 tcp4 192.168.1.200:1025 208.63.178.18:22
root X 347 0 tcp4 *:6000 *:*
root snmpd 296 6 udp4 *:161 *:*
root lpd 234 6 tcp4 *:515 *:*
root syslogd 209 4 udp4 *:514 *:*

#
..

Each line in the preceding listing represents either one open socket awaiting a connection or an
established connection. (It looks a lot like netstat −na, doesn't it?) Most of the columns are fairly
self−explanatory. USER is the user running the process, COMMAND is the command name, and
PID is the process ID number of the particular process holding that socket. The command name is
very helpful in securing the system. FD is the process's file descriptor—you don't have to worry
about that right now. The PROTO column is the Internet protocol the connection is using. Finally,
the LOCAL ADDRESS and FOREIGN ADDRESS columns show the IP addresses and port
numbers on each side of the connection. If you have an IP address and port number in LOCAL
ADDRESS and FOREIGN ADDRESS, you're looking at an existing connection. When the
FOREIGN ADDRESS column shows two asterisks separated by a colon (*:*), that program is
listening for incoming connections.

In the preceding example, I'm using ssh to connect to a remote system from the laptop. Ssh isn't
actually listening for incoming connections; sockstat shows only a connection I made to another
server. Four services are listening for incoming connections on the laptop: X is listening on all of the
local IP addresses on port 6000/tcp; an snmp daemon is running on port 161/udp; and lpd and
syslogd are listening for incoming connections.

Here's the important part. Every network port you have open is a potential weakness and an
attacker's targets. Shut down unnecessary network services and secure the ones you must offer.
Got it? Good.

Note It's a good idea to regularly check which ports are open on your systems, because
you might learn something that surprises you. For example, I installed net−snmp to
get snmpwalk and related commands and completely forgot that it also installed the
snmp daemon, which should be shut down and not started again at boot.[5]

Examining sockstat output on a laptop is pretty straightforward, but the output for an Internet server
is another thing entirely. A small server can have hundreds of lines of output. For example, here's a
listing for a very small server:

..

154

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
root sshd1 28971 5 tcp 192.168.15.18.22 24.2.72.241.35886
wnobody httpd 27356 17 tcp *.80 *.*
nobody httpd 27355 17 tcp *.80 *.*
nobody httpd 27354 17 tcp *.80 *.*
nobody httpd 27353 17 tcp *.80 *.*
nobody httpd 27352 17 tcp *.80 *.*
nobody httpd 27351 17 tcp *.80 *.*
root named 72871 4 udp *.2151 *.*
root named 72871 20 udp 192.168.15.18.53 *.*
root named 72871 21 tcp 192.168.15.18.53 *.*
root named 72871 22 udp 127.0.0.1.53 *.*
root named 72871 23 tcp 127.0.0.1.53 *.*
root httpd 65199 17 tcp *.80 *.*
x root sshd1 275 3 tcp *.22 *.*
root sshd1 269 3 tcp 192.168.15.19.80 *.*
root sendmail 214 4 tcp *.25 *.*
root inetd 207 4 tcp *.106 *.*
v root inetd 207 5 tcp *.110 *.*
root inetd 207 6 tcp *.113 *.*
..

The function of some of these open ports is obvious; some are not. For example, while you'll
probably recognize httpd and sendmail, what are all those open inetd ports?

To find out, "grep" the /etc/services file (see Chapter 5) for a port number, to see what service name
it is using. For example, the service that's running on port 110 is curious (v). Grep searches for lines
that match a pattern, so in this case we want to find all the lines that contain the string of characters
"110". Grepping for port 110 gives us this series of lines:

..
grep 110 /etc/services
pop3 110/tcp #Post Office Protocol − Version 3
pop3 110/udp #Post Office Protocol − Version 3

nfsd−status 1110/tcp #Cluster status info
nfsd−keepalive 1110/udp #Client status info
softcm 6110/tcp #HP SoftBench CM
softcm 6110/udp #HP SoftBench CM
#
..

The grep returns several lines that include 110, but we ignore the ones that include obvious wrong
matches. For example, the third and fourth lines include the string "110", but only as a reference to
port 1110. The first two lines tell us that the service is pop3, which we will discuss in Chapter 12. A
quick check of the FreeBSD mailing list archives shows that pop3 delivers mail to desktop clients
such as Eudora and Outlook.

Note If you don't know what a service is, you can either search for it on the Net or shut it off and
see what breaks. While I've used both techniques successfully, researching is better in the
long run.

You can use this technique to identify the other services provided by inetd. (Inetd itself is discussed
in Chapter 12.) We also have several instances of httpd (w), a Web server. There's one ssh daemon

155

listening on port 22 (x), and one that's listening on port 80.[6] You'll also see lots of named entries
listening on port 53, and one on 2151. We'll discuss each of these programs later, as we get into
discussing the various network services FreeBSD can offer. The important thing for you to realize
here is that each server program listens on a network socket, and you can identify those programs
with sockstat(1).

So, now that you know what's running, how do you turn things off the ones you don't need? The
best way to close these ports is not to start the programs that run them. Network daemons are
generally started in one of two places: either /etc/rc.conf or a startup script in /usr/local/etc/rc.d.
Programs that are integrated with the main FreeBSD system, such as sendmail, ssh, and portmap,
have flags in /etc/rc.conf to enable or disable them (see Chapter 9). Add−on programs, such as
Web servers, start via scripts in /usr/local/etc/rc.d (see Chapter 11). The inetd program is a special
case, though, since its purpose is to start smaller, rarely used programs. While inetd as a whole is
enabled via an rc.conf flag, the programs within inetd must be started and stopped from within inetd.
To learn how to enable and disable inetd programs, see Chapter 12.

To remove unnecessary network services, run sockstat −4, and identify each process. Once you
determine which ones you need, mark them and disable the rest; then reboot to be certain your
changes will take effect. If, when you check sockstat again, you're happy with the result, you're
done. Otherwise, go back to the beginning.

[5]"What is SNMP?" I hear you cry. See Chapter 19. "And how do I shut it down?" See Chapter 11.
[6]A variety of firewalls can be bypassed by sending traffic over port 80, the TCP port used for Web
traffic. If you have an Internet server outside such a firewall, you can run sshd on port 80 on that
server and connect from within the firewall. While a firewall that relies solely on restricting port
access cannot stop you from connecting in this way, that firewall is a definite hint that you're not
supposed to be using services that they've tried to block. This sort of cleverness can get you fired.

Putting It All Together

Once you have only necessary network ports open, and you know which programs are using them,
you know which programs you have to be concerned about securing. If the FreeBSD security team
sends out an announcement of a problem with a service you don't run, you can safely ignore it. If
the security team announces a hole in a program you are using, you know you have to pay
attention. This will protect you against most of the script kiddies out there. Tools such as file flags
and securelevels will help minimize the damage attackers can do if they do break in. Finally, using
groups to restrict your own systems administrators to particular sections of the system can protect
your computers from both accidental and deliberate damage.

Next, we'll look at some of the more advanced security tools FreeBSD offers.

156

Chapter 8: Advanced Security Features
FreeBSD includes a variety of tools for securing network traffic and users. For example, you can
implement traffic controls that refuse to allow connections to or from certain parts of the Internet in a
few different ways. Also, you can cage off users in a virtual machine, called a jail, where they have
access to everything but the main server. We'll discuss these techniques in this chapter, as well as
how to monitor your system's security and what to do if you are the victim of an intruder. We'll start
with the basics, network traffic control.

Traffic Control

As a sysadmin, you must be able to control traffic to and from your systems so that you can block
unwanted visitors. FreeBSD provides a variety of tools that allows you to control outside access to
your systems. We'll focus on TCP wrappers and packet filtering, two access−control tools with
enough overlap in functionality that they make a perfect pair.

The TCP Wrappers program controls access to particular server programs (also known as
daemons). Connection requests are handed to the TCP Wrappers software, which evaluates them
according to its configuration. TCP Wrappers is fairly simple to configure, and doesn't require much
knowledge of networking, but server programs must be built to work with TCP Wrappers.

Packet filtering controls which packets the system will accept. A rejected connection request never
makes it to a userland program; it is rejected in the network stack at a low layer. Packet filtering can
control traffic to any program, service, or network port, but it does require more knowledge of
networking.

In either case, before you can implement traffic control, you'll need to decide whether you want a
default accept or a default deny traffic−control policy.

Default Accept vs. Default Deny

One of the essential ideas in any security system is the idea of default accept versus default deny.
A default accept stance means that you allow any type of connection except what you specifically
disallow. A default deny stance means that you only allow connections from specified parts of the
Internet, and all other connection attempts are refused. Once you have chosen your default, you
can adjust your stance to protect or reveal those services you wish.

When choosing between default accept and default deny, your choice is really between whether you
are offering services to the world or only to a select few, and whether anyone can access your
system.

If your system acts as a corporate Web server, you may decide to make it visible only to users on
your corporate network. If so, you've adopted a default deny stance, and you'll explicitly list who can
talk to you. (This is my preferred approach whenever possible.) Alternatively, if you choose to keep
your system open to everyone except someone you don't like, you're adopting a default accept
stance.

Also, just because you choose a default does not mean that all services on your computer must
obey the default. I configure Web servers on the open Internet to have a default deny stance, and
specifically open the world's access to the Web server. Attempts to connect to other programs
running on those machines are rejected, unless they come from one of a few IP addresses that I

157

have specifically listed. This is a perfectly acceptable default deny stance.

We'll refer to default deny and default accept throughout the following sections.

TCP Wrappers

Remember from Chapter 5 that network connections are made to various programs that listen for
connection requests. TCP Wrappers intercepts these requests before they reach the daemon,
checks the IP address that is making the request against a configuration file, and decides
accordingly whether to accept, reject, or alter the request. Despite the TCP Wrappers name, it
works with UDP network connections as well as TCP connections. TCP Wrappers is a long−time
UNIX standard that has been incorporated into FreeBSD. Individual programs might or might not
work with TCP Wrappers, though; just about everything in the base FreeBSD install does, but some
third−party software won't.

Wrappers are most often used to protect inetd, the program that starts the smaller daemons. (We
will discuss inetd in Chapter 12.) To start inetd with wrappers support, use the −Ww flag with
inetd_flags="−Ww" in /etc/rc.conf, for example (see Chapter 9). The examples here will not work
unless inetd is started correctly. While our examples will discuss protecting inetd programs with
TCP Wrappers, you can protect any program in exactly the same way.

Configuring Wrappers

TCP Wrappers checks each incoming connection request against the rules in /etc/hosts.allow, in
order. The first matching rule is applied, and processing stops immediately. This makes rule order
very important.

Each rule is on a separate line, and is made up of three parts separated by colons: a daemon
name, a client list, and a list of options. Here's a simple sample line:

..
ftpd : all : deny
..

The daemon name in this example is "ftpd", and the client list is "all", meaning all hosts. Finally, the
option is "deny", meaning "deny all connections." Nobody can connect to the FTP server on this
host, unless an earlier rule explicitly grants access.

In our early examples, we will refer to only two options: accept and deny. They allow and reject
connections, respectively. There are many more options, but we'll discuss them later.

Daemon Name

The daemon name is the program's name as it appears on the command line. For example, inetd
starts the ftpd program when it receives an incoming FTP request. The Apache Web server starts a
program called httpd, so if your version of Apache supports wrappers, you would want to use "httpd"
in /etc/hosts.allow. One special daemon name, ALL, matches all daemons that support wrappers.

158

If you have multiple IP addresses on one network card, you can specify different wrapper rules for
each IP address that a daemon listens on as part of the daemon name, something like this:

..
ftpd@192.168.8.7 : ALL : deny
ftpd@192.168.8.8 : ALL : accept
..

In this example, we have two daemon names: ftpd@192.168.8.7 and ftpd@192.168.8.8. Each has
a separate TCP Wrappers rule.

The Client List

The client list is a list of specific IP addresses, network address blocks, host−names, domain
names, and keywords, separated by spaces. Hostnames and IP addresses are simple; just list
them:

..
ALL: netmanager.AbsoluteBSD.com 192.168.4.3 : allow
..

Specify network numbers in the client list with a slash between the IP address and the netmask, as
discussed in Chapter 5. For example, if some script kiddies are attacking you from a bunch of
different addresses that all begin with 216.136.204, you could block them like this:

..
ALL: 216.136.204.0/255.255.255.0 : deny
..

You can also use domain names in client patterns, by prefacing them with a dot:

..
ALL : .mycompany.com : allow
..

You can reverse any of these, of course, to deny connections from just a single location:

..
telnetd : .competitor.com : deny
..

If you have a long list of clients, you can even list them in a file and put the full path to the file in the
client space in /etc/hosts.allow. I've been on networks with large numbers of widely scattered hosts,
such as an ISP or corporate network environment with network management workstations scattered
across the world. Each workstation shared the same TCP Wrappers rule as every other workstation,
and appeared on half a dozen lines in /etc/hosts.allow. By maintaining a single file with a list of
these workstations, I could centralize all changes; edit one file, and all the rules that call the file are
updated.

Client Keywords

In addition to specifically listing client addresses and names, you can also use several special client
keywords to add groups of clients to your list:

159

ALL This keyword matches every possible host.

LOCAL This matches every machine whose hostname does not include a dot. Generally, this
means machines in the local domain.

UNKNOWN This keyword matches machines with unidentifiable hostnames, IP addresses, or
usernames. As a general rule of thumb, if a machine is making an IP connection, its IP address is
known. Tracing hostnames requires DNS, however, and tracking usernames requires the identd
protocol. Be very careful using this option, because transitory DNS problems can make even local
host−names unresolvable, and most hosts don't run identd by default. You don't want a machine to
become unreachable just because your nameserver was misconfigured—especially if that machine
is your nameserver!

KNOWN This keyword matches any host with a determinable hostname and IP address. Again, if
your DNS fails, every host on the Internet will suddenly appear to have lost its hostname. If you say
that all identifiable hosts can connect and your server's DNS fails, nobody will be allowed to
connect.

PARANOID This matches any host whose name does not match its IP address. You might get a
connect ion from a host wi th an IP address of 192.168.84.3 that c laims to be cal led
mail.AbsoluteBSD.com. TCP Wrappers will then turn around and check the IP address of
mail.AbsoluteBSD.com. If TCP Wrappers gets a different IP address than the source IP, the host
will match this rule.

Most of the client keywords listed here require a working DNS server (see Chapter 12). If you use
these keywords, you must be aware of the vital link between DNS and the rest of your programs. If
your DNS server fails, daemons that use wrappers and these keywords won't be able to recognize
any hosts. This means that everything will match your UNKNOWN rules. Also, broken DNS on the
client end can deny remote users access to your servers, as your DNS servers won't be able to get
the proper information from the client's DNS servers.

Other keywords are available, but they are not as useful or secure. For example, it's possible to
allow connections based on the username on the remote machine making the request. You don't
really want to permit a request based on the user−name at the client end, though. Any yahoo can
slap together a FreeBSD or Linux box and give himself whatever username he desires. If I set up
TCP Wrappers to only allow someone with a username of "mwlucas" to connect to my home
system, someone who wanted in could easily add an account of that name to his FreeBSD system.
Also, this relies on the same identd protocol that we mentioned earlier, and very few hosts run
identd. You will find a few other obscure keywords of similar usefulness in the man page
hosts_access(5).

The ALL and ALL EXCEPT Keywords

The ALL and ALL EXCEPT keywords can be used both for daemon names and for client lists.

The ALL keyword matches absolutely everything. For example, the default /etc/hosts.allow starts
with a rule that permits all connections, from all locations, to any daemon:

..
ALL : ALL: accept
..

160

This matches all programs, from all clients. You can limit this by giving a specific name to either the
client list or the daemon list:

..
ALL : 192.168.1.87 : deny
..

In this example, we are rejecting all connections from the host 192.168.1.87.

Categorically blocking access to all hosts isn't that great an idea, but remember that TCP Wrappers
follows rules in order and quits when it reaches the first matching rule. The ALL keyword lets you
set a default deny or default accept stance quite easily. Let's consider the following ruleset:

..
ALL : 192.168.8.3 192.168.8.4 : accept
ftpd : ALL : accept
ALL : ALL : deny
..

Here, we're allowing the workstations 192.168.8.3 and 192.168.8.4 to access anything they want.
These are the sysadmin's desktop machines. Then we allow anyone to connect to the FTP service
on this machine. Finally, we drop all other connections. This is a useful default deny stance.

Use the ALL EXCEPT keyword to compress the preceding ruleset even further. ALL EXCEPT lets
you list hosts by exclusion; what isn't listed matches. Let's consider the same rules written using
ALL EXCEPT:

..
ALL : 192.168.8.3 192.168.8.4 : accept
ALL EXCEPT ftpd : ALL : deny
..

Some people will find the rules more clear when written with ALL, others with ALL EXCEPT. The
important thing to remember is that the first matching rule ends the check, so you need to be careful
slinging ALL around. Generally speaking, the first rule that has any combination of ALL and ALL
EXCEPT in both the daemon and client lists will stop the check; every connection will match it.

Allow Options

The allow option tells TCP Wrappers to accept the connection. The default hosts.allow file starts
with this rule:

..
ALL : ALL : allow
..

This rule applies to all daemons and all clients, and it matches and allows all possible connections.
While this rule can't be the first on the list if you want to protect your services, it's a good final rule if
all you're doing is protecting particular server programs against particular network addresses.

161

If you're experimenting with TCP wrappers, it's a good idea to allow any connections from the local
host, or you're liable to discover a number of programs that break when they can't talk to the local
machine. Do so as follows:

..
ALL : localhost : allow
..

Options for Responses

Now that you have a good grasp of the daemon and client lists, let's take a look at some of the more
interesting options for responses. The concept of these options is very simple: You have an
incoming connection that matches a rule, so now what do you do with it? Responses can be very
simple, or very complicated and subtle.

Note If you're using a lot of options, TCP Wrappers rules can get very long. Fortunately, the
hosts.allow file uses the backslash (\) followed by a return as a line−continuation character,
which helps keep the rules readable.

The most basic options are accept and deny. If a connection attempt matches the rule, the request
is either passed on to the waiting daemon or rejected. You can use additional options, however,
separated by colons.

Severity

Once you have decided to accept or reject the connection attempt, you can also log connection
attempts. Suppose you want to block all incoming requests from a competitor; it might be nice to
know if they were actually trying to connect. Logs will tell you that.[1] Similarly, you might want to
know how many rejected connection attempts you're getting from people with DNS problems
(especially if you're using the PARANOID client keyword).

The severity option sends a message to the system log, syslogd(8). You can configure syslogd to
direct these messages to an arbitrary file (see Chapter 19), based on the syslogd facility and level
you choose:

..
telnetd: ALL: severity auth.info : allow
..

This example will log all telnet connections.

Twist

The twist option allows you to run arbitrary shell commands and scripts when someone attempts to
connect to a wrapped TCP daemon, and returns the output to the user. Twist only works with TCP
connections.[2] Twist takes a shell command as an argument and acts as a deny−plus−do−this rule.
You must know some basic shell scripting to use twist; very complicated twists are entirely possible,

162

but we'll stick with the simple ones. We're not demonstrating shell scripts, after all! If you're in doubt,
you can always just use /bin/echo "reason" to let the remote client know why its connection
has been rejected. (Note the straight double quotes around the reason, they're important!)

Twist is useful for a final rule, if you're using default deny. (If you have a restrictive security stance,
end your security policy with such a catch−all deny rule.) You can use twist to return an answer to
the person attempting to connect as follows:

..
ALL : ALL : twist /bin/echo "You cannot use this service."
..

Or if you want to just deny a particular service to a particular host, you can use a more specific
daemon and client listings with twist. The following example is a little too long to fit on one line, so
I've split it using the backslash character:

..
sendmail : .spammer.com : twist /bin/echo \
 "You cannot use this service"
..

If you're feeling friendly, you can tell people why you're rejecting their connection attempt. The
following twist rejects all connections from people whose host−names do not match their IP
addresses, and tells them why:

..
ALL : PARANOID : twist /bin/echo \
 "Your DNS is broken. When you fix it, come back."
..

Twist will hold the network connection open until the shell command finishes. If your command
takes a long time to finish, you could find that you're holding open more connections than you
planned. This can reduce system performance dramatically. Twists should be simple and finish
rapidly.

Note It's tempting to put a rude message in twist output, especially when you think that
nobody could have a legitimate reason for trying to access a server. But spitting back
"Bite me, script kiddie!" will annoy legitimate users, and it just might peeve script
kiddies enough that they try harder to get in.

Spawn

Like twist, the spawn option denies the connection and runs a specified shell command. Unlike
twist, spawn does not return the results to the client. Use spawn when you want your FreeBSD
system to take an action upon a connection request, but you don't want the client to know about it.
Spawned commands run in the background, and their results are not returned to the client. The
following example will allow the connection, but will log the client's IP address to a file:

..
ALL : PARANOID : spawn (/bin/echo %a >> /var/log/misconfigured) \
 : allow
..

163

If you're familiar with shell scripts, you are probably scratching your head at that %a symbol in the
preceding command. TCP Wrappers supports a variety of variables for use in twist and spawn
commands, which are expanded before the command is run, so that you can easily customize your
responses to connection requests. This particular variable, %a, stands for client address. It expands
into the client's IP address in the actual shell command before the command is run. Other variables
are shown in Table 8−1.

Table 8−1: Variables that can be used in twist and spawn commands

Variable Description

%a Client address
%A Server IP address
%c All available client information
%d Daemon name
%h Client hostname (if available), or IP address
%H Server hostname (if available), or IP address
%n Client hostname; if no hostname is found, this gives UNKNOWN. If the hostname's name

and IP address don't match, this equals PARANOID
%N Server hostname; if no hostname is found, returns either UNKNOWN or PARANOID

You can use these variables anywhere you would use the information they represent in a shell
script. For example, to log all available client information to a file whenever anyone connects to a
wrapped program, you could use this spawn:

..
ALL : PARANOID : spawn (/bin/echo %c >>/var/log/clients) \
 : allow
..

You may have noticed that this script is the same as the earlier example, with the minor changes of
the variable used and the log filename. You can do the same sort of thing with any information you
want to log.

Spaces and backslashes in hostnames can give the command shell problems because they're
illegal characters. While neither should appear under normal circumstances, someone might try to,
say, use a hostname with a space in it just to confuse security software. To be on the safe side,
TCP Wrappers replaces any character that might confuse the command shell with an underscore
(_). Check for this sort of thing in your logs; they might indicate possible intrusion attempts, or just
someone who likes underscores in hostnames.

164

Putting It All Together

Let's take all the examples given in this chapter so far, and build a complete /etc/hosts.allow to
protect a hypothetical system on a network. We must first inventory the network resources this
system offers, the IP addresses we have on the network, and the users we wish to allow to connect:

Our IP range is 192.168.0.0/16. On our network, we are running telnet, ftpd, and portmap(8).•
We have a competitor who we do not want to access our system,[3] whose IP address range
is 10.5.4.0/23.

•

We make the somewhat paranoid decision that hosts with incorrect information on their DNS
servers might be attackers, and reject connections from them.[4]

•

Hosts on our network may use the portmap daemon, but hosts on other networks cannot.
Anyone on the Internet may attempt to access our FTP and telnet servers. (They will still
need a username and password to get anywhere, of course!)

•

While these requirements are fairly complicated, they boil down to a very simple set of rules:

..
#reject all connections from our competitor, and hosts with invalid DNS
ALL : PARANOID 10.5.4.0/23 : deny
#allow our network to use portmap, but deny all others
portmap : ALL EXCEPT 192.168.0.0/16 : deny
#now that portmap is safe & competition blocked, allow telnet & FTP
ALL : ALL : allow
..

You can find many more commented−out examples in the /etc/hosts.allow file on your FreeBSD
system or the hosts_allow(5) man page.

[1]If your goal is to log all attempted connections to your system, on any port, this is more reliably
done with the net.inet.tcp.log_in_vain and net.inet.udp.log_in_vain sysctls (see the Appendix).
These sysctls will log all attempts to contact any port on your system, not just wrapped daemons.
[2]Strictly speaking, this is not true. But remember from Chapter 5 that UDP is connectionless; there
is no connection to return the response over, so you have to jump through some very sophisticated
and annoying hoops to make twist work with UDP. Also, programs that transmit UDP generally don't
expect a response in such a manner and are not usually equipped to receive or interpret it. Twisting
UDP isn't worth the trouble.
[3]Specifically blocking a competitor from using services you provide to the rest of the world is not a
good idea. They can get those services easily enough by using a dial−up connection, and it just
makes you look bad.
[4]This is a very careful stance. Hosts with an incorrect DNS entry are most probably on a network
with neglected nameservers or incompetent/overworked administrators. But of all attacking hosts,
attackers are more likely to deliberately misconfigure their DNS.

165

Packet Filtering

Many add−on programs available in the FreeBSD Ports Collection (see Chapter 10) cannot use
TCP Wrappers. For these programs, you can use the kernel−level packet−filtering tools IPFW or
IPFilter.

When using packet filtering, every network packet that enters the system is compared to a list of
rules that tells the kernel how to act on that packet. When a matching rule is found, the kernel acts
based upon that rule. For example, a rule can tell the filter to allow, drop, or alter the packet. You
can't use the nifty options that TCP Wrappers allows, though; instead of being able to spit a
comparatively friendly "rejected" message back to the client, the connection is cut at the network
level.

While the idea of packet filtering is straightforward enough, your first packet−filtering implementation
will probably be an absolute pain. Be prepared to spend a few hours experimenting with packet
filtering the first time you try it, and don't get discouraged by failures. While you might think you
know how IP works, the only way to really learn it is to work with it.

Note Effective packet filtering requires a solid grounding in how IP works. Trying to filter
without understanding what you're doing will be both frustrating and pointless. If
you're in doubt, re−read all that apparently useless stuff in Chapter 5.

IPFilter

IPFilter is the traffic−filtering module we're going to discuss in detail here. It has arguably the most
sophisticated packet−filtering system available in any free or proprietary software. IPFilter is
developed independently of FreeBSD, but has been integrated with the main OS for a few years
now. (It also runs on Solaris and the other versions of BSD.)

To use IPFilter, you must first rebuild your kernel (see Chapter 4) and include the following options:

..
options IPFILTER
options IPFILTER_LOG
..

The IPFILTER option adds basic IPFilter support to your kernel; IPFilter's activity is logged by
IPFILTER_LOG. While the logging isn't strictly necessary to run IPFilter, the logging module is
reasonably small, so you may as well include it. (If you exclude it, at some point you'll almost
certainly find yourself recompiling your kernel to include it just so you can debug a problem.)

IPFilter uses a default accept stance. If you prefer a default deny stance, include the following in
your kernel:

..
options IPFILTER_DEFAULT_BLOCK
..

These options are not in the GENERIC kernel; not all people want packet filtering, and some people
want to do it in a different manner.

166

Note While you can add IPFilter rules for default deny as well, if you use this option and flush
all your rules, you'll lock yourself out of remote access.

IPFW

IPFW is a packet−filtering tool originally created by BSDi, which may give it a wider commercial
market than IPFilter and possibly more mindshare in the BSD world. With IPFW you can do nifty
things, such as make different networks appear to be local to each other (Ethernet bridging), or
control the bandwidth coming to or from any host (traffic throttling), as well as implement the simple
access control any packet filter has. It has a sophisticated packet−state inspection system that can
go toe−to−toe with anything on the open−source or proprietary market. It isn't as solid as that in
IPFilter, however, which is why we're going to focus on IPFilter for packet filtering.

Fortunately, you can use both IPFW and IPFilter together, combining IPFW's nifty bridging and
throttling features with IPFilter's advanced packet inspection (though not without jumping through a
few hoops). We'll discuss IPFW's bandwidth−throttling feature in Chapter 13.

Note You can use IPFW alone, though its packet−state inspection is not as sophisticated
as IPFilter's. Once you understand how to configure IPFilter, you won't have any
trouble with IPFW. See /etc/rc.firewall for some IPFW examples.

Default Accept and Default Deny in Packet Filtering

We spoke earlier about the default accept and default deny security stances, which are exceedingly
important in packet filtering. If you use a default accept stance and want to protect your system or
network, you will need numerous rules to block every possible attack. If you use a default deny
stance, you must explicitly open holes for every little service you offer. Once you choose which you
prefer, you can compile the appropriate default into your kernel.

When using a default deny stance, it is very easy to lock yourself out of remotely accessing the
machine at all. After all, if you flush all your firewall rules, the rule that allows you to access the
machine is deleted! I cut my own access off at least once every couple of years, generally because
I'm not thinking straight while fixing some other unrelated packet−filtering problem. The only fix is to
kick myself as I climb in the car, drive to the remote location, and apologize profusely to the people
I've inconvenienced as I fix the problem.

Still, in almost all circumstances, a default deny stance is correct. As a new administrator, the only
way you can reasonably learn packet filtering is if you have convenient access to the system
console. If you're not entirely confident in your setup, do not send a packet−filtering system across
the country unless you have either a competent local administrator or a serial console.

Basic Concepts of Packet Filtering

Recall from Chapter 5 that a TCP connection can be in a variety of states, including open, opening,
and so on. There's the whole three−way handshake process. When you try to open a connection,
the client sends a SYN packet to request synchronization. The server responds by sending the
client a packet marked as SYN−ACK, meaning, "I have received your connection request, and here
is some basic information for the connection." Finally, the client responds with an ACK packet,
meaning, "I have received and acknowledge your connection information." Every part of this
three−way handshake must complete for a connection to actually be set up. Your packet−filtering

167

rules must permit each part of the three−way handshake, as well as the actual data transmission.
Allowing your server to receive incoming connection requests is useless if your packet−filter rules
do not permit it to send back an acknowledgment.

In the 1990s, packet filters checked each packet individually. If a packet matched a rule, it was
allowed to pass. The system did not record what came before, and had no idea if a packet was part
of a legitimate transaction or not. For example, if a packet marked SYN−ACK, bound for an address
in the inside of the packet filter, arrived at the outside of the packet filter, the packet filter would
decide that the packet had to be the response to a packet it had approved earlier. Such a packet
had to be approved to let the three−way handshake complete. As a result, intruders could forge
SYN−ACK packets, and use them to circumvent seemingly secure devices. Since the packet filter
didn't know who sent a SYN packet, it couldn't reject such SYN−ACK packets as illegitimate. Once
intruders got packets into the network, they could usually trigger a response from some device and
start to worm their way in.

State inspection, introduced with modern packet filters, arose to counteract this problem. Packet
filters that use state inspection maintain a table of every connection running through the system. If
an incoming packet appears to be part of an ongoing connection, but there's no matching
connection, it's rejected. (While this complicates the kernel's work, it's actually easier to write
packet−filter rules for stateful inspection.) For example, if a SYN−ACK packet arrives at a host with
stateful packet inspection, but the host did not send out a SYN to that particular host, the SYN−ACK
is dropped. The packet filter must track many, many more possible states, so this is harder than it
might seem.

If you've started to think, "Hey, packet filtering sounds like a firewall," you're right, to a point. The
word firewall is applied to a variety of devices meant to protect a network. Some are sophisticated,
and scrutinize every single packet, and proxy every service they permit. Some can be out−thought
by bricks. These days, the word firewall has been reduced to a marketing buzzword with very little
concrete meaning. It's like the word car; do you mean a 1972 Gremlin or a 2002 Maserati? Both
have their uses, but one is obviously designed for performance. While the Gremlin of firewalls might
have its uses, better to buy the Maserati if you want performance.

Having said that, your FreeBSD system can be as solid a firewall as you want to make it. Packet
filtering is only the beginning; if you wander through /usr/ports/net and /usr/ports/security, you'll find
a variety of application proxies that can let your FreeBSD system go up against Gauntlet or
Checkpoint and come out on top, for tens of thousands of dollars less.

Implementing IPFilter

IPFilter is a rule−based filter. Packets are checked against IPFilter rules in order, using a "best fit"
algorithm. This means that a packet is compared against all the rules (unless specifically told
otherwise), beginning with general rules and proceeding to more specific ones. For example, you
might start off by blocking everything, and then writing narrow rules to allow desired traffic.

The general form is as follows:

..
action direction options protocol source destination options
..

Every rule follows this basic format, though not all terms are mandatory. In fact, rules can be as
simple as block in from any to any. (You won't be really happy with the effects, because
you'd block everything, but it would work.)

168

..
v block w in x log y quick z on ed0 from { any to { any | with short
..

The action in this case is block (v); packets that match this rule will be stopped.

in is the direction the packet is moving in (w), with valid word choices here being in and out (used
as if you were standing inside the computer). A packet matching in is considered to be entering the
system from the network.

The log and quick keywords (x,y) are options. The packet is logged, and if it matches a rule
flagged as quick, matching stops there. Remember that IPFilter checks every packet against every
rule, unless told otherwise. The quick keyword is what says otherwise. If a packet matches a rule
with the quick keyword, no further checking will be done and the action given by the rule is taken.

on ed0 specifies an interface (z). (All networked systems have at least two interfaces: one
loopback and at least one network interface.)

The source and destination are both any to and any ({), which say that it doesn't matter where this
packet is from or where it's going.

So far, then, this rule is pretty definite: It says to block everything on this interface immediately. If
ed0 is the only network interface on this system, no traffic will go in or out. (Well, at least it's
secure.)

The last option is what makes this rule useful, though. The with short statement (|) is an IPFilter
keyword that means "packets are too small to be real." While tiny packets are certainly possible,
they're extremely rare, and such a packet would almost certainly be part of an attack.
(Normal−sized packets will not match this rule and can pass on down the rule list, to be accepted or
rejected by later rules.)

Keywords and Configurations

Now that you've seen the basic rule format, let's look at some common keywords and configurations
that can be used to protect an Internet server. As shown earlier, the general form is as follows:

..
action direction options protocol source destination packet−options
..

Each of these pieces is described next.

Action The two possible actions are block and pass. Blocked packets are not allowed to pass;
passed packets go on down the list. (A packet can be blocked by one rule, but passed by another,
more specific, rule.)

Direction This has two acceptable values: in and out. Packets coming in are entering the computer
from the network. Packets going out are those leaving the computer.

169

Options The log keyword tells IPFilter to pass the packet to the logging program, ipl. (See the
"IPFilter Logging" section for basic information, and Chapter 19 for details.) The quick keyword
tells IPFilter to stop processing and apply this rule immediately if the packet matches. The on
keyword tells the system that this rule applies only to a particular interface, such as on fxp0.

Protocol This is any IP−layer protocol, such as tcp, udp, skip, and so on. Protocols can be
specified by the name given in /etc/protocols, or by protocol number, and are preceded by the
proto keyword, as in this example:

..
block in proto udp from any to any
..

Source and Destination The from and to keywords show the direction of matching traffic. To
protect your server, block incoming traffic. For example, if your server had an IP address of
192.168.1.8, and you have a default deny security stance, you'd use the following rule (be sure to
use IP addresses, not host−names):

..
block in from any to 192.168.1.8
..

Packet−Options The final options describe special types of packets. The with short keyword
describes IP packets too short to be legitimate. These are generally blocked. Similarly, the with
ipopts keyword matches packets with IP options. In most cases, there is no legitimate reason for
them to be hitting your server—you probably want to block these. The keep state option tells
IPFilter to automatically permit connections that appear to be part of a connection in the state table.
This is the part that lets you make simple rules that cover each part of the data transaction. (You'll
see an example of this shortly.)

Note This is by no means a complete list of all possible IPFilter options. If you're interested in
fine−tuning IPFilter, see the file /usr/src/contrib/ipfilter/BNF, which offers a full description of
IPFilter configuration.

Finally, you can filter on the packet flags. Remember the multiple states of a TCP connection
discussed in Chapter 5? The initial packets had flags: SYN, ACK, and SYN−ACK. You can use
these to filter based on connection state using the with option. The most important flags to filter on
are syn and syn−ack, or S/SA.

With these basic rules and options, you can provide a reasonable layer of server protection. We'll
discuss their implementation in the rest of this section, and use them to build a sample rule list that
will protect a typical Internet server as we go.

Allowing Services

Up to this point, I've recommended a default deny stance, and I've shown you how to block people
from accessing your server. That's nice, but how do you allow people to access the parts of your
server that you want to make available to them?

170

The first step in making specific services available is to find either the port number or canonical port
name, and the protocol used by all network daemons you want the world to access. (See
/etc/services if you're not sure of the exact names and numbers.)

For example, assume you have a Web server (HTTP), POP3 server, and mail server. The Web
server runs on port 80, over TCP. Mail servers run over port 25, over TCP. Lastly, POP3 uses port
110 and TCP.

We start by blocking in all TCP connections, which catches all requests for new connections, by
setting the SYN or SYN−ACK flags like so:

..
v block w in x log y proto tcp z all { flags S/SA
..

Let's dissect this first rule. We start by blocking (v) all connections that come into the system (w).
Then we want to log each packet (x). The rule then narrows a bit: We only want TCP packets (y),
but from any source or destination (z). However, we only want packets that have the SYN or
SYN−ACK flag set ({). This means that this rule is watching for incoming TCP packets with either a
SYN or SYN−ACK flag, or a new connection request. Requests for connections will be denied,
unless a later rule permits them.

Then, to make our Web server available, we follow up with this:

..
v pass w in x quick y proto tcp z from any to any { port = www | keep state
..

This rule allows matching traffic to pass in (v,w). This rule uses the quick keyword (x), which
means that a packet matching this rule will short−circuit the rest of the rules and pass immediately.
A matching packet must be of protocol TCP (y), and can be from anywhere and addressed to
anywhere (z). This is much like the earlier rule, but here's the new bit: It must come in on the port for
www ({), as listed in /etc/services. Once this packet is approved, all other packets that are part of
the same connection will also be approved (|). Packets that request access to port 80 will be
accepted.

Rules for allowing pop3 and sendmail are very similar, with only the port changed:

..
pass in quick proto tcp from any to any port = pop3 keep state
pass in quick proto tcp from any to any port = smtp keep state
..

Without the use of the stateful−inspection (keep state) option, we would need to add rules that
matched not only the initial incoming connection, but also our Web server's response and the
following data flow, rules that would be complex and difficult to debug.

171

Also, when writing such rules, we couldn't be sure what random high−number port clients would use
to initiate connections. Manually filling in these rules would leave security holes and block legitimate
connections. By allowing IPFilter to compare each packet with its list of existing connections, we
eliminate those potential holes.

Loading IPFilter Rules

Now that you know how to create the IPFilter rules you need, how do you load them?

IPFilter is controlled by ipf(8), which you can set to read rules from a text file. (I generally put rules in
/etc/ipf.conf.) The −f flag tells IPFilter to read in rules from a specific file, /etc/ipf.conf in this case:

..
ipf −f /etc/ipf.conf
..

When you make changes to rules, you must flush the existing packet−filter rules before you load the
current ones with the −F flag. Otherwise, you will have all your old rules and all your new rules in
the packet filter. When flushing existing rules, you can also specify inbound (i), outbound (o), or all
(a) rules:

..
ipf −F a
..

Or to minimize exposure, you can do both in a single command:

..
ipf −F a && ipf −f /etc/ipf.conf
..

Note You can directly manipulate the IPFilter rules table to eliminate the extremely brief period
where your rules table is empty, but this requires a fair amount of experience. If you're
actually learning anything from this section, you're not ready to do that yet. Once you're quite
comfortable with IPFilter rules, see ipf(8) for details.

Rule Grouping

A rule group is a set of rules that matches a certain type of packet. For example, you will have some
rules that only apply to TCP packets and some that only apply to UDP packets. Some rules will only
apply to, say, requests for new connections, and others apply to every packet. It's not necessary to
compare every packet against every rule. IPFilter uses rule groups to funnel packets through an
optimal rule path that only evaluates that type of packet. This way, you can compare each packet
against the fewest possible rules, which makes your rules easier to understand, easier to debug,
and faster to actually run.

A rule that starts a rule group has a "head" statement at the very end of the rule, and members of
that group have a group statement at the end of the rule. Each rule group has a group number.
These group numbers are completely arbitrary. I recommend using group numbers that are at least
a hundred apart from each other, so that you can add subgroups and dependent rules between
them. We'll see some examples of how to do this as we go on.

172

For example, the following rule snippet catches all packets going out of interface ed0, and routes
them into rule group 100.

..
pass out on ed0 all head 100
..

A packet that matches this rule will be processed by each rule in the rules list until it hits this rule, at
which point it will only be tested against rules in group 100. What's more, a packet that doesn't
match this rule will never be tested against any rule in group 100. For example:

..
block out from 127.0.0.0/8 to any group 100
..

Here, 127.0.0.0/8 is the block of addresses reserved for loopback connections, and your server
should not send packets from these addresses out across the Net. This rule blocks these loopback
packets. Packets from this address range are allowed over the loopback interface lo0.

You would never want to use a universal rule to block all loopback packets because they are
necessary for normal operation. However, the preceding rule is in group 100, and according to the
head rule for this group, the only packets that will be affected are those that are outbound on the
ed0 interface. Loopback packets should never go out over a network interface, so this rule is
appropriate. Thus, this rule would protect others from being damaged by a misconfiguration on your
network, but wouldn't prevent someone from sending you IP packets that appeared to be from your
loopback interface. After all, you're only checking outbound packets in this rule.

So, how does this all fit together? The following example rule set is for a server with one network
interface, xl0, and one IP address, 192.168.1.200. This ruleset allows incoming POP3, SMTP, and
Web connections, and any outgoing connections. (You can find more examples of IPFilter rules for
various protocols in /usr/src/contrib/ipfilter/rules.)

..
#block garbage we never ever want to accept.
v block in log quick from any to any with ipopts
w block in log quick proto tcp from any to any with short
..

These initial rules are not in any group, and they come first, so they are applied against all packets.
The first rule tells the system to reject all packets using IP Options (v). If you don't know what IP
Options are, you don't want to accept them. No standard server program will require them. The
second rule tells you to reject all ultra−short TCP packets (w). These rules are fairly standard in all
IPFilter installs, and are widely recommended on any firewall or packet filter you might encounter.

The next two rules are as follows:

..
#the system loopback interface
#we can do anything we like to ourselves.
pass in quick on lo0 all
pass out quick on lo0 all

173

..

These two rules say that any traffic whatsoever can pass in and out on the loop−back interface.
There isn't much point in using groups to optimize these rules, as they're very short and quick.

The first rule group comes after the preceding general rules:

..
#these rules control outbound traffic
v pass out on xl0 all head 100
w block out from 127.0.0.0/8 to any group 100
x block out from any to 127.0.0.0/8 group 100
y block out from any to 192.168.1.200/32 group 100
..

These rules control which traffic the server may send to the network. The first rule is very simple,
and states that all traffic outbound on the xl0 interface may pass (v). The most interesting part of
this rule is the end, where we start rule group 100. (The number 100 is arbitrarily chosen.) Packets
that match this rule will only be compared to rules in group 100.

The second rule is the same sort of rule we looked at earlier, blocking traffic from the loopback
interface (w). We don't need to specify an interface in this rule, as we already know that this rule
group only applies to packets going out on the xl0 interface. In short, we're blocking packets going
out that we should never be sending.

The next rule blocks a similar sort of illegal packet (x). If these 127.0.0.0/8 addresses are loopback
addresses, we should never try to reach them over the network.

Finally, in the last rule in the group, we block outbound packets to our own address (y). This is
another sort of problem; packets bound for our own system should not actually leave the network
card.

Rule group 100 ends here. If a packet is outbound on this interface, and doesn't match any of the
other rules in group 100, it will be allowed to go on its merry way. Outbound connections from this
machine are running in a default accept stance.

Now, let's consider packets entering the system:

..
#these rules control inbound traffic
v block in on xl0 all head 200
w block in from 127.0.0.0/8 to any group 200
x block in from 192.168.1.200/32 to any group 200
y pass in quick proto tcp from any to any port = www keep state group 200
pass in quick proto tcp from any to any port = pop3 keep state group 200
pass in quick proto tcp from any to any port = smtp keep state group 200
#help clients close their connections when they request a service we
#don't offer. This makes our server look faster, and reduces general
#Internet load by a very, very, very small amount
z block return−rst in log proto tcp from any to any flags S/SA group 200
{ block return−icmp(net−unr) in proto udp all group 200
..

174

The first rule in the preceding group blocks all traffic coming in from the Internet on this interface
(we're using a default deny stance for inbound traffic) and it starts rule group 200, another
arbitrarily−chosen number (v). Incoming packets that have made it through the earlier rules will be
diverted into this rule.

The second rule blocks anything from a loopback IP (w). Since it is part of rule group 200, this rule
will only be applied to packets that arrive over the network card. There are many possible
explanations for such a packet arriving, but none of them are good.

Similarly, the next rule blocks any packet that appears to come from the server's own IP address
(x). These packets should never arrive over the network. Almost the only possible explanation for
their presence is an attempted hack.

The next three rules open holes for services that this particular server provides (y). Use of the quick
keyword cuts off all further processing, and the keep state option maintains the connection
throughout the request.

The final rules (z,{) are perhaps the most difficult to understand. Incoming network requests will
remain until they time out. The first of these rules sends a "reset" notice to rejected TCP
connections, telling them that their connection request is rejected rather than making the client time
out (z). The last rule does something similar for UDP connections ({). To describe exactly how this
works would require a fairly in−depth explanation of IP. These rules are not only safe, but also polite
to other users, and they will reduce network traffic. I highly recommend their use when filtering
incoming traffic.

Your typical incoming packet requesting a Web page will go through a total of nine rules. The first
two rules will check to see if the packet is too small or contains IP options, and are obviously bogus.
The next two will see if the packet is going over the loopback interface. It then checks to see if the
packet is going out on the network interface. The packet is coming in, not going out, so all of the
rules in group 100 are skipped. Finally, the packet is checked against the rule for incoming packets
on the network interface, and drops into rule group 200. There it is checked against two rules for
more obviously bogus packets, and is finally approved. Without rule grouping, the packet would go
through 12 rules. A 25 percent savings might not seem like much, but it can be very important when
processing millions of packets. As your rules grow more complex, the savings will increase.

IPFilter Logging

IPFilter's ipmon(8) is a separate program that handles logging for the system. IPFilter reads packets
as they pass through the kernel, and transmits them to FreeBSD's logging system as the LOCAL0
facility. (See Chapter 19 to learn how to handle this data properly.) The simplest way to use ipmon
is to dump the log to syslogd(8) (see Chapter 19) with the −s flag:

..
#ipmon −s
..

One of UNIX's oldest security mechanisms is the idea of changed root or chroot, which confines a
user to a subsection of the filesystem, thus protecting the rest of the filesystem. Chroot is useful for
small services, but isn't so helpful when you're hosting dozens (or hundreds!) of clients on a single
server, because each client has special needs and each program has its own requirements for
chrooting.

175

Clients who understand the power of UNIX frequently make requests that make an administrator's
life difficult. They want to be able to install software or to reconfigure the Web server to enable the
latest nifty Apache module. In short, they want root access, and under most UNIX systems you can't
hand out root access willy−nilly to clients on a multi−user server.

Unless you're on FreeBSD. FreeBSD administrators faced this problem long ago, and solved it by
improving the chroot process dramatically. In fact, they solved it so well that, when using FreeBSD,
you can build an entire virtual machine on disk, and isolate that machine from the rest of your
system. This is called a jail.

Think of a jail as something like a client−server environment. The main server is the host system,
and each jailed system is a client. Changes made to the host can be reflected across all systems,
but changes to the jail can't affect the main system, unless you allow a jail to fill up a disk drive or
some such.

When in jail, clients can have root access and even install whatever nifty toys they desire without
interfering with the main system. All processes that are running in the jail are restricted to the jail
environment, and the kernel does not give them access to any information not in their jail. The
filesystem in the jail does not know about files or filesystems outside the jail. Since no program or
process in the jail knows about anything outside the jail, and cannot read or access anything outside
the jail, the user is locked in. Not only can the client not break out of the jail, if the jail is hacked the
intruder can't break out of the jail. This helps secure your system while meeting client needs.

On modern hardware with cheap disks and gobs of memory, a single FreeBSD system can host
dozens of jailed Web servers (though you'd need to be certain that your kernel is well tweaked to
allow this many Web servers to run, as discussed in Chapter 4). From a sales perspective, a jailed
machine is a good intermediate step between a virtual domain on a shared server and a private
colocated server.

Configuring Your Server to Use Jail

Before you begin using jails, be sure that your server is configured properly. Jails put a number of
special requirements on a server, the most annoying of which is that daemons cannot bind to all
available IP addresses.

Each jail is tied to a particular IP address, and is defined by that IP address. The jail must have
exclusive access to that IP address; nothing else can be using it. If your main server has a daemon
that binds to all available IP addresses on the system, that daemon will prevent a jail from starting. If
you look at your system's sockstat(1) output, you may notice several entries where the local
address resembles "*.22". This means that the daemon is listening on all IP addresses, on that port
number. If you want to use a jail, you must reconfigure these daemons to only listen on a single IP
address.

Check all of the following daemons before trying to start a jail.

Portmap

Of the standard FreeBSD daemons, portmap is the most problematic, preventing you from
combining NFS and jails. (Since very few systems on the naked Internet use NFS, this usually isn't
a problem.)

176

Syslogd

Syslogd is another story, because the system logger opens a socket so it can send log messages to
other servers. To silence syslogd entirely, set syslogd_flags="ss" in /etc/rc.conf, though if you
do you won't be able to log remotely. We'll discuss syslogd in detail in Chapter 15.

Named and sendmail

Other daemons, such as named and sendmail, want to attach to all available addresses. To solve
this problem, you can choose to configure them to bind to only a single IP address and run them on
the host system, but since you're using jails already, why not set up a "services jail" that contains
these daemons? Not only is it easier, but also it allows you to provide an additional layer of security.
(While named and sendmail are both quite secure today, they have a spotty history. Many older
admins will feel much better if those services are jailed.)

Inetd

Inetd also attaches to all available addresses, but it is simple enough to control with the −a flag. If
your jail host has an IP address of 192.168.1.222, add inetd_flags="−a 192.168.1.222" to
/etc/rc.conf.

Sshd

The last problematic network service is sshd. Assume again that your jail server has the IP address
of 192.168.1.222. You can tel l sshd which port to l isten on with the fol lowing entry in
/etc/ssh/sshd_config:

..
ListenAddress 192.168.1.222
..

Since your jail host is probably not providing any network services itself, you're better off disabling
every network daemon except sshd. Ideally, your sockstat output should look something like this:

..
sockstat −4
USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
root sshd 248 3 tcp4 192.168.1.222:22 *:*
#
..

We have only one daemon listening to the network, sshd. It is listening on a particular IP address
(192.168.1.222) and on a particular port. This daemon will not interfere with our jails.

Configuring Your Kernel to Use Jail

The preceding section takes care of the network part of configuring jail, but we still have some
kernel configuration to do. The jail system has three special sysctls:

jail.set_hostname_allowed By default, the root user in a jail can set the host−name of that jail.
Since the jail uses its hostname to communicate with the host, changing the hostname can easily
confuse an administrator responsible for managing it. You can set this sysctl to 0 to disable

177

changing the hostname.

jail.socket_unixiproute_only A jail defaults to only communicating via IP. While it isn't that likely
that a user might want to use, say, UNIX sockets or IPX, it's entirely possible. The jail system only
supports IP, however, so if you allow use of these other protocols, you're allowing the user to "leak"
out of the jail. They probably can't do anything with that access, but it's unwise to assume that
you're smarter than every malicious hacker out there. Set this to 1 to be careful and restrain your
users most tightly. Set it to 0 if you do choose to allow the use of any network or socket protocol.

jail.sysvipc_allowed System V IPC is a UNIX standard for allowing interprocess communication
via shared memory segments. Basically, related programs can use one chunk of memory to store
shared information. By default, IPC cannot be used in a jail, as the jail system does not build
separate areas of memory for each jail. Enabling IPC would allow information to leak to and from
the jail. Using this weakness to compromise the system would require a skilled attacker, however.
You can choose to do allow System V IPC by setting this sysctl to 1. Many database programs
require System V IPC.

Client Setup

Setting up a jail is straightforward, though you will need a FreeBSD source tree (see Chapter 6). For
example, say you want to build a jail on the partition /jail1. (Jails can be in directories as well, but
putting them on separate partitions gives you a quick−and−dirty method of controlling their size.
Other admins will just keep an eye on their users, and raise their rates for disk hogs.) To begin, go
to your FreeBSD source tree (generally under /usr/src). For your first jail, run this command:

..
make world DESTDIR=/jail1
..

This command will build a complete copy of FreeBSD and install it in the directory /jail1.

For all subsequent jails, you don't have to build all the binaries; you can install the ones you built the
first time by just running this command:

..
make installword DESTDIR=/jail1
..

This will copy a complete set of FreeBSD userland programs into the jail.

Note Many people have special methods to reduce the amount of space a jail takes up, but the
preceding method is the approved one. Search the FreeBSD−security mailing list archives if
you're interested in other methods.

The /etc Tree

Each jail has its own /etc tree. While not everything in there is functional, it's simpler to ignore the
extras than trim them out. You need to grab a copy of the /etc tree from the same source code you
used to build your jail, and install it properly in the jail's directory. The commands here do exactly

178

that:

..
cd /usr/src/etc
make distribution DESTDIR=/jail1 NO_MAKEDEV_RUN=yes
..

Once you have the /etc directory, you'll need to create the device nodes for the jail. (Since a jail
does not require all the device nodes that the full system requires, MAKEDEV has a special target
for use in jails.)

..
cd /jail1/dev
sh MAKEDEV jail
..

Many programs expect to find a file named /kernel. Even if they don't actually do anything with this
file, they're happier when the file exists. (Since you don't want people to be able to touch your actual
kernel, tie this fake to a harmless point. That way hostile users can overwrite your jailed kernel all
they want, but to no avail.)

..
cd jail1
ln −sf dev/null kernel
..

The IP Address

Now that the directory tree is established, you need to provide an IP address for the jail, since each
jail has its own IP address. We'll assume that 192.168.1.223 is our jailed IP address, and use
ifconfig to attach this address to our network card.

..
ifconfig fxp0 alias 192.168.1.223
..

You can make this attachment happen automatically on boot by adding the following to /etc/rc.conf:

..
ifconfig_fxp0_alias0="192.168.1.223"
..

The Process Filesystem

Finally, every FreeBSD system requires its own process filesystem, or procfs. If you're not using
jails, you really don't need to worry about procfs; it appears automatically when you boot the
system, cannot be tuned, and programs fairly transparently access it when needed. It's a necessary
bit of infrastructure, however. I create a script /usr/local/etc/rc.d/jail.sh and add all the procfs mount
lines to this script.

179

..
mount −t procfs proc /jail1/proc
..

Your jail is now ready.

Entering the Jail

Once you have everything configured, use jail(8) to start a jail:

..
jail <path to jail> <jail hostname> <jail IP> <command>
..

For example, to do basic configuration of our test jail, do this:

..
jail /jail1 jailhost 192.168.1.223 /bin/tcsh
..

You'll see a shell prompt, at which point you're in single−user mode in your jail and your jail is up
and running. You could choose any shell you like in the default install—I like tcsh for interactive use,
so that's my example. There are differences between your current state and FreeBSD single−user
mode, however. While the jail's startup sequence has not been run, the network is configured by jail.

Some commands are unavailable in a jail. For example, try to add an alias to your network
interface, and you'll get a "permission denied" error.

Play around a little, and try to break out of the jail. Try to go to a directory you know exists on the
system, but is outside of your jail directory. You're root; try to access processes you know are
running on the system. When you're tired of beating your head against that brick wall, explore the
jailed system. Powerful UNIX tools like perl(1) and cc(1) are fully available. You could even cvsup in
a jail and rebuild world, although this is not a good idea. (Remember, your kernel and userland
absolutely must be in sync; a jailed userland will not crash the kernel, but it certainly won't work as
expected!)

Processes

Processes in the jail cannot see the rest of the system. Our host server is running a jail, among
many other things. Here's a top snapshot from within a jail running in single−user mode. You can
see that the shell process is running, and the top process, but nothing else. You cannot see the
processes from the main system.

..
last pid: 10578; load averages: 0.00, 0.00, 0.00 up 1+09:21:29 19:16:49
2 processes: 1 running, 1 sleeping
CPU states: 0.0% user, 0.0% nice, 0.4% system, 0.0% interrupt, 99.6% idle
Mem: 6708K Active, 27M Inact, 23M Wired, 36K Cache, 61M Buf, 444M Free
Swap: 1024M Total, 1024M Free
 PID USERNAME PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND
10574 root 20 0 1432K 1116K pause 0 0:00 0.00% 0.00% tcsh
10578 root 96 0 1956K 1136K CPU1 1 0:00 0.00% 0.00% top

180

..

Now that we have a jail cell, it's time to check in and decorate it a little.

Final Jail Setup

The jail setup process is not as sophisticated as FreeBSD's installer. To prepare the environment
for your jail, you must perform all of the following commands from within the jail.

To begin, first create a jailed /etc/rc.conf. Include the following lines:

..
v portmap_enable="NO"
w network_interfaces=""
x sshd_enable="YES"
..

Since portmap will not run well in a jail, we turn it off (v). Since the jailed system startup will
complain if it can't configure the interface, we tell it to ignore its interfaces (w). And, since
you'll have difficulty accessing your jail via a command line once the jail starts, it's easiest to
enable sshd on the jail and access it via the network (x).

1.

FreeBSD requires an /etc/fstab file. Since the jail has no filesystem control, an empty one
suffices.

..
touch /etc/fstab
..

2.

Because sendmail(8) will complain if the aliases database does not exist, we use
newaliases(1) to build the proper database for it. (If you won't be running sendmail in the jail,
either because you'll be running postfix, as discussed in Chapter 12, or because you just
don't want a mail server here, this isn't an issue.)

..
newaliases
..

3.

Set a root password for the jailed environment. Use one that's different from the host
environment—that's part of what a jail is for, after all.

..
passwd
..

4.

Your users will appreciate a correct time zone in the jail. (At least they can watch the
seconds tick by in their prison.)

..
tzsetup
..

5.

181

Starting the Jail

From this point on, your jail will resemble a default FreeBSD install in which you can configure
nameservice, add packages and users, and so on. Once you exit this shell, though, the virtual
machine will stop running and your jail will shut down.

Note I highly recommend using packages to add software to jailed servers; building ports can take
up a lot of CPU time.

Your jail is ready to run multi−user, however. To start the jail in its full long−term, multi−user glory,
just run the virtual machine's /etc/rc script from within the jail, either by hand or automatically at boot
by adding the command to the end of your /usr/local/etc/rc.d/jail.sh script.

To start a jail from the host system, enter this command:

..
jail /test1 jailhost 192.168.1.223 /bin/sh /etc/rc
..

Note You'll notice several errors on startup. Most of these are sysctls that cannot be
accessed in a jailed environment.

At this point, your jail is running. You can ssh in and configure it exactly as you would any other
system.

Managing Jails

Jails do complicate process management. If you're logged in to the actual jail server, you can see all
the processes in all of your jails. Which processes are the actual ones in your server, and which
belong to a jail?

Doing a ps −ax on the host system shows all running processes, even jailed ones. A STAT of J
means that the process is running in a jail. If you have few jails, each with a dedicated purpose, you
might be able to guess which is the process you want. For example, if you only have one
nameserver, and it's jailed, it's a good bet which named process you're after.

While you might want to manage processes from outside the jail, the simplest way to manage a jail
is from within. To do so, log into your jail as root and use ps −ax and all the other standard
process−management tools to control running programs. If you don't want to log into the jail, you
have to resort to more difficult control mechanisms.

Procfs

To investigate individual processes to learn which jail they're part of, use the process filesystem,
procfs. (This is perhaps the only time you'll ever need to manually dig around in /proc—it's normally
only used by programs such as ps and top.) This procedure is most useful for identifying a jail from
a process ID. If you see a database process running amok and soaking up your memory, you can
check its PID under /proc to see what jail it's in and act appropriately.

/proc contains a directory for each process running on the system. (If you're bored, you can look

182

through the various files.) To determine which jail a process is part of, first find the directory for the
process ID you're interested in, and then look for a file named status. The last word in the status file
is the host−name of the jail the process is running in. If the process is not jailed, the last word is a
hyphen (−).

Shutting Down a Jail

When you shut down the host server, the various client jails are shut down as well. Shutting down a
jail without shutting down the host is only slightly more complicated.

Programs such as shutdown(8) and reboot(8) are useless for shutting down a jail because their
main responsibility is to sync and unmount disks, disconnect the network, and so on. A virtual
machine does not have those responsibilities.

To shut down a jail, first log in to the jail as root. If your jail is hosting programs that like a nice, safe
shutdown, such as databases, you should run the shutdown script to shut them down.

..
/bin/sh /usr/local/etc/rc.d/programname.sh stop
/bin/sh /etc/rc.shutdown
..

Once that's done, send the jail's main process (−1) a shutdown signal, also known as signal 15.

..
kill −15 −1
..

This will shut down all jail processes. Since a jail is only processes, the jail will be shut down at this
time.

Note Do not do kill −15 −1 on a nonjailed server. You'll shut down lots of stuff, leaving your
system in a fairly useless state similar to single−user mode.

Monitoring System Security

So, you think your server is secure. Maybe it is, for now.

Unfortunately, there's a class of intruder with nothing better to do than to keep up on the latest
security holes and try them out on systems they think might be vulnerable. Even if you read
FreeBSD−security religiously and apply every single patch that comes along, you might still get
hacked some day. While there is no way to be absolutely sure that you haven't been hacked, the
following hints will help you be aware when something does happen:

Be familiar with your servers. Run ps −axx on them regularly, and learn what processes
normally run on them. If you see a process you don't recognize, investigate.

•

Take a look at your open network ports via netstat −na and sockstat. What TCP and
UDP ports should your server be listening on? If you don't recognize a port, investigate.

•

183

Perhaps it's something innocent, but it might be an intruder's backdoor.
Unexplained system problems are a hint as well. Many intruders are ham−fingered klutzes
with few sysadmin skills; they use click−and−drool attacks and think that they're tough.
(Truly skilled intruders can not only clean up after themselves, but also ensure that the
system has no problems so that you won't be alerted.) Unexplained reboots might be a sign
of a new kernel being installed. They might also be a sign of failing hardware or bad
configuration, so they should be investigated anyway.

•

There are two security tools I particularly recommend for becoming familiar with your system. The
first is lsof(8) (/usr/ports/sysutils/lsof), which lists all open files on your computer. Reading this is an
education in and of itself; you probably had no idea that your Web server opened so much crud.
Seeing strange files open indicates that you're either not familiar with your system or someone's
doing something you probably don't want her to do.

The second tool is nessus(8) (/usr/ports/security/nessus). It's an automated vulnerability scanner.
Running security audits on your own machines is an excellent way to see what an attacker might
see on your systems.

If You're Hacked

There's no easy answer for what to do if your system is hacked. Huge books are written on the
subject. Here are some general suggestions, however.

First of all, a hacked system cannot be trusted. If someone has gained root access on your Internet
server, she could have replaced any program on the system. Even if you close the hole she got in
through, she could have installed a hacked version of login that sends your username and
password to an IRC channel somewhere. Don't trust your system. An upgrade will not cleanse your
system, as even sysinstall and the compiler are suspect.

Feel free to write FreeBSD−security@FreeBSD.org for some advice. Describe what you're seeing,
and why you think you're hacked. Be prepared for the final answer, though: reinstall your operating
system from known secure media (FTP or CD−ROM), and restore your data from backup. (You did
read Chapter 3, right?)

A good security process will increase your chances of never being hacked. Good luck.

184

Chapter 9: Too Much Information About /etc

Overview

The /etc directory holds the basic configuration information needed to boot a UNIX system. Every
time I encounter an unfamiliar UNIX, one of the first things I do is scope out /etc.

The fastest way to go from a junior UNIX admin to a mid−grade one is to read /etc. Yes, all of it.
Yes, this is a lot of reading. But understanding /etc means that you understand how the system
hangs together. As you progress as a UNIX admin you're going to pick up this information
piecemeal anyway, so you might as well make it easy on yourself and assemble this portion of your
toolkit at the beginning.

Many /etc files are discussed in a chapter where they're most relevant (such as /etc/services in
Chapter 5. This chapter will cover the important files that don't quite fit anywhere else.

Varieties of /etc Files

Different UNIX systems use different /etc files. In many cases, these files are simply renamed or
restructured files from BSD4.3 or BSD4.4. The first time I encountered an IBM AIX box, for
example, I went looking for a BSD−style /etc/fstab. It wasn't there. But a little hunting led me to
/etc/filesystems, which turned out to be an IBM−specific rearranged version of /etc/fstab. Knowing
that the information existed somewhere in /etc, and knowing what files it obviously wasn't in, made
the search quite short.

Even radically different FreeBSD systems have almost identical /etc directories. While some add−on
programs insert their own files here, you can expect certain files to be on every FreeBSD system
you encounter.

NoteBefore you touch any /etc files, review the information on RCS (Revision Control System) in
Chapter 3. I strongly recommend that you create an /etc/RCS directory and use it religiously
when experimenting. Changes in /etc can completely disable your system. While recovering a
system's scrambled filesystem table can help turn a competent administrator into a good one,
it's one of the least pleasant ways to get there.

Default Files

The files in FreeBSD's /etc/defaults/ directory each contain variable assignments. These files are
not intended to be edited by the administrator; instead, they're designed to be overridden by a file of
the same name directly under /etc.

For example, the upgrade process completely replaces the files in /etc/defaults. While every new
version of FreeBSD has a slightly different default configuration, the developers go to great lengths
to ensure that changes to these files are backward−compatible. This means that you won't have to
go through the upgraded configuration and manually merge in your changes; at most you'll have to
check out the new defaults file for nifty new configuration opportunities.

185

/etc/defaults/rc.conf

One commonly used file is /etc/defaults/rc.conf. It contains dozens of lines like this:

...
"named_enable="NO"
...

To change this setting, edit /etc/rc.conf, not /etc/defaults/rc.conf. When editing /etc/rc.conf, list the
variable you want to change and what you want to set it to. Your /etc/rc.conf entry will then override
what's in /etc/defaults/rc.conf. (Do not just copy the default file to /etc! This causes any number of
problems.)

Note While the system install process creates /etc/rc.conf, it's normal to find that you need
to create other override files in /etc.

Once you understand the various default files, you can easily assess an unfamiliar FreeBSD system
simply by checking the corresponding override files in /etc.

/etc/adduser.conf

Creating new users on some UNIX systems is a pain, requiring you to manually edit /etc/passwd,
rebuild the password database, edit /etc/group, create a home directory, install the various dotfiles,
and so on. FreeBSD's adduser(8) program makes it much simpler to add users by running all these
other programs for you. The adduser.conf file holds adduser's default settings. These variables are
easily set just by putting the name, an equal sign, and the value. You can add comments just by
putting a pound sign in front of them. Here's a sample entry from this file, with its related comment:

...
verbose = [0−2]
verbose = 1
...

Verbose

The first entry, verbose, controls how much you see when running adduser. With verbose = 0,
adduser prompts you for the new user information and nothing else. If you set verbose = 1,
adduser lets you rewrite /etc/adduser.conf before adding a new user. If you set verbose = 2,
adduser gives you a great many warnings, questions, and other information. (While the default is 1,
you can easily set this to 0 once you're familiar with the process, and have adduser.conf set up the
way you like it.)

Defaultpasswd

The defaultpasswd entry, either yes or no, controls whether users have a password set by
default. If you have a passwordless account on your system, anyone who knows the username can
connect to your system. In any circumstance where you have even the mildest concern for security,
set this to yes.

186

Dotdir

The dotdir entry contains the path for sample user dotfiles, such as .cshrc, .login, and so on. The
default directory contains reasonable defaults. If you want to create custom dotfiles for your system,
it's best to make your own directory under /usr/local/share/skel so that system upgrades won't
overwrite your changes (see Chapter 6).

Send_message

If you put a full path to a file in send_message, adduser sends each new user a welcome
message. If you set this to no, no message will be sent.

The adduser message uses variables; you can add your own by editing /usr/sbin/adduser. If you're
familiar with Perl, this isn't difficult; if not, you're better off just using the variables offered:
$username, $fullname, and $password. (Since this message is mailed to the new user,
including the password is somewhat useless in addition to foolish. Too, the user has presumably
used his password to retrieve this message, so he should have it.) Go ahead and create your own
message instead of using the brief and generic default if you wish. I generally use an
/etc/adduser.message somewhat like this, substituting the appropriate company name as needed:

...
$fullname,

Welcome to The Company.

Help is available at 800−555−1212, or online at
http://helpdesk.companyname.com.

Use of this account is governed by our acceptable use policy,
available at http://aup.companyname.com or on this system in
/usr/local/share/company/aup.

Thank you for your business. We look forward to serving you.

The Company Support Staff.
...

Logfile

The logfile setting tells adduser where to write a log of everything it does. The default works.

Home

If your system has unusual partitioning, you might want user directories in a different place than the
usual /home. You can control this with the home setting.

Path

If you install software in an unusual location, you might need to change the path entry. (Some
systems have their additional programs stored in /opt.)

187

Shellpref

The shellpref setting stores the list of available shells, in order of preference. If you add or
remove a shell, you need to correct this.

Defaultshell

The defaultshell setting contains, as you might guess, the default user shell.

Defaultgroup

The defaultgroup entry is a little different. FreeBSD assigns a unique group to each user. For
example, when you add the user mwlucas, it tries to create a group mwlucas (which allows greater
flexibility when assigning permissions). To have every user be a member of a particular group, put
the name of the group here; otherwise, leave this set to USER.

Defaultclass

The defaultclass line controls what login.conf (see /etc/login.conf) class that adduser assigns by
default. You can leave this empty, or assign a class from those you have previously configured in
/etc/login.conf.

Uid_start

Finally, the uid_start variable determines the user ID (UID) number that adduser will begin with;
the default is 1000. You might want to change this number to match UIDs across multiple operating
systems; various Linux distributions start with different UID numbers, for example. But if UID
synchronization isn't important to you, don't worry about this setting.

/etc/crontab

The crontab file controls the FreeBSD job scheduler, cron, which allows the administrator to have
the system run a command at any time.

Each user has a separate crontab file, which can be edited with crontab −e. The /etc/crontab file
is the system's file. Unlike user crontabs, /etc/crontab lets the sysadmin specify which user will run a
job. For example, the sysadmin can basically say, "Run this job at 10 PM Tuesdays as root, and run
this other job at 7 AM every day as nobody." Other users can only run jobs as themselves.

Note The /etc/crontab file is considered a FreeBSD system file. Be careful not to overwrite
this file when you upgrade (see Chapter 6). One way to simplify upgrading
/etc/crontab is to set your custom entries at the end of the file, marked off with a few
lines of hash marks (#).

Environment Statements

The /etc/crontab file begins with some environment statements because cron needs to set up a
shell environment for the programs it starts. If you're familiar with shell programming, you can alter
these statements to fit your system, but be careful when making blanket changes because changes
made at the top of /etc/crontab affect all programs run from the crontab. (You can specify
environment variables on the command line for each command you run from cron.)

188

Here are some typical environment variables as set in /etc/crontab on a FreeBSD 4.5−STABLE
system.

...
#
SHELL=/bin/sh
PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin
HOME=/
#
...

The hash marks are comments or empty lines used to separate entries and make the file somewhat
easier to read.

Beneath the environment information, the crontab file is divided into eight columns, forming a table.
The first six columns represent the time the command should run: minute, hour, day of the month,
month of the year, and day of the week, in that order. An asterisk (*) in any column means "every
one," while a number means "at this exact time."

Following the time columns is the username the job runs as, then the command.

User crontab files are almost identical, lacking only the username column.

Specifying Times

You must use a valid number for times in crontab. The rule is that minutes, hours, and days of the
week start with 0, and days of the month and months begin with 1. Also, thanks to an ancient
disagreement between AT&T and BSD, the day of the week uses both 7 and 0 for Sunday.

For example, to have user dbadmin run the program /usr/local/bin/db backup.sh at 55 minutes after
each hour, every day to infinity, your crontab line would look like this:

...
55 * * * * * dbadmin /usr/local/bin/db−backup.sh
...

Asterisks tell cron to run this job every hour, every day of the month, every month, and every
weekday.

To run this job only at 1:55 PM each day, you would use the following:

...
55 13 * * * * dbadmin /usr/local/bin/db−backup.sh
...

Here, 13 represents 1:00 PM on the 24−hour clock, and 55 the number of minutes past the hour.

One common mistake people make when using cron is to specify a large unit of time, but miss the
small one. For example, suppose you entered the following, intending to run a job every day at 8

189

AM:

...
* 8 * * * * dbadmin /usr/local/bin/db−backup.sh
...

In this case, you'd find that the job would run at 8 AM, all right, as well as at 8:01, 8:02, 8:03, and so
on, until 9:00 AM. If your job takes more than one minute to run, you'll quickly bring your system to
its knees.

The correct way to specify 8 AM and only 8 AM would be to enter this:

...
0 8 * * * * dbadmin /usr/local/bin/db−backup.sh
...

To specify ranges of time, such as running this program once an hour, every hour, between 8 AM
and 6 PM, Monday through Friday, use something like this:

...
1 8−18 * * * 1−5 dbadmin /usr/local/bin/db−backup.sh
...

To specify exact times, separate them with commas:

...
1 8,10,12,15,18 * * * 1−5 dbadmin /usr/local/bin/db−backup.sh
...

Or, more interestingly, you can specify fractions of time, or steps. For example, to run a program
every five minutes, enter the following:

...
*/5 * * * * * dbadmin /usr/local/bin/db−backup.sh
...

You can also combine ranges with steps. For example, if you want your job to run every five
minutes, but want it offset by one minute from the preceding job, you could use this:

...
1−56/5 * * * * * dbadmin /usr/local/bin/db−backup.sh
...

You can control the day a job runs with two fields: the day of the month and the day of the week. If
you specify both a day of the month and a day of the week, the job will run whenever either
condition is met. For example, you might tell cron to "Run this job on the 1st and the 15th, plus
every Monday" as follows:

...
55 13 * 1,15 * 1 dbadmin /usr/local/bin/db−backup.sh
...

If you find that a job requires a nonstandard environment, set the environment on the command line
just as you would in the shell. For example, if your db−backup.sh program requires a

190

LD_LIBRARY_PATH environment variable, you can set it like so:

...
55 * * * * * dbadmin LD_LIBRARY_PATH=/usr/local/dblib ;/usr/local/bin/db−backup.sh
...

/etc/csh.*

The /etc/csh.* files contain systemwide defaults for csh and tcsh. When a user logs in with either of
these shells, the shell executes any commands it finds in /etc/csh.login. Similarly, when the user
logs out, /etc/csh.logout is executed. You can place general shell configuration information in
/etc/csh.cshrc.

/etc/dhclient.conf

Many operating systems give you very basic DHCP client configuration with no opportunity to
fine−tune or customize it; you either use it or you don't. Any operating system that uses the Internet
Software Consortium's DHCP client, including all of the BSDs, lets you fine−tune your DHCP client
setup.

In most cases, an empty DHCP client file (/etc/dhclient.conf) will give you full DHCP functionality,
but won't work correctly in all situations. Perhaps you're connecting to a DHCP server across the
country, your local LAN is having problems, or you have multiple DHCP servers. You may be able
to solve these problems by tweaking your DHCP configuration. A DHCP lease contains your
network configuration information, such as the IP address you get, the default route, and the
nameservers available for your use. Without a valid, correct lease, you won't have Internet
connectivity.

Entries in dhclient.conf resemble C code and generally include a variable declaration, followed by a
value. Each line ends in a semicolon.

Prolonging Lease Requests

When dhclient starts, it requests the last IP address it used (leased) and, by default, spends ten
seconds trying to get that address. The reboot time is the length of time the client will spend trying
to get the old address re−issued. To change this waiting time, use the reboot statement. For
example, I've been on large corporate networks where the DHCP server was in another state; by
adjusting the reboot time upwards, I could easily get my previous network address. Just specify the
reboot time in dhclient.conf, with a trailing semicolon in standard C code style.

...
reboot 20;
...

If the client cannot get its previous IP address in the reboot time, it will request a new one instead.

191

Rejecting Bad DHCP Servers

One of dhclient's more interesting features is its ability to reject bad DHCP servers. For example,
some networks allow just about anyone to hook just about anything to them, like the ones found on
exhibition floors or at some development companies. In such situations it's quite possible for there
to be a rogue DHCP server on the floor, and if your system receives a DHCP lease that just doesn't
work, it might be from a rogue server.

To identify a bad DHCP server, examine the leases you have received in /var/db/dhclient.leases.
This file lists all the leases you have ever received, including the bad one. Identifying a bad DHCP
server is a matter of trial and error. Get the IP address of each DHCP server, and reject them one at
a time until you get a working configuration. For example, if the bad server's address was
192.168.1.84, enter

...
reject 192.168.1.84
...

Note If you find a rogue DHCP server on one of your networks, it's much better to find and
disable the rogue server than to patch around it with a reject statement. On a foreign
network, however, you don't generally have the privilege to do that.

Announcing Host Information

If you are on someone else's network and feel like being kind to the local network administrator, add
a send statement to your dhclient.conf. The DHCP server will record the information you put in your
send statement in its lease database. The local network administrator can use this information to
find you if your system starts misbehaving and damaging the network. (You might not think this is a
good thing, but making yourself easy to find is much better than making the administrator hunt you
down.)

...
send host−name "mwlucas−laptop.bigcompany.com";
...

Of the many other options in dhclient.conf, like the ability to refuse leases that don't include
information you want, most are relatively useless under normal (and most abnormal) circumstances.
For truly detailed information on dhclient's more exotic options read dhclient.conf(5).

/etc/fstab

The /etc/fstab file describes the filesystems on the system. For details on the File System Table,
see Chapter 16.

/etc/ftp.*

The /etc/ftp.* files control how the system's FTP server behaves. For details on /etc/ftpusers,
/etc/ftpchroot, /etc/ftpwelcome, /etc/ftpmotd, and general FTP operations, see Chapter 15's nice little
write−up on FTP.

192

/etc/hosts.allow

The /etc/hosts.allow file controls who can access daemons compiled with TCP Wrappers support.
It's covered in painful detail in Chapter 8.

/etc/hosts.equiv

The /etc/hosts.equiv file allows trusted remote systems to log in or run commands on the local
system without providing a password or even logging in. Hosts listed in this file are assumed to
have performed user authentication on a trusted system, and hence the local system doesn't have
to bother re−authenticating the user.

This file is handy and useful on friendly networks, but, unfortunately, there is no such thing as a
friendly network nowadays. In fact, any one disgruntled employee can destroy a corporate network
with this service. A machine running /etc/hosts.equiv on the naked Internet is pretty much dog meat
for the first script kiddie who wanders by. In fact, /etc/hosts.equiv and its related services have even
bitten top−notch security experts.

Still, should you decide to use this risky feature, you must have rsh or rlogin, or both, enabled in
/etc/inetd.conf (see Chapter 13). The format is simple: a hostname, followed by an optional
username.

For example, assume you have two UNIX boxes, "daffy" and "bugs". If bugs's /etc/hosts.equiv
includes "daffy", a user on daffy can get a shell on bugs without typing a password.

...
daffy; rlogin bugs
Last login: Tue Apr 3 19:12:08 from 192.168.1.200
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994
 The Regents of the University of California. All rights reserved.

FreeBSD 5.0−CURRENT (PETULANCE) #0: Mon Aug 21 12:27:59 EDT 2000
You have mail.
bugs;logout
rlogin: connection closed.
daffy;
...

See? No password. This works well, unless some intruder has broken into daffy. Remember, if you
use this tool, a compromise on one machine means that every machine on your network is
compromised. Rlogin and related tools are really unsuitable for any modern networked environment.

With comparatively recent modifications to rlogin and rsh, you can require a password to access
another system. If you're going to do that, however, you might as well implement things properly
and start using ssh (see Chapter 13).

/etc/hosts.lpd

The /etc/hosts.lpd file is one of the simplest files in /etc. Hosts listed here, each on their own line,
may print to the printer(s) controlled by this machine. While you can use hostnames, DNS problems
can choke printing, so use IP addresses instead.

193

Unlike many other UNIX configuration files, this one does not accept network numbers or netmasks;
you must list individual hostnames or IP addresses.

/etc/inetd.conf

The inetd daemon handles incoming network connections for smaller daemons that don''t run
frequently. For details, see the section on inetd in Chapter 13.

/etc/locate.rc

The locate(1) program finds all files of a given name. For example, to find locate.rc, enter the
following:

...
locate locate.rc
/etc/locate.rc
/usr/share/examples/etc/locate.rc
/usr/src/usr.bin/locate/locate/locate.rc
#
...

You'll see that locate.rc can be found in three places. One is in the main /etc directory, the second is
in the system examples directory, and the third is in the system source code.

Once a week your FreeBSD system scans its disks, builds a list of everything it finds, and stores
that list in a database. The list−building program uses the values shown in /etc/locate.rc as defaults
(/etc/locate.rc does not affect how locate(1) itself runs). To change some of those parameters, and
thereby change how your locate database is built and what it contains, consider setting the following
in /etc/locate.rc:

The file−finding program stores its temporary files in TMPDIR. If you're low on space in your
system temporary directory, you can change this path.

•

The location of the weekly database can be changed via the FCODES variable. This can
have repercussions on other parts of the locate system, however, so be prepared for odd
results.

•

The SEARCHPATHS value lists every directory you want searched. This defaults to /, the
whole disk; to index only a portion of your disk, set a specific value here.

•

The PRUNEPATHS value lists directories you don't want to index. This defaults to excluding
temporary directories that traditionally contain only short−lived files.

•

The FILESYSTEMS variable controls the sort of filesystem you want to index. The default is
UFS, the standard FreeBSD filesystem, but you can list other filesystem types, such as MD
(memory disks) or NFS (network filesystem). If you have foreign filesystems mounted, such
as an EXT2FS partition, you might want to include them as well. (By the way, indexing
network filesystems is a bad idea; if all of your servers start indexing the fileserver, you will
bog down the network badly.)

•

/etc/login.access

Some servers have hundreds of users, each with different needs. So how do you assign different
privileges to each?

194

FreeBSD includes a few different ways to control user access. The /etc/login.access file controls a
user's ability to log in. Every time you try to open a connection to a FreeBSD system, the
permissions in login.access are checked first. If login.access contains rules that forbid logins from
that user, the login attempt fails immediately. This file defaults to empty, meaning there are no
restrictions on anyone with a username and password.

The /etc/login.access file has three colon−delimited fields. The first either grants (+) or denies (�)
the right to log in; the second is a list of users or groups; and the third is a list of connection sources.

The /etc/login.access file permits an "all" and "all except" syntax, much like /etc/hosts.allow uses for
TCP Wrappers (see Chapter 8), allowing the administrator to make basic but expressive rules. The
login program checks rules on a first−fit basis, rather than a best fit. When the system finds a rule
where both the group and the connection source match, it immediately accepts or rejects the
connection. As such, rule order is very important.

For example, to only allow members of the wheel group and the user root to log in to the system
console, you might try to use:

...
+:wheel root:console
...

The problem with this rule, though, is that it doesn't actually deny users login privileges. Since the
default is to accept logins, and all this entry does is explicitly grant login rights to two sets of users,
this won't stop people from logging in.[1] Other rules will continue to be processed. If my username is
javerage, and I try to log in to the console, this rule doesn't deny me access.

So rather than use a statement like the preceding one, try one like this, the inverse:

...
−:ALL EXCEPT wheel root:console
...

This will reject connections more quickly, and run less risk of administrator error. As a rule, it's best
to build your lists by rejecting logins, rather than permitting them.

When applying this rule, we see that Joe Average matches this rule and is immediately rejected.
Since rules are applied based on first fit, there's no chance that a later rule will match, so we avoid
unintended access.

Connection Source

The last field in the /etc/login.access file, the connection source, has the greatest variety of values.
You can use several different types of information here: hostnames, host addresses, network
numbers, domain names, LOCAL, and ALL.

195

Hostnames

Hostnames rely upon DNS or the hosts file. If you suspect your nameserver might suffer a hack at
some time, you probably don't want to use this system; intruders can give a hostname any IP
address that they like, and fool your system into accepting the connection. Still, you could do this:

...
−:ALL EXCEPT wheel:fileserver.mycompany.com
...

Users in your wheel group could log in from the fileserver, but nobody else could.

...
ALL
...

ALL means always match. This is particularly useful in combination with EXCEPT, as we'll see next.

Host Addresses and Networks

Host addresses look like hostnames, but they're immune to spoofed DNS.

...
−:ALL EXCEPT wheel:169.254.8.3
...

A network number is anything that ends in a period, like this:

...
−:ALL EXCEPT wheel:169.254.8.
...

This would allow anyone in the wheel group to log in from a machine whose IP address began with
169.254.8, and deny everyone else.

For example, if you didn't want anyone to access your firewall unless they logged in from a
management workstation, you could do something like this:

...
−:ALL EXCEPT wheel:ALL EXCEPT 192.168.89.128 192.168.170.33
...

LOCAL

The most complicated location is LOCAL, which matches any hostname without a dot in it (generally
only hosts in the local domain). For example, http://www.absolutebsd.com/ thinks that any host in
"AbsoluteBSD.com" matches LOCAL.

This works via reverse DNS (see Chapter 12), which is the process where you look up a host's

196

name from its IP address–this process is controlled by the owner of the IP address. Although my
laptop might claim a hostname of pedicular.AbsoluteBSD.com, its IP address has reverse DNS that
claims it is somewhere in the home.com network. A machine in AbsoluteBSD.com will think that my
laptop has a hostname that is in the home.com domain, and hence is not local. As such, I can't use
the LOCAL verification method.

So, how can we tie all this together? For one thing, we can use a one−line login.access to allow
administrators to log in to the server while rejecting all other remote connections:

...
−:ALL EXCEPT wheel:ALL
...

However, this might restrict your environment too tightly if, for example, your company has staff
groups. Two common groups are "dns" (people who can edit domain zone files) and "www" (people
who can edit Web server configurations). Servers such as these might find this login.access
appropriate:

...
−:ALL EXCEPT wheel dns www:ALL
...

A common corporate Web servers' farm login.access file looks like this:

...
−:ALL EXCEPT wheel:console
−:ALL EXCEPT wheel dns www:ALL
...

Set up this entry one time, and users cannot log in unless you add them to a permitted group.

/etc/login.conf

If the all−or−nothing control of /etc/login.access doesn't fit your needs, you can provide more
specific controls with /etc/login.conf. This file allows you to tweak the environment you present to
specific users and limit the resources you allow them to have.

The login.conf system works by defining classes and assigning each user to a class. Each class has
limits on its access to system resources. When you change the limits on the class, those limits
affect all users in that class. You set a user's class when you create the user's account, and change
it by running chsh username as root.

Class Definitions

Each class definition consists of a series of variable assignments. When a user logs in, login(1)
checks these variables to establish the user's resource limits, accounting, and environment setup.

The default /etc/login.conf starts with the "default" class, the class used by accounts without any
other class. This class gives the user basically unlimited access to system resources. If the default
class fits your needs, don't adjust this file at all. (If you need to throttle users, read on.)

197

Each entry in the class definition begins and ends with a colon, although technically, each entry is
all one line. The backslash character is a continuation character (indicating that the computer
should ignore the line break), which allows the file to be arranged in a human−readable format.
Here's a sample of the beginning of one class in a standard login.conf:

...
default:\
 :passwd_format=md5:\
 :copyright=/etc/COPYRIGHT:\
 :welcome=/etc/motd:\
...
...

This class is called default. I've shown three variables in this class (there are more, but this is
enough to give you the idea). The variable passwd_format, for example, is set to md5. Each login
class contains these variables and assignments. You can change a user's experience on the
system by assigning her to the class that configures her environment as you desire.

Some login.conf variables don't have a value; they change account behavior just by being present.
For example, the "requirehome" variable just needs to be in the class definition to have its effect.

...
:requirehome:\
...

Making Changes Take Effect

After you edit login.conf, you must update your login database to make the changes take effect:

...
cap_mkdb /etc/login.conf
...

FreeBSD's default /etc/login.conf includes several classes of users. If you want an idea of what sort
of restrictions to put on users for various situations, check that file. The following section will give
you an idea of some of the things that can be set here.

Resource Limits

Resource limits allow you to control how much of the system any one user can tie up at one time. If
you have several hundred users logged in to one machine, and one of those users decides to
compile 30MB of source code, that person can consume far more than his fair share of processor
time and memory. By limiting the resources that one user can monopolize at one time, you can
make the system more responsive for less needy users.

Resource limits are frequently tied to each process, so you need to consider that when assigning
limits. If you give each process 20MB of RAM, and allow 20 processes per user, you might as well
not be using resource limits at all, since you're assigning 400MB of RAM to each user. Each user
class can have its own resource limits.

198

Table 9−1 describes the resource−limiting login.conf variables.

Table 9−1: Login.conf variables for limiting resource use

Variable Description

cputime The maximum CPU time any process may use
filesize The maximum size of any one file
datasize The maximum memory size of data that can be consumed by one process
stacksize The maximum amount of memory on the stack usable by a process
coredumpsize The maximum size of a core dump
memoryuse The maximum amount of memory a process can lock
maxproc The maximum number of processes the user can have running
openfiles The maximum number of open files per process
sbsize The maximum socket buffer size a user's application can consume

Current and Maximum Resource Limits

You can specify current and maximum resource limits. Current limits (−cur) are generally advisory,
and the user can override them at will. (This works well on a cooperative system, where multiple
users willingly share resources.) Maximum limits (−max) are absolute, and the user cannot raise
them. You can use current limits to warn the user that they are trying to exceed the standard
resource allocation.

To specify a current limit, add −cur to the limit name. To make a hard limit, add −max. For example,
to set a current limit on the number of processes the user can have, do this:

...
maxproc−cur: 30
maxproc−max: 60
...

If you don't specify either −cur or −max, both the current and maximum limit are set to the value
you specify.

Specifying Default Environment Settings

You can also specify default environment settings in /etc/login.conf. This can be better than setting
them in a user's default .cshrc or .profile, as these settings affect all user accounts immediately
upon each user's next login.

All of the environment fields recognize two special characters: the tilde (~) and the dollar sign ($).
The tilde (~) is replaced by the user's home directory, the dollar sign ($) by the username. For
example, in the default class, the line that sets the environment variable MAIL to /var/mail/$

199

becomes /var/mail, followed by the user's username. Similarly, ~bin in the path entry points to the
bin directory in the user's home directory.

Table 9−2 identifies some common environment settings.

Table 9−2: Common login.conf environment variables

Variable Description

hushlogin If present in class definition, no system information is given out during the initial
login.

ignorenologin If present in class definition, the user can log in even when a /var/run/nologin file
exists.

manpath The default path to search for man pages.
nologin If present, the user cannot log in. This is identical to an entry in /etc/login.access

(described earlier).
path The default path for programs.
priority The default process priority, or nice (see Chapter 18).
requirehome If present in the class definition, the user must have a valid home directory in

order to log in.
setenv A list of default environment variables.
shell The full path of a shell to be executed upon login. This overrides the shell listed

in /etc/passwd. The user's $SHELL environment variable will contain the shell
listed in /etc/passwd, however, resulting in an inconsistent environment. Playing
games with this is an excellent way to annoy your users.

term The default terminal type. Just about anything that tries to set a terminal type can
override it.

timezone The default value of the $TZ environment variable. Users can override this.
umask The default umask (see builtin(1)). Users can override this.
welcome The full path to a file containing a welcome message for users in this class. The

default is /etc/motd. (Different welcome messages can provide instructions and
messages to different sorts of users.)

Controlling Password and Login Options

You can control various password and login options in /etc/login.conf. Unlike the environment setup,
many of these can only be set in this file. Here are some common authentication options.

minpasswordlen Minpasswordlen specifies the minimum length of a password. This only takes
effect the next time the user changes his or her password; it doesn't go through and check that all
passwords are of this length. The following example will really, really annoy your users.

...
 :minpasswordlen=28:\
...

200

passwd_format The passwd_format option sets the encryption hash used to encrypt passwords in
/etc/passwd. This defaults to md5 for MD5 hashing. Other permissible options are des and blf
(blowfish). DES is most useful when you want to share passwords between different operating
systems. Blowfish might be an inherently cool algorithm, but it isn't really necessary unless you want
to share password files between FreeBSD and OpenBSD systems.

mixpasswordcase If mixpasswordcase is present, users cannot change their passwords to contain
only lowercase letters.

copyright The copyright option specifies the full path to a file containing copyright information for
the system.

host.allow Users in a class with this value set can use rlogin and rsh to log in to this server from the
hosts specified, much like /etc/hosts.allow permits. (This does not make rlogin or rsh safe, and
should be strongly discouraged.) The entry is a comma−delimited list, and can use an asterisk (*) as
a wildcard to match networks or domains. A system must appear in both /etc/hosts.allow and this
entry.

...
:host.allow=192.168.1.*:\
...

host.deny This variable lists remote hosts that cannot log in using accounts in this class. This
functionality overlaps /etc/login.access, allowing you to deny logins by particular accounts from
particular IP addresses.

If host.deny conflicts with host.allow, host.deny takes precedence. As in host.allow, you can use an
asterisk (*) as a wildcard to match entire networks or domains. Any host not listed in host.deny may
connect as one of the users in the class.

times.allow Times.allow specifies the times when the user may log in. This requires a
comma−delimited field of days and times. Days are given as the first two letters of the day's name
(Su, Mo, Tu, We, Th, Fr, and Sa). Time is in standard 24−hour format. For example, if a user can
only log in on Wednesdays, between 8 AM and 5 PM, you would use this entry:

...
times.allow=We8−17:\
...

times.deny Times.deny specifies times when the user cannot log in. Note that this does not kick a
user off when he's already logged in. The format is the same as for times.allow. If times.allow and
times.deny overlap, times.deny takes precedence.

Accounting Functions

You can set a variety of accounting functions in /etc/login.conf, and these functions require system
accounting to be on. Accounting isn't as important today as it was when inexpensive computers cost

201

tens of thousands of dollars, so we won't discuss it in this book. Still, you might as well know that
the capability exists.

/etc/mail/mailer.conf

You can choose from several mail−server programs when using FreeBSD, and the mailer.conf file
allows you to control which mailer you will use on your system with a minimum of fuss.

Traditionally, the only mail server program available for any UNIX was sendmail(8). As such, a lot of
add−on software expects to find /usr/sbin/sendmail, and expects it to behave in a certain manner.
Since programs expected to find sendmail, when replacement mail−server programs were finally
created, they generally accepted the same command−line options as the original sendmail, and
even were installed as /usr/sbin/sendmail, so that these packages would continue to work.

The only problem with this sendmail compatibility is that an admin on an unfamiliar system has no
idea what the /usr/sbin/sendmail program really is! If someone has installed a few different mail
servers to experiment with, you'll have to resort to detective work and a bit of luck just to identify
your so−called sendmail.

The /etc/mail/mailer.conf file does an end−run around all this mess by eliminating /usr/sbin/sendmail
as a mail program. Instead, sendmail is just a little program that checks mailer.conf and redirects
the request to the mail−sending program indicated.

Note As yet another piece of legacy fun from the early days of UNIX, sendmail behaved differently
depending on which name it was called by. The most common variant names for sendmail
are send−mail, mailq, and newaliases.

The mailer.conf file simply contains a list of program names, along with the path to the actual
program to be called. For example, the Postfix mail server (described in Chapter 14) installs as
/usr/local/sbin/sendmail. An appropriate mailer.conf entry looks like this.

...
sendmail /usr/local/sbin/sendmail
send−mail /usr/local/sbin/sendmail
mailq /usr/local/sbin/sendmail
newaliases /usr/local/sbin/sendmail
...

/etc/make.conf and /etc/defaults/make.conf

To make a program is to build it from source code into machine language, also known as compiling.
(We'll discuss that in some detail in Chapter 10.) The make.conf files control how that building
process works. Make.conf is one of the more complex and interesting BSD features; the
/etc/make.conf file controls how software is built on the local system.

Like a few other FreeBSD configuration files, make.conf is actually two files: /etc/defaults/make.conf
and /etc/make.conf. As with all other files in /etc/default, /etc/default/make.conf is not designed to be
edited directly. Instead, entries in /etc/make.conf override entries in /etc/defaults/make.conf. This
way, an upgrade can safely overwrite /etc/default/make.conf.

202

By default, everything in /etc/default/make.conf is commented out. To set something, copy the
relevant line from the default make.conf to /etc/make.conf, and remove the pound sign (#) to
uncomment it.

In many cases, the settings in /etc/defaults/make.conf are optimizations that are not set by default,
for one reason or another. Some produce bad code in certain situations; others just slow down the
build process. Some settings are optional or aren't supported by FreeBSD developers. (In general,
the examples given are safe; when investigating options in /etc/defaults/make.conf, be sure to pay
careful attention to any notes.)

Many of the options in /etc/defaults/make.conf should only be touched by people very familiar with
the FreeBSD build process. Quite a few are generally safe for anyone to use, however, and we'll
look at the major safe ones here.

Note While the samples that follow are taken directly from a FreeBSD 4−stable system, check
/etc/defaults/make.conf for any change. This is not an area where you want surprises.

CPUTYPE=i686 By default, the compiler builds programs without optimizing for the CPU on the
system, though optimizing for a particular CPU can dramatically improve performance. One good
example of this is OpenSSL, which FreeBSD uses to handle cryptographic functions for SSH and its
related programs.

FreeBSD recognizes the CPU types for the 32−bit X86 systems listed in Table 9−3.

Table 9−3: CPU types recognized in 32−bit X86 systems

CPU Type Description

k7 The AMD k7 processor
k6−2 The AMD k6−2 processor
k6 The original AMD k6 processor
k5 The AMD k5 processor
p3 The Pentium 3
p2 The Pentium 2
i686 Generic Intel Pentium 2 or better
i586/mmx Original Pentium with MMX
i586 Original Pentium
i486 486−class CPU
i386 386−class CPU

CFLAGS= −0 −pipe This option specifies optimization settings for building nonkernel programs.
The example shown in the defaults file is usable and is supported by the FreeBSD Project. Though
people may recommend other settings or things to add to this setting, any options other than those
shown in the example are not supported by the FreeBSD Project. If you're familiar with other free
versions of UNIX, you might be familiar with some of these more obscure optimizations.

203

In general, FreeBSD code is expected to compile most correctly without any of these additional
options, and all you can do by adding optimizations is impair your performance. If you have a
problem with a program built with nonstandard flags, revert the flags to the standard form and
rebuild the program.

COPTFLAGS= −0 −pipe The COPTFLAGS optimizations are used for building the kernel only.
Again, settings other than the defaults presented can build a noworking kernel.

INSTALL=install −C By default, when FreeBSD installs a built program, it copies the new binary on
top of the old one. The install −C option makes the installer compare the new program to the
existing one, and if they're identical, the new binary is not installed. This can accelerate upgrades
and save disk writes. Saving disk writes is not usually that much of an issue, but it's there if you
want it.

System Upgrade make.conf Options

The following options might be useful when upgrading from source (explained in Chapter 6). If
you're not using the component in question, setting the make options to not build those components
will reduce the time you need to build the system. For example, you might choose not to build
sendmail because your system doesn't need it.

These options are also useful if you've replaced part of the system. If you're running the latest
version of named from the ports collection, for example, you might have replaced /usr/sbin/named
with your customized version. You don't want an upgrade to clobber this, so you can tell the system
not to build it.

Note When you set these options not to build part of the system, an upgrade will not fix security
holes in the affected programs. This means that you will have older, insecure programs on
your hard drive, and if you start them, you'll have system security holes. To disable building a
program, it's best to dig through the system and remove the corresponding programs.

ENABLE_SUIDPERL=true Suidperl is a special version of Perl(1) that is not installed by default.
Use this option if you need to install a setuid version of Perl during an upgrade from source.

PPP_NOSUID=true There's a long−standing consensus that setuid programs are bad, and should
be eliminated. However, the ppp program used to connect to the Internet needs to be have the
setuid ability to allow multiple users to use it. If only the root user will be dialing onto the Internet,
PPP_NOSUID can be set to true.

NO_CVS=true CVS is the Concurrent Versions System used by advanced systems administrators.
This option prevents a source upgrade from building or installing it.

NO_BIND=true BIND is the default DNS server (see Chapter 12). If you have a custom nameserver
installed, set this option.

NO_FORTRAN=true The Fortran programming language is popular in the scientific community, not
so popular in the network services community. Feel free to set this option unless you need Fortran
support.

NO_LPR=true LPR is the printing system. If your computer doesn't use a printer, or if you have a
custom printing program installed, you can set this option. LPR has had several security holes in the
past, however, so be careful.

204

NO_MAILWRAPPER=true The mailwrapper is the mail server selection program that redirects
sendmail calls to the appropriate program (see the chapter section "/etc/mail/mailer.conf"). If you're
not running a mail server, or if you're using the FreeBSD defaults, you can set this option.

NO_MODULES=true This option prevents the automatic building of kernel modules with the kernel.
Do not set this option unless you enjoy watching your system crash on boot, or know exactly what
you're doing.

NO_OBJC=true This option prevents the inclusion of support for Objective C. If you and your users
don't need Objective C, you can set this option. A (very) few ports will not work properly if you do
this.

NO_OPENSSH=true If you have a custom SSH client/server installed, set this option. Otherwise,
build OpenSSH.

NO_OPENSSL=true OpenSSL is the encryption package used by OpenSSH and other secure
services. If you're not running any encrypted programs, you can set this option. However, it's highly
recommended that you don't set this option, because it will prevent OpenSSH from building.

NO_SENDMAIL=true If you have a custom mail program, or if you don't run a mail server, you can
set this option. In our example in Chapter 14, we will replace sendmail with postfix. If you set this
option, however, you'll have an old and possibly insecure sendmail floating around your system.
You're really better off building the whole system.

NO_SHAREDOCS=true FreeBSD includes documentation from the original BSD4.4 release under
/usr/share/docs, as well as more recent papers describing new features. If you don't use the
documentation on this system, you can save a few seconds of processor and disk time by setting
this option.

NO_TCSH=true This option prevents /bin/csh and /bin/tcsh being built during binary upgrades. If
you have csh scripts that might be confused by an upgrade, or if you don't use csh/tcsh at all, set
this option. (Programming in csh is a bad idea, anyway.)

NOCRYPT=true In addition to the OpenSSL encryption code mentioned previously, FreeBSD
includes code for encrypting passwords, hashing files, and so on. If you don't want to build any code
for these things, set this option, though it's usually not a good idea unless you know exactly what
you're doing and why.

NO_GAMES=true This option prevents the building of programs under /usr/games. They don't
change often, so you can probably do without them.

NOINFO=true FreeBSD includes a variety of documents under /usr/share/info that don't change
often. You can set this option to avoid processing these documents during an upgrade from source.

NOLIBC_R=true Setting this option prevents an upgrade from source from upgrading the
re−entrant version of libc. If you don't know what this is, don't set this option!

NOPERL=true This option controls whether the Perl interpreter and related libraries are built.
Setting this option can greatly accelerate the buildworld process, but it can also leave you with an
obsolete version of Perl. After all, a FreeBSD upgrade might include a Perl upgrade some time!
Some programs, such as adduser(8), are written in Perl, and those scripts might be changed to take
advantage of an upgraded Perl. Not upgrading Perl might break these programs. If you're using Perl

205

scripts that are dependent upon features in a particular version of Perl, you can set this option.

NOPROFILE=true This option prevents the building of profiled libraries. Again, if you don't know
what profiled libraries are, don't set this.

NOSECURE=true This option eliminates anything under the src/crypto directory being built,
including Kerberos, OpenSSH, OpenSSL, and assorted other encryption stuff. Don't set this option if
you're running a production Internet server.

NOSHARE=true This option prevents the building of anything under the src/share directory,
including all the old papers, all the man pages, all the examples, and documentation in general. You
can set this option if you don't care about documentation on this system.

NOUUCP=true UUCP is the UNIX−to−UNIX Copy Protocol, an old standard for transferring data
between machines, used before TCP/IP came into widespread use. Part of UUCP is used to handle
serial consoles (see Chapter 20).

MODULES_WITH_WORLD=true Whenever you build a kernel, you build the kernel modules by
default. This option sets the system to only build the modules once, during upgrades instead of the
kernel build. This can save a great deal of time if you experiment with a lot of different kernels
between upgrades. It can also cause weird problems. Use with caution.

NOMANCOMPRESS=true The upgrade install process compresses man pages to save space.
When you look at a man page, the system must first uncompress the page. If you have plenty of
space, and want slightly faster man−page access, you can set this option to install man pages in
uncompressed format.

COMPATxx=yes This option allows you to install system libraries for older versions of FreeBSD.
Simply replace the xx in COMPATxx to indicate the proper library version (COMPAT1X,
COMPAT20, COMPAT21, COMPAT22, COMPAT3X, or COMPAT4X). This is only necessary if you
have a binary built for an older FreeBSD version, and you want to continue to use it on your newer
system. You can specify multiple COMPATXX entries if desired.

Note The COMPATxx=yes option does not build the libraries from source; rather, uuencoded
libraries are simply stored in the source tree. If you've upgraded from source with a compat
library enabled once, you can safely remove it.

make.conf ports Options

The following options control the building process of add−on components. Some software will
change its behavior drastically depending on these options. For example, certain pieces of add−on
software are huge, and you might want to tell your system not to install them under any
circumstances. Other times you will want to inform the system that a component is available.

NO_X=true One of the biggest ports in FreeBSD is the X Window System, and many other ports
rely upon it. If you set this option to true, these ports will not attempt to build X as part of their
dependencies. This means some ports cannot be built at all, but they're useless without X anyway.

Some parts of the base system (particularly doscmd) include hooks to the X Window System by
default. If you do not have X on your system, and do not intend to have it, and do not want it
installed as a dependency to any other program, set this option.

206

NOPORTDOCS=true Various pieces of software in the ports collection have extensive
documentation that is generally installed under /usr/local/share. If you set this option, this
documentation is not installed. If you have a test machine or workstation where you can install the
documentation, you can set this option on your servers.

HAVE_MOTIF=yes Motif is a software graphics library that many ports try to use to provide various
graphic widgets. Motif was very expensive for several years, but free versions are available under
/usr/ports/x11−toolkits/lesstif and /usr/ports/x11−toolkits/open−motif. If you have either of these
toolkits installed, set HAVE_MOTIF.

/etc/master.passwd

This file contains usernames and passwords. When you log in, the password you type is compared
with the one in this file.

The /etc/master.passwd file is important enough that there's a special program just for editing it.
Vipw(8) calls up the text editor from $EDITOR, allows you to make your changes, and checks the
file syntax before allowing you to save it. Vipw also updates the password databases. This prevents
many of the more basic mistakes, but if you're really bent on corrupting /etc/master.passwd, vipw
will make life more difficult but won't stop you.

When vipw finally allows you to save your work, it also recreates the file /etc/passwd. This file can
only be read by root.

If the information in /etc/master.passwd conflicts with that in other files, programs generally assume
that /etc/master.passwd is correct. For example, /etc/group sometimes doesn't list a user's primary
group. The primary group that appears in /etc/passwd is correct, even when it isn't listed in
/etc/group.

Many programs need access to the information in /etc/master.passwd–for example, shells and
home directories must be public information. Rather than allowing anyone to read this file and try to
reverse−engineer the encrypted passwords, FreeBSD provides globally readable bits of this file in
/etc/passwd.

Fields

Each line in /etc/master.passwd contains ten fields, separated by colons. These are described in the
following sections.

Username The first field in lines in /etc/master.passwd is the username. This is either an account
created by the administrator and used by a real user, or a user created at install time to provide
some system service. FreeBSD includes a variety of system accounts, such as root, toor, daemon,
games, uucp, and so on. Each of these users owns some part of the system. Various programs can
run as these users.

Encrypted Password The second field is the encrypted password. System users don't generally
have a password, so you can't log in as them. User accounts have a string of random−looking
characters here.

One simple way to temporarily disable a user account is to edit the password file and put an asterisk
(*) in front of the password. While the account will still be active, nobody will be able to log in to it.
I've used this to great effect when a client was behind on a bill; they call quite quickly when they

207

can't log in.

User ID The third field is the user ID number, or UID. Every user has a unique UID.

Group ID Similarly, the fourth field is the group ID number, or GID. This is the user's primary group,
as discussed in Chapter 7. Usually, this is the same as the UID, and the group has the same name
as the username.

User's Class The next field is the user's class as defined in /etc/login.conf. You can change a
user's class by using vipw and editing master.passwd directly, or with chsh(1).

Password Expiration The sixth field is the password expiration field. If you leave this blank, or if
you're not running system accounting, passwords will not expire. The expiration field is filled in as
seconds since the epoch. (The epoch is midnight, January 1, 1970).

Number of Seconds Since the Epoch Similarly, the seventh field is the number of seconds since
the epoch until the entire account expires. If you aren't using system accounting, this is useless.

Gecos The gecos field contains the user's real name, office number, work phone number, and
home phone number, all separated by commas. Do not use colons in this field; colons are reserved
specifically for separating fields in /etc/master.passwd itself.

User's Home Directory The ninth field is the user's home directory. While this defaults to /home,
you can move this anywhere you like. You'll just need to move the actual home directory when you
change this field.

User's Shell Finally, the tenth field gives the user's shell. If this field is empty, the system assumes
the user gets boring old /bin/sh.

/etc/motd

The motd, or message of the day file, is displayed to users when they log in. You can put system
notices in this file, or other information you want shell users to see. Note that who sees this file is
controlled by the welcome option in /etc/login.conf. You can have multiple message files, one for
each login class.

/etc/mtree/*

The system upgrade processes use the /etc/mtree files. They have no effect on the daily running of
the system. Mtree(8) builds directory hierarchies, usually so an automated installer can put
programs in them. While you don't need to edit these files, it's nice to know why they're here.

/etc/namedb/*

The /etc/namedb files control the system nameserver. See Chapter 12 for details of how the files in
/etc/namedb work.

/etc/newsyslog.conf

This file configures the rotation and deletion of logs. See Chapter 19 for details of the system
logger.

208

/etc/passwd

Many programs require access to user information such as shell, real name, and so on. In older
UNIX systems, this was stored in the /etc/passwd file, along with the actual encrypted passwd, and
everyone could read this file. This became a problem as UNIX spread into universities. Computer
science students had great fun trying to crack encrypted passwords, and regretfully succeeded on
too many occasions. Hackers made /etc/passwd their target. Eventually, the encrypted passwords
were moved to /etc/master.passwd. The /etc/passwd file remained as an information source for
other programs.

The /etc/passwd file is generated from the /etc/master.passwd file by stripping out the class,
change, and expire fields. The encrypted password is replaced with an asterisk. These are the
remaining fields:

username•
password (asterisk)•
user ID number•
group ID number•
name•
home directory•
shell•

See the /etc/master.passwd section for details on these fields.

/etc/periodic.conf and /etc/defaults/periodic.conf

The /etc/periodic.conf file is another one with a default in /etc/defaults, and overrides in /etc.
Periodic(8) runs every day to handle basic daily maintenance. It's the source of the status
messages mailed to root every day, and it can handle a variety of tasks, which are stored as shell
scripts under /etc/periodic. (By default, periodic tries to run quite a few tasks that you might or might
not need; the scripts are generally intelligent, though, and put as little load as possible on the
system.) Every function available to the periodic program is enabled or disabled in periodic.conf.

Periodic runs programs either daily, weekly, or monthly. Each set of programs has its own settings;
for example, programs that run daily are configured separately from programs that run monthly.
These settings are controlled by entries in the /etc/periodic.conf file. Here are some standard entries
from that file.

...
periodic_conf_files=" /etc/periodic.conf /etc/periodic.conf.local"
...

The preceding line tells the periodic program where to look for override files, and you can choose a
location other than /etc/ for your customized configuration. Many systems mount their root
filesystem as read−only, so you can put your override file elsewhere if you need to.

daily_output="root" This option tells periodic where to send the results of its daily checks. If you
give a username, periodic will mail that user. Unless you have a user whose job it is to specifically
read periodic mail, it's best to leave this at the default and forward root's email to an account you
read. Alternatively, you can put a filename here and periodic will write to it like a log file. In this case,
you can have newsyslog (see Chapter 19) rotate the periodic log.

209

daily_show_success="YES" If daily_show_success is set to yes, the daily message will include
information on all successful checks.

daily_show_info="YES" When daily_show_info is set to yes, the daily message will include
general information from the commands it runs.

daily_show_badconfig="NO" The daily message will include information on periodic commands it
tried to run, but couldn't. These are generally harmless, and if you set daily_show_badconfig to no,
you won't miss much. If you're interested, however, you can set this to yes and get a look at
everything that happens.

Each of the scripts in the daily, weekly, and monthly directories under /etc/periodic has a brief
description at the top of the script. Skim through those quickly. The defaults that are enabled are
sensible for most circumstances, but there's extra functionality there that you might want to enable
on some systems. Each script has a tunable knob in /etc/periodic.conf to enable or disable it, and
more are being added continuously. Since anything I could list here would be obsolete before I
could deliver the manuscript, let alone before the book reached you, I won't go into detail about the
various scripts.

/etc/printcap

The /etc/printcap file controls printer setup. There are literally dozens and dozens of options for
printers, from the cost per page to manually setting a string to feed a new sheet of paper. (We won't
cover all of the options, but we will discuss the basics of printer management here.)

A UNIX printer system makes assumptions about a printer. By defining variables in /etc/printcap,
you tell your printer system how your hardware differs from the classic UNIX printers of two decades
ago. As you might guess, these differences can be extensive. (Fortunately, most printers
understand PostScript. This greatly simplifies printer maintenance.)

If you're using FreeBSD on a network with an existing print server, you probably want to use that
existing server. (See Chapter 21 for some example configurations.) When doing fine−grained printer
tweaking, you might need some of the more exotic options FreeBSD provides. We'll discuss some
of the ones you might need on a modern system in the following section.

Working with Printcap Entries

Each printer has its own /etc/printcap entry. Since all these variables let you create some very, very
long lines, use a backslash character (\) to indicate that the entry hasn't finished and is continued on
the next line. Use colons to separate variables. If you're using a backslash to make your entries
readable, the second and subsequent lines must have a colon at both the beginning and end of the
variable assignments.

The first entry in /etc/printcap is the printer name. If a printer has many names–such as "ThirdFloor",
"AccountingOffice", and "BigLaserJet", list all of those names, separated by the pipe symbol (|).

Note In FreeBSD, and almost all other versions of UNIX, the default printer is named "lp". Various
programs expect to find a printer named lp. It's simplest to assign this name to your preferred
printer.

After the printer's name, list the variables that define that particular printer. A comprehensive list
would contain much that you'll never need, but we'll look at some of the variables that are either in

210

more common use today or that are useful on modern networks. Let's first look at a simple sample
printcap entry and see how it's set up. Then we can examine the variables that allow you to
fine−tune your printer's behavior.

...
lp|SalesPS|ThirdFloorPrinter:\
 :rp=SalesPS:\
 :rm=printserver:\
 :sd=/var/spool/output/lpd:\
 :lf=/var/log/lpd−errs:
...

This printer is called lp, as well as SalesPS and ThirdFloorPrinter. The remote printer name, as the
print server calls it, is SalesPS. The print server is a machine with a TCP/IP network name of
printserver. Print jobs are stored in /var/spool/output/lpd while they're being processed, and printing
errors are logged to /var/log/lpd−errs. (See Chapter 21 for some hints on setting up a printer.)

The following are some of the most commonly set options for printing in UNIX.

...
:ct=120:
...

This is the network connection timout. You can use ct to control the timeout for remote network
printers. If a printer does not respond, the printer service will wait ct=x seconds before returning a
failure. The default is 120 seconds, which is far too high for a modern local area network. Usually, if
a printer doesn't respond within 30 seconds, you have a problem. Alternatively, if you're printing to
some device on another continent, you might need to increase this to as high as 240.

...
:fo=false:
...

This stands for "form feed upon open." If this is set, the system will start each printing job with a
blank sheet.

...
:if=/usr/libexec/lpr/input−filter:
...

As the preceding line shows, FreeBSD can preprocess printing requests it receives over the
network. This allows you to do some nifty things, such as make a boring desktop inkjet printer
behave like a PostScript printer. See /usr/ports/print/apsfilter for an excellent example of how this is
done.

...
:lf=/var/log/printername:
...

This lets you specify the log file for this particular printer.

...
:lp=/dev/lp:
...

211

These two lines identify the printer's device name. The default is correct for a device with one printer
attached to the back of a system via a parallel cable. If it's a network printer, create this as a null
entry, like this: :lp=:. If you have multiple parallel printers, you will need to specify the device
name for each printer.

...
:mx=1000:
...

This specifies the maximum size of a printer job in 512−byte (½KB) blocks. If you do heavy graphics
work, you probably want to set this to 0 for no maximum size.

...
:of=/usr/libexec/lpr/filter−program
...

This is the full path to the outbound printer filter. FreeBSD supports the ability to preprocess printer
output with the output filter option, as shown here. This can be useful for, say, converting PostScript
into regular output like the apsfilter package does. Many non−English languages have special
output filters; FreeBSD ships with output filters for Russian−language printing, and more will be
added as users contribute them.

...
:rm=printserver:
...

This entry identifies the hostname of the remote print server this printer is attached to. The printer is
expected to be running lpd, and to be able to accept the job. (Most print servers, even Windows
2000, can speak lpd.)

...
:rp=printerName:
...

This gives the name the print server uses for the printer you want to use. This is only needed if
you're printing to a print server.

...
:sd=/var/spool/lpd:
...

This is the spool directory, where the printing program stores files as it's processing them. Every
printer needs a unique spool directory.

/etc/profile

/etc/profile contains the default account setup information for the /bin/sh shell, much like /etc/csh.*
does for csh/tcsh users. Bash and other sh derivatives also use this file; whenever sh users log in,
they inherit what's in this file. However, users can override this file with their own .profile.

While csh is the standard FreeBSD shell, sh and its derivatives (particularly bash) are quite popular.
Consider keeping the /etc/profile and /etc/csh.login settings synchronized. The examples in
/etc/profile and the examples in /etc/csh.login are identical, so you already have a good starting

212

point.

/etc/protocols

In Chapter 5, we briefly discussed network protocols, and /etc/protocols lists the Internet protocols
your FreeBSD system is aware of. Each protocol has an assigned number; various programs use
these numbers to determine how they handle transactions.

Almost all Internet transactions happen over IP, TCP, or UDP. Most people don't realize that there
are dozens of protocols, and that IP is protocol 0, TCP is protocol 6, and UDP is protocol 17. Some
protocols are heavily used in specific environments, and others are so outdated you'll probably
never encounter them. As a systems administrator, you don't have to be familiar with every piddly
little protocol out there, but you should know that the world is bigger than TCP/IP and have some
basic information about other protocols.

Each protocol has its own line in /etc/protocols. The first entry on a line is the official name, such as
tlsp in the output that follows. The second line is the protocol number, 56 in this example. Following
that are any aliases for the protocol, such as TLSP. Finally, comments are set off with a pound (#)
sign.

Here's a snippet from /etc/protocols:

...
tlsp 56 TLSP # Transport Layer Security Protocol
skip 57 SKIP # SKIP
ipv6−icmpc 58 IPV6−ICMP # ICMP for IPv6
ipv6−nonxt 59 IPV6−NONXT # no next header for ipv6
...

Raise your hand if you've ever heard of any of these protocols. Yep, that's what I thought. There's
nothing to worry about, though; remember, you don't have to know everything, you just need to
know where to find out about it.

Note The list in /etc/protocols is well maintained by the FreeBSD Project. You will
probably never have to edit it unless a specific piece of software requires its own
entry.

/etc/pwd.db

The /etc/pwd.db file is a database version of /etc/passwd, and it exists because a computer program
can access /etc/pwd.db much more quickly than it can parse a text file. The /etc/pwd.db file is
world−readable, and since /etc/passwd deliberately contains no secure information, this is perfectly
safe.

The password database files are the reason why it's so important that you use tools such as
passwd(8) and vipw(8) to edit your password file. Each of these tools automatically runs
pwd_mkdb(8) when they're finishing their work. Pwd_mkdb rebuilds the password databases. If your
/etc/passwd and /etc/pwd.db files are not synchronized, you will have a variety of weird user errors.

Unless you are a database hacker, under no circumstances should you use database tools to
change this file. Let the password tools do their work.

213

/etc/rc

Whenever your system boots to the point where it can execute userland commands, it runs the shell
script /etc/rc. This script mounts all filesystems, brings up the network interfaces, configures device
nodes, sets up shared libraries, and does all the other tasks required to set up a system.

There are an awful lot of tasks, and some of them aren't necessary on all systems. If your system
doesn't use its serial ports, for example, you don't need to run the script to configure them. Similarly,
a system that doesn't use ATM networking doesn't need to run the scripts to configure that.

Rather than having a monolithic script containing everything, some system startup tasks are broken
up into smaller scripts, which keeps the scripts smaller and easier to debug. When /etc/rc needs to
start the logical network, for example, it runs /etc/rc.network.

The other shell scripts used by /etc/rc include the following:

/etc/rc.atm This script configures Asynchronous Transfer Mode (ATM) networking. (If you have an
ATM card in your FreeBSD box, you'll know it–it probably cost more than the rest of your system
combined.)

/etc/rc.diskless1 and /etc/rc.diskless2 If you're running a FreeBSD system without a hard disk,
these scripts will be run. This is an interesting FreeBSD function that we're not going to discuss,
because implementing it requires a seasoned UNIX administrator. By the time you've mastered this
book, however, you'll be ready to dig into diskless operations.

/etc/firewall This script contains basic configuration information for ipfw. If you're using ipfw, you
can use this as a sample.

/etc/rc.firewall6 This script contains ipfw configurations for people using IPv6.

/etc/rc.i386 Any FreeBSD system on the X86 architecture–the standard "Intel PC" platform–runs
this script at boot.

/etc/rc.isdn If you're using the built−in metered ISDN support, you'll use this script. This is moot for
people with unmetered ISDN support, such as most of the United States, but it is crucial in Europe,
Australia, and other areas where ISDN connection time is billed by the minute.

/etc/rc.network This script is where network configuration occurs.

/etc/rc.network6 This script handles IPv6 network configuration.

/etc/rc.serial This script sets sane defaults so that your serial ports will just work out of the box.
(Serial ports are infinitely configurable, and without some setup they don't behave as you would
expect.)

/etc/rc.syscons This short script sets up your terminal settings, console screensaver, keyboard
maps, and other console settings.

/etc/rc.sysctl This script sets sysctl values from /etc/sysctl.conf (see Chapter 4).

You configure /etc/rc through /etc/rc.conf and /etc/defaults/rc.conf. Essentially, you set variables in
/etc/rc.conf that control how /etc/rc behaves, what it starts, and how the system is set up on boot.

214

Note If you ever wonder how FreeBSD configures something when it boots, /etc/rc is your friend.
Find the variable in /etc/defaults/rc.conf that makes your system behave in the desired
manner. Search the /etc/rc scripts for that variable—you can do this easily with grep −i
variablename /etc/rc.*. When you find out which file the variable is used in, look at it.
Reading that section of the rc script will give you the command that can be used to tweak that
behavior. Then all you have to do is toddle off to the man page and read about it.

/etc/rc.conf and /etc/defaults/rc.conf

The /etc/defaults/rc.conf file is huge, and it contains quite a few variables, frequently called knobs,
tunables, or even tunable knobs. We aren't going to discuss all of the variables, not only because
knobs are added continually (such a list would be immediately obsolete), but also because quite a
few variables aren't commonly used on servers.

Almost everything in the standard FreeBSD system can be an rc.conf tunable, from your keyboard
map to your TCP/IP behavior. If you have a problem using these knobs, definitely check
/etc/defaults/rc.conf or rc.conf(5) on your system to see if anything has changed.

In the next few sections, we'll examine some common entries from /etc/rc.conf. Each of these
appears once in /etc/defaults/rc.conf, and can be edited by placing an override in /etc/rc.conf.

These are only the most common options. The /etc/defaults/rc.conf file contains literally hundreds of
possible options. The rc.conf(5) man page is well worth a read if you're interested in fine−tuning
your system.

Startup Options

The following few rc.conf options control how FreeBSD configures itself and starts other programs.

Once all other startup tasks are complete, /etc/rc checks the directories listed in the following
variable for additional executables (generally shell scripts) and runs any it finds:

...
local_startup=``/usr/local/etc/rc.d /usr/X11R6/etc/rc.d''
...

Most ports that are started at boot time install their startup scripts in /usr/local/etc/rc.d. If you're
installing your programs in some other place, change this path to reflect your startup directory.

Files listed in the following variable are "additional" rc.conf files:

...
rc_conf_files=``/etc/rc.conf /etc/rc.conf.local''
...

You can choose to add additional rc.conf files. For example, you might have an rc.conf file that you
share among all of your servers that defines things such as network services and system behavior,
and a separate rc.conf file that defines the IP address and hostname for this particular system. Such
customizations can greatly simplify central administration of large server farms.

215

While /etc/rc.conf is traditionally the centrally maintained file, /etc/rc.conf.local is for the local
system. You can even create your own rc.conf files in arbitrary locations on the system. While this
probably isn't a good idea, it gives you some added flexibility if you have an odd situation.

Network Options

These options control how FreeBSD sets up its networking features during boot.

hostname="" The hostname setting specifies the full domain name of the system, such as
"http://www.absolutebsd.org/". It should have been set during the install— you must set it for
programs to run properly.

tcp_extensions="NO" TCP has changed over the years, with several changes and additions to the
TCP protocol being lumped together as "TCP Extensions" per RFC 1323. While some applications
can take advantage of TCP extensions, many can't. FreeBSD defaults to a conservative, disabled
setting. Set this option to "YES" if your application requires it.

Note If one host is using TCP extensions and another isn't, you may see performance
problems. For that reason, TCP extensions are not recommended for Web or FTP
servers. Even though most modern systems use RFC 1323 extensions, you
probably don't want to make life difficult for the oldest systems on the Net. Cutting
off 10 percent of your potential users isn't a great idea.

log_in_vain="NO" This option logs to /var/log/messages all attempts to connect to your system on
a TCP or UDP port where nothing is listening. This log shows port scans and network probes, but
also picks up a lot of garbage. It's interesting to set for a time, just to see what happens, but unless
you're actually going to read the log, it's just a waste of processor time and disk space. In later
versions of FreeBSD, the "YES" and "NO" answers have been replaced by "0" and "1", respectively.

tcp_drop_synfin="NO" To use this option, you must have TCP_DROP_SYNFIN compiled into
your kernel. This option is not in GENERIC.

This option drops packets that have both the SYN and FIN flags set, and network scanners use it to
identify remote operating systems. However, dropping these SYN+FIN packets violates the TCP
specifications, and can cause odd network problems. If you have problems, try turning this off and
seeing if your problem goes away.

icmp_drop_redirect="NO" ICMP redirects are used on local networks to inform servers of
additional network gateways. While there are legitimate uses for ICMP, it's also commonly used by
hackers. As such, if you aren't using ICMP redirects on your network, you can set this option for a
tiny measure of added security. If you're not sure if you're using them, ask your network
administrator. If you are the network administrator, and you're not sure, then you aren't using them.

icmp_log_redirect="NO" If you are using ICMP redirects on your network and want to monitor
them, you can set this option to log them to /var/log/messages.

There's no limit to the number of ICMP redirects you can log, and when you're under attack or
having network problems, it's pretty easy to fill up your hard disk with these messages. Use this
option with care!

network_interfaces="auto" This variable contains the list of network interfaces, as shown by
ifconfig. If you have an unusual network interface, it's possible (but not likely) that you could have

216

problems with interfaces not being configured on boot. In that case, try listing your interfaces
manually in this variable, as in "lo0 ep0 wi0". While this probably isn't your problem, it's nice to
be able to rule it out.

ifconfig_lo0="inet 127.0.0.1" List each of your network interfaces in this option, on their own line,
with network configuration information. Substitute the correct name of your interface for lo0. For
example, to give your ep0 network card an IP address of 192.168.1.200 and a netmask of
255.255.255.0 at boot, you would use this:

...
ifconfig_ep0="inet 192.168.1.200 netmask 255.255.255.0"
...

If you're using DHCP on your network, set the interface value to dhcp.

ifconfig_ep0_alias0="inet 192.168.1.201" FreeBSD allows you to assign hundreds of IP
addresses to a network card. One IP address is the primary address, while the others are aliases.
List each alias in this form:

...
ifconfig_interfacename_aliasnumber="inet IP address"
...

The alias numbers must be continuous, starting with 0. If there's a break in the numbering, aliases
above the gap will not be installed at boot time. (This is a common problem, and if you see it, check
your alias list.)

Dial−up PPP Options

The rc.conf file has several options for handling dial−up PPP. We don't do much with PPP in this
book, but you should know about these options in case you need them.

ppp_enable="NO" If you set this option to "YES", the system will start the ppp program
automatically. (You will still need to configure it to actually do anything.)

ppp_mode="auto" You have four choices for this option:

"auto" tells the system to dial out to the Internet automatically on demand.•
"dedicated" is used for systems with a dedicated connection. This isn't appropriate for a
dedicated phone line–it's for serial lines into other computers.

•

"direct" is for receiving dial−up calls from a modem. (See ppp(8) for details.)•
"ddial" is for dedicated phone−line access. Use this if your system is connected to the
Internet by a dial−up line, and you want to automatically redial when something out in Phone
Company Land disconnects you.

•

217

ppp_nat="YES" The ppp program has built−in Network Address Translation services. Set this
option if you're using your FreeBSD box as a network gateway and connecting via dial−up.

ppp_profile="papchap" You can define a variety of dial−up profiles in /etc/ppp/ppp.conf; the
"papchap" profile is the default.

Miscellaneous Network Daemons

FreeBSD includes a variety of smaller daemons to handle assorted services. You can configure
them from rc.conf.

syslogd_enable="YES" If you want to have your system log work, keep this option. I discuss
syslogd in great detail in Chapter 19.

syslogd_flags="−s" The default for syslogd_flags means that only allowed servers (specified in
syslogd_flags) can connect to yours. By default, this prevents unauthorized servers from connecting
to you.

Originally, syslogd accepted log messages from any server on the Net, but if that were the case,
someone would probably fill up your hard drive with their log messages. To allow a particular host to
send messages to syslogd, specify them with the −a option. You can specify the host by IP address,
with a netmask specified as a number of bits (see Chapter 5).

For example, to allow your host to take log messages from anything in the 192.168.0.0 to
192.168.0.255 range, you would use this:

...
syslogd_flags=" −s −a 192.168.1.0/24"
...

You can also specify hostnames:

...
syslogd_flags="−s −a mail.absolutebsd.org"
...

The hostname entry relies on reverse DNS. If someone on another network changed her host's
reverse DNS to match an allowed host, she could log authentic−looking messages to your server.
Using IP addresses is just a better idea.

inetd_enable="NO" This option disables the inetd server (see Chapter 13). If you want to run inetd,
set this option to "YES".

named_enable="NO" Because named requires configuration to be useful, FreeBSD ships with it
disabled by default (see Chapter 13). Set this option to "YES" to run named.

named_program="named" If you've built a custom named, give the full path to it here. Several
customized nameservers are available in the ports collection (see Chapter 10).

named_flags="−u bind −g bind" This option gives flags to named(8). The defaults are reasonable,
but you can put any legitimate options you like into this field. See Chapter 12 for details on named.

218

sshd_enable="NO" This option disables or enables the SSH daemon. Enable this if you want to
connect to your system over the network securely. See Chapter 13 for details on configuring sshd.

sshd_flags="" The SSH daemon can be configured via flags on the command line, but you're
better off editing /etc/ssh/sshd_config to tweak your ssh service.

...
ntpdate_enable="NO"
ntpdate_flags="−b"
xntpd_enable="NO"
xntpd_flags="−p /var/run/ntpd.pid"
...

These four variables control the behavior of the network time−keeping daemons. See Chapter 13
for details on these programs.

Network Routing Options

FreeBSD configures routing separately from the main network options.

defaultrouter="" This option is where you list the IP address of your default router.

gateway_enable="NO" Set this option to "YES" if your system has multiple network interfaces, and
you want to transmit packets from one network to another via these interfaces. The system will
become a gateway, passing traffic from one interface to another.

router_enable="NO" If your system is a gateway, and you want it to get its routing table via the
RIP protocol, set this option to "YES". Otherwise, don't go near it!

Console Options

The console options control how the monitor and keyboard behave. You can change the language
of your keyboard, the font size on your monitor, or just about anything you like.

keymap="NO" You can choose to use a different keyboard map with the keymap option. Quite a
few keyboard maps are available under /usr/share/syscons/keymaps, with different arrangements
for different countries.

I use the Dvorak keyboard layout, which is set quite easily with these lines:

...
keymap="us.dvorak.kbd"
...

blanktime="300" The blanktime field specifies the number of seconds the keyboard is idle before
FreeBSD tells the monitor to go into power−save mode, 300 seconds in this case. If you set this to
"NO", FreeBSD will not blank the screen.

Note Some newer hardware has automatic screen−blanking features. If your monitor insists on
going idle when this option is set to "NO", check your BIOS and your monitor manual.

219

moused_enable="NO" Enable this option to use your mouse on the console. Console mouse
allows you to highlight, copy, and paste.

moused_type="auto" Mice use a variety of different protocols to translate wheel motion into
pointer actions. While FreeBSD is pretty good at automatically detecting the protocol your mouse
uses, if autodetecting your mouse doesn't work, you can set this manually. See moused(8) for
possible options.

moused_port="/dev/psm0" This option specifies the physical port your mouse is attached to. The
default, /dev/psm0, is the PS/2 mouse port. If you have a serial mouse on serial 0 (com1), set this
option to /dev/cuaa0. The second serial port is /dev/cuaa1.

moused_flags=`` '' The mouse daemon is highly configurable to support the wide variety of mice
that have been hooked up to FreeBSD machines over time. Today though, most mice are either
USB or PS/2, so these options are generally useless. See moused(8) for details on how to make
your ten−year−old serial trackball that demands 1350 baud work properly.

The one option still popular today is −3. Traditional UNIX mice have from three to five buttons.
Many UNIX programs assume that you have a third mouse button. This flag allows you to emulate a
third mouse button by pressing both buttons simultaneously.

Other Options

Finally, we have a few options that don't fit well into any other category.

lpd_enable="NO" Set this option to "YES" if you want to print from this system. See Chapter 21 for
details on basic printing.

usbd_enable="NO" Enable this option if you have USB devices.

sendmail_enable="NO" This option allows your system to receive email from other systems. Only
enable this if your system is a mail server.

sendmail_outbound_enable="YES" This option allows your system to send email to other
computers. You almost certainly want this on all your systems.

dumpdev="NO" To save kernel images after a panic (for crash debugging), set this option to the
name of a swap partition. The partition must be the same size as your physical memory, or larger.
Check /etc/fstab for the name of your swap partition. On my laptop it's /dev/ad0s1b, and I set it like
this:

...
dumpdev="/dev/ad0s1b"
...

See Chapter 20 for lots of detailed discussion on how the dumpdev is used during a system crash.

ibcs2_enable="NO" This option enables or disables the kernel's SCO UNIX compatibility. See
Chapter 11.

220

linux_enable="NO" This option enables or disables the kernel's Linux compatibility module. See
Chapter 11.

svr4_enable="NO" FreeBSD has a compatibility module for UNIX System V, and this option
enables or disables that module. See Chapter 11 for details.

osf1_enable="NO" DEC Digital UNIX only runs on the Alpha. Since FreeBSD runs on the Alpha, a
compatibility module exists, and this option enables or disables it. This option is useless on X86
hardware. We won't discuss the option except in the abstract, but it's nice to know that the option
exists.

clear_tmp_enable="NO" Older UNIX systems erase the contents of /tmp at boot. FreeBSD doesn't
do this by default, but you can enable this behavior here.

ldconfig_paths="/usr/lib/compat /usr/X11R6/lib /usr/local/lib" This option lists the directories
where shared libraries are stored. For most installations the default setting is adequate. If you find
yourself setting LD_LIBRARY_PATH for all your users, however, you should look at adjusting this
option instead. See Chapter 11 for more hints.

kern_securelevel_enable="NO" Set this option to "YES" to enable the FreeBSD kernel's security
features at boot. See Chapter 7.

kern_securelevel="−1" If you've enabled kernel security, you can choose your securelevel with
this option. See Chapter 7.

start_vinum="NO" Set this option to "YES" if you're using the Vinum software RAID machine. See
Chapter 17.

rc.shutdown

When you issue a shutdown or reboot command, the system runs rc.shutdown. This script searches
through your local startup directories as specified in /etc/rc.conf, running each shell script it finds
with a "stop" argument.

If you need the system to take a particular action upon shutdown, you can add the appropriate shell
commands to the end of /etc/rc.shutdown. Most packaged software automatically includes the
appropriate shutdown commands in its /usr/local/etc/rc.d script, so you shouldn't have to do this.
You might have custom shutdown commands, however, which would be appropriate to add here. If
at all possible, however, just create a script in a startup directory.

/etc/resolv.conf

The /etc/resolv.conf file configures how the system DNS resolver works. See Chapter 12.

/etc/security

The /etc/security file is a straightforward shell script run each day by periodic(8), and you can edit it
as you like. It performs a variety of simple system−integrity checks, such as checking for changes to
/etc/master.passwd, mounted filesystems, and kernel log messages, and its output is mailed to root
every day. To disable it entirely, you can do so in /etc/periodic.conf with this setting:

...

221

daily_status_security_enable="NO"
...

Generally, the security output is worth having because it can point out a variety of system problems
as well as security issues.

/etc/services

This file lists many commonly used network ports. See Chapter 5.

/etc/shells

/etc/shells contains a list of all legitimate user shells. Installing a shell via a port or a package adds
an appropriate entry in /etc/shells, but if you compile your own shell from source, without using a
port, you'll need to edit this file. Shells are listed by their complete path name.

The FTP daemon will not allow a user to log in if his shell is not listed in /etc/shells. If you're using
/sbin/nologin as an FTP−only user shell, you need to add it to this file, though a better way to handle
this is with login classes (see /etc/login.conf).

/etc/spwd.db

This file resembles /etc/pwd.db, but is based on /etc/master.passwd. It contains all user account
information in a database form, so other programs can quickly access it. Since it contains
confidential information, only root can read it. See /etc/pwd.db and /etc/master.passwd for details.

/etc/ssh

This file controls how your system's SSH server and client behave. See Chapter 13 for details.

/etc/sysctl.conf

This file contains information on which kernel sysctls are set during the boot process. See Chapter
4.

/etc/syslog.conf

This file controls which data your system logs. See Chapter 19.

[1]Remember Chapter 8? This is a default accept security stance.

222

Chapter 10: Making Your System Useful

Overview

Unlike operating systems such as Microsoft Windows and Red Hat Linux, which tend to throw
absolutely anything you might need into the base install, BSD systems are sparse—and that's a
good thing.

For example, a Windows 2000 Professional system I'm using at a client site, with a "minimal" setup,
has 1,768 items in its main system directory (C:/WINNT/system32), and just about every shared
library (aka DLL, or dynamic−link library) ever. Whenever I boot the system, these DLLs are all
loaded into the system memory. I don't know what each DLL is for, but I guarantee that I will never
use many of them—the only software I use on that machine is SSH and Mozilla. All they do for me
is soak up RAM.

This is, of course, Microsoft's approach to operating systems—give ’em everything you've got, and I
mean everything. In contrast, Red Hat Linux installs a similar amount of stuff, but much of it is actual
programs. You might never use most of those programs, but at least all those files aren't
automatically loaded into the system memory at boottime.

A basic BSD install, however, gives you exactly enough to make the system run, plus a few extra
bits that have been traditionally included with UNIX systems. You get to choose during setup
whether to install additional programs or source code. However, even a complete, running BSD
install takes far less disk space than the Windows 2000 system32 directory mentioned
previously—the complete FreeBSD install includes far less than Windows. A Windows install that
only supported SSH and Mozilla would be much smaller and simpler—in fact, it would look a lot
more like a FreeBSD install.

The advantage to this sparseness is that it gives you only what you need for your system. This
makes debugging a problem much simpler and helps to ensure that some shared library you've
never even heard of, and would never use, won't break your system. The downside is that you may
need to do a bit of thinking to determine what it is that you do need, and you'll have to install those
extra, but necessary, programs. FreeBSD solves that problem by making software installation as
simple as possible.

Making Software

Building software is complicated because source code must be treated in a very specific manner to
create a workable, running binary—let alone an optimized one!

While programmers could include installation instructions with each program, full of lines like "Now
type cc CPUTYPE=i686 −ohttpd −I/usr/src/crypto/kerberosIV/include −lcrypto
−lkrb," they don't. Programmers don't put up with this sort of garbage for long. If it can be
automated, it will be, which is a good thing for those of us who need to install programs.

The main tool for building software is make(1). Make looks for a file called Makefile in the current
directory, which is full of instructions much like that horrid example in the previous paragraph. When
it finds the Makefile, make reads the instructions and carries them out. Makefiles are long and
complicated creatures, and you don't really have to know their internals, so we're not going to
dissect one here.

223

Each Makefile includes various targets, or types of instructions to carry out. For example, make
install tells make to check the Makefile for a procedure called "install". If make finds such a
procedure, it will execute it. Each target contains one basic step in building, installing, or configuring
the software. We'll discuss various common make targets in this chapter, and when to use them.

Make can handle a huge variety of functions, some of which far outstrip the original intentions of the
creators. But that's what UNIX is for, isn't it?

Note Be sure that you're in the same directory as the Makefile when you run make. While
this isn't strictly necessary, it will make your life simpler.

The Pain and Pleasure of Source Code

Source code is the human−readable instructions for building the actual machine code that makes up
a program. You might have already been exposed to source code in some form. If you've never
seen source code, take a look at the various files under /usr/src.

While you don't have to be able to read source code, you should be able to recognize it two out of
three times. Here's a snippet of source code from FreeBSD's network stack:

...
/* While we overlap succeeding segments trim them or,
* if they are completely covered, dequeue them.
*/
while (q) {
 register int i = (th−>th_seq + *tlenp) − q−>tqe_th−>th_seq;
 if (i <= 0)
 break;
 if (i < q−>tqe_len) {
 q−>tqe_th−>th_seq += i;
 q−>tqe_len −= i;
 m_adj(q−>tqe_m, i);
 break;
 }
..

Once you have the source code for a program, installing it is pretty straightforward. You build (or
compile) the program on the system you want to run it on.[1] If the program was written for an
operating system that is sufficiently similar to the platform you're building it on, it should work. If your
platform is too different from the original, it will fail. Once you've built the software successfully on
your platform, you can copy the resulting program (or binary) to other identical platforms, and it
should run.

Some programs are written well enough that they can be compiled on many different platforms. A
few programs specifically include support for widely divergent platforms; for example, the Apache
Web server can be compiled on both Windows and UNIX just by typing make install. This is
quite uncommon, however, and represents a truly heroic effort by the software authors.

Note While you can copy a compiled program to a foreign system and try to run it, this is
general ly doomed to fai l . In most cases, one operating system cannot
out−of−the−box run programs for another operating system. (FreeBSD can, with
some configuration; see Chapter 11.)

224

Debugging

Generally speaking, if you can build a program from source, it will run on your UNIX; if you cannot,
the program will not run. When you have the source code, however, a sufficiently experienced
sysadmin can learn why a program won't build or run. In many cases, the problem is simple and can
be fixed with minimal effort. (This is one reason why access to source code is important.)

Back when every UNIX administrator was a programmer, this debugging absorbed a major portion
of the admin's time. Every UNIX was slightly different, so all systems administrators had to
understand the platform a program had been written for, and its differences from their platform,
before they could hope to get a chunk of code to run. The duplication of effort was truly monstrous.

Slowly, tools such as autoconf and configure were created to help address these cross−platform
issues. Still, not every program used these tools, and when they broke, the administrator returned to
square one. Systems administrators had to edit source code and Makefiles just to have a chance of
making programs work.

[1]It is possible to build software on a foreign platform via something called "cross−compiling."
Cross−compiling demands you know much more about building software than we want to go into
here, though.

The Ports and Packages System

The FreeBSD ports and packages system is a software−building system designed to simplify the
configuration and installation of software. It started addressing program−building issues back in
1995.

Ports are instructions for compiling software on FreeBSD, and packages are simply precompiled
ports. Packages install more quickly, and can save you time. Ports install more slowly, but will
accept changes from your environment (changes you specify in /etc/make.conf).

The basic idea behind the ports and packages system is very simple: If software must be modified
to run on BSD, then the modifications should be automated. If you're going to automate the
changes, you might as well record what the program includes so you can easily install and uninstall
it. And since you have a software−building process that produces exactly the same result each time,
and you've recorded everything that the program−building process creates, you can copy the
binaries and install them on any similar FreeBSD system. This is the basis of the ports and
packages system.

The whole system is called the ports collection, the ports tree, or even just ports. When someone
uses one of these terms, he's generally including the ports, the system for building ports, and
packages.

Ports

A port is a set of instructions on how to apply fixes to, or patch, a set of sourcecode files. By
combining patches with installation instructions, FreeBSD can maintain a complete record of
everything the software−install process has done. This frees you from struggling to install a
program, and allows you to concentrate on making the program work properly instead.

If you followed the installation hints in Chapter 1, you installed the ports tree in /usr/ports, something
like the following listing:

225

..
ls /usr/ports/
INDEX cad games misc ukrainian
LEGAL chinese german net vietnamese
Makefile comms graphics news www
Mk converters hebrew palm x11
README databases irc picobsd x11−clocks
Templates deskutils japanese print x11−fm

Tools devel java russian x11−fonts
archivers distfiles korean science x11−servers
astro editors lang security x11−toolkits
audio emulators mail shells x11−wm
benchmarks french math sysutils
biology ftp mbone textproc
#
..

If you don't see something like this listing in usr/ports, you need to install the ports to continue. To
do so, visit your nearest FTP FreeBSD server, and check the directory for the FreeBSD version
you're running; you'll find a directory called ports. Look for two files, ports.tgz and install.sh;
download both and run install.sh. When you've finished, you should see something like the previous
listing.

The directories shown in the previous list are software categories. Each category contains a further
layer of directories, and each directory under a category is a port of a piece of software. Since
FreeBSD has almost 6,000 ports as I write this, this directory tree is vital to keeping them in any sort
of order!

The following listing shows the contents of the "astro" ports category, where astronomical software
supported by FreeBSD is kept. (Yes, people use FreeBSD for serious astronomical work.) This
category might not be of much interest to most people, but it has the serious advantage of being
small enough to print in a book. Some ports categories, such as "www", have hundreds of entries.

..
#ls /usr/ports/astro/
Makefile p5−Astro−SunTime sunclock
SETIsupport p5−Astro−Sunrise tkseti
dgpsip p5−GPS wmglobe
ephem p5−Geo−METAR wmmoonclock
fooseti pkg wmspaceweather
gkrellmearth pyweather wmsun
gkrellmoon rmap x3arth
glunarclock saoimage xearth
jday sattrack xephem
ksetiwatch seti_applet xglobe
luna setiathome xphoon
openuniverse sscalc xplanet
p5−Astro−MoonPhase stars xtide
#
..

226

Finding Software

Some of the categories have hundreds of ports, so how can you ever find anything? For an index of
ports, see /usr/ports/INDEX, which contains a list of all the ports, in alphabetical order. Each port is
described on a single line, with fields separated by pipe symbols (|).

While this is a convenient format for the various system tools to access, it's not particularly
human−readable. For you to start reading the index file, you need to know what each field means.
(Some of the fields appear redundant, but they're needed for reasons we'll get to later.) Here's a
sample entry, with a line break at each delimiter to make it easier to understand:

..
v fooseti−0.6.5|
w /usr/ports/astro/fooseti|
x /usr/local|
y GTK+ frontend to SETI@Home|
z /usr/ports/astro/fooseti/pkg−descr|
{ petef@databits.net|
| astro|
} XFree86−3.3.6_9 gettext−0.10.35 glib−1.2.10_3 gtk−1.2.10_2|
~ XFree86−3.3.6_9 gettext−0.10.35 glib−1.2.10_3 gtk−1.2.10_2|
� http://www−personal.engin.umich.edu/~agorski/fooseti
..

The first field (v) is the name and version number of the software package—in this case, fooseti
vers ion 0 .6 .5 . The second f ie ld (w) i s the d i rec to ry where the por t can be found
(/usr/ports/astro/fooseti), and the next (x) is the default installation location. The fooseti port, for
example, installs under /usr/local unless the administrator chooses a separate location. Following is
a short description of the software package (y).

The fifth field (z) gives the location of a file, with a more complete description of the software. The
email address field ({) lists the software's FreeBSD maintainer, someone who has assumed
responsibility for making sure the port works properly. Next is the category (|), the directory under
/usr/ports where the port directory lives.

Field eight (}) contains the list of ports needed to build this software. Many ports require other ports
as prerequisites; for example, a piece of software might require a special version of make to build,
called a build dependency. This example needs XFree86, gettext, glib, and gtk.

The ninth field (~)lists the ports needed to run this software. Many ports have such runtime
dependencies in addition to the build dependencies, meaning that when the program runs, it tries to
call other programs. If the program's dependencies are not found, the program cannot run. Our
example has identical buildtime and runtime dependencies, though this is not always the case.

Last is the URL of the program's home page (�).

Note If you forget what each field means, make print−index will print out a much longer, but
prettier, list of everything in the index.

227

Finding by Name

Knowing what the index contains is nice, but how can it help you find a piece of software?

Well, if you know the exact name of the software package, you can use a simple grep command to
pick it out. This is quick and easy, but it only works if you're comfortable with grep(1) and you know
the exact name of the software in the FreeBSD ports tree. For example, to find staroffice you might
enter this grep command:

..
grep −i ^staroffice INDEX
staroffice−5.1a|/usr/ports/editors/staroffice5|/usr/local|Integrated
wordprocessor/dbase/spreadheet/drawing/chart/browser|/usr/ports/editors/staroffice5/
pkg−descr|mb@imp.ch|editors linux|unzip−5.42|linux_base−6.1|
staroffice−5.2|/usr/ports/editors/staroffice52|/usr/local|Integrated
wordprocessor/dbase/spreadheet/drawing/chart/browser|/usr/ports/editors/staroffice52
/pkg−descr|mb@imp.ch|editors linux|linux_base−6.1||
#
..

This output shows us that we have two different versions of staroffice available, version 5.1a and
version 5.2. Both are available under /usr/ports/editors, in staroffice5 and staroffice52, respectively.

Finding by Partial Name

If you don't know the software's exact name, try the ports collection's search feature. The make
search command scans the ports index for you, searching either for the name of a port or ports
where a word appears.

For example, if you're looking for the popular Midnight Commander file manager, you might try this
command:

..
make search name=midnight
#
..

Well, that was less than helpful.

Finding by Keyword

If that search doesn't work, as in the preceding example, you can try a more generic search using
the key option. This search scans more fields, returning more hits. (Though if you're searching for a
common word, the key search can provide far too much information.)

Here's how to use the key search on the word "midnight":

..
make search key=midnight
Port: mc−4.5.54_2
Path: ? /usr/ports/misc/mc
Info: Midnight Commander, a free Norton Commander Clone

228

Maint: gnome@FreeBSD.org
Index: misc
B−deps: gettext−0.10.35 glib−1.2.10_3 gmake−3.79.1
R−deps: gettext−0.10.35 glib−1.2.10_3
#
..

Aha! Midnight Commander can be found under ? /usr/ports/misc/mc.

Other Ways to Browse the Ports Collection

If you prefer working with a Web browser, you can build an HTML index. Just go to /usr/ports and,
as root, type make readmes to generate a file (README.html) with the contents of your ports tree.
(You can click through various categories, and even view detailed descriptions of each port.)

I f n o n e o f t h e s e o p t i o n s w o r k , t r y t h e F r e e B S D P o r t s T r e e s e a r c h s e r v i c e a t
http://www.FreeBSD.org/cgi/ports.cgi.

Between the Web browser and the search engine, you should be able to find a piece of software to
meet your needs.

Legal Restrictions

While most of the software in the ports collection is free for noncommercial use, some of it includes
unusual legal restrictions. The /usr/ports/LEGAL file lists legal restrictions on various pieces of
software. The most common restriction is a prohibition on redistribution; the FreeBSD Project does
not include such software in its CD−ROM distributions, just instructions on how to build it. For
example, for a long time FreeBSD did not have a Java license. The Project was not allowed to
distribute the Java source code or compiled binaries. They could distribute instructions on how to
build the source code, however. You could go to a Sun Microsystems Web page, download the
Java source, and build your own version of Java on FreeBSD.

Similarly, some pieces of software prohibit commercial use or embedding in commercial products. A
few cannot be exported from the United States, thanks to International Traffic in Arms Regulations
(ITAR)—they contain cryptography and are classified as "munitions."[2] If you're building FreeBSD
systems for redistribution, export, or commercial use, you'll definitely want to chck this file.

Fortunately, the software required for providing network services is free for either commercial or
noncommercial use. These restricted packages are the exception, not the rule.

[2]Most of this software is available from non−US sourecs, and can be downloaded anywhere in the
word. The official FreeBSD CD−ROM' images are generated in the United States, however.

Using Packages

Packages are precompiled software for a particular version of FreeBSD. We're going to discuss
using packages first, as they're generally easier and faster to use than ports. Once you have a grip
on packages, we'll go on to ports.

Unless a piece of software has legal restrictions against being distributed in compiled form, it's
available as a package. Other software (such as Microsoft Word[3]) is only available in precompiled
form. Packages are available on CD−ROM and via FTP.

229

Installing software as a package can save you a great deal of time because you don't have to spend
your time compiling from source. To install a package, find its name by searching the ports tree, as
described earlier.

Installing from CD−ROM

If you have a FreeBSD CD−ROM set, you already have a fairly extensive collection of compiled
packages. To use them, all you need to do is mount the CD and read the package file.

We'll discuss mounting and unmounting media in detail in Chapter 16, but here are the basics.

Put your CD in its drive, become root, and type this command:

..
mount −t cd9660 /dev/acd0c /cdrom
#
..

The contents of your CD−ROM are now available under /cdrom.

Note You won't be able to eject the CD−ROM while you're using it, or while it's mounted. If
you have an idle command prompt sitting on /cdrom, you won't be able to unmount it.
To unmount the CD−ROM, enter this command.

..
umount /cdrom
..

Once you have the CD mounted, look at the packages directory:

..
cd /cdrom/packages/
ls
All deskutils japanese print tk82
INDEX devel java python tk83
Latest editors kde ruby tkstep80
archivers elisp korean russian windowmaker
astro emulators lang security www
audio french mail shells x11
biology ftp math sysutils x11−fm
cad games mbone tcl80 x11−fonts
chinese german misc tcl82 x11−toolkits
comms gnome net tcl83 x11−wm
converters graphics palm textproc zope
databases ipv6 perl5 tk80
#
..

This should look familiar. Yep, it's the same as the ports tree listing we saw earlier in the chapter. If
you go into a directory, however, you'll see something a little different. A single CD−ROM doesn't
have nearly enough room to store all the FreeBSD packages, which can be quite large (up to
hundreds of megs). You'll find some packages, but not all of them. Many other packages are

230

available on other FreeBSD CD−ROMs. Second, these are files, not directories; they're tarballs
containing complete software packages.

For example, in /cdrom/packages/astro we'll see two packages. Both of these are based on ports
you'll find in the astro directory of the ports tree.

..
cd astro/
ls
openuniverse−1.0.b3.tgz xglobe−0.5.tgz
#
..

To see what a package does, check its description in /usr/ports/INDEX. Search for the package
name in the index file, just as we searched for a port name in the index (in the "Finding Software"
section, earlier in the chapter). In the fourth field, you'll find a description of the port:

..
grep −i ^openuniv /usr/ports/INDEX
openuniverse−1.0.b3|/usr/ports/astro/openuniverse|/usr/X11R6|OpenGL Solar System
simulator for X Window System|/usr/ports/astro/openuniverse/pkg−
descr|trevor@FreeBSD.org|astro|Mesa−3.4.2_1 XFree86−libraries−4.1.0 freetype2−2.0.4
gettext−0.10.35 gmake−3.79.1 imake−4.1.0 jpeg−6b|Mesa−3.4.2_1 XFree86−libraries−
4.1.0 freetype2−2.0.4 imake−4.1.0 jpeg−6b|http://openuniverse.sourceforge.net/
#
..

The fourth field of this description says that openuniverse is an "OpenGL Solar System simulator for
X Window System." A solar system simulator does sound kind of cool, doesn't it? Let's install it! Use
pkg_add(1) to install packages:

..
pkg_add openuniverse−1.0.b3.tgz
#
..

That's it! The software is installed and ready to use. (The installation usually runs silently, though
you'll occasionally see messages during a package install. Pay attention to them, and take whatever
action they recommend.)

If a package requires other packages, pkg_add(1) should automatically find those packages and
install them. The CD sets are designed such that the dependencies are all on one disk whenever
possible. However, if a required package is not available, pkg_add will complain about the missing
package by name and fail. In that case, find the required package on another disk and install it first,
or just install over FTP.

Installing via FTP

Frequently, a package doesn't exist on the CD because the FreeBSD Project has limited space on

231

its CD−ROM sets and can't possibly fit all 6,000−plus packages onto 4 disks! Also, software on CD
is built for a particular release of FreeBSD. Having a CD−ROM of packages for version 4.4 won't
help you if you're running FreeBSD 4.6.

Too, if you're tracking −stable, the packages on the CD are slightly out of date, and you should grab
the latest package from ftp.FreeBSD.org. (You must have a live Internet connection to do this!)

If you know the full package name and version number, you can get the latest package from the
FreeBSD FTP site automatically, like so:

..
pkg_add −r xearth
Fetching ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/i386/packages−4.4−
release/Latest/xearth.tgz... Done.
#
..

The advantage of this is that the system will automatically find the proper FTP location, download
the proper version of the package and all dependencies, and install them all. The downside is, you
have to have a live Internet connection.

This method is also less secure than installing from CD. While the packages on the CD set have all
been inspected and verified to be what they claim to be, the packages on the FTP server could
have been tampered with by a malicious hacker. You could be installing Trojan horses, or worse.
(This has never happened, mind you, but it is theoretically possible.)

You can also manually download packages from an FTP site of your choice. (We discussed finding
a convenient FTP server in Chapter 1.) To do so, find a convenient FTP site and log in to that
server. Then, if you're running a −release, go to pub/FreeBSD/release and into the directory for your
version of −release. If you're tracking −stable or −current, go to pub/FreeBSD/ports and choose the
directory for your −stable or −release.

Once in the appropriate directory, you'll see a directory tree much like that under /usr/ports. Now,
just find your package and download it, then install it via the command line:

..
pkg_add openuniverse−1.0.b3.tgz
#
..

Note This method will not automatically install dependencies. It's most useful for times
when you're behind a firewall and must jump through some hoops to download
files from the Internet.

What Does a Package Install?

Now that your software is installed, how do you find it on your system? There's no Start menu, after
all! Not to worry.

232

For a complete list of what a piece of software has installed, see /var/db/pkg. This directory contains
a complete list of every port or package you have installed on the system, and what each set of
software contains.

For example, our /var/db/pkg now contains a directory called openuniverse−1.0.b3. If you look in
that directory, you'll see the following:

..
ls /var/db/pkg/openuniverse−1.0.b3/
+COMMENT +CONTENTS +DESC
#
..

The +COMMENT file is a brief description of the package; +DESC contains a longer description of
the package. The interesting file is +CONTENTS, which lists every file installed by the package.
This file is quite long, but we'll look at the start of it.

..
more /var/db/pkg/openuniverse−1.0.3b/+CONTENTS
v @name openuniverse−1.0.b3
@cwd w /usr/X11R6
x @pkgdep jpeg−6b
@pkgdep Mesa−3.4.1
@comment y ORIGIN:astro/openuniverse
z bin/openuniverse
@comment MD5:2a4775c079a589e78cf54be5444316cb
share/openuniverse/data/stars.dat

@comment MD5:eee6bb0caf1ae32bc2ff043e7baee17a
share/openuniverse/data/messier.dat
@comment MD5:acd357ee82d95121fbf42ba9982f1dd8
..

The first line (v) is, of course, the name. Following that is the directory tree where the package was
installed (w) after the cwd keyword. You can see that openuniverse is installed under /usr/X11R6.
The pkgdep keywords (x) are other packages that this package depends on. The ORIGIN
comment (y) is the category in the ports tree where this package was created.

Finally you have the list of files (z). Each file installed by this program is listed here, along with its
MD5 checksum. (The various package−handling tools use the MD5 checksum to verify that a file is
still good and that it hasn't been damaged during transit or by operator error.)

Each file is listed relative to the directory tree given in the packing list. For example, the file
bin/openuniverse was actually installed under /usr/X11R6, giving us /usr/X11R6/bin/openuniverse.
Similarly, various files are listed as being in share/openuniverse, which is under /usr/X11R6, giving
us the real directory of /usr/X11R6/share/openuniverse. Most files installed in a share directory are
either documentation or program data. You can read the documentation, or just run openuniverse
and see what happens.

(Much of this information on files and directories is also available through pkg_info(1), but it's
frequently easier to just look for yourself.)

233

Uninstalling Packages

Use pkg_delete(1) to uninstall packages:

..
pkg_delete openuniverse−1.0.b3
#
..

If you want to uninstall a package required by other packages, only do so when you know exactly
what you're doing, and why. (For example, you might want to upgrade a dependency package to a
newer version.) Don't expect software that requires this package to work once you've uninstalled it,
however!

You can use pkg_delete −f to force an uninstall. Pkg_delete will warn you, but will do it anyway.

Package Information

Uninstalling works well when you remember the exact version number of every package you've
installed. If you can do that, I commend you. If you're like me, though, you're lucky to remember that
you have a piece of software installed on a system, let alone which version it is!

FreeBSD includes pkg_info, a tool to examine installed packages in a more convenient manner than
manually scanning /var/db/pkg. Pkg_info(1) uses the contents of /var/db/pkg to do its work, but
automatically handles a lot of boring manual searching and sorting for you.

When it is run without any options, pkg_info lists each package installed on your system, along with
a brief description of each:

..
pkg_info
Hermes−1.3.2 Fast pixel formats conversion library
JX−1.5.3_1 A C++ application framework and widget library for X11
Mesa−3.4.2_1 A graphics library similar to SGI's OpenGL
ORBit−0.5.8_1 High−performance CORBA ORB with support for the C language
XFree86−aoutlibs−3.3.3 XFree86 a.out compatibility libraries
...
..

As you can see, this output will give you the name and version of each package you've installed, so
you can uninstall it easily.

Package Info Arguments

You can use various arguments with pkg_info to gather other information about the packages on
your system. When you start using arguments, pkg_info requires either a package name to
investigate or the −a flag, which means "for all packages."

For example, to learn which packages on your system require other packages, you would use this
option:

234

..
pkg_info −aR
Information for Hermes−1.3.2:

Required by:
windowmaker−0.65.0_1
wmakerconf−2.8.1
Information for JX−1.5.3_1:
Required by:
libjtree−1.1.7_1
libjtoolbar−0.5.4_1
code_crusader−2.1.4_1
...
..

To find out the space needed by the files within a package, use pkg_info −s packagename.
(Note that this only includes files installed by the package; files created by the package are another
matter entirely. After all, do you count your text files and email messages as part of your office
suite?)

Another common question is which package a file came from. You might be browsing through
/usr/local/bin and come across a file that you don't recognize, haven't used, and have no idea why
it's there. Use the −W flag to pkg_info to perform a sort of "reverse lookup" on files to see which
package they came from:

..
pkg_info −W /usr/local/bin/xwe
/usr/local/bin/xwe was installed by package xwpe−1.5.22a
#
..

Controlling Pkg_add

You can use shell−environment variables to control how package−handling tools behave.

PKG_TMPDIR

The PKG_TMPDIR environment variable controls where pkg_add will unpack its temporary files.

A package is a tarball with some added instructions on how to install things. To install a package,
you have to untar it. If you're short on space in the standard directories that pkg_add tries to use,
the untar will not finish and the install will fail. By default, pkg_add tries to use the directory given by
the environment variable $TMPDIR. If that variable doesn't exist, pkg_add checks for room in /tmp,
/var/tmp, and /usr/tmp, in that order.

You can set PKG_TMPDIR to make pkg_add use a different directory, where you do have room:

..
setenv PKG_TMPDIR /usr/home/mwlucas/garbage
#
..

235

(You can add this line to your .cshrc to have it set every time you log in.)

PACKAGEROOT

The PACKAGEROOT environment variable controls the FTP server used by pkg_add's automatic
package fetching. By default, pkg_add −r tries to download everything from ftp.FreeBSD.org, the
default server. However, you can frequently get better performance by manually choosing a closer,
less heavily used mirror.

Set this PACKAGEROOT with a particular server name and protocol as a URL. For example, to
download from ftp3.FreeBSD.org, enter this:

..
setenv PACKAGEROOT ftp://ftp3.FreeBSD.org
#
..

PACKAGESITE

PACKAGESITE, another popular environment variable, gives an exact path to check for a package
repository. You might choose to use this if you want to use packages from a particular release, or if
you have a local package repository. (We'll discuss setting up a local package repository in the
"Building Packages" section, later in the chapter.)

Set the PACKAGESITE variable as an absolute URL:

..
setenv PACKAGESITE ftp://ftp4.FreeBSD.org/pub/FreeBSD/releases/4.4−
STABLE/packages/All
#
..

Package Problems

The package scheme seems like a great system, right? Well, sort of. There are a few problems,
specifically lags in the software−porting process and the software−synchronization requirements.

The overwhelming majority of packages is software produced by third parties, folks who release
their software on a schedule completely independent of FreeBSD. When they release an updated
version of their software, the FreeBSD package is updated. There is a delay between the release of
an original software package and the port to FreeBSD. A popular port might be updated in hours,
while large or less frequently used ports can languish at an older version for days or weeks.

Also, packages are interdependent, and many rely upon others in order to function properly. When
the FreeBSD ports team changes a package, that change cascades through all the dependent
packages. That's why you'll see packages with names like windowmaker−0.65.0_1. The _1 shows
that a program the package depends on has changed, and so this version of WindowMaker is
slightly different than the previous version. These bumped version numbers might also indicate that

236

the port itself was slightly changed; for example, the build process for the FreeBSD port of
WindowMaker 0.65.0 has been updated once. (Often these changes are purely internal, and don't
affect the software's behavior or performance.)

If you're running a FreeBSD release and only installing software from the CD or the version
released with your release, this interdependency isn't much of an issue. After all, the packages built
for a release do not change. You might be running an older version of FreeBSD, but want a
program that was just released. You might be continually upgrading your system, and have older
versions of software.

For example, the package wmakerconf−2.8.1 requires windowmaker−0.65.0_1. That's fine if you
have the r ight package insta l led, but i f you have insta l led windowmaker−0.65.0 or
windowmaker−0.65.0_2, pkg_add will think that you don't have the proper required package
installed and will go grab the appropriate WindowMaker. This takes up disk space at best, and
overwrites existing software at worst.

One way around this problem is always to use packages from the same date or time. (If you set the
PACKAGESITE environment variable to the packages directory for a particular FreeBSD release,
you'll always have matching packages.) This is perfectly acceptable in many cases, since you don't
always need the latest version of a piece of software when a version just a month or two older will
work just fine. In other cases, this practice isn't acceptable because an older version might have
security problems or performance issues. In that case, I recommend you use ports instead. Rather
than checking for installed programs by the name of the package, ports check for the existence of
the program itself. To continue our earlier example, the port for wmakerconf won't check for
WindowMaker version 0.65.0_2, it will just look for a program called "window−maker." This makes
ports much more flexible.

Forcing an Install

There will be times when you want to use a package where a dependency has changed, and you
don't want to upgrade the dependency or use an older package. Don't do it. Programs can crash,
badly, if you do.

Still, it is possible to force an install if you want to—after all, dependency changes are frequently
minor and do not affect program behavior. The hard part is verifying that your programs will be
okay.

Note Before you read further, let me say that you should not be doing this. If you're in this situation,
use a port instead. It will take longer, but things will almost certainly work correctly. If this isn't
possible, read on.

Should you consider forcing an install? Well, as a very general rule of thumb, if the package name
has changed by either adding a trailing underscore and a number, or if this trailing number has been
incremented, the package may work. This is no guarantee, mind you, and if things start breaking,
you'll have to uninstall the package and do things correctly.

To force an install, first, manually grab the package you want to use. (Be sure you don't have a
packages CD−ROM mounted—you don't want the system to go looking for matching dependencies
and install them, overwriting your existing software and causing problems.)

Once you've grabbed your package, run pkg_add −f::

237

..
pkg_add −f packagename.tgz
..

You'll see a warning that a dependency was not found, but that the install is proceeding anyway. If
the software works, great! If not, uninstall it and start working with ports.

[3]No, Microsoft Word is not available on FreeBSD. Yet. But it's very difficult to think of a major,
recognizable example of binary−only software for FreeBSD, as almost all of it is available in source
form.

Using Ports

It takes longer to build software using ports than it does when using packages, and the ports system
requires a live Internet connection. Still, the ports system can produce better results than packages.

Let's take a look at a port. We're going to pick on one of my favorite security tools, SKIP.[4]

..
cd /usr/ports/security/skip
ls
v Makefile x distinfo z pkg−comment | pkg−plist
w README.html y files { pkg−descr } scripts
#
..

The Makefile in the preceding list (v) contains the basic instructions for building this port. If you were
to take a look at this file, you'd quickly notice that there isn't much in it. The Makefiles for individual
ports don't contain much beyond some basic information about the port; they don't have information
about how to build FreeBSD software in general. (Most of the FreeBSD ports Makefile system is
contained in the directory /usr/ports/Mk; editing these files is a very advanced topic, and you really
don't want to go there until you're very comfortable with Makefiles.)

The README.html file (w) gives a brief description of the port. If you're using a Web browser to
skim the ports collection, you'll be directed to this file when you ask for information on this port.

The distinfo file (x) contains integrity−checking information (or checksums) for the files required to
build this program.

The files directory (y) contains any add−on files required to build this port. Our particular example
requires 87 patches, but many ports don't even have a files directory, and build cleanly without
patching.

The pkg−comment file (z) contains a one−line description of the port. Similarly, pkg−descr ({)
contains a longer, more detailed description and (usually) a URL for more information on the
program.

The pkg−plist file (|) holds a list of all the files installed by the port (the "packing list"). If a file is not
listed here, it will not be installed.

238

Finally, the scripts directory (}) holds a variety of scripts to be run at various stages of the
port−building process. This directory might or might not exist—if the port builds without any special
tweaking, it won't have any additional scripts. These scripts perform any pre− or post−processing
that the port needs, for example, changing permissions on a downloaded distfile so that patch(1)
can run properly.

Combined, these files create the tools and instructions needed to build the software.

Installing a Port

If you're familiar with source code, you'll quickly notice that there is no actual source code in the
port. Sure, there's patches to apply to source code, and scripts to run on source code, but no actual
source code! You might rightly ask just how this is supposed to work without the source code.

When you activate a port, your system automatically downloads the appropriate source code from
an approved Internet site. It then checks the downloaded code for integrity errors, extracts the code
to a working directory, patches it, builds it, installs everything, and records the installation under
/var/db/pkg. If the port has dependencies, and those dependencies aren't installed, it will interrupt
the make process to build those dependencies, and then finish its own. To trigger all this, you just
have to go to a port directory and type this command:

..
make install
..

When you do, you'll see lots of text scroll down your terminal window, ending with a "recording
installation" message.

This all−in−one installation process handles any changes in dependencies. If a port requires
another program, the port will simply gloss over minor changes in that program. For example,
perhaps you have a version of Apache that's a few months old. A package would demand that you
install the newer version, while a port will just check to see if Apache is installed.

As you grow more experienced with building source code, however, you'll find that this all−in−one
approach isn't appropriate for every occasion. Not to worry; the ports system gives you the
opportunity to take the port−building process exactly as far as you like, because make install is
actually not one but a series of commands.

Using Make Install

The make install process starts with make fetch. During this stage of the process, make
checks to see whether the source code is in /usr/ports/distfiles. If it's not, your system goes to get it.

Make Fetch The make fetch process first checks for the source code in the MASTER_SITE listed
in the Makefile, then checks a list of backup sites provided by the ports system itself. If it finds the
source code, it downloads it, and that downloaded source code is called a distfile.

Make Checksum Next, make checksum confirms that the distfile's digital signature matches the
one that the port has in the distinfo file. This is a security measure; if the FTP server was broken
into by a malicious hacker and the source code replaced by a Trojan horse, or if the download was

239

corrupted, this step will detect it and stop the build with a warning about a checksum mismatch. If
the distfile has been deliberately changed, make checksum stops compilation.

NoteSoftware authors sometimes make minor changes to their code, but give the source file the
same name as when they first made it available for download. The FreeBSD port might or
might not work after this change. If you're sure that the distfile has not been compromised or
corrupted, and want to use it despite this warning, you can override this with make
NO_CHECKSUM=YES. I highly recommend that you check with your vendor to see if this is a
legitimate change.

Make Depends The make depends stage checks to see if the port is dependent on any other
software, and, if so, whether that software is installed. (For example, an X window manager requires
an X server.) If the software on which the port depends is not found, this stage recurses through the
various dependencies and completely builds them all.

Make Extract Once you have the port distfiles, you have to uncompress and extract them. This is
done under a work directory in the port. To create this directory and uncompress the distfiles under
it, use make extract.

Make Patch The make patch stage applies any FreeBSD−specific patches listed in the Makefile
to the port.

Make Configure Next, make configure checks to see if the program needs a configure script. If
it does, it runs it. If not, the port build proceeds silently to the next step.

Make Build The make build stage compiles the checked, extracted, and patched software.

Make Install Finally, make install installs the software and records its presence under
/var/db/pkg.

Make Target Dependencies Each make target depends on the make targets before it. You
cannot patch source code that you have not yet fetched, for example. Whenever you use any make
target, make runs all previous stages that have not yet been run. For example, make extract
performs a make fetch, make checksum, and make extract.

How might you use these make stages in practice? Say that you want to apply some patches to a
program before you compile it—patches that address stability or security problems. You want to
apply the patch to your source code after you've extracted it and applied the FreeBSD−specific
patches. To do so, you could run make patch, apply the new patches to the software under the
work directory according to the vendor's instructions, and then return to the port directory and type
make install.

Built−In Port Features

Ports allow you to do a great deal of customization, which you can read about in the port's Makefile.
Since the port's Makefile includes specific instructions for building this particular piece of software,
it's where options for that software are most likely to be found.

Many ports announce additional features when you first type make install, though not all will
work (especially some older ones). Whether a feature will work depends on the port maintainer's
skills, time, and inclination—remember, this is a volunteer project!

240

You can always get information about a port's additional features from the Makefile, but let's look at
an announcement and see how to use i t f i rs t . For example, when you t ry to insta l l
/usr/ports/security/snort you'll see a notice:

..
Set WITH_FLEXRESP, WITH_MYSQL, WITH_ODBC or WITH_POSTGRES
to get additional support.
..

A bit of Web searching would show you that mysql, odbc, and postgresql are database packages,
and this message tells you that you could build Snort with support for these databases. A similar
search would show that flexresp is part of the libnet software package.

If you get an announcement, and you want to use one of these options, press CONTROL−C to
abort the port build. You can then set these options on the install command line like this:

..
make WITH_ODBC=YES install
..

This command changes the way the port will be built and will build your version of Snort with
support for ODBC database connections. With this feature built into Snort, you would then be able
to log data across the network to any database that supports ODBC, such as Microsoft SQL Server
or an Oracle database.

Here's one area where ports shine over packages. You couldn't do this customization with a
package, unless you had multiple versions of the same package. And sorting through
snort−odbc−1.9.tgz, snort−mysql−1.9.tgz, snort−postgres−mysql−libnet−1.9.tgz, and so on would
be utterly hideous, waste space on the CD, and be mostly unused.

The Makefile itself will tell you the build options for a port. At the top of the Makefile, you'll see a lot
of stuff that describes the port, like this:

..
v PORTNAME= snort
w PORTVERSION= 1.8
x CATEGORIES= security
y MASTER_SITES= http://www.snort.org/Files/ \
 http://www.physik.TU−Berlin.DE/~ibex/
 ports/distfiles/
z DISTNAME= ${PORTNAME}−${PORTVERSION}−RELEASE

{ MAINTAINER= dirk@FreeBSD.org
| GNU_CONFIGURE= yes
} CONFIGURE_ARGS= −−with−mysql=no −−with−odbc=no −−with−po stgresql=no
~ MAN8= snort.8
..

Much of this is obvious to people who habitually build software from source. If you're not at that
point yet, don't worry. You'll get there with practice. Let's consider this particular example. Not all of

241

these entries are mandatory, and there are many other possible entries in port Makefiles, but these
are fairly common.

The PORTNAME (v) is the name the software uses in FreeBSD's ports system. This is not
necessarily the same as the software name, as we saw earlier in our search for Midnight
Commander. The PORTVERSION (w) is the version number of the software, as given by the
software's author.

CATEGORIES (x) lists all the ports directories where the port can be found. For example, this port
is under /usr/ports/security.

MASTER_SITES (y) contains a list of Internet sites where the software can be found. This is where
the ports system tries to get the software from. If one site is unreachable, it tries the next.

The DISTNAME (z) is the name of the original file of software source code. The ports system tries
to grab this file from the MASTER_SITES given earlier.

The MAINTAINER ({) is the person responsible for maintaining the FreeBSD port. This person
doesn't actually write the software, but just makes sure that it installs on FreeBSD.

GNU_CONFIGURE (|) tells the ports system if the software needs to use the classic GNU program
autoconf. In a related entry, CONFIGURE_ARGS (}) lists arguments to be given to autoconf.

There is usually a list of man pages that the program installs (~). You can check these pages with
man(1) to see how to use the program. You might then see a bunch of "if defined" statements like
this one:

..

.if defined v (WITH_FLEXRESP)
BUILD_DEPENDS w += ${LOCALBASE}/lib/libnet.a:$? {PORTSDIR}/net/libnet
CONFIGURE_ARGS +=−−enable−flexresp
CONFIGURE_ENV += CPPFLAGS="−I${LOCALBASE}/include"
LDFLAGS+= "−L${LOCALBASE}/lib"
.endif
..

This is a build option for the port. The first line in this example is the variable (v) you need to set—in
this case, WITH_FLEXRESP. The second line shows that this adds a dependency (w) for the port,
/usr/ports/net/libnet. The remainder is a bunch of software−building commands that are altered by
setting this variable.

You set this variable on the command line. To set WITH_FLEXRESP, you would type

..
make install WITH_FLEXRESP=YES
..

You don't need to understand the balance of this listing right now, but notice the little question mark
(?) and plus and equal (+=) symbols scattered throughout it. These mean that you're adding
commands to the build process, literally changing how the software is built just by setting this

242

variable! Setting variables on the command line is much simpler than figuring out how to add these
commands to the build process on your own.

If you use several make commands to build the port (for example, make patch and then make
install clean), you must include any options you want with every make command. Otherwise,
the port might not build correctly. For example, if you wanted to use the flexresp option in Snort, but
had your own custom patch to apply, you would need to run the following:

..
make patch WITH_FLEXRESP=YES
..

Then you would apply your patch and run this:

..
make install WITH_FLEXRESP=YES
..

Otherwise, you would patch your system with the customization option WITH_FLEXRESP, but you
wouldn't give it the correct instructions when compiling the software. Your program would be
internally inconsistent, and quite possibly would fail.

The hardest part of customizing the way your software builds is deciding which options you'd like.
Unfortunately, there is no easy answer to this question, so it's best to check the software manual or
Web site to help you decide. More than once I've installed a piece of software, read the
documentation, and turned right around to uninstall and reinstall with the options I needed.

Uninstalling and Reinstalling

One nice thing about installing ports is that, once installed, the port is treated just like a package.
You can uninstall a port with pkg_delete, and learn about it with pkg_info. Since the port's
installation is recorded under /var/db/pkg, you can also go through the contents file and investigate
every file the port includes.

You also can uninstall a port from the port directory. For example, suppose FreeBSD includes
several different versions of one port, like the Apache Web server. You might want to build several
different versions of the port, evaluate each, and pick one to install for long−term use. Then, once
you've evaluated one version of the program, and want to uninstall it, you can run make
deinstall in the port directory to erase the program from the main system.

Note Once you've run make install, the compiled program and source files still live under the
work subdirectory in the port. You can run make reinstall to reinstall an uninstalled
program. You can uninstall and reinstall a program as many times as you like.

At some point, you may find that you want to reinstall a port you've removed with pkg_delete and
that when you run make reinstall it fails, complaining that the port is already installed. Why?
Well, do a "long list" of the problem port's work directory:

..
cd /usr/ports/www/apache13/work

243

ls −a
total 21
969094 drwxr−xr−x 3 root wheel 512 Jul 22 21:24 .
778196 drwxr−xr−x 4 root wheel 512 Jul 27 20:42 ..
969343 −rw−r−−r−− 1 root wheel 17163 Jul 22 21:24 .PLIST.mktmp
969344 −rw−r−−r−− 1 root wheel 0 Jul 22 21:24 .PLIST.setuid
969345 −rw−r−−r−− 1 root wheel 19 Jul 22 21:24 .PLIST.startup
969341 −rw−r−−r−− 1 root wheel 0 Jul 22 21:23 .build_done
969115 −rw−r−−r−− 1 root wheel 0 Jul 22 21:22 .configure_done
969112 −rw−r−−r−− 1 root wheel 0 Jul 22 21:21 .extract_done
969342 −rw−r−−r−− 1 root wheel 0 Jul 22 21:24 .install_done
969113 −rw−r−−r−− 1 root wheel 0 Jul 22 21:21 .patch_done
318289 drwxr−xr−x 8 root wheel 512 Jul 22 21:23 apache_1.3.20
#
..

So what does this tell us? Well, all files whose names begin with a period (which is most of the files
listed here, except for apache_1.3.20) are "hidden" files that don't show up on a normal directory
listing. The ports system and the make process uses these files to keep track of what stage the
build process is in. Every port uses these files. See the hidden file .install_done? If that file exists,
the port believes that it's already installed, and it refuses to overwrite itself. So there's our problem.

Remove that file, and the make reinstall will succeed.

Cleaning Up with Make Clean

Ports can take up a lot of room. Some, such as XFree86, can soak up a couple hundred megs of
disk once they're extracted and built. Most of this disk usage is from the original source code, which
you will no longer need. The ports system includes a method to remove excess source code.

Once you have your program installed and configured the way you like it, you don't really need the
copy of the source code in the ports directory any more. You can remove it with make clean. (This
blows away the work directory, so be sure that you're happy with your program before you do it!)
You can also clean a new port immediately on install by running make install clean when you
install it.

You might also clean the port's original distfiles, which are stored in /usr/ports/distfiles. (Check this
directory now and then, because it can fill up quickly if you build a lot of ports.) Removing unneeded
distfiles frees considerable disk space.

To clean the entire ports tree, run make clean directly under /usr/ports. This takes some time,
though, and, while there are faster and more efficient ways to remove every work directory in the
ports tree, this one is directly supported by the FreeBSD Project.

Building Packages

If you're using ports, you can build your own packages to install on other FreeBSD machines, which
can save you a lot of time and ensure that you have identical software on every machine. If you
have several machines running Snort, for example, and you want them all to have the same
features, you can build Snort once and then make a package out of it to install on all the other
machines.

244

The command to create a package is make package. This will install the program on the local
machine and create a package in that port's directory. Simply copy this package to other systems
and run pkg_add to install it.

You can even set up an anonymous FTP server (see Chapter 12) and have a local master package
repository. Remember the PACKAGESITE environment variable? Set that to a path on your
anonymous FTP server and put your custom packages there. You can then use pkg_add −r on
your other machines, and they will automatically grab the customized packages.

Changing the Install Path

If you have dozens, or even hundreds, of FreeBSD systems, all with mostly identical configurations,
you might find the default port or package installation path of /usr/local problematic. In many large
server farms, /usr/local is reserved for programs that are unique to the individual machine, and other
software packages that are used by every system in the server farm are expected to be installed
elsewhere.

A common alternative to /usr/local is /usr/pkg, which you can set for your system with the PREFIX
variable:

..
make PREFIX=/usr/pkg install clean
..

When the port is installed, it will go into your chosen location.

Setting Make Options Permanently

If you get sick and tired of typing the same options repeatedly when building ports, you can list your
options in make.conf to have them automatically used whenever you install a port. See the section
on make.conf in Chapter 9 for details.

Note While we're at it, /etc/make.conf is scanned any time you run make. This means that any
options you set there are applied to ports. While features like CPUTYPE might not make a
difference for you, it's possible that they will. In any event, it's a possible source of confusion,
and you should at least be aware that it exists.

[4]SKIP is Sun's Secure Connectionless Internet Protocol (the acronym stands for Simple
Key−management for Internet Protocols). It is a wonderful virtual private network (VPN) protocol
that has unfortunately fallen into disfavor in the face of IPSec. This is yet another example of the
market bludgeoning cool technology into the grave.

Upgrading Ports and Packages

The software−upgrade process can be very simple or a complete nightmare, but with a bit of
preparation you can avoid many common pitfalls. The following list of suggestions assumes that
you're upgrading an Internet server and that you have actual users depending on it. (If you're
upgrading your laptop, you can consider your user notified before you start.)

245

The first thing to do when upgrading is to be sure that you have a package of the older
version of the software available. If things go wrong on a production system, you'll want to
be able to fall back to the older version very quickly. If you've installed the software from
CD−ROM, check that you still have that disk; if you installed via FTP, download the same
package and keep it handy.

1.

If at all possible, test the upgraded software on a nonproduction system. Production server
upgrades can give even seasoned administrators white hair and worse tempers.
Successfully upgrading once makes further upgrades much easier and faster.

2.

Make sure you have a system backup. See Chapter 3 for details on how to do this with
either a tape or a filesystem.

3.

Get your upgraded software, preferably via a package you have built on your test machine.
(That way, you know that the port actually builds and installs.) Otherwise, build the software
from a port using make build. Don't do the actual make install, just make build to
confirm that you can actually compile the program cleanly.

4.

Notify your users that you will be upgrading the service at such−and−such a time, and that
the program or machine will be unavailable.

5.

At the scheduled time, do a make deinstall or pkg_delete on the old package, then a
make install on the new port. Be ready to fall back to the older version if this doesn't
work!

6.

The most frequent problem people have when upgrading is determining which software on their
system needs upgrading. My general rule is that things that work should not be upgraded just
because a newer version is available. This holds true especially for large, complicated software
packages, such as some of the newer desktop window managers.

Still, you may find that even though everything is working just fine, a newer version of a piece of
software addresses a problem you have or provides needed functionality. You can make your life
easier by upgrading your ports tree to allow you to easily install that newer piece of software.

Upgrading the Ports Collection

The FreeBSD upgrade process also handles upgrading your ports tree. You can use CVSup and
the ports−supfile configuration to upgrade your ports to the latest version—or, indeed, to any
version you choose.

To begin, you'll need to install CVSup as described in Chapter 6, and edit the ports−supfile to use a
particular CVSup mirror. When you're done, run it with this command:

..
cvsup ports−supfile
..

CVSup will crawl over your ports tree, comparing each file with the version on the CVSup mirror
you've chosen, and make changes in your files as needed. When it finishes, you'll have the latest
version of the ports tree.

Once you've finished upgrading your ports collection, you should upgrade your index and your
readme files. To do so, go to /usr/ports and type this:

246

..
make index && make readmes
..

Note Both of these commands (make index and make readmes) take quite some time
to complete. By using the &&, you tie them together; when the first command
completes successfully, the second command will run. This saves you the trouble of
going back in half an hour and typing the second command.

The ports collection upgrade doesn't remove old work directories. If you have installed ports and
haven't run make clean, the work directories and older source code will still be around, together
with the status−tracking hidden files. If you run make in these ports, the hidden files will show that
the port is built and will refuse to run, and you'll need to run make clean to build these ports.

Ports Collection Upgrade Issues

The problem with upgrading the ports collection is that any collection of software is intended to be
used as a cohesive whole. If you have an older version of a commonly used tool that your new
software requires, you might have to upgrade it as well as programs that depend upon it. The
danger is that a simple upgrade can quickly become a cascading series.

Of course, FreeBSD is not the only operating system that suffers from this problem. Every software
package on every operating system platform has it. (In Windows you frequently see this manifest as
DLL conflicts, unexplained program crashes, or any other weird and unpleasant behavior.) Excellent
software design can minimize but not eliminate this problem. Unfortunately, excellent software
design is rare.

Checking Software Versions

On a single−purpose machine, the daisy−chain upgrade isn't that difficult; after all, a Web server
doesn't generally have hundreds of software packages installed. However, a workstation does, and
even my laptop usually has over 200 entries in /var/db/pkg! (You know, I should really go through
and uninstall what I don't use anymore; do I really need that little daemon that follows my mouse?)
So what do you do if your system has complex software dependencies?

FreeBSD has a software−version−checking tool called pkg_version(1). Pkg_version compares the
version of the software you have installed with the version number in /usr/ports/INDEX and, if your
INDEX file is up to date, you're all set. (You did follow my advice in the last section and update your
index and readmes, didn't you? Of course you did. You're not the type of person that would go drop
some hard−earned cash on a computer book and then ignore it, are you? Of course not.)

A basic version check might look like this:

..
pkg_version −v
apache−1.3.20 = up−to−date with port
autoconf−2.13_1 = up−to−date with port
bzip2−1.0.1 = up−to−date with port
cvsup−bin−16.1 ? orphaned: net/cvsup−bin
emacs−20.7 = up−to−date with port
gettext−0.10.35 = up−to−date with port
gmake−3.79.1 = up−to−date with port

247

ispell−3.1.20c_2 < needs updating (port has 3.2.04_1)
jade−1.2.1_1 = up−to−date with port
libtool−1.3.4_2 = up−to−date with port
links−0.96pre7 < needs updating (port has 0.96,1)
m4−1.4 = up−to−date with port
mutt−1.2.5 = up−to−date with port
rrdtool−1.0.33 = up−to−date with port
sftp−0.9.6_1 = up−to−date with port
sudo−1.6.3.7 < needs updating (port has 1.6.3.7_1)
ucd−snmp−4.2.1 = up−to−date with port
unzip−5.42 = up−to−date with port
uulib−0.5.13 = up−to−date with port
xsysinfo−1.4a = up−to−date with port
zip−2.3 = up−to−date with port
..

Reading down the list of comments next to each piece of software, it's easy to see that most of the
software on this system is the latest version. But take a look at the entry for ispell−1.2.10. The
message shows that the port is out of date, and at some point you might want to update that
program. You need to decide on your own if the package is important enough for you to spend the
time needed to upgrade it.

Now, since I personally installed every piece of software on this system, I'm familiar with it, and I
know how important everything is. I know that ispell is a spell−checker and that its importance in the
grand scheme of Web serving is minimal at best. I'm not going to worry about it. On the other hand,
the sudo−1.6.3.7 package is a security tool used to control user privileges; correct operation of this
program is absolutely vital. If a newer version is available I must investigate and probably upgrade.

The entry for cvsup−bin−16.1 with the message of "orphaned: net/cvsup−bin" tells us that there is
no entry for this piece of software in /usr/ports/INDEX, and hence no port for this package. I
installed this port from a package; no port is available.

Automatically Checking Software Versions

You can add an automated software−version check to your weekly status email. Just add the
following line to /etc/periodic.conf:

..
weekly_status_pkg_enable="NO"
..

Create /etc/periodic.conf if you don't have one. For full details on /etc/periodic.conf, see Chapter 9.

Hints for Upgrading

Most of the software−maintenance process is based upon knowing what your server is supposed to
do. If you are the only administrator of a machine, things are very simple. Once you start having
multiple administrators, however, you'll find that keeping track of this information becomes very
difficult. I cannot stress highly enough the importance of keeping a server log for every system on
your network! Even a text file, /etc/changes, where you jot down things like "mwlucas, 5−15−01:
Installed sftp for client bufar@absolutebsd.com" can save you hours of pain later as you try to figure

248

out why some trivial change is causing things to go haywire. It can also keep another administrator
from calling you up at 3 AM and asking why the heck the system doesn't work with the default
settings.

When you decide to upgrade on a production system, map out your changes. You can use
pkg_info −aR to see which packages require other packages.

The general rule of thumb is to upgrade your dependencies first. Those packages that are required
by other packages should be the first to be upgraded and tested. After all, if something's wrong with
lower−level software, everything that depends on it will fail.

You can use pkg_delete −f to remove dependencies, and then install the newer versions from
ports or packages. Then follow the chain upward, upgrading newer versions as required. Again, you
can try to run a software package with a newer version of a dependency, but it might not work.

The /usr/ports/sysutils/portupgrade tool is worth considering, because it can handle some of these
tasks automatically. Still, you need to understand and be able to deal with conflicts and
dependencies yourself.

249

Chapter 11: Advanced Software Management

Overview

This chapter covers several things you need to know about running software on FreeBSD.

FreeBSD can run a wide variety of software packages, most of which are available as source code
so they can be built as native FreeBSD software. And, thanks to some clever design, FreeBSD can
also run software from many foreign operating systems. We'll look at how to do this, focusing on the
popular Linux compatibility package that allows FreeBSD to run unmodified Linux software.

Also, for your programs to start at boot, and stop cleanly when the system shuts down, you must be
able to edit and write proper startup and shutdown scripts. While some programs stop just fine when
you kill the operating system they're running on, others (like databases) demand a gentler shutdown
process. While you can get by with a variety of ugly hacks, starting and stopping network services
cleanly is an excellent habit to get into and enforce. We'll examine how to properly implement and
manage these systems in FreeBSD.

And, while under normal circumstances you'll never need to know how FreeBSD's linking and
shared library support works, we'll discuss how shared libraries work and how to manage and
configure them. Why? Because normal circumstances are, oddly, quite rare in the computer
business.

Finally, we'll look at how systems with multiple processors work, and how they interact with
software. While multiple processors can greatly increase system power, they won't help you if your
software isn't properly configured.

Startup and Shutdown Scripts

While FreeBSD's main system software is started by /etc/rc, add−on software is started by separate
scripts. The ports and packages system installs these scripts for you. If you install your own
software, however, you'll need to create a script that handles this startup and shutdown process.
Plus, to change an existing add−on package's startup process, you must understand how the
startup scripts function.

Note This section assumes that you have some basic understanding of shell scripts. If
you've never seen or used a shell script before, read the examples here very
carefully. Shell scripting is not hard, and the best way to learn is to read examples.

The /etc/rc shell scripts (see Chapter 9) handle the main system startup process. During boot up,
the FreeBSD startup script checks several directories for additional shell scripts. The most popular
directory for startup and shutdown scripts is /usr/local/etc/rc.d, though /usr/X11R6/etc/rc.d is another
default location. These directories are specified in /etc/defaults/rc.conf, and can be overridden in
/etc/rc.conf. (You can add additional script directories with the local_startup rc.conf variable.)

The shell script locator just checks in those directories for any files ending in ".sh". If it finds such a
file, it assumes that the file is a shell script and executes it with an argument of start. During
shutdown, FreeBSD runs these same scripts with an argument of stop. The scripts are expected to
read those arguments and take appropriate action.

250

Typical Startup Script

Let's look at a typical startup script, snmpd.sh, which is part of the net−snmp package that we'll
install a little later. All you need to know at this point is that it starts the SNMP server daemon at
boot, and stops that same daemon on shutdown. Here's the script:

..
v #! /bin/sh
w if ! PREFIX=$(expr $0 : "\(/.*\)/etc/rc\.d/$(basename $0)\$"); then
 echo "$0: Cannot determine the PREFIX" >&2
 exit 1
fi
x case "$1" in
start)
 [−x ${PREFIX}/sbin/snmpd] && ${PREFIX}/sbin/snmpd && echo −n ' snmpd'
 ;;
stop)
 killall snmpd && echo −n ' snmpd'
 ;;
*)
 echo "Usage: `basename $0` {start|stop}" >&2
 ;;
esac

exit 0
..

The #!/bin/sh line (v) indicates that this is a shell script. The remainder of the file (which is similar to
a Windows batch file) contains commands that are run by the script.

The first section, set off by if (w) and fi, determines the path to the programs, and tells the rest of the
script whether it was started in /usr/local, /usr/X11R6, or some other directory. The rest of the script
(x) needs to know this, so it can find its commands.

The ? case "$1" in line (x) is where the script actually makes a decision. This part of the script reads
the first argument that the script is called with. For example, if your script is run as snmpd.sh
start, start is your first argument. If you run it as snmpd.sh stop, the stop is your first
argument. The script has several smaller sections: Everything between the start) and the double
semicolon (;;) are steps that are taken if the first argument is start. Everything between the stop)
and the next double semicolon are actions that are taken if the first argument is stop. The last
option, the *), is a wildcard for all other arguments that might be typed in.

For example, if you run this script as snmpd.sh start, the script runs the following command:

..
[−x ${PREFIX}/sbin/snmpd] /&& ${PREFIX}/sbin/snmpd && echo −n ' snmpd'
..

These are standard UNIX shell commands. This command first checks to see if the snmpd program
exists. If it does, it runs it and prints out its name. Similarly, if you call the script with a stop
argument, it unceremoniously kills all snmpd processes.

251

To change the way a package behaves at startup, edit its startup script. For example, to start
snmpd with an argument of −D you would edit the start line. Pick out the portion of the command
where snmpd is actually started, and insert your change there:

..
[−x ${PREFIX}/sbin/snmpd] && ${PREFIX}/sbin/snmpd −D && echo −n ' snmpd'
..

Using Scripts to Manage Running Programs

You can also use these scripts when the system is running. For example, to restart snmpd to make
it reread its configuration file, you could run this command:

..
/usr/local/etc/rc.d/snmpd.sh stop && /usr/local/etc/rc.d/snmpd.sh start
..

Note It's not entirely necessary to use the scripts to manage a running program. If you've read the
snmpd.sh shell script, you know that to stop the program the script runs the command
killall snmpd, and that it starts the program by running snmpd. You could just enter
these commands at the command line, and it would have the exact same effect as running the
previous script twice. You either have to remember what each script does for its particular
program or you have to type the full path to the startup scripts. If you're in doubt, use the
scripts!

Managing Shared Libraries

The basic idea behind a shared library is quite straightforward: It's a chunk of compiled code that
provides services and functions to other chunks of compiled code. Shared libraries provide popular
functions for all programs to use, and they are designed to be reused by as many different
programs as possible.

For example, many programs must hash (or one−way encrypt) data as part of their function. But if
every program had to include hashing code, each would be larger, harder to write, and more
unpleasant to maintain. What's more, programs would have interoperability problems if they
implemented hashes differently. By using a shared library (in this example, libcrypt), a program that
needs hashing has access to the functions while eliminating problems of maintenance and
interoperability. Similarly, other shared libraries provide common functions to support other
software. This reduces the average size of programs, freeing up a reasonably large amount of
system memory.

FreeBSD builds a cache of available shared libraries at boottime. Programs don't have to scan the
whole disk looking for shared libraries; they just ask the cache for the functions they want. In fact,
the ability to manage the library cache is one thing that separates a newbie from a professional.

While FreeBSD provides quite a few sensible defaults for the cache, we'll discuss the tools you
need to properly configure and manage your cache in all sorts of odd circumstances. Shared
libraries are complex beasts. With ldconfig, ldd, and a little bit of thought, you can start to tame

252

them.

Ldconfig

The main tool for managing shared libraries is ldconfig(8). (You'll probably hear all sorts of
references to it, in one place or another.) We'll discuss a few different ldconfig−related commands:
rtld(1), ldd(1), and ldconfig itself.

Binary Types: Aout and ELF

First we have the issue of binary types: aout and ELF. While as an administrator you don't need to
know the details of aout and ELF, you should know that aout is the old standard, ELF is the new
standard, and programs compiled as one type cannot use shared libraries of the other type. ELF
programs cannot use aoutshared libraries. (The FreeBSD Netscape binary is in aout format, which
is why you must install XFree86's aout compatibility libraries to use it.) While aout binaries are
slowly vanishing, FreeBSD will need to support both types indefinitely.

When you execute an ELF binary that needs shared libraries, the system calls rtld(1), the "run−time
linker." Rtld examines binaries as they're loaded, determines which shared libraries they need, and
loads those libraries. There's a separate runtime linker for aout binaries called ld(aout).

Rather than searching the entire system for anything that looks like a shared library everytime
anything is executed, rtld pulls the shared libraries from a library cache. The cache lives on your
system in two separate files: /var/run/ld.so.hints (aout) and /var/run/ld−elf.so.hints (ELF). A
misconfigured cache is the most likely cause of shared library problems.

What Libraries Do You Have?

To see the list of libraries you already have, run ldconfig with the −r flag:

...
ldconfig −r
/var/run/ld−elf.so.hints:
 search directories:
/usr/lib:/usr/lib/compat:/usr/X11R6/lib:/usr/local/lib:/usr/local/lib/mysql:/usr/local/pilot/lib
 0:−lcom_err.2 => /usr/lib/libcom_err.so.2
 1:−lscrypt.2 => /usr/lib/libscrypt.so.2
 2:−lcrypt.2 => /usr/lib/libcrypt.so.2
...
...

ldconfig −r examines the shared library cache and lists every shared library it finds. On my
system, this list runs to 229 shared libraries.

Note If a program complains that it can't find a library, check ldconfig −r. If the library isn't
there, your cache is either misconfigured or incomplete, or the library really isn't on your
system.

Building the Cache

The cache is built during the system boot process, using ldconfig. For ELF binaries, it's done like
this:

253

...
ldconfig −elf /list/of /path/names/here
...

Similarly, aout uses this:

...
ldconfig −aout /other/list /of/paths
...

Note The list of path names is set in /etc/rc.conf as ldconfig_paths and ldconfig_paths_aout.

If you're trying to use shared libraries that you've just installed, they won't be in the cache, and
programs may fail. In that case, you need to rebuild the cache, and it's fairly easy to do. Just run
ldconfig without any arguments, and ldconfig will rescan the directories listed in ldconfig −r and
rebuild the cache.

Finding a Library

If the library isn't in one of the directories previously scanned, you need to find it. Generally
speaking, if you cut the initial "lib" off the library name and use locate or find / −name libname
−print, you should be able to find the file. In the worst case, you'll have to dig through a long list of
results to find the library you want.

Adding Libraries

You might find, after you install a piece of software, that you have a new directory of shared
libraries. (You'll sometimes find these in a private subdirectory; my PalmPilot software uses
/usr/local/pilot/lib, for example.)

It's easy enough to merge a new directory of shared libraries into the existing cache with the −m
option. Some ports even use the −m option to configure shared libraries at boot, which eliminates
any tedious mucking about in /etc/rc.conf. To merge my Palm library into my existing cache, I would
enter this command:

...
ldconfig −m /usr/local/pilot/lib
...

LD_LIBRARY_PATH

While the −m option works very well if you're the systems administrator, it won't work if you're just a
lowly user without root access.[1] Also, if you have your personal set of shared libraries, your
sysadmin won't want to make them globally available, and root must own the shared library
directory so that regular users can't just dump things in there willy−nilly. Sysadmins probably won't
even want to take the slightest chance of system programs linking against your personal libraries.

Here's where the LD_LIBRARY_PATH environment variable appears. Rather than create a cache,
LD_LIBRARY_PATH tells the system to check the directories it lists for new shared libraries.

254

Note This isn't at all secure; if you set LD_LIBRARY_PATH to an overly accessible location, your
program can link against whatever's there. LD_LIBRARY_PATH also overrides the cache, so
be careful what you put in there!

You can specify any number of directories in LD_LIBRARY_PATH, separated with colons. For
example, I might want to put the directories /home/mwlucas/lib and /compat/linux/usr/lib/local into
my LD_LIBRARY_PATH to complete a software install. I would do this like so:

...
setenv LD_LIBRARY_PATH /home/mwlucas/lib:/compat/linux/usr/lib/local
...

For example, I generally install StarOffice manually rather than via the port. When I do, the install
routine extracts a variety of libraries in /tmp/sv001.tmp and expects to be able to find them when it
starts the graphical installer. To make sure that it can find these libraries, I start setup using the
LD_LIBRARY_PATH variable to point to the /tmp/sv001.tmp directory, like this:

...
LD_LIBRARY_PATH /tmp/sv001.tmp ./setup
...

When the graphical StarOffice installer starts, it then checks that directory for extracted libraries.
The result is that I don't have to reconfigure my entire FreeBSD system just to use this program.

Note Remember, you can set an environment variable automatically at login by entering
it in your .cshrc or .profile file.

What Libraries Do My Programs Need?

Lastly, there's the question of what libraries a program expects to have available. You can get this
information with ldd(1). For example, to find out what Emacs needs, enter this command:

...
ldd /usr/local/bin/emacs
/usr/local/bin/emacs:
 libXaw.so.6 => /usr/X11R6/lib/libXaw.so.6 (0x28159000)
 libXmu.so.6 => /usr/X11R6/lib/libXmu.so.6 (0x2818e000)
 libXt.so.6 => /usr/X11R6/lib/libXt.so.6 (0x2819f000)
 libSM.so.6 => /usr/X11R6/lib/libSM.so.6 (0x281e2000)
 libICE.so.6 => /usr/X11R6/lib/libICE.so.6 (0x281ea000)
 libXext.so.6 => /usr/X11R6/lib/libXext.so.6 (0x281fe000)
 libX11.so.6 => /usr/X11R6/lib/libX11.so.6 (0x28209000)
 libutil.so.3 => /usr/lib/libutil.so.3 (0x282a2000)
 libm.so.2 => /usr/lib/libm.so.2 (0x282ab000)
 libc.so.4 => /usr/lib/libc.so.4 (0x282c6000)
 libXThrStub.so.6 => /usr/X11R6/lib/libXThrStub.so.6 (0x28361000)
#
...

This output tells us the names of the shared libraries Emacs requires, and the locations of the files
that contain those libraries. You can check this list of required libraries against the output of
ldconfig −r to confirm that your program has what it needs. Or you can use this as a shopping
list and then go out and get the needed libraries.

255

[1]If you're reading this book, you're probably the systems administrator. But you'll need this as a
solution for your users.

Running Software from the Wrong OS

Traditionally, operating systems have had to have software written for them, and a piece of software
would only run on the platform it was designed for. That said, many people have built a healthy
business by changing software for one platform so it will run on another system, a process called
porting.

As an administrator, you can use software written for a platform other than FreeBSD in a few
different ways. The most effective way is to recompile the source code to run natively on FreeBSD.
Alternatively, and barring your recompiling a program, you can also run non−native software under
an emulator, or by re−implementing the application binary interface (ABI) of the native platform.

Recompilation

Many pieces of software in the ports collection are actually native recompiles of software originally
designed for other platforms, such as KDE and Emacs. In fact, software written for Linux, Solaris, or
other UNIX variants can frequently be built (recompiled) from source code with little or no
modification to run without a hitch on FreeBSD. By simply taking the source code and building it on
a FreeBSD machine, you can run foreign software natively on FreeBSD.

Recompiling works best when the platforms are similar. For example, FreeBSD and Linux provide
many identical system functions: both are built on the standard C functions, as defined by POSIX,
and both use similar building tools and have mostly identical system calls.

However, over the years, the various UNIX platforms have diverged. Each version of UNIX has
implemented new features that require new libraries and functions, and if a piece of software
requires those functions, it won't build on other platforms.

The POSIX standard was introduced, in part, to alleviate this problem. POSIX is a standard that
defines minimal acceptable UNIX and UNIX−like operating systems. Software written using only
POSIX−compliant system calls and libraries should be immediately portable to any other operating
system that implements POSIX, and most UNIX vendors comply with POSIX.

The problem is ensuring that developers comply with POSIX. Many opensource developers care
only about having their software run on their preferred platform. For example, there's a lot of
software out there that is Linux−specific, but not POSIX−compliant. And POSIX−only code does not
take advantage of any special features offered by the operating system.

For example, FreeBSD has the hyper−efficient data−reading system call kqueue(2). Other systems
use select(2) and poll(2) instead. The question developers need to ask themselves is whether they
should use kqueue, which would make their software blindingly fast on FreeBSD and unable to work
on anything else, or whether they should they use select and poll, allowing their software to run
more slowly but on more platforms. The developer can invest more time in setting up the software to
use different functions on different platforms; but while this would make users happy, it rather sucks
from the developer's point of view. Whatever the developer's choice, someone will complain.

The FreeBSD Project takes a middle road. If a piece of software can be compiled and run properly
on FreeBSD, the ports team generally makes it happen. If the software needs minor patches, the

256

ports team includes the patches with the port and sends the patches back to the software's
developer. Most software developers gladly accept patches that allow them to support another
operating system. Even though they might not have that OS available to test on, or they might not
be familiar with the OS, if a decent−looking patch arrives from a reputable source, they probably
won't turn it down.

Emulation

If software would require extensive redesign to support FreeBSD, or if source code is simply not
available, we need to turn to another option: emulation. The concept of an emulator is simple. An
emulator program translates system calls for one operating system to the system calls used by the
local operating system, and programs running under the emulator think they're running on their
native system. Translating these system calls does create additional system overhead, though,
which takes its toll on the speed with which programs run under the emulator.

FreeBSD supports a wide variety of emulators, most of which are in the ports collection under
/usr/ports/emulators. In most cases, emulators are useful for education or entertainment. If you have
an old Commodore 64 game that you've had an insatiable desire to play again, you can install
/usr/ports/emulators/frodo. (You can also learn more about disks than you ever wanted to know by
trying to get that C64 floppy to work with UNIX, but that's a separate matter.) To see what classic
UNIX hardware looks like, you can install the PDP−11 emulator under /usr/ports/emulators/sim. (For
a complete list, see /usr/ports/emulators/README.html.)

However, since these emulators are not really useful for server operations, we won't cover them in
depth. You should know that they're available, though, and where to find them.

ABI Implementation

In addition to recompiling and emulating, the final option for running foreign programs is the one
FreeBSD is best known for: ABI (application binary interface) implementation. The ABI is the part of
the kernel that provides services to programs, including everything from sound−card access to
reading files to printing on the screen to starting other programs—all the things a program needs to
run. As far as programs are concerned, the ABI is the operating system. By completely
implementing the ABI from a different operating system on your operating system, you can run
non−native programs as if they were on the native platform.

While ABI implementation is frequently referred to as "emulation," it isn't really. When implementing
ABIs, FreeBSD is not emulating the system calls, but providing them natively. By the same token, it
would be incorrect to say that "FreeBSD implements Linux" or "FreeBSD implements Solaris." The
fact is, when this technique was created, there was no one word to describe what the BSD team
was doing. (Even today, there's no one word to describe it. How's that for bleeding−edge work?)
You'll most often hear it referred to as a mode, such as "Linux mode" or "osf1 mode."

The problem with emulating the ABI is overlap. Most operating systems include system calls with
generic names such as read, write, and so on. The read system call on a FreeBSD system behaves
very differently from the read found on a Windows system. If you re−implement every single foreign
system call in your OS, you've just made your operating system a re−implementation of the foreign
OS. When a program calls read, how would it know if it was getting the native or foreign version?
You can give your system calls different names, but then you're violating POSIX. Or you can
provide multiple ABIs and control which ABI a program uses. This is what FreeBSD does.

257

Binary Branding

Operating systems generally have a straightforward system function that executes programs:
Whenever the kernel sends a program to the execution engine, the execution engine runs the
program.

At some point, however, the UNIX program execution system was hacked to include a special
check for programs that began with #!/bin/sh, and to run them with the system shell instead of
the execution engine. BSD took this idea to the logical extreme, and its execution engine includes a
list of different binary types. Each program's binary type directs it to the correct ABI. Thus, a BSD
system can have multiple ABIs, and can support programs from a variety of different operating
systems.

The nifty thing about this system of redirects is that there's no overhead: Since the system decides
how to run the program anyway, why not have it decide which ABI to use? After all, binaries for
different operating systems all have slightly different characteristics, which are used to identify them;
this system simply makes the process transparent to the end user.

As a result of this ABI redirection, FreeBSD can run Linux, OSF/1, System V, and SCO binaries as
if they were compiled natively, thus vastly expanding the range of software available for use on
FreeBSD.

Note FreeBSD supports this range of ABIs for two reasons. First, someone with the skill
to implement it needed it. Second, the documentation was available. The
implemented ABIs are all very similar to FreeBSDs; only a few system calls require
extensive development.

Which ABIs Are Supported?

This scheme makes it entirely possible to implement extremely foreign ABIs. For example, someone
could take Windows ABI information from Microsoft and write a Windows ABI module for FreeBSD,
which would allow FreeBSD to run Windows programs natively. While this would be pretty darn
cool, it would also be a fiendish amount of work to implement in a stable and reliable manner. It
hasn't been done, and isn't likely to happen. The three modes that are most supported are SVR4,
OSF/1, and Linux.

SVR4, or System V Release 4, was the last major release of UNIX from AT&T. It appears in early
versions of Solaris and SCO UNIX. Some SCO software is reported to perform more quickly and
reliably in FreeBSD's SVR4 mode than it does on actual SCO UNIX.

OSF/1, or Digital UNIX, was designed for the Alpha processor. Digital first built the Alpha CPU and
created Digital OSF/1 to run on it. Because OSF/1 used a Mach kernel, and FreeBSD doesn't
include the various non−POSIX system calls that were part of Mach, FreeBSD's OSF/1 mode is
incomplete. In any event, it won't run on Intel−compatible hardware. (Implementing a foreign ABI is
difficult enough without providing 64−bit instructions on 32−bit hardware!) Now, chances are, you
don't have an Alpha, so we aren't going to discuss it in any depth.[2]

Finally, Linux mode allows FreeBSD to run Linux software. This ABI has been the most thoroughly
tested because the source code for Linux is available and its ABI is well documented. In fact, the
Linux mode works so well that many programs in the ports collection rely upon it. (Chunks of this
book were written on StarOffice 5.2 under Linux mode, and I've used Linux Netscape and even
Linux WordPerfect without problem.)

258

Foreign Software Libraries

While the kernel portion of the ABI solves one major issue, the other portions of the system are
another problem because every operating system has its own requirements in addition to the kernel.
The biggest issue is shared libraries. If the kernel starts a program, and the program can't find its
shared libraries, it won't work correctly. No matter which ABI you use, you must have a copy of the
shared libraries for that platform.

SVR4 and SCO

For example, to use the SVR4 and SCO ABIs, you need access to the appropriate system. While a
Sun Solaris 2.6 CD will suffice for the SVR4 module, you need to grab the shared libraries from an
actual SCO UNIX machine to use the SCO ABI, which means you need a SCO or Solaris license.
This isn't an insurmountable problem, of course, but it does make using this module slightly more
difficult—and definitely more expensive.

OSF/1

A minimal set of OSF/1 shared libraries are available under /usr/ports/emulators/osf1_base. These
libraries have a restrictive license and can only be used in fairly narrow circumstances, but you can
get a more complete set of shared libraries from an actual OSF/1 system, if you wish. If you have an
actual OSF/1 license, you can pretty much do whatever you like with the libraries.

Linux

The shared libraries for the Linux mode are the most freely available of any mode. Since the barrier
to entry is so low, we'll discuss Linux compatibility in some detail. Once you have a thorough
understanding of how it works, you can apply this knowledge to any other ABI compatibility you
need to implement.

[2]If you have a spare Alpha lying around (other than the Multia model known for Random Heat
Death), feel free to ship it to me in care of No Starch Press; I'll be delighted to include a discussion
of OSF/1 mode in the next edition of Absolute BSD.

Installing and Enabling Linux Mode

The simplest way to install and enable Linux mode is with /usr/ports/emulators/linux_base, which
downloads and installs a large subset of a typical Linux environment into /usr/compat/linux. (It also
adds LINUX_ENABLE=``YES'' to /etc/rc.conf, so that the Linux ABI kernel module will be started
when the system boots.)

Depending on what software you've installed, you might already have Linux mode enabled on your
system. It runs transparently enough that the ports collection might have installed it without your
even knowing! To find out, check /var/db/pkg to see if linux_base is installed. Then use kldstat(8) to
see if the Linux ABI kernel module is loaded:

...
kldstat
Id Refs Address Size Name
 1 3 0xc0100000 236ff8 kernel
 2 1 0xc0337000 54f8 vesa.ko
 3 1 0xc119b000 12000 linux.ko
#
...

259

As you can see, the last module in the preceding list is the Linux ABI module, linux.ko. If the Linux
module is not loaded, it won't appear in the list.

If the module is not loaded, you can load it with kldload(8), as discussed in Chapter 4:

...
kldload linux
#
...

To automatically load the Linux module at boot, add this line /etc/rc.conf:

...
LINUX_ENABLE=``YES''
...

You should now be able to run Linux programs without any further configuration.

Identifying Programs

Modern UNIX binaries are in ELF format, which includes space for a comment, or brand. A binary
will be executed by the ABI for the brand. If a binary has no brand, it is assumed to be a FreeBSD
binary. FreeBSD recognizes four different brands: FreeBSD, Linux, Solaris, and SVR4.

While you cannot directly view the brand on a binary, you can examine and manipulate branding
with brandelf(1). To check the branding on a binary, just run brandelf on it:

...
brandelf /bin/sh
File '/bin/sh' is of brand 'FreeBSD' (9).
#
...

Here you see that this program is branded with FreeBSD, so it will be executed under the FreeBSD
ABI.

If you have a foreign program that will not run, check its brand. If it isn't branded, you've probably
discovered your problem: FreeBSD is trying to run the program under its native ABI. Change this by
setting the brand manually with brandelf −t. For example, to brand a program with Linux, do this:

...
brandelf −t Linux /usr/local/bin/program
#
...

The next time you try to run the program, it will attempt to run under the Linux ABI. If it's a Linux
program, it should give you better results.

260

What Is Linux_base?

The Linux kernel module handles the kernel support for Linux compatibility, and if you decide to use
the ABI for another UNIX, you'll need to implement much of this on your own. As such, it's a good
idea to understand how Linux mode works, to help you troubleshoot problems with other
compatibility modes.

One piece of the puzzle is to use the linux_base package. This package extracts a subsection of a
Red Hat Linux install under /usr/compat/linux. If you take a look there, you'll see something like the
following:

...
#ls
bin boot etc lib mnt opt proc sbin usr var
#
...

Looks a lot like the contents of your root directory, doesn't it? Well, if you poke around a bit, you'll
find that, generally speaking, the contents of /usr/compat/linux are comparable to that of the main
FreeBSD install. You'll find many of the same programs that you do on a base FreeBSD install.

Note One thing Linux devotees notice immediately is that the contents of linux_base are rather
minimal compared to what a Linux user is used to. You can add Linux programs to linux_base
as you like; we'll look at doing this later.

The Linux ABI tries to stay under /usr/compat/linux whenever possible. (It's somewhat like a weak
jail.) When you execute a Linux binary that calls other programs, the Linux ABI first checks for the
program under /usr/compat/linux. If it doesn't find the program there, it checks in the main FreeBSD
system.

For example, suppose you have a Linux binary that calls ping(8). The ABI will first check under
/usr/compat/linux for the ping program. When it finds that it's not there, the ABI will then check the
main FreeBSD system and will use /sbin/ping.

Alternatively, suppose a Linux binary wants to call sh(1). The Linux ABI will first check under
/usr/compat/linux and find bin/sh. When it finds sh there, it will execute that program instead of the
FreeBSD native /bin/sh.

Adding to Linux_base

As I mentioned earlier, the Linux install in linux_base is rather minimal, and some Linux programs
expect a broader range of shared libraries to be available. FreeBSD tries to keep ports as small as
possible, but compromises by making these additional Linux libraries available as additional ports.
The ports collection includes several ports that augment linux_base, most of which are shared
libraries. These increase the range of programs that FreeBSD's Linux mode can support. These
ports include the following:

devel/linux−libglade is a graphic interface library required by various programs.•
devel/linux_devel is a collection of tools for developing Linux programs on FreeBSD.•

261

devel/linux_kdump is a Linux binary debugging tool.•
graphics/linux−jpeg contains shared libraries to handle JPEG image files.•
graphic/linux−png installs shared libraries to handle PNG image files.•
graphic/linux−tiff includes shared libraries to handle TIFF image files.•

Installing these ports will round out 99 percent of the functionality you might want to provide to a
Linux program.

You may need a shared library or program that is not available in linux_base or a port. If so, the
simplest thing to do is to find a Linux system of the appropriate version, copy the files, and install
them in the appropriate locations under /usr/compat/linux. If you've created a new directory to
contain shared libraries, you'll need to tweak /usr/compat/linux/etc/ld.so.conf.

Configuring Linux Shared Libraries

FreeBSD's method for configuring shared libraries is very different from Linux's. Linux creates a
cache file from a plain−text configuration file, like the one found at /usr/compat/linux/etc/ld.so.conf:

...
cat ld.so.conf
/usr/i486−linux−libc5/lib
/usr/X11R6/lib
#
...

The initial slashes in these paths are misleading. Why? Remember, the Linux ABI looks for files
under /usr/compat/linux first, and if it finds the files, it uses them. These directories are actually
/usr/compat/linux/usr/i486−linuxlibc5/lib and /usr/compat/linux/usr/X11R6/lib. If you look in these
directories, you'll find the Linux shared libraries installed by linux_base. The Linux ABI kernel
module runs Linux ldconfig(8) to read this file, scan the directories listed, and create or update
/usr/compat/linux/etc/ld.so.cache.

When you add shared libraries to your Linux installation, you need to update this cache. You can do
this by unloading and reloading the Linux kernel module, but this might interrupt service. Instead,
you can run the cacheupdating program:

...
/usr/compat/linux/sbin/ldconfig
#
...

You won't get any output back, but you can check the date on ld.so.cache to be sure that the cache
has been updated. If the date is current, the cache has been updated.

To help keep things organized, if you add shared libraries to your system you can put them in a
separate directory. For example, I frequently create /usr/compat/linux/usr/local/lib for whatever
random crud I want to add to that system. To use those libraries, however, I must add the path to
ld.so.conf. (Remember to strip off the initial /usr/compat/linux, however!)

262

Installing Extra Linux Packages as RPMs

When a Linux program complains that it cannot find a necessary program, you may need to add
that program under /usr/compat/linux. Since FreeBSD's Linux mode is based on Red Hat Linux, you
can easily grab the appropriate components of Red Hat Linux and install them in your Linux
subsystem.

Red Hat Linux is distributed in RPM (Red Hat Package Manager) format. (You can find a good
selection of Red Hat Linux RPMs at FTP mirror sites around the world; see http://www.redhat.com/
for the latest mirror list.) RPM files are like FreeBSD's binary packages; they're just compressed
files containing everything needed to run a program, and they are designed to be installed and
uninstalled as a unit. Although people argue about the merits of RPM versus pkg_add versus the
many other package−management systems used by opensource software, since FreeBSD's Linux
compatibility package is based on Red Hat Linux, we use Red Hat tools.

When using RPMs, be certain to install the software under /compat/linux. If you just blindly run RPM
as described in the rpm(8) man page, you'll wind up overwriting part of your FreeBSD system. This
would be bad; while FreeBSD can run Linux binaries, you cannot combine a FreeBSD and Linux
userland arbitrarily and expect anything to work. Trying this is a good way to become familiar with
the emergency repair process described in Chapter 3.

To safely install an RPM, do this:

...
rpm −i −−ignoreos −−dbpath /var/lib/rpm −−root /compat/linux packagename
...

Note Of course, RPM packages are completely separate from FreeBSD's usual package
system. You cannot pkg_delete these; you must use RPM to handle them.

Using Multiple Processors—SMP

Computers with multiple CPUs have been around for decades, but they are just now becoming
popular in the Intel−compatible world. FreeBSD has supported the use of multiple CPUs since
version 3, but hardware is just now becoming affordable enough for small companies and hobbyists
to implement it.

What Is SMP?

Symmetric multiprocessing (SMP) describes a system with multiple (more than one) identical
processors. Before you ask: Yes, there are other variants on multiple−processor handling that might
be used some day. Some computer scientists insist that asymmetrical multiprocessing will be more
efficient. You can't buy that hardware, however, so it's moot at the moment.

SMP has quite a few advantages over single processors, and it's not the obvious "more power!" If
you think about it on the microscopic level, a CPU can only do one thing at a time. Every process on
the computer competes for processor time. If the CPU is performing a database query, it isn't
accepting the packet that the Ethernet card is trying to deliver. Every fraction of a second, the CPU
does a context switch and works on some other process assigned by the kernel. This happens often

263

enough and quickly enough that it appears to be doing many things at once, much as a television
picture appears to move by showing individual frames very quickly. With multiple processors, your
computer can do multiple things simultaneously. This can be a wonderful thing, but it increases
system complexity dramatically.

Since one CPU can only do one thing at a time, many programs have been written to work around
this limitation. In fact, many programs that you would expect to be only one process aren't. The
Apache Web server, for example, actually starts quite a few processes to serve up Web pages,
allowing it to work well on multiple−processor systems.

SMP has long been a feature in commercial UNIX. Sun Microsystems just announced a 102−CPU
SPARC system. Even Windows 2000 supports multiple CPUs, in a somewhat goofy way. I had an
opportunity to take home a fourprocessor Intel 486 system at one point, and while I never would
have used it, part of me regrets dragging it to the curb. Today a variety of manufacturers provide
X86 SMP motherboards, including big−name dealers such as Dell and Compaq.

Kernel Assumptions

To understand SMP and the problems associated with it, we have to delve into the kernel. All
operating systems face the same problems when supporting SMP, and the theory here is applicable
across a variety of platforms. FreeBSD is somewhat different from other operating systems, though,
because it has 30 years of UNIX heritage to deal with, and its development model doesn't allow
work to stop for a month at a time.

Now, that said, let me say that what follows is a gross simplification. Kernel design is a tricky
subject, and it's almost impossible to do it justice when describing it at a level for nonprogrammers.
But here's an explanation of how it all works, in its most basic form.

Your computer appears to be doing many things simultaneously: For example, I have WindowMaker
running, Netscape merrily soaking up the cable modem, and assorted port builds going on. Network
interrupts are arriving, the screen is displaying new text, the Apache Web server is sending out
pages, and so on. Actually, all this only looks simultaneous. Your average CPU can only do one
thing at a time.[3]

FreeBSD divides CPU utilization into time slices; a slice is the length of time the CPU spends doing
one task. One process can use the CPU for either a full time slice or until there are no more tasks
for it to do, at which point the next process may run. The kernel uses a priority−based system to
allocate time slices and to determine which programs can run in which time slices. If a process is
running, but a higher−priority process presents itself, the kernel allows the first process to be
interrupted, or preempted. This is commonly referred to as preemptive multitasking.

Now, although the kernel is running, it isn't a process; processes are run by the kernel. A process
has certain sorts of data structures set up by the kernel, and the kernel manipulates them as it sees
fit. You can consider the kernel a special sort of process, one that is handled very differently from
regular processes. It cannot be interrupted by other programs—you cannot type killall kernel
and reboot the system. And traditionally the kernel doesn't show up in top and similar tools.

Older UNIX and FreeBSD kernels get around some of the SMP problems by declaring that the
kernel is nonpreemptive and cannot be interrupted. This simplifies kernel management issues
because it makes everything quite deterministic: When a part of the kernel allocates memory, it can
count on that chunk of memory being there when it executes the next instruction. No other part of
the kernel will grab that particular chunk of memory.

264

This situation changed (for the better) after version 2.2.

FreeBSD 3.0 SMP

The first implementation of FreeBSD SMP was pretty straightforward: Processes were scattered
between the CPUs (achieving a rough load balance), and there was a "lock" on the kernel. The
CPU had to hold this lock to run the kernel, and before a CPU would try to run the kernel, it checked
to see if the lock was available. If the lock was available, it took the lock and ran the kernel. If the
lock was unavailable, the CPU knew that the kernel was being run elsewhere and went on to handle
something else. This lock was called the Big Giant Lock (BGL). Under this system, the kernel could
know that data would not change from under it. Essentially, it guaranteed that the kernel would only
run on one CPU, just as it always had.

This strategy worked well enough for two CPUs: You could run a mediumlevel database and Web
server on a twin−CPU machine, and feel confident that the CPU wouldn't be your bottleneck. If one
CPU was busy serving up Web pages, the other would be free to answer database calls. But if you
wanted to run an eight−CPU machine, you were in trouble; the system would spend a lot of time just
waiting for the Big Giant Lock to become available! The kernel still knew that it was only doing one
thing at a time, and if a kernel instruction changed some internal value, it would still be that way
when it returned.

There are many problems with this system, but fundamentally it's simplistic, and neither efficient nor
scalable. In fact, the standard textbooks on SMP rarely mention this method of handling the kernel
because it's so clunky. Still, it beats some other operating systems' methods of handling SMP. For
example, a twinprocessor Windows 2000 system's default setup dedicates one processor to the
user interface and uses the other processor for everything else. While the interface is snappy and
the mouse doesn't drag when you load the system, I would hope that most people don't purchase
SMP hardware to address graphical interface problems.

With the growth of system hardware, multiple−CPU systems will become very common in just a few
years. For FreeBSD to continue to be a quality operating system, this problem must be addressed.

FreeBSD 5 SMP

One of the benefits of the BSDi/Walnut Creek merger was the release of the BSD/OS 5.0 code base
to the FreeBSD development community. BSD/OS contains a great deal of proprietary information,
so the source code cannot be released to the general public. Still, FreeBSD developers were able to
read portions of the code. The most interesting part of this code was that multiple CPUs could be in
the kernel at once—something that will be heavily implemented in version 5, and which will mark
one of the big differences between FreeBSD version 4 and version 5.

To prevent information corruption, the new FreeBSD SMP system combines the Big Giant Lock with
a smaller lock called a mutex. When a piece of the kernel wants to work on a chunk of data, it slaps
a mutex over it. When another part of the kernel tries to access this mutex−locked data, it says,
"Oh, I can't touch that," and either waits for the resource to become available or tries to allocate
some other resource. The goal is to eliminate the Big Giant Lock, and to have all kernel operations
only mutex−lock the small bits of data that they need. As the kernel's smaller systems are rewritten
to take advantage of mutexes, their need to hold the BGL will be eliminated. According to Greg
Lehey, a major FreeBSD developer and member of the SMP project, this method is expected to
scale to beyond 32 processors.

265

NoteThe BGL could have been ripped out entirely and replaced with mutexes everywhere in one
massive frenzy of hacking (as commercial OS vendors do), completing the process in only a
couple of months, so why not do so? Because doing so would have meant that
FreeBSD−current would have been utterly unusable for several months, and 5.0−release
would have been poorly debugged. Too, the volunteer developers working on other parts of
the system would have had nothing to do. (Telling volunteer developers that they can't do
anything is an excellent way to lose them.)

This should give you enough understanding of how SMP works that you can administer it
reasonably well. Now, let's look at the details of handling an SMP system.

Using SMP

When using SMP, remember that multiple processors don't necessarily make things go faster. One
processor can handle a certain number of operations per second; a second processor just means
that the computer can handle twice that many operations per second, but those operations are not
necessarily faster.

Think of the CPU count as lanes on a road.[4] If you have one lane, you can move one car at a time
past any one spot. If you have four lanes, you can move four cars past that spot. Although the
four−lane road won't necessarily allow those cars to reach their destination more quickly, there'll be
a lot more of them arriving at any one time. If you think this doesn't make a difference, contemplate
what would happen if someone replaced your local freeway with a one−lane road. CPU bandwidth
is important.

Most user processes don't have to worry about when to use SMP; a process just requests some
CPU time and the kernel allocates it. The program doesn't worry about where this CPU time is
coming from.

The problem with SMP occurs when you want to have one process use multiple CPUs. The short
answer is, you can't do that unless the program is threaded. Threaded programs are written
specifically to run on multiple processors. (Check the program documentation to see if the program
is threaded.) Programs such as Apache, which run multiple processes to serve requests, are not
threaded but might as well be. Taken as a whole, Apache takes excellent advantage of multiple
CPUs.

SMP and Upgrades

The most common "problem" people encounter with SMP is when performing the default torture
test, an upgrade from source. It appears that no matter what, the system never seems to use more
than one CPU at a time. The "top" program will show that the system is 50 percent idle, no matter
what.

Trust your eyes. If the system appears to be half idle, you're only using one of your CPUs. The
make program that handles building software issues a command, waits for a response, then issues
another command. Each of these subtasks might be assigned to a different CPU, but the actual
make command won't try to do anything until that original process comes back successful. It only
does one thing at a time.

You can get around this problem with make's −j flag, which tells make to run multiple processes
simultaneously. The −j flag takes its own argument, the number of make processes to run:

266

...
make −j4 buildworld
...

This line tells make to run four processes, and hopefully it will complete more quickly. This doesn't
mean that your make will be completed in one−fourth the time, however; you still have other issues
to contend with (see Chapter 14).

Note Not all programs can handle being built with the −j flag. At times, even buildworld fails. (There
is some discussion of disabling support for make −j in buildworld, as it causes many
problems.) It's worth trying, but if things go badly, you need to fall back to plain old serial
make.

Multiple processors are not the be−all and end−all of high−performance computing. Your application
must be written to take advantage of them. If it isn't, extra CPUs will not help.

[3]Some CPUs (the Alpha) can do multiple things at once. These dual−issue and quad−issue
processors are slowly becoming more common. This is one reason why the Alpha was such
wonderful technology, and why it's bad for us all that the Alpha is no more.
[4]This example assumes that everyone drives the speed limit, taking turns and not cutting each
other off, and in general not acting like real drivers in any American city. Advanced Software
Management

267

Chapter 12: Finding Hosts With DNS
The Domain Name Service (DNS) is one of those quiet, behind−the−scenes programs that doesn't
get half the attention it deserves. Although most users have never heard of it, DNS is what makes
the Internet, as we know it, work. DNS, or nameservice as it's also called, provides a map between
hostnames and IP addresses. Without DNS, your Web browser or email programs wouldn't use
convenient names like http://www.cnn.com/; instead, you'd have to type in IP addresses. This would
greatly reduce the Internet's popularity.

Any Internet service you implement will require DNS. We'll discuss how DNS works, how to check
DNS, how to configure your FreeBSD system to use DNS, and how to build your own DNS server.

How DNS Works

DNS simply maps IP addresses to hostnames, and hostnames to IP addresses. For example, a
user doesn't want to know that http://www.absolutebsd.com/ is actually 209.69.178.25; she just
wants to type the URL into her Web browser and go. DNS does the translation. As the system
administrator you must be able to install, inspect, and verify DNS information, and you must
understand how your system will perform those same operations.

DNS information can be available in any number of places: on the local system, on a local DNS
server, on a remote nameserver. UNIX systems use a resolver to provide this information, a
program that knows about all these information sources and interfaces with them. When a program
wants to know the IP address of a host or the hostname for an IP address, it asks the resolver,
which consults the appropriate information sources and returns the information to the program that
needs it. We'll look at how to configure the resolver later in this chapter.

Most commonly, a resolver will direct a DNS query from a program to a nameserver, a computer
running a program designed to gather DNS information from other computers on the Internet. Once
a DNS request hits a nameserver, the nameserver checks its local cache to see if it has looked up
that information recently. (Nameservers receive many identical DNS requests; for example, the
nameserver at one Internet service provider I worked for received several hundred requests an hour
for the IP address for http://www.cnn.com/. Multiply that by all the Yahoo!, eBay, and MSN requests
out there, and that cache quickly becomes quite effective.)

If the designated nameserver doesn't have the information, it asks a root server, which keeps a list
of the nameservers responsible for every domain on the Net. In a process called a recursive query,
the root server tells the nameserver to go ask the appropriate nameservers, which may in turn refer
the query to still other nameservers. Eventually, it is referred to the authoritative nameserver for that
domain and the original nameserver gets its answer.

NoteWhen you register a domain, you must list two nameservers. Hosts expect to be able to get
information for that domain from those nameservers. If one nameserver fails, the other should
pick up the load, and if all the nameservers for a domain fail, the domain vanishes from the
Internet. If that happens, the next time someone browses to www.yourdomain.com, they will
get a "domain not found" error. Mail will bounce. The world will believe that you don't exist.
Even big companies, such as Microsoft, do this on occasion. Your manager or customer will
notice you, and not in a good way. Pay attention to your nameservice!

268

Basic DNS Tools

FreeBSD includes several tools for inspecting DNS information. Since most DNS runs over the User
Datagram Protocol (UDP), you cannot use telnet to manually query a server as we will do with email
and Web services later. Your only access to live DNS information is through host(1) and dig(1).

The Host Command

To quickly check the IP address of a host, use the host(1) command. For example, to check my
publisher's Web page, I would do the following:

..
host www.nostarch.com
www.nostarch.com is a nickname for nostarch.com
nostarch.com has address 66.80.60.21
nostarch.com mail is handled (pri=20) bysmtp.lax.megapath.net
nostarch.com mail is handled (pri=10) by mail.nostarch.com
#
..

This is somewhat interesting because it shows us that under DNS, one host can have multiple
names and multiple Web pages on one IP address. This output tells us that the main No Starch
Press Web page is actually a nickname for another hostname, http://nostarch.com/; one IP address
can have any number of names. This is much like the phone system in a typical family household, in
which several people share one telephone. The people are like hostnames, while the phone number
is like an IP address. The host does have a single, canonical name, much as a phone is registered
to a single person.

Note Many server programs require much more than an IP address to function. For
example, if you enter http://66.80.60.21/ in your Web browser, you'll actually pull
up the page for No Starch Press's hosting provider, not the page for No Starch
Press. We'll look at how popular Web servers multiplex multiple Web sites onto a
single IP address in Chapter 15, but it's something you should keep in the back
of your mind for future reference.

Getting Detailed Information with Dig

While the host command is quite helpful, it's certainly not detailed. Also, you don't know where this
information came from—whether it was taken straight from the cache or whether the nameserver
dug it up from the domain's nameserver. The standard program for finding detailed DNS information
is dig(1). (Another tool, nslookup(1), was popular for many years but has since fallen out of favor.)
Dig has a variety of options that allow you to debug a wide range of nameservice problems, though
I'll cover only the most basic ones here.

In its most basic form, a dig command is simply dig and a hostname. For example, to dig up
information on my publisher, I would enter this command:

..
dig www.nostarch.com
v ; <<>> DiG 8.3 <<>>; www.nostarch.com
w ;; res options: init recurs defnam dnsrch
x ;; got answer:

269

;; −>>HEADER<<− opcode: QUERY, status: y NOERROR, id: 4
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 2, ADDITIONAL: 2
z ;; QUERY SECTION:

;; www.nostarch.com, type = A, class = IN
{ ;; ANSWER SECTION:
www.nostarch.com. 2h13m2s IN CNAME nostarch.com.
nostarch.com. 2h13m2s IN A 66.80.60.21
| ;; AUTHORITY SECTION:
nostarch.com. 7h48m45s IN NS NS1.MEGAPATH.NET.
nostarch.com. 7h48m45s IN NS NS2.MEGAPATH.NET.
} ;; ADDITIONAL SECTION:
NS1.MEGAPATH.NET. 7h48m35s IN A 216.200.176.4
NS2.MEGAPATH.NET. 7h48m35s IN A 216.34.237.2
;; Total query time: 11 msec
;; FROM: blackhelicopters.org to SERVER: default −− 127.0.0.1
;; WHEN: Sun Apr 7 12:24:17 2002
;; MSG SIZE sent: 34 rcvd: 144
..

Wow, talk about a lot of information! (When you're using dig, you're probably trying to debug
something. It's better to have too much information than not enough.)

So what have we learned? To start with, anything beginning with semicolons is a comment that
either lists the options used by dig or divides the answers into sections.

The first line (v) lists the version of dig you're using, and the command−line options you used. The
second line (w) lists the options that dig is using. (Since we didn't specify any options on the
command line, these are the default options; we'll discuss some useful options later.)

The third line (x) tells us whether dig got an answer (it did). The next line (y) contains an important
word, NOERROR, which tells us that dig found an answer that appears to be good. If you don't get a
NOERROR, you have a problem. (Common errors are NXDOMAIN, meaning that the domain doesn't
exist, or SERVFAIL, meaning that the domain is misconfigured on that server.)

The next couple of lines contain codes that really aren't of use unless you're heavily into debugging
DNS or doing some weird things. So let's jump to the four sections that follow: the query, answer,
authority, and additional sections.

The Query Section

In the query section (z), we see how dig is treating the query. In our sample we see the following:

..
;; www.nostarch.com, type = A, class = IN
..

Let's start with the easy bit, the class. While DNS can manage many different naming systems, the
one we're concerned with is the Internet system, or IN. Internet domains should always have the
class IN.

270

The type is the type of record we're looking for. By default, dig looks for an A (address) record,
which means that we have the name, but want the IP address. A PTR (pointer) record request
means that we have an IP address and want the associated name.

The Answer Section

Next we have the answer section ({). The first thing it contains is the host we're looking for
(http://nostarch.com/). The next figure (2h13m2s IN CNAME) is the time to live for this
information—the amount of time your local nameserver may cache it. The 2h13m2s indicates that
this data expires in 2 hours, 13 minutes, and 2 seconds. The IN, again, indicates that this is Internet
data. Finally, CNAME means that what follows is a canonical name for the server, which tells us that
what we're looking for is actually an alias for something else. The dig output confirms that
http://www.nostarch.com/ is actually an alias for http://nostarch.com/.

The second line of the answer section is almost identical to the first, except it has an A instead of a
CNAME. This tells us that what follows is an IP address.

The Authority Section

To get the IP address of http://www.nostarch.com/, we have to follow the chain of authoritative
nameservers. The authority section (|) lists the servers responsible for the domain, their time to live,
and the sor t o f data and servers that they are. In th is case, the nameservers are
ns1.megapath.net and ns2.megapath.net. Data for http://www.nostarch.com/ is to be cached
for 7 hours, 48 minutes, and 45 seconds, and these are (again) Internet (IN) records. The NS
means that these are nameservers.

The Additional Section

Finally, under the additional section (}), dig lists the IP addresses of all the hosts listed with the host
we want. Our example lists the nameservers for http://www.nostarch.com/: ns1.megapath.net
and ns2.megapath.net. The interesting thing here is that the time to live is 7 hours, 48 minutes,
and 35 seconds. In this case, the time to live isn't the value for how long the local nameserver
should keep the information on the hosts, it's how long the data on the nameservers for
http://nostarch.com/ should be kept. Once this time passes, your nameserver will discard the
information and go fetch the nameserver list from one of the Internet's root nameservers. This isn't
necessarily good or bad, but if you're trying to solve a problem, it's good to know.

Do a dig on a couple of domains and become familiar with how the output should look.

Looking Up Hostnames with Dig

Suppose you have an IP address and want to identify the associated hostname; for example, you
might want to learn who owns a phone number. This is a common problem on the Internet—you
might see an IP address hitting your Web site every five seconds, and wonder who they are and
what they're trying to do.

To look up the name, use reverse lookup with dig's −x option. Since much of the result is
completely identical to what you see in the forward lookup, we'll only look at the section that's
different: the answer.

..
dig −x 66.80.60.21
;; ANSWER SECTION:

271

21.60.80.66.in−addr.arpa. 2h24m IN PTR www.megapathdsl.net....
#
..

Although we know that at least http://www.nostarch.com/ and http://nostarch.com/ live on this IP
address, this reverse lookup shows us the most correct name for the host. Both of those machine
names live on a machine that is actually called http://www.megapathdsl.net/.

The PTR entry in the middle of the answer indicates that this is a pointer record. It is a specific sort
of entry used to mark IP−address−to−hostname records. When you set up DNS, every host with an
IP address will need both a PTR and an A record in your nameservice system.

More Dig Options

The dig program takes a wide variety of command−line options to control how it checks for
information. Check dig(1) for a complete list of these options. We'll only discuss the servername and
norecurse options here, because they're the ones most commonly used.

Server Name

The first option is the server name. By default, dig queries the first nameserver listed in
/etc/resolv.conf. If you're trying to debug a problem, however, you want to ask different
nameservers. You can do this on the command line by using the @ option. For example, to ask
http://dns1.yahoo.com/ what it knows about http://absolutebsd.com/ enter this:

..
dig @dns1.yahoo.com AbsoluteBSD.com
..

The output from this command will look much like the sample output shown earlier, except that you'll
see references to Yahoo!'s nameserver. If you're debugging a problem, you should compare this
information carefully with that given by your local nameserver. If information from two different
nameservers conflicts, you may well have found your problem. (DNS information should only
change when you add hosts, rename hosts, or renumber hosts.) You can use some of dig's other
options to see exactly where the problem occurs.

Controlling How Dig Queries

Dig has two other sorts of options: those that control how dig itself runs, and those that control how
dig makes queries. The options that control how dig runs are prefaced with a minus sign (�); those
that control how dig makes its queries are prefaced by a plus sign (+). While dig can do a lot of
really nifty tricks, they're beyond the scope of this chapter. Controlling how it makes the queries is
quite useful, however.

By default, a nameserver will recurse queries to return an answer. While this is helpful if you're
asking the nameserver about a domain, you don't want the nameserver to dig up the answer for you
when you're debugging; instead, you want to check each nameserver in turn. You can do this with
the norecurse option.

272

..
dig AbsoluteBSD.com +norecurse
..

Try this one now, with a domain that you're pretty certain your local nameserver has never looked
at. My favorite DNS server test site is http://www.moo.com/, simply because it's cool, obscure, cute,
mostly harmless, and nobody ever looks at it. You're almost guaranteed that nobody on your
nameserver has looked at http://moo.com/ lately.

If your nameserver doesn't have this information cached, or if this information has expired from the
cache, your first section will look much like that of our previous example. The authority section,
however, will look quite different:

..
;; AUTHORITY SECTION:
com. 18h9m59s IN NS A.GTLD−SERVERS.NET.
com. 18h9m59s IN NS G.GTLD−SERVERS.NET.
com. 18h9m59s IN NS H.GTLD−SERVERS.NET.
com. 18h9m59s IN NS C.GTLD−SERVERS.NET.
com. 18h9m59s IN NS I.GTLD−SERVERS.NET.
com. 18h9m59s IN NS B.GTLD−SERVERS.NET.
com. 18h9m59s IN NS D.GTLD−SERVERS.NET.
com. 18h9m59s IN NS L.GTLD−SERVERS.NET.
com. 18h9m59s IN NS F.GTLD−SERVERS.NET.
com. 18h9m59s IN NS J.GTLD−SERVERS.NET.
com. 18h9m59s IN NS K.GTLD−SERVERS.NET.
com. 18h9m59s IN NS E.GTLD−SERVERS.NET.
com. 18h9m59s IN NS M.GTLD−SERVERS.NET.
..

The nameservers under GTLD−SERVERS.NET are the root servers. They contain the master lists
of which nameservers control which domains. By giving you this output, your local nameserver is
saying, "I don't know, I'll have to go ask someone else, but you told me to not recurse so I'm
stopping here."

To query a root nameserver, combine the norecurse option and server name dig commands and
try your query again:

..
dig @a.gtld−servers.net +norecurse www.moo.com
..

Follow the chain of information for a site or two, and you'll start to really understand how DNS
works.

Configuring a DNS Client: The Resolver

Before you can have your system use a DNS server, you must tell the computer which nameserver
to use, and how it should be used. Even a DNS server needs to have the client portion of

273

nameservice set up, because the computer won't know it has a nameserver running unless you tell
it! Just about anything you do on a network will require a working nameservice client. Use keywords
in /etc/resolv.conf to tell your system's resolver where to look for information.

Domain or Search Keywords

When you're working on machines on your own network, you don't want to have to type the whole
hostname. (If you have 30 Web servers, typing ssh www19.mycompany.com gets old.) To tell the
resolver which domains to check by default, use either a domain or a search keyword in
/etc/resolv.conf.

Specifying the Local Domain

The domain keyword tells the resolver which local domain name to check, by default, for hosts. For
example, to specify http://absolutebsd.com/ as the local domain, enter this:

..
domain AbsoluteBSD.com
..

Once the local domain is specified, any command that would ordinarily require a domain name will
be assumed to be pointing to http://absolutebsd.com/. Were I to ping www, the resolver would
append the name http://www.absolutebsd.com/ to that and tell ping to try
http://www.absolutebsd.com/.

Specifying a List of Domains with Search

Alternatively, I can use the search keyword to specify a list of domains to try. Perhaps my
company has several domain names in use in different parts of the network—I could enter the
following:

...
search http://absolutebsd.com/ blackhelicopters.org stenchmaster.org
...

In this case, the resolver will check these three domain names in the order written, until it finds a
match.

For example, if I enter ping petulance, it will try to find petulance.AbsoluteBSD.com. If that fails,
it will check for petulance.blackhelicopters.org, the next domain in order. Finally, it will check for
petulance.stenchmaster.com. If no such host exists in any of these domains, the command will
eventually fail.

Note If you don't list either a domain or a search keyword, the resolver will use the local
machine's domain name.

274

The Nameserver List

Now that your resolver knows which domains to try by default, you can tell it which nameservers to
use. List each nameserver on a single line, in the order of preference. The nameservers will be tried
in order. It would look something like this:

...
nameserver 127.0.0.1
nameserver 209.168.70.3
nameserver 192.168.87.3
...

Note that the first entry in this list is the "loopback" IP address 127.0.0.1. You'll need this entry if the
machine is a nameserver because it tells the resolver to check the local host's nameserver. While in
some rare instances you might not want to use the local nameserver, you don't have to, but in most
cases it's a waste of network bandwidth not to.

With nameserver entries and either domain or search keywords, your /etc/resolv.conf is complete.

DNS Information Sources

To truly manage Internet services, you must be able to control your own domain naming service.
While many ISPs will provide this service for you, you don't want to have to coordinate with their
staff to make a vital change in your infrastructure.

Now that you know how to look at DNS data, and how the chain of DNS authority works, you can
start building your own nameserver. FreeBSD includes all the software you need to run a DNS
server; all you have to do is configure it and turn it on. We'll do so by building the two possible
sources of hostname and IP address information: the hosts file and the named daemon. Each is
configured separately.

The Hosts File

The /etc/hosts file matches Internet addresses to hostnames for a single host. However, while the
hosts file is very simple, its contents are only effective on a single machine. One system cannot use
the hosts file from another system, without some unpleasant tricks.

Dynamic nameserver programs have largely superseded /etc/hosts, but the hosts file is still useful
on small networks or behind a Network Address Translation (NAT) device. For example, the hosts
file is just fine if you have one or two servers and if someone else is responsible for managing your
public nameservice. If you have multiple servers that would each have to be maintained separately,
you should investigate using a full−fledged nameserver.

Each line in /etc/hosts represents one host. The first entry on each line is an IP address, and the
second is the fully qualified domain name of the host, such as mail.mycompany.com. Following
these two entries you can list an arbitrary number of aliases for that host.

For example, a small company might have a single server that handles mail, FTP, Web services,
DNS, and a variety of other functions. A desktop on that network might have a hosts entry

275

something like this:

...
192.168.1.2 mail.mycompany.com mail ftp www dns dns
...

Using this /etc/hosts entry, the desktop could find that host (mail.mycompany.com) with either the
full domain name or any of the brief aliases listed (such as ftp.mycompany.com,
www.mycompany.com, and so on).

If you find that you need more than two or three hosts entries, or that maintaining hosts files is
becoming a problem, it's a sign that you need to build a nameserver to handle your hosts data. A
nameserver is far more scalable than a hosts file on each machine, and it's much simpler to
maintain once you set it up.

The Named Daemon

The most popular DNS server software is BIND (Berkeley Internet Name Daemon). (The actual
server program is called named(8).) BIND is actually a suite of tools that includes named and
supporting programs such as dig.

BIND is maintained by the Internet Software Consortium (http://www.isc.org/) and is released under
a BSD−style license. While there are competitors, such as djbdns (/usr/ports/net/djbdns), BIND is
considered the nameservice reference implementation, so we'll focus on it. The concepts used in
BIND are generally applicable to any nameserver programs.

Because BIND has been the target of malicious hackers over the last several years, its most recent
version was completely rewritten with a focus on security. It includes some very powerful security
features and extremely defensive programming.

Masters and Slaves

No matter what nameserver daemon you use, you'll keep running into the terms masters and
slaves. Every domain needs at least two nameservers, but only one can be the master; the rest are
slaves.

A master nameserver is the final authority on a domain. When you make changes to a domain, you
make the changes on the master nameserver. The slaves take their information from the master
nameserver for that domain.

One nameserver can be both a master for some domains and a slave for others. For example,
h t tp : / / abso lu tebsd .com/ has two nameserve rs , h t t p : / / b lackhe l i cop te rs .o rg / and
http://ralph.glblnet.com/; http://blackhelicopters.org/ holds the original reference files for this domain,
and any changes are to be made on that system. That makes http://blackhelicopters.org/ the master
nameserver. Every so often, http://ralph.glblnet.com/ updates its records for this domain from
http://blackhelicopters.org/, making it the slave. If the blackhelicopters.org system is abducted by
a l i e n s , h t t p : / / r a l p h . g l b l n e t . c o m / w o u l d c o n t i n u e t o s e r v e D N S i n f o r m a t i o n f o r
http://absolutebsd.com/.

On the other hand, http://ralph.glblnet.com/ holds the master records for many other domains, and
other nameservers update their records for these domains from http://ralph.glblnet.com/. Therefore,

276

http://ralph.glblnet.com/ is both a master and a slave nameserver, but for different domains.

Forward and Reverse DNS

You may have heard of or otherwise encountered the concepts of forward and reverse DNS.
Forward DNS is what you do when you have a hostname and you look up an IP address. You saw
examples of forward DNS in the A records in our dig examples:

..
nostarch.com. 2h13m2s IN A 66.80.60.21
..

The A means that this is an address record, or forward DNS. This is known as an “A record” or an
“address record.”

Reverse DNS is what you do when you have an IP address and want a hostname. For example,
suppose your system logs show that someone keeps trying to connect to your SSH server from the
IP address 66.80.60.21, and you want to know the name of that host. You can look up IP addresses
using dig's −x option. Much of the output will look the same as a forward lookup, but the answer is
considerably different:

..
dig –x 66.80.60.21
...
;; ANSWER SECTION:
21.60.80.66.in−addr.arpa. 2h24m IN PTR www.megapathdsl.net. …
#
..

Examining this output we see that, for historical reasons we won't delve into, IP addresses are
displayed in reverse order and as part of the domain in−addr.arpa when you're doing a reverse
lookup. Next we have the usual time−to−live data and the IN for Internet data.

The interesting part is the PTR or pointer record, which tells us that an IP address "points to" a
name. Basically, this is the canonical, most correct hostname for an IP address. This is much like a
phone system; again, while many people can share a phone number, it's only registered to one
person.

Forward and reverse DNS are generally expected to match, but since many hosts can share one IP
address, an A record does not necessarily need a matching PTR record. For example, we saw
earlier that http://nostarch.com/ has an IP of 66.80.60.21, but the hostname associated with that IP
address is http://www.megapathdsl.net/. The part that must match is the A record for
http://www.megapathdsl.net/. If the hostname given by a reverse lookup does not have a matching
forward record, DNS is not correctly configured, and the tools that rely upon DNS checking, such as
certain configurations of TCP wrappers, will reject connections from this system. Fortunately,
automated tools exist to check forward and reverse DNS matches.

277

In−addr.arpa

There's one major difficulty with PTR records: Often, when they appear, they're listed backwards.

Y o u s e e , D N S c h e c k s h o s t s f r o m l e f t t o r i g h t . W h e n y o u c h e c k f o r t h e h o s t
http://www.absolutebsd.com/, the nameserver first looks for a nameserver for .com. It then checks
under . com fo r h t tp : / /abso lu tebsd .com/ , then under h t tp : / /abso lu tebsd .com/ fo r
http://www.absolutebsd.com/. The biggest units are on the left, but in an IP address, the biggest unit
is on the right. To check the IP address, we have to reverse it. For example, we turn 66.80.60.21
into 21.60.80.66.

It's very easy to confuse a forward IP address with a reversed IP address, so DNS uses a special
marker to indicate that an IP address is reversed. Reversed IP addresses have the string
"in−addr.arpa" on the end of them. (The reasons for this date back several years and are quite
boring, so we won't go into them.) The bottom l ine is that our 66.80.60.21 becomes
21.60.80.66.in−addr.arpa.

So why not just leave the IP address forward, and use the in−addr.arpa to indicate it's a reverse
DNS check? Glad you asked. The preceding address is a simple one, and if you ran dig, it would
check a very limited space. If you're running a large network, you might need to run a DNS query of
a much larger range of IP addresses, like 118.168.192.in−addr.arpa, which would translate to
everything under 192.168.118. You might even need to run 168.192.in−addr.arpa, or even
192.in−addr.arpa. Each is a check of an increasingly large space—much like doing dig .com.
(You'll probably never need to run dig .com, but Internet backbone engineers do, and backbone
engineers are the ones who write this sort of program. One of the problems with using
professional−strength tools is that they're geared toward, well, professionals.)

Note If you're looking for quick−and−dirty answers, host(1) does this reversal for you. Dig also
does this for you, if you use the −x option. Don't be confused when you see in−addr.arpa,
however.

Configuring Named

Before you can start named, you need to set it up. The directory /etc/namedb contains the basic
named configuration files.

named.root

One file that must be present, but that doesn't need editing, is named.rooti, which lists the root
nameservers. If a nameserver receives a query for a site it doesn't have in its cache, it asks these
nameservers. (This file changes rarely—the last update was in August 1997.) You may need to edit
this file if your system is not on the Internet and if you have a private root server.

named.conf

The other important file is named.conf, named's central file. If your named.conf file is broken, your
nameserver is hosed.

The syntax of named.conf resembles C code. If you don't know C, though, don't worry, because the
rules are very simple, and the examples demonstrate everything you need to know. Any line
beginning with two slashes (//) is a comment. Similarly, any text contained within old−fashioned C
comment marks (/* and */) is a multi−line comment.

278

There are two types of entries in named.conf: options and zones. Everything in your configuration
file should be either an option, a zone, or a comment. A zone is a fancy name for a domain (while
they aren't, strictly speaking, identical, they're close enough for our purposes). Options control how
BIND operates.

Options

If you ignore the comments in the default named.conf, the file opens with a list of options, most of
which are obscure and are commented out by default. You use options by putting them in the
options section of the file, which contains the word options and a set of curly brackets. The actual
options go between the brackets and are separated from one another by semicolons. Here's a very
simple options section from a named.conf file:

..
options {
 directory "/var/named"; listen−on {127.0.0.1; 209.69.178.18; };
};
..

In this example, the option directory has the value “/var/named”, and the listen−on option
lists two IP addresses.

Let's first look at the directory option, which specifies the directory where named.conf will look
for and store DNS files. Beginning here will make setting up your server more straightforward.

The default directory (/etc/namedb) should be fine if all you want to do is provide a nameservice for
a couple of domains. However, if you are providing DNS for dozens or hundreds of clients, this
directory will quickly become painfully full and will be unable to live on the root partition.

The standard alternative to /etc/namedb is /var/named, which is the location for nameservice files
on larger servers. I generally use /var/named even when I have just a few domains to serve, as
these files tend to accumulate.

The listen−on option controls which IP addresses named will accept connections on. If you have
dozens of IP addresses on a single network card, you might want to confine your named to
attaching to only one of those addresses. (This is particularly valuable if you have jails on your
system.)

BIND supports many more options, but these are perhaps the most popu− lar. You can check the
full BIND Operators’ Guide (at http://www.isc.org/) for the complete list of options and their usage.

Zones

The default named.conf defines three zones, or domains, that the nameserver handles by default:
the root zone, the IPv4 localhost, and the IPv6 localhost. Each of these zones has an entry in
named.conf, beneath the options list. You shouldn't need to tweak the default zones—in fact, if
you're thinking of changing them, you're almost certainly doing something wrong. But we'll discuss
what these zones are for and what they do.

279

The Root Zone

The nameserver uses the root zone when it has no information on a requested domain or host.
These queries are recursed to a root nameserver. Here's the named.conf entry for the root zone:

..
zone v "." {
 w type hint;
 x file "named.root";
};
..

The first entry (v) tells which domain this entry is for. The dot, in quotes, indicates that this is for the
entire Internet.

The type (w) is an indicator that says what sort of domain this is. The root zone is special, and it is
the only one with the type of hint.

Finally, the file keyword (x) tells named which file contains the information for this domain. Named
will look in the directory specified in the directory option for a file of this name, and will assign its
contents to this zone. We'll look at these files later.

Localhost Zones

The localhost zones (IPv4 and IPv6) are used for the local host; they provide DNS services for the
loopback IP address, 127.0.0.1. Without them, each system call that tried to look up the hostname
for the local host would have to wait to time out, slowing the system immeasurably. Each looks
much like the root zone, with a different filename.

Here's the configuration for the IPv4 localhost zone. You'll find it in named.conf, just under the root
zone:

..
zone v "0.0.127.IN−ADDR.ARPA" {
 w type master;
 x file "localhost.rev";
};
..

Looks pretty similar to the options statement and the root zone in the previous section, doesn't it?

The zone name (v) appears in quotes after the word zone. Because this zone is used for reverse
DNS, we see IN−ADDR.ARPA. (If you reverse the IP address, you'll see it's actually for the 127.0.0
group of IP addresses.)

The type (w) indicates whether this nameserver is a master or a slave for this domain. Every
nameserver is a master for the localhost zones.

Finally, the file keyword (x) tells the nameserver where the file of information on this domain can be
found. The information on this zone is contained in the file localhost.rev, found in the directory
specified in the directory option.

280

Setting Up a Slave

Perhaps the easiest task in DNS is to set up a slave domain. The entry will look much like the
entries for the root zone and the localhost zone. You need to know the name of the domain you
want to slave, and the IP address of the master nameserver.

To set up a slave domain, copy the localhost zone entry and change it slightly. The configuration for
the slave server for http://absolutebsd.com/, for example, looks like the following, which closely
resembles the root and localhost zones.

..
v zone "AbsoluteBSD.com" { w type slave; x file
"AbsoluteBSD.com.db"; y masters {209.69.178.18;};
}
..

We have the domain name (v), a label for the type of zone it is (w), and a filename (x). The filename
is where the information for the domain is kept. It's traditional in DNS to give these files the same
name as the domain, with a ".db" extension. (Despite what the extension might imply, these files are
in no way databases.) This file will be created when the slave downloads the domain data from the
master.

We then have the IP address of the master server (y). The slave will request the domain's DNS
information from the master at regular intervals. (We'll see what sort of intervals later.) The master
nameserver must be listed by IP address; after all, the DNS server must be able to bootstrap its
records before it knows the IP of anything!

Setting Up a Master

The named.conf configuration you need when you want a server to be a master is even simpler
than the setup for a slave zone:

..
v zone "AbsoluteBSD.com" { w type master; x file
"AbsoluteBSD.com.db";
}
..

Once more there's the domain name (v), a label for the type of zone it is (w), and a filename (x).
Unlike a slave domain, you'll have to create this file. We'll look at how to create that file in the "Zone
Files" section.

Setting Up Multiple Zones

If you're managing high−end Internet nameservers, you may be responsible for thousands of
domains. If you screw up, you will have a lot of people very angry with you. Therefore, before you
set up hundreds of zones, think about how you're going to arrange them.

One thing that can make your life easier when setting up multiple zones is to divide a server's zone
files between those that the server is the master for and those that the server just backs up. I
usually do this with two directories, master and slave. Files in the master directory are sacred, and

281

must be preserved. Files in the slave zone aren't exactly garbage, but their loss is no big deal.

If you expect to serve thousands of domains, you might want to divide your master zone files still
further. I use a set of 36 directories under the master directory, one for each letter and number. Of
course, you can create any arrangement of directories that fits your needs. Just remember that
you're going to either live with this arrangement or go through some annoyance changing it.

Taking this to the logical extreme, your zone entry could look like the following:

..
zone "AbsoluteBSD.com" {
 type master;
 file "master/clients/a/absolutebsd.com";
};
..

Most people do not need this number of subdirectories, but you could do it if you needed to.

Zone Files

At this point we have a configuration file that tells named what domains it's responsible for, and
where the files that contain the information on those domains live. But we still need to make those
files!

Zone files have a rather obscure syntax because, much like sendmail, BIND was assembled by
programmers who were more interested in efficiency than ease of use. Unlike sendmail, zone file
configuration is not blatantly user−hostile, though some parts of zone files appear inconsistent.

To learn how to work with zone files, follow the given examples and you should be all right. And any
time you find yourself scratching your head and wondering why they did something a certain way,
just remember that you're digging through the primordial ooze of the Internet. (If DNS were invented
today, zone files would probably look very different.)

Here's a simple example of configuring a zone file. FreeBSD includes a shell script to create the
localhost file, make−localhost. To create the localhost file, all you have to do is go to
/etc/namedb and type this:

..
sh make−localhost
..

And poof! The file localhost.rev appears. We'll dissect this file as our first example.

..
; From: @(#)localhost.rev 5.1 (Berkeley) 6/30/90
; $FreeBSD: src/etc/namedb/PROTO.localhost.rev,v 1.6 2000/01/10 15:31:40 peter Exp $
;
; This file is automatically edited by the `make−localhost' script in
; the /etc/namedb directory.
;

v $TTL 3600
w @ x IN y SOA z satariel.blackhelicopters.org. {
root.satariel.blackhelicopters.org. (

282

 | 20010601 ; Serial
 } 3600 ; Refresh
 ~ 900 ; Retry
 � 3600000 ; Expire
 j 3600) ; Minimum
 IN NS satariel.blackhelicopters.org.
1 IN PTR localhost.blackhelicopters.org.
..

First of all, remember that anything that begins with a semicolon is a comment. (Comment your
zone files liberally; it'll help you figure out later what the heck you were doing.)

$TTL: Time to Live

We'll skip on through this file to the first line of real interest, the $TTL statement (v). This statement
is the zone's default time to live, in seconds (3,600 seconds, in this case), and it dictates how long
other servers will cache information from this zone. You can give data in the zone any time to live
you choose. This is actually a fairly short time; a good average is 10,800, or 3 hours. Choosing a
TTL is something of a black art; stick with the default, and you'll be fine for most purposes.

Start of Authority

Next is the Start of Authority (SOA) record. This is a brief description of the zone, and of how its
characters and servers should treat it. Every zone has exactly one SOA record. The SOA does not
include information about what is in the domain, merely information about how long this information
lasts.

The @ sign The at symbol (@), which begins the SOA record (w), is a special character that's
shorthand for "whatever named.conf says this file is for," and in this case, named.conf says that this
file holds data for the zone 0.0.127.in−addr.arpa. When named reads named.conf and loads this file
into memory, it makes this substitution. Using the actual domain name would be less confusing for
new users, but you'll see this in most nameservers and will need to be familiar with it. You could use
the full domain name in this file instead of the @ symbol if you wished, but almost nobody does that.

The Data Type and Label The IN represents the type of data (x), Internet data in this case, and
SOA means that this is a Start of Authority record ($). Both elements will appear in every DNS
record you create.

Machine Name The next part is the name of the machine where the master file lives (z). (This file
was created on satariel.blackhelicopters.org.)

Responsible Party Then we have the email address of the person responsible for this zone ({).
Since the make−localhost script defaults to root@hostname, the email address lacks the @ sign,
because the @ sign had already been assigned to mean the zone name from named.conf.[1] (Were
w e t o p u t t h e @ i n , t h e e m a i l a d d r e s s w o u l d b e c o m e
http://root0.0.127.in−addr.arpa.satariel.blackhelicopters.org/. That would be worse than
http://root.satariel.blackhelicopters.org/, wouldn't it?) This is important when you create your own
zone files for your domains. Replace the @ in the email address with a period.

In many cases, the nameserver doesn't have a mail server on it. To follow best current practices on
the Internet, replace the email address with hostmaster. and your domain name. Every domain is
expected to have a "hostmaster" email address to respond to DNS issues.

283

Parentheses While technically the SOA record should be on a single line, if it were, it would be
difficult to read. Instead, standard zone files have this broken up into several lines, with the first
opening parenthesis (or round bracket) indicating the line break. Each of the next five lines is part of
the SOA record, with the record ending with the closing parenthesis.

Serial Number The first piece is the serial number, which indicates the zone file's version (|). While
the serial number can be whatever you choose, it's most convenient to use the date. You'll usually
see the date in YYYYMMDD format with two extra digits at the end. This serial number, 20010601,
represents June 1, 2001. The extra two numbers in the serial number represent the number of times
the file has changed in a day. For example, there have been times that I've had to update one
domain a dozen times in one day, with each change requiring a serial number bump. Here's how
this works: Say I create the zone file on May 9, 2002, with the first serial number 2002050901. If I
change the zone file on June 8, the serial number changes to 2002060801. If I then change the
zone file a second time on that same day, the serial number changes to 2002060802. This system
allows up to 100 changes in a day, or roughly one change every 15 minutes. If this isn't enough for
you, you need to rethink your work processes.

The serial number is important, because every so often a slave server will contact the master server
to see if the zone has updated. It determines whether there's been an update by comparing the
serial number of its cached copy to the master zone file's serial number. If the master zone file's
serial number is greater than the one on the slave, the slave server determines that the zone file
has been updated and downloads the latest domain information.

Note If your secondary nameservers haven't updated their zone files from the master nameserver,
it's probably a serial number problem. Even if you swear up and down that you incremented
the serial number, increment the serial number again and try once more. It'll probably work.

Refresh The next number is the refresh value, in seconds (}). This number determines how
frequently slave servers will contact the master server to check for an updated master file. In the
localhost.rev file, a secondary nameserver would update every 3,600 seconds, or 60 minutes.

If the slave cannot check its data against the master in a refresh attempt, it keeps giving answers
with its current record—that's what a backup nameserver is for, after all! We'll see exactly how this
works in the "Refresh, Retry, and Expire in Practice" section.

Retry The next number is the retry value, also in seconds (~). If the slave cannot reach the master
nameserver, it will retry at this interval. Our sample file has a 900 second (15 minute) retry. If the
secondary nameserver cannot update at the 1 hour mark, it will keep trying every 15 minutes until
the master nameserver answers. Again, we'll see exactly how this works in the "Refresh, Retry, and
Expire in Practice" section.

Expire Next we have the expire value, in seconds (�). If a slave nameserver cannot update its
records for this many seconds, it stops giving out its cached information. It's at this point that the
administrator thinks bad information is worse than no information. In our example we have
3,600,000 seconds (1,000 hours, or a little over 41 days).

Minimum TTL The last number is the minimum time to live (j). In older implementations of BIND,
this was used for the time to live for absolutely everything. Today, it's only used for the TTL for
negative answers. (Nameservers can cache negative answers.) For example, if you look up
givememymoneyback. http://www.absolutebsd.com/, your nameserver will learn that there's no such
host. In localhost.rev, negative answers will be cached for 3,600 seconds (1 hour).

284

Note Be sure you have a closing parenthesis after the minimum time to live! Otherwise, named will
assume that the remainder of the file is also part of the SOA record and get confused.

Recycling SOAs Now that you understand all the painful details of the SOA record, here's the good
news. Once you set up an SOA the way you like, you can recycle that same SOA, with only minimal
changes, across multiple domains. I've set up thousands of domains from a template SOA.

Domain Information

Now that you have a complete SOA record, you can list actual information for the domain. Domain
information immediately follows the SOA record.

In the following example, the two lines contain the zone's actual host information:

..
 IN NS satariel.blackhelicopters.org.
 1 IN PTR localhost.blackhelicopters.org.
..

Each of these lines has four parts: a hostname or number, the data type, the server type, and the
actual data. The first field contains either a hostname (such as www) or a number (such as 12). The
name of the zone is automatically attached to this entry, either at the beginning or at the end,
depending on whether the file is for reverse or forward DNS. Since our example is for reverse DNS,
the 1 is appended onto 127.0.0 giving us the IP address 127.0.0.1. (If there is nothing in the first
field, named will append the zone name anyway, giving us a reasonable default.) The data type is
always IN (Internet).

The third field, the type of server we have, is actually interesting. An NS entry (shown in the first line
above) represents a nameserver, and in this example, the only nameserver for this domain is
satariel.blackhelicopters.org. If you're distributing localhost.rev among several nameservers, you
should add additional NS lines for them.

Note Because there is no first field in our NS example here, BIND assumes that this is for the
0.0.127.in−addr.arpa zone, or the network beginning with 127.0.0, the domain specified for
this file in named.conf.

A PTR en t ry (as shown in the second l ine o f the p reced ing example) represents
IP−address−to−hostname mapping. This zone is for the 127.0.0 network. on the second line of our
example, we have a .1. This represents the .1 in the network, or 127.0.0.1, the standard loopback IP
address. This record points to the local host, in this case localhost.blackhelicopters.org.

Refresh, Retry, and Expire in Practice

While I've mentioned what the refresh, retry, and expire times mean, that's still a ways from
understanding how they work. Here's an example of these times in operation.

Suppose we have a domain with a refresh time of 4 hours, a retry time of 1 hour, and an expire time
of 48 hours. This means that the slave nameserver will contact the master every hour to check for
updates. Every so often, you edit records on the master nameserver, and they propagate to the
slave within an hour.

285

So far, so good. Now assume that the master nameserver explodes, scattering your hard disk
across three counties. What will happen to the slave server? The next time the slave tries to check
to see if its records are out of date, it will be unable to reach the master. At that point, it changes
how often it checks for updates. Instead of using the refresh time of four hours, it will use the retry
time of one hour. Once it can successfully check the status of its records, it will go back to using the
refresh time instead of the retry time.

If the slave cannot confirm its data for a length of time equal to the expire time, the domain data is
considered too old to be useful and the slave nameserver will discard the data and return an error
when anyone asks about the domain. The domain will disappear from the Net.

If your master nameserver really does fail in a horrible way, you have an amount of time equal to
the expire plus the retry times to replace it or to reconfigure your slave as a master.

[1]DNS was created before the @ sign became popular in email addresses. This overlap is email's
fault, not BIND's.

A Real Sample Zone

The localhost zone file is a somewhat contrived example; it represents only one machine, and has
only the one IP address in it. But it's convenient, it's found on every nameserver, and all the data
types given are either commonly used or flatout required.

Now let's consider a zone file that's more representative of the domains you'll be serving. We'll look
at the relevant snippets from named.conf and the zone file for http://absolutebsd.com/.

named.conf

Here's a snippet from named.conf:

..
zone "AbsoluteBSD.com" {
 type master;
 file "master/AbsoluteBSD.com";
};
..

In this example, we're telling named that it is responsible for the domain
http://www.absolutebsd.com/, and that it's the master nameserver. We're also giving it the filename
where the information on the domain can be found. If our directory option is set to /var/named, this
file would be found in /var/named/master/ http://absolutebsd.com/. Without further ado, let's check
out that file.

/var/named/master/absolutebsd.com

..
v $TTL 345600
w @ IN SOA blackhelicopters.org. root.blackhelicopters.org. (
 2001101501 ; Serial
 86400 ; Refresh −− 24 hours
 7200 ; Retry −− 2 hours

286

 2592000 ; Expire −− 30 days
 345600) ; Minimum −− 4 days
 x IN NS blackhelicopters.org.
 IN NS ralph.glblnet.com.
 y IN MX 10 blackhelicopters.org.
 IN MX 20 ralph.glblnet.com.
z IN CNAME www.AbsoluteBSD.com.
www IN A 209.69.178.30
..

This file looks almost the same as the localhost file we looked at earlier, but it's an actual zone file
from a real live Internet domain. Let's see what we've got. First we have the time to live (v), equal to
four days, which means that when a nameserver grabs the IP information for this domain, it'll hang
on to it for four days. The SOA record (w) lists the contact information and a variety of times for
refresh, retry, and expire, as well as a serial number.

The zone file lists two nameservers (x): http://blackhelicopters.org/ and http://ralph.glblnet.com/.
According to the times in the zone file, http://ralph.glblnet.com/ will compare its records to
http://blackhelicopters.org/ every 24 hours. If it cannot compare its records successfully, it'll keep
trying every 2 hours. If http://ralph.glblnet.com/ can− not check its records against the master
nameserver for 30 days straight, it will stop giving any answer for http://www.absolutebsd.com/.
Finally, remote nameservers will cache no−such−host responses for four days.

The Mail Exchanger

We then have a new record type, MX, the domain's mail exchanger (y). While a domain has only one
primary mail host, it can have multiple backup mail servers. Nevertheless, the mail must ultimately
reach the main mail host. Here's where you indicate which is the preferred mail server and which
are backups. (We will discuss this in some detail in Chapter 14.)

Preference Numbers

The one additional entry in the MX record (the numbers 10 and 20) is a preference. Servers with
lower preference numbers are more preferred. In this case, the server http://blackhelicopters.org/,
with preference 10, is the preferred mai l server for ht tp: / /www.absolutebsd.com/. I f
http://blackhelicopters.org/ cannot be reached, http://ralph.glblnet.com/ is the backup.

Since you may someday want to add another mail server between the two, or change to a
completely different preferred server, leave some space between your preference numbers. If you
don't, and you number them 1, 2, 3, and so on, you won't have much flexibility later. For example,
on the day when http://www.absolutebsd.com/ has thousands of clients receiving mail, I might have
a set of MX records that look like this:

..
 IN MX 10 mail.AbsoluteBSD.com
 IN MX 20 mail2.AbsoluteBSD.com
 IN MX 30 mail.someothercompany.com
..

287

Host Records

Lastly, we have the actual host records (z), the meat of the zone file. We're concerned with two
types of host records: CNAME and A records. As we saw in the dig example, a CNAME is a reference
to a canonical name, an alias. An A record points a name to an IP address. Our example shows that
http://absolutebsd.com/ is an alias for http://www.absolutebsd.com/. (Remember, when there's no
name explicitly given for an entry, it defaults to the domain the file represents!) The host
http://www.absolutebsd.com/ has an Internet address of 209.69.178.30.

Periods, Termination, and Zone Files

You've already seen (in the section on "Zones Files" describing the SOA record) that periods can be
substituted for the @ sign in email addresses when you're creating zone files. Periods are further
overloaded, however, into termination symbols for hostnames. When using the @ symbol in this
way, named assumes that all hostnames are part of the zone the file is for. There's no need for you
to wr i te out "ht tp: / /www.absolutebsd.com/"; named knows that you're ta lk ing about
http://absolutebsd.com/, and just saying "www" suffices. (Every hostname has the zone name
appended to it.)

This system works well, except when the host isn't part of the domain in question. For example,
since the nameservers for http://absolutebsd.com/ are not in that domain, we don't want them
showing up as http://blackhelicopters.org.absolutebsd.com/, now do we?

This is where a period comes in. If you put a period after a hostname, named assumes that you've
listed the complete hostname, including domain name. As you can see in the preceding examples,
every complete hostname after the SOA record has a period after it. Even the CNAME entry pointing
t o h t t p : / / w w w . a b s o l u t e b s d . c o m / h a s a p e r i o d ; i f i t d i d n ' t , i t w o u l d d i r e c t u s t o
http://www.absolutebsd.com.absolutebsd.com/. When you typed http://www.AbsoluteBSD.com
into your Web browser, the browser wouldn't be able to find the page. Instead, you would have to
type http://www.absolutebsd.com.absolutebsd.com/. Now that wouldn't be very helpful, would it?[2]

[2]Actually, now that I think of it, having that as an actual hostname would be something that DNS
geeks would find funny. Remember that before becoming a DNS geek.

Making Changes Work

So, you have your nameserver configured and your zone files are all set up. We're looking pretty
good. But the nameserver won't make the changes until you tell named to reread its configuration
files.

To apply your changes, use the name daemon controller, ndc(8). Ndc can handle all named
management functions, which will vary with how your named is compiled. For a complete list of all
functions, run ndc help as root:

..
ndc help
(builtin) start − start the server
(builtin) restart − stop server if any, start a new one
getpid
status
stop
exec
reload [zone] ...
reconfig [−noexpired] (just sees new/gone zones)

288

dumpdb
stats [clear]
trace [level]
notrace
querylog
qrylog
help
quit
#
..

To learn about all of these options, get one of the big books on DNS. Our important options are
stop, start, restart, and reload; ndc stop shuts down the nameserver, ndc start
fires it up, and ndc restart stops and starts it. Restarting the nameserver will make it reread
every zone file to bring itself up to date and will also flush its cache of third−party DNS information.
(That's okay if your nameserver only serves information and doesn't provide lookups for end users.)
If you want named to check all its zone files for updated information, but not dump its third−party
cache, use ndc reload instead.

Starting Named at Boottime

If you're running a nameserver, you usually want it to start automatically at boottime. You can start
named at boot with the rc.conf option named_enable:

..
named_enable="YES"
..

If you want to start it manually, use ndc(8), as discussed in the previous section.

Checking DNS

Once you've created your first zone, get a complete printout of the domain to check your work. (The
axfr keyword for dig requests a list of all hosts in the domain.)

..
dig @primarynameserver domainname axfr
..

Now read the results. Are all the names as you expected? Do you have hosts with double domain
names, such as http://absolutebsd.com/? If so, you forgot a period. Are all your mail servers and
nameservers showing up? If not, fix them.

You can use dnswalk(1) (/usr/ports/net/dnswalk) to double−check your work. This tool will catch a
wide variety of standard configuration problems, though it won't catch conceptual problems. If you
have a host using a CNAME, but the canonical name is a CNAME back to the first hostname (a

289

loop), dnswalk wil l point i t out. However, i f you set your preferred mail exchanger to
mail.whitehouse.gov, it'll let that pass.

To use dnswalk on a domain, use it like this:

..
dnswalk AbsoluteBSD.com.
..

Named Configuration Errors

DNS configuration errors appear in /var/log/messages and appear as error messages when you
start, restart, or reload named. If your nameserver is not serving information on a domain, check this
log file. The log messages are generally fairly explicit and state which line number an error might
appear on.

Named Security

Named is a popular target for hackers because it provides a lot of information about your network
and because it defaults to running as root. If someone breaks into named, he owns your machine.
We'll tackle both of these problems separately.

The dig example I just gave, in which we snagged a complete list of hosts in a domain, is called a
zone transfer. A prospective intruder would be very interested in this information, especially if your
hosts have descriptive names. ("Oh, http://ceo.absolutebsd.com/ must be the company president's
machine! That would be neat to hack.")

Because the purpose of a nameserver is to serve names, we can't entirely cut out the bad guy's
access. However, we can make sure that named will only give answers to specific queries rather
than spilling its guts upon request. Thus, if someone asks for a particular hostname, the nameserver
will answer, but if someone asks for a list, nameserver will deny their request.

To restrict zone transfers to only being performed by specific hosts, use the allow−transfer
option:

..
options {
 directory "/var/named";
 allow−transfer {
 192.168.87.3; 10.115.4.3 ;
 };
};
..

In this example, the hosts 192.168.87.3 and 10.115.4.3 are the only systems permitted to perform a
zone transfer. Replace those IP addresses with those of your slave nameservers and your
workstation, and you've concealed a lot of information about your network. You might also add the
network staff's desktop machines to this list, so that they can perform zone transfers to debug DNS
issues.

290

Note You can define much tighter access lists than this. See the bind documentation in
/usr/src/contrib/bind/doc for more details.

How about hackers attacking named itself? We can do two things about this. First, run named in a
jail (see Chapter 8) to ensure that a successful intruder won't be able to access anything else on
your network. Second, run named as a user other than root. Just make sure the following is set in
/etc/rc.conf or /etc/defaults/rc.conf. (This might be the default by the time this book comes out, so be
sure to check if it's already done.)

..
named_flags="−u bind −g bind"
..

Once this is set, to gain root access the intruder would have to break into named, then break into
root as a regular user on the jail, and then break out of the jail into the main system. You should
notice something wrong well before anyone completes all of these steps.

Controlling Information Order

The order in which the hosts file and a nameserver are checked can greatly affect how a program or
system behaves. Firewalls, for example, frequently need customized host entries that other hosts
don't need, and they must check the local hosts before consulting the global DNS table. The
/etc/host.conf file allows you to control the order in which information services are used, and it has
only two possible entries: hosts and bind. Each entry appears on its own line. Host IP information
sources are checked in the order that they appear in this file.

For example, if you want your hosts file to be checked before your nameservice, this file would
contain the following:

..
hosts
bind
..

If, on the other hand, you wanted your nameserver to be checked before the hosts file, you would
use this:

..
bind
hosts
..

Note The second information source is only checked if the first one fails. If a machine has
conflicting entries in /etc/hosts and DNS, the first one checked wins.

291

More About BIND

As your network grows, you'll need more information on BIND. While one good source is the
documentation in /usr/src/contrib/bind/doc, that documentation can be difficult. The standard book
on BIND is DNS and BIND by Paul Albitz and Cricket Liu (O'Reilly and Associates). This book is
very readable and highly recommended—it's the only book that I automatically order each new
edition of, sight unseen.

292

Chapter 13: Managing Small Network Services
Even a server with a very narrow, specific purpose (like a Web server) needs a variety of smaller,
helper services, like basic administration tools. In this chapter, we'll consider some smaller Internet
servers, such as the time server, SSH, and inetd, and discuss the tools that FreeBSD makes
available for them. We'll also discuss some basic tools that you'll use when managing larger
servers, such as bandwidth management and secure certificates.

Note You'll see clearly marked references throughout this chapter to topics that we won't
cover. When possible, I refer you to authoritative references for further information.
(If you're running a high−volume Internet server—say, handling a million or more
email messages an hour—you'll probably want to get your hands on a reference with
something more than the few pages you'll find here!)

Bandwidth Control

Today's computing hardware is relatively inexpensive, and software is cheap, but the cost of
Internet bandwidth is high. If your company offers "unlimited bandwidth" Web service to clients,
you'll soon find yourself with a flooded Internet circuit and no corresponding income. As such, it can
be vital to restrict the bandwidth any one site can consume, as well as the amount of bandwidth
used by any one service. That's where dummynet comes in. Luigi Rizzo invented dummynet to
simulate poor or lossy links so he could test network protocols under such adverse conditions.
D u m m y n e t i s q u i t e f l e x i b l e ; y o u ' l l e v e n f i n d a n e x a m p l e o n R i z z o ' s W e b p a g e
(http://www.iet.unipi.it/~luigi/ip_dummynet/) simulating an ADSL link to the Moon! (Dummynet is part
of IPFW, which we touched on in Chapter 8.)

Although designed to test network protocols, dummynet has since been used to throttle the amount
of bandwidth used by any one network service— bandwidth control is simply one side result of this
sort of experimentation. And, because dummynet works on specified ports, IP addresses, and
protocols, you can use it to restrict the bandwidth usage of IPSec tunnels, sendmail, and such.

You must have IPFW compiled into your kernel to use dummynet. If you followed our example in
Chapter 4, you should be all set, but to double−check, run kldstat −v | grep ipfw to list all
IPFW modules. If you find that your kernel lacks IPFW support, add the following to your kernel
configuration, rebuild, and reboot.

..
options IPFIREWALL
options IPFIREWALL_VERBOSE
options DUMMYNET
options IPFIREWALL_DEFAULT_TO_ACCEPT
..

Note Since we're using IPFW for bandwidth control instead of packet filtering, we set things to the
default accept mode. If you're doing packet filtering with IPFW instead of IPF, leave out the
"default to accept" option entirely.

293

Configuring IPFW

The IPFW packet filtering works by comparing each packet against a rule, in order. Rules say either
that a packet is accepted, rejected, or dumped into some other function, such as divert(4) or
dummynet.

Because we're using IPFilter for packet filtering, all we have to worry about is the subset of IPFW
that handles traffic shaping. Dummynet requires two rules within this subset: an IPFW rule to
redirect a packet to dummynet and a dummynet rule describing the bandwidth permitted. We'll see
examples of both shortly.

We'll use ipfw(8) to configure IPFW, while logged in as root. But first, since (like many other
programs) ipfw acts differently depending on its arguments, first check your initial rules with ipfw
list.

..
ipfw list
65535 allow ip from any to any
#
..

As you can see in the preceding example, rules are listed first with a rule number, followed by the
name of the rule. IPFW rules are numbered from 1 to 65535. Simple enough, it seems. Since we
used the "default to accept" kernel option, the last possible rule (rule number 65535) passes all
traffic. If we hadn't used that, the last possible rule would have been to deny all traffic.

To tell IPFW to send packets through dummynet, you must create an IPFW rule to direct that
particular type of network traffic to a dummynet rule. The syntax for an IPFW−to−dummynet rule
must include the following:

An IPFW rule number•
A statement that this rule will redirect traffic to some other sort of rule (a dummynet rule)•
A number for this other sort of rule•
A traffic description•

..
number pipe pipenumber ip from sourceaddr sourceport to destaddr destport
..

In the preceding statement, number is the IPFW rule number, and pipenumber is the number of the
pipe that handles this bandwidth rule. (A pipe is an add−on IPFW rule that performs special
handling, such as dummynet.) The sourceaddr and sourceport entries define the IP address
and port number where the traffic is coming from, while destaddr and destport specify where
the traffic is going to. The port numbers are optional; if no port is specified, all traffic to or from that
IP address is affected. (Both the source and destination can use the special keyword any to match

294

any possible address.)

Here's a simple IPFW−to−dummynet rule:

..
100 pipe 1 ip from 192.168.99.100 80 to any
..

In this example, 100 is the IPFW rule. pipe is the marker that indicates that this rule is going to
redirect traffic through another set of rules. The pipe rule number is 1, and the remainder of the rule
is the traffic description.

Traffic Descriptions

The description of the traffic you want to pump through dummynet is very important. Describing the
traffic incorrectly will result in programs having either too much bandwidth or too little.

The basic format for a traffic description is as follows:

..
protocol from address port to address port
..

On the Internet, the protocol is almost always ip. The from and to are labels, indicating where the
traffic is coming from and where it is going to. The address labels are IP addresses, and the ports
are port numbers. If you want to specify all IP addresses and ports possible, you can use the any
keyword.

For example, let's say our Web server has an IP address of 192.168.99.100. We want to describe
all traffic coming from the Web server and going to any address anywhere on the Internet. A
description of this traffic would look like this:

..
ip from 192.168.99.100 80 to any
..

Creating IPFW Rules

Say we want to filter the amount of bandwidth for our Web server at IP address 192.168.99.100,
running on port 80. We've already written a description of this traffic in the previous section. Now we
want to include that, and add the necessary information to redirect this sort of traffic into a
dummynet rule.

To create the IPFW rule, we need an IPFW rule number and a pipe rule number. IPFW rules are
processed in numerical order, but you can create any numbering scheme you like. Since we aren't
using IPFW to filter packets, but just to direct packets to dummynet, the order isn't that important. I
usually number rules in even increments of 100 to leave room for modifications between existing
rules. Order in pipe rules is not important, so I number them consecutively. In keeping with this, I'll

295

number the IPFW rule 100 and the pipe rule 1.

This would give us an IPFW rule like this:

..
100 pipe 1 ip from 192.168.99.100 80 to any
..

Adding IPFW Rules

Now that you know what you want your IPFW rule to say, you need to add it to IPFW. Use ipfw
add for this:

...
ipfw add 100 pipe 1 ip from 192.168.99.100 80 to any
..

This rule tells IPFW to take any traffic coming from port 80 on 192.168.99.100, and redirect it
through the pipe rule numbered 1.

Creating Pipe Rules

So, IPFW is directing traffic of a certain description to a dummynet (or pipe) rule. It would help if that
pipe rule existed, now wouldn't it? Dummynet rules use the following syntax:

..
pipe pipenumber config bw bandwidth
..

The leading pipe in the preceding statement indicates that this is a pipe rule. For pipenumber we
use the same number we used in the IPFW rule: 1. For bandwidth we specify this connection's
permitted bandwidth. For our example, let's say that we want 128 kilobits per second (Kbps) of
traffic.

Install this rule into IPFW with ipfw add:

..
ipfw add pipe 1 config bw 128Kbit/s
..

So, now all traffic from the Web site on that IP address is redirected through this dummynet rule,
which limits total traffic to 128Kbps.

296

Reviewing IPFW Rules

To see your IPFW rules, run ipfw list:

..
ipfw list
00100 pipe 1 ip from 192.168.99.100 80 to any
65535 allow ip from any to any
#
..

This listing shows our IPFW rule directing traffic to our dummynet rule. It doesn't show the
dummynet rule, however. Pipes are stored in a separate list.

To view the pipes, run ipfw pipe list:

..
ipfw pipe list
v 00001: w 128.000 Kbit/s 0 ms 50 sl. 1 queues (1 buckets) droptail
 mask: 0x00 0x00000000/0x0000 –> 0x00000000/0x0000
BKT Prot ___Source IP/port____ ____Dest. IP/port____ Tot_pkt/bytes Pkt/Byte Drp
 0 tcp x 192.168.99.100/80 y 163.62.168.2/2415 128050681 35518324182 0 0 50486587
#
..

Note The output from ipfw pipe list is far wider than 80 characters. If possible, use a terminal
emulator and make your window very, very wide.

These four lines describe both our dummynet rule and the associated IPFW rule. Much of this is
in−depth information that we don't need to understand—it simply displays dummynet's heritage as a
traffic−problem simulation tool. The first entry (v) is the dummynet rule number, followed by the rule
on how dummynet permits traffic (w). The next interesting item is the source IP address (x)—in this
case, our Web server. At the moment I took this snapshot, one particular destination IP address (y)
is having traffic to it throttled.

Dummynet Queues

Dummynet works by putting packets in a queue, and then handling these queued packets in order.
If you're trying to throttle a high−traffic site, this queue can fill up, so if your Web server starts
occasionally locking up for a few seconds after you implement dummynet, you're probably
overflowing the packet queue.

To fix this problem, modify your pipe rule to include a queue size, and increase it to the largest
possible queue size of 1000KB:

..
ipfw add pipe 1 config bw 128Kbit/s queue 1000Kbytes
..

This larger queue uses kernel memory, however, so don't go slapping it in willy−nilly.

297

Directional Traffic Shaping

One thing to remember is that you cannot throttle incoming traffic. If someone posts a bootleg copy
of the next Star Wars movie on your Web server, you're going to have a truly ridiculous number of
incoming requests a second. No amount of configuration can prevent 30 million people clicking on a
link to request pages from your server. The best you can do is restrict how you respond to these
requests. This means that all you can do is limit your responses by throttling your outbound
connections. In most cases this is okay, since, after all, you're the one serving Web pages or
sending mail!

If you use a dummynet rule that tries to control incoming traffic, you'll slow down connections
without really affecting incoming traffic at all. As a result, you'll build up connection queues on your
server, and only hurt yourself. If you're being flooded with traffic, either refuse this sort of traffic
entirely (see Chapter 8), find the demanded content and remove it, or contact your ISP for help.

Public−Key Encryption

Many security features in server daemons rely upon public−key encryption to ensure confidentiality,
integrity, and authenticity. Many different Internet services also use public−key encryption. You
need to have a basic grasp of public−key encryption to be able to run services like secure Web
pages (https) and secure POP3 mail (pop3ssl).

Note If you're already familiar with public−key encryption, you can probably skip this section.

Encryption systems use a key to transform messages from readable versions (cleartext) to and from
encoded versions (ciphertext). Although the words cleartext and ciphertext include the word text,
they aren't restricted to text; they also include graphics files, binaries, and any other data you might
send. All cryptosystems have three main purposes: to maintain integrity and confidentiality and to
ensure nonrepudiation. Integrity means that the message has not been tampered with.
Confidentiality means that the message can only be read by the intended audience. And
nonrepudiation means that the author cannot later claim that he or she didn't write that message.

Older ciphers relied on a single key, and if you had the key, you could both encrypt and decrypt
messages. (You might have had to jump through a lot of hoops to transform the message, as with
the Enigma engine that drove the Allies nuts during World War Two, but the key made it possible.)
A typical example is any code that requires a key or a password. The one−time message pads
popularized in spy movies are archetypal single−key ciphers.

Unlike single−key ciphers, public−key (or asymmetric) encryption systems use two keys: both a
private and a public one. Messages are encrypted with one key and decrypted with the other. (The
mathematics to explain this are really quite hairy, but it does work—the system is based upon the
behavior of really, really, really large numbers.) Generally, the key owner keeps the private key
secret, but the public key is handed out to the world at large, for anyone's use. The key owner uses
the private key, while everyone else uses the public key. The key owner can encrypt messages that
anyone can open, while anyone in the public can send a message that only the key owner can read.

Public−key cryptography fills our need for integrity, confidentiality, and nonrepudiation nicely. If an
author wants anyone to be able to read his message, while ensuring that it isn't tampered with, he
can encrypt the message with his private key, and anyone with the public key can decrypt and read

298

the message. (Tampering with the encoded message would render it illegible.)

Encrypting messages this way also guarantees that the author has the private key. If an author
wants to send a message that can only be read by its intended reader, she can encrypt it with the
reader's public key, but only the person with the matching private key can read it.

This system works well as long as the private key is kept private. Once that private key is stolen,
lost, or made public, it's useless. A careless person who has his private key stolen could even find
others signing documents for him. Be careful with your keys, unless you want to learn that someone
used your certificate to order half a million dollars' worth of high−end graphics workstations and
have them overnighted to an abandoned−house maildrop on the other side of the country![1]

Note Absolute BSD is not an in−depth guide to cryptography. Much of what's in here is a
generalization. If you're really, really interested in crypto, check out Bruce Schneier's Applied
Cryptography (John Wiley & Sons). Bring a calculator, and a spare brain to use when yours
fills up.

Certificates

One interesting note about public−key encryption is that the author and the audience don't have to
be people—they can be programs. SSH, the Secure Sockets Layer (SSL) portion of Apache, which
is the secure POP3 service, uses public−key encryption, as do many other programs. Public−key
cryptography is a major component of the signed certificates used by secure Web sites. When you
open Netscape to buy something online, you might not realize that the browser is frantically
encrypting and decrypting Web pages behind the scenes. This is why your computer might
complain about "invalid certificates"; someone's public key has either expired or has gone bad.
(We'll learn more about how to use certificates in Chapter 14 and 15.)

Many companies, such as VeriSign, provide a public−key signing service. These companies are
called Certificate Authorities (CAs). Other companies that need a certificate signed provide proof of
their identity (such as corporate papers and business records), and these public−key signing
companies use their certificate to sign the company's certificate. By signing the certificate, the
Certificate Authority says, "I have inspected this person's credentials, and he (or she, or it) is who
he claims he is." But they're not guaranteeing anything else: The person can use the certificate to
build a Web site that sells fraudulent or dangerous products, or could even use it to encrypt a
ransom note. Signed certificates guarantee certain types of technical security, not personal integrity
or even unilateral technical security. If someone breaks into the server, you're still in trouble.

Web browsers and other certificate−using software include certificates for the major CAs. When the
browser receives a certificate signed by a Certificate Authority, it accepts the certificate. Essentially,
the Web browser says, "I trust the Certificate Authority, and the Certificate Authority trusts this
company, so I will trust this company." So long as you trust the certificate authority, the process
works.

Create a Request

To get a certificate to secure one of your server programs, you need to generate a certificate
request. You then submit this request to a central Certificate Authority for signing. The request itself
is fairly simple. While the command line is long, you just need to answer a few questions. (Since
you will use these commands only once, we won't dissect them; see openssl(1) for more details, if
you're interested).

299

Note Your certificate request must be treated as secret because a hacker can use this
as a stepping−stone into your network. Be sure that the file can only be read by
root!

Let's walk through a certificate request. Enter this verbatim:

..
openssl req −new −nodes −out req.pem −keyout cert.pem
..

In response you should see this:

Using configuration from /etc/ssl/openssl.cnf
Generating a 1024 bit RSA private key
.................++++++
...++++++
writing new private key to 'cert.pem'
−−−−−
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
−−−−−
Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some−State]:MI
..

Enter the two−letter code for the country and state or province you live in (US and MI, respectively,
in this example), as shown in bold here. If you don't know the two−letter codes, ask someone who
leaves the server room on occasion. (They are also defined in the ISO 3166 standard, so a quick
Web search will find it.)

..
Locality Name (eg, city) []:Detroit
..

A simple city name is sufficient for the Locality. If you're in a branch office, you might want to use
the city where your headquarters is located.

..
 Organization Name (eg, company) [Internet Widgits Pty Ltd]:BlackHelicopters Foundation
Organizational Unit Name (eg, section) []:Network Support
..

The preceding requests are for your company name and the department you're from. If you don't
have a company (I don't), just make something up.

..
Common Name (eg, YOUR name) []:magpire.blackhelicopters.org
..

The preceding line is the part that trips up most administrators. The "YOUR" in the text means the
server's name, not the admin's name. If you don't put a server name here, the request will be
useless.

..

300

Email Address []:mwlucas@blackhelicopters.org
..

Since this is a personal certificate for my own Web server, I don't need to worry about the email
address. If this request is for a company, put a generic corporate address here, like
webmaster@AbsoluteBSD.com.

..
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:RodentsRule
..

This challenge password is also known as a passphrase. Again, this needs to be a secret, because
anyone with your passphrase can masquerade as you! The passphrase here isn't a very good one;
it doesn't have any non−alphanumeric characters, such as dashes, commas, or exclamation points,
and it doesn't even have any numbers mixed in with it. For your real certificate requests (or anything
on your network), please use a password that sucks less than this.

..
An optional company name []:
..

By this time you've filled in quite enough company names, I'm sure, so just press ENTER. After
doing so, you'll find a file req.pem in your current directory. It should look something like this:

..
−−−−−BEGIN CERTIFICATE REQUEST−−−−−
MIICIDCCAYkCAQAwgcAxCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJNSTEQMA4GA1UE
BxMHRGV0cm9pdDEkMCIGA1UEChMbQmxhY2tIZWxpY29wdGVycyBGb3VuZGF0aW9u
MRgwFgYDVQQLEw9OZXR3b3JrIFN1cHBvcnQxJTAjBgNVBAMTHG1hZ3BpcmUuYmxh
Y2toZWxpY29wdGVycy5vcmcxKzApBgkqhkiG9w0BCQEWHG13bHVjYXNAYmxhY2to
ZWxpY29wdGVycy5vcmcwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBANCjXf0h
WX/nlKb5Sc9m7Nofvc3Nck5j7XzNnd50UIc93Jj+Egw/KnlrniptpNicvqzQJ6zs
7jOk1uMUMbHfllxU0UtRGfLthCvfstB40ZzdMYUAfAT1r15i7fnaCRagshekel0h
deadbeefTCk6mC7OYcsGuqrVuQkEcA/kPDxdAgMBAAGgHzAdBgkqhkiG9w0BCQcx
EBMOR2VyYmlsc0FyZUNvb2wwDQYJKoZIhvcNAQEEBQADgYEAwC7lNqZbHFKaOjiw
h35gU6TAC8NE0DRLuEulLWClEIPsTK6HHV7KU4uOq42HEunf61dpPaPkG03htoeu
y0c5Rjk9F11cvRbBjpajv+T1lxTBGveuhatsn43d9Epi3glrcpueisd87LMxtnht
OBf9nz6GaH+2o2BsGxwH3yws5o0=
−−−−−END CERTIFICATE REQUEST−−−−−
..

You'll also find a cert.pem file that looks much like this:

..
−−−−−BEGIN RSA PRIVATE KEY−−−−−
MIICXAIBAAKBgQDQo139IVl/55Sm+UnPZuzaH73NzXJOY+18zZ3edFCHPdyY/hIM
Pyp5a54qbaTYnL6s0Ces7O4zpNbjFDGx35ZcVNFLURny7YQr37LQeNGc3TGFAHwE
9a9eYu352gkdSbY5YlPr+7K63bRkskwpOpguzmHLBrqq1bkJBHAP5Dw8XQIDAQAB
AoGAO8olXC4bdOELo5IbCdmoFJY2EW1HzZkrbLGMBTz1+tvKhPmCeIn9hRBHIkeL
jxvUNLfuNssrNBeQEUEvQJcfgk+QW8zq5UV6xin7Rb1JYu+1TzyBt1QMAx99cDEq
WW0oqvYIz1IzQq6FA5/J93Kj3yJ7I6NOCs8c9BxYvnjd6WECQQD0ARUKZhwLD7gQ
HM3aIMXV7h0nzqj1Ygz2Rw/GEj+eWiam9NDlxIjqCuXAp34rDcyp++ZFX8flOJQ+
yHOt7625AkEA2uUvUhob0vTAFBofrFHigRQRD8YFDbXIPLtrXxqAmuD1SyABBgBy
yGpsmXwdBP/lxR1xu4n+Mu2KVPiNZpZ1xQJASlNGEHvYEPqBy86qWcZf3PGCSgzm
ZJCweBhfUqteW6MEYRjzxPmf5wLYx119zimO7TyBASLS5hzc817l9daraQJBAJ6B
8YdRcq6LHwAvfpoI3a08u7IhYY1xAiPAT9sZVOFSXy3cagFPl867ChMGxfjV2Suo
y6/TGCkGy/IF3lbYQ0UCQGABvzCfcw3/xVY7co6k8kSu1Mf1dj/MYZh0oI7qrbUN

301

O+Cez+e2UvoiahCW3IWlmBFBZ8HJUoGzkC0+wVmZzZ0=
 −−−−−END RSA PRIVATE KEY−−−−−
..

If these files don't exist, or don't look basically like this, you didn't run openssl properly. Go back and
try it again or mail req.pem to your Certificate Authority, who should send you back a file that looks
much like one of the preceding files. Save that response to a file named signature.pem and run this
command:

..
cat signature.pem >> cert.pem
..

This will copy the signature onto the end of the certificate and create a complete signed certificate.
This certificate is good for anything on the host it's for; you can use it for a Web page, for a pop3ssl
connection, or anything else that requires a certificate.

Being Your Own CA

When you're first learning, you probably won't want to go through the trouble and expense of having
a Certificate Authority sign every certificate you create. Chances are, too, that you'll want a couple
of certificates just to learn with. Signing a certificate is a simple mathematical process, and perfectly
easy to do yourself.

Note If you sign your own certificates, client software will generate warnings that the
"certificate signer is unknown." This is expected—after all, people outside my
office have no idea who Michael Lucas is, or why he's signing Web site
certificates! VeriSign and other CAs are trusted. I'm trusted by the people who
know me,[2] not trusted to verify the identity of other people.

To sign your own certificates, first create a directory readable only by root and do all your CA work
here:

..

mkdir ca
chown root.wheel ca
chmod 700 ca

..

Then run the following openssl command to create a certificate authority key:

..

openssl genrsa −des3 −out ca.key 1024
..

Enter a passphrase when prompted, and be sure to remember it, or the key you've just created is
worthless. (You cannot use the certificate without the passphrase!) Finally, use the key you've just
created to create a certificate for your CA:

..

302

openssl req −new −x509 −days 365 −key ca.key −out ca.crt
..

Enter your passphrase when prompted (if you've forgotten it already, the only thing you can do is
create a new key), and you'll enter a series of questions and answers identical to the one you saw
when you created your certificate request. You now have a CA key (ca.key) and a CA certificate
(ca.crt) that you can use to sign the request you created earlier. The preceding command, while
long, never varies, so we won't go over it in any detail. Just trust me.

You'll be asked for your passphrase again. Once you type it, the actual signing process is very
quick, and you should see a file named signature.pem, the signature file that a CA would send back
to you. Just append it to your public key as discussed in the previous section, and you have a
complete certificate!

NoteDon't use a self−signed certificate on a system where the public will see the self−signed
certificate, because the warnings will confuse or annoy them or even scare them away. Spend
the hundred dollars or so and have a real CA sign your production certificates. (Of course, if
you're only using these certificates internally, you can download your corporate certificate and
install it in your company's Web browsers. On Netscape 6, you'll find this option under Edit •
Preferences • Advanced • Privacy & Security • Certificates. Different versions of Internet
Explorer have this in different places.)

[1]This is a true story. Guard your private keys!
[2]Well, most of them, anyway. Many of them. A few, at least. Oh, never mind.

SSH

One of UNIX's great strengths is its remote administration ability. Whether the server is in front of
you or in the basement of a locked laboratory in a maximum−security military installation
surrounded by savage guard dogs and rabid weasels, if you have network access, a username, and
a password, you can control it.

For many years, telnet(1) was the standard way to access a remote server. Telnet is nifty. You can
use it to connect to an arbitrary TCP port on a host and manually talk to servers across the network.
(We'll use it later in this chapter to test various services.) However, as a remote administration
protocol, telnet has one crushing problem: Everything you send over most versions of telnet is
unencrypted. Anyone sitting anywhere along your connection with a packet sniffer can grab your
password, and not even the best password−selection scheme in the world will protect you against a
packet sniffer. I've seen packet sniffers on Internet backbones and on small local networks. The
only defense against a packet sniffer is to handle connections in such a way that intruders will get
no useful information from them.

That's where SSH, or secure shell, comes in. SSH behaves much like telnet in that it gives you a
highly configurable terminal window on a remote host. But unlike telnet, everything you send across
the network is encrypted. SSH ensures not only that your passwords can't be sniffed, but also that
the various commands you type (and their output) are scrambled. While telnet does have a few
advantages over SSH (it requires less CPU time, and it's simpler to configure), its advantages are
heavily outweighed by SSH's security advantages.

If you're looking for more information, SSH, The Secure Shell, by Daniel Barrett and Richard
Silverman (O'Reilly & Associates), is perhaps the best book about SSH on the market today.

303

Testing SSH

Unlike some of the other protocols we're going to look at, SSH is difficult to test by hand. One thing
you can do is confirm that the SSH daemon is running by using telnet to connect to the TCP port
that SSH is supposedly running on:

..
telnet localhost 22
Trying ::1...
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
SSH−1.99−OpenSSH_2.3.0 FreeBSD localisations 20010713
..

The last line of this output tells us that SSH is running and accepting connections.

Now, unless you're capable of encrypting packets by hand, on the fly, this is about as far as we can
go. Hit the escape character (CONTROL–]) to close the connection, and you'll return to the local
command prompt.

Enabling SSH

If your system isn't already configured to enable SSH at boottime, just add the following to
/etc/rc.conf:

..
sshd_enable="YES"
..

On your next reboot, SSH will be enabled. If you don't want to reboot now, just type sshd as root to
run SSH.

Basics of SSH

SSH uses public−key cryptography. The SSH daemon offers the public key to clients and keeps the
private key to itself. Each chunk of data you send over the connection is handled as a message,
which your local system encrypts with the public key; the server then decrypts the data with the
private key. Since both public and private keys are necessary to complete this transaction, your
data is secure; even if someone captures your SSH traffic, all she'll see is garbage.

Creating Keys

If your system lacks /etc/ssh/ssh_host_key or /etc/ssh/ssh_host_dsa_key, you can create them like
this:

..

/usr/bin/ssh−keygen −N "" −f /etc/ssh/ssh_host_key
/usr/bin/ssh−keygen −d −N "" −f /etc/ssh/ssh_host_dsa_key

304

..

NoteThe SSH protocol is several years old, and is beginning to show its age. While it's still secure,
people need more flexibility than it provides. For that reason, the Secure Shell 2 standard is
becoming more common. Unless specified, you can assume that everything that follows
applies to both versions of SSH. If a feature is found only in original SSH1 or in SSH2, it will
be noted. Some files differ depending on the version of SSH being used, and those are noted
as well.

Confirming SSH Identity

The whole process of public−key cryptography goes south if you get an incorrect public key for a
host, which can happen either through user error or malice. The most accurate way to check host
identification is to compare the public key on the server with the public key available over the
network. Your public key defaults to /etc/ssh/ssh_host_key.pub for version 1; the version 2 default is
/etc/ssh/ssh_host_dsa_key.pub. Since the two versions of SSH have different protocol
requirements, they need different keys.

While you could copy both the SSH version 1 and SSH version 2 public keys to every host you want
to connect from, and manually compare keys before connecting, host keys can be hundreds of
characters long. This is not merely a pain, it's enough of a pain to prevent anyone from actually
performing the check. Fortunately, SSH allows you to generate a key fingerprint, which is a much
shorter version of a key. You cannot use the fingerprint to encrypt traffic or negotiate connections,
but the chances of two unrelated keys having the same fingerprint are astronomical. To generate a
fingerprint for a SSH version 1 key enter this command:

..
ssh−keygen −lf /etc/ssh/ssh_host_key.pub
1024 7c:07:0f:1e:74:1a:42:11:b9:08:41:e4:f3:c9:05:a7
root@petulance.blackhelicopters.org
..

The response to this command is the key fingerprint. The first number, 1024, is the number of bits in
the key (1024 is standard nowadays). The hexadecimal string starting with "7c" and ending with
"a7" is the public−key fingerprint. You should copy this key fingerprint from the original server to a
place where you can access it from your clients, either on a Web page or on a list. You'll need to
use it the first time you connect.

You can use the same command on an SSH2 key, if you substitute the file that holds the SSHv2
key on the command line.

Note If your server provides both SSH1 and SSH2, as FreeBSD does by default, it's a
good idea to prepare fingerprints for both public keys. You have no way to tell which
version a user will use to connect.

SSH Clients

Your main problem with SSH will be finding a client that works on your preferred desktop system. If
you use a BSD desktop, SSH comes with your system, and other UNIX operating systems usually

305

have SSH packages available. If possible, use OpenSSH (http://www.openssh.com/)–it's developed
by the OpenBSD team, and is quickly becoming the most popular implementation of SSH.

If you're running a Microsoft operating system, I recommend MindTerm (though I've also had strong
recommendations for Putty and Terraterm). MindTerm is free for noncommercial use, supports both
SSH1 and SSH2, and is written in Java, which means that it will run on any platform that has a Java
virtual machine (JVM). (Most Web browsers include a JVM.) The MindTerm documentation will
have you running with an SSH client in just a few minutes. A quick Web search will lead you to any
of the three, and any one will almost certainly fit your needs.

Connecting via SSH

To connect to another host with FreeBSD's ssh client, type ssh hostname. In response, you should
see something like this:

..
ssh moneysink.blackhelicopters.org
The authenticity of host 'moneysink' can't be established.
RSA key fingerprint is 7c:07:0f:1e:74:1a:42:11:b9:08:41:e4:f3:c9:05:a7.
Are you sure you want to continue connecting (yes/no)? yes
..

Your client does two things immediately. One, it retrieves the public key from the remote host. Two,
it checks its own list of SSH keys for a key for that host. If the client has the host key in its list, and
the host key retrieved from the remote host matches it, the client assumes you're actually talking to
the correct host. If the client doesn't have the host key in its list of known hosts, it presents the key
fingerprint for your approval.

You can decide whether to accept or reject the connection upon seeing the key; the fingerprint you
see should be identical to the fingerprint you created on the remote host. If the fingerprint isn't
identical, you're either talking to the wrong host or you have a fingerprint for the wrong version of
SSH. Compare the fingerprint we created to the fingerprint the remote host is offering–if it matches,
this is the same host. Once you accept the key, it is saved in your ~/.ssh/known−hosts (for SSH1) or
~./.ssh/known−hosts2 (for SSH2) file.

It's not always worth the time to manually compare keys. If you're building a new server on your
local network for your use only, perhaps you don't have to. (You should still copy the fingerprint,
however, since you'll eventually want to connect from some remote location and will need to be able
to verify the key.) If many people will be connecting to this server, it's generally okay to put the
fingerprints on a Web page somewhere. Whatever the case may be, you'll need to decide how
much secrecy you'll need.

Configuring SSH

All of the files for systemwide configuration of SSH are kept in /etc/ssh, and we'll consider them one
at a time.

Note Because the defaults for SSH change slowly over time, as the Internet's general security
stance tightens, I won't give the defaults for each setting. See the appropriate files on your
system to see how it is configured.

306

/etc/ssh/ssh_config

The /etc/ssh/ssh_config file controls the default operation of the ssh client. While users can override
the settings in this file with either their own private ~./.ssh/config files or command−line options, this
gives the administrator the opportunity to provide reasonable defaults.

Note Anything you set as the client can be overridden by the server. For example, though
you might request X11 forwarding, if the server doesn't offer that feature, you cannot
use it.

ForwardX11 yes X applications can display on any machine, not just the one they're running on.
If you want to run X applications on a remote machine and have the display forwarded back to your
workstation, set this to yes.

RhostsAuthentication yes If the user's account on the remote server has a .rhosts file listing
the local machine, trust it. This is almost always disabled by the server, for good reason; in fact, I
cannot think of a single good reason to use this setting.

FallBackToRsh no If an ssh connection attempt fails, the ssh client will attempt to open an rsh
connection instead, which is insecure. If you can't connect safely, don't connect at all—there's
probably a good reason why you can't connect! If you set FallBackToRsh to no, the rsh attempt will
not be made.

CheckHostIP yes With this option enabled, the ssh client will automatically compare the IP
address of the server with the IP address given in the .ssh/known_hosts file. This helps detect IP
spoofing and changed IP addresses. Set this to no to disable this check.

StrictHostKeyChecking no This option is for the particularly paranoid. If set to no, the ssh
client will refuse to connect to a host whose key is not in ./.ssh/known_hosts. It will also refuse to
add new hosts to the known_hosts file; you will have to add them manually.

Port 22 This is the default port to connect to on the remote host. You can change this to provide
some security through obscurity, but it's generally not worth it.

Protocol 2,1 This option specifies the order in which the SSH protocols are offered to a client.
You can disable a protocol by not including it on the list.

Cipher blowfish SSH can use either the 3DES or Blowfish protocols. While Blowfish is faster,
it's also newer, and in the cryptography world newer does not automatically mean better! Still,
Blowfish has resisted cryptanalysis so far, and has a promising future. The default is 3DES.

/etc/ssh/ssh_host_key and /etc/ssh/ssh_host_dsa_key These files contain the system's private
SSH cryptographic keys and are readable only by root. The DSA file is for SSH2, the other is for
SSH1.

/etc/ssh/ssh_host_key.pub and /etc/ssh/ssh_host_dsa_key.pub These are the world−readable
cryptographic keys for this system. Public−key cryptographic systems will combine this public key
with the private key and generate a unique numerical fingerprint. Again, the DSA file is for SSH2,
the other is for SSH1.

/etc/ssh/sshd_config The /etc/ssh/sshd_config file describes the services your SSH daemon offers
to other hosts. While a client can request any protocol or service that they like, the server has the

307

final word. This allows the system administrator to permit actions he doesn't care about while
rejecting the unacceptable.

The following sections describe the keywords the file contains.

AllowGroups By default, anyone with a legitimate shell can log in to the server, but with this option
set, only users in the specified groups can log in. Groups are created in /etc/group (see Chapter 9).
To specify groups, list each on a single line, separated by spaces. (While you can use an asterisk
(*) as a wildcard, you cannot use numerical GIDs.) The group listed must be the user's primary
group–the group shown in /etc/passwd.

AllowTcpForwarding Users with SSH access can encrypt any traffic between any two hosts. Set
this to no to prevent this. If a user has shell access, however, she could install her own TCP port
forwarder and get around this.

AllowUsers This option allows you to explicitly list users who are allowed to use this SSH server.
By default, any user can log in.

Ciphers If you're cryptographically literate, you can choose the order in which cryptographic
algorithms are tried. List them all on a single line, separated by commas. If you know little or nothing
about cryptography, use the defaults.

DenyGroups This is the opposite of the AllowGroups option explained earlier; users in this system
group cannot log in. The listed group must be their primary group, meaning it must be listed in
/etc/passwd and not just /etc/group.

IgnoreRhosts yes The .rhosts files are left over from the days when rlogin and rsh were
accepted UNIX standards. While they might be useful during a migration from rsh to ssh, they're
generally obsolete and dangerous. To allow the use of .rhosts files, set this to no.

KeepAlive OpenSSH checks the status of idle connections every so often. If the other end cannot
be reached, the session is disconnected and cleaned up. This check is called a "keepalive." A
transient network problem can cause an SSH session to disconnect if you're using keepalives. To
keep your SSH session open if at all possible, set this to no. Without keepalives, though, you can
leave orphaned SSH sessions lying around for weeks on end–your end of the connection may
never realize that the computer on the other end has been rebooted or has even burst into flame.
Using keepalives is generally recommended.

PasswordAuthentication This option controls how users are allowed to use passwords to log
in. It's more secure to use RSA or DSA cryptographic authentication, but most people aren't set up
to do that. (Yet.) For now, set this to yes. We won't discuss RSA and DSA authentication here.

PermitEmptyPasswords no This is almost exactly as bad as it sounds. Don't set it to yes.
Really. Trust me on this one.

PermitRootLogin no This option controls whether someone can directly log in as root via SSH.
It's far wiser to have people SSH in as themselves, and use su(8) to become root. That way, when
your system is cracked, you have a fighting chance to identify whose account was used, and at
least have someone to blame. It won't help the problem, but it might make you feel better.

UseLogin If you set this to yes, then sshd will interoperate with the login(1) program. This permits
the use of login.conf and all the other nifty login tweaks described in Chapter 9.

308

X11Forwarding This option controls whether or not clients can forward the graphics from X
programs to their client workstations. Since X has had such a long history of security issues, many
admins disable this without a second thought. Third−party X11 forwarders are available, however,
and could be installed by anyone with shell access. Also, denying X11 forwarding doesn't stop
someone from manually forwarding X over unencrypted TCP/IP. While this option defaults to no, if
you have shell users you might as well turn it on.

System Time

Your users will expect the computer to know what time it is. If a database starts entering dates three
hours behind, or if emails arrive from tomorrow, you'll hear about it pretty quickly. You have three
tools for managing system time: the time zone, tzsetup(8); the network time protocol tools,
ntpdate(8); and ntpd(8). Set your time zone before you do anything else.

Setting the Time Zone

The time zone is simple to set with tzsetup(8), a menu−driven program that will make the
appropriate changes on your system. Large companies might use a default of Greenwich Mean
Time on their systems, while others use their own local time. Follow the geographic prompts and
choose the appropriate time zone for your situation.

Network Time Protocol

When using network time protocol (NTP), each system states its system time on request. Clients
can accept this time and match it, or they can use times from several different systems to compute
an average time. The average time is the best for long−term use.

Network time protocol requires the use of time servers, and many Internet servers provide a time
service accessible to the public. The servers are roughly lumped into two types, Tier 1 and Tier 2.

Time Server Tiers

Tier 1 clocks are directly connected to some highly accurate time−keeping device, such as an
atomic clock. They are designed to be absurdly accurate. If you need this sort of accuracy, then
what you really need is your own atomic clock. Prices have dropped quite a bit in the recent past; a
reasonably good atomic clock can be had for only thousands of dollars. You can also use other
systems, such as a radio clock, if the time lag caused by the speed−of−light delay is acceptable. If
you don't need this accuracy in your timekeeping, look at the Tier 2 servers.

Tier 2 NTP servers feed off of the Tier 1 servers, providing their time service as a public service.
This service is accurate to within a fraction of a second, and is more than good enough for almost
all applications. Some digging will even lead you to Tier 3 time servers, which feed off of Tier 2
servers. While you should use the lowest tier number you can, any Internet server will be perfectly
happy getting its time from either a Tier 2 or 3 server.

If you do a Web search for NTP servers, you'll quickly find an up−to−date list of public NTP servers.
For each of your servers, pick two nearby NTP servers, and write down their names and IP
addresses. We'll use them to set up ntpdate and ntpd.

309

Ntpdate

Ntpdate(8) connects to a single NTP server, grabs the correct date, sets the system clock correctly,
and exits. While you would normally run ntpdate only once, usually at system boot, you can run it
easily at the command line, giving ntpdate the name or IP address of an NTP server:

..
ntpdate kerberos.digex.net
30 Sep 17:30:44 ntpdate[616]: step time server 204.91.99.129 offset −35.707691 sec
#
..

As you can see here, the system time was off by about 35 seconds, but it is now synchronized with
the NTP server kerberos.digex.net.

Ntpdate at Boot

You can run ntpdate at boottime with the following flags, giving the name of the time server you
want:

..
ntpdate_enable="YES"
ntpdate_flags="timeserver.AbsoluteBSD.com"
..

Note Do not do this on a busy server with time−sensitive programs, such as database
servers! If all of your times suddenly jump by an hour or two, your database
administrator or clients will be most annoyed.

Ntpdate Flaws

Ntpdate checks the time once, and never again. If your system has hardware problems, the system
time can slowly fall out of sync. While this isn't a concern on desktop operating systems, it is a
problem for machines that are expected to be up for months or years. On long−living systems, you
want to either run ntp−date on a regular basis or use ntpd.

Ntpd

Ntpd(8) intermittently checks the system time against a list of time servers. It takes a reasonable
average of those times, and slowly adjusts the system time to match the average. If any of those
time servers is badly off from the others, it discards that value. This gives you the most accurate
system time possible, without demanding too much from any one server, and it helps keep errant
hardware in check.

Ntpd Versions

The original time protocol daemon was called ntpd; the improved version found in FreeBSD is
technically known as xntpd. Since the original has long since faded into obscurity, everywhere you
look on the system xntpd is known as ntpd. Don't be confused by this.

310

Configuring Ntpd

Ntpd requires a configuration file, /etc/ntpd.conf. Here's a sample:

..
driftfile /etc/ntp/drift
server 203.94.99.229
server 192.37.16.177
..

Let's do the easy thing first. The ntpd program needs a temporary file; in the preceding example, it's
/etc/ntp/drift. While ntpd will create this file itself, it won't create any directories, so we have to create
the /etc/ntp directory. We then list two chosen Tier 2 servers by IP address for the servers to
communicate with. That's it!

Your servers can be set up to broadcast time updates across the local Ethernet, sharing time
information with any other local servers running ntpd. This sounds good, but it is not a good idea on
a server exposed to the public Internet.

Starting Ntpd

Once you have /etc/ntp.conf, just type ntpd to start ntpd. To start ntpd at boot, add the following
entry in /etc/rc.conf.

..
xntpd_enable="YES"
..

Inetd

The inetd daemon handles connections for less frequently used daemons. For example, since most
systems don't have a steady stream of incoming FTP requests, there's no need for the additional
overhead of an FTP daemon listening, when it's going to be idle 99.9 percent of the time. Instead,
inetd listens on the FTP port. When an FTP request comes in, inetd starts up the FTP daemon and
hands off the request.

Inetd also handles functions that are so small and rarely used that they're easier to implement
locally, rather than route them through a separate program. This includes things such as discard
(which dumps any data it receives into the black hole of /dev/null), chargen (which pours out a
stream of characters), and so on. These are disabled by default, but are available if needed. The
standard inetd configuration includes information for many standard UNIX services, including telnet,
ftp, and pop3. It also includes information for quite a few obscure protocols.

/etc/inetd.conf

Take a look at /etc/inetd.conf. Most daemons have separate IP and IPv6 configurations, so if you're
not running IPv6, you can ignore all IPv6 entries. Let's look at one line from this file, the ftp
configuration:

311

..
v ftp w stream x tcp y nowait z root { /usr/libexec/ftpd | ftpd −l
..

The first field (v) is the service name, which must match a name in /etc/services. Inetd relies upon
the service name to determine which TCP or UDP port to open.

The second field (w) is the socket type. All TCP connections are type stream, while UDP
connections are type dgram. There are other possible values, but if you're considering using them
you're either (a) reading documentation for a particular program, or (b) almost certainly wrong.

The third field (x) is the protocol, which can be tcp, udp, tcp6, or udp6 (udp6 and tcp6
protocols are for IPv6 connections). As IPv6 grows more accepted and integrated with server
programs, you'll start to see protocol labels of udp46 and tcp46. This means that the daemon can
accept either sort of connection.

The next field (y) indicates whether inetd should wait for the particular service to accept the
connection, or just start the program and go away. As a general rule, TCP programs use nowait
while UDP programs need wait. If a service uses nowait, you can control the maximum number
of connections per second the service will allow by adding a slash and a number directly after the
nowait, like this: nowait/5. If you don't do this, and you receive a flood of connections, inetd will
start as many copies of the program as it needs to service those requests. (This is a simple way to
knock a server off the Internet.)

The next field (z) says who the daemon runs as. Some daemons can run as special, dedicated
users. We'll see specific examples of that in the next two chapters.

The sixth field ({) is the full path to the program that inetd runs when it receives a connection
request. If it's a service included in inetd, it appears as internal.

The last field (|) gives the command to start an external program and any command−line options
needed.

Configuring Programs in Inetd

/etc/inetd.conf seems to need a lot of information, but if you want to add a program, you can
probably copy an existing line and use it with minor modifications. For example, let's consider
implementing a very trivial network service, the Quote of the Day (QotD) service. When you connect
to the QotD port, a QotD server sends back a random quote and disconnects. FreeBSD includes a
randomquote generator in its games collection, fortune(1). This random quote generator is all we
need to use to implement an inetd−based network program. We'll use the fortune program to
generate our random quotes.

Port Number

If you search /etc/services for "qotd", you'll find that it's listed as port 17. QotD runs on port 17.

Network Protocol

Since the QotD service requires that you connect to a network port, and get something back, it's
going to be a TCP−based service. (The alternative, UDP, would not work, because UDP

312

connections don't expect anything to come back.) We have to specify TCP in our inetd
configuration. Any TCP service seems that you have to specify "nowait" in the fourth field in our
inetd.conf entry.

User

We'll run our quote−generating command as root. In an ideal world, we would create a separate
user just for this service, but I'm not going to bother for this example.

Path

Fortune lives in /usr/games/fortune.

Running the Command

We don't need any command−line options for fortune. (You could use −o if you want, but that's
probably not a good idea on a publicly available server.)

Sample inetd.conf Configuration

Putting this all together, our line in /etc/inetd.conf looks like this:

..
qotd stream tcp nowait root /usr/games/fortune fortune
..

While this example is trivial, other alterations to /etc/inetd.conf are no more difficult.

Inetd Security

Newer sysadmins tend to think of inetd as a single service with a monolithic security state. Nothing
could be further from the truth. Inetd itself is fairly secure, but it unfairly takes a certain amount of
blame for problems in the programs it forwards requests to. Some of the programs provide insecure
protocols (such as telnet and ftp), while others have a history of abuse.

Still, many people categorically disable inetd. Others make sure that all the services are disabled
except enable inetd itself, because several ports provide services via inetd, and having it enabled
makes installing these programs slightly easier. I recommend disabling inetd unless you have
specific services that you want to provide, and then enabling only those services.

Starting Inetd

You can start inetd at the command line by just typing inetd as root. Alternatively, you can set it to
start automatically at boot by changing /etc/rc.conf:

..
inetd_enable="YES"
..

313

Changing Inetd's Behavior

You can set flags in /etc/rc.conf, in the variable inetd_flags, to alter inetd's startup behavior. The
default inetd flags turn on TCP Wrappers, as per /etc/hosts.allow (see Chapter 8). Here are some
other useful flags:

Flag Description

−l Logs every successful connection.

−c

Sets a maximum number of connections per second that can be
made to any service. The default is unlimited. Note that
unlimited is not the same as “infinite“—your hardware will
only handle so many connections.

−C
Sets a maximum number of times a single remote IP address can
connect to a service. The default is unlimited.

−R
Sets the maximum number of times any one service can be
started in one minute. The default is 256. If you set this to
0, you allow an unlimited number of connections.

−a
Sets the IP address to bind to. Inetd usually listens on all
available IP addresses.

−w
Uses TCP Wrappers for external services as per hosts.allow
(see Chapter 8)

−W
Uses TCP Wrappers for internal services as per hosts.allow
(see Chapter 8)

As an extreme example, if you wanted to use TCP Wrappers, allow only two connections per
second from one host, and allow an unlimited number of connections per minute, you would set this
as follows:

..
inetd_flags="−Ww −C 2 −R 0"
..

314

Chapter 14: Email Services
One of the basic tasks of an Internet server is to relay and receive email. FreeBSD is a quite
powerful mail server, and can handle millions of emails a day. This chapter discusses how to handle
email flow in the server−to−server case, the client−to−server case, and the server−to−client case.
When a server communicates with a server, or a client sends mail to a server, it uses the standard
SMTP email protocol. When a client downloads its mail from a server, it uses the POP3 protocol.

Email Overview

Most email is generated by a user at a desktop computer. This is most often a Windows PC or a
Mac with Outlook, Eudora, Netscape, or one of their cousins, but you can send mail with almost any
operating system. My preferred FreeBSD client is Mutt (/usr/ports/mail/mutt).

The client sends the email to an email server. Almost every company or ISP has at least one
dedicated email system. The email server performs some basic sanity−checking on the email sent
by the client, and it then tries to find a server that claims responsibility for this message (see
"Finding the Correct Mail Host" later in the chapter). The email server transmits the email message
to another mail server.

When the recipient checks his email, the client software goes to the mail server, asks for all the
messages, and downloads them to the desktop. If the recipient replies, the whole process is
reversed.

Where FreeBSD Fits In

The server section is where FreeBSD excels. A properly configured FreeBSD system can process
thousands of messages an hour. If you buy good hardware, a FreeBSD system can receive and
transmit over 40,000 pieces of email an hour. That's an average of over 11 messages a second,
complete with whatever rambling text, monstrous graphics, and overblown HTML the messages
include.

The Email Protocol

To many people, email seems like magic; you hit send and the message is transmitted across the
ether to the recipient. However, it's actually pretty easy to send email by hand, without using a
client. The ability to do this is yet another trick that can be used to debug difficult problems or
impress your friends. (If your friends are impressed by nerdy tricks, that is.)

Testing Connectivity

You can determine whether a host can receive mail by using telnet and specifying that you want to
connect to a server's SMTP port (25).

..
telnet hostname 25
..

You can use this technique, first and foremost, to determine whether a mail server is running on a
particular system. Let's connect to the local system[1] and check out the mail system:

..

315

#telnet localhost 25
Trying ::1...
Trying 127.0.0.1...
telnet: connect to address 127.0.0.1: Connection refused
telnet: Unable to connect to remote host
#
..

Okay, my laptop isn't running a mail server. Let's try something we'll actually get a response out of:

..
telnet AbsoluteBSD.com 25
Trying 209.69.178.18...
Connected to AbsoluteBSD.com.
Escape character is '^]'.
220 AbsoluteBSD.com ESMTP Sendmail 8.9.3/8.9.3; Sun, 10 Jun 2001 17:23:15 −0400
(EDT)
..

Voila! We're speaking directly to the mail server. We now know that a mail program is running. This
server even tells us that it uses sendmail as a mail−transfer agent, and gives the local date and
time.

The most mysterious part of this is the first part of the response. In this case, it's 220. The email
protocol says that each response from the server should include both a numerical code and a
human−readable response. The sending program only has to look at the leading number; the longer
response is there for the convenience of your poor little organic brain.

Talking to an Email Server

Now let's start a conversation with the program. You open negotiations with the helo command
and the hostname you're connecting from:

..
helo turtledawn.AbsoluteBSD.com
..

The server responds with something like this:

..
250 AbsoluteBSD.com Hello pedicular.AbsoluteBSD.com [192.168.1.200], pleased to meet you
..

The response includes the response code (250) and the hostname you're talking to
(http://absolutebsd.com/). The "hello" means that the server is willing to talk to you, and it gives the
host name of the machine you are connecting from. In this case, the DNS on the server indicates
that 192.168.1.200 is actually called http://pedicular.absolutebsd.com/.

You then tell the mail server who your message is from:

..
mail from: mwlucas@AbsoluteBSD.com
..

316

The server should tell you that you're allowed to send mail:

..
250 mwlucas@AbsoluteBSD.com... Sender ok
..

If the server is not accepting mail from your address or your location, it will tell you here. If
everything's all right, you name the recipient with the rcpt to: command:

..
rcpt to: mwlucas@AbsoluteBSD.com
250 mwlucas@AbsoluteBSD.com... Recipient ok
..

At this point, the mail server you're talking to knows both the sender and the recipient. (This is the
most common place where email transmission is rejected. See the "Relay Control" section that
follows.) Now you're ready to send your email. Issue the data command:

..
data
354 Enter mail, end with "." on a line by itself
..

You can type whatever message you like here. Just like the message says, when you're done enter
a single period on a line by itself. The following example sends the words "Test message":

..
Test message
.
..

After you type your lone period, the mail server will give you an okay message:

..
250 RAA03288 Message accepted for delivery
..

Type quit to exit:

..
quit
221 AbsoluteBSD.com closing connection
Connection closed by foreign host.
#
..

This technique can be used for both good and evil. As an administrator, you can test your email
configuration without mucking with a client that might obscure test results.[2] However, it's also trivial
to forge email, simply by creating your own mail from: statement.

Who Uses the Email Protocol?

The email protocol is used when one email server transmits messages to another. It is also used
when a desktop email client wants to send a message to its server.

317

Relay Control

Generally speaking, an email server will either accept mail destined for its local domains or mail
being sent from its local domains. Let's continue with the http://absolutebsd.com/ mail server
example. If that server receives an email for an address at http://absolutebsd.com/, it will accept the
message. If the server receives an email from an address at http://absolutebsd.com/ but to another
domain, and if other access controls are met, the server will accept the message. If someone
completely unrelated to http://absolutebsd.com/ tries to use that mail server as a relay for mail to a
third party, the server will reject it.

People who send unsolicited commercial email (aka spam) search constantly for email servers that
allow anyone to transmit email through them. If your server allows this sort of relaying, you are a
potential source of junk email.

Note You really, really must control email access through your system. If you allow unrestricted
relay through your servers, you will be blacklisted by various groups. You can expect to lose
connectivity to about 30 to 40 percent of the Internet until you control relay access.

So, what are these "other access controls"? One of the most common is restricting the IP addresses
that can send mail to any address through your system. By only allowing people on your local or
corporate network to send email through your servers, you instantly eliminate outsiders' ability to
use your server to transmit junk mail.

If you provide dial−up service to users, you can also configure your mail server to allow relay from
those IP addresses. It's possible that someone could buy a dial−up package from you and use your
server to send out junk mail. It's best to make sure that your terms of service not only preclude this
behavior, but also list very high punitive damages to compensate you for the masses of complaints
you will receive.

Junk Mail Blacklists

"How do you use the blacklist of junk email servers?" you ask. Using one of these blacklist services
is a very effective way to cut down on received junk mail, but it can also block legitimate traffic, so
you need to at least be aware of whether you're using such a service. These services are generally
subscriptiononly, and they require a service contract.

The b igges t j unk−ma i l b l ock ing se rv i ce i s t he Rea l t ime B lackho le L i s t , o r RBL
(http://mail−abuse.org/). Most mail server programs include hooks to check sites against the RBL.
Consult the blacklist's Web site to see how to integrate their features into your mail server.

[1]Remember from Chapter 5 that 127.0.0.1 is always the local host.
[2]In some circles, forging email to a friend is a rite of passage. That doesn't mean that you should
do it, mind you. A competent systems administrator can also recognize forged email at a glance,
just by checking the email's full headers.

Email Programs

For many years now, UNIX has included the sendmail email server. This program is huge, obscure,
obtuse, and downright intimidating to new administrators. Many experienced UNIX administrators
also find it huge, obscure, obtuse, and downright intimidating. Take a look in /etc/mail/sendmail.cf
for an example of a very basic sendmail configuration file.

318

Been there? Okay, you can get off the ceiling now. FreeBSD supports alternatives that are not only
simpler to configure than sendmail, but also more efficient and more secure, as well. Unless you
have to use or provide some older styles of mail service, you don't need to use sendmail.

Who Needs Sendmail?

An ancient (for the Internet) adage holds that "Sendmail is complicated because the real world is
complicated." That's true. Sendmail is also well tested, and FreeBSD's sendmail maintainer is also a
sendmail developer. Sendmail is needed if you relay mail via BITNET, UUCP, or some other
obscure protocols. Almost nobody in North America today uses any of those services. They are
used in other parts of the world, where bandwidth is dear and hardware even dearer.

Sendmail even breaks one of the cardinal rules of UNIX, that of having many small tools that can be
combined at will. Sendmail is huge and monolithic. The replacements are smaller, and made of
several individual programs.

If your email services run entirely over the Internet, like the majority of the mail servers I've seen,
you don't need sendmail. If you provide services to a wide variety of clients, at some point you will
run into one of those edge cases where sendmail is the only solution. You can build a sendmail
solution for that one special client, and leave the rest of the world running on a simpler,
easier−to−manage email platform.

Personally, I like sendmail. I'm rather proud of being able to hand−edit /etc/mail/sendmail.cf. I also
know a guy who is proud of being able to crush full beer cans against his forehead. Neither is
something you really want to brag about, however.

Replacing Sendmail

The two most popular non−sendmail mail servers are qmail and postfix. Both are smaller and easier
to secure than sendmail. Both are easier to configure. Postfix has a more BSD−style license,
however, while qmail has restrictions on its use, modification, and redistribution. All else being
equal, the license makes the difference; we'll use postfix. Since postfix can handle up to a million
different email messages a day on commodity hardware, it'll certainly meet your needs.

Installing Postfix

You can install postfix just like any other piece of software, via port or package. Postfix has a couple
of extra steps, however, that vary with the version of FreeBSD you are using. I recommend
installing it from a port, and following the instructions given by the port.

Pieces of Postfix

Unlike sendmail, postfix has many smaller parts. One part handles receiving mail from the network.
Another part handles delivering mail to individual mail−boxes. Yet another transmits queued email.
To run postfix well, you must be at least vaguely familiar with the main components. Don't worry if
you don't understand what all of these things do yet; we'll cover that as we go.

Master The master daemon supervises all the other parts of postfix. It tells other programs when to
run and how much they should do. If something isn't running, you should check the configuration of
the master daemon.

319

Smtpd The smtpd program receives email from the network. It does some basic checking to be
sure that this is a real piece of email and not an attack of some sort.

Sendmail The program called sendmail handles mail generated locally. Many UNIX programs
expect to be able to dump their output into something called "sendmail" and have it mailed. To
minimize breakage, postfix includes a program that behaves just like sendmail, but instead delivers
the mail to the postfix system (in a maildrop directory, which we'll discuss later).

Pickup The pickup program takes messages from sendmail's maildrop directory, does some basic
error checking, and hands the message off to the innards of postfix.

Cleanup The cleanup program receives messages from all other sources. It adds things like the
From: header if needed, transforms the mail headers as appropriate, and sends the message to the
incoming queue.

Queue Manager (qmgr) Both incoming and outgoing mail sits in queues. The queue manager
(qmgr) examines each message, decides where it should go, and hands it off to the appropriate
delivery agent.

Trivial−rewrite The trivial−rewrite daemon resolves addresses, determining whether they're local or
remote, and rewrites the headers appropriately.

Local The local delivery agent puts mail in local user mailboxes. If you're replacing sendmail and
have users using .forward files or procmail to handle their mail, use this delivery agent.

Virtual The virtual delivery agent handles delivery to local user mailboxes, but it doesn't handle
.forward files or procmail. It does handle virtual domains, however. If you're running a typical
Internet server, where clients download their mail to a personal computer, this is your best choice.

Smtp Client The smtp client program accepts mail from the queue manager and tries to deliver it to
remote hosts (other domains).

Configuring Postfix

Postfix's configuration files are stored in /usr/local/etc/postfix. You'll find a whole mess of sample
files here, but they're generally just plain−text versions of man pages. The files you need to be
primarily concerned with are main.cf and master.cf.

Master.cf tells postfix's master program how to handle the other daemons it's responsible for. While
it's possible that you'll need to tweak this file, you almost certainly won't. Postfix is fast and efficient
enough that the defaults probably exceed your needs.

Main.cf controls mail handling. It tells postfix where to send different types of mail, what sorts of mail
to accept, and how to behave in general. This is the file you'll need to configure.

We won't cover all the options: Some you should never touch unless you're a very experienced mail
administrator, others are obvious (such as the path to particular programs). In general, options are
variables. For example, the following line in main.cf would define the variable $myhostname:

..
myhostname = mail.AbsoluteBSD.com
..

320

In later configuration statements, you can set other variables to $myhostname. That way, when you
change one variable, the change will propagate properly throughout the system. The port sets most
of these to sensible defaults, but you'll almost certainly need to tweak something.

So, without further ado, here are the config statements you need in order to get basic email working.

..
myhostname = mail.AbsoluteBSD.com
..

The myhostname variable is the default hostname, originally taken directly from the operating
system. It's used for all sorts of things. You probably don't want to change this, but it is an option if
you're doing something funky—for example, if you have a machine that's part of your network but
dedicated to a particular client with another domain name. You might also change myhostname if
you're inside a firewall and want to conceal your host's real name.

..
mydomain = AbsoluteBSD.com
..

The mydomain variable is similar to myhostname—mydomain is the domain name of the host. It's
created by taking the hostname and lopping off the first word. You might need to set this manually if
you have an unusual hostname.

..
myorigin = $mydomain
..

The myorigin variable's setting is where outbound mail appears to be coming from. It defaults to
$myhostname. On your central mail server, you probably want to set this to $mydomain. You'd like
your email address to appear as "username@domain.com", not
"http://username@mail.domain.com/", after all.

On other machines that send mail, the default is fine. You'll probably want all these remote
machines to send their automated reports to you, and changing the apparent source will just
confuse you.

..
mydestination = $myhostname, localhost.$mydomain
..

The mydestination variable specifies the domains and hostnames that the machine thinks it
should receive. The default is to accept mail for the system's hostname and for localhost. For
example, http://mail.absolutebsd.com/ would accept mail for http://mail.absolutebsd.com/ and
http://localhost.absolutebsd.com/.

The mydestination default is fine for a standalone machine, but if this is the corporate mail
server, you would want to add a few additional hosts. The example given with postfix is a good

321

place to start:

..
mydestination = $myhostname, localhost.$mydomain, $mydomain,
 mail.$mydomain, www.$mydomain, ftp.$mydomain
..

You might want to add other important machines in your network, such as nameservers, to this list.

These settings should get you up and running.

Restricting Mail Relay

The simplest way to control mail relaying in postfix is with IP address restrictions. The mynetworks
statement in main.cf controls which clients can transmit email through the server:

..
mynetworks = subnet
..

The default setting will work for a small office, but you need to add some things if you're providing
email service for an Internet network. The subnet keyword tells postfix to allow anything on the
same subnet as the server to send email. Take a look at ifconfig −a for your current subnet
address. To specify additional networks by IP address, just list them. Separate different subnets by
commas.

..
mynetworks = 192.168.141.128/28, 127.0.0.0/8
..

If you cannot relay email from a client system, check to confirm that its IP address is in
$mynetworks.

..
relaydomains = $mydestination
..

You can also use the domain name to control relaying, by using the relaydomains setting in
main.cf. In this example, if mail is to or from a host in the $mydestination list, postfix will relay it.

If you're using virtual domains (see the "Virtual Domains" section later in the chapter), postfix will
also relay for those domains.

Central Relaying

If you want all your machines to relay their mail through a central mail server, you can use the
relayhost keyword. You might have a dozen servers that send mail on rare occasions, but want
your central mail server to handle all the communication with the outside Internet. (This is a very
common configuration.) Set relayhost to the name or IP address of your mail server:

..

322

relayhost = mail.AbsoluteBSD.com
..

Email Aliases

The /etc/mail/aliases file contains redirections for mail sent to specific accounts. Although the
aliases file originated with sendmail, many different mail programs understand it. Each line starts
with an alias name, followed by a colon and a list of real users to forward the mail to.

Forwarding Email from One Account to Another

Many people prefer to have mail that is sent to "root" actually redirected to their email account. The
following example forwards all email sent to root to another user:

..
root: mwlucas@absolutebsd.com
..

Forwarding Email from Nonexistent Accounts

Many email addresses don't have accounts associated with them. For example, Internet standards
require any system that sends email to have a "postmaster" email address. Nobody wants to set up
a separate account just for this. Instead, you can forward email from these addresses to a real
account:

..
postmaster: root
..

The aliases file already contains a wide variety of standard aliases for addresses that are generally
expected to be available at a server. Scan this file and update it for your systems.

Aliased Mailing Lists

You can also list multiple users to create small local mailing lists. This doesn't scale well when you
have many users, but it's great for quick and simple problems.

..
sales: mwlucas, bpollock, sales@nostarch.com
..

Forwarding Email to Files

Among the alias file's more interesting features is the ability to redirect mail to something other than
a mail account. If you list a filename, it appends the message to that file. You could maintain a
permanent log of a user's mail with something like this:

323

..
username: /var/log/username−log, username
..

Forwarding Email to Programs

You can also send email to a program for automated handling. List the program name, preceded by
the pipe (|) symbol. If you've written a script that processes incoming mail, for example, you can use
this line to redirect the mail:

..
orders: |/usr/local/bin/process−orders.pl
..

Lists in Alias Files

Finally, you can include other files in the aliases file. This allows a user to modify an alias on her
own.

..
clientlist: include:/usr/home/salesdude/clientaddresslist
..

In this example, the /usr/home/salesdude/clientaddresslist file is just a list of email addresses, one
per line. This will allow your salesperson to maintain a list of clients, without bothering you each time
a new contact needs to be added.

Activating Alias Changes

The only caveat with this simple system is that /etc/mail/aliases is not actually processed each time
a message is received. Rather, the al iases f i le is used to bui ld a small database f i le
(/etc/mail/aliases.db) that postfix uses to route mail. Accessing a binary database is much faster
than scanning a text configuration file, which becomes important on systems with scant processor
power, or ones that handle high volumes of mail.

Any time you edit the aliases file, or any file that the alias file includes, you need to run newaliases
to rebuild this database. You can safely run newaliases through cron; users maintaining include files
won't see their changes until the cron job runs, but most users accept this if they know what to
expect.

Email Logging

Almost all mail programs place log messages in /var/log/maillog. If you want to know what your
server is doing, check that file. Remember, you can use tail −f /var/log/maillog to watch
what's happening on your server as it occurs. The type of messages that show up in your log file
vary with the mail server program you're using.

324

Virtual Domains

One of the main reasons FreeBSD is so popular is because it can support many, many domains on
one server. Most people who want Internet service for a domain name have very simple needs: a
Web page and email addresses. One FreeBSD machine can handle hundreds and hundreds of
simple Web and email sites through the magic of virtual domains.

The idea behind a virtual domain is simple: It's an additional name for a server. The server is
configured to handle Web requests or email for that domain. We'll visit the Web part when we
discuss the Apache Web server in Chapter 15. For now, let's look at email.

To use the virtual domain feature, add the following line to main.cf:

..
virtual_maps = /usr/local/etc/postfix/virtual
..

This tells postfix where to look for virtual−domain information. Virtual−domain information is kept in
a "map" that matches virtual users to real system users. By default, email is delivered to the user
whose username matches the email name. For example, the mwlucas account on
http://absolutebsd.com/ has the email address http://mwlucas@absolutebsd.com/. If I wanted to
give the address http://mwlucas@vanhornefabrication.com/ to a customer, and put mail handling for
that domain on the same server, by default his email would be deposited in my account. This is bad.
The virtual domain email map tells postfix to drop email for that address into a different account.

Virtual Domain Maps

The format for the virtual file is very simple:

..
domainname.com
postmaster@domainname.com system−user1
user2@domainname.com system−user2
user4@domainname.com system−user3
..

First, you need the name of the domain you want to provide service to. Then you list valid email
addresses and the user accounts or email addresses they are redirected to. For example, to provide
a virtual domain for http://absolutebsd.com/ we might have a virtual file like this:

..
AbsoluteBSD.com
postmaster@AbsoluteBSD.com mwlucas
sales@AbsoluteBSD.com sales@nostarch.com
questions@AbsoluteBSD.com mwlucas
refunds@AbsoluteBSD.com /dev/null
..

Messages for http://postmaster@absolutebsd.com/ are redirected to the mwlucas account. The
http://sales@absolutebsd.com/ account is directed to an entirely different domain. The
http://questions@absolutebsd.com/ address is also directed to mwlucas, while
http://refunds@absolutebsd.com/ is copied to the system file /dev/null.

325

Like many other UNIX configuration files, the virtual domains table is actually kept in a small
database file. When you edit the file, you need to update this database with postmap(8).

..
postmap /usr/local/etc/postfix/virtual
..

Changes will take a moment or two to become visible, unless you forcibly reload the postfix
configuration files. And that takes us nicely to our next topic.

Postfix Commands

Postfix includes several commands to simplify managing your email server. We'll look at the basics
here.

postconf This program lists your entire postfix configuration setup, including the values of all
variables.

postfix check This command examines your postfix configuration, and points out any particularly
bad problems.

postfix start This command starts the postfix system.

postfix stop This (wait for it…) shuts down postfix.

postfix reload This command forces postfix to reexamine all its configuration files for changes.
Postfix checks for changes every few minutes anyway; this is useful if you're in a hurry.

Finding the Correct Mail Host

So, we know how to transmit and receive email from server to server and from client to server. How
does the email server know which remote server to send a piece of mail to?

When a mail server has a piece of email for a remote domain, it does a DNS check. The DNS
record for a domain lists the mail servers for that domain as "MX" records (see Chapter 12). The
mail server tries to deliver the mail to the email server with the lowest preference number first. If the
preferred email server cannot be reached, the server tries the server with the second−lowest
preference number. It tries successively less preferred servers until it either delivers the mail or it
cannot deliver it anywhere.

Undeliverable Mail

If a message is undeliverable, the server places it in a queue. Every so often, it tries to transmit the
message again. If the message cannot be delivered in five days, the message is returned to the
sender as "undeliverable."

326

POP3

POP3 is the protocol used by desktop email clients to fetch mail from a server. Clients transmit mail
to their server via SMTP, just like servers transmitting to other servers.

Installing POP3

The most popular POP3 daemon is qpopper (/usr/ports/mail/qpopper). This program has its roots in
BSD, and has been supported by Eudora for some time now. You can install it from package or
port.

Qpopper runs out of inetd. Both the port and package will display a message explaining how to edit
/etc/inetd.conf to support it. The example is an adequate default; we'll fine−tune that configuration
later.

Testing POP3

POP3 can work in both unencrypted and encrypted modes. It's difficult to test encrypted POP3 by
hand, unless you can compute cryptographic transactions in your head on the fly. You can easily
test unencrypted POP3, though, and testing qpopper can help you determine whether a problem
exists on the server or on the client.

To begin, telnet to port 110 on the server.

..
telnet magpire.AbsoluteBSD.com 110
Trying 192.168.1.222...
Connected to magpire.AbsoluteBSD.com.
Escape character is '^]'.
+OK Qpopper (version 4.0.3) at magpire.AbsoluteBSD.com starting.
<3915.992459999@magpire.AbsoluteBSD.com>
..

This is roughly what you should see when you connect.

Authenticate to POP3

Once you are connected by telnet, identify yourself to the POP3 server with the "user" command:

..
user mwlucas
+OK Password required for mwlucas.
..

Now, use the pass command to give your password. Your password will be displayed on the screen
in clear text. Be sure nobody's looking over your shoulder while you do this!

..
pass YourPasswordHere
+OK mwlucas has 1 visible message (0 hidden) in 500 octets.
..

327

Viewing Mail

I have one message! That's odd; I don't receive mail on this particular system. To view that
message, use the retr command and the message number.

..
retr 1
+OK 500 octets
Return−Path: <mlucas@gltg.com>
Delivered−To: mwlucas@magpire.AbsoluteBSD.com
Received: from turtledawn (turtledawn [192.168.1.200])
 by magpire.AbsoluteBSD.com (postfix) with SMTP id D51998041C
 for <mwlucas@magpire.AbsoluteBSD.com>; Fri, 8 Jun 2001 14:48:59 −0400 (EDT)
Message−Id: <20010608184859.D51998041C@magpire.AbsoluteBSD.com>
Date: Fri, 8 Jun 2001 14:48:59 −0400 (EDT)
From: mlucas@AbsoluteBSD.com
To: undisclosed−recipients:;
X−UIDL: $ld"!9>2"!P?)"!JlU"!
test
..

Oh, right. I did this when I demonstrated testing mail servers.

With these tests, you can be sure that POP3 works. If your installation doesn't behave like this, you
need to investigate further.

POP3 Logging

When you start qpopper with the −s option, it logs all activity to syslog, using the local0 facility and
the notice priority (see Chapter 19). This defaults to putting the log in /var/log/messages, but you
can arrange it any way you like.

POP3 Modes

You can use POP3 in three different ways: default, APOP, and SSL (pop3ssl).

Default POP3

We saw an example of default POP3 earlier. It works, but isn't very secure. Anyone with a packet
sniffer can grab your username and password just as if she were looking over your shoulder. This is
a common protocol in the Internet service provider world.

APOP

APOP provides secure authentication, but requires additional overhead. Both the client and the
server compute a "shared secret" based on the password and various other bits of information, such
as the current time. The client sends that shared secret to the server. If it matches what the server
computed, access is granted.

This might be a good choice for your server: APOP is a little older than pop3ssl, and many clients

328

support it. While the authentication information is secure, the email itself isn't.

Pop3ssl

Pop3ssl is the newest version of the POP3 protocol, as well as funnels, the connection over SSL.
This is the most secure type of POP3 service you can have today.

We'll consider each type of POP3 in turn. In order to use either APOP or pop3ssl, you need to have
a basic POP3 setup anyway.

Qpopper Preconfiguration Questions

Before you configure qpopper, you need to settle two questions: What kind of users will you have
and will you be using local mail readers?

User Types

If you're providing corporate mail services via qpopper, you are ultimately responsible for setting up
the clients (or, at best, working with the people who have to set up the clients). You can insist upon
things like "All users must type their usernames in lowercase" and "Mail must remain on the server."
You can also insist that they use APOP or pop3ssl instead of default POP3.

If you're providing services for hundreds or thousands of people, you need a configuration that
allows more user mistakes and handles a wider variety of email clients. You won't keep your users
long if you insist that they use one of your approved email readers instead of the mail program that
they've used for years!

Local Mail Readers

ome users read email locally on the server, using a UNIX−based email client, such as mutt(1) or
pine(1). These clients change the users' mail file directly on the server.

If qpopper can safely assume that the mail spool will not change out from underneath it, it can make
several optimizations that will greatly improve performance. This isn't a big deal for systems
administrators—many sysadmins don't use POP3, relying instead on ssh and a local mail reader.
Some power users might want to use both, however. If you don't allow the combination of local mail
readers and POP3, you can optimize qpopper.

Default Qpopper Configuration

A raw install of qpopper will give you basic POP3 functionality, as demonstrated earlier. Users will
be able to connect and download their mail. You can do various things to improve performance,
however, and you can enhance your setup rather easily.

Earlier versions of qpopper were configured entirely by options on the command line in
/etc/inetd.conf. This worked well when qpopper was a simple program that only supported default
POP3. As APOP and pop3ssl became more common, however, command−line configuration
became less and less practical. Once the command−line arguments start to wrap around the screen
two or three times, you really need to convert your program to use a configuration file.

While a vanilla POP3 qpopper install doesn't need a config file, we're going to use one.

329

Config Files and Inetd

The obvious place on a FreeBSD system to put the qpopper configuration fi le is under
/usr/local/etc/qpopper. By default, only root can access the qpopper directory. More advanced
qpopper implementations will also store user databases and security certificates in this directory.

To tell qpopper to take its settings from a file in this directory, use the −f flag. You can make all
your other changes in the configuration file, and never have to touch /etc/inetd.conf again. This
would make your inetd.conf entry look like this (and despite the page width, this is all on one line):

..
pop3 stream tcp nowait root /usr/local/libexec/qpopper qpopper −s −f
/usr/local/etc/qpopper/qpopper.conf
..

Qpopper.conf

Now that you've told your system how to run qpopper, you need to create the configuration file.
Each configuration statement in qpopper.conf appears on its own line, preceded by the word set.
Any of these options can be combined with APOP and pop3ssl.

Qpopper Mode

The most important option you have is how qpopper is going to work. The following setting controls
whether qpopper will accept clear−text passwords, as used in the manual test earlier.

..
set clear−text−password = default
..

You have a few different options here. We're going to look at the most common.

By default, qpopper checks to see if the user is set up for APOP. If so, then clear−text passwords
are not allowed. If the user is not set up for APOP, then clear−text passwords are permitted. Use
this for standard services.

Specifying always as the setting means that qpopper will accept clear−text passwords, even if the
user is set up for APOP. You might need to use this in an ISP environment; while you'd like the user
to use APOP, some users have email clients that simply cannot handle it.

Specifying never means that clear−text passwords will not work, even if you're using pop3ssl. You
must use APOP to get your mail.

Specifying tls means that clear−text passwords are acceptable if you're running over an encrypted
connection (such as SSL). After all, the entire connection is encrypted!

We'll discuss APOP and POP3 over SSL later (in "APOP Setup" and "Configuring Pop3ssl,"
respectively.)

330

Username Case

If you have a variety of users, some of them will type their username in all capital letters. That's how
usernames appear in the movies, after all! By putting the following line in your configuration,
usernames received from clients are transformed into all lowercase before qpopper attempts to
authenticate them.

..
set downcase−user = true
..

This can reduce your technical support calls.

Mail Spool Handling

A POP3 client can choose to either copy all messages from the server, download and delete all
messages from the server, or delete some messages from the server while leaving the rest. The
first two choices (leave everything and delete everything) are typical of core mail−server
functionality. The third, a mix of saving and deleting, is a lot of work, and it is set with the following
line:

..
set server−mode = false
..

Server mode assumes that the client will either save all its mail or delete all its mail. This makes
qpopper much faster, and reduces server disk I/O. If you enable server mode, you greatly increase
qpopper's efficiency.

You also make some promises to qpopper when you enable server mode, however. Qpopper will
assume that mail is only delivered to clients by qpopper. This is where the "mixing local mail readers
and POP3" problem appears. If you use a local mail reader to check mail on an account, and
someone pops that account's mail while you're reading it, you can damage users' mail. You don't
want to do that. If you don't combine POP3 and local mail clients, and don't read your users' mail,
setting this to true is perfectly safe and will improve performance.

Reducing Disk Activity

If you set the following option, you will decrease your disk activity by a third:

..
set fast−update = false
..

This setting doesn't mix with local mail readers, however. You will also break UNIX programs that
notify you of new mail on the UNIX system. This is perfectly safe on a POP−only mail server.

331

APOP Setup

APOP uses a challenge−response system. When a user connects to the POP3 server, the server
takes the user's known password and computes a challenge based upon it. This challenge is sent to
the client. The client takes the challenge, combines it with the password, computes a response, and
sends it back to the server. The server, meanwhile, has performed the same calculation and it
compares the client's response to its own result. If they match, the client has proven that it has the
password. Mail download is permitted.

Why go to all this trouble? Well, the password itself has never passed over the network. This
eliminates any chance for password theft via qpopper requests. Web browsing, telnet, and so on, all
give other opportunities for password theft.

APOP Password Database

Since APOP computes a shared secret based on the user's password, qpopper must have access
to the user's password. In UNIX, password encryption is a one−way trip; even given the
/etc/master.passwd file, you cannot extract the password.[3]. APOP therefore requires a separate
u s e r n a m e a n d p a s s w o r d d a t a b a s e . T h i s A P O P u s e r d a t a b a s e i s k e p t i n
/usr/local/etc/qpopper/pop.auth.db, and it should only be readable by root.

You administer the APOP user database with qpopauth(8). Before you can do anything, you must
initialize the database:

..
qpopauth −init
..

Once you have a database, you can use qpopauth to manage users.

Adding Users

This command adds a user to the database:

..
qpopauth −user username
..

You'll be prompted for a password. If the user does not exist on the main system, qpopauth will not
let you add the user.

Deleting Users

The following command deletes the specified user from the database:

..
qpopauth −delete username
..

332

Listing Users

If a user runs the following command, it tells him whether he is in the APOP user database. If root
runs this as qpopauth −list ALL, it lists every APOP user:

..
qpopauth −list
..

Enabling APOP

When you set up APOP, you need to decide whether plain−text POP3 will still be permitted. If you
want to a l low peop le to use e i ther p la in POP3 or APOP, you need to change the
clear−text−password option. (The default lets people use plain−text passwords only if they are
not set up as APOP users.)

Use the set clear−text−password option in your qpopper configuration file to require the use of
APOP.

..
set clear−text−password = always
..

Supporting APOP

Allowing both APOP and plain POP3 can cause password confusion because the APOP user
database and /etc/master.passwd are not synchronized by anything except administrator
intervention. When a user calls and says that she can't get her mail, you'll have to find out if she's
using APOP or POP3. The user probably won't know, so you'll have to walk her through her mail
client to find out, or just change both passwords to a known value. APOP is a better idea all around.

A better idea still is pop3ssl.

Configuring Pop3ssl

The POP3−over−SSL process is similar to the default POP3 protocol. Instead of sending a
username, however, the client sends a request for SSL. If your server can grant it, the remaining
steps of the process are all encrypted.

All of the performance options are set as if you're running standard POP3. You need to set several
configuration options to use pop3ssl, however, as follows.

..
set clear−text−password = tls
..

With this clear−text−password option, you can use clear−text passwords if you're using SSL
encryption. A user could use APOP or pop3ssl, but not vanilla POP3.

..

333

set tls−cipher−list = bf,des,des3
..

These tls−cipher−list settings are the cryptographic ciphers that your system will support. You
can get a complete list of ciphers your system supports by running openssl
list−cipher−commands. The preceding example supports most email clients.

..
set tls−server−cert−file = /usr/local/etc/qpopper/server.cert
..

This tls−server−cert−file setting specifies the location of your signed certificate file. We
created a signed server certificate in the previous chapter.

After setting these options, you should be all set to provide pop3ssl services. This is by far the most
preferable method, and easy enough to do.

Qpopper Security

Qpopper has a questionable security record, but it has undergone an extensive code audit and is
now as secure as any POP3 server daemon. You still need to keep up on security advisories,
however, just as you would for any program that transmits user data across the network. Since
qpopper runs out of inetd, you can use TCP Wrappers to help secure it.

[3]You can do something called a "brute force attack," where you try to find a text string that has a
cryptographic collision with the password. This takes a lot of CPU time, and a lot of time, and is
utterly inappropriate for a server protocol.

334

Chapter 15: Web and FTP Services

Overview

Although the Internet started back in the 1970s, it wasn't until the advent of Web pages in the
mid−1990s that the Internet became a household name. The Netscape Corporation took the
open−source Web browser Mosaic and turned it into a commercial product. The result was an
information and communication revolution that is still going on. While many dot−com companies
have crashed and burned, an age of person−to−person communication began with the Netscape
Web browser. Technologies such as peer−to−peer are expanding the Internet even further, but the
Web is still what comes to mind when people think of the Internet.

FreeBSD's Web server performance is legendary. For many years, some Microsoft subsidiaries
even used FreeBSD in preference to their own Windows NT platform. (The very day I write this, the
Wall Street Journal announced that Microsoft is still using FreeBSD internally, despite corporate
protestations to the contrary.) This has led to Microsoft releasing a shared−source ".NET for
FreeBSD" toolkit. Yahoo! runs FreeBSD, as do a wide variety of other high−demand Web server
farms. The Apache Web server, the most popular Web server in the world, is developed on
FreeBSD.

This chapter will discuss building your own high−performance Web and FTP server with FreeBSD.

How a Web Server Works

A basic Web server is fairly straightforward: A Web browser requests a page and a Web server
spits it out then closes the connection. That's the easy part. Things get considerably more
complicated when you start to use modules, dynamic pages, and so on, but we'll discuss the basics
in this chapter.

The Web uses Hypertext Transfer Protocol, or HTTP, a very simple protocol like POP3. Over the
last few years, functions have been added to HTTP to make it more complicated, but basic HTTP
operations are simple enough to be performed by hand. Let's try it: We'll telnet(1) to connect to port
80 on a server, and type GET /.

..
telnet blackhelicopters.org 80
Trying 209.69.178.18...
Connected to blackhelicopters.org.
Escape character is '^]'.
GET /
 Nothing to see here.

This is not the site you're looking for.
Connection closed by foreign host.
#
..

If you've ever looked at any HTML, the output from this command should look very familiar to you. If
not, you might check the "view source" option on your Web browser the next time you call up a Web
page. You'll see that this is the actual HTML that generates the pretty picture in your browser. (If
you can't get this much from your Web server, it probably isn't working. Check your error logs.)

335

FreeBSD includes several Web servers, but the most popular on the Internet, by far, is Apache.

The Apache Web Server

If you look under /usr/ports/www, you'll see several different ports with "apache" in their names.
Most of these are slightly different versions of the Apache Web server, and before installing
anything, you'll need to pick a version. Here's a brief look at your options.

apache−jserv This is an Apache server with a Java servlet engine. You can use this to
handle JavaServer Pages.

apache13 This is probably the version you'll want: Apache version 1.3 without any
advanced features. Still, some Apache setups require massive or far−reaching
changes in Apache itself. Check the other Apache ports to see if one of them
will better fit your needs.

apache13+ipv6 This is Apache patched to support IPv6 connections. Use this if you're using
IPv6.

apache13−fp Microsoft FrontPage Server Extensions are a popular Web development
platform, but installing FrontPage Extensions can be a pain. Use this port if you
want to support FrontPage.

apache13−modssl This port includes modular Secure Sockets Layer (SSL) support, for secure
Web sites. The secure connection component, mod_ssl, is based upon
OpenSSL. Use this to support secure connections.

apache13−ssl This includes integrated (nonmodular) SSL support, which is considered
obsolete; use mod_ssl instead.

apache2 This isn't merely a cutting edge Web server, it's bleeding edge. This version of
Apache may well scalp you. Apache 2 is well worth installing just to keep up on
the technology, but you probably don't want it in production use yet. Also, many
Apache modules have not yet been ported to apache2. If you want a bland,
basic Web server with a bleeding−edge back end, this will make you happy.

To build the programs in the most efficient manner possible, you can choose to build Apache from
ports. This takes longer to build, but results in a stronger, better, faster Web server. To enable this
option, set APACHE_PERF_TUNING=YES when building your chosen port:

..
make APACHE_PERF_TUNING=YES all install
..

Apache Configuration Files

You'll find Apache's main configuration files in /usr/local/etc/apache. There are five main files:
access.conf, httpd.conf, magic, mime.types, and srm.conf. Originally, Apache used all five files
extensively, but these days httpd.conf, magic, and mime.types are the ones most often used. (The
functions in access.conf and srm.conf have been rolled into httpd.conf; the original files remain
mostly for us older admins who expect to find them.)

336

To properly administer Apache, you need to understand what each of these files is for and how to
manage them.

Mime.types

The mime.types file contains a list of all standard file types and their identifying characteristics. All
Web servers must identify the type of file they are transmitting to the client, so that the client can
take appropriate actions. For example, most Web browsers open up a PDF reader when they
download a PDF. The mappings contained in mime.types give Apache the information it needs to
support this functionality. You should almost never have to touch this file, unless you are specifically
told to in a program's documentation.

Magic

This file contains identifying characteristics for a variety of unusual file types that the mime.types file
cannot cope with. Because the mime.types file can't deal with all of the file types in the world,
Apache's built−in mime_magic module uses the magic file to try to identify unknown files. You
should never have to touch the magic file, unless a program's installation documentation explicitly
tells you to.

Httpd.conf

The httpd.conf file controls the Web server's behavior, and it's where the interesting things happen.
This file is well commented (any line beginning with pound sign (#) is a comment), so we won't
discuss it in much detail; we'll leave the discussion of every possible Apache configuration for much
bigger books. Most of Apache's configuration takes place in this file, however, so we can't escape it
entirely.

Configuring Apache

The best way to create an Apache configuration file is to edit and use the sample primary
configuration file (httpd.conf). But whatever you do, don't touch what you don't understand. Unlike
your DNS server, you don't want to create an Apache configuration from scratch! The default
httpd.conf contains large sections that control things like character−set handling, and unless you
really want your Web server's handling of the Chinese language to be completely different from any
other Web server on the planet, your best bet is to leave these settings alone.

Note The arrangement of the default httpd.conf file is a bit irregular. While it probably makes sense
to the authors, the rest of us are left scratching our heads if we try to just sit down and read it.
(It doesn't help that the default file is over 1,000 lines long!) That said, we'll discuss the
configuration options in a more sensible order.

Server−Wide Settings

The following configuration options define general server behavior.

Server Root Path

The ServerRoot setting specifies the path to the main Web site files.

..
ServerRoot "/usr/local"
..

337

If your server handles a single large site, you might want to point this at a different location on a
partition dedicated to Web files.

Note When you reference another file in httpd.conf, Apache prepends the ServerRoot to it unless
you begin the filename with a slash (/). For example, if your ServerRoot is /usr/local,
" d o c s / c g i − b i n " w o u l d b e c o m e " / u s r / l o c a l / d o c s / c g i − b i n " , w h i l e
"/usr/local/etc/apache/vhost.conf" would remain unchanged.

Document Root Path

..
DocumentRoot "/usr/local/www/data"
..

The HTML documents for the main Web site go in the DocumentRoot directory.

Httpd Servers

..
MinSpareServers 5
MaxSpareServers 10
StartServers 5
..

If you do a ps −ax on your server, You'll see a number of httpd processes because each request to
the Web server is handled by a separate process. When a dozen people all type in your Web
server's URL and hit ENTER simultaneously, a separate process handles each request. This is part
of how Apache can handle such a high load.

When Apache first starts, it fires up a number of httpd processes equal to the StartServers
value. Every so often, it checks to see how many httpd processes are running, and how many are
actually serving content. In order to guarantee that there are enough httpd processes to handle
additional requests, Apache keeps MinSpareServers and MaxSpareServers around.

If your Web server suffers from sudden floods of traffic, you might want to increase the
MinSpareServers and MaxSpareServers values. The StartServers value shouldn't need to
be increased, though, because even if you were to shut down and restart Apache, it can handle
several hundred httpd processes in just a few seconds.

Maximum Number of Clients

..
MaxClients 150

338

..

MaxClients specifies the maximum number of httpd processes that Apache is allowed to run at
one time, and when this limit is reached, the Web server might appear to be unavailable. This limit
is designed for older systems, and can easily be increased on more modern computers. Experiment
to see how many httpd processes your system needs.

Note You can see how many httpd processes are running at any given time by running ps −ax |
grep httpd | wc −l.

Maximum Httpd Requests

Each httpd process that starts answers requests and then hangs around waiting for the next
request. If you have a fancy Web program that leaks memory, making each httpd process use more
and more memory, You'll see the size of each httpd process increase when you run top.

If you have this memory usage problem, you can set MaxRequestsPerChild to shut down a
process after it handles a set number of requests. Setting this to 0 means that each process can
handle an unlimited number of requests:

..
MaxRequestsPerChild 0
..

Most FreeBSD systems run just fine with this set to 0, but you can change this option if you find that
you have many httpd processes using a lot of memory. If that's the case, the problem is usually due
to some Web application.

Listen

..
Listen 80
..

The Listen option controls which TCP ports or IP addresses Apache will bind to. You can specify
individual IP addresses like this:

..
Listen 192.168.8.44
..

Then combine this with a port number to run Apache on an unusual port:

..
Listen 192.168.8.44:88
..

Or, you can listen on all the IP addresses on the system, on an unusual port:

339

..
 Listen 88
..

You can use multiple Listen statements to make Apache available on any port or IP address on
your system.

BindAddress

..
BindAddress *
..

Much like the Listen statement, BindAddress controls which IP address Apache attaches to. By
default, Apache attaches to every port on the system, but you can restrict it to a single IP address
with this option. BindAddress is basically identical to Listen.

Modules

..
LoadModule
AddModule
..

You can add functions to Apache with these modules. The modules listed in the base configuration
provide basic Apache functionality, so don't alter the existing LoadModule and AddModule
statements unless you know exactly what you're doing. (We'll discuss Apache modules in more
detail in the "Apache Modules" section later in the chapter.)

Port

..
Port 80
..

This is the TCP port that Apache listens on. You can use multiple Port statements.

User and Group

..

340

User www
Group www
..

These options specify the UNIX user and group that Apache runs as. Just as you can log into your
FreeBSD system and start a program that runs with your permissions, the Apache Web server
expects to be started by a particular user and use that user's permissions.

Recent FreeBSD systems ship with the user www and group www, generic accounts with no
privileges that are intended for use by the Web server. (You can't log in as www.) While You'll
sometimes see a document that suggests running Apache as root, don't run the Web server as root,
whatever you do; if an intruder breaks into your Web server, they'll get root on your system as a
side benefit!

Administrator Email Address

..
ServerAdmin webmaster@AbsoluteBSD.com
..

This setting specifies the email address of the person who runs the server. If someone notices a
problem with your server, this is where he will be told to send email.

Server Name

..
ServerName www.AbsoluteBSD.com
..

This is a name of the Web site. It must be a real hostname, and whatever name you give must have
a DNS entry or Apache won't start. For testing purposes, though, you can use an entry in /etc/hosts
instead of an actual DNS entry.

Directory Index

The DirectoryIndex statement gives the name of the default document in a directory. When a
client calls up a directory, rather than a filename, Apache checks for files with this name, in order.

..
DirectoryIndex index.php index.html
..

Here, if a Web browser calls up http://www.AbsoluteBSD.com/refunds/, Apache checks for
index.php and then index.html, and returns the first it finds.

341

The default httpd.conf file has a fairly complicated set of rules for determining the DirectoryIndex
setting. This is an excellent example of a conditional setting that is based on the modules loaded.
You can strip out all that and replace it with a simple one−line entry, if you're not using any of these
advanced modules.

Hostname Lookup for Logs

..
HostnameLookups Off
..

This setting controls whether Apache saves IP addresses or hostnames to its logs. Enabling this
makes your logs look nicer, with computer names instead of IP addresses, but you should leave it
off as a general rule. Turning it on will simply add load to your server, and most log−file analysis
programs can do this lookup on their own.

Error Log Location

..
ErrorLog /var/log/httpd−error.log
..

This is the location of the error log.

Logging Level

..
LogLevel warn
..

The LogLevel statement controls the amount of data logged. Valid labels are debug, info,
notice, warn, error, crit, alert, and emerg. The system logger uses these labels to
determine the amount of data logged. The warn setting is a good, median level.

Log Format

..
LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User−Agent}i\"" combined
..

342

The LogFormat statement controls the data logged by the server. There are several different
default LogFormat settings established for your convenience:

The "common" format logs the IP address of the client, the time of the request, the file
requested, and a few other basic things.

•

The "referrer" format logs the site that referred the client–meaning, another Web page with a
link to yours.

•

The "agent" format records the Web browser used.•
The "combined" format logs all of the above. (This can generate very large logs, so be sure
you have lots of disk space.)

•

Note If you dig through the Apache documentation, you can write your own LogFormat
statements easily enough. The formats mentioned here are understood by all the
popular Web log analysis programs, however, so don't change them arbitrarily

Custom Logs

..
CustomLog /var/log/httpd−access.log combined
..

The CustomLog statement controls the name of the log file and the format used. In the preceding
example, the main Web site logs to /var/log/httpd−access.log in the "combined" format.

You can have several CustomLog statements for different purposes. For example, if you're using
an Apache module that provides special functionality that you want logged, but you don't want to
break the WebTrends product being used by your clients, you can use multiple CustomLog
statements to write to two separate log files.

Aliases

..
Alias /icons/ "/usr/local/www/icons/"
..

Use the Alias statement to provide aliases for directories on your Web site, much like a symlink. In
the preceding example, someone looking at http://www.AbsoluteBSD.com/icons/ would actually be
pulling files from the directory /usr/local/www/icons/.

343

Error Document

..
ErrorDocument 404 /missing.html
..

When a browser requests a document that's not on the server, the server returns an error. You can
create a custom error page with the ErrorDocument directive.

Include

..
Include /usr/local/etc/apache/vhosts.conf
..

The httpd.conf file can include other files, a feature that can be useful when you have several
subsystems maintained by different people. This can also be useful if you want to make your
configuration easier to digest.

For example, many add−on Apache modules have their own bits of configuration code. It's simpler
to give each model its own configuration file and include it than to pile it on the main httpd.conf file.
Similarly, if you have a person whose job it is to maintain virtual hosts, you can create a virtual hosts
file with permissions that allow that person (or group of people) to maintain it (see Chapter 8).

Directory Configuration

Apache has many nifty features, but it's not a good idea to enable everything everywhere–a bit of
sloppy programming can result in your giving out too much information from your Web site, or even
letting someone break in.

Permissions to access Apache functions are set on a directory−by−directory basis. The
configuration looks much like XML: You have a Directory label in angle brackets, a list of
permissions and settings, and then a closing directory entry with a backslash. Any options or
settings between the opening and closing Directory statements affect that directory. Here's the basic
format:

..
<Directory /path/to/files>

...options and settings here

</Directory>
..

By default, Apache uses very restrictive permissions and settings. For example, You'll see the
following entry right at the top of the directory listings in httpd.conf:

344

..
<Directory />
 Options FollowSymLinks
 AllowOverride None
</Directory>
..

Apache allows users to upload their own configuration files to change the server's behavior–in short,
to let users specify their own options, password protection, MIME types, and so on. The
AllowOverride None line shown in the preceding example means that users can't set these
options on a directory unless we say so.

And yes, that slash (/) represents the ServerRoot directory, as specified in the systemwide options.
Unless specified otherwise, every directory on the server has these permissions, though you can
override these settings on particular directories. (We'll briefly discuss the various permission options
in "Directory Configuration," later in this chapter; for now, just realize that nobody does diddly
without our say−so.) To loosen permissions on a directory−by−directory basis, have a look at the
default httpd.conf, where You'll find a set of looser permissions set on various directories.

Directory Features

Now that we've disallowed every feature Apache offers, we can explicitly enable the features we'd
like to have. They will allow your Web designers to do many different things, but as an administrator
you need to know what each one does. Here are some of the features you might set on a directory.

Controlling Access with IP Addresses and Netblocks

The Allow and Deny options control which IP addresses and hostnames are permitted to access
content in a directory. Browser clients are compared against the "allow" and "deny" lists in the order
given in the Order statement. Apache then permits or rejects access depending on the results.
When Order is deny, allow, the default is to allow access unless prohibited by a Deny
statement. When Order is allow,deny, the default is to deny access unless permitted by an
Allow statement.

You allow and deny hosts by IP address and hostnames. Every attempted connection is compared
against these descriptions, and is treated appropriately. Every attempted connection is part of a
special group, All. Much like with TCP Wrappers, you can use the All group and more specific client
identification to allow and exclude particular hosts.

Confused? Let's walk through a sample.

..
Order allow,deny
Allow from all
Deny from *.AbsoluteBSD.com
..

I'm browsing to a site from an http://absolutebsd.com/ machine. Apache first checks the Order list
(because this is the first statement it encounters), and is told to look at the Allow list and then the
Deny list. Since http://absolutebsd.com/ is part of all, I'm allowed in at first. But then Apache
checks the deny list and, whoops, I'm cut off.

345

Note that Apache gets the hostnames from reverse DNS. Because, in many cases, it's trivial for an
administrator to change the reverse DNS hostname, you're safer using IP addresses, or even
blocks of IP addresses, to control access.

All of the following are legitimate types of IP address and IP address block arguments for an Allow
or Deny statement.

..
192.168.0.1,192.168.0.2,192.168.0.3
192.168
192.168.0.0/16
192.168.0.0/255.255.0.0
..

The first line here controls a series of three IP addresses. The last three lines mean exactly the
same thing as each other, and are simply three different ways of expressing all IP addresses
beginning with 192.168.

You can easily restrict access to your internal Web site to only company IP addresses by doing
something like this:

..
Order allow,deny
Allow from 192.168.1/24
Deny from all
..

(This, of course, assumes that your company firewall is configured to block spoofed traffic.)

Httpd.conf Options

Options are general server features that can be enabled and disabled on a directory−by−directory
basis. They allow a Web developer to do all sorts of nifty tricks, such as execute programs on the
server, enable and disable password protection on directories, and change language handling.
These options give the Web developer a lot of power, and they can also generate a lot of support
calls, so you need to know what each is and how it works.

You specify options inside a directory with the Options keyword. For example, to enable the
ExecCGI option for the directory /usr/local/www/data/catalog, you would use the following
configuration:

..
<directory /usr/local/www/data/catalog>
 Options ExecCGI
</directory /usr/local/www/data/catalog>
..

You can also specify multiple options on a single line:

..

346

<directory /usr/local/www/data/catalog>
 Options ExecCGI,MultiViews
</directory /usr/local/www/data/catalog>
..

Now, let's examine the standard options.

All The All option is the Apache server's built−in default. If you have an empty httpd.conf, the
Apache server lets almost any Apache function work in the directory. If a user uploads a
password−protection script to keep people out of the directory, it will work. If a user uploads a CGI
script that exploits a local system flaw to start a root shell on a high−numbered TCP port, giving
anyone in the world a backdoor into your system, it will work too. The All option allows every single
Apache option except MultiViews (described shortly).

The sample httpd.conf file shipped with Apache specifically sets Options None in the ServerRoot
directory, which means that the Apache program's built−in permissive default is turned off by the
sample configuration. If you're using the sample httpd.conf as a base (as you should), the All
option is explicitly shut off, and you will need to specifically enable options in any directory in which
you wish to use them.

ExecCGI CGI scripts that are in a directory with this option set can run.

FollowSymLinks You can use symlinks (or symbolic links, or aliases, as discussed in ln(1)) to point
to other files on the server. A user could symlink to just about any file on the server, and that file
would be visible (if the file permissions allow it, of course).

Includes Server−side includes (SSI–HTML files that include shell commands) and CGI scripts will
work in a directory with this option set, but both can be a security risk unless defensively
programmed. After all, you're allowing anyone who can call up your Web site to run the command
you use in your HTML page. With a bit of conniving, many intruders can make a command do things
the Web designer never intended. (Search the Web on server−side includes and security, and You'll
find many different security problems described.) If you don't know how to use SSI safely, don't
enable this!

IncludesNOEXEC This allows server−side includes, but disables the #exec SSI feature and the
include function of CGI scripts. Without the #exec feature, HTML code cannot run just any
command, and SSI commands must be written within a carefully restricted range. Basically, this
allows simple server−side includes and CGI scripts, while eliminating the most common security
holes. Again, check Google for many different descriptions of the thousands of security issues
caused by sloppy server−side includes.

Indexes If a directory doesn't contain an index document (such as Directory Index), the server will
return a prettily formatted list of the directory contents. You might consider this a security problem,
depending on the contents of your directory. For example, if someone browses the directory of my
personal Web page, I don't care, but if they browse a directory that contains private code, I care a
great deal.

MultiViews The server can handle documents that are written to be viewed in multiple languages.
For example, a Web developer could write a single HTML document that contains text in English,
Chinese, and Spanish. With MultiViews enabled, Apache will send the client the page in the
language the Web browser uses.

347

None No options are allowed. Every one of the nifty features discussed here will not work.

SymLinksIfOwnerMatch The server will use symlinks if the owner of the symlink is the owner of
the file that the symlink points to. This means, in English, that a user can use symlinks to point to
her own documents.

AllowOverride If you allow override, users can alter the options permitted in a directory. When you
allow override, Apache checks each directory for a file called .htaccess, and processes the contents
as additional server configuration info. This allows Web developers to both handle much routine
configuration themselves and to install insecure CGI scripts in random locations.

You'll need to decide whether to permit the use of .htaccess overrides. If you're running a corporate
Web server, and your Web developer pretty much gets what he wants anyway, there's no reason
not to allow whatever override he desires. If, on the other hand, you're running a public or ISP Web
server, and you don't allow a certain group of clients to use CGI scripts, you should be sure to
disallow certain overrides.

These are the valid AllowOverride statements; all allow the user to override anything with an
.htaccess entry.

AuthConfig allows you to password−protect directories. This is a pretty safe option, and it
is generally expected on server farms where any idiot with a credit card can get an account.

•

FileInfo allows users to insert their own MIME information for a directory. While it's
generally better to add this sort of information to the server's mime.types file, there will be
occasions where people need this–for example, when they upload a file that's used only
within their company, and they need to tell the browsers what to expect.

•

Indexes allows the user to control how indexing is handled, including setting a new default
document, controlling how icons appear in server−generated indexes, and so on.

•

Limit allows the user to use the Allow, Deny, and Order keywords. This option is also
quite safe.

•

None means that the user can make no changes. This is a good option to use as a default,
but it's a little too restrictive for most applications.

•

Options allows the user to set any of the options described here. This is good if you know
and trust the Web developers, or if you don't care if someone uploads an insecure program
and the server is compromised.

•

With the foregoing in mind, a reasonable set of user defaults is

..
AllowOverride Limit, AuthConfig, Indexes, FileInfo
..

Controlling HTTP Requests

An HTTP method is a command sent by a browser to a server. you've probably heard of the HTTP
methods GET and POST. These tell the server to transmit a particular page and to process a list of
uploaded information, respectively. There's a whole list of methods, however, each with a separate

348

purpose. You can use the Limit directive to restrict the methods your server accepts.

The Limit and LimitExcept directives control which HTTP methods can be used in a directory.
In most cases, you won't have to worry about which methods are used within a particular Web
page–that'll be the Web developer's problem. You do need to know how to enable and disable
them, however. (If you're a Web developer reading this book to learn about how the server works,
good for you! Now go look up the various methods in your HTTP book.)

The Limit directive explicitly lists methods that can be used in a directory, along with rules for their
usage, in an "allow" and "deny" format. We considered Limit when restricting access to a directory
by particular IP addresses, in the previous section, "Httpd.conf Options."

The LimitExcept directive is similar to Limit, except that the rules you create only apply to the
unlisted methods. Like the Directory directive, both the Limit and LimitExcept statements
use angle brackets (< and >) to show when they begin and end.

For example, to prevent all users from uploading files to your server, you could use the following
configuration:

..
<Directory />
 <Limit GET POST OPTIONS PROPFIND>
 Order allow,deny
 Allow from all
 </Limit>
 <LimitExcept GET POST OPTIONS PROPFIND>
 Order deny,allow
 Deny from all
 </LimitExcept>
</Directory>
..

In the first part of this code, beginning with Limit, we use the Limit statement to create a list of
specific HTTP methods–GET, POST, OPTIONS, and PROPFIND—that we want to control. The Order
and Allow statements, as discussed earlier, let every method in this list go through. We end this
section with /Limit.

In the LimitExcept section that follows, we're creating a list of everything not in the Limit list.
(This is the same list we saw in the first section.) We don't want to block what we specified in the
previous list, but we do want to block what is not in that list. That's why we use LimitExcept.
Here, the Order and Deny statements prevent any method not on the list from working.

If you add an HTTP method (say, from an Apache module), the LimitExcept module will
automatically include it.

There are quite a few other uses for Limit and LimitExcept, but if you're really interested, You'll
want to get one of the many big books on Apache.

Password−Protecting Directories

How about creating a password−protected directory on a Web site? While there's a quick−and−easy
way to do this with a plain−text file containing usernames and encrypted passwords, like many other

349

quick−and−easy methods, this one is quite slow. Since we're building high−performance Web
servers here, we're not going to do it the easiest way.[1] Instead, we'll look at a way that's very
slightly more trouble to deal with but will perform much better.

Much as system usernames and passwords are stored in a database for efficient access, Apache
can use a database to store usernames and passwords. You can use the FreeBSD system's user
database (/etc/passwd and friends) to authenticate Web users, but this is a bad idea. If you do,
you'll allow hackers to break in more easily, you may increase system load, and you can cause all
sorts of bad things that you'd go nuts trying to track down. In fact, this is such a massively bad idea
that I'm not going to tell you how to do it. Go hunt down the Apache FAQ if you want to know how to
do this.[2]

Directory Setup

To use the Apache database, you'll first need to set up your directory to require a database file. To
do so, create a file named .htaccess, in the directory in question, that looks something like this:

..
AuthName "Private Directory"
AuthType Basic
AuthDBMUserFile /usr/local/etc/apache/userdb
require valid−user
..

AuthName is the text that will appear in the password box, and you can change the text between
quotes to anything you want. AuthType tells Apache what sort of authentication to use. For
standard usernames and passwords, use an AuthType of "basic."

The AuthDBMUserFile directive tells Apache where the user database is kept. Do not put this file
in a directory in the Web site itself, or users could then download it and try to break it–and with
enough time, anything breaks. Instead, put it in a location on the server completely outside of the
ServerRoot directory. If you have user accounts on the system, and each manages a Web site, put
it in the user's home directory.

Web Users Database

Now that you know where you're going to put the database file, You'll use dbmmanage(1) to create
it. Dbmmanage takes at least two arguments: the name of the database file and a command to
execute on that file.

To create the database, just add a user to it; dbmmanage will notice that the file doesn't exist, and
will create it. Specify the username you want to create on the command line, and dbmmanage will
prompt you for a password:

..
dbmmanage /usr/local/etc/apache/userdbm adduser username
..

View, update, and delete are three other useful dbmmanage options. Use view to see all the
users in the database, and their encrypted passwords. In the following example, we see the
contents of a very small username database, with only one user:

..

350

dbmmanage /usr/local/etc/apache/userdbm view
mwlucas:jvvAuD7bpZwY2
#
..

Use update to change a user's password. To remove a user, use the delete option. (See
dbmmanage(1) for a discussion of several other options.)

Once you have a user database and your directory is set up to require passwords, any visitor to that
Web directory will be asked for a username and a password to access the site.

Apache and SSL

Many online shopping malls and password−protected areas use what they call "secure Web sites."
What they normally mean is that they use SSL to encrypt traffic between the server and the client.
While these sites aren't as secure as the name implies, SSL functionality is a vital part of almost any
Web server, and Apache has an add−on module to handle SSL connections. To use it, install the
apache13−modssl port.

All SSL servers require a certificate. (We discussed generating a public−key certificate request in
Chapter 13.) You can either create a legitimate certificate or generate your own test certificate,
though if you use a test certificate with an SSL Web server, your clients will get warnings when they
attempt to view pages over SSL.

The completed certificate has two parts: a certificate file (server.crt) and a private key (server.key).
Place both of these files on the Web server, in a location outside of the ServerRoot, to protect your
private key from being downloaded. Then make the private−key file only readable by the Web
server with chmod and chown.

..
chmod 600 server.key
chown www server.key
#
..

Now that you have the certificate on the computer, you need to tell Apache about it. Take a look at
the httpd.conf file installed by the apache13−ssl port and You'll see that most of it looks exactly like
the configuration file installed by the standard Apache port, though You'll see a few additional
IfDefined SSL statements to load the SSL modules. Near the bottom of httpd.conf, however,
You'll find some entries to define the certificate file and the key file:

..
SSLCertificateFile /usr/local/etc/apache/ssl.crt/server.crt
..

This is the path to your certificate file. It needs to begin with a slash (/); remember, any path in
httpd.conf that doesn't begin with a slash is assumed to be under the DocumentRoot! Give the full
path to your certificate file here; the default works, but you can change it if you're using virtual hosts.

Similarly, there's an httpd.conf option to tell Apache where your server key lives:

351

..
SSLCertificateKeyFile /usr/local/etc/apache/ssl.key/server.key
..

The default httpd.conf in the apache13−ssl port includes some "glue" to tell the system to listen for
SSL connections on port 443, the standard TCP port for secure connections. By telling Apache
where the certificate and key files live, Apache knows to accept SSL connections.

That's it! Your default Web site is now up and offers secure Net connections through SSL. (To set
up additional secure sites with virtual hosts, see the "Virtual Hosting" section later in the chapter.)

Note It's best to avoid the term "secure Web server" when you mean SSL. While the encryption on
traffic between the server and the client prevents packet sniffing, attackers could still break
into either the server or the client. A secure Web server requires good Web page design,
server maintenance, and educated users and administrators.

Controlling Apache

Apache is a complicated program that can be managed in several different ways. As with every
other program, FreeBSD includes startup and shutdown scripts in /usr/local/etc/rc.d (see Chapter
11). Apache includes its own custom program to manage the Web server.

You can also manipulate the Web server program directly. For example, you can use the system
startup/shutdown script manually to start or stop the Web server, as discussed in Chapter 11.

..
/usr/local/etc/rc.d/apache.sh start
/usr/local/etc/rc.d/apache.sh stop
..

This works, but is very limited. For more careful control of Apache, use the apachectl(8) command.

Controlling Apache with Apachectl

You can start, stop, and check Apache with Apache's special−handling command, apachectl(8).
While most of apachectl's options are related to starting and stopping the Web server daemon, you
can also use it to check your configuration or see how well your Apache server is running. These
options are configtest, status, fullstatus, start, startssl, graceful, and
stop.

This starts Apache:

..
apachectl start
..

The following command starts Apache with SSL support:

..
apachectl startssl

352

..

You must have SSL support in your Apache setup for this to work.

This next command stops Apache, terminating all open connections immediately:

..
apachectl stop
..

To do a "graceful restart," allowing existing HTTP connections to complete and then restart Apache,
use this command:

..
apachectl graceful
..

It can take a long time to complete, however.

This next command gives you a status screen, full of detailed information about your server's
current condition:

..
apachectl fullstatus
..

It requires lynx(1) (available in /usr/ports/www/lynx).

The next command gives you a quick−and−dirty status report, also in lynx:

..
apachectl status
..

This next command runs apachectl configtest.

..
apachectl restart
..

If the configuration is acceptable, it kills all httpd processes immediately and then restarts Apache.

The next command checks your Apache configuration and will tell you if there's something wrong
with httpd.conf or one of its related files:

353

..
apachectl configtest
..

Many other apachectl subcommands call configtest before acting, just to be sure that Apache will
successfully restart.

Other Ways to Control Httpd

The apachectl program doesn't work well when you are running a heavily customized Apache
instance. For example, if you combine FrontPage with SSL, Apache expects to be started with
arguments for both. While you could use apachectl configtest, stop, restart, and
graceful, you would have to specify all the various flags for these add−on modules in a way that
apachectl accepts, which can be a pain. Using the httpd command directly is much simpler in these
cases.

While httpd has many command−line options, the one that concerns us most is −D, which defines
behavior for the server. For example, to tell Apache to start with SSL support, you would use the
following command:

..
httpd −DSSL
..

To start Apache with FrontPage support, use −Dfp:

..
httpd −Dfp
..

As you might guess, you can combine these:

..
httpd −DSSL −Dfp
..

The exact define you need will be described in the Apache module's documentation.

Note I've seen some heavily moduled servers that require nine or ten −D statements to start
properly. If your server starts picking up modules, edit /usr/local/etc/rc.d/apache.sh to manage
Apache properly, and use that to control the server, rather than using apachectl.

Apache Modules

Apache is a modular server, which means that you can add and remove pieces of server code.
Apache can handle such diverse things as Microsoft FrontPage Extensions, scripting languages
such as PHP, and embedded Perl. There are also such things as Apache modules to compress
each page before you send it, vastly decreasing bandwidth. Each module is a port under
/usr/ports/www. Module port names begin with "mod_", such as mod_gzip.

354

Note In most cases, a module requires its own configuration information. To simplify your
life, you can put the configuration in a separate file and have httpd.conf pull it in with
Include statements. This way, when you alter a module, you know where
everything is.

Here are some of the popular Apache modules. Each is available on FreeBSD as a port of the same
name, under /usr/ports/www. For example mod_gzip can be found in /usr/ports/www/mod/gzip.

mod_dav Provides DAV (Distributed Authoring and Versioning) services.
mod_dtcl Integrates a Tcl (Tool Command Language) interpreter with Apache, allowing rapid

processing of Tcl CGI scripts.
mod_gzip Compresses data before it's sent, if the browser supports it. This is well worth

installing.
mod_mp3 Turns Apache into an MP3 streaming server.
mod_perl Embeds Perl into your Apache server, allowing rapid handling of Perl CGI scripts.
mod_php3 Provides support for the PHP scripting language, version 3.
mod_php4 Provides support for the PHP scripting language, version 4.
mod_python Embeds Python into your Apache server, for rapid handling of Python CGIs.
mod_ruby Embeds Ruby into Apache, permitting rapid handling of Ruby CGIs.
There are many other modules, but these are my favorites.

FrontPage and SSL

Microsoft's FrontPage poses a particular problem because, unfortunately, Microsoft's support for
FrontPage Extensions on platforms other than its own is spotty at best. If you're interested in
supporting FrontPage, install Microsoft's FrontPage Extensions module, apache13−fp port. It's very
difficult to add this module later. Similarly, the Secure Sockets Layer (or SSL) module has a large
footprint in Apache. (Not nearly as bad as FrontPage, mind you!) If you want SSL, aka https or
secure Web pages), install the apache13−modssl port.

You might note that this leaves out the possibility of combining SSL and FrontPage, and you'd be
right. Combining these at once is not for the faint of heart or for the inexperienced. Don't combine
them until you're comfortable with both systems separately.

When the time comes for you to combine FrontPage with SSL, grab the latest version of the
FrontPage Extensions from http://ftp://ftp.microsoft.com/products/frontpage. Extract the tarball and
follow the instructions. If you run into problems, check the FreeBSD−isp mailing list archives.
They're the people who are most likely to have experience with the latest versions.

[1]Every time I've implemented the quick−and−dirty method, I've had to go back months or years
later and convert it to the more correct method. Start off right; you won't regret it.
[2]They won't tell you how to do it, either; they'll just berate you for considering it.

Virtual Hosting

Virtual hosting is having one server handle multiple Web sites. The server is configured to handle
Web requests for each of these domains, and it returns the appropriate page for the domain. Many
companies need a very small Web site, containing just a few pages of information and perhaps a
CGI script or two to process requests for information. This is an excellent application for virtual
hosts. I've had FreeBSD boxes handle thousands of these small domains without breaking a sweat

355

or putting the system load up over 0.2. When each of those sites pays $9.95 a month to handle a
couple dozen hits a day, you're quickly looking at real money on inexpensive hardware.

One common stumbling block to understanding virtual hosts is the belief that the "www" in a URL is
some sort of magic incantation that points to a Web site. This is a common, but incorrect, idea.
When you type a URL, such as http://www.absolutebsd.com/, you're telling your Web browser to go
look for a machine named http://www.absolutebsd.com/, connect to port 80, and see what it has to
offer. You could type in http://mail.absolutebsd.com/, and the client would look for a machine with
that name.

The trick underlying a virtual host is very simple: Many hostnames point to one machine. The
problem on the server side is to differentiate between the requests for multiple domains, and then to
serve up the appropriate pages. This leads to two different styles of virtual hosts: name−based and
IP−based.

Name−Based Virtual Hosts

Modern Web browsers, such as Netscape 3 and Internet Explorer 4 and later, include the name of
the Web site that they're trying to reach when they request a Web page from a server. This makes it
possible for the server to differentiate between requests for the various Web sites it serves. If you
are fairly sure that your clients are not using Netscape 2 or Internet Explorer 3, you can tell your
server to use these names to identify virtual hosts. Name−based virtual hosts are the standard
almost everywhere, and should be your standard unless you have a good reason otherwise.

Place your virtual host configuration at the end of the httpd.conf file, or even in a separate file (using
the httpd.conf keyword Include to pull that file in). Do not mix your virtual host configurations with
your main server configuration, or you will get quite confused when you have to sort it out.

To configure name−based virtual hosts, first tell Apache which IP address to use for them with the
NameVirtualHost httpd.conf directive. While multiple name−based virtual hosts can live on one
IP address, Apache must know which IP address to bind these to:

..
NameVirtualHost 192.168.33.254
..

Once this is set, any requests that come in to that IP address will be treated as a named
virtual−host request. Now you have to tell Apache where to get information on each virtual host. At
the very least, each virtual host needs the name of the Web site and the directory where the HTML
documents for that Web site can be found. Here's an example of a basic virtual host that only needs
these two items:

..
<VirtualHost 192.168.33.254>
 ServerName www.AbsoluteBSD.com
 DocumentRoot /home/mwlucas/www
</VirtualHost>
..

The <VirtualHost> and </VirtualHost> labels tell Apache that the information between them
is for a single virtual host, and they include the IP address of the virtual host.

356

The ServerName directive tells Apache the name of this virtual host. The server uses this entry to
handle requests for http://www.absolutebsd.com/.

Finally, the DocumentRoot entry tells Apache where to find the HTML documents that make up this
site.

It works this way: When a browser sends a Web request to the virtual host IP address of
192.168.33.254 and asks for http://www.absolutebsd.com/, Apache pulls the documents out of the
directory /home/mwlucas/www and returns them to the client.

IP−Based Virtual Hosts

Not all browsers send the site name along with the Web request. In fact, this was the standard in
the earlier days of the Internet (Netscape 2 and Internet Explorer 3), when IP addresses were so
plentiful it seemed they could never run out. Browser clients assumed that they could just make a
connection to the Web server on port 80, and the only thing that would be on that port was that
particular site.

You might think that that time vanished with the Apple II and Betamax, but no. In 2001 I came
across a corporate network that had 12,000 desktops running a Mosaic−based Web browser on
Windows for Workgroups. This browser is so old that it expected every Web site to have a unique IP
address and did not transmit the site name with the Web request. And the company's intranet Web
server had to support these clients. While You'll probably never have to worry about these sorts of
clients on the public Internet, you should still know how to configure them in case you encounter this
sort of situation.

Additionally, sites that use SSL expect to have a single hostname for a single IP. To combine SSL
with virtual hosts, you must use IP−based virtual hosts.

To use IP−based virtual hosts, specify the IP address in the VirtualHost space, much like you do
for name−based virtual hosts. This looks exactly like the VirtualHost setup used by name−based
virtual hosts, except that the IP address in the VirtualHost space is unique. The only difference
between setting up an IP−based virtual host and a name−based virtual host is that IP−based virtual
hosts don't need the NameVirtualHost directive.

Here's a minimal setup of an IP−based virtual host:

..
<VirtualHost 209.69.178.18>
ServerName www.blackhelicopters.org
DocumentRoot /home/mwlucas/www2
</VirtualHost>
..

Any request that arrives at port 80 on the IP address 209.69.178.18 will receive the HTML in
/home/mwlucas/www2.

Tweaking Virtual Hosts

Once you have the minimal virtual hosts (described in the previous sections) working, you can add
additional touches to them. Here we'll discuss various virtual−host options that will work with both

357

IP−based and name−based virtual hosts, and how they can be used.

Port Numbers

Different documents can be served on different ports. (you've probably seen this before, when a
hostname in a URL has a colon followed by a number.) If Apache is listening on ports 80 and 81, for
example, you could have a different virtual host on each port, as long as you add the port number
after the IP address in the VirtualHost directive.

For example, here's a configuration that creates two different sites (http://www.absolutebsd.com/
and http://data.absolutebsd.com:8080/) using two similar virtual hosts on different ports. Both sites
are on the same IP address, but on different ports.

..
<VirtualHost 209.69.178.18:80>
ServerName www.AbsoluteBSD.com
DocumentRoot /home/mwlucas/www
</VirtualHost>
<VirtualHost 209.69.178.18:8080>
ServerName data.AbsoluteBSD.com
DocumentRoot /home/mwlucas/data
</VirtualHost>
..

Virtual Host Logs

By default, virtual hosts write their logs to the default Apache log, but you might want to split the
logs out by virtual host. (This is common when you're running a commercial Web server and want
each customer to get their own logs.) Do so with the ErrorLog and TransferLog directives, both
of which take the name of the log file as an argument:

..
<VirtualHost 209.69.178.18:80>
ServerName www.AbsoluteBSD.com
DocumentRoot /home/mwlucas/www
ErrorLog /home/mwlucas/absolutebsd.com−error−log
TransferLog /home/mwlucas/absolutebsd.com−access−log
</VirtualHost>
..

The TransferLog directive can also take the type of information to be logged as a second argument.
We saw the standard log styles in the discussion of the LogFormat directive (in the "Log Format"
section) earlier in this chapter.

Options and AllowOverride

By default, virtual hosts inherit the Options and AllowOverride settings of the root directory. As a
reminder, here's a sample configuration for the root directory:

..
<Directory />
 Options AuthConfig Limit

358

 AllowOverride none
</Directory>
..

All Web sites and all directories on this server have default Options of AuthConfig and Limit,
and do not permit any of the AllowOverride settings. To override these for a virtual host, use the
Options and AllowOverride statements within the virtual host description. (You can use any
option that is valid in the main server configuration on a virtual host.)

By overriding these options, you can set server access on a client−by−client basis; for example, you
could allow server−side includes on one virtual host, but not on others. The following virtual host
has its own Options settings that override the server's default settings:

..
<VirtualHost 209.69.178.18>
ServerName data.AbsoluteBSD.com
DocumentRoot /home/mwlucas/data
Options Limit IncludesNOEXEC
</VirtualHost>
..

Now that you can configure virtual hosts for clients, they'll want to upload files (typically via FTP).

.NET on FreeBSD

.NET is a technology that is expected to be popular for writing Web−based programs. (Technically,
Microsoft's official .NET platform is .NET Server.)

.NET is an implementation of the ECMA Common Language Infrastructure (CLI), a standard
created and promoted by Microsoft. Microsoft has released a separate implementation of the CLI
that runs on both FreeBSD and Windows 2000, called the Shared Source Common Language
Infrastructure (SSCLI), and code−named Rotor. Presumably, the Microsoft .NET Server version
integrates more tightly with the Microsoft world than this shared−source version does.

As this book is being published, Rotor is available in a beta release. I expect it to be updated
regularly. This section discusses the basics of installing the SSCLI on FreeBSD.

Installing the SSCLI

The SSCLI is available in /usr/ports/lang/cli. At this time, the port only builds properly if you are
using /bin/sh as your shell. If you're using another shell, change to /bin/sh to install this port. Then
run these commands:

..
cd /usr/ports/lang/cli
exec /bin/sh
export SHELL=/bin/sh
make install
..

359

This will download and compile the software, but it won't install because Microsoft allows use of this
software only under its license terms. When the software finishes compiling, it will warn you that you
must read the license agreement, which you'll find in /usr/ports/lang/cli/work/sscli/license.txt. Read
it, and be sure you understand it. Microsoft habitually licenses its software under terms that may be
uncomfortable for people accustomed to FreeBSD, and changes those terms as it sees fit.

Once you have read the license, run this command:

..
make −DI_AGREE_TO_LICENSE_TERMS install
..

Note I recommend not running make clean as part of the install. The Rotor toolkit
includes a lot of source code, documentation, and examples, which you might well
need in order to use this experimental software. A make clean would remove
most of it.

The preceding command will install the SSCLI under /usr/local, in a subdirectory that will depend on
the version of Rotor you are installing. (The first beta version installed in /usr/local/cli−20020326.)
Add this directory to your $PATH, and you're ready to run Rotor programs.

FTP

FTP, the file transfer protocol, is the classic protocol for moving files from one computer to another
over the Internet, and most of your users will want to use it to transfer files to or from servers. Like
many other older protocols, FTP has not aged well. You'll find a wide variety of issues with it, and
over the years, fixes for these problems have been bolted onto the protocol. While FreeBSD makes
handling FTP as easy as possible, you'll still need to do some work with it to keep it chugging along.

FTP Security

Because FTP transmits passwords and usernames in clear text, anyone with a packet sniffer on the
local network will be able to capture FTP usernames and passwords. Nobody except the network
administrator should have a packet sniffer on your network, so you're probably all right for regular
users. Your users will probably insist on having FTP access, however.

Do not transmit sysadmin passwords over the network in clear text, however. Instead, use scp(1) to
upload and download files to and from your account. (We'll look at scp at the end of this chapter.)
Scp isn't too popular (yet), and the encryption it uses can overload a server if you have a great
number of connections open.

The FTP Client

FTP is a fairly complex protocol, and, unlike POP3 or SMTP, can't be easily tested. You must use
an FTP client to use FTP, and FreeBSD includes one. To connect to a host, just type ftp and the
hostname.

360

..
ftp magpire.blackhelicopters.org
Connected to magpire.blackhelicopters.org.
220 magpire.blackhelicopters.org FTP server (Version 6.00LS) ready.
Name (magpire:mwlucas):
..

The client sends your local username as a default, but you can enter a different username if you
need to. It will then ask you for your password:

..
331 Password required for mwlucas.
Password:
230 User mwlucas logged in, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp>
..

If everything goes as planned, you should now be logged into the remote server in a shell almost
like a command shell. You cannot execute commands, but you can move around and view files
using standard UNIX commands, such as ls and cd.

Downloading with FTP

Use the get command to copy a file from the remote server to your local server, like so:

..
ftp> get .cshrc
local: .cshrc remote: .cshrc
150 Opening BINARY mode data connection for '.cshrc' (767 bytes).
100% |**| 767 00:00 ETA
226 Transfer complete.
767 bytes received in 0.00 seconds (173.42 KB/s)
ftp>
..

As you watch, your FTP client will open a connection to move the file over. You'll see a line of
asterisks move across your screen as the file is moved, and an ETA line that will update with the
length of time remaining in the download. When the file transfer is finished, you'll get a notification,
the size of the file moved, and an FTP prompt.

Uploading with FTP

Use the put command to copy a file from your local system to the remote system. Its output looks
much like the example above, so I won't repeat that here.

Moving Multiple Files

Use the mget and mput commands to move multiple files at once. For example, here's how you'd
move all of the files with .txt extensions in your current directory:

..

361

ftp> mget *.txt
..

Disabling the Prompts

By default, ftp will prompt you to confirm that you really want to move each file. But if you're pulling
down a directory with dozens or hundreds of files, you almost certainly don't want to be asked to
confirm each one. You can turn the verification on and off with the prompt command.

..
ftp> prompt
Interactive mode off.
ftp> mget *
..

In this example, we are downloading all the files in the current directory without asking for
verification for each one.

Binary and ASCII Transfers

The difference between binary and ASCII transfers is one big source of confusion, resulting from the
different handling of the return and newline characters. DOS systems and UNIX systems have long
disagreed on how to mark the end of a line, as you may have seen when moving files between the
two. If you do an Internet search, You'll find many documents describing the issue in all its painful
detail, and many articles from one side denouncing the other for being Just Plain Wrong. All you
need to know is how to live with the problems they cause.

UNIX systems default to using binary transfers, while Windows−based systems default to using
ASCII. You can tell an FTP server to use binary transfers with the bin command, and ASCII with
the a command.

Basically, you can successfully transfer both binary and ASCII files in binary mode. You can transfer
ASCII files with ASCII mode, but binary files transferred in ASCII mode will be corrupted. Binary
mode works for everything, so use it.

Viewing Files

Finally, we have the question of looking at files. The less command displays the contents of a file,
one page at a time, which allows you to scan things, such as index and readme files to learn exactly
what you need to download.

The FTP Server

Now that you know how to do basic file transfer with FTP, let's look at how to provide basic FTP
services.

By default, FreeBSD runs the FTP daemon from inetd. Most systems don't get many FTP requests,
and inetd can easily handle the few requests that do arrive. If you won't be supporting more than a
few simultaneous FTP sessions, the default settings will work well.

362

However, if you're running a high−capacity FTP server and will be servicing dozens, hundreds, or
even thousands of simultaneous connections, running FTP from inetd will just add additional system
overhead. You'll run into inetd's bottlenecks and rate−limiting, and find that your users are unhappy.

To solve these problems, you need to pull ftpd out of inetd. Set up ftpd to run in standalone mode,
where it is permanently listening to the network and handling requests itself.

Setting Up Standalone Ftpd

To run ftpd in standalone mode, first disable inetd's ftpd by commenting out the appropriate line in
/etc/inetd.conf. We do this because only one program can run on a TCP port at one time. Since
inetd starts before any local programs, it would tie up the FTP TCP ports; your standalone ftpd
would not be able to run.

Next, you need to tell ftpd it is running in standalone mode, by using the −D flag. You can do so
by starting ftpd automatically at boot with a script in /usr/local/etc/rc.d, just like other standalone or
add−on programs. A sample script would look like this:

..
#!/bin/sh

/usr/libexec/ftpd −D
..

Users can then make FTP connections to transfer files. That's really it! Everything else is tweaking
your FTP server.

Logging Ftpd Usage

The ftp daemon has a variety of logging functions. If you specify −l once (the default in
/etc/inetd.conf), ftpd will log all successful and unsuccessful login attempts. If you specify it twice,
ftpd will log all FTP activities: downloads, uploads, directory creation and removal, and any other file
alterations.

Add these options to the end of the ftpd command line in your startup script. If you wanted ftpd to
run in standalone mode, and to log all FTP activity, your script would include the following line:

..
/usr/libexec/ftpd −D −ll
..

Disabling Server Changes

You might want to prevent users from uploading files or changing the server's filesystem in any way.
This is good for a server that only provides downloads, such as a corporate document server or a
mirror site. To do so, use the −r flag.

363

Caging Users

One common concern with FTP is that it can allow users to download arbitrary files on the system,
and that FTP passwords can be sniffed. You don't want your system compromised because some
doofus user handed out his password!

To prevent users from digging around on your system, you can cage (or chroot) them into their
home directories. When caged, a user can FTP into the system and upload, download, or change
files in his home directory (or its subdirectories) only. If the user tries to visit a directory outside of
the home directory, however, the system will not allow it. This is much like a small jail, which we
discussed in Chapter 8.

Chroot is useful for Web servers that have multiple clients on one machine. After all, the users only
need to see their own directory, not anyone else's.

Chrooting Users

To cage a user, add the username(s) to the file /etc/ftpchroot. Each time a user logs in with ftp, the
user's account is checked against the contents of /etc/ftpchroot. If the username appears there, the
user is locked into her home directory. Caged users have complete control in their home directory,
and can create however many subdirectories and store as many files as their disk space allows;
they simply cannot leave their home directory and go exploring the system.

Chrooting Groups of Users

Users who are members of a group listed in /etc/ftpchroot are caged as well. (Group names have an
at sign (@) in front of them.) You can list a group in /etc/login.access and disallow SSH logins, and
all users in that group will be pretty tightly chained.

For example, suppose we have a system with two junior system administrators, Phil and Chris.
These administrators should be loading files only into their home directories. Similarly, we have a
group of clients who maintain their own Web sites. These clients are all in the webclients group,
listed in /etc/group. To chroot all of these users, set up /etc/ftpchroot like this:

..
phil
chris
@webclients
..

Disallowing FTP Access

The name of the /etc/ftpusers file is rather deceptive; rather than containing a list of allowed users, it
contains a list of users who are not allowed to log in with FTP. FreeBSD's default /etc/ftpusers lists a
variety of system accounts, such as root and nobody.

You can list groups in this file by prefacing them with the @ symbol. For example, you could
disallow members of the wheel group from using FTP. (People who can use the root password
should not be transmitting their passwords in clear text!)

364

Connection Messages

When a client first makes an FTP connection, the contents of /etc/ftpwelcome are displayed. You
can put legal warnings, capacity statements, obscenities, and threats, or whatever else you like in
here, and users will see it before they even get a login prompt. This is an excellent place to put an
"unauthorized use disallowed" message, which is actually admissible in court if someone hijacks
your services for illegal purposes.

Welcome Messages

Once a user has logged in, the /etc/ftpmotd file is displayed. Terms of usage are commonly
displayed here.

Setting Up Anonymous FTP Servers

Anonymous FTP sites are a popular way to provide files and documents to the Internet at large.
Anonymous FTP sites are frequently hacked, however. While FreeBSD's ftpd is quite robust and
secure, you should still take some basic precautions and set your server up properly to avoid
problems. Here are some recommendations:

If at all possible, set ftpd to run read−only by starting it with the −r flag.1.
Use ftpd's −S flag to log all anonymous FTP activity to the file /var/log/ftpd. The file must
exist before ftpd will start the log, so you need to run touch /var/log/ftpd to create it.

2.

Create a user called ftp. This user's home directory will be the root of the anonymous FTP
directory, and all files must be placed in this directory.

3.

Create the directory /home/ftp/pub for the traditional pub folder in an FTP server. If you want
users to be able to upload files, make this directory mode 777 (chmod 777 pub). If it's
read−only, make this directory mode 444. This will give you basic anonymous FTP.

4.

A Warning on Anonymous FTP

Allowing just anyone to upload files to your server may seem like a friendly activity. You might have
bandwidth to spare, and you might desire to provide a public service. In an ideal world, this would
be lovely.

If you allow anyone to store data on your system, however, people can use your FTP server to store
illegal software, child porn, or terrorist data. To make it harder for you to find, they can create hidden
directories or disguise the data. Even if you go looking through all the crud people will upload, if you
see a file labeled FreeBSD FTPd configuration.txt, you're probably going to ignore it; you can't be
expected to check every single file. It's not your fault that that file is actually an MPEG of the Gerbil
Liberation Front training for their secret mission to cram the president into a wheel and make him
run for his life.

NoteFreeBSD includes a variety of FTP servers in /usr/ports/ftp, many of which have nifty features,
good−looking Web sites, and devoted user communities. Check the freebsd−security mailing
list archives for a discussion of a server before you install it, however, because many popular

365

FTP servers have a history of bad security holes. For example, one popular FTP server has
the unofficial tagline of "providing remote root since 1994." Look around, and be choosy.

366

Chapter 16: Filsystems and Disks
The importance of managing filesystems and disks cannot be overstressed. Disk flexibility and
reliability are paramount to the operating system because your disks contain your data. FreeBSD
has a variety of filesystems and different ways to handle them. In this chapter, we'll look at the most
common things a systems administrator deals with.

Device Nodes

Device nodes are special files that represent a piece of hardware on the system. They're used as
logical interfaces between user programs and either a device driver or the physical device. By using
a command on a device node, sending information to a device node, or reading data from a device
node, you're telling the operating system to perform an action upon a physical device. These actions
can be very different for different devices—after all, writing data to a disk generates very different
results than writing data to a sound card! These device nodes can be found in the /dev directory.

Before you can do any work with a disk or disk partitions, you need to know its device name, or the
name of the file on the disk that represents it. Device node names are frequently cryptic, and are
generally based upon the name of the device driver for that piece of hardware; device driver names
are, in turn, usually based upon the chipset used in the device, not upon what the device appears to
be. See /dev for examples of many different device nodes.

There are man pages covering most device nodes. The device nodes we're most interested in are
those for disk devices of one sort or another. The following list shows the most common device
nodes you'll encounter. (See the man page for each if you want the gory details.)

Device Node Description
/dev/fd* Floppy disks
/dev/acd* IDE CD−ROMs
/dev/ad* IDE hard disks and partitions
/dev/cd* SCSI CD−ROMs
/dev/da* SCSI hard disks and partitions
Hard Disks and Partitions

Let's look at IDE disks first. Our first IDE disk is called /dev/ad0. Subsequent disks would be
/dev/ad1, /dev/ad2, and so on, and subdivisions of each disk all start with /dev/ad0[1] and then add
something on the end, like /dev/ad0s1b. While you might expect a disk to start off as a monolithic
whole, you will see lots of subdivisions if you look in /dev for everything that begins with /dev/ad0:

..
#ls /dev/ad*
/dev/ad0 /dev/ad0s1b /dev/ad0s1f /dev/ad0s1h
/dev/ad0s1a /dev/ad0s1e /dev/ad0s1g
#
..

So, what are all these subdivisions? Think back to when you allocated disk space for FreeBSD. If
you followed the recommendations in this book, you used the whole disk for FreeBSD. You could
have created a second chunk of disk for another operating system, or even cut the disk into two
FreeBSD sections. These sections are called partitions in the Microsoft and Linux world, and slices
in FreeBSD land. The "s1" in the preceding /dev/ad* listing represents these large partitions, or

367

slices. The drive referenced there has one slice, with further subdivisions marked by letters.

In FreeBSD, a partition is a further subdivision inside a slice, and as part of the install, you created
partitions inside the slice. Each partition has a unique device node created by adding a unique letter
to the slice device node. For example, partitions inside the slice /dev/ad0s1 show up as
/dev/ad0s1a, /dev/ad0s1b, /dev/ad0s1e, and so on. Each of the partitions you created during the
install–/usr, /var, and so on–is assigned to one of these partition device nodes.

Partition device nodes can be assigned almost arbitrarily, with some exceptions. Traditionally the
node ending in "a" (in our example, /dev/ad0s1a) is the root partition, and the node ending in "b"
(/dev/ad0s1b) is the swap space. The "c" label indicates the entire slice, from beginning to end,
though you can assign "d" through "h" to any partition you like. You can only have eight partitions in
one slice, and you can have up to four slices per drive.

For example, the device node /dev/ad0s1a is disk number 0, slice 1, partition 1, and is probably the
root filesystem. The device node /dev/ad1s2b is on disk 2, and is probably a swap slice.

SCSI drives have slices and partitions just like IDE drives, but their device nodes are slightly
different. Instead of beginning with /dev/ad, SCSI hard drives have names beginning with /dev/sd.
For example, the second slice on your third SCSI hard drive is /dev/sd2s2.

Note Here and there you'll see the word traditional. This means that it's the way things are usually
done. Whenever possible, it's a good idea to stick with the tradition. You don't want some
junior systems administrator tripping over your nontraditional disk layout and telling the
system to swap on your data partition, now do you?

[1]As is very common in computers, the first disk is device number 0, the second disk is device
number 1, and so on.

The /etc/fstab File

The filesystem table lists every filesystem on your computer's hard drives, showing where each
filesystem is mounted and any special options that mount(8) uses. Each filesystem appears on a
separate line in /etc/fstab, as shown in the following sample:

..
#more /etc/fstab
Device Mountpoint FStype Options Dump Pass#
/dev/ad0s1b none swap sw 0 0
/dev/ad0s1a / ufs rw 1 1
/dev/ad0s1f /test1 ufs rw 2 2
/dev/ad0s1g /test2 ufs rw 2 2
/dev/ad0s1h /usr ufs rw 2 2
/dev/ad0s1e /var ufs rw 2 2
/dev/acd0c /cdrw cd9660 ro,noauto 0 0
/dev/acd1c /cdrom cd9660 ro,noauto 0 0
proc /proc procfs rw 0 0
#
..

The first field in the preceding listing gives the device name, which was discussed earlier.

368

The second field lists the mount point (the directory where this filesystem is found). This is usually
something like /usr, /var, and so on, though some special partitions, such as swap spaces, have a
mount point of none.

Next is the filesystem type. The standard FreeBSD partition uses type FFS, the UNIX Fast File
System. Other options include, but aren't limited to, msdos (FAT partitions), mfs (Memory File
System), and cd9660 (CD−ROM). Before you can mount a filesystem, you must know how it's
formatted. (As you might guess, trying to mount a DOS floppy as a UNIX filesystem will not give
satisfactory results.)

The fourth field shows the mount options used on this filesystem. The mount options describe
special ways you want the kernel to treat the filesystem. We'll discuss mount options in more detail
later in this chapter, but here are a few special mount options used only by /etc/fstab:

ro The filesystem is mounted as read−only. Not even root can write to it.

rw
The filesystem is mounted as read−write. This is the standard noasync mount.
(Noasync is explained shortly, in the "FFS Mount Types" section.)

noauto
The boot process will not automatically mount the partition at boot, or when mount
−a is run. This option is used for CD−ROM and floppy−disk drives, which might not
have media in them.

The dumpfield tells the dump(8) program whether or not this filesystem needs dumping. If this field
equals 0, dump won't back up the filesystem. Otherwise, the number given is the minimum dump
level needed to back up the filesystem. (See Chapter 3 for details.)

The last field, Pass#, tells the system when to mount the filesystem during the boot process.
Filesystems with a Pass# of 0 will not be mounted automatically at boot. Only the root filesystem
has a Pass# of 1, and it is mounted first; all other filesystems have a Pass# of 2, which means that
they should be mounted after the root filesystem is mounted.

In the previous example, /dev/ad0s1b is a swap partition, and /dev/ad0s1e is mounted as /var. You
might notice that there are two CD−ROM drives: /dev/acd0c and /dev/acd1c (one is actually a
CD−ROM burner). You will need to know which partition is on which device node to manipulate disk
partitions.

Disk Basics

All filesystems have certain things in common, not least of which is the disk drive, that rectangular
thing with connectors at one end.

The disk drive is basically a little magic box. If you treat it badly, you can hear the magic screech
and grind. When you mistreat it enough, you might even let the magic smoke out, and the drive will
never run again. To really understand filesystems, you need to know a little bit about the
incantations going on inside that magic box, so let's have a look. (If you have a dusty old disk drive
that you no longer have respect for, feel free to crack the case and follow along.)

Note The following is a generalization, of course, and many of you probably already
know far more than this.

369

When you open the hard drive's case you'll find a stack of round disks, commonly called platters.
When the disk drive is on, these platters (commonly made of glass or plastic) spin at thousands of
revolutions per minute (RPM). The RPM count on hard drives is a measure of platter rotation speed.

The platters are covered with a layer of magnetic material, which itself is usually covered in iron
oxide.[2] This magnetic material is arranged in thousands of circular rings, called tracks, that extend
from the platter's inner core to its outer edge, much like growth rings in a tree. These tracks hold
data as strings of zeros and ones. Each track is subdivided into sectors, and each sector on the
outer tracks holds more data than that same sector on an inner track, and it takes less time to read
the same amount of data on an outer track than on an inner track because any point on an outer
track is moving faster.

Heads sit over each platter, and all data written to or read from the platters passes through those
heads. As a rule, these heads can read and write data quickly, but they have to wait for the disk to
move into the proper position under them so that the data can be transferred. Drive performance
basically boils down to how quickly those rusty platters can move under the drive heads, which is
why RPM is so important.

Each track holds blocks of data, the size and placement of which restricts how efficiently the
filesystem works and what sorts of files it can best handle. Each filesystem uses its own particular
index to record the placement of data on the platters, and one operating system can't necessarily
read another's index. (DOS used a single File Allocation Table (FAT), later expanded to FAT12,
FAT16, FAT32, and so on.) The UNIX Fast File System (FFS) uses many scattered index nodes, or
inodes, instead.

[2]Yes, iron oxide is rust. Please do not add rust to your platters to make them hold more data; I
proved it doesn't work many years ago.

The Fast File System

FreeBSD's filesystem, the Fast File System (FFS) is a direct descendant of the filesystem shipped
with BSD4.4. (In fact, as of this writing, one of the original filesystem authors is still developing the
FreeBSD filesystem, adding a lot of the nifty features we'll discuss shortly.) FFS is sometimes called
UFS for UNIX File System, and many system utilities still call FFS partitions UFS.

Note FFS has moved from BSD into several other vendors. If a UNIX vendor doesn't
specifically tout their "improved, advanced" filesystem, they're almost certainly
running the BSD filesystem.

FFS is designed to be fast and reliable, and to handle the most common (and uncommon) situations
as effectively as possible. FreeBSD ships FFS configured to be as widely useful as possible on
relatively modern hardware, but you can choose to optimize it for trillions of small files or a
half−dozen 30GB files, if you choose. You don't have to know a huge amount about FFS's internals,
but you should know a few basics. To begin with, it helps to know that FFS divides the disk into
inodes and blocks.

Inodes Inodes contain very basic information about files, including permissions, size, and so on, as
well as a list of the blocks in the file. Collectively, the data in an inode is known as
metadata, which is simply data about data.

Blocks Blocks contain the file's actual data.

370

While inodes contain lots of different information, all you need to know is that they're the index of the
file on the disk. They are what allows the operating system to find the information it's attempting to
retrieve.

Vnodes

Inodes and blocks worked wonderfully back in the early days of UNIX. As years passed, however, it
became normal to swap disks between different machines and even different operating systems.
CD−ROMs, with their unique layout, became popular; floppy disks slowly converged on FAT32 as a
standard; and other UNIXes developed their own variant filesystems. Because BSD needed to
speak to all these different systems, another layer of abstraction was needed.

That abstraction was the virtual node, or vnode. You never manipulate vnodes directly, but you'll
see references to them throughout the system documentation, so it's important to know what they
are. The vnode is a translator between the kernel and whatever sort of filesystem you've mounted.
When you write a file to an FFS filesystem, the vnode talks to an inode. When you write a file to a
Microsoft−style FAT filesystem, the vnode talks to the file allocation table. (Vnodes are actually used
for far more than talking to the filesystem, but we won't get into that here.)

Every tool that reads and writes to disks actually does so through vnodes, which map the data to
the appropriate filesystem for the underlying media. You'll see references to inodes only when
dealing with FFS filesystems, but you'll see vnodes when you deal with any filesystem.

FFS Mount Types

Unlike Windows or Macintosh filesystems, FFS partitions can be treated in several different ways
depending on how they're mounted. The manner in which a partition is mounted is called the mount
type. Remember that, as discussed in "Device Nodes," earlier in this chapter, you must know a
filesystem's physical device name in order to mount it. And an unmounted filesystem cannot be
accessed. You cannot read it, write to it, or see it in any way. You're stuck.

To change the boottime mount options on a partition, add the options to the appropriate line in
/etc/fstab in the "options" column.

Read−Only Mounts

If you only want to look at the contents of a disk, and not write to it, you can mount the partition as
read−only (or rdonly). This is unquestionably the safest way to mount a disk, and one of the most
useless ways to mount a disk for many server uses, because you cannot alter the data or write new
data.

Many systems administrators mount the root partition, and perhaps even /usr, as read−only to
minimize any potential system damage from a loss of power. Even if you lose the physical hard
drive due to a power surge or some other hardware failure, the data on the platters remains intact.
That's the advantage of read−only mounts; the disadvantage is that it makes maintenance far more
difficult because you can't write to read−only mounted disks!

Synchronous Mounts

Synchronous (or sync) is the old−fashioned way of mounting a filesystem. When a disk is
synchronously mounted, you can read from it much as you would expect, but when you write to it,
the kernel waits to see whether the write is actually completed before telling the program that the

371

write is completed. If it isn't completed, the program can choose to act appropriately.

Synchronous mounting provides the greatest data integrity in the case of a crash, but it is also slow.
("Slow" is a relative term these days, when even a cheap disk can outperform what was the top end
several years ago.) Consider using synchronous mounting when you wish to be truly pedantic on
data integrity, but in most cases it's truly overkill.

Asynchronous Mounts

For faster access at a higher risk of data loss, mount your partitions asynchronously (async). When
a disk is asynchronously mounted, the kernel writes data to the disk, and tells the program that the
write was successful without waiting for the disk to confirm that the data was actually written.
Asynchronous is fine on disposable machines, but don't use it with important data.

Noasync Mounts

Finally, we have a method that combines sync and async, called noasync; this is FreeBSD's
default. When using noasync, data that affects inodes is written to disk synchronously, while the
actual data is handled asynchronously. Noasync is used in combination with soft updates (see the
"Soft Updates" section later in the chapter) to create a truly robust filesystem.

FFS Mount Options

FreeBSD supports several mount options in addition to the mount types. While you don't need to
know the details of all of the mount options, you should at least know that they exist, should you
encounter a circumstance that requires one.

noatime Every file on FFS includes an access−time stamp, called the atime, which records when
the file was last accessed. If you have a large number of files and don't need this data, you can
mount the disk noatime and not have this time−stamp updated.

noexec The noexec mount option prevents any binaries from being executed on this partition.
Mounting /home noexec can help to prevent users from installing and running their own programs,
but for it to be effective, be sure to also noexec mount /tmp, /var/tmp, and any other places that
they can write files.

nosuid The nosuid option prevents setuid programs from running on your system. Setuid
programs allow users to run programs as if they're another user. For example, some programs
(such as login(1)) must be run by root, but if you make login setuid, anyone can run it and it will
work.

Setuid programs obviously must be carefully written so that they can't be exploited and used to get
unauthorized access to your system. As such, many administrators habitually disable all unneeded
setuid programs. You can use nosuid to do so, but it will be useless if you have a script wrapper
that allows you to run scripts as setuid, such as suidperl, on the system.

nosymfollow The nosymfollow option disables symlinks, or aliases, to files. (Symlinks are mainly
used to create aliases to files that reside on other partitions, anyway.) To create an alias to another
file on the same partition mounted nosymfollow, use a regular ln(1)−style link.

nodev Finally, the nodev option disallows using any device nodes on the filesystem, which can
help prevent mistakes if you're accessing a drive used by another UNIX. Disallowing device nodes

372

on filesystems that shouldn't have them cannot hurt. In most cases, the only partition that should
have device nodes is root (/).

If you've mounted a hard drive native to another UNIX, be sure to mount it as nodev. Accidentally
accessing a device node native to another operating system will almost certainly crash or damage
your system!

You cannot use jails on a partition mounted as nodev; remember, jails have their own minimal set
of device nodes.

What's Mounted Now?

How do you determine what you have mounted on your system? Well, you can start by running
mount(8) without any options. This gives you a list of all mounted filesystems:

..
mount
/dev/ad0s1a on / (ufs, local, soft−updates)

/dev/ad0s1f on /test1 (ufs, local, soft−updates)
/dev/ad0s1g on /test2 (ufs, local, soft−updates)
/dev/ad0s1h on /usr (ufs, local, soft−updates)
/dev/ad0s1e on /var (ufs, local, soft−updates)
procfs on /proc (procfs, local)
#
..

Here we see that our filesystems are almost all standard FFS partitions that are all mounted locally
with soft updates enabled. (We'll look at soft updates later in the chapter.) If you're using features
such as SMB (see Chapter 21) or the Network File System to mount partitions, they'll show up here.
This is another quick way to get the device names for each of your partitions.

You can also do more interesting tasks with mount, as we'll see later. First, though, let's look at
what can go wrong with your partitions.

Dirty Disks

No, disks don't get muddy through use (although dust on a platter will quickly damage it, and adding
water certainly won't help). A dirty disk partition is one that's in a kind of limbo: The operating
system has asked for information to be written to it, but the data is yet to be written completely. (Part
of the data block may have been written, the inode might have been edited but the data not written
out, or any combination of the two.

If the power goes out while you're writing to disk, the system will come back up with "unclean disks."

Fsck

FreeBSD includes a very powerful filesystem checking tool, fsck(8). When a rebooting system finds
a dirty disk, it automatically checks the disk and tries to clean everything up. You will lose any data

373

that was not written to the disk, but fsck will do its best to clean what you have. If successful,
everything should be right where you left it–except for that unwritten data.

Failed Automatic Fscks

Occasionally the reboot will fail, and you'll be left staring at a single−user prompt asking you to run
fsck manually. At this point, you have a few choices. If you enter fsck, fsck will check every block
and inode on the disk. It will probably find any number of blocks that have become disassociated
from their inodes, and will make a good guess as to how they fit together and how they should be
attached. It won't be able to tell which directory these files belong in, however.

Fsck will ask if you want to perform this reattachment. If you answer "n", it deletes the damaged
files. If you answer "y", it will add the disassociated file to a lost−and−found directory (such as
/usr/lost+found) on the partition on which they were found, with a number as a filename. Use grep in
that directory to search your missing files by content or, if there are only a few files, have a look at
them with a tool such as more(1) to identify them.

Turning Off the Fsck Prompt

If your disk was in the middle of a very busy operation when it became dirty, you could end up with
many, many disassociated files. Rather than spend an hour typing "y" over and over again to tell
fsck to attempt to place these files, run fsck −y at the single−user prompt. This tells fsck that
you're answering "y" to every question, and it's much easier than sitting there typing "y" repeatedly.

Note At times when running experimental filesystems on −current, I've had the entire contents of a
disk migrate to /usr/lost+found and /var/lost+found thanks to fsck −y. Recovery becomes
difficult at that point. Having said that, in a production system running FreeBSD−stable, I've
never had a problem with an automatic disk repair.

You can set your system to automatically try a fsck −y on boot. I don't recommend this, though,
because if there's the faintest chance of my filesystem winding up in digital heaven, I want to know
about it. I want to type the offending command myself and feel the trepidation of watching the fsck
run. Besides, it's always unpleasant to find that your system is trashed, without having the faintest
clue of what happened. But if you must try it, set the following /etc/rc.conf option:

..
fsck_y_enable="YES"
..

Avoiding fsck −y

What options do you have if you don't want to use fsck −y? Well, fsdb(8) and clri(8) allow you to
debug the filesystem and redirect files to their proper locations. You can restore files to their correct
directories and names. This is difficult, though,[3] and is recommended only for Secret Ninja
Filesystem Masters.

[3]I'm using "difficult" much like this: "Climbing Mount Everest wearing sandals and shorts is difficult."

374

Mounting and Unmounting Disks

Mount(8) mounts disk devices onto your filesystem. (Go ahead and boot your FreeBSD machine
into single−user mode [see Chapter 3] and follow along.)

On boot, the system mounts the root partition, which gives it enough information to do basic setup
and get core systems running before mounting the rest of the filesystems. To do anything
interesting in single−user mode, though, you'll need to mount your other filesystems.

Mounting Standard Filesystems

To mount a filesystem that is listed in /etc/fstab, such as /usr or /var, enter a command like this:

..
mount /usr
#
..

This mounts /usr as read−write.

Mounting with Options

To use a separate option, such as read−only, you can use the options flag −o. These options
include async, noasync, sync, rdonly, nodev, and noexec, as discussed in the "FFS Mount
Types" section earlier. For example, to mount /usr as read−only, enter this:

..
mount −o rdonly /usr
#
..

A read−only mount is a great choice for a damaged filesystem. In the past, I've had filesystems that
were so badly damaged that they wouldn't fsck. (These were Usenet news servers with hundreds of
thousands of articles, and I generally did something to damage them badly. Hey, everybody has to
learn somehow.) If you just want to pull some information off the disk without risking further damage
to data, you can mount the partition as read−only and copy to your heart's content. (This isn't true in
the case of physical disk damage, mind you; if one of the platters is coming apart, you're basically
doomed.)

Forcing Read−Write Mounts

If a partition is marked dirty, you will need to fsck it before mounting it as readwrite. While this
generally isn't a problem, you may not want to fsck it for various reasons. If so, you can try using the
−f flag to force it to mount, though forcing a mount has a good chance of crashing your system,
again.

..
mount −f /usr
#

375

..

Mounting All Standard Filesystems

To mount all the filesystems listed in /etc/fstab, use the −a option. (The filesystems will use
whatever options are given in /etc/fstab.)

..
mount −a
#
..

Mounting at Nonstandard Locations

To mount filesystems at arbitrary locations, specify them by device name and mount point. You
might use this option when installing a new disk, such as mounting the old disk partitions as /old/var,
/old/home, and so on, so you can copy their contents at your leisure.

..
mount /dev/fd0 /home/mwlucas/floppy
#
..

Unmounting

When you have finished with a piece of removable media, eject it with umount(8). Enter the
directory where the media is mounted (/home/mwlucas/floppy in the following example) as an
argument.

..
umount /home/mwlucas/floppy
#
..

If you cannot unmount a drive, you're probably accessing it in some way. For example, you cannot
unmount a drive while you have a command prompt in a directory on it or while you're reading from
or writing to it.

Soft Updates

Soft updates is the biggest innovation to hit FFS in years. Soft updates organize and arrange disk
writes so that the filesystem metadata on the disk remains consistent and it comes close to giving
the performance of an async mount with the reliability of a sync mount. While that doesn't mean
that the data will all be written to disk–a power failure at the wrong moment will still corrupt data–a

376

soft update will prevent a lot of problems.

Enabling Soft Updates

If you followed the suggestions in Chapter 1, you installed your system with soft updates enabled.
(Running mount without arguments will tell you whether soft updates are turned on.) However, if you
didn't turn on soft updates, they're fairly easy to enable–or disable–with the filesystem tuning
program tunefs(8). (Tunefs has many other functions, but most of them require in−depth knowledge
of the filesystem.)

To enable soft updates, boot your system into single−user mode, unmount the filesystems you want
to change, and use tunefs to enable soft updates:

..
umount /usr
tunefs −n enable /usr
mount /usr
..

Now boot into multi−user mode, and you'll have soft updates! Having done this once, the filesystem
remembers that it is running soft updates across reboots.

To disable soft updates on a partition, replace the enable in the previous example with disable.

IDE Write Caching and Soft Updates

Like all filesystems, soft updates works best with SCSI hard drives, due to the robustness of the
SCSI architecture. Still, soft updates works as well as the IDE architecture allows, with one critical
exception: Many modern IDE drives support write caching.

Write−caching IDE drives have a small onboard chip that records data that needs to be written to
the drive. This can be tricky for soft updates, because soft updates expects the hard drive to be
honest–when the hard drive reports that data is written to disk, it expects that data to be on that
platter. But IDE write caching reports when the data is safely stored in the drive's cache, not when it
has been written, and it may be a second or more until that data is actually on the disk.

While this differential wouldn't pose a big risk if this only happened on occasion, it occurs
continuously on a server. As such, if you care about your data, you should disable write caching by
adding the following line to /boot/loader.conf:

..
hw.ata.wc=0
..

While disabling write caching will slow down the IDE drive somewhat, your data will be safe. I safely
run with write caching enabled on desktop and laptop machines, where data is not being written to
disk continually, but on servers it's a very bad idea to leave IDE write caching on.[4]

[4]It's just generally a bad idea to use IDE disks in servers, but I think you have the point by now.

377

Virtual Memory Directory Caching

When you examine a directory (such as when you run ls), the system needs to build a list of files in
the directory–a fairly performance−intensive operation. If you're doing this a lot, you can improve
performance by caching the contents of the directory with the sysctl vfs.vmiodirenable.

This option may be on by default in later versions of FreeBSD, but if not, you can set it automatically
at boot in /etc/sysctl.conf:

..
vfs.vmiodirenable=1
..

Mounting Foreign Filesystems

For our purposes, any disk that isn't an FFS partition is a foreign filesystem. Fortunately, FreeBSD
includes extensive support for these foreign filesystems, with the caveat that only those functions
supported by the filesystem will work. (FAT doesn't support filesystem permissions, for example.
You can set filesystemlevel security flags on a FAT filesystem all you want, and they won't do a
thing.)

Each filesystem has its own unique mount program that handles the vagaries of that filesystem, and
each filesystem needs support in the kernel. To make your life a little easier, the mount programs
automatically load the appropriate kernel modules as needed.

Using Foreign Mounts

To mount any foreign filesystems, you need the same information you would need when mounting
an FFS filesystem: a device name and a mount point. You also need the name of the command to
mount that type of filesystem. (We'll consider the various foreign filesystems and the commands to
mount them in the next section.)

For example, to mount a CD−ROM, include a /cdrom mount point and the device name. We'll use
the default for the first IDE CD−ROM here, /dev/acd0c.

..
mount_cd9660 /dev/acd0c /cdrom
#
..

Once the CD−ROM is mounted, you can read what's on it. Simple enough, eh?

If you try to mount a disk using the wrong mount for its filesystem, you'll get an error. I'm quite used
to seeing this when mounting unfamiliar floppies:

..
mount/dev/fd0 /mnt
mount: /dev/fd0 on /mnt: incorrect super block

378

#
..

This floppy is MS−DOS−formatted. It works just fine if I use mount_msdos though.

No matter what sort of filesystem you are mounting, you can unmount it with umount(8):

..
umount /cdrom
#
..

Foreign Filesystem Types

Here are some of the most commonly used foreign filesystems, along with a brief description of
each and the appropriate mount command.

MS−DOS

FreeBSD includes extensive support for FAT filesystems, the DOS/Windows 9x File Allocation
Table filesystem, commonly used in dual−boot systems and on floppy disks. You can format a
floppy disk in FFS, however, so you cannot assume that all floppy disks are MS−DOS formatted. If
you try to mount a floppy disk and it won't work as an MS−DOS disk, try to mount it as an FFS disk.
(Personally, my only use for floppy disks is to transfer files to and from a Windows machine that I
don't control—for example, for taking files to the print shop. I make it my personal standard to
always format floppy disks as MS−DOS format.)

The mount command is mount_msdos(8).

If you mount a lot of MS−DOS devices, investigate /usr/ports/tools/mtools, a collection of programs
for working with MS−DOS that offers better performance than the default FreeBSD tools.

NTFS

The Windows NT/2000/XP standard filesystem, NTFS, is tightly integrated with Microsoft's kernel.
To write to an NTFS partition, you must have extensive knowledge of how the filesystem works.
Unfortunately, since that information is not available from Microsoft, you can read NTFS partitions
but writing may corrupt the partition. The mount command is mount_ntfs(8).

Note Since Microsoft holds its filesystem interface so dear, and changes it regularly, don't
count on this for frequent use. Using mount/ntfs can damage the filesystem.

ISO−9660

ISO−9660 is the standard data CD−ROM filesystem. FreeBSD allows you to read CD−ROMs and to
write them if you have a CD−ROM burner. Just about every CD−ROM you will encounter has the
ISO−9660 format. The mount command is mount_cd9660(8).

379

Ext2fs

The standard Linux filesystem, ext2fs, supports many of the same features as the FreeBSD
filesystem, and can be safely written to and read from without any problems. Like the NTFS mounts,
ext2fs mounts are quite useful in disaster situations. If an NT or Linux Web server explodes one
day, you can slam the hard drive into your working FreeBSD box and copy the data from it. While
transferring a physical hard drive isn't exactly the simplest way to transfer data, if a machine is badly
damaged, it might be the fastest. Use mount_ext2fs(8) to mount an ext2fs filesystem.

Mount Options and Foreign Filesystems

Rather than using special mount commands for each different filesystem, you can give the type of
filesystem as an option to mount(8). To do so, specify the type of filesystem with the −t option.
There's no particular advantage or disadvantage to mounting filesystems this way, but it does work.

..
mount −t cd9660 /dev/acd0c /cdrom
..

Filesystem Permissions

The method you use to mount a filesystem, and the person who mounts it, control the permissions
of the mounted filesystem. For example, both FFS and ext2fs store permissions in the filesystem,
mapping them to user IDs (UIDs). Since ext2fs normally behaves much like FFS, and all the
permissions information it needs is available within the filesystem, FreeBSD respects its
permissions.

NTFS has its own permissions system, however. Since that system bears only coincidental
resemblance to that used by UNIX, NTFS permissions are discarded when mounted on a FreeBSD
system, and it's treated much like a DOS floppy or CD−ROM.

By default, only root can mount filesystems, and root owns all non−UNIX filesystems. If that's not
your preference, you can use the −u and −g flags to control the user ID and group ID of the owner
on a file when you're mounting MS−DOS, NTFS, or ISO−9660 filesystems. For example, if you're
mounting an MS−DOS floppy for the user "cstrzelc", and want her to be able to edit the contents,
you could use this command:

..
mount_msdos −u cstrzelc −g cstrzelc /dev/fd0 /mnt
#
..

The cstrzelc user now owns the files on the floppy.

Note To let a user mount filesystems, set the sysctl vfs.usermount to 1 and be sure that the
user owns the mount point.

380

Removable Media and /etc/fstab

CD−ROMs are traditionally mounted on /cdrom, and floppy disks are usually mounted on /mnt. To
make your life a little easier when mounting media, set up /etc/fstab to reflect this. If a removable
filesystem has an entry in /etc/fstab, you can drop the device name when mounting it. This means
that you don't have to remember the device name or the exact command to mount that particular
filesystem.

..
mount /mnt
#
..

That would be easier than typing mount_msdos /dev/fd0 /mnt every time, wouldn't it?

When listing removable media in /etc/fstab, be sure to include the noauto flag, or your boot will
stop in single−user mode, because there's nothing in the floppy drive or CD−ROM tray!

Creating a Floppy

What most Windows users think of as "formatting a floppy" is actually a multistage process that
usually includes formatting the disk, as well as giving it a disk label and a filesystem. You need to
perform all of these operations to create a floppy in FreeBSD.

Note For our purposes, we'll assume that you have a standard 1.44MB floppy disk, which has been
the standard on x86 hardware for over a decade. If you have an 800KB disk, or some other
unusual size, you'll have to modify this process somewhat, but the general steps are the
same.

Low−Level Formatting

To begin formatting your disk, low−level format it with fdformat(1). This program only requires two
arguments: the floppy's size and the device name.

..
fdformat −f 1440 /dev/fd0
Format 1440K floppy `/dev/fd0.1440'? (y/n): y
..

When you type y, fdformat will start running a low−level format to prepare the disk to receive a
filesystem; it won't create one. Low−level formatting is the slowest part of making a floppy usable.

Creating an FFS Filesystem

If you're creating an FFS floppy, label the disk with disklabel(8). This writes basic identification
information to the floppy, sets partition information, and can even mark a disk as bootable. Marking
a disk as bootable doesn't actually put any of the programs that you would need on it, mind you; it

381

simply puts a marker on the disk so that the system BIOS can tell that this disk is bootable.

Making a FreeBSD boot floppy is annoying, and if you need one you should just grab one from the
installation media. Here, we'll install a plain disk label without any special characteristics:

..
disklabel −r −w /dev/fd0 fd1440
#
..

The −r option in this example tells disklabel to access the raw disk, which is necessary because
there is no filesystem yet. The −w option tells it to write to the disk: We're writing to /dev/fd0, and
installing a standard 1.44MB floppy disk label. (You can find a full list of the floppy disk labels in
/etc/disktab, as well as labels for many other types of drive.)

Finally, create a filesystem with newfs(8).

..
newfs /dev/fd0
Warning: Block size restricts cylinders per group to 6.
Warning: 1216 sector(s) in last cylinder unallocated
/dev/fd0: 2880 sectors in 1 cylinders of 1 tracks, 4096 sectors
 1.4MB in 1 cyl groups (6 c/g, 12.00MB/g, 736 i/g)
super−block backups (for fsck −b #) at:
 32
#
..

Creating an MS−DOS Filesystem

To swap data between a Windows machine and your FreeBSD box, MS−DOS format your floppy.
While you will still need to run fdformat(8), as discussed earlier, you won't need to disklabel your
floppy.

..
newfs_msdos /dev/fd0
/dev/fd0: 2840 sectors in 355 FAT12 clusters (4096 bytes/cluster)
bps=512 spc=8 res=1 nft=2 rde=512 sec=2880 mid=0xf0 spf=2 spt=18 hds=2 hid=0
#
..

Note The FFS newfs output looks much more interesting, doesn't it? That's because FFS is a more
complex and interesting filesystem than MS−DOS. MS−DOS is easier to use in multiple
machines, however. You need to decide what best fits your needs. You can use all sorts of
options when creating filesystems; see newfs(8) or newfs_msdos(8) for details.

The Basics of SCSI

Throughout this book, I've said repeatedly that SCSI disks are better than IDE. And it's true: SCSI
disks are faster, more reliable, and more expensive than IDE or EIDE drives. SCSI disks are also
considered more difficult to manage, but much of this difficulty probably comes down to being
unfamiliar with the technology. SCSI disks can also do far more than IDE disks, however, which

382

makes them more tricky.

Many new junior sysadmins aren't familiar with handling SCSI systems, so I'm going to spend a little
time discussing what you really, really have to know to handle SCSI well.

Note If you are seriously interested in SCSI, check out The Book of SCSI by Gary Field (No
Starch Press).

SCSI Types

There are several different types of SCSI: SCSI−1, SCSI−2, Wide, Ultra, LVD, and so on. While the
SCSI devices look similar, one look at their connectors will show the difference.

SCSI−1 devices use a 50−pin connector that resembles an IDE cable. More modern SCSI−2
systems use a 68−pin connector that has very small pins and a trapezoidal connection housing.
You'll also see external SCSI systems that use other sorts of cables, such as Centronics cables that
resemble those on older parallel printers. (If someone hands you a SCSI cable with 25 pins, do not
use it, even with an adapter. It will destroy system performance, data integrity, and your peace of
mind.)

SCSI Adapters

To use SCSI, you need a host adapter. This is a plug−in card just like a video card or any other
peripheral. Many servers have SCSI adapters installed on the motherboard, much as desktops
today have IDE adapters built in, which makes things a bit easier.

The SCSI host adapter is one of the most likely bottlenecks in your system. If you have a slow
adapter and fast disks, the adapter wins.

SCSI Buses

Many parts of your computer have a bus, and SCSI is no exception. In simplest terms, a bus is
where you plug things in. One of your IDE buses has two ports (the plugs on the IDE cable), and the
PCI bus has several (the slots on your motherboard). An old SCSI bus has 8 ports, including one
used by the SCSI adapter itself. These ports are the plugs that can be attached to the SCSI cable,
and you can plug up to 7 devices into an old SCSI system. A newer SCSI bus has 16 ports (still
including the card), and if your system has the space and the power, you can plug 15 devices into it.

Some SCSI cards have attachment spaces for two cables because they have two buses. In these
configurations, each bus is treated individually and has a unique number. (If you only have one bus,
it still has a unique number, which is 0.)

Termination and Cabling

SCSI signals travel along the length of the cable. In many electrical systems, including SCSI, a
signal that reaches the end of a wire will reflect back along the wire, which is not a good thing in the
case of SCSI. As such, you terminate the SCSI bus with a terminator (a small piece of hardware,
almost like a cap) that tells the signal to stop without reflecting back along the cable.

SCSI buses must be terminated at each end. Some SCSI devices include an option for "internal
termination," which can make things tricky. Since your SCSI bus stops at the first terminator it sees,
if you have an internally terminating device in the middle of your bus, you won't see some of your

383

components because the signal will stop.

While it may seem like a pain to find and use external terminators, do so if possible. External
termination will save you trouble later when you have to replace a drive.

Note Don't put SCSI devices along the cable in a "Y" format. The bus must be in a straight
line. Some cables look like they allow you to do this, but these cables are deceptive
and should not be used in this way.

SCSI IDs and LUNs

A SCSI ID is an address the bus uses to tell signals within the computer where to go. Each device
has a unique SCSI ID that identifies it along the bus. On a raw physical level, the bus tags each
piece of data with the SCSI ID of its destination. Each SCSI ID must be unique in most systems,
and if you have identical ones along the chain, the first device to boot will grab the ID.

Each possible port on the bus has a unique ID. Since this is a computer system, those ID numbers
begin with 0 and end at either 7 or 15, depending on the bus. The adapter is typically SCSI ID 7.

Some SCSI systems also support Logical Unit Numbers, or LUNs. This is a clever trick to make it
possible to have multiple devices share one SCSI ID. If every component in your SCSI system
supports LUNs, you can use them, but every device that shares a SCSI ID must have a unique
LUN.

Managing your SCSI system is like sending mail. The bus number is like the city. Your SCSI ID is
the street address. If multiple buildings share the same street address, the delivery man will drop his
package at the first one he sees. Similarly, the LUN is like an apartment number. (You don't want
your packages dropped in the lobby.) If every device on your system has a unique SCSI address,
you'll be fine. If it doesn't, stop everything and make sure it does.

FreeBSD and SCSI

To use SCSI properly with FreeBSD, you'll need to make some kernel changes (see Chapter 4).
There are two basic kernel tasks you need to handle: the boot−time SCSI delay and wiring down
devices.

Boot−Time Delay

A SCSI system includes all sorts of intelligent chips to handle data flow along the bus, which can
take longer to power up and enable than IDE hardware. As such, FreeBSD includes a delay in the
boot process to allow this to happen, and this is controlled by the SCSI_DELAY option:

..
options SCSI_DELAY=8000
..

The time given, in milliseconds, is set by default to 15000 (or 15 seconds). The amount of time your
system requires will depend on your hardware. A delay of 15 seconds is a generous estimate for
older hardware. If you have newer SCSI equipment, you can probably reduce this to 5 seconds or
so. If you have problems, of course, turn it back up. Using a 15−second delay doesn't hurt anything,
and it doesn't indicate problems.

384

Wiring Down Devices

The other annoyance is that the FreeBSD kernel numbers the SCSI devices based on the order in
which they're found. (Every operating system has to deal with SCSI booting behavior in some way,
and this is simply BSD's way.) As such, if you change the devices on your SCSI bus, you could
change the order in which they are probed: What was disk 0 when you installed BSD could become
disk 1 after you add a new tape drive. This change would cause partitions to be mounted on the
wrong mount points.

You can have similar problems with SCSI buses–if you add another SCSI card, your buses can be
renumbered! As you might imagine, unmitigated chaos results from either of these problems.

To prevent this problem, you can hard−code this information into the kernel to prevent future
confusion, a process called wiring down the SCSI devices. To wire down the device, you need the
SCSI ID, SCSI bus number, and LUN (if used) of each device on your SCSI chain, available at
/var/run/dmesg.boot.

For example, on a test system, I have the following dmesg entries for my SCSI adapter:

..
ahc0: <Adaptec aic7880 Ultra SCSI adapte> port 0xac00−0xacff mem 0xd9000000−0xd9000fff irq 11 at device 10.0 on pci0
aic7880: Ultra Wide Channel A, SCSI Id=7, 16/255 SCBs
..

The first line of this output shows us that the main SCSI card is an "Adaptec aic7880 Ultra" adapter.
The second line gives us more information about the adapter on this card. This is really only one
physical card. (You learn a lot about what's actually inside your computer hardware by examining
dmesg, don't you?) The host adapter is using SCSI ID 7, and no LUN. By opening the case and
looking at the physical card, I can verify that there's only one SCSI bus.

A little later in the dmesg file, I have these entries for my disks:

..

...
v da0 at w ahc0 x bus 0 y target 2 z lun 0
...
@ da1 at ahc0 bus 0 target 8 lun 0
...
..

This tells us that the disk da0 (v) is on the SCSI card ahc0 (w). We also know that it is on bus 0 (x).
The "target" is the SCSI ID 2 (y). Finally, the LUN of this drive is 0 (z). The second SCSI disk ({) is
on the same SCSI card, on the same bus, and has the same LUN. Its SCSI ID is 8, however.

To wire down a drive, tell the kernel exactly where each disk lives so that the kernel doesn't have to
guess how a SCSI device should be numbered:

..

385

device da0 at scbus0 target 2 unit 0
device da0 at scbus0 target 8 unit 0
..

Similarly, you can wire a particular SCSI bus to a particular card, and even to a particular slot on a
card. For example, we know that SCSI bus 0 is on ahc0. While this system only has one SCSI card,
we don't want a new SCSI card to subvert SCSI bus 0. We can wire this SCSI bus to this particular
slot on this card with the following kernel configuration:

..
device scbus0 at ahc0 bus 0
..

Once you've entered these settings, rebuild your kernel with the proper information, and reboot.
You'll see these devices coming up in this configuration, which isn't at all exciting, of course,
because that's where you started.

To prove that you've wired your devices to something in the kernel, play with this configuration a
little. You might, say, go into your kernel configuration and change all the instances of da0 to da7.
After a recompile and a reboot, you'll see a /dev/da1 and a /dev/da7 in your boot messages. (This
little test might make it difficult for your system to boot. Don't capriciously change the names of the
disk your root and /usr filesystems live on!)

Adding New Hard Disks

Handling new disks can be something of a pain because you have to format them, give them a
filesystem, mount them somewhere, and move your data. You have a couple of different options
here to make the first few steps easier. You can use sysinstall(8), which is simple and fast and
makes life simpler, or you can do it the ugly command−line way. Being always in a hurry, you'll
almost certainly want to use sysinstall.

Sysinstall occasionally has problems with some older disks (usually about 300MB or less). If you're
using older disks, you might have no choice but to use the command−line method. In that case,
check the FreeBSD Handbook for assistance.

We'll assume that you are adding disks to an existing system, and that your eventual goal is to
move some of your current data to this disk. We'll cover two examples: creating a new /usr/obj on
this disk and moving /home to a new disk.

Note Before doing anything with disks, be sure that you have a complete backup. A single dumb
fat−finger mistake in this process can destroy your system! You do not want to accidentally
reformat your root filesystem, for example.

Creating Slices

Your first step in working with a new hard disk will be to partition it. Follow these steps:

386

Become root, and start sysinstall. We'll want to do post−install configuration, so choose
Configure and start with Fdisk.

1.

This menu should look somewhat familiar; you used it when you installed FreeBSD. (You
can see screenshots in Figure 1.4 in Chapter 1.) You'll see your existing FreeBSD disk and
your new disk. Choose the new disk.

2.

If this disk is recycled from another server, you might find that it has a filesystem on it.
Decide whether you want to keep what's on the disk, or erase it and start over. It's usually
simplest to just remove the existing partitions and filesystems. Use the arrow keys to move
to the existing partition, and press d to delete it.

3.

You can either create a new slice by pressing c, or just use the whole disk by pressing a. In
a server, you almost certainly want to use the entire disk. When you've chosen your slices,
make the changes effective immediately by pressing w. You'll see a warning like this:

Warning This should only be used when modifying an EXISTING installation. If you are
installing FreeBSD for the first time then you should simply type Q when you're
finished here and your changes will be committed in one batch automatically at the
end of these questions. If you're adding a disk, you should NOT write from this
screen, you should do it from the label editor.

Are you absolutely sure you want to do this now?

4.

Yes, you're absolutely sure. Tab over to "Yes" and hit enter.5.
You'll then be asked if you want to install a boot manager on this disk. You don't need a boot
manager on an additional disk, so arrow down to Standard and press the spacebar. Then
arrow down to OK and press ENTER. The sysinstall program should tell you that it has
written out the FDISK information. We now have a FreeBSD slice on the disk. Leave the
fdisk part of sysinstall, and head on to create partitions in the slice.

6.

Creating Partitions

To create partitions on your disk, follow these steps:

Choose the Label option of sysinstall. Here you can create a new partition with the c
command, specifying its size in either megabytes, gigabytes, disk blocks, or disk cylinders.
(You'll probably want megabytes or gigabytes.) You can also decide if each new partition will
be a filesystem or a swap space.

Note When creating partitions, be sure that your new disk name is at the top of the screen.
You don't want to relabel your current disk!

1.

Enable soft updates, if they aren't enabled by default.2.
When you're satisfied with the way partitions on your new disk are labeled, press w again to
write the label changes to the disk. You now have a partition table. (Take note of the
partition names (such as da7s1e); you'll need them later.)

3.

Finally, press w to commit the changes. You should see a text box about newfs pop up.
(This may take several minutes–formatting a 100GB hard drive is no simple task!)

4.

When this finishes, exit sysinstall.5.

387

Configuring /etc/fstab

If you've added swap space, you should configure /etc/fstab to recognize it. (You did write down the
partition names for your new partitions, right?) Your swap space is probably something like da7s1b
(substituting your disk's name for da7). There's already an entry for your existing swap space in
/etc/fstab, which you can use as a model when adding this new space.

For example, suppose a test server has a swap line that looks like this:

..
/dev/da0s1b none swap sw 0 0
..

If your new disk is /dev/da7, and you've created a swap partition on /dev/da7s1b, add a line like this:

..
/dev/da7s1b none swap sw 0 0
..

At your next boot, FreeBSD will find this entry and turn it into a swap space.

You should also add a similar entry for your new data partition(s). Here is an /etc/fstab entry to
mount a new /dev/da7s1e partition on /crud, a new mount point created just for this drive:

..
/dev/da7s1e /crud ufs rw 0 0
..

Installing Existing Files onto New Disks

Chances are that you will want your new disk to replace an existing FreeBSD partition or to
subdivide an existing partition. To do so, make your new partition available on the system on a
temporary mount point. Move files from the old location to the new location. Then remount the
partition at the desired location.

Temporary Mounts

Suppose you have a new partition /dev/da7s1e that you want to use for /usr/src, and you want to
move the files from the existing /usr/src to the new partition. To talk to the new partition, however,
you need to mount it at some different location temporarily.

The temporary location can be any directory on your system. The /mnt directory is traditionally used
as a temporary mount point for partitions.

..
mount /dev/da7s1e /mnt
#
..

388

Moving Files

Now you need to move files from their current location to the new partition without changing their
permissions or otherwise affecting them. This is fairly simple to do with tar(1). (We use tar to
preserve our filesystem permissions.)

You can simply tar up your existing data to a tape or a file, and untar it in the new location, but that's
kind of clumsy. You can concatenate tar commands to avoid that middle step, however:

..
(cd /old/directory && tar cf .) | (cd /newplace && tar xpf −)
..

If you don't speak UNIX at parties, this line looks fairly stunning. Let's dismantle it. First, you're
going to the old directory and tarring up everything you find there with (cd /old/directory &&
tar cf .). Next, the output is piped to the new directory, where it is untarred with | (cd
/newplace && tar xpf −). Wait a few minutes, and you'll be all set.

For example, to move /usr/src onto a new partition temporarily mounted on /mnt, you would do this:

..
(cd /usr/src && tar cf .) | (cd /mnt && tar xpf −)
..

This isn't simple, but it's not incomprehensible. Of course, if it makes you feel more comfortable, you
can create a tarball in one location and uncompress it elsewhere. All you need is the disk space to
do so.

Note This does not delete the files from the original location. Unless you're sure that they're copied
correctly, use rm −rf to remove them.

Moving Live Files

You cannot safely move files that are being changed. For example, if you're moving your mail spool
to a new partition, shut down your mail services. Otherwise, the files will change as you're trying to
copy them.

Stackable Mounts

Suppose you don't care about your old data; you simply want to split an existing disk to get more
space, and you plan to recover your data from backup. Fair enough.

All BSD filesystems are stackable. This is an advanced idea, and not very useful in day−to−day
administration. However, it can bite you when you try to split up one partition between two disks.

Suppose, for example, that you have data in /usr/src. (If you followed the installation advice, or
you've upgraded your system, you should.) Do an ls, and confirm that the data is still there. Now
mount your new partition over /usr/src:

389

..
mount /dev/da7s1e /usr/src
#
..

If you look in /usr/src now, you'll see that the directory is empty.

But here's the problem: The new partition is mounted "above" the old disk, and the old disk still has
all that data on it. If you unmount the new partition and check that directory again, you'll see your
data miraculously restored! The new partition obscured the lower partition.

Although you can't see it, the data on the old disk still takes up space. (You can view how much disk
space you're using with df(1) and du(1).) If you're splitting a disk to gain space, and you just mount
a new disk over part of the old, you won't gain any disk space on the original disk.

The moral is: Even if you are restoring your data from backup, make sure you remove that data
from your original disk to recover the disk space.

390

Chapter 17: RAID
One of the big features of SCSI systems is their ability to use RAID, or Redundant Array of
Independent Disks.[1] The "I" in the definition used to mean "Inexpensive," but that's kind of relative.
A one−terabyte RAID array costs far less than a single one−terabyte disk, but it is still very
expensive.

A RAID system splits data between the drives to improve performance or reliability. RAID works
either in hardware or software.

Hardware vs. Software RAID

FreeBSD supports both hardware and software RAID. Hardware RAID is managed by the SCSI
controller, and host adapters that can handle RAID are called RAID controllers. When you run RAID
in hardware, the controller handles all the computations of how to arrange data on the hard drives,
thus reducing the load on your system. Most hardware RAID system are very stable, and a
hardware controller is unquestionably the best way to handle RAID.

Software RAID is managed by the operating system, and the OS is left to figure out how to arrange
data on the disks. This method increases system load but uses less expensive equipment than
hardware RAID.

It's much simpler to use hardware RAID than it is to use software RAID because, typically, all you
need to do is follow the manual. There's usually a simple menu−driven RAID BIOS that allows you
to set partition sizes and restore damaged disks, and that's all you need to know. Software RAID, on
the other hand, demands that sysadmins actually know what they're doing. We'll discuss software
RAID in detail in this chapter. Hardware RAID has the same theory, but there's really not much to
discuss beyond the theory and which menu option to select.

[1]You can also have IDE RAID systems, but they suffer from all the disadvantages of IDE. If you
want a recap, we discussed those disadvantages at great length in Chapter 1.

RAID Levels

RAID comes in a variety of types. RAID−0, RAID−1, and RAID−5 are the most popular.

RAID−0 is more commonly called striping, and technically isn't RAID at all. It requires at least two
disks, and data is shared between the disks in a way that increases throughput and disk size, but
without redundancy. You could use RAID−0 to combine several 100GB drives to create one
massive virtual disk, for example, but a hard drive failure will destroy data on the one drive, and any
striped system that requires that drive will become useless when that one drive fails. You'd need to
restore from backup in order to access any information. RAID−0 is useful if you need a single
filesystem that's really, really large, but it provides no reliability benefits.

RAID−1 is called mirroring, where the content of one disk is duplicated on another. (You need disks
in multiples of two.) This is a good method to use for low−cost reliability.

In RAID−5, data is partially duplicated across all the drives and arranged in such a manner that the
loss of any one drive will not destroy any data. In "hotswappable" systems, the damaged drive can
even be replaced and rebuilt while the system is running. Again, you need two disks or more.

391

Finally you have RAID−10 (also known as RAID−0+1), which combines striping and mirroring. You
want at least four disks for this, in multiples of two, divided into two sets. Each set of disks is striped
together, and each set of stripes mirrors the other. If you can afford this setup, use it.

Given the choice, you should use hardware RAID because it simplifies maintenance and takes
considerably less skill to run. Run RAID−10 if you have enough disks, and if not, RAID−5 or
RAID−1, in that order. (I've used RAID−0 on my home system, but I don't recommend it for serious
application.)

Software RAID

We'll focus on software RAID because it's much more complicated, much more annoying, and far
more difficult to run than hardware RAID. Users under tight budgetary constraints frequently have to
resort to software RAID, after all. If you're using hardware RAID, read this chapter for the concepts,
but check your hardware manual to see which buttons to pick.

FreeBSD includes two software RAID managers: ccd and Vinum. Ccd is far older and only handles
RAID−1. Vinum is newer, faster, stronger, handles RAID− 0, 1, 5, and 10, and is able to leap taller
buildings in fewer bounds. We'll therefore discuss Vinum.

Note No operating system's software RAID is for the faint of heart or those who are not
willing to dig into problems. This includes FreeBSD's.

Vinum Disk Components

Vinum divides disks into three separate pieces: volumes, drives, and subdisks.

Volumes

Vinum creates virtual disks, or volumes. One Vinum volume looks like a standard disk partition that
you can read, write, format, and so on. Our users and programs will actually see this volume instead
of a disk partition. You cannot mix Vinum data and standard filesystems on a single partition.

Drives

Partitions dedicated to Vinum are called drives. One Vinum volume can include as many drives as
you like. (You could use just a single disk for Vinum, but you'd simply be absorbing the overhead of
software RAID and not getting any benefits.)

You can dedicate entire disks to Vinum drives if you want, but you don't have to. I frequently use the
outer section of a hard drive for swap space, and dedicate the remainder to a Vinum drive.

Subdisks

Vinum drives hold subdisks, which are simply spaces set aside for Vinum on a particular Vinum
drive. (Remember, in Vinum a drive is just a partition; this is space set aside for Vinum data in a
partition assigned to Vinum.) If you wanted, you could even create two subdisks on the same
physical disk just by putting them in different partitions. (There isn't much use for this, other than to
demonstrate just how badly software RAID performs if it's set up quite badly.)

To put it all together, a volume is made up of drives. Drives contain subdisks.

392

Vinum Plex Types

A plex is a single copy of the data in a volume. As long as you have one complete plex, all your data
is available. Mirroring works by having more than one plex in a volume. Vinum supports up to eight
plexes per volume, so you can make your data very redundant. The way you arrange your plexes
determines the sort of RAID you're using.

Concatenated Plex

To make one big volume, create a concatenated plex, which is simply all the subdisks available, in
order. This gives you only one plex, or one copy of your data.

A concatenated plex is the least efficient way to use disk resources. Oh, it's good enough if you
have two IDE disks on one controller, but it's simply a waste of system resources if you use SCSI.
And it isn't even RAID; it's just a big virtual disk. You can use two concatenated plexes to provide
mirroring, however, and you can also easily expand volumes built from concatenated plexes by
adding more disks.

Striped Plex

The striped plex provides RAID−0, where data is arranged across the disks in a manner to enhance
performance. The subdisks in a striped plex must all be the same size, and you must have at least
two of them.

With a single striped plex, you again have no redundancy of your data. You could build two striped
plexes on four disks, however, and create a redundant RAID−0 setup. If you're considering this, you
really ought to look at RAID−5 instead.

Mirrored Plex

The mirrored plex copies data across multiple plexes. Again, the subdisks in a mirrored plex must
all be the same size. A mirror requires at least two plexes, however, so you do get actual data
redundancy. This is RAID−1.

RAID−5 Plex

A RAID−5 plex stripes and mirrors data across multiple subdisks. This includes multiple copies of
your data on multiple disks, and is quite redundant. You must have at least three subdisks of the
same size to run RAID−5.

Note We won't discuss Vinum RAID−5 in any depth. For examples and discussion
o f R A I D − 5 o r R A I D − 1 0 , c h e c k t h e V i n u m W e b s i t e a t
http://www.vinumvm.org/. You must understand the basics presented in this
section before even attempting either of these.

Preparing Vinum Drives

We're going to go through the steps of setting up a concatenated plex, a striped plex, and a
mirrored plex on a sample system. In all cases, we will need to do the following:

393

Choose partitions to become drives.•
Create subdisks on those drives.•
Configure Vinum to create appropriate plexes for those drives.•

We'll do everything on the same sample system, which starts off with the following disks and
partitions:

...
df
Filesystem 1K−blocks Used Avail Capacity Mounted on
/dev/ad4s1a 248111 73649 154614 32% /
devfs 1 1 0 100% /dev
/dev/ad4s1f 2032839 133492 1736720 7% /test1
/dev/ad4s1g 2032839 1266476 603736 68% /test2
/dev/ad4s1h 29497862 3975801 23162233 15% /usr
/dev/ad4s1e 3048830 241823 2563101 9% /var
procfs 4 4 0 100% /proc

/dev/da0s1e 3525041 1 3243037 0% /crud
/dev/da1s1e 3758456 1 3457779 0% /crud2
#
...

Df(1) shows how much disk space you're using and where your partitions are mounted. As you can
see from the preceding output, we have two empty partitions on SCSI disks, /crud and /crud2. (You
can tell that they're SCSI disks because of the device names at the beginning of the lines, and you
can tell that they're empty because the Capacity column reads 0% for both.) We're going to use
those partitions for a striped virtual disk. I've already backed up all the data on those partitions,
which is necessary, because the Vinum setup process completely overwrites the drive!

To prepare your Vinum drives, first unmount the partitions:

...
umount /crud
umount /crud2
#
...

Another check with df should show that the drives are no longer visible. Remove the entries for
these partitions from /etc/fstab, so FreeBSD doesn't try to put them back on boot. Once you've done
that, you're ready to go.

Dedicating Partitions to Vinum

Now that we have the partitions idle and unmounted, we have to tell the partitions that they are now
dedicated to Vinum—we do this with disklabel(8). This will convert a standard partition to a Vinum
drive. Disklabel reads and writes "labels" on the disk, giving basic information about where partitions
start and end, how they're formatted, and their physical characteristics. Just running disklabel
diskname will print out the existing disklabel. One of our Vinum disks is /dev/da1, so let's look at it:

394

...
disklabel da1
/dev/da1c:
type: SCSI
disk: da1s1
...
8 partitions:
size offset fstype [fsize bsize bps/cpg]
 b: 1048576 0 swap # (Cyl. 0 − 65*)
 c: 8803557 0 unused 0 0 # (Cyl. 0 − 547*)
 e: 7754981 1048576 4.2BSD 1024 8192 22 # (Cyl. 65*− 547*)
#
...

Disklabel produces a lot of output, including information about many things you cannot change,
such as disk speed, the number of cylinders, and so on. I'll trim out a lot of these things in these
examples, but you might want to run disklabel on your disks to see exactly what information is
available.

What we need to see right now is the information at the end of the disklabel, where the partitions
are laid out.[2] Df showed us that /crud was actually /dev/da0s1e. The preceding disklabel is for
da1s1. The "e" line in the partition table represents the partition we want to dedicate to Vinum:

...
 e: 7754981 1048576 4.2BSD 1024 8192 22 # (Cyl. 65*− 547*)
...

Running disklabel −e will bring up a copy of the disklabel in a text editor. You want to change
the fstype column in the entry for slice e from 4.2BSD to vinum. When you save and exit, the
changed disklabel will be written to the disk. When you're finished, run disklabel da0 again to
check your work. The partition table should look like this:

...
size offset fstype [fsize bsize bps/cpg]
 b: 1048576 0 swap # (Cyl. 0 − 65*)
 c: 8803557 0 unused 0 0 # (Cyl. 0 − 547*)
 e: 7754981 1048576 vinum # (Cyl. 65*− 547*)
...

Edit the disklabel of the Vinum partition on the other disk in the same way. The disk partitions are
now dedicated to Vinum.

Configuring Vinum

Now that you have disk space to put Vinum on, you can configure it. Basic setup is simple if you use
the built−in tools.

Vinum includes a program, vinum(8), for communicating with the Vinum kernel module. You control
Vinum only through this program. If you type vinum at a command prompt, you drop into an
interactive Vinum shell where you can adjust the configuration, view the setup, and perform any
other Vinum operations. Alternatively, you can just give the proper command−line arguments and
vinum will perform a single action and exit. We'll use both the command−line method and the

395

interactive mode.

Note The program name being the same as the feature name can confuse people. When talking
about the whole Vinum system, the V is capitalized. The program always appears in the
manual section (vinum(8)).

Vinum.conf

Vinum stores its actual configuration in a database on the disk, and you cannot read it without using
vinum(8). You can create a vinum(8) configuration file, however, which is useful when initially
configuring Vinum. You can check your initial setup work more easily when you have a configuration
file, and you can change and rebuild your configuration without too much trouble when you track
everything in a configuration file.

Once Vinum is configured, however, the configuration file is irrelevant; the actual configuration is
stored in the on−disk database. You can make changes directly to the Vinum system without
touching the configuration file. Do not look at the configuration file for current configuration
information; remember to consult vinum(8) for the current setup.

Note In this chapter, I'll be using /etc/vinum.conf as a configuration file. If you come across this file
on a system, just remember that it might not mean anything at all.

Concatenated Plex

We'll start by setting up a single concatenated volume to give us the biggest possible disk size.
We'll use a single plex, or only one copy of the data. There is no redundancy in this model, but it will
create a larger disk.

Here's an /etc/vinum.conf file for a concatenated plex:

...
drive alpha device /dev/da0s1e
drive beta device /dev/da1s1e
volume test
 plex org concat
 sd length 3243037k drive drive1
 sd length 3457779k drive drive2
...

Have a look at the first two lines in this listing. The first thing we do is identify the drive partitions
with the drive keyword. The two drives in this example are /dev/da0s1e and /dev/da1s1e.
(Remember, in Vinum terms, partitions dedicated to Vinum are drives.) Each drive needs a unique
name, and I've named them alpha and beta.

We then need to name our volume, or virtual partition, with the volume keyword. In this case, on
the third line of the listing, I've named it test. Next, on the fourth line, we say how we're organizing
our plex with the plex org keyword. We use concat to specify concatenation.

Finally, on the fifth and sixth lines, we tell Vinum the size of our subdisks on this drive. Remember,
our original check with df showed us that /dev/da0s1e had 3243037KB available and /dev/da1s1e
had 3457779KB available. We want to use all available space on these partitions for Vinum.

396

Note You can go into great detail about exactly how you want your volume set up, what sort
of disk block and stripe size you want to use, and so on, but Vinum doesn't require that
level of detail. It defaults to sensible values.

Creating the Volume

Now we create the volume with vinum create and the filename to tell Vinum to read your
configuration and create everything:

...
vinum create /etc/vinum.conf
v 2 drives:
D alpha State: up /dev/da0s1e A: 384/3551 MB (10%)
D beta State: up /dev/da1s1e A: 409/3786 MB (10%)

w 1 volumes:
V test State: up Plexes: 1 Size: 6543 MB

x 1 plexes:
P test.p0 C State: up Subdisks: 2 Size: 6543 MB
y 2 subdisks:
S test.p0.s0 State: up D: alpha Size: 3167 MB
S test.p0.s1 State: up D: beta Size: 3376 MB
#
...

Read your vinum(8) output carefully to see if the result matches your understanding of your
configuration file. Our most important indicator of success is that every entry has the state of up,
which indicates that the operation was successful.

Let's have a look at this output. First we see our two drives, alpha and beta, both of which are up
(v). We also see the device names and the space usage.

Then we have a list of volumes (w). Our one volume appears, named test, with a total size of
6543MB. Similarly, we have one plex, with two subdisks (x). The plex is named after the volume
name, with a trailing ".p0".

Finally, we see our subdisks and the drives that they were created on (y). Each subdisk is named
after its volume, the plex it is assigned to, and an arbitrary subdisk number, such as test.p0.s1.

Our Vinum partition is now available. It will have a device name under /dev/vinum, named after the
volume name. For example, our "test" volume is available as /dev/vinum/test.

Initializing Vinum Partitions

Before we can use our Vinum volume, it needs a filesystem. Since sysinstall doesn't recognize
Vinum (yet!), you need to do this with newfs(8). If you're an experienced systems administrator, you
can use any newfs flags you like to choose block sizes, and so on. The defaults work fine for most
people:

...
newfs −v /dev/vinum/test
...

397

You'll see newfs output scroll by, listing every superblock on the drive.

Once you have a filesystem, mount the drive and see what happens.

...
#mount /dev/vinum/test /mnt
#df
Filesystem 1K−blocks Used Avail Capacity Mounted on
/dev/ad4s1a 248111 55829 172434 24% /
devfs 1 1 0 100% /dev
/dev/ad4s1f 2032839 133492 1736720 7% /test1
/dev/ad4s1g 2032839 1266476 603736 68% /test2
/dev/ad4s1h 29497862 3974853 23163181 15% /usr
/dev/ad4s1e 3048830 6757 2798167 0% /var
procfs 4 4 0 100% /proc
/dev/vinum/test 7282594 1 6699986 0% /mnt
#
...

On the last line of the preceding df output, we see that our Vinum volume is ready and available for
use, and that it's roughly the combined size of the two smaller disks we used to create the volume!
(If you want more human−readable output, try df −h to see disk space in a more friendly manner.)

...
/dev/vinum/test 7282594 1 6699986 0% /mnt
...

As you can see, concatenating disks is useful for combining several small disks into one large one,
giving new life to older or smaller disks. While this doesn't give us any reliability, it does help make
older and smaller disks useful again. Other uses of Vinum are more interesting, such as striping.
Let's see how that works by turning these two disks into a striped system.

Removing Vinum Configuration

Vinum uses an accumulative configuration process. If you don't destroy your old configuration, any
new configuration is simply added to it. Accumulative configuration works well when you're adding
disks to a RAID system or restoring a damaged volume. It works poorly when you just want to start
over. This is reasonable—after all, most people in a production system alter a configuration more
frequently than they erase it and start over!

To start from scratch, you must erase the existing configuration from the on−disk database. You
cannot just edit the configuration file, because it has no real relationship to Vinum's internal
operations.

To get rid of our existing Vinum configuration and the mounted partitions, we must first unmount the
existing Vinum partition. (It is always a poor idea to destroy anything while the operating system is
using it.)

Once the Vinum partition is safely unmounted, we can destroy the existing configuration. In the
following example, we'll use vinum's interactive mode. Type vinum at the command line to drop into
a vinum shell.

398

...
vinum
vinum –>
...

Here you can enter vinum(8) commands and interact more directly with the system. You can start
over with the resetconfig command:

...
vinum –> resetconfig
 WARNING! This command will completely wipe out your vinum configuration.
All data will be lost. If you really want to do this, enter the text

NO FUTURE
Enter text –>
...

Yes, that's NO FUTURE in all caps. It's Vinum's subtle way of reminding you that you're about to
absolutely destroy any data on that partition, as well as your configuration. If you're not certain, just
hit ENTER to go back to the main vinum prompt. If you're sure, enter NO FUTURE and hit ENTER.

...
Enter text –> NO FUTURE
Vinum configuration obliterated
vinum –>
...

Press CONTROL−D to leave vinum. You now have no Vinum configuration and are ready to build a
new one.

Striped Volumes

The vinum.conf file that follows shows a striped volume. (Remember, a striped volume spreads its
data between two disks.)

...
drive alpha device /dev/da0s1e
drive beta device /dev/da1s1e
volume test
plex org striped 279k
 sd length 3243037k drive alpha
 sd length 3243037k drive beta
...

This looks quite similar to the concatenated setup, with some minor changes. We still have our
alpha and beta drives, and the volume name is still test.

The plex org keyword has changed to striped and a number. The number at the end of the
plex setup line indicates the stripe size; the amount of data that will be written to one drive before
switching to the other drive. The 279KB (279k) shown here is a reasonable default.

Note Why use such a weird size for the stripe? Well, Vinum and the filesystem have

399

certain interactions. If you use an even number you might very well find that you have
all of your inodes on one drive. You might even have all of your data on only one
drive! This would utterly eradicate any advantages of striping. You want to be
absolutely certain that Vinum will use all of your drives, and this number works.

The subdisk labels in our output look slightly different than in the earlier example, however. Since
we're striping, we need to have subdisks of identical size. If one disk is larger than the other, that
space will be useless because both disks will use the amount of space available on the smaller
drive, wasting whatever space remains on the larger drive. If you intend to use Vinum striping, plan
your drive partitions accordingly.

Once you have your new vinum.conf set up, run vinum create. The output of vinum create will
look almost exactly like our previous example, but it will say "striped" instead of "concat." Again,
examine it carefully to be sure it says what you want it to! Then run newfs and mount the new
volume, and see what you have.

...
mount /dev/vinum/test /mnt
df
Filesystem 1K−blocks Used Avail Capacity Mounted on
/dev/ad4s1a 248111 65146 163117 29% /
devfs 1 1 0 100% /dev
/dev/ad4s1f 2032839 133492 1736720 7% /test1
/dev/ad4s1g 2032839 1266476 603736 68% /test2
/dev/ad4s1h 29497862 4193767 22944267 15% /usr
/dev/ad4s1e 3048830 123222 2681702 4% /var
procfs 4 4 0 100% /proc
/dev/vinum/test 6286319 1 5783413 0% /mnt
#
...

This new /mnt partition is smaller than the concatenated volume, since we lost the extra space on
one drive, but accesses will be faster since we're sharing the load across multiple disks. The faster
access speed will be especially obvious with multiple processes writing to the volume
simultaneously.

Mirrored Volumes

Finally, let's mirror our drives. To begin, first unmount the partition, eliminate your old Vinum
configuration with vinum destroy, and create a new /etc/vinum.conf.

...
drive alpha device /dev/da0s1e
drive beta device /dev/da1s1e
volume mirrortest setupstate
plex org concat
 sd length 3243037k drive alpha
plex org concat
 sd length 3243037k drive beta
...

This configuration is a bit different from our previous ones. Our drives are the same, but everything
else looks a little different. For one, our volume has a different name, mirrortest. The setupstate
keyword tells vinum(8) to assume that the existing contents of the disks are identical—we're lying to

400

Vinum. Lying to your computer is not good. The computer will usually catch on quite quickly and
panic. (This leads directly to Chapter 20.) Before we use the volume, however, we will newfs it and
overwrite everything, so Vinum will never have an opportunity to catch on.[3]

This time we have two plexes, each of the concatenated type. Each plex is concatenated, but has
only one subdisk, each of which lives on a separate disk. Our first plex has one subdisk on drive
alpha, while the other has one subdisk on drive beta. Again, they are the same size.

We know that a plex is one copy of the data. Since we have two plexes, each on a separate disk,
we know that the data is mirrored across the disks. Now that you have a configuration, use the
vinum command to implement it on the actual hard drives.

...
#vinum create vinum.conf
2 drives:
D alpha State: up /dev/da0s1e A: 384/3551 MB (10%)
D beta State: up /dev/da1s1e A: 619/3786 MB (16%)

1 volumes:
V mirrortest State: up Plexes: 2 Size: 3167 MB

2 plexes:
P mirrortest.p0 C State: up Subdisks: 1 Size: 3167 MB
P mirrortest.p1 C State: up Subdisks: 1 Size: 3167 MB

2 subdisks:
S mirrortest.p0.s0 State: up D: alpha Size: 3167 MB
S mirrortest.p1.s0 State: up D: beta Size: 3167 MB
#
...

You have a mirrored volume, as you can see by the two plexes listed. Newfs, mount, and you're
ready to go!

Starting Vinum at Boot

To start the Vinum system at boot, edit /etc/rc.conf and /etc/fstab. The rc.conf option is quite simple:

...
start_vinum="YES"
...

We looked at /etc/fstab in Chapter 16. Follow the examples already in that file, and add a line
something like this to the filesystem table:

...
/dev/vinum/mailvol /var/mail ufs rw 2 2
...

401

Other Vinum Commands

The vinum(8) program includes a variety of simple commands to allow you to view its condition.

Status Check

The simplest thing of all is to ask Vinum how it's doing. The vinum ls command shows each plex
you have, its size, the name of its drive, and its state:

...
vinum ls
S mirrortest.p0.s0 State: I 43% D: alpha Size: 3167 MB
S mirrortest.p1.s0 State: I 41% D: beta Size: 3167 MB
#
...

Everything should all be in an "I" state. If it isn't, check vinum(8) and the Vinum Web site
(http://www.vinumvm.org/) and see what your error means. If you want more information, you can
do vinum list −r. This will print out detailed status information on every volume, plex, and
subdisk in your system.

Configuration Check

To double−check your Vinum system configuration, use vinum printconfig. This shows us the
drive names, followed by the volume name, and then the plexes and subdisks.

...
#vinum printconfig
Vinum configuration of magpire.blackhelicopters.org, saved at Fri Aug 17 19:24:43
2001
drive alpha device /dev/da0s1e
drive beta device /dev/da1s1e
volume mirrortest
plex name mirrortest.p0 org concat vol mirrortest
plex name mirrortest.p1 org concat vol mirrortest
sd name mirrortest.p0.s0 drive alpha plex mirrortest.p0 len 6486074s driveoffset
265s plexoffset 0s
sd name mirrortest.p1.s0 drive beta plex mirrortest.p1 len 6486074s driveoffset 265s
plexoffset 0s
#
...

Replacing a Failed Mirrored Plex

The purpose of a mirror is redundancy in case of a drive failure. So, if a drive fails, how do you
replace it?[4]

First, if at all possible, be sure you have a good backup. You'll be working directly on the Vinum
device, and any mistake can destroy your data. If you don't have a current backup, take a backup
before proceeding. Your remaining plex(es) should still be up and serving data, after all!

402

Next, you need to replace the failed hard drive, which can be difficult. For one thing, you've got to
identify the failed drive. A vinum list will tell you which of your drives has failed, identifying the
dr ive by device number. You can then compare the device name to those l is ted in
/varx/run/dmesg.boot and get the SCSI ID, LUN, and bus number. Once you identify the failed drive,
then shut down the computer, find the matching hard drive, replace it with a drive with the same
settings, and boot up again.

Once you reboot, then check to be certain that the new drive came up with the same drive device
name as the old one. (This will make later configuration simpler.)

Now, ask Vinum how it's doing:

...
vinum list
1 drives:
D alpha State: up /dev/da0s1e A: 384/3551 MB (10%)
D beta State: referenced A: 0/0 MB

1 volumes:
V mirrortest State: up Plexes: 2 Size: 3167 MB

2 plexes:
P mirrortest.p0 C State: up Subdisks: 1 Size: 3167 MB
P mirrortest.p1 C State: faulty Subdisks: 1 Size: 3167 MB

2 subdisks:
S mirrortest.p0.s0 State: up D: alpha Size: 3167 MB
S mirrortest.p1.s0 State: stale D: beta Size: 3167 MB
#
...

The beta drive that was on /dev/da1s1 shows up as "referenced," which means that it's included in
the configuration but isn't working correctly. In a cascading chain of errors, the plex on this particular
drive is "faulty" because the drive isn't working. The underlying subdisk is "stale," as the data on it
does not match the mirror.

None of this is good, but it's all to be expected. As a virgin replacement, the disk partition we've
called "beta" has nothing whatsoever on it. If you see any of these errors on an existing Vinum
volume, however, it means that the drive in question is having trouble and should be replaced.

Preparing the Replacement Drive

Before we can use the new drive, we need to partition and label it. You did that earlier in this
chapter with sysinstall(8), and this will be almost exactly the same. To begin, start sysinstall with the
fdisk menu option. Next, delete any disk partitions shown, and dedicate the whole drive to FreeBSD.
Then go into the Label editor.

From our previous setup in /etc/vinum.conf, we know that our Vinum partition was 3243037KB. We
have a slightly more convenient measurement in the earlier vinum ls, where we can see that one
subdisk is 3167MB. We must leave at least that much space for our Vinum partition on our new
drive. (I recommend that you allocate a couple extra meg, just in case, if possible.) Now, write your
changes to the disk, as if you were adding a disk to your system, and then run disklabel to change
the slice type of your Vinum partition, as if you were first setting up Vinum.

403

Note At the rate disk drive size grows these days, it 's quite l ikely that a
replacement disk will be much larger than the original, and probably even
faster. Feel free to allocate the remainder of the disk. When I have extra
space left over, I frequently move a little−used chunk of data—say, /usr/src or
/usr/ports/distfiles—onto a large new partition. It's accessed infrequently
enough that it won't inflict a great performance hit upon my Vinum system,
and yet frees disk space elsewhere. Move data that doesn't need the
resilience and speed that Vinum provides, and that is easily recoverable.

Plex Recovery

Finally, you're ready to recover your volume. First off, you need to tell Vinum that it has a new disk.
Remember, Vinum's configuration is cumulative. If you just recreate the whole volume, you'll add
the old information to itself. This will confuse Vinum and make you lose your data. For example, our
vinum.conf shows drives named alpha and beta. Vinum already knows about those drives. If I were
to use that same vinum.conf and run vinum create a second time, we would be telling Vinum that it
had two alpha drives and two beta drives, both on the same physical device! This would be vastly
confusing to us, let alone a poor, dumb machine. Similarly, you don't want to obliterate the entire
configuration, and make it forget about the drives it already has. All you want to do is change a bit of
the existing setup.

In this example, we want to recover drive beta. Since we don't care about what's on the shiny new
replacement drive beta, we can overwrite that part of Vinum's configuration. To do so, create a
Vinum configuration file, /etc/vinum.conf.recover. List only the one drive in there, without any
additional information on plexes or subdisks.

...
drive beta device /dev/da1s1e
...

That's the drive name and the partition it's on. Now, we add this information to the existing Vinum
configuration by running vinum create:

...
vinum create /etc/vinum.conf.recover
2 drives:
D alpha State: up /dev/da0s1e A: 384/3551 MB (10%)
D beta State: up /dev/da1s1e A: 2/3170 MB (0%)

1 volumes:
V mirrortest State: up Plexes: 2 Size: 3167 MB

2 plexes:
P mirrortest.p0 C State: up Subdisks: 1 Size: 3167 MB
P mirrortest.p1 C State: faulty Subdisks: 1 Size: 3167 MB

2 subdisks:
S mirrortest.p0.s0 State: up D: alpha Size: 3167 MB
S mirrortest.p1.s0 State: stale D: beta Size: 3167 MB
#
...

Notice that the state on our beta drive is now "up," instead of "referenced." The plex is still "faulty,"
mind you, but we're making progress.

404

Now that you have a drive, you can actually tell Vinum to recover the disk. Vinum is fairly smart; it
doesn't start drives it cannot talk to. All you have to do is tell Vinum to start the replaced plex, and it
will recover it for you:

...
#vinum start mirrortest.p1
Reviving mirrortest.p1.s0 in the background
vinum[685]: reviving mirrortest.p1.s0
#
...

You can watch its progress with vinum list:

...
vinum list
2 drives:
D alpha State: up /dev/da0s1e A: 384/3551 MB (10%)
D beta State: up /dev/da1s1e A: 2/3170 MB (0%)

1 volumes:
V mirrortest State: up Plexes: 2 Size: 3167 MB

2 plexes:
P mirrortest.p0 C State: up Subdisks: 1 Size: 3167 MB
P mirrortest.p1 C State: faulty Subdisks: 1 Size: 3167 MB

2 subdisks:
S mirrortest.p0.s0 State: up D: alpha Size: 3167 MB
S mirrortest.p1.s0 State: R 11% D: beta Size: 3167 MB
#
...

Note the last line: mirrortest.p1.s0. Our replacement disk is 11 percent recovered. If your
mirror is under heavy load, this will take a while. Eventually, however, it will recover, and you'll be
back in business with fully mirrored disks.

Pretty cool, huh?

[2]You might notice that disklabel claims that there are eight partitions, but we only see three. The
slice can hold up to eight partitions, but five aren't actually in use.
[3]This is the computing equivalent of writing your rent check on the night before payday.
[4]As I was writing this chapter, I noticed a high−pitched noise coming from my computer. Upon
investigation, one of my two SCSI hard drives was warm enough to make me jerk my hand back
quickly. Since the computer room is kept at about 65 degrees Fahrenheit, it seemed to be time to
replace the drive. Sometimes, Fate works with technical folks. Other times, it just picks a decent
time to abuse us.

405

Chapter 18: System Performance

Overview

"It's slow." That's one of the most dreaded phrases a systems administrator can hear. The user
doesn't know why the system is slow—it just "feels" that way. Usually there's no test case, no set of
reproducible steps, and nothing particularly wrong. These two words can cause the systems
administrator hours of work, digging through the system trying to figure out what's going on.

One phrase is still more dreadful, especially after you've invested those hours debugging the
problem: "It's still slow." For an inexperienced systems administrator, slow systems are easy to
accelerate: Buy faster hardware. This generally fixes speed problems. It also costs a lot of money
and simply conceals whatever's wrong, without really using the equipment you have.

FreeBSD includes many tools designed to help you examine system performance, and to give you
the information you need to actually find out what's slowing things down. That will tell you what you
need to do to fix the problem. You might very well need faster hardware, but you can quite possibly
shift the load around within a system and improve overall performance. The first step is to
understand what your problem really is.

Computer Resources

Speed problems are generally caused by running more on a computer than the computer can
handle. That seems obvious, but think about it a moment. What does that mean?

A computer has four basic resources: disk input/output,[1] the network band−width, memory, and
CPU. If any one of these is filled to capacity, the others cannot be used to their maximum effect. For
example, your CPU might very well be waiting for a disk to deliver data or for memory to finish
paging. A faster CPU won't increase system performance in this case.

Simply upgrading hardware when the system slows down does fix speed problems, but not in the
way that you might think. If you have a program that fills up the system memory, buying a new
system with a faster CPU will probably fix the problem. A new system probably has more memory
than the old one, after all!

By identifying what the system is running short on, and addressing only that need, you can stretch
your existing hardware much further. After all, why buy a whole new system when a couple hundred
dollars of memory will fix the problem? (Of course, if your goal is to rotate this "slow" system into
place as your new desktop, that's another matter.)

Perhaps you can reschedule work; one common cause of system slowdowns is running multiple
large programs simultaneously. For example, I once scheduled a massive database log rotation that
moved and compressed gigabytes of files at the same time as the system's automated daily checks.
Since the job required shutting down the main database, and hence created system downtime,
speed was crucial. Performance on both processes slowed unbearably. Rescheduling the log job
greatly reduced downtime.

We're going to examine several FreeBSD tools for examining what a system is doing. Armed with
that information, we'll consider how to fix some performance issues. We have separate tools to
examine each of the potential bottlenecks.

406

FreeBSD changes continually, and later systems might have new tuning and performance features.
Take a look at tuning(7) on your system to find any new performance tips. We'll cover tuning
information that is useful on any FreeBSD (and almost any UNIX) system.

Note One word you're going to keep stumbling across in this chapter is "abnormal." As
the systems administrator, you're supposed to know what is normal for your system.
It's somewhat like art: You might not be able to define normal, but you need to
recognize it when you see it. It's a good idea for you to use these tools to check your
systems regularly when they're behaving correctly, so you will have a good idea of
what is out of whack when the system slows down. We'll also look at some
long−term monitoring tools, so you can gauge system performance over months or
years.

[1]Technically, network bandwidth is part of input/output. However, it's special enough that we'll treat
it separately.

Disk Input/Output

We looked at disk operations in some detail in Chapter 16. When it comes to performance, disk
speed is usually a big bottleneck. If programs are waiting for disk activity to complete before
proceeding, they will slow your system down. (This is commonly called "blocking on disk," meaning
that the disk is blocking program activity.) The only real solution for this is to use a faster disk or a
RAID array, or to split your disk activity between two disks.

How do you know if your disk is actually blocking program activity? We'll look at that in "Using
Vmstat," later in the chapter.

Network Bandwidth

If your system performance slowdown is due to network problems, you need more bandwidth. In
short: You can only push as much bandwidth as you have. If your T1 is full, you need more
bandwidth. If your system cannot fill the existing bandwidth, use the tools discussed in Chapter 5 to
increase system capacity.

To check for this problem, begin by monitoring how much bandwidth your system is using. Chapter
15 discusses how to generate long−term graphs of band−width usage. We also discussed
networking in Chapter 5. Consult netstat −m, and increase your kernel's NMBCLUSTERS, as
described in Chapter 4. That's really all there is to it.

Other system conditions are more complicated.

CPU and Memory

The top(1) tool is a good place to start if you're examining a system that seems to be running slowly.
It provides a good overview of system status, but it only shows information about the CPU and
memory usage; input/output and band−width are not touched.

407

Using Top

To read a top display, you must understand a great deal about how the system works, so we'll
spend a good chunk of time on this. To run top, just type top. To display kernel processes as well
as user programs, use top −S. You'll see a display much like the following, and it will refresh every
few seconds.

..
top −S
v last pid: 436; w load averages: 0.14, 0.08, 0.07 x up 0+01:06:16 08:12:26
y 46 processes: 3 running, 43 sleeping
z CPU states: 1.2% user, 0.0% nice, 0.8% system, 0.0% interrupt, 98.1% idle
{ Mem: 70M Active, 102M Inact, 26M Wired, 6016K Cache, 41M Buf, 107M Free
| Swap: 200M Total, 200M Free
}
 PID USERNAME PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND
 287 mwlucas 2 5 2892K 2136K select 0:13 0.10% 0.10% xsysinfo

 378 mwlucas 2 0 101M 64920K RUN 0:08 0.10% 0.10% soffice.bin
 376 mwlucas 2 0 35372K 32736K RUN 0:13 0.05% 0.05% mozilla−bin
 274 mwlucas 2 0 28208K 26304K select 1:01 0.00% 0.00% XFree86
 170 root 2 0 912K 508K select 0:08 0.00% 0.00% moused
 277 mwlucas 2 0 3888K 3116K select 0:03 0.00% 0.00% wmaker
 5 root 18 0 0K 0K syncer 0:00 0.00% 0.00% syncer
 430 mwlucas 28 0 1912K 1160K RUN 0:00 0.00% 0.00% top
 399 mwlucas 2 0 4500K 4000K select 0:00 0.00% 0.00% Eterm
...
..

Very tightly packed, isn't it? Top tries to cram as much data as possible into a standard
80−character by 25−character terminal window. The display updates every two seconds, so you
have a fairly accurate, close to real−time, view of your system. We'll take this a piece at a time and
explain what every entry means.

PID Values

Every process on a UNIX machine has a unique process ID or PID. Whenever a new process is
started, it is assigned a PID one greater than the previous process. The last pid value is the last
process ID used in the system. In the previous example, the last pid is 436 (v). The next process
to be created will be 437, then 438, and so on. You can watch this increment to see if an abnormal
number of processes is being created. Hopefully, you've looked at your system to see how quickly
this number rises when things are running well. If the last pid value keeps climbing rapidly,
programs are being started and stopped very quickly. This might indicate some daemon that keeps
crashing, or a user trying to start too many programs.[2]

Load Average

The load average (w) is a somewhat vague number that's intended to give a rough impression of
the amount of load on the system.[2] The load average equals the average number of processes
waiting for CPU time, plus the average number of jobs that are waiting for access to the disk. An
acceptable load average depends on the system; if the numbers are abnormally high, you should
investigate. Many 486s feel bogged down at a load average of 3, while some modern systems feel
snappy at a load average of 10.

408

Top lists three load averages. The first (0.14 in our example) is the load average over the last
minute, the second (0.08) is for the last 5 minutes, while the last (0.07) is for the previous 15
minutes. If your 15−minute load average is high, but the 1−minute load is low, you had a major
spike in activity that has passed. How well did your system hold up? On the other hand, if the
15−minute value is low, but the 1−minute average is high, something happened within the last 60
seconds and may still be going on now. If all of the load averages are high, the condition has
persisted for the whole 15 minutes.

Uptime

The last entry on the first line is the uptime (x), or how long the system has been running. The
system in our example has been up for one hour and six minutes, and the current time is 08:12:26.
I'll leave it up to you to figure out when the system booted.

Process Counts

On the second line you'll find information about processes that are currently running on the system
(y). Running processes are actually doing work; they're answering user requests, handling mail, or
whatever else is going on. Sleeping processes are waiting for input from one source or another, and
are just fine. Processes in other states are usually waiting for a resource to become available, or are
hung in some way. Large numbers of nonsleeping, nonrunnable processes can be a hint of trouble.
Investigate further to find out which processes those are.

Process Types

The CPU states line (z) indicates what percentage of available time the CPU spends handling
different types of processes and other duties. It shows five different process types: user, nice,
system, interrupt, and idle.

User processes are average everyday programs; they could be daemons run by root, commands
run by regular users, or whatever. If it shows up on the list of system processes (that is, on ps
−ax), it's a user process.

Nice processes are those whose priority has been deliberately manipulated by the user. We'll look
at this in some detail in "Reprioritizing with Niceness."

System processes are in the kernel, and they include things such as virtual memory handlers,
running networking, writing to the disk, and so on.

The interrupt category shows how much time the system spends handling interrupt requests (IRQs).

Lastly, the idle process shows how much time the system spends doing absolutely nothing. If your
system CPU regularly has a very low idle time, you might want to start thinking about rescheduling
some jobs or getting a faster processor.

Note When you're working on a multi−CPU system, keep in mind that top displays the
average usage among all the processors. You might have one processor completely
tied up compiling something, but if the other processor is idle, top will show only 50
percent usage.

409

Memory

Then we have the Mem line, representing actual physical RAM ({). Unlike Windows, which simply
divides memory into "used" and "unused" categories, FreeBSD uses memory in several different
ways.

Active memory is the total amount of memory in use at the moment for running user programs and
their data. When a program ends, the program information is put into inactive memory and the data
pulled from the disk is put in the cache memory.

Similarly, the Buf entry shows the size of the memory buffer. The memory buffer contains data
recently called from disk.

Free memory is unused.

Wired memory is memory used for in−kernel data structures, as well as for particular system calls
that must have a particular piece of memory immediately available. Wired memory is never
swapped out.

Swap

Then we have the Swap line, (|), which simply represents the total swap available and how much is
in use. Swapping is when the system uses the disk drive as additional memory. We'll look at swap
in more detail later in the chapter.

Process List

Finally, we have a list of the processes on the system and their basic characteristics (}). The table
format is designed to present as much information as possible in as little space as possible. Every
process is on its own line. Let's look at each column in the following sections.

PID First we have the process ID number, or PID. Every process running on the system has a
unique PID. When you issue kill commands, you use the PID to identify the process you want to
affect.

Username Next is the username of the person running the process. If multiple processes consume
large chunks of CPU or memory, and they are all owned by the same user ID, you know who to talk
to.

Priority and Nice The PRI (priority) and NICE columns are interrelated, and indicate how much
precedence the system gives these processes. We'll talk about priority and niceness a little later in
the chapter.

Size Size is the amount of memory that the system has set aside for this process.

Resident Memory The RES column shows how much of the program is actually in memory, or
resident, at the moment. A program might have a huge amount of memory reserved for it, but only
be using a small fraction of it.

State The STATE column shows what the process is doing at the moment. Processes can be in a
variety of states at any given time: waiting for input, sleeping until something wakes them, actively
running, and so on.

410

Time The TIME column gives the total length of time that the process has been running.

CPU Usage The WCPU column gives a weighted CPU usage that shows the percentage of CPU
time that the process is using, as adjusted for the process's priority and niceness. The CPU column
shows what percentage of CPU time the program is actually using.

Command Name Finally, in the COMMAND column, we have the program name.

Memory Usage

If your system is running slowly, check its memory and CPU usage first. While they're no more likely
to be running amok than any other part of the system, they're the easiest to measure. Let's discuss
memory first.

FreeBSD errs on the side of caching recently accessed data because a surprising amount of
information is read from disk time and time again. If this information can be cached in physical
memory, it can be accessed very quickly. If the system needs more memory, it dumps the oldest
cached chunks in favor of new data.

For example, the example top output we're discussing is from my laptop, which is using a lot of
buffer and inactive memory. Part of that is due to my Web browser. I started Mozilla when I booted
the system yesterday morning so I could check my morning comics.[3] For a couple of moments, the
disk light stayed solidly lit while the system read the program off the disk. I then shut the browser
down so I could do some work.

Since this Web browser was accessed, it sat in the system buffer cache. When I started the browser
again this morning, it only had to be called out of cache rather than from disk, so it started much
more quickly. Had I started some other large process, it would have dumped that Web browser from
the cache to read in more data.

If your system is operating well, you will have at least a few megs of free memory. If you have more
than a few megs free, your system is not being used to nearly its full potential. In the example
earlier, I could get rid of 128MB of RAM and not affect system performance much at all.

If you have a good chunk of memory in cache or buffer, you don't have a memory shortage. You
might make good use of more memory, but it isn't strictly necessary. Similarly, if you have a lot of
free memory, you probably don't have a memory shortage. If active and wired memory is consuming
most of your available memory, more RAM wouldn't hurt.

When you're out of free space, and have little or no memory in cache or buffer, you should
investigate your memory use further. You may well have a memory shortage. Take a look at the
"Using Vmstat" section later in the chapter to check.

Swap Space Usage

Virtual memory, or swap helps cover brief RAM shortages. For example, if you're untarring a huge
file, you might easily fill up all your physical memory and have to start using virtual memory. It's not
worth buying more RAM for this occasional use when swap suffices.

Like memory cache, swap caches data that it has handled recently, and once you've touched swap,
it never returns to being free. For example, I have a server that has been up for 772 days at this
writing. At one point, I used about a hundred megs of swap to handle a massive compile. My top

411

display still shows that I'm using that 100MB of swap, while I have over 200MB of memory free.

Using swap space is not a bad thing, especially since a program will typically spend 80 percent of
its time running 20 percent of its code. Since much of the rest of that time spent running is startup,
shutdown, and error code, you can safely let those bits go to swap space and have minimal impact.

So don't worry if you find that you're using a bit of swap space on occasion. But, if you're constantly
using swap, you probably need more memory.

CPU Usage

A processor can do only so many things a second, and if you want to do more than your CPU can
handle, the requests will start to queue up. You'll develop a processor backlog, and the system will
slow down. That's CPU usage in a nutshell.

If top shows your CPU hovering around 100 percent all the time, you must take action. While new
hardware is certainly an option, you do have other choices. For one, investigate the processes
running on your system to see whether they're all necessary. Did some junior administrator install
the SETI@Home client (/usr/ports/astro/setiathome) to hunt for aliens with spare CPU cycles? Are
there things running that were important at one time, but are now unnecessary? Find and kill those
unnecessary processes and make sure that they won't start the next time the system boots.

Once that's done, evaluate your system performance again. If you still have a problem, try
rescheduling or reprioritizing.

Rescheduling

Rescheduling is easier than reprioritizing, and it is a relatively simple way to balance system
processes so that they don't load up on CPU time. As discussed in Chapter 9, you can use cron(1)
to schedule system tasks for various times, but users can use it too. If you have users who are
running massive compile jobs or doing huge database queries, you might consider using cron to
schedule them to run at night. Frequently, jobs such as the monthly billing database search can be
run between 6 PM and 6 AM, and nobody will care. Similarly, you could schedule your make
buildworld && make buildkernel to start at 1 AM.

Reprioritizing with Niceness

If rescheduling won't work, you're left with reprioritizing, which is a bit trickier. When reprioritizing,
you tell UNIX to change the importance of a given process.

For example, if you want a software install to run, but only when nothing more important is running,
you reprioritize it with "niceness," which is simply a relative measure of how much CPU time a
process demands. The nicer a process is, the less CPU time it demands. The default niceness is 0,
but niceness runs from 20 (very nice) to −20 (not nice at all). (This might seem backwards; you
could argue that a higher number should mean a higher priority. That leads to a language problem,
though, as calling this factor "crankiness" or "greed" didn't seem like a good idea at the time.)[4]

In the top display seen earlier (in the "Using Top" section) you saw a PRI column for process
priority. FreeBSD calculates a process priority by combining a variety of factors, including niceness,
and runs high−priority processes first whenever possible. Niceness affects priority, but you cannot
directly edit priority.

412

If you know that your system is running low on CPU capacity, you can choose to start a command
with nice(1) to assign the command a priority. Specify the desired niceness level by putting a single
dash in front of the command. For example, to start a make buildworld at nice 15, you would run
this command:

..
cd /usr/src
nice −15 make buildworld
..

Only root can assign a negative niceness to a program. To run a program with negative niceness,
use a double dash (nice −−5). For example, if you have a critical kernel patch that must be
applied as soon as possible, and you want the compile to finish as quickly as possible, use a
negative niceness like so:

..
cd /sys/i386/compile/MYKERNEL
nice −−20 make depend && nice −−20 make all install
..

Usually, you won't have the luxury of telling a command to start off nicely, but will instead need to
change a process's niceness on the fly (generally, when you find out that it's soaking up all your
CPU). You can do so with renice(8), which will reprioritize by process ID or owner. To change the
niceness of a process ID, you run renice with the new niceness and the process ID.

For example, one of my systems has a FreeBSD CVSup mirror. If I find that the mirror is taking up
so much CPU time that it's getting in the way of things I have to do, I can change its niceness to 20.
The maximum niceness we can use is 20, which basically tells the system to run this command only
if nothing else at all wants CPU time. To renice a running process, I first need to know its process
ID. I know the process is named cvsupd because I've looked at this system's top output over the
last several months. I then look at all the processes running on the system, and pull out the one for
cvsupd with the following command:

..
ps −ax | grep cvsupd
 322 ?? Is 0:00.01 /usr/local/sbin/cvsupd −C 5 −b /test2 −s sup
#
..

The first column in the preceding ps output is the process ID, PID 322. Now to renice it, I would
enter the following:

..
renice 20 322
322: old priority 0, new priority 20
#
..

Boom! The cvsupd daemon will now only run when nothing else requiring system time is running.
This will greatly annoy users of the service, of course, but I presumably have a good reason for
doing so. (Since this is a private mirror, not a public one, I feel no particular need to be kind to my
users.)

413

To renice every process owned by a user, use the −u flag. For example, to make my processes
more important than anyone else's, I could enter this command:

..
renice −5 −u mwlucas
1000: old priority 0, new priority −5
#
..

The 1000 is my user ID number on this system. Again, presumably I have a very good reason for
doing this besides a need for personal power.[5]

NoteRenicing, rescheduling, and process management don't create additional CPU time, they
simply rearrange the CPU time you do have. If you cannot reschedule processes, and you
cannot satisfactorily renice things to tune the way the system behaves, you really do need
faster or additional hardware. Some systems have an extra motherboard slot for an additional
CPU, which is a quick and inexpensive way to boost performance when the system is
CPU−bound. If you have multiple CPUs, definitely take a look at the discussion of SMP in
Chapter 11.

[2]Some users actually try to use up system resources by starting programs. This is called a
forkbomb. These users are like script kiddies, but not as educated.
[3]Sluggy Freelance (http://www.sluggy.com/) and Help Desk (http://www.ubersoft.net/), if anyone
cares.
[4]This might be one of the few circumstances where common sense won out in naming UNIX
commands.
[5]Being a selfish person doesn't qualify as a good reason. Or so I've been told.

When Swap Goes Bad

I said earlier that using swap space isn't bad in and of itself because swap space is used as virtual
memory. (In other words, memory space on the hard drive is being used in the same way as RAM.)
Swap space is much slower than chip memory, but it does work in a pinch, and many programs
don't need to have everything in RAM in order for them to run. If programs spend 80 percent of their
time in 20 percent of their code, then 80 percent of their bulk can be put into swap space without
seriously impacting performance.

Many sysadmins use the term swapping generically, lumping two different activities (paging and
swapping) together without understanding the crucial difference between them.

Paging

When you read about virtual memory, you'll see references to pages. A page is simply a section of
memory, 4KB on x86 hardware under FreeBSD. (Different platforms have different page sizes.)

Data moves between real and virtual memory in units of pages. Paging happens when a portion of a
running program is moved onto swap. This process can actually improve performance on a heavily
loaded system because unused bits can be stored on disk until they're needed.

414

Swapping

Swapping describes what happens when an entire runnable process is moved into swap. If the
computer doesn't have enough physical memory to store a process that isn't being run at that
particular microsecond, the system can move the entire process to swap. Then, the next time the
CPU runs that process, the process's memory is moved from swap into physical memory, and some
other process is probably consigned to swap.

The problem with swapping is that disk usage goes through the roof and performance drops
drastically. Since requests take longer to handle, there are more requests of the system at any one
time. And logging in to check the problem only makes the situation worse, because logging runs an
extra system process. This performance hit is sometimes called the death spiral.

Memory shortages will hurt system performance more than anything else. If you're frequently
swapping, you must get more memory or resign yourself to lousy[6] performance.

Note Every system has bottlenecks, or places where performance is limited. If you
eliminate one bottleneck, performance will increase until another bottleneck is hit.
The system will work at the fastest speed allowed by the slowest component in the
system, also cal led bounds. For example, a Web server is f requent ly
network−bound because the slowest part of the system is the Internet connection.
If you upgrade the Internet connection, the system will hand out Web pages as fast
as either its CPU or disk allows.

Are You Swapping or Paging?

FreeBSD includes several programs for examining system performance. Among those are
vmstat(8), iostat(8), and systat(1). We'll discuss vmstat because I find it to be the most helpful.
Iostat is similar to vmstat, and systat provides similar information in a more graphic format.

Using Vmstat

Vmstat(8) shows virtual memory statistics at the current time. While its output takes some getting
used to, it is very good at showing large amounts of data in a very small space. Type vmstat at the
command prompt, and follow along.

..
vmstat
 procs memory page disks faults cpu
 r b w avm fre flt re pi po fr sr ad4 da0 in sy cs us sy id
 0 0 0 7096 479140 21 0 0 0 9 0 0 0 331 102 437 0 1 99
#
..

The display is divided into six sections: process (procs), memory, paging (page), disks, faults, and
cpu. We'll look at each then quickly and then dive into detail on the bits that are most important for
investigating your performance issues.

415

Processes

There are three columns under the procs heading.

r Lists the number of processes that are waiting to run on the CPU. These are processes that are
ready to run, but which simply cannot get access to the CPU to execute. If this number is high,
your CPU is bottlenecking your system.

b Gives the number of processes that are blocked waiting for system input or output—generally,
waiting for disk access. These processes will run as soon as they get their input. If this number is
high, your disk is the bottleneck.

w Shows processes that are runnable but are entirely swapped out. If you start having processes
swapped out on a regular basis, your memory is inadequate for the work you are doing on the
system.

Memory

The memory section has two columns.

avm Shows the average number of pages of virtual memory that are in use. If this value is
abnormally high or increasing, your system is using up virtual memory.

fre Shows the number of pages that remain available for use. If this value is abnormally low, you
have a memory problem.

Paging

The paging section shows how hard the virtual memory system is working.

flt Shows the number of page faults, where the information needed is not in memory and
needs to be fetched from the disk.

re Shows how many pages have been reclaimed or reused from cache.
pi Short for pages in, it shows how many pages are moving from physical memory to swap.
po Short for pages out, it shows how many pages are moving from swap to real memory.
fr and
sr

Show how many pages are freed and scanned per second, respectively. You don't have to
worry about these too often, unless your system is under very heavy memory load.

Disks

The disks section shows each of your disks by device name. The number shown is the number of
disk operations per second. You should divide your disk operations between different disks
whenever possible, and arrange them on different buses (as discussed in Chapters 1 and 13). If
one disk is obviously busier than the others, and the system has operations waiting for disk access,
consider moving some frequently used files from one disk to another.

Faults

The faults section shows system faults. Faults, in this case, aren't bad, they're just received system
traps and interrupts.

in Shows the number of system interrupts (IRQ requests) the system received in the last five
seconds.

sy Shows the number of system calls in the last five seconds.
cs Gives the number of context switches, or times the CPU changed from doing one thing to doing

another.

416

CPU

Finally, the CPU section shows how much time the system spent doing user tasks (us), and system
tasks (sy), and how much time it was idle (id). This is the same information presented by top.

Making Use of vmstat Information

So, how do you use this information? First, check the first three columns to see what the system is
waiting for when it's slow. If you're waiting for CPU access (the r column), then you're short on CPU
horsepower. If you're waiting for disk activity (the b column), then your disks are your bottleneck. If
you're swapping (the w column), then you're short on memory. Simple enough, eh?

If you're having problems with memory, you can expect the page section to have very high values.
(The details of virtual memory management are an arcane science that I won't cover in depth here.)
They key is to know what your system normally looks like, and hence what would be abnormal.

Monitoring Multiple Disks

Vmstat shows what's happening on your disks and where data is being written. The number of disk
operations per second is a valuable clue to how well your disks are handling their load.

However, if you have a lot of disks, you may notice that they don't all appear on the vmstat display.
Vmstat is biased toward fitting into an 80−column display, and hence cannot list every possible disk
on the system. If you don't mind over−flowing 80 columns, you can use vmstat's −n flag to set the
number of drives you want to display. The 80−column limit is important on a system console, but it
can easily be overcome when you're using SSH from a workstation.

Continuous Vmstat

When using vmstat, you're probably more interested in what's happening over a period of time than
in taking a brief snapshot. Use vmstat with the −w flag to run it as a continuously updating display
and to specify the number of seconds between updates. Many internal system counters are
recalculated every five seconds, so five seconds is the minimum recommended time between
updates.

..
vmstat −w 5
 procs memory page disks faults cpu
 r b w avm fre flt re pi po fr sr ad0 md0 in sy cs us sy id
 1 0 0 165208 51408 431 0 0 0 408 4 0 0 243 2656 255 13 3 83
 0 0 0 165208 51408 8 0 0 0 0 0 0 0 267 829 232 0 2 97
 1 0 0 172480 51408 9 0 0 0 2 0 0 0 277 986 279 2 1 97
 1 0 0 174584 51108 44 0 0 0 21 0 0 0 262 3694 269 1 3 96
...
..

Press CONTROL−C when you're done, and just sit and watch your system do its work, and see how
it reacts when scheduled jobs kick off. In the preceding example, we have the occasional moment
where processes are waiting on CPU time (as shown by the intermittent 1 in the r column), but the
disk and memory all seem to be behaving well. An occasional wait for some resource doesn't mean
that you need to upgrade that system component; if performance is acceptable, don't worry about it.

417

[6]I would use a better word than "lousy," but my editor frowns upon the flavorful language I learned
from an ex−sailor co−worker.

Real−World Performance Tuning

All this theoretical stuff is nice, but how do you troubleshoot performance in real life? At this point, I
hope you've actually read the previous chapters of this book, as we're going to be referring to
information brought up in all sorts of different places. We'll use a real−world test on a real−world
system to demonstrate how performance troubleshooting works.

The standard FreeBSD torture test is the make world process run during an upgrade from source.
It pounds on the CPU and the disk, and absorbs all the memory it can get its greedy hands on. We'll
focus on the make buildkernel stage of this process because it's shorter than the make
buildworld stage, which makes for a better test. Let's see how we can use the techniques and
information presented here to reduce the total time needed to run the build.

The system I'll be using for the test has two 1 GHz Pentium CPUs, a new 60GB IDE drive, two
somewhat elderly 4.5GB SCSI−2 drives, and 512MB of RAM. It's running a few smaller programs
as well, but there is no X server, window manager, or Web server. Initially, the system is installed on
the one IDE disk; the SCSI disks are completely idle. The install is fairly default, with soft updates
(see Chapter 16) set on the /usr partition.

Fairness in Benchmarking

Benchmarking is a difficult task. We're not officially benchmarking here, but we'll still do some things
to make sure that each run of our test is as fair as possible. I'll reboot the system between tests to
eliminate anything that might be lurking in the buffer cache. In this case, we want to improve
performance ourselves, not use FreeBSD's buffering and caching to do it for us. Similarly, I'll
remove /usr/obj (where the buildkernel creates its files) between runs.

Note While make buildkernel is a fairly standard sort of test, don't assume that it is
the be−all and end−all of FreeBSD performance. I'm using it here because it's a
standard process, and everyone has access to it. Test performance on your
systems using programs and commands that you actually use, not arbitrary
benchmarks.

The Initial Test

To begin, we'll record datestamps from the beginning and end of each run. This will give us an
absolute measurement of how any changes affect performance:

..
date >> timestamps && make buildkernel && date >> timestamps
..

This command records the start and stop times in a file called timestamps, and runs make
buildkernel.

Now start the build and look at top, the first few lines of which are shown here:

..

418

last pid: 6262; load averages: 0.87, 0.37, 0.15 up 0+01:00:43 12:14:17
46 processes: 2 running, 44 sleeping
CPU states: 21.2% user, 0.0% nice, 29.4% system, 0.6% interrupt, v 48.8% idle
Mem: 16M Active, 38M Inact, 36M Wired, 2240K Cache, 61M Buf, w 407M Free
Swap: 2048M Total, 2048M Free

 PID USERNAME PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND
 529 root 96 0 2420K 1956K ect 0 0:01 0.10% 0.10% sshd
 275 root 96 0 1020K 588K ect 0 0:08 0.00% 0.00% moused
 354 root 96 0 2420K 1956K ect 1 0:00 0.00% 0.00% sshd
 223 root 8 0 1084K 688K slp 0 0:00 0.00% 0.00% diskcheckd
 252 root 96 0 2364K 1676K ect 1 0:00 0.00% 0.00% sshd
...
..

You can see right away that the system is not short on memory; with 407MB free (w) it should be
good for quite some time. The CPU is 48.8 percent idle (v), so a lack of processor time does not
appear to be the bottleneck.

Let's look at a snippet of vmstat output, updated every five seconds:

..
vmstat 5
 procs memory page disks faults cpu
 r b w avm fre flt re pi po fr sr ad4 da0 in sy cs us sy id
 0 2 0 17952 396524 173 0 0 0 199 0 0 0 354 385 630 2 2 96
 2 1 0 18872 394908 2260 0 0 0 2281 0 31 0 369 2682 2342 37 16 47
 2 2 0 19268 394384 1801 0 0 0 1856 0 2 0 336 2107 1687 40 12 48
 0 2 0 19164 393768 2074 0 0 0 2143 0 15 0 353 2617 2162 32 14 53
 2 2 0 21680 389032 2045 0 0 0 1892 0 1 0 337 2349 1908 40 12 47
 0 2 0 16096 393452 1916 0 0 0 2242 0 1 0 338 2281 2240 39 14 47
 2 2 0 17888 390616 2260 0 0 0 2236 0 1 0 342 2830 2844 35 17 47
 1 2 0 18880 389728 2260 0 0 0 2337 0 30 0 370 2804 2909 35 19 46
 0 2 0 16484 391684 2031 0 0 0 2234 0 1 0 338 2477 2183 37 16 47
 1 2 0 18416 389052 2230 0 0 0 2219 0 11 0 352 2886 2876 33 18 49
...
..

Okay, something is definitely not correct here. The r column shows how many processes can be
run but that can't get CPU time. Our system is almost 50 percent idle, yet some processes cannot
get CPU time! What's going on?

Well, this is a multiple−processor system. Remember, a CPU does only one thing at a time. What
we see here is that one CPU at a time is actually full, while the other isn't doing anything at all. The
solution is to split the load between our CPUs. We can do this in a make with the −j flag, as
discussed in Chapter 6. That'll be our next test.

When the make buildkernel finishes, take a look at the times to set our benchmark:

..
#more timestamps
Sun Aug 19 12:11:47 EDT 2001
Sun Aug 19 12:23:43 EDT 2001
#
..

419

Just 4 seconds under 14 minutes, or 716 seconds. That's our benchmark; can we beat it?

Using Both CPUs

Let's try using both our processors to see what happens to the time.

..
date >> timestamps && make −j2 buildkernel && date >> timestamps
..

We could use numbers over 2 for −j, but 2 is a good place to start. In theory, this should use much
more of our CPU.

Let's see how theory compares to reality:

..
last pid: 3855; load averages: 1.08, 0.36, 0.16 up 0+00:07:18 12:36:45
51 processes: 1 running, 47 sleeping, 1 zombie, 2 mutex
CPU states: 23.0% user, 0.0% nice, 41.2% system, 0.0% interrupt, v 35.8% idle
Mem: 16M Active, 14M Inact, 29M Wired, 8K Cache, 51M Buf, 442M Free
Swap: 2048M Total, 2048M Free

 PID USERNAME PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND
 2016 root 8 0 612K 512K t 1 0:01 1.46% 1.22% cc
 282 root 96 0 1020K 588K ect 1 0:01 0.00% 0.00% moused
 1653 root 96 0 1756K 1632K ect 1 0:01 0.00% 0.00% make
 351 root 96 0 2420K 1952K ect 1 0:01 0.00% 0.00% sshd
...
..

Only 35.8 percent idle is a lot better (v); both processors are working now. Let's check vmstat:

..
 procs memory page disks faults cpu
 r b w avm fre flt re pi po fr sr ad4 da0 in sy cs us sy id
 0 4 0 19236 385696 2521 0 0 0 3021 0 8 0 350 3691 5099 52 27 21
 0 5 0 29304 374976 2768 0 0 0 2381 0 14 0 357 3929 5403 56 28 16
 0 2 0 20992 381444 3140 0 0 0 3634 0 25 0 364 4143 6585 52 32 16
 0 1 0 19348 378600 2925 0 0 0 3064 0 39 0 386 4542 8170 39 34 27
 0 6 0 25296 372936 3464 0 0 0 3356 0 7 0 349 4734 9110 47 37 16
 0 2 0 20456 374884 2584 0 0 0 2860 0 44 0 383 3683 5209 52 27 21
 0 6 0 27140 367312 2828 0 0 0 2660 0 10 0 352 4081 6572 52 32 16
...
..

Well, this is better on the CPU front. If you watch long enough, you'll see an occasional bubble of
CPU shortage, but it's much better than it was before. (Momentary shortages are perfectly
natural—you only need to worry when they keep recurring.) But the contents of the b column, which
lists processes that cannot run because they're waiting for the disk, is alarming. It is never 0, which
tells us that our process has become disk−bound.

420

Still, let's look at our current timestamps:

..
Sun Aug 19 12:35:25 EDT 2001
Sun Aug 19 12:46:46 EDT 2001
..

It's 11 minutes, 21 seconds, or 681 seconds. Using both CPUs chopped about 30 seconds off the
process. While that's only about a 5 percent increase in speed, we got that increase without
spending a dime on additional hardware. Our next problem is to reduce the I/O bottleneck.

Directory Caching

The least intrusive way to reduce disk input/output is to enable directory caching with the
vfs.vmiodirenable sysctl (Chapter 16). We could do this without rebooting the system with
sysctl(8) (Chapter 4). (You might already have this enabled, depending on your version of FreeBSD,
but you should check it.)

..
sysctl vfs.vmiodirenable=1
vfs.vmiodirenable: 0 −> 1
#
..

Since our test says we need to reboot the system anyway, though, let's set this sysctl in
/etc/sysctl.conf, delete /usr/obj, and reboot. Next, we'll run the make buildworld with the same
command. Our top output looks almost identical to the last run, so I won't bother showing it here
again, and when we run vmstat, it also looks very similar. Here are the timestamps:

..
Sun Aug 19 13:21:58 EDT 2001
Sun Aug 19 13:33:15 EDT 2001
..

The total is 677 seconds. We've saved 4 whole seconds by caching directory lists. Why so little?

Well, the purpose of caching something is so it can be reused later. When you build a piece of
software, the build process visits each directory just once. If you never return to the same spot and
actually use the cache, it's pointless. We've seen a minor savings from the rare occasions when
make buildkernel visits a directory repeatedly, but that's all. You'd see better improvements on
processes such as a Web server, which accesses the same files over and over again.

So, our disk is still the bottleneck. It's time for some major surgery.

Moving /usr/obj

The make buildkernel process reads files under /usr/src and writes them under /usr/obj. Let's
take one of our ancient SCSI disks and mount it on /usr/obj, leaving /usr/src on the new IDE disk.
For our first test, we'll use a default mount without soft updates, just to illustrate a point. Our system
disks now look like this:

421

..
df
Filesystem 1K−blocks Used Avail Capacity Mounted on
/dev/ad4s1a 248111 74081 154182 32% /
/dev/ad4s1f 2032839 133492 1736720 7% /test1
/dev/ad4s1g 2032839 1266476 603736 68% /test2
/dev/ad4s1h 29497862 3842891 23295143 14% /usr
/dev/ad4s1e 3048830 977220 1827704 35% /var
procfs 4 4 0 100% /proc
/dev/da0s1e 3525041 1 3243037 0% /usr/obj
#
..

In theory, input and output will be spread between different disks. Our top out−put is similar, but
vmstat looks different:

..
procs memory page disks faults cpu
r b w avm fre flt re pi po fr sr ad4 da0 in sy cs us sy id
0 4 0 29200 329436 2433 0 0 0 2109 0 2 12 367 3390 3220 58 24 18
0 0 0 15388 338376 2298 0 0 0 2939 0 1 23 390 3315 4487 49 24 26
0 0 0 19124 336604 2453 0 0 0 2559 0 3 30 413 3672 5333 39 29 32
0 3 0 23680 330252 2000 0 0 0 1818 0 14 65 489 2979 4874 29 24 46
0 4 0 22832 329136 2628 0 0 0 2768 0 1 16 374 3783 5158 50 28 23
0 5 0 23404 326976 2624 0 0 0 2702 0 0 15 373 3815 5550 52 29 20
...
..

We're still blocking, waiting for disk throughput, but take a look at the ad4 (IDE disk) and da0 (SCSI
disk) columns. Load is now split between the two. When we're done, our timestamps look like this:

..
Sun Aug 19 13:59:54 EDT 2001
Sun Aug 19 14:11:41 EDT 2001
..

Seven hundred and seven seconds! That's just as bad as when we started! Ouch. A thing to
remember, however, is that this decrepit SCSI drive, without soft updates, performed just as well as
a modern IDE drive. Buying a modern SCSI drive would definitely enhance performance. Let's
enable soft updates on our new /usr/obj and see what happens:

..
umount /usr/obj
tunefs −n enable /usr/obj
tunefs: soft updates set
mount /usr/obj
#
..

Now delete everything in /usr/obj, reboot, and try again. A check of vmstat shows that disk
throughput is unquestionably our bottleneck, again. With soft updates, our time goes down to 670
seconds. Soft updates gave us a total 6 percent improvement. While this certainly isn't great, the
time savings add up over the course of a day or a long build.

You should now have a very good idea of how to tune your system. Play with it some more.
Perhaps /usr/obj as a mirrored Vinum partition, with soft updates—this pulls the time down to 663

422

seconds, or a 7 percent improvement. That's about as good as it gets. Throughout it all, vmstat
shows that disk throughput is the bottleneck.

Lessons Learned

In the preceding process we learned that disk speed is inarguably the bottleneck. This particular
four−year−old SCSI disk handles data just as quickly as a modern IDE disk, but if we want faster
performance we need a faster disk. Faster disks are much less expensive than a whole new
machine, even if that new machine includes a faster disk.

Best of all, you can now go to your manager and say, "This is bad. We need a faster disk. Our
vendor, AbsoluteBSD.com, has them for $400," and be certain of your facts. That's much better
than saying, "This is bad; we need a new server."

Of course, programs other than make buildkernel have completely different requirements and
must be evaluated separately. While a 5 to 10 percent increase isn'st a huge performance boost, it
can make the difference between doing maintenance during the normal maintenance window and
pulling a desperate triple shift to get the new equipment slammed into place so that people can do
their work the next morning.

423

Chapter 19: Now What's It Doing?
Every systems administrator must be able to answer this basic question at the drop of a hat: "How is
the server doing?" You must know what your systems are doing to be able to make good planning
and capacity decisions. Your manager will want nice reports on how things are running, and even if
you haven't been asked for these reports yet, you will be. Your best bet is to have this information
ready before it's needed.

FreeBSD supports report generation, pretty graphs, daily status checks, and more. Let's take a look.

Status Mails

If you look in /etc/crontab, under the command periodic(8), you'll see that FreeBSD systems run
maintenance jobs every day, week, and month. These jobs perform some basic system checks and
notify the administrators of changes, items requiring attention, and potential security issues. The
output of the scheduled jobs is emailed daily to the root account on the local system. The simplest
way to find out what your system is doing is to read these mails; many very busy systems
administrators, like you, have collaborated to make these messages useful and necessary.

The configuration of the daily, weekly, and monthly reports is controlled in /etc/periodic.conf,
/etc/defaults/periodic.conf, and /etc/periodic. See Chapter 9 for details, or just jump straight to the
scripts in /etc/periodic.

Forwarding Reports

Because you probably don't want to log in as root to all of your servers every day, send your mail to
a centralized mailbox by editing /etc/mail/aliases (see Chapter 14) to point mail to some other
account. If you have many servers, you may end up with a lot of mail, but with experience you'll
quickly learn how to skim the reports looking only for critical or unusual changes.

Logging with Syslogd

UNIX's logging system is one of its most delightful features. Unlike some operating systems that
force you to use a small range of limited logs, UNIX allows you to log almost anything, at almost any
level of detail. While you'll find system logging hooks for the most common UNIX resources,
administrators can choose a logging configuration that meets their needs. Almost all programs
integrate with the logging system, syslogd(8).

Syslogd handles messages according to their facility and level, both of which are included in
messages to syslogd. You'll need to understand both facility and level to manage your system logs,
so they are described next.

Facilities

A facility is a log−entry source (a program) that sends messages to syslogd. This is an arbitrary
label—it is essentially just a text string that's used to sort out one program from another. In most
cases, each program that needs a unique log needs a unique facility. Many sorts of programs or
protocols have facilities dedicated to them—for example, FTP is such a common protocol that
syslogd has a special facility just for it. Syslogd also supports a variety of generic facilities that can

424

be used by any program. Programs can lie about their facility, but you'll be able to track them down
by finding their name with their message.

The standard facilities and the type of information they provide are listed here.

auth Publicly accessible information pertaining to user authorization, such as login and
su.

authpriv Private information pertaining to user authorization, accessible only by root and
other selected users.

console Messages normally printed to the system console can be captured with the
console facility.

cron Messages from the system scheduler go through the cron facility.
daemon A catch−all for all system daemons without other explicit handlers, either in

syslogd or in their program.
ftp FTP daemons will automatically log to this facility. (See Chapter 15.)
kern Messages from the kernel.
lpr Catches messages from the printing system.
mail Catches messages from the mail system.
mark Not an actual log from a system; instead, the mark facility puts an entry in your

log every 20 minutes. This is useful when combined with some other log.
news Catches messages from the Internet News daemons.
ntp Collects messages from Network Time Protocol.
security Includes messages from various security programs, such as ipf(8) and ipfw(8).
syslog The log service can log to itself. Just don't log when you log logs from syslogd, or

you'll make yourself dizzy.
user The catch−all message facility. If you don't specify a logging facility for user

programs, they'll use this.
uucp Logs from the UNIX−to−UNIX Copy Protocol. (This is a piece of pre−Internet

UNIX history you'll probably never encounter.)
local0
through
local7

These are reserved for administrator use. Many programs have an option to set a
logging facility; choose one of these if at all possible. For example, you might tell
your customer service system to log to local0.

Levels

A log message's level represents its relative importance. While programs send all their logging data
to syslogd, most systems only record the important stuff that syslogd receives and discard the trivial
messages. Of course, one person's trivia is another's vital data, and that's where the levels come in.

FreeBSD offers eight levels of syslogd importance. You can use these levels to tell syslogd what to
record and what to discard. The levels follow, in order from most to least important.

emerg System panic. Messages are flashed on every terminal. The system is basically hosed.
You don't even have to reboot—the system is doing it for you.[1]

alert This is bad, but not as bad as the emerg level. The system can continue to operate, but
this error should be attended to immediately.

crit These are critical errors, such as hardware problems (like bad blocks or a failing SCSI
cable) or serious software issues. You can continue running, if you're brave.

err

425

Miscellaneous errors. These are bad and should be fixed, but they won't destroy the
system.

warning Miscellaneous warnings.
notice General information that should be logged, in case you need it, but that probably doesn't

really require action on your part.
info General program information, such as individual transactions in a mail server.
debug This level is usually only of use to programmers, and occasionally to sysadmins who are

trying to figure out just why some program behaves the way it does. Debugging logs can
contain whatever information the programmer felt necessary to debug the code, which
may include information that will violate user privacy.

none This means "don't log anything from this facility here." It's most commonly used when
excluding information from wildcard entries, as we'll see later.

[1]You might think this is funny now, but you won't if it ever happens to you.
Syslog.conf

The /etc/syslog.conf file has two columns. The first describes the information to be logged, by facility
and level. The second tells the action to be taken when a log message matches the description.
Syslogd compares each submission to the entries in /etc/syslog.conf and, when it finds a matching
entry, processes the log entry in the manner described.

Information sources include both a facility and a level, separated by a period. When you specify a
level, the system defaults to recording messages of that level or greater. For example, look at this
entry from /etc/syslog.conf:

..
mail.info /var/log/maillog
..

This tells the system to log messages from the mail system to /var/log/maillog if they have a severity
level equal to or above "info".

Wildcards

You can also use wildcards in your information source. For example, use this line to log absolutely
all messages from the mail system:

..
mail.* /var/log/maillog
..

To log everything from everywhere, uncomment the all.log entry:

..
. /var/log/all.log
..

This works, but it's got too much information to be of any real use; if you use it you'll find yourself
building complex grep commands just to find what you want. Also, this would include all sorts of
private information, thanks to the debug level.

426

Excluding Information

Use the authpriv facility and the none level to exclude authentication information. The semicolon
allows you to combine entries on a single line:

..
.;authpriv.none /var/log/all.log
..

Comparison

The comparison operators < (less than), = (equals), and > (greater than) can also be used in
/etc/syslog.conf. You can use these with levels to log data above a certain level in one file and data
below a certain level in another. While syslogd defaults to recording all messages of the specified
level or above, you might want to include only a range of information.

For example, suppose you want one log for mail traffic and another for mail debugging information:

..
mail.info /var/log/maillog
mail.=debug /var/log/maillog.debug
..

The preceding mail.info entry captures all log messages sent to the mail facility of info level
and above. The second line only captures messages that have a level no higher than debug. You
can't use a message source of mail.debug, or the debugging log will contain everything in the
previous log! This way you don't have to sort through debugging information to learn what your mail
server thinks it's doing, and you don't have to sort through mail−transmission information to get to
your mail server's debugging output.

Local Facilities

Many programs expect to be able to use syslogd to handle their logging. Most of these can be set to
use a facility of your choice. The various local facilities are reserved for these programs.

For example, you might tell a program to log to the facility local3. Just how you set the facility
varies from program to program. Once you get the program to mark messages with a facility and
send them to syslogd, you have to tell syslogd to catch those messages and to do something with
them.

..
local3.* /var/log/programname
..

In general, if a program supports logging to a facility, use a local facility.

427

Logging by Program Name

If you're out of facilities, or if your program simply doesn't support syslogd, you can use the
program's name to handle logging. An entry for a name requires at least two lines: the program
name with a leading exclamation point and then a line with the logging information.

For example, to log ppp, you could do this:

..
!ppp
. /var/log/ppp.log
..

This entry first specifies the program name, and then uses wildcards to tell syslogd to append
absolutely everything to a file. (You can't be certain that a random third−party program will have
reasonable log levels available, so it's safest to record everything until you know otherwise.)

Logging Host

My networks habitually have a single logging host that handles not only the FreeBSD boxes, but
also Cisco routers, 3Com switches, every other UNIX box, and any other syslogd−speaking
systems. Since you have only one host whose logs need handling, this saves a lot of maintenance.

Use the at symbol (@) to can send log messages to another host. For example, the following line
would dump everything your syslogd receives to the logging host on my network:[2]

..
. @loghost.absolutebsd.com
..

The /etc/syslog.conf on the log host determines the final destination for the messages it receives.
Fortunately, each log message includes the hostname.

Logging to User Sessions

To log user sessions, list usernames separated by commas. Then, if those users are logged in
when the log message arrives, the system will write the message on their terminal.

To write the messages to all users' terminals, use an asterisk (*) for the destination. For example,
the default syslog.conf includes this line:

..
*.emerg *
..

This says that any message of emergency level will appear on all users’ terminals.

428

Sending Log Messages to Programs

Finally, to have another program handle the logs, use a pipe symbol (|) to redirect the messages to
that program:

..
mail.* |/usr/local/bin/mailstats.pl
..

Note Traditionally, UNIX demands tabs between the columns in /etc/syslog.conf, but
FreeBSD permits you to use spaces. Be sure to use tabs only if you share one
syslog.conf between different UNIXes.

Rotating Logs with Newsyslog.conf

Log files grow and you must control their growth. The standard way to do so is with log rotation.
When using log rotation, the oldest logs are deleted, each old log is renamed to the next oldest
name, the current log is moved, and a new log file is created.

FreeBSD includes a basic log−file handler, newsyslog(8), which will also compress files, restart
daemons, and in general handle all the routine tasks of shuffling files. Cron runs newsyslog once an
hour.

Newsyslog reads /etc/newsyslog.conf and checks each log file listed there. If the conditions listed
for rotating the log file are met, the log is rotated and other actions are taken as appropriate.

The /etc/newsyslog.conf file uses one line per log file, and each line has seven fields. For example:

..
/var/log/slip.log root:network 640 3 100 * Z
..

We'll examine each field in turn.

Log File Path

The first entry on each line is the full path to the log file to be processed (/var/log/slip.log in
our example).

Owner and Group

The second entry (root:network in our example) lists the rotated file's owner and group,
separated by a colon (such as root:wheel). This field is optional, and is not present in many of
the standard entries.

Newsyslog can change the owner and group of old log files. By default, log files are owned by root
and are in the wheel group. While it's not common to change the owner, you might have to use this
ability on multi−user machines.

429

You can choose to only change the owner, or only change the group. In these cases you must use
a colon, even though nothing appears on the other side of it. For example, :www will change the
group to www, while user827: will change the owner to user827.

Permissions

The third field (640 in our example) is the permissions mode, in standard UNIX three−digit notation.
(See Chapter 7 for details.)

Count

Next is the count field (having a value of 3 in our example), which represents the number of old log
files that newsyslog will keep—kind of. Newsyslog starts counting archived log files at 0. Many
computer systems start numbering at 0, but newsyslog includes 0 as well as the count number. With
the default count setting of 5 for /var/log/messages, /var/log includes the following files:

..
messages
messages.0.gz
messages.1.gz
messages.2.gz
messages.3.gz
messages.4.gz
messages.5.gz
..

Those of you who can count will recognize that this is six backups, not five, plus the current log file!
While, as a rule, it's better to have too many logs than not enough, if you're tight on disk space,
deleting an extra log file or two might buy you some time. Some Web servers can have hundreds of
sites on a single server; removing one or two files times 100 sites can create a lot of disk space.

Size

The fifth field (100 in our example) is the file size. When newsyslog runs, it compares the size listed
here with the size of the file. If the file is larger than the given size in kilobytes, it is rotated. If the file
size doesn't affect when you want it rotated, put an asterisk (*) here.

Time

So far, this seems easy, right? Well, the sixth field, time (* in our example), can make new
administrators cry.

The time field has four possible values: an asterisk (*), a number, and two different date formats. If
you don't want to rotate a log at a particular time, put an asterisk (*) here. If you use a plain naked
number, newsyslog rotates the log after that many hours have passed. For example, if you want a
log to rotate every 24 hours, but don't care exactly when this rotation happens, put 24 here.

The date formats are a little more complicated.

430

ISO8601 Time Format

Any entry beginning with an at symbol (@) is in ISO 8601 restricted time format. This is a standard
used by newsyslog on most UNIX systems, and was the time format originally used in MIT's
primordial newsyslog program. Unfortunately, this standard is not at all clear, but since it's a
standard, FreeBSD supports it.

A full date in ISO 8601 format is 16 digits with a T in the middle. The first four digits are the year; the
next two are the month; the next two are the date. The T is inserted after the date as a sort of
decimal point, separating whole days from fractions of one. An ISO 8601 date must include the T.

The next two digits are hours; the next two are minutes; the next two are seconds. For example, the
date and time February 2, 2002, 9:15 and 8 seconds PM is expressed in ISO 8601 as

..
20020202T211508
..

While complete dates in ISO 8601 are mostly straightforward, confusion arises when you don't list
the entire date. For example, you can choose to specify only fields near the T, leaving fields farther
away blank, which will be read as wildcards. For example, T23 matches the twenty−third hour of
every day of the year. With a newsyslog time of @T23, the log rotates every day at 11 PM, and
4T00 matches midnight of the fourth day of every month.

As with crontab, you must specify hours. A date like @7T will run once an hour, every hour, on the
seventh of the month. After all, it matches all day long! This can be useful for debugging, but isn't
generally desirable.

FreeBSD−Specific Time

One problem with the ISO 8601 time system is that it doesn't allow you to easily designate weekly
jobs (it's not uncommon to want to rotate a log on Mondays, for example), and it's impossible to
specify the last day of the month. That's where the final time format comes in. Any time with a
leading dollar sign ($) is written in the FreeBSD−specific month−week−day format.

This format works much like cron, allowing you to set particular days of the week to run a job on,
and uses three identifiers: M (day of month), W (day of week), and H (hour of day). Each identifier is
followed by a number indicating the particular time it should be run. Hours range from 0 to 23, while
weekdays range from 0 (Sunday) to 6 (Saturday). M starts with 1, and goes up to the number of
days in that particular month. For example, to rotate a log every Sunday at 8 AM you could use a
time of $W0H8. To rotate the log on the fifth of each month at noon, you could use $M5H12.

One interesting feature of this system is that it lets you automatically schedule a job for the last day
of the month by using L to represent the last day of the month. Without this, it's very difficult to do an
end−of−month job without writing a script that knows how many days are in each month, compares
the current date to the scheduled date, and decides if it will start the program. (That gets ugly
quickly.) For example, to start your month−end log−file accounting two hours before the end of the
month, use a time of $MLH22.

Note You can rotate logs at a given time, or when they reach a certain size, or both. If you use
both, the log will rotate whenever either condition is met. If you're only rotating on one

431

condition (meaning you want to rotate every day, no matter how large the file gets), use an
asterisk (*) in the other field.

Flags

Now that you know how to express the exact time that you want your log to run, we encounter the
flags field (Z in our example), which offers two options for handling your log files. Some programs
log their data in plain text, while others use a binary format; each sort of log needs to be treated
differently.

Binary files can only be written to in a very specific manner. Newsyslog starts each new log file with
a "log−file turned over" message, but adding this to a binary file will damage it. The B flag tells
newsyslog that this is a binary file, and that the message should not be written. On the other hand,
many log files are plain ASCII text, and compressing them can save a huge amount of space. The Z
flag tells newsyslog to compress the rotated log files with gzip.

You can use only one of these flags; after all, compressing binaries doesn't save much room, and
only text logs can use a "turned over" message.

Pidfile Path

The next field is the pidfile path (not shown in our example). A pidfile is a simple way to record a
program's process ID (PID) so that other programs can easily view it. Not all programs have pidfiles;
the ones that do store their pidfiles under /var//un (take a look and see what's on your system).

If you list the full path to a pidfile in /var/run, newsyslog will send a kill−style signal to that program
when it rotates the log. For example, the Apache Web server needs to be notified when you rotate
its logs. By listing its pidfile here, you can have newsyslog send a kill ‘ to Apache so it will
handle its part of log−file rotation.

Most programs will handle log−file rotation on a kill ‘, or SIGHUP, but some programs need a
specific signal when a log file is rotated. If you have one of these programs, you can list its exact
signal number in the last field.

Example newsyslog.conf Entry

Let's slap this all together in a worst−case, you−have−got−to−be−kidding example. Assume you
have a database log file that you want to rotate at 11 PM on the last day of every month. The
database documentation says that you need to send the program an interrupt signal (SIGINT, or
signal number 2) upon rotation. You want the archived logs to be owned by the user dbadmin, and
only viewable by that user, and you need six months of logs. What's more, the logs are binary files.
Your newsyslog.conf line would look like this:

..
/var/log/database dbadmin: 600 6 * $MLH23 B /var/run/db.pid 2
..

This is an extreme example; in most cases, you just slap in the filename and rotation condition and
you're done. But I thought I'd make you twitch.

432

[2]Don't blindly follow this example, or I'll look for anything interesting in your logs and post it in some
prominent public location. Do not log to someone else's logging host!

Reporting with SNMP

The report emails are good, but they're very general, and logs are difficult to read for long−term
trends. To learn more about how your server is doing, either now or in the long term, use the Simple
Network Management Protocol (SNMP) reporting tool. SNMP is an industry−standard way to gather
information from hosts across a network. Many different vendors support SNMP, and you can use
the techniques we discuss here to monitor any SNMP−speaking device.

You can use free tools to tell SNMP to generate nice, pretty pictures of how well your system is
working. To use those tools effectively, however, you must have some basic understanding of what
SNMP is and how it works. Once you understand that, we'll consider the most popular set of SNMP
tools for FreeBSD.

Basics of SNMP

SNMP works on a standard client/server model. The SNMP client, or agent, sends a request across
the network to an SNMP server running on a computer. The SNMP server, snmpd, then gathers
information from the local system and returns it to the client.

An SNMP agent can also send a request to make changes to the SNMP server. If your system is
properly (or improperly, depending on your point of view) configured, you can issue commands via
SNMP. This "write" configuration is most commonly used in routers, switches, and other network
devices.

UNIX has its own configuration system, and doesn't usually let you issue instructions via SNMP.
(Some daemons might allow you to configure them via SNMP, and you can write shell scripts to be
called by setting an SNMP value, but those are special cases.) For our purposes, we don't want to
be able to write configurations at all. Writing system configurations or instructions via SNMP
requires careful setup and raises all sorts of security issues; it's an excellent topic for an entire book.

MIBs

SNMP manages its information via a Management Information Base, or MIB. (We saw an example
of a MIB tree in Chapter 4, when discussing sysctls.)

Each SNMP server has a list of information it can extract from the local computer. The server
arranges these bits of information into a hierarchical system, or Management Information Base tree.
Each SNMP MIB tree has a very general main category, network, physical system, programs, and
so on, with more specific subdivisions. Think of these trees as well−organized directories, where
subdirectories contain more specific information. Similarly, the uppermost MIB contains a variety of
MIBs beneath it.

MIBs are referred to by name or by number. For example, here's a MIB pulled off a sample system:

..
interfaces.ifTable.ifEntry.ifOutErrors.1
..

The first term in this MIB, interfaces, shows us that we're looking at the network interfaces on
the system (network cards, parallel ports, and so on). If there were no interfaces on this particular

433

system, this first category would not even exist. The ifTable is the interface table, or a list of all
the interfaces on the system. ifEntry shows one particular interface, and ifOutErrors means
that we're looking at the outbound errors on this particular interface. Finally, the trailing 1 means that
we're interested in interface number 1.

MIBs can also be expressed as numbers, and most SNMP tools prefer numerical MIBs.
Unfortunately (or not) our feeble brains prefer words, but your poor brain must be capable[3] of
working with either. (We'll learn exactly how to do this translation with a particular piece of software
in the section "Translating Between Numbers and Names"; for now, just trust me.) The preceding
example can be translated to this:

..

.1.3.6.1.2.1.2.2.1.20.1

..

Expressed as words, the MIB has five terms separated by periods. Expressed as numbers, the MIB
has 11. That doesn't look right if they're supposed to be the same. What gives?

The numerical MIB is longer because it includes the default .1.3.6.1.2.1, which means
.iso.org.dod.internet.mgmt.mib−2. This is the standard subset of MIBs used on the
Internet (SNMP could also be used to manage non−Internet devices). Almost every MIB you
encounter will have this leading string, which is why almost nobody bothers writing it down anymore.

If you're in one of those kinky moods, you can even mix words and numbers:

..

.1.org.6.1.mgmt.1.interfaces.ifTable.1.ifOutErrors.1

..

These MIBs look useful, but how do you find out what each one means? SNMP MIBs can vary from
device to device and with the server used. Check the documentation for your SNMP agent, or your
device, to see which MIBs are available.

When you make an SNMP query, you'll use the MIB to extract exactly the information you want.
Since most networked devices shouldn't give out information to just anyone, let's look at how SNMP
provides basic security with communities.

Net−snmp

Net−snmp (http://net−snmp.sourceforge.net/) is the best set of SNMP programs that runs on
FreeBSD. I t 's smal l , extensib le, and ef f ic ient , and i t 's inc luded as a FreeBSD port
(/usr/ports/net/net−snmp4). This is a popular package, and the port is generally quite up to date
because the net−snmp folks are actively interested in FreeBSD and are quite responsive to useful
problem reports, requests for help, or (better still) patches.

Note Just to make things slightly difficult, net−snmp was previously called ucd−snmp. The
University of California at Davis is no longer quite so involved in the project, hence

434

the name change. You'll see references to both net−snmp and ucd−snmp.

When you install net−snmp from ports, the build process will ask you several different questions. Go
ahead and accept the defaults; you can override them later with the configuration file we'll create.

The net−snmp port includes an SNMP client, an SNMP server, and a translation tool. We'll consider
each in turn.

Snmpwalk

The net−snmp port includes a generic tool, snmpwalk(1), that you can use to examine the SNMP
tree on other hosts. Snmpwalk works well on any sort of server: I use my FreeBSD system to
snmpwalk Cisco routers, assorted switches, other BSD machines, and even Windows−based
systems. To use snmpwalk, give it the name of the host you want to check and the SNMP
community name:

..
snmpwalk hostname community
..

Try snmpwalk on a system running an SNMP daemon, using the default community of "public":

..
snmpwalk hostname public > snmpwalk.out
#
..

The snmpwalk command generates a lot of output, so in this example we've redirected it to a file.
Look at the output. You may be surprised at the amount of information a system offers via SNMP.

Specific Snmpwalk Queries

You can also make very specific queries via SNMP simply by specifying the portion of the tree
you're interested in. For example, suppose you want to know the value of the MIB
.1.3.6.1.4.1.2021.11.9.0. (This is the percentage of CPU time spent on user programs
when running the net−snmp server. The next section tells us how to get that information.) You can
add this MIB to the end of your snmpwalk query to just ask about that MIB.

..
#snmpwalk localhost public .1.3.6.1.4.1.2021.11.9.0
enterprises.ucdavis.systemStats.ssCpuUser.0 = 1
#
..

This tells me that 1 percent of my system CPU time is being spent running user programs. Nifty,
eh?

You can use snmpwalk to get information from any device that speaks SNMP. For example, the
Windows NT documentation tells us that the MIB 1.3.6.1.4.1.311.1.1.3.1.1.1.1 represents
available memory. How about using snmpwalk from your FreeBSD system to check this value

435

without bothering to log on to the NT system? Try this:

..
snmpwalk windowsserver public .1.3.6.1.4.1.311.1.1.3.1.1.1.1.0
enterprises.311.1.1.3.1.1.1.1.0 = 154447872
#
..

It can be much simpler to use specific queries like this than it would be to log into a system to run
top; and these queries work on any system with SNMP tools. Later, we'll automatically query
servers by MIB and use the results to generate our pretty graphs of server status.

Commercial solutions for checking SNMP servers run to hundreds or thousands of dollars. Using
these free SNMP tools is an excellent way to begin using FreeBSD on any network.

Translating Between Numbers and Names

So you want to know how to translate between the numbers and the words? And you wonder what
MIBs are available on your system and perhaps even what they mean? Well, that's not entirely
unreasonable. The net−snmp port includes the translation tool snmptranslate(1).

First, choose a MIB that you want to translate. You have the output of an snmpwalk run on your
system saved, right? Well, let's pluck a bit of output from it and see what we have. I'll pick the
following line from my local system:

..
enterprises.ucdavis.memory.memAvailSwap.0 = 204672
..

This looks important, doesn't it? Available swap would be handy to know.

To begin with, you need to know that snmpwalk gives only the last section of the MIB. You have to
know that the enterprises tree is always prefaced by .1.3.6.1.4. (This is common knowledge
in the SNMP world.) Now, armed with that esoteric knowledge, give this full MIB, and the −Td
switch, to snmptranslate:

..
snmptranslate −Td .1.3.6.1.4.enterprises.ucdavis.memory.memAvailSwap.0
.1.3.6.1.4.1.2021.4.4.0
memAvailSwap OBJECT−TYPE
 −− FROM UCD−SNMP−MIB
 SYNTAX INTEGER
 MAX−ACCESS read−only
 STATUS current
 DESCRIPTION "Available Swap Space on the host."
::= { iso(1) org(3) dod(6) internet(1) private(4) enterprises(1) ucdavis(2021) memory(4) memAvailSwap(4) 0 }
#
..

This gives you a heap of useful information about the MIB, including its numerical equivalent
(.1.3.6.1.4.1.2021.4.4.0) and its description ("Available Swap Space on the host."). Note the
numerical MIB; we'll need it soon. The last tidbit is the name of each part of the MIB and its

436

matching number.

Note You can also run this command in reverse: give it a numerical MIB and it will spell out
the whole named MIB.

Setting Up Snmpd

Before you can use SNMP to monitor your system, you need to set up the snmp daemon. Rather
than installing a default configuration file, the net−snmp port installs a default configuration file in
/usr/local/share/examples/ucd−snmp/ EXAMPLE.conf. In addition to having default communities of
"public" and "private", this default configuration includes a variety of possible security holes.

Fortunately, net−snmp includes a program to create an SNMP daemon configuration file,
snmpconf(1). To use snmpconf to create a standard configuration for your system, run this
command:

..
snmpconf −i −g basic_setup
..

This command will take you through a basic snmpd configuration, which will install the file in the
proper place. (Since we'll be using snmpconf only once, we won't go over each part of this
command.) The configuration is fairly straightforward, but we'll walk through it to be sure you've set
everything properly. (While this program lets you set all sorts of advanced stuff, we'll only configure
what we need in order to perform basic monitoring.)

Snmpconf will ask many "yes" or "no" questions. You should first see something like this:

..
**
*** Beginning basic system information setup ***
**
Do you want to configure the information returned in the system MIB group
(contact info, etc)? (default = y):
..

You do want to provide some basic system information, so type y.

..
Configuring: syslocation
Description:
 The [typically physical] location of the system.
 arguments: location_string

The location of the system:
..

Enter a system location here, like "server room" or "server room A−30", or whatever works. This
designation can be helpful if you have multiple servers in multiple locations, but if you have only one
server it's almost moot. But beware: Whatever you enter will show up in monitoring software, so be
sure to not put anything offensive or irrelevant here.

437

The script will then ask you for a "syscontact", the person responsible for the system. If you have
multiple server administrators, this is an excellent place to put the email address of the person who
should be contacted regarding problems or issues. You might also put in an alias that forwards to
multiple people, so that you don't have to reconfigure snmpd when your contact person leaves or is
reassigned.

..
Do you want to properly set the value of the sysServices.0 OID? (default =
y):
..

Yes, you do. This section describes extremely basic properties of the system, but not ones that
accept a "y" or "n" answer. Because you'll be filling in actual values to be used in the SNMP
configuration, you'll enter 0 for no and 1 for yes.

..
Configuring: sysservices
Description:
 The proper value for the sysServices object.
 arguments: sysservices_number

does this host offer physical services (eg, like a repeater) [answer 0 or 1]:
..

Some people have telco cards for FreeBSD that allow them to hook a standard x86 PC into a
telephone switch to handle phone−company−level operations. If you're not one of them, enter 0 for
the preceding question.

..
does this host offer datalink/subnetwork services (eg, like a bridge):
..

FreeBSD can be configured as a bridge, but if you haven't done so, answer 0.

..
does this host offer internet services (eg, supports IP): 1
does this host offer end−to−end services (eg, supports TCP): 1
does this host offer application services (eg, supports SMTP): 1
..

Answer 1 to all of the three preceding questions. A FreeBSD Internet server supports them all.

..

*** BEGINNING ACCESS CONTROL SETUP ***

Do you want to configure the agent's access control? (default = y):
..

You don't want just anyone to be able to access your system, so answer y.

..
Do you want to allow SNMPv3 read−write user based access (default = y):

438

Do you want to allow SNMPv3 read−only user based access (default = y):
Do you want to allow SNMPv1/v2c read−write community access (default = y):
..

SNMP version 3 is fairly advanced stuff, and far beyond what we need for basic monitoring. Also,
we are not using read−write SNMP; we want our monitor to only be able to read information, not
issue commands on the system! Answer n to all of the above. You'll get your read−only access by
answering y to the next option.

..
Do you want to allow SNMPv1/v2c read−only community access (default = y): y
Configuring: rocommunity
Description:
 a SNMPv1/SNMPv2c read−only access community name
 arguments: community [default|hostname|network/bits] [oid]

The community name to add read−only access for:
..

Those of you experienced with SNMP are familiar with the default communities of "public" and
"private", but don't use them: they're the first thing an intruder will look for. Choose community
names like you would a good password; don't use ones that are easily guessed, and don't use
common words; do mix letters and other characters, and so on. If you don't intend to allow anyone
to write SNMP commands on your system, then you probably only need one community name.

..
The hostname or network address to accept this community name from [RETURN for all]:
..

Enter the IP address of your network monitoring system as the answer to the preceding question. If
you're monitoring only this machine, from itself, put the loopback IP address (127.0.0.1). You can
list an entire network in the standard slash format discussed in Chapter 5 (for example,
192.168.0.0/16). Finally, if you put "0.0.0.0/0", anyone on the Internet can read SNMP values from
your system if they have (or guess) the correct community name.

..
The OID that this community should be restricted to [RETURN for no−restriction]:
..

You can restrict different SNMP communities to subportions of the MIB tree. Though you don't need
to bother doing so for our purposes, you might choose to restrict communities in more complex
setups than this one.

..
Finished Output: rocommunity public 127.0.0.1
Do another rocommunity line? (default = y):
..

If you're doing only the monitoring we discuss in this chapter, you only need one SNMP community.
Answer n to the preceding question.

..
**
*** Beginning trap destination setup ***
**
Do you want to configure where and if the agent will send traps? (default = y):
..

439

A trap is where the system will send a notice to another system when a MIB is set or unset. We
aren't using them. Answer n.

..
**
*** Beginning monitoring setup ***
**
Do you want to configure the agent's ability to monitor various aspects of your system? (default = y):
..

We aren't using process monitoring right now, but we will monitor disk space. Answer y to both the
preceding question and the following one.

..
Do you want to configure the agents ability to monitor disk space? (default = y):
Configuring: disk
Description:
 Check for disk space usage of a partition.
 The agent can check the amount of available disk space, and make
 sure it is above a set limit.

 disk PATH [MIN=100000]

 PATH: mount path to the disk in question.
 MIN: Disks with space below this value will have the Mib's errorFlag set.
 Can be a raw byte value or a percentage followed by the %
 symbol. Default value = 100000.

 The results are reported in the dskTable section of the UCD−SNMP−MIB tree
Enter the mount point for the disk partion to be checked on: /usr
Enter the minimum amount of space that should be available on /usr: 10%
Finished Output: disk /usr 10%
..

Enter each partition you have on your system above. If you're unsure, check /etc/fstab or df(1).
Generally speaking, it's a good idea to warn the user if the system has less than 10 percent free
space on any one partition.

..
Do you want to configure the agents ability to monitor load average? (default = y):
n
Do you want to configure the agents ability to monitor file sizes? (default = y): n
..

We aren't monitoring load average or file size, so answer n to the previous two questions. You can
set this up later when you understand more about SNMP and monitoring.

..
The following files were created:

 snmpd.conf installed in /usr/local/share/snmp
#
 Stop and start snmpd to read the new configuration.

killall snmpd && snmpd
#
..

Congratulations! You now have a complete SNMP configuration. Break out snmpwalk and see what

440

sort of information you can read from your system.

Index Numbers

Now let's look at something that frequently confuses new SNMP users. Take the following snippet of
snmpwalk output describing the disks on our system. Remember: snmpwalk reads the SNMP
information available from a server; this is a small chunk of output from the complete listing of
information available from snmpd.

..
enterprises.ucdavis.dskTable.dskEntry.dskIndex.1 = 1
enterprises.ucdavis.dskTable.dskEntry.dskIndex.2 = 2
enterprises.ucdavis.dskTable.dskEntry.dskIndex.3 = 3
enterprises.ucdavis.dskTable.dskEntry.dskPath.1 = /usr
enterprises.ucdavis.dskTable.dskEntry.dskPath.2 = /
enterprises.ucdavis.dskTable.dskEntry.dskPath.3 = /var
enterprises.ucdavis.dskTable.dskEntry.dskDevice.1 = /dev/ad0s1f
enterprises.ucdavis.dskTable.dskEntry.dskDevice.2 = /dev/ad0s1a
enterprises.ucdavis.dskTable.dskEntry.dskDevice.3 = /dev/ad0s1e
..

All the partitions listed in snmpd.conf appear here. In the first three lines of the preceding example,
we see that the dksIndex is a number from 1 to 3. Using snmptranslate, we learn that these are
the reference numbers for the disk partitions we're monitoring; each partition has been assigned a
unique index number.

In the next three rows, dskPath, we map the index 1 to /usr, index 2 to /, and index 3 to /var.

Then, in our next three entries, dskDevice, we see that there are three entries yet again. How do
we use these disparate entries? By working backwards. For example, we see that dskDevice.1 is
/dev/ad0s1f. We know that entry 1 is /usr, which tells us that /usr is on this physical device.

Because MIB trees are based on the information you want to pull, not the device that you want to
access, a partition's information appears on nonconsecutive lines, making things slightly more
difficult to read. But with a little patience, you'll be able to put it all together.

You'll see index numbers in anything SNMP reports that comes in multiple units. While disk
partitions are the first one everyone stumbles across, you'll find that you'll get indexes for just about
anything. Just look around for a key to these indexes; it'll be at the top of the section.

[3]Enjoyment is not a requirement, merely capability.

Long−Term Monitoring with MRTG

For long−term monitoring, we'll use a program that will query SNMP at specific intervals and record
the answers it gathers. The most popular programs for this purpose are cricket and MRTG. Both are
included in the FreeBSD ports collection and install cleanly on FreeBSD. We'll discuss MRTG
(/usr/ports/net/mrtg) here.

MRTG, the Multi−Router Traffic Grapher, uses SNMP data to automatically generate reports on a
Web page with nicely labeled graphs. MRTG can run as a daemon, but is traditionally a cron job run

441

every five minutes. You will need a Web server on the machine running MRTG.

You can use MRTG to give supervisors, managers, and co−workers convenient access to
performance data without giving them server access. And, because MRTG keeps records over the
course of a year, you can get a good idea of real−life trends. MRTG is also quite useful for justifying
hardware and software expenditures, since you can point to exactly how much CPU time a machine
is using, and how its performance has changed as you've added software.

Configuring MRTG

You can use the included cfgmaker(1) tool to generate a default MRTG configuration that measures
network throughput on interfaces, like so:

..
cfgmaker communityname@machine > mrtg.cfg
..

For example, if I wanted to run MRTG on my local machine, using the community name
"GetLostLoser", I could run this command:

..
cfgmaker GetLostLoser@localhost > mrtg.cfg
..

Cfgmaker makes SNMP queries of the specified device and generates a basic configuration file,
which we dumped into the file mrtg.cfg in the preceding example. By default, MRTG monitors only
network traffic.

Before you can use this configuration file, you need to add a "WorkDir" directive to the top of it to tell
MRTG where to store its logs, graphics, working files, and HTML. I generally put the WorkDir
somewhere under my Web server root directory, like this:

..
WorkDir: /usr/local/share/apache/htdocs/mrtg
..

You'll probably want to password−protect this directory, too, if the Web server is on the public
Internet or otherwise exposed to the world at large. (See Chapter 15.)

Sample mrtg.cfg Entry

The generated mrtg.cfg has a lot of information, including some unnecessary HTML. If you look
through the created file, you'll see that cfgmaker has generated a configuration for every single
interface on the machine, which is proper because it measures network throughput by default. The
loopback interface, and any down interfaces, are commented out; the remaining uncommented
parts are a series of entries much like this:

..
vTarget w [localhost.3]: 3:GetLostLoser@localhost
x MaxBytes[localhost.3]: 1250000

442

y Title[localhost.3]: petulance.blackhelicopters.org: xl0
z PageTop[localhost.3]: <H1>Traffic Analysis for xl0
</H1>
<TABLE>
 <TR><TD>System:</TD><TD>petulance.blackhelicopters.org in Basement Server
Room</TD></TR>
 <TR><TD>Maintainer:</TD><TD>mwlucas@blackhelicopters.org></TD></TR>
 <TR><TD>Interface:</TD><TD>xl0 (3)</TD></TR>
 <TR><TD>IP:</TD><TD>petulance.blackhelicopters.org (192.168.1.100)</TD></TR>
 <TR><TD>Max Speed:</TD>
 <TD>1250.0 kBytes/s (ethernetCsmacd)</TD></TR>
</TABLE>
..

Labels

The string inside the square brackets ([])(w) is an arbitrary label that indicates a unique subsystem
being monitored. In this example, the label is localhost.3. This might be a network interface, the
disk space on a partition, CPU usage, or anything. All files generated by MRTG for this monitored
subsystem will have a name starting with this label.

To monitor any number of items, you must give each a unique label of any length. I usually create
labels like "webserver1.EthernetTraffic" or "webserver9.AvailableSwap." Labels with names similar
to the MIB you want to monitor are most useful, but they can become quite long, so strike a balance
that you feel comfortable with.

Target

The Target keyword (v) tells MRTG which machine to query and which interface on that machine
this configuration is for. (The actual target appears after the colon.) If you change the community
name or IP address of your system, you can edit it directly here. In this case, the target is
3:GetLostLoser¤localhost: an interface number, a SNMP community, and a hostname.

We spoke about indexes in MIBs earlier in "Index Numbers;" if you were to snmpwalk the MIB tree,
you would find that this interface has the index number 3. You can dig through the snmpwalk output
to find out which interface has this index number. Each interface has a unique IP address, however,
and it's generally easier to use that to identify the interface. MRTG kindly includes the IP address a
little later in the configuration.

MaxBytes

MaxBytes (x) is the maximum value allowed for this item. Since this is a network interface,
MaxBytes is the maximum number of bytes this network card can handle (a 10BaseT card). MRTG
has enough brains to figure out the MaxBytes values for most common network types.

You should never have to change this value if you're measuring throughput. You will have to change
it to monitor other things, such as CPU or memory utilization.

Title and PageTop

Title (y) and PageTop (z) are arbitrary HTML. You can put almost any HTML in these spaces to
display it on the generated MRTG Web page.

443

Edited Configuration File

Once I finish editing the basic MRTG config to my taste to monitor a network interface, it generally
looks like this:

..
WorkDir: /usr/local/share/apache/htdocs/mrtg
Target[webserver1.EthernetTraffic]: 3:GetLostLoser@localhost
MaxBytes[webserver1.EthernetTraffic]: 1250000
Title[webserver1.EthernetTraffic]: Ethernet Interface
PageTop[webserver1.EthernetTraffic]: <H1>Traffic Throughput for Ethernet
Interface</H1>
<P>Call the Helpdesk if you have any questions
..

You'll notice that, first of all, the label has been changed to something meaningful. Also, the HTML
under PageTop has been trimmed considerably, because I know perfectly well where the system is,
after all, and who to talk to about it. If these pages are intended for management, I might add a
couple of lines of HTML after PageTop describing what the machine does or how to interpret the
data.

You can list any number of machines or interfaces in one configuration file. Set up things
appropriately for your system.

Testing MRTG

When you have a configuration you like, test it by running MRTG by hand a few times:

..
mrtg mrtg.cfg
..

MRTG will warn you that it can't find log files the first two times, after which it should run silently.
This alone is not a problem. However, if you get an error that MRTG cannot reach a target, the
Target entry is misconfigured, and either the community name, hostname, or MIB is wrong. Check
those, correct the problem, and try again. Once MRTG runs silently, add it to root's cron to run every
five minutes. (You can also set up a specific user to run MRTG, but there's no real need for this.)

MRTG will send its output to the directory you specify in WorkDir in the configuration file. If you
f o l l o w e d t h e p r e v i o u s e x a m p l e , w h e n y o u l o o k a t
http://<hostname>/mrtg/webserver1.EthernetTraffic.html, you'll see a pretty graph of your network
traffic since you started running MRTG. There are two different lines on the graph: one for inbound
traffic, the other for outbound. MRTG measures things in pairs. You can see a sample MRTG graph
in Figure 19.1.

444

Figure 19−1: Sample MRTG graph
Get MRTG measuring traffic on one of your machines, and then we'll measure some other
interesting things by choosing our SNMP MIBs.

Tracking Other System Values

By default, MRTG measures network traffic, but you can use it to measure any information available
via SNMP. All you need are the MIBs for the information you want to measure. To make MRTG
monitor these MIBs instead of network traffic, add them to the Target entry like so:

..
Target[label]:mibnumber1&mibnumber2:GetLostLoser@localhost
..

For example, to measure system CPU time (MIB .1.3.6.1.4.1.2021.11.9.0) and user CPU
time (MIB .1.3.6.1.4.1.2021.11.10.0), use this line:

..
Target[cpu]:1.3.6.1.4.1.2021.11.9.0&1.3.6.1.4.1.2021.11.10.0.:GetLostLoser@localhost
..

Remember, MRTG charts MIBs in pairs, so pick values to monitor accordingly. Sensible choices are
things like "available swap and total swap" or "system CPU usage and user CPU usage." Measuring
combinations such as available swap versus the percentage of disk available would give you
difficult−to−understand charts.

How do we know which MIBs to use? Well, digging through the snmpwalk output, and translating
the system and user CPU times (enterprises.ucdavis.systemStats.ssCpuUser.0 and
enterprises.ucdavis.systemStats.ssCpuSystem.0, respectively), we find that they
translate to .1.3.6.1.4.1.2021.11.9.0 and .1.3.6.1.4.1.2021.11.10.0. You don't
want to go digging through the MIB tree to find this sort of thing, however, so I'll make it a little
easier for you.

Useful Net−snmp MIBs

Here are some net−snmp MIBs worth monitoring by name, with their corresponding numerical
values in parentheses. All of these can be found under .1.3.6.1.4.1.2021. For example, the
M e m o r y . M e m T o t a l S w a p M I B c a n b e d e t e r m i n e d b y q u e r y i n g
1.3.6.1.4.1.2021.Memory.MemTotalSwap.

Note Before using any MIB, be sure to test it at snmpwalk. Each query should return a single line.
If it returns multiple lines, there's probably an index on the end of it that you should include
before entering that MIB in MRTG.

445

Without further ado, here are some useful MIBs:

memory.memTotalSwap (4.3) The total swap on the system. Check this value
before assigning limits involving swap in other
MRTG graphs.

memory.memAvailSwap (4.4) The amount of swap remaining.
memory.memTotalReal (4.5) The total memory actually available on the system.

While you don't need to monitor this value (after all,
the RAM in a system rarely changes), you should
check it before setting limits in MRTG.

memory.memAvailReal (4.6) The amount of unused real memory.
memory.memBuffer (4.14) The amount of memory in the system buffer.
memory.memCached (4.15) The amount of memory in the system cache.
dskTable.dskEntry.dskTotal (9.1.6) The total size of a partition. Like the other totals,

this is just for reference. This MIB will almost
certainly have indexes.

dskTable.dskEntry.dskAvail (9.1.7) The amount of space remaining on the disk, in
blocks.

dskTable.dskEntry.dskPercent
(9.1.9)

The percentage of the disk in use.

systemStats.ssCpuUser (11.9) The percentage of the CPU time spent in
non−kernel programs.

systemStats.ssCpuSystem (11.10) The percentage of CPU time spent running the
kernel.

There are many, many more MIBs you could monitor, and entire books have been written about
SNMP and monitoring. Still, these select few should cover the basic system services, and give you
those important pretty pictures for your staff meeting.

Monitoring a Single MIB

Although MRTG is designed to monitor things in pairs, you can monitor a single MIB by listing it
twice:

..
Target[localhost.memAvail]:.1.3.6.1.4.1.2021.4.6.0&.1.3.6.1.4.1.2021.4.6.0:GetLostLo
ser@localhost
..

This will work just fine to show only one MIB on the MRTG graph.

Note Be sure to pick a separate label for the target, and use it for all configuration statements for
that target. If you don't, MRTG will either complain or overwrite the log files from other
targets.

446

Customizing MRTG

Once you have a working MRTG setup, be careful testing new configurations. I generally test a new
MRTG configuration in a separate WorkDir, so that any mis−configurations won't damage existing
log files or production status pages.

The mrtg.cfg file contains a wide variety of options that allows you to customize almost every aspect
of MRTG's appearance and functionality. Here you'll find some of the most useful MRTG
configuration options, and how they can be used in production environments.

WithPeak[label]: wmy

MRTG's log format condenses older entries into average values, which tends to decrease values
over time. The WithPeak option forces MRTG to keep and graph the maximum values over time.
While your graphs will be more complex as a result, they will contain more useful information. This
option can be set for the weekly, monthly, and yearly graphs, or a combination.

MaxBytes[label]: number

This is the maximum value that a MIB can reach. (The label is misleading if the MIB doesn't
measure bytes.) MRTG uses this value to decide if it got a sensible answer from the device.

Both MIBs being measured use MaxBytes, so be sure you're measuring sensible pairs! If you're
doing something particularly weird and need different MaxBytes variables, use MaxBytes1 and
MaxBytes2.

YLegend[label]: text

MRTG will put this text along the side of the graph. Put whatever you're measuring here, such as "%
CPU Time".

LegendI[label] & LegendO[label]: text

MRTG always measures two MIBs. The first MIB is the traditional "In" value, and the second the
"Out". You can put short descriptions of what you're measuring here to have them appear beneath
the graph.

Legend1[label] & Legend2[label]: text

Legend1 is the label for the first MIB you measure; Legend2, the second. Both will appear at the
bottom of your chart, in the key.

Legend3[label] & Legend4[label]: text

These labels will be used if you're recording maximums (with the WithPeak option). If you're not
recording maximums, these labels will have no effect.

Directory[label]: directoryname

Large MRTG setups can generate a lot of files. The directory keyword allows you to put the files for
a particular label in a subdirectory of the WorkDir.

447

Options[label]: option−names

Options allow you to handle special cases. All options are specified on one line, after the target.
Some good examples follow:

growright By default, MRTG draws graphs from right to left. Use this option to make it draw
graphs from left to right.

bits This changes the graphs from measuring bytes to bits. Bits are not only more
impressive, but they may also be more accurate, depending on what you're
measuring. For example, many people measure bandwidth in bits, not kilobytes.

gauge SNMP generally retains information in counter form. MRTG subtracts the previous
reading from the current reading to get the change in the last five minutes. Use the
gauge option for SNMP MIBs that don't change, such as disk capacity.

unknaszero When a target is not reachable for any reason (including power failure or network
problems), the system will assume the last known value for the charts. Whether or
not this is more accurate is a matter of some controversy. This option causes MRTG
to assume a value of zero when it cannot reach a target.

MRTG Index Page

The last bit of configuration we'll need to do is to create a single HTML index page for our MRTG
setup. MRTG includes an indexmaker tool that automagically does this for us. Just run this:

..
indexmaker mrtg.cfg > index.html
..

You'll probably want to edit this, but it's a nice starting place.

Sample MRTG Configurations

This section contains some sample MRTG configurations. To use them, insert the correct hostname
and community name. Also, note that the Target statements are supposed to be all on one line;
the printed page simply isn't wide enough to handle this at a type size you can see without a
magnifying glass. In each example, you will need to edit the Target statement to give the proper
hostname and community name, and you'll probably want to edit the PageTop setting so your graph
displays the correct information for your host.

User and System CPU Usage

This first sample compares user CPU usage with system CPU usage as percentages. (Note that we
use the gauge option.)

..
Title[myhost.AbsoluteBSD.com.cpu]: myhost.AbsoluteBSD.com CPU usage
YLegend[myhost.AbsoluteBSD.com.cpu]: CPU usage
WithPeak[myhost.AbsoluteBSD.com.cpu]: wmy
MaxBytes[myhost.AbsoluteBSD.com.cpu]: 100
Target[myhost.AbsoluteBSD.com.cpu]:.1.3.6.1.4.1.2021.11.9.0&.1.3.6.1.4.1.2021.11.10.
0:public@myhost.AbsoluteBSD.com
ShortLegend[myhost.AbsoluteBSD.com.cpu]: CPU
LegendI[myhost.AbsoluteBSD.com.cpu]: User CPU

448

LegendO[myhost.AbsoluteBSD.com.cpu]: System CPU
Legend1[myhost.AbsoluteBSD.com.cpu]: User Processor Usage
Legend2[myhost.AbsoluteBSD.com.cpu]: System Processor Usage
Legend3[myhost.AbsoluteBSD.com.cpu]: Maximal 5 Minute User Processor Usage
Legend4[myhost.AbsoluteBSD.com.cpu]: Maximal 5 Minute System Processor Usage
Options[myhost.AbsoluteBSD.com.cpu]: growright, gauge
PageTop[myhost.AbsoluteBSD.com.cpu]: <H1>CPU usage for myhost.AbsoluteBSD.com </H1>
..

Swap Usage

Before you can measure swap space, you'll need to know how much swap your system has. You
can get that information by doing an snmpwalk to get the total swap available, or snmpwalk
hostname community .1.3.6.1.4.1.2021.4.3. Put that value in the MaxBytes space, and
under the PageTop, so it will show up on your graph.

..
Title[myhost.AbsoluteBSD.com.swap]: myhost.AbsoluteBSD.com Available Swap
YLegend[myhost.AbsoluteBSD.com.swap]: swap
WithPeak[myhost.AbsoluteBSD.com.swap]: wmy
MaxBytes[myhost.AbsoluteBSD.com.swap]: 128000
Target[myhost.AbsoluteBSD.com.swap]:
.1.3.6.1.4.1.2021.4.4.0&.1.3.6.1.4.1.2021.4.4.0:public@myhost.AbsoluteBSD.com
ShortLegend[myhost.AbsoluteBSD.com.swap]: Swap
LegendI[myhost.AbsoluteBSD.com.swap]: Available Swap
LegendO[myhost.AbsoluteBSD.com.swap]: Available Swap
Legend1[myhost.AbsoluteBSD.com.swap]: Available Swap
Legend2[myhost.AbsoluteBSD.com.swap]: Available Swap
Legend3[myhost.AbsoluteBSD.com.swap]: Maximal 5 Minute Available Swap
Legend4[myhost.AbsoluteBSD.com.swap]: Maximal 5 Minute Available Swap
Options[myhost.AbsoluteBSD.com.swap]: growright, gauge
PageTop[myhost.AbsoluteBSD.com.swap]: <H1>Available Swap (out of 128M) for
myhost.AbsoluteBSD.com </H1>
..

Disk Partition

Measuring the amount of space used on a disk partition is similarly easy, though you'll need to know
the MIB index for the disk partition first. (See the examples in "Index Numbers" earlier in this
chapter.) Be sure to give the correct size in the PageTop space.

..
Target[myhost.AbsoluteBSD.com.root]:.1.3.6.1.4.1.2021.9.1.9.1&.1.3.6.1.4.1.2021.9.1.
9.1:public@myhost.AbsoluteBSD.com
Title[myhost.AbsoluteBSD.com.root]: Myhost.AbsoluteBSD.com Root partition % used
MaxBytes[myhost.AbsoluteBSD.com.root]: 100
WithPeak[myhost.AbsoluteBSD.com.root]: wmy
Suppress[myhost.AbsoluteBSD.com.root]: y
LegendI[myhost.AbsoluteBSD.com.root]: % used
Legend1[myhost.AbsoluteBSD.com.root]: % used
YLegend[myhost.AbsoluteBSD.com.root]: percent used
ShortLegend[myhost.AbsoluteBSD.com.root]: used
Options[myhost.AbsoluteBSD.com.root]: gauge, growright
PageTop[myhost.AbsoluteBSD.com.root]: <H1>myhost Root partition (% of 128M) used
</H1>

449

..

Network Traffic

Just for completeness, let's look at a sample of how to measure network traffic. This assumes a
10Mbps network connection; if you're using 100BaseT, multiply MaxBytes by 10.

..
Title[myhost.AbsoluteBSD.com.traffic]: myhost.AbsoluteBSD.com network traffic
MaxBytes[myhost.AbsoluteBSD.com.traffic]: 125000
WithPeak[myhost.AbsoluteBSD.com.traffic]: wmy
Target[myhost.AbsoluteBSD.com.traffic]: public@myhost.AbsoluteBSD.com
Options[myhost.AbsoluteBSD.com.traffic]: growright, bits
PageTop[myhost.AbsoluteBSD.com.traffic]: <H1>Network traffic on
myhost.AbsoluteBSD.com </H1>
..

Monitoring Non−BSD Systems

MRTG can monitor any system that uses SNMP; it is a standard spoken by almost every
network−equipment and operating−system vendor. To do so, all you need is the list of MIBs that the
product supports and what they mean. Tables of MIB interpretations—simple text files containing
tables of how to read the vendor's MIB tree–are generally available from vendors. Each file starts
something like this:

..
IPV6−MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE−IDENTITY, OBJECT−TYPE, NOTIFICATION−TYPE,
 mib−2, Counter32, Unsigned32, Integer32,
 Gauge32 FROM SNMPv2−SMI
 DisplayString, PhysAddress, TruthValue, TimeStamp,
 VariablePointer, RowPointer FROM SNMPv2−TC
 MODULE−COMPLIANCE, OBJECT−GROUP,
 NOTIFICATION−GROUP FROM SNMPv2−CONF
 Ipv6IfIndex, Ipv6Address, Ipv6AddressPrefix,
 Ipv6AddressIfIdentifier,
 Ipv6IfIndexOrZero FROM IPV6−TC;
..

Copy these definition files to a directory on your system. Next, set the environment variable
MIBDIRS to point to that directory, and snmptranslate will recognize them.

You can even install SNMP on your NT systems; this makes them easy to monitor, at a fraction of
the cost of commercial systems. The only difference between MRTG and a commercial system is
that you must know what you're doing to use MRTG. I highly recommend Garth Williams’ "SNMP for
the Public Community" site (http://www.wtcs.org/snmp4tpc/) for SNMP on other platforms. Be
warned in advance: To call Microsoft's implementation of SNMP "skeletal" would leave you without
an adequate description of its error messages. Windows 2000 and XP are better than NT, but not

450

by a huge amount.

451

Chapter 20: System Crashes and Panics
One of the nice things about FreeBSD is its stability; the only Blue Screen of Death is a
screensaver. In fact, it was almost a year before I realized that a FreeBSD machine could crash for
reasons other than bad hardware.

FreeBSD can crash, or panic, but it allows you to recover from a panic fairly easily, so don't, er,
panic. You can even connect to the console remotely when the system is completely locked up and
nonresponsive, and force a reboot. FreeBSD provides the tools you need to discover exactly what
happened, and gives you extensive debugging information about the panic. (Even if you don't know
what to do with this information, you can submit a problem report and discuss the issue with the
FreeBSD development team.)

What Causes Panics?

When does a system panic? Well, panicking is a choice that the kernel makes. If the system
reaches a condition that it doesn't know how to handle, or if it fails its own internal consistency
checks, it will panic.

If you're using FreeBSD as a desktop, you can panic it by doing a variety of things, most of which
are hardware related. For example, in older FreeBSDs, you could panic a laptop by pulling out
certain PCMCIA cards without shutting the card down first. (That's, fortunately, no longer the case.)
Now, to panic a system, you pretty much have to do something wrong while logged in as root (or be
running−current).

It's much more difficult to panic a server. Panics generally occur only if you have configured your
kernel improperly, if you exhaust your system resources, or if you've tickled a previously unknown
FreeBSD bug. The first two are pretty straightforward to fix, and are discussed in Chapters 4 and
18. The last is the most disturbing.

FreeBSD is complex, and not even its royal−blood lineage or open−source development process
can protect it from bugs. (Some people argue that no software is bug−free.) Fortunately, that
heritage and development process give you the information to debug FreeBSD yourself, and the
tools to provide the information necessary for other people to debug it. You might begin with a
cryptic error code, but you'll quickly learn that it means something to someone.

Note If you're not a programmer, don't worry. By preparing your system to debug panics, you'll help
someone else to fix the problem. Hopefully, you'll never need to debug your system, but if you
do, you'll be glad you have it set up properly!

What Does a Panic Look Like?

When a system panics, it stops running all programs. Instead of the usual console messages, the
console displays a message much like this one:

..
Fatal trap 12: page fault while in kernel mode
fault virtual address = 0x80c0153a
fault code / supervisor write, page not present
instruction pointer = 0x8:0xc015aa84
stack pointer = 0x10:0xc7377e7c
frame pointer = 0x10:0xc7377e80

452

code segment = base 0x0, limit 0xfffff, type 0x1b
 = DPL 0, pres 1, def32 1, gran 1
processor eflags = interrupt enabled, resume, IOPL=0
current process = 5 (syncer)
interrupt mask = bio
trap number = 12
panic: page fault
..

If you're an inexperienced sysadmin, messages like this can turn your blood cold, but don't fret yet.
FreeBSD sometimes gives somewhat friendly messages that describe what's wrong, which give you
a specific place to start looking, or at least a term to Google. I've seen panics that give very specific
instructions on kernel options that should be set to prevent their recurrence. Other panic messages,
like this one, are much more puzzling.

The only word that looks even vaguely familiar in this panic message is the fourth line from the
bottom, where we see that the current process is something called "syncer". Most people don't
know what the syncer is, and most of those who recognize it know better than to try to fix it. The
"mysterious panic" is among the worst situations you can have in FreeBSD.

Responding to a Panic

If you get a system panic, the first thing to do is get a copy of the panic message. Since FreeBSD is
no longer running at this point, the standard UNIX commands will not work–the system won't let you
SSH in or out, and even simple commands like script(1) will not work. The console might be utterly
locked up, or it could be in a debugger. In either event, you need the error message.

The first time I received an error message like the preceding one, I scrambled for paper and pen.
Eventually I found an old envelope and a broken stub of pencil, and crawled between the server
rack and the rough brick wall. I balanced the six−inch black−and−white monitor that I'd dragged
back there in one hand, while with my other hand I held the old envelope against the wall.
Apparently I had a third hand to copy the panic message to the envelope, because it somehow got
there. Finally, scraped and cramped, I slithered back out of the rack and victoriously typed the
whole mess into an email. Surely the crack FreeBSD developers would be able to look at this
garbage and tell me exactly what had happened.

After all of this struggle, the initial response was quite frustrating: "Can you send a backtrace?"

I've seen many, many messages to a FreeBSD mailing list reporting problems like this, and they
always get this same response. Most of the people who send these messages are never heard from
again, and I understand exactly how they feel. When you've been dealing with a server that
crashes, or (worse) keeps crashing, the last thing you want to do is reconfigure it.

The problem with the panic message on my envelope was that it only gave a tiny scrap of the story.
It was so vague, in fact, that it was like describing a stolen car as "red, with a scratch on the
fender."If you don't give the car's make, model, and VIN number or license plate, you cannot expect
the police to make much headway. Similarly, without more information from your crashing kernel,
the FreeBSD developers can't catch the criminal code.

There's a simple way around this problem, however: Set up your server to handle a panic before the

453

panic happens. Set it up when you install the server. That way, you'll get a backtrace automatically if
it ever crashes. This might seem like a novel idea, and it certainly isn't emphasized in the FreeBSD
documentation, but it makes sense to be ready for disaster. If it never happens, well, you don't have
anything to complain about. If you get a panic, you're ready and you'll be able to present the
FreeBSD folks with a complete debugging dump the second a problem appears.

Prerequisites

prepare for a kernel panic, you need to have the system source code installed. You'll also need one
(or more) swap partitions that is at least 1MB larger than your physical memory, and preferably
twice as large as your RAM. If you have 512MB of RAM, for example, you need a swap partition
that is 513MB or larger, with 1024MB being preferable. (On a server, you should certainly have
multiple swap partitions on multiple drives!) If your swap partition isn't large enough, you'll have to
either add another hard drive with an adequate swap partition, or reinstall. (While having a /var
partition with at least that much disk space free is helpful, it isn't necessary.)

If you followed the installation suggestions in the beginning of the book, you're all set.

Crash Dump Process

The kernel crash−capturing process works somewhat like this. If a properly configured system
crashes, it will save a core dump of the system memory. You can't save it to a file, because the
crashed kernel doesn't know about files; it only knows about partitions. The simplest place to write
this dump is to the swap partition, and the dump is placed as close to the end of the swap partition
as possible. Once the crashing system saves the core to swap, it reboots the computer.

During the reboot, /etc/rc enables the swap partition. It then (probably) runs fsck on the crashed
disks. It has to enable swapping before running fsck, because fsck might need to use swap space.
Hopefully, you have enough swap space that fsck can get everything it needs without overwriting
the dump file lurking in your swap partition.

Once the system has a place where it can save a core dump, it checks the swap partition for a
dump. Upon finding a core dump, savecore copies the dump from swap to the proper file, clears the
dump from swap, and lets the reboot proceed. You now have a kernel core file, and can use that to
get a backtrace.

The Debugging Kernel

The standard FreeBSD kernel install removes all the debugging information from the kernel before
installing it, including symbols, which provide a map between the machine code and the source
code. Such a map can be larger than the actual program, and nobody wants to run a kernel that's
three times larger than it has to be! However, we need this map, and other debugging information,
to diagnose what went wrong in the crash.

This map also includes a complete list of source−code line numbers, so the developer can learn
exactly where a problem occurred. Without this information, the developer is stuck trying to map a
kernel core to the source code by hand, which is somewhat like trying to assemble a million−piece
puzzle without a picture, or even knowing that you have all the pieces. Overall, this is an ugly job.
It's even uglier when you consider that the developer who needs to do the work is a volunteer.
That's why your debugging kernel should include its symbols.

To keep the symbols, add these lines to your kernel configuration:

454

..
options DDB
makeoptions DEBUG=−g
..

The DDB option installs the DDB kernel debugger. (This isn't strictly necessary, but it can be helpful
and it doesn't take up that much room.) The makeoptions you set here tell the system to build a
debugging kernel.

Post−Panic Behavior

When configuring your system, you'll need to decide how you want the system to behave after a
panic. Do you want the computer to reboot automatically, or do you want it to stay at the panic
screen until you manually trigger a reboot? If the system is at a remote location, you'll almost
certainly want the computer to reboot automatically, but if you're at the console debugging kernel
changes, you might want it to wait for you to tell it to reboot.

To reboot automatically, include the kernel option DDB_UNATTENDED:

..
options DDB_UNATTENDED
..

If you don't include this option, the system will wait for you to tell it to reboot.

kernel.debug

Once you have the kernel configured the way you want, do the usual dance (described in Chapter
4) to configure and install it.

Once you've installed your new kernel, you'll find a file in the kernel compile directory called
kernel.debug. This is your kernel with symbols; save it somewhere. The next time you upgrade your
system or customize the kernel, this debugging kernel will be overwritten by a new debugging
kernel. If you've built a kernel just for testing, you want to be sure that you have your
known−to−be−good debugging kernel available.

One of the frequent causes of a failed debugging process is losing the debugging kernel and trying
to debug a crashed kernel with a different kernel.debug. This won't work. I generally copy
kernel.debug to /var/crash/kernel.debug.date, so I can tell when a particular debug kernel was built.
This lets me date−match the current kernel to a debugging kernel, and also tells me when a
kernel.debug is old enough that I can delete it.

With any luck, you'll never need these debugging kernels, though personally, I've found my luck to
be unreliable. Debugging kernels take little disk space and provide quick answers when trouble hits,
so I strongly suggest using them.

455

Dumpon

Now it's time to tell the system where to write the core dump—this location is the dumpdev.
FreeBSD uses the swap partition as the dump device, which is why it has to be slightly larger than
your physical memory. (You can use a UFS partition, but after the crash it won't be a usable UFS
partition any more!)

You can get the device name from /etc/fstab. Look for a line with a FSType entry of swap; the first
entry in that line is the physical device name. For example, on my laptop, my swap field in /etc/fstab
looks like this:

..
/dev/ad0s4b none swap sw 0 0
..

Tell the system to use a dump device with dumpon(8), which must be set each time the system
boots. Of course, as you might guess, there's an rc.conf switch for this. My swap partition is
/dev/ad0s4b, so I specify this as the dump device in /etc/rc.conf:

..
dumpdev="/dev/ad0s4b"
..

Savecore

Next, tell your system where to save the dump after the reboot using savecore(8). You can change
the default, /var/crash, with rc.conf's dumpdir setting. (This directory must exist; savecore will not
create it!)

As you become more experienced in saving panics, you may find that you need to adjust the
core−saving behavior. Read savecore(8), and set any appropriate options in savecore_flags in
/etc/rc. One popular flag is −z, which compresses the core file and can save some disk space.
Savecore is now smart enough to automatically eliminate unused memory from the dump, which
can save a lot of room.

Upon a Crash

If you're in front of your computer when it crashes, you'll see the panic message. If the system is set
to reboot automatically, numbers will start to flow by, counting the megs of memory being dumped.
Finally, the computer will reboot, fsck will run, and you can watch savecore copy the memory dump
from swap to a file.

If your system doesn't reboot automatically, you'll need to enter two commands after the panic, at
the debugger prompt: panic to sync the disks and continue to start the reboot process.
(FreeBSD supports many other debugging options, but you have to know how to use the kernel
debugger to make use of them.)

Dumps and Bad Kernels

Some kernels just crash and die during boot, or won't stay up long enough to fix a problem. In that
case, you need to boot with a different kernel.

456

The problem here is that savecore needs to use a kernel file to build the dump image. By default,
savecore uses the booting kernel. If you are booting off a different kernel after a panic, you must run
savecore manually to tell it where to find the proper kernel file. Interrupt the boot during the initial
countdown, and boot into single−user mode with this command:

..
ok boot −s
..

When the system gives you a command prompt, fsck your system first. After a panic, the disks are
almost always dirty:

..
fsck −p
..

(This can take several minutes on a modern (huge) disk.)

Once fsck finishes, mount the filesystem where you keep your kernel core files:

..
 # mount /var
..

Finally, save your kernel core using the proper kernel file, telling savecore which kernel file to use
with the −N flag. If your panicked kernel is /kernel.bad, use something like this:

..
savecore −N /kernel.bad /var/crash
..

You can, of course, use additional savecore options like −v and −z in a manual core dump.

Using the Dump

If you're a kernel developer, this is where you stop listening to me and rely upon your own
debugging experience. If you're a new systems administrator, though, you probably don't know
enough about C and kernel internals to have any real hope of debugging a complicated kernel
issue. As such, we'll focus on extracting enough information to give a developer a good shot at
identifying the problem.

If you look at /var/crash after a dumped panic, you'll see the files kernel.0 and vmcore.0. (Each
subsequent crash dump will get a consecutively higher number, such as kernel.1 and vmcore.1.)
The vmcore.0 file is the actual memory dump, while the kernel.0 file is a copy of the crashed kernel.
The kernel.0 file isn't useful for what we're doing, but keep it just in case. The vmcore.0 file is vital.

Once you actually have a crash, you might copy your debugging kernel to /var/crash/kernel.debug.0
to keep dumps in sync with their kernels.

457

Note The rest of this process is an excellent opportunity to use script(1).

Now start the gdb debugger. Gdb takes three arguments: a −k to configure the debugger
appropriately for kernel work, the name of a file containing the kernel with symbols, and the name of
the memory dump:

..
gdb −k kernel.debug.0 vmcore.0
..

Once you do that, gdb will spit out its copyright information, the panic message, and a copy of the
memory−dumping process. We've seen an example of a panic earlier, so I won't repeat it now;
what's new is the debugger prompt you get back at the end of all this:

..
(kgdb)
..

You've now gotten further than any number of people who have system panics. Pat yourself on the
back. To find out exactly where the panic happened, type where and hit ENTER.

..
(kgdb) where
#0 dumpsys () at ../../../kern/kern_shutdown.c:505
#1 0xc0143119 in db_fncall (dummy1=0, dummy2=0, dummy3=0,
 dummy4=0xe0b749a4 `` \0048\200%'') at ../../../ddb/db_command.c:551
#2 0xc0142f33 in db_command (last_cmdp=0xc0313724, cmd_table=0xc0313544,
 aux_cmd_tablep=0xc030df2c, aux_cmd_tablep_end=0xc030df30)
 at ../../../ddb/db_command.c:348
#3 0xc0142fff in db_command_loop () at ../../../ddb/db_command.c:474
#4 0xc0145393 in db_trap (type=12, code=0) at ../../../ddb/db_trap.c:72
#5 0xc02ad0f6 in kdb_trap (type=12, code=0, regs=0xe0b74af4)
 at ../../../i386/i386/db_interface.c:161
#6 0xc02ba004 in trap_fatal (frame=0xe0b74af4, eva=40)
 at ../../../i386/i386/trap.c:846
#7 0xc02b9d71 in trap_pfault (frame=0xe0b74af4, usermode=0, eva=40)
 at ../../../i386/i386/trap.c:765
#8 0xc02b9907 in trap (frame={tf_fs = 24, tf_es = 16, tf_ds = 16, tf_edi = 0,
 tf_esi = 0, tf_ebp = −524858548, tf_isp = −524858592,
 tf_ebx = −525288192, tf_edx = 0, tf_ecx = 1000000000, tf_eax = 0,
 tf_trapno = 12, tf_err = 0, tf_eip = −1071645917, tf_cs = 8,
 tf_eflags = 66182, tf_esp = −1070136512, tf_ss = 0})
 at ../../../i386/i386/trap.c:433
#9 0xc01ffb23 in vcount (vp=0xe0b0bd00) at ../../../kern/vfs_subr.c:2301
#10 0xc01a5e58 in spec_close (ap=0xe0b74b94)
 at ../../../fs/specfs/spec_vnops.c:591
#11 0xc01a55f1 in spec_vnoperate (ap=0xe0b74b94)
 at ../../../fs/specfs/spec_vnops.c:121
#12 0xc0207454 in vn_close (vp=0xe0b0bd00, flags=3, cred=0xc32cce00,
 td=0xe0a8d360) at vnode_if.h:183
#13 0xc0207fab in vn_closefile (fp=0xc3369080, td=0xe0a8d360)
 at ../../../kern/vfs_vnops.c:757
#14 0xc01b1d50 in fdrop_locked (fp=0xc3369080, td=0xe0a8d360)
 at ../../../sys/file.h:230
#15 0xc01b155a in fdrop (fp=0xc3369080, td=0xe0a8d360)
 at ../../../kern/kern_descrip.c:1538
#16 0xc01b152d in closef (fp=0xc3369080, td=0xe0a8d360)
 at ../../../kern/kern_descrip.c:1524
#17 0xc01b114e in fdfree (td=0xe0a8d360) at ../../../kern/kern_descrip.c:1345
#18 0xc01b5173 in exit1 (td=0xe0a8d360, rv=256)

458

 at ../../../kern/kern_exit.c:199
#19 0xc01b4ec2 in sys_exit (td=0xe0a8d360, uap=0xe0b74d20)
 at ../../../kern/kern_exit.c:109
#20 0xc02ba2b7 in syscall (frame={tf_fs = 47, tf_es = 47, tf_ds = 47,
 tf_edi = 135227560, tf_esi = 0, tf_ebp = −1077941020,
 tf_isp = −524857996, tf_ebx = −1, tf_edx = 135044144,
 tf_ecx = −1077942116, tf_eax = 1, tf_trapno = 12, tf_err = 2,
 tf_eip = 134865696, tf_cs = 31, tf_eflags = 663, tf_esp = −1077941064,
 tf_ss = 47}) at ../../../i386/i386/trap.c:1049
#21 0xc02ae06d in syscall_with_err_pushed ()
#22 0x80503a5 in ?? ()
#23 0x807024a in ?? ()
#24 0xbfbfffb4 in ?? ()
#25 0x807daaf in ?? ()
#26 0x807d6eb in ?? ()
#27 0x80630c1 in ?? ()
#28 0x8062fed in ?? ()
#29 0x805ea4c in ?? ()
#30 0x8065949 in ?? ()
#31 0x806544d in ?? ()
#32 0x806dc17 in ?? ()
#33 0x80616b7 in ?? ()
#34 0x80613f0 in ?? ()
#35 0x8048135 in ?? ()
(kgdb)
..

Whoa! This is some pretty intense stuff. If you copied this and the output of uname −a into an email
and sent it to hackers@FreeBSD.org, various developers would take note and help you out. They'd
probably write you back and tell you other things to type at the kgdb prompt, but you'd definitely get
developer attention. You'd be well on your way to getting the problem solved, and helping the
FreeBSD folks squash a bug.

Advanced Kernel Debugging

If you're not familiar with programming, nobody would blame you if you stopped here, but dig we
must. So, without further ado, let's see what we can learn from the debug message, and try to figure
out some things to include in that first email. Without being intimate with the kernel, you can't solve
the problem yourself, but you might be able to help narrow things down a little.

By gathering the information you can before sending an email, you short− circuit a round or two of
email. (If you've used email support in a crisis, you know just how valuable this is!) Without being a
kernel hacker, you can't know which tidbit of knowledge is most important, so you need to include
everything you can glean from the output.

The first thing to realize is that the debugger backtrace contains actual instructions carried out by
the kernel, in reverse order. Line #1 is the last thing the kernel did before dumping the system
entirely in line 0. (When someone says "before" or "after," they're almost certainly talking about
chronological order and not the order things appear in the debugger.)

In a panic, the kernel will call either a function called trap or (if you have INVARIANTS in your
kernel) one called panic. You'll see variants on trap and panic, such as db_trap, but you just want
the plain, old unadorned trap or panic. Look through your gdb output for either of these functions. In
the previous example, there's a trap in line #8. We see other types of trap on lines 4–7, but no plain,
straightforward trap statements. These other traps are helper functions called by trap to try to figure

459

out exactly what happened and what to do about it.

Whatever happened right before line #8 chose to panic. In line #9, we see:

..
#9 0xc01ffb23 in vcount (vp=0xe0b0bd00) at ../../../kern/vfs_subr.c:2301
..

The hex numbers don't mean much, but we see in this panic something called vcount. If you try
man vcount, you'll see that vcount(9) is a standard system call. The panic occurred while
executing code that was compiled from line 2301 of the file /usr/src/sys/kern/vfs_subr.c. (All paths in
these dumps should be under the kernel source directory, usually /usr/src/sys.) This gives a
developer a very good idea of where to look for this problem.

Examining Lines

Let's look at line #9 in more detail. Use the up command and the number of lines you want to move:

..
(kgdb) up 9
#9 0xc01ffb23 in vcount (vp=0xe0b0bd00) at ../../../kern/vfs_subr.c:2301
2301 SLIST_FOREACH(vq, &vp−>v_rdev−>si_hlist, v_specnext)
(kgdb)
..

Here we see the actual line of vfs_subr.c that was compiled into the panicking code. You don't need
to know what SLIST_FOREACH is (it's a macro, by the way). Getting this far is pretty good, but
there's still a little more information you can squeeze out of this dump without knowing exactly how
the kernel works.

Examining Variables

If you have some minor programming experience, you'd probably suspect that the terms in the
parentheses after SLIST_FOREACH are variables, and you'd be right. Each of those variables has a
range of acceptable values, and someone familiar with the code would recognize the legitimate
ones. By printing out the contents of each variable, we can jump−start the debugging process. (Tell
gdb to print a variable's contents with the p command, giving the variable name as an argument.)

Let's look at the middle variable, vp:

..
(kgdb) p vp
$2 = (struct vnode *) 0xe0b0bd00
(kgdb)
..

The (struct vnode *) bit tells us that this is a pointer to a data structure. You can show its contents
by putting an asterisk in front of the variable name, like so:

..
(kgdb) p *vp

460

$3 = {v_flag = 8, v_usecount = 2, v_writecount = 1, v_holdcnt = 0,
 v_id = 6985, v_mount = 0x0, v_op = 0xc2d52a00, v_freelist = {tqe_next = 0x0,
 tqe_prev = 0xe083de1c}, v_nmntvnodes = {tqe_next = 0xe0b0b700,
 tqe_prev = 0xe0b0c024}, v_cleanblkhd = {tqh_first = 0x0,
 tqh_last = 0xe0b0bd2c}, v_dirtyblkhd = {tqh_first = 0x0,
 tqh_last = 0xe0b0bd34}, v_synclist = {le_next = 0x0, le_prev = 0x0},
 v_numoutput = 0, v_type = VBAD, v_un = {vu_mountedhere = 0x0,
 vu_socket = 0x0, vu_spec = {vu_specinfo = 0x0, vu_specnext = {
 sle_next = 0x0}}, vu_fifoinfo = 0x0}, v_lastw = 0, v_cstart = 0,
 v_lasta = 0, v_clen = 0, v_object = 0x0, v_interlock = {mtx_object = {
 lo_class = 0xc0335c60, lo_name = 0xc02ef5c1 "vnode interlock",
 lo_flags = 196608, lo_list = {stqe_next = 0x0}, lo_witness = 0x0},
 mtx_lock = 4, mtx_recurse = 0, mtx_blocked = {tqh_first = 0x0,
 tqh_last = 0xe0b0bd84}, mtx_contested = {le_next = 0x0, le_prev = 0x0},
 tsp = {tv_sec = 3584, tv_nsec = 101067509},
 file = 0xc02ef50a "../../../kern/vfs_subr.c", line = 1726,
 has_trace_time = 0}, v_lock = {lk_interlock = 0xc036e320,
 lk_flags = 16777216, lk_sharecount = 0, lk_waitcount = 0,
 lk_exclusivecount = 0, lk_prio = 80, lk_wmesg = 0xc02ef5d1 "vnlock",
 lk_timo = 6, lk_lockholder = −1}, v_vnlock = 0x0, v_tag = VT_NON,
 v_data = 0x0, v_cache_src = {lh_first = 0x0}, v_cache_dst = {
 tqh_first = 0x0, tqh_last = 0xe0b0bdd8}, v_dd = 0xe0b0bd00, v_ddid = 0, v_pollinfo = 0x0, v_vxproc = 0x0}
(kgdb)
..

Note For those of you who are learning C, this is an excellent example of how it's easier to hand
around a pointer than the object it references.

An interested developer can dig through this to see what's going on. Let's look at the first variable,
vq, and try to get similar information from it:

..
(kgdb) p vq
$4 = (struct vnode *) 0x0
(kgdb)
..

This isn't exactly a problem, but we're stuck. A pointer equal to 0x0 is a null pointer. There are many
legitimate reasons for having a null pointer, but there isn't anything in it for us to view. Feel free to
try, however; you really can't hurt the dump any further by using gdb.

..
(kgdb) p *vq
Cannot access memory at address 0x0.
(kgdb)
..

You've probably heard the words "null pointer" in close proximity to the word "panic." Without
digging into the kernel code, you can't assume that this particular null pointer caused the panic. In
fact, in this particular panic, the null pointer is perfectly legitimate; the kernel panicked trying to
decide what value to assign to this newly allocated pointer.[1]

461

Apparent Gdb Weirdness

You could try digging a little further into the data to see what's going on. The second variable in our
panic (vp−>v_rdev−>si_hlist) actually goes on a bit; let's take a look a little deeper into it:

..
(kgdb) p vp−>v_rdev
There is no member named v_rdev.
(kgdb)
..

Normally, this would work, and if you've used gdb before, you might think that gdb is wrong, but in
this case it's correct. Here, v_rdev is a convenience macro, though only people who have read the
kernel source code would know that. Actually, v_rdev expands to v_un.vu_spec.vu_specinfo. You
couldn't be expected to know that, but don't be surprised if a developer asks you to type something
different than what actually appears in the trace.

To view vp−>v_rdev, enter this command:

..
(kgdb) p vp−>v_un.vu_spec.vu_specinfo
$5 = (struct specinfo *) 0x0
(kgdb)
..

If you've gotten this far, you should be able to recognize the null pointer here, but that's about it.

Results

In this particular case, your extra digging would produce the answer for a developer very quickly.
The tidbit in the contents of the vp structure identifies the problem almost immediately.

..
v_type = VBAD
..

This is a vnode that isn't currently used, and shouldn't even be in this part of the system. A
developer would jump directly on that, and try to learn why the system is trying to set a new vnode
to a bogus value.

I got this particular kernel dump from a kernel developer, who commented that while he "could fix
vcount() to return 0 for invalid vnodes—it wouldn't, strictly speaking, be incorrect—but the *real* bug
is somewhere else, and ‘fixing’ vcount() would just hide it." This is the correct attitude to have on this
sort of problem—BSD users expect bugs to be found, not painted over. This means, however, that
you can expect your developer to come back to you with requests for further information, and
probably more things to type into gdb. He might even ask you to send the kernel.debug and vmcore
file.

462

Vmcore and Security

The vmcore file contains everything in your system's memory at the time of the panic, which may
include all sorts of security−impacting information. Someone could conceivably use this information
to break into your system. A developer might write you and request a copy of the file for all sorts of
legitimate reasons: It makes debugging easier and can save countless rounds of email. Still,
consider the potential consequences of someone having this information very carefully. If you don't
recognize the person who asks, or if you don't trust her, there's no way you should send the file!

If the panic is reproducible, however, you can cold−boot the system to single−user mode and trigger
the panic immediately. That way, if the system never starts any programs that contain confidential
information, and nobody types any passwords into the system, the dump cannot contain that
information. Reproducing a panic in single−user mode hence generates a "clean" core file.

To prepare a clean core file, enter boot −s at the loader prompt to bring the system to a command
prompt, then do the minimal setup necessary to prepare a dump and panic the system:

..
dumpon /dev/ad0s4b
mount −art ufs
/usr/local/bin/command_that_panics_the_system
..

The first line tells the system where to put its dump (put your correct swap partition name here). The
second line mounts the filesystems as read−only, so you won't have to fsck after your panic. (Since
you know the crash is coming, why make yourself fsck?) Finally, you run the command that triggers
the panic. You may need some additional commands, depending on your local setup, but this
should get you up and running in most cases.

Symbols vs. No Symbols

As a final treat, here's a debugging session from the same panic and the same kernel, but without
debugging symbols. Compare it to the initial output from where, discussed earlier in the chapter.

..
(kgdb) where
#0 0xc01c5982 in dumpsys ()
#1 0xc0143119 in db_fncall ()
#2 0xc0142f33 in db_command ()
#3 0xc0142fff in db_command_loop ()
#4 0xc0145393 in db_trap ()
#5 0xc02ad0f6 in kdb_trap ()
#6 0xc02ba004 in trap_fatal ()
#7 0xc02b9d71 in trap_pfault ()
#8 0xc02b9907 in trap ()
#9 0xc01ffb23 in vcount ()
#10 0xc01a5e58 in spec_close ()
#11 0xc01a55f1 in spec_vnoperate ()
#12 0xc0207454 in vn_close ()
#13 0xc0207fab in vn_closefile ()
#14 0xc01b1d50 in fdrop_locked ()
#15 0xc01b155a in fdrop ()

463

#16 0xc01b152d in closef ()
#17 0xc01b114e in fdfree ()
#18 0xc01b5173 in exit1 ()
#19 0xc01b4ec2 in sys_exit ()
#20 0xc02ba2b7 in syscall ()
#21 0xc02ae06d in syscall_with_err_pushed ()
#22 0x80503a5 in ?? ()
#23 0x807024a in ?? ()
#24 0xbfbfffb4 in ?? ()
#25 0x807daaf in ?? ()
#26 0x807d6eb in ?? ()
#27 0x80630c1 in ?? ()
#28 0x8062fed in ?? ()
#29 0x805ea4c in ?? ()
#30 0x8065949 in ?? ()
#31 0x806544d in ?? ()
#32 0x806dc17 in ?? ()
#33 0x80616b7 in ?? ()
#34 0x80613f0 in ?? ()
#35 0x8048135 in ?? ()
..

That's it. There are no hints here about where the panic happened, just the function names that
happened. An extraordinarily experienced hacker might happen to recognize a place in the kernel
where the exact system calls take place, in exactly this order. If the kernel developer is really, really
interested in the problem, he could get some information out of it like this:

..
(kgdb) p vcount
$1 = {<text variable, no debug info>} 0xc01ffb00 <vcount>
(kgdb) up 9
#9 0xc01ffb23 in vcount ()
(kgdb) p/x 0xc01ffb23 − 0xc01ffb00
$2 = 0x23
(kgdb)
..

The p/x command means "print in hexadecimal." Here, we've learned roughly how far into vcount()
the problem happened. If the developer has a similar kernel built with similar source code, he can
do this:

..
(kgdb) l *(vcount + 0x23)
0xc01fb913 is in vcount (../../../kern/vfs_subr.c:2301).
2296 struct vnode *vq;
2297 int count;
2298
2299 count = 0;
2300 mtx_lock(&spechash_mtx);
2301 SLIST_FOREACH(vq, &vp−>v_rdev−>si_hlist, v_specnext)
2302 count += vq−>v_usecount;
2303 mtx_unlock(&spechash_mtx);
2304 return (count);
2305 }
(kgdb)
..

That's it. There's no way to get the bad vnode information out. The developer is left on his own,
poking through the code to see if he can figure out the problem via sheer dogged determination.
And in any event, it's very unlikely that any developer capable of working on a problem will have the

464

exact setup that you have on a panicking system. While many of them would be happy to set up
such a system in exchange for lavish amounts of hard currency, it's a bit much to expect for free.

[1]How did I know this? I exchanged several emails with a kernel developer about this dump, that's
how.

Serial Consoles

Being able to gather debugging information is nice, but what if you need to do so remotely? Or what
if you need to reset the machine remotely when it isn't responding to the network? This is best done
with a serial console. If I had had a serial console on my first panicking system, I wouldn't have
been juggling pen, paper, and monitor.

Real UNIX hardware (such as Alpha and SPARC) has a hardware serial console capability. On
these systems, you can attach a serial cable to the serial console port and have unfettered access
to the BIOS, boot messages, and startup controls. (Most x86 hardware does not allow this; you
must be at the console to look at the BIOS or to press the space bar to interrupt the boot. A very few
Intel motherboards, such as the L440GX, do have this functionality, but this is a special feature you
must hunt for.)

This can be a problem when your FreeBSD system is in a colocation facility on the other side of the
country. You have a couple of options here: a hardware serial console or FreeBSD's built−in
software serial console. Either console requires an accessible serial device nearby. If you have two
FreeBSD boxes in one location, you can plug them into each other. If you have a huge array of
FreeBSD boxes, companies such as Lucent make network−accessible "terminal servers" that do
nothing but handle gobs of serial connections.

Hardware Serial Console

Nothing any operating system can do will give you access to the PC−compatible BIOS messages
across a serial port. This stuff happens before the operating system starts and before the hard drive
is read.

Some hardware solutions do exist to work around this. The best I've seen is the PC Weasel
(http://www.realweasel.com/). It's a video board with a serial port instead of a video port. By
connecting a serial cable to the Weasel, you can manipulate the BIOS remotely, interrupt the boot
to come up in single−user mode, and generally do whatever you like with the system as if you were
at the console. (There are other manufacturers of similar devices, but they either require proprietary
client software or are far more expensive.)

Software Serial Console

FreeBSD includes a software serial console. As FreeBSD boots, it decides where to put its
console—on the monitor and keyboard by default. With a few tweaks, though, you can have the
console come up on a serial port, but your system must have a serial port. (Some hardware is
increasingly arriving "legacy−free," which means that it lacks serial ports and ISA slots; you may
need to buy a PCI serial card.)

This serial console has a couple of disadvantages: It does not kick in until FreeBSD's boot loader
starts and you will not see BIOS messages, though you will get a chance to interact with the boot

465

process. Still, it's good enough for most uses.

Software Serial Console Physical Setup

You must have a null modem cable to use a serial console (available at any computer store or from
online vendors—check pricewathc.com). Get the best cable you can find; if you have an emergency
and need to use the serial console, you're probably not in the mood to deal with line noise.

Plug one end of the null modem cable into the serial console port on your FreeBSD server—by
default the first serial port (COM1 or sio0, depending on what operating system you're used to). You
can change this with a kernel recompile, but it's generally simpler to just use the default on a server.

Plug the other end of your null modem cable into an open serial port on another system. I
recommend either another FreeBSD or other UNIX system, or a terminal server. You can use a
Windows system, but that won't give you any remote−control functionality. (Yes, you can use VNC
or PC Anywhere on the Windows system, but you're starting to look at a complicated setup when a
simple FreeBSD box would suffice.)

If you have two FreeBSD machines at a remote location, and want to use serial consoles for both of
them, simply attach the console cable to the second serial port on the other server. If you have
three machines, you can daisy−chain them into a loop. By combining twos and threes, you should
be able to get serial consoles on any number of FreeBSD systems. (I've worked in areas with 30 or
40 FreeBSD machines in one room, where installing monitors was simply not practical, and serial
consoles were used to great effect.)

Note If tracking which machine is attached to which port becomes a problem, invest in a terminal
server.

Configuring the Software Serial Console

If you're using the serial console exclusively, tell the system to use it by adding an entry in
/boot/loader.conf:

..
console="comconsole"
..

To switch back to the default video console, remove the line or comment it out. You could also set
this explicitly in /boot/loader.conf with this line:

..
console="vidconsole"
..

Changing the Configuration

If you're in a server−room situation, you may find that you want to switch back and forth from a
standard console to a serial console. I generally manage large arrays of FreeBSD boxes via the
serial console. If one particular machine is exceptionally troublesome, I might go and put a real
console on it; I don't want to reconfigure /boot/loader.conf to make the physical console work—I
want it to "just happen." You can do this easily with FreeBSD.

466

One of the first things any x86 system does upon boot is check for the presence of a keyboard. You
can set up your FreeBSD system so that it will use a regular console if it detects a keyboard, and a
serial console if it doesn't. (It's the best solution we have with inflexible x86 hardware.) To make this
work, edit the file /boot.config by putting only this in it:

..
−h
..

This is the argument passed to the system boot, much as if you interrupted the boot and typed boot
−h. (Of course, to really do that, you would need to have a keyboard plugged in, so that would
render the whole thing kind of moot!)

If you have −h in /boot.config, and you don't have a keyboard, the system will use the serial
console. If there is a keyboard, the system will use the video console. This method of doing the
check is rather kludgy, but it's good enough if you know the rules.

Using a Serial Console

You can access the serial console in a variety of ways, all of which require a second computer. If
your second computer is running a Microsoft operating system, the Hyperterm program gives you
access to your serial ports (just set your terminal preferences to 9600 baud, 8 bits, no parity, and 1
stop bit). To use a handheld with a serial port (I frequently use a Handspring Visor with a serial
cradle), run one of the several free vt100 terminal programs on it. If your second computer also runs
FreeBSD (as it should if you want the maximum bang for your buck), you can use FreeBSD's
terminal program. Since this is a FreeBSD book, this is the solution we'll discuss.

FreeBSD accesses serial lines with tip(1), a program that allows you to connect to a remote system
in a manner similar to telnet. To run tip, do this:

..
tip portname
..

A port name is shorthand for specifying the number and speed to be used on a serial port. The file
/etc/remote contains a list of port names. Most of the entries in this file are relics of the day when
UUCP was the major data−transfer protocol and serial terminals were the norm instead of the
exception. At the end of this file, however, you'll see a few entries like this:

..
Hardwired line
cuaa0b|cua0b:dv=/dev/cuaa0:br#2400:pa=none:
cuaa0c|cua0c:dv=/dev/cuaa0:br#9600:pa=none:

Finger friendly shortcuts
com1:dv=/dev/cuaa0:br#9600:pa=none:
com2:dv=/dev/cuaa1:br#9600:pa=none:
com3:dv=/dev/cuaa2:br#9600:pa=none:
com4:dv=/dev/cuaa3:br#9600:pa=none:
..

Older UNIX hands will recognize cuaa0b and cuaa0c. (The "com" entries were added for the
convenience of people who have grown up with Windows.) Assume that you have two FreeBSD

467

boxes wired back−to−back, with each one's serial port 1 null−modemed into serial port 2. You'll
want to connect to your local serial port 2 to talk to the other system's serial console:

..
tip com2
connected
..

And you won't see anything else, no matter what you type.

If you log into the other system and reboot it, you'll abruptly see action in your tip window:

..
boot() called on cpu#1
Waiting (max 60 seconds) for system process `bufdaemon` to stop...stopped
Waiting (max 60 seconds) for system process `syncer` to stop...stopped

syncing disks... 8 8 2 2
done
Uptime: 21m20s
Rebooting...
cpu_reset called on cpu#1
cpu_reset: Stopping other CPUs
cpu_reset: Restarting BSP
cpu_reset_proxy: Stopped CPU 1
..

There will be a long pause while the system boots. If you're near the system, you'll see the standard
BIOS messages flash by. Eventually, you'll see something like this:

..
Console: serial port
BIOS drive A: is disk0
BIOS drive C: is disk1
BIOS 639kB/523200kB available memory

FreeBSD/i386 bootstrap loader, Revision 1.0
(mwlucas@magpire.blackhelicopters.org, Sat Jul 7 18:40:47 EDT 2001)
Loading /boot/defaults/loader.conf
/boot/kernel/kernel text=0x1d7b58 data=0x3b28c+0x5132c
syms=[0x4+0x30420+0x4+0x3a852]
/
Hit [Enter] to boot immediately, or any other key for command prompt.
Booting [/boot/kernel/kernel] in 10 seconds...
..

Hit the space bar to interrupt the boot.

At this point, it's just like you're at the keyboard. It doesn't matter if the system is 1,000 miles away;
you can change your booting kernel, get a verbose boot, bring it up in single−user mode and
manually fsck the hard drive, whatever. The serial console can't save you from a BIOS or hardware
failure, but it will make other things much simpler to diagnose.

Type boot to continue loading the kernel. Eventually you'll see this:

468

..
Additional TCP options:.
Starting background filesystem checks

Tue Jul 10 19:40:21 EDT 2001
..

This is almost exactly like being at the console, except you get no logon prompt.

Serial Login

By default, serial ports are not treated as logon devices. Many people use their serial ports for serial
mice or modems, not for console connections, and if you put mouse movements into a logon
prompt, the system will be confused at best. You can use a serial port as a mouse port, a modem
port, or a console port, but not all at the same time. People who want to get a logon prompt over a
serial line are generally assumed to know how to activate the terminal on that port.

To activate the terminal, f irst check the /etc/ttys f i le for a l ist of al l the terminals and
pseudo−terminals on the system. The serial port is just another terminal. In terminal−speak,
sio0/com1 is known as ttyd0, for "tty dialup 0".[2] Find the line for ttyd0:

..
ttyd0 "/usr/libexec/getty std.9600" dialup off secure
..

The fourth field in this line says that this terminal is off. Change that "off" to "on", and then it's time to
restart the daemon init, or process ID 1, that pro− vides terminal services. You don't need to check
ps output to get the process ID of init; init always has the process ID 1. If init is not running, the
system is not running, and you can restart it gracefully with the −1 signal.

..
kill −1 1
..

Once you do this, you'll abruptly see activity on your serial console.

..
Tue Jul 10 19:50:02 EDT 2001
FreeBSD/i386 (magpire.blackhelicopters.org) (ttyd0)

login:
..

Emergency Logon Setup

In some very bad situations, a FreeBSD system might stop talking to the network. Perhaps the
network card has gone bad, or the system panics when some program starts. I was once in a
situation where a server on the other side of the country panicked upon boot because the database
program crashed the whole system as soon as it started. The system would reboot, check its disks,
start up its programs, and crash. I needed to add one command−line option to the database
program's startup script for the crashes to stop.

469

The problem, though, was that the system wouldn't be up long enough for me to SSH in, become
root, and shut down the database. While I had a serial console, it wasn't configured to allow logins. I
could sit there on the serialconsole and watch the panic message appear over and over again, all
the while thinking, "You know, if I could just log in over this serial port, I could fix that startup script."
Here's how to do exactly that. While you might never need this, if you do, you'll be grateful you know
it.

Because FreeBSD does not restrict console access until the system reaches multi−user mode, you
can interrupt the boot process, boot to single−user mode, and make your changes. To do so, open
your serial−console connection, and then get someone on the other end to power−cycle the
machine. (This isn't good for your computer, but neither is repeated crashing!) Now boot into
single−user mode, and at a command prompt, do the following:

..
fsck −p
..

This will clean up any damage done by the power cycle. Now run this:

..
mount −a
..

You can now access your local filesystems. Now, edit the /etc/ttys file to enable the serial port logon
as described in the previous section. Here you can also edit the startup script that's causing the
system to crash.

Exit the shell to complete the boot, and you'll be able to log in via the serial console.

Disconnecting the Serial Console

The tip(1) program uses the tilde (~) as a control character. To disconnect the serial console, enter
the disconnect sequence "tilde−period" at any time:

..
~.
..

You'll be gracefully disconnected, but not logged out (serial is a very loose protocol). If you go back
in and type tip com2 again, you'll be back at your login session. If server1 has a cable plugged
into the console port of server2, it might look like this:

..
server1#tip com1
connected

server2#
..

This might not worry you, but a break−in on server1 would immediately compromise server2. Make
it an unbreakable habit to log out when you're connected via serial!

470

[2]The astute among you might wonder what "tty" stands for. It's "teletype." Yes, UNIX is that old.

Submitting a Problem Report

You could argue that this should have been included in Chapter 2 on "Getting More Help." "Problem
Report" (PR) sounds impressive, doesn't it? Submitting a PR requires a certain minimum level of
information, however, that you wouldn't have until after reading this chapter.

Problem Report System

FreeBSD uses GNATS, a popular bug−tracking database, to track problem reports. The main
FreeBSD GNATS database is available under http://www.FreeBSD.org/support.html. For a problem
report to be entered into GNATS, it must be submitted in an appropriate format in one of two ways.

First, you can submit your PR on the Web. This might mean a lot of cutting and pasting, but it's
certainly possible. The PR form can be found online at http://www.FreeBSD.org/send−pr.html.

If you have a FreeBSD system on the Net, however, you'll find that the simpler way to do this is with
send−pr(1). This generates a template for you to fill out with the proper information, and formats the
message specifically for use in GNATS. Patches, suggestions, and bug reports submitted via
send−pr are recorded permanently.

What's in a PR?

The Problem Report process isn't for problems like "my network card doesn't work." You need to
troubleshoot your own problems, with the help of a mailing list or list archive, if appropriate. Send−pr
is for patches and debugging information.

A good PR contains enough information to fix the problem, and hopefully even a suggested
solution. If you have time to spare, go take a look through some of the open PRs; you might find it
illuminating. As I write this, there are 1,918 open PRs. Many contain good, solid debugging
information. Others are, to put it kindly, less useful.

The FreeBSD FAQ contains a joke by Dag−Erling C. Sm˜rgrav: "How many−current users does it
take to change a light bulb?" Part of the answer is: "Three to submit PRs about it, one of which is
misfiled under doc and consists only of"it's dark.'' Remember this when filing a PR; include
debugging output, or better still a patch to fix the problem. Before you open a PR, you need to
carefully evaluate what sort of problem you have. If the problem amounts to "it's dark," you need to
dig a little more.

Using Send−pr

The send−pr command brings up a text template in whatever editor you have in $EDITOR. Once
you've completed the template, send−pr mails it to GNATS for you. It's assumed that your system
has basic emai l funct ional i ty . I f that isn ' t the case for you, use the Web in ter face
(http://www.FreeBSD.org/send−pr.html) to submit your PR. Here's a sample of the template:

..
To: FreeBSD−gnats−submit@freebsd.org
From: Michael Lucas <mwlucas>
Reply−To: Michael Lucas <mwlucas>
Cc:
X−send−pr−version: 3.113
X−GNATS−Notify:

471

>Submitter−Id: current−users
>Originator: Michael Lucas
>Organization: <organization of PR author (multiple lines)>
>Confidential: no <FreeBSD PRs are public data>
>Synopsis: <synopsis of the problem (one line)>
>Severity: <[non−critical | serious | critical] (one line)>
>Priority: <[low | medium | high] (one line)>
>Category: <choose from the list of categories above (one line)>
>Class: <[sw−bug | doc−bug | change−request | update | maintainer−update
] (one line)>
>Release: FreeBSD 5.0−CURRENT i386
>Environment:
System: FreeBSD pedicular.blackhelicopters.org 5.0−CURRENT FreeBSD 5.0−CURRENT #5:
Wed Apr 24 07:27:19 EDT 2002
mwlucas@pedicular.blackhelicopters.org:/shared/usr/currentobj/usr/src/sys/BLEEDING i386

 <machine, os, target, libraries (multiple lines)>
>Description:
 <precise description of the problem (multiple lines)>
>How−To−Repeat:
 <code/input/activities to reproduce the problem (multiple lines)>
>Fix:
 <how to correct or work around the problem, if known (multiple lines)>
..

Filling Out the Form

No matter which method you use, the problem lies in filling out the form. Let's go over it one line at a
time.

To, Subject,
Submitter−Id

These lines can be left alone. GNATS will take care of this for you.

From Make sure that the From line contains a valid email address; this is where
GNATS or a developer will try to contact you.

Originator This is your name, generally pulled from your system environment. While some
folks use handles on the Internet, this is a good place to put your real name. It's
difficult to treat a serious problem with the attention it deserves if your name
shows up as "Doctor Web."

Organization You can either fill in your organization or leave it blank.
Confidential This defaults to "no". GNATS is a public database.If you're putting confidential

information in a PR, you're doing something wrong. (If you believe that you have
discovered a bug with security implications, you can contact
security−office@FreeBSD.org. Don't do this just because the debugging
information includes your root password, however.)

Synopsis This line is probably the most critical. Give a brief, one−line description of the
problem, because developers frequently use this to decide which PRs to take a
look at. A synopsis like "My system sucks!" will get closed with a terse comment
about useless PRs, while something like "kernel panic under heavy CPU load,
dump debug attached" has a better chance of attracting skilled attention. If you
have a patch to fix the problem, put the word "PATCH" in the synopsis, which
will almost guarantee a reasonably quick response.

472

Severity This field gives you three choices; pick a reasonable one. If you get a reputation
for listing minor bugs as "critical," you'll find yourself ignored fairly quickly. (This
all works on the honor system, and reputation counts for more than you might
think.)

Priority The Priority field is a bit of a misnomer. This issue might be high priority for you,
but developers tend to ignore this field. Still, you get the option to set it. A good
synopsis line will get a better response than a priority of "high," but entering a
priority of high here might relieve your stress.

Category This field has several options, many of which are obsolete or pointless. For
example, if you have a problem with a piece of contributed code, filing a PR in
the GNU category will probably get you a response of "talk to the authors." For
kernel panics, use the "kern" category.

Class This field contains a general description of your PR. The choices are mostly
self−explanatory. If you can crash a program or the system, it's an "sw−bug."

Release Your system type is automatically entered in the Release field. If you're filling
out a PR on a different system than the one exhibiting the problem, you'll want
to correct this.

System Lastly, put the output of uname −a in the System field. You can add additional
information to this field to describe other relevant parts of your environment. For
example, if the machine is a heavily loaded news server, mention that. If you
have a snippet of a configuration file that reproduces the panic, put it here.

Description The Description field is a free−form, plain−text section for you to go into detail
about the issue. Don't rant or rave; just describe what happens. Include any
error messages, if you have them. This is where you put your debugger output.
If you don't have debugger output for a kernel panic, do not send a PR. Also
include your kernel configuration and the contents of /var/run/dmesg.boot.

How−To−Repeat In this field use either a snippet of code, a series of instructions, or a text
description of how to reproduce the problem. For some PRs, this can be very
short—"read FreeBSD−questions for a week and see how often this is asked" is
a perfectly legitimate How−To−Repeat for doc changes. More technical
problems require more information.

Fix The most important part of the PR goes under Fix. If you have a patch that fixes
the problem, put it here. If you have a workaround, put it here. Any− thing
you've discovered about how to solve the problem goes here. Sometimes the
most unusual fix or condition provides the vital clue for the solution.[3]

A good PR always has something in the Fix field. Your solution might not be the
one implemented, but it demonstrates that you've put some thought into the
matter. The incredible support FreeBSD offers through the mailing lists and
Web sites sometimes obscures the fact that when you're up against the wall, the
ultimate responsibility for solving problems rests on you.

[3]If you're using the Web interface, do not cut and paste patches into the Fix field. The Web
submission form transforms all tabs into spaces, and destroys patch formatting.

When you save and exit your editor, send−pr will ask if you want to submit the problem report. If you
think that your PR includes enough information to fix the problem, say "yes". Your system will mail it
in.

No matter which method you use to submit a PR, you'll receive a confirmation email. The subject
includes the PR number, usually something like "kern/22459", and your synopsis. Any mail sent to

473

FreeBSD−gnats−submit@ FreeBSD.org with that subject line will be attached to that PR. You can
submit patches and responses from any computer with a working mail system.

Similarly, any response sent to your patch will be tracked with the PR. You can check the status of
your PR at http://www.FreeBSD.org/cgi/query−pr.cgi.

Note Now that your suggestion is in the FreeBSD system, it'll be tracked forever. That is not a
guarantee that your suggestion will be taken, or that your problem will be solved; it'll simply
be recorded, publicly, forever.

PR Results

A properly filled−out PR will generally be quickly snatched up and closed. As of this date, I've
submitted 59 PRs. Most have been solved or committed, and closed. The odd ones out were trivial
goofs on documentation that lives under /usr/src/contrib, an area where the Project specifically
disavows responsibility for minor fixes. If I can get over 90 percent of my PRs successfully closed,
anyone can.

If you happen to hit an area of the system that nobody is particularly familiar with, your PR might
languish for some time. If it seems that your PR has been forgotten, drop a friendly note to the
appropriate mailing list with your PR number and a brief explanation of what it is and why it's
important. Since FreeBSD is a volunteer effort, it's quite possible that something happened to the
person who would normally handle your type of PR. While many FreeBSD developers are
professional programmers, for many of them this is still a hobby that must take a backseat to sick
kids or the big deadline. If nothing else, you can contact one of the commercial support companies
listed on the FreeBSD Web site.

A surprising number of difficult PRs are closed quickly, given the proper information. Just remember
that the FreeBSD folks are doing this out of love for their work, not because they have to. They want
to produce quality code, which is a stronger motivation than a paycheck. If you can help them
produce a quality product, they'll be delighted to work with you.

Congratulations! You're now as prepared for a crash as any non−kernel developer can be. Proper
preparation can make your life easier, and preparing for the worst is one of the best ways to sleep
uninterrupted at night.

474

Chapter 21: Desktop FreeBSD

Overview

Why use FreeBSD on the desktop? Well, why not? FreeBSD makes as good a desktop as it does a
server. While FreeBSD's development focus has generally been on the server side, that same
crash−resistance and stability makes it a wonderful desktop.

Your FreeBSD desktop will allow you to access your local Windows NT network, share your files,
browse the Web, read email, and compose letters, all without crashing even once. Plus, using
FreeBSD as a desktop is a wonderful way to learn UNIX and build your confidence as a sysadmin.

Note At one time, "workstation" meant "UNIX computer." The UNIX in question was SunOS, a
direct descendant of BSD4.2. If people could use BSD as a workstation that long ago, it'll
certainly work for you now.

This chapter will not discuss in great detail exactly how to turn FreeBSD into a comfortable desktop,
because that would be another book in itself! We'll go into some detail when discussing FreeBSD
software that offers SMB support (Server Message Block, or SMB, is discussed in the next section),
but otherwise we'll mostly provide pointers to useful programs that are documented elsewhere. With
the understanding of FreeBSD you have acquired by reading this book, and the help of the mailing
list archives, you should be able to make these tools work with just a bit of guidance.

Accessing File Shares

If you're on a typical office network, the standard network file−sharing protocol is Microsoft's
Common Internet File Sharing, or CIFS. (CIFS was once known as Server Message Block, or
SMB.) This is the typical "Network Neighborhood" that Windows users can access. While originally
provided only by Microsoft Windows systems, this protocol has become something of a standard.

Thankfully, today there's an open−source CIFS file−sharing server, called Samba. Plus, many other
commercial products, such as LanManager and NetApp, provide services via this protocol.
FreeBSD itself includes programs to access CIFS shares, which exist in two parts: a kernel module
and several user−land programs.

Prerequisites

Before you start, gather some basic information about your Windows network:

The workgroup or Windows domain name•
A valid username and password•
The IP address of the WINS server, or the DNS hostnames of all the hosts you want to
access. (You can get the WINS server IP by running ipconfig /all on a Windows
system.)

•

475

Character Sets

The first problem you have when attempting to access Windows shares is supporting the multiple
character sets so common in Windows. (It's very easy for a Windows user to use characters not
found in the standard English alphabet, and you don't want such a character to confuse your
kernel.)

The FreeBSD kernel does not include the libraries to support multiple character sets, so you'll need
to add them. Install the libiconv port from /usr/ports/converters/libiconv before you attempt to add
CIFS support to your kernel.

Kernel Support for CIFS

Now recompile your kernel to handle CIFS by adding the following options to your kernel:

...
options NETSMB
options NETSMBCRYPTO
options LIBMCHAIN
options LIBICONV
options SMBFS
...

The SMBFS kernel functions are also available as a module, but since you have to rebuild your
kernel anyway to include SMB networking support, you may as well compile it statically.

SMB Tools

Once you've built the kernel, install the SMB tools from /usr/ports/net/smbfs.[1] These tools must be
exactly synchronized with your kernel, which makes packages mostly useless, unless you have
several identical machines, and if you upgrade your FreeBSD install, you must upgrade the port. To
make life still more difficult, the master SMBFS source−code repository lurks behind a very
overloaded link in Kazakhstan. As such, I recommend that you store the distfile somewhere on your
network, so you can easily rebuild the tools without having to refetch the source from the other side
of the world (well, depending on where you're located).

Configuring CIFS

The SMB tools use a configuration file–either $HOME/.nsmbrc or /usr/local/ etc/nsmb.conf. All
settings in nsmb.conf override settings in user home directories.

The configuration file is divided into sections by labels in square brackets. For example, settings
that apply to every SMB connection are kept in the [default] section. You can create your own
sections by specifying servers, users, and shares, in one of the following formats:

...
[servername]
[servername:username]
[servername:username:sharename]
...

476

For example, information that applies to an entire server goes in a section named after the server.
Information that applies to a specific user is kept in a username section, and information that only
applies to a single share is kept in a label that includes the share name. You can lump the
information for all the shares under a [servername] entry if you don't have more specific
information per share or per user.

Note Nsmb.conf uses CIFS values–for example, my Windows username is mlucas, but my UNIX
username is mwlucas, so I use mlucas in nsmb.conf.

nsmb.conf Keywords

You use keywords, some of which can only be used in particular sections, to assign a configuration
to a section. For example, servers have IP addresses and users don't, so you wouldn't add the IP
address keywords to a user section.

To use a keyword, assign a value with an equal sign, as in keyword=value. Here are the
keywords.

...
workgroup=string
...

The workgroup keyword specifies the name of the NT domain or Windows Workgroup you want to
access.

...
addr=a.b.c.d
...

The addr keyword sets the IP (or IPX) address of an SMB server with this Windows hostname.
This keyword can only appear under a plain [servername] label.

...
nbns=a.b.c.d
...

The nbns keyword sets the IP address of the NetBIOS (WINS) nameserver. You can put this line in
the [default] section or under a particular [servername].

...
nbscope=string
...

The nbscope keyword sets the NetBIOS scope. If you don't know what NetBIOS scope is, you
probably don't need to set it.

...
retry_count
...

The retry_count keyword specifies the number of times the SMB client will try to contact a server
before assuming that the connection has broken. The default is probably fine.

...
timeout
...

477

The timeout setting is the length of time the system will wait for a response to an SMB request
before trying again. Again, the default is probably fine.

...
password=string
...

The password keyword sets a clear−text password for a user or a share. If you must store
passwords in nsmb.conf, be sure that only root can read the file. Storing a password in
$HOME/.nsmbrc is a bad idea on a multi−user system.

You can scramble this password by running smbutil −crypt, and the scrambled password will
have double dollar signs ($$) in front of it. However, while this will help prevent someone
accidentally seeing the password, it can be easily unscrambled by a malicious user.

Minimum Configuration: Name Resolution

So let's build a basic nsmb.conf file. At an absolute bare minimum, we first need to be able to find
hosts for which we need a workgroup and a NetBIOS name−server. I also have a user set up on the
Windows−based servers to share files, so I'm going to put that username in the [default]
section:

...
[default]
workgroup=EXAMPLE
nbns=192.168.2.80
username=unix
...

Armed with this information, you should be able to perform basic SMB name queries. Use smbutil(1)
to test this:

...
smbutil lookup fileserv4
Got response from 192.168.2.80
IP address of fileserv4: 192.168.1.202
#
...

If this works, you have basic SMB functionality.

Other smbutil Functions

Before you can mount a filesystem from a Windows host, you must log in to it. (Only root can use
these smbutil functions.)

...
smbutil login //unix@fileserv4
Password:
Connected to UNIX
#
...

478

So our password is correct. Let's see what resources this server offers with smbutil's view
command:

...
smbutil view //unix@fileserv4
Password:
Share Type Comment
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
jsmith$ disk
gdonner$ disk
mlucas$ disk
...
...

You'll get a list of every shared resource on the SMB server.

Now, assuming you're finished, log out of the server:

...
smbutil logout //mlucas@fileserv4
Password:
Connection unmarked as permanent and will be closed when possible
#
...

Mounting a Share

Now that you've finished investigating, let's actually mount a share with mount_smbfs(8). The
syntax is as follows:

...
mount_smbfs //username@servername/share /mount/point
...

I have a share on the fileserver called mlucas. To mount my personal fileserver share on my
FreeBSD box as /home/mwlucas/smbmount, I would do this:

...
mount_smbfs //mlucas@fileserv4/mlucas /home/mwlucas/smbmount
...

Check your work with df(1).

...
df
Filesystem 1K−blocks Used Avail Capacity Mounted on
/dev/ad0s1a 99183 49105 42144 54% /
/dev/ad0s1f 5186362 3091500 1679954 65% /usr
/dev/ad0s1e 198399 22816 159712 12% /var
procfs 4 4 0 100% /proc
//MLUCAS@FILESERV4/MLUCAS 128000 54320 73680 42%
/usr/home/mwlucas/smbmount
#
...

479

I can now do basic file operations, including using Emacs and StarOffice on the documents in this
shared drive. Life just got a little better.

Other mount_smbfs Options

Mount_smbfs includes several options to control how the system behaves. Use mount_smbfs's −f
option to choose a different file permission mode, and the −d option to choose a different directory
permission mode. For example, to set a mount so that only I can access the contents of this
directory, I would use mount_smbfs −d 700. (This would make the UNIX permissions far more
stringent than the Windows ones, but that's not my concern at the moment.) I can even change the
owner with the −u option, and the group with the −g option.

The −I option tells mount_smbfs to skip the NetBIOS name resolution, and to only use the
hostname or IP address provided on the command line instead.

The −N option tells mount_smbfs to read the password from the configuration file, and not to prompt
for one. This means that you need to have your clear−text password in nsmb.conf, as discussed
earlier.

The −W flag specifies a new workgroup. It overrides any settings in nsmb.conf.

The Windows filesystem, and hence SMB, uses case−insensitive filenames, but UNIX is case
sensitive. SMBFS defaults to leaving the case as it finds it, but that may not be what you want. Use
the −c flag to tell mount_smbfs to change the case on files on SMB filesystems: −c l changes
everything to lowercase, while −c u changes everything to uppercase.

When working with mount_smbfs, I've found it flexible enough to handle almost any situation on a
Windows network, thus allowing you to use your FreeBSD system seamlessly with the rest of the
office.

Sample nsmb.conf Entries

You can customize the nsmb.conf file to use different usernames to access different shares or to
bypass NetBIOS name resolution for particular hosts. Here are some more complicated examples,
using the configuration entries we defined earlier.

All of our advanced samples here assume that they're part of the configuration that includes this
bare−minimum entry:

...
[default]
workgroup=EXAMPLE
nbns=192.168.2.80
username=mlucas
...

480

Unique Password on a Standalone System

You would use something like the following if you had a machine named desktop with a
password−protected share. Many Windows 9x systems have this sort of password−protection
feature.

...
#I have a share on my desktop with a separate password
[desktop:mlucas]
password=$$1725a5038393e12ee
...

Accessing a Second Domain

In this example, we're trying to access a separate domain, named development. This domain has a
separate username and password than our default:

...
#development is in a different NT domain, with a shared username
[development]
workgroup=EXAMPLE2
username=support
...

CIFS File Ownership

Ownership of files between UNIX and Windows systems can be problematic. For one thing, your
UNIX usernames probably won't map to Windows user−names, and UNIX has a different
permissions scheme than Windows.

Since you're using a single Windows username to access the share, you have whatever access that
account has to the Windows resources, but you should assign the proper UNIX permissions for that
share. By default, mount_smbfs assigns the new share the same permissions as the mount point
used. The directory /home/mwlucas/smbmount in our example is owned by mwlucas, in the group
mwlucas, and has mode 755. These permissions say that I can edit what's in this directory, but no
other user can.

[1]In FreeBSD 4.4 and later, these tools are included in the base operating system.

Serving Windows File Shares

Just as FreeBSD can access CIFS shares, it can also serve them to CIFS clients (such as
Windows) with Samba. You can find Samba in /usr/ports/net/samba. You'll find the Samba Web site
a t h t t p : / / w w w . s a m b a . o r g / , a n d a u s e f u l t u t o r i a l a t
http://www.linux.org/docs/ldp/howto/HOWTO−INDEX/howtos.html. There are entire books written
about Samba, and I cannot possibly do it justice in just a few paragraphs, so we'll end our Samba
discussion here.

481

Accessing Print Servers

UNIX printing is an arcane matter, mainly because of the vast array of hardware support. The UNIX
printing system was originally designed to work on a teletype, which imposed very specific
requirements. It has been expanded to handle dot−matrix, character, inkjet, laser, and every other
sort of printer, but it suffers from that legacy. If we could start over with the UNIX printing system
and only support laser and inkjet printers, life would be much simpler. Unfortunately, we can't.

Lpd

If you are lucky enough to work in a place with a UNIX−based print server, setting up a printer
should be very simple. If, on the other hand, you are using a Microsoft print server, things are a little
more complicated. To make your life a bit easier, ask your Windows administrator to install
Microsoft's Print Services for UNIX package (NT, 2000, and XP).[2]

The standard UNIX print server protocol, lpd (line printer daemon) runs on TCP port 515. (There is
also a line printer daemon program, lpd(8).) To see whether a system offers lpd, telnet to the print
server on port 515, just as we tested mail and Web servers in earlier chapters. If you can connect,
the system is running the line printer daemon. (Don't expect to see anything while making the
connection—the line printer protocol is a pain to speak by hand.)

/etc/printcap

Once you know you have an lpd−based print server available, it's time to configure your system to
talk to it. The key lies in the file /etc/printcap. Basic print−cap information appears in Chapter 9, but
let's look at it in a bit more detail here. Here's a sample printcap file:

...
v lp|SalesPS|ThirdFloorPrinter:\
 w :rp=SalesPS:\
 x :rm=printserver:\
 y :sd=/var/spool/output/lpd:\
 z :lf=/var/log/lpd−errs:
...

The first line in this file gives us the printer's name, SalesPS|ThirdFloorPrinter (v). UNIX printers are
traditionally called "lp", "lp1", "lp2", and so on; lp is your default printer; thus the SalesPS printer is
our default. In this example, the pipe symbol (|) separated other names for the same printer from
each other.

The rp entry, SalesPS (w), is the desired printer's name. You'll need to get a list of printer
names from your network administrator. If it's a Microsoft print server, you might check the printers
that the print server has shared out, which are the available printers. Be sure to choose a printer
that supports PostScript, the generic printing protocol. All modern printers use PostScript, and some
also support proprietary printing systems. Fortunately, most FreeBSD programs send either
PostScript or plain text to printers.

Note Microsoft servers frequently share one printer under several names and use the name to
differentiate how the printing is handled. If you find this to be the case, be sure to choose the
PostScript version!

482

If you don't know the name of the remote printer, try lp1, AUTO, or PORT1. (Case is important!)
While lp1 and PORT1 are generally PostScript, AUTO will try to detect the sort of print job you're
sending.

The rm entry (x) is the name of the server. You must be able to ping this server by the name you
give here.

The sd entry (y) is where your local printer daemon will store output it is trying to print.

Finally, the lf entry (z) is the printer log file. If you're having trouble printing, check the permissions
on the spool directory. It should be owned by root and the daemon group, and have a permissions
mode of 755 (see Chapter 7).

If you substitute correct entries for your print server and your printer name, you should be able to
use this entry unmodified. You might want to correct the different names, but it's not strictly
necessary. (Not doing so might confuse you later, though, when you see a reference to
ThirdFloorPrinter somewhere!)

Running a Local Lpd

Once you have a decent−looking printcap entry, you should be able to start your local line printer
daemon, lpd(8). This local printer daemon catches print requests made on your local system and
sends requests to the remote printer daemon. You can start this at boottime by enabling it in rc.conf.

...
lpd_enable="YES"
...

Alternatively, you could just run lpd as root.

Printer Testing

Test your printer setup with the command lpq(1), which will display your printer setup. If everything
works, you should see something like this:

...
lpq
no entries
#
...

If your printer is actually printing something at the moment, it'll look more like this:

...
lpq
lp is ready and printing
Rank Owner Job Files Total Size
1st mwlucas 4 (standard input) 93151 bytes
#
...

To fine−tune your printer setup, see the /etc/printcap information in Chapter 9.

483

[2]Unfortunately, installing Print Services for UNIX means several hours of work for the Windows
administrator as she installs the service, reinstalls the latest Microsoft service pack, and then
reapplies all the patches that need to be installed on top of that. Don't be too hard on her when she
refuses. It will take much less time for you to work around her problems than for her to make your
life easier.

Local Printers

If your print server doesn't provide ldp services, or if it's directly attached to the parallel port, there's
another process to follow. It's friendly looking, it's script−driven, and it requires you to install a whole
bunch more software. Take a look at /usr/ports/print/apsfilter.

The good news is that apsfilter will help you speak CIFS to a remote print server. It will help you
configure a local printer, either a fancy laser one or one of those El Cheapo $59 inkjet USB models.
You might wind up going through the configuration script several times trying to get it right, unless
you know exactly what sort of equipment you have, but it will work quite well once you get it set up.

X: A Graphic Interface

The GUI you sometimes see on a UNIX system is called the X Window System, or X for short. X
has some advantages and disadvantages over other windowing systems, but once you get used to
it, X can be quite useful.

One of my favorite features of X is that a program can display output on a different machine than it's
running on. I frequently run a program on one server and have the user interface appear on my
desktop. For example, I only have StarOffice installed on my laptop. When I'm working on one of the
servers in my basement[3] and need to whip up a printed complaint letter to a software vendor about
their lousy product, I connect to the laptop sitting in the upstairs library and start StarOffice.
Although the program is running on the laptop, the interface displays on my local terminal. At times
this can actually be more convenient than working on the laptop, as I keep the printer, envelopes,
and stamps near the server room.

X Prerequisites

Before you can set up X, you need to know some basic things about your system. Break out the
manual for your monitor and try to find the values for "horizontal sync" and "vertical refresh". Also
get the manual for your video card and find out its exact model name and number.

X Versions

FreeBSD supports a version of X known as XFree86, which is based upon X version 11, release 6,
or X11R6. At the time I write this, two different versions of XFree86 are in use: Version 3.3 is the
older, stable standard, while version 4 is the new, up−and−coming standard. The version you have
will depend on the default in FreeBSD when you installed.

If you have one version but want the other one, you can uninstall all ports that use X, remove the
entire /usr/X11R6 directory tree, and install the port of the correct version from under /usr/ports/x11.
(This will take a long time and use a lot of disk space.) You then get to reinstall all your
X−dependent ports. Enjoy.

484

Configuring X

To configure X, you can use the text−based tool xf86cfg, or the graphic tools xf86config (version 4)
or xf86Setup (version 3). But beware: Unlike just about anything else you can do with a computer,
improper use of XFree86 can actually physically damage both your monitor and your video card. If
you test your XFree86 configuration and see your screen flare, strobe, or look like it's having any
sort of trouble, leave X immediately. (You can force X to shut down with the key sequence
CTRL−ALT−BACKSPACE.)

Making X Look Decent

The default X setup is ugly. Really, really ugly. It's ugly because X only handles basic screen
drawing. While that's not a problem when it comes to drawing terminal windows, menus, and
whatnot, X just won't make very pretty pictures. To make X realistically usable, you'll need some
sort of desktop environment or window manager.

The subject of window managers is yet another topic of debate among UNIX users. You can find
people who believe that the best window manager in the world is the one that ships with X: twm(1). I
have to admit that it's not bad, in a bare−bones, back−to−nature, tree−bark−eating sort of way. If I
had a system with only 4MB of RAM, twm would be my choice.

Since any computer I work on these days has more than 4MB of RAM, however, I tend to use
window managers with a few more features. If you look under /usr/ports/x11−wm, you'll see quite a
few window managers. Feel free to experiment with them. I'll mention four specifically, just because
of their popularity and my experiences with them.

Popular X Desktops

My personal favorite window manager is WindowMaker (/usr/ports/x11− wm/windowmaker). It's fast,
light, highly customizable, supports themes, and looks darn good on just about any size monitor.

The fvwm2 (/usr/ports/x11−wm/fvwm2) window manager is an old classic that's still in heavy use
today. It's very flexible, and all configuration is handled by a text file. It is stable, has a small
footprint, and is very reliable. It's also boring.

The most popular desktop environments among many newer UNIX users are Gnome
(/usr/ports/x11/gnome) and KDE (/usr/ports/x11/kde2). Both try to be all things to all people. Both
include system configuration tools, Web browsers, and office suites. In my opinion, both are
painfully bloated and obtuse, much like the proprietary systems they hope to replace. If you prefer a
Windows− or Mac−style interface, though, you might be happy with either one of these.[4]

The choice of windowing environment is highly personal. I think it would be interesting to do a
psychological study of UNIX users, classifying them by window manager choice. (Useful, no. But
interesting.) Play with several, and you'll soon find one that fits your working style.

[3]Before you get too impressed at my having a server room in my house, know that my wife calls
the basement server room the junkyard and the machines that lurk therein Frankensteins. I don't
see what's wrong with using a 166 MHz Digital Alpha to heat the teapot, but she has other ideas.
[4]Gnome and KDE fans would say that my preferred environment lacks vital features. It's all a
matter of what you expect on your desktop.

485

Desktop Applications

Once you've selected a window manager, you're ready to get some desktop applications. The
standard UNIX desktop application is still the command line. There's a special type of terminal
window used for X windows, called an xterm. Some window managers include their own terminal
application, and several different types of X terminal program have been written. But you'll find an
xterm wherever you go.

You probably didn't install X just to use a terminal window, however. Let's look at some of the basic
applications you might need.

Web Browsers

You won't find Internet Explorer for FreeBSD coming out any time soon, and that's probably a good
thing. FreeBSD includes several different Web browsers, however, the most well known of which is
Netscape.

Netscape

You'll find several different versions of Netscape under /usr/ports/www. The communicator versions
include an email client, a news reader, and a Web−page authoring tool; the navigator versions
include only the Web browser.

The FreeBSD and BSDi versions of Netscape include security holes that Netscape has not
bothered to address. If you want to use Netscape, use the Linux versions. The Linux versions can
use Linux plug−ins, which are more common than FreeBSD plug−ins, but require that you install the
Linux compatibility module (see Chapter 11). Using the Linux version of the browser also allows you
to use the Linux RealPlayer and Shockwave plug−ins.

Mozilla

If you want a newer browser than Netscape, take a look at Mozilla (/usr/ports/www/mozilla), the
code that Netscape 6 is based on. Mozilla is fairly solid and reliable, and is getting better all the
time. It also supports Java and Flash, and is my preferred browser. The Linux port of Opera
(/usr/ports/www/linux−opera) is growing in popularity, and many people compare it favorably to
Netscape. Still another popular choice is konqueror, the file manager included in the KDE window
manager that handles both local file viewing and Web page rendering. You get it by installing KDE.

Text Browsers

If you don't have X installed, you can surf the Web using a text−mode browser. This is the original
way the Web was used, way back in the early 1990s. I frequently use a text−mode browser when
I'm in a hurry and just need to get some information without worrying about the graphics or other
pretty features. The three most popular text−mode browsers are Lynx (/usr/ports/www/lynx−ssl),
w3m (/usr/ports/www/w3m), and links (/usr/ports/www/links). Using one of these browsers can also
be an enlightening experience; for example, many blind people use one of these tools to access the
Internet.

Email Readers

FreeBSD supports many different mail readers (see /usr/ports/mail for a complete list). Again,
because people have very different tastes in mail clients, try several and pick one you like. Still,

486

here's look at some popular ones.

GUI Mail Readers

I f you're coming from a Windows or Mac background, you' l l probably f ind that Arrow
(/usr/ports/mail/arrow) or Evolution (/usr/ports/mail/evolution) will be comfortably familiar. Evolution
resembles Microsoft Outlook, but it requires huge chunks of the Gnome desktop environment. You
can also use the email client found in Netscape (/usr/ports/www/linux−netscape47−communicator)
or Mozilla (/usr/ports/www/mozilla). These are simple and intuitive for most users coming from a
GUI environment.

Mutt

If you're looking for a more UNIX−like mail reader, you might try Mutt (/usr/ports/mail/mutt). Mutt is
the end result of 15 years of mail−reader evolution. Every old UNIX hand I know who has tried Mutt
has liked it.[5] Mutt is highly configurable and allows the reader to process information very quickly.

One of Mutt's nicest features is that it's threaded; thus, messages that are part of a single
discussion are grouped together, in order. I receive a truly monstrous amount of email, at times over
2,000 messages a day. Each must be read and evaluated. Only a fraction of these require my
personal attention, and perhaps two dozen need an answer. (There are usually several more that I
should answer, but never get around to.) If I had to use a mail program like Microsoft Outlook, I
would be utterly lost. Mutt allows me to manage this tsunami in an almost reasonable manner.

Pine

Another popular UNIX mail reader is Pine. This looks more friendly than Mutt and it's menu−driven.
While it's not as configurable as Mutt, it's a good choice for someone who isn't as technical or who
doesn't process obscene amounts of email. My wife quite happily reads her email in Pine.

Office Suites

If you're working on a desktop, you'll want things like a word processor, spreadsheet, drawing
program, and so on. FreeBSD includes three, though you'll need X installed to run all of them.

StarOffice

StarOffice (/usr/ports/editors/staroffice60) is a full office suite with a lot of features. (This is actually a
Linux version running under Linux mode.) StarOffice is fairly effective; this book was written using it.
This version of StarOffice costs a nominal fee.

OpenOffice

The company that produced StarOffice was bought out by Sun Microsystems, who decided to
release the source code of the program. This meant that they had to rip out a whole bunch of stuff
that had been licensed from other companies, and replace it. The result is OpenOffice
(/usr/ports/editors/openoffice). OpenOffice is expected to run natively on FreeBSD. It might be some
time before all the features of StarOffice are fully available, however. I highly recommend
OpenOffice, version 1.0 or later, for average use.

487

Koffice

Another popular choice is koffice (/usr/ports/editors/koffice). It's built with KDE, however, so you
might find its system requirements rather high.

Music

Everyone who works at a computer for any length of time winds up playing CDs. While a computer's
speaker system isn't up to audiophile standards, it's good enough for work.

FreeBSD includes a variety of CD players, all under /usr/ports/audio. Gnome and KDE include their
own CD−playing programs. There are a couple of utilities designed for use with WindowMaker, of
which /usr/ports/audio/wmcd−play is my favorite. Many people like xmms and gkrellm as well.

Browse through the directory and you'll find any number of CD, MP3, MIDI, and MPEG players.

Graphics

Today's computing world uses a variety of graphic formats. It can be very frustrating to try to view a
file in an unfamiliar format. Here we'll mention some of the most common graphic formats, and what
programs you need to use to see them.

Viewing Common Graphics

Most of the common graphic formats can be viewed with xv (/usr/ports/graphics/xv). The xv program
handles file formats including (but not limited to) GIF, JPEG, TIFF, PBM, PGM, PPM, X11 bitmap,
BMP, XPM, PCX, IRIS RGB, and PNG.

Another common format is PostScript or Encapsulated PostScript. You can view these files with
ghostview (/usr/ports/print/ghostview).

When you encounter an unfamiliar graphics format, chances are there's a small program that will
open it in /usr/ports/graphics/README.html.

Viewing Video

To view video, try xanim (/usr/ports/graphics/xanim) or xmps. The avifile port can play MPEG4/DIVX
videos.

Creating Graphics

To create your own graphics, check out the Gimp (/usr/ports/graphic/gimp). This toolkit has been
favorably compared to Adobe Photoshop.

Desk Utilities

These days, people are used to putting all sorts of things on a computer screen, from sticky notes to
calculators. I prefer using real sticky notes myself—you can pull them off the edge of your monitor
and hand them to someone else—but if you want this functionality, FreeBSD includes it. For a
complete list, shuffle through /usr/ports/deskutils. We'll just cover the highlights here.

488

GnuCash

One of free software's killer applications is GnuCash, a personal money manager much like
Quicken. You can find it in /usr/ports/deskutils/gnucash. While it requires that you have Gnome
installed, you can use it while running any other window manager. GnuCash cannot yet interoperate
with bank financial systems in the same way Quicken can, but it should be able to about the time
this book comes out.

Palm

Similarly, personal digital assistants are quite common these days. WinCE devices are too tightly
tied to Microsoft's operating environment to work well with FreeBSD. However, Palm−based
devices, including Handsprings, do work well with FreeBSD. You'll find an entire category of Palm
software under /usr/ports/palm.

Games

Now the important stuff! FreeBSD includes a variety of nifty games, all under /usr/ports/games. If
you're running KDE or Gnome, you already have a few simple games installed. If you want to snag
these packages wi thout the accompanying window managers, they ' re avai lable as
/usr/ports/games/kdegames2 and /usr/ports/games/gnomegames. The ports will automatically
install the bare−minimum underlying libraries to use them. Many of us are stuck doing that anyway,
because some other piece of software requires them.

Xevil

For straightforward mayhem, network play, and fast action, check out xevil. It's an old−fashioned
2−D shooter, with ladders and robots and all sorts of things that need to be shot, burned, and
exploded. It's not for the easily offended, but you can easily lose days with this simple toy. Best of
all, it's lightweight; you don't need Gnome or KDE or qt or xview or any other graphics toolkit to run
it.

Heretic, Doom, and Quake

If you're into fancier graphics or three dimensions, there's native FreeBSD ports of Heretic, Doom,
and Quake (/usr/ports/games/quakeforge). These are classic games produced by Id Software: Run
around, get bigger weapons, find evil monsters, and feed them the rockets they so richly deserve.
The one problem with Doom is that it only runs on 8−bit X terminals.

You can start up a Doom−compliant X session with this command:

...
startx −bpp 8
...

This means you have to exit and restart X to play these games, but that's not too bad. After all, try
running Doom on a modern Windows system and see if you like what you see.

489

Nethack and Angband

If xevil and Doom are simply too graphically intense, you can step back into the 1980s with Nethack,
Angband, and their variants. Both are simple games that run on block maps. You are a character in
a dungeon, trying to reach the lowest level and take out whatever horrible beast lives in that version
of the game.

Nethack runs without X, and is addictive nonetheless. Angband runs on X, but can use richer
graphics than Nethack. Both have forked time and time again, so you can pick and choose among
the variants. My personal favorite is vanilla Angband, but I've lost several hours to Nethack as well.

Civilization

If violence isn't your thing, proceed directly to Freeciv (/usr/ports/games/freeciv). Freeciv is a
Civilization clone. You start with a tribe of settlers, and try to build a worldwide empire. You compete
with other players across the network, or just play solo. Of all the things that made me risk missing
the deadline for this book, Freeciv was by far the most insidious and most dangerous.

If you prefer original software to a clone, you can also run a demo version of Civilization 2. Check
under /usr/ports/games/civ2demo.

Minesweeper, Pac Man, Mahjongg, etc.

Other games are fun to have around, just in general. When I started in technical support, I would
play Minesweeper to kill time while on hold or letting a user drone on about the problem of the
week. There are several Minesweeper clones, such as freesweep, wmtimebomb, and yamsweeper.
You can find a Pac Man clone under xchomp. Mahjongg lives as xmahjongg or xvmahjongg.
There's chess, and Go, and just about every classic game that has kept humanity occupied for the
last thousand years.

[5]At this point, I will of course be deluged with mail from people saying that their gray beard is far
longer than mine, and they've tried Mutt and didn't like it. Oh, well.

490

Afterword

Overview

If you've made it this far, you now know how to manage and use FreeBSD as a platform for just
about any server task. You might have to learn how a new program works, but you know enough
about the operating system to make it work as you need to.

Congratulations! FreeBSD is a wonderful, flexible platform, and is capable of assuming just about
any role in your network. To wrap things up, I'd like to talk briefly about some other aspects of
FreeBSD.

FreeBSD is two things. In this book we've focused on the programs and software that constitutes
the operating system. The other half is the community that creates those bits.

The Community

The FreeBSD community is composed of computer scientists, programmers, users, systems
administrators, documentation writers, and just about anyone who is interested in the system. They
come from all walks of life, all education levels, and all over the world. I personally have had
dealings with FreeBSD users and developers from all over the United States, Canada, Mexico, the
United Kingdom, Russia, Kazakhstan, Denmark, Poland, Australia, and Japan. Some of the people
I've worked with are from still other countries, but nationality simply isn't important in this
community. I'm sure people are from a wide variety of races and creeds, but it simply doesn't matter
online. Some are doctors. Some are computer scientists. Some work in video rental shops. At one
point I worked closely with a brilliant developer who turned out to be a teenager. Since most of the
community's interaction is online, the only things that represent you are your words and your work.

While members have conflicts, especially over the future direction of the software portion of
FreeBSD, on the whole it's less fractious than you could expect from any group of thousands of
people from such widely varying backgrounds.

These are the people who improve FreeBSD, drive it forward, and make it more than a collection of
ones and zeros.

Each person does it for his own reasons. A tiny portion are developers who are paid to improve the
code, either by corporations dependent on FreeBSD or government agencies such as DARPA.
Most actual developers work on FreeBSD as a hobby, so they can program things more correctly
than they are allowed to do at their day job. The deadlines FreeBSD has are announced months or
years in advance, and developers set their own work habits and their own level of contribution.

Many of us are not developers, but work on some other part of FreeBSD instead. Since I started this
book, I became a member of the Documentation Project, the group responsible for writing the
instructions. While code is nice, if nobody can learn how to use it, the system is pretty much
useless! Other peopleanswer questions on the mailing lists, or run support sites. We do it for
satisfaction and enjoyment, or to give back some of what we've been given.

You're free to simply take what FreeBSD offers, and do as you will with it. After a while, many of us
found that we wanted to return something to the group. This is how the community grows, and a
growing community means that FreeBSD will continue.

491

What Can You Do?

If you're interested in helping out, for whatever reason, there's a lot you can do. You don't have to
be able to write a lick of code to contribute to FreeBSD. Every so often, someone posts on a mailing
list, "I'd like to help, but I can't code." This lament has appeared repeatedly on the FreeBSD mailing
lists since I started reading them in 1996, and probably far earlier. The standard response to these
messages is silence. After all, if you've already decided you can't help there's really nothing for
anyone to say.

No one's denying that the programmers are the spotlight heroes of FreeBSD. Many of these people
have impressive skills, and most of us could never even dream of being the next Bruce Evans. Matt
Dillon rightfully collected copious kudos for his stunning response to a bug report from Apple
Computer. Each BSD team has its own tales of coding heroism. If you can't program your way out
of a wet paper bag, however, you can still help. The basic question is, "What can you do?" Not
"What does the project need?", not "Wouldn't it be cool if my favorite OS did such−and−such?", not
"What feature do you want?"; what skills do you have right now? Chances are those skills can be
valuable to any BSD project, or to any other free−software project.

For example, I've worked for years in computer support. I've spent a few years trying to master
programming, mainly to get out of the support arena. While I've moved up, and am perilously close
to management these days, I'm still deeply interested in computer internals. Mastery of operating
system internals comes from reading the code. For years, I believed that I couldn't contribute to
FreeBSD until I learned to code as well as some of the Secret Kernel Masters.

I also do a truly unhealthy amount of writing. I'm good at it. One day I decided to try to write a
FreeBSD technical article, and it was snapped up by a magazine. Since then I've published
hundreds of pages about FreeBSD. People know my name. I'm a respected contributor, and I've
never written a line of code.

What do you do well? Leverage that skill. It will be appreciated.

If Nothing Else …

If you truly have no useful skills, and you have no other ideas, just reread this book and the
FreeBSD FAQ, subscribe to FreeBSD−questions@FreeBSD.org, and help other users. I started this
way. If you elect to do this, I encourage you to politely guide people to existing information
resources. When someone asks a question that is in the FAQ, give them a URL to the FAQ's main
page. If the question has been asked before, suggest that they search the mailing list archives. If
you can teach people to help themselves, we can reduce mailing list traffic. (As someone
subscribed to 13 different FreeBSD lists, I have to say that reducing mailing list traffic is good.) As
the old saying goes, teach them to fish and we'll sell them fishhooks. After answering mailing list
questions for a while, you'll start to see things that the Project needs. One of those needs will match
your skills.

When you see a problem that you think you can solve, stop for a moment and ponder it. If
necessary, make a note of it and come back to it the next day. Is this really something you can do?
It doesn't matter how dumb or small it is; can you actually sit down with your professional tools and
do it?

492

Getting Things Done

Here's the big secret of getting things done in FreeBSD. Everything that it contains is there because
somebody saw a need that he or she could fill, and did something about it. NetBSD and FreeBSD
started when a bunch of 386BSD patch kit users got sick of waiting for the next release. Mike Smith
is hammering ACPI (Advanced Configuration and Power Interface) support into FreeBSD 5.0
because he thinks it's important. I didn't ask permission from the FreeBSD project before starting to
write articles about it. You don't ask before answering mailing list messages, and you don't have to
ask before starting on a FreeBSD project. If your idea is large enough that you feel you'd like an
outside opinion before starting work, use a mailing list.

First, search the mailing list archives for your idea. Read any previous discussion about it. Many
projects are suggested, but never implemented. Chances are, someone else has had your
inspiration before and abandoned it. If someone's previously brought up your idea, and it's been
discussed and approved of, you can assume that you'd get the same reaction. If the discussion is
old enough that it appears the project died stillborn, start working.

For example, every so often someone sends email to the FreeBSD−hackers mailing list suggesting
that IBM's JFS (journaled file system) be ported to FreeBSD. This is generally considered to be a
Good Thing. The person goes away and is never heard from again. Now, porting a filesystem is a
lot of work and requires a very particular skill set. It's not surprising that a lot of people have given it
a try, and failed. But you don't need to send yet another message asking if it's a good idea. If you
have the skills to do it, go for it! You'd meet nothing but delight if you posted a message on
FreeBSD−hackers saying, "At such−and−such URL, you can find my initial patches for porting JFS
to FreeBSD. I can mount a drive, create files, but upon creating a directory weird things happen.
This may destroy your data, fry your kernel, and upset your pets. I would appreciate any
comments."

Second Opinions

If nobody's previously beaten your idea into the ground, and you still want a second opinion, ask on
a mailing list. If you really want their attention, you need to be very brief and to−the−point. Most truly
useful ideas can be summarized in a single sentence, or two at the most; anything after that is
implementation details. Remember, some people get over two thousand pieces of email a day. A
simple post saying, "Hey, would people find this useful?" is a great way to tell the difference
between a boneheaded waste of time and a serious need.

Avoid suggestions that boil down to, "Why doesn't someone else do the work for this?" Most of
these suggestions fall into three categories: obvious ("Hey, wouldn't it be cool if we supported the
C P U i n m y a u t o m o b i l e ? ") , f o o l i s h (" W h y d o n ' t w e h a v e a k e r n e l o p t i o n
READMYMINDANDDOWHATI−WANT?"), or both ("Why not support my Sinclair ZX80?"). In either
case, the person asking is almost always completely unqualified to actually do anything about the
matter, and doesn't even offer to buy a drink for those who can. You can generally rest assured that
the people who are qualified to do the work have considered these ideas, and are either doing
something about it or are working on more important tasks.

You can't expect a thousand people to respond with, "It's a great idea." The mailing lists are public
discussion boards. If everyone agrees with a message, they won't all post "me too!" But if you get a
few people agreeing with you, and nobody says, "Your concept is so awful that it simultaneously
sucks and blows," you can generally assume that it's a decent idea. This is the closest thing
FreeBSD has to "management buy−in." You can consider this full−blown approval.

493

Occasionally, someone might write you back saying, "I think Fred's working on that; why don't you
drop him a line?" You might find that you can join an existing effort. Other people will want to
discuss the implementation with you. You can take this as approval; they wouldn't bother discussing
the fine details if they didn't like the idea.

The same sort of thing applies to every portion of the project. Can you translate the documentation
into Sanskrit? Yep. Can you start a users' group in Topeka? Absolutely. If no such project exists, go
do it.

Do It!

This is perhaps the most vital part. Once you have buy−in, shut up and do it. We can talk all day
about your project, but it's wasted keystrokes unless something comes out of it. Most of the ideas
I've seen on the FreeBSD lists die on the vine. There is a huge amount of basic grunt work that can
be done. Nobody bothers to do it, so it doesn't happen. All of the BSDs—indeed, all open−source
projects—suffer from this to some extent. Non−programmers can help greatly by simply picking
some little hole and doing the work to fill it. Some people set up independent Web sites, such as
Dan Langille's excellent FreeBSD Diary (http://www.freebsddiary.org/). The committers and
contributors directly enhance the bits that the Project produces. Others are just known as "that dude
who hangs out on the mailing list and helps people with ppp." All are absolutely vital. Your help will
make FreeBSD prosper and grow.

I look forward to seeing you on the mailing lists.

494

Appendix: Some Useful SYSCTL MIBs
This appendix is a dictionary of some useful sysctl MIBs. The tools for manipulating MIBs are
discussed in Chapter 4. (When a MIB is detailed elsewhere in this book, reference is made to the
appropriate chapter.) Your system certainly has many more sysctls than these, but the ones
described here are the ones I frequently trip over in day−to−day work.

Warning Thoughtless use of sysctls can easily damage or destroy a working system. For example,
if you set a limit on resources below the amount being used, you can crash the system in
a fairly spectacular manner. Be sure you understand the implications of what you're doing
before setting sysctls.

When writing this appendix, I was tempted to only describe sysctls that are safe for new
administrators, but doing so would have limited the utility of this section. Instead, I'm asking you to
please take the dangers of sysctl fiddling to heart. If you don't understand what a sysctl does, don't
play with it!

For example, some sysctls allow you to adjust vnode operations. Attempts to fine−tune vnodes will
most probably harm system performance, but there are situations where you will want to do exactly
that. Similarly, don't go rummaging through the virtual memory system unless you understand virtual
memory! Search the man pages and mailing list archives for further details on individual sysctls
before playing with them.

Note Some sysctls are described as "toggles." In this case, a value of 1 means that the sysctl
provides the service described. A setting of 0 means that the service is disabled.

Without further ado, here are the sysctls, each followed by a typical value and an explanation of
what it does.

..
kern.maxvnodes: 20973
set at: /boot/loader.conf
..

The maximum number of vnodes (virtual f i lesystem nodes) the system can have open
simultaneously.

..
kern.maxproc: 1044
set at: /boot/loader.conf
..

The maximum number of processes that the system can be running at any one time.

..
kern.maxfiles: 2088
set at: runtime
..

495

The maximum number of files that the system can have open at any one time.

..
kern.argmax: 65536
set at: read−only
..

The maximum number of bytes you can use in an argument to execve(2). Basically, this is the
maximum number of characters you can use in a single command line. You might run up against
this in some unusual circumstances. If you do, please see xargs(1).

..
kern.securelevel: −1
set at: runtime or /etc/rc.conf
..

The current kernel security level. See Chapter 7.

..
kern.maxfilesperproc: 2088
set at: runtime

The maximum number of files any one process can open.

..
kern.maxprocperuid: 1043
set at: runtime
..

The maximum number of processes one user ID can run.

..
kern.dumpdev: /dev/ad0s1b
set at: /etc/rc.conf
..

The name of the swap device where a kernel panic will be dumped, as set by dumpon(8) during the
boot process. The swap partition must be larger than or equal to the system's physical memory. We
discuss dumping and panics in some detail in Chapter 20.

..
kern.ipc.somaxconn: 128
set at: runtime
..

496

The maximum number of new connections the system can accept at any one time. The default is
128. If you're running a heavily loaded server, kick this up to 512 or even 1024.

..
kern.ipc.maxsockets: 2088
set at: /boot/loader.conf
..

The total number of sockets available on the system.

..
kern.logsigexit: 1
set at: runtime
..

When a program exits abnormally, it usually sends a signal. When this toggle is set, the name of the
program and the exiting signal are logged to /var/log/ messages.

..
kern.init_path: /sbin/init:/sbin/oinit:/sbin/init.bak:/stand/sysinstall
set at: /boot/loader.conf
..

Init(8) is the process that actually starts the system. If you've damaged your system (say, during a
source upgrade gone very bad), you can use this sysctl to offer another path to an init program. If
you're doing this, however, you're probably in very bad shape.

..
kern.module_path: /;/boot/;/modules/
set at: runtime
..

The path where kldload(8) checks for kernel modules.

..
kern.timecounter.method: 0
set at: runtime
..

FreeBSD has two different methods to determine the time since the system booted. One is
extremely accurate, but takes more system resources to use. The other is faster, but not as
accurate. The difference between the two is measured in milliseconds, but if you're using an
application that requires extremely precise timing, those milliseconds can make a difference. Set
this sysctl to 1 to use the slow, hyper−accurate method. The default is good enough for almost all
applications.

497

..
kern.coredump: 1
set at: runtime
..

This toggle controls kernel core dumps. When set to 1, the kernel will dump the core on a panic.
See Chapter 20 to find out what to do with it.

..
kern.quantum: 100000
set at: runtime
..

The maximum number of microseconds a process can run for if other processes are waiting for
CPU time. If you're considering changing this, you are probably doing something wrong.

..
kern.filedelay: 30
set at: runtime
..

Controls how often the system synchronizes file data between the vnode buffer cache and the disk.
This one is for experienced systems administrators only!

..
kern.dirdelay: 29
set at: runtime
..

Controls how often the system synchronizes directory data from the vnode buffer cache to the disk.
Again, for experienced systems admins only!

..
kern.metadelay: 28
set at: runtime
..

Controls how often the system synchronizes filesystem metadata from the vnode buffer cache and
the disk. Again, this is for experienced systems administrators only!

..
vm.v_free_min: 582
set at: runtime
..

498

The minimum number of pages of cache and free memory that must be available before a process
waiting on memory will be awakened.

..
vm.v_free_target: 2513
set at: runtime
..

The total number of pages of free and cache memory that the virtual memory manager tries to keep
or exceed.

..
vm.v_free_reserved: 185
set at: runtime
..

If the number of pages of free memory falls below this reserved value, running a process will tell the
virtual memory manager to start swapping out memory.

..
vm.v_inactive_target: 3769
set at: runtime
..

The number of pages of memory that the virtual memory system will try to free up when it kicks in.

..
vm.v_cache_min: 2513
set at: runtime
..

The minimum desired size of the virtual memory cache queue.

..
vm.v_cache_max: 5026
set at: runtime
..

The maximum desired size of the virtual memory cache queue.

..
vm.swap_enabled: 1
set at: /boot/loader.conf
..

499

This controls the use of swap space. If set to 0, your system will not swap. If your swap disk is
damaged, or if you're running −current and someone broke swapping, you might want to try this.

..
vm.swap_idle_enabled: 0
vm.swap_idle_threshold1: 2
vm.swap_idle_threshold2: 10
set at: runtime

If you're constantly swapping on a large system, setting the swap_idle_enabled sysctl tells the
virtual memory manager to pull idle processes into virtual memory more quickly than other
processes. The threshold sysctls tell the system how many seconds to wait before considering
different sorts of processes idle. The defaults are probably fine; just enabling vm.swap_idle_enabled
should do the trick. Do not enable this unless you're having heavy virtual memory use!

..
vfs.vmiodirenable: 1
set at: runtime
..

Allows FFS to use the virtual memory system to cache directory lookups, increasing disk
performance. Combined with the directory hashing code and soft updates, this increases disk
access by as much as 6000 percent.

..
vfs.usermount: 0
set at: runtime
..

If set, users may mount filesystems. This allows people to use floppy disks and CD−ROMs. The
user must own the mount point.

..
net.inet.ip.forwarding: 0
set at: runtime
..

Controls the kernel's ability to forward packets. If you have multiple network cards, you might want
your FreeBSD system to act as a gateway, router, or firewall. When set, the system will forward
packets internally. You can turn forwarding on and off at will.

..
net.inet.ip.redirect: 1
set at: runtime
..

500

Toggles the ability to send ICMP redirect packets if the system is providing routing services. It has
no effect if the system is not performing routing.

..
net.inet.ip.ttl: 64
set at: runtime
..

The maximum number of hops any non−ICMP protocol can take across the network.

..
net.inet.ip.sourceroute: 0
set at: runtime
..

Toggles forwarding of source−routed packets.

..
net.inet.ip.accept_sourceroute: 0
set at: runtime
..

If set to 1, the system will accept source−routed packets aimed at it. If you don't know what
source−routing is, just accept my word that this is not usually a good idea.

..
net.inet.ip.fastforwarding: 0
set at: runtime
..

If you're providing routing services, this sysctl greatly accelerates packet throughput. It does so by
eliminating most of the sanity checks performed on packets and by completely bypassing any
packet−filtering rules.

..
net.inet.icmp.drop_redirect: 0
set at: runtime
..

If set to 1, your system will ignore ICMP redirect packets. These are not commonly used on the
public Internet, and only rarely used inside private networks.

..
net.inet.icmp.log_redirect: 0
set at: runtime
..

501

In normal circumstances, your system should never see an ICMP redirect. While they have
legitimate administrative uses, if they're in use you'll know. Enabling this sysctl makes the system
log any ICMP redirects it receives.

..
net.inet.icmp.bmcastecho: 1
set at: runtime
..

When set, the system will respond to ICMP requests to the broadcast address of a network—the
highest−numbered address in the block of IP addresses. This is required for standards compliance,
but was such a source of trouble that it's disabled by default now.

..
net.inet.tcp.rfc1323: 1
set at: runtime
..

Enables the window−scaling algorithms described in RFC 1323.

..
net.inet.tcp.rfc1644: 0
set at: runtime
..

Enables Transactional TCP, as described in RFC 1644.

..
net.inet.tcp.sendspace: 16384
net.inet.tcp.recvspace: 16384
set at: runtime
..

The number of bits reserved for send and receive buffers. Whenever a connection is opened, the
system sets aside a send and a receive buffer for use by that connection. These values both default
to 16384, or 16KB. If you have a small number of high−bandwidth connections, you can increase
these sysctl values. 32768 is a decent value in this case. Do not alter this sysctl if you have a large
number of connections—you'll increase system load dramatically and kill your performance. These
values are vital parts of the NMBCLUSTERS kernel memory calculation; if you increase them, you
increase the amount of kernel memory set aside for mbufs. Crank these up too high, and you can
panic your kernel during boot.

..
net.inet.tcp.log_in_vain: 0
set at: runtime
..

502

Logs attempts to connect to any TCP port where no program is listening.

..
net.inet.tcp.blackhole: 0
set at: runtime
..

By default, TCP/IP returns an error code when you attempt to connect to a closed port. This shows
up as a "connection reset by peer" error. If you set this to 1, attempts to connect to a closed TCP
port are dropped, but no error is sent. This slows down ports scans, and can add some semblance
of security to your system. It is not a replacement for packet filtering, however!

..
net.inet.tcp.delayed_ack: 1
set at: runtime
..

Tells the system to try to include the TCP connection teardown information on a data packet, rather
than sending additional packets to signal the end of the connection.

..
net.inet.tcp.path_mtu_discovery: 1
set at: runtime
..

Enables Path MTU discovery.

..
net.inet.tcp.slowstart_flightsize: 1
set at: runtime
..

Specifies the number of packets that can be sent during the slow−start portion of a TCP transaction
across a wide area network.

..
net.inet.tcp.local_slowstart_flightsize: 65535
set at: runtime
..

This is the number of packets that can be sent during the slow−start portion of a TCP transaction
across a local network.

..

503

net.inet.tcp.newreno: 1
set at: runtime
..

Toggles RFC2582 connection recovery, also known as the TCP NewReno Algorithm.

..
net.inet.tcp.do_tcpdrain: 1
set at: runtime
..

Tells the system to flush packets from the reassembly queue when it is low on mbufs.

..
net.inet.tcp.always_keepalive: 1
set at: runtime
..

If you set this to 1, old dead connections will eventually be found and killed. It increases the amount
of network traffic by a smidgeon, but will clean up many situations that come from having a server
up for 30 months straight. If set to 0, connections will remain alive even on unreliable connections.
This is a trade−off between long−term stability and short−term convenience.

..
net.inet.udp.log_in_vain: 0
set at: runtime
..

Logs attempts to connect to any UDP port where no program is listening.

..
net.inet.udp.blackhole: 0
set at: runtime
..

By default, TCP/IP returns an error code when you attempt to connect to a closed port. This shows
up as a "connection reset by peer" error. If you set this to 1, attempts to connect to a closed UDP
port are dropped, but no error is sent. This slows down ports scans, and can add some semblance
of security to your system. It is not a replacement for packet filtering, however!

..
hw.ata.ata_dma
set at: /boot/loader.conf
..

504

Controls use of DMA in IDE devices. This is the modern standard. Set this to 0 if your hardware
uses PIO instead of DMA. (If you have PIO hardware, you probably know it.)

..
hw.ata.wc
set at: /boot/loader.conf
..

Controls the use of write−caching in IDE drives. Setting it to 1 will improve performance at the cost
of data integrity in the case of a system crash.

..
hw.ata.tags: 0
set at: /boot/loader.conf
..

Enables tagged queuing. Only certain IBM hard drives support this. If you have it, it will be clearly
marked on the packaging.

..
hw.ata.atapi_dma: 0
set at: /boot/loader.conf
..

Controls the use of the DMA access model in ATAPI devices. Check your hardware manual to see if
your hardware supports DMA. ATAPI can have problems with DMA, so this defaults to "off". You
can try it, but it might very well hang your system.

..
jail.set_hostname_allowed: 1
set at: runtime
..

Controls whether jail owners can change the hostname of their jails. See Chapter 8.

..
jail.socket_unixiproute_only: 1
set at: runtime
..

Controls whether jail owners can use protocols other than TCP/IP. See Chapter 8.

..
jail.sysvipc_allowed: 0
..

505

Controls whether jail owners can use System V IPC calls. See Chapter 8.

..
compat.linux
set at: read−only
..

These sysctls provide information for the Linux compatibility kernel module. See Chapter 11.

506

List of Figures

Chapter 1: Installation

Figure 1.1: First boot menu
Figure 1.2: ISA card configuration
Figure 1.3: Sysinstall main menu
Figure 1.4: Fdisk with Windows partitions
Figure 1.5: Fdisk with one FreeBSD partition
Figure 1.6: Boot Manager selection
Figure 1.7: The Disklabel menu
Figure 1.8: Disklabel after partitioning
Figure 1.9: Distributions menu
Figure 1.10: Installation media menu
Figure 1.11: Post−Install configuration
Figure 1.12: Setting the root password
Figure 1.13: Adding a user
Figure 1.14: Time selection by country
Figure 1.15: Mouse management
Figure 1.16: Mouse test menu
Figure 1.17: Network Services menu
Figure 1.18: Network interface information menu
Figure 1.19: Network Configuration menu
Figure 1.20: Package Selection menu
Figure 1.21: Individual package listings

Chapter 5: Networking

Figure 5.1: 4−layer network diagram

Chapter 6: Upgrading FreeBSD

Figure 6.1: FreeBSD development branches

Chapter 19: Now What's It Doing?

Figure 19−1: Sample MRTG graph

507

List of Tables

Chapter 4: Kernel Games

Table 4.1: Some roots of the sysctl MIB tree

Chapter 5: Networking

Table 5.1: Netmask conversions
Table 5.2: Common netstat route flags

Chapter 8: Advanced Security Features

Table 8−1: Variables that can be used in twist and spawn commands

Chapter 9: Too Much Information About /etc

Table 9−1: Login.conf variables for limiting resource use
Table 9−2: Common login.conf environment variables
Table 9−3: CPU types recognized in 32−bit X86 systems

508

List of Sidebars

Chapter 15: Web and FTP Services

A Warning on Anonymous FTP

509

	Cover
	Table of Contents
	Absolute BSD-The Ultimate Guide to FreeBSD
	Dedication
	Foreword
	Introduction
	What Is FreeBSD?
	How Did FreeBSD Get Here?
	The BSD License: BSD Goes Public
	The Birth of Modern FreeBSD
	FreeBSD Development
	Committers
	Contributors
	Users

	Other BSDs
	NetBSD
	OpenBSD
	BSD/OS
	Mac OS X

	Other UNIXes
	Solaris
	AIX
	Linux
	IRIX, HPUX, etc.

	FreeBSD's Strengths
	Portability
	Power
	Simplified Software Management
	Optimized Upgrade Process
	Filesystem

	Who Should Use FreeBSD
	FreeBSD as Your Desktop
	Who Should Run Another BSD
	Who Should Run a Proprietary Operating System
	How to Read This Book
	What Must You Know?
	How to Think About UNIX
	Channels of Communication
	Working with Channels
	The Command Line

	Chapter 1: Installation
	FreeBSD Hardware
	Processor
	Memory (RAM)
	Hard Drives

	Downloading FreeBSD
	Installing by FTP
	Other FTP Install Information

	Hardware Setup
	Actually Installing FreeBSD
	Configuring the Kernel for ISA Cards
	Sysinstall: The Ugly FreeBSD Installer
	Disk Usage

	Partitioning
	Root
	Swap Space
	Swap Splitting

	/var, /usr, and /home
	A Second Hard Drive
	Soft Updates
	Block Size
	What to Install
	Installation Media
	Committing

	Post-Install Setup
	Root Password
	Adding Users
	Time Zone
	Mouse
	Configuring Network Cards
	Xfree86
	Software

	Restart
	A Note on Editors

	Chapter 2: Getting More Help
	Why Not Mail First?
	The FreeBSD Attitude
	Man Pages
	The FreeBSD Manual
	Man Page Headings

	The FreeBSD Documentation
	The Mailing List Archives
	Other Web Sites
	Using FreeBSD Problem-Solving Resources
	Checking the Handbook/FAQ
	Checking the Man Pages
	Checking the Mailing List Archives
	Using Your Answer
	Mailing for Help

	Chapter 3: Read This Before You Break Something Else! (Backup and Recovery)
	Overview
	System Backups
	Tape Devices
	How to Read Dmesg.boot

	Controlling Your Tape Drive
	Device Nodes
	Using the TAPE Variable
	The mt Command

	Backup Programs
	Tar
	Dump/Restore

	Restoring from an Archive
	Checking the Contents of an Archive
	Extracting Data from an Archive
	Restoring Interactively

	Recording What Happened
	Revision Control
	Getting Older Versions
	Breaking Locks
	Viewing Log Messages
	Reviewing a File's Revision History
	Ident and ident Strings
	Going Further

	Single-User Mode
	The Fixit Disk

	Chapter 4: Kernel Games
	Overview
	What Is the Kernel?
	Configuring Your Kernel
	Sysctl
	Changing Sysctls
	Setting Sysctls at Boot
	Kernel Configuration with Loader.conf
	Manually Configuring the Loader

	Loading and Unloading Modules in Multi-User Mode
	Viewing Loaded Modules
	Loading and Unloading Modules

	Customizing the Kernel
	Preparation
	Your Backup Kernel
	Editing Kernel Files
	Basic Options
	Multiple Processors
	Device Entries

	Building Your Kernel
	Troubleshooting Kernel Builds

	Booting an Alternate Kernel
	Adding to the Kernel
	LINT
	Fixing Errors with Options

	Tweaking Kernel Performance
	Sharing Kernels

	Chapter 5: Networking
	Overview
	Network Layers
	The Physical Layer
	The Physical Protocol Layer
	The Logical Protocol Layer
	The Application Layer

	The Network in Practice
	Mbufs
	What Is a Bit?

	Ethernet
	Broadcasting
	Address Resolution
	Hubs and Switches
	Netmasks
	Netmask Tricks
	Hexadecimal Netmasks
	Unusable IP Addresses
	Routing
	UDP and TCP
	Network Ports

	Connecting to an Ethernet Network
	Multiple IP Addresses on One Interface
	Using Netstat

	Chapter 6: Upgrading FreeBSD
	Overview
	FreeBSD Versions
	Release
	FreeBSD-current
	FreeBSD-stable
	Snapshots
	Security Updates
	Which Release Should You Use?

	Upgrade Methods
	Upgrading via Sysinstall
	Upgrading via CVSup
	Simplifying the CVSup Upgrade Process

	Building a Local CVSup Server
	Controlling Access
	Authentication
	Combining Authentication and Access

	Chapter 7: Securing Your System
	Overview
	Who Is the Enemy?
	Script Kiddies
	Disaffected Users
	Skilled Attackers

	FreeBSD Security Announcements
	Subscribing
	What You'll Get

	Installation Security Profiles
	Moderate
	Extreme

	Root, Groups, and Permissions
	The root Password
	Groups of Users
	Primary Group
	Some Interesting Default Groups
	Group Permissions

	Changing Permissions
	Changing File Ownership
	Assigning Permissions

	File Flags
	Viewing a File's Flags
	Setting Flags

	Securelevels
	Setting Securelevels
	Which Securelevel Do You Need?
	What Won't Securelevel and File Flags Do?
	Living with Securelevels

	Programs That Can Be Hacked
	Putting It All Together

	Chapter 8: Advanced Security Features
	Traffic Control
	Default Accept vs. Default Deny

	TCP Wrappers
	Configuring Wrappers
	Daemon Name
	The Client List
	Putting It All Together

	Packet Filtering
	IPFilter
	IPFW
	Default Accept and Default Deny in Packet Filtering
	Basic Concepts of Packet Filtering
	Implementing IPFilter
	Configuring Your Server to Use Jail
	Configuring Your Kernel to Use Jail
	Client Setup
	Final Jail Setup
	Starting the Jail
	Managing Jails
	Shutting Down a Jail

	Monitoring System Security
	If You're Hacked

	Chapter 9: Too Much Information About /etc
	Overview
	Varieties of /etc Files
	Default Files
	/etc/defaults/rc.conf
	/etc/adduser.conf
	/etc/crontab
	/etc/csh.*
	/etc/dhclient.conf
	/etc/fstab
	/etc/ftp.*
	/etc/hosts.allow
	/etc/hosts.equiv
	/etc/hosts.lpd
	/etc/inetd.conf
	/etc/locate.rc
	/etc/login.access
	/etc/login.conf
	Specifying Default Environment Settings
	/etc/mail/mailer.conf
	/etc/make.conf and /etc/defaults/make.conf
	/etc/master.passwd
	/etc/motd
	/etc/mtree/*
	/etc/namedb/*
	/etc/newsyslog.conf
	/etc/passwd
	/etc/periodic.conf and /etc/defaults/periodic.conf
	/etc/printcap
	Working with Printcap Entries
	/etc/profile
	/etc/protocols
	/etc/pwd.db
	/etc/rc
	/etc/rc.conf and /etc/defaults/rc.conf
	/etc/resolv.conf
	/etc/security
	/etc/services
	/etc/shells
	/etc/spwd.db
	/etc/ssh
	/etc/sysctl.conf
	/etc/syslog.conf

	Chapter 10: Making Your System Useful
	Overview
	Making Software
	The Pain and Pleasure of Source Code
	Debugging

	The Ports and Packages System
	Ports
	Finding Software
	Legal Restrictions

	Using Packages
	Installing from CD-ROM
	Installing via FTP
	What Does a Package Install?
	Uninstalling Packages
	Package Information
	Controlling Pkg_add
	Package Problems
	Forcing an Install

	Using Ports
	Installing a Port
	Using Make Install
	Built-In Port Features
	Uninstalling and Reinstalling
	Cleaning Up with Make Clean
	Building Packages
	Changing the Install Path
	Setting Make Options Permanently

	Upgrading Ports and Packages
	Upgrading the Ports Collection
	Ports Collection Upgrade Issues
	Checking Software Versions
	Hints for Upgrading

	Chapter 11: Advanced Software Management
	Overview
	Startup and Shutdown Scripts
	Typical Startup Script
	Using Scripts to Manage Running Programs

	Managing Shared Libraries
	Ldconfig

	Running Software from the Wrong OS
	Recompilation
	Emulation
	ABI Implementation
	Foreign Software Libraries

	Installing and Enabling Linux Mode
	Identifying Programs
	What Is Linux_base?
	Adding to Linux_base
	Configuring Linux Shared Libraries
	Installing Extra Linux Packages as RPMs

	Using Multiple ProcessorsŠSMP
	What Is SMP?
	Kernel Assumptions
	FreeBSD 3.0 SMP
	FreeBSD 5 SMP
	Using SMP
	SMP and Upgrades

	Chapter 12: Finding Hosts With DNS
	How DNS Works
	Basic DNS Tools
	The Host Command
	Getting Detailed Information with Dig
	Looking Up Hostnames with Dig
	More Dig Options

	Configuring a DNS Client: The Resolver
	Domain or Search Keywords
	The Nameserver List

	DNS Information Sources
	The Hosts File
	The Named Daemon
	Zone Files

	A Real Sample Zone
	named.conf
	/var/named/master/absolutebsd.com

	Making Changes Work
	Starting Named at Boottime
	Checking DNS
	Named Configuration Errors

	Named Security
	Controlling Information Order
	More About BIND

	Chapter 13: Managing Small Network Services
	Bandwidth Control
	Configuring IPFW
	Reviewing IPFW Rules
	Dummynet Queues
	Directional Traffic Shaping

	Public-Key Encryption
	Certificates
	Create a Request
	Being Your Own CA

	SSH
	Testing SSH
	Enabling SSH
	Basics of SSH
	Creating Keys
	Confirming SSH Identity
	SSH Clients
	Connecting via SSH
	Configuring SSH

	System Time
	Setting the Time Zone
	Network Time Protocol
	Ntpdate
	Ntpd

	Inetd
	/etc/inetd.conf
	Configuring Programs in Inetd
	Inetd Security
	Starting Inetd
	Changing Inetd's Behavior

	Chapter 14: Email Services
	Email Overview
	Where FreeBSD Fits In
	The Email Protocol

	Email Programs
	Who Needs Sendmail?
	Replacing Sendmail
	Installing Postfix
	Pieces of Postfix
	Configuring Postfix
	Email Aliases
	Email Logging
	Virtual Domains
	Postfix Commands
	Finding the Correct Mail Host
	Undeliverable Mail

	POP3
	Installing POP3
	Testing POP3
	POP3 Logging
	POP3 Modes
	Qpopper Preconfiguration Questions
	Default Qpopper Configuration
	APOP Setup
	Configuring Pop3ssl
	Qpopper Security

	Chapter 15: Web and FTP Services
	Overview
	How a Web Server Works
	The Apache Web Server
	Apache Configuration Files
	Configuring Apache
	Controlling Apache

	Virtual Hosting
	Name-Based Virtual Hosts
	IP-Based Virtual Hosts
	Tweaking Virtual Hosts

	.NET on FreeBSD
	Installing the SSCLI

	FTP
	FTP Security
	The FTP Client
	The FTP Server

	Chapter 16: Filsystems and Disks
	Device Nodes
	Hard Disks and Partitions

	The /etc/fstab File
	Disk Basics
	The Fast File System
	Vnodes
	FFS Mount Types
	FFS Mount Options

	What's Mounted Now?
	Dirty Disks
	Fsck

	Mounting and Unmounting Disks
	Mounting Standard Filesystems
	Mounting with Options
	Forcing Read-Write Mounts
	Mounting All Standard Filesystems
	Mounting at Nonstandard Locations
	Unmounting

	Soft Updates
	Enabling Soft Updates
	IDE Write Caching and Soft Updates

	Virtual Memory Directory Caching
	Mounting Foreign Filesystems
	Using Foreign Mounts
	Foreign Filesystem Types
	Mount Options and Foreign Filesystems

	Filesystem Permissions
	Removable Media and /etc/fstab
	Creating a Floppy
	Low-Level Formatting
	Creating an FFS Filesystem
	Creating an MS-DOS Filesystem

	The Basics of SCSI
	SCSI Types
	SCSI Adapters
	SCSI Buses
	Termination and Cabling
	SCSI IDs and LUNs

	FreeBSD and SCSI
	Boot-Time Delay
	Wiring Down Devices

	Adding New Hard Disks
	Creating Slices
	Creating Partitions
	Configuring /etc/fstab
	Installing Existing Files onto New Disks
	Temporary Mounts
	Moving Files
	Stackable Mounts

	Chapter 17: RAID
	Hardware vs. Software RAID
	RAID Levels
	Software RAID
	Vinum Disk Components
	Vinum Plex Types
	RAID-5 Plex
	Preparing Vinum Drives
	Dedicating Partitions to Vinum
	Configuring Vinum
	Concatenated Plex
	Removing Vinum Configuration
	Striped Volumes
	Mirrored Volumes
	Starting Vinum at Boot
	Other Vinum Commands
	Replacing a Failed Mirrored Plex

	Chapter 18: System Performance
	Overview
	Computer Resources
	Disk Input/Output
	Network Bandwidth
	CPU and Memory
	Using Top
	Memory Usage
	Swap Space Usage
	CPU Usage

	When Swap Goes Bad
	Paging
	Swapping
	Are You Swapping or Paging?

	Real-World Performance Tuning
	Fairness in Benchmarking
	The Initial Test
	Using Both CPUs
	Directory Caching
	Moving /usr/obj

	Lessons Learned

	Chapter 19: Now What's It Doing?
	Status Mails
	Forwarding Reports

	Logging with Syslogd
	Facilities
	Levels
	Syslog.conf
	Wildcards
	Rotating Logs with Newsyslog.conf

	Reporting with SNMP
	Basics of SNMP
	MIBs
	Net-snmp
	Snmpwalk
	Specific Snmpwalk Queries
	Translating Between Numbers and Names
	Setting Up Snmpd
	Index Numbers

	Long-Term Monitoring with MRTG
	Configuring MRTG
	Sample mrtg.cfg Entry
	Testing MRTG
	Tracking Other System Values
	Useful Net-snmp MIBs
	Monitoring a Single MIB
	Customizing MRTG
	MRTG Index Page
	Sample MRTG Configurations
	Monitoring Non-BSD Systems

	Chapter 20: System Crashes and Panics
	What Causes Panics?
	What Does a Panic Look Like?

	Responding to a Panic
	Prerequisites
	Crash Dump Process
	The Debugging Kernel
	Post-Panic Behavior
	kernel.debug
	Dumpon
	Savecore
	Upon a Crash
	Dumps and Bad Kernels

	Using the Dump
	Advanced Kernel Debugging
	Examining Lines
	Examining Variables
	Apparent Gdb Weirdness
	Results
	Vmcore and Security
	Symbols vs. No Symbols

	Serial Consoles
	Hardware Serial Console
	Software Serial Console
	Changing the Configuration
	Using a Serial Console
	Serial Login
	Emergency Logon Setup
	Disconnecting the Serial Console

	Submitting a Problem Report
	Problem Report System
	What's in a PR?
	Using Send-pr
	Filling Out the Form
	PR Results

	Chapter 21: Desktop FreeBSD
	Overview
	Accessing File Shares
	Prerequisites
	Character Sets
	Kernel Support for CIFS
	SMB Tools
	Configuring CIFS
	Minimum Configuration: Name Resolution
	Other smbutil Functions
	Mounting a Share
	Other mount_smbfs Options
	Sample nsmb.conf Entries
	CIFS File Ownership

	Serving Windows File Shares
	Accessing Print Servers
	Lpd
	Running a Local Lpd
	Printer Testing

	Local Printers
	X: A Graphic Interface
	X Prerequisites
	X Versions
	Configuring X
	Making X Look Decent

	Desktop Applications
	Web Browsers
	Email Readers
	Office Suites
	Music
	Graphics
	Desk Utilities
	Games

	Afterword
	Overview
	The Community
	What Can You Do?
	If Nothing Else –

	Getting Things Done
	Second Opinions

	Do It!

	Appendix: Some Useful SYSCTL MIBs
	List of Figures
	Chapter 1: Installation
	Chapter 5: Networking
	Chapter 6: Upgrading FreeBSD
	Chapter 19: Now What's It Doing?

	List of Tables
	Chapter 4: Kernel Games
	Chapter 5: Networking
	Chapter 8: Advanced Security Features
	Chapter 9: Too Much Information About /etc

	List of Sidebars
	Chapter 15: Web and FTP Services

