

ABSOLUTE

BSD

THE ULTIMATE GUIDE TO FREEBSD

Absolute BSD—The Ultimate Guide to FreeBSD

Table of Contents

Absolute BSD—The Ultimate Guide to FreeBSD..........cccceeeiiiiiiimieeemmesenisrrinssssssssssssssnesssssssssssns 1
0= o [T o= 11 oY o 3
0] =110 o 4
1o Yo 10T 1 o o 5
AP L R R (=T = TR 5

HOW Did Fre@BSD Gt HEIC e ettt e e e e e e e e e e e aaaaeaees 5

The BSD License: BSD GOES PUDBIIC.........oo it 6

The Birth of MOAEIN FrE@EBSD.......cuu et e e e e e e e e raa s 6
FreeBSD DeVelOPMENT.. .o ittt e e s e e e s 7
(070] 10010 111 (=T £ PR 7

(070] 0] (111U (o] £=THT TR TR 8

T 8

(@ L= gl = 1] L= TR 8

N L=TE=] BT 8

(@] oT=T 0] = 1] I PR 9

[ES] D1LO 1S TO T 9

Y F= Tl 30 TR 9

(O LT 0N == TR 9
Y] F= U =TT 9

F N 3 TR 10

T G 10

[RIX, HPUX, Bttt ettt et e e e e e e e e e e e e e e e et e e e e naa e eeranaeeaes 10
FreeBSD's Srengths.......oo e 10
POrADIIITY. ... 10

[11T = A 10

Simplified Software ManagemeNt............ooi i 11

Optimized UpGrade PrOCESS.........uuiii ittt aae e 11

FIlESY STOIML. .. et e e e e e e e e e 11

WHhO ShoUld USE FrEEBSD........e et e e e e e e e e e e eeaas 11
FreeBSD as YOUr DESKIOP.uuiiiiiiieeeite ettt 11

Who Should RUN ANONEI BSD.......cceeiiee ettt e e e e e e e e e e eeeas 12

Who Should Run a Proprietary Operating System............cooiiiiiiiee e 12

[[0}V A (o T = {=Y= Lo I I a3 = Yo] T 13

WHhat MUSTE YOU KNOW ...ttt et e e et e e e e e e e e e e e e e e eaa e e e e eaaeeseeeanaeeeeens 13

How t0 ThinK ADOUL UNDX .. .eee ettt e e e e e e e e e e e e et s e e e e e e aeaaaans 14
Channels of CoOMMUNICALION........o.uu et e e e e e e e s e e e e e e e e raaaeaes 14

Working With Channels.............ooioiii e e 14

The ComMMEANA LINE....ceeiei ettt e et e e e e e e e e e s e e e e saae e e e raaaaeaes 14

Chapter 1: INStallation..........occcmiiiieiiir s s s amn s 16
FreEBSD HarOWar.o oottt e e e et e et e e e e e e e e e e e e e e naa e e arenanss 16

[l (0107 ST=T=T0) A 16

MEMOIY (RAM). e e e e e e s e s e e e e e e e e e annnes 16

[E= 00 [LY== 16
Downloading FreEBSD...........uiii e 17
INSTAIING DY FTP. e e e 18

Other FTP INStall INformation....c..oee e 19

Table of Contents

Chapter 1: Installation

[P L0 = TE oI T= (U o N PRI 19
Actually Installing Fre@BSD..........oeiii e 20
Configuring the Kernel for ISA Cards.........ooeeie i 21
Sysinstall: The Ugly FreeBSD Installer.........c..ooiiiiiiiieee e 21
DISK USAQE... .ttt e e e e e e e e e e e e eas 22

= L U11[o] 0] oo PP P PP PPRPPPRO 24
U0 T0) PP P OPPPPPPPPPRO 25
A =T oIS o= Lo PP 25
A =T oIS o] L1111 T PR RRR 26
JAVZ= ULV =] =g o I aTo] o [TR 26
A SECONA HAA DIIVE....coiiieiiie ettt et e e e et e e e e e enreeeeenns 27
S T0] {8 oo F= 1 L= SRRSO 28
BIOCK SIZE.....eeeeee ettt n 28
WAL 10 INST@IL...eeeeeeeee e e e e 28
INSTAllAtION MEAIAL......c e 29
(0707001001111 0 Vo H SRRSO 30
POSE—INSTAIl SEIUPDL...ee i ettt e e e e e e nreee s 30
ROOT PASSWOIA......ceeeiiiiiie ettt e e e e e e e e e e e e e eas 30
JAve (o[g o T 0 LT =T PP PP PPPPPP 31
THME 0Nttt e e e e e et e e e e e e e e b e n e e e e e e e e e e e aeeeaan 32
IVIOUSE. ...ttt e et e et e e e e e e e e e r et e e e e e e e e nnr e e e e e e e e e aaannnn 32
Configuring NEetWOrK Cards.........cuueei oo 33

D £=1=1 ST T USROS 35

T 11T L= PRSP 35

R T=E] r= o PP OO PP PPPPPPPIO 36
PN\ [o] (=30 o I =l [(o] £ ST PP PP OPPR 37
Chapter 2: Getting More Help.......coc s s s e 38
WhHY NOt Ml FIFSt2... .ttt et e e e enre e e e eaes 38
The Fre@BSD AHIUTE ...t e e e enee e e e aes 38
V= T I = To =T OO P TP TPPPPPRP 39
The FreeBSD ManUAL.......cooueiiii ittt e e e nee e e e e aee 40
Man Page HEadINGS. ... eeeiieiiiiee ettt e e e e e e e 41
The FreeBSD DOCUMENTAION.......coiiiiiiiie et e e 42
The Mailing LiSt ArCRIVES.......... e 42
Other WED SIES.... ettt e e et e e s et e e e e e ane e e e e neeas 43
Using FreeBSD Problem—SoIving RESOUICES........cuuiiiiiiiiiiee e 43
Checking the HandbooK/FAQL.........coo e 43
ChecKing the Man Pages........cooo e e 43
Checking the Mailing List ArChiVES..........coi i 45
USING YOUE ANSWET ...ttt ettt e e e et e e e e e e e e e e e e e e e e e nnreneeeas 45

Y =Tl g T I (o =1 [o RSP 45
Chapter 3: Read This Before You Break Something Else! (Backup and Recovery)................. 48
(@Y= VTP 48
SYSIEM BaACKUPS. ...ttt ettt e et e e e e e e st e e e e e nne e e e e nees 48
TAPE DBVICES..... ittt ettt e e e e e e e e e e e e e e e e r e e e e e e e e e ees 49
How to Read DmeSg.DOO0t.........oo e 49
Controlling YOUr Tape DriVe........eei it 50

Table of Contents
Chapter 3: Read This Before You Break Something Else! (Backup and Recovery)

DEVICE INOUES ...ttt eas 50
Using the TAPE Variable.........ooo s 50
The ME COMMANG.....co et e e e e e s e b e e e e s e nneeaeenes 51
BaCKUP Programs. it e e e e e 52
LI LT PP TP PPPPPP 52
DUMP/RESIONE. ...t e e e e e e e e e e eas 55
Restoring from @n ArCRIVE.........ooo et 58
Checking the Contents of an ArChiVe..........ocueii i 58
Extracting Data from an ArChiVe.............ooooo i 58
ReStoring INTEraCtiVElY..........ueeeeeieeeeee e 59
Recording What HapPENEd.eiiiiiiiiee e e e e e 60
REVISION CONIIOL.....eiiiiie ettt ettt e e et e e e e st et e e s e nne e e e e anneeaean 61
Getting Older VEISIONS ...ttt ettt e s e e e e e e e e e e e nneeas 63
Breaking LOCKS......eeeeeiieiiiiee ettt e e e e e e 64
VIeWING LOG MESSAQGES. .. ceeiiiiiiiiiiitiiie et e ettt eaeeeean 64
Reviewing a File's ReviSion HiStOry...........cuu e 65
l[dent and IdENt STHNGS.....coii i e e e e e 65
GOING FUMNEI.....ceeee et e e e e e 66
gl | Lo U L= g 1V (o T =T PP PR 66
TRE FIXIt DISK.... ettt e sttt e e et e e e e bt e e e e e nee e e e e enreeeeenns 68
Chapter 4: Kernel Games.......ccocuuiiiimmriiisnsinssssssssssssssssssssss s sssss s s ssssss s sssssss s sasssss s ssssansssnsssnnnnsas 70
(@Y= VT PP 70
What S the KEINEI7......ee e ettt e e enre e e e eaes 70
Configuring YOUE KEIMNEL......coiiiiiii et 71
£ 1 SRRSO 71
Changing SYSCHS. ... et 74
Setting SySCHS @t BOOL........eeeiieee e 74
Kernel Configuration with Loader.Conf...........cooiiiii e 75
Manually Configuring the LOAder...........coo i 77
Loading and Unloading Modules in Multi—User Mode.............coooiiiiiiiiiieeeeeee e 78
Viewing Loaded MOAUIES..............uuiiiiieiee e 78
Loading and Unloading MOAUIES.............oooiiiiiiii e 79
Customizing the KEINEL.......coo e e 79
PreParation. 79
Your Backup KEIMEL. e 80
Editing Kernel FIles......oo oo 80

= F=] (o @ o] 1] 1 RS SRPTPI 83
MUIIPIE PrOCESSOIS....ceeeiiiiiitt ettt e e e e e e e e e e e e e e e aannnes 86
DEVICE ENTIIES. ...t e e e 86
BUIIAING YOUF KEIMEL......eeeiieieeee e e e e e e e e 89
Troubleshooting Kernel BUilds.............cooi e 90
Booting an Alternate KerNel......... ..o 91
AddING 10 The KEIMEL......ooiii e 92
0V PSRRI 92
Fixing Errors With OptioNSi.........ueiiiiiee e 93
Tweaking Kernel PerformancCe. 94
SharNG KEINEIS. e ettt e st e e e e e nne e e e e neeas 96

Table of Contents

L0 1T T o3 (=T g [T 40T o (g ' 97
(@Y= VT PP 97
NEIWOIK LYEIS ...ttt e e e e e e e e e e e e e e e neeeeaeeean 97

The PRYSICAl LAYEL.... .. ettt e e e e e 98
The Physical ProtoCOl LAYer...........uuiiiiiiiieieeee e 98
The Logical ProtoCOl LAY ..o 99
The APPIICALION LAYET......eieiiiiiiiiiie e e e e e e 100
The NetWOrK iN PraCliCa ... 100
1Y o TU £ PPPR 101
L g U ES= T =) PSPPSR 101
=] 0T PP PPPPPPPPPPPR 102
BrOAACASTING. ...ttt e e 103
AdAreSS RESOIUTION ...t e e e e e e aeeas 103
HUDS @nd SWITCHES.....coo e 103
INETMASKS. ...ttt eaann 104
NETMASK THICKS. ... e e e e e e e e 105
Hexadecimal NetmMasks.ooiiiiiie e 105
UNUSADIE [P AGAIESSES.ttt e e e 106
LR To UL 1] o F TSP PPPPPSPPP 106
UDP @NA TOP...eiee ettt st e e e et e e e e e e e e e anneeeas 107
NEIWOIK POIS. ... e e e e e e e e e aaes 107
Connecting to an Ethernet NetWOrk ... 108
Multiple IP Addresses on One Interface..........oooovviiiiiiiciii i 110
USING NETSTAL. ...ttt e e e e e e e e e e e e e e e nnnee s 111

Chapter 6: Upgrading FreeBSD..........ciiiiimiiiiiimrinsissssssssesssnsssssss s sssss s s s s sssssmss s sssssssssssssnns 116
(@Y= VT PR 116
Fre@BSD VEISIONS..... .. ettt et e e et e e e e e e e neeee s 116

REIBASE ... e 116
Fre@BSD —CUITENL......oo et 117
FreeBSD—Stable.coo e 117
ST F= 01 g 0] £ TSRO 118
SECUNLY UPAALES... it e e e e e e e 118
Which Release Should YOU USE?......ooiiiiiie e 119
UPGrade METNOGAS.ttt e e e e e e e e e e e e e e e e 119
Upgrading via SYSINSTall.........c..eiiiiiiiee et 119
UPQGrading Vid CVSUP......cooiieieiiie ettt e e e 120
Simplifying the CVSup Upgrade ProCess.........ccouiiiiiiiiiiiiiee e 130
Building @ LOCal CVSUP SEIVEL........oiiiiiiiiee ettt 132
CONIIOIING ACCESS. ...ttt ettt ettt e ettt e e et e e s e see e e e e enbe e e e e enne e e e e annees 134
AUTNENTICATION. ... e e e e e e e e e e e e e e e aeeas 135
Combining Authentication and ACCESS.......oouuuiiiiiiiie e 137

Chapter 7: Securing YOUr SYSTeM........cciiimiiiiiiemiiniissss s sssssssss s s s s s s ssms s s ssssass s snsssnns 138
(@Y= VTP 138
WHO I8 the ENEMY 2. ..t e e nee e e e 138

S To7 g o] B o (o 1= SRR 139
DiISaffECIEd USEIS ...t e e 139
]| =To AN 1 =T = TR 139
FreeBSD Security ANNOUNCEMENTS.........uiiiiiiiiiie ettt 139

Table of Contents
Chapter 7: Securing Your System

RST8] o< e 1] o] oo 0RO 140
WRAL YOU'Il Gttt ettt e e e e e e nr e e 140
Installation SeCUrity ProfilleS........eeiii e 141
(V[0 o (=T = | (= PP U OPPPPPPRPPPN 141
=10 0= TSP PPPPPPPPI 141
Root, Groups, and PermiSSIONS.........uuuiiiiiiiiiiiiiiieee e e e e e e e e e e e e e e e e e snneeeeeeeeeeeanes 141
THe 100t PaSSWOIQ........eieeeiiiiee e e e 142
GrOUPS OF USEBISi..cciiiieiei ettt e e e e e e s e nne e e e e nnes 142

(] =TV C T (o 1N o T PRSP 143
Some Interesting Default GroUPS.......cueiii i 143
GroUP PermMIiSSIONS.eeiiiiiiiie ettt e e e 144

(O] g F=TaTo [T aTo I =T 0 0111 (o] o 1= PP RR 145
Changing File OWNEIShiD.......coo i 146
ASSIGNING PeIMISSIONS.....eeeiiiiiiiiiite et e e e e eeeaeeas 147
1 = o =T F PP PPPPPPPPPPPR 148
Viewing @ FIle'S FIagS.uueai e 149
L= 111 o T = Vo L PR PR 149
SECUIBIBVEIS. ...t et et e e e bt e e e st e e e e e nae e e e e ennees 150
SettiNG SECUIEIBVEIS. ..o 150
Which Securelevel DO YOU NEEAZ... ... e 152
What Won't Securelevel and File FIags DO%......coooiiiiiiiieeee e 152
Living With SECUFEIEVEIS ... 153
Programs That Can Be HacCKed.........coouuiiiiiii e 153
PULtING [T All TOGEINET ... e e e 156
Chapter 8: Advanced Security FEatUres........ccooiiiiiimmmiismsiinsess s essanns 157
Traffic CONIIOL. ... ettt e e e e e e ae e e s anreeeeaan 157
Default Accept vs. Default DeNY..........ooi i 157
BLIOT oA = o] o 1= £ PSR PPPRR 158
(070] 01 ilo 0 g oo T4 =T o] o 1= T €= PP OPPR 158
DaBMON NAME......eeeeeeee e e e e e e e e r e e e e e e e e nnnee s 158
THE ClIENT LISL... et e e e e e 159
Putting [t All TOGETNEL..... . 165
= (o1 =T 11 =T [T PP PPPPPPPPPPPR 166
o (= O PO PPPPPPSPOPI 166

1 PRSP 167
Default Accept and Default Deny in Packet Filtering..........ccocooiiiiiiiiii e, 167
Basic Concepts of Packet FItering........cooueiiioiiiiie e 167
Implementing IPFIEr...... ... e 168
Configuring Your Server to USe Jall........coooiiiiiiiiiiiee e 176
Configuring Your Kernel to Use Jail.........cooiiiiiiiii e 177

L0 1= o1 7= (0 o RO 178
FINAl A1 SEIUP. c. ettt e e e e e 181
STArtiNG the JalL....eeeieeee e 182
MaNAGING JAIIS......eeeeeeeee e e e e e 182
Shutting DOWN @ JAlL....ceeiiiiiie e 183
MONItOriNG SYSIEM SECUIILY......eeiiiiiiii e e e 183
If YOU'TE® HACKEA. ... et e e e nre e e 184

Table of Contents

Chapter 9: Too Much Information About /etC.......ccccccmmriiiiiiinssmmmmnrriinsse s 185
(@Y= 1= PRSP 185
VarietieS Of /E1C FlES...coii e e e e e e e e e e e eeees 185
DEFAUIT FlES....eeeeeeeee ettt e e e e e e e e e e e e e s e e e e e e e e e eennnsenneeeeeeeaanns 185

[e1C/AEFAURS/IC.CONT...... e e e e e e e e e e nnnneees 186
=] (o= Lo (o [U Y= T o] o | SRR 186
JA=] (7ol (o] g =1 o 188
4= (o o7 o 191
[eIC/ANCHENT.CONT...cccee e 191
= (o34] - | o J PSR 192
4= (o7 1o YRR 192
[eICINOSES.AIIOW. ... 193
A= (o] g[S (= =To [U] | PP PRPPPP PP 193
JRIC/NOSTS.IPA ...t e e e e 193
=] (oA g T=1 (o o o | PR 194
JA=] (o7 (o Tor= 1 (=N (o 194
=] (e oo | I TeTet =TT TP P PP PUPPPP PP 194
JRIC/IOGIN.CONT.....eeeeeee et e e e e e e e e e e e e e e e 197
Specifying Default Environment Settings........ccooiiiiiiiiie e 199
[etC/Mail/MaAilEr.CONT......eeeee e e e e e 202
/etc/make.conf and /etc/defaults/make.cont............oooveeiiiiiiii 202
[e1C/MASIEL.PASSWA.....cceeee e 207
=] (o 3 T o 208
=] (7 0 1 1= = 208
JA=] (o7 g =T 1 T=T o | oA 208
1etC/NEWSYSIOQ.CON...cccoeeeeeeee e 208
JRICIPASSWA...c..cceeeeeeee e 209
/etc/periodic.conf and /etc/defaults/periodic.conf...........coo i, 209
A= (o] o] 1] 0] (o= o PP PUPPPP PP 210
Working with Printcap ENtries.........oueiiiiii e 210
= (o3 o1 (] 1= T PRSP 212
JA=] (7] o] o] (o e o] £ 213
JA=] (7] o111 I | o 213
=] (o 214
/etc/rc.conf and /etc/defaults/IC.CONT.......eevii e 215
= (o] (=TT 0] 1Yo o | A SRR 221
= (oS T= T UL AP PUPPPP PP 221
JA=] (o7 1= V(o= 222
=] (7] =] 222
JA=] (77 01 o e [o N 222
=] (o 7] o 222
=] (o7 VA Tex | H oo o) SRR 222
L= (TS V2] oo I eTo] o | TP PPPP PP 222

Chapter 10: Making Your System USeful.........ccooiiiiicimiiinsiiss s 223
(@Y= V1= PRSP 223
MaKING SOTWAIE.......eeeieie et e e e e e e 223

The Pain and Pleasure of SOUrce COde.........c.uuuiiiiiieiiiiiiieieee e 224
DT o10To o |1 T F TSP PPPP PSPPI 225
The Ports and Packages SYStem..........ui i 225

Table of Contents
Chapter 10: Making Your System Useful

o TP PPPPPSTPP 225
FINAING SOfWAIE. ... e e e nneee s 227
Legal RESTIICHONS.ooii e 229
USING PACKAGES......coeieee ettt e e e e e e e e e e e e e e e 229
Installing from CD—ROM..........ooii e a e 230
INSTAIlING VIa FT P 231
What Does a Package INStall?..........coo e 232
Uninstalling PacCKages 234
Package INfOrmation...........eeeeiiii e 234
Controlling PKG_add........oouiiieee e e 235
Package ProbIemS........o e 236
FOrcing an INSTAlL.......oooo o 237
(6] [T TN] < T PP PPPPPPPPPPPR 238
INSTAIING @ POM....eeeieeeeee e e e e e e 239
USING MaKe INSTAIL.....cooiieeee e 239
BUilt—IN POrt FEAUIES.. ... 240
Uninstalling and Reinstallingooooeiiiiiieeee e 243
Cleaning Up with Make Clean..........coouiiiiiiiiiee e 244
BUIlAING PACKAGES. ...ce et 244
Changing the Install Path..............ooo e 245
Setting Make Options Permanently............oceioiiiiiiiii e 245
Upgrading Ports and Packages...........oouiiiiiiiiiiiiee e 245
Upgrading the Ports ColleCON...........eiii e 246
Ports Collection Upgrade ISSUES.........coiiiiiiiii it 247
ChecKing SOftWare VErSiONS..........oii i 247
HINES fOr UPGrading.......ooooeeiiiieeee e e e 248
Chapter 11: Advanced Software Management...........cccouccemeiininmsminssmss s 250
(@Y= VTP PEP 250
Startup and ShUTAOWN SCHPLS.eieiiiiiiie it 250
Typical STArtUP SCHPL.....eeie e e e e e e 251
Using Scripts to Manage Running Programs..........ooccueeiiiiiiie e 252
Managing Shared LIDrarieS.oooo i 252
(o (o700} [T PRSPPI 253
Running Software from the Wrong OS.........o e 256
RECOMPIIATION. ... e e e e e 256
EMUIGEION. ..o 257
ABIIMPIemMENTAtiON........ceiieiiieiie e 257
Foreign Software LIDrariEs.........oee i 259
Installing and Enabling LINUX MOde..........ccuiiiiiiiii e 259
[dentifying Programs........ ... 260
What IS LiNUX_DasS@ 7. ..o 261
AddiNg 10 LINUX_DASE......eeeeiiiiiii e 261
Configuring Linux Shared LibDraries. ... 262
Installing Extra Linux Packages as RPMS............ooiiiiieee e 263
Using Multiple ProCesSOrs—SMP............uuiiiiiiiie e 263
WAL IS SIMP 2.ttt ettt e et e e e e sn e e e e e enreeeaeans 263
Kernel ASSUMPLIONS. ..ot e e e e e e e e e nnn s 264
Fre@BSD 3.0 SMP....c ettt 265

Vii

Table of Contents

Chapter 11: Advanced Software Management

Fre@BSD 5 SIMP.....ceeie ettt e 265
USING SIMIP... ettt e e et e e e e nne e e e e anneeens 266
SMP and UPGrades.oooouiiiieieiie ettt e e e e e e e e e 266
Chapter 12: Finding Hosts With DNS...........oo s 268
HOW DINS WOTKS. ...ttt ettt et e e e st e e e e e e e e e e enneeeas 268
BaSIC DINS TOOIS ...ccee ittt ettt e et e e st e e e s e e e e e e anneeeas 269
The HOSt COMMANGL.......eiiiiie et e e e nre e e 269
Getting Detailed Information With Dig.........cccueiiiiiiiiii e 269
Looking Up Hostnames With Digh.........uuueiiiiiiiiie e 271
MOTE Dig OPLIONS... ...ttt et e e e e e s e e s e b e e e e ennes 272
Configuring a DNS Client: The RESOIVET ..o 273
Domain or Search KEYWOIAS.oouuiiiiiiiii et 274
The NaMESEIVET LISt ... e e e 275
DNS INfOrmMation SOUICES.......eeiiiiiiiiie et 275
THE HOSES Fle.. e e e e e e 275
The Named DaemON e e eaeeas 276
ZONE FlES. ..ttt e e e e e e as 282

A ReEal SAMPIE ZONE....oiiiiie et a e 286
(aF= 10 0 T=To Koo] | AR 286
/var/named/master/absoluteDSA.COML.......coiii i 286
MaKiNg Changes WOTK.......ccoiuiiiii ettt et e e e e e e s enae e e e e ennees 288
Starting Named at BOOHIME.........oii e 289
(O] g T=Ted T g To T I N SRR 289
Named Configuration ErrOrsS..........ooo i 290

N E=Tag[To Y=o U 2SRRI 290
Controlling INformMation OFAEE.........oouiiiieee e 291
MOre ADOUL BIND......coo oot e e e e e e e e e e eeeeaeens 292
Chapter 13: Managing Small Network ServiCes.......cccccuuimmrminssmsrinssssssns s sssssmsssssssssssssssanns 293
Bandwidth CONIIOL..........eoii e e 293
ConfigUIING IPFW ...t 294
Reviewing IPFW RUIES. ...t 297
DUMMYNET QUEUES. ...ttt et e e e e e e nneee s 297
Directional Traffic SNaPINGeeei e 298
PUDIIC—KEY ENCIYPHON.....eeiiiiiiee e e e e 298
(07214 11 T07= 1 L= PR 299
Create @ REQUESE e 299
BeiNg YOUIr OWN CA ... ettt e et e e e e e e nneee s 302
1S PP 303
TESHNG SSH .ttt ettt et e e e e e e e e e e eee e 304
ENabling SSHi...... e 304
BaSICS Of SSH......eieee e e 304

(07 (T L[g To T (=) - TSRO 304
Confirming SSH IAENTY.......eeeieee e 305
SIS O 1= 01 £ SRR 305
CoNNECHING VIA SSH.....ooiiii e e e 306
CoNfIQUIING SSH...c. e e e 306
3V (=10 T T PP 309

viii

Table of Contents

Chapter 13: Managing Small Network Services

Setting the TiMeE ZON@....... e 309
NEtWOrK TimMe ProtOCOL. ..o e 309

N 11070 F= 1 =P U OPPPPPPPPPPN 310
110 T PRSPPI 310
1T (o PP PPPPPPPPPPPR 311
=] (o741 gT=1 (o Koo] | SRR 311
Configuring Programs in INEt..........coouiiiiiiiiiee e 312
INEIA SECUITY. .. e e s e e 313
2= U (] T N [0 T=1 o F PR 313
Changing Inetd's BENAVIOF............uuiiiiiiie e 314
Chapter 14: EMail ServiCes.....ccociiiirmeiiiisnsiisssssssnsssss s s s ssss s s ssss s e ssss s sssssmss s essssssssnssanns 315
EMAIT OVEIVIEW. ...ttt e ettt e e st e e e st e e e e e nbe e e e e aneeeens 315
Where FreeBSD FitS IN....oooiiiiiiiiie et 315
The Email ProtOCOL...... ... 315
EMaIl PrOgrams. ..o oot e e e e 318
Who Needs SendmMail?.... ...t 319
Replacing SeNAMaIL..........eeiiiiiie e 319
INSTAIING POSTIIX... e eeeeeeee e e e e 319
PIECES OF POSHIX. ...ttt 319
ConfigUIING POSHIX ... e e 320
EMaIL AlISES. ... 323
=g F= T B oo To Lo To TSP PPPPPSPPI 324
ViIrtU@l DOMAINS ..t e e e e e e e e e e e e e e e e n e e e e e s 325
POSHIX COMMANAS.....coiiiiiiiie e e neeee s 326
Finding the CorreCt Mail HOST........ooueiiiiee e 326
Undeliverable Mall....... ... 326

L] o TSRS 327
INSTAIING POP3.....ceeeeee ettt ettt e e e e e s ne e e e e anreeaeaan 327
TeSHNG POPS ...ttt e ettt e e e be e e e e e sne e e e e e nreeeeeans 327
@] C I oo o oo T PRSP 328
POPB MOGES ...ttt ettt e s st e e e e e bt e e e e nne e e e e annneeeas 328
Qpopper Preconfiguration QUESHIONS........ccueiiueeiuieeieeeieeeiee ettt 329
Default Qpopper ConfiguIration............coo i 329

FN @ S T (1] o F USRS 332
CoNfiGUIING POPBSSL ...t et 333

(@] o o o] o= g T=T ot U) | 334
Chapter 15: Web and FTP ServiCes.......cccouiiiiiinmimniisnisnssssssssssssssssssssss s ssssssssssmssssssssssssssssnes 335
(@Y= VTP 335
HOW @ WED SEIVEr WOTKS.eeiiiiiiiie ettt ettt as 335
The APAChe WED SEIVEL.......coi i e e a e 336
Apache Configuration FleS ... e 336
ConfigUIING APACKNE. ...t e e e 337
Controlling APACKE.ooi e 352
VU@L HOSTING ..t e e e e e e e e e e e e e nnne e 355
Name—-Based Virtual HOSTSooiiiiiie e 356
IP—Based Virtual HOSTS.........oeiiiiiiiiie e 357
TweaKing Virtual HOSTS.cooiiiiiiee e 357

Table of Contents

Chapter 15: Web and FTP Services

INET ON FIEEBSND.... ..ttt e ettt e e e e e e e s e e e e e e e e e nsnneeneeeaeeeaanns
INSTAllING the SSCLLL... . e

el I S Tt 0 1 2P RPN
TE FTP G Nt e ettt e e e e e e e
TE FTP SO VO .ottt e e e e

Chapter 16: Filsystems and DiSKS.......ccccceecmmriiiismmmniissnrnnnsess s s ssssss s ssss s sssssmss s sssssssssssssnns

DLV A (oI 3N N\ oo ==
Hard Disks and PartifionNsS.......c...o ettt e e ae e e s e e e naaas
Bl LR AT(oTa <y =1 o I | L=
1T = E= T (o=
The Fast File SYSTEML....o e e e e
RV Lo o ==

Mounting and Unmounting DisSKS............eeiiiiiiii e
Mounting Standard FileSyStEMS.......c.uuiiiii e
Mounting With OPLIONS.........eiii e
Forcing Read—Write MOUNTS.........ooiiiiieeeee e
Mounting All Standard FileSyStemS.... ..o
Mounting at Nonstandard LOCAtIONS............ueiiiiiiiiiiiiie e
UNMOUNTING .ttt e e e e e s e e e e e e e e e e s s e e e e e e e e e e e nnneeees

10 {08 o o F= 1 L= TP
Enabling Soft UpPdates........coo i
IDE Write Caching and Soft Updates.........cooiiiiiiiie e

Virtual Memory Directory Caching........cooo i ueiie oot

Mounting Foreign FileSYStemIS.......oo e
USING FOreign MOUNTS.........ceiiiiiiie e
Foreign FileSYStEM TYPES.....uu it
Mount Options and Foreign FileSyStems. ...

FIleSyStem PermiSSIONS......ccou i e e e e e e e e e e

Removable Media and /etC/fStab.........oouiiii i

(O (=T U g o =T (o] o] o)V 2SRRI
Low—Level FOrmMatting...........e e
Creating an FFS FileSyStem.. ... e
Creating an MS—DOS FileSYSIEML........uuiiiiiiee e

The BaSiCS Of SCSL.....eiiiiiiii et e e e e e neeeaeeaa
ST O] B 1Y/ o 1= RO
T O] Ve = o) (=] TR
ST O] =TT SRR
Termination and CabliNgeeo i
SCSIIDS @nd LUNS. ...ttt e e e

FreeBSD and SCSL..... .ot e
BOOT—TIME DEIAY.....ceiieiiiieieeee e
WIirNG DOWN DEVICES......eeeeiieeeeiiiiiieee ettt e e e e e e e e e e e e e e as

359

Table of Contents
Chapter 16: Filsystems and Disks

AddiNg NeW Hard DiSKS........ccuuiiiiiiiiee et 386
(07 (T L] g o TR [T TP 386
Creating PartitioNs.........oo e e 387
Configuring /€C/ISTaD....cco i 388
Installing Existing Files onto New DiSKS.........cocuuiiiiiiiii e 388
TemMPOrary MOUNTS ... e e e e e e e e n e e e eens 388
MOVING FIlES ... e e e e e e e e e e e e e e e e 389
STACKADIE MOUNTS.......eieeee et e e e e e e e e e 389

L0 1T T o1 (=T i I = 7 Y| 0 391

Hardware vs. SOftware RAID...........ooii e 391

RAID LEVEIS.....ceeeeeeieee et e aanns 391

SOWANE RAID.......e ettt ettt e et e e s e bbe e e e e ente e e e e enne e e e e ennees 392
Vinum Disk COMPONENTS.oiiiiiiiiie et e e e 392
VINUM PIEX TYPES. ettt e e e e e e e e e e e e e e e e eaeas 393
RAID =5 PIEX...ettte ittt ettt ettt e e e ettt e e e s bt e e e e eane e e e e enna e e e e anneeeas 393
Preparing VINUM DIIVES.........u et 393
Dedicating Partitions 10 VINUML........oiiiiiiieeee e 394
ConfigUIING VINUM ...t e e e 395
(070 Ter= 1 (=T aE= 1 (=T I o [PR PR 396
Removing Vinum Configuration...........ccooiiiii e 398
(] 0 =To IV Ao] 0] 0 4= PRSPPI 399
MiIrrored VOIUMES ... e e e e e e aaes 400
Starting Vinum at BOOL.........ooiiee e 401
Other VIinum COMMEANGS.coiiiiiiiieeeie e e e e 402
Replacing a Failed Mirrored PleX...........ooooi i 402

Chapter 18: System Performance..........cccuccerrisemnisnminssmnissmnsssss s ssssssssses 406

(@Y= VTP 406

COMPULET RESOUICES ...ttt ettt et e et e e e b b e e e e e ente e e e e enne e e e e ennnes 406

D] L] o U1 7@ 111 o 10| PP 407

NEetWOrk BanaWidth...........ceeeieeee e 407

(0] o W= T o [1Y/ 110 o o] oY 20O PPPP 407
6] [T TR o] o F TSP PPPPPSTPPI 408
MEMOTY USAQE. ... ittt e e e e e e e e e e e e e e e e e e eeeeeeeeeaaanns 411
SWAP SPACE USAQE.eeeiiiiiiiie ettt ettt e e st e e e e nne e e e 411
(O] o U U7 T = PR PR 412

When Swap GOES Bad.........ooiiiiiiie e 414
= 16 LT BRSO PPPP PSPPI 414
1122 o] o] 12T OSSR 415
Are You Swapping OF Paging?.........eeeo oottt 415

Real-World Performance TUNING........oouiiii it 418
Fairness in BeNChMArKiNg........ccouoi i 418
THE INITAL TS e e e e 418
USING BOth CPUS. ...ttt e e 420
D= Ter (] VAL OF= o] o1 s o TR PRSP 421
MOVING JUSI/OD ... e e e e e e e e aaes 421

LeSSONS LEAIMEM.t e e e e e e e e e e e e e e e aan 423

Xi

Table of Contents

Chapter 19: Now What's It DOING?......cciiiiimiiiiiienrriniemss s sssss s s ssmss s ssms s snsssnns 424
STATUS MaIS. ...t e e e e e e nnes 424
FOrwarding REPOIS.cooueiieieeee et 424
LOgQing With SYSIOQQ......eeeiiiiiii e 424
FACIIITIES. ..ottt e e e e e e 424
Y= PSP PPPPPPSPPPI 425
3721 (o o] o | PR PR 426
WIIACAIAS. ...ttt e s 426
Rotating Logs with NewsysIOg.CONF.......coiiiiiii e 429
Reporting With SNIMP......co e e e e 433
BaSiCS Of SNIMP.......eeo et e e 433
IVIIBIS ..ttt ettt ettt e e e e a b et e e e b e e e e e e nna e e e e e nbe e e e e e nne e e e e anees 433

N (=] 0] 0] o PP OPPPPPPRPPPPN 434

T 011 4] 011 PR 435
SpecCific SNMPWaIK QUETIES. ...t 435
Translating Between Numbers and Names..........cooooiiiii e 436
Setting UP SNMPA... ..o e e e 437
INAEX NUMDEIS ... e e e e e e e e e e 441
Long—Term Monitoring With MRTGi..........eiiiiiie e 441
Configuring MRT Gt e e e e 442
Sample Mrg.CIG ENtry. ... e e 442
TeSHNG MBRT Gttt e ettt e e et e e e e e e e e e e nreeeaeans 444
Tracking Other System ValUes.........cooo i 445
Useful Net—SNMP MIBS.......coo e 445
Monitoring @ SiNGIe MIB.........ooo e 446
Customizing MRT Q... e e e e e 447
MBRTG INAEX PAGE. ... et e e e 448
Sample MRTG Configurations..........cooueiioiiiiee e 448
Monitoring NON—BSD SyYSTEMS......ccooiiiiiieiiie e 450
Chapter 20: System Crashes and PaniCS.........ccocuiiiiimmrmiismsmmissss s ssss s ssssssss s sssssssssnsssnns 452
What CauSes PaniCS 2. ... ittt e e e e e nna e e e e anreeeeean 452
What Does @ PaniC LOOK LIKE?........eiiieiii ettt 452
Responding 10 @ PaniC.......oooii e 453
PrEIEQUISITES. ...ttt e e e e e e e e e e 454
Crash DUMP PrOCESS....ccci ittt ettt e e s e e e e nae e e e nees 454
The Debugging KernNeL....... .o 454
POST—PaniC BENAVIOL...........ueiiiiiiiieee e 455

=T =T e (=T o 18 Lo PP OPPPPPPRPPPPN 455
D001 oo] o TSP PPPPPSPPPI 456
T2\l (- PR PR 456

8 oTo] o= 0 - T~ o PRSP 456
Dumps and Bad KErNEIS..........oooiiiiiiiieeeeee e 456
USING TNE DUMIP. ¢ttt e e e e e e e e e e e e e e e e e rn e e e e e e e e aaanns 457
Advanced Kernel Debugging........c..uueeiiiiiiiiie e 459
EXAMINING LINES ... e e e e e e e e e e e 460
EXamining Variables............eeeiiiiie e 460
Apparent GAD WeEIrdNESS.eeiiiiiiiie ettt e e e e e e e enreeeeeans 462
RESUIES. ..ot e e e e e e e e e 462
VMCOIE @NA SECUNILY.....eeiiiiiiiee ettt e e s e e e e nae e e e e ennees 463

Xii

Table of Contents

Chapter 20: System Crashes and Panics

SymboIs VS. NO SYMDOIS.......oiiiiiiiee e 463
T g F= U o] g <o] [T SRR 465
Hardware Serial CONSOIE..........uuiiiiiiiee e 465
Software Serial CONSOIE........ooi e 465
Changing the ConfiguIration............cooo i 466
USING @ Serial CONSOI.coiiiiiiii e 467
L= g F= U o Yo 11 o RO 469
Emergency LOGON SELUD. ...c.oi ittt 469
Disconnecting the Serial CONSOIE........ccooiiiiii e 470
Submitting @ Problem REPOrt........oo i e 471
Problem Report SYSIEML.......oouiiiiee e 471
WHat's IN @ PR ..ttt e et e e e e e e e e e nreeeeeans 471
][o TS T=T a o B o ORI 471
Filling OUL the FOMM...co e 472

PR RESUITS......eeeeee e e e 474
Chapter 21: Desktop FreeBS.........ccccuiirrmmiiiiinirnsissssssssssssssssssss s sssss s s sssss s sssssmss s sssssssssnssnnns 475
(@Y= VT PR PPP 475
ACCESSING File SNAIES. ...t nre e e 475
PrEIEQUISITES. ...ttt e e e e e e e e e e 475

(0] 0 F=T = o7 (=T g 7= < PRSPPI 476
Kernel SUPPOrt fOr CIFS ... o 476
111/ = 2 I To £ PSR PPPR 476
Configuring CIFS.... e e e e 476
Minimum Configuration: Name ResOIUtioN..........cc.eoii i 478
Other sSmbuUtil FUNCHONS........uoiie e 478
MOUNEING @ SNAIE......eeiiie et e e e 479
Other mount_smbfS OPHIONS.........eiiieiee e 480
Sample NSMB.CONT ENLHES.....cooiiiee e 480
CIFS File OWNEISNID....ceieiiiiiie ettt e e e 481
Serving WIindows File Shares.........ooueeiio e 481
ACCESSING PriNt SEIVEISttt raee e e neeeaeean 482
o o SRS 482
RUNNING @ LOCAI LPA.......eeeeee e 483
a1 01 (=T o =T 1] o TSP PPPPP PP 483
[oTozz Ll o 1101 (=] £ NPT PPPPPPPPPPPR 484
X: A GraphiC INTErfaC. ... e 484
X PrEIEQUISITES ...ttt e e e e e e e e e e e e neeeaeeas 484

DY A== (o] - TP PP OPPPPPR 484
(0701010 0T ¢ o To 1 PSPPSR 485
MaKing X LOOK DECENT ... 485
[DICT] o] oI AV o] o] o= Vi{o T - TP PPPPPPPPPPR 486
WED BIOWSEIS. ..ttt e e e e e e e e e e e e as 486
EMaIl REAUEIS. ... 486
OFfICE SUITES ...ttt e e s e e e e e bt e e e e eanees 487
YL o PP OPPPPPPPPPPN 488

LG 1= T o o1 o7 PP PPPR 488
DESK ULIITIES. ..ttt e e e e e e e e e e e e e 488

(G =T 01T SRR 489

Table of Contents

(=T o o 491
(@Y= VTP PP 491

THE COMMIUNIEY ..ttt e et e e e e b e e e e eabe e e e e e nnaee e e anneeeeaans 491

What Can YOU DOttt ettt e e e e e s nnae e e e anreeeeean 492

If NOENING EISE ..o a e 492

Getting ThINGS DONE........ et e e e e e e e e e e e e nnes 493

S T=Tete] alo @] o1 o1 o] o - VPR 493

DL TN | PR 494
Appendix: Some Useful SYSCTL MIBS........cccciminmmminmsminssmisssisssnsssmssssss s ssssssssssssssssns 495
=3 Q0 1 o 11 507
Chapter 1: INSTallation.........cooi e 507
Chapter 5: NEtWOIKING.eeeii e e e e 507
Chapter 6: Upgrading Fre@BSD...........ooii ittt 507
Chapter 19: Now What's [t DOING?Z......eeiiiiiee ettt 507

=3 0 1 I 1 o= 508
Chapter 4: KerNel GaMES.......ouuiiie ettt e e s e e s enne e e e e ennees 508
Chapter 5: NEtWOIKING.eeeii i e e e e e 508
Chapter 8: Advanced Security FEatUres....... .o 508
Chapter 9: Too Much Information ADOUL /E1C.........coiiiiiiii e 508

LIS o) S o [T o T 509
Chapter 15: Web and FTP SEIVICES......cooiuiiiiiiiiee ettt 509

Xiv

Absolute BSD—The Ultimate Guide to FreeBSD

Michael Lucas
NO STARCH PRESS San Francisco

Copyright © 2002 Michael Lucas

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system, without the prior written permission of the copyright owner and the publisher.

123456789 10-0504 0302

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

Publisher: William Pollock

Editorial Director: Karol Jurado

Cover and Interior Design: Octopod Studios
Composition: 1106 Design, LLC
Copyeditor: Andy Carroll

Proofreader: Robyn Brode

Indexer: Kevin Broccoli

Distributed to the book trade in the United States by Publishers Group West, 1700 Fourth Street,
Berkeley, CA 94710; phone: 800-788-3123; fax: 510-658-1834.

Distributed to the book trade in Canada by Jacqueline Gross & Associates, Inc., One Atlantic
Avenue, Suite 105, Toronto, Ontario M6K 3E7 Canada; phone: 416-531-6737; fax 416-531-4259.

For information on translations or book distributors outside the United States, please contact No
Starch Press, Inc. directly:

No Starch Press, Inc.

555 De Haro Street, Suite 250, San Francisco, CA 94107

phone: 415-863-9900; fax: 415-863-9950; info@nostarch.com; http://www.nostarch.com/

The information in this book is distributed on an "As Is" basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch Press,
Inc. shall have any liability to any person or entity with respect to any loss or damage caused or
alleged to be caused directly or indirectly by the information contained in it.

Library of Congress Cataloguing—in—-Publication Data

Lucas, Michael, 1967-

Absolute BSD : the ultimate guide to FreeBSD / Michael Lucas.

p. cm.

Includes index.

1-886411-74-3 (pbk.)

1. FreeBSD. 2. UNIX (Computer file) 3. Internet service
providers——-Computer programs. 4. Web servers—-—-Computer programs. 5.
Client/server computing. I. Title.
QA76.76.063 L83 2002

005.4"'4769--dc21

Dedication
As always, for Liz
ACKNOWLEDGMENTS

| would like to thank all the members of the FreeBSD community for their hard work, dedication, and
friendship. FreeBSD has saved my hide on numerous occasions, and has taught me immense
amounts about how computers and the Internet really work. | have yet to speak with the president of
a software company, whereas I've spent many hours discussing FreeBSD with project leaders.

Having said that, there are a few people in that community who deserve my particular thanks for
reviewing the book in your hands. They are, in order, Szilvester Adam, John Baldwin, Wilko Bulte,
Chris Dillon, Giorgos Keramidas, Chris Knight, and Joel Wilsson. Any errors in this book were
introduced by myself, despite their best efforts.

The folks at No Starch Press also deserve my heartfelt thanks for actually bringing this to print. My
original manuscript needed a lot of work to become something that looks decent on the printed
page. Thanks, guys, and I'll make it easier next time. | would also like to thank Chris Coleman, my
editor at http://onlamp.com/, who brought No Starch Press and | together in the first place.

Most of all | want to thank my wife, Liz, for her patience and support while | sat in the corner and
muttered under my breath for months at a time while writing this book.

Michael Lucas
St. Claire Shores, Michigan

Foreword

Twenty five years. My god, has it really been that long? In 1976, the first BSD release was produced
by U.C. Berkeley's CSRG, it and subsequent releases of BSD having either spawned or
substantially influenced every Unix operating system to come after, including Linux and AT&T's
System V, through a commitment to innovation and to adding all the "missing pieces" that Unix was
lacking. Features like Virtual Memory, TCP/IP networking, job control, and even the venerable vi
screen editor (before which there was simply ed(1)) all came out of BSD. Not just operating
systems, but a number of POSIX and X/Open standards also owe their existence to it—an
influential "little project" indeed!

We started FreeBSD in 1992, a project that you'll read quite a bit about in this book, as a means of
carrying this work forward after the CSRG was disbanded and it looked like the BSD project, for all
its history and promise, might be coming to an end. This was not a state of affairs that BSD's many
fans were willing to settle for, and I'm happy to say that they rallied magnificently to the cause.

Far from being the end of BSD, the last 10 years have seen an almost explosive amount growth in
the BSD community, with FreeBSD operating systems powering some of the most significant
companies and sites on the Internet, setting new bandwidth and "uptime"; records and making the
acronym BSD almost synonymous with high performance, security, and reliability for those in the
Internet service industry.

FreeBSD's success has also hardly been limited to servers. With Apple's adoption of FreeBSD as a
key open-source technology for its Mac OS X operating system, it has since been introduced to a
whole new generation of enthusiastic users, many of whom would never have considered
themselves Unix users before but are now enjoying the benefits of a powerful operating system
combined with Apple's legendary user interface technology and a world—class suite of applications.
Even the most jaded Unix experts have been impressed at what BSD has grown into, and | suspect
that, at this point, it has surpassed even the wildest dreams of its creators.

Whether you're a Unix expert or someone who has never touched Unix before, you'll find this book
to be an excellent introduction to the unique and impressive world that is BSD. If you enjoy it even
half as much as | have, you're in for a great time!

Jordan Hubbard

Co-Founder, The FreeBSD Project

Introduction

Welcome to Absolute BSD! This book is a one-stop shop for new UNIX administrators who want to
build, configure, and manage dedicated FreeBSD servers. It will also be useful for those folks who
want to run FreeBSD on their desktop or combined desktop/server systems.

By the time you finish this book, you should be able to use FreeBSD to provide network services.
You should also understand how to manage, patch, and maintain your FreeBSD systems, and have
a basic understanding of networking, system security, and software management. We will discuss
FreeBSD version 4, which is the version recommended for production use as this book is being
released. Most of this book will be applicable to earlier and later versions, as well. Much of this book
is also applicable to NetBSD and OpenBSD.

What Is FreeBSD?

FreeBSD is a UNIX-like operating system,!'! available freely over the Internet, that is used
extensively in the ISP (Internet service provider) world, embedded devices, and anywhere reliability
is paramount. It's based directly on the original UNIX produced by AT&T in the 1970s.

Many years ago AT&T needed a lot of computer software to run their business. They were not
allowed to compete in the computer business, however. As a result, they licensed various pieces of
software, and the source code for it, to universities at low, low prices. University students with
access to this nifty technology could read the source code to learn how it worked. In return, AT&T
got free exposure, some pocket change, and a generation of computer scientists who cut their teeth
on their equipment. Everyone was happy. The best-known software distributed under this licensing
plan was UNIX.

[wWhy UNIX-like? Well, the word UNIX is a trademark that belongs to The Open Group. For an
operating system to be certified "UNIX," someone must pay The Open Group large chunks of
money. Since FreeBSD is developed in a not—for— profit manner, this isn't likely.

How Did FreeBSD Get Here?

Compared with modern operating systems, the original UNIX wasn't very good. But, since so many
students had the source code for UNIX, and so many teachers needed projects for their students,
UNIX was quickly improved by their efforts. Gradually, useful commands were built. The ability to
control running programs (also known as job control) was added. A filesystem appeared that
supported features we take for granted now. Over many years, entire chunks of the original UNIX
operating system were extracted and replaced.

The various universities that worked on UNIX shared their improvements and enhancements, with
the Computer Systems Research Group (CSRG) at the University of California, Berkeley, acting as
a central clearinghouse for UNIX code improvements. The CSRG distributed this code for free to
anyone with a valid AT&T UNIX license.

The resulting collection of patches for UNIX came to be known as the Berkeley Software
Distribution, or BSD UNIX. (It didn't hurt Berkeley's status any that the Defense Advanced Research
Projects Agency (DARPA) contributed funding to the CSRG to implement TCP/IP in UNIX.)

This development process continued for a long, long time. In fact, if you look at the copyright
statement on FreeBSD, you'll see this:

Copyright 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
The Regents of the University of California. All rights reserved.

Yep, 15 years of work—a lifetime in software development. In fact, so much development went into
the original UNIX that the CSRG found that over the years they had replaced almost all of UNIX with
code created by the CSRG and their contributors. What remained of AT&T's work was actually
pretty small.

The BSD License: BSD Goes Public

Eventually, the CSRG's funding started running out. After some political wrangling within the
University of California, in 1992 the code was released to the general public under what became
known as the BSD license. Today, the BSD license has three clauses that can be summarized as
follows:

¢ Don't claim you wrote this.
¢ Don't blame us if it breaks.
e Don't use our name to promote your product.

(The original license required that every time someone used the software, they had to include a
notice that it included software copyrighted by the University of California. This requirement was
dropped a few years later. Today, people can use BSD code without having to announce it or notify
anyone.)

The BSD license may be the most liberal software license ever used. People are free to take BSD
and include it in proprietary products, free products, and open-source products, or print it out on
punch cards and cover the lawn with it. Instead of "copyright,” the BSD license is sometimes
referred to as "copy- center," as in "take this down to the copy center and run off a few for yourself."
Not surprisingly, companies such as Sun Microsystems jumped right on it because, well, it was free.

The Birth of Modern FreeBSD

During the CSRG's heyday, however, UNIX work proceeded apace at AT&T. AT&T took parts of the
BSD UNIX distribution and integrated them with their UNIX, then turned around and relicensed the
result.

This worked well for AT&T until the grand breakup, when the mother of all telephone companies
suddenly was permitted to compete in the software business. They had one particularly valuable
property: a high—end operating system that had been extensively debugged by thousands of people
all over the world. They happily started selling UNIX to enterprises and charging very high fees for
it, all the while maintaining the university relationships that had given them such an advanced
operating system.

Berkeley's 1992 release of the BSD code met with great displeasure from AT&T's subsidiary USL
(UNIX System Laboratories). Aimost immediately they took some of the software users, and the
university, to court. USL claimed that Berkeley had given away their intellectual property. The
University of California said that it was their intellectual property. In the meantime, various people
picked up on the code released by Berkeley and began building commercial and free products out
of it. One of these products was 386BSD, which would eventually be used as the core of FreeBSD
1.0.

In 1994, after two years of legal wrangling, the case was settled out of court once it was proved that
a great deal of the code in AT&T UNIX was actually taken in its entirety from BSD, rather than the
other way around! A half-dozen files were the only sources of contention, and to resolve these
outstanding issues some of the files were donated and others were kept proprietary. Unfortunately,
FreeBSD 1.X contained some of these files, so various BSD users worked frantically to rebuild
these missing components.

Once the dust settled, this new version of UNIX was released to the world as BSD4.4-Lite. A
subsequent update, BSD4.4-Lite2, is the grandfather of the current FreeBSD source, as well as the
ancestor of many other operating systems, such as NetBSD, OpenBSD, and Mac OS X.

Today FreeBSD is used throughout the Internet by some of the most vital and visible
Internet-oriented companies. For example, at this writing, Yahoo! is run almost entirely on
FreeBSD. The "baby Bell" US West uses FreeBSD to power its Internet operations. IBM, Nokia, and
many other hardware companies use FreeBSD in embedded systems where you'd never even
know it's there.

The fact is, if a company needs to pump some serious Internet bandwidth, it's probably running
FreeBSD. FreeBSD is all around you; you just may not see it because it rarely crashes.

FreeBSD Development

There's an old saying that managing programmers is like herding cats. However, despite what you
might think, for the most part these FreeBSD developers work well together as members of the
FreeBSD team. And, unlike some other projects, all FreeBSD development happens openly. Two
groups of people develop FreeBSD: contributors and committers.

Committers

Today, FreeBSD has almost 300 developers, or committers. Committers have read—- and-write
access to the FreeBSD master source—code repository and can develop, debug, or enhance any
piece they deem necessary.

To plug yourself in to the beehive of FreeBSD development, consider subscribing to the mailing list
FreeBSD-hackers@FreeBSD.org, which contains most of the technical discussion. Some of the
technical talk is broken out into more specific mailing lists—for example, the networking
development is discussed on FreeBSD-net@FreeBSD.org. There are also a few IRC channels
where the FreeBSD crew hangs out and discusses things. Visitors and eavesdroppers are
welcome, so long as they don't interfere. (Yes, Internet chat can be used for a variety of useful
technical purposes!) The committers are responsible for keeping FreeBSD working, adding new
features, and evaluating patches from contributors. Most of these developers are volunteers; only a
handful are actually paid to do this painstaking work.

Contributors

In addition to the committer team, FreeBSD has thousands of contributors. Contributors don't have
to worry about breaking the main operating system repository; they just submit patches for
consideration by committers. Committers evaluate submissions and decide what to accept and what
to reject. A contributor who submits consistently acceptable code will frequently be asked by the
committers he works with to become a committer himself.

For example, | spent several years as a contributor. Any time | feel that I've wasted my life, | can go
look at the FreeBSD Web page and see where my work has been accepted by the committers and
used by thousands of users. (It helps. Sort of.) Between submitting this book and getting it back
from the editor, however, | had some spare time. | spent a while submitting patches to the FreeBSD
FAQ. Eventually, some members of the FreeBSD Project approached me and asked me to become
a committer. | initially refused, but finally allowed a few developers to persuade me.?

Users

Finally, FreeBSD has a mob of users, though it's impossible to realistically estimate their number.
After all, you can download the whole of FreeBSD for free, and never register, upgrade, or mail to a
mailing list.

Estimates are that somewhere between 5 and 10 percent of the machines on the Internet are
BSD-based. That's 5—10 percent of all the systems connected to the Internet, including the
countless Windows systems sitting on office desks. If you remove those systems from the count and
only count Internet servers, the percentage rises.

Since FreeBSD is by far the most popular open—source BSD, that's not an inconsiderable number
of machines. And since one FreeBSD server can handle hundreds or thousands of Internet
domains, a disproportionate number of sites uses FreeBSD compared to the number of servers.

2IAnd some day | might forgive Will, Wilko, and Bruce for that. But I'll never let them live it down.

Other BSDs

FreeBSD is the most popular BSD, but it's not the only one. BSD 4.4—Lite spawned several different
projects, each with its own focus and purpose.

NetBSD

NetBSD is similar to FreeBSD in many ways, and the teams share developers and code. NetBSD's
main purpose is to provide an operating system that can be ported to any hardware platform.

As such, NetBSD runs on VAXes, PocketPC devices, and high-end Alpha servers, as well as the
Compaq iPaq. It even runs on hardware that doesn't exist yet—as | write this, the AMD
Sledgehammer is fully supported even though you can't get sample chips. Now that's portable.

The NetBSD code is specifically licensed to be freely reusable, just like the original BSD 4.4-Lite
code it's based on.

OpenBSD

OpenBSD branched off from NetBSD in 1996 with the goal of becoming the most secure BSD.
OpenBSD was the first to support hardware—accelerated cryptography (allowing it to encrypt and
decrypt information at a remarkable rate), and the developers are rather proud of the fact that their
default install hasn't been hacked remotely for over four years.

The OpenBSD people have audited the entire BSD code base, fixing most (but not all) potential
security holes before they can be exploited. OpenBSD is not as friendly or as easy to use as
FreeBSD, however.

BSD/OS

BSD/OS, produced by Wind River Systems, is a commercial, closed-source operating system that
greatly resembles FreeBSD. Some hardware manufacturers will not release hardware specifications
without nondisclosure agreements, and developers for a freely available operating system cannot
develop device drivers for such proprietary hardware. BSD/OS supports much of this hardware.

A great deal of the BSD/OS code is available to FreeBSD committers, and FreeBSD absorbs
BSD/OS enhancements that don't break nondisclosure agreements.

Mac OS X

Mac OS X? That's right. Large chunks of FreeBSD were incorporated into Apple's Mac OS X. If
you're looking for a stable operating system with a friendly face and a powerful core, Mac OS X is
unquestionably for you. While FreeBSD makes an excellent desktop for a computer professional, |
wouldn't put it in front of grandma. | would put Mac OS X in front of grandma without a second
thought, and even feel that | was doing the right thing.

Mac OS X includes a lot of things that aren't at all necessary for an Internet server, however, and it
only runs on Apple hardware, so | don't recommend it for an inexpensive, high—powered server.

While you cannot get the user interface source code for Mac OS X, you can view the operating
system's BSD core and Mach kernel; Apple has released them under the code name Darwin.

Other UNIXes

There are several other UNIX operating systems out there, some of which have even rented the
trademark UNIX so they can label themselves as such. This list is by no means exhaustive, but we'll
touch the high points.

Solaris

The best—-known UNIX is Sun Microsystems' Solaris. Solaris runs on high—-end hardware that
supports dozens of processors and gobs of disks. (Yes, "gobs" is a technical term.) It's used by
many enterprise—level applications, such as Oracle.

Solaris runs mainly on the SPARC hardware platform, which is manufactured by Sun. Since Sun
controls both the hardware and software, they can make their systems support many interesting
features, such as hot—-swappable memory and main boards.

AIX

Another UNIX contender is IBM's AlIX. AlX's main claim to fame is the journaling filesystem, which
records all disk transactions as they happen. It allows you to recover from system crashes without
much trouble, providing great reliability. AlX is based largely on BSD.

Linux

Linux is a clone of UNIX, written from the ground up in the last decade or so. Linux is similar to BSD
in many ways, though BSD has a much longer heritage, and is more friendly to commercial use
than Linux. Linux includes a requirement that a commercial user contribute all changes back to
Linux, while BSD has no such restriction.

Among many UNIX users, there's a perception of conflict between the BSD and Linux camps. If you
dig a little deeper, however, you'll find that most of the developers of these platforms communicate
and cooperate in a friendly and open manner. It's just a hard fringe of users and a very few
developers that generate friction.

IRIX, HPUX, etc.

Other UNIXes include Silicon Graphics' IRIX, a solid UNIX for graphics applications, and
Hewlett—Packard's HP-UX, popular in large enterprises. Many high- end software packages, such
as Informix, are specially designed for HP-UX.

If you look around you'll also find smaller contenders, such as SCO and UnixWare. They aren't
unimportant, they just aren't as popular. You'll also find old castoffs, such as Apple's A/UX and
Microsoft's Xenix. (Yes, Microsoft was a licensed UNIX vendor, very, very long ago.) Xenix was
eventually sold to SCO and became SCO UNIX.

FreeBSD's Strengths

So, after all this, how can we summarize FreeBSD?

Portability

FreeBSD's goal is to provide a freely redistributable operating system that runs on popular
hardware. While system security is a vital concern, FreeBSD's main goal is to run on the hardware
people are most likely to have. Today, this means the Intel x86—compatible systems (386, 486,
Pentium | through 1V, Celeron, and AMD). FreeBSD also supports the Alpha processor, and work is
underway to support Intel's new 1A64, AMD's new 64-bit chips, and Motorola's PowerPC, as well as
Sun's SPARC. (These platforms aren't afterthoughts; the hardware is just now coming out, or only
now becoming popular enough to port to.)

Power

Since FreeBSD runs adequately on 386 hardware, it runs quite well on modern computers. It's
rather nice to have an operating system that doesn't demand a Pentium Ill and a half-gig of RAM
just to power the user interface. As a result, you can actually use all that computing power to do the
work you want, rather than to run tasks you don't care about. If you choose to run a pretty graphical
interface with all sorts of spinning geegaws and fancy whistles, FreeBSD will support you, it just

10

won't require you to do so.
Simplified Software Management

FreeBSD also simplifies software management through its ports collection. Traditionally, tuning
software for a UNIX system has required considerable expertise. The ports collection simplifies this
considerably by automating and documenting the install, uninstall, and configuration process for
thousands of software packages. (Several other BSD operating systems have built their own
packaging systems based on the ports collection.)

Optimized Upgrade Process

Unlike operating systems that require painful and risky upgrade procedures, such as Windows,
FreeBSD's simple upgrade process builds an operating system that is optimized for your hardware
and application. This lets FreeBSD use every feature your hardware supports, instead of just the
lowest common denominator. If you change hardware, you can rebuild your system for that
particular hardware. Vendors such as Sun and Apple do exactly this, since they create both the
hardware and the operating system, but FreeBSD doesn't lock you in to a particular hardware
platform.

Filesystem

A filesystem is how information is stored on the physical disk—it is what maps "My Web Page" to a
series of zeros and ones on the metal disk in your hard drive. FreeBSD includes very sophisticated
filesystems. It can support files up to a petabyte (one thousand thousand gigabytes) in size, it is
highly damage-resistant, and it reads and writes files extremely quickly. The BSD filesystem is so
advanced that it has been adopted by many commercial UNIX vendors, such as Sun and HP.

Who Should Use FreeBSD

While FreeBSD can be used as a very powerful desktop or development machine, its history shows
a strong bias toward Web, mail, file, and support services. In fact, FreeBSD's main strength is on
Internet servers, and it is an excellent choice for any Internet service.

If you're thinking of running FreeBSD (or any UNIX) on your desktop, you'll need to understand how
your computer works. FreeBSD is not your best choice if you're looking for point—-and-click
simplicity. If that's your goal, get a Macintosh computer and use Mac OS X, which has a BSD core,
so you can access the power of UNIX when you want it and not worry about it the rest of the time.
Or, if you want to use the lowest common denominator, there's always the various iterations of
Microsoft Windows. You won't have to understand your computer, but Windows is easy.

FreeBSD as Your Desktop

You can, of course, use FreeBSD as a powerful desktop OS.

There's a concept in computing called "eating your own dog food." If you ran a dog food company,
you'd want to make a product that your own dog would eat. If your dog turns up his nose at your

latest recipe, your company has a problem. The point here is that if you work with a product, you
should actually use it.

11

This total immersion method provides the fastest possible training and is the approach | took to
learn UNIX. By running FreeBSD exclusively on my desktop, | learned how to make a UNIX system
do anything | needed, and | became a much more powerful server administrator as a result.

In fact, | even wrote this book on my FreeBSD laptop, using an open-source word processor
(Emacs) and a business suite called StarOffice. | also use FreeBSD to watch MPEG video from
unencrypted video CDs and DVDs, burn MP3s from my own CDs, and listen to the MP3s when |
should be working. This is a fairly exhaustive sample of desktop tasks.

Desktop operating systems also allow you to do all sorts of silly things. At the moment, | have a
small animated BSD daemon sleeping under my mouse pointer. When | move the mouse, the
daemon awakens, chases down the pointer, and stabs it with his pitchfork. If this doesn't count as a
Stupid Desktop Trick, | don't know what does.

Who Should Run Another BSD

NetBSD is FreeBSD's closest competitor. However, unlike competitors in the commercial world, this
competition is mostly friendly. NetBSD and FreeBSD share code and developers freely; some
people even maintain the same subsystem in both operating systems. For example, NetBSD and
FreeBSD share their USB support. In fact, as | write this, work is actively underway to integrate the
FTP server used in both operating systems.

NetBSD's main advantage is that it runs on anything. For example, | have an ancient Silicon
Graphics workstation running NetBSD that | use as an NFS (Network File System) and DNS
(Domain Name System) server. It does the job. If you have old or weird hardware, NetBSD is a
good choice for you.

OpenBSD seems to stand apart from the rest of the BSD projects. While its code is available for
general use, the developers appear to be more interested in security than in making their system
approachable. OpenBSD has features that make it easy to do tasks such as bridging firewalls,
however, so if you find you can't do some security work in FreeBSD, check out OpenBSD.

Who Should Run a Proprietary Operating System

Proprietary operating systems like Sun's Solaris, Microsoft's Windows NT, IBM's AlX, and their ilk
are still quite popular despite the BSDs and Linux gnawing at their market share. Solaris, in
particular, holds a great deal of the UNIX market.

High—end enterprises (the Fortune 500) are fairly closely shackled to Solaris and Windows NT.
While this is slowly changing, it is true for now, and in such environments you're probably stuck with
those operating systems. But slipping in an occasional FreeBSD machine to handle basic services
such as DNS and file serving can make your life much easier at a much lower cost.

Of course, if your software will only run on a proprietary UNIX, your choice of operating system is

probably clear. Still, always ask a vendor if a FreeBSD version is available; you may be pleasantly
surprised.

12

How to Read This Book

Many computer books are thick enough to stun an ox, if you can lift them high enough without an
athletic supporter and a back brace. Plus, they're either encyclopedic in scope or so painfully
detailed that they're difficult to read. Do you really need a screenshot when you're told to "click OK"
or "accept the license agreement"? And when was the last time you actually sat down and read the
encyclopedia?

Absolute BSD is a little different. It's designed to be read once, from front to back. You can skip
around if you want to, but each chapter builds on what comes before. It's also short enough to be
digestible. After you've read it once, you can easily use it as a reference.

(If you're a frequent buyer of computer books, please feel free to insert all the usual stuff about
"read a chapter at a time for best learning" and so on. I'm not going to coddle you—if you picked up
a book on computing, you probably have two brain cells to rub together. Follow the examples, and
you'll learn.)

What Must You Know?

This book is aimed at the new UNIX administrator. Several years ago the new UNIX administrator
was already a skilled UNIX user with real programming skills and a degree in computer science, or
at least most of one. Today, UNIX-like operating systems are freely available from the Internet and
even 12-year-old children can run UNIX, read the source code, and learn enough to intimidate us
older folks. As such, | don't expect you to know a huge amount about UNIX before firing it up.

To use this book to its full potential, you should be familiar with some of the basic UNIX commands,
such as how to change directories (cd), list files in a directory (Is), and log in with a username and
password. If you're not familiar with basic commands and running UNIX from the shell, | recommend
you begin with a book like UNIX System Administration Handbook by Evi Nemeth, Garth Snyder,
Scott Seebass, and Trent R. Hein (Prentice Hall PTR).

You'll also need to know something about PC hardware. (Not a huge amount, mind you, but some.)
For example, it will help to know what an IRQ (interrupt request) is and how to differentiate between
a SCSI and IDE hard drive. Your need for hardware knowledge will, of course, depend on the
hardware you're using, but if you're interested enough to pick up this book and read this far, you
probably have the hardware knowledge that you need. We'll make this a little easier by assuming
you're dedicating a system to FreeBSD; very few network servers dual-boot Windows and
FreeBSD, after all!

Note Absolute BSD is about how to administer FreeBSD, not about how to redirect
output from a shell command. To make it easier for newer administrators, however,
I include the exact shell commands needed to produce the desired results. If you
learn best by example, you should find everything you need right here.

Many new system administrators these days come from a Windows background.
They learn that "Is" is like "dir", and "cd" is the same on both platforms. You can
learn the commands by rote, reading, and experience. What you cannot learn,
coming from this background, is how a UNIX machine thinks. It will not adjust to
you; you must accommodate it. With that in mind, we're going to spend a little time
discussing how you must think about your FreeBSD system.

13

How to Think About UNIX

If you'll be working with FreeBSD, you should understand some of the UNIX ways of thinking. Users
from a Windows background might very well go into shock during their first attempts to administer a
FreeBSD system if they don't understand how UNIX behaves, and how it expects you to behave.

People who are used to GUI environments, such as Windows and Macintosh, are probably
unfamiliar with how UNIX handles input and output. If you are new to UNIX, you may be used to
clicking something and seeing either an "OK" message, an error, nothing, or (all too often) a pretty
blue screen with nifty high—tech letters explaining exactly where the system crashed. UNIX does
things a little differently.

Channels of Communication

UNIX programs have three "channels" of communication: standard input, standard output, and
standard error. Once you understand how each of these channels work, you're a good way along to
understanding how a computer works.

Standard input is the source of information. When you're at the console typing a command, the
standard input is the keyboard. If your program is listening to the network, the standard input is the
network. Many programs can rearrange standard input to accept data from the network, a file, the
keyboard, or any other source.

The standard output is where the program's output is displayed. This is frequently the console
(screen). Network programs usually return the output to the network.

Finally, standard error is where error messages are sent. Frequently, console programs return
errors to the console; others log errors to a file.

Working with Channels

The channels just described can be arbitrarily arranged, a concept that is perhaps the biggest
hurdle for new UNIX users and admins. While it seems simple enough, it's slightly more difficult to
grow accustomed to than you might think.

For example, if you don't like the error messages appearing on the terminal, you can redirect them
to a file. If you don't want to type a list of information into a command, you can put the information in
a file (so you can reuse it), and dump the file into the standard input of your command. Or better
still, run a command to generate that information and put it in a file, or just pipe (send) it directly to
your second command.

The Command Line
Taken to its logical extreme, these input/output channels can overwhelm a new user. The first time |

saw someone type something like the following on a command line during my UNIX admin training,
| wanted to change careers.

14

Lines of incomprehensible text began spilling across the screen. And worse still, my trainer kept
typing as this output poured out!

If you're coming from a point-and-click environment, a long string of commands like this is definitely
intimidating. What do all those funky words mean, let alone the symbols?

Think of learning to use the command line as learning a language. When learning a language, we
start with simple words. As we increase our vocabulary, we also learn how to string words together.
Learning to use the UNIX command line is like learning a language. You begin with simple single
commands and only later string them together into monstrosities like the one shown earlier.

Another difficulty people have is with the general UNIX program function philosophy. Most
consumer operating systems have monolithic software packages that try to be all things to all
people. UNIX programs are small, simple tools. That's in part because of the redirectable
input/output channels, and in part because of UNIX's heritage. Remember, at one time you needed
to be a programmer to run a UNIX system. Programmers don't mind building their own tools.
Assembling a tool on the command line is fairly easy compared to compiling a whole software
package.

These smaller programs also provide unparalleled flexibility. Have you ever wished you could use a
function from one program in another program? By using a variety of smaller programs and
arranging the inputs and outputs as you like, you can make the system behave in any manner that
amuses you. Many modern platforms have only started catching up with this idea of small, reusable
tools in the last few years.

15

Chapter 1: Installation

Before you can learn to run FreeBSD, you need to install it. A successful installation requires both
the software (FreeBSD) and supported hardware. You can get FreeBSD easily enough by visiting
http://www.FreeBSD.org/ and clicking the link that says "Getting FreeBSD," or by ordering it from
any of several vendors, such as FreeBSD Mall (http://www.freebsdmall.com/) or Daemon News
(http://www.daemonnews.org/).!"!

Hardware is another issue entirely.

FreeBSD Hardware

FreeBSD runs on several different hardware platforms, the most popular of which are
Intel-compatible systems 80386 and better. It also runs on the late and lamented Compagq Alpha,
and ports are in process to the SPARC, StrongARM, and PowerPC as well.

This book discusses the Intel platform (aka X86 or i386) because they're the most common and
best supported, and you probably have one around. In fact, even your old systems can run
FreeBSD; you probably have something in storage that would do nicely. Since our focus is on
network servers, the instructions given here discuss installing FreeBSD on a dedicated machine. To
learn how to make FreeBSD coexist with other operating systems, see the FreeBSD online
documentation.

Still, FreeBSD will run best with certain minimum configurations. Here are some basic
recommendations.

Processor

Your brand of processor is really irrelevant to FreeBSD; FreeBSD won't care if you're running an
Intel, AMD, IBM, or Cyrix CPU. It probes the CPU on booting, and uses whatever chip features it
recognizes. I've run effective servers on 486 machines before—in fact, I've filled a T1 Internet circuit
with a 486. However, | would still recommend that you get a Pentium or faster CPU. Some of the
demonstrations in this book take less than an hour on my twin 1 GHz Pentium system, but take
almost three days on my ancient 25 MHz 486.

Memory (RAM)

First, memory (as in RAM) is good, and the more memory, the better. In fact, adding RAM will do
more than anything else to accelerate your system. You should have at least 16MB of RAM at a
bare minimum.

Hard Drives

Hard drives can be a big performance bottleneck. While IDE drives are dirt cheap, they don't
perform as well as SCSI drives. A SCSI system can transfer data to and from each and every drive
at the full speed of the SCSI controller, while an IDE controller splits its available speed between the
drives. Also, a SCSI controller can have up to 15 drives, while an IDE controller can have no more
than 2. Having 15 drives, each running at full speed, versus 2 drives averaging half speed makes a
big difference in the amount of data throughput!

16

Still, if all you use are IDE drives, put multiple hard disks on separate controllers. Many systems
now have a hard drive on one IDE controller and a CDROM on the other. When you add a second
hard drive, put it on the second controller. (You won't be using the CD-ROM nearly as often as you
use the hard drive, after all.)

You'll be happiest with at least 1GB of disk on your system, though I'm assuming for purposes of
this book that you have at least 10GB.

[l recommend these vendors in particular, since they both contribute a portion of their proceeds
back to the FreeBSD community. You will find cheaper distributors, but they keep all the money for
themselves.

Downloading FreeBSD

If you choose to download FreeBSD via FTP instead of buying it on CD, you'll find a comprehensive
mirror list at http://www.freebsd.org/, though you can pick out mirrors easily enough without the
mirror list. Each mirror server has a name following this pattern:

The trailing country code is optional; if there is no country code, it's usually assumed to be in the
continental United States. For example, you can have http:/ftp3.freebsd.org/,
http://ftp2.uk.freebsd.org/, http:/ftp.ru.freebsd.org/, and so on, and so on.

As a rule, the FTP mirrors with the lower numbers are more heavily loaded than those with higher
numbers. Try a site down around http://ftp5.freebsd.org/,”? or some high-numbered server under
your country code, and see if you can get a nice fast connection.

Many FreeBSD mirrors also mirror other software, and they store all the FreeBSD content under
/pub/FreeBSD. Let's take a look there:

.message
.notar

CERT

CTM

CVSup
FreeBSD-current
FreeBSD-stable
README . TXT
branches
development
dir.sizes
distfiles

doc

index.html
1s-1R.gz

ports

releases
snapshots

tools

updates

17

That's a lot of stuff! Fortunately, you don't have to worry about what most of it does. For your initial
install, the important directory is releases/i386. There you'll find a complete listing of all current
FreeBSD releases that the mirror carries, as well as a directory of ISO images for burning your own
bootable CDROM. (See your CD recorder documentation for help in doing so.)

Installing by FTP

Downloading an entire ISO image is a waste for many people, because that ISO will include things
you really don't need, such as dozens of packages you probably won't install. A better bet, if you
have a reasonable amount of bandwidth— meaning a cable modem, corporate LAN, or reliable 56K
line and a lot of time—is to install FreeBSD via FTP.

If you choose to install by FTP you'll need to download two floppy disk images first and make the
floppies. Why floppies? Well, booting from floppy can take a while—floppy drives are slow by
modern standards—but most systems have them and they usually work without a hitch. These
floppy images are like old—fashioned DOS boot disks; they contain just enough information to boot
FreeBSD, run the installation program, read information from a CD or an FTP server, and write to
disk.

You'll find the floppy disk images in the directory for the release you want (that is, 4.5-RELEASE) in
the floppies subdirectory. In there, you'll see the following:

e boot.flp This is a disk image for 2.88MB disks. If you don't have a 2.88MB floppy drive or a
CD burner, it's useless to you.

e fixit.flp This disk holds some basic commands that you can use for system recovery. See
Chapter 3 for more information.

e kern.flp This is the boot disk image. It contains the basic kernel and will actually talk to your
hardware during the installation process.

e mfsroot.flp This is the second boot disk image. It contains the programs that will be used to
install FreeBSD on a compressed memory-based filesystem.

Of the preceding floppy images, all you need to get are the kern.flp and mfsroot.flp files. Once you
have these files, you'll need to copy them onto floppy disks. The catch is, you cannot use basic
filesystem-level copying, like the typical Windows drag and drop. These are image files and must
be copied onto the disk in a particular way.

If you're already running a UNIX system, the dd command will do everything you need. But first,
you'll need your floppy drive's device name, which is probably /dev/fd0, /dev/floppy, or /dev/rfdO0.

If the device name was /dev/fd0, you'd enter

18

to write the kern.flp floppy image to disk.

Repeat the preceding process to copy mfsroot.flp to a second floppy disk, substituting mfsroot.flp for
kern.flp.

If you're running Microsoft Windows, you'll need a special utility that will copy disk images for you.
Microsoft doesn't provide one, but FreeBSD does, and you'll find it in the "tools" subdirectory of the
main directory for your release— it is called fdimage.exe.

Fdimage.exe is a free program that you can run under Windows to copy disk images, and it's quite
easy to use. For example, to copy the floppy image kern.flp to the floppy in your a: drive, enter the
following at a DOS prompt:

Once the floppy drive finishes churning (which may take a while), repeat the process for mfsroot.flp
using a second floppy disk.

Other FTP Install Information

If your local network uses DHCP (Dynamic Host Configuration Protocol) to assign IP addresses and
other network information, things should Just Work. If your network administrators assign IP
addresses by hand, however, you will need to get the following information from your network
administrator:

e |P address for your FreeBSD system
¢ |P addresses of nameservers used by your network
e Your network's default gateway

ISince I've now mentioned a particular FTP server by name, it's going to be overloaded by those
folks who follow instructions to the absolute letter. Pick a server. Pick any server. Poke around until
you find one that works well for you.

Hardware Setup

In order to continue with your hardware setup, you'll need to make a quick trip to the BIOS. Most
computers let you enter the BIOS setup screen immediately after booting, usually by pressing F2 or
the DELETE key.

Once you're in the setup screen, set the computer to boot from your chosen media, either floppy

disk or CD. Floppy disks are shown either as "floppy" or "A:". CD-ROMs are usually listed as
"CDROM".

19

Note If you need help using your BIOS, see your manual or visit the BIOS publisher's site online.

While you're in the system BIOS, set the "Plug and Play OS" option to "no." This tells the BIOS to
do some basic hardware setup, rather than relying on the operating system to do everything.
Modern versions of Microsoft Windows expect the hardware to do as it is told, and hence expect full
access to the hardware. FreeBSD, on the other hand, expects a system to perform as the hardware
standards and specifications demand, and hence can take advantage of some setup work that is
most easily done in the BIOS.

Note Many devices (particularly network cards) will behave poorly if you don't change this option.

Actually Installing FreeBSD

When you have either a bootable CD-ROM or your two floppy disks, it's time to reboot your
machine using one or the other. When you reboot, you should see a message offering you a chance
to continue with the install, to configure your kernel in a visual menu, or to configure your kernel in a
text menu, as shown in Figure 1.1.

Kernel Configuration Henu

Skip kernel configuration and continue with installation

Start kernel configuration in full-screen visual mode

Start kernel configuration in CLI mode

Here you have the chance to go into kernel configuration mode, making
any changes which may be necessary Lo properly adjust the kernel to
match your hardware configuration.

If you are installing FreeBSD for the first time, select Visual Hode
(press Down-Arrow then ENTER).

If you need to do more specialized kernel configuration and are an
experienced FreeBSD user, select CLI mode.

IT you are that you do not need to configure gour kernel
then sinply press ENTER or (] now.

Figure 1.1: First boot menu

If you have old hardware, you might have to configure the kernel, which means telling the kernel
about your hardware. For example, FreeBSD supports ISA network cards from the early 1990s but
requires a very particular configuration to work properly. (This is a limitation of the hardware, not of
FreeBSD.)

If you don't have any ISA cards, you can just continue with the install, but if you're using ISA cards,
you'll need to configure your kernel to use them. Personally, | recommend replacing ISA cards with
PCIl whenever possible; they're easier to manage and have much better throughput. If you're
running FreeBSD on a very old system, however, that might not be an option.

Note If you have problems, check the FreeBSD Handbook (online at http://www.freebsd.org/) for

help. If your hardware is less than a few years old, you should be able to continue with
installation without configuring the kernel.

20

Configuring the Kernel for ISA Cards

If you have any ISA cards, you'll need to know how to identify and adjust their hard—jumpered IRQs
(interrupt requests) and memory port addresses. (If not, you'll need to learn, or better yet upgrade,
your ISA cards.) Once you tell FreeBSD the card's proper IRQ and memory address, it should work.

At the initial boot menu (shown in Figure 1.1), choose the option to configure the kernel in
full-screen visual mode. That will bring up a menu like the one shown in Figure 1.2.

Deu——-RO——FPort——

-aL aps
Iaput (Collapsed)
Hultimedia :
Miscel lancous (Collapsed)

——=Inactive-Drivers
Storage
Network
Commumications (Collapsed)
[nput :
Hultimedia :
Miscellancous (Collapsed)

[Enter] Expand device list Expand all lists
[TAB] Change liclds Save and Exit [?7]1 Help

Figure 1.2: ISA card configuration

Devices are grouped into rough categories: storage, network, and so on. Select the category your
ISA card belongs to, and press ENTER to expand it. If your device is listed, FreeBSD supports it. If
your device is not listed, it either does not require configuration or FreeBSD does not support it.
Select your device, and enter your card's IRQ, port number, and memory address in the spaces
provided.

Once you finish telling the FreeBSD kernel about your card, type Q. You will be asked if you want to
save your configuration and exit. Type Y to continue. This will bring you to sysinstall.

Sysinstall: The Ugly FreeBSD Installer

The FreeBSD installer (shown in Figure 1.3) is a notoriously ugly, menu-driven system called
sysinstall. While other operating systems have pretty graphical installers with mouse—driven menus
and multicolor pie charts, FreeBSD's looks like an old DOS program. Even the system's author has
referred to the underlying library as "genuinely evil." (While a replacement is in the works, as | write
this it looks like sysinstall will be with FreeBSD for some time.)

21

Welcome to the FreeBSD installation and configuration tool. Please
select one of the options below by using the arrow keys or typing the
first character of the option nane you’re interested in. Inuvoke an
option with [SPACE] or [ENTER]1. To exit, use [TAB] to move to Exit.

Begin a standard installation (recommended)
Begin a quick imstallation (for the impatient)
Begin a custom installation (for experts)

Do post-install configuration of FreeBSD
Imstallation instructions., READHE, etc.
Select keyboard type

View Set various installation optiomns

Enter repair mode with CDROM/floppy or start shell
Upgrade an existing systenm

Load default install configuration

Glossary of functions

[Selectl X Exit Install

Figure 1.3: Sysinstall main menu

Despite its looks, sysinstall is fairly simple to use, and it works well. While | won't present a
step-by-step walkthrough of the interface (that shouldn't be necessary), | will discuss the various
options presented during installation so you can make sensible choices.

You will need one very important instruction when dealing with sysinstall: Use the space bar to
select. The funny thing is, even though this simple bit of information is displayed on several screens
in sysinstall, in the help file, and in the instructions, people keep missing it. Then, once it's pointed
out, they spend the rest of their days wondering how they missed it. If you don't use the space bar
to select what you want, the install will fail.

Oh yes: The first time through, choose Standard install. Arrow down one line, and press ENTER.

Disk Usage

Many people have a computer that boots multiple operating systems. They divide their hard disk
into sections by OS, using one chunk for Windows and another for their other operating systems.
FreeBSD works well in such a setup. However, since we're building Internet servers, you should use
the entire disk for FreeBSD. Internet servers have to be up all the time, and you won't be shutting
down the company mail server to, say, play Civilization on a Windows partition!

The standard FreeBSD install leaves tiny partitions at the beginning and end of the disk, marked
"unused.” This blank space is present when a disk is formatted for use with any operating system;
FreeBSD just shows you it's there. (As usual, the FreeBSD-hackers mailing list archive contains a
painful amount of detail on just why things work this way.)

Note If you're installing FreeBSD 3.X or earlier, you might see an option for
"dangerously dedicated" mode. This eliminates the tiny partitions and the
beginning and end of the drive. Some very, very old hard drives perform best
in dangerously dedicated mode. Don't use it unless you've researched the
issues involved and are ready to deal with the consequences. The
FreeBSD-hackers mailing list archives at http://www.FreeBSD.org/ search
are a good source of information on this topic (see Chapter 2).

The installer will first display a list of all the partitions on your hard drive. Arrow down and delete
them by pressing D. The example shown in Figure 1.4 shows four partitions: the two "unused"

22

partitions discussed previously, one FAT partition (for Windows), and one Windows Extended
partition.

Disk name: 0]
DISK Geometry: 16383 cyls-16 heads-b3 sectors = 16511064 sectors (8063HB)

Offset Size(3T) End Name FPType Desc Subtype Flays

i) 63 62 -] unused 0]
63 4193217 4193279 ados1 Z fat 11
41932680 1008 4194287 - 7] unused 0
4194288 12319776 16514063 adlsZ 4 extended 15

The following commands are supported (in wpper or lower case):
A = Use Entire Disk = set Drive Geometry C = Create Slice

D = Delete Slice ¢ Toggle Size Units S = Set Bootable
T = Change Type Undo All Changes Q = Quit

lse F1 or 7 to get more help, arrow keys to select.

Figure 1.4: Fdisk with Windows partitions
Once you've deleted all of the old partitions, use the A key to assign the entire disk to FreeBSD.
The resulting screen will look something like Figure 1.5.

> b FUTSE T Ed
Geometry: 16383 cyls-16 headss63 sectors = 16514064 sectors (8063HB)

Offset Size(3T) End Name PType Desc Subtype Flays

0 63 62 - b unused 0
(%] 16511001 16514063 adds1 3 frechsd 165 (]

The following commands are supported (in wpper or lower case):

A Use Entire Disk set Drive Geomnetry C Create Slice
1] Delete Slice A Toggle Size Units S Set Bootable
T Change Tupe Undo All Changes Q Quit

lUse F1 or 7 to get more help, arrow keys to select.

Figure 1.5: Fdisk with one FreeBSD partition

Type Q to finish. The installer will drop you into the Boot Manager screen, shown in Figure 1.6.
Install a standard master boot record (MBR), which removes any existing boot manager that your
computer would use if you booted into multiple operating systems. (We're building Internet servers
and won't be sharing the hard drive with, say, Windows Me.) Just arrow down to "Standard", press
the space bar, and press ENTER to leave the screen.

23

FreeBSD comes with a boot selector that allows you to easily

select between FreeBSD and any other operating systems on your machine
at boot time. If you have more than one drive and want to boot

from the second one, the boot selector will also make it possible

to do so (limitations inm the PC BIOS usually prevent this otherwise).
If you do wot want a boot selector, or wish to replace an existing
one, select “standard”. If you would prefer your Master Boot

Record to remain untouched then select "None.

NOTE: PC-DOS users will almost certainly require “"None't

Install the FreeBSD Boot Hanager
Install a standard MBR (no boot manager)
Leave the Master Boot Record untouched

[Ok 1 Cancel

Figure 1.6: Boot Manager selection
Once you do this, the installer will take you to the Disklabel menu.

Partitioning

Now we come to the first tricky part: how to partition the hard drive. Unlike other operating systems
that just hack up the drive in various sections, FreeBSD allows you to control where each partition
lies on the hard drive. This is important for a variety of reasons.

Each partition is accessible to the user as a mount point. In Windows, each partition has a mount
point of a letter, (such as C: or D:). In UNIX, all partitions and disks are part of a single directory
tree. A partition is assigned a directory and is said to be "mounted" at that directory. You can have
one partition for the root of your directory tree (/), and can assign others arbitrarily. For example, if
you're building a large—capacity Web server, you might have a hard drive partition dedicated to Web
sites, and mount it as /www. We'll discuss how to assign mount points and partition your drive.

FreeBSD normally uses four different basic partitions: / (or root), swap space, /var, and /usr. If
you're already familiar with UNIX, you might wish to create additional partitions and assign them
mount points of your choosing. We'll discuss each of the main partitions, as well as some
considerations for their size and placement.

Note Here and there we'll mention another possible partition you might create. If you're not familiar
with that partition, just skip over it; more experienced administrators can take or ignore that
advice as they choose.

The first thing to note is that the outer edge of the disk moves more quickly; thus, the closer a file is
to the edge of the disk, the faster it can be accessed or altered. Place your most important files
close to the edge so you can read and write to them more quickly, and put your more static data
closer to the center. (Data access on a spinning hard drive is much like a merry—go-round; you can
sit in the middle and hardly feel anything, but lie with your head dangling over the edge, and in a few
minutes you won't be able to stand up.®))

You edit partitions on a drive with the Disklabel menu (shown in Figure 1.7).

24

Disk: add Partition nanc: ad0sl Free: 16514601 blocks (B063MB)

Part Mount Si=z eufs Part Mount Size Neufs

The following commands are wvalid here (upper or lower case):
C = Create D = Delete M = Mount pt.

N = Hewfls Opts Q = Finish 3 = Togyle SoftUpdates

T = Togyle Newfs U = Undo A = fAuto Defaults

Use F1 or 7 to get more help, arrow keys to select.

Figure 1.7: The Disklabel menu

Note In the disk partitioning menu, partitions that appear closer to the top are closer to the edge of
the disk. If you're partitioning multiple disks, do them one at a time to help keep the order
straight in your mind.

We'll discuss each of the standard partitions in turn. You cannot change the partitions on a running

system, so it's important to get them correct the first time.

Blokay, a lot of that dizzy feeling has to do with centrifugal force, but the outside edge does move
more feet per minute than the inside edge. Now quit picking on my analogies.

Root

Your system should have fast access to its root filesystem (/), which contains the kernel and just
enough utilities and programs to boot the computer into its most basic running status, single-user
mode (explained in Chapter 3). Therefore, place the root at the outer edge of the disk, and make it
at least 128MB in size, no matter how big your disk is.

Some other UNIX-like operating systems, such as some distributions of Linux, use a large root
partition that contains more of the operating system or, worse, use nothing but a single large root
partition for all files on the disk. This is a bad idea for a variety of reasons. First, you can't control
which files are put where in a partition. This hurts performance. Second, in the event of disk
damage, you're most likely to have a bootable system if you have a small root partition. This gives
you a fighting chance to recover any surviving data.

Your root partition should be about 128MB. Press C to create the partition, type in 128M, and press

ENTER. The installer will ask you if you're creating a filesystem or swap space. Select "filesystem",
and it will ask you for a mount point. Type / and press ENTER.

Swap Space

Next, create your swap space, the disk space used by virtual memory. When your computer fills its
physical memory, it will start to put information that hasn't been used for a while into swap. Putting
swap toward the outer edge of the disk measurably improves performance.

So, how much swap space do you need? This is a matter of long debates between sysadmins. The

25

short answer is, "it depends on the system." General wisdom says that you should have at least
twice as much swap as you have physical memory. This isn't a bad rule, so long as you understand
that it's very general. More won't hurt. Less might, if your system runs out of RAM. FreeBSD's virtual
memory system assumes that you have at least twice your physical memory in swap space, and
makes certain choices and optimizations based on that assumption.

It's difficult to add swap space when you add memory because this is a disk partition, after all. To
change it you'd have to resize the partition—always a bit risky! As a general rule, try to create at
least twice as much swap as you think you will have memory. If your system currently has 128MB of
RAM, but you expect to increase it to 1GB, use 2GB of swap space.

Swap Splitting

If you have multiple disks, you can vastly improve the efficiency of your swap space by splitting it
among multiple drives. Put the first swap on the second-outermost partition of your boot drive (the
one with the root partition), and other swaps on the outermost partition of the other drives. (This
works well for up to four partitions on four drives; if you create more than four swap partitions, the
partitions after the first four will be used as optimally as the first four.)

For swap-space splitting to work best, however, the disks must be SCSI. If you have IDE drives, the
drives need to be on different IDE controllers. Remember, each IDE controller splits its total data
throughput among all the connected hard drives. If you have two hard drives on the same IDE
controller, and you're accessing both simultaneously, each disk will only be half as fast. The major
bottleneck in using swap space is data throughput speed, so you won't gain anything.

If you split your swap space among multiple drives, create partitions that are roughly the same size.
FreeBSD has some optimizations for four swap partitions.

Four swap partitions leads to a conflicting problem, however. Upon a system crash, FreeBSD can
write a copy of its physical memory image to a swap partition. This allows a developer to try to
debug and fix whatever caused the crash.To dump a memory image, however, at least one swap
partition must be at least the same size as the system's physical memory. If you have four swap
partitions, each as large as the system's physical memory, you'll wind up with four times as much
swap as physical memory. That's a lot of swap, especially on modern systems. That's even twice
the standard "twice—physical-memory" rule of thumb. Extra swap won't hurt, mind you, and disk
space is very cheap these days. If you really need your swap, you'll have it. If you find you're
continually using swap, you'll want to buy more RAM anyway.

Once you decide how much swap space to allocate, create a partition by pressing C. Enter the size
you want—for example, for a 1,000MB swap partition you would enter 1000m. When the installer
asks if you want to create a swap partition or a filesystem, choose "Swap".

/var, /usr, and /home

The next step is to create the /var partition, which holds rapidly changing data, such as log files,
databases, mail spools, and the like. If your system will have a lot of logs or mail files, this partition
might very well need to be 1GB or more. On a small server, I'll frequently make this 20 percent of
the remaining disk space. On a mail server, I'll kick that up to 70 percent or more.

The /usr partition holds the operating system programs, source code, and other little details like that.
Many people use the rest of their disk for the /usr partition; it's frequently the most populated.

26

Note If you're building a Web server, where each Web site has its own user and home
directory, assigning the rest of the disk to /usr might not be a great idea. In such a
case, using 3GB of hard drive space for /usr will more than suffice for just about any
use, and you can assign the remainder to /home, the partition for users' home
directories. Doing so segregates their files from the system, and file access speed is
generally unimportant once it exceeds a certain acceptable minimum.

When you finish, the Disklabel menu will look something like Figure 1.8.

: add Partition namc: adOsi Free: © blocks (OHB)

Mount Size Neufs Part Mount Size Neufs

’ 100HMB UFS Y
516HB SUATP
100MB UFS Y
7347HB UFS ¥

The following commands are valid here (upper or lower case):
C = Create D = Delete H = Mount pt.
Newls Opts 0 Finish 3 = Togyle SoftUpdates
Toggle Newfs U = Undo A = Anto Defanlts

Use F1l or ¥ to get more help, arrow keys to select.

Figure 1.8: Disklabel after partitioning
A Second Hard Drive

If you have a second hard drive of comparable quality to your main drive, you can make good use of
it if you plan properly. First, use the outer edge of the drive for swap, as discussed earlier in the
"Swap Splitting" section. Use the rest of the drive to segregate your data from your operating
system. Do this by assigning the remainder of the drive to the partition that stores files for whatever
your server is for. If it's a mail server, use the second drive for /var or /var/mail. If it's a Web server,
make it /www or /home. If it's a network logging host, assign the second drive to /var/log.

In general, segregating your operating system from the data you're serving will increase system
efficiency. Like all rules of thumb, this is debatable. But no sysadmin will tell you that this is an
actively bad or dangerous idea, whereas they can argue endlessly about other variations on drive
usage.

If you have no idea what your server will be for, make your second drive for /usr and use most of the
space on your first drive for /var.

If your second drive is much slower than your main system drive, don't bother using it. Not only will
its performance not be that good, chances are that it is much older than your main drive and more
likely to fail.

The FreeBSD installer will detect all of your system hard drives when it boots, and it will give you
the opportunity to partition each and every one.

27

Soft Updates

FreeBSD includes a bunch of fancy filesystem tricks collectively known as soft updates. We'll learn
more about soft updates in Chapter 13. For now, just accept that enabling them during the install is
a good idea. If you learn about soft updates and decide that you don't like them, you can easily
disable them. We'll learn about that in Chapter 13 as well.

Arrow down to select each partition, and press S. This will enable soft updates.

Block Size

This section contains options that can really impair system performance. If you're new to FreeBSD,
take the defaults! This is for experienced UNIX administrators who know exactly what they're doing.

Block size refers to the minimum size of a file. If you have a file that contains just one tiny character,
it uses one whole block, even if it barely fills that block. By the same token, if your file is just over
the block size, it takes up one block and a fragment of another. Each block can be divided into
fragments, so that multiple, slightly oversized files can use one block to store their extra tidbits.

FreeBSD defaults to 8KB blocks. If you're creating a large partition—say, 1GB or more—use 16KB
blocks. When you do this, you also need to change your fragment size. The FreeBSD file system
(UFS, or UNIX File System) works best with fragments one-eighth the size of a block. This would
be 16,384-byte blocks and 2,048-bit fragments.

Set the block size with the newfs program. From the Disklabel screen, press N while on a partition
to display a pop-up dialog box containing newfs options. To use 16KB blocks and 2KB fragments,
enter

What to Install

The next menu gives you a choice of what to install. While there are quite a few options, I'll simplify
them. If you're building an Internet server, choose the "Developer" option. If you're building a
desktop or general-purpose experimental machine, choose the "All" option (as shown in Figure
1.9). (Remember to use the space bar to select your choice, and the ENTER key to proceed!)

28

As a conuenience, we provide several "canned" distribution sets.

These select uwhat we consider to be the most reasomable defaults for the
type of system in question. If you would prefer to pick and choose the
list of distributions yourself, simply select “"Custom”. You can also
pick a camned distribution set and then fine-tune it with the Custom item.

Choose an item by pressing [SPACE] or [ENTER]. When finished, choose the
Exit item or mouve to the OK button with [TABI.

<<LL ! Exit this menu {(returning to previous)
] All system sources, binaries and X Window System)

Reset selected distribution list to nothing
Full sources,; binaries and doc but no games
Same as above + X Window System

Full binaries and doc, kernel sources only
Same as above + X Window System

fiverage user - binaries and doc only

-
(e) (e sy (i

[0K 1 Cancel

Figure 1.9: Distributions menu
Install will then ask you if you want to install the Ports Collection. You do, even if you don't know it
yet. Select "Yes".

If you're installing the X Window System, or X for short, accept the options to install everything in X.
(It's much simpler to add them now than to add them later.) Again, once you have a good grip on
FreeBSD, you can always go back and remove pieces if you need to.

Installation Media

You'll have a variety of options for installation media, as shown in Figure 1.10. The most popular are
CD-ROM and FTP. If you have a FreeBSD CD-ROM, use it. If you don't have a CD, but you have a
live network connection, you can install via FTP. This is probably the option you want if you created
the floppy disks. If you're behind a firewall, choose to either install via FTP "through a firewall" or
"through a http proxy." Be sure your network cable is plugged in before you choose any FTP install
options.

FreeBSD can be installed from a wariety of different installation
media, ranging from floppies to an Internet FIF server. If you're
inetalling FreeB3D from a supported CD-DUD drive them thie ig generally
the best media to use if you have mo overriding reason for using other
media.

Install from a FreeBSD CD/DUD)
Install from an FTF server
Install from an FTP server through a firewall
Install from an FTF server through a http proxy
Install from a DOF partition
Install ouer NF3
Inetall from an existing filesyctem
Install from a floppy disk set
Install from SCSI or QIC tape
Go to the Options screen

[Ok 1 Cancel

Figure 1.10: Installation media menu
You can also install FreeBSD from tape backup, NFS, several dozen floppy disks, or a few other
media. If you're using one of these, you're either already a UNIX sysadmin (NFS, tape), or you have

29

probably been brained by falling masonry and are just waiting for the kind gents in white coats to
cart you off to your padded room (floppy disks).

If you are using an FTP install, the system will pop up a menu asking you to choose which interface

you want to use. Choose your Ethernet card. You'll then be asked for the IP address information
you gathered back when you started preparing for an FTP install.

Committing

Once you choose your installation media, sysinstall will ask you if you're sure. If you choose "Yes",
the hard drive will start to spin, your CD drive will light up, and you can go get lunch. When you
come back, most of the install will be complete.

Finally, you'll see a dialog box asking you if you want to do any post-install setup. Choose "Yes".

Post-Install Setup

The post-install FreeBSD Configuration menu provides some basic options for setting up your
computer (see Figure 1.11). We'll discuss how to configure everything later, but your life will be
easier if you do some basic setup now.

If you’ve already installed FreeBSD, you may use this menu to customize
it someuhat to suwit your particular configuratiom. Most importantly,
you can use the Packages utility to load extra "3rd party™

software not provided in the base distributions.

[Exit this menu (returning to previous)

Install additional distribution sets
Install pre-packaged softuware for FreeBSD
Set the system manager’ s passuord

The disk Slice (PC-style partition) Editor
The disk Label editor

Add user and group information

Customize system console behavior

Set which time zone you’ re in

Change the installation media type

Conf igure your mouse

Conf igure additional network services

[OK 1 Cancel

Figure 1.11: Post-Install configuration
Root Password

To begin, set a root password. If you don't have one, any doofus can log into the system as root
without using any password. (Since root has absolute control over your hardware and software, this
would be bad.) Choose the third option in the Configuration menu, "Set the system manager's
password". It will ask you to enter the root password twice (as shown in Figure 1.12). Remember
your root password, as it's a bit of an annoyance to recover it if you lose it.

30

If you've already installed FreeBSD, you may use this menu to customize
it someuhat to suwit your particular configuration. Most importantly,
you can use the Packages utility to load extra "3rd party™

software not provided in the base distributions.

[Exit this menu (returning to previous)

Install additional distribution sets
Install pre-packaged software for FreeBSD
Set the system manager”s passuord

The disk Slice (PC-stuyle partition) Editor
The disk Label editor

Add user and group information

Customize system console behavior

Set which tine zZone you’re in

Change the installation media tupe

Cond igure your mouse

Cond igure additional network services

[Ok] Cancel

Figure 1.12: Setting the root password
Adding Users

You should do everything possible while signed on as a regular user, and only use the root account
when you must change the system. That will happen frequently at first, but will grow less common
as time passes. Before you can sign on as a regular user, though, you need to set one up for your
use.

To add a regular user, select the User Management option in the Configuration menu. It will pop up
a brief menu offering you a chance to add a new user, add a new group, or exit back to the
Configuration menu. Choose "User", and you'll see the screen shown in Figure 1.13.

User and Group Management
Add a new user

Login ID: UID: Group: Fassword:

mulucas] 1002 1] e

Full name: Hember groups:

Hichael Lucas] uheel

Home directory: Login shell:

shomesmulucas sbinstesh

Ok | CANCEL

Figure 1.13: Adding a user

Your first selection in this screen should be the Login ID, or username. Your company might have a
standard for usernames. | prefer to use first initial, middle initial, and last name (not using the middle
initial creates a surprising number of conflicts).

The UID (user ID) is assigned by the system. If you're an experienced systems administrator you
can alter this, but it's not recommended and there's generally not much point.

31

The FreeBSD default is to have the user in a "Group" of the same name as the username; for
example, the user "mwlucas" is automatically in the Group "mwlucas". If you know what you're
doing, you can change this.

"Full name" is, simply enough, the user's name. Other system users can see this name, so you
don't want to set it arbitrarily. I've seen new systems administrators get in trouble when they gave a
customer a full name of, say, "Pain in the Tuckus."

The "Home directory" is where the user's files are kept. The default is generally fine.

"Member groups" is just a list of other system groups this account is part of. If you want this user to
be able to use the root password and become root, add your user to the group "wheel" under the
"Member groups" space. Administrators need to be in the wheel group, users don't. (Make sure your
personal user account is in wheel!)

Finally, choose a shell for your new user. Older admins and greybeards—in-training frequently
prefer /bin/sh. The examples in this book are written assuming your shell is /bin/tcsh, which is the
modern BSD standard and much friendlier.

Select OK when you're done, and your user will be created.

Time Zone

Set your time zone by selecting the Time Zone option from the Configuration screen (shown in
Figure 1.11). You'll be asked if the system clock is set to UTC; answer "No", and walk through the

menus presented. You'll be asked to choose a continent, a country (as shown in Figure 1.14), and
then a time zone.

Select a country

Panama

Paraguay

Peru

Puerto Rico

Saint Kitts and Nevis
Saint Lucia

Saint Vincent and the Grenadines
St. Pierre and Miquelon
Sur iname

Trinidad and Tobago
Turks and Caicos Islands
Uruguay

Uenezue la

Virgin I[slands (British)
Virgin I[slands (U.5.)

ONIEE concel

Figure 1.14: Time selection by country
Mouse

If you have a mouse, it's easy to set it up now. If you have a dead-standard two-or three—button
PS/2 mouse or trackball plugged in, just choose Mouse from the Configuration menu, and then
choose Enable. You should see a mouse pointer on your screen, and it should wiggle when you
move it.

32

If your mouse isn't dead-standard, that's okay. By using the menu shown in Figure 1.15, you can
change the port your mouse runs on and the type it is.

¥You can cut and paste text im the text console by running the nouse
daemon. Specify a port and a protocol type of your mouse and enable
the mouse daemon. If youw don’t want this feature, select 6 to disable
the daemon.

Once you’ve enabled the mouse daemon, you can specify “~dev/sysmouse"
as your mouse device and “SysMouse” or "MouseSystems"” as mouse
protocol when running the X configuration utility (see Configuration
menu)d .

Exit this menu (returning to previousX
Test and run the mouse daemon

Se lect mouse protocol type

Select mouse port
Set additional flags
Disable the mouse daemon

ox Cancel

Figure 1.15: Mouse management

Once you have set the mouse type and port, choose Enable and you will get a pop—up menu asking
you if the mouse is working. Wiggle your mouse, and enter "Yes" or "No" as appropriate (see Figure
1.16). If it doesn't work, your settings probably don't match your mouse. I've had more than one
mouse surprise me by being something other than what | thought it was. To change your settings
and try again choose "No".

You can cut and paste text in the text console by running the nouse
daemon. Specify a port and a protocol type of your mouse and enable
the mouse daemon. If you don’t want this feature, select 6 to disable
the daemon.

Once you’ve enabled the mouse daemon, you can specify “sdevssysmouse"
as your

protocol HNow mouve the mouse and see if it works.

menu) . (Note that buttons don’t have any effect for now.)

Is the mouse cursor mouing?

[Yes 1] No

Cancel

Figure 1.16: Mouse test menu
Configuring Network Cards

If your machine has a network card, and you did a CD-ROM install, you probably want to configure
your network card now. It'll save you trouble later. Be sure your card is plugged into the network,
and then choose Networking from the Configuration menu, and then Interfaces from the Network
Services menu shown in Figure 1.17.

33

You may have already configured one metuork device (and the other
various hostname-/gatevay-name server parameters) im the process
of installing FreeBSD. This menu allows you to configure other
agpects of your system’s network configuration.

A

[1 This
[x1
[1 This
[1 This
[x1 This
[1 This
[1 This
[1
[1
[1

i

mach ine

3et flage to

mach ine
mach ine
machine
mach ine
mach ine

0K 1

£< Exit thiz menu (returning to previous)

onfigure additional network interfaces

yants to run the auto—mounter service
AMD service (if enabled)

wishes to allow anonymous FTP.

will route packets between interfaces
yants to run the inet daemon

will be an NF3 client

will be an NFS cerver

Select a clock-synchronization server
Run authentication server for clients with PC-NF3.
This machine wants to run the portmapper daemon

Cancel

Figure 1.17: Network Services menu

You'll get a choice of network interfaces to configure. (If you're fairly new to computing, you might
not have realized that your parallel port can be a network interface!) Look for an entry that includes
Ethernet, and choose it. In Figure 1.18, we see an Ethernet card called fxp0.

If you are using PPP over a serial device, as opposed to a direct
ethernet connection, then you may first need to dial your Internet
Service Prouider using the ppp utility we provide for that purpose.
If you’re using SLIP over a serial device then the expectation is
that you have a HARDWIRED comnection.

You can also imnstall over a parallel port using a special "laplink"
cable to another machine rumming a fairly recent (Z.0R or later)

version of FreeBSD.

Intel EtherExpress Pros/100B PCI Fast Ethernet card
Parallel Port IP (PLIP) peer connection

SLIP interface on device ~/dev/cuaa® (COM1)

PPP interface on device /dev/cuaa® (COM1)

I Intel EtherExpress Pro-100B PCI Fast Ethernct card

Cancel

Figure 1.18: Network interface information menu

You'll get a pop-up dialog box asking if you want to try IPv6 configuration of the interface. If you
don't know what IPv6 is, don't choose it. A second popup will offer to try DHCP configuration of the
interface. If you are on a network with DHCP, you can try it; otherwise, choose "No". You'll get a

network interface configuration screen as shown in Figure 1.19.

34

Netuork Configuration
Host : Domain:

ming .Abso luteBSD . oryg] AbsoluteBSk.com]
JFud Gateway: Name seruver:
24.2.72.1] 209.69.10.6]

Configuration for Interface fxpo
IFud Address: Netmagsk:

24 .2 .72 .88] 255.255.255.0]

CANCEL

Extra options to ifconfig:

o]

Figure 1.19: Network Configuration menu
Your Host name is a unique name for your computer. It might be something like "Webserver" or
"test". It should be all one word.

The Domain name is the domain your computer is a part of. This computer was set up to test
examples for Absolute BSD, so | made it part of http://absolutebsd.com/. If you don't have a local
domain name, ask your network administrator.

Earlier in the install | suggested that you get an IP address, netmask, default gateway, and
nameserver IP address from your network administrator. Enter this information here.

Even if DHCP configuration works, you will still need to set your Host name and Domain name.
Otherwise, your system will boot calling itself "Amnesiac."

Xfree86

If you're an experienced UNIX administrator, you'll probably notice a couple of menu items that say
"Configure XFree86". XFree86 is the GUI that generates pretty pictures on your monitor. Take my
advice; don't go there now. I've had several installs fail at this point because my XFree86
configuration went bad. You can always configure X after a reboot, using xf86c¢cfg or your preferred
tool. And X isn't useful on a server, in any event. All it does is consume system resources.

We aren't going to discuss X in this book. If you're really interested in X, | suggest you get The New
Xfree86, by Bill Ball (Premier Press). X is not just a window system, like the Microsoft Windows
GUI; it's an entire protocol.

Software

If you're an experienced UNIX hand, you probably know what software you want to install. One
popular choice is the Emacs text editor, for example. You can choose to install these programs
under the Packages option on the Configuration menu. The Packages option will bring up the
Package Selection menu shown in Figure 1.20.

35

To mark a package, move to it and press SPACE. If the package is
already marked, it will be unmarked or deleted (if installed).

Items marked with a "D’ are dependencies which will be auto-loaded.
To search for a package by name, press ESC. To select a category,
press RETURN. NOTE: The Aall category selection creates a very large
submenu? If you select it, please be patient while it comes up.

m] All available packages in all categories.

Forts to support the AfterStep window manager.
Utilities for archiving and unarchiving data.
Applications related to astronomy.

Audio utilities — most require a supported sound card.
Utilities for measuring system performance.
Softuare related to biology.

Computer Aided Design utilities.

Ported software for the Chinese market.
Comnunications utilities.

Format conversion utilities.

Database softuare.

[DX 1} Install

Figure 1.20: Package Selection menu

If you're already familiar with UNIX, you probably know the names of several packages you would
like to install. One popular choice is bash, a command shell. Arrow down to "shells", press ENTER
to open that category, arrow down to "bash", and press the space bar to select it. Then press
ENTER to go back to the Package Selection menu.

If you're not familiar with UNIX software, there's one package you need to install to use this book

properly. Select Packages from the Configuration menu, select "net" from the Package Selection
menu, and then select "cvsup" (see Figure 1.21). We'll use the cvsup tool in Chapter 6.

Networking utilities.

JRcusup-16.1_3 [usr/ports/net /cusupl
[/usr/ports/net/cusupitl
[/usr/ports/netsdatapipel
[rusrsportss/netsddc]
[ousr/ports/netsipcalel
[susr/ports/netsisc—dhcp3]

[susr/ports/net/nrigl
[susrsports/net/netmask]l
[ousrsports/net openldapl
[rusr/ports/net openldapZ]
[susr/portssnet/penfsdl

]
1]
il
1
1
| [susr/ports/netskdenetuworkzZ]
1
il
il
1
]

(T Cancel

A general network file distribution system optinmized for CVUS repositories

Figure 1.21: Individual package listings

When you have chosen all the packages you want to install, return to the main Package Selection
menu. Press TAB to move the cursor from OK to Install, then press ENTER. Your system will begin
installing packages.

Restart

This last step should get you up and running! Remove any CD-ROMSs or floppy disks from your
computer, exit the installer, and reboot. You should now have a complete FreeBSD system,

36

configured properly for most Internet operations and for all the examples in this book.

If you find that you need to do some configuration later, you can always reenter sysinstall:

Throughout the course of this book, you'll learn how to work more quickly and efficiently by avoiding
sysinstall and manipulating the configuration files directly. The sysinstall program can act as a
crutch to get you through the worst parts, however.

A Note on Editors

No, I'm not talking about the fine editors of this excellent book: text editors. Which is the "best" UNIX
text editor has been a matter of prolonged debate over many years. FreeBSD includes vi, as its
licensing terms are the same as FreeBSD's. Vi terrifies many newcomers, however; it's from an
earlier aeon of UNIX. It's a dinosaur—specifically, a velociraptor, small and deadly and very
powerful if you have mastered its arcane syntax.

If vi is not your bag, try the Easy Editor, ee. It holds your hand and is much more approachable for
the newcomer. The ee program is also much more limited than vi; when you're tired of those
limitations, you can graduate to vi or install Emacs. (I use both, and prefer Emacs.) Vi has the
unquestioned advantage of being available on all UNIX platforms, however, and is well worth
knowing.

You can tell most programs to use your editor of choice by adding the following line to the .cshrc file
in your home directory. Substitute your preferred editor for vi.

37

Chapter 2: Getting More Help

As thick as this book is, it can't possibly cover everything you might need to know. After all, UNIX
itself has a 30-year heritage, BSD UNIX is over 20 years old, and FreeBSD is pushing 10. Even if
you memorize this book, it won't be enough to cover every possible situation.

The FreeBSD project maintains a wide variety of information resources, including numerous
FreeBSD mailing lists, the http://www.freebsd.org/ Web site, the Handbook, the FAQ, man pages,
and assorted user Web sites. The flood of information can be overwhelming and difficult to wade
through. But before you send a question to a mailing list, make sure that the information you want
isn't already available in one of these resources.

Why Not Mail First?

The FreeBSD mailing lists are excellent resources for technical support. Many people who frequent
them are very knowledgeable and can answer your questions very quickly. But remember: When
you mail a question to a FreeBSD mailing list, you are requesting that one or more people take the
time to help you rather than watch a favorite TV show, enjoy dinner with family, or catch up on
sleep. Problems arise when these experts answer the same question 10, 50, or even 100 times, or
more. They become grumpy. Some get downright cranky.

What makes matters worse is that these same people have spent a great deal of time making the
answers to most of these questions available elsewhere. If you make it clear that you have
accessed the various information resources the FreeBSD project makes available, and your answer
really can't be found there, you will probably receive a polite, helpful answer. However, if you ask a
question that has been answered several hundred times already, the expert on that topic just might
snhap and go bonkers on you.

Also, remember that the FreeBSD project only maintains FreeBSD. If you're having trouble with
some other piece of software, a FreeBSD mailing list is not the place to ask advice. FreeBSD
developers are generally proficient in a variety of software; but that doesn't mean that they want to
help you, say, configure the WindowMaker X window manager—harass the folks who handle
WindowMaker instead.

Do your homework, and chances are you will get an answer more quickly than the mailing list can
provide.

The FreeBSD Attitude

To use FreeBSD successfully, you'll need to do a bit of homework.

"Homework? What do you mean, homework? Am | back in school? What do you want, burnt
offerings on bended knee?" Yes, you are back in school. With FreeBSD, even the teachers are still
in school. Burnt offerings, on the other hand, are difficult to transmit digitally, and really aren't
relevant today.

Commercial operating systems such as Windows 9x/NT conceal their inner workings. The only
access you have to the computer are the options presented by the GUI, plus a few command-line
tools that are almost an afterthought. Even if you want to learn how something works, you can't.
When something breaks, you have little choice but to phone the vendor and grovel for help. Worse,

38

the people paid to help you frequently know little more than you do.

FreeBSD, on the other hand, is completely open, allowing you to learn exactly how things behave,
in intimate detail. As an open operating system, you can read the source code for commands, as
well as the kernel. And people in the FreeBSD community overwhelmingly want to learn. The
community welcomes people who want to learn, and will be delighted to help you if you're willing.

There are other parts of the FreeBSD community that you should be aware of: segments who are
not as interested in learning how FreeBSD works. These include a group that doesn't care how
FreeBSD works, just that it works well. For example, many ISPs don't care what serves up their
Web pages; they just care that their Web pages are being served reliably. Embedded systems
programmers as a group are often not as interested in FreeBSD's inner workings; for the most part,
they are attracted by FreeBSD's power and its commerce—friendly license. This is not to say that
there is anything wrong with these groups whatsoever, just that these people aren't likely to be
found hanging around FreeBSD mailing lists answering user questions.

As a grossly overgeneralized rule, people help those like themselves. As a FreeBSD user, you
should make the jump from eating what you're served to reading the cookbook and creating your
own dinner. If you're willing to learn what really goes on in your computer, you will be welcomed with
open arms. If you just want to know which box to click, read the Handbook and FAQ. The general
FreeBSD community simply isn't motivated to help those who won't help themselves or who can't
follow instructions. If you need more hand-holding than the community provides, you'd do best to
invest in a commercial support contract. (Several good support vendors are available; check the
FreeBSD Web site for details.)

The fact is, the number of people familiar with everything that FreeBSD offers are few enough to be
counted on one hand. Just the week before | wrote this chapter, | saw one of the FreeBSD Project's
founders express surprise when he learned that a program worked in a particular way. That made
me feel good; even the masters are still learning.

The first part of your homework, then, will be to learn what resources the FreeBSD Project has
available.

Man Pages

Man pages, short for "manual," are the original UNIX documentation. While they have the reputation
of being obtuse, difficult, or even impossible to read, they're quite user—friendly—for particular
users. When man pages were first created, the average systems administrator was a C programmer
and, as a result, they're written by programmers, for programmers. If you can think like a
programmer, man pages are perfect for you. I've tried thinking like a programmer but have only
achieved real success after remaining awake for two days straight. (A high fever helps, too, and lots
of Coke.)

Over the last several years, the skill level required for systems administration has dropped, and you
no longer need to be a programmer. Similarly, man pages have become more and more readable.
As such, they should be your first line of attack in learning how something works. If you send a
message to a mailing list without checking the man page, you're likely to get a terse "man whatever"
in response.

39

The FreeBSD Manual

The FreeBSD manual is divided into nine sections. Each man page (page of the manual) appears in
only one section. Roughly speaking, these sections are:

General commands

System calls and error numbers
The C libraries

Devices and device drivers
File formats

Game instructions
Miscellaneous information
System maintenance commands
Kernel system interfaces

O o Jo U1 b W

When reading man pages, you'll usually see the section number in parentheses after the command,
like this: reboot (8). This represents both the name of the command (reboot) and the man page
(8). When you see something in this format, you can check the man page for detailed information.
(You can view a manual page with the man(1) command.)

Almost every topic has a man page. For example, to see the man page for the editor vi, enter this
command:

VI(1l) VI(1l)
NAME
ex, vi, view - text editors
SYNOPSIS
ex [-eFGRrSsv] [-c cmd] [-t tag] [-w size] [file ...]
vi [-eFGlRrSv] [-c cmd] [-t tag] [-w size] [file ...]
view [-eFGRrSv] [-c cmd] [-t tag] [-w size] [file ...]
LICENSE

The vi program is freely redistributable. You are welcome
to copy, modify and share it with others under the condi-
tions listed in the LICENSE file. If any company (not
individual!) finds vi sufficiently useful that you would
have purchased it, or if any company wishes to redis-—
tribute it, contributions to the authors would be appreci-
ated.

DESCRIPTION
Vi is a screen oriented text editor. Ex is a line-ori-

40

The first bit of information shown on the top line gives the title of the man page and the relevant
section number. (The title isn't necessarily the same as what you typed; for example, man ex would
also lead you to the vi man page.)

Man Page Headings

Man pages have a variety of headings. While just about any section name can appear in a man
page, several are standard. (See mdoc(7) for a partial list and other man page standards.) Like
book authors, man page authors generally arrange their content in a manner that makes sense for
the program they're discussing. Still, there are standard headings you will see:

* NAME tells you the commands' various names. In this case, vi, ex, and view are all
intertwined, and share a man page. (A little digging would show that they're the same
program whose behavior depends on how they're activated.) The NAME also includes a
brief description of the program.

¢ SYNOPSIS lists the possible command-line options and their arguments. Frequently, you'll
find that this header is enough to spark your memory and remind you of a flag you've used
before that caused the program to behave appropriately.

¢ DESCRIPTION contains a brief synopsis of the item described by the man page. The
contents of this section vary depending on what the man page covers—programs, files, and
kernel interfaces all have very disparate requirements.

e OPTIONS describes a program's various command-line options and their effects.

Further discussion of the program generally follows these basic headings. Two sections that
commonly follow are BUGS and SEE ALSO.

The BUGS section describes known problems with the code and can frequently save a lot of
headaches. How many times have you wrestled with a computer problem, only to find out that it
doesn't work the way one would expect from the happy, cheerful documentation? The goal of the
BUGS section is to describe known errors and other weird behavior.!"

SEE ALSO is traditionally the last section. Remember, UNIX is like a language, and the system is
an interrelated whole. Like the Force from Star Wars, or duct tape, the SEE ALSO links will show
you how everything holds together.

Sometimes, too, one name will appear in multiple sections of the manual. For example, there's a
man page for amd, the AMD SCSI driver, in section 4 of the manual, and a man page for amd(8), a
program that automatically mounts file systems. To read a page from a particular section of the
manual, put the number between the man command and the name of the page, like this: man 4
amd. (This is the first thing to look for when you get a page that seems completely irrelevant.)

To see all man pages related to a particular subject, use man -k to do a keyword search on all the
man page titles. You can also use the apropos (1) command to do the same thing, which may be
easier to remember if you already know what "apropos" means.

To search a man page for a word, type / followed by the word. You'll jump down to the first

41

appearance of that word in the page. Typing n subsequently will jump you to the next occurrence of
that word.

Mit's called "honesty" as opposed to the "marketing” included in many other software products.
The FreeBSD Documentation

If you installed the FreeBSD documentation, you'll find it under/usr/share/doc. You'll find several
directories there, including one for each language that FreeBSD's documentation has been
translated to. If your language of choice is English, you'll probably want the "en" directory.

The FreeBSD documentation is divided into articles and books. The difference between the two is
highly arbitrary: As a rule, books are longer than articles, and cover broader topics; articles are short
and focus on one topic. The two books that should most interest new users are the Handbook and
the FAQ, both of which are available online at http://www.freebsd.org/.

The Handbook is the FreeBSD Project's continually changing guidebook. It describes how to
perform basic system tasks and is a good reference when you're starting on a project. The FAQ
(Frequently Asked Questions), like the Handbook, is divided by topics, but also contains answers to
mailing list questions. Some of the FAQ's information is duplicated in the Handbook, but most is not.

If you think you know what you're doing and have a particular question about an error you're
encountering, check the FAQ. If you don't have a clue about what you're doing, check the
Handbook. If the Handbook doesn't help, search for an article about what you're trying to
accomplish. (You can search the entirety of the FreeBSD documentation set at
http://www.FreeBSD.org/search/. If that doesn't help, you can use that same page to check the
mailing list archives.)

The Mailing List Archives

Unless you're really on the bleeding edge, someone has probably struggled with your problem
before, and likely posted to the mailing lists about it. After all, the archives go back to 1994 and
contain about a million messages. Of course, the challenge of having a million messages is finding
what you want.

When you're stumped, take your error message and copy it into the mailing list archive search box
at http://www.FreeBSD.org/search/. Remove common words such as "and," "or," "but," and so on,
and hit the search button. (This page defaults to searching the FreeBSD-questions mailing list.) If
you don't get a result right away, try entering another message or phrase the computer is giving you
during your troubleshooting. | usually get an answer within two or three searches.

If you can't find anything useful in the FreeBSD-questions archives, try another mailing list that
seems appropriate. Some good ones include FreeBSD-hackers, FreeBSD-stable, and
FreeBSD-current. If you're having a problem with a particular subsystem, check for a mailing list
devoted to it.

Note The entry fields for searching the documentation and the mailing list archives are

on the same page! More than once, I've searched the documentation when
meaning to search the mailing list archives.

42

Other Web Sites

If you haven't found your answer by this point, there are a variety of other Web sites you might try.

e FreeBSD Diary (http://www.freebsddiary.org/) This site details users' experiences with
FreeBSD. The articles include detailed descriptions of how they make everything work.

e Google (http://www.google.com/) This site archives Usenet news on many topics,
including FreeBSD. Try a power search on mailing.FreeBSD.* or comp.unix.bsd.FreeBSD.”,
which will give you both the mailing lists and the newsgroups. (Google also hosts a
BSD-specific search engine at http://www.google.com/bsd.)

e Daemonnews (http://www.daemonnews.org/) This is a popular BSD news site. Their
monthly issue contains a variety of articles on various BSD topics.

e The FreeBSD 'zine (http://www.freebsdzine.org/) This is a bimonthly FreeBSD article site,
and includes many useful articles.

e Defcon1 (http://www.defconi.org/) Another FreeBSD article site.

e BSD Today (http://www.bsdtoday.com/) This http://internet.com/ site hosts BSD articles
and news links.

¢ O'Reilly Network BSD Developer Center (http://www.onlamp.com/bsd) This site hosts a
variety of BSD articles, including the column "Big Scary Daemons" by yours truly.

Using FreeBSD Problem-Solving Resources

Okay, now let's pick a common problem and use the FreeBSD resources to solve it. We'll use
several different methods to find an answer. Take this typical message sent to
FreeBSD-questions@FreeBSD.org.

"I've just installed FreeBSD and my network isn't working. When | try to ping, the console shows the
message ed0: device timeout. What's wrong?"

Checking the Handbook/FAQ

A scan of the handbook shows nothing related to the problem. In the FAQ, however, there's an
entry under Troubleshooting:

I keep seeing messages like edl: device timeout

That's close enough. Read that entry, and try the solution presented.

Checking the Man Pages

As we go on, you'll learn that the numbers after device names are simply instances of a particular
device. ed0 is simply device ed, unit number 0. So, type man ed. You will see the following:

43

ED (1) FreeBSD General Commands Manual ED (1)

NAME

ed, red - text editor
SYNOPSIS

ed [-] [-sx] [-p string] [file]
DESCRIPTION

Ed is a line-oriented text editor. It is used to create, display, modify
and otherwise manipulate text files.

If invoked with a file argument, then a copy of file is read into the
editor's buffer. Changes are made to this copy and not directly to file
itself. Upon quitting ed, any changes not explicitly saved with a w
command are lost.

Editing is done in two distinct modes: command and input. When first
invoked, ed is in command mode. In this mode commands are read from the
standard input and executed to manipulate the contents of the editor
buffer. A typical command might look like:

,s/0ld/new/g

What the heck? Something's obviously amiss here. Every device driver has a man page. Run man
-k edto get a complete list of all the man pages related to ed. You'll get a whole list of functions, in
slightly skewed alphabetical order. (Capital letters come before lowercase ones.) Scroll down to the
e's, and you'll see this:

ed (1), —(1) - ed text editor
ed (4) - high performance ethernet device driver

Aha! There are two different eds, in different sections, each with their own man page. Type man 4
ed and you'll see what you want:

ED (4) FreeBSD Kernel Interfaces Manual ED (4)

ed - ethernet device driver

SYNOPSIS
device ed

DESCRIPTION
The ed driver provides support for 8 and 1le6bit ethernet cards that are
based on the National Semiconductor DS8390 and similar NICs manufactured
by other companies.

It supports all 80x3 series ethernet cards manufactured by Western Digi-
tal and SMC, the SMC Ultra, the 3Com 3¢503, the Novell NE100O/NE2000 and
compatible cards, and the HP PC Lan+. ISA, PCI and PC Card devices are
supported.

44

The ed driver uses a unique multi-buffering mechanism to achieve high
transmit performance. When using 16bit ISA cards, as high as 97% of the
theoretical maximum performance of the IEEE 802.3 CSMA ethernet is possi-
ble.

This is what you're looking for. Looking at the error message, you can guess that timeout is a good
keyword. Type /timeout and press ENTER.

ed%d: device timeout Indicates that an expected transmitter interrupt
didn't occur. Usually caused by an interrupt conflict with another card
on the ISA bus.

Voila! Here we have a terse explanation of the problem, and a probable cause (interrupt conflict).
We have a good old-fashioned IRQ problem.

Checking the Mailing List Archives

Searching for "ed0: device timeout" spit out quite a few results from the mailing list archives. On the
day | did the search, the first response gave the solution.

Using Your Answer

Any answer you get for our "ed0 timeout" example assumes that you know what an IRQ is, and how
to adjust one on your hardware. This is fairly typical of the level of expertise required for basic
problems. If you get an answer that is beyond your comprehension, you need to do the research to
understand it.

While an experienced developer or systems administrator is probably not going to be interested in
explaining IRQs to you, he or she might be willing to point you to a Web page that explains IRQs.

Mailing for Help

If the archives, FAQ, Handbook, tutorials, and other assorted resources cannot help you, ask for
help. When you do, be sure that you include all the information you have at your disposal, as
discussed shortly. There's a lot of suggested information to include, and you can choose to skip it
all. But if you do, one of two things will happen:

e Your question will be ignored.
e You will receive a barrage of email asking you to gather this information.

If, on the other hand, you actually want help to solve your problem, include the following in your
message:

45

e A complete problem description. A message like "How do | make my modem work?" is going
to generate a multitude of questions, like what do you want your modem to do? What kind of
modem is it? What are the symptoms?

e |t's much better to start with a message like, "My modem isn't dialing my ISP. The modem is
a BleahCorp v.90 model 6789. My OS is version 4.6—stable, on a dual Athlon motherboard.
There are no error log messages in /var/log/ppp.log." You'll shortcut a whole round of email
by doing so. While | have never seen anyone flamed for offering too much information on the
FreeBSD-questions mailing list, the converse is not true.

e The output from uname -a. This gives the operating system version and platform.

e If you run CVSup and "make world", give the date of the last CVSup, if you have it.

The CVSup date, in seconds from the epoch, is the third field in the first line of your log file. (Of
course, if you have upgraded your source without building "world", this is moot.) For example, on
my system, CVSup records its data in /usr/sup. The first line of
/usr/src/src—all/checkouts.cvs:RELENG_3/ is:

e Any error output. Be as complete as possible, and include any messages from your logs,
particularly /var/log/messages.

Finally, here are some tips for getting your best results out of a FreeBSD mailing list:

¢ Be polite. Remember, this list is staffed by volunteers who are answering your message out
of sheer kindness. Before you hit that send key, ask yourself, "Would | be late for my date
with the hot twins down the hall to answer a message from someone like this?"?!

e Use plain text. Many FreeBSD developers read their email in a command-line environment,
and find reading raw HTML quite annoying. (To see for yourself, install/usr/ports/mail/mutt
and read some HTML email with it.)

e State up front exactly what you have done to solve this problem or answer this question.
Make it clear that you have done your homework.

e Be on topic. If you are having a problem with XFree86, check the XFree86 site. If your
window manager isn't working, ask the people who maintain it. Asking the FreeBSD folks to

46

help you with your Java Application Server configuration is like complaining to hardware
salespeople about your fast—food lunch. They might have an extra ketchup packet, but it's
not really their problem. On the other hand, if your FreeBSD system starts sendmail on
every boot, and you want to turn it off, check the online resources and then ask.

e Send your message to FreeBSD-questions@FreeBSD.org. Yes, there are other FreeBSD
mailing lists, some of which are probably dedicated to what you're having trouble with. As a
new user, however, your question is almost certainly best suited for FreeBSD-questions.
I've lurked FreeBSD-stable, —current, and —hackers for years now, and have yet to see a
new user ask a question there that wouldn't have been better served in FreeBSD—-questions.
Generally, the questioner is referred back to —questions.

Sending a message to FreeBSD-hackers asking how to fix your dial-up connection is only going to
annoy them. You might get an answer, but you won't make any friends. Conversely, the people on
FreeBSD-questions are there because they are volunteering to answer questions. These people
want to hear from you. Quite a few are FreeBSD developers, and some are even core members.
Many of them are very skilled, and many are new users who have already dealt with your problem.

If those folks can't help you, they'll probably refer you to another mailing list. It's much better to go to
—hackers and say, "The folks on —questions suggested | ask you about this" than to just jump
straight to —hackers. If you respect the FreeBSD community, they'll respect you.

e Follow through. If you're asked for more information, provide it. If you don't know how to
provide it, treat it as another problem. Go back to the beginning of this chapter and try to
figure it out. If someone asks you for a debugging dump, go look at Chapter 16 and set your
system up for it. The bottom line is, if you develop a reputation as someone who doesn't
follow up on requests for more information, you won't even get a first reply.

e Lastly, "how can | learn this" questions are more likely to be answered than "what do | do"
ones. It doesn't matter if the question is about obscure system functions or simple
troubleshooting; being willing to work for your answer is a necessary part of running
FreeBSD. The upside is, when you're done, you will actually understand more about your
computer than you did before.

Now that you understand where to go when this book doesn't quite go far enough, let's look at how
you can protect yourself from your own mistakes.

lQuite a few developers would accept the phone number for said twins in lieu of politeness. This
isn't guaranteed, and is only supported in the bleeding—edge—current.

47

Chapter 3: Read This Before You Break Something
Else! (Backup and Recovery)

Overview

Computers fail on many levels, and hardware, software, users, and sysadmins all can damage a
system. As such, you should always be ready for the worst; in our case, that means being able to
back up and restore your hard drives.

Because FreeBSD is a continually evolving system, you will inevitably need to upgrade and patch
your system from time to time, and any time you do so, there's a chance you'll damage the
operating environment. If that happens, you'll need to recover or rebuild your system. (Just think of
how many times you've patched a Microsoft server system and found something behaving oddly
afterwards.) On any computer, even small configuration changes can potentially damage data.

Worse still, if you're reading this book, you're probably just learning how to configure your FreeBSD
system and you're probably not well prepared for disaster. As a new user, you'll need to test a
variety of configurations and review the "history" of how your system has been configured. And, if
you learn that some obscure but important system function has been broken for months, you will
need to look up the changes you've made in order to go back and fix it. Will you really remember
what a particular file looked like weeks or months ago? In fact, if you're experimenting hard enough,
you may even utterly destroy your system, so you'll need a way to recover your important data.

This chapter begins with the large—scale approach: backing up the entire computer. However, this
approach won't work well if you only want to back up individual files, so we'll go on to look at ways
to handle those. If a file can change three times a day, and you take weekly backups, you can lose
valuable information if you rely on your weekly backups. Finally, should you encounter a partial
disaster, we'll consider ways to recover and rebuild using single—user mode and the fixit disk.

System Backups

You only need a system backup if you care about your data. The question for you to answer is "how
much would it cost to replace my data?" A low—end SCSI tape backup system, for example, can run
several hundred dollars. IDE systems are less expensive than SCSI, but slower, hold much less
data, and are less well supported.

The questions to ask yourself when choosing a backup solution are how much your time is worth
and how long it would take to restore your system from the install media. If the most important data
on your hard disk is your Web browser's bookmarks file, it might not be worth investing in a backup
system. But if your server is your company's backbone, or part of it, you'll want to take this
investment very seriously.

A complete backup and restore operation requires a tape drive and tape backups. You can also

back up to files, across the network, or to removable media such as CD-ROMs or floppy disk. Since
we're discussing network servers, however, I'll focus on production—grade solutions.

48

Tape Devices

FreeBSD supports both SCSI and IDE tape drives. When compared with IDE drives, SCSI drives
are faster and more reliable, though IDE drives are cheaper. In most cases, either format will
suffice.

Once you've physically installed your tape drive, you'll need to confirm that FreeBSD recognizes it.
The simplest way is to check the /var/run/dmesg.boot file, which displays the system's boottime
messages and shows all the hardware on your system. This is a very long file, so | won't reproduce
it here. | do suggest that you examine the dmesg on your FreeBSD system and become familiar
with it, because you'll have to look at it almost every time you have to troubleshoot hardware.

When you examine this file, you'll see IDE tape drives displayed as "ast" devices, and SCSI tapes
as "sa" devices. Scan this file for your tape drive; if you see it, your system kernel is probably
properly configured. (FreeBSD's GENERIC kernel picks up most tape drives.)

How to Read Dmesg.boot

The first item on each line of the example boot file shown next is the device name. This particular
entry represents a DDS3 tape drive, which is fairly slow by modern standards, but is still adequate.
If your system has multiple tape drives, they will have sequential numbers, such as sa0, sal, sa2,
and so on. Once you know the device name, you can access the tape drive. SCSI drives are
represented by the initials sa and a trailing number; IDE tape drives show up as astX instead of
saX. If you have multiple identical drives, you should label which is which. If you don't know where
the tape drive is plugged into the physical bus, or the SCSI ID of the device, a bit of trial and error
will identify each drive. (Every time | set up a new backup server, | mean to label the tape drives by
SCSI ID as | physically assemble the machine. Every time, | wind up putting a tape in each drive
and trying to access it under various tape numbers, and labeling the drive that way. Either works.)

Each line for a device contains some information about the device. For example, the tape drive
shown in the following example has three descriptive lines identifying how the tape is hooked into
the computer's SCSI system, the model name, and the maximum speed.

sa0 at ahcO bus 0 target 6 lun O
sal: <ARCHIVE Python 04106-XXX 7350> Removable Sequential Access SCSI-2 device
sa0: 10.000MB/s transfers (10.000MHz, offset 15)

Every device on your system, from onboard clock chips to PCI busses to sound cards, will have a
similar entry in dmesg.boot.

The dmesg.boot file is an invaluable source of information on what hardware is actually installed.
Take a look at this file on your system; you probably never knew just how much stuff was in that
little beige box.

If your tape drive doesn't appear in the /var/run/dmesg.boot file, check the release notes for the
version of FreeBSD you're running to be sure it's supported. If it's listed as supported, but is not in
the dmesg.boot file, ask for help (see Chapter 2). You'll probably be told to rebuild your kernel (this
is covered in Chapter 4).

49

Controlling Your Tape Drive

Tape drives have been around for many years, and the way FreeBSD handles them reflects that
history. As with many old—fashioned UNIX devices, the way you access a tape drive controls how it
behaves, and before you can use your tape drive for a backup you'll need to know how to control it.
The most basic tape—control mechanism is the device node you use to access it.

Device Nodes

Device nodes, found in the /dev directory, are files that are tied to a physical device in your
computer. You can use UNIX commands on the device node to control the hardware, but you
shouldn't arbitrarily run commands on device nodes; doing something like cat /dev/console might
not do anything, or it might damage your hardware or data. In most cases, device nodes have the
same name or one similar to what appears in dmesg.boot.

Each type of tape drive has several device nodes, but for your average SCSI tape drive, you only
need to worry about three nodes: /dev/esa0, /dev/nsa0, and /dev/sa0. Similarly, if you have an IDE
drive, you only need concern yourself with /dev/east0, /dev/nast0, and /dev/ast0.

If you use the node name that matches the device name, the tape will automatically rewind when
you're finished. For example, our sample SCSI drive is sa0, so if you run a command using /dev/sa0
as the device node, the tape will automatically rewind when the command finishes. Depending on
the operating system you're used to, this might or might not match what you expect. Different
versions of UNIX, with different tape management software, handle tapes differently.

REMEMBER Tapes are sequential access devices; data is stored on the tape linearly. To access a
particular piece of data on a tape, you must roll the tape forward or backward. To
rewind or not to rewind is an important consideration.

To have a tape eject automatically when you've finished with it, use the node that begins with "e".
For example, if all you're doing is running a full system backup, you can use the /dev/esa0 device to
automatically eject the tape after the job finishes. (Some older tape drives may not support
automatic ejection; they'll require you to push the physical button to work the lever that winches the
tape out of the drive The simplest way to find this out is to simply try it.)

If you don't want the tape to automatically rewind when you're finished (because you need to
append a second backup from a different machine onto the tape, or something similar), stop it from
rewinding by using the node name that starts with an "n". In our example, if you use /dev/nsa0 in
your command, the tape drive will not rewind.

Using the TAPE Variable

Many programs assume that your tape drive is /dev/sa0, but that choice isn't always appropriate.
Even if you have only one SCSI tape drive, you might not want it to automatically rewind upon
completion (/dev/nsa0), or you might want it to eject after the backup (/dev/esa0). Or, you might
have an IDE drive, which uses an entirely different device node.

Many programs use the environment variable $TAPE to control which device node they use, which
you can always override on the command line. Most backup programs will use the device node
specified in $TAPE as a default.

You can set the $TAPE variable with the following command:

50

Note Not all programs recognize $TAPE, but it's generally worth setting.

The mt Command

Once you know which device node you want to use to talk to your tape drive, you can make it do
basic things (such as rewind, retension, erase, and so on) with mt(1). The mt command is most
commonly used for checking the status of a tape drive, as follows:

mt status

Mode Density Blocksize bpi Compression
Current: 0x25:DDS-3 variable 97000 DCLZ
————————— available modes————————-

0 0x25:DDS-3 variable 97000 DCLZ

1: 0x25:DDS-3 variable 97000 DCLZ

2: 0x25:DDS-3 variable 97000 DCLZ

3 0x25:DDS-3 variable 97000 DCLZ

You won't need to worry about most of the information in this output, but if you
want to go through it line—by-line, the mt(1) man page contains a good description of all the
features. The first thing to note in this output is that mt can find your tape drive, which means that
your system is set up properly to actually use the tape drive. (In this example, mt recognizes that
the tape drive is a DDS-3.) The various "modes" shown are ways that the tape drive can run.
Current Driver State tells you what the drive is doing at this moment.

The first time you run mt status, you might get something like this:

mt status
mt: /dev/nsal: Device not configured

This means that you don't actually have a tape device at the device node your $TAPE variable is set
to. You can experiment with device nodes and mt(1) by using the £ flag to specify a device node
(for example, mt -f /dev/nsal status), though you should get this information from
dmesg.boot.

Other useful mt commands are mt rewind, mt offline,andmt retension. As you might
guess, mt rewind rewinds the tape, mt offline ejects it, and mt retension tightens it by
running it through its complete length, both forward and back. (Retensioning is often necessary
because tapes tend to stretch on their first use; retensioning prestretches the tape before you write

51

data to it.)

Note Not all tape drives support all mt functions, and many older drives are quite temperamental. If
you have a problem with a drive, check the FreeBSD-questions mailing list archive for
messages from others who have used it. You'll probably find your answer there.

Now that you know your tape's device name and how to control it, you're ready to back up your
system.

Backup Programs

Two popular packages for backing up systems are tar(1) and dump(8). You'll certainly hear of other
backup tools besides dump when working with FreeBSD, such as Amanda, pax, and cpio. Tools like
these are all well-suited for certain environments, but aren't as universally useful as tar and dump.
If you have mastered dump and tar, however, any of the other programs will be easy by
comparison.

Tar is designed to work on files, and tar backups can be restored on almost any operating system.
Dump works on disk partitions and filesystems, and can only be restored on the same operating
system that the dump was made on. If you're backing up an entire computer, use dump. If you're
performing small backups, or might have to restore on a very foreign computer, use tar.

Tar

The tar package, short for "tape archiver," can back up anything from a single file to your entire
system. Tar works on the files and directories only and has no idea of the underlying filesystem
(which has its advantages and disadvantages). Tar is a common standard recognized by almost
every UNIX and software vendor. You can find tar programs that run on Windows, Linux, UNIX,
BSD, and just about every other operating system. You can even extract tar files on a Windows
machine!

Tar can back up files to tape, or to a file. A tar backup file is known as a tar-ball. Since tar works on
files, it's very easy to extract just one file from your tar-ball and restore it.

FreeBSD uses GNU tar, which is based on an old public domain tar program. GNU tar might have
problems with unusual files (such as files that are mostly empty). If you have a program that writes
such unusual files, the program documentation generally says to use something other than tar for
your backups. And if your filesystem is corrupt in any way, heaven knows what tar will back up.

One of tar's disadvantages is that it can be dumb; for example, it will happily restore files that were
damaged during the original backup (although this rarely happens in practice).

Tar's Modes

Tar has several common modes, set by command-line flags. (See tar(1) for a description of all the
modes; we'll discuss the most common ones here.)

-v (verbose) One useful option is —v, or verbose mode, which tells tar to list every file it touches.
You can use verbose mode to create a complete list of all the files that are backed up or restored. If
you are backing up your entire system, this will be a very long list, in which it can be difficult to see
errors.

52

-c (create a new archive) Use create mode (-c) to create a new tar archive. Unless you specify
otherwise, this flag backs up everything on the tape drive specified in your $TAPE environment
variable. To back up your entire system, tell tar to archive everything from the root directory down:

In response, your tape drive should light up, and, if your tape is big enough, eventually present you
with a complete backup of your system.

Of course, many hard drives today are considerably larger than most tapes, often by many
gigabytes. As such, it will often make sense to back up only portions of your system. For example, if
all the files that change on your system are under /home, /usr/local, and /var, you could specify
those directories on the command line:

—t (list all files in an archive) List mode (-t) lists all the files in an archive. Once the drive finishes
running, you can use this flag to list the tape's contents:

COPYRIGHT
bin/
bin/cat
bin/chio
bin/chmod
bin/cp
bin/date
bin/dd
bin/df

In the output above, note that the initial slashes are missing from every filename. For example,
/COPYRIGHT shows up as COPYRIGHT. This becomes important during restores, which we'll
discuss under the —x flag, next.

-x (extract all files from an archive) In extract mode (-x), tar retrieves files from the archive and
copies them to the disk.

Tar extracts files in your current location; to overwrite the existing system /etc with the backup, go to
the root directory first. For example, to restore my /etc directory under /nome/mwlucas/etc, use the
following commands:

cd /home/mwlucas

tar -x etc

Remember when | said that the missing initial slash would be important? Here's why. You might
want to restore a system to some location on disk other than where it came from. I've had old
servers that were backed up and shut down, their hard drives thrown in the trash or donated to
charity. If the backup included the initial slashes, tar would consider the filenames to be absolute
path names and would restore the files exactly where they originally were; /kernel on the backup
would be restored over the current system's / kernel! This would be bad.

Without the initial slash in the backup, tar will restore the file in the current directory. If | really
wanted to restore the backed-up files to their original locations, | would just have to type cd / to
take me to the system'’s root directory and then run tar.

-d (diff an archive) Finally, verify the backup with the —d (diff) flag. If everything on your tape
matches everything on your system, tar -d will run silently. It will be a surprise, though, if
absolutely everything matches: If nothing else, log files usually grow while a backup runs, so the
backed-up ones won't compare properly. Or, if you have a system with a live database, the
database files might not match.

You'll need to decide which errors you can live with, and which need fixing. For example, while you
may decide that you need to shut down your database before running a backup, you might not care
about log files. (If you encounter problems when verifying your backups, check the documentation
for the program that is giving you trouble.)

Other tar Flags

Tar has several other useful flags that you can add to one of the previously mentioned ones to
enhance its operation.

-z (gzip) The gzip flag (-z) runs the files though the gzip compression program on their way to and
from the archive. (Compressed tarballs usually have the extension .tar.gz or .tgz, and on rare
occasions .taz.) Compressing files can greatly reduce the size of an archive; in fact, many backups
can be compressed by 50 percent or more. While all modern versions of tar support -z, older
versions don't, so if you want absolutely everyone to be able to read your compressed files, don't
use the -z option.

-Z In contrast, all versions of tar on all versions of UNIX can shrink files with the -z flag, which
utilizes compress(1). The compress program isn't as efficient as gzip, but it does reduce file size.
Tarballs compressed with -z have the extension .tar.Z.

-y FreeBSD's tar supports bzip compression, which compresses files more tightly than gzip but is
only readable on a few platforms and uses more CPU time than gzip compression. If you'll only be
reading your files on a FreeBSD system, use the -y flag.

-f The £ flag allows you to specify another device or file as the destination for your archive. For
example, in all of the preceding examples, I've set $TAPE.

If you haven't, you might need to specify the tape drive with —f:

tar -cz -f/dev/east0 *

Instead of writing a backup to tape, you can create a tar file. Source code distributed over the Net is
frequently distributed as tar files, or tarballs. Use the - £ flag for this as well. For example, to back
up my chapters for this book as | wrote them, I'd run the following every so often to create the tarball
mybookbackup.tgz:

Once complete, I'd FTP the tarball to a server elsewhere so that if my house were to burn down, my
book would be safe. | could then run phone and power lines to the neighbor's house, download the
tarball to my laptop, run tar -xzf mybookbackup.tgz, and work amidst the charred timbers
while waiting for the insurance company. (It's not like | could do much else at that point!)

-v (verbose) To watch tar at work, use the —v flag. Tar will then list every file it touches in verbose
mode. But beware: If you're backing up your entire system, this can lead to a lot of information.

And More

Tar has many, many other options. Some good options include -C (change directories), —p (restore
permission information), and -1 (don't span filesystems). Read tar(1) for the full details. This section
has given you enough to start working, however.

Dump/Restore

Dump(8) is a disk—block backup tool. In some ways, dump is similar to tar, with the significant
difference that it's aware of the underlying disk and actually reads what is directly on the disk; the
filesystem is irrelevant. We'll talk more about filesystems in Chapter 16. For now, know that a
filesystem is simply the order in which zeroes and ones are arranged on the physical hard drive.
Different operating systems arrange data in different ways: Windows has the NT File System
(NTFS), Linux has the Second Extended File System (EXT2), and FreeBSD uses UNIX File System
(UFS). A tool like dump doesn't care about whatever goofball contortions the operating system puts
on the physical disk—it just backs up the ones and zeroes on the physical disk. This makes it
possible to create a more reliable backup. New sysadmins aren't as likely to be familiar with dump
as with tar, but dump is more efficient and safer than tar. When you have a choice, use dump.!"!

On the downside, dump works on entire filesystems, not on individual files. Therefore, you can't
dump / etc unless you want to back up the entire/partition. (Though if you do, you can restore
individual files.)

On the positive side, dump uses separate programs for backup and restore (restore is discussed in
"Restoring from an Archive" later in the chapter). This means you don't have to worry about
confusing your flags and accidentally overwriting the file you're trying to recover from. Dump is
considerably faster than tar, too.

55

User Control

Perhaps dump's most significant advantage is that users have a certain amount of control over
dump. For example, they can mark a file as "do not dump," and it won't be backed up. Many users
have stuff that they don't care about, and they will happily agree not to back those things up if it
means that the data they care about is backed up.

To set the nodump flag, use chflags(1):

When you set chflags on a directory, everything in or below that directory is not backed up. | use
chflags to avoid backing up my downloads directory to save time and space during backups
because | can always re-download those items.

Dump Levels

Dump has a variety of options, the most common of which is the dump level, which ranges from 0 to
9. The default level is 0, which tells dump to copy everything on the disk not marked nodump.
Higher levels of dump mean "back up any files that have changed or been created since a dump of
any lower level." This sequence of levels allows you to do incremental backups—ijust specify the
desired dump level as a command-line flag:

This command means do a level 0 dump.

For example, say you start each Monday with a level 0 dump. On Tuesday you could do an
incremental dump at level 1, and only files that have changed since Monday will be dumped. If you
then perform a level 2 dump on Wednesday, everything changed since Tuesday will be backed up.
If, however, you were to run another level 1 dump on Thursday, everything that has changed since
Monday will be backed up.

Although you can run incremental backups with dump, | recommend that you run level 0 dumps only
because they are far, far easier to restore from than a series of incremental backups. Level 0 dumps
do take longer to run than incrementals, however, and take up more space, but in most cases,
saving recovery time is more important than the cost of tape. With proper planning, you can simply
run your level 0 dumps overnight.

Other Dump Flags

You can use a variety of other flags to control exactly how dump behaves.

-f Unfortunately, dump doesn't recognize $TAPE, and rather blindly defaults to /dev/sa0. If that is
your tape drive, you're all set. If not, use —£ to tell dump where to put the archive.

56

Note —f can point to a file, not just a tape device. If you're experimenting with dump or if
you plan to copy the archive to another machine, it's perfectly legitimate to dump to
a file.

-a The -a flag is another important option. While dump tries to allocate tape space intelligently,
tapes have grown considerably since dump first came out, and the math dump uses isn't really
applicable to the large tapes of today. Dump tends to assume that you have an old—fashioned, and
much smaller, tape, and doesn't really understand that some people have 200GB tapes. In fact,
when you're using - £, you might not even have a tape.

The -a flag tells dump not to bother calculating tape requirements, and to just dump to the tape until
it hits a physical end—-of-tape marker. Use —a whenever you dump to a file.

-h As the systems administrator, you can use the —h option to decide when to honor the nodump
file flag. This option takes a dump level as an argument.

By default, files marked nodump will be backed up anyway if the sysadmin runs a level 0 dump. At
dump level 1 or higher, the nodump flag is honored; the —h flag changes this behavior by specifying
the minimum dump level to start obeying the nodump flag. Any dumps of levels below that given by
-h will archive everything, regardless of the dump flag.

For example, | usually back up a system with a command like dump -0 /; this performs a full
dump on my entire system, and even backs up items marked nodump. If my backups suddenly fill
the tape, or start running over a tape, | change this to dump -0 -h0 /. The backup then obeys the
nodump flag, which reduces the backup size. This gives me a bit of breathing room; the backups
are manageable, and | won't lose important data. | immediately order more tapes.

—-u The file /etc/dumpdates records everything that you've dumped on your system. If you use —u,
you'll update the file. This is most useful if you decide to do incremental backups, in which case you
will need to know the date of your last full backup to successfully restore the system.

To dump the root partition onto your IDE tape drive, skip files marked nodump, update
/etc/dumpdates, and eject the tape afterwards, enter:

Once you issue this command, several fairly self-explanatory messages will pass across your
screen with information on how the dump is going. If the size of your dump exceeds the size of your
tape, dump will tell you when to swap tapes.

Volumes

Hard drives are frequently bigger than tapes, and one hard drive might need several tapes for a
complete backup. When using multiple tapes to back up a hard drive, every tape has a volume
number: The first tape you fill is volume 1, the second is volume 2, and so on.

Dump will tell you each tape's volume number as it finishes filling them. (I strongly recommend

labeling each tape as it is finished!) When you have to restore from your dump, you will either be
prompted for a particular volume or asked which volume you're loading.

57

['Some sysadmins will disagree and insist that tar(1) is better. This is a disagreement of epic
proportions in the UNIX community, and any recommendation | make will undoubtedly anger the 49
percent of the sysadmin community that is devoted to the other tool. (The remaining 2 percent
insists that the only way to provide proper backups is via one of a dozen other tools.)

Restoring from an Archive

Archives are nice, but they're useless unless you can use them to recover your system. Dump's
recovery utility, restore(8), can recover either complete filesystems or individual files. As with tar and
dump, the £ flag lets you choose the device or file you wish to restore from.

Checking the Contents of an Archive

To list the contents of an archive, use the -t flag. If you add a filename after —t, restore will check
to see if that file exists, like so:

restore —-f /dev/ast0 -t /etc/motd
Dump date: Thu Mar 22 13:30:39 2001
Dumped from: the epoch
Level 0 dump of / on turtledawn.blackhelicopters.org:/dev/ad0s2a
Label: none
18935 ./etc/motd

In this example, we're using the tape drive device node of /dev/ast0 in the input, which, as we
discussed in the "Device Nodes" section of this chapter, is an IDE drive. Using this device node tells
the command to rewind the tape when it finishes. The -t tells restore to check for the file /etc/motd.
Restore tells us when the dump took place, which system it was taken on, and which disk device
was backed up.

Extracting Data from an Archive

Once you know whether a file is in an archive, you can extract data from the archive in two ways: on
a file—by-file basis or as a complete filesystem.

Restoring a File

If all you want is a few select pieces, use —x and the filename to extract only the named file. For
example, to recover /etc/namedb from a dump archive written to a file, you'd enter the following
command and see the subsequent response :

restore —-f /var/tmp/slashbackup -x /etc/namedb

You have not read any tapes yet.

Unless you know which volume your file(s) are on you should start
with the last volume and work towards the first.

Specify next volume #:

Specify next volume #: 1

set owner/mode for '.'? [yn] y

Note Notice that restore asks you for a volume number. If you're recovering from a file, this
is irrelevant, but if you're restoring from a series of tapes, you'll need to enter the tape
number. If you only have one tape, enter 1.

Once the preceding command completes, the current directory should have a directory etc,
containing the complete namedb directory.

Restoring a Filesystem

Restoring an entire filesystem is rather straightforward; just bear in mind that it's best not to restore
a filesystem over the existing one. If you need massive restorations, it's safer to erase the partition
and start over.

In the following example, we will completely erase a partition on a second IDE disk and recover
from our backup tape. We won't go into details on the disk work here (see Chapter 13 for more
information), but what we're doing can be summarized like this:

1. We build a new filesystem with fdisk.
2. We attach that filesystem to the directory system, under/mnt.
3. We go into that directory and run the restore from the tape device/dev/astO.

These are the commands:

newfs /dev/adlslg
mount /dev/adlslg /mnt
cd /mnt

restore -rf /dev/astO

Restoring Interactively

One of dump's most interesting features is interactive mode, -1, which you can use to crack open a
dump (either file or tape) and access it with a commandline tool, marking files that you want to
restore. Interactive mode is terribly useful when a user says something like, "l accidentally erased
my resume. It's somewhere in my home directory, and the name has the word resume in it—I'm not
sure exactly what it's called. Can you get it back?" Obviously the -t flag won't help us; we don't
know exactly what the file is called! Instead, we can wander around in restore's interactive mode
until we find the file.

The following listing shows me interactively opening a dump file called root.dump. (It works just as
well on a dump on tape, mind you!) Restore then presents a restore command prompt, which looks
a lot like your regular FreeBSD command prompt but only supports commands specific to restore.

#restore -i —-f root.dump

restore >

.cshrc

1s

compat@ kernel.GENERIC modules.good/ sys@
.profile dev/ kernel.good modules.old/ tmp@
COPYRIGHT dist/ kernel.old proc/ usr/
bin/ etc/ laptop-kernel root/ var/
boot/ home@ mnt / sbin/
cdrom/ kernel modules/ stand/

restore >

Once you've opened the dump file, as shown in the listing, you can maneuver through it using Is(1)
to list the contents of a directory, and cd(1) to change directories.

Once you have found the file you want to restore, you need to actually restore it. The interactive
version of restore keeps a list of files that need to be extracted from the dump. When using restore,
you add each file you want to restore to the list, and then tell restore to pull the files from the dump.
You can add a file to this list by entering add and the filename. For example, to restore
/etc/master.passwd and /etc/passwd from the interactive dump shown in the earlier example, enter
the following commands:

restore > cd etc

restore > add master.passwd
restore > add passwd
restore > extract

You have not read any tapes yet.

Unless you know which volume your file(s) are on you should
start with the last volume and work towards the first.
Specify next volume #: 1

set owner/mode for '.'? [yn] y

restore > quit

The "volume #" referred to in the preceding listing is the number of the tape you have placed in the
machine. Many dumps require several tapes, and each gets a volume number during the dump. If
you're restoring from a file, the volume number is 1. If you were able to fit your entire dump onto a
single tape, the volume number is 1 as well.

Note Whenever you perform a full disk restore, run another level 0 dump before another
incremental dump. Restore rearranges data on the disk, so further incremental
backups won't be useful without a new level 0 backup. And have | mentioned how

much easier your life is when you always run full backups?

Recording What Happened

Script(1) is one of those rarely mentioned but quite useful tools every systems administrator should
know. It records everything you type, as well as everything that appears on the screen, in a file
called typescript. You can then use this type-script file to record errors or long output to be
dissected or analyzed later. Script continues recording until you type exit.

60

For example, if you're running a program that fails at the same spot every time, you can use script
to copy your keystrokes and what the screen says in response. This is particularly useful when
upgrading your system or building software from source code; the last 30 or so lines of the
typescript file make a nice addition to a request for help.

Revision Control

Generally speaking, revision control is the process of tracking changes. In the UNIX world, this
means changes to source code or configuration files. Revision control allows a developer to see
how a piece of code looked on a specific date, or an administrator to see how the system was
configured before things stopped working. Even a lowly writer can use revision control to see how a
manuscript has changed over time. If you're not using revision control, you're making your work
more difficult than it needs to be.?

While you'll encounter many revision—-control systems, from UNIX's SCCS (Source Code Control
System) to Microsoft's Visual SourceSafe, we'll discuss RCS (Revision Control System), included
with almost all UNIX systems. Once you learn how to work with RCS, you should find it simple to
work with most any other revision—control system.

When using revision control, you're essentially keeping a record of what happened to a file. First,
you mark the file as checked out, which tells the system that you are going to change the file. You
then edit the file as you like, record changes in the system, and release the file for others to edit.
RCS uses three basic commands to accomplish this: ci (check-in), co (check-out), and rcs.

Think of revision control as a library—an old-fashioned brick-and-mortar one. To edit a file, you
must first tell RCS to keep track of it, or give it to the library. To use it you check it out, like removing
a book from a library. Once checked out, nobody else can save or edit that file, though any
legitimate user can view, use, copy, compile, or access that file. Once you finish with the file, you
check it back in, thus releasing it for others to edit. The whole process is called RCS.

Each file in RCS has a version number. Each time you return an edited file to the system, the
Revision Control System compares the returned file with what you checked out. If there is any
change at all, the version number is increased by one, which is the system's way of tracking
changes to the file. You can use the version number to identify specific versions of the file.

Begin the revision—control process by checking in a file with ci(1), which is much like giving a book
to the library. For example, a good file to protect with RCS is /etc/rc.conf. To start the RCS process,
enter ci <path/filename> as shown in the following listing:

v # c¢i /etc/rc.conf

rc.conf,v <-— rc.conf

w enter description, terminated with single '.' or end of file:
NOTE: This is NOT the log message!

x >>System configuration file

y >> .

initial revision: 1.1 done

When you first check in a file with ci (v), ci creates or edits a revision—control file. You see this in the
second line of the preceding output, where it creates rc.conf,v. It then asks you for a description (w);
enter a descriptive bit of text here (x) for any RCS user to later view the file's description. (While this

61

description isn't very important for standard system files, it can be very helpful for source code or
configuration files for custom or complex programs.) Once you've finished the description, enter a
single period on a line by itself (y) to exit ci.

If you run Is immediately after checking something in, you'll notice that the file appears to have
vanished. Instead you'll see a file with the same name, with a trailing ",v". This is an RCS file, where
the file and its changes are stored. While it's fine for some files to disappear in this fashion, source
code or Web pages can't just vanish. To solve that problem, when checking in a file you can leave a
copy in the working directory with ci —u.

If a file is checked in and has vanished, and you want to put a clean copy in the working directory
without editing it, use the co command. In the following example, you can see that the file test has
been pulled out of the file test,v, and that it's revision 1.1.

co test

test,v —-—-> test
revision 1.1

done

1ls -1

total 62

—-r——r——-r—-— 1 mwlucas mwlucas 12663 Oct 4 18:06 test
-r—-—r——-r—— 1 mwlucas mwlucas 12867 Oct 4 17:56 test,v

| own this file, test, but the permissions have been set to read-only (-r--r--r--, as discussed in
Chapter 7). | no longer have permission to edit my own files! This is because the file isn't checked
out to me. I've checked it in, or handed it over to the Revision Control System librarian. | can view
the file, but if | want to edit it, | have to ask the Revision Control Librarian for it—I need to check it
out, and then lock it for my personal use. | use the -1 flag with co.

test,v —-——> test
revision 1.1 (locked)
done

Notice the third line of this listing (the second line of output), which specifies Locked. This file is
checked out and locked by me, and | am the only one who can save it until | unlock it.

Running another Is at this point will show that the permissions on the file test are now set back to
read and write, allowing me to save.®! (We'll discuss permissions in Chapter 7.) Anyone else who
tries to check out this file will get a warning that the file is in use and will be told the username of the
person who has locked the file.

62

When finished, | check in the file and, since | want other people to be able to edit the file, | use ci
-u to release my lock.

ci -u test

test,v <-- test
new revision: 1.2; previous revision: 1.1
v enter log message, terminated with single '.' or end of file:

>> enable sendmail again
>>
done

When you check something in, you are asked for a log message (v). Enter a brief description of
your changes here. (These log messages are comparable to the CVS log messages seen on the
various BSDs’ commit mailing lists.)

These log messages allow others to know what changes you've made to a file without checking
through all the changes—or, alternatively, to see what you were trying to do when your change
broke something and someone has to start debugging. Your own RCS logs can also be useful for
you, months later, when you stare at something and wonder just what was going on inside your
head at the time.

Note If you have lots of files in RCS, the ",v" files can quickly clutter a directory. You can hide them
by creating a directory called RCS. The ci program will then put the ",v" files in that directory,
keeping the working directory cleaner.

Now that you understand the basics of checking files in and out, let's examine some of the more
interesting functions of RCS. These include getting old versions of files, breaking locks, finding
differences between file versions, and putting RCS identifiers in files.

Getting Older Versions

Every file in RCS has a revision number, and each time you check in a file, the revision number
increases. The system remembers what the file looked like during earlier revisions, however, so you
can use the revision number to check out any previous version of a file.

For example, if you're trying to track a bug that's just appeared, you can check out earlier versions
of your code to see if they also exhibit the bug by using co's —-r flag. To retrieve version 1.1 of
/etc/rc.conf, enter the following:

co -rl.1 rc.conf
RCS/rc.conf,v. —--> rc.conf
revision 1.1

done

63

Breaking Locks

Always check files in once you've finished with them. If you don't, and another user needs to edit
your locked file, they'll have to break your lock, and any changes you've made since locking it will
be lost.

To break a lock on a file, use rcs —u. RCS will ask you to enter a message about why you're
breaking the lock, and this message will be mailed to the lock holder.

Note Be careful when breaking locks: If someone is really editing a file when you force the lock,
they'll be justifiably upset. If they've gone home for the day, that's another thing. Do your best
to find the person before you break his or her lock!

Viewing Log Messages
The rlog command shows you the log messages for the file.

rlog /etc/rc.conf

RCS file: /etc/RCS/rc.conf,v

Working file: /etc/rc.conf

head: 1.4

branch:

locks: strict

access list:

symbolic names:

keyword substitution: kv

total revisions: 4; selected revisions: 4

description:

revision 1.4

vdate: 2000/09/08 17:45:29; wauthor: mwlucas; xstate: Exp; vylines: +2 -0
minor updates

revision 1.3

date: 2000/09/07 19:05:30; author: mwlucas; state: Exp; lines: +1 -1
z *** empty log message ***

revision 1.2

date: 2000/09/05 16:09:47; author: mwlucas; state: Exp; lines: +1 -1
enable sendmail

revision 1.1
date: 2000/09/02 14:53:43; author: mwlucas; state: Exp;
Initial revision

All sorts of useful information appear here, including the date each check-in was made (v), the
author of the change (w), the entry's state (x), which we won't worry about here (see ci(1)), and the
number of lines changed (y).

64

Reviewing a File's Revision History

Notice that in the previous section | didn't bother to leave a log message in revision 1.3 (z). To see
what changed, | use rcsdiff, which takes three arguments: two revisions and a filename, as shown
here.

resdiff -rl.2 -rl.3 /etec/rc.conf

RCS file: /etc/RCS/rc.conf,v
retrieving revision 1.2
retrieving revision 1.3

diff -rl1.2 -rl.3

6c6

< inetd_enable="NO"

v > inetd_enable="YES"

Apparently | turned inetd on between the revisions (v), which is important information (especially if
yours is a production system, especially one administered by several people). We'll discuss inetd in
Chapter 13.

You can also use rcsdiff between arbitrary revision numbers, allowing you to view all the changes
made between any two revisions. In the preceding example, we chose the differences between two
consecutive versions. | could have asked for the differences between revisions 1.1 and 1.4,
however, and seen everything that had changed since the file was first checked in.

Ident and ident Strings

Identification strings are used to make it easy for someone to see who has changed a file, and when
it was changed. For example, if | have a server that has been behaving oddly for the last week, |
just want to know what changed a week ago. | could go around running rlog on every system
configuration file to see when things were changed, but that's a bit annoying. It would be much nicer
to just look at the file and have that information presented to me. That's where identification strings
come in. You can put ident strings in your system configuration files. When you check a file out,
RCS will automatically update them.

RCS supports many ident strings, each with the form $string$. For example, the RCS ident string

$1d$ puts information about the last change in the file. | always put #$1ds in the first line of my
systems’ /etc/rc.conf and check it in. It appears as:

Note The pound sign (#) is a comment that tells /etc/rc not to try to run the line. Use whatever
comment marker is appropriate for the file.

The following are some typical ident strings.

65

$1d$ is the most commonly used ident string. It shows the location of the RCS file, the revision
number, the date and time of the first check-in, the author, the state, and the person who last
locked it.

Note RCS state is an arbitrary string that you can assign with ci(1) or rcs(1). You can set arbitrary
states for a file to give a hint about what it's for or what its condition is. Many people will use
this to mark a file as "experimental" or "production” or "don't change for any reason
whatsoever." You don't need to worry about the file state, just accept that it defaults to Exp, or
"experimental." RCS state is not generally used in systems administration.

$Headers is another common ident string. It's identical to $1ds, except that it gives the full path for
the RCS file instead of just the filename.

$Logs is an interesting ident string that adds the RCS log message to the file itself; when you view
the file, you will see the log messages. While the log messages can be overwhelming on heavily
edited files, they can be useful in files that change less frequently. For example, the /etc/rc.conf on
my servers doesn't change at all after a month or so of production use. If | put this ident string in the
file, | will see all RCS log messages in the actual file. This makes it very obvious what's changed,
who has changed it, and why.

There are several more ident strings, but they're basically subsets of the three just described. See
ident(1) for a complete list.

Going Further

Revision control is a powerful tool. You can find a mostly complete tutorial at
http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/rcs/.

2)Some reviewers commented that this section might scare off new sysadmins. Others said that
they'd wished they'd known about revision control when they started. Don't be intimidated; it's not
that difficult and it really will make life better for you.

BBIA warning to vi users; if you or your group owns the file, a w! will force a permission change and
allow you to write to the file even without checking it out. Everything will look fine, but the next
person who checks out the file will overwrite your changes! Be careful using w! anything; if vi
complains that you don't have permission to save, there's a good reason. Listen to it.

Single-User Mode

Unlike many other operating systems, BSD-based systems can perform a minimal boot, which is
important for troubleshooting and system repair.

This minimal boot, also called single-user mode, loads the kernel and finds devices, but doesn't
automatically set up your disk, start the network, enable system security, or run the standard UNIX
services. Single—user mode is the first point at which the system can possibly give you a command
prompt, however, so you can enable any of these services from there.

When a FreeBSD box first starts to boot, it gives you a ten-second countdown and offers you a

chance to pause the system. If you press a key, it drops you to an OK prompt. To boot into
single—user mode from this prompt, enter the following:

You'll see the regular device—probe messages flow by, and then the system will offer you a chance
to choose a shell. (You can enter any shell on the root partition; | usually just take the default,
/bin/sh, but you can use /bin/tcsh if you prefer.)

You can use single—-user mode to reset a lost root password by simply doing this:

fsck -p

mount -a

passwd root
exit

The mount —a command mounts the filesystems listed in /etc/fstab (see Chapter 13). If one of
those filesystems is misbehaving and crashing the system, you can mount filesystems individually
by specifying them on the mount command line (for example, mount /usr).

If your system is even more badly damaged, you might not be able to read /etc/fstab. In this case,
you can mount the root partition by using the device name as described in Chapter 13, which is
probably either /dev/ad0Os1a (for IDE disks) or /dev/daOsia (for SCSI disks). You can use this to
mount the partition, specifying the mount point where you want it to be accessible. For example, to
mount your first IDE disk to root, enter this command:

Here's how this has worked for me: Once | was experimenting with FreeBSD's Linux mode. | had an
experimental Linux filesystem listed in /etc/fstab. When | upgraded to a recent FreeBSD—current
(see Chapter 6), that filesystem stopped working.*! When that filesystem was mounted, the
computer crashed. Worse, the computer tried to mount it every time the system booted. The
computer would boot halfway, crash, and try to boot again, over and over and over again. | booted
into single—user mode, manually fsck'd /usr, mounted it, and used vi to edit /etc/fstab to comment
out the offending filesystem.

You can use similar techniques to enable or disable anything on your system before it finishes
booting, just by editing /etc/rc.conf (see Chapter 9) or the appropriate /usr/local/etc/rc.d file (see
Chapter 11). This lets you do things like alter the system's securelevel (explained in Chapter 7)
before the system finishes booting.

Note To activate the network while in single—-user mode, use the script /etc/netstart to do so
without starting any network services, such as inetd or httpd.

The commands you have available to you in single—user mode will depend on which partitions you

67

have mounted. Some basic commands are on the root partition, in /bin and /sbin. Others (such as vi
and ee) live on /usr and are inaccessible until you mount that partition. Take a look in /bin and /sbin
on your system to get an idea what you'll have to work with.

If you can't even boot into single-user mode, then you're left with one final option: the fixit disk.

“IPlease note that none of this is recommended. One of the nice things about FreeBSD is that it
doesn't forbid you to do dangerous things; instead, it lets you learn why they're considered
dangerous.

The Fixit Disk

The best way to learn UNIX is to play with it, and the harder you play, the more you learn. If you
play hard enough, you'll break something for sure, and having to fix a badly broken system is
arguably the fastest way of all to learn. If you've just rendered your system unbootable, or plan to
learn quickly enough to risk doing that, this section is for you. You're going to learn a lot
quickly—though mostly on your own.

One of the more interesting portions of FreeBSD is the fixit disk. You can boot off the installation
media but choose to enter fixit mode instead of installing the OS. The choice to use fixit mode is in
the first menu the installer gives you.

You must have some familiarity with systems administration to use the fixit system successfully!
Essentially, the fixit disk gives you a command prompt and a variety of UNIX utilities. You get to use
your brains and the boottime error messages to fix the problem. It's you against the computer. Of
the half-dozen times I've resorted to the fixit disk, the computer won the first three. The time was
well spent, however, as I'm now fairly capable of restoring a damaged system. Definitely finish
reading this book before you even try.

It's impossible to outline a step—by—step fixit process; the exact process you need to follow depends
on exactly what sort of damage you've done to your poor, innocent computer. If you're really
desperate, however, fixit mode gives you a shot at recovery without a complete reinstall. I've had
problems where I've accidentally destroyed my /etc or /dev directories, or fried the "getty" programs
that display a login prompt. Careful use of fixit mode can repair these problems in a fraction of the
time a reinstall would require.

To use fixit mode, you need a set of FreeBSD installation media (either the CD or the two boot
floppies) and either a fixit floppy or the second CD from the FreeBSD release you're using. You can
download the fixit floppy image from any FreeBSD FTP server. You can get recent FreeBSD
release CDs from various vendors, such as Daemon News and the FreeBSD Mall.

It's important to use a fixit disk that's roughly equivalent to the FreeBSD version you're running. A
point or two off won't make much difference, but you won't be happy trying to fix a 4.4-stable
system with a 5.0—current fixit disk.

Boot off the installation media. When you reach the first menu, you'll see a choice to enter fixit
mode. Select it. You'll then get a choice of using the CD or the floppy. Use the CD if you have it.
The fixit floppy only contains the programs that will fit on a single floppy disk. If you have a fixit CD,
you will have the full range of programs available on a default FreeBSD install. While it might not
include your favorite editor or shell, it should have everything you need.

You can mount your existing hard drive under /mnt. Programs are either under /stand or /mnt2. The
exact commands you get vary from one release of FreeBSD to another; run 1s /mnt2 and 1s

68

/stand to see what you have.

At times, all you can hope for is to get the hard drive mounted so that you can read data from it—the
fixit CD contains all the tools you will need to get the system on the network. One of the good points
of the FreeBSD installer is that you have the option to keep existing partitions. You can tar up
existing data files while running on the fixit disk, and then reinstall. Once you have a running
system, you can extract the tarballs, and have your system back.

Now that you understand how to recover your system, configuration, and files, let's go on and start
customizing your operating system for your computer.

69

Chapter 4: Kernel Games

Overview

The first step in optimizing FreeBSD is to configure the kernel. If you're new to UNIX administration,
the word kernel might be intimidating. After all, the kernel is one of those secret parts of the system
that mere mortals are not meant to dabble in. In fact, in some versions of UNIX, such as Solaris,
going in and tampering directly with the kernel is unthinkable. In the open-source UNIX world,
however, meddling with the kernel is the best way to improve your performance. (It would probably
be the best way to tune other operating systems as well, if you were allowed to.)

The FreeBSD kernel can be dynamically tuned, or changed on the fly, and most aspects of system
performance can be changed as needed. We'll discuss the kernel's sysctl interface, and how you
can use it to alter a running kernel.

At the same time, some parts of the kernel cannot be altered while running, and some kernel
features require extensive reconfiguration. Also, you might want to reduce the size of your kernel by
removing unneeded components. The best way to do this is to build your own kernel, and I'll show
you how.

Finally, we'll discuss loadable kernel modules—kernel subsystems that can be turned on or off as
needed.

What Is the Kernel?

You'll hear many different definitions of kernel. Many are just flat—out confusing. The following
definition isn't complete, but it's good enough for our purposes, and it's comprehensible: The kernel
is the interface between the hardware and the software.

The kernel allows you to write data to disk drives and the network. It handles CPU and memory
operations. It translates an MP3 to a stream of zeros and ones that your sound card understands,
and tells your monitor where to put the little colored dots. The kernel provides interfaces to
programs that need access to the hardware.

While the kernel's job is easy to define (at least in this simplistic manner), it is difficult to actually
perform. Different programs expect the kernel to provide different interfaces to the hardware, and
pieces of hardware provide their resources in varying ways. The kernel has to cope with all of this.
For example, your kernel controls memory usage, and if you have a program that demands that
memory be allocated in a way your kernel doesn't support, you're in trouble. (Programs request
memory in a variety of ways.) Too, if your kernel doesn't know how to talk to your network card, the
network card won't work. The way your kernel investigates some hardware during the boot
sequence defines how the hardware behaves, so you have to control that. Some network cards
identify themselves in a friendly manner, while others lock up hard if sent a simple query.

The actual kernel is a file on disk: /kernel. Kernel modules—the kernel code that can be loaded and
unloaded after boot—lives in /modules. Kernel modules are required in this day of detachable
hardware, such as PC Cards and USB, and they can also provide additional functionality that you
don't want to permanently add to the kernel. Every file you see outside of /kernel and /modules is
not part of the kernel; these files and programs as a group are called the user-land, meaning
they're meant for users. But at the same time, these programs and data use the kernel facilities.

70

On a newly installed system, you'll also see a file /kernel. GENERIC, which is the generic install
kernel. On systems that have been running for a while, you might also find a variety of other
kernels, some of which will be old, while others are alternates for particular circumstances or
experiments that didn't work out. The FreeBSD team makes configuring and installing kernels as
simple as possible. Let's take a look.

Configuring Your Kernel
FreeBSD provides two main ways to configure an existing kernel: sysctl(8) and the boot loader.

Sysctl

The sysctl program allows you to peek at values used by the kernel, and in some cases to set them.
Just to make things confusing, these values are also sometimes known as sysctls. Sysctl is a
powerful feature because, in many cases, it will let you solve performance issues without rebuilding
the kernel or reconfiguring an application. Unfortunately, this power also gives you the ability to kick
the legs out from under a running program and make your users really, really unhappy.

All sysctl operations are performed with the sysctl(8) command. Throughout this book, | will be
pointing out particular sysctls that change system behavior, but you should understand what they
are first.

Before we begin playing with sysctl operations, take a look at the sysctls available on your system.
The following command will save them to a file so you can study them easily:

After running this command, the file sysctl.out will contain hundreds of sysctl variables and their
values, most of which will mean absolutely nothing to you at this point, but some are easily
understood:

kern.hostname: bigbox.blackhelicopters.org

This particular sysctl is named kern.hostname and has a value of "bigbox.blackhelicopters.org". The
system | ran this command on happens to be called "bigbox.blackhelicopters.org". From the name
of the sysctl, it's fairly easy to guess that this is the kernel's name for the computer it's running on.
Easy enough to figure out, no?

Some are much more curious:

pl003_1lb.memory_protection: 0O

As a user, | have no idea what this value means. Still, if I'm having trouble and ask for help from a
software vendor or on a mailing list, | can produce this information upon request. They might ask me
to adjust it to better support their software.

The sysctls are organized in a tree format called a Management Information Base, or MIB, with
several broad categories, such as net, vm, and kern. (The Management Information Base tree is
used in several other parts of system administration; we'll see another example later in this book.)
Each of these categories is further subdivided; for example, the net category covers all networking
sysctls and is divided into categories such as IP, ICMP, TCP, and UDP. The terms sysctl MIB and
sysctl are frequently used interchangeably. There are many sorts of MIB—we'll see examples of
SNMP MIBs in Chapter 19—Dbut throughout this chapter, we're only discussing sysctl MIBs.

We saw the kern.hostname MIB earlier, and if you look at the sysctls available on your machine,
you'll see that a whole bunch of them begin with "kern". These are all general kernel values. If you
go down a little further, you'll see a whole bunch that begin with "kern.ipc.", such as these:

kern.ipc.maxsockbuf: 262144
kern.ipc.sockbuf_waste_factor: 8
kern.ipc.somaxconn: 128

These sysctls describe the kernel's IPC!' behavior. This branching of sysctls can go on for several
layers.

You will eventually wind up with individual MIBs, such as net.inet.raw.recv—space. Each MIB has a
value that represents some buffer, setting, or characteristic used by the kernel. By changing the
value, you change how the kernel operates. For example, some sysctls control how much memory
is used for each network connection. If your network performance is poor, you could increase the
amount of system reserved for network connections. Some of the roots of the sysctl MIB tree are
listed in Table 4.1.

Table 4.1: Some roots of the sysctl MIB tree

Sysctl Function

kern core kernel functions
vm virtual memory

vis filesystems

net networking

72

debug debugging information

hw hardware information

machdep platform-dependent variables (i.e., Alpha,
1386, etc.)

user userland interface information

rl1003_1Db POSIX behaviorm

PIPOSIX is an international standard for UNIX program behavior and kernel features.
Most of FreeBSD complies with POSIX.

Each sysctl value is either a string, integer, binary value, or opaque. Strings are free—format text of
arbitrary length; integers are ordinary whole numbers; binary values are either 0 (off) or 1 (on); and
opaques are in machine code and only specialized programs can interpret them.

Unfortunately, sysctls are not well documented, and rather than there being a single document
listing all available sysctl MIBs and their functions, what MIB documentation there is generally
appears in the man page for what it controls. For example, the original documentation for the MIB
kern.securelevel (discussed more in Chapter 7) is in init(8). Many have no documentation. Appendix
A includes a list of some common sysctls and their uses.

Fortunately, some MIBs are obvious. For example, if you scan your file of saved MIBs, near the top
you'll see this one:

kern.bootfile: /kernel

This is an important MIB if you regularly boot different kernels. (We'll look later in this chapter at how
to boot an alternate kernel.) If you're debugging a problem and have to reboot with several different
kernels in succession, you can easily identify which kernel you're using by checking this MIB. More
than once I've booted a test kernel, tested a problem and found it fixed, and realized that | had
forgotten which kernel I'd booted.

To view a subtree of the MIBs available in a particular tree, such as kern, enter this command:

sysctl kern

kern.ostype: FreeBSD
kern.osrelease: 5.0-CURRENT
kern.osrevision: 199506

This list goes on for quite some time. If you're just becoming familiar with sysctls, you might want to
look and see what's available. To get the exact value of a particular syscil, give the full MIB as an
argument:

sysctl kern.securelevel

kern.securelevel: -1

In this case, kern.securelevel has the integer value —1. We'll discuss exactly what this means in
Chapter 7).

Changing Sysctls

Some sysctl values are read-only. For example, take a look at the hw (hardware) and machdep
(machine dependencies) MIB trees.

hw.machine: 1386

Since the FreeBSD project has yet to develop the technology to change Intel-based hardware into
PowerPC hardware via a software setting, this setting is read-only; all you'd accomplish by
changing a MIB like this is to hose your system. FreeBSD protects you by making these sorts of
MIBs read-only. Trying to change it won't hurt anything, but you'll just get a warning that the MIB
cannot be changed.

On the other hand, consider the following MIB:

MIBvfs.usermount: O

This one, which controls whether or not users can mount media such as CDROMs and floppy disks,
can be changed. By default it is set to 0, or off. To turn it on, use sysctl's —w flag to set it to 1.,

sysctl —-w vfs.usermount=1
vfs.usermount: 0 -> 1

Sysctl returns a nice little message showing the previous value and the change to the new value.
That's all there is to changing a syscil.

Setting Sysctls at Boot

Sysctls you want set at boot-time should be entered in /etc/sysctl.conf. To do so, list each sysctl
you want to set, and the desired value, in the sysctl.conf file.

74

For example, to allow users to mount filesystems by setting the vfs.user-mount sysctl, add the
following on a line by itself in sysctl.conf.

Kernel Configuration with Loader.conf

Some kernel configuration must take place before the system starts to boot. For example, when the
kernel initially probes an IDE hard drive, the device driver determines whether or not to use write
caching. This decision must be made when the drive is first detected, during boot, and you can't
change your mind after booting. Similarly, you might have a new network card and want to load the
kernel module for its driver before you boot. That's where the system loader comes in.

The loader has many functions: It finds the hard drive that contains the kernel, loads the kernel into
memory, triggers the booting process, and feeds information to the kernel. The most important part
of the information the loader feeds to the kernel is the sysctl MIBs, which must be set at boot.

The most common way to configure the system loader is to edit a configuration file, though you can
also enter configuration commands manually at the loader's ok> prompt. For long—term changes,
you're better off including them in /boot/loader.conf.

There are two important loader.conf files: /boot/loader.conf and /boot/defaults/loader.conf. We'll
have a look at the second of the two in Chapter 8. For now, we'll change /boot/loader.conf only. The
entries in /boot/defaults/loader.conf are the system defaults; anything you put in /boot/loader.conf
will override the default settings.

Loader.conf has two main functions: loading kernel modules and providing hints to device drivers.
The device driver hints are generally sysctl MIBs that can only be set at boot.

When you look at /boot/defaults/loader.conf, you'll see a lot of options that you might find useful in
various circumstances, such as the ability to specify a different kernel rather than the default, or the
ability to specify verbose booting. Just for reference, here's a snippet of /boot/defaults/loader.conf.

kernel="/kernel"
kernel_options=""

userconfig_script_load="NO"
userconfig_script_name="/boot/kernel.conf"

userconfig_script_type="userconfig_script"

To change one of these default settings, you would copy the appropriate line from the default file to
/boot/loader.conf, and make the change there.

75

For example, the first entry in the preceding listing is for the kernel filename, which we saw in our
sysctl example earlier. Suppose you were working on a remote machine, and you wanted it to
reboot the next time with a different kernel, but you didn't want to copy this other kernel to /kernel.
You could change the kernel your system will use on boot by editing this one line. This is a syscil
that, obviously, can only be set at boot.

Let's look at two specific examples: passing hints to device drivers and automatically loading kernel
modules.

Passing Hints to Device Drivers

Loader.conf's first purpose is to pass hints to device drivers. (If a device driver can use these hints,
they're described in the manual page.)

As discussed earlier, the IDE hard drive's device driver must know if it should ask for write caching
before booting the system. (This is documented in the ata(4) man page, and we will discuss write
caching in Chapter 16.) To enable write caching, set the hw.ata.wc flag to 1 by entering the
following in loader.conf:

That does it.

This type of flag should look familiar; it looks suspiciously like a sysctl MIB. In fact, once the system
boots, check to see if it is a syscil:

sysctl hw.ata.wc
hw.ata.wc: 1

What do you know, it is!

When the system is running, you cannot change this sysctl. (Go ahead, try it, you won't hurt
anything.) You changed a write—only sysctl by setting it at boot time. While this still won't help you
turn that old Pentium into an Alpha, it does give you added flexibility.

Loading Kernel Modules Automatically

As | mentioned earlier, kernel modules are portions of a kernel that can be started (or loaded) when
needed, and unloaded when unused. This feature can save system memory, and it improves
system flexibility.

Loading a kernel module automatically at boot is fairly straightforward, and the default loader.conf
offers many examples. To do so, copy the module name to loader.conf, cut off the trailing ".ko", and
add the string _load="YES". For example, to load /module/procfs.ko automatically at boot, add the
following to loader.conf:

76

The hard part, of course, is knowing which module to load. The easy ones are device drivers; if you
add a new network or SCSI card, you can load the module at boot rather than rebuilding the kernel.
If you're loading kernel modules to solve a particular system problem, you're probably doing this
either from program documentation or someone's advice. Knowing which other modules to load
comes with experience, reading documentation, and knowing what you want your system to do. I'll
give specific pointers to certain kernel modules later.

Manually Configuring the Loader

If you're repeatedly rebooting to experiment with modules and sysctls, you probably don't want to
keep editing /boot/loader.conf because it's just too time-intensive. Instead, adjust the loader
manually at boot time. Then, once you find a configuration you like, you can alter /boot/loader.conf
to your taste.

As discussed earlier, when your FreeBSD system first boots, it displays a 10—second countdown. If
you hit a key and interrupt the countdown, you're brought to a loader command prompt—a simple
command-line system where you can control initial system setup. You'll know you're in the loader
when you see the loader prompt

The loader is not UNIX—it's actually a small command interpreter written in Forth.!”! While a couple
of loader commands resemble their UNIX counterparts, that's more for convenience than because
of any underlying similarity.

Loader Commands

Entering a question mark (?) at the loader prompt will give you a very brief tutorial. Here are some
of the most useful commands.

Is

The Is command lists files, just like in UNIX. It defaults to displaying the root directory; you can list
another directory by giving the full path.

unload

Unload empties the system memory, which starts off containing the kernel and any modules
specified in loader.conf.

load

The load command copies a file into memory. Use load to add kernel modules or even a new
kernel. (You cannot load one kernel while another is still in memory though; you must unload the old

77

one first.)

For example, you could load the Intel EtherExpress network card driver like this:

ok load /modules/if_ fxp.ko
ok

set

The set command allows you to set the value of a variable. For example, to test IDE write caching,
you need to set hw.ata.wc to 1.

ok set hw.ata.wec=1
ok

MIPC is an acronym for interprocess communication, and various programs need this. Your
program documentation will tell you if this sysctl needs to be altered.

BlIn more recent versions of FreeBSD, the —w is unnecessary; just give the assignment.
“IForth is one of the very few programming languages that can fit in the tiny amount of space
available in a computer's boot record. A similar program in C would require much more space.
Every so often, someone volunteers to rewrite the boot loader in C, or BASIC, or some other
language. These people are never heard from again.

Loading and Unloading Modules in Multi-User Mode

Some kernel modules don't need to be loaded in your system at boottime; they can be loaded and
unloaded while the system is running. We'll look at how you can find out what modules you have in
your system, then how to load and unload them.

Viewing Loaded Modules

Once your system is fully booted, you can see which kernel modules are loaded with kidstat(8):

kldstat
Id Refs Address Size Name

1 5 0xc0100000 2d505c¢c kernel

2 1 OxcOc6c000 13000 linux.ko
#

In this listing, the laptop has two modules loaded: the kernel (kernel) and the Linux compatibility
module (linux.ko, discussed in Chapter 10). Each module contains submodules, which you can view
using kldstat —v, but be ready for a couple hundred lines of output.

78

Loading and Unloading Modules

Load and unload software modules with kldload(8) and kldunload(8). For example, to load the warp
console—-mode screen saver, enter this command:

If all possible functions were compiled into the kernel, the kernel would be much larger than it is.
This way, you can have a smaller, more efficient kernel and only load modules as you need them.

Customizing the Kernel

You'll eventually find that you cannot tweak your kernel as much as you desire using only modules
and sysctl, and your only solution will be to build your own custom kernel. But don't worry, the
process is perfectly straightforward if you take it step by step.

The kernel shipped in a default install is called GENERIC. GENERIC is designed to run on a wide
variety of hardware, though not necessarily to run well or optimally. GENERIC boots nicely on a 486
and later systems, but newer x86 systems have advanced features and optimizations that help them
perform better, and GENERIC doesn't take advantage of these features because it's aiming for the
lowest common denominator.

When you customize your kernel, you'll get better performance, and you can also include new
functionality in it, or support for new hardware.

Preparation

You must have the kernel source code before you can consider building a kernel. If you followed the
advice in Chapter 1, you're all set. If not, you can either go back into the installer and load the kernel
sources or jump ahead to Chapter 6 and use CVSup instead.

If you don't know whether you have the kernel source code installed, look for a /sys directory. If it
exists, and there are a bunch of files and directories in it, you have the kernel sources.

Before building a new kernel, you must know what hardware your system has. This can be difficult
to determine, because the brand name on a component doesn't necessarily have any relationship to
the device's identity or abilities. After all, many different companies made an NE2000—-compatible
network card. Even if the box said "3com," the circuits inside the chip said "ne2000."® Similarly,
companies such as Linksys rebrand inexpensive network cards that all have very different internals.
The boxes all say "Linksys," but the chip says something else depending on the month of

79

manufacture.

Fortunately, PCl-based systems have sophisticated hardware-recognition systems, and FreeBSD
will almost certainly find these devices at boot. If yours is an older ISA system, on the other hand,
you might have to dig through the component manual to learn what sort of device you have and how
to set IRQs and 1/O ports.

The best place to see what hardware your FreeBSD system found is the file /var/run/dmesg.boot,
which contains the boottime kernel messages buffer, also known as all that garbage you saw on
boot. (There's an example of dmesg.boot in Chapter 3.) If you've never looked at your dmesg.boot
file, take a few moments to do so now. You probably never knew that your computer had so much
stuff in it!

When looking at the dmesg.boot file, you'll find the device names at the beginning of the dmesg
lines. Each piece of hardware has a separate device name, typically a few letters followed by a unit
number, such as npx0. The letters are the name of the driver (npx), and each device is numbered,
starting with 0. One device might span several lines, and if you have multiple devices, they'll show
up with sequential unit numbers.

Your Backup Kernel

A bad kernel can render your system unbootable, so you absolutely must keep a good kernel
around at all times. While the kernel install process retains one old kernel, it's easy to overwrite it.

If you don't keep a good, reliable kernel around, here's what can happen: You forget to put a
network driver in your current kernel, so you decide to rebuild it. Your rebuilt kernel becomes the
current kernel, your previous (imperfect) kernel becomes the old kernel, and your old working kernel
goes off to the Land of Oz. When you discover that your new kernel won't keep running for more
than a few hours, you'll really regret the loss of that reliable kernel.

A common place to keep a known good kernel is /kernel.good. Back up your working, reliable kernel
to /kernel.good before tweaking your kernel, like this:

mkdir modules.good
cp kernel kernel.good
cp -R modules/;* modules.good/

Note Don't be afraid to keep a variety of kernels on hand. Some people even put kernels
in directories named by date, so that they can have a long-running history of
kernels. You can have too many kernels on hand, but only if they fill up your root
partition.

Editing Kernel Files

You've now backed up your working kernel and are ready to build a new one. To begin, check out
/sys/i386/conf, where you should find several files. The important ones for your purposes are
GENERIC and LINT. GENERIC is the kernel configuration file for the standard kernel used on first
install. LINT contains all kernel options and the documentation for them, including a variety of really
obscure ones.

80

Do not edit any of the files you find in /sys/i386/conf directly. Instead, copy GENERIC to a new file
and edit the copy, not the original, and name the file after your machine (the most common
convention). For example, if you have a server called "webserver," you would do this:

Now open the new configuration file in your favorite text editor. Here's a snippet from the part of the
GENERIC configuration that covers IDE (aka ATAPI) drives.

ATA and ATAPI devices

device atal at isa? port IO_WD1l irqg 14

device atal at isa? port IO_WD2 irg 15

device ata

device atadisk # ATA disk drives

device atapicd # ATAPI CDROM drives
device atapifd # ATAPI floppy drives
device atapist # ATAPI tape drives
options ATA_STATIC_ID #Static device numbering

Each line in the kernel configuration file is either a comment or description of a kernel feature. The
pound sign (#) marks comments and the computer ignores them; they're there for your benefit.

Some lines have comments that start in the middle of the line, describing what appears earlier on
the line. Lines beginning with "device" are device drivers; in this example, you'll see entries for IDE
disks, IDE CD-ROM drives, IDE floppy drives, and IDE tape drives. There are also entries for the
actual IDE bus on the motherboard, and for both of its connectors.

Other lines are for software features, or "options." In this example, the option ATA_STATIC_ID
enables "static device numbering"; you'll learn what that means in Chapter 16. You'll also see a few
special-purpose keywords, such as "pseudo-device" and "cpu," which are either software options
or descriptions of hardware.

Because the GENERIC kernel is designed to run on the greatest variety of equipment, it includes a
huge array of network drivers, disk drivers, controllers, and features. As a general rule, begin
customizing a kernel by commenting out unnecessary entries to shrink and simplify your kernel. Of
course, when you streamline the kernel in this way, you'll have to rebuild it when you change your
hardware, and if you're one of those folks who constantly swaps hardware in and out, you probably
don't want to gut your kernel. On the other hand, if you have a specific server hardware setup and
you mass-produce kernels, strip out anything unnecessary.

Your copied kernel configuration file (WEBSERVER, in our example) starts off with comments

describing the purpose of the configuration file and containing pointers to the official FreeBSD
documentation. Once you skip these comments, the new config file starts with the following:

machine 1386

cpu I1486_CPU
cpu I1586_CPU
cpu I1686_CPU
ident GENERIC

81

maxusers 0

machine

The machine keyword in the preceding listing describes the system architecture. You really don't
want to change this, unless you're building a kernel for your Alpha on an x86.

cpu

The cpu statements describe the on—chip features the kernel can expect to use and support. This is
important because newer CPUs provide instructions that others don't. (For example, consider the
Pentium versus the Pentium with MMX.)

You only need to include the CPU you have. If you're not sure of the CPU in your hardware, check
dmesg.boot. My laptop's dmesg.boot includes the following lines:

CPU: Pentium III/Pentium III Xeon/Celeron (497.56-MHz 686-class CPU)
Origin = "GenuinelIntel" Id = 0x681 Stepping = 1

Features=0x383f9ff<FPU, VME, DE, PSE, TSC, MSR, PAE, MCE, CX8, SEP, MTRR, PGE, MCA, CMOV, PAT, PSE3
6,MMX, FXSR, SSE>

The important part of this description is the 686—-class CPU at the end of the first line. This tells me
that | can remove the cpu statements 1486_CPU and 1586_CPU to make my kernel smaller and
faster. As a result, the kernel will use 686-class CPU-specific optimizations instead of slower
generic code.

ident

The ident statement is the kernel's name, which is usually the same as the server name. If you build
one kernel and install it on many machines, you might want to give the kernel a name that reflects
its purpose, such as WEBSERVER.

maxusers

The maxusers value is a rough value used to compute the size of various in—kernel tables (not the
maximum number of users). These in—kernel tables control things such as the number of available
network connections and the number of files that can be open at one time.

Beginning with FreeBSD 4.5, the kernel will look at a system's resources and assign a maxusers
value that it believes is appropriate for most users. The maxusers 0 entry means the kernel will
take the defaults, which will be entirely appropriate for most systems. (You can still hard—code a
MAXUSERS value if you wish, however, as | describe below.)

On FreeBSD versions 4.4 and earlier, you needed to hard—code your maxusers value. | typically ran

an X-based laptop with a maxusers value of 16, which is fine for my laptop because I'm the only
user of the system; no matter how many fancy desktop widgets | fire up, or how many Web pages

82

I'm browsing, I'm only one person and cannot possibly open more files or make more network
connections than a maxusers of 16 can support. On a busy Internet server, though, | might kick this
value up to 256; this is high enough that the server will prepare to handle thousands of network
connections and open files.

If your maxusers value is too low, the system will start to be unable to handle all your files and
network connections. The kernel will notice that it cannot handle all these requests, and will log
errors. You'll start to get warnings on the console and in /var/log/messages telling you quite
explicitly to increase maxusers.

Don't raise maxusers above 256, though, unless you have an insane number of files on a single
partition (millions, for example) or you push multiple T1s of bandwidth.

Basic Options

Following the maxusers value in the config file, there are a variety of basic options, including things
like INET for TCP/IP support, and FFS for UNIX filesystem support. You'll also encounter rarely
used ones that you can remove. We won't discuss all the kernel options, but merely some specific
examples from different types of options and some of the more common options. I'll specifically
mention ones that can be trimmed from an Internet server.

Consider the following options:

Older CPUS (specifically the 386 and the 486SSX) have no math co—processor. If your system
lacks a math co—processor, you should leave MATH_EMULATE in so your kernel will emulate a
math co—processor in software. Any modern CPU will have a math co—processor, however, and if
that's true in your case, you can cut it.

83

The FFS option specifies UNIX Fast Filesystem, FreeBSD's default. Keep it.

Softupdates is a method for ensuring disk integrity with FFS. (We'll discuss soft-updates at some
length in Chapter 13.) Keep this line unless you specifically decide against using softupdates.

If you use MFS to build diskless workstations, you need the MD_ROOT option. Otherwise, give it
the axe.

options NF'S
options NES_ROOT

These two options support the Network File System. The NFS_ROOT option allows you to boot off
an NFS drive, rarely used in Internet servers. You can delete both entries if you aren't using NFS.

The MSDOSFS option supports MS-DOS-formatted filesystems and floppies. If you mount or
unmount MS-DOS floppy disks, or if you are sharing your hard drive with a Microsoft operating
system, you might want this option. You can also temporarily load this functionality with the
msdos.ko module.

The CD9660 option supports the standard CD—-ROM filesystem. Like the MSDOS filesystem, you
can temporarily load and unload this functionality with the cd9660.ko module.

options PROCEFE'S
options COMPAT_43

If you remove the preceding two lines, your system will break. Many user programs rely on BSD4.3
functions. The COMPAT_43 option provides kernel compatibility with BSD4.3. Similarly,

84

process—monitoring programs rely on the process file system (PROCFS).

The SCSI_DELAY option specifies the number of milliseconds FreeBSD waits after finding your
SCSI controllers before probing the SCSI devices, giving them a chance to spin up. If you don't
have any SCSI hardware, you can delete this line. If you have new SCSI hardware, you can reduce
this setting to 5000 (5 seconds) or lower.

Some programs allow users to look at the system console in an X Windows terminal. The
UCONSOLE option is the kernel support for that feature. You can delete this line if you aren't using
X, or if you don't have this system set up as a desktop.

options USERCONFIG
options VISUAL_USERCONFIG

These two userconfig lines allow you to enable and disable devices before your kernel boots. While
you don't absolutely need them, when you read some FreeBSD hardware documentation that says
"set this in userconfig," you'll regret not having them.

The KTRACE option enables kernel-level tracing. Keep it unless you know exactly what it is and
what you're doing.

options SYSVSHM
options SYSVMSG
options SYSVSEM

The preceding three options support System V-style interprocess communication, and many
applications expect to have them. They can also be loaded as modules.

options P1003_1B
options _KPOSIX_PRIORITY_SCHEDULING

85

The two lines support kernel POSIX functions, and many programs expect to find POSIX features in
the kernel.

Multiple Processors

If your system has multiple processors, you need the following kernel options:

options SMP # Symmetric MultiProcessor Kernel
options APIC_IO # Symmetric (APIC) I/O

The SMP option tells the kernel to use the appropriate code for multiple processors; APIC_IO
handles input and output for SMP kernels.

When you're building an SMP kernel, remove the I1386_CPU and 1486_CPU from your kernel
configuration. FreeBSD only supports SMP on systems that fit the Intel SMP specification, and this
specification does not support SMP with 386 or 486 chips.

If you do not have multiple processors, leave these options commented out!
Device Entries

After the options entries in the config file, you'll find device entries, which are grouped in fairly
obvious ways.

Bus Entries

The first device entries are bus entries, such as device pci and device isa. Keep these,
unless you truly don't have that sort of bus in your system. (You might be surprised at the number of
"legacy-free" systems that have an ISA bus hidden somewhere in their innards; for example, my
brand-new laptop has an old-fashioned ISA bus hidden in it.) The EISA device, however, can
probably be removed on modern computers.

Interfaces

The IDE/ATAPI interfaces and devices are next (we saw an example of these at the beginning of
the "Editing Kernel Files" section). Even if your system has no IDE devices, it's probably a good
idea to keep the "device ata", especially since most motherboards have an IDE controller or two on
them. You can eliminate entries for any IDE devices you don't have.

Next are the SCSI controllers and cards, used for SCSI features, including those needed by parallel

port Zip disks and USB storage devices. If you don't have any of these devices, this whole section
can go away. If you're using SCSI, just remove the controllers you don't have.

86

SCSI Controllers
device ahb # EISA AHA1742 family
device ahc # AHA2940 and onboard AIC7xxx devices

After the SCSI section, you'll find a few lines of device drivers for such mundane things as
keyboards, monitors, your PS/2 port, and so on. Don't delete these.

The network card list comes next; it is quite long and looks much like the SCSI and IDE sections. If
you're not going to replace your network card any time soon, get rid of the drivers from any
hardware you don't have. If your system doesn't have any ISA slots in it, you can certainly delete all
of the ISA drivers.

Pseudo-Devices

Near the bottom of the GENERIC kernel, you'll find a list of pseudo-devices. As the name might
suggest, these are created entirely of software. For example, when you telnet or SSH (see Chapter
13) into the system remotely, the system has to have a way to keep track of your terminal session,
send characters to it, and read what you type. It wants to treat your remote connection just as it
treats the physical monitor and keyboard attached to the system. To do so, it uses a pseudo—-device
called a pseudo-terminal. Because the kernel treats these much like devices, we call them
pseudo-devices.

Here's one, for example:

This is the loopback interface, 100, a network interface that points back to the local machine. If you
remove it, many pieces of software will break in interesting ways. This can be very educational, but
you don't want to do this in a production system.

The sl pseudo-device is for Serial Line Internet Protocol (SLIP). It is an old protocol that has been
replaced by Point-to—Point Protocol (PPP). You probably don't need this unless your ISP requires

87

The ppp pseudo—device is for kernel-based PPP. Kernel-based PPP has fallen out of favor, being
supplanted by userland PPP. You probably don't need this.

If you do want to use kernel PPP, the number after "ppp" is the number of PPP devices to create.

The tun pseudo-device is the logical packet tunnel. Various programs use this to sneak packets in
and out of the kernel. You need this for userland PPP (regular dial-up connections).

The pty pseudo—devices are pseudo-terminals, used for things like telnet connections, and so on.
You want these.

The md pseudo-device is for memory disks. Again, if you're not using memory disks, you don't
need them. For most (but not all) Internet servers, memory disks are just a waste of RAM. However,
a very few special-purpose servers (such as, anonymous CVS servers) need memory disks.

pseudo-device gif
pseudo-device faith
pseudo-device bpf

The bpf pseudo-device is the Berkley Packet Filter, which allows you to examine packets on your
network. It's used for packet sniffers and for the DHCP client and server. If you don't need any of
those, turn this off.

88

USB Devices

Finally, after the pseudo-devices you have USB devices, which can all be dynamically loaded via
kldload. Many Internet servers don't use USB, so you might be able to delete them entirely from
your kernel.

BlActually placing such a label on the outside of the chip would be far too convenient, so computer
manufacturers generally don't bother.

Building Your Kernel

The previous sections have shown you how to gut your kernel configuration. Before you start adding
other things in, | recommend trying to build and boot this minimal kernel to learn what your kernel
really needs before adding customizations.

Note Use the steps described in this section when building a kernel without upgrading. If you're
upgrading (as discussed in Chapter 6), you must follow a slightly different procedure.

Once you've selected and modified your kernel options, it's time to build your kernel. To do so, first
use config(8) to assemble the necessary files and check your configuration's syntax. For example,
to run config on MYKERNEL, enter the following command:

config MYKERNEL
Kernel build directory is ../../compile/MYKERNEL
Don't forget to do a "make depend"

While config cannot detect a good kernel configuration, it will find a variety of configuration mistakes
if they exist. If config detects a problem, it will report an error and stop. For example, if you include a
nonexistent option, config will complain, loudly. (Config always reminds you to run a make depend.
We haven't discussed this yet, but forgetting this step is the single most common error in building a
kernel.)

Some error messages are blatantly obvious—for example, you might have accidentally deleted
support for the Unix File System (UFS), but included support for booting off of UFS. One requires
the other, and config will tell you exactly what's wrong. Other messages are strange and obscure,
and you should investigate them as discussed in Chapter 2.

Assuming that config runs correctly, config tells you which directory it has assembled your kernel
pieces in. In our example, this is ../../compile/ MYKERNEL. Go to the directory shown and do this:

The "make depend" stage of the command ties the pieces of your kernel and the kernel modules
together, making sure that everything has the pieces it needs. The second command, "make all
install", takes all the source code and dependencies and compiles a kernel out of source code.

89

Then wait. The kernel building process will take a few hours on a 25 MHz 486, or a few minutes on
a dual-processor 1 GHz Pentium. You will see all sorts of cryptic compiler messages scrolling down
your screen while this is happening. In the install step, your current kernel will be moved to
/kernel.old, and your new kernel installed as /kernel.

Once the build is finished, reboot your server and watch your boot messages. Near the top of these
messages you should see the directory where your new kernel was compiled, as shown here in
bold:

Copyright (c) 1992-2001 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
The Regents of the University of California. All rights reserved.
FreeBSD 5.0-CURRENT #0: Sun May 20 16:49:05 EDT 2001
mwlucas@turtledawn.blackhelicopters.org: /usr/src/sys/compile/MYKERNEL

If you see a message like this, you have been successful. You're up on your new kernel!

Troubleshooting Kernel Builds

If your kernel build fails, the first step in troubleshooting is to look at the last lines of the compile
output. You saw the compile output after typing the make depend && make all install
command. You might be able to guess at the meaning of an error, but it can be very cryptic to
people who don't breathe, eat, and live kernel code.”®!

Here's an example of something you might see in a failed kernel build:

===> sys/modules/x1

cc -0 -pipe -D_KERNEL -Wall -Wredundant-decls -Wnested-externs -Wstrict-prototy
pes -Wmissing-prototypes -Wpointer—-arith -Winline -Wcast-qual -fformat-extensions
—ansi —-DKLD_MODULE -nostdinc -I- -I. -IQ@ -IQ/../include -mpreferred-stack-
boundary=2 -c /usr/src/sys/modules/x1/../../pci/if/x1l.c

v /usr/src/sys/modules/x1/../../pci/if_.c:155: syntax error before <'

cpp: output pipe has been closed

*** Error code 1

Stop in /usr/src/sys/modules/x1.
*** Error code 1

Stop in /usr/src/sys/modules.
*** Error code 1

Stop in /usr/src/sys.
*** Error code 1

Stop in /usr/src.
*** Error code 1

Stop in /usr/src.
*** Error code 1

90

At the top of this message, the compiler is in the directory sys/modules/x| and is trying to build a
working kernel module out of the source code there. You see the command it's trying to run; it's on
the next few lines, starting with ce -0. What appears as several lines on paper is actually one very,
very long line to the computer; this particular line goes down to just above the v symbol.

On the next line (v), we see the error code (syntax error before ‘<’), as well as the line number and
the filename. This error stops the compile, and we see a cascading series of errors. The kernel
module cannot be built, so the whole range of kernel modules cannot be built, so the kernel cannot
be built, so everything basically comes to a screaming, crashing halt.

Fortunately, FreeBSD will insist upon compiling a complete kernel before installing anything. You
haven't damaged your system by doing this; your failed compile is still sitting in the directory created
by running config.

You know the step in the kernel build where the process stopped (the bit beginning with cc), and
you know what error resulted from that step (syntax error before ‘<’). The cascading errors that
follow are really irrelevant; a failure in one step makes the whole process blow apart.

Don't be embarrassed if you don't understand these errors; most people don't. Just go through the
"Getting More Help" process in Chapter 2. Your first best bet is the FreeBSD—questions mailing list
archive. Take the last lines of your compile output (1f_x1.c:155: syntax error before‘'<’),
paste it into the search engine, and see who else has had the problem. If you don't find any hits on
that, try the next line of the failure (cpp: output pipe has been closed).

If nothing shows up in the mailing list archive, send a message to the
FreeBSD-questions@FreeBSD.org mailing list. Include the following information:

e The end of the output of the failed compile
e Your FreeBSD version number

e The contents of /var/run/dmesg/boot

e The output of uname -a

e The kernel config file

Chances are, your problem is fairly simple to fix, and if you include all of this, someone will write you
back with suggestions. These sorts of errors are generally the result of an incorrect kernel
configuration.

BlPersonally, | prefer to breathe, eat, and live air, food, and my life, in that order, but some people
seem to get by living on computers.

Booting an Alternate Kernel

So, what do you do if your new kernel doesn't work? Perhaps you forgot a device driver, or cut the
ppp pseudo—device and cannot dial out to the Net. Don't panic, you're not lost. You did keep your
old kernel, right? Okay, here's what to do.

91

First, interrupt the boot, as discussed in the "Manually Configuring the Loader" section earlier in this
chapter, by pressing any key. When you see the loader prompt, the kernel has already been loaded.
You need to unload that kernel and any corresponding modules before you can load another kernel.
To do so, run this command:

ok unload
ok

Your kernel should now be unloaded and your command prompt at the root directory. If you're not
sure of the kernels you have, use Is to see everything under /.

Next, choose the kernel you want, then load it and boot. (Be sure to also load whatever kernel
modules you require.)

ok load /kernel.good
ok load /modules/if_fxp.ko
ok boot

Your system should now start booting off your selected kernel.

Note If you didn't back up a good kernel, and both your new and old kernels are bad, don't despair
yet. FreeBSD installs a GENERIC kernel in /kernel. GENERIC. It should at least get you back
to a command prompt, or to single—user mode in the worst case.

Adding to the Kernel

At this point, if everything has gone well, you should have a minimal kernel that works well. Now you
can add features and tweak it.

LINT

You'll find a list of all kernel features in the file /sys/i386/conf/LINT, including every kernel option and
driver, as well as some documentation.

If you have hardware that doesn't appear to be supported in the GENERIC kernel, take a look at
LINT. Some of these features are obscure, but if you have the hardware, you'll appreciate them. For
example, FreeBSD supports the special features of the IBM BlueLightning CPU, which will allow
both of you BlueLightning owners to use your CPU to its full extent.

Let's look at a typical entry from LINT:

CPU_PPRO2CELERON enables L2 cache of Mendocino Celeron CPUs. This option

92

1is useful when you use Socket 8 to Socket 370 converter, because most Pentium
Pro BIOSs do not enable L2 cache of Mendocino Celeron CPUs.

options CPU_PPRO2CELERON

We're told that if you have a Socket 8 to Socket 370 converter on your mother-board, the
CPU_PPRO2CELERON option will enable your L2 cache. Since FreeBSD runs so well on older
hardware, this sort of hardware setup is not uncommon. Many people have taken older hardware
and installed FreeBSD on it, and use adapters to augment this older hardware. While this situation
isn't common enough to warrant inclusion in the GENERIC kernel, the option is there if you look for
it. Skim through LINT some time, just to get an idea of what sorts of things are available.

Notelf the LINT kernel configuration includes all possible options, why not just use it? Because
some of the features in that configuration contradict each other. For example, there's the
CPU_PPRO2CELERON option that tells the kernel you're running a Celeron on a Pentium
Pro motherboard. Meanwhile, the kernel option CPU_RSTK_EN enables the return stack on
the Cyrix 5x86 CPUs. There is no such thing as a Cyrix-made Celeron, and if it existed, it
probably wouldn't use this motherboard adapter.

Fixing Errors with Options

You'll use certain options when you get an error. For example, a friend of mine has several Web
servers built on low-end i386 hardware. When one became busy enough to start serving several
hundred Web pages a second, he started getting errors on the console like this:

Jun 9 16:23:17 ralph/kernel: pmap_collect: collecting pv entries —-—
suggest increasing PMAP_SHPGPERPROC

When he ignored the error, the system crashed. He asked for my help.

By reading the error from the log and searching LINT, | found this:

Set the number of PV entries per process. Increasing this can

stop panics related to heavy use of shared memory. However, that can
(combined with large amounts of physical memory) cause panics at
boot time due the kernel running out of VM space.

If you're tweaking this, you might also want to increase the sysctls
"vm.v_free_min", "vm.v_free_reserved", and "vm.v_free_target".

The value below is the one more than the default.

options PMAP_SHPGPERPROC=201

After reading this explanation, we set out to tackle this problem. First, we backed up the old kernel

93

to /boot/kernel.pmap-crash. (It wasn't exactly a good kernel, but | wanted it on hand in case the
new one was worse.) We then kicked PMAP_SHPGPERPROC up to 400, and increased the
system's RAM to 192MB. (Yes, this cheap system was serving several hundred Web pages a
second on 64MB of RAM, one IDE disk, and a Celeron 433!) After doing the config—-make dance,
the problem went away, and the server now has 30 days uptime.

Without the ability to tweak the kernel, we would have had no choice but to buy more hardware.
Admittedly, this piece of hardware is pretty low—end. But if this hardware does the job with just a
little software tweak, why not use it? If you're that desperate to spend money, send the checks to
me.

Tweaking Kernel Performance
And how about improving performance?

The biggest kernel bottleneck is network mbufs. You'll see in Chapter 5 how mbufs are the chunks
of memory that the kernel uses to handle network connections. They aren't the number of network
connections the server can handle, but rather the memory used to hold network connections, and
one connection might consume several mbufs. (You might want to read the discussion of mbufs in
Chapter 5 before you start tuning them, but since we're discussing kernel configuration here, we'll
discuss the mechanics now.)

The number of mbufs scales somewhat with the MAXUSERS kernel option discussed earlier in this
chapter, but you will probably want to increase the setting on a high—production server. While the
auto-scaling of MAXUSERS can help, this is still a very common tweak.

The NMBCLUSTERS option controls the number of mbufs created by the kernel. (This option won't
appear in the GENERIC configuration file; you'll need to add it. NMBCLUSTERS does appear in the
LINT file.)

Network mbuf clusters are preallocated in kernel memory, so you can't just crank this value up to a
million and forget about it, because that memory won't be available for other uses when the system
gets busy. You do want your kernel to be able to open files and support your Web server, don't you?

One nmbcluster uses about 2KB of memory, so the preceding example reserves 2MB of memory
for networking. (2 times 1024 is 2048, and 1MB is 1024KB.) This might not be much on a modern
computer, but it is a considerable chunk on a 486s that can run FreeBSD. See why we want to
customize this?

To calculate the number of mbuf clusters you need, first check how many network connections you
have open at a fairly busy time. You can do this with the netstat(1) command. Netstat will show you
how many network connections the system has, including TCP, UDP, loopback, and UNIX socket
connections. All you need care about for mbufs clusters are TCP and UDP, so you can pull those

94

out with grep(1). Finally, you can use the wc(1) word—counting program to count the number of lines
in the output, which gives you the number of TCP and UDP connections that the system is using
right now.”! Here are the commands:

netstat -na | grep tcp | we -1
427

netstat -na | grep udp | wec -1
377

Note If you want to know how many network mbufs you're using at any given time, look at
netstat -m. We'll discuss netstat in some detail in Chapter 5.

As you can see from the results, at this particular moment, the system has 427 running and
available TCP network connections, and 377 active and available UDP network connections. This is
roughly 800 total. To account for possible peaks, plan for twice the number of connections you see
at a typical busy time.

Now that you know how many connections you have to handle, you need to know how much
memory each connection requires. Each TCP connection requires a send buffer and a receive
buffer. You can get their current size (in bits) from the sysctls net.inet.tcp.sendspace and
net.inet.tcp.recvspace.

sysctl net.inet.tcp.sendspace
net.inet.tcp.sendspace: 16384
sysctl net.inet.tcp.recvspace
net.inet.tcp.recvspace: 16384

Bytes are difficult to work with, so we'll convert them to kilobytes; 16384 divided by 1024 is 16, so
each buffer is 16KB on this system. (The default buffer size changed between FreeBSD 4.4 and
4.5, so you will want to check this on your system!) Since each network connection needs an
incoming and an outgoing buffer, each TCP requires 32KB.

Similarly, each incoming UDP connection requires a buffer. You can't do much tuning with UDP, but
assuming each UDP connection requires as much space as a TCP connection is reasonable for
what we're doing here.

So, we know that each connection requires 32KB, and we know that our "average peak" usage is
800 connections. 800 x 32KB = 25600KB, or about 25MB. (1MB is actually 1024KB, but this is close
enough for our purposes.) Then, to handle peaks and surges, double this to 50MB.

One mbuf cluster is 2KB, or 1024 mbuf clusters are 2MB, and we want 50MB of mbufs, so we

multiply 50MB by 1024 and divide by 2 to get a total of 25600 mbuf clusters. So set the
NMBCLUSTERS option to 25600 like so:

95

Note If you're running a network server, it's a good idea to set NMBCLUSTERS to roughly a
quarter of your physical RAM. 32MB of RAM set aside for mbufs, with 16KB send and receive
buffers, gives you NMBCLUSTERS = 16384. This might not be adequate, or it might be too
much, but it's a good place to start.

[IFor those of you who are newer UNIX administrators: Remember in the Introduction where we
talked about UNIX commands being a language? Here's a good example. We have combined small
commands to get a final answer without any tedious counting or searching through output
ourselves. You might think that UNIX admins are extremely intelligent. Many of us are just creatively
lazy.

Sharing Kernels

If you have several identical servers, you don't need to manually build a kernel on each; you can
share your custom-built kernel across them. (The kernel file is just a binary, after all.)

To share a kernel, build and install one kernel and test it in every way you can think of. Then tar up
/kernel and /modules and copy the tarball to each of the other servers. Back up the current kernel
on each of the other servers, and decompress your tarball to install the new /kernel and /modules.
Just reboot, and you're set.

96

Chapter 5: Networking

Overview

BSD is famous for its network performance. In fact, the TCP/IP network protocol itself was first
developed on BSD. Many other operating systems have chosen to use the BSD network stack
because of its high performance and liberal licensing.

If you're a system administrator, you must understand how networking works. If you're like most
sysadmins, you're probably familiar with some of the basics, but not many people understand how
all of that networking stuff hangs together. Knowings what an IP address really is, understanding
how a netmask works, and comprehending the symbiotic relationship between IP and TCP is what
separates a novice from a professional. We'll cover some of these issues here.

If you know what makes a /31 network mostly useless, you can skip this chapter. Otherwise, read
on. There will be a test later—not in this book, but in the real world.

Network Layers

Network layers simplify the networking process. Each layer handles a specific part of the networking
process, and information is said to travel down and up through these layers. New users often have
trouble understanding this, but we'll go over it in detail. The important thing to remember is that each
layer only communicates with the layer directly above it and the layer directly beneath it.

The classic ISO network protocol diagram has seven layers, is exhaustively complete, and covers
any situation. The Internet isn't "every situation,"; however, and this isn't a book about networking.
Since we'll limit our discussion to the Internet world, we can simplify this diagram somewhat and
divide the network into four layers: the application, the logical protocol, the physical protocol, and
the physical.

Note The descriptions in this chapter are necessarily generalizations, and very thick

books have been written about this topic. My favorite is Stevens' TCP/IP
lllustrated, volumes 1 through 3 (Addison-Wesley).

97

Application

Logical protocol

Physical protocol

Physical layer

Figure 5.1: 4—layer network diagram
The Physical Layer

The bottom layer is the physical one, encompassing the network card and the wire (or other
connection) running out of it. This layer also includes the switch (or network hub) and the wire
running to the router, as well as the fiber that carries your packets from your ISP to one of the
Internet switching points (network access points, or NAPs) and on to the destination. It may even
include radio waves, if you're using wireless. Without this link, you have nothing. The physical
protocol is the only thing that needs to recognize how this bottom layer works.

A piece of wire—it's really that simple. If your wire is intact and meets the specifications required by
the physical protocol, you're in business. If not, you're hosed.

Some physical protocols have been implemented over many different physical layers and Ethernet
has been transmitted over half a dozen different sorts of cable. With minor changes in the device
drivers and major changes in the network card, you can change your physical layer and not alter
any other layer.

Similarly, a single connection might travel over several different types of wire. One of the functions
of Internet routers is to convert one sort of physical layer into another.

The physical layer has no decision-making abilities and no intelligence; everything it does is
dictated by the physical protocol.

The Physical Protocol Layer

The physical protocol layer is where things get interesting. The physical protocol talks over the wire.
It encodes transmissions in the actual ones and zeroes that are sent over the physical layer in the

98

appropriate manner for that sort of media. For example, Ethernet uses Media Access Control (MAC)
addresses and the Address Resolution Protocol (ARP); dial-up uses the Point-to—Point Protocol
(PPP, usually used for home connections). The physical protocol has to understand how to speak to
these addresses, and to encode and decode messages for them.

Ethernet and PPP are the main physical protocols, though FreeBSD also supports a variety of other
physical protocols, such as Asynchronous Transfer Mode (ATM) and Integrated Services Digital
Network (ISDN), as well as combinations such as PPP over Ethernet (used by some
home-broadband vendors). Each of these protocols has special requirements, and while we'll only
discuss Ethernet in some detail, you should understand that other connection protocols exist.

The physical protocol passes information to and from the physical layer and the logical protocol
layer.

The Logical Protocol Layer

Logical protocols, such as Internet Protocol (IP) and Transmission Control Protocol (TCP) handle
things like IP addresses and port operations by exchanging information with the physical protocol
and the application. You can use multiple logical protocols simultaneously.

There are many logical protocols. (See the /etc/protocols file for a mostly complete list.) The
protocols we're most concerned with are IP and TCP (both already mentioned), Internet Control
Message Protocol (ICMP), and User Datagram Protocol (UDP).

Logical protocols can work side by side, and can even depend upon one another. When a packet is
transmitted, it includes a flag that identifies which protocol it belongs to.

Internet Protocol

The Internet Protocol (IP) is the baling wire that holds the Internet together, and every device on the
Internet is expected to speak IP. IP provides very basic, core functions, such as network addresses
and packet routing, as well as the fundamental infrastructure used by other logical protocols. You
can live without TCP and other protocols, but if you don't have IP you don't have the Net.

Note In this book, we only discuss IP version 4; IP version 6 is fairly new. While FreeBSD includes
excellent IPv6 support, it's not yet widespread enough to cover here. Hopefully, by the time a
new edition of this book comes out, IPv6 will be widespread, because it fixes many problems
found in IPv4, thus eliminating the gross hacks that have been implemented to work around
them.

IP Addresses

An IP address is a 32-bit number, generally divided into four groups of 8 bits each. Translated into
English, this means that you'll see four numbers, each from 0 to 255, separated by periods. For
example, 192.168.1.87 is a valid IP address, while 192.259.0.87 is not—one of the numbers exceeds
255. 607.322.843.999 is Right Out.

Every device on the Internet has a unique IP address, unless it's using Network Address Translation
(NAT) or some other ugly hack.

99

The Application Layer

Finally, we have the application layer—what the user deals with. The application might be a Web
browser, a word processor, or a shell client. The application only has to worry about the user
interface and the logical protocol. (You might consider the end user to be another layer, but
problems with this layer are beyond the scope of this book.!"))

[INo matter how desperate or annoyed you are, fsck—ing or BIOS—flashing the user layer is not a
good idea. You can only reconfigure this layer through a process called "education." Don't expect
too much from this.

The Network in Practice

Now that you understand something of each layer, let's look at some of them in detail. Let's
consider how these network layers work for an office desktop connected via Ethernet.

Say you type http://www.absolutebsd.com/ into your Web browser. The Web browser needs to
know how to make requests of the next layer down, so it translates the hostname into an IP address
(a series of numbers like 192.168.1.84).

Note By default, a server delivers services on network ports, or logical identifiers. We'll look more at
ports in a little bit; for now, just understand that each service a computer offers runs on a
unique port. Web servers usually run on TCP port 80. The browser sends a request for a
connection to that IP and that port to the next layer down.

The logical protocol layer then examines the request it has received from the application. Since the
application has requested a TCP/IP connection, the logical protocol allocates the appropriate
system resources for that sort of connection. The request is broken up into chunks of the correct
size to be sent over Internet Protocol, called packets.

From here on, the logical protocol doesn't care about the application's actual request; instead, it
wants to deliver these packets to the specified address. The IP layer checks its internal tables to
see how to reach the requested IP address from this computer. It then bundles up the packets, adds
on the IP layer routing information, and hands the packets to the physical protocol layer.

The physical protocol layer examines the request from the logical protocol layer (it doesn't know
anything about the Web browser; all it cares about is getting each packet to its destination). The
physical protocol layer checks the physical protocol address (the MAC address) for the packet's
destination, and adds Ethernet information to the packet. This packet—plus—physical-protocol chunk
of data is called a segment. Finally, the physical protocol hands the whole mess down to the
physical layer, which converts it to zeros and ones, and feeds it to the wire. Switches and routers
echo those zeros and ones all the way to the final destination.

Your wire can go through various physical changes as your data is transferred. For example, your
Ethernet will probably become a T1 line (your office router will handle that conversion for you).
Then, that T1 will join a piece of optical fiber that runs across the country (the phone company will
handle that transition).

When the segment reaches its destination, the computer at the other end of the transaction, it starts
a return trip back up the protocol stack.

The physical layer gives each segment to the physical protocol, which does some basic
sanity—checking on the segment to make sure that it hasn't been corrupted in transit. Once the

100

physical layer is satisfied that the segment is correct, it removes the Ethernet information to create a
packet, and hands it up to the logical protocol.

The logical protocol, in turn, performs its own sanity—checking. Remember how the logical protocol
broke up the request into packets for easy transmission? Now it assembles the packets of the
answer into a stream of information, and hands that stream off to the application. The application
then has its answer and can display the Web page.

Of course, this is all expected to happen very, very quickly.

This seems like an awful lot of work, but it's an excellent example of interface abstraction. This
means that each layer only knows what it must about the layers above and below, and makes it
possible to swap out entire layers if desired. When a new physical protocol is created, the other
layers don't have to care; the logical protocol just hands the request off to the new physical protocol
layer, and lets it deal with things internally. When you have a new type of network card, all you need
to do is write a driver for the physical protocol; the application and logical protocol layers don't care.

Mbufs

BSD optimizes networking by using mbufs. An mbuf is a discrete chunk of memory set aside for
networking that lives within the kernel. A packet starts off life as an mbuf. Rather than copying the
contents of a packet to the next layer down, each of the OS layers hand the entire mbuf down.
Copying a piece of data consumes more time and resources than handing off the data in its current
location.

What's more, mbufs are carefully designed not to require changes. When the logical protocol
creates an mbuf, it leaves space at the front and back for physical protocol headers, which further
minimizes the amount of copying. A packet becomes a segment within a single mbuf.

Those of you who are C programmers should recognize a pointer here. The pointer to the mbuf is
handed around, while the mbuf itself remains constant. The rest of us just need to have a basic idea
of what an mbuf is. You'll keep tripping across mentions of mbufs throughout any BSD network
stack, so it's important to at least have a vague awareness of what they are.

What Is a Bit?

As a network administrator, you're going to start seeing terms like 32 bit and 48 bit more and more
frequently. You should understand what these terms mean so that you can recognize an illegitimate
number.

You probably already know that a computer treats all data as zeros and ones, and that a single one
or a zero is a bit. When a protocol specifies a number of bits, it's talking about the number as seen
by the computer—this is binary math. (You were probably introduced to binary math, or base 2, back
in elementary school, and promptly forgot about it. It's time to dust that knowledge off. Binary
numbers are just a different way of describing the numbers we work with every day.)

In decimal (meaning base 10) math, the math we typically use every day, digits run from 0 to 9.
When you want to go above the highest digit you have, you add a digit on the left and set your
current digit to 0. (This is the whole "carry the 1" thing you learned many years ago, and now
probably do without conscious thought.) In binary math, digits run from 0 to 1. When you want to go
above the highest digit you have, you add a digit on the left and set your current digit to 0. It's the
same thing, just with fewer digits.

101

Here are the first few decimal numbers converted into binary as an example.

Decimal Binary

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

When you have a 32-bit number, such as an IP address, you have a string of 32 ones and zeros.
Rather than expressing that 32-bit number as a single number, however, IP addresses are broken
up into four 8-bit numbers. (We'll see why in the next section.)

Note Many calculators have binary—to—decimal conversions. If you don't have such a calculator,
the FreeBSD port math/calctool gives you one. Even the Windows calculator app does this
when you use scientific mode. Take some IP addresses, punch in each of the four numbers,
and convert them to binary to see how they look.

Ethernet

Many devices can share an Ethernet network, and the data your system receives is not necessarily
meant for your system. Systems connected with Ethernet can speak directly with each other, which
gives Ethernet one great advantage over other protocols, such as PPP. However, Ethernet has
physical distance limitations that make it practical only for offices, colocation facilities, and other
comparatively short-range networks.

Many different physical networks have been used to run Ethernet over the years. Once upon a time,
most Ethernet cables were thick chunks of coaxial cable (coax); today most are comparatively thin
Category 5 (catb) cables with eight strands of very thin wire inside them. You may also encounter
Ethernet over optical fiber or, if you're unlucky, Ethernet over "dark fiber." (Dark fiber is optical fiber
without the light. It seemed like a good idea at the time.)

For the purposes of our discussion, we'll assume that you're working with cat5 cable, which is the
most popular choice today. Either way, the theory is the same for all Ethernet physical layers.

102

Broadcasting

Ethernet is a broadcast medium,® which means it expects that each packet you send on the
network is sent to every workstation on the network. (Today this isn't necessarily true, as we'll
discuss later.) Your device driver sorts out the data intended for you from the data you don't care
about.

One side effect of Ethernet's broadcast nature is that you can "sniff" other people's connections,
capturing everything they send and receive. While this ability can be very useful in diagnosing
problems, it's also a major security issue: Capturing passwords is trivial on an old—fashioned
Ethernet.

While Ethernet started out supporting only a couple of megabits per second, it has grown beyond its
original design to handle gigabit speeds. Most people use 10/100 megabit per second (Mbps)
speeds, as gigabit Ethernet cards are still somewhat expensive. A sub-$100 gigabit Ethernet card
came out as this was written.

Address Resolution

Every Ethernet network card has a unique identifier, its MAC address, which it uses to communicate
with other hosts. A MAC address is a 48—bit number. When your system wants to transmit data to
another host on the Ethernet, it sends out an Ethernet request that basically says, "Which MAC
address is responsible for this IP address?" If a host responds, further data is marked for that MAC
address. This process is known as the Address Resolution Protocol, or ARP.

You can view the current MAC and ARP situation with the arp command. The most common form is
the arp —-a command, which shows the MAC addresses and hostnames of all hosts on your
network:

arp -a
? (192.168.1.1) at 0:a0:cc:35:5b:7 [ethernet]
magpire.blackhelicopters.org (192.168.1.222) at 0:4:5a:41:a4:44 [ethernet]

Here we see that the host magpire.blackhelicopters.org has an IP address of 192.168.1.222, and a
MAC address of 0:4:5a:41:a4:44. The MAC address is the Ethernet address. If a MAC address is
"incomplete," the host cannot be contacted. In such a case, check your physical layer (the wire) and
your system configuration.

Hubs and Switches

An Ethernet hub is a central piece of hardware with physical connections to many other Ethernet
devices that simply forward Ethernet-layer information to every device hooked to them. Hubs
broadcast all Ethernet traffic that they receive to every attached host.

A switch is a more modern way of connecting Ethernets. A switch improves the speed of Ethernet
by tracking the MAC addresses of each attached device and, for the most part, only forwarding
packets to the device they are meant for. Since each Ethernet host has a finite amount of bandwidth
(for example, a 100 Mbps card can handle 100 megabits per second), switching reduces the load

103

on individual systems by limiting the amount of data transferred to each device. However, switches
do cost more than hubs.

Netmasks

If your company is hooking up to the Internet, your ISP will issue you a block of IP addresses. You
use these addresses for your local Ethernet. Frequently, this is a small block, say, 16 or 32 IP
addresses. If your system is colocated on a server farm, you might only get a few IP addresses. It
all depends on your needs. The size of your IP block determines your netmask.

If you've done networking for any length of time, you've probably seen the netmask 255.255.255.0.
You might even know that the wrong netmask will keep your system from working. In today's world,
that simple netmask is becoming less and less common. To understand why, we need to look at
what a netmask really is and how blocks of IP addresses are issued.

Many years ago, |IP addresses were issued in blocks of three sizes: class A, class B, and class C.
This terminology has been obsolete for quite some time, but we'll use it as a starting point.

Class A was very simple: The first of the four numbers in your IP address was fixed. The InterNIC
might issue you a class A like 10.0.0.0. You could assign any of the last three numbers in any
manner you liked. For example, you could assign 10.1.0.0 through 10.1.1.255 to your datacenter,
10.1.2.0 through 10.1.7.255 to your Boston office, and so on. Only very large companies, such as
Ford and Xerox, received class A blocks, as well as influential academic computing institutions.

In a class B block, the first two of the four numbers in the IP address were fixed. Your class B block
would look something like 64.29.0.0. Every IP address you used internally began with 64.29, but
you could assign the last two numbers as you wanted. Many mid-sized companies got class B
blocks.

Similarly, a class C block had the first three numbers fixed. This was the standard for small
companies. The ISP would issue a number like 209.69.9, and let you assign the last number as
needed.

This scheme wasted a lot of IP numbers. Many small companies don't need 256 |IP addresses.
Many medium-sized companies need more than 256, but fewer than the 65,000 in a class B block.
And almost nobody needs the full 16 million addresses in a class A block. Still, those were the
choices. Before the Internet boom, they were good enough.

Today, IP addresses are issued by prefix length, commonly called a slash. You will see IP blocks
such as 192.168.1.128/25. While this looks confusing, it's merely a way of using classes with much
greater granularity. You know that each number in an IP address is 8 bits long. By using a class,
what you're saying is that a certain number of bits are "fixed"-you can't change them on your
network. A class A address has 8 fixed bits, a class B has 16, and a class C has 24.

This isn't a class in binary math, so | won't make you draw it out and do the conversion. But think
about an IP address as a string of binary numbers. On your network you can change the bits on the
far right, but not the ones on the far left.

There's no reason that the boundary between the two must be on one of those convenient 8-bit
lines. A prefix length is simply the number of fixed bits you are stuck with. A /25 means that you
have 25 fixed bits, or one more fixed bit than a class C. You can play with 7 bits. In the following
sample, your fixed bits are all ones, and the ones you can change are zeros:

104

It's childishly simple. If you think in binary, that is. You won't have to work with this every day, but if
you don't understand the underlying binary concepts, the decimal conversion looks like absolute
gibberish. With practice, you'll learn to recognize some bits of decimal gibberish as legitimate binary
conversions.

What does this mean in practice?

First of all, blocks of IP addresses are issued in multiples of 2. If you have 4 bits to play with, you
have 16 IP addresses (2*2*2*2=16). If you have 8 bits to play with, you have (2"8) 256 IP numbers.
If someone says you have 13 IP addresses, you're either on a shared Ethernet or she's wrong.

A netmask is simply another way of specifying how many fixed bits are set. In the computing world,
an 8-bit number runs from 0 to 255. If you have a /24, your netmask is 255.255.255.0. If you have a
/25, you have all 8 bits set in the first three numbers and 1 bit set in the last number. In the previous
example, the last number is 10000000 in binary. A bit of work with a binary—converting calculator®®
gives you 255.255.255.128.

It's not uncommon to see a host IP with its attached netmask, i.e.,192.168.3.4/26. When you see a
/32, it does not represent a network, but a single host. You'll see /32 used when someone wants to
make it absolutely clear that he's talking about a single host and not a network.

Netmask Tricks

You probably don't want to have to keep converting from decimal to binary and back. Here's a trick
to calculate your netmask.

Learn how many actual IP addresses you have to play with. This will be a multiple of 2. You'll almost
certainly be issued an amount smaller than a /24 (the traditional class C). Subtract the number of IP
addresses you have from 256. This is the last number of your netmask.

For example, if you have 64 IP addresses, the last part of your netmask is (256 — 64 =) 192. Your
netmask would be 255.255.255.192.

You still need to use a bit of logic to avoid binary conversions. Figuring out legitimate addresses on
your network is a bit of a pain. If your IP address is 192.168.54.187/25, you'll need to know that a
/25 is 25 fixed bits, so you're using a block of 128 IP addresses. Look at the last number of your IP,
187. It certainly isn't between 0 and 127, but it is in the range of 128 to 255. The other hosts on your
IP block have IP addresses ranging from 192.168.54.128 to 192.168.54.255.

Hexadecimal Netmasks

Got all that? Good. Unfortunately, UNIX's standard method of showing netmasks is in hexadecimal
(base 16), not decimal or binary. Some day soon you'll see a netmask of 0xffffff00.

A hexadecimal number is 4 bits long, so each 8-bit portion of a netmask can be expressed as two
hexadecimal numbers. (IP addresses could also be expressed this way, but they're not.)

105

Hexadecimal numbers are always preceded with "0x", so they're easily recognizable.

At this point, the simplest thing to do is use either a calculator or a conversion table. Presented for
your convenience is Table 5.1, a slash-to—hex-to-binary—to—decimal conversion for netmasks /24
and longer.

Table 5.1: Netmask conversions

Prefix Binary mask Decimal mask Hex mask Available IPs

/24 00000000 0 0x00 256
/25 10000000 128 0x80 128
/26 11000000 192 0xcO 64
/27 11100000 224 0xe0 32
/28 11110000 240 0x£0 16
/29 11111000 248 Ox£f8 8
/30 11111100 252 Oxfc 4
/31 11111110 254 Oxfe 2
/32 11111111 255 Oxff 1

Unusable IP Addresses

You now understand that a /26 has 64 IP addresses. Unfortunately, you can't use them all. The first
IP address is the network number. It's used for internal bookkeeping. And the last number in any
group of IP addresses is the broadcast address. According to the IP specifications, every machine
on a network is supposed to respond to a request to this address. This allows you to ping the
broadcast address and quickly determine which IP addresses are in use. For example, on a typical
/24 network, the broadcast address is x.y.z.255. In the late '90s, this feature was turned into an
attack technique. It's now disabled by default on most operating systems. If you need it to work on
your BSD systems, set the sysctl net.inet.icmp.bmcastecho to 1.

In any case, the point is that you cannot assign either the first or last IP address in a network to an
interface. Go ahead, try it.

If you remember, in the first part of this chapter | mentioned that a /31 is mostly useless. A /31 has
two IP addresses. You cannot use the top or the bottom addresses. This doesn't leave much room
for servers, or even clients.

Routing

So, now you have the IP addresses for your Ethernet, and every host on the local network can find
every other host. You still have to tell those systems how to reach other networks. Generally, every
network has a router or other exterior gateway, and this device is called the default router. A
network should have one and only one default router. Every system on the network needs to know
the IP address of this device.

106

Once you have the default router set, you should be able to ping anything on the Internet by IP
address—and by hostname, if your resolver is configured correctly (see the discussion of
/etc/resolv.conf in Chapter 11).

UDP and TCP

Now that you have IP running, you probably want to transmit some data over it. The User Datagram
Protocol (UDP) is one way programs can do this. UDP is arguably the most bare—bones protocol
possible in IP. It has no error handling, no content verification, no defense whatsoever against data
loss. Despite this, it can be a good protocol choice, and many vital Internet services use it. An
application using UDP most often has its own error—correction requirements that don't jibe with
those provided by other protocols.

When a host transmits data via UDP, it doesn't know if the data reached its destination or not. And
when a host receives data via UDP, it has no way to verify where that data came from. While UDP
packets include a source address, this is easily faked. UDP is called connectionless for this reason.

Another common IP data transport is Transmission Control Protocol (TCP). TCP includes error
correction and packet recovery. Every packet sent must be acknowledged by the receiver, or it will
be retransmitted. Applications that use TCP can expect reliable data transmission unless one of the
lower layers fails.

Unlike UDP, TCP is a connected protocol. For data to be transmitted, the two hosts must set up a
channel for data to flow over. This is known as the three—way handshake. The exact specifics aren't
important right now, but you should know that there is a certain amount of work that must be done
to establish a TCP connection. When the connection is finished, there's some work to be done to
tear it down.

You can compare IP, TCP, and UDP to a family sitting at a table passing dishes back and forth. IP
is like knowing where everybody's sitting and understanding that to hand the peas to Uncle Jim you
pass it by Cousin Colleen. TCP is where one person hands another a dish, and the other must say
"Thank you" before the first person will let go. UDP is like tossing a muffin at Aunt Jane—she might
catch it, or it might get snatched in midair by the dog.

Network Ports

Have you ever noticed that computers have too many ports? Well, we're going to add TCP and UDP
ports to the list. Network ports permit one server to provide many different network services—they
are ways to multiplex connections between machines.

When a packet (either TCP or UDP) arrives at a system, it requests to be delivered to a certain port.
Different ports provide different services. For example, the Internet mail service is called SMTP.
According to /etc/services, SMTP runs on port 25. If a TCP connection request asks for port 25, we
can guess that it's for the mail server. Ports allow multiple connections between multiple machines.

The /etc/services file contains a list of those port numbers and the services that they're generally
associated with. It's possible to run almost any service on an arbitrary port, but by doing so you'll
confuse other Internet hosts that try to connect to your system. The format of the file is very simple:
the official service name, the port number, the protocol, any aliases for that service, and finally
comments, all separated by tabs. For example, one old service that could befound on UNIX hosts
was Quote of the Day, or qotd. If we look in /etc/services, we'll find an entry for it:

107

gotd 17/tcp quote #Quote of the Day
gotd 17/udp quote #Quote of the Day

Many services have both the TCP and UDP ports of a certain number assigned to them, while
others only have one of the protocols.

Many programs read /etc/services to learn what port to use (or bind to). Depending on the program,
you may have to edit the services file to assign that protocol to that port. In that case, be sure to
check out revision control (see Chapter 3) before starting. Like all standards, the lists in
/etc/services can be violated. I've run sshd, which normally occupies port 22, on port 80 to bypass
some firewall restrictions in very unusual circumstances. This all depends on the program you're
using to provide a service.

The ports 1024 and below are called low—-numbered ports. These are the ports reserved for core
Internet infrastructure protocols, such as DNS, telnet, and HTTP. Their standard usage is basically
carved in stone. The ports above 1024 are less standardized, and you'll occasionally see conflicts
where multiple protocols want to use the same port. Generally, a client initiates a connection from a
port above 1024 and requests a connection to a low—numbered port.

Occasionally, protocols that run over something besides TCP and UDP use /etc/services. A few
protocols in the file use DDP (Datagram Delivery Protocol). Don't worry when you stumble across
these; they really aren't anything to worry about. Pretty much any program expects the admin to be
able to make arbitrary entries in /etc/services.

)it does not go through the ether, however, or travel like radio. The physical wire is very much a
requirement.

BlYou can also do this on paper, a few times at least. You'll learn a lot more that way. Come on, try
it, be brave.

Connecting to an Ethernet Network

Now that you understand how IP addresses work, properly connecting to your network is much
simpler. You probably set up your network connection during the initial install, but if you changed
something or switched networks, you need to understand how to do this manually. To configure a
network interface, you need the following information:

* The network interface name
e An IP address for your server
e The netmask

e The default route

You use two separate commands to configure your network card: ifconfig(8) and route(8). Ifconfig
manipulates the interface configuration—if you run it without arguments, it will display all the
interfaces on the system.

ifconfig

dc0: flags=8843<UP,BROADCAST, RUNNING, SIMPLEX, MULTICAST> mtu 1500
ether 00:04:5a:41:a4:44
media: Ethernet autoselect (100baseTX <full-duplex>)
status: active

1p0: £lags=8810<POINTOPOINT, SIMPLEX,MULTICAST> mtu 1500

1o0: flags=8049<UP, LOOPBACK, RUNNING, MULTICAST> mtu 16384
inet 127.0.0.1 netmask 0xff000000

ppp0: flags=8010<POINTOPOINT,MULTICAST> mtu 1500

The interfaces are listed along the far left of the output. The system here has five interfaces: dc0
(Ethernet), Ip0 (printer), 100 (loopback), and ppp0 (point-to—point). Each interface has a device
name and a number.

To learn about an interface, check section 4 of the system manual pages:

We want to configure the Ethernet interface. Use ifconfig to give the interface an IP address and
netmask, like this:

ifconfig dcO
dc0: flags=8843<UP, BROADCAST, RUNNING, SIMPLEX, MULTICAST> mtu 1500
inet 192.168.1.223 netmask Oxffffff00 broadcast 192.168.1.255
ether 00:04:5a:41:a4:44
media: Ethernet autoselect (100baseTX <full-duplex>)
status: active

Note that the netmask has been converted to the hexadecimal equivalent.

You can configure your Ethernet card automatically at boot with an /etc/rc.conf option (see Chapter
8). The entry has the form ifconfig_interfacename="ifconfig statement". For example,
the configuration shown two paragraphs earlier appears in /etc/rc.conf like this:

Now that the interface is configured, try to ping the default gateway IP address. You can interrupt
the ping with CONTROL-C. If you get a response back, as shown in the following listing, you are
actually on the network. If you cannot ping the network, you either have a bad connection or your
card is misconfigured.

ping 192.168.1.1

PING 192.168.1.1 (192.168.1.1): 56 data bytes

64 bytes from 192.168.1.1: icmp_seqg=0 ttl=64 time=0.631 ms
64 bytes from 192.168.1.1: icmp_seg=1 ttl=64 time=0.323 ms
~C

-——192.168.1.1 ping statistics ——-

2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.323/0.477/0.631/0.154 ms

The default route has a very simple purpose—this is the address where the system sends any traffic
it can't reach itself. You set this with the route command.

That's it! You should now be able to ping any IP address on the Internet. You can set the boottime
default router in /etc/rc.conf with the defaultrouter statement (see Chapter 8). Here's a good
example of a defaultrouter statement:

You probably want to be able to use hostnames to ping, however. If you cannot ping by name, you
need to set up your resolver. See the section on /etc/resolv.conf in Chapter 11 to do so. This was
probably set during the install process, however.

Multiple IP Addresses on One Interface

One FreeBSD system can respond to multiple IP addresses on one interface. This is a popular
configuration for Internet servers, especially secure Web sites. One server might have to support
hundreds or thousands of domains and need an IP address for each. You can add extra IP
addresses with the ifconfig command:

Once you run the preceding command, your interface will look like this (the primary IP address
always appears first; aliases follow):

ifconfig dcO

dc0: flags=8843<UP, BROADCAST, RUNNING, SIMPLEX, MULTICAST> mtu 1500
inet 192.168.1.223 netmask Oxffffff00 broadcast 192.168.1.255
inet 192.168.1.225 netmask Oxffffff00 broadcast 192.168.1.255
ether 00:04:5a:41:a4:44
media: Ethernet autoselect (100baseTX <full-duplex>)
status: active

110

You can configure the additional IP addresses automatically at boot with another ifconfig statement
in /etc/rc.conf:

The only real difference between this entry and the standard rc.conf ifconfig entry is the "alias0"
chunk. Each alias set in /etc/rc.conf must have a unique number, and the numbers must be
sequential. If you skip a number, aliases after the gap will not be installed at boot. This is the most
common cause of misconfigured interfaces; FreeBSD needs to be rebooted so rarely that errors in
/etc/rc.conf can go unnoticed for months!

All outgoing connections use the system's real IP address. You might have 2,000 IP addresses
bound to one network card, but when you ssh outwards, the connection comes from the primary IP
address. Keep this in mind when writing firewall rules and other access—control filters.

Using Netstat

Netstat(1) is your window into current network conditions. You can view the state of connections,
the number of network buffers your kernel is sucking up, and just about anything else you might be
interested in.

One of the most important netstat flags is —n. By default, netstat shows host-names for each
connection, but hostname lookups take a lot of time. The -n option turns off IP
address—to—hostname lookups. If you see an interesting connection, you can easily look up the
hostname yourself.

Another vital flag is —I, which allows you to specify an interface. Some netstat flags allow or require
choosing a particular interface. Remember, you have a variety of interfaces on your machine:
loopback, printer, Ethernet, and so on.

The -£ flag allows you to choose a protocol family. If you're only interested in IPv4 connections, use
—£ inet. Other valid values for —£ include inet6 (IPv6), ipx (Novell IPX), atalk (AppleTalk), ng
(Netgraph), and unix (UNIX sockets). For our examples, you can use -£ inet unless specified
otherwise.

First off, let's look at the existing connections:

netstat -na
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcpé 0 0 192.168.1.222.22 192.168.1.200.1067 ESTABLISHED
tcp4 0 0 *.5999 X LISTEN
tcp4 0 0 *.80 *Lox LISTEN
tcp4 0 0 *.443 LK LISTEN
tcp4 0 0 192.168.1.222.25 LK LISTEN

111

tcp4 0 0 *.22 LK LISTEN
Active UNIX domain sockets

Address Type Recv-Q Send-Q Inode Conn Refs Nextref Addr
d5ba2200 stream 0 0 0 d5ba2240 0 0
d5ba2240 stream 0 0 0 d5ba2200 0 0

Every line in the netstat output indicates a network connection of some sort. You'll see quite a few
lines of UNIX domain sockets. These are sockets that run through the kernel, not through the
network. You don't need to be concerned about those right now. Next time, use the -£ inet flag to
eliminate them from the output.

The first entry on each line is the protocol. In our example, every connection is TCP, version 4
(tcp4).

The Recv-Q and Send-Q columns show how many bits are waiting to be handled on this
connection. If you see that your system has Recv—Q numbers continually, you know that it cannot
process incoming data quickly enough. Similarly, if the Send-Q keeps having entries, you know that
either the network or the other system in the connection cannot accept data as quickly as you're
sending it. Occasional queued packets are normal. You need to watch your own system to learn
what's normal and what isn't.

The Local Address is, as you might guess, the IP address on the local system. The addresses
shown all have five period-delimited numbers, though! The last number is the port number. For
example, 192.168.1.222.22 is port 22 on 192.168.1.222. If the entry is an asterisk, a period, and a
port number, that means that the system is listening on that port on all available IP addresses.
There is no connection running, but the system is ready to accept one.

The Foreign Address column shows the remote address and port number of any connection.

Finally, the "(state)" column shows the status of the TCP handshake. You don't need to know all of
the possible TCP connection states right now; just become familiar with what's normal.
ESTABLISHED means that a connection is complete, and data is quite probably flowing.
LAST_ACK, FIN_WAIT_1, and FIN_WAIT_2 mean that the connection is being closed.
SYN_RCVD, ACK and SYN+ACK are all parts of normal connection creation. In the preceding
example, one TCP connection is currently running. Five TCP ports are waiting for incoming
connections.

If you want to see the number of packets passed, the number dropped, and the number of errors
you have, you can use netstat's —=b option. The output from this command is quite wide; if you're
running in X, you'll want to stretch your display as broad as your screen permits. Some of the more
interesting columns are lerrs (input errors), Oerrs (output errors), and coll (collision). These should
all be zero, or close to it. If they aren't, something isn't right and you need to investigate. Anything
can generate these errors: bad cables, bad switches, bad network cards, software problems,
firmware errors, whatever.

You can see how many connections the system has recognized with the -L flag, which displays the
listen queues:

netstat -Ln

Current listen queue sizes (glen/incglen/maxglen)

Listen Local Address
0/0/10 127.0.0.1.1556
0/0/10 127.0.0.1.8080
0/0/10 127.0.0.1.554
0/0/10 127.0.0.1.7070
0/0/10 192.168.10.6.1556
0/0/10 192.168.10.6.8080
0/0/10 192.168.10.6.554
0/0/10 192.168.10.6.7070
#

Each line in this output indicates a unique IP address/port pair. The first number in the Listen
column is the number of unaccepted connections that the system has received. The second is the
number of unaccepted, incomplete connections. The third is the maximum number of connections
that address can have in the queue. Once a connection is complete, it moves off the queue.

netstat -mis a different sort of beast. It displays the kernel mbuf statistics. When you run out of
mbufs, you cannot handle any more network data. They're freed as data is processed.

netstat -m
211/3216/10240 mbufs in use (current/peak/max) :

44 mbufs allocated to data

167 mbufs allocated to packet headers
41/1114/2560 mbuf clusters in use (current/peak/max)
3032 Kbytes allocated to network (39% of mb_map in use)
0 requests for memory denied
0 requests for memory delayed
0 calls to protocol drain routines

This output shows that on this system, we're using 39 percent of our available mbufs. There's plenty
left to deal with any spikes. We haven't ever been denied memory, either. If you start to run out of
mbufs, increase NMBCLUSTERS in your kernel (see Chapter 4).

The -p flag allows you to check protocol-by—protocol statistics. The protocols you're probably most
interested in are IP, TCP, and UDP. This output is fairly long, and unique to each system, but it is
worth looking at simply to get an idea of what's normal on your system. If something starts
misbehaving, it should leave a fingerprint there.

If you want to see the system's routing table, netstat -r is your friend:

netstat -r
Routing tables

Internet:

Destination Gateway Flags Refs Use Netif Expire
default 192.168.1.1 UGSc 10 1 wi0

localhost localhost UH 0 2 100

113

192.168.1 link#5 uc 2 0 wiO 794

192.168.1.1 0:a0:cc:35:5b:7 UHLW 12 0 wi0 485
magpire 0:4:5a:41:a4:44 UHLW 1 453 wiQ =>
192.168.87 link#1 uc 0 0 fxp0 =>

Each line in this table is a separate route. When FreeBSD wants to send a packet to a host, it
checks the routing table. Note that this took quite a while to run—netstat tried to find a hostname for
every IP address. The hosts shown by an IP address had to time out. If you want quick—and—dirty
routing information, be sure to use the -n flag!

The first column in the preceding output is the Destination. This is either a host, a network, or the
default route.

The Gateway is where you want to send a packet bound for this host or network.

The Flags column indicates how the routes were generated or used. You can find a full listing of all
route flags in netstat(1), but some of the common ones are listed in Table 5.2. You don't need to
understand what each of these flags mean at this point. Just be familiar with the flags for each route
that normally appears on your system. If something looks different, start digging for more
information.

Table 5.2: Common netstat route flags

Flag Description

U The route is usable
This is a gateway

S This route is static (i.e., not added dynamically by a
routing protocol)

L This route is a protocol-to-link-address translation
(i.e., the MAC address used to reach an IP address)

H This route is for a particular host

C This route is used when you dynamically create new routes
(i.e., a gateway)

c This route is used for protocol-specific new routes
(i.e., how to reach the gateway)

W This route was cloned from another route

The Refs column shows how many connections are using a particular route entry in netstat -nr
output. The system in our example has two routes in use.

The Use field shows how many packets are being sent via this route.

114

The Netif column shows the system interface the route is reachable through.

The Expire column shows the number of seconds until the route goes away. At that time, the
system will check for a new route. In our example, both routes with Expire values are on the local
Ethernet. The system will use the standard arp process to update the route.

Finally, netstat -w shows you the current system statistics. It keeps updating the display until
you press CONTROL-C. netstat -w takes an additional argument, the number of seconds
between updates:

netstat -w 5

input (Total) output
packets errs bytes packets errs bytes colls
1 0 60 1 0 186 0
1 0 60 1 0 138 0
~C
#

This information can help you decide whether errors you saw elsewhere are still occurring.

115

Chapter 6: Upgrading FreeBSD

Overview

Upgrading Internet servers can be quite a pain. While you can probably deal with a bit of
unexplained behavior in your desktop computer after an upgrade, you don't want anything to go
wrong when you have a whole company or hundreds of customers depending on one system.

There have been many times when I've attempted to upgrade a Windows server from NT to 2000,
or 2000 to XP, and found that some portion of the server no longer worked as expected. Linux
upgrades can also inflict gray hair, and other UNIXes can be even worse. Quite a few experienced
UNIX system administrators habitually reinstall their operating systems rather than suffer through an
upgrade. And, though a few UNIX versions have straightforward upgrade procedures, they require
several hours to complete and a certain amount of luck. (The last time | upgraded an HP/UX
machine and the Informix database that it held, | showed up on Friday night with a sleeping bag, an
alarm clock, and a box of meal bars, and | left Monday at noon. | would run a command and set the
alarm clock for an hour or two later, when the command would be finished and | could start the next
step.)

One of FreeBSD's greatest strengths is its upgrade procedure. For example, | have a few servers
that were installed when FreeBSD 2.2.5 was the latest and greatest. They've been successively
upgraded to 2.2.8, past 3.0 to the last version 3, and are now at version 4. The only inconvenience
I've suffered was when jumping major version numbers—that is, from FreeBSD 3 to 4. | spent a
couple of hours making those jumps. Just try that with Solaris or HP/UX, or with Windows.

FreeBSD Versions

Why is upgrading FreeBSD a relatively simple matter? The key lies in FreeBSD's development
method. FreeBSD is a continually evolving operating system. If you download certain versions of
FreeBSD in the afternoon, they're a little different than the morning's version. Developers from
around the world continually add changes and improvements, which makes the traditional release
numbering used by less open software impractical. At any given moment, you can get several
different versions of FreeBSD: releases, —current, —stable, and snapshots.

Release

A FreeBSD release has a conventional version number, like you'd see on any other software: 2.2.7,
3.3, 4.4,5.0. If you buy FreeBSD in a store, it's a release.

A release is simply a copy of the state of the most stable version of FreeBSD at a particular moment
in time. Three or four times a year, the Release Engineer asks the developers to hold off on making
any major changes and resolves outstanding problems. After thorough testing, the resulting code is
given a release number, after which development returns to full speed, while the BSD department of
your release provider rushes the release to the CD factory.

Always install the release version in a production environment.

116

FreeBSD-current

FreeBSD-current is the bleeding—edge, latest version of FreeBSD and contains code that is just
making its first public appearance. FreeBSD-current is where much initial peer review takes place
and, at times, —current sees radical changes of the sort that give experienced systems
administrators headaches.

FreeBSD-current is made available to developers, testers, and interested parties, but is not
intended for general use. Support for user questions about —current is very slim because the
developers simply don't have time to help a user get a Web browser working when a thousand more
critical issues are begging for attention. Users are expected to help fix these problems, or to
patiently endure until someone else fixes them.

If you can't read C, shell, and Perl, or don't feel like debugging your OS, or don't like computer
functions failing in a seemingly random manner, or just don't like being left hanging until someone
gets around to fixing your problem, —current is not for you.

The brave are certainly welcome to try —current. So is anyone who is willing to devote a large
amount of time to learning and debugging FreeBSD, or who just needs a lesson in humility. This
isn't so much a matter of "you're not allowed to" as "you're on your own."

People running —current must read the FreeBSD—current@FreeBSD.org and cvs-all@FreeBSD.org
mailing lists. These are high-traffic lists, with as many as a couple hundred warnings, alerts, and
comments a day. Read them, especially the warnings. If someone else discovers the latest Bug of
Slow Hideous Death, you might have time to benefit from his experience.

Code Freeze

Every 12 to 18 months or so, FreeBSD-current goes through a month of "code freeze" during which
no non critical changes are allowed, and all remaining problems are fixed. At the end of the code
freeze (or shortly after), —current becomes the new .0 release of FreeBSD-stable.

For a short time during code freeze, —current is treated like an early release of FreeBSD-stable.
This focuses developers on stability and bug fixes for problems exposed by early adopters. After a
release or two, a new —current is branched off the new, mainstream —stable. For example, at this
writing 5—current is expected to become 5.0-release. The —current version will remain 5.0 until
some point after 5.1-release, to help focus developer attention on the new release. At some point
after 5.1-release, a copy of the source code will be labeled 6.0—current and another copy will be
marked 5.1-stable.

FreeBSD-stable

FreeBSD-stable is bleeding edge for the average user—it contains some of the most recent
peer-reviewed code. FreeBSD-stable is expected to be calm and reliable, requiring little user
attention. Once a piece of code is thoroughly tested in —current, it might be merged into —stable in a
process called MFC, or merge from current. The —stable version is the one that is mostly safe to
upgrade to at almost any time; you might think of it as FreeBSD-beta.

As —stable ages, the differences between —stable and —current become greater and greater, to the

point where it becomes necessary to branch a new —stable off of —current. The older —stable is
actively maintained for several months while the new —stable is beaten into shape.

117

Some users will want to upgrade to this new —stable immediately, while others are more cautious.
After a release or two of the new —stable, the older —stable is made obsolete and users are
encouraged to upgrade to the new —stable. Finally, the older —stable receives only critical bug fixes.

FreeBSD-current FreeBSD-current

I

improvements

N
>

improvements

3-stable 4-stable

Figure 6.1: FreeBSD development branches

Every so often —stable is polished and tested; developers stop MFCing features and focus on
testing. When everyone's happy with the quality, it's released and generally given a "point" after the
main branch. (For example, the fourth release of FreeBSD 4 is FreeBSD 4.4, and you'll see
references to both 4-stable and 4.4-stable—the name 4-stable includes all of the 4.x releases and
—stable branches.)

The word stable describes the code base, not the OS itself. It doesn't guarantee that the operating
system is completely stable and reliable, but that the underlying code won't suffer a radical change.
For example, many people considered FreeBSD 3.5-stable more reliable than FreeBSD 4.0-stable.

Note FreeBSD may be one of the most reliable operating systems available, but beware of any .0
release, from any company. Remember the poor folks who implemented Windows 2000 the
month it came out?

Users of FreeBSD-stable should read the FreeBSD-stable mailing list, a moderate—traffic mailing
list. Important messages from developers generally have a subject beginning with "HEADS UP".
Look for those messages, and take whatever action they recommend.

Snapshots

Every so often, the FreeBSD development team releases a snapshot of —current (available via FTP,
and through some vendors on CD-ROM). The snapshot does not receive the same attention to
quality that —release does, but is intended as a good starting point for people interested in
investigating or testing —current. Generally speaking, developers avoid adding major new features
for a week or so before the snapshot is released, but the snapshot does not undergo quality
analysis. Bugs exist, and while most are known, many aren't. New features are incomplete. You
might call it a bleeding—edge release.

Security Updates

With the advent of FreeBSD 4.3, the project began supporting security—update—only branches.
Previously, a FreeBSD user had to upgrade to the latest —stable to get the security patches, but this
caused problems, as the OS changed between releases. Why upgrade a whole server, and go
through the headaches it can cause, just to get a patch for one small security problem? (Anyone
who's worked through a Windows 2000 Service Pack upgrade can attest to the problems this sort of
upgrade can cause.) Only actual security issues and system—-damaging bugs are fixed; new
features are not brought onto these branches, nor are performance enhancements. This might be
considered a very timid —stable version.

118

The names of release security updates are the same as that of the release, with a trailing patch
number—for example, 4.3-RELEASE—p6 is the sixth patch of 4.3—-RELEASE.

Which Release Should You Use?

FreeBSD uses the same release system as it does for quality control. Though it may seem like a
complex system, it allows users to rest assured that a release is supported by the community, and
that it has been through peer review and extensive testing. That same user knows that the nifty new
features in —stable and —current are available, if she's willing to pay the price.

So which release should you use?

e Production: If you're using FreeBSD in a production setting, track the security branch of a
-release.

e Test: If you're a network administrator interested in seeing how changes in FreeBSD will
affect your environment, track —stable on a test system.

e Development: If you're an operating system developer, have too much spare time and too
little excitement, or are a blind idiot, —current is for you. When —current destroys your MP3
collection, debug the problem and submit a patch to correct it.

e Hobby: If you're a hobbyist, you can run any version! Just keep in mind the limitations of the
branch you're using. If you're just learning UNIX, —release is what you want. Once you have
your feet under you, upgrade to —stable. If you have nothing better to do, and have nothing
but utter contempt for your data, you're welcome to join the masochists over in —current.

Upgrade Methods

With all of these releases, upgrading is always an issue. There are two main ways to upgrade:
sysinstall and CVSup.

New and inexperienced users can upgrade with sysinstall, which only allows users to upgrade to a
-release. Experienced users might wish to use CVSup and make world, which allows users to
upgrade to the current, latest version of FreeBSD on any of the —stable, security update, or —current
branches, but requires more effort to set up and use.

When upgrading from one —release to another, or to a snapshot, you can use sysinstall. If you're
tracking —current, —stable, or the security update branches, you must be capable of using source
code to build your system (as described in the "Upgrading via CVSup" section of this chapter).

Note Before upgrading, be sure you have complete backups. While sysinstall upgrade errs
on the side of caution, files can still vanish if you upgrade improperly. See Chapter 3

for instructions on backups. (Of course, if you're reading this book in order, you've
already been there.)

Upgrading via Sysinstall

The easiest way to upgrade via sysinstall is to boot off the install floppy or CD—ROM for the version
of FreeBSD you are upgrading to. Then follow these steps:

119

. When you reach the graphic install menu, choose the Upgrade option.

. Sysinstall will open the upgrade notes for your version of sysinstall. (Be sure to read them
carefully, because many last—-minute problems will be documented there. Also check the
online errata, available at http://www.freebsd.org/. Follow the instructions carefully.)

3. You'll be asked if you want to proceed with the upgrade. If so, it will ask you about
distribution sets. Here, it will be handy to know what distribution sets you originally installed
on your system, because you probably want to replace all of them. At a minimum, you must
replace the bin distribution. You can be greatly confused by not upgrading everything you
originally installed; having the programs from 4.7-release but the documentation from
4 .3-release could cause you no end of head-scratching.

4. The upgrade process continues much like the initial install until you're asked for the directory
where your current /etc directory will be backed up. (Remember, /etc holds most of your
system's configuration information; keep original copies of your configuration in case
something goes wrong.) The default /usr/tmp/etc is generally fine.

5. Finally, sysinstall will ask you for your installation source. You can use FTP, a FreeBSD
CD-ROM, or any other method available.

6. After offering you one last chance to change your mind, sysinstall will overwrite all the
system binaries you chose to install. It will replace your kernel with a GENERIC kernel of the
new version, and replace many files in /etc.

7. Once the upgrade completes, go through /etc and be certain that your vital system files are
in the condition you want. While your password files, group file, and filesystem table will
remain intact, you will want to check rc.conf, inetd.conf, shells, and any other files you've
altered. (This is the most tedious part of the upgrade process.) If you have installed the
source—code collection, you can ease the process with mergemaster(8). (We will discuss
mergemaster in the "/etc and /dev Changes" section later in this chapter.)

NN —

After another reboot, your system will be safely upgraded.

Note Do not use the sysinstall included in the version of FreeBSD you are currently running! If you
are running FreeBSD 4.4-release, and want to upgrade to 4.5-release, use the sysinstall
program included in 4.5-release. The simplest way to be sure you are doing this is to boot off
the 4.5-release installation disk or CD—ROM.

Upgrading via CVSup

If you want a more flexible upgrade system, try upgrading your system from source with CVSup.
When a developer releases improvements to FreeBSD, the changes are made available on
FreeBSD servers worldwide within 66 minutes through CVS and CVSup. No non-BSD operating
system in the world makes changes available so rapidly. The FreeBSD master CVS server tracks
source code, all changes made to it, and who made those changes; developers can "check in" new
code, and users can "check out" the latest versions.

CVS (Concurrent Versions System) is a decent tool for source—code management, but an awful tool
for source—code distribution; it requires huge amounts of system resources and bandwidth, and
tends to destroy the server's hard drive.

Since all of the FreeBSD Project's resources are donated, they need to be used as efficiently as
possible. Thus, instead of using CVS, the FreeBSD Project uses CVSup to distribute the source
code—CVSup is a combination of CVS and sup, the Software Update Protocol. Compared with
CVS, the CVSup protocol is much faster, more efficient, easier on the servers, and generally nicer

120

when supporting millions of users scattered across the world. The master CVS source-code
repository is replicated to the worldwide CVSup servers, and users use CVSup to connect and
download the source code.

Because these changes are publicly maintained through this CVS/CVSup server combination, your
FreeBSD machine can connect to a CVSup server, compare its local copy of the FreeBSD source
code to the version available on the server, and copy any changes to the local hard drive. As
complex as this might sound, it's actually very simple. You can install CVSup on your local system
and use it to efficiently download updates.

Installing CVSup

Unlike most of FreeBSD, which is written in C, CVSup is written in Modula-3. Modula-3 is a very
powerful, modern programming language well suited for applications such as CVSup. To build
CVSup from pure source code, you'd need to build Modula-3 first, which takes quite a while. What's
more, you'd probably never need Modula-3 again because very few programs require it. However,
if you followed my suggestions in Chapter 1, you already have CVSup installed on your system.

If CVSup is not installed on your system, you can install it from a precompiled package (see
Chapter 10 for details) or over FTP. To install over FTP, confirm that you have a live Internet
connection and FTP connectivity to the outside world, and enter the following commands as root:

ed /usr/ports/net/cvsup
make all install clean

You will see lots of compiler messages go by, finally ending with a message confirming that CVSup
has been installed. Once you have installed CVSup, confirm that your system has the FreeBSD
source code installed—you should see something like this:

1s /usr/src

COPYRIGHT contrib release
CVs crypto sbin
Makefile etc secure
Makefile.incO games share
Makefile.incl gnu sys
Makefile.upgrade include tools
README kerberosIV usr.bin
UPDATING 1lib usr.sbin
bin libexec

#

This output is the FreeBSD source tree, which is all of the source code needed to build FreeBSD's
programs and kernel. (We'll discuss source code at some length in Chapter 10.) Go ahead and
browse through these directories if you like, to get an idea of what source code looks like.

If you find that this directory is empty, you haven't installed the source. But don't worry: You can
install the source code from the installation CD by doing the following as root:

mount /dev/acdOc /cdrom

ed /edrom/src/
./install.sh all

If you don't have an install CD, you can grab the source from a FreeBSD FTP server or, if
bandwidth isn't a concern, you can simply run CVSup without a local source tree. CVSup will
compare what you have to what you need, and will install the latest source code. (The CVSup mirror
maintainers would prefer that you install the source from CD, however; they're donating the
bandwidth and their processor time for this service, and it isn't cheap.) A full source tree uses about
300 MB of disk space.

Whatever method you use to install the source, you will initially start off with the source code for the
version of FreeBSD you installed. For example, the CD-ROMSs for FreeBSD 4.5 contain the source
code for FreeBSD 4.5. If you install the source code when you install the system, you'll be installing
the source code for version 4.5. This source code is a useful reference if you're a programmer. This
source code isn't what you want to use to perform an upgrade; if you use the source code for
FreeBSD 4.5 to rebuild and reinstall FreeBSD, you'll wind up reinstalling FreeBSD 4.5! CVSup
compares the source code you have on disk to the source code available on the Internet, and
downloads the changes between the two versions. CVSup then applies these "diffs" to the source
code you have on disk, changing it to the source code of the version you want. This is much more
efficient than re-downloading the entire 300 meg source tree! Even if you skip a release or two
between upgrades, CVSup will only have to download a meg or two of new source code to
complete the changes.

To make CVSup update your source tree, you need to tell it what to update, where to update it from,
and how to perform the updates.

Selecting Your Supfile

CVSup uses a config file, or supfile, which tells CVSup which files to update, and which version of
FreeBSD you want to wind up with. (See /usr/share/examples/cvsup/ for sample supfiles.) The
supfile you need will vary with the section of source code you want to upgrade. Once you've created
a supfile to track —stable, —current, or a security branch, you can continue to use it forever.

A recent /usr/share/examples/cvsup should contain the following supfiles:

cvs-supfile This supfile allows you to download the entire FreeBSD source repository. While most
users have no need for this, FreeBSD developers will think it's nifty. You need this only if you plan to
roll your own releases.

doc-supfile The doc-supfile allows you to retrieve all FreeBSD documentation sources, including
the latest FAQ and Handbook, in all available languages. Don't use this unless you intend to install
/usr/ports/textproc/docproj and build the documentation from source. While building the
documentation is quicker than building FreeBSD itself, building the docproj port can take quite a
while.

gnats-supfile This supfile is for people who wish to have a local copy of the FreeBSD problem
report (PR) database. Again, most users won't need this.

ports—supfile You can use this supfile to upgrade your ports tree to the latest version.

122

stable-supfile This supfile upgrades your source code to the latest —stable version.
standard-supfile This supfile upgrades your source code to the latest —current version.
www-supfile This supfile will download the latest version of the FreeBSD Web site.

The various components that can be updated with CVSup are called collections. For example, there
is the source—-code collection, the documentation collection (doc—supfile), the ports collection
(port—supfile), and so on. Many collections are also broken up into subcollections: The source tree
has subcollections for components such as userland programs, the compilers, the kernel, and so
on. Our main concern when upgrading FreeBSD is the source collection.

Modifying Your Supfile

Once you've chosen your supfile, you need to modify it to fit your circumstances. To do so, first copy
your sample supfile under /usr/src and open it in your preferred editor.

Any line beginning with a pound sign (#) is a comment, and all the sample supfiles have more
comments than actual configuration entries. Most supfiles have at least six entries, similar to these
from a recent stable—supfile:

v *default host=CHANGE_THIS.FreeBSD.org

w *default release=cvs x tag=RELENG_4

y *default base=/usr

z *default prefix=/usr

{ *default delete use-rel-suffix
*default | compress

} src-all

Your first step is to choose a CVSup server (v). (You'll find a complete list at
http://www.FreeBSD.org/handbook/mirrors—cvsup.html.) At this writing, the servers are
http://cvsup1.freebsd.org/ through http://cvsup17.freebsd.org/, but new ones are added continually,
so check the mirror list. Ping each server to determine which is closest to you—a faster response
time strongly hints that the server is closer. Name the closest in the default host space, where it
currently lists http://change_this.freebsd.org/.

The default release is a label for the version, or collection, you've chosen (w). Put the label for the
branch you want in the tag statement (x). RELENG_4 is the latest 4—stable. Here are some tags you
might wish to use:

Tag tRelease

RELENG_4 FreeBSD 4-stable
RELENG_3 FreeBSD 3-stable

FreeBSD—-current
RELENG_4_3 The security updates only for FreeBSD 4.3
RELENG_4_4 Security updates only for FreeBSD 4.4
RELENG_4_5 Security updates only for FreeBSD 4.5

123

The default base is where CVSup will keep its status files, including a list of updated files, which will
accelerate future updates (y).

The default prefix is where the collection you've chosen will go, and the default is almost certainly
correct (z). To install the source somewhere other than /usr/src, you can change this path.

Delete gives CVS permission to remove obsolete, unnecessary source files ({). The use-rel-suffix
entry allows CVSup to share a common base directory among several versions of the source,
without confusing them.

All of the example supfiles include an instruction to compress the CVSup data (|). If your connection
is a T1 or faster, compressing the data isn't that important, and you can remove this entire line,
which will reduce the CPU load while increasing the needed bandwidth. Since today's processors
are usually much cheaper than bandwidth, there are very few circumstances where not using
compression makes sense.

The src-all tag tells CVSup to update the entire source tree (}). The stable—supfile has a list of
commented-out subcollections, such as usr.bin, contrib, sys, and so on, which are all included in
src-all. To use just one part of the source tree, you could use these subcollections. For example, to
just upgrade the source code in /usr/src/usr.bin, you could specify the usr.bin subcollection. This is
a spectacularly bad idea if you want to use this source code to upgrade your system. For example,
installing the /usr/bin directory of a 4.5-release system on a 4.3-releasesystem will cause all sorts
of unpredictable problems, and is certainly not supported.

Specifying Multiple Collections

You can specify multiple collections in one supfile. For example, | need access to the source—-code
collection for the latest —stable. As a FreeBSD documentation committer, | need to have the latest
documentation collection. Plus, | want the latest ports tree so | can install the very latest software on
my system.

FreeBSD includes separate example supfiles for each of these collections. Since | want to get
everything at once (I don't want to run CVSup three times to download all of the latest changes), |
use one supfile to get the latest appropriate version of FreeBSD, the latest ports collection, and the
latest documents collection, as shown here:

*default host=cvsupl6.FreeBSD.org
*default base=/usr

*default prefix=/usr

*default delete use-rel-suffix
*default compress src—all
*default release=cvs tag=RELENG_4
src—all

v ports—all tag=.

doc-all tag=.

Everything down to the second-last line (v) is the standard stable—supfile. We can then list
whatever additional collections we want.

124

The last two entries are the interesting bit, where | added the ports-all and doc-all collections.
Non-source collections do not have releases or branches in the same way the source code does,
so if | were to ask for the RELENG_4 version of the ports tree, the server wouldn't know what the
heck | was talking about and | wouldn't get my updates. By adding the tag=. keyword to the end of
the collection name, we are telling CVSup to get the latest version of this collection.

We'll discuss the ports tree further is Chapter 10.
Blocking CVSup Updates with a Refuse File

To refuse to allow updates of certain programs, create a refuse file. For example, | keep my ports
collection up to date so | can easily grab the latest software, but the ports collection includes several
categories I'm not interested in, particularly the non-English software. Looking through the
/usr/ports directory, | see directories for Chinese, German, Japanese, Korean, Russian, and
Vietnamese software. The chances that | will need any of these packages on my server are slim to
none. To tell CVSup not to update these directories, make a file /usr/sup/refuse that looks like this:

ports/chinese
ports/german
ports/japanese
ports/korean
ports/russian
ports/vietnamese

Note The refuse file cannot contain comments!

You can create a refuse file for any section of FreeBSD, though it's best not to refuse anything
under /usr/src. If you refuse updates to a critical system program, that program will become
incompatible with your system at some point.

This system works on pattern matching, so a refuse file line like sys would block everything that

contained the string "sys", which happens to include the kernel source code available under

/usr/src/sys. Be careful with refuse files; give enough context to only block what you want!

Note If you change the prefix in the supfile to a location other than /usr, you need to move your
refuse file. (The actual location is $PREFIX/sup/refuse.) If you accept the defaults, the
examples will work just fine.

Upgrading System Source Code

Once you've created your supfile, run CVSup by becoming root and entering this command:

If you're running X, CVSup will open a GUI; otherwise, it will just start upgrading your source files.
When CVSup finishes, you should have the very latest FreeBSD source code.

125

Partial Updates

CVSup supports partial updates with the —i ‘pattern’ option. For example, cvsup my-supfile -i
src/etc will update the /usr/src/etc directory using the default settings in my—supfile. You could
also use cvsup my-supfile —-i sys to just getthe kernel code, or cvsup my-supfile -i
ftpd to grab the latest FTP daemon.

Be careful doing this, however. FreeBSD is designed to work as a unified whole, and you cannot
mix and match different versions of utilities. For example, if the latest FTP daemon expects kernel
features that were only added last month, it won't work well on an older kernel.

Note CVSup only takes care of the base FreeBSD operating system. If you have separate
programs, such as shells, Web servers, or editors, you need to upgrade them
manually. See Chapter 9 for details.

After Upgrading Source Code

Once you've finished upgrading your source code, take a look at the file /usr/src/UPDATING. This
file lists, in reverse chronological order, any warnings and notices about source—code changes. If
you need to take any special action before rebuilding your system from source code, or if any major
system functionality has changed, it will be noted here.

You might also take a moment to examine the new GENERIC or LINT kernel configuration file for
any new options or kernel system changes that you might be interested in.

Building Your New FreeBSD

Once CVSup has completed the source—code update, you can rebuild your system. Different people
do this in different ways, and you'll hear all sorts of anecdotal evidence that one method works
better, faster, and stronger than another. The method recommended by the FreeBSD Project is both
the safest and the least likely to damage your system, and also an excellent script(1) candidate
(script is explained in Chapter 3).

The only recommended way to build FreeBSD is via the following commands.

ed /usr/src
make buildworld

The make buildworld command first uses the source code to build the tools necessary to build
the system compiler, after which it builds the compiler and the associated libraries. Finally, it uses
the new tools, compiler, and libraries to build all the software included in a core FreeBSD install. (It
does not install these components, however, but puts them under /usr/obj for later use.)

Using make buildworld, FreeBSD literally rebuilds every single piece of itself, which may take
anywhere from one to several hours, depending on your hardware. You can continue working
normally as the buildworld runs; while make buildworld consumes system resources, it won't
take any of your attention. Older hardware will respond quite slowly, however.

126

You can put optimizations in /etc/make.conf (described in Chapter 9). Some parts definitely worth
considering are the CPUTYPE entry and the various NO_ flags. This can create a more efficient
operating system and a faster, smoother upgrade.

Note Be certain that the buildworld completes without errors! If it ends with a bunch of errorcode
messages like those you see during a failed kernel compile, stop immediately. Go to Chapter
2 and see how to get help. Do not attempt, under any circumstances, to install a damaged or
incomplete upgrade.

Updating Your Kernel

When make buildworld finishes successfully, it's time to update your kernel. The catch is, the
latest binaries for the tools to build your kernel are not actually installed; they're sitting off in another
directory tree! The standard kernel-building config, make depend, make install routine
discussed in Chapter 4 won't work well.

If you have a custom kernel configuration, set the variable KERNCONF in /etc/make.conf (this is
explained in Chapter 8). Otherwise, the build process will rebuild the GENERIC kernel.

To build the kernel, stay in /usr/src and run this command:

Note For maximum safety, run make buildkernel KERNCONF=GENERIC so that you will have
an updated GENERIC kernel available.

Installing Your System

Once you've completed the make buildkernel, you're ready to install your newly built system.
The first step is to install your new kernel and kernel modules.

The new kernel and associated modules are the easiest parts of an upgrade to test; if it's bad, you
can easily fall back to your old kernel. Install the new kernel and modules by entering this
command:

To test the new kernel, reboot and check out your system. Do your programs still run? Is your
system still receiving mail and serving up Web pages? If so, your kernel is probably all right. As you
check out the system, various programs that require access to kernel structures (such as top(1))
won't work, but you can test everything else.

Once you're satisfied that your kernel works, and that everything is behaving as you expect, you can
install the rest of the system. Userland installs must be performed in single-user mode. If your
system is running at securelevel 1 or higher, you'll need to shut down and boot into single-user

127

mode. Otherwise, you can just drop the running system down to single—user mode with this
command:

Once the system is shut down to single-user mode, you can install the userland programs by
entering the following:

ed /usr/src
make installworld

This will install the various programs included in the FreeBSD core system. You will see numerous
messages scroll up the screen, mostly including the word install. When the process finishes, you will
have completed your upgrade installation, but you still have a couple more steps to complete before
your FreeBSD system is truly upgraded.

/etc and /dev Changes

As you'll recall, your system's personalized configuration lives under /etc. Because no automated
process can know how your machine is supposed to run, you'll have to handle any changes to these
files yourself. The make buildworld through make installworld process won't perform them for
you.

The latest versions of all files and directories under /etc live under /usr/src/etc. You'll need to
compare these files (particularly the "rc" files) to those in your /etc directory to see which changes
you need to add. This is a tedious process that is very difficult to do by hand, so we'll use the
FreeBSD utility mergemaster(8) to cut the merge time considerably.

To use mergemaster, become root and type the following command:

Mergemaster will copy various configuration files from your source tree, build a temporary /etc and
/dev under /var/tmp, and then compare these configuration files to those in the existing /etc. If the
new file version differs from the file in /etc, mergemaster displays the differences, at which point you
can decide whether to keep the old file, use the new file, or merge the two.

For example, here's the beginning of a typical mergemaster session.

*** Beginning comparison
v *** Temp ./dev/MAKEDEV.local and installed have the same $FreeBSD, deleting

w *** Temp ./dev/MAKEDEV and installed have the same $FreeBSD, deleting
*** Displaying differences between ./etc/defaults/rc.conf and installed version

128

x ——— /etc/defaults/rc.conf Fri Jan 14 08:54:11 2000
+++ ./etc/defaults/rc.conf Sun Feb 27 18:21:29 2000
@@ -9,7 49,7 @@
All arguments must be in double or single quotes.
#
-# SFreeBSD: src/etc/defaults/rc.conf,v 1.1.2.18 1999/11/28 16:02:30 brian Exp $

+# SFreeBSD: src/etc/defaults/rc.conf,v 1.1.2.19 2000/02/19 13:11:28 jkh Exp $
FHEHFE AR AR R AR R AR R R AR R A R R R A

Important initial Boot-time options ######F#HFHFFHFRFHFFES

@@ -193,7 +193,7 @@

saver="NO" # screen saver: Uses /modules/S${saver}_saver.ko
moused_enable="NO" # Run the mouse daemon.
moused_type="auto" # See man page for rc.conf (5) for available
settings.
-moused_port="/dev/cuaal" # Set to your mouse port.
+moused_port="/dev/psm0" # Set to your mouse port.
moused_flags="" # Any additional flags to moused.
allscreens_flags="" # Set this vidcontrol mode for all virtual screens

Use 'd' to delete the temporary ./etc/defaults/rc.conf

Use 'i' to install the temporary ./etc/defaults/rc.conf

Use 'm' to merge the old and new versions

Default is to leave the temporary file to deal with by hand

How should I deal with this? [Leave it for later]

Let's look at what's happening here. The first couple of lines (v and w) indicate that the version of
/dev/MAKEDEYV in /dev is the same as the one in the latest source code. Mergemaster doesn't
bother suggesting any changes, and instead just deleted the temporary copies it made for
comparison purposes.

Then mergemaster comes to a file with some changes, /etc/defaults/rc.conf (x). Mergemaster spits
out a few lines of the file; additions are marked with leading plus signs (+) and deletions are marked
with leading hyphens (-). (A few surrounding lines are provided for context.)!"

For example, consider these lines:

-moused_port="/dev/cuaal" # Set to your mouse port.
+moused_port="/dev/psm0" # Set to your mouse port.

These lines tell us that the default mouse port changed between this upgrade and the previous
upgrade or installation. Lines marked with a minus sign appear in the older version of the file. Lines
marked with a plus sign are in the new version. The port was /dev/cuaa0 (a serial port), but it is now
/dev/psm0 (a PS/2 port).

Mergemaster offers you three options: delete, install, and merge. The thing to do here is to install
the new /etc/defaults/rc.conf file, and make any changes needed in /etc/rc.conf. Press i to install the
file.

Some files should never be replaced via mergemaster, such as files that include system-specific

129

configuration information, like /etc/passwd or /etc/group. Leave such files unchanged by pressing d.

Pressing m will take you through a file and let you merge the changes. This is a powerful option,
and useful once you're comfortable with mergemaster, diff, and the contents of /etc, but beginners
are almost certainly better off simply totally replacing or rejecting files.

You can learn all about /etc in Chapter 9.
Device Entries

In Chapter 3 we briefly discussed device nodes, files in the /dev directory that programs can use to
send data to and from devices. Then, in Chapter 4 | defined a kernel as the interface between the
hardware and the software. When you run an upgrade, these two concepts intersect: The kernel
might very well rearrange how it talks to devices, and the interface for how those devices are
handled might change. So far in this upgrade process, we haven't changed those special files in
/dev, but if you have old device nodes talking to a new kernel, you can get unpredictable behavior.
These changes might not happen with every upgrade, but you have to be aware that they're
possible.

FreeBSD includes a script that creates correct device nodes, /dev/MAKEDEV. The version of
/dev/IMAKEDEYV distributed with a given kernel is expected to create the correct device nodes for
that kernel. Mergemaster compares the /dev/MAKEDEYV script from the updated source code with
the old script still installed in /dev/MAKEDEYV, and it offers to install the new one. Do it.”! Correct
device nodes are not optional. If the /dev/MAKEDEYV script has changed, mergemaster will offer to
run /dev/MAKEDEYV for you. Do that too. Again, correct device nodes are vital.

Last Steps

Once you have completed mergemaster, your system has every piece of the upgrade in place. Just
reboot, and you will have completed a FreeBSD upgrade!

Any number of things can go wrong with a system upgrade. The make buildworld command
might not finish, or the system might behave oddly afterwards. If something goes wrong, follow a
similar process to what you do during a kernel-build failure. Search for the error in the FreeBSD
mailing list archives. If the problem isn't discussed there, send the last five or six lines of your build
output to FreeBSD-questions@FreeBSD.org, and include the following information:

¢ The end of the output of the failed compile
e Your FreeBSD version number

e The contents of /var/run/dmesg/boot

e The output of uname -a

Simplifying the CVSup Upgrade Process

Now that you understand how the upgrade process works, you can simplify it somewhat by making
some changes in /etc/make.conf to reduce the CVSup portion of the upgrade process to a
two—-word command. While | don't prefer to go this route myself, many people do, so here's what
you do.

130

First, you'll need to set several variables in /etc/make.conf.

The SUP setting is the default location for CVSup on your system. If you have a custom CVSup
replacement, or if you need to specify the full path to the cvsup binary, set it here.

This SUPFLAGS setting gives standard flags for your CVSup command. To run CVSup silently,
change thisto -g -1 0.

PORTSSUPFILE specifies which supfile should be used to upgrade ports. Don't define this if you
don't want to upgrade your ports collection.

Finally, DOCSUPFILE is the supfile for the source code of the documents collection. Leave this
undefined if you don't want to upgrade your documentation tree (including the Handbook, FAQ,
articles, and so on).

Note DOCSUPFILE does not specify the actual documentation, but rather the source code to the
documentation. If you don't have the documentation building tools, this is almost useless.

Once you have set these values, you can replace the cvsup stable—supfile command with this one:

131

Some people find it more pleasant to simply go to /usr/src and type make update && make
buildworld && make install than to give the full CVSup command. It's up to you.

[(This format is called a "diff," and is quite common in the UNIX world.
lunless, of course, strange behavior, weird crashes, and lost data make you happy.

Building a Local CVSup Server

Many people have quite a few FreeBSD systems. During an upgrade from source, however, every
single server must connect to a FreeBSD CVS server and download the latest code, which can be a
pain. For one, all of the mirrors are maintained by volunteers who are donating the servers and
bandwidth. Why download the same bits over and over again?

Also, each server might wind up with slightly different code if they all connect to different servers.
Suppose you log in to each server and start a CVSup. In the few minutes between starting each
source—code upgrade, the code on the CVSup server might change slightly. The mirrors aren't
going to stop updating their code just because you're in the middle of upgrading four machines, and
if you're running several production machines, you'd be best served if all the systems were
absolutely identical. Even if they're running a version of —stable somewhere between 4.4-release
and 4.5-release, being able to eliminate different versions of the software as a potential problem
can help troubleshooting immensely. You don't want to think, "Gee, server 1 keeps dying; could it
be because each server has a slightly different version of FreeBSD?" That way lies madness.

You can address this problem by running a central CVSup server (also known as a "cvsupd"
server), which is essentially your own local mirror. You can control when your local mirror updates,
and you can guarantee that all of your machines have exactly the same code. Doing so will not only
make you popular with the mirror operators (or at least, won't make you unpopular with them), it will
also eliminate a variety of possible problems resulting from having different code on each of your
servers. You can still have problems if you have different settings in /etc/make.conf, but you can
compare those files yourself and see what you're doing differently. It is much easier to compare two
files than several thousand!

It's not particularly easy to run a CVSup server, but there's help to make it simpler. The port
/usr/ports/net/cvsup—mirror handles all the tricky bits of configuring a mirror. When you install the
port, cvsup—mirror asks you some questions; there are default suggestions, but you should change
many of them. We'll discuss software installation in detail in Chapter 9, but installing this port is
pretty straightforward.

First, make sure you have an Internet connection, and enter the following commands:

ed /usr/ports/net/cvsup-mirror
make install clean

You will see messages scroll up your screen, including the compiler messages you should
recognize by now. (You might not know what they mean, but you should recognize compiling when
you see it.)

132

At some point, the install process will pause and prompt you for information:

Master site for your updates [cvsup-master.FreeBSD.org]?

The default site, http://cvsup—master.freebsd.org/, is reserved for official FreeBSD mirror use only;
you can use it if you become an official mirror and allow the world access to your system. If not, use
one of the 80—odd public CVSup servers instead. If you're setting up a CVSup mirror, you should
have already identified a public mirror that's close to you. Enter the name of that mirror.

The next prompt will look like this:

The script updates /etc/crontab (explained in Chapter 9) to run CVSup automatically. You can
accept this default, or change it easily. If you accept the default, your system will upgrade itself once
an hour via cron. This is the way the official mirrors do it. | generally enter 168, which updates the
repository once a week, since | will not be upgrading servers more than weekly! Your first update
will take quite a while, but later updates generally only take a few minutes.

Note In many cases, | only upgrade the CVSup server by hand by running the
script /usr/local/etc/cvsup/update.sh. To upgrade a group of machines all
to the same version of —stable, all you have to do is update your CVSup
server once and upgrade all the machines from the server. | frequently
upgrade one server, put it through several rounds of extensive
quality—assurance testing, and upgrade the rest from the same CVSup
batch, which guarantees good code and identical systems. There is no
requirement for you to be more up to date than you wish; the source
code is yours to do with as you see fit, after all! If you update your server
manually, you will want to edit /etc/crontab to remove the automatic
update! We'll discuss /etc/crontab in Chapter 9.

Where would you like to put it [/home/ncvs]? /repo

This prompt is where you enter the path to the location on disk where you want your mirror kept. |
frequently add a separate, small disk to a system to keep the mirror on, and call that disk /repo. You
can put it in the default location of /home/ncvs without any problems.

133

Since you probably want only the main source repository, answer n to the next three questions:

Do you wish to mirror the installed World Wide Web data [y]? n
Do you wish to mirror the GNATS bug tracking database [y]? n
Do you wish to mirror the mailing list archive [y]? n

Of course, if you'd prefer to mirror the whole http://www.freebsd.org/ site, including the PR database
and the mailing list archives, answer y. But be warned: the mailing list archives are huge. The
source repository itself is well over 1GB at this writing, and growing continuously.

Use unique user and group IDs for the next series of questions. (Do not use "nobody", "nonroot", or
"nogroup”.) You can use the defaults, or change the usernames and group names to fit your local
scheme:

Unique unprivileged user ID for running the client [cvsupin]?
Unique unprivileged group ID for running the client [cvsupin]?
Unique unprivileged user ID for running the server [cvsup]?
Unique unprivileged group ID for running the server [cvsup]?

Lastly, the maximum simultaneous client connections is easy to change later, so don't sweat it. It's
fine to accept the default:

Once you finish answering the questions, the make install process picks up where you left off,
adds these usernames, sets the configuration, and generally gets you ready to go.

Controlling Access

Just because you want to be a good systems administrator and have a private repository doesn't
mean that you want every Joe Sixpack to download from your CVSup mirror. The CVSup server
allows you to control which computers have access to the mirror.

The file /usr/local/etc/cvsup/cvsupd.access controls which hosts may connect to your CVSup mirror.
Lines beginning with the pound symbol (#) denote a comment; a plus sign (+) means that the client
can connect, and a hyphen (-) means that the client cannot. An asterisk (*) means that the client
must authenticate, as discussed in the following "Authentication" section.

Each rule in cvsupd.access can refer to either a hosthame or an IP address; IP addresses are
preferred. You can use netmasks with IP addresses as well.

For example, to allow access from the network 192.168.0.0/16 and explicitly reject clients accessing
from elsewhere, use these lines:

134

+192.168.0.0/16
-0.0.0.0/0

Controlling access by IP address is good for a static network. For example, an Internet service
provider (ISP) knows the IP addresses of its servers and can easily keep them in cvsupd.access.
You might need a more flexible system, however, if you're connecting from random IP addresses.
When | was consulting, for example, | kept a mirror that accepted connections from any |IP address.
Users needed a username and password to connect, however. If your cvsupd.access file is empty,
access is controlled entirely by username and password authentication.

Authentication

Use authentication to allow connections to your CVSup mirror from any location on the Internet. The
CVSup server uses a challenge-response system for authentication, rather than transmitting
passwords in clear text. When a client connects, it combines its shared secret (CVSup for
"password") and the system time, and runs them through a scrambler. The server does the same. In
theory, both the client and the server are performing the same calculations on the same piece of
secret data, and both should get the same answer. If the client's scrambled message matches what
the server computed, the server assumes that the client has the secret data and permits access.

This is a very secure system. For example, if someone drops a packet sniffer on the network, she
cannot grab the password. What's more, since the challenge-response system incorporates the
time, a captured response cannot be used a second time.

Authentication requires a password file, /usr/local/etc/cvsup/cvsupd.passwd, which must only be
readable by the CVSup user so that no one else can grab user information. (You can do this by
running chown cvsup cvsupd.passwd and chmod 600 cvsupd.passwd.) If you don't have
a password file, access will be controlled entirely by the cvsupd.access file.

Blank lines and comment lines (which begin with #) in cvsupd.passwd are ignored. The first code
line in cvsupd.passwd is the server name and a private key, separated by a colon.

The server name is sent back to the client, and the private key is used for additional randomness.
You don't have to have a private key—the CVSup password system is pretty random as is—but you
must have the colon that precedes the private key. The private key cannot contain a colon.

Next in the file, you have your legitimate users. Each user appears on a separate line, in the
following format:

135

CVSup IDs are email addresses, such as mwlucas@AbsoluteBSD.com. The shared secret is based
upon a cryptographic hash saying you're the administrator's chosen password for that user. The
class field is reserved for future use, and should be left blank. Finally, the comment field can be
used by the administrator. For example, if you give someone access to your CVSup mirror, it's a
good idea to put in a comment stating why they have access. (You might remember now, but will
you remember in a year or two?)

The cvpasswd(1) command automates generating these cvsupd.passwd entries. Cvpasswd takes
two arguments: the email address of the user and the server name. It will ask you for the password
for this user twice, and spit out some instructions.

cvpasswd mwlucas@AbsoluteBSD.com magpire.AbsoluteBSD.com
Enter password:
Enter same password again:

Send this line to the server administrator at magpire.AbsoluteBSD.com:

Be sure to send it using a secure channel!

Add this line to your file "SHOME/.cvsup/auth", replacing "XXX" with the password you typed in:

magpire.AbsoluteBSD.com:mwlucas@AbsoluteBSD.com:XXX: ——————————————————————
Make sure the file is readable and writable only by you!

The cryptic line in the middle of this output (v) gives the username and the shared secret, based
upon the password. Send this line to the user you want to allow to connect. The "secure channel"
mentioned means that you should send this line in such a way that it cannot be captured by hostile
people on the Internet. You can read the code to the other user over the phone, hand-type it into
the system, copy it to a floppy disk, and hand-deliver it, or encrypt it with PGP and email it. If you
send it via standard unencrypted email, anyone who captures the email en route can use this to try
to access your CVSup server. However, if someone steals this information, the risk of unauthorized
access is not that great; a user still needs the password to access the mirror.

Once the user has this line, he puts it in his home directory in the file .cvsup/auth. This can be
copied to any system he wants to upgrade from this CVSup server. He also needs to make sure
that nobody else can read this file, by running chmod 600 .cvsup/auth.

On the server side, copy that same line into /usr/local/etc/cvsup/cvsupd.passwd. It is formatted to be
a correct, although minimal, password entry. You can add a comment at the end, if you like.

Once you have this entry on both the client and server sides, the user will be prompted for a
password each time he runs CVSup and tries to connect to this server.

Note If you have neither cvsupd.access nor cvsupd.passwd, anyone can connect to

your server from any location on the Internet. The FreeBSD Project is happy to let
anyone run a mirror, but you should be aware that you are doing so!

136

Combining Authentication and Access

Combining authentication and authorization by IP address can be a little tricky because you don't
want hosts that are listed by IP addresses to be asked for passwords, or users with passwords to be
rejected because their IP address is rejected. There is an implicit "authenticate" rule at the end of
cvsupd.access. If your client hasn't been blocked out by an explicit "deny" rule based on an IP
address, you'll be allowed to authenticate. No special configuration is required.

In the example cvsupd.access file shown previously, | explicitly denied access to all IP addresses
that were not in the list. If you wanted to give other users a chance to authenticate, you would list IP
addresses that may always connect, and explicitly reject smaller blocks that you know you will never
connect from. Here's a commented example:

#allow anyone inside our company to connect +192.168.0.0/16
#allow anyone from our sister company to connect +10.10.0.0/16
users from here can never connect -24.0.0.0/8

In this example, systems with an IP address beginning with 192.168 or 10.10 could always connect.
Computers with an IP address beginning with 24. could never connect, even if they had a username
and password. If a computer with none of the above IP addresses tries to connect, it will be able to
try a username and password.

This gives you complete control over access to your mirror.

137

Chapter 7: Securing Your System

Overview

Securing your system means ensuring that your computer's resources are used only by authorized
people for authorized purposes, because even if you have no important data on your system, you
still have valuable CPU time, memory, and bandwidth. In fact, many folks who thought that their
systems were too unimportant to bother securing found themselves an unwitting relay for an attack
that disabled a major corporation. You don't want to wake up one morning to the delightful sound of
law enforcement agents kicking in your door because your insecure computer was used to break
into a bank.

Sure, there are things worse than having some kid take over your servers— say, having both your
legs broken. Coming in to work one day to discover that the company Web page now says, "Ha, ha,
you've been r00ted!" is a pretty close second.

Sadly, over the last few years, it has become much easier to take over remote computers.
Precanned point—and-click programs for subverting computers are becoming more and more
common, and can be found through an underground search engine like http://astalavista.com/. It
takes just one bright attacker to write an exploit, and several thousand bored teenagers with nothing
better to do than download it and make life difficult for the rest of us. Even if you don't care about
your system, you need to secure it.

Generally speaking, operating systems are not broken in to; the programs running on operating
systems are. Even the most paranoically secure—by-default operating system in the world"! cannot
protect badly written programs from themselves.

Occasionally, a problem with one of these programs can interact with the operating system in such
a way as to actually compromise the operating system. The most common of these are called buffer
overflows, where an intruder's program is dumped right into the CPU's execution space and the
operating system runs it. FreeBSD has undergone extensive auditing to eliminate buffer overflows,
but that's no guarantee that they are totally eradicated. New functions and programs are being
written all the time, and they can interact with older functions in unexpected ways.

This chapter focuses on patching and securing your systems. (Auditing your network design is a
topic that fills thick books, and isn't really on topic for a book on FreeBSD.) FreeBSD gives you
many tools to help you secure your system against network attackers.

[That would be OpenBSD. Or any OS on a computer that's disconnected from any network, buried
under 12 feet of steel-reinforced concrete and, if at all possible, crushed into a billion tiny pieces
and soaked in hydrofluoric acid for several months.

Who Is the Enemy?

First off, I'm going to arbitrarily lump potential attackers into three groups: script kiddies, disaffected
users, and skilled attackers. You will find more fine—grained profiles in books dedicated to security,
but that's not what you're here for. These categories are easily explained, easily understand, and
include 99 percent of all the attackers you're likely to encounter.

138

Script Kiddies

The most numerous attackers are script kiddies. Script kiddies are not sysadmins. They are not
skilled. They download small attack programs that work on a point-and—-click basis and go looking
for people to attack. They're the equivalent of drive-by shooters looking for easy pickings.
Fortunately, script kiddies are particularly easy to protect against; you simply have to keep your
system and server programs’ patches up to date.

Disaffected Users

The second group causes the majority of security problems: your own users. The fact is, disaffected
employees cause most security breaches because they're most likely to know where your security
holes are. For example, you might have all your servers patched, but if you have a modem in the
back closet that lets anyone who knows the password into the network behind your firewall, you're
in trouble.

The best way to stop people like these is to not be sloppy. When someone leaves the company,
change all passwords, and tell all employees that the person has left and not to share information
with that person. And get rid of the unsecured modem, or the undocumented telnet server, or
whatever other hurried hack you put into place thinking that nobody would ever find it.

Skilled Attackers

The last group is actually dangerous: skilled attackers. These are competent systems
administrators, security researchers, and penetration specialists who want specific information from
your company. If one of these people wants into your systems, they can probably get there.

Still, the proper security measures that will stop the first two groups of people can change the tactics
that the skilled attacker must use. Rather than breaking into your computers over the network, he'll
have to show up at the door dressed as a telephone company repairman lugging a packet sniffer, or
dumpster—dive searching for old sticky notes with passwords scribbled on them. This raises his
exposure dramatically, and can even make a break-in more trouble than it's worth.

RANT You'll frequently hear the word "hacker" used to describe people who break into computers.
This word has different meanings depending on the speaker. In the technical world, a hacker
is someone who is interested in the inner workings of technological systems. Some hackers
are interested in everything, some have a narrow area of interest—such as computers. In
the FreeBSD community, "hacker" is a title of respect. The main FreeBSD technical list is
called FreeBSD-hackers. In the popular media, a hacker is someone who breaks into
computer systems, end of story. To them, all hackers are bad. | recommend avoiding the
word entlrely to avoid confusion. In this book, | call those who break into systems

"intruders."™ Technical wizards can be called by a variety of names, but they rarely object to
"sir" or "madam."

lIn person, | call them much less pleasant things.
FreeBSD Security Announcements

The best way to stop all attackers is to keep your system up to date. That means you need to know
when to update your system, and what to update. An outdated system is a script kiddie's best friend.

The FreeBSD project has a team of developers who specialize in auditing source code and

139

watching for security issues with both the base operating system and add-on software. These
developers maintain a very low—volume mailing list, FreeBSD-security—notifications@FreeBSD.org,
and it's a good idea to subscribe to it. While you can monitor other mailing lists (such as BugTraq
and CERT) for general announcements, the security—notifications list is a handy single source for
FreeBSD-specific information.

Subscribing

To subscribe to the security—notifications mailing list, send a message to
major—-domo@FreeBSD.org containing the following:

You'll receive a confirmation message, and buried somewhere in it there'll be a command string
something like this:

Reply to majordomo@FreeBSD.org with a message containing just that string, and you'll be
subscribed.

To unsubscribe, send a similar message to majordomo@FreeBSD.org with the following body text:

You'll get a message back with a confirmation string to send back to the mail server. Return it, and
you'll be unsubscribed.

What You'll Get

Two sorts of messages come across the security—notifications mailing list: FreeBSD security
advisories and FreeBSD ports—collection security advisories. The two have very different purposes.

FreeBSD security advisories apply to the base operating system. When a FreeBSD component has
a security hole, the security team releases a security advisory. Read the advisory carefully to
determine what you need to do.

The ports collection contains literally thousands of programs that can be easily installed on
FreeBSD. While it's not the definitive guide to what can work on the system, it's certainly a big
chunk of it. When the security team finds a hole in one of these software packages, they notify the
vendor and issue a ports—collection security advisory. These pieces of software are beyond the
FreeBSD Project's control, but since they're distributed with FreeBSD, FreeBSD frequently catches
the blame when one of them is broken. The security team issues these advisories in an effort to

140

keep its users secure. If you haven't installed the software discussed by the advisory, you don't
have to worry.

Both types of security advisories generally contain a description of the problem, fixes, and
workarounds. Read advisories carefully, since you can be sure that some script kiddie is looking for
a vulnerable machine to break into. The best thing to do is to be invulnerable to these problems.

Note We will discuss many security tools in this chapter. While none is sufficient, all are
desirable. Treat everything you learn about in this chapter as a tool in a kit, not as
the answer to all of your problems. For example, while simply raising the securelevel
will not make your system secure, it can help when combined with reasonable
permissions, file flags, patching your systems, password control, and all the other
things that make up a good security policy.

Installation Security Profiles

When you first install FreeBSD (version 4.2 or later), you have the option to set a security profile,
which basically enables and disables network services and sets the default system security
according to some common defaults provided by the FreeBSD Project. (Everything the security
profile changes is set in /etc/rc.conf.) In most cases, you should use these profiles as a starting
point and edit the configuration set by the profile to meet your needs. The following sections give a
rough description of the two security profiles: moderate and extreme.

Moderate

The moderate security profile enables inetd, sendmail, and sshd. This way, the system can send
and receive email and allow people to connect remotely via ssh. Also, if you've previously
configured the system to use NFS, portmap will be running so that the system can provide NFS
services. The securelevel remains at the default of —1.

Extreme

With the extreme security profile, no basic system network daemons are running, except for extra
software you specifically install, and the system securelevel is set to 2. The system will not receive
or send email out of the box, and you cannot connect to it remotely. It's unhackable, because it's
sitting there with nothing coming in or out.

While security profiles provide useful templates, you need to know how to configure each of these
services yourself. Take a look at rc.conf (explained in Chapter 9) to learn how.

Root, Groups, and Permissions

UNIX security has been considered somewhat coarse because one superuser, root, can do
anything. Other users are lowly peons who endure the shackles root places upon them. While there
is some truth to this, a decent administrator can combine groups and permissions to handle almost
any security issue in a secure manner.

141

The root Password

Some actions require absolute control of the system, including manipulating core system files such
as the kernel, device drivers, and authentication systems. The root account is designed to perform
these actions.

To use the root password, you can either log in as root at an actual login prompt or, if you are a
member of the group wheel, use the switch user command su(1). (We'll discuss groups in the next
section.) | recommend su; it logs who uses it, and it can be used on a remote system. The
command is very simple to use:

Password:

#

Next, check your current username with the id(1) command:

id
uid=0 (root) gid=0(wheel) groups=0 (wheel), 2 (kmem), 3(sys), 4(tty), 5 (operator),
20 (staff), 31 (guest)

You now own the system—and | do mean own it. Consider every keystroke very carefully;
carelessness can return your hard drive to the unformatted empty metal it shipped with. And use the
root password sparingly, because anyone who has the root password can inflict unlimited damage
upon the system. Do not give it to anyone who does not strictly need it!

This naturally leads to the question "Who needs root access?" Much of the configuration discussed
in Absolute BSD requires the use of the root password. Once you have the system running the way
you like it, however, you can greatly decrease or discontinue the use of the root password. One of
the simplest ways to do this is with the proper use of groups.

Groups of Users

UNIX classifies users into groups, each group consisting of people who perform similar
administrative functions. You can have a group called "www", which includes the people who edit
Web pages, and a group called "email", which includes the people who manage your mail server.
You can set files and directories to be accessible to specific groups. Most group information is
defined in the file /etc/group.

Each line in the group file contains four colon—-delimited fields. The first is the group name. Group
names are fairly arbitrary: You could call a certain group of users "xyzzy" if you wished. It's a good
idea, however, to choose group names that give you some idea of what they're for; while you might
remember that the group xyzzy manages your email system today, will you remember it six months
from now? Choose group names that mean something.

142

The second field contains the group's encrypted password. Group passwords encouraged poor
security practices, so most modern UNIXes don't support them. However, some old software
expects to find a password field in /etc/groups, so rather than leave this field blank or remove it
entirely, use an asterisk (*) as a placeholder.

The third field holds the group's unique numeric ID (GID). Many of FreeBSD's internal programs use
this GID, rather than names, to identify groups.

Last is a list of all the users in that group. To add a user to a group, simply add the username to this
list, separated from other names with commas.

After editing /etc/group, it's a good idea to make sure you haven't made a mistake. To double—check
your work, use chkgrp(8). It will double—check your work for yous; if it runs silently, you haven't shot
yourself in the foot.

Primary Group

The group file does not contain a complete list of all users in every group. When you create a new
user, a group is created that contains just that user, and it has the same name as the user. This is
the user's "primary group." A user is automatically a member of his or her primary group, as listed in
/etc/passwd (see Chapter 9).

These primary groups do not appear in /etc/group. The only record of their existence is in the
primary group field of /etc/passwd. This is arguably one of the most annoying things about primary
groups, but adding a line to /etc/group for every single user can make the group file difficult to
manage.

For example, when the user "pbardaville" is added, the system creates a group "pbardaville" and
assigns the user pbardaville to it. This entry appears only in /etc/passwd.

This might seem complicated, but just remember that /etc/passwd trumps /etc/group, and you'll
have it.

Some Interesting Default Groups

FreeBSD ships with several default groups. Most are used by the system, and aren't of huge
concern to a sysadmin. Still, rather than have them remain mysterious, | present for your
amusement the most useful, interesting, and curious. Adding your own groups simplifies
administration, but the groups listed here are available on every FreeBSD system.

bin Group for general programs

daemon Group used by various system services, such as the printing system

dialer Group of users who can access serial ports

games Group for games programs and files

kmem Group used by programs that have to access kernel memory, such as fstat(1), netstat(1),

and so on
mail Group for programs that handle mail operations
man Unused in modern BSD, but corresponds to the man user
news Group for Usenet news programs

nobody Group for user ID with no privileges

143

nogroup Group with no privileges

operator Group that can access drives, generally for backup purposes

staff Group for system staff

tty Group for programs that can write to terminals, such as wall(1)

wheel Group for users permitted to use the root password. If a user has the root password, but
is not in the wheel group, she cannot use su to become root.

Group Permissions

You can assign particular permissions to groups, and all users in that group inherit those
permissions. The permissions on a file are also called its mode.

The UNIX permission scheme says that every file has three sets of permissions: owner, group, and
other. View the existing file permissions with the —I flag to Is(1):

1ls -1

total 29

—rwxr-xr—-— 1 mwlucas admins 1188 Sep 14 09:35 filel
—rW——————— 1 mwlucas admins 27136 Sep 14 09:36 file2
drwxr-xr—-x 2 mwlucas admins 512 Sep 14 09:52 otherstuff

As seen in this listing, the first line ("total 29") displays the number of 512-byte disk blocks the files
use. (One block in this case is half a KB, or about a two-thousandth of a MB.) This particular
directory has two files, file1 and file2, each of which appears on its own line, with some basic
information and its permissions. The permissions on these files appear at the beginning of each
line, in the long lines with r's, w's, and x's, like "—rwxr—xr—-".

The permissions control how each group can use the file, and they're of three types: read (r), write
(w), and execute (x). The right to read means that you can view or copy the file. Permission to write
means that you can alter or overwrite the file. Execute permission means that you can run the file as
a program—all programs are executable files. Any entry that is a hyphen (-) means that the user
does not have execute permission on that file.

The last entry, otherstuff, is a directory. You can tell it's a directory because the first entry in the
permissions line is the letter "d". Directory permissions control who can use the directory in the
same way file permissions control who can use the file.

Following the permissions is the number of links to the file. We will discuss links in Chapter 13.
Then you'll see the file's owner and group. The number of bytes in the file comes next, followed by
the date and time the file was last modified. Finally, you have the actual filename.

When combined with owners and groups, permissions are very flexible. For example, you could
place a set of files in a group called www, then give the www group permission to read and write to
those files, thereby allowing anyone in the www group to edit them. With this setup, you could give
your webmasters control of your company Web site, not allow other users to tamper with the pages,
and avoid giving root access to the www group.

144

The permissions string is ten characters long, the first character of which indicates whether the item
is a directory. The other nine characters are broken into three groups of three that display privileges:
The first group shows permissions for the file owner, the second group permissions for the group,
and the third permissions for all other users.

The first character in each group represents read, the second write, and the third execute. Consider
this listing:

You can see that the first group of three characters is rwx. This tells us that the owner, mwlucas,
can read, write, and execute the file. The second group of characters, r-x, tells us that people in the
admins group can read and execute the file, but cannot write it. And the final group, r——, tells us that
anyone on the system can read the file, but may not write or execute it.

Changing Permissions

The permissions on a file are also called its mode. Chmod(1), or "change mode," lets anyone with
write permission on a file change its permissions. Chmod can be used in many different ways (see
the man page for a full listing), but we'll concentrate on the most common way to change
permissions. Although this is not necessarily the easiest method to learn, it is the one you'll see
most often and the one that all sysadmins should understand.

The modes as shown in the Is output are kind of clumsy-looking. They're difficult to say, difficult to
type, and just all-around difficult to work with. UNIX professionals don't generally put up with that
sort of thing for long, especially when it's easy to simplify.¥! You have to know how to read the
permissions that were shown earlier, but when you use chmod you can use the short form.

In its short form, the mode is given as a three—digit number, with a range of digits from 0 to 7.1 The
first number represents the owner's permissions, the second the group permissions, and the third
everyone else's permissions. (This is octal (base-8) math, much like the binary math we played with
in Chapter 5 on networking.) The number 4 means "read," 2 means "write," and 1 means "execute."
To set the permissions on a file, add the appropriate numbers together. Clear as mud, eh? Don't
worry, we're going to go very slowly here; if you already understand modes, you might want to skip
ahead a couple of paragraphs.

Assume that you want a file to be readable, writable, and executable by the owner, readable and
executable by the group, and readable to others. This means that our permissions string would look
like this: rwxr—xr——.

The first digit of our mode is made up of the owner's permissions, the initial three—letter "rwx" chunk
of the permissions string. Read is 4, write is 2, and execute is 1; 4 + 2 + 1 is 7, so the first digit of
our mode is 7.

The group permissions are read and execute. Read is 4 and execute is 1; 4 + 1 is 5, so the second
digit of our mode is 5.

145

Finally, others can only read the file. Read is 4, giving us a total of 4, so the third digit of our mode is
4. To change the mode, enter the chmod command:

chmod 754 filel
1s -1 filel
—rwxr-xr—— 1 mwlucas admin 1188 Sep 14 09:35 filel

You'll most commonly see permissions documented by their mode. Once you've worked with mode
for a while, it'll be second nature. Log into your FreeBSD box and play with the permissions on a
test file for a while to get the hang of it.

Changing File Ownership

Use chown(1) to change who owns a file, and use chgrp(1) to change the group. Both programs
take two arguments: a username and the filename.

In the following listing, we see that file1 is owned by mwlucas, and it is in the group wheel:

1s -1 filel
—rwxrwxr—-— 1 mwlucas wheel 1188 Sep 14 09:35 filel

chgrp dns filel
1s -1 filel
—rwxrwxr—-— 1 mwlucas dns 1188 Sep 14 09:35 filel

Now, the file is in the group dns.

You can change both owner and group with chown. To change the owner, use chown as shown
here:

1s -1 filel

—rwxrwxr—— 1 mwlucas wheel 1188 Sep 14 09:35 filel
chown bind filel

1s -1 filel

—rwxrwxr—— 1 bind wheel 1188 Sep 14 09:35 filel

To change both the owner and the group with chown, separate the names with a colon:

146

Note Only root can give away files. If you're logged in as a regular user and want
someone else to own your files, you cannot do chown otheruser filename.
Similarly, if you're not in a group, you cannot give that group ownership of the file.

Assigning Permissions

So, now you know how to set permissions and change file owners and groups. What should you set
or change?

Well, for one thing, many sysadmins set files needed by vital system resources, such as DNS
server zone files (see Chapter 11), to be owned by root and writable only by root. Thus, regular
users cannot access them.

While this approach works acceptably when you only have one administrator, it fails when
delegating tasks. Some administrators work around this with add-ons like sudo(8) (in
/usr/ports/security/sudo), but these programs are easily misconfigured.

In the past, I've had assistants who, while not yet competent sysadmins, needed to edit vital files,
but under no circumstances could they be given the root password. My solution has been to use
groups, which lets me restrict access to these files without giving out root. (I'll use DNS in this
example, but this approach applies to any system where a restricted list of users needs to edit a set
of files.)

First, consider what sort of access you want people to have to the files. In this DNS example, the file
owner must be able to read and write the files, and people in the group need to be able to read and
write the files as well. Other users must be able to view them but not edit them. Since DNS files are
plain text files, not programs, nobody should be able to execute the files. (It does no harm to set
executable permissions on a file that isn't a program, but it can confuse people.) So our permissions
string will look like rw—rw—r——. The owner's permissions include read (4) and write (2), the group
has read (4) and write (2), and others have read-only permissions (4). So, we can set the
permissions on the files with chmod 664 filename.

Then you need to assign an owner to the file, bearing in mind that many system programs run as a
particular user. For example, the named DNS server runs as bind, while the Apache Web server
runs as nobody. While you might think that the server user is a logical owner, that's not necessarily
the case, because if someone broke into your DNS server, he could execute commands as the user
bind. You may not mind if someone reads these files, but you don't want anyone unauthorized to
change them. The simplest solution is to create a separate user to own them.

Creating a New User

You can create a new user with adduser(8). (In Chapter 9, we will discuss adduser(8) and some
/etc/login.conf tricks that ensure nobody can actually log in as this user.) Use vipw(8) to disable the
password entirely (we will also discuss vipw(8) in Chapter 9), and then change the group on the
affected file to "dns". Next, set the permissions for the owner and the group to read and write, but
for others to read-only, as shown here:

147

#chown dns:dns filel

#chmod 664 filel

#ls -1 filel

—-rw-rw-r—-— 1 root dns 1188 Sep 14 09:35 filel

Your staff can now do their jobs without the root password, and your files are immune to tampering
by the system process that uses them.

Blin UNIX, "simplify" frequently means "make easier to say and faster to type, but more difficult to
understand.”

“lYou can have four—digit modes in special circumstances. See chmod(1) for details. You don't
normally use four—digit modes except on device nodes and other special files.

File Flags

UNIX filesystem permissions are standard across various versions of UNIX, and BSD extends the
permissions scheme with file flags. These flags work with permissions to increase your system's
security. Some of these flags are used for non-security—related functions, but the ones we're
interested in here are security related.

Note Many of the flags have different effects depending on the system securelevel,
which will be covered shortly in the "Securelevels" section. For the moment, just
nod and smile when you encounter a mention of securelevel; all will become clear
in the next few pages.

The following are the security—related file systems flags:

sappnd The system-level append-only flag can only be set by root. Files with this flag can be
added to, but cannot be removed or otherwise edited (which is particularly useful for log files).
Setting sappnd on a .history file can be interesting if your system is compromised. Since a common
intruder tactic is to remove.history or to symlink it to /dev/null so that the admin cannot see what
was done, sappnd ensures that script kiddies cannot cover their tracks in this manner. It's almost
funny to watch the record of someone trying to remove a sappnd file. You can see the attacker's
frustration grow with the various things she tries. (It is better, of course, for your system not to be
hacked at all!) This flag cannot be altered when the system is running at securelevel 1 or higher.

schg The system-level immutable flag can only be set by root. Files with this flag set cannot be
changed in any way, neither edited, moved, nor replaced. Basically, the filesystem itself will prevent
all attempts to touch this file in any way. This flag cannot be altered when the system is running at
securelevel 1 or higher.

sunlnk The system undeletable flag can only be set by root. The file can be edited or altered, but it
cannot be deleted. This is not as secure as the previous two flags because if a file can be edited, it
can be emptied. It's still useful for certain circumstances, however. I've used it to solve problems
when a program insisted on deleting its own log files when it crashed. It's not generally useful to set
on any standard system flags. This flag cannot be altered when the system is running at securelevel
1 or higher.

148

uappnd The user append-only flag can only be set by the file owner or root. Like the system
append-only flag, sappnd, a file with this flag set can be added to but not otherwise edited or
removed. This is most useful for logs from personal programs and the like, and is primarily a means
to keep users from shooting themselves in the foot. The owner or root can remove this flag at any
time.

uchg The user immutable flag can only be set by the owner or root. Like the schg flag described
earlier, the user immutable flag prevents a user from changing the file. Again, root can override this,
and it can be disabled by the user at any securelevel. This flag helps to prevent mistakes, but not to
secure the system.

uunlnk The user undeletable flag can only be set by the owner or root. A file with this flag set
cannot be deleted by the owner, though root can override that, and this flag can be turned off. This
flag is mostly useless, but like the other user flags can be helpful in preventing mistakes.

Viewing a File's Flags
You can see a file's flags with 1s -1o:

1s -lo important
—-rw-r——-r—— 1 mwlucas mwlucas uchg 0 May 11 19:51 important

The uchg in the preceding listing tells us that the user immutable flag is set. In comparison, if a file
has no flags set, it looks like this:

1ls —-lo unimportant
—-rw-r——r—-— 1 mwlucas mwlucas - 0 May 11 19:52 unimportant

The dash in place of the flag name tells us that no filesystem flag has been set.

An out-of-the-box FreeBSD doesn't have many files marked in this way. You can certainly mark
anything you want in any way desired, however. On one system that | fully expected to be hacked, |
went berserk with chflags -R schg in various system directories to prevent anyone from replacing
system binaries with Trojaned versions. It might not stop an attacker from getting in, but it made me
feel better to imagine how frustrated an attacker would be once he got a command prompt.

Setting Flags

You can set flags with the chflags(1) command. For example, to be sure that your kernel isn't
replaced, you could do this:

This would keep anyone from replacing your kernel: both an intruder and you.

149

You can also recursively change the flags on a directory tree with the —R flag. For example, to make
your *bin directory immutable, you could use this command:

And boom! Your basic binaries cannot be changed.

To remove a flag, use chflags and a "no" in front of the flag name. For example, to unset the schg
flag we just set on your kernel, enter this command:

That said, you'd have to be running at securelevel -1 to unset this flag. So, without further ado, we'll
discuss securelevels and what they mean to you.

Securelevels

Securelevels are kernel settings that change basic system behavior to disallow certain actions. The
kernel will behave slightly differently as you raise the securelevel. For example, at low securelevels
the file flags we discussed can be removed. A file might be marked "do not remove," but you can
remove the marker and then delete the file. When you increase the securelevel, the flag cannot be
removed. Similar changes will take place in other parts of the system. Taken as a whole, the
behavior changes that result from increased securelevels will either frustrate or stop an intruder.
You can set the system securelevel at boot with the rc.conf options
kern_securelevel_enable="YES".

Securelevels make system maintenance difficult by imposing certain restrictive conditions on
system behavior. After all, many actions that you might take during normal administration are also
things that intruders might do to cover their tracks. For example, when using securelevels you will
need to take extra steps to patch your system. On the other hand, securelevels will frustrate the
heck out of your average intruder who wishes to destroy data, plant a Trojan, or damage the system
in some other way.

Setting Securelevels

Securelevels come in five levels: *, 0, 1, 2, and 3, with * being the lowest and 3 being the
highest.

Once you enable securelevels with the kern_securelevel_enable="YES" rc.conf option (as

discussed previously), you can set the securelevel automatically at boot with the
kern_securelevel=X rc.conf variable. While you can raise the

150

system securelevel at any time, you cannot lower it without rebooting into single—user mode. (If you
could lower the securelevel without rebooting, so could an intruder.)

Securelevel *

Securelevel ‘, the default mode, provides no additional kernel security whatsoever. If you're
learning FreeBSD and are frequently changing your configuration, remain at securelevel ‘ and use
BSD's built-in file permissions and other UNIX safeguards as security, which should be adequate
for most situations.

Securelevel 0

The only time securelevel 0 is used is when your system is first booting, and it offers no special
features. When the system reaches multi-user mode, however, the securelevel is automatically
raised to 1. (Setting kern_securelevel=0 in /etc/rc.conf is effectively the same as setting
kern_securelevel=1.) As such, there's really not much reason to use a securelevel of 0.

Securelevel 1

At a securelevel of 1, things become interesting:

e You cannot load or unload kernel modules with kldload*kldunload (see Chapter 4).

e Programs cannot write directly to system memory via either the /dev/mem or /dev/kmem
devices.

e Mounted disks cannot be written to directly, so you cannot format partitions. (You can write
files to disk via the standard kernel interface; you just cannot format disks or address the raw
devices.)

¢ You cannot start the X Window System.

The most obvious effect of securelevel 1 is that the BSD—specific filesystem flags cannot be altered.
If a file is marked immutable and you want to replace it, you're out of luck.

Securelevel 2

A securelevel of 2 gives you all the benefits of securelevel 1 with two additions:

¢ You cannot write directly to either mounted or unmounted filesystems.
e You cannot alter the system time by more than 1 second at a time.

Both of these can seem irrelevant to a new sysadmin, but they are important tricks in security.
Although UNIX provides handy tools, such as text editors to write to files, it is also possible to
bypass those tools and, indeed, bypass the actual filesystem to access the underlying ones and
zeros encoded on the disk. If you could do this, you could change any file regardless of the
permissions. The only time this happens in common use is when you are installing a new hard disk.

151

Normally, only the root user can write directly to the disk in this manner. With this securelevel set,
even root cannot do this.

Similarly, another hacker trick is to change the system time, edit a file, and change it back. That
way, when the administrator looks for files that might be causing trouble, the tampered file will
appear to have been untouched for months or years, and hence not seem an obvious source of
concern.

Securelevel 3

Securelevel 3 is called network secure mode. It behaves exactly like securelevel 2, but it prevents
changes to IPFW or IPFilter rules. (We discuss these programs in Chapter 11 and Chapter 8,
respectively.) If you have a system with packet filtering or bandwidth management enabled, and
those rules are well tuned and unlikely to change, you can use securelevel 3.

Which Securelevel Do You Need?

The securelevel appropriate to your environment will depend on your situation. For example, if
you've just put a FreeBSD machine into production and you need to fine-tune it, you should leave
the securelevel at ‘. Once your system is fine—tuned, however, you can raise the securelevel, and
most systems will run just fine at a securelevel of 2.

It's a good idea to use the schg and sappnd flags on selected files to help protect yourself, because
the added clock—changing protection throws up still more ways to force a hacker to show herself.

If you use one of FreeBSD's packet-filtering/firewall packages, you might consider using
securelevel 3. However, if you choose to use securelevel 3, be very certain of what you're doing and
why, or you're liable to run into problems. For example, if you're using your FreeBSD system as a
corporate firewall, securelevel 3 will disallow firewall configuration changes without interrupting your
Internet connection. That said, if you're using securelevel 3 to restrict access to certain ports on
your Web server, a securelevel of 3 is probably fine.

What Won't Securelevel and File Flags Do?

Consider a case where someone compromises a CGl script on your Apache Web server, uses that
to bootstrap himself into a shell, and then uses the shell to bootstrap himself into root access.

Perhaps, because you've set the securelevel accordingly, this attacker gets frustrated because he
can't replace your kernel with his specially compiled one. No problem; he can still replace a variety
of system binaries with Trojan—horse versions, so that the next time you log in, your new version of
login will send your password to an anonymous Web-based mailbox or to an Internet newsgroup.

So, to protect your key files, you run around doing schg -R /bin/*, schg -R /usr/lib, and
so on. Fine. If you forget one file—say, something obscure like /etc/rc.i386 or something like
that—your hacker can edit that file to include chflags -R noschg /. He can then reboot your
system some time late at night, when you might not notice. (How often do you sit down and
exhaustively audit your /etc/rc files?)

You think that your system is safe, with every file completely protected. But what about
/usr/local/etc/rc.d, the local program startup directory? The system boot process will try to execute
anything it finds in this directory with a .sh extension. As such, your hypothetical hacker could do a
lot of damage by placing a simple shell script there. After all, /etc/rc raises the securelevel as the

152

last thing, after everything's started. What if he were to create a shell script that kills the running
/etc/rc before it can raise the securelevel, then turns around and starts his own
/var/.hidden/rc.rootkit to finish bringing up the network?

Of course, this is only one path—there are others. The thing to remember is that system security is
a thorny problem, with no one easy solution. Once intruders have a command prompt, it's you
against them. And if they're any good, you won't even know that they're there until it's too late. And,
of course, it's always better to keep intruders out of your castle than to try to get them out of the
corridors.

Living with Securelevels

If you've been liberal with the schg flag, you might find that you can't upgrade (or even patch) your
system conveniently. The fact is, the same conditions that make hackers’ lives difficult can make
yours a living hell, if you don't know how to work around them. So how do you work around them?

If you've protected your /etc/rc.conf with schg, you'll first have to lower the securelevel to edit your
system. Of course, the securelevel setting is in that file, so you'll need to take control of the system
before /etc/rc runs in order to edit that file.

To do so, follow the procedure for booting into single—user mode (explained in Chapter 3), and
mount the affected filesystems. Since at that level the securelevel has not been set, you can mount
your filesystems, run chflags noschg on the affected files, and continue booting. You can even
edit /etc/rc.conf to disable securelevels, and let it boot normally. (You'll restore service more quickly
that way, but lose the file flags’ protection.)

Once you've finished maintenance, you can raise (but not lower) the system's securelevel without
rebooting using the sysctl command:

Now that you can control file changes, let's take a look at controlling access to your system from the
network.

Programs That Can Be Hacked

As | mentioned at the beginning of this chapter, it's generally not the operating system that gets
hacked, it's the programs running on it. Of these, network programs are the biggest target, and the
question then becomes, "How do | tell which programs are running on the network?" Answer: with
sockstat(1).

Sockstat(1) is a friendly FreeBSD tool that determines which sockets are open on a system and
which programs are listening on those sockets. It shows both connections that are running right now
and connections that are available for people to talk to.

A socket is simply a "logical device" that is listening for a connection. You can have a socket
listening to the network; those are the network ports | talked about in Chapter 5. You can have

153

sockets listening on IP version 6 networks, which are IPv6 sockets. Finally, you can have sockets
listening on the local computer. Programs can create sockets to communicate with one another.

If you don't have an IPv6 network, you don't need to worry about IPv6 sockets. Similarly, UNIX
sockets aren't an issue over the network; you must be logged on to the computer to talk to a UNIX
socket, and you have to get through all the standard UNIX permissions to do so. If your intruder can
do that, you're already in trouble. So, we'll look at the open IPv4 network sockets by running
sockstat -4 in the following snapshot taken from my laptop:

sockstat -4

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
mwlucas ssh 372 3 tcp4 192.168.1.200:1025 208.63.178.18:22
root X 347 0 tcp4 *:6000 *x
root snmpd 296 6 udp4 *:161 *ix
root lpd 234 6 tcp4 *:515 ok
root syslogd 209 4 udp4 *:514 *ok

Each line in the preceding listing represents either one open socket awaiting a connection or an
established connection. (It looks a lot like netstat -na, doesn'tit?) Most of the columns are fairly
self-explanatory. USER is the user running the process, COMMAND is the command name, and
PID is the process ID number of the particular process holding that socket. The command name is
very helpful in securing the system. FD is the process's file descriptor—you don't have to worry
about that right now. The PROTO column is the Internet protocol the connection is using. Finally,
the LOCAL ADDRESS and FOREIGN ADDRESS columns show the IP addresses and port
numbers on each side of the connection. If you have an IP address and port number in LOCAL
ADDRESS and FOREIGN ADDRESS, you're looking at an existing connection. When the
FOREIGN ADDRESS column shows two asterisks separated by a colon (*:*), that program is
listening for incoming connections.

In the preceding example, I'm using ssh to connect to a remote system from the laptop. Ssh isn't
actually listening for incoming connections; sockstat shows only a connection | made to another
server. Four services are listening for incoming connections on the laptop: X is listening on all of the
local IP addresses on port 6000/tcp; an snmp daemon is running on port 161/udp; and Ipd and
syslogd are listening for incoming connections.

Here's the important part. Every network port you have open is a potential weakness and an
attacker's targets. Shut down unnecessary network services and secure the ones you must offer.
Got it? Good.

Note It's a good idea to regularly check which ports are open on your systems, because
you might learn something that surprises you. For example, | installed net-snmp to
get snmpwalk and related commands and completely forgot that it also installed the
snmp daemon, which should be shut down and not started again at boot.”!

Examining sockstat output on a laptop is pretty straightforward, but the output for an Internet server

is another thing entirely. A small server can have hundreds of lines of output. For example, here's a
listing for a very small server:

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS

root sshdl 28971 5 tcp 192.168.15.18.22 24.2.72.241.35886
wnobody httpd 27356 17 tcp *.80 x K
nobody httpd 27355 17 tcp *.80 xLx
nobody httpd 27354 17 tcp *.80 LK
nobody httpd 27353 17 tcp *.80 *Lx
nobody httpd 27352 17 tcp *.80 LK
nobody httpd 27351 17 tcp *.80 LK
root named 72871 4 udp *.2151 x LK
root named 72871 20 udp 192.168.15.18.53 *L K
root named 72871 21 tcp 192.168.15.18.53 LK
root named 72871 22 udp 127.0.0.1.53 X
root named 72871 23 tcp 127.0.0.1.53 LK
root httpd 65199 17 tcp *.80 LK

X root sshdl 275 3 tcp *.22 x LK
root sshdl 269 3 tcp 192.168.15.19.80 *L K
root sendmail 214 4 tcp *.25 L
root inetd 207 4 tcp *.106 X

v root inetd 207 5 tcp *.110 LK
root inetd 207 6 tcp *.113 LK

The function of some of these open ports is obvious; some are not. For example, while you'll
probably recognize httpd and sendmail, what are all those open inetd ports?

To find out, "grep" the /etc/services file (see Chapter 5) for a port number, to see what service name
it is using. For example, the service that's running on port 110 is curious (v). Grep searches for lines
that match a pattern, so in this case we want to find all the lines that contain the string of characters
"110". Grepping for port 110 gives us this series of lines:

grep 110 /etc/services

pop3 110/tcp #Post Office Protocol - Version 3
pop3 110/udp #Post Office Protocol - Version 3
nfsd-status 1110/tcp #Cluster status info
nfsd-keepalive 1110/udp #Client status info

softcm 6110/tcp #HP SoftBench CM

softcm 6110/udp #HP SoftBench CM

#

The grep returns several lines that include 110, but we ignore the ones that include obvious wrong
matches. For example, the third and fourth lines include the string "110", but only as a reference to
port 1110. The first two lines tell us that the service is pop3, which we will discuss in Chapter 12. A
quick check of the FreeBSD mailing list archives shows that pop3 delivers mail to desktop clients
such as Eudora and Outlook.

Note If you don't know what a service is, you can either search for it on the Net or shut it off and
see what breaks. While I've used both techniques successfully, researching is better in the
long run.

You can use this technique to identify the other services provided by inetd. (Inetd itself is discussed
in Chapter 12.) We also have several instances of httpd (w), a Web server. There's one ssh daemon

155

listening on port 22 (x), and one that's listening on port 80.!°! You'll also see lots of named entries
listening on port 53, and one on 2151. We'll discuss each of these programs later, as we get into
discussing the various network services FreeBSD can offer. The important thing for you to realize
here is that each server program listens on a network socket, and you can identify those programs
with sockstat(1).

So, now that you know what's running, how do you turn things off the ones you don't need? The
best way to close these ports is not to start the programs that run them. Network daemons are
generally started in one of two places: either /etc/rc.conf or a startup script in /usr/local/etc/rc.d.
Programs that are integrated with the main FreeBSD system, such as sendmail, ssh, and portmap,
have flags in /etc/rc.conf to enable or disable them (see Chapter 9). Add-on programs, such as
Web servers, start via scripts in /usr/local/etc/rc.d (see Chapter 11). The inetd program is a special
case, though, since its purpose is to start smaller, rarely used programs. While inetd as a whole is
enabled via an rc.conf flag, the programs within inetd must be started and stopped from within inetd.
To learn how to enable and disable inetd programs, see Chapter 12.

To remove unnecessary network services, run sockstat -4, and identify each process. Once you
determine which ones you need, mark them and disable the rest; then reboot to be certain your
changes will take effect. If, when you check sockstat again, you're happy with the result, you're
done. Otherwise, go back to the beginning.

Bl"what is SNMP?" | hear you cry. See Chapter 19. "And how do | shut it down?" See Chapter 11.
BIA variety of firewalls can be bypassed by sending traffic over port 80, the TCP port used for Web
traffic. If you have an Internet server outside such a firewall, you can run sshd on port 80 on that
server and connect from within the firewall. While a firewall that relies solely on restricting port
access cannot stop you from connecting in this way, that firewall is a definite hint that you're not
supposed to be using services that they've tried to block. This sort of cleverness can get you fired.

Putting It All Together

Once you have only necessary network ports open, and you know which programs are using them,
you know which programs you have to be concerned about securing. If the FreeBSD security team
sends out an announcement of a problem with a service you don't run, you can safely ignore it. If
the security team announces a hole in a program you are using, you know you have to pay
attention. This will protect you against most of the script kiddies out there. Tools such as file flags
and securelevels will help minimize the damage attackers can do if they do break in. Finally, using
groups to restrict your own systems administrators to particular sections of the system can protect
your computers from both accidental and deliberate damage.

Next, we'll look at some of the more advanced security tools FreeBSD offers.

156

Chapter 8: Advanced Security Features

FreeBSD includes a variety of tools for securing network traffic and users. For example, you can
implement traffic controls that refuse to allow connections to or from certain parts of the Internet in a
few different ways. Also, you can cage off users in a virtual machine, called a jail, where they have
access to everything but the main server. We'll discuss these techniques in this chapter, as well as
how to monitor your system's security and what to do if you are the victim of an intruder. We'll start
with the basics, network traffic control.

Traffic Control

As a sysadmin, you must be able to control traffic to and from your systems so that you can block
unwanted visitors. FreeBSD provides a variety of tools that allows you to control outside access to
your systems. We'll focus on TCP wrappers and packet filtering, two access—control tools with
enough overlap in functionality that they make a perfect pair.

The TCP Wrappers program controls access to particular server programs (also known as
daemons). Connection requests are handed to the TCP Wrappers software, which evaluates them
according to its configuration. TCP Wrappers is fairly simple to configure, and doesn't require much
knowledge of networking, but server programs must be built to work with TCP Wrappers.

Packet filtering controls which packets the system will accept. A rejected connection request never
makes it to a userland program; it is rejected in the network stack at a low layer. Packet filtering can
control traffic to any program, service, or network port, but it does require more knowledge of
networking.

In either case, before you can implement traffic control, you'll need to decide whether you want a
default accept or a default deny traffic—control policy.

Default Accept vs. Default Deny

One of the essential ideas in any security system is the idea of default accept versus default deny.
A default accept stance means that you allow any type of connection except what you specifically
disallow. A default deny stance means that you only allow connections from specified parts of the
Internet, and all other connection attempts are refused. Once you have chosen your default, you
can adjust your stance to protect or reveal those services you wish.

When choosing between default accept and default deny, your choice is really between whether you
are offering services to the world or only to a select few, and whether anyone can access your
system.

If your system acts as a corporate Web server, you may decide to make it visible only to users on
your corporate network. If so, you've adopted a default deny stance, and you'll explicitly list who can
talk to you. (This is my preferred approach whenever possible.) Alternatively, if you choose to keep
your system open to everyone except someone you don't like, you're adopting a default accept
stance.

Also, just because you choose a default does not mean that all services on your computer must
obey the default. | configure Web servers on the open Internet to have a default deny stance, and
specifically open the world's access to the Web server. Attempts to connect to other programs
running on those machines are rejected, unless they come from one of a few IP addresses that |

157

have specifically listed. This is a perfectly acceptable default deny stance.

We'll refer to default deny and default accept throughout the following sections.

TCP Wrappers

Remember from Chapter 5 that network connections are made to various programs that listen for
connection requests. TCP Wrappers intercepts these requests before they reach the daemon,
checks the IP address that is making the request against a configuration file, and decides
accordingly whether to accept, reject, or alter the request. Despite the TCP Wrappers name, it
works with UDP network connections as well as TCP connections. TCP Wrappers is a long-time
UNIX standard that has been incorporated into FreeBSD. Individual programs might or might not
work with TCP Wrappers, though; just about everything in the base FreeBSD install does, but some
third—party software won't.

Wrappers are most often used to protect inetd, the program that starts the smaller daemons. (We
will discuss inetd in Chapter 12.) To start inetd with wrappers support, use the -ww flag with
inetd_flags="-Ww" in /etc/rc.conf, for example (see Chapter 9). The examples here will not work
unless inetd is started correctly. While our examples will discuss protecting inetd programs with
TCP Wrappers, you can protect any program in exactly the same way.

Configuring Wrappers

TCP Wrappers checks each incoming connection request against the rules in /etc/hosts.allow, in
order. The first matching rule is applied, and processing stops immediately. This makes rule order
very important.

Each rule is on a separate line, and is made up of three parts separated by colons: a daemon
name, a client list, and a list of options. Here's a simple sample line:

The daemon name in this example is "ftpd", and the client list is "all", meaning all hosts. Finally, the
option is "deny", meaning "deny all connections." Nobody can connect to the FTP server on this
host, unless an earlier rule explicitly grants access.

In our early examples, we will refer to only two options: accept and deny. They allow and reject
connections, respectively. There are many more options, but we'll discuss them later.

Daemon Name

The daemon name is the program's name as it appears on the command line. For example, inetd
starts the ftpd program when it receives an incoming FTP request. The Apache Web server starts a
program called httpd, so if your version of Apache supports wrappers, you would want to use "httpd"
in /etc/hosts.allow. One special daemon name, ALL, matches all daemons that support wrappers.

158

If you have multiple IP addresses on one network card, you can specify different wrapper rules for
each IP address that a daemon listens on as part of the daemon name, something like this:

ftpd@192.168.8.7 : ALL : deny
ftpd@192.168.8.8 : ALL : accept

In this example, we have two daemon names: ftpd@192.168.8.7 and ftpd@192.168.8.8. Each has
a separate TCP Wrappers rule.

The Client List

The client list is a list of specific IP addresses, network address blocks, host-names, domain
names, and keywords, separated by spaces. Hostnames and IP addresses are simple; just list
them:

Specify network numbers in the client list with a slash between the IP address and the netmask, as
discussed in Chapter 5. For example, if some script kiddies are attacking you from a bunch of
different addresses that all begin with 216.136.204, you could block them like this:

If you have a long list of clients, you can even list them in a file and put the full path to the file in the
client space in /etc/hosts.allow. I've been on networks with large numbers of widely scattered hosts,
such as an ISP or corporate network environment with network management workstations scattered
across the world. Each workstation shared the same TCP Wrappers rule as every other workstation,
and appeared on half a dozen lines in /etc/hosts.allow. By maintaining a single file with a list of
these workstations, | could centralize all changes; edit one file, and all the rules that call the file are
updated.

Client Keywords

In addition to specifically listing client addresses and nhames, you can also use several special client
keywords to add groups of clients to your list:

159

ALL This keyword matches every possible host.

LOCAL This matches every machine whose hostname does not include a dot. Generally, this
means machines in the local domain.

UNKNOWN This keyword matches machines with unidentifiable hostnames, IP addresses, or
usernames. As a general rule of thumb, if a machine is making an IP connection, its IP address is
known. Tracing hostnames requires DNS, however, and tracking usernames requires the identd
protocol. Be very careful using this option, because transitory DNS problems can make even local
host-names unresolvable, and most hosts don't run identd by default. You don't want a machine to
become unreachable just because your nameserver was misconfigured—especially if that machine
is your nameserver!

KNOWN This keyword matches any host with a determinable hostname and IP address. Again, if
your DNS fails, every host on the Internet will suddenly appear to have lost its hostname. If you say
that all identifiable hosts can connect and your server's DNS fails, nobody will be allowed to
connect.

PARANOID This matches any host whose name does not match its IP address. You might get a
connection from a host with an IP address of 192.168.84.3 that claims to be called
mail.AbsoluteBSD.com. TCP Wrappers will then turn around and check the IP address of
mail.AbsoluteBSD.com. If TCP Wrappers gets a different IP address than the source IP, the host
will match this rule.

Most of the client keywords listed here require a working DNS server (see Chapter 12). If you use
these keywords, you must be aware of the vital link between DNS and the rest of your programs. If
your DNS server fails, daemons that use wrappers and these keywords won't be able to recognize
any hosts. This means that everything will match your UNKNOWN rules. Also, broken DNS on the
client end can deny remote users access to your servers, as your DNS servers won't be able to get
the proper information from the client's DNS servers.

Other keywords are available, but they are not as useful or secure. For example, it's possible to
allow connections based on the username on the remote machine making the request. You don't
really want to permit a request based on the user-name at the client end, though. Any yahoo can
slap together a FreeBSD or Linux box and give himself whatever username he desires. If | set up
TCP Wrappers to only allow someone with a username of "mwlucas" to connect to my home
system, someone who wanted in could easily add an account of that name to his FreeBSD system.
Also, this relies on the same identd protocol that we mentioned earlier, and very few hosts run
identd. You will find a few other obscure keywords of similar usefulness in the man page
hosts_access(5).

The ALL and ALL EXCEPT Keywords
The ALL and ALL EXCEPT keywords can be used both for daemon names and for client lists.

The ALL keyword matches absolutely everything. For example, the default /etc/hosts.allow starts
with a rule that permits all connections, from all locations, to any daemon:

160

This matches all programs, from all clients. You can limit this by giving a specific name to either the
client list or the daemon list:

In this example, we are rejecting all connections from the host 192.168.1.87.

Categorically blocking access to all hosts isn't that great an idea, but remember that TCP Wrappers
follows rules in order and quits when it reaches the first matching rule. The ALL keyword lets you
set a default deny or default accept stance quite easily. Let's consider the following ruleset:

ALL : 192.168.8.3 192.168.8.4 : accept
ftpd : ALL : accept
ALL : ALL : deny

Here, we're allowing the workstations 192.168.8.3 and 192.168.8.4 to access anything they want.
These are the sysadmin's desktop machines. Then we allow anyone to connect to the FTP service
on this machine. Finally, we drop all other connections. This is a useful default deny stance.

Use the ALL EXCEPT keyword to compress the preceding ruleset even further. ALL EXCEPT lets
you list hosts by exclusion; what isn't listed matches. Let's consider the same rules written using
ALL EXCEPT:

ALL : 192.168.8.3 192.168.8.4 : accept
ALL EXCEPT ftpd : ALL : deny

Some people will find the rules more clear when written with ALL, others with ALL EXCEPT. The
important thing to remember is that the first matching rule ends the check, so you need to be careful
slinging ALL around. Generally speaking, the first rule that has any combination of ALL and ALL
EXCEPT in both the daemon and client lists will stop the check; every connection will match it.

Allow Options

The allow option tells TCP Wrappers to accept the connection. The default hosts.allow file starts
with this rule:

This rule applies to all daemons and all clients, and it matches and allows all possible connections.
While this rule can't be the first on the list if you want to protect your services, it's a good final rule if
all you're doing is protecting particular server programs against particular network addresses.

161

If you're experimenting with TCP wrappers, it's a good idea to allow any connections from the local
host, or you're liable to discover a number of programs that break when they can't talk to the local
machine. Do so as follows:

ALL : localhost : allow

Options for Responses

Now that you have a good grasp of the daemon and client lists, let's take a look at some of the more
interesting options for responses. The concept of these options is very simple: You have an
incoming connection that matches a rule, so now what do you do with it? Responses can be very
simple, or very complicated and subtle.

Note If you're using a lot of options, TCP Wrappers rules can get very long. Fortunately, the
hosts.allow file uses the backslash (\) followed by a return as a line—continuation character,
which helps keep the rules readable.

The most basic options are accept and deny. If a connection attempt matches the rule, the request
is either passed on to the waiting daemon or rejected. You can use additional options, however,
separated by colons.

Severity

Once you have decided to accept or reject the connection attempt, you can also /og connection
attempts. Suppose you want to block all incoming requests from a competitor; it might be nice to
know if they were actually trying to connect. Logs will tell you that.l"! Similarly, you might want to
know how many rejected connection attempts you're getting from people with DNS problems
(especially if you're using the PARANOID client keyword).

The severity option sends a message to the system log, syslogd(8). You can configure syslogd to
direct these messages to an arbitrary file (see Chapter 19), based on the syslogd facility and level
you choose:

telnetd: ALL: severity auth.info : allow

This example will log all telnet connections.

Twist

The twist option allows you to run arbitrary shell commands and scripts when someone attempts to
connect to a wrapped TCP daemon, and returns the output to the user. Twist only works with TCP
connections.®! Twist takes a shell command as an argument and acts as a deny—plus—do-this rule.
You must know some basic shell scripting to use twist; very complicated twists are entirely possible,

162

but we'll stick with the simple ones. We're not demonstrating shell scripts, after all! If you're in doubt,
you can always just use /bin/echo "reason" to let the remote client know why its connection
has been rejected. (Note the straight double quotes around the reason, they're important!)

Twist is useful for a final rule, if you're using default deny. (If you have a restrictive security stance,
end your security policy with such a catch-all deny rule.) You can use twist to return an answer to
the person attempting to connect as follows:

ALL : ALL : twist /bin/echo "You cannot use this service."

Or if you want to just deny a particular service to a particular host, you can use a more specific
daemon and client listings with twist. The following example is a little too long to fit on one line, so
I've split it using the backslash character:

sendmail : .spammer.com : twist /bin/echo \
"You cannot use this service"

If you're feeling friendly, you can tell people why you're rejecting their connection attempt. The
following twist rejects all connections from people whose host-names do not match their IP
addresses, and tells them why:

ALL : PARANOID : twist /bin/echo \
"Your DNS 1is broken. When you fix it, come back."

Twist will hold the network connection open until the shell command finishes. If your command
takes a long time to finish, you could find that you're holding open more connections than you
planned. This can reduce system performance dramatically. Twists should be simple and finish
rapidly.

Note It's tempting to put a rude message in twist output, especially when you think that
nobody could have a legitimate reason for trying to access a server. But spitting back
"Bite me, script kiddie!" will annoy legitimate users, and it just might peeve script
kiddies enough that they try harder to get in.

Spawn

Like twist, the spawn option denies the connection and runs a specified shell command. Unlike
twist, spawn does not return the results to the client. Use spawn when you want your FreeBSD
system to take an action upon a connection request, but you don't want the client to know about it.
Spawned commands run in the background, and their results are not returned to the client. The
following example will allow the connection, but will log the client's IP address to a file:

ALL : PARANOID : spawn (/bin/echo %a >> /var/log/misconfigured) \
: allow

163

If you're familiar with shell scripts, you are probably scratching your head at that %a symbol in the
preceding command. TCP Wrappers supports a variety of variables for use in twist and spawn
commands, which are expanded before the command is run, so that you can easily customize your
responses to connection requests. This particular variable, %a, stands for client address. It expands
into the client's IP address in the actual shell command before the command is run. Other variables
are shown in Table 8-1.

Table 8-1: Variables that can be used in twist and spawn commands

Variable Description

%a Client address

$A Server IP address

%c All available client information

%d Daemon name

$h Client hostname (if available), or IP address

$H Server hostname (if available), or IP address

%n Client hostname; if no hostname is found, this gives UNKNOWN. If the hostname's name
and IP address don't match, this equals PARANOID

SN Server hostname; if no hostname is found, returns either UNKNOWN or PARANOID

You can use these variables anywhere you would use the information they represent in a shell
script. For example, to log all available client information to a file whenever anyone connects to a
wrapped program, you could use this spawn:

ALL : PARANOID : spawn (/bin/echo %c >>/var/log/clients) \
: allow

You may have noticed that this script is the same as the earlier example, with the minor changes of
the variable used and the log filename. You can do the same sort of thing with any information you
want to log.

Spaces and backslashes in hosthames can give the command shell problems because they're
illegal characters. While neither should appear under normal circumstances, someone might try to,
say, use a hostname with a space in it just to confuse security software. To be on the safe side,
TCP Wrappers replaces any character that might confuse the command shell with an underscore
(L). Check for this sort of thing in your logs; they might indicate possible intrusion attempts, or just
someone who likes underscores in hostnames.

164

Putting It All Together

Let's take all the examples given in this chapter so far, and build a complete /etc/hosts.allow to
protect a hypothetical system on a network. We must first inventory the network resources this
system offers, the IP addresses we have on the network, and the users we wish to allow to connect:

e Our IP range is 192.168.0.0/16. On our network, we are running telnet, ftpd, and portmap(8).

 We have a competitor who we do not want to access our system,® whose IP address range
is 10.5.4.0/23.

e We make the somewhat paranoid decision that hosts with incorrect information on their DNS
servers might be attackers, and reject connections from them.!*!

e Hosts on our network may use the portmap daemon, but hosts on other networks cannot.
Anyone on the Internet may attempt to access our FTP and telnet servers. (They will still
need a username and password to get anywhere, of course!)

While these requirements are fairly complicated, they boil down to a very simple set of rules:

#reject all connections from our competitor, and hosts with invalid DNS
ALL : PARANOID 10.5.4.0/23 : deny

#allow our network to use portmap, but deny all others

portmap : ALL EXCEPT 192.168.0.0/16 : deny

#now that portmap is safe & competition blocked, allow telnet & FTP
ALL : ALL : allow

You can find many more commented—out examples in the /etc/hosts.allow file on your FreeBSD
system or the hosts_allow(5) man page.

["if your goal is to log all attempted connections to your system, on any port, this is more reliably
done with the net.inet.tcp.log_in_vain and net.inet.udp.log_in_vain sysctls (see the Appendix).
These sysctls will log all attempts to contact any port on your system, not just wrapped daemons.
IStrictly speaking, this is not true. But remember from Chapter 5 that UDP is connectionless; there
is no connection to return the response over, so you have to jump through some very sophisticated
and annoying hoops to make twist work with UDP. Also, programs that transmit UDP generally don't
expect a response in such a manner and are not usually equipped to receive or interpret it. Twisting
UDP isn't worth the trouble.

Blspecifically blocking a competitor from using services you provide to the rest of the world is not a
good idea. They can get those services easily enough by using a dial-up connection, and it just
makes you look bad.

“IThis is a very careful stance. Hosts with an incorrect DNS entry are most probably on a network
with neglected nameservers or incompetent/overworked administrators. But of all attacking hosts,
attackers are more likely to deliberately misconfigure their DNS.

165

Packet Filtering

Many add-on programs available in the FreeBSD Ports Collection (see Chapter 10) cannot use
TCP Wrappers. For these programs, you can use the kernel-level packet-filtering tools IPFW or
IPFilter.

When using packet filtering, every network packet that enters the system is compared to a list of
rules that tells the kernel how to act on that packet. When a matching rule is found, the kernel acts
based upon that rule. For example, a rule can tell the filter to allow, drop, or alter the packet. You
can't use the nifty options that TCP Wrappers allows, though; instead of being able to spit a
comparatively friendly "rejected" message back to the client, the connection is cut at the network
level.

While the idea of packet filtering is straightforward enough, your first packet—filtering implementation
will probably be an absolute pain. Be prepared to spend a few hours experimenting with packet
filtering the first time you try it, and don't get discouraged by failures. While you might think you
know how IP works, the only way to really learn it is to work with it.

Note Effective packet filtering requires a solid grounding in how IP works. Trying to filter
without understanding what you're doing will be both frustrating and pointless. If
you're in doubt, re-read all that apparently useless stuff in Chapter 5.

IPFilter

IPFilter is the traffic—filtering module we're going to discuss in detail here. It has arguably the most
sophisticated packet-filtering system available in any free or proprietary software. IPFilter is
developed independently of FreeBSD, but has been integrated with the main OS for a few years
now. (It also runs on Solaris and the other versions of BSD.)

To use IPFilter, you must first rebuild your kernel (see Chapter 4) and include the following options:

options IPFILTER
options IPFILTER_LOG

The IPFILTER option adds basic IPFilter support to your kernel; IPFilter's activity is logged by
IPFILTER_LOG. While the logging isn't strictly necessary to run IPFilter, the logging module is
reasonably small, so you may as well include it. (If you exclude it, at some point you'll almost
certainly find yourself recompiling your kernel to include it just so you can debug a problem.)

IPFilter uses a default accept stance. If you prefer a default deny stance, include the following in
your kernel:

These options are not in the GENERIC kernel; not all people want packet filtering, and some people
want to do it in a different manner.

166

Note While you can add IPFilter rules for default deny as well, if you use this option and flush
all your rules, you'll lock yourself out of remote access.

IPFW

IPFW is a packet—filtering tool originally created by BSDi, which may give it a wider commercial
market than IPFilter and possibly more mindshare in the BSD world. With IPFW you can do nifty
things, such as make different networks appear to be local to each other (Ethernet bridging), or
control the bandwidth coming to or from any host (traffic throttling), as well as implement the simple
access control any packet filter has. It has a sophisticated packet-state inspection system that can
go toe-to-toe with anything on the open-source or proprietary market. It isn't as solid as that in
IPFilter, however, which is why we're going to focus on IPFilter for packet filtering.

Fortunately, you can use both IPFW and IPFilter together, combining IPFW's nifty bridging and
throttling features with IPFilter's advanced packet inspection (though not without jumping through a
few hoops). We'll discuss IPFW's bandwidth-throttling feature in Chapter 13.

Note You can use IPFW alone, though its packet—state inspection is not as sophisticated
as IPFilter's. Once you understand how to configure IPFilter, you won't have any
trouble with IPFW. See /etc/rc.firewall for some IPFW examples.

Default Accept and Default Deny in Packet Filtering

We spoke earlier about the default accept and default deny security stances, which are exceedingly
important in packet filtering. If you use a default accept stance and want to protect your system or
network, you will need numerous rules to block every possible attack. If you use a default deny
stance, you must explicitly open holes for every little service you offer. Once you choose which you
prefer, you can compile the appropriate default into your kernel.

When using a default deny stance, it is very easy to lock yourself out of remotely accessing the
machine at all. After all, if you flush all your firewall rules, the rule that allows you to access the
machine is deleted! | cut my own access off at least once every couple of years, generally because
I'm not thinking straight while fixing some other unrelated packet-filtering problem. The only fix is to
kick myself as | climb in the car, drive to the remote location, and apologize profusely to the people
I've inconvenienced as | fix the problem.

Still, in almost all circumstances, a default deny stance is correct. As a new administrator, the only
way you can reasonably learn packet filtering is if you have convenient access to the system
console. If you're not entirely confident in your setup, do not send a packet-filtering system across
the country unless you have either a competent local administrator or a serial console.

Basic Concepts of Packet Filtering

Recall from Chapter 5 that a TCP connection can be in a variety of states, including open, opening,
and so on. There's the whole three—way handshake process. When you try to open a connection,
the client sends a SYN packet to request synchronization. The server responds by sending the
client a packet marked as SYN-ACK, meaning, "l have received your connection request, and here
is some basic information for the connection." Finally, the client responds with an ACK packet,
meaning, "l have received and acknowledge your connection information." Every part of this
three—way handshake must complete for a connection to actually be set up. Your packet-filtering

167

rules must permit each part of the three—-way handshake, as well as the actual data transmission.
Allowing your server to receive incoming connection requests is useless if your packet-filter rules
do not permit it to send back an acknowledgment.

In the 1990s, packet filters checked each packet individually. If a packet matched a rule, it was
allowed to pass. The system did not record what came before, and had no idea if a packet was part
of a legitimate transaction or not. For example, if a packet marked SYN-ACK, bound for an address
in the inside of the packet filter, arrived at the outside of the packet filter, the packet filter would
decide that the packet had to be the response to a packet it had approved earlier. Such a packet
had to be approved to let the three—way handshake complete. As a result, intruders could forge
SYN-ACK packets, and use them to circumvent seemingly secure devices. Since the packet filter
didn't know who sent a SYN packet, it couldn't reject such SYN-ACK packets as illegitimate. Once
intruders got packets into the network, they could usually trigger a response from some device and
start to worm their way in.

State inspection, introduced with modern packet filters, arose to counteract this problem. Packet
filters that use state inspection maintain a table of every connection running through the system. If
an incoming packet appears to be part of an ongoing connection, but there's no matching
connection, it's rejected. (While this complicates the kernel's work, it's actually easier to write
packet-filter rules for stateful inspection.) For example, if a SYN-ACK packet arrives at a host with
stateful packet inspection, but the host did not send out a SYN to that particular host, the SYN-ACK
is dropped. The packet filter must track many, many more possible states, so this is harder than it
might seem.

If you've started to think, "Hey, packet filtering sounds like a firewall," you're right, to a point. The
word firewall is applied to a variety of devices meant to protect a network. Some are sophisticated,
and scrutinize every single packet, and proxy every service they permit. Some can be out-thought
by bricks. These days, the word firewall has been reduced to a marketing buzzword with very little
concrete meaning. It's like the word car; do you mean a 1972 Gremlin or a 2002 Maserati? Both
have their uses, but one is obviously designed for performance. While the Gremlin of firewalls might
have its uses, better to buy the Maserati if you want performance.

Having said that, your FreeBSD system can be as solid a firewall as you want to make it. Packet
filtering is only the beginning; if you wander through /usr/ports/net and /usr/ports/security, you'll find
a variety of application proxies that can let your FreeBSD system go up against Gauntlet or
Checkpoint and come out on top, for tens of thousands of dollars less.

Implementing IPFilter

IPFilter is a rule-based filter. Packets are checked against IPFilter rules in order, using a "best fit"
algorithm. This means that a packet is compared against all the rules (unless specifically told
otherwise), beginning with general rules and proceeding to more specific ones. For example, you
might start off by blocking everything, and then writing narrow rules to allow desired traffic.

The general form is as follows:

Every rule follows this basic format, though not all terms are mandatory. In fact, rules can be as
simple as block in from any to any.(You won't be really happy with the effects, because
you'd block everything, but it would work.)

168

The action in this case is block (v); packets that match this rule will be stopped.

in is the direction the packet is moving in (w), with valid word choices here being in and out (used
as if you were standing inside the computer). A packet matching in is considered to be entering the
system from the network.

The 1og and quick keywords (x,y) are options. The packet is logged, and if it matches a rule
flagged as quick, matching stops there. Remember that IPFilter checks every packet against every
rule, unless told otherwise. The quick keyword is what says otherwise. If a packet matches a rule
with the quick keyword, no further checking will be done and the action given by the rule is taken.

on ed0 specifies an interface (z). (All networked systems have at least two interfaces: one
loopback and at least one network interface.)

The source and destination are both any to and any ({), which say that it doesn't matter where this
packet is from or where it's going.

So far, then, this rule is pretty definite: It says to block everything on this interface immediately. If
edO is the only network interface on this system, no traffic will go in or out. (Well, at least it's
secure.)

The last option is what makes this rule useful, though. The with short statement (|) is an IPFilter
keyword that means "packets are too small to be real." While tiny packets are certainly possible,
they're extremely rare, and such a packet would almost certainly be part of an attack.
(Normal-sized packets will not match this rule and can pass on down the rule list, to be accepted or
rejected by later rules.)

Keywords and Configurations

Now that you've seen the basic rule format, let's look at some common keywords and configurations
that can be used to protect an Internet server. As shown earlier, the general form is as follows:

Each of these pieces is described next.

Action The two possible actions are block and pass. Blocked packets are not allowed to pass;
passed packets go on down the list. (A packet can be blocked by one rule, but passed by another,
more specific, rule.)

Direction This has two acceptable values: in and out. Packets coming in are entering the computer
from the network. Packets going out are those leaving the computer.

169

Options The 1og keyword tells IPFilter to pass the packet to the logging program, ipl. (See the
"IPFilter Logging" section for basic information, and Chapter 19 for details.) The quick keyword
tells IPFilter to stop processing and apply this rule immediately if the packet matches. The on
keyword tells the system that this rule applies only to a particular interface, such as on fxpo0.

Protocol This is any IP-layer protocol, such as tcp, udp, skip, and so on. Protocols can be
specified by the name given in /etc/protocols, or by protocol number, and are preceded by the
proto keyword, as in this example:

Source and Destination The from and to keywords show the direction of matching traffic. To
protect your server, block incoming traffic. For example, if your server had an IP address of
192.168.1.8, and you have a default deny security stance, you'd use the following rule (be sure to
use IP addresses, not host—names):

Packet-Options The final options describe special types of packets. The with short keyword
describes IP packets too short to be legitimate. These are generally blocked. Similarly, the with
ipopts keyword matches packets with IP options. In most cases, there is no legitimate reason for
them to be hitting your server—you probably want to block these. The keep state option tells
IPFilter to automatically permit connections that appear to be part of a connection in the state table.
This is the part that lets you make simple rules that cover each part of the data transaction. (You'll
see an example of this shortly.)

Note This is by no means a complete list of all possible IPFilter options. If you're interested in
fine-tuning IPFilter, see the file /usr/src/contrib/ipfilter/BNF, which offers a full description of
IPFilter configuration.

Finally, you can filter on the packet flags. Remember the multiple states of a TCP connection
discussed in Chapter 5?7 The initial packets had flags: SYN, ACK, and SYN-ACK. You can use
these to filter based on connection state using the with option. The most important flags to filter on
are syn and syn-ack, or S/SA.

With these basic rules and options, you can provide a reasonable layer of server protection. We'll
discuss their implementation in the rest of this section, and use them to build a sample rule list that
will protect a typical Internet server as we go.

Allowing Services

Up to this point, I've recommended a default deny stance, and I've shown you how to block people

from accessing your server. That's nice, but how do you allow people to access the parts of your
server that you want to make available to them?

170

The first step in making specific services available is to find either the port number or canonical port
name, and the protocol used by all network daemons you want the world to access. (See
/etc/services if you're not sure of the exact names and numbers.)

For example, assume you have a Web server (HTTP), POP3 server, and mail server. The Web
server runs on port 80, over TCP. Mail servers run over port 25, over TCP. Lastly, POP3 uses port
110 and TCP.

We start by blocking in all TCP connections, which catches all requests for new connections, by
setting the SYN or SYN-ACK flags like so:

Let's dissect this first rule. We start by blocking (v) all connections that come into the system (w).
Then we want to log each packet (x). The rule then narrows a bit: We only want TCP packets (y),
but from any source or destination (z). However, we only want packets that have the SYN or
SYN-ACK flag set ({). This means that this rule is watching for incoming TCP packets with either a
SYN or SYN-ACK flag, or a new connection request. Requests for connections will be denied,
unless a later rule permits them.

Then, to make our Web server available, we follow up with this:

This rule allows matching traffic to pass in (v,w). This rule uses the quick keyword (x), which
means that a packet matching this rule will short—circuit the rest of the rules and pass immediately.
A matching packet must be of protocol TCP (y), and can be from anywhere and addressed to
anywhere (z). This is much like the earlier rule, but here's the new bit: It must come in on the port for
www ({), as listed in /etc/services. Once this packet is approved, all other packets that are part of
the same connection will also be approved (|). Packets that request access to port 80 will be
accepted.

Rules for allowing pop3 and sendmail are very similar, with only the port changed:

pass in quick proto tcp from any to any port = pop3 keep state
pass in quick proto tcp from any to any port = smtp keep state

Without the use of the stateful-inspection (keep state) option, we would need to add rules that
matched not only the initial incoming connection, but also our Web server's response and the
following data flow, rules that would be complex and difficult to debug.

171

Also, when writing such rules, we couldn't be sure what random high—number port clients would use
to initiate connections. Manually filling in these rules would leave security holes and block legitimate
connections. By allowing IPFilter to compare each packet with its list of existing connections, we
eliminate those potential holes.

Loading IPFilter Rules
Now that you know how to create the IPFilter rules you need, how do you load them?

IPFilter is controlled by ipf(8), which you can set to read rules from a text file. (I generally put rules in
/etc/ipf.conf.) The -f£ flag tells IPFilter to read in rules from a specific file, /etc/ipf.conf in this case:

When you make changes to rules, you must flush the existing packet—filter rules before you load the
current ones with the —F flag. Otherwise, you will have all your old rules and all your new rules in
the packet filter. When flushing existing rules, you can also specify inbound (i), outbound (o), or all
(a) rules:

Note You can directly manipulate the IPFilter rules table to eliminate the extremely brief period
where your rules table is empty, but this requires a fair amount of experience. If you're
actually learning anything from this section, you're not ready to do that yet. Once you're quite
comfortable with IPFilter rules, see ipf(8) for detalils.

Rule Grouping

A rule group is a set of rules that matches a certain type of packet. For example, you will have some
rules that only apply to TCP packets and some that only apply to UDP packets. Some rules will only
apply to, say, requests for new connections, and others apply to every packet. It's not necessary to
compare every packet against every rule. IPFilter uses rule groups to funnel packets through an
optimal rule path that only evaluates that type of packet. This way, you can compare each packet
against the fewest possible rules, which makes your rules easier to understand, easier to debug,
and faster to actually run.

A rule that starts a rule group has a "head" statement at the very end of the rule, and members of
that group have a group statement at the end of the rule. Each rule group has a group number.
These group numbers are completely arbitrary. | recommend using group numbers that are at least
a hundred apart from each other, so that you can add subgroups and dependent rules between
them. We'll see some examples of how to do this as we go on.

172

For example, the following rule snippet catches all packets going out of interface ed0, and routes
them into rule group 100.

A packet that matches this rule will be processed by each rule in the rules list until it hits this rule, at
which point it will only be tested against rules in group 100. What's more, a packet that doesn't
match this rule will never be tested against any rule in group 100. For example:

Here, 127.0.0.0/8 is the block of addresses reserved for loopback connections, and your server
should not send packets from these addresses out across the Net. This rule blocks these loopback
packets. Packets from this address range are allowed over the loopback interface 100.

You would never want to use a universal rule to block all loopback packets because they are
necessary for normal operation. However, the preceding rule is in group 100, and according to the
head rule for this group, the only packets that will be affected are those that are outbound on the
edO interface. Loopback packets should never go out over a network interface, so this rule is
appropriate. Thus, this rule would protect others from being damaged by a misconfiguration on your
network, but wouldn't prevent someone from sending you IP packets that appeared to be from your
loopback interface. After all, you're only checking outbound packets in this rule.

So, how does this all fit together? The following example rule set is for a server with one network
interface, xI0, and one IP address, 192.168.1.200. This ruleset allows incoming POP3, SMTP, and
Web connections, and any outgoing connections. (You can find more examples of IPFilter rules for
various protocols in /usr/src/contrib/ipfilter/rules.)

#block garbage we never ever want to accept.
v block in log quick from any to any with ipopts
w block in log quick proto tcp from any to any with short

These initial rules are not in any group, and they come first, so they are applied against all packets.
The first rule tells the system to reject all packets using IP Options (v). If you don't know what IP
Options are, you don't want to accept them. No standard server program will require them. The
second rule tells you to reject all ultra—short TCP packets (w). These rules are fairly standard in all
IPFilter installs, and are widely recommended on any firewall or packet filter you might encounter.

The next two rules are as follows:

#the system loopback interface

#we can do anything we like to ourselves.
pass in quick on lo0 all

pass out quick on 1lo0 all

173

These two rules say that any traffic whatsoever can pass in and out on the loop-back interface.
There isn't much point in using groups to optimize these rules, as they're very short and quick.

The first rule group comes after the preceding general rules:

#these rules control outbound traffic

v pass out on x10 all head 100

w block out from 127.0.0.0/8 to any group 100

x block out from any to 127.0.0.0/8 group 100

y block out from any to 192.168.1.200/32 group 100

These rules control which traffic the server may send to the network. The first rule is very simple,
and states that all traffic outbound on the xI0 interface may pass (v). The most interesting part of
this rule is the end, where we start rule group 100. (The number 100 is arbitrarily chosen.) Packets
that match this rule will only be compared to rules in group 100.

The second rule is the same sort of rule we looked at earlier, blocking traffic from the loopback
interface (w). We don't need to specify an interface in this rule, as we already know that this rule
group only applies to packets going out on the xI0 interface. In short, we're blocking packets going
out that we should never be sending.

The next rule blocks a similar sort of illegal packet (x). If these 127.0.0.0/8 addresses are loopback
addresses, we should never try to reach them over the network.

Finally, in the last rule in the group, we block outbound packets to our own address (y). This is
another sort of problem; packets bound for our own system should not actually leave the network
card.

Rule group 100 ends here. If a packet is outbound on this interface, and doesn't match any of the
other rules in group 100, it will be allowed to go on its merry way. Outbound connections from this
machine are running in a default accept stance.

Now, let's consider packets entering the system:

#these rules control inbound traffic

v block in on x10 all head 200

w block in from 127.0.0.0/8 to any group 200

x block in from 192.168.1.200/32 to any group 200

y pass in quick proto tcp from any to any port = www keep state group 200
pass in quick proto tcp from any to any port = pop3 keep state group 200
pass in quick proto tcp from any to any port = smtp keep state group 200
#help clients close their connections when they request a service we
#don't offer. This makes our server look faster, and reduces general
#Internet load by a very, very, very small amount

z block return-rst in log proto tcp from any to any flags S/SA group 200
{ block return—-icmp (net-unr) in proto udp all group 200

The first rule in the preceding group blocks all traffic coming in from the Internet on this interface
(we're using a default deny stance for inbound traffic) and it starts rule group 200, another
arbitrarily—-chosen number (v). Incoming packets that have made it through the earlier rules will be
diverted into this rule.

The second rule blocks anything from a loopback IP (w). Since it is part of rule group 200, this rule
will only be applied to packets that arrive over the network card. There are many possible
explanations for such a packet arriving, but none of them are good.

Similarly, the next rule blocks any packet that appears to come from the server's own IP address
(x). These packets should never arrive over the network. Almost the only possible explanation for
their presence is an attempted hack.

The next three rules open holes for services that this particular server provides (y). Use of the quick
keyword cuts off all further processing, and the keep state option maintains the connection
throughout the request.

The final rules (z,{) are perhaps the most difficult to understand. Incoming network requests will
remain until they time out. The first of these rules sends a "reset" notice to rejected TCP
connections, telling them that their connection request is rejected rather than making the client time
out (z). The last rule does something similar for UDP connections ({). To describe exactly how this
works would require a fairly in—depth explanation of IP. These rules are not only safe, but also polite
to other users, and they will reduce network traffic. | highly recommend their use when filtering
incoming traffic.

Your typical incoming packet requesting a Web page will go through a total of nine rules. The first
two rules will check to see if the packet is too small or contains IP options, and are obviously bogus.
The next two will see if the packet is going over the loopback interface. It then checks to see if the
packet is going out on the network interface. The packet is coming in, not going out, so all of the
rules in group 100 are skipped. Finally, the packet is checked against the rule for incoming packets
on the network interface, and drops into rule group 200. There it is checked against two rules for
more obviously bogus packets, and is finally approved. Without rule grouping, the packet would go
through 12 rules. A 25 percent savings might not seem like much, but it can be very important when
processing millions of packets. As your rules grow more complex, the savings will increase.

IPFilter Logging

IPFilter's ipmon(8) is a separate program that handles logging for the system. IPFilter reads packets
as they pass through the kernel, and transmits them to FreeBSD's logging system as the LOCALO
facility. (See Chapter 19 to learn how to handle this data properly.) The simplest way to use ipmon
is to dump the log to syslogd(8) (see Chapter 19) with the —s flag:

One of UNIX's oldest security mechanisms is the idea of changed root or chroot, which confines a
user to a subsection of the filesystem, thus protecting the rest of the filesystem. Chroot is useful for
small services, but isn't so helpful when you're hosting dozens (or hundreds!) of clients on a single
server, because each client has special needs and each program has its own requirements for
chrooting.

175

Clients who understand the power of UNIX frequently make requests that make an administrator's
life difficult. They want to be able to install software or to reconfigure the Web server to enable the
latest nifty Apache module. In short, they want root access, and under most UNIX systems you can't
hand out root access willy—nilly to clients on a multi-user server.

Unless you're on FreeBSD. FreeBSD administrators faced this problem long ago, and solved it by
improving the chroot process dramatically. In fact, they solved it so well that, when using FreeBSD,
you can build an entire virtual machine on disk, and isolate that machine from the rest of your
system. This is called a jail.

Think of a jail as something like a client—server environment. The main server is the host system,
and each jailed system is a client. Changes made to the host can be reflected across all systems,
but changes to the jail can't affect the main system, unless you allow a jail to fill up a disk drive or
some such.

When in jail, clients can have root access and even install whatever nifty toys they desire without
interfering with the main system. All processes that are running in the jail are restricted to the jail
environment, and the kernel does not give them access to any information not in their jail. The
filesystem in the jail does not know about files or filesystems outside the jail. Since no program or
process in the jail knows about anything outside the jail, and cannot read or access anything outside
the jail, the user is locked in. Not only can the client not break out of the jail, if the jail is hacked the
intruder can't break out of the jail. This helps secure your system while meeting client needs.

On modern hardware with cheap disks and gobs of memory, a single FreeBSD system can host
dozens of jailed Web servers (though you'd need to be certain that your kernel is well tweaked to
allow this many Web servers to run, as discussed in Chapter 4). From a sales perspective, a jailed
machine is a good intermediate step between a virtual domain on a shared server and a private
colocated server.

Configuring Your Server to Use Jail

Before you begin using jails, be sure that your server is configured properly. Jails put a number of
special requirements on a server, the most annoying of which is that daemons cannot bind to all
available IP addresses.

Each jail is tied to a particular IP address, and is defined by that IP address. The jail must have
exclusive access to that IP address; nothing else can be using it. If your main server has a daemon
that binds to all available IP addresses on the system, that daemon will prevent a jail from starting. If
you look at your system's sockstat(1) output, you may notice several entries where the local
address resembles "*.22". This means that the daemon is listening on all IP addresses, on that port
number. If you want to use a jail, you must reconfigure these daemons to only listen on a single IP
address.

Check all of the following daemons before trying to start a jail.
Portmap
Of the standard FreeBSD daemons, portmap is the most problematic, preventing you from

combining NFS and jails. (Since very few systems on the naked Internet use NFS, this usually isn't
a problem.)

176

Syslogd

Syslogd is another story, because the system logger opens a socket so it can send log messages to
other servers. To silence syslogd entirely, set syslogd_flags="ss" in /etc/rc.conf, though if you
do you won't be able to log remotely. We'll discuss syslogd in detail in Chapter 15.

Named and sendmail

Other daemons, such as named and sendmail, want to attach to all available addresses. To solve
this problem, you can choose to configure them to bind to only a single IP address and run them on
the host system, but since you're using jails already, why not set up a "services jail" that contains
these daemons? Not only is it easier, but also it allows you to provide an additional layer of security.
(While named and sendmail are both quite secure today, they have a spotty history. Many older
admins will feel much better if those services are jailed.)

Inetd

Inetd also attaches to all available addresses, but it is simple enough to control with the -a flag. If
your jail host has an IP address of 192.168.1.222, add inetd_flags="-a 192.168.1.222"to
/etc/rc.conf.

Sshd

The last problematic network service is sshd. Assume again that your jail server has the IP address
of 192.168.1.222. You can tell sshd which port to listen on with the following entry in
/etc/ssh/sshd_config:

Since your jail host is probably not providing any network services itself, you're better off disabling
every network daemon except sshd. Ideally, your sockstat output should look something like this:

sockstat -4

USER COMMAND PID FD PROTO LOCAL ADDRESS FOREIGN ADDRESS
root sshd 248 3 tcp4 192.168.1.222:22 ok
#

We have only one daemon listening to the network, sshd. It is listening on a particular IP address
(192.168.1.222) and on a particular port. This daemon will not interfere with our jails.

Configuring Your Kernel to Use Jail

The preceding section takes care of the network part of configuring jail, but we still have some
kernel configuration to do. The jail system has three special sysctls:

jail.set_hostname_allowed By default, the root user in a jail can set the host-name of that jail.
Since the jail uses its hostname to communicate with the host, changing the hostname can easily
confuse an administrator responsible for managing it. You can set this sysctl to 0 to disable

177

changing the hostname.

jail.socket_unixiproute_only A jail defaults to only communicating via IP. While it isn't that likely
that a user might want to use, say, UNIX sockets or IPX; it's entirely possible. The jail system only
supports IP, however, so if you allow use of these other protocols, you're allowing the user to "leak"
out of the jail. They probably can't do anything with that access, but it's unwise to assume that
you're smarter than every malicious hacker out there. Set this to 1 to be careful and restrain your
users most tightly. Set it to 0 if you do choose to allow the use of any network or socket protocol.

jail.sysvipc_allowed System V IPC is a UNIX standard for allowing interprocess communication
via shared memory segments. Basically, related programs can use one chunk of memory to store
shared information. By default, IPC cannot be used in a jail, as the jail system does not build
separate areas of memory for each jail. Enabling IPC would allow information to leak to and from
the jail. Using this weakness to compromise the system would require a skilled attacker, however.
You can choose to do allow System V IPC by setting this sysctl to 1. Many database programs
require System V IPC.

Client Setup

Setting up a jail is straightforward, though you will need a FreeBSD source tree (see Chapter 6). For
example, say you want to build a jail on the partition /jail1. (Jails can be in directories as well, but
putting them on separate partitions gives you a quick—and-dirty method of controlling their size.
Other admins will just keep an eye on their users, and raise their rates for disk hogs.) To begin, go
to your FreeBSD source tree (generally under /usr/src). For your first jail, run this command:

This command will build a complete copy of FreeBSD and install it in the directory /jail1.

For all subsequent jails, you don't have to build all the binaries; you can install the ones you built the
first time by just running this command:

This will copy a complete set of FreeBSD userland programs into the jail.

Note Many people have special methods to reduce the amount of space a jail takes up, but the
preceding method is the approved one. Search the FreeBSD—-security mailing list archives if
you're interested in other methods.

The /etc Tree
Each jail has its own /etc tree. While not everything in there is functional, it's simpler to ignore the

extras than trim them out. You need to grab a copy of the /etc tree from the same source code you
used to build your jail, and install it properly in the jail's directory. The commands here do exactly

178

ed /usr/src/etc
make distribution DESTDIR=/3jaill NO_MAKEDEV_RUN=yes

Once you have the /etc directory, you'll need to create the device nodes for the jail. (Since a jail
does not require all the device nodes that the full system requires, MAKEDEYV has a special target
for use in jails.)

cd /jaill/dev
sh MAKEDEV jail

Many programs expect to find a file named /kernel. Even if they don't actually do anything with this
file, they're happier when the file exists. (Since you don't want people to be able to touch your actual
kernel, tie this fake to a harmless point. That way hostile users can overwrite your jailed kernel all
they want, but to no avail.)

cd jaill
1n -sf dev/null kernel

The IP Address

Now that the directory tree is established, you need to provide an IP address for the jail, since each
jail has its own IP address. We'll assume that 192.168.1.223 is our jailed IP address, and use
ifconfig to attach this address to our network card.

The Process Filesystem

Finally, every FreeBSD system requires its own process filesystem, or procfs. If you're not using
jails, you really don't need to worry about procfs; it appears automatically when you boot the
system, cannot be tuned, and programs fairly transparently access it when needed. It's a necessary
bit of infrastructure, however. | create a script /usr/local/etc/rc.d/jail.sh and add all the procfs mount
lines to this script.

179

Your jail is now ready.

Entering the Jail

Once you have everything configured, use jail(8) to start a jail:

You'll see a shell prompt, at which point you're in single—user mode in your jail and your jail is up
and running. You could choose any shell you like in the default install—I like tcsh for interactive use,
so that's my example. There are differences between your current state and FreeBSD single—user
mode, however. While the jail's startup sequence has not been run, the network is configured by jail.

Some commands are unavailable in a jail. For example, try to add an alias to your network
interface, and you'll get a "permission denied" error.

Play around a little, and try to break out of the jail. Try to go to a directory you know exists on the
system, but is outside of your jail directory. You're root; try to access processes you know are
running on the system. When you're tired of beating your head against that brick wall, explore the
jailed system. Powerful UNIX tools like perl(1) and cc(1) are fully available. You could even cvsup in
a jail and rebuild world, although this is not a good idea. (Remember, your kernel and userland
absolutely must be in sync; a jailed userland will not crash the kernel, but it certainly won't work as
expected!)

Processes

Processes in the jail cannot see the rest of the system. Our host server is running a jail, among
many other things. Here's a top snapshot from within a jail running in single—user mode. You can
see that the shell process is running, and the top process, but nothing else. You cannot see the
processes from the main system.

last pid: 10578; load averages: 0.00, 0.00, 0.00 up 1+09:21:29 19:16:49
2 processes: 1 running, 1 sleeping

CPU states: 0.0% user, 0.0% nice, 0.4% system, 0.0% interrupt, 99.6% idle
Mem: 6708K Active, 27M Inact, 23M Wired, 36K Cache, 61M Buf, 444M Free

Swap: 1024M Total, 1024M Free

PID USERNAME PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND
10574 root 20 0 1432K 1116K pause O 0:00 0.00% 0.00% tcsh
10578 root 96 0 1956K 1136K CPUL 1 0:00 0.00% 0.00% top

180

Now that we have a jail cell, it's time to check in and decorate it a little.

Final Jail Setup

The jail setup process is not as sophisticated as FreeBSD's installer. To prepare the environment
for your jail, you must perform all of the following commands from within the jail.

1. To begin, first create a jailed /etc/rc.conf. Include the following lines:

v portmap_enable="NO"
w network_interfaces=""
x sshd_enable="YES"

Since portmap will not run well in a jail, we turn it off (v). Since the jailed system startup will
complain if it can't configure the interface, we tell it to ignore its interfaces (w). And, since
you'll have difficulty accessing your jail via a command line once the jail starts, it's easiest to
enable sshd on the jail and access it via the network (x).

2. FreeBSD requires an /etc/fstab file. Since the jail has no filesystem control, an empty one
suffices.

3. Because sendmail(8) will complain if the aliases database does not exist, we use
newaliases(1) to build the proper database for it. (If you won't be running sendmail in the jail,
either because you'll be running postfix, as discussed in Chapter 12, or because you just
don't want a mail server here, this isn't an issue.)

4. Set a root password for the jailed environment. Use one that's different from the host
environment—that's part of what a jail is for, after all.

5. Your users will appreciate a correct time zone in the jail. (At least they can watch the
seconds tick by in their prison.)

181

Starting the Jail

From this point on, your jail will resemble a default FreeBSD install in which you can configure
nameservice, add packages and users, and so on. Once you exit this shell, though, the virtual
machine will stop running and your jail will shut down.

Note | highly recommend using packages to add software to jailed servers; building ports can take
up a lot of CPU time.

Your jail is ready to run multi-user, however. To start the jail in its full long—-term, multi-user glory,
just run the virtual machine's /etc/rc script from within the jail, either by hand or automatically at boot
by adding the command to the end of your /usr/local/etc/rc.d/jail.sh script.

To start a jail from the host system, enter this command:

Note You'll notice several errors on startup. Most of these are sysctls that cannot be
accessed in a jailed environment.

At this point, your jail is running. You can ssh in and configure it exactly as you would any other
system.

Managing Jails

Jails do complicate process management. If you're logged in to the actual jail server, you can see all
the processes in all of your jails. Which processes are the actual ones in your server, and which
belong to a jail?

Doing a ps —ax on the host system shows all running processes, even jailed ones. A STAT of J
means that the process is running in a jail. If you have few jails, each with a dedicated purpose, you
might be able to guess which is the process you want. For example, if you only have one
nameserver, and it's jailed, it's a good bet which named process you're after.

While you might want to manage processes from outside the jail, the simplest way to manage a jail
is from within. To do so, log into your jail as root and use ps —-ax and all the other standard
process—management tools to control running programs. If you don't want to log into the jail, you
have to resort to more difficult control mechanisms.

Procfs

To investigate individual processes to learn which jail they're part of, use the process filesystem,
procfs. (This is perhaps the only time you'll ever need to manually dig around in /proc—it's normally
only used by programs such as ps and top.) This procedure is most useful for identifying a jail from
a process ID. If you see a database process running amok and soaking up your memaory, you can
check its PID under /proc to see what jail it's in and act appropriately.

/proc contains a directory for each process running on the system. (If you're bored, you can look

182

through the various files.) To determine which jail a process is part of, first find the directory for the
process ID you're interested in, and then look for a file named status. The last word in the status file
is the host—name of the jail the process is running in. If the process is not jailed, the last word is a
hyphen (-).

Shutting Down a Jail

When you shut down the host server, the various client jails are shut down as well. Shutting down a
jail without shutting down the host is only slightly more complicated.

Programs such as shutdown(8) and reboot(8) are useless for shutting down a jail because their
main responsibility is to sync and unmount disks, disconnect the network, and so on. A virtual
machine does not have those responsibilities.

To shut down a jail, first log in to the jail as root. If your jail is hosting programs that like a nice, safe
shutdown, such as databases, you should run the shutdown script to shut them down.

/bin/sh /usr/local/etc/rc.d/programname.sh stop
/bin/sh /etc/rc.shutdown

This will shut down all jail processes. Since a jail is only processes, the jail will be shut down at this
time.

Note Do notdo ki11 -15 -1 on a nonjailed server. You'll shut down lots of stuff, leaving your
system in a fairly useless state similar to single—user mode.

Monitoring System Security

So, you think your server is secure. Maybe it is, for now.

Unfortunately, there's a class of intruder with nothing better to do than to keep up on the latest
security holes and try them out on systems they think might be vulnerable. Even if you read
FreeBSD-security religiously and apply every single patch that comes along, you might still get
hacked some day. While there is no way to be absolutely sure that you haven't been hacked, the
following hints will help you be aware when something does happen:

e Be familiar with your servers. Run ps —-axx on them regularly, and learn what processes
normally run on them. If you see a process you don't recognize, investigate.

e Take a look at your open network ports via netstat -na and sockstat. What TCP and
UDP ports should your server be listening on? If you don't recognize a port, investigate.

183

Perhaps it's something innocent, but it might be an intruder's backdoor.

e Unexplained system problems are a hint as well. Many intruders are ham-fingered klutzes
with few sysadmin skills; they use click—and-drool attacks and think that they're tough.
(Truly skilled intruders can not only clean up after themselves, but also ensure that the
system has no problems so that you won't be alerted.) Unexplained reboots might be a sign
of a new kernel being installed. They might also be a sign of failing hardware or bad
configuration, so they should be investigated anyway.

There are two security tools | particularly recommend for becoming familiar with your system. The
first is Isof(8) (/usr/ports/sysutils/Isof), which lists all open files on your computer. Reading this is an
education in and of itself; you probably had no idea that your Web server opened so much crud.
Seeing strange files open indicates that you're either not familiar with your system or someone's
doing something you probably don't want her to do.

The second tool is nessus(8) (/usr/ports/security/nessus). It's an automated vulnerability scanner.
Running security audits on your own machines is an excellent way to see what an attacker might
see on your systems.

If You're Hacked

There's no easy answer for what to do if your system is hacked. Huge books are written on the
subject. Here are some general suggestions, however.

First of all, a hacked system cannot be trusted. If someone has gained root access on your Internet
server, she could have replaced any program on the system. Even if you close the hole she got in
through, she could have installed a hacked version of login that sends your username and
password to an IRC channel somewhere. Don't trust your system. An upgrade will not cleanse your
system, as even sysinstall and the compiler are suspect.

Feel free to write FreeBSD-security@FreeBSD.org for some advice. Describe what you're seeing,
and why you think you're hacked. Be prepared for the final answer, though: reinstall your operating
system from known secure media (FTP or CD—-ROM), and restore your data from backup. (You did
read Chapter 3, right?)

A good security process will increase your chances of never being hacked. Good luck.

184

Chapter 9: Too Much Information About /etc

Overview

The /etc directory holds the basic configuration information needed to boot a UNIX system. Every
time | encounter an unfamiliar UNIX, one of the first things | do is scope out /etc.

The fastest way to go from a junior UNIX admin to a mid—grade one is to read /etc. Yes, all of it.
Yes, this is a lot of reading. But understanding /etc means that you understand how the system
hangs together. As you progress as a UNIX admin you're going to pick up this information
piecemeal anyway, so you might as well make it easy on yourself and assemble this portion of your
toolkit at the beginning.

Many /etc files are discussed in a chapter where they're most relevant (such as /etc/services in
Chapter 5. This chapter will cover the important files that don't quite fit anywhere else.

Varieties of /etc Files

Different UNIX systems use different /etc files. In many cases, these files are simply renamed or
restructured files from BSD4.3 or BSD4.4. The first time | encountered an IBM AlIX box, for
example, | went looking for a BSD-style /etc/fstab. It wasn't there. But a little hunting led me to
/etc/filesystems, which turned out to be an IBM-specific rearranged version of /etc/fstab. Knowing
that the information existed somewhere in /etc, and knowing what files it obviously wasn't in, made
the search quite short.

Even radically different FreeBSD systems have almost identical /etc directories. While some add-on
programs insert their own files here, you can expect certain files to be on every FreeBSD system
you encounter.

Note Before you touch any /etc files, review the information on RCS (Revision Control System) in
Chapter 3. | strongly recommend that you create an /etc/RCS directory and use it religiously
when experimenting. Changes in /etc can completely disable your system. While recovering a
system's scrambled filesystem table can help turn a competent administrator into a good one,
it's one of the least pleasant ways to get there.

Default Files

The files in FreeBSD's /etc/defaults/ directory each contain variable assignments. These files are
not intended to be edited by the administrator; instead, they're designed to be overridden by a file of
the same name directly under /etc.

For example, the upgrade process completely replaces the files in /etc/defaults. While every new
version of FreeBSD has a slightly different default configuration, the developers go to great lengths
to ensure that changes to these files are backward—compatible. This means that you won't have to
go through the upgraded configuration and manually merge in your changes; at most you'll have to
check out the new defaults file for nifty new configuration opportunities.

185

/etc/defaults/rc.conf

One commonly used file is /etc/defaults/rc.conf. It contains dozens of lines like this:

To change this setting, edit /etc/rc.conf, not /etc/defaults/rc.conf. When editing /etc/rc.conf, list the
variable you want to change and what you want to set it to. Your /etc/rc.conf entry will then override
what's in /etc/defaults/rc.conf. (Do not just copy the default file to /etc! This causes any number of
problems.)

Note While the system install process creates /etc/rc.conf, it's normal to find that you need
to create other override files in /etc.

Once you understand the various default files, you can easily assess an unfamiliar FreeBSD system
simply by checking the corresponding override files in /etc.

/etc/adduser.conf

Creating new users on some UNIX systems is a pain, requiring you to manually edit /etc/passwd,
rebuild the password database, edit /etc/group, create a home directory, install the various doffiles,
and so on. FreeBSD's adduser(8) program makes it much simpler to add users by running all these
other programs for you. The adduser.conf file holds adduser's default settings. These variables are
easily set just by putting the name, an equal sign, and the value. You can add comments just by
putting a pound sign in front of them. Here's a sample entry from this file, with its related comment:

verbose =
verbose = 1

Verbose

The first entry, verbose, controls how much you see when running adduser. With verbose = 0,
adduser prompts you for the new user information and nothing else. If you set verbose = 1,
adduser lets you rewrite /etc/adduser.conf before adding a new user. If you set verbose = 2,
adduser gives you a great many warnings, questions, and other information. (While the default is 1,
you can easily set this to 0 once you're familiar with the process, and have adduser.conf set up the
way you like it.)

Defaultpasswd

The defaultpasswd entry, either yes or no, controls whether users have a password set by
default. If you have a passwordless account on your system, anyone who knows the username can
connect to your system. In any circumstance where you have even the mildest concern for security,
set this to yes.

186

Dotdir

The dotdir entry contains the path for sample user dotfiles, such as .cshrc, .login, and so on. The
default directory contains reasonable defaults. If you want to create custom dotfiles for your system,
it's best to make your own directory under /usr/local/share/skel so that system upgrades won't
overwrite your changes (see Chapter 6).

Send_message

If you put a full path to a file in send_message, adduser sends each new user a welcome
message. If you set this to no, no message will be sent.

The adduser message uses variables; you can add your own by editing /usr/sbin/adduser. If you're
familiar with Perl, this isn't difficult; if not, you're better off just using the variables offered:
Susername, $fullname, and Spassword. (Since this message is mailed to the new user,
including the password is somewhat useless in addition to foolish. Too, the user has presumably
used his password to retrieve this message, so he should have it.) Go ahead and create your own
message instead of using the brief and generic default if you wish. | generally use an
/etc/adduser.message somewhat like this, substituting the appropriate company name as needed:

$fullname,
Welcome to The Company.

Help is available at 800-555-1212, or online at
http://helpdesk.companyname.com.

Use of this account is governed by our acceptable use policy,

available at http://aup.companyname.com or on this system in
/usr/local/share/company/aup.

Thank you for your business. We look forward to serving you.

The Company Support Staff.

Lodfile
The 1logfile setting tells adduser where to write a log of everything it does. The default works.
Home

If your system has unusual partitioning, you might want user directories in a different place than the
usual /home. You can control this with the home setting.

Path

If you install software in an unusual location, you might need to change the path entry. (Some
systems have their additional programs stored in /opt.)

187

Shellpref

The shellpref setting stores the list of available shells, in order of preference. If you add or
remove a shell, you need to correct this.

Defaultshell
The defaultshell setting contains, as you might guess, the default user shell.
Defaultgroup

The defaultgroup entry is a little different. FreeBSD assigns a unique group to each user. For
example, when you add the user mwlucas, it tries to create a group mwlucas (which allows greater
flexibility when assigning permissions). To have every user be a member of a particular group, put
the name of the group here; otherwise, leave this set to USER.

Defaultclass

The defaultclass line controls what login.conf (see /etc/login.conf) class that adduser assigns by
default. You can leave this empty, or assign a class from those you have previously configured in
/etc/login.conf.

Uid_start

Finally, the uid_start variable determines the user ID (UID) number that adduser will begin with;
the default is 1000. You might want to change this number to match UIDs across multiple operating
systems; various Linux distributions start with different UID numbers, for example. But if UID
synchronization isn't important to you, don't worry about this setting.

/etc/crontab

The crontab file controls the FreeBSD job scheduler, cron, which allows the administrator to have
the system run a command at any time.

Each user has a separate crontab file, which can be edited with crontab -e. The /etc/crontab file
is the system's file. Unlike user crontabs, /etc/crontab lets the sysadmin specify which user will run a
job. For example, the sysadmin can basically say, "Run this job at 10 PM Tuesdays as root, and run
this other job at 7 AM every day as nobody." Other users can only run jobs as themselves.

Note The /etc/crontab file is considered a FreeBSD system file. Be careful not to overwrite
this file when you upgrade (see Chapter 6). One way to simplify upgrading
/etc/crontab is to set your custom entries at the end of the file, marked off with a few
lines of hash marks (#).

Environment Statements

The /etc/crontab file begins with some environment statements because cron needs to set up a
shell environment for the programs it starts. If you're familiar with shell programming, you can alter
these statements to fit your system, but be careful when making blanket changes because changes
made at the top of /etc/crontab affect all programs run from the crontab. (You can specify
environment variables on the command line for each command you run from cron.)

188

Here are some typical environment variables as set in /etc/crontab on a FreeBSD 4.5-STABLE
system.

SHELL=/bin/sh
PATH=/etc:/bin:/sbin:/usr/bin:/usr/sbin
HOME=/

The hash marks are comments or empty lines used to separate entries and make the file somewhat
easier to read.

Beneath the environment information, the crontab file is divided into eight columns, forming a table.
The first six columns represent the time the command should run: minute, hour, day of the month,
month of the year, and day of the week, in that order. An asterisk (*) in any column means "every
one," while a number means "at this exact time."

Following the time columns is the username the job runs as, then the command.

User crontab files are almost identical, lacking only the username column.

Specifying Times

You must use a valid number for times in crontab. The rule is that minutes, hours, and days of the
week start with 0, and days of the month and months begin with 1. Also, thanks to an ancient

disagreement between AT&T and BSD, the day of the week uses both 7 and 0 for Sunday.

For example, to have user dbadmin run the program /usr/local/bin/db backup.sh at 55 minutes after
each hour, every day to infinity, your crontab line would look like this:

Asterisks tell cron to run this job every hour, every day of the month, every month, and every
weekday.

To run this job only at 1:55 PM each day, you would use the following:

Here, 13 represents 1:00 PM on the 24-hour clock, and 55 the number of minutes past the hour.

One common mistake people make when using cron is to specify a large unit of time, but miss the
small one. For example, suppose you entered the following, intending to run a job every day at 8

189

In this case, you'd find that the job would run at 8 AM, all right, as well as at 8:01, 8:02, 8:03, and so
on, until 9:00 AM. If your job takes more than one minute to run, you'll quickly bring your system to
its knees.

The correct way to specify 8 AM and only 8 AM would be to enter this:

To specify ranges of time, such as running this program once an hour, every hour, between 8 AM
and 6 PM, Monday through Friday, use something like this:

Or, more interestingly, you can specify fractions of time, or steps. For example, to run a program
every five minutes, enter the following:

You can also combine ranges with steps. For example, if you want your job to run every five
minutes, but want it offset by one minute from the preceding job, you could use this:

You can control the day a job runs with two fields: the day of the month and the day of the week. If
you specify both a day of the month and a day of the week, the job will run whenever either
condition is met. For example, you might tell cron to "Run this job on the 1st and the 15th, plus
every Monday" as follows:

If you find that a job requires a nonstandard environment, set the environment on the command line
just as you would in the shell. For example, if your db—backup.sh program requires a

190

LD_LIBRARY_PATH environment variable, you can set it like so:

/etc/csh.*

The /etc/csh.” files contain systemwide defaults for csh and tcsh. When a user logs in with either of
these shells, the shell executes any commands it finds in /etc/csh.login. Similarly, when the user
logs out, /etc/csh.logout is executed. You can place general shell configuration information in
/etc/csh.cshrc.

/etc/dhclient.conf

Many operating systems give you very basic DHCP client configuration with no opportunity to
fine—tune or customize it; you either use it or you don't. Any operating system that uses the Internet
Software Consortium's DHCP client, including all of the BSDs, lets you fine—tune your DHCP client
setup.

In most cases, an empty DHCP client file (/etc/dhclient.conf) will give you full DHCP functionality,
but won't work correctly in all situations. Perhaps you're connecting to a DHCP server across the
country, your local LAN is having problems, or you have multiple DHCP servers. You may be able
to solve these problems by tweaking your DHCP configuration. A DHCP lease contains your
network configuration information, such as the IP address you get, the default route, and the
nameservers available for your use. Without a valid, correct lease, you won't have Internet
connectivity.

Entries in dhclient.conf resemble C code and generally include a variable declaration, followed by a
value. Each line ends in a semicolon.

Prolonging Lease Requests

When dhclient starts, it requests the last IP address it used (leased) and, by default, spends ten
seconds trying to get that address. The reboot time is the length of time the client will spend trying
to get the old address re-issued. To change this waiting time, use the reboot statement. For
example, I've been on large corporate networks where the DHCP server was in another state; by
adjusting the reboot time upwards, | could easily get my previous network address. Just specify the
reboot time in dhclient.conf, with a trailing semicolon in standard C code style.

If the client cannot get its previous IP address in the reboot time, it will request a new one instead.

191

Rejecting Bad DHCP Servers

One of dhclient's more interesting features is its ability to reject bad DHCP servers. For example,
some networks allow just about anyone to hook just about anything to them, like the ones found on
exhibition floors or at some development companies. In such situations it's quite possible for there
to be a rogue DHCP server on the floor, and if your system receives a DHCP lease that just doesn't
work, it might be from a rogue server.

To identify a bad DHCP server, examine the leases you have received in /var/db/dhclient.leases.
This file lists all the leases you have ever received, including the bad one. Identifying a bad DHCP
server is a matter of trial and error. Get the IP address of each DHCP server, and reject them one at
a time until you get a working configuration. For example, if the bad server's address was
192.168.1.84, enter

Note If you find a rogue DHCP server on one of your networks, it's much better to find and
disable the rogue server than to patch around it with a reject statement. On a foreign
network, however, you don't generally have the privilege to do that.

Announcing Host Information

If you are on someone else's network and feel like being kind to the local network administrator, add
a send statement to your dhclient.conf. The DHCP server will record the information you put in your
send statement in its lease database. The local network administrator can use this information to
find you if your system starts misbehaving and damaging the network. (You might not think this is a
good thing, but making yourself easy to find is much better than making the administrator hunt you
down.)

send host-name "mwlucas-laptop.bigcompany.com";

Of the many other options in dhclient.conf, like the ability to refuse leases that don't include
information you want, most are relatively useless under normal (and most abnormal) circumstances.
For truly detailed information on dhclient's more exotic options read dhclient.conf(5).

/etc/fstab

The /etc/fstab file describes the filesystems on the system. For details on the File System Table,
see Chapter 16.

letc/ftp.*
The /etc/ftp.* files control how the system's FTP server behaves. For details on /etc/ftpusers,

/etc/ftpchroot, /etc/ftpwelcome, /etc/ftpmotd, and general FTP operations, see Chapter 15's nice little
write—up on FTP.

192

/etc/hosts.allow

The /etc/hosts.allow file controls who can access daemons compiled with TCP Wrappers support.
It's covered in painful detail in Chapter 8.

/etc/hosts.equiv

The /etc/hosts.equiv file allows trusted remote systems to log in or run commands on the local
system without providing a password or even logging in. Hosts listed in this file are assumed to
have performed user authentication on a trusted system, and hence the local system doesn't have
to bother re—authenticating the user.

This file is handy and useful on friendly networks, but, unfortunately, there is no such thing as a
friendly network nowadays. In fact, any one disgruntled employee can destroy a corporate network
with this service. A machine running /etc/hosts.equiv on the naked Internet is pretty much dog meat
for the first script kiddie who wanders by. In fact, /etc/hosts.equiv and its related services have even
bitten top—notch security experts.

Still, should you decide to use this risky feature, you must have rsh or rlogin, or both, enabled in
/etc/inetd.conf (see Chapter 13). The format is simple: a hostname, followed by an optional
username.

For example, assume you have two UNIX boxes, "daffy" and "bugs". If bugs's /etc/hosts.equiv
includes "daffy", a user on daffy can get a shell on bugs without typing a password.

daffy; rlogin bugs
Last login: Tue Apr 3 19:12:08 from 192.168.1.200
Copyright (c) 1980, 1983, 1986, 1988, 1990, 1991, 1993, 1994
The Regents of the University of California. All rights reserved.

FreeBSD 5.0-CURRENT (PETULANCE) #0: Mon Aug 21 12:27:59 EDT 2000
You have mail.

bugs; logout

rlogin: connection closed.

daffy;

See? No password. This works well, unless some intruder has broken into daffy. Remember, if you
use this tool, a compromise on one machine means that every machine on your network is
compromised. Rlogin and related tools are really unsuitable for any modern networked environment.

With comparatively recent modifications to rlogin and rsh, you can require a password to access
another system. If you're going to do that, however, you might as well implement things properly
and start using ssh (see Chapter 13).

/etc/hosts.Ipd

The /etc/hosts.Ipd file is one of the simplest files in /etc. Hosts listed here, each on their own line,
may print to the printer(s) controlled by this machine. While you can use hostnames, DNS problems
can choke printing, so use IP addresses instead.

193

Unlike many other UNIX configuration files, this one does not accept network numbers or netmasks;
you must list individual hostnames or IP addresses.

/etc/inetd.conf

The inetd daemon handles incoming network connections for smaller daemons that don"t run
frequently. For details, see the section on inetd in Chapter 13.

/etc/locate.rc

The locate(1) program finds all files of a given name. For example, to find locate.rc, enter the
following:

locate locate.rc

/etc/locate.rc
/usr/share/examples/etc/locate.rc
/usr/src/usr.bin/locate/locate/locate.rc

You'll see that locate.rc can be found in three places. One is in the main /etc directory, the second is
in the system examples directory, and the third is in the system source code.

Once a week your FreeBSD system scans its disks, builds a list of everything it finds, and stores
that list in a database. The list-building program uses the values shown in /etc/locate.rc as defaults
(/etc/locate.rc does not affect how locate(1) itself runs). To change some of those parameters, and
thereby change how your locate database is built and what it contains, consider setting the following
in /etc/locate.rc:

e The file—finding program stores its temporary files in TMPDIR. If you're low on space in your
system temporary directory, you can change this path.

e The location of the weekly database can be changed via the FCODES variable. This can
have repercussions on other parts of the locate system, however, so be prepared for odd
results.

e The SEARCHPATHS value lists every directory you want searched. This defaults to /, the
whole disk; to index only a portion of your disk, set a specific value here.

e The PRUNEPATHS value lists directories you don't want to index. This defaults to excluding
temporary directories that traditionally contain only short-lived files.

e The FILESYSTEMS variable controls the sort of filesystem you want to index. The default is
UFS, the standard FreeBSD filesystem, but you can list other filesystem types, such as MD
(memory disks) or NFS (network filesystem). If you have foreign filesystems mounted, such
as an EXT2FS partition, you might want to include them as well. (By the way, indexing
network filesystems is a bad idea; if all of your servers start indexing the fileserver, you will
bog down the network badly.)

/etc/login.access

Some servers have hundreds of users, each with different needs. So how do you assign different
privileges to each?

194

FreeBSD includes a few different ways to control user access. The /etc/login.access file controls a
user's ability to log in. Every time you try to open a connection to a FreeBSD system, the
permissions in login.access are checked first. If login.access contains rules that forbid logins from
that user, the login attempt fails immediately. This file defaults to empty, meaning there are no
restrictions on anyone with a username and password.

The /etc/login.access file has three colon-delimited fields. The first either grants (+) or denies ()
the right to log in; the second is a list of users or groups; and the third is a list of connection sources.

The /etc/login.access file permits an "all" and "all except" syntax, much like /etc/hosts.allow uses for
TCP Wrappers (see Chapter 8), allowing the administrator to make basic but expressive rules. The
login program checks rules on a first-fit basis, rather than a best fit. When the system finds a rule
where both the group and the connection source match, it immediately accepts or rejects the
connection. As such, rule order is very important.

For example, to only allow members of the wheel group and the user root to log in to the system
console, you might try to use:

The problem with this rule, though, is that it doesn't actually deny users login privileges. Since the
default is to accept logins, and all this entry does is explicitly grant login rights to two sets of users,
this won't stop people from logging in.['! Other rules will continue to be processed. If my username is
javerage, and | try to log in to the console, this rule doesn't deny me access.

So rather than use a statement like the preceding one, try one like this, the inverse:

This will reject connections more quickly, and run less risk of administrator error. As a rule, it's best
to build your lists by rejecting logins, rather than permitting them.

When applying this rule, we see that Joe Average matches this rule and is immediately rejected.
Since rules are applied based on first fit, there's no chance that a later rule will match, so we avoid
unintended access.

Connection Source
The last field in the /etc/login.access file, the connection source, has the greatest variety of values.

You can use several different types of information here: hostnames, host addresses, network
numbers, domain names, LOCAL, and ALL.

195

Hostnames

Hostnames rely upon DNS or the hosts file. If you suspect your nameserver might suffer a hack at
some time, you probably don't want to use this system; intruders can give a hostname any IP
address that they like, and fool your system into accepting the connection. Still, you could do this:

ALL means always match. This is particularly useful in combination with EXCEPT, as we'll see next.

Host Addresses and Networks

Host addresses look like hostnames, but they're immune to spoofed DNS.

This would allow anyone in the wheel group to log in from a machine whose |IP address began with
169.254.8, and deny everyone else.

For example, if you didn't want anyone to access your firewall unless they logged in from a
management workstation, you could do something like this:

LOCAL

The most complicated location is LOCAL, which matches any hostname without a dot in it (generally
only hosts in the local domain). For example, http://www.absolutebsd.com/ thinks that any host in
"AbsoluteBSD.com" matches LOCAL.

This works via reverse DNS (see Chapter 12), which is the process where you look up a host's

196

name from its IP address—this process is controlled by the owner of the IP address. Although my
laptop might claim a hostname of pedicular.AbsoluteBSD.com, its IP address has reverse DNS that
claims it is somewhere in the home.com network. A machine in AbsoluteBSD.com will think that my
laptop has a hostname that is in the home.com domain, and hence is not local. As such, | can't use
the LocAL verification method.

So, how can we tie all this together? For one thing, we can use a one-line login.access to allow
administrators to log in to the server while rejecting all other remote connections:

However, this might restrict your environment too tightly if, for example, your company has staff
groups. Two common groups are "dns" (people who can edit domain zone files) and "www" (people
who can edit Web server configurations). Servers such as these might find this login.access
appropriate:

—:ALL EXCEPT wheel:console
—:ALL EXCEPT wheel dns www:ALL

Set up this entry one time, and users cannot log in unless you add them to a permitted group.

/etc/login.conf

If the all-or—nothing control of /etc/login.access doesn't fit your needs, you can provide more
specific controls with /etc/login.conf. This file allows you to tweak the environment you present to
specific users and limit the resources you allow them to have.

The login.conf system works by defining classes and assigning each user to a class. Each class has
limits on its access to system resources. When you change the limits on the class, those limits
affect all users in that class. You set a user's class when you create the user's account, and change
it by running chsh username as root.

Class Definitions

Each class definition consists of a series of variable assignments. When a user logs in, login(1)
checks these variables to establish the user's resource limits, accounting, and environment setup.

The default /etc/login.conf starts with the "default" class, the class used by accounts without any

other class. This class gives the user basically unlimited access to system resources. If the default
class fits your needs, don't adjust this file at all. (If you need to throttle users, read on.)

197

Each entry in the class definition begins and ends with a colon, although technically, each entry is
all one line. The backslash character is a continuation character (indicating that the computer
should ignore the line break), which allows the file to be arranged in a human-readable format.
Here's a sample of the beginning of one class in a standard login.conf:

default:\
:passwd_format=md5:\
:copyright=/etc/COPYRIGHT:\
:welcome=/etc/motd:\

This class is called default. I've shown three variables in this class (there are more, but this is
enough to give you the idea). The variable passwd_format, for example, is set to md5. Each login
class contains these variables and assignments. You can change a user's experience on the
system by assigning her to the class that configures her environment as you desire.

Some login.conf variables don't have a value; they change account behavior just by being present.
For example, the "requirehome" variable just needs to be in the class definition to have its effect.

Making Changes Take Effect

After you edit login.conf, you must update your login database to make the changes take effect:

FreeBSD's default /etc/login.conf includes several classes of users. If you want an idea of what sort
of restrictions to put on users for various situations, check that file. The following section will give
you an idea of some of the things that can be set here.

Resource Limits

Resource limits allow you to control how much of the system any one user can tie up at one time. If
you have several hundred users logged in to one machine, and one of those users decides to
compile 30MB of source code, that person can consume far more than his fair share of processor
time and memory. By limiting the resources that one user can monopolize at one time, you can
make the system more responsive for less needy users.

Resource limits are frequently tied to each process, so you need to consider that when assigning
limits. If you give each process 20MB of RAM, and allow 20 processes per user, you might as well
not be using resource limits at all, since you're assigning 400MB of RAM to each user. Each user
class can have its own resource limits.

198

Table 9-1 describes the resource-limiting login.conf variables.

Table 9-1: Login.conf variables for limiting resource use

Variable Description

cputime The maximum CPU time any process may use

filesize The maximum size of any one file

datasize The maximum memory size of data that can be consumed by one process

stacksize The maximum amount of memory on the stack usable by a process
coredumpsize The maximum size of a core dump

memoryuse The maximum amount of memory a process can lock

maxproc The maximum number of processes the user can have running
openfiles The maximum number of open files per process

sbsize The maximum socket buffer size a user's application can consume

Current and Maximum Resource Limits

You can specify current and maximum resource limits. Current limits (-cur) are generally advisory,
and the user can override them at will. (This works well on a cooperative system, where multiple
users willingly share resources.) Maximum limits (-max) are absolute, and the user cannot raise
them. You can use current limits to warn the user that they are trying to exceed the standard
resource allocation.

To specify a current limit, add —cur to the limit name. To make a hard limit, add -max. For example,
to set a current limit on the number of processes the user can have, do this:

maxproc—-cur: 30
maxproc-max: 60

If you don't specify either —cur or -max, both the current and maximum limit are set to the value
you specify.

Specifying Default Environment Settings

You can also specify default environment settings in /etc/login.conf. This can be better than setting
them in a user's default .cshrc or .profile, as these settings affect all user accounts immediately
upon each user's next login.

All of the environment fields recognize two special characters: the tilde (~) and the dollar sign ($).

The tilde (~) is replaced by the user's home directory, the dollar sign ($) by the username. For
example, in the default class, the line that sets the environment variable MAIL to /var/mail/$

199

becomes /var/mail, followed by the user's username. Similarly, ~bin in the path entry points to the
bin directory in the user's home directory.

Table 9-2 identifies some common environment settings.

Table 9-2: Common login.conf environment variables

Variable Description

hushlogin If present in class definition, no system information is given out during the initial
login.

ignorenologin If present in class definition, the user can log in even when a /var/run/nologin file
exists.

manpath The default path to search for man pages.

nologin If present, the user cannot log in. This is identical to an entry in /etc/login.access
(described earlier).

path The default path for programs.

priority The default process priority, or nice (see Chapter 18).

requirehome If presentin the class definition, the user must have a valid home directory in
order to log in.

setenv A list of default environment variables.

shell The full path of a shell to be executed upon login. This overrides the shell listed
in /etc/passwd. The user's $SHELL environment variable will contain the shell
listed in /etc/passwd, however, resulting in an inconsistent environment. Playing
games with this is an excellent way to annoy your users.

term The default terminal type. Just about anything that tries to set a terminal type can
override it.

timezone The default value of the $TZ environment variable. Users can override this.

umask The default umask (see builtin(1)). Users can override this.

welcome The full path to a file containing a welcome message for users in this class. The

default is /etc/motd. (Different welcome messages can provide instructions and
messages to different sorts of users.)

Controlling Password and Login Options

You can control various password and login options in /etc/login.conf. Unlike the environment setup,
many of these can only be set in this file. Here are some common authentication options.

minpasswordlen Minpasswordlen specifies the minimum length of a password. This only takes
effect the next time the user changes his or her password; it doesn't go through and check that all
passwords are of this length. The following example will really, really annoy your users.

passwd_format The passwd_format option sets the encryption hash used to encrypt passwords in
/etc/passwd. This defaults to md5 for MD5 hashing. Other permissible options are des and b1 f
(blowfish). DES is most useful when you want to share passwords between different operating
systems. Blowfish might be an inherently cool algorithm, but it isn't really necessary unless you want
to share password files between FreeBSD and OpenBSD systems.

mixpasswordcase |f mixpasswordcase is present, users cannot change their passwords to contain
only lowercase letters.

copyright The copyright option specifies the full path to a file containing copyright information for
the system.

host.allow Users in a class with this value set can use rlogin and rsh to log in to this server from the
hosts specified, much like /etc/hosts.allow permits. (This does not make rlogin or rsh safe, and
should be strongly discouraged.) The entry is a comma-delimited list, and can use an asterisk (*) as
a wildcard to match networks or domains. A system must appear in both /etc/hosts.allow and this
entry.

host.deny This variable lists remote hosts that cannot log in using accounts in this class. This
functionality overlaps /etc/login.access, allowing you to deny logins by particular accounts from
particular IP addresses.

If host.deny conflicts with host.allow, host.deny takes precedence. As in host.allow, you can use an
asterisk (*) as a wildcard to match entire networks or domains. Any host not listed in host.deny may
connect as one of the users in the class.

times.allow Times.allow specifies the times when the user may log in. This requires a
comma-delimited field of days and times. Days are given as the first two letters of the day's name
(Su, Mo, Tu, We, Th, Fr, and Sa). Time is in standard 24-hour format. For example, if a user can
only log in on Wednesdays, between 8 AM and 5 PM, you would use this entry:

times.deny Times.deny specifies times when the user cannot log in. Note that this does not kick a
user off when he's already logged in. The format is the same as for times.allow. If times.allow and
times.deny overlap, times.deny takes precedence.

Accounting Functions

You can set a variety of accounting functions in /etc/login.conf, and these functions require system
accounting to be on. Accounting isn't as important today as it was when inexpensive computers cost

201

tens of thousands of dollars, so we won't discuss it in this book. Still, you might as well know that
the capability exists.

/etc/mail/mailer.conf

You can choose from several mail-server programs when using FreeBSD, and the mailer.conf file
allows you to control which mailer you will use on your system with a minimum of fuss.

Traditionally, the only mail server program available for any UNIX was sendmail(8). As such, a lot of
add-on software expects to find /usr/sbin/sendmail, and expects it to behave in a certain manner.
Since programs expected to find sendmail, when replacement mail-server programs were finally
created, they generally accepted the same command-line options as the original sendmail, and
even were installed as /usr/sbin/sendmail, so that these packages would continue to work.

The only problem with this sendmail compatibility is that an admin on an unfamiliar system has no
idea what the /usr/sbin/sendmail program really is! If someone has installed a few different mail
servers to experiment with, you'll have to resort to detective work and a bit of luck just to identify
your so—called sendmail.

The /etc/mail/mailer.conf file does an end-run around all this mess by eliminating /usr/sbin/sendmail
as a mail program. Instead, sendmail is just a little program that checks mailer.conf and redirects
the request to the mail-sending program indicated.

Note As yet another piece of legacy fun from the early days of UNIX, sendmail behaved differently
depending on which name it was called by. The most common variant names for sendmail
are send-mail, mailg, and newaliases.

The mailer.conf file simply contains a list of program names, along with the path to the actual

program to be called. For example, the Postfix mail server (described in Chapter 14) installs as
/usr/local/sbin/sendmail. An appropriate mailer.conf entry looks like this.

sendmail /usr/local/sbin/sendmail
send-mail /usr/local/sbin/sendmail
mailg /usr/local/sbin/sendmail
newaliases /usr/local/sbin/sendmail

/etc/make.conf and /etc/defaults/make.conf

To make a program is to build it from source code into machine language, also known as compiling.
(We'll discuss that in some detail in Chapter 10.) The make.conf files control how that building
process works. Make.conf is one of the more complex and interesting BSD features; the
/etc/make.conf file controls how software is built on the local system.

Like a few other FreeBSD configuration files, make.conf is actually two files: /etc/defaults/make.conf
and /etc/make.conf. As with all other files in /etc/default, /etc/default/make.conf is not designed to be
edited directly. Instead, entries in /etc/make.conf override entries in /etc/defaults/make.conf. This
way, an upgrade can safely overwrite /etc/default/make.conf.

202

By default, everything in /etc/default/make.conf is commented out. To set something, copy the
relevant line from the default make.conf to /etc/make.conf, and remove the pound sign (#) to
uncomment it.

In many cases, the settings in /etc/defaults/make.conf are optimizations that are not set by default,
for one reason or another. Some produce bad code in certain situations; others just slow down the
build process. Some settings are optional or aren't supported by FreeBSD developers. (In general,
the examples given are safe; when investigating options in /etc/defaults/make.conf, be sure to pay
careful attention to any notes.)

Many of the options in /etc/defaults/make.conf should only be touched by people very familiar with
the FreeBSD build process. Quite a few are generally safe for anyone to use, however, and we'll
look at the major safe ones here.

Note While the samples that follow are taken directly from a FreeBSD 4-stable system, check
/etc/defaults/make.conf for any change. This is not an area where you want surprises.

CPUTYPE=i686 By default, the compiler builds programs without optimizing for the CPU on the
system, though optimizing for a particular CPU can dramatically improve performance. One good
example of this is OpenSSL, which FreeBSD uses to handle cryptographic functions for SSH and its
related programs.

FreeBSD recognizes the CPU types for the 32—bit X86 systems listed in Table 9-3.

Table 9-3: CPU types recognized in 32-bit X86 systems

CPU Type Description

k7 The AMD K7 processor

k6-2 The AMD k6-2 processor

k6 The original AMD k6 processor
k5 The AMD k5 processor

p3 The Pentium 3

p2 The Pentium 2

1686 Generic Intel Pentium 2 or better
1586 /mmx Original Pentium with MMX
i586 Original Pentium

1486 486-class CPU
i386 386—class CPU

CFLAGS= -0 —-pipe This option specifies optimization settings for building nonkernel programs.
The example shown in the defaults file is usable and is supported by the FreeBSD Project. Though
people may recommend other settings or things to add to this setting, any options other than those
shown in the example are not supported by the FreeBSD Project. If you're familiar with other free
versions of UNIX, you might be familiar with some of these more obscure optimizations.

203

In general, FreeBSD code is expected to compile most correctly without any of these additional
options, and all you can do by adding optimizations is impair your performance. If you have a
problem with a program built with nonstandard flags, revert the flags to the standard form and
rebuild the program.

COPTFLAGS= -0 -pipe The coPTFLAGS optimizations are used for building the kernel only.
Again, settings other than the defaults presented can build a noworking kernel.

INSTALL=install -C By default, when FreeBSD installs a built program, it copies the new binary on
top of the old one. The install —-c option makes the installer compare the new program to the
existing one, and if they're identical, the new binary is not installed. This can accelerate upgrades
and save disk writes. Saving disk writes is not usually that much of an issue, but it's there if you
want it.

System Upgrade make.conf Options

The following options might be useful when upgrading from source (explained in Chapter 6). If
you're not using the component in question, setting the make options to not build those components
will reduce the time you need to build the system. For example, you might choose not to build
sendmail because your system doesn't need it.

These options are also useful if you've replaced part of the system. If you're running the latest
version of named from the ports collection, for example, you might have replaced /usr/sbin/named
with your customized version. You don't want an upgrade to clobber this, so you can tell the system
not to build it.

Note When you set these options not to build part of the system, an upgrade will not fix security
holes in the affected programs. This means that you will have older, insecure programs on
your hard drive, and if you start them, you'll have system security holes. To disable building a
program, it's best to dig through the system and remove the corresponding programs.

ENABLE_SUIDPERL=true Suidperl is a special version of Perl(1) that is not installed by default.
Use this option if you need to install a setuid version of Perl during an upgrade from source.

PPP_NOSUID=true There's a long—standing consensus that setuid programs are bad, and should
be eliminated. However, the ppp program used to connect to the Internet needs to be have the
setuid ability to allow multiple users to use it. If only the root user will be dialing onto the Internet,
PPP_NOSUID can be set to true.

NO_CVS=true CVS is the Concurrent Versions System used by advanced systems administrators.
This option prevents a source upgrade from building or installing it.

NO_BIND=true BIND is the default DNS server (see Chapter 12). If you have a custom nameserver
installed, set this option.

NO_FORTRAN-=true The Fortran programming language is popular in the scientific community, not
so popular in the network services community. Feel free to set this option unless you need Fortran
support.

NO_LPR=true LPR is the printing system. If your computer doesn't use a printer, or if you have a

custom printing program installed, you can set this option. LPR has had several security holes in the
past, however, so be careful.

204

NO_MAILWRAPPER=true The mailwrapper is the mail server selection program that redirects
sendmail calls to the appropriate program (see the chapter section "/etc/mail/mailer.conf"). If you're
not running a mail server, or if you're using the FreeBSD defaults, you can set this option.

NO_MODULES=true This option prevents the automatic building of kernel modules with the kernel.
Do not set this option unless you enjoy watching your system crash on boot, or know exactly what
you're doing.

NO_OBJC-=true This option prevents the inclusion of support for Objective C. If you and your users
don't need Objective C, you can set this option. A (very) few ports will not work properly if you do
this.

NO_OPENSSH-=true If you have a custom SSH client/server installed, set this option. Otherwise,
build OpenSSH.

NO_OPENSSL=true OpenSSL is the encryption package used by OpenSSH and other secure
services. If you're not running any encrypted programs, you can set this option. However, it's highly
recommended that you don't set this option, because it will prevent OpenSSH from building.

NO_SENDMAIL=true If you have a custom mail program, or if you don't run a mail server, you can
set this option. In our example in Chapter 14, we will replace sendmail with postfix. If you set this
option, however, you'll have an old and possibly insecure sendmail floating around your system.
You're really better off building the whole system.

NO_SHAREDOCS=true FreeBSD includes documentation from the original BSD4.4 release under
/usr/share/docs, as well as more recent papers describing new features. If you don't use the
documentation on this system, you can save a few seconds of processor and disk time by setting
this option.

NO_TCSH=true This option prevents /bin/csh and /bin/tcsh being built during binary upgrades. If
you have csh scripts that might be confused by an upgrade, or if you don't use csh/tcsh at all, set
this option. (Programming in csh is a bad idea, anyway.)

NOCRYPT=true In addition to the OpenSSL encryption code mentioned previously, FreeBSD
includes code for encrypting passwords, hashing files, and so on. If you don't want to build any code
for these things, set this option, though it's usually not a good idea unless you know exactly what
you're doing and why.

NO_GAMES=true This option prevents the building of programs under /usr/games. They don't
change often, so you can probably do without them.

NOINFO=true FreeBSD includes a variety of documents under /usr/share/info that don't change
often. You can set this option to avoid processing these documents during an upgrade from source.

NOLIBC_R=true Setting this option prevents an upgrade from source from upgrading the
re—entrant version of libc. If you don't know what this is, don't set this option!

NOPERL=true This option controls whether the Perl interpreter and related libraries are built.
Setting this option can greatly accelerate the buildworld process, but it can also leave you with an
obsolete version of Perl. After all, a FreeBSD upgrade might include a Perl upgrade some time!
Some programs, such as adduser(8), are written in Perl, and those scripts might be changed to take
advantage of an upgraded Perl. Not upgrading Perl might break these programs. If you're using Perl

205

scripts that are dependent upon features in a particular version of Perl, you can set this option.

NOPROFILE=true This option prevents the building of profiled libraries. Again, if you don't know
what profiled libraries are, don't set this.

NOSECURE-=true This option eliminates anything under the src/crypto directory being built,
including Kerberos, OpenSSH, OpenSSL, and assorted other encryption stuff. Don't set this option if
you're running a production Internet server.

NOSHARE=true This option prevents the building of anything under the src/share directory,
including all the old papers, all the man pages, all the examples, and documentation in general. You
can set this option if you don't care about documentation on this system.

NOUUCP=true UUCP is the UNIX-to—-UNIX Copy Protocol, an old standard for transferring data
between machines, used before TCP/IP came into widespread use. Part of UUCP is used to handle
serial consoles (see Chapter 20).

MODULES_WITH_WORLD=true Whenever you build a kernel, you build the kernel modules by
default. This option sets the system to only build the modules once, during upgrades instead of the
kernel build. This can save a great deal of time if you experiment with a lot of different kernels
between upgrades. It can also cause weird problems. Use with caution.

NOMANCOMPRESS=true The upgrade install process compresses man pages to save space.
When you look at a man page, the system must first uncompress the page. If you have plenty of
space, and want slightly faster man—-page access, you can set this option to install man pages in
uncompressed format.

COMPATxx=yes This option allows you to install system libraries for older versions of FreeBSD.
Simply replace the xx in COMPATxx to indicate the proper library version (COMPAT1X,
COMPAT20, COMPAT21, COMPAT22, COMPAT3X, or COMPAT4X). Thisis only necessary if you
have a binary built for an older FreeBSD version, and you want to continue to use it on your newer
system. You can specify multiple COMPATXX entries if desired.

Note The cOMPATxx=yes option does not build the libraries from source; rather, uuencoded
libraries are simply stored in the source tree. If you've upgraded from source with a compat
library enabled once, you can safely remove it.

make.conf ports Options

The following options control the building process of add—on components. Some software will
change its behavior drastically depending on these options. For example, certain pieces of add-on
software are huge, and you might want to tell your system not to install them under any
circumstances. Other times you will want to inform the system that a component is available.

NO_X=true One of the biggest ports in FreeBSD is the X Window System, and many other ports
rely upon it. If you set this option to true, these ports will not attempt to build X as part of their
dependencies. This means some ports cannot be built at all, but they're useless without X anyway.

Some parts of the base system (particularly doscmd) include hooks to the X Window System by

default. If you do not have X on your system, and do not intend to have it, and do not want it
installed as a dependency to any other program, set this option.

206

NOPORTDOCS=true Various pieces of software in the ports collection have extensive
documentation that is generally installed under /usr/local/share. If you set this option, this
documentation is not installed. If you have a test machine or workstation where you can install the
documentation, you can set this option on your servers.

HAVE_MOTIF=yes Motif is a software graphics library that many ports try to use to provide various
graphic widgets. Motif was very expensive for several years, but free versions are available under
/usr/ports/x11-toolkits/lesstif and /usr/ports/x11-toolkits/open-motif. If you have either of these
toolkits installed, set HAVE_MOTIF.

/etc/master.passwd

This file contains usernames and passwords. When you log in, the password you type is compared
with the one in this file.

The /etc/master.passwd file is important enough that there's a special program just for editing it.
Vipw(8) calls up the text editor from $EDITOR, allows you to make your changes, and checks the
file syntax before allowing you to save it. Vipw also updates the password databases. This prevents
many of the more basic mistakes, but if you're really bent on corrupting /etc/master.passwd, vipw
will make life more difficult but won't stop you.

When vipw finally allows you to save your work, it also recreates the file /etc/passwd. This file can
only be read by root.

If the information in /etc/master.passwd conflicts with that in other files, programs generally assume
that /etc/master.passwd is correct. For example, /etc/group sometimes doesn't list a user's primary
group. The primary group that appears in /etc/passwd is correct, even when it isn't listed in
/etc/group.

Many programs need access to the information in /etc/master.passwd-for example, shells and
home directories must be public information. Rather than allowing anyone to read this file and try to
reverse—engineer the encrypted passwords, FreeBSD provides globally readable bits of this file in
/etc/passwd.

Fields

Each line in /etc/master.passwd contains ten fields, separated by colons. These are described in the
following sections.

Username The first field in lines in /etc/master.passwd is the username. This is either an account
created by the administrator and used by a real user, or a user created at install time to provide
some system service. FreeBSD includes a variety of system accounts, such as root, toor, daemon,
games, uucp, and so on. Each of these users owns some part of the system. Various programs can
run as these users.

Encrypted Password The second field is the encrypted password. System users don't generally
have a password, so you can't log in as them. User accounts have a string of random-looking
characters here.

One simple way to temporarily disable a user account is to edit the password file and put an asterisk

(*) in front of the password. While the account will still be active, nobody will be able to log in to it.
I've used this to great effect when a client was behind on a bill; they call quite quickly when they

207

can't log in.
User ID The third field is the user ID number, or UID. Every user has a unique UID.

Group ID Similarly, the fourth field is the group ID number, or GID. This is the user's primary group,
as discussed in Chapter 7. Usually, this is the same as the UID, and the group has the same name
as the username.

User's Class The next field is the user's class as defined in /etc/login.conf. You can change a
user's class by using vipw and editing master.passwd directly, or with chsh(1).

Password Expiration The sixth field is the password expiration field. If you leave this blank, or if
you're not running system accounting, passwords will not expire. The expiration field is filled in as
seconds since the epoch. (The epoch is midnight, January 1, 1970).

Number of Seconds Since the Epoch Similarly, the seventh field is the number of seconds since
the epoch until the entire account expires. If you aren't using system accounting, this is useless.

Gecos The gecos field contains the user's real name, office number, work phone number, and
home phone number, all separated by commas. Do not use colons in this field; colons are reserved
specifically for separating fields in /etc/master.passwd itself.

User's Home Directory The ninth field is the user's home directory. While this defaults to /home,
you can move this anywhere you like. You'll just need to move the actual home directory when you
change this field.

User's Shell Finally, the tenth field gives the user's shell. If this field is empty, the system assumes
the user gets boring old /bin/sh.

/etc/motd
The motd, or message of the day file, is displayed to users when they log in. You can put system
notices in this file, or other information you want shell users to see. Note that who sees this file is

controlled by the welcome option in /etc/login.conf. You can have multiple message files, one for
each login class.

/etc/mtree/*
The system upgrade processes use the /etc/mtree files. They have no effect on the daily running of

the system. Mtree(8) builds directory hierarchies, usually so an automated installer can put
programs in them. While you don't need to edit these files, it's nice to know why they're here.

/etc/namedb/*

The /etc/namedb files control the system nameserver. See Chapter 12 for details of how the files in
/etc/namedb work.

/etc/newsyslog.conf

This file configures the rotation and deletion of logs. See Chapter 19 for details of the system
logger.

208

/etc/passwd

Many programs require access to user information such as shell, real name, and so on. In older
UNIX systems, this was stored in the /etc/passwd file, along with the actual encrypted passwd, and
everyone could read this file. This became a problem as UNIX spread into universities. Computer
science students had great fun trying to crack encrypted passwords, and regretfully succeeded on
too many occasions. Hackers made /etc/passwd their target. Eventually, the encrypted passwords
were moved to /etc/master.passwd. The /etc/passwd file remained as an information source for
other programs.

The /etc/passwd file is generated from the /etc/master.passwd file by stripping out the class,
change, and expire fields. The encrypted password is replaced with an asterisk. These are the
remaining fields:

e username
e password (asterisk)
e user ID number

e group ID number

® name

e home directory

e shell

See the /etc/master.passwd section for details on these fields.

/etc/periodic.conf and /etc/defaults/periodic.conf

The /etc/periodic.conf file is another one with a default in /etc/defaults, and overrides in /etc.
Periodic(8) runs every day to handle basic daily maintenance. It's the source of the status
messages mailed to root every day, and it can handle a variety of tasks, which are stored as shell
scripts under /etc/periodic. (By default, periodic tries to run quite a few tasks that you might or might
not need; the scripts are generally intelligent, though, and put as little load as possible on the
system.) Every function available to the periodic program is enabled or disabled in periodic.conf.

Periodic runs programs either daily, weekly, or monthly. Each set of programs has its own settings;
for example, programs that run daily are configured separately from programs that run monthly.
These settings are controlled by entries in the /etc/periodic.conf file. Here are some standard entries
from that file.

The preceding line tells the periodic program where to look for override files, and you can choose a
location other than /etc/ for your customized configuration. Many systems mount their root
filesystem as read-only, so you can put your override file elsewhere if you need to.

daily_output="root" This option tells periodic where to send the results of its daily checks. If you
give a username, periodic will mail that user. Unless you have a user whose job it is to specifically
read periodic mail, it's best to leave this at the default and forward root's email to an account you
read. Alternatively, you can put a filename here and periodic will write to it like a log file. In this case,
you can have newsyslog (see Chapter 19) rotate the periodic log.

209

daily_show_success="YES" If daily_show_success is set to yes, the daily message will include
information on all successful checks.

daily_show_info="YES" When daily_show_info is set to yes, the daily message will include
general information from the commands it runs.

daily_show_badconfig="NO" The daily message will include information on periodic commands it
tried to run, but couldn't. These are generally harmless, and if you set daily_show_badconfig to no,
you won't miss much. If you're interested, however, you can set this to yes and get a look at
everything that happens.

Each of the scripts in the daily, weekly, and monthly directories under /etc/periodic has a brief
description at the top of the script. Skim through those quickly. The defaults that are enabled are
sensible for most circumstances, but there's extra functionality there that you might want to enable
on some systems. Each script has a tunable knob in /etc/periodic.conf to enable or disable it, and
more are being added continuously. Since anything | could list here would be obsolete before |
could deliver the manuscript, let alone before the book reached you, | won't go into detail about the
various scripts.

/etc/printcap

The /etc/printcap file controls printer setup. There are literally dozens and dozens of options for
printers, from the cost per page to manually setting a string to feed a new sheet of paper. (We won't
cover all of the options, but we will discuss the basics of printer management here.)

A UNIX printer system makes assumptions about a printer. By defining variables in /etc/printcap,
you tell your printer system how your hardware differs from the classic UNIX printers of two decades
ago. As you might guess, these differences can be extensive. (Fortunately, most printers
understand PostScript. This greatly simplifies printer maintenance.)

If you're using FreeBSD on a network with an existing print server, you probably want to use that
existing server. (See Chapter 21 for some example configurations.) When doing fine—grained printer
tweaking, you might need some of the more exotic options FreeBSD provides. We'll discuss some
of the ones you might need on a modern system in the following section.

Working with Printcap Entries

Each printer has its own /etc/printcap entry. Since all these variables let you create some very, very
long lines, use a backslash character (\) to indicate that the entry hasn't finished and is continued on
the next line. Use colons to separate variables. If you're using a backslash to make your entries
readable, the second and subsequent lines must have a colon at both the beginning and end of the
variable assignments.

The first entry in /etc/printcap is the printer name. If a printer has many names—such as "ThirdFloor",
"AccountingOffice", and "BigLaserJet", list all of those names, separated by the pipe symbol ().

Note In FreeBSD, and almost all other versions of UNIX, the default printer is named "lp". Various
programs expect to find a printer named Ip. It's simplest to assign this name to your preferred
printer.

After the printer's name, list the variables that define that particular printer. A comprehensive list
would contain much that you'll never need, but we'll look at some of the variables that are either in

210

more common use today or that are useful on modern networks. Let's first look at a simple sample
printcap entry and see how it's set up. Then we can examine the variables that allow you to
fine—tune your printer's behavior.

lplSalesPS|ThirdFloorPrinter:\
:rp=SalesPS:\
:rm=printserver:\
:sd=/var/spool/output/lpd:\
:1f=/var/log/lpd-errs:

This printer is called Ip, as well as SalesPS and ThirdFloorPrinter. The remote printer name, as the
print server calls it, is SalesPS. The print server is a machine with a TCP/IP network name of
printserver. Print jobs are stored in /var/spool/output/lpd while they're being processed, and printing
errors are logged to /var/log/lpd—errs. (See Chapter 21 for some hints on setting up a printer.)

The following are some of the most commonly set options for printing in UNIX.

This is the network connection timout. You can use ct to control the timeout for remote network
printers. If a printer does not respond, the printer service will wait ct=x seconds before returning a
failure. The default is 120 seconds, which is far too high for a modern local area network. Usually, if
a printer doesn't respond within 30 seconds, you have a problem. Alternatively, if you're printing to
some device on another continent, you might need to increase this to as high as 240.

This stands for "form feed upon open." If this is set, the system will start each printing job with a
blank sheet.

As the preceding line shows, FreeBSD can preprocess printing requests it receives over the
network. This allows you to do some nifty things, such as make a boring desktop inkjet printer
behave like a PostScript printer. See /usr/ports/print/apsfilter for an excellent example of how this is
done.

These two lines identify the printer's device name. The default is correct for a device with one printer
attached to the back of a system via a parallel cable. If it's a network printer, create this as a null
entry, like this: : 1p=:. If you have multiple parallel printers, you will need to specify the device
name for each printer.

This specifies the maximum size of a printer job in 512-byte (2KB) blocks. If you do heavy graphics
work, you probably want to set this to 0 for no maximum size.

This is the full path to the outbound printer filter. FreeBSD supports the ability to preprocess printer
output with the output filter option, as shown here. This can be useful for, say, converting PostScript
into regular output like the apsfilter package does. Many non-English languages have special
output filters; FreeBSD ships with output filters for Russian-language printing, and more will be
added as users contribute them.

This entry identifies the hostname of the remote print server this printer is attached to. The printer is
expected to be running Ipd, and to be able to accept the job. (Most print servers, even Windows
2000, can speak Ipd.)

This gives the name the print server uses for the printer you want to use. This is only needed if
you're printing to a print server.

This is the spool directory, where the printing program stores files as it's processing them. Every
printer needs a unique spool directory.

/etc/profile

/etc/profile contains the default account setup information for the /bin/sh shell, much like /etc/csh.”
does for csh/tcsh users. Bash and other sh derivatives also use this file; whenever sh users log in,
they inherit what's in this file. However, users can override this file with their own .profile.

While csh is the standard FreeBSD shell, sh and its derivatives (particularly bash) are quite popular.
Consider keeping the /etc/profile and /etc/csh.login settings synchronized. The examples in
/etc/profile and the examples in /etc/csh.login are identical, so you already have a good starting

212

point.
/etc/protocols

In Chapter 5, we briefly discussed network protocols, and /etc/protocols lists the Internet protocols
your FreeBSD system is aware of. Each protocol has an assigned number; various programs use
these numbers to determine how they handle transactions.

Almost all Internet transactions happen over IP, TCP, or UDP. Most people don't realize that there
are dozens of protocols, and that IP is protocol 0, TCP is protocol 6, and UDP is protocol 17. Some
protocols are heavily used in specific environments, and others are so outdated you'll probably
never encounter them. As a systems administrator, you don't have to be familiar with every piddly
little protocol out there, but you should know that the world is bigger than TCP/IP and have some
basic information about other protocols.

Each protocol has its own line in /etc/protocols. The first entry on a line is the official name, such as
tlsp in the output that follows. The second line is the protocol number, 56 in this example. Following
that are any aliases for the protocol, such as TLSP. Finally, comments are set off with a pound (#)
sign.

Here's a snippet from /etc/protocols:

tlsp 56 TLSP # Transport Layer Security Protocol
skip 57 SKIP # SKIP

ipv6-icmpc 58 IPV6-ICMP # ICMP for IPv6

ipv6-nonxt 59 IPV6-NONXT # no next header for ipveé

Raise your hand if you've ever heard of any of these protocols. Yep, that's what | thought. There's
nothing to worry about, though; remember, you don't have to know everything, you just need to
know where to find out about it.

Note The list in /etc/protocols is well maintained by the FreeBSD Project. You will
probably never have to edit it unless a specific piece of software requires its own
entry.

/etc/pwd.db

The /etc/pwd.db file is a database version of /etc/passwd, and it exists because a computer program
can access /etc/pwd.db much more quickly than it can parse a text file. The /etc/pwd.db file is
world-readable, and since /etc/passwd deliberately contains no secure information, this is perfectly
safe.

The password database files are the reason why it's so important that you use tools such as
passwd(8) and vipw(8) to edit your password file. Each of these tools automatically runs
pwd_mkdb(8) when they're finishing their work. Pwd_mkdb rebuilds the password databases. If your
/etc/passwd and /etc/pwd.db files are not synchronized, you will have a variety of weird user errors.

Unless you are a database hacker, under no circumstances should you use database tools to
change this file. Let the password tools do their work.

213

/etc/re

Whenever your system boots to the point where it can execute userland commands, it runs the shell
script /etc/rc. This script mounts all filesystems, brings up the network interfaces, configures device
nodes, sets up shared libraries, and does all the other tasks required to set up a system.

There are an awful lot of tasks, and some of them aren't necessary on all systems. If your system
doesn't use its serial ports, for example, you don't need to run the script to configure them. Similarly,
a system that doesn't use ATM networking doesn't need to run the scripts to configure that.

Rather than having a monolithic script containing everything, some system startup tasks are broken
up into smaller scripts, which keeps the scripts smaller and easier to debug. When /etc/rc needs to
start the logical network, for example, it runs /etc/rc.network.

The other shell scripts used by /etc/rc include the following:

/etc/rc.atm This script configures Asynchronous Transfer Mode (ATM) networking. (If you have an
ATM card in your FreeBSD box, you'll know it—it probably cost more than the rest of your system
combined.)

/etc/rc.diskless1 and /etc/rc.diskless2 If you're running a FreeBSD system without a hard disk,
these scripts will be run. This is an interesting FreeBSD function that we're not going to discuss,
because implementing it requires a seasoned UNIX administrator. By the time you've mastered this
book, however, you'll be ready to dig into diskless operations.

/etc/firewall This script contains basic configuration information for ipfw. If you're using ipfw, you
can use this as a sample.

/etc/rc.firewall6 This script contains ipfw configurations for people using IPv6.

/etc/rc.i386 Any FreeBSD system on the X86 architecture—the standard "Intel PC" platform-runs
this script at boot.

/etc/re.isdn If you're using the built—in metered ISDN support, you'll use this script. This is moot for
people with unmetered ISDN support, such as most of the United States, but it is crucial in Europe,
Australia, and other areas where ISDN connection time is billed by the minute.

/etc/rc.network This script is where network configuration occurs.

/etc/rc.network6 This script handles IPv6 network configuration.

/etc/rc.serial This script sets sane defaults so that your serial ports will just work out of the box.
(Serial ports are infinitely configurable, and without some setup they don't behave as you would

expect.)

/etc/rc.syscons This short script sets up your terminal settings, console screensaver, keyboard
maps, and other console settings.

/etc/re.sysctl This script sets sysctl values from /etc/sysctl.conf (see Chapter 4).

You configure /etc/rc through /etc/rc.conf and /etc/defaults/rc.conf. Essentially, you set variables in
/etc/rc.conf that control how /etc/rc behaves, what it starts, and how the system is set up on boot.

214

Notelf you ever wonder how FreeBSD configures something when it boots, /etc/rc is your friend.
Find the variable in /etc/defaults/rc.conf that makes your system behave in the desired
manner. Search the /etc/rc scripts for that variable—you can do this easily with grep -1
variablename /etc/rc.*.When you find out which file the variable is used in, look at it.
Reading that section of the rc script will give you the command that can be used to tweak that
behavior. Then all you have to do is toddle off to the man page and read about it.

/ete/rc.conf and /etc/defaults/rc.conf

The /etc/defaults/rc.conf file is huge, and it contains quite a few variables, frequently called knobs,
tunables, or even tunable knobs. We aren't going to discuss all of the variables, not only because
knobs are added continually (such a list would be immediately obsolete), but also because quite a
few variables aren't commonly used on servers.

Almost everything in the standard FreeBSD system can be an rc.conf tunable, from your keyboard
map to your TCP/IP behavior. If you have a problem using these knobs, definitely check
/etc/defaults/rc.conf or rc.conf(5) on your system to see if anything has changed.

In the next few sections, we'll examine some common entries from /etc/rc.conf. Each of these
appears once in /etc/defaults/rc.conf, and can be edited by placing an override in /etc/rc.conf.

These are only the most common options. The /etc/defaults/rc.conf file contains literally hundreds of
possible options. The rc.conf(5) man page is well worth a read if you're interested in fine—tuning
your system.

Startup Options

The following few rc.conf options control how FreeBSD configures itself and starts other programs.

Once all other startup tasks are complete, /etc/rc checks the directories listed in the following
variable for additional executables (generally shell scripts) and runs any it finds:

Most ports that are started at boot time install their startup scripts in /usr/local/etc/rc.d. If you're
installing your programs in some other place, change this path to reflect your startup directory.

Files listed in the following variable are "additional" rc.conf files:

You can choose to add additional rc.conf files. For example, you might have an rc.conf file that you
share among all of your servers that defines things such as network services and system behavior,
and a separate rc.conf file that defines the IP address and hostname for this particular system. Such
customizations can greatly simplify central administration of large server farms.

215

While /etc/rc.conf is traditionally the centrally maintained file, /etc/rc.conf.local is for the local
system. You can even create your own rc.conf files in arbitrary locations on the system. While this
probably isn't a good idea, it gives you some added flexibility if you have an odd situation.

Network Options
These options control how FreeBSD sets up its networking features during boot.

hostname="" The hostname setting specifies the full domain name of the system, such as
"http://www.absolutebsd.org/". It should have been set during the install— you must set it for
programs to run properly.

tcp_extensions="NO" TCP has changed over the years, with several changes and additions to the
TCP protocol being lumped together as "TCP Extensions" per RFC 1323. While some applications
can take advantage of TCP extensions, many can't. FreeBSD defaults to a conservative, disabled
setting. Set this option to "YES" if your application requires it.

Note If one host is using TCP extensions and another isn't, you may see performance
problems. For that reason, TCP extensions are not recommended for Web or FTP
servers. Even though most modern systems use RFC 1323 extensions, you
probably don't want to make life difficult for the oldest systems on the Net. Cutting
off 10 percent of your potential users isn't a great idea.

log_in_vain="NO" This option logs to /var/log/messages all attempts to connect to your system on
a TCP or UDP port where nothing is listening. This log shows port scans and network probes, but
also picks up a lot of garbage. It's interesting to set for a time, just to see what happens, but unless
you're actually going to read the log, it's just a waste of processor time and disk space. In later
versions of FreeBSD, the "YES" and "NO" answers have been replaced by "0" and "1", respectively.

tcp_drop_synfin="NO" To use this option, you must have TCP_DROP_SYNFIN compiled into
your kernel. This option is not in GENERIC.

This option drops packets that have both the SYN and FIN flags set, and network scanners use it to
identify remote operating systems. However, dropping these SYN+FIN packets violates the TCP
specifications, and can cause odd network problems. If you have problems, try turning this off and
seeing if your problem goes away.

icmp_drop_redirect="NO" ICMP redirects are used on local networks to inform servers of
additional network gateways. While there are legitimate uses for ICMP, it's also commonly used by
hackers. As such, if you aren't using ICMP redirects on your network, you can set this option for a
tiny measure of added security. If you're not sure if you're using them, ask your network
administrator. If you are the network administrator, and you're not sure, then you aren't using them.

icmp_log_redirect="NO" If you are using ICMP redirects on your network and want to monitor
them, you can set this option to log them to /var/log/messages.

There's no limit to the number of ICMP redirects you can log, and when you're under attack or
having network problems, it's pretty easy to fill up your hard disk with these messages. Use this
option with care!

network_interfaces="auto" This variable contains the list of network interfaces, as shown by
ifconfig. If you have an unusual network interface, it's possible (but not likely) that you could have

216

problems with interfaces not being configured on boot. In that case, try listing your interfaces
manually in this variable, as in "100 ep0 wi0". While this probably isn't your problem, it's nice to
be able to rule it out.

ifconfig_lo0="inet 127.0.0.1" List each of your network interfaces in this option, on their own line,
with network configuration information. Substitute the correct name of your interface for 100. For
example, to give your ep0 network card an IP address of 192.168.1.200 and a netmask of
255.255.255.0 at boot, you would use this:

If you're using DHCP on your network, set the interface value to dhcp.

ifconfig_ep0_alias0="inet 192.168.1.201" FreeBSD allows you to assign hundreds of IP
addresses to a network card. One IP address is the primary address, while the others are aliases.
List each alias in this form:

The alias numbers must be continuous, starting with 0. If there's a break in the numbering, aliases
above the gap will not be installed at boot time. (This is a common problem, and if you see it, check
your alias list.)

Dial-up PPP Options

The rc.conf file has several options for handling dial-up PPP. We don't do much with PPP in this
book, but you should know about these options in case you need them.

ppp_enable="NO" If you set this option to "YES", the system will start the ppp program
automatically. (You will still need to configure it to actually do anything.)

ppp_mode="auto" You have four choices for this option:

e "auto" tells the system to dial out to the Internet automatically on demand.

® "dedicated" is used for systems with a dedicated connection. This isn't appropriate for a
dedicated phone line—it's for serial lines into other computers.

e "direct" is for receiving dial-up calls from a modem. (See ppp(8) for details.)

e "ddial" is for dedicated phone-line access. Use this if your system is connected to the
Internet by a dial-up line, and you want to automatically redial when something out in Phone
Company Land disconnects you.

217

ppp_nat="YES" The ppp program has built—in Network Address Translation services. Set this
option if you're using your FreeBSD box as a network gateway and connecting via dial-up.

ppp_profile="papchap" You can define a variety of dial-up profiles in /etc/ppp/ppp.conf; the
"papchap" profile is the default.

Miscellaneous Network Daemons

FreeBSD includes a variety of smaller daemons to handle assorted services. You can configure
them from rc.conf.

syslogd_enable="YES" If you want to have your system log work, keep this option. | discuss
syslogd in great detail in Chapter 19.

syslogd_flags="-s" The default for syslogd_flags means that only allowed servers (specified in
syslogd_flags) can connect to yours. By default, this prevents unauthorized servers from connecting
to you.

Originally, syslogd accepted log messages from any server on the Net, but if that were the case,
someone would probably fill up your hard drive with their log messages. To allow a particular host to
send messages to syslogd, specify them with the —a option. You can specify the host by IP address,
with a netmask specified as a number of bits (see Chapter 5).

For example, to allow your host to take log messages from anything in the 192.168.0.0 to
192.168.0.255 range, you would use this:

syslogd_flags=" -s -a 192.168.1.0/24"

The hostname entry relies on reverse DNS. If someone on another network changed her host's
reverse DNS to match an allowed host, she could log authentic—looking messages to your server.
Using IP addresses is just a better idea.

inetd_enable="NO" This option disables the inetd server (see Chapter 13). If you want to run inetd,
set this option to "YES".

named_enable="NO" Because named requires configuration to be useful, FreeBSD ships with it
disabled by default (see Chapter 13). Set this option to "YES" to run named.

named_program="named" If you've built a custom named, give the full path to it here. Several
customized nameservers are available in the ports collection (see Chapter 10).

named_flags="-u bind —-g bind" This option gives flags to named(8). The defaults are reasonable,
but you can put any legitimate options you like into this field. See Chapter 12 for details on named.

218

sshd_enable="NO" This option disables or enables the SSH daemon. Enable this if you want to
connect to your system over the network securely. See Chapter 13 for details on configuring sshd.

sshd_flags="" The SSH daemon can be configured via flags on the command line, but you're
better off editing /etc/ssh/sshd_config to tweak your ssh service.

ntpdate_enable="NO"
ntpdate_flags="-b"
xntpd_enable="NO"

xntpd_flags="-p /var/run/ntpd.pid"

These four variables control the behavior of the network time—keeping daemons. See Chapter 13
for details on these programs.

Network Routing Options

FreeBSD configures routing separately from the main network options.

defaultrouter=""" This option is where you list the IP address of your default router.
gateway_enable="NO" Set this option to "YES" if your system has multiple network interfaces, and
you want to transmit packets from one network to another via these interfaces. The system will

become a gateway, passing traffic from one interface to another.

router_enable="NO" If your system is a gateway, and you want it to get its routing table via the
RIP protocol, set this option to "YES". Otherwise, don't go near it!

Console Options

The console options control how the monitor and keyboard behave. You can change the language
of your keyboard, the font size on your monitor, or just about anything you like.

keymap="NO" You can choose to use a different keyboard map with the keymap option. Quite a
few keyboard maps are available under /usr/share/syscons/keymaps, with different arrangements
for different countries.

| use the Dvorak keyboard layout, which is set quite easily with these lines:

blanktime="300" The blanktime field specifies the number of seconds the keyboard is idle before
FreeBSD tells the monitor to go into power—save mode, 300 seconds in this case. If you set this to
"NO", FreeBSD will not blank the screen.

Note Some newer hardware has automatic screen-blanking features. If your monitor insists on
going idle when this option is set to "NO", check your BIOS and your monitor manual.

219

moused_enable="NO" Enable this option to use your mouse on the console. Console mouse
allows you to highlight, copy, and paste.

moused_type="auto” Mice use a variety of different protocols to translate wheel motion into
pointer actions. While FreeBSD is pretty good at automatically detecting the protocol your mouse
uses, if autodetecting your mouse doesn't work, you can set this manually. See moused(8) for
possible options.

moused_port="/dev/psm0" This option specifies the physical port your mouse is attached to. The
default, /dev/psm0, is the PS/2 mouse port. If you have a serial mouse on serial 0 (com1), set this
option to /dev/cuaa0. The second serial port is /dev/cuaal.

moused_flags="" The mouse daemon is highly configurable to support the wide variety of mice
that have been hooked up to FreeBSD machines over time. Today though, most mice are either
USB or PS/2, so these options are generally useless. See moused(8) for details on how to make
your ten-year—old serial trackball that demands 1350 baud work properly.

The one option still popular today is —3. Traditional UNIX mice have from three to five buttons.
Many UNIX programs assume that you have a third mouse button. This flag allows you to emulate a
third mouse button by pressing both buttons simultaneously.

Other Options

Finally, we have a few options that don't fit well into any other category.

Ipd_enable="NO" Set this option to "YES" if you want to print from this system. See Chapter 21 for
details on basic printing.

usbd_enable="NO" Enable this option if you have USB devices.

sendmail_enable="NO" This option allows your system to receive email from other systems. Only
enable this if your system is a mail server.

sendmail_outbound_enable="YES" This option allows your system to send email to other
computers. You almost certainly want this on all your systems.

dumpdev="NO" To save kernel images after a panic (for crash debugging), set this option to the
name of a swap partition. The partition must be the same size as your physical memory, or larger.

Check /etc/fstab for the name of your swap partition. On my laptop it's /dev/ad0s1b, and | set it like
this:

See Chapter 20 for lots of detailed discussion on how the dumpdev is used during a system crash.

ibcs2_enable="NO" This option enables or disables the kernel's SCO UNIX compatibility. See
Chapter 11.

220

linux_enable="NO" This option enables or disables the kernel's Linux compatibility module. See
Chapter 11.

svr4_enable="NO" FreeBSD has a compatibility module for UNIX System V, and this option
enables or disables that module. See Chapter 11 for detalils.

osf1_enable="NO" DEC Digital UNIX only runs on the Alpha. Since FreeBSD runs on the Alpha, a
compatibility module exists, and this option enables or disables it. This option is useless on X86
hardware. We won't discuss the option except in the abstract, but it's nice to know that the option
exists.

clear_tmp_enable="NO" Older UNIX systems erase the contents of /tmp at boot. FreeBSD doesn't
do this by default, but you can enable this behavior here.

Idconfig_paths="/usr/lib/compat /usr/X11R6/lib /usr/local/lib™ This option lists the directories
where shared libraries are stored. For most installations the default setting is adequate. If you find
yourself setting LD_LIBRARY_PATH for all your users, however, you should look at adjusting this
option instead. See Chapter 11 for more hints.

kern_securelevel_enable="NO" Set this option to "YES" to enable the FreeBSD kernel's security
features at boot. See Chapter 7.

kern_securelevel="-1" If you've enabled kernel security, you can choose your securelevel with
this option. See Chapter 7.

start_vinum="NO" Set this option to "YES" if you're using the Vinum software RAID machine. See
Chapter 17.

rc.shutdown

When you issue a shutdown or reboot command, the system runs rc.shutdown. This script searches
through your local startup directories as specified in /etc/rc.conf, running each shell script it finds
with a "stop" argument.

If you need the system to take a particular action upon shutdown, you can add the appropriate shell
commands to the end of /etc/rc.shutdown. Most packaged software automatically includes the
appropriate shutdown commands in its /usr/local/etc/rc.d script, so you shouldn't have to do this.
You might have custom shutdown commands, however, which would be appropriate to add here. If
at all possible, however, just create a script in a startup directory.

/etc/resolv.conf

The /etc/resolv.conf file configures how the system DNS resolver works. See Chapter 12.

/etc/security

The /etc/security file is a straightforward shell script run each day by periodic(8), and you can edit it
as you like. It performs a variety of simple system-integrity checks, such as checking for changes to
/etc/master.passwd, mounted filesystems, and kernel log messages, and its output is mailed to root
every day. To disable it entirely, you can do so in /etc/periodic.conf with this setting:

daily_status_security_enable="NO"

Generally, the security output is worth having because it can point out a variety of system problems
as well as security issues.

/etc/services

This file lists many commonly used network ports. See Chapter 5.

/etc/shells

/etc/shells contains a list of all legitimate user shells. Installing a shell via a port or a package adds
an appropriate entry in /etc/shells, but if you compile your own shell from source, without using a
port, you'll need to edit this file. Shells are listed by their complete path name.

The FTP daemon will not allow a user to log in if his shell is not listed in /etc/shells. If you're using
/sbin/nologin as an FTP-only user shell, you need to add it to this file, though a better way to handle

this is with login classes (see /etc/login.conf).

/etc/spwd.db

This file resembles /etc/pwd.db, but is based on /etc/master.passwd. It contains all user account
information in a database form, so other programs can quickly access it. Since it contains
confidential information, only root can read it. See /etc/pwd.db and /etc/master.passwd for details.
/etc/ssh

This file controls how your system's SSH server and client behave. See Chapter 13 for details.

/etc/sysctl.conf

This file contains information on which kernel sysctls are set during the boot process. See Chapter
4.

/etc/syslog.conf
This file controls which data your system logs. See Chapter 19.

['Remember Chapter 8? This is a default accept security stance.

222

Chapter 10: Making Your System Useful

Overview

Unlike operating systems such as Microsoft Windows and Red Hat Linux, which tend to throw
absolutely anything you might need into the base install, BSD systems are sparse—and that's a
good thing.

For example, a Windows 2000 Professional system I'm using at a client site, with a "minimal” setup,
has 1,768 items in its main system directory (C:/WINNT/system32), and just about every shared
library (aka DLL, or dynamic-link library) ever. Whenever | boot the system, these DLLs are all
loaded into the system memory. | don't know what each DLL is for, but | guarantee that | will never
use many of them—the only software | use on that machine is SSH and Mozilla. All they do for me
is soak up RAM.

This is, of course, Microsoft's approach to operating systems—give ’em everything you've got, and |
mean everything. In contrast, Red Hat Linux installs a similar amount of stuff, but much of it is actual
programs. You might never use most of those programs, but at least all those files aren't
automatically loaded into the system memory at boottime.

A basic BSD install, however, gives you exactly enough to make the system run, plus a few extra
bits that have been traditionally included with UNIX systems. You get to choose during setup
whether to install additional programs or source code. However, even a complete, running BSD
install takes far less disk space than the Windows 2000 system32 directory mentioned
previously—the complete FreeBSD install includes far less than Windows. A Windows install that
only supported SSH and Mozilla would be much smaller and simpler—in fact, it would look a lot
more like a FreeBSD install.

The advantage to this sparseness is that it gives you only what you need for your system. This
makes debugging a problem much simpler and helps to ensure that some shared library you've
never even heard of, and would never use, won't break your system. The downside is that you may
need to do a bit of thinking to determine what it is that you do need, and you'll have to install those
extra, but necessary, programs. FreeBSD solves that problem by making software installation as
simple as possible.

Making Software

Building software is complicated because source code must be treated in a very specific manner to
create a workable, running binary—Ilet alone an optimized one!

While programmers could include installation instructions with each program, full of lines like "Now
type cc CPUTYPE=i686 -ohttpd -I/usr/src/crypto/kerberosIV/include -lcrypto
-1lkrb," they don't. Programmers don't put up with this sort of garbage for long. If it can be
automated, it will be, which is a good thing for those of us who need to install programs.

The main tool for building software is make(1). Make looks for a file called Makefile in the current
directory, which is full of instructions much like that horrid example in the previous paragraph. When
it finds the Makefile, make reads the instructions and carries them out. Makefiles are long and
complicated creatures, and you don't really have to know their internals, so we're not going to
dissect one here.

223

Each Makefile includes various targets, or types of instructions to carry out. For example, make
install tells make to check the Makefile for a procedure called "install". If make finds such a
procedure, it will execute it. Each target contains one basic step in building, installing, or configuring
the software. We'll discuss various common make targets in this chapter, and when to use them.

Make can handle a huge variety of functions, some of which far outstrip the original intentions of the
creators. But that's what UNIX is for, isn't it?

Note Be sure that you're in the same directory as the Makefile when you run make. While
this isn't strictly necessary, it will make your life simpler.

The Pain and Pleasure of Source Code

Source code is the human-readable instructions for building the actual machine code that makes up
a program. You might have already been exposed to source code in some form. If you've never
seen source code, take a look at the various files under /usr/src.

While you don't have to be able to read source code, you should be able to recognize it two out of
three times. Here's a snippet of source code from FreeBSD's network stack:

/* While we overlap succeeding segments trim them or,
* if they are completely covered, dequeue them.
*/
while (q) {
register int i = (th->th_seqg + *tlenp) - g->tge_th->th_seq;
if (i <= 0)
break;
if (1 < g->tge_len) {
g->tge_th->th_seq += 1i;

g->tge_len —-= i;
m_adj (g->tge_m, 1i);
break;

Once you have the source code for a program, installing it is pretty straightforward. You build (or
compile) the program on the system you want to run it on."If the program was written for an
operating system that is sufficiently similar to the platform you're building it on, it should work. If your
platform is too different from the original, it will fail. Once you've built the software successfully on
your platform, you can copy the resulting program (or binary) to other identical platforms, and it
should run.

Some programs are written well enough that they can be compiled on many different platforms. A
few programs specifically include support for widely divergent platforms; for example, the Apache
Web server can be compiled on both Windows and UNIX just by typing make install. Thisis
quite uncommon, however, and represents a truly heroic effort by the software authors.

Note While you can copy a compiled program to a foreign system and try to run it, this is
generally doomed to fail. In most cases, one operating system cannot
out-of-the-box run programs for another operating system. (FreeBSD can, with
some configuration; see Chapter 11.)

224

Debugging

Generally speaking, if you can build a program from source, it will run on your UNIX; if you cannot,
the program will not run. When you have the source code, however, a sufficiently experienced
sysadmin can learn why a program won't build or run. In many cases, the problem is simple and can
be fixed with minimal effort. (This is one reason why access to source code is important.)

Back when every UNIX administrator was a programmer, this debugging absorbed a major portion
of the admin's time. Every UNIX was slightly different, so all systems administrators had to
understand the platform a program had been written for, and its differences from their platform,
before they could hope to get a chunk of code to run. The duplication of effort was truly monstrous.

Slowly, tools such as autoconf and configure were created to help address these cross—platform
issues. Still, not every program used these tools, and when they broke, the administrator returned to
square one. Systems administrators had to edit source code and Makefiles just to have a chance of
making programs work.

("It is possible to build software on a foreign platform via something called "cross—compiling."
Cross—compiling demands you know much more about building software than we want to go into
here, though.

The Ports and Packages System

The FreeBSD ports and packages system is a software-building system designed to simplify the
configuration and installation of software. It started addressing program-building issues back in
1995.

Ports are instructions for compiling software on FreeBSD, and packages are simply precompiled
ports. Packages install more quickly, and can save you time. Ports install more slowly, but will
accept changes from your environment (changes you specify in /etc/make.conf).

The basic idea behind the ports and packages system is very simple: If software must be modified
to run on BSD, then the modifications should be automated. If you're going to automate the
changes, you might as well record what the program includes so you can easily install and uninstall
it. And since you have a software-building process that produces exactly the same result each time,
and you've recorded everything that the program-building process creates, you can copy the
binaries and install them on any similar FreeBSD system. This is the basis of the ports and
packages system.

The whole system is called the ports collection, the ports tree, or even just ports. When someone
uses one of these terms, he's generally including the ports, the system for building ports, and
packages.

Ports

A port is a set of instructions on how to apply fixes to, or patch, a set of sourcecode files. By
combining patches with installation instructions, FreeBSD can maintain a complete record of
everything the software-install process has done. This frees you from struggling to install a
program, and allows you to concentrate on making the program work properly instead.

If you followed the installation hints in Chapter 1, you installed the ports tree in /usr/ports, something
like the following listing:

225

1s /usr/ports/

INDEX cad games misc ukrainian
LEGAL chinese german net vietnamese
Makefile comms graphics news WWW

Mk converters hebrew palm x11

README databases irc picobsd x1l-clocks
Templates deskutils japanese print x11-fm
Tools devel Jjava russian x1ll-fonts
archivers distfiles korean science xll-servers
astro editors lang security x1l-toolkits
audio emulators mail shells x11-wm
benchmarks french math sysutils

biology ftp mbone textproc

#

If you don't see something like this listing in usr/ports, you need to install the ports to continue. To
do so, visit your nearest FTP FreeBSD server, and check the directory for the FreeBSD version
you're running; you'll find a directory called ports. Look for two files, ports.tgz and install.sh;
download both and run install.sh. When you've finished, you should see something like the previous
listing.

The directories shown in the previous list are software categories. Each category contains a further
layer of directories, and each directory under a category is a port of a piece of software. Since
FreeBSD has almost 6,000 ports as | write this, this directory tree is vital to keeping them in any sort
of order!

The following listing shows the contents of the "astro" ports category, where astronomical software
supported by FreeBSD is kept. (Yes, people use FreeBSD for serious astronomical work.) This
category might not be of much interest to most people, but it has the serious advantage of being
small enough to print in a book. Some ports categories, such as "www", have hundreds of entries.

#1s /usr/ports/astro/

Makefile
SETIsupport
dgpsip

ephem
fooseti
gkrellmearth
gkrellmoon
glunarclock
jday
ksetiwatch
luna
openuniverse
pS—-Astro-MoonPhase

pS5-Astro-SunTime
p5-Astro-Sunrise
pP5-GPS
p5-Geo-METAR
prkg

pyweather

rmap

saoimage
sattrack
seti_applet
setiathome
sscalc

stars

sunclock
tkseti
wmglobe
wmmoonclock

wmspaceweather

wmsun
x3arth
xearth
xephem
xglobe
xphoon
xplanet
xtide

226

Finding Software

Some of the categories have hundreds of ports, so how can you ever find anything? For an index of
ports, see /usr/ports/INDEX, which contains a list of all the ports, in alphabetical order. Each port is
described on a single line, with fields separated by pipe symbols ().

While this is a convenient format for the various system tools to access, it's not particularly
human-readable. For you to start reading the index file, you need to know what each field means.
(Some of the fields appear redundant, but they're needed for reasons we'll get to later.) Here's a
sample entry, with a line break at each delimiter to make it easier to understand:

v fooseti-0.6.5]

w /usr/ports/astro/fooseti|

x /usr/local]|

y GTK+ frontend to SETIQ@Home |

z /usr/ports/astro/fooseti/pkg-descr|

{ petef@databits.net|

| astrol

} XFree86-3.3.6_9 gettext-0.10.35 glib-1.2.10_3 gtk-1.2.10_2]
~ XFree86-3.3.6_9 gettext-0.10.35 glib-1.2.10_3 gtk-1.2.10_2|
http://www-personal .engin.umich.edu/~agorski/fooseti

The first field (v) is the name and version number of the software package—in this case, fooseti
version 0.6.5. The second field (w) is the directory where the port can be found
(/usr/ports/astro/fooseti), and the next (x) is the default installation location. The fooseti port, for
example, installs under /usr/local unless the administrator chooses a separate location. Following is
a short description of the software package (y).

The fifth field (z) gives the location of a file, with a more complete description of the software. The
email address field ({) lists the software's FreeBSD maintainer, someone who has assumed
responsibility for making sure the port works properly. Next is the category (|), the directory under
/usr/ports where the port directory lives.

Field eight (}) contains the list of ports needed to build this software. Many ports require other ports
as prerequisites; for example, a piece of software might require a special version of make to build,
called a build dependency. This example needs XFree86, gettext, glib, and gtk.

The ninth field (~)lists the ports needed to run this software. Many ports have such runtime
dependencies in addition to the build dependencies, meaning that when the program runs, it tries to
call other programs. If the program's dependencies are not found, the program cannot run. Our
example has identical buildtime and runtime dependencies, though this is not always the case.

Last is the URL of the program's home page ().

Note If you forget what each field means, make print-index will print out a much longer, but
prettier, list of everything in the index.

227

Finding by Name
Knowing what the index contains is nice, but how can it help you find a piece of software?

Well, if you know the exact name of the software package, you can use a simple grep command to
pick it out. This is quick and easy, but it only works if you're comfortable with grep(1) and you know
the exact name of the software in the FreeBSD ports tree. For example, to find staroffice you might
enter this grep command:

grep —-i “~staroffice INDEX
staroffice-5.1a|/usr/ports/editors/staroffice5|/usr/local|Integrated
wordprocessor/dbase/spreadheet/drawing/chart/browser|/usr/ports/editors/staroffice5/
pkg-descr|mb@imp.ch|editors linux|unzip-5.42|1linux_base-6.1|
staroffice-5.2|/usr/ports/editors/staroffice52|/usr/local|Integrated
wordprocessor/dbase/spreadheet/drawing/chart/browser|/usr/ports/editors/staroffice52
/pkg-descr |mb@imp.ch|editors linux|linux_base-6.1]|

This output shows us that we have two different versions of staroffice available, version 5.1a and
version 5.2. Both are available under /usr/ports/editors, in staroffice5 and staroffice52, respectively.

Finding by Partial Name
If you don't know the software's exact name, try the ports collection's search feature. The make
search command scans the ports index for you, searching either for the name of a port or ports

where a word appears.

For example, if you're looking for the popular Midnight Commander file manager, you might try this
command:

Well, that was less than helpful.

Finding by Keyword

If that search doesn't work, as in the preceding example, you can try a more generic search using
the key option. This search scans more fields, returning more hits. (Though if you're searching for a

common word, the key search can provide far too much information.)

Here's how to use the key search on the word "midnight":

make search key=midnight

Port: mc—4.5.54_2
Path: ? /usr/ports/misc/mc
Info: Midnight Commander, a free Norton Commander Clone

228

Maint: gnome@FreeBSD.org

Index: misc

B-deps: gettext-0.10.35 glib-1.2.10_3 gmake-3.79.1
R-deps: gettext-0.10.35 glib-1.2.10_3

Aha! Midnight Commander can be found under ? /usr/ports/misc/mc.
Other Ways to Browse the Ports Collection

If you prefer working with a Web browser, you can build an HTML index. Just go to /usr/ports and,
as root, type make readmes to generate a file (README.html) with the contents of your ports tree.
(You can click through various categories, and even view detailed descriptions of each port.)

If none of these options work, try the FreeBSD Ports Tree search service at
http://www.FreeBSD.org/cgi/ports.cgi.

Between the Web browser and the search engine, you should be able to find a piece of software to
meet your needs.

Legal Restrictions

While most of the software in the ports collection is free for noncommercial use, some of it includes
unusual legal restrictions. The /usr/ports/LEGAL file lists legal restrictions on various pieces of
software. The most common restriction is a prohibition on redistribution; the FreeBSD Project does
not include such software in its CD—ROM distributions, just instructions on how to build it. For
example, for a long time FreeBSD did not have a Java license. The Project was not allowed to
distribute the Java source code or compiled binaries. They could distribute instructions on how to
build the source code, however. You could go to a Sun Microsystems Web page, download the
Java source, and build your own version of Java on FreeBSD.

Similarly, some pieces of software prohibit commercial use or embedding in commercial products. A
few cannot be exported from the United States, thanks to International Traffic in Arms Regulations
(ITAR)—they contain cryptography and are classified as "munitions."? If you're building FreeBSD
systems for redistribution, export, or commercial use, you'll definitely want to chck this file.

Fortunately, the software required for providing network services is free for either commercial or
noncommercial use. These restricted packages are the exception, not the rule.

[2IMost of this software is available from non-US sourecs, and can be downloaded anywhere in the
word. The official FreeBSD CD-ROM' images are generated in the United States, however.

Using Packages

Packages are precompiled software for a particular version of FreeBSD. We're going to discuss
using packages first, as they're generally easier and faster to use than ports. Once you have a grip
on packages, we'll go on to ports.

Unless a piece of software has legal restrictions against being distributed in compiled form, it's
available as a package. Other software (such as Microsoft Word!®!) is only available in precompiled
form. Packages are available on CD—-ROM and via FTP.

229

Installing software as a package can save you a great deal of time because you don't have to spend
your time compiling from source. To install a package, find its name by searching the ports tree, as
described earlier.

Installing from CD-ROM

If you have a FreeBSD CD-ROM set, you already have a fairly extensive collection of compiled
packages. To use them, all you need to do is mount the CD and read the package file.

We'll discuss mounting and unmounting media in detail in Chapter 16, but here are the basics.

Put your CD in its drive, become root, and type this command:

The contents of your CD—ROM are now available under /cdrom.

Note You won't be able to eject the CD-ROM while you're using it, or while it's mounted. If
you have an idle command prompt sitting on /cdrom, you won't be able to unmount it.
To unmount the CD-ROM, enter this command.

cd /cdrom/packages/

1s

All deskutils japanese print tk82

INDEX devel java python tk83

Latest editors kde ruby tkstep80
archivers elisp korean russian windowmaker
astro emulators lang security WWW

audio french mail shells x11

biology ftp math sysutils x11-fm

cad games mbone tcl80 x1ll-fonts
chinese german misc tcl82 x1ll-toolkits
comms gnome net tcl83 x11-wm
converters graphics palm textproc zope
databases ipvé perlb tk80

#

This should look familiar. Yep, it's the same as the ports tree listing we saw earlier in the chapter. If
you go into a directory, however, you'll see something a little different. A single CD—-ROM doesn't
have nearly enough room to store all the FreeBSD packages, which can be quite large (up to
hundreds of megs). You'll find some packages, but not all of them. Many other packages are

230

available on other FreeBSD CD-ROMSs. Second, these are files, not directories; they're tarballs
containing complete software packages.

For example, in /cdrom/packages/astro we'll see two packages. Both of these are based on ports
you'll find in the astro directory of the ports tree.

cd astro/
1s
openuniverse-1.0.b3.tgz xglobe-0.5.tgz

To see what a package does, check its description in /usr/ports/INDEX. Search for the package
name in the index file, just as we searched for a port name in the index (in the "Finding Software"
section, earlier in the chapter). In the fourth field, you'll find a description of the port:

grep -i “openuniv /usr/ports/INDEX
openuniverse-1.0.b3|/usr/ports/astro/openuniverse|/usr/X11R6|0penGL Solar System
simulator for X Window System|/usr/ports/astro/openuniverse/pkg—
descr|trevor@FreeBSD.org|astro|Mesa-3.4.2_1 XFree86-libraries-4.1.0 freetype2-2.0.4
gettext-0.10.35 gmake-3.79.1 imake-4.1.0 Jjpeg-6b|Mesa-3.4.2_1 XFree86-libraries-—
4.1.0 freetype2-2.0.4 imake-4.1.0 jpeg-6b|http://openuniverse.sourceforge.net/

The fourth field of this description says that openuniverse is an "OpenGL Solar System simulator for
X Window System." A solar system simulator does sound kind of cool, doesn't it? Let's install it! Use
pkg_add(1) to install packages:

That's it! The software is installed and ready to use. (The installation usually runs silently, though
you'll occasionally see messages during a package install. Pay attention to them, and take whatever
action they recommend.)

If a package requires other packages, pkg_add(1) should automatically find those packages and
install them. The CD sets are designed such that the dependencies are all on one disk whenever
possible. However, if a required package is not available, pkg_add will complain about the missing

package by name and fail. In that case, find the required package on another disk and install it first,
or just install over FTP.

Installing via FTP

Frequently, a package doesn't exist on the CD because the FreeBSD Project has limited space on

231

its CD—ROM sets and can't possibly fit all 6,000—plus packages onto 4 disks! Also, software on CD
is built for a particular release of FreeBSD. Having a CD-ROM of packages for version 4.4 won't
help you if you're running FreeBSD 4.6.

Too, if you're tracking —stable, the packages on the CD are slightly out of date, and you should grab
the latest package from ftp.FreeBSD.org. (You must have a live Internet connection to do this!)

If you know the full package name and version number, you can get the latest package from the
FreeBSD FTP site automatically, like so:

pkg_add -r xearth
Fetching ftp://ftp.FreeBSD.org/pub/FreeBSD/ports/i386/packages—4.4~
release/Latest/xearth.tgz... Done.

The advantage of this is that the system will automatically find the proper FTP location, download
the proper version of the package and all dependencies, and install them all. The downside is, you
have to have a live Internet connection.

This method is also less secure than installing from CD. While the packages on the CD set have all
been inspected and verified to be what they claim to be, the packages on the FTP server could
have been tampered with by a malicious hacker. You could be installing Trojan horses, or worse.
(This has never happened, mind you, but it is theoretically possible.)

You can also manually download packages from an FTP site of your choice. (We discussed finding
a convenient FTP server in Chapter 1.) To do so, find a convenient FTP site and log in to that
server. Then, if you're running a —release, go to pub/FreeBSD/release and into the directory for your
version of —release. If you're tracking —stable or —current, go to pub/FreeBSD/ports and choose the
directory for your —stable or —release.

Once in the appropriate directory, you'll see a directory tree much like that under /usr/ports. Now,
just find your package and download it, then install it via the command line:

Note This method will not automatically install dependencies. It's most useful for times
when you're behind a firewall and must jump through some hoops to download
files from the Internet.

What Does a Package Install?

Now that your software is installed, how do you find it on your system? There's no Start menu, after
all!l Not to worry.

232

For a complete list of what a piece of software has installed, see /var/db/pkg. This directory contains
a complete list of every port or package you have installed on the system, and what each set of
software contains.

For example, our /var/db/pkg now contains a directory called openuniverse—1.0.b3. If you look in
that directory, you'll see the following:

1s /var/db/pkg/openuniverse-1.0.b3/
+COMMENT +CONTENTS +DESC

The +COMMENT file is a brief description of the package; +DESC contains a longer description of
the package. The interesting file is +CONTENTS, which lists every file installed by the package.
This file is quite long, but we'll look at the start of it.

more /var/db/pkg/openuniverse-1.0.3b/+CONTENTS
v @name openuniverse-1.0.b3

@cwd w /usr/X11R6

X @pkgdep Jjpeg-6b

@pkgdep Mesa-3.4.1

@comment y ORIGIN:astro/openuniverse

z bin/openuniverse

@comment MD5:2a4775c079a589e78cf54beb5444316ch
share/openuniverse/data/stars.dat

@comment MD5:eeebbblOcaflae32bc2ff043e7baecel7a
share/openuniverse/data/messier.dat
@comment MD5:acd357ee82d95121fbf42ba9982f1dd8

The first line (v) is, of course, the name. Following that is the directory tree where the package was
installed (w) after the cwd keyword. You can see that openuniverse is installed under /usr/X11R6.
The pkgdep keywords (x) are other packages that this package depends on. The ORIGIN
comment (y) is the category in the ports tree where this package was created.

Finally you have the list of files (z). Each file installed by this program is listed here, along with its
MD5 checksum. (The various package-handling tools use the MD5 checksum to verify that a file is
still good and that it hasn't been damaged during transit or by operator error.)

Each file is listed relative to the directory tree given in the packing list. For example, the file
bin/openuniverse was actually installed under /usr/X11R6, giving us /usr/X11R6/bin/openuniverse.
Similarly, various files are listed as being in share/openuniverse, which is under /usr/X11R6, giving
us the real directory of /usr/X11R6/share/openuniverse. Most files installed in a share directory are
either documentation or program data. You can read the documentation, or just run openuniverse
and see what happens.

(Much of this information on files and directories is also available through pkg_info(1), but it's
frequently easier to just look for yourself.)

233

Uninstalling Packages

Use pkg_delete(1) to uninstall packages:

If you want to uninstall a package required by other packages, only do so when you know exactly
what you're doing, and why. (For example, you might want to upgrade a dependency package to a
newer version.) Don't expect software that requires this package to work once you've uninstalled it,
however!

You can use pkg_delete -f to force an uninstall. Pkg_delete will warn you, but will do it anyway.

Package Information

Uninstalling works well when you remember the exact version number of every package you've
installed. If you can do that, | commend you. If you're like me, though, you're lucky to remember that
you have a piece of software installed on a system, let alone which version it is!

FreeBSD includes pkg_info, a tool to examine installed packages in a more convenient manner than
manually scanning /var/db/pkg. Pkg_info(1) uses the contents of /var/db/pkg to do its work, but
automatically handles a lot of boring manual searching and sorting for you.

When it is run without any options, pkg_.info lists each package installed on your system, along with
a brief description of each:

pkg_info

Hermes-1.3.2 Fast pixel formats conversion library

JXx-1.5.3_1 A C+t+ application framework and widget library for X11
Mesa-3.4.2_1 A graphics library similar to SGI's OpenGL

ORBit-0.5.8_1 High-performance CORBA ORB with support for the C language
XFree86-aoutlibs-3.3.3 XFree86 a.out compatibility libraries

As you can see, this output will give you the name and version of each package you've installed, so
you can uninstall it easily.

Package Info Arguments
You can use various arguments with pkg_info to gather other information about the packages on
your system. When you start using arguments, pkg_info requires either a package name to

investigate or the —a flag, which means "for all packages."

For example, to learn which packages on your system require other packages, you would use this
option:

234

pkg_info -aR
Information for Hermes-1.3.2:

Required by:
windowmaker-0.65.0_1
wmakerconf-2.8.1
Information for JX-1.5.3_1:
Required by:
libjtree-1.1.7_1
libjtoolbar-0.
code_crusader—

N o |

To find out the space needed by the files within a package, use pkg_info -s packagename.
(Note that this only includes files installed by the package; files created by the package are another
matter entirely. After all, do you count your text files and email messages as part of your office
suite?)

Another common question is which package a file came from. You might be browsing through
/usr/local/bin and come across a file that you don't recognize, haven't used, and have no idea why
it's there. Use the -w flag to pkg_info to perform a sort of "reverse lookup" on files to see which
package they came from:

pkg_info -W /usr/local/bin/xwe
/usr/local/bin/xwe was installed by package xwpe-1.5.22a

Controlling Pkg_add

You can use shell-environment variables to control how package—handling tools behave.
PKG_TMPDIR

The PKG_TMPDIR environment variable controls where pkg_add will unpack its temporary files.

A package is a tarball with some added instructions on how to install things. To install a package,
you have to untar it. If you're short on space in the standard directories that pkg_add tries to use,
the untar will not finish and the install will fail. By default, pkg_add tries to use the directory given by
the environment variable $TMPDIR. If that variable doesn't exist, pkg_add checks for room in /tmp,

/var/tmp, and /usr/tmp, in that order.

You can set PKG_TMPDIR to make pkg_add use a different directory, where you do have room:

235

(You can add this line to your .cshrc to have it set every time you log in.)
PACKAGEROOT

The PACKAGEROOT environment variable controls the FTP server used by pkg_add's automatic
package fetching. By default, pkg_add -r tries to download everything from ftp.FreeBSD.org, the
default server. However, you can frequently get better performance by manually choosing a closer,
less heavily used mirror.

Set this PACKAGEROOT with a particular server name and protocol as a URL. For example, to
download from ftp3.FreeBSD.org, enter this:

PACKAGESITE

PACKAGESITE, another popular environment variable, gives an exact path to check for a package
repository. You might choose to use this if you want to use packages from a particular release, or if
you have a local package repository. (We'll discuss setting up a local package repository in the
"Building Packages" section, later in the chapter.)

Set the PACKAGESITE variable as an absolute URL:

setenv PACKAGESITE ftp://ftp4.FreeBSD.org/pub/FreeBSD/releases/4.4-
STABLE/packages/All

Package Problems

The package scheme seems like a great system, right? Well, sort of. There are a few problems,
specifically lags in the software—porting process and the software—synchronization requirements.

The overwhelming majority of packages is software produced by third parties, folks who release
their software on a schedule completely independent of FreeBSD. When they release an updated
version of their software, the FreeBSD package is updated. There is a delay between the release of
an original software package and the port to FreeBSD. A popular port might be updated in hours,
while large or less frequently used ports can languish at an older version for days or weeks.

Also, packages are interdependent, and many rely upon others in order to function properly. When
the FreeBSD ports team changes a package, that change cascades through all the dependent
packages. That's why you'll see packages with names like windowmaker—-0.65.0_1. The _1 shows
that a program the package depends on has changed, and so this version of WindowMaker is
slightly different than the previous version. These bumped version numbers might also indicate that

236

the port itself was slightly changed; for example, the build process for the FreeBSD port of
WindowMaker 0.65.0 has been updated once. (Often these changes are purely internal, and don't
affect the software's behavior or performance.)

If you're running a FreeBSD release and only installing software from the CD or the version
released with your release, this interdependency isn't much of an issue. After all, the packages built
for a release do not change. You might be running an older version of FreeBSD, but want a
program that was just released. You might be continually upgrading your system, and have older
versions of software.

For example, the package wmakerconf-2.8.1 requires windowmaker-0.65.0_1. That's fine if you
have the right package installed, but if you have installed windowmaker-0.65.0 or
windowmaker-0.65.0_2, pkg_add will think that you don't have the proper required package
installed and will go grab the appropriate WindowMaker. This takes up disk space at best, and
overwrites existing software at worst.

One way around this problem is always to use packages from the same date or time. (If you set the
PACKAGESITE environment variable to the packages directory for a particular FreeBSD release,
you'll always have matching packages.) This is perfectly acceptable in many cases, since you don't
always need the latest version of a piece of software when a version just a month or two older will
work just fine. In other cases, this practice isn't acceptable because an older version might have
security problems or performance issues. In that case, | recommend you use ports instead. Rather
than checking for installed programs by the name of the package, ports check for the existence of
the program itself. To continue our earlier example, the port for wmakerconf won't check for
WindowMaker version 0.65.0_2, it will just look for a program called "window-maker." This makes
ports much more flexible.

Forcing an Install

There will be times when you want to use a package where a dependency has changed, and you
don't want to upgrade the dependency or use an older package. Don't do it. Programs can crash,
badly, if you do.

Still, it is possible to force an install if you want to—after all, dependency changes are frequently
minor and do not affect program behavior. The hard part is verifying that your programs will be
okay.

Note Before you read further, let me say that you should not be doing this. If you're in this situation,
use a port instead. It will take longer, but things will almost certainly work correctly. If this isn't
possible, read on.

Should you consider forcing an install? Well, as a very general rule of thumb, if the package name
has changed by either adding a trailing underscore and a number, or if this trailing number has been
incremented, the package may work. This is no guarantee, mind you, and if things start breaking,
you'll have to uninstall the package and do things correctly.

To force an install, first, manually grab the package you want to use. (Be sure you don't have a
packages CD—-ROM mounted—you don't want the system to go looking for matching dependencies
and install them, overwriting your existing software and causing problems.)

Once you've grabbed your package, run pkg_add —f::

237

You'll see a warning that a dependency was not found, but that the install is proceeding anyway. If
the software works, great! If not, uninstall it and start working with ports.

BINo, Microsoft Word is not available on FreeBSD. Yet. But it's very difficult to think of a major,

recognizable example of binary—only software for FreeBSD, as almost all of it is available in source
form.

Using Ports

It takes longer to build software using ports than it does when using packages, and the ports system
requires a live Internet connection. Still, the ports system can produce better results than packages.

Let's take a look at a port. We're going to pick on one of my favorite security tools, SKIP.1

ed /usr/ports/security/skip

1s

v Makefile x distinfo z pkg—-comment | pkg-plist
w README.html y files { pkg-descr } scripts

#

The Makefile in the preceding list (v) contains the basic instructions for building this port. If you were
to take a look at this file, you'd quickly notice that there isn't much in it. The Makefiles for individual
ports don't contain much beyond some basic information about the port; they don't have information
about how to build FreeBSD software in general. (Most of the FreeBSD ports Makefile system is
contained in the directory /usr/ports/Mk; editing these files is a very advanced topic, and you really
don't want to go there until you're very comfortable with Makefiles.)

The README.html file (w) gives a brief description of the port. If you're using a Web browser to
skim the ports collection, you'll be directed to this file when you ask for information on this port.

The distinfo file (x) contains integrity—checking information (or checksums) for the files required to
build this program.

The files directory (y) contains any add-on files required to build this port. Our particular example
requires 87 patches, but many ports don't even have a files directory, and build cleanly without
patching.

The pkg—-comment file (z) contains a one-line description of the port. Similarly, pkg-descr ({)
contains a longer, more detailed description and (usually) a URL for more information on the
program.

The pkg-plist file (|) holds a list of all the files installed by the port (the "packing list"). If a file is not
listed here, it will not be installed.

238

Finally, the scripts directory (}) holds a variety of scripts to be run at various stages of the
port-building process. This directory might or might not exist—if the port builds without any special
tweaking, it won't have any additional scripts. These scripts perform any pre— or post—-processing
that the port needs, for example, changing permissions on a downloaded distfile so that patch(1)
can run properly.

Combined, these files create the tools and instructions needed to build the software.

Installing a Port

If you're familiar with source code, you'll quickly notice that there is no actual source code in the
port. Sure, there's patches to apply to source code, and scripts to run on source code, but no actual
source code! You might rightly ask just how this is supposed to work without the source code.

When you activate a port, your system automatically downloads the appropriate source code from
an approved Internet site. It then checks the downloaded code for integrity errors, extracts the code
to a working directory, patches it, builds it, installs everything, and records the installation under
/var/db/pkg. If the port has dependencies, and those dependencies aren't installed, it will interrupt
the make process to build those dependencies, and then finish its own. To trigger all this, you just
have to go to a port directory and type this command:

When you do, you'll see lots of text scroll down your terminal window, ending with a "recording
installation" message.

This all-in—one installation process handles any changes in dependencies. If a port requires
another program, the port will simply gloss over minor changes in that program. For example,
perhaps you have a version of Apache that's a few months old. A package would demand that you
install the newer version, while a port will just check to see if Apache is installed.

As you grow more experienced with building source code, however, you'll find that this all-in-one
approach isn't appropriate for every occasion. Not to worry; the ports system gives you the
opportunity to take the port-building process exactly as far as you like, because make install is
actually not one but a series of commands.

Using Make Install

The make install process starts with make fetch. During this stage of the process, make
checks to see whether the source code is in /usr/ports/distfiles. If it's not, your system goes to get it.

Make Fetch The make fetch process first checks for the source code in the MASTER_SITE listed
in the Makefile, then checks a list of backup sites provided by the ports system itself. If it finds the
source code, it downloads it, and that downloaded source code is called a distfile.

Make Checksum Next, make checksum confirms that the distfile's digital signature matches the

one that the port has in the distinfo file. This is a security measure; if the FTP server was broken
into by a malicious hacker and the source code replaced by a Trojan horse, or if the download was

239

corrupted, this step will detect it and stop the build with a warning about a checksum mismatch. If
the distfile has been deliberately changed, make checksum stops compilation.

Note Software authors sometimes make minor changes to their code, but give the source file the
same name as when they first made it available for download. The FreeBSD port might or
might not work after this change. If you're sure that the distfile has not been compromised or
corrupted, and want to use it despite this warning, you can override this with make
NO_CHECKSUM=YES. | highly recommend that you check with your vendor to see if this is a
legitimate change.

Make Depends The make depends stage checks to see if the port is dependent on any other
software, and, if so, whether that software is installed. (For example, an X window manager requires
an X server.) If the software on which the port depends is not found, this stage recurses through the
various dependencies and completely builds them all.

Make Extract Once you have the port distfiles, you have to uncompress and extract them. This is
done under a work directory in the port. To create this directory and uncompress the distfiles under
it, use make extract.

Make Patch The make patch stage applies any FreeBSD-specific patches listed in the Makefile
to the port.

Make Configure Next, make configure checks to see if the program needs a configure script. If
it does, it runs it. If not, the port build proceeds silently to the next step.

Make Build The make build stage compiles the checked, extracted, and patched software.

Make Install Finally, make install installs the software and records its presence under
/var/db/pkg.

Make Target Dependencies Each make target depends onthe make targets before it. You
cannot patch source code that you have not yet fetched, for example. Whenever you use any make
target, make runs all previous stages that have not yet been run. For example, make extract
performs a make fetch, make checksum, and make extract.

How might you use these make stages in practice? Say that you want to apply some patches to a
program before you compile it—patches that address stability or security problems. You want to
apply the patch to your source code after you've extracted it and applied the FreeBSD-specific
patches. To do so, you could run make patch, apply the new patches to the software under the
work directory according to the vendor's instructions, and then return to the port directory and type
make install.

Built-In Port Features

Ports allow you to do a great deal of customization, which you can read about in the port's Makefile.
Since the port's Makefile includes specific instructions for building this particular piece of software,
it's where options for that software are most likely to be found.

Many ports announce additional features when you first type make install, though not all will

work (especially some older ones). Whether a feature will work depends on the port maintainer's
skills, time, and inclination—remember, this is a volunteer project!

240

You can always get information about a port's additional features from the Makefile, but let's look at
an announcement and see how to use it first. For example, when you try to install
/usr/ports/security/snort you'll see a notice:

Set WITH_FLEXRESP, WITH_MYSQL, WITH_ODBC or WITH_POSTGRES
to get additional support.

A bit of Web searching would show you that mysql, odbc, and postgresql are database packages,
and this message tells you that you could build Snort with support for these databases. A similar
search would show that flexresp is part of the libnet software package.

If you get an announcement, and you want to use one of these options, press CONTROL-C to
abort the port build. You can then set these options on the install command line like this:

This command changes the way the port will be built and will build your version of Snort with
support for ODBC database connections. With this feature built into Snort, you would then be able
to log data across the network to any database that supports ODBC, such as Microsoft SQL Server
or an Oracle database.

Here's one area where ports shine over packages. You couldn't do this customization with a
package, unless you had multiple versions of the same package. And sorting through
snort-odbc-1.9.tgz, snort-mysql-1.9.tgz, snort—postgres—-mysql-libnet-1.9.tgz, and so on would
be utterly hideous, waste space on the CD, and be mostly unused.

The Makefile itself will tell you the build options for a port. At the top of the Makefile, you'll see a lot
of stuff that describes the port, like this:

v PORTNAME= snort

w PORTVERSION= 1.8

x CATEGORIES= security

y MASTER_SITES= http://www.snort.org/Files/ \
http://www.physik.TU-Berlin.DE/~ibex/

ports/distfiles/

z DISTNAME= S {PORTNAME } -$ {PORTVERSION}-RELEASE

{ MAINTAINER= dirk@FreeBSD.org

| GNU_CONFIGURE= yes

} CONFIGURE_ARGS= —-—-with-mysgl=no --with-odbc=no --with-po stgresgl=no

~ MAN8= snort.8

Much of this is obvious to people who habitually build software from source. If you're not at that
point yet, don't worry. You'll get there with practice. Let's consider this particular example. Not all of

241

these entries are mandatory, and there are many other possible entries in port Makefiles, but these
are fairly common.

The PORTNAME (v) is the name the software uses in FreeBSD's ports system. This is not
necessarily the same as the software name, as we saw earlier in our search for Midnight
Commander. The PORTVERSION (w) is the version number of the software, as given by the
software's author.

CATEGORIES (x) lists all the ports directories where the port can be found. For example, this port
is under /usr/ports/security.

MASTER_SITES (y) contains a list of Internet sites where the software can be found. This is where
the ports system tries to get the software from. If one site is unreachable, it tries the next.

The DISTNAME (z) is the name of the original file of software source code. The ports system tries
to grab this file from the MASTER_SITES given earlier.

The MAINTAINER ({) is the person responsible for maintaining the FreeBSD port. This person
doesn't actually write the software, but just makes sure that it installs on FreeBSD.

GNU_CONFIGURE (|) tells the ports system if the software needs to use the classic GNU program
autoconf. In a related entry, CONFIGURE_ARGS (}) lists arguments to be given to autoconf.

There is usually a list of man pages that the program installs (~). You can check these pages with
man(1) to see how to use the program. You might then see a bunch of "if defined" statements like
this one:

.if defined v (WITH_FLEXRESP)

BUILD_DEPENDS w += ${LOCALBASE}/lib/libnet.a:$? {PORTSDIR}/net/libnet
CONFIGURE_ARGS +=--enable-flexresp

CONFIGURE_ENV += CPPFLAGS="-IS${LOCALBASE}/include"

LDFLAGS+= "-L${LOCALBASE}/lib"

.endif

This is a build option for the port. The first line in this example is the variable (v) you need to set—in
this case, WITH_FLEXRESP. The second line shows that this adds a dependency (w) for the port,
/usr/ports/net/libnet. The remainder is a bunch of software-building commands that are altered by
setting this variable.

You set this variable on the command line. To set WITH_FLEXRESP, you would type

You don't need to understand the balance of this listing right now, but notice the little question mark
(?) and plus and equal (+=) symbols scattered throughout it. These mean that you're adding
commands to the build process, literally changing how the software is built just by setting this

242

variable! Setting variables on the command line is much simpler than figuring out how to add these
commands to the build process on your own.

If you use several make commands to build the port (for example, make patch and then make
install clean), you mustinclude any options you want with every make command. Otherwise,
the port might not build correctly. For example, if you wanted to use the flexresp option in Snort, but
had your own custom patch to apply, you would need to run the following:

Otherwise, you would patch your system with the customization option WITH_FLEXRESP, but you
wouldn't give it the correct instructions when compiling the software. Your program would be
internally inconsistent, and quite possibly would fail.

The hardest part of customizing the way your software builds is deciding which options you'd like.
Unfortunately, there is no easy answer to this question, so it's best to check the software manual or
Web site to help you decide. More than once I've installed a piece of software, read the
documentation, and turned right around to uninstall and reinstall with the options | needed.

Uninstalling and Reinstalling

One nice thing about installing ports is that, once installed, the port is treated just like a package.
You can uninstall a port with pkg_delete, and learn about it with pkg_info. Since the port's
installation is recorded under /var/db/pkg, you can also go through the contents file and investigate
every file the port includes.

You also can uninstall a port from the port directory. For example, suppose FreeBSD includes
several different versions of one port, like the Apache Web server. You might want to build several
different versions of the port, evaluate each, and pick one to install for long—term use. Then, once
you've evaluated one version of the program, and want to uninstall it, you can run make
deinstall in the port directory to erase the program from the main system.

Note Once you've run make install, the compiled program and source files still live under the
work subdirectory in the port. You can run make reinstall to reinstall an uninstalled
program. You can uninstall and reinstall a program as many times as you like.

At some point, you may find that you want to reinstall a port you've removed with pkg_delete and
that when you run make reinstall it fails, complaining that the port is already installed. Why?
Well, do a "long list" of the problem port's work directory:

ed /usr/ports/www/apachel3/work

1ls -a
total 21

969094 drwxr—-xr-x root wheel 512 Jul 22 21:24 .

778196 drwxr—-xr—x root wheel 512 Jul 27 20:42 ..

969343 -rw-r——-r—— root wheel 17163 Jul 22 21:24 .PLIST.mktmp
969344 -rw-r——r—-— root wheel 0 Jul 22 21:24 .PLIST.setuid
969345 -rw-r—-r—- root wheel 19 Jul 22 21:24 .PLIST.startup
969341 -rw-r——r—-— root wheel 0 Jul 22 21:23 .build_done

969115 —-rw-r—-r——
969112 —-rw-r—-r——
969342 —-rw-r—-r—-—
969113 -rw-r——r—-—
318289 drwxr—-xr—x

root wheel 0 Jul 22 21:22 .configure_done
root wheel 0 Jul 22 21:21 .extract_done
root wheel 0 Jul 22 21:24 .install_done
root wheel 0 Jul 22 21:21 .patch_done
root wheel 512 Jul 22 21:23 apache_1.3.20

N N e

So what does this tell us? Well, all files whose names begin with a period (which is most of the files
listed here, except for apache_1.3.20) are "hidden" files that don't show up on a normal directory
listing. The ports system and the make process uses these files to keep track of what stage the
build process is in. Every port uses these files. See the hidden file .install_done? If that file exists,
the port believes that it's already installed, and it refuses to overwrite itself. So there's our problem.

Remove that file, and the make reinstall will succeed.

Cleaning Up with Make Clean

Ports can take up a lot of room. Some, such as XFree86, can soak up a couple hundred megs of
disk once they're extracted and built. Most of this disk usage is from the original source code, which
you will no longer need. The ports system includes a method to remove excess source code.

Once you have your program installed and configured the way you like it, you don't really need the
copy of the source code in the ports directory any more. You can remove it with make clean. (This
blows away the work directory, so be sure that you're happy with your program before you do it!)
You can also clean a new port immediately on install by running make install clean when you
install it.

You might also clean the port's original distfiles, which are stored in /usr/ports/distfiles. (Check this
directory now and then, because it can fill up quickly if you build a lot of ports.) Removing unneeded
distfiles frees considerable disk space.

To clean the entire ports tree, run make clean directly under /usr/ports. This takes some time,
though, and, while there are faster and more efficient ways to remove every work directory in the
ports tree, this one is directly supported by the FreeBSD Project.

Building Packages

If you're using ports, you can build your own packages to install on other FreeBSD machines, which
can save you a lot of time and ensure that you have identical software on every machine. If you
have several machines running Snort, for example, and you want them all to have the same
features, you can build Snort once and then make a package out of it to install on all the other
machines.

244

The command to create a package is make package. This will install the program on the local
machine and create a package in that port's directory. Simply copy this package to other systems
and run pkg_add to install it.

You can even set up an anonymous FTP server (see Chapter 12) and have a local master package
repository. Remember the PACKAGESITE environment variable? Set that to a path on your
anonymous FTP server and put your custom packages there. You can then use pkg_add -r on
your other machines, and they will automatically grab the customized packages.

Changing the Install Path

If you have dozens, or even hundreds, of FreeBSD systems, all with mostly identical configurations,
you might find the default port or package installation path of /usr/local problematic. In many large
server farms, /usr/local is reserved for programs that are unique to the individual machine, and other
software packages that are used by every system in the server farm are expected to be installed
elsewhere.

A common alternative to /usr/local is /usr/pkg, which you can set for your system with the PREFIX
variable:

When the port is installed, it will go into your chosen location.

Setting Make Options Permanently

If you get sick and tired of typing the same options repeatedly when building ports, you can list your
options in make.conf to have them automatically used whenever you install a port. See the section
on make.conf in Chapter 9 for details.

Note While we're at it, /etc/make.conf is scanned any time you run make. This means that any
options you set there are applied to ports. While features like CPUTYPE might not make a
difference for you, it's possible that they will. In any event, it's a possible source of confusion,
and you should at least be aware that it exists.

[ISKIP is Sun's Secure Connectionless Internet Protocol (the acronym stands for Simple
Key—-management for Internet Protocols). It is a wonderful virtual private network (VPN) protocol
that has unfortunately fallen into disfavor in the face of IPSec. This is yet another example of the
market bludgeoning cool technology into the grave.

Upgrading Ports and Packages

The software—-upgrade process can be very simple or a complete nightmare, but with a bit of
preparation you can avoid many common pitfalls. The following list of suggestions assumes that
you're upgrading an Internet server and that you have actual users depending on it. (If you're
upgrading your laptop, you can consider your user notified before you start.)

245

1. The first thing to do when upgrading is to be sure that you have a package of the older
version of the software available. If things go wrong on a production system, you'll want to
be able to fall back to the older version very quickly. If you've installed the software from
CD-ROM, check that you still have that disk; if you installed via FTP, download the same
package and keep it handy.

2. If at all possible, test the upgraded software on a nonproduction system. Production server
upgrades can give even seasoned administrators white hair and worse tempers.
Successfully upgrading once makes further upgrades much easier and faster.

3. Make sure you have a system backup. See Chapter 3 for details on how to do this with
either a tape or a filesystem.

4. Get your upgraded software, preferably via a package you have built on your test machine.
(That way, you know that the port actually builds and installs.) Otherwise, build the software
from a port using make build. Don't do the actual make install, just make buildto
confirm that you can actually compile the program cleanly.

5. Notify your users that you will be upgrading the service at such-and-such a time, and that
the program or machine will be unavailable.

6. At the scheduled time, do a make deinstall or pkg_delete on the old package, then a
make install on the new port. Be ready to fall back to the older version if this doesn't
work!

The most frequent problem people have when upgrading is determining which software on their
system needs upgrading. My general rule is that things that work should not be upgraded just
because a newer version is available. This holds true especially for large, complicated software
packages, such as some of the newer desktop window managers.

Still, you may find that even though everything is working just fine, a newer version of a piece of
software addresses a problem you have or provides needed functionality. You can make your life
easier by upgrading your ports tree to allow you to easily install that newer piece of software.

Upgrading the Ports Collection

The FreeBSD upgrade process also handles upgrading your ports tree. You can use CVSup and
the ports—supfile configuration to upgrade your ports to the latest version—or, indeed, to any
version you choose.

To begin, you'll need to install CVSup as described in Chapter 6, and edit the ports—supfile to use a
particular CVSup mirror. When you're done, run it with this command:

CVSup will crawl over your ports tree, comparing each file with the version on the CVSup mirror
you've chosen, and make changes in your files as needed. When it finishes, you'll have the latest
version of the ports tree.

Once you've finished upgrading your ports collection, you should upgrade your index and your
readme files. To do so, go to /usr/ports and type this:

246

Note Both of these commands (make index and make readmes) take quite some time
to complete. By using the &&, you tie them together; when the first command
completes successfully, the second command will run. This saves you the trouble of
going back in half an hour and typing the second command.

The ports collection upgrade doesn't remove old work directories. If you have installed ports and
haven't run make clean, the work directories and older source code will still be around, together
with the status—tracking hidden files. If you run make in these ports, the hidden files will show that
the port is built and will refuse to run, and you'll need to run make clean to build these ports.

Ports Collection Upgrade Issues

The problem with upgrading the ports collection is that any collection of software is intended to be
used as a cohesive whole. If you have an older version of a commonly used tool that your new
software requires, you might have to upgrade it as well as programs that depend upon it. The
danger is that a simple upgrade can quickly become a cascading series.

Of course, FreeBSD is not the only operating system that suffers from this problem. Every software
package on every operating system platform has it. (In Windows you frequently see this manifest as
DLL conflicts, unexplained program crashes, or any other weird and unpleasant behavior.) Excellent
software design can minimize but not eliminate this problem. Unfortunately, excellent software
design is rare.

Checking Software Versions

On a single—-purpose machine, the daisy—chain upgrade isn't that difficult; after all, a Web server
doesn't generally have hundreds of software packages installed. However, a workstation does, and
even my laptop usually has over 200 entries in /var/db/pkg! (You know, | should really go through
and uninstall what | don't use anymore; do | really need that little daemon that follows my mouse?)
So what do you do if your system has complex software dependencies?

FreeBSD has a software-version—-checking tool called pkg_version(1). Pkg_version compares the
version of the software you have installed with the version number in /usr/ports/INDEX and, if your
INDEX file is up to date, you're all set. (You did follow my advice in the last section and update your
index and readmes, didn't you? Of course you did. You're not the type of person that would go drop
some hard-earned cash on a computer book and then ignore it, are you? Of course not.)

A basic version check might look like this:

pkg_version -v
apache-1.3.20
autoconf-2.13_1
bzip2-1.0.1
cvsup-bin-16.1
emacs—-20.7
gettext-0.10.35
gmake-3.79.1

up-to-date with port
up-to-date with port
up-to-date with port
orphaned: net/cvsup-bin
up-to-date with port
up-to-date with port
up-to-date with port

[T | IR B | A [

247

ispell-3.1.20c_2 needs updating (port has 3.2.04_1)
jJade-1.2.1_1 up-to-date with port
libtool-1.3.4_2 up-to-date with port
links-0.96pre7 needs updating (port has 0.96,1)
m4-1.4 up-to-date with port

mutt-1.2.5 up-to-date with port

rrdtool-1.0.33
sftp-0.9.6_1
sudo-1.6.3.7
ucd-snmp-4.2.1
unzip-5.42
uulib-0.5.13
xsysinfo-1.4a
zip-2.3

up-to-date with port
up-to-date with port
needs updating (port has 1.6.3.7_1)
up-to-date with port
up-to-date with port
up-to-date with port
up-to-date with port
up-to-date with port

A AnnA

Reading down the list of comments next to each piece of software, it's easy to see that most of the
software on this system is the latest version. But take a look at the entry for ispell-1.2.10. The
message shows that the port is out of date, and at some point you might want to update that
program. You need to decide on your own if the package is important enough for you to spend the
time needed to upgrade it.

Now, since | personally installed every piece of software on this system, I'm familiar with it, and |
know how important everything is. | know that ispell is a spell-checker and that its importance in the
grand scheme of Web serving is minimal at best. I'm not going to worry about it. On the other hand,
the sudo-1.6.3.7 package is a security tool used to control user privileges; correct operation of this
program is absolutely vital. If a newer version is available | must investigate and probably upgrade.

The entry for cvsup-bin-16.1 with the message of "orphaned: net/cvsup-bin" tells us that there is
no entry for this piece of software in /usr/ports/INDEX, and hence no port for this package. |
installed this port from a package; no port is available.

Automatically Checking Software Versions

You can add an automated software—version check to your weekly status email. Just add the
following line to /etc/periodic.conf:

Create /etc/periodic.conf if you don't have one. For full details on /etc/periodic.conf, see Chapter 9.

Hints for Upgrading

Most of the software—maintenance process is based upon knowing what your server is supposed to
do. If you are the only administrator of a machine, things are very simple. Once you start having
multiple administrators, however, you'll find that keeping track of this information becomes very
difficult. I cannot stress highly enough the importance of keeping a server log for every system on
your network! Even a text file, /etc/changes, where you jot down things like "mwlucas, 5-15-01:
Installed sftp for client bufar@absolutebsd.com" can save you hours of pain later as you try to figure

248

out why some trivial change is causing things to go haywire. It can also keep another administrator
from calling you up at 3 AM and asking why the heck the system doesn't work with the default
settings.

When you decide to upgrade on a production system, map out your changes. You can use
pkg_info -aR to see which packages require other packages.

The general rule of thumb is to upgrade your dependencies first. Those packages that are required
by other packages should be the first to be upgraded and tested. After all, if something's wrong with
lower-level software, everything that depends on it will fail.

You can use pkg_delete -f to remove dependencies, and then install the newer versions from
ports or packages. Then follow the chain upward, upgrading newer versions as required. Again, you
can try to run a software package with a newer version of a dependency, but it might not work.

The /usr/ports/sysutils/portupgrade tool is worth considering, because it can handle some of these

tasks automatically. Still, you need to understand and be able to deal with conflicts and
dependencies yourself.

249

Chapter 11: Advanced Software Management

Overview
This chapter covers several things you need to know about running software on FreeBSD.

FreeBSD can run a wide variety of software packages, most of which are available as source code
so they can be built as native FreeBSD software. And, thanks to some clever design, FreeBSD can
also run software from many foreign operating systems. We'll look at how to do this, focusing on the
popular Linux compatibility package that allows FreeBSD to run unmodified Linux software.

Also, for your programs to start at boot, and stop cleanly when the system shuts down, you must be
able to edit and write proper startup and shutdown scripts. While some programs stop just fine when
you Kill the operating system they're running on, others (like databases) demand a gentler shutdown
process. While you can get by with a variety of ugly hacks, starting and stopping network services
cleanly is an excellent habit to get into and enforce. We'll examine how to properly implement and
manage these systems in FreeBSD.

And, while under normal circumstances you'll never need to know how FreeBSD's linking and
shared library support works, we'll discuss how shared libraries work and how to manage and
configure them. Why? Because normal circumstances are, oddly, quite rare in the computer
business.

Finally, we'll look at how systems with multiple processors work, and how they interact with
software. While multiple processors can greatly increase system power, they won't help you if your
software isn't properly configured.

Startup and Shutdown Scripts

While FreeBSD's main system software is started by /etc/rc, add—on software is started by separate
scripts. The ports and packages system installs these scripts for you. If you install your own
software, however, you'll need to create a script that handles this startup and shutdown process.
Plus, to change an existing add-on package's startup process, you must understand how the
startup scripts function.

Note This section assumes that you have some basic understanding of shell scripts. If
you've never seen or used a shell script before, read the examples here very
carefully. Shell scripting is not hard, and the best way to learn is to read examples.

The /etc/rc shell scripts (see Chapter 9) handle the main system startup process. During boot up,
the FreeBSD startup script checks several directories for additional shell scripts. The most popular
directory for startup and shutdown scripts is /usr/local/etc/rc.d, though /usr/X11R6/etc/rc.d is another
default location. These directories are specified in /etc/defaults/rc.conf, and can be overridden in
/etc/rc.conf. (You can add additional script directories with the 1ocal_startup rc.conf variable.)

The shell script locator just checks in those directories for any files ending in ".sh". If it finds such a
file, it assumes that the file is a shell script and executes it with an argument of start. During
shutdown, FreeBSD runs these same scripts with an argument of st op. The scripts are expected to
read those arguments and take appropriate action.

250

Typical Startup Script

Let's look at a typical startup script, snmpd. sh, which is part of the net—-snmp package that we'll
install a little later. All you need to know at this point is that it starts the SNMP server daemon at
boot, and stops that same daemon on shutdown. Here's the script:

v #! /bin/sh

w 1f ! PREFIX=$ (expr $0 : "\ (/.*\)/etc/rc\.d/$ (basename $0)\$"); then
echo "$0: Cannot determine the PREFIX" >&2
exit 1

fi

X case "S$1" in

start)

[-x ${PREFIX}/sbin/snmpd] && ${PREFIX}/sbin/snmpd && echo -n ' snmpd'
stop)

killall snmpd && echo —-n ' snmpd'
*) rr

echo "Usage: "basename $0° {start|stop}" >&2

esac

The #!/bin/sh line (v) indicates that this is a shell script. The remainder of the file (which is similar to
a Windows batch file) contains commands that are run by the script.

The first section, set off by if (w) and fi, determines the path to the programs, and tells the rest of the
script whether it was started in /usr/local, /usr/X11R6, or some other directory. The rest of the script
(x) needs to know this, so it can find its commands.

The ? case "$1" in line (x) is where the script actually makes a decision. This part of the script reads
the first argument that the script is called with. For example, if your script is run as snmpd. sh
start, start is your first argument. If you run it as snmpd.sh stop, the stop is your first
argument. The script has several smaller sections: Everything between the start) and the double
semicolon (;;) are steps that are taken if the first argument is start. Everything between the stop)
and the next double semicolon are actions that are taken if the first argument is stop. The last
option, the *), is a wildcard for all other arguments that might be typed in.

For example, if you run this script as snmpd. sh start, the script runs the following command:

[-x ${PREFIX}/sbin/snmpd] /&& ${PREFIX}/sbin/snmpd && echo -n ' snmpd'

These are standard UNIX shell commands. This command first checks to see if the snmpd program
exists. If it does, it runs it and prints out its name. Similarly, if you call the script with a stop
argument, it unceremoniously kills all snmpd processes.

251

To change the way a package behaves at startup, edit its startup script. For example, to start
snmpd with an argument of —D you would edit the start line. Pick out the portion of the command
where snmpd is actually started, and insert your change there:

[-x ${PREFIX}/sbin/snmpd] && S${PREFIX}/sbin/snmpd -D && echo -n ' snmpd'

Using Scripts to Manage Running Programs

You can also use these scripts when the system is running. For example, to restart snmpd to make
it reread its configuration file, you could run this command:

Notet's not entirely necessary to use the scripts to manage a running program. If you've read the
snmpd.sh shell script, you know that to stop the program the script runs the command
killall snmpd, and that it starts the program by running snmpd. You could just enter
these commands at the command line, and it would have the exact same effect as running the
previous script twice. You either have to remember what each script does for its particular
program or you have to type the full path to the startup scripts. If you're in doubt, use the
scripts!

Managing Shared Libraries

The basic idea behind a shared library is quite straightforward: It's a chunk of compiled code that
provides services and functions to other chunks of compiled code. Shared libraries provide popular
functions for all programs to use, and they are designed to be reused by as many different
programs as possible.

For example, many programs must hash (or one—-way encrypt) data as part of their function. But if
every program had to include hashing code, each would be larger, harder to write, and more
unpleasant to maintain. What's more, programs would have interoperability problems if they
implemented hashes differently. By using a shared library (in this example, libcrypt), a program that
needs hashing has access to the functions while eliminating problems of maintenance and
interoperability. Similarly, other shared libraries provide common functions to support other
software. This reduces the average size of programs, freeing up a reasonably large amount of
system memory.

FreeBSD builds a cache of available shared libraries at boottime. Programs don't have to scan the
whole disk looking for shared libraries; they just ask the cache for the functions they want. In fact,
the ability to manage the library cache is one thing that separates a newbie from a professional.

While FreeBSD provides quite a few sensible defaults for the cache, we'll discuss the tools you
need to properly configure and manage your cache in all sorts of odd circumstances. Shared
libraries are complex beasts. With Idconfig, Idd, and a little bit of thought, you can start to tame

252

them.

Ldconfig

The main tool for managing shared libraries is Idconfig(8). (You'll probably hear all sorts of
references to it, in one place or another.) We'll discuss a few different Idconfig-related commands:
rtid(1), Idd(1), and Idconfig itself.

Binary Types: Aout and ELF

First we have the issue of binary types: aout and ELF. While as an administrator you don't need to
know the details of aout and ELF, you should know that aout is the old standard, ELF is the new
standard, and programs compiled as one type cannot use shared libraries of the other type. ELF
programs cannot use aoutshared libraries. (The FreeBSD Netscape binary is in aout format, which
is why you must install XFree86's aout compatibility libraries to use it.) While aout binaries are
slowly vanishing, FreeBSD will need to support both types indefinitely.

When you execute an ELF binary that needs shared libraries, the system calls rtld(1), the "run-time
linker." Rtld examines binaries as they're loaded, determines which shared libraries they need, and
loads those libraries. There's a separate runtime linker for aout binaries called Id(aout).

Rather than searching the entire system for anything that looks like a shared library everytime
anything is executed, rtld pulls the shared libraries from a library cache. The cache lives on your
system in two separate files: /var/run/ld.so.hints (aout) and /var/run/ld—elf.so.hints (ELF). A
misconfigured cache is the most likely cause of shared library problems.

What Libraries Do You Have?

To see the list of libraries you already have, run Idconfig with the —r flag:

ldconfig -r
/var/run/ld-elf.so.hints:
search directories:
/usr/lib:/usr/lib/compat:/usr/X11R6/1ib:/usr/local/lib:/usr/local/lib/mysqgl:/usr/local/pilot/1i
O:—-lcom_err.2 => /usr/lib/libcom_err.so.2
l:-1lscrypt.2 => /usr/lib/libscrypt.so.2
2:-lcrypt.2 => /usr/lib/libcrypt.so.2

ldconfig —-r examines the shared library cache and lists every shared library it finds. On my
system, this list runs to 229 shared libraries.

Note If a program complains that it can't find a library, check 1dconfig -r. If the library isn't
there, your cache is either misconfigured or incomplete, or the library really isn't on your
system.

Building the Cache

The cache is built during the system boot process, using Idconfig. For ELF binaries, it's done like
this:

253

Note The list of path names is set in /etc/rc.conf as Idconfig_paths and Idconfig_paths_aout.

If you're trying to use shared libraries that you've just installed, they won't be in the cache, and
programs may fail. In that case, you need to rebuild the cache, and it's fairly easy to do. Just run
Idconfig without any arguments, and Idconfig will rescan the directories listed in 1dconfig —r and
rebuild the cache.

Finding a Library

If the library isn't in one of the directories previously scanned, you need to find it. Generally
speaking, if you cut the initial "lib" off the library name and use locate or find / —-name libname
—print, you should be able to find the file. In the worst case, you'll have to dig through a long list of
results to find the library you want.

Adding Libraries

You might find, after you install a piece of software, that you have a new directory of shared
libraries. (You'll sometimes find these in a private subdirectory; my PalmPilot software uses
/ust/local/pilot/lib, for example.)

It's easy enough to merge a new directory of shared libraries into the existing cache with the -m
option. Some ports even use the —m option to configure shared libraries at boot, which eliminates
any tedious mucking about in /etc/rc.conf. To merge my Palm library into my existing cache, | would
enter this command:

LD_LIBRARY_PATH

While the —m option works very well if you're the systems administrator, it won't work if you're just a
lowly user without root access.!" Also, if you have your personal set of shared libraries, your
sysadmin won't want to make them globally available, and root must own the shared library
directory so that regular users can't just dump things in there willy—nilly. Sysadmins probably won't
even want to take the slightest chance of system programs linking against your personal libraries.

Here's where the LD_LIBRARY_PATH environment variable appears. Rather than create a cache,
LD_LIBRARY_PATH tells the system to check the directories it lists for new shared libraries.

254

Note This isn't at all secure; if you set LD_LIBRARY_PATH to an overly accessible location, your
program can link against whatever's there. LD_LIBRARY_PATH also overrides the cache, so
be careful what you put in there!

You can specify any number of directories in LD_LIBRARY_PATH, separated with colons. For
example, | might want to put the directories /home/mwlucas/lib and /compat/linux/ustr/lib/local into
my LD_LIBRARY_PATH to complete a software install. | would do this like so:

For example, | generally install StarOffice manually rather than via the port. When | do, the install
routine extracts a variety of libraries in /tmp/sv001.tmp and expects to be able to find them when it
starts the graphical installer. To make sure that it can find these libraries, | start setup using the
LD_LIBRARY_PATH variable to point to the /tmp/sv001.tmp directory, like this:

When the graphical StarOffice installer starts, it then checks that directory for extracted libraries.
The result is that | don't have to reconfigure my entire FreeBSD system just to use this program.

Note Remember, you can set an environment variable automatically at login by entering
it in your .cshrc or .profile file.

What Libraries Do My Programs Need?

Lastly, there's the question of what libraries a program expects to have available. You can get this
information with Idd(1). For example, to find out what Emacs needs, enter this command:

1ldd /usr/local/bin/emacs

/usr/local/bin/emacs:
libXaw.so0.6 => /usr/X11R6/1ib/libXaw.so.6 (0x28159000)
libXmu.so.6 => /usr/X11R6/1ib/libXmu.so.6 (0x2818e000)
libXt.so0.6 => /usr/X11R6/1ib/libXt.so.6 (0x2819£f000)
1libSM.so.6 => /usr/X11R6/1ib/1ibSM.so.6 (0x281e2000)
1ibICE.s0.6 => /usr/X11R6/1ib/1ibICE.so.6 (0x281ea000)
libXext.so.6 => /usr/X11R6/1ib/libXext.so.6 (0x281£fe000)
1libX1l.s0.6 => /usr/X11R6/1ib/1libX11l.s0.6 (0x28209000)
libutil.so.3 => /usr/lib/libutil.so.3 (0x282a2000)
libm.so.2 => /usr/lib/libm.so.2 (0x282ab000)
libc.so.4 => /usr/lib/libc.so.4 (0x282c6000)
1ibXThrStub.so.6 => /usr/X11R6/1ib/l1ibXThrStub.so.6 (0x28361000)

This output tells us the names of the shared libraries Emacs requires, and the locations of the files
that contain those libraries. You can check this list of required libraries against the output of
ldconfig -r to confirm that your program has what it needs. Or you can use this as a shopping
list and then go out and get the needed libraries.

255

(it you're reading this book, you're probably the systems administrator. But you'll need this as a
solution for your users.

Running Software from the Wrong OS

Traditionally, operating systems have had to have software written for them, and a piece of software
would only run on the platform it was designed for. That said, many people have built a healthy
business by changing software for one platform so it will run on another system, a process called
porting.

As an administrator, you can use software written for a platform other than FreeBSD in a few
different ways. The most effective way is to recompile the source code to run natively on FreeBSD.
Alternatively, and barring your recompiling a program, you can also run non-native software under
an emulator, or by re—implementing the application binary interface (ABI) of the native platform.

Recompilation

Many pieces of software in the ports collection are actually native recompiles of software originally
designed for other platforms, such as KDE and Emacs. In fact, software written for Linux, Solaris, or
other UNIX variants can frequently be built (recompiled) from source code with little or no
modification to run without a hitch on FreeBSD. By simply taking the source code and building it on
a FreeBSD machine, you can run foreign software natively on FreeBSD.

Recompiling works best when the platforms are similar. For example, FreeBSD and Linux provide
many identical system functions: both are built on the standard C functions, as defined by POSIX,
and both use similar building tools and have mostly identical system calls.

However, over the years, the various UNIX platforms have diverged. Each version of UNIX has
implemented new features that require new libraries and functions, and if a piece of software
requires those functions, it won't build on other platforms.

The POSIX standard was introduced, in part, to alleviate this problem. POSIX is a standard that
defines minimal acceptable UNIX and UNIX-like operating systems. Software written using only
POSIX-compliant system calls and libraries should be immediately portable to any other operating
system that implements POSIX, and most UNIX vendors comply with POSIX.

The problem is ensuring that developers comply with POSIX. Many opensource developers care
only about having their software run on their preferred platform. For example, there's a lot of
software out there that is Linux—specific, but not POSIX-compliant. And POSIX-only code does not
take advantage of any special features offered by the operating system.

For example, FreeBSD has the hyper—efficient data—-reading system call kqueue(2). Other systems
use select(2) and poll(2) instead. The question developers need to ask themselves is whether they
should use kqueue, which would make their software blindingly fast on FreeBSD and unable to work
on anything else, or whether they should they use select and poll, allowing their software to run
more slowly but on more platforms. The developer can invest more time in setting up the software to
use different functions on different platforms; but while this would make users happy, it rather sucks
from the developer's point of view. Whatever the developer's choice, someone will complain.

The FreeBSD Project takes a middle road. If a piece of software can be compiled and run properly
on FreeBSD, the ports team generally makes it happen. If the software needs minor patches, the

256

ports team includes the patches with the port and sends the patches back to the software's
developer. Most software developers gladly accept patches that allow them to support another
operating system. Even though they might not have that OS available to test on, or they might not
be familiar with the OS, if a decent-looking patch arrives from a reputable source, they probably
won't turn it down.

Emulation

If software would require extensive redesign to support FreeBSD, or if source code is simply not
available, we need to turn to another option: emulation. The concept of an emulator is simple. An
emulator program translates system calls for one operating system to the system calls used by the
local operating system, and programs running under the emulator think they're running on their
native system. Translating these system calls does create additional system overhead, though,
which takes its toll on the speed with which programs run under the emulator.

FreeBSD supports a wide variety of emulators, most of which are in the ports collection under
/ust/ports/emulators. In most cases, emulators are useful for education or entertainment. If you have
an old Commodore 64 game that you've had an insatiable desire to play again, you can install
/usr/ports/emulators/frodo. (You can also learn more about disks than you ever wanted to know by
trying to get that C64 floppy to work with UNIX, but that's a separate matter.) To see what classic
UNIX hardware looks like, you can install the PDP-11 emulator under /usr/ports/emulators/sim. (For
a complete list, see /usr/ports/emulators/README.html.)

However, since these emulators are not really useful for server operations, we won't cover them in
depth. You should know that they're available, though, and where to find them.

ABI Implementation

In addition to recompiling and emulating, the final option for running foreign programs is the one
FreeBSD is best known for: ABI (application binary interface) implementation. The ABI is the part of
the kernel that provides services to programs, including everything from sound-card access to
reading files to printing on the screen to starting other programs—all the things a program needs to
run. As far as programs are concerned, the ABI is the operating system. By completely
implementing the ABI from a different operating system on your operating system, you can run
non-native programs as if they were on the native platform.

While ABI implementation is frequently referred to as "emulation," it isn't really. When implementing
ABIs, FreeBSD is not emulating the system calls, but providing them natively. By the same token, it
would be incorrect to say that "FreeBSD implements Linux" or "FreeBSD implements Solaris." The
fact is, when this technique was created, there was no one word to describe what the BSD team
was doing. (Even today, there's no one word to describe it. How's that for bleeding—edge work?)
You'll most often hear it referred to as a mode, such as "Linux mode" or "osf1 mode."

The problem with emulating the ABI is overlap. Most operating systems include system calls with
generic names such as read, write, and so on. The read system call on a FreeBSD system behaves
very differently from the read found on a Windows system. If you re-implement every single foreign
system call in your OS, you've just made your operating system a re—implementation of the foreign
OS. When a program calls read, how would it know if it was getting the native or foreign version?
You can give your system calls different names, but then you're violating POSIX. Or you can
provide multiple ABIs and control which ABI a program uses. This is what FreeBSD does.

257

Binary Branding

Operating systems generally have a straightforward system function that executes programs:
Whenever the kernel sends a program to the execution engine, the execution engine runs the
program.

At some point, however, the UNIX program execution system was hacked to include a special
check for programs that began with #! /bin/sh, and to run them with the system shell instead of
the execution engine. BSD took this idea to the logical extreme, and its execution engine includes a
list of different binary types. Each program's binary type directs it to the correct ABI. Thus, a BSD
system can have multiple ABls, and can support programs from a variety of different operating
systems.

The nifty thing about this system of redirects is that there's no overhead: Since the system decides
how to run the program anyway, why not have it decide which ABI to use? After all, binaries for
different operating systems all have slightly different characteristics, which are used to identify them;
this system simply makes the process transparent to the end user.

As a result of this ABI redirection, FreeBSD can run Linux, OSF/1, System V, and SCO binaries as
if they were compiled natively, thus vastly expanding the range of software available for use on
FreeBSD.

Note FreeBSD supports this range of ABls for two reasons. First, someone with the skill
to implement it needed it. Second, the documentation was available. The
implemented ABIs are all very similar to FreeBSDs; only a few system calls require
extensive development.

Which ABIs Are Supported?

This scheme makes it entirely possible to implement extremely foreign ABIs. For example, someone
could take Windows ABI information from Microsoft and write a Windows ABI module for FreeBSD,
which would allow FreeBSD to run Windows programs natively. While this would be pretty darn
cool, it would also be a fiendish amount of work to implement in a stable and reliable manner. It
hasn't been done, and isn't likely to happen. The three modes that are most supported are SVR4,
OSF/1, and Linux.

SVR4, or System V Release 4, was the last major release of UNIX from AT&T. It appears in early
versions of Solaris and SCO UNIX. Some SCO software is reported to perform more quickly and
reliably in FreeBSD's SVR4 mode than it does on actual SCO UNIX.

OSF/1, or Digital UNIX, was designed for the Alpha processor. Digital first built the Alpha CPU and
created Digital OSF/1 to run on it. Because OSF/1 used a Mach kernel, and FreeBSD doesn't
include the various non-POSIX system calls that were part of Mach, FreeBSD's OSF/1 mode is
incomplete. In any event, it won't run on Intel-compatible hardware. (Implementing a foreign ABI is
difficult enough without providing 64-bit instructions on 32-bit hardware!) Now, chances are, you
don't have an Alpha, so we aren't going to discuss it in any depth.!?!

Finally, Linux mode allows FreeBSD to run Linux software. This ABI has been the most thoroughly
tested because the source code for Linux is available and its ABI is well documented. In fact, the
Linux mode works so well that many programs in the ports collection rely upon it. (Chunks of this
book were written on StarOffice 5.2 under Linux mode, and I've used Linux Netscape and even
Linux WordPerfect without problem.)

258

Foreign Software Libraries

While the kernel portion of the ABI solves one major issue, the other portions of the system are
another problem because every operating system has its own requirements in addition to the kernel.
The biggest issue is shared libraries. If the kernel starts a program, and the program can't find its
shared libraries, it won't work correctly. No matter which ABI you use, you must have a copy of the
shared libraries for that platform.

SVR4 and SCO

For example, to use the SVR4 and SCO ABIls, you need access to the appropriate system. While a
Sun Solaris 2.6 CD will suffice for the SVR4 module, you need to grab the shared libraries from an
actual SCO UNIX machine to use the SCO ABI, which means you need a SCO or Solaris license.
This isn't an insurmountable problem, of course, but it does make using this module slightly more
difficult—and definitely more expensive.

OSF/1

A minimal set of OSF/1 shared libraries are available under /usr/ports/emulators/osf1_base. These
libraries have a restrictive license and can only be used in fairly narrow circumstances, but you can
get a more complete set of shared libraries from an actual OSF/1 system, if you wish. If you have an
actual OSF/1 license, you can pretty much do whatever you like with the libraries.

Linux

The shared libraries for the Linux mode are the most freely available of any mode. Since the barrier
to entry is so low, we'll discuss Linux compatibility in some detail. Once you have a thorough
understanding of how it works, you can apply this knowledge to any other ABI compatibility you
need to implement.

2lif you have a spare Alpha lying around (other than the Multia model known for Random Heat
Death), feel free to ship it to me in care of No Starch Press; I'll be delighted to include a discussion
of OSF/1 mode in the next edition of Absolute BSD.

Installing and Enabling Linux Mode

The simplest way to install and enable Linux mode is with /usr/ports/emulators/linux_base, which
downloads and installs a large subset of a typical Linux environment into /usr/compat/linux. (It also
adds LINUX_ENABLE=""YES'"' to /etc/rc.conf, so that the Linux ABI kernel module will be started
when the system boots.)

Depending on what software you've installed, you might already have Linux mode enabled on your
system. It runs transparently enough that the ports collection might have installed it without your
even knowing! To find out, check /var/db/pkg to see if linux_base is installed. Then use kldstat(8) to
see if the Linux ABI kernel module is loaded:

kldstat

Id Refs Address Size Name
1 3 0xc0100000 236ff8 kernel
2 1 0xc0337000 54f8 vesa.ko
3 1 0xcl19b000 12000 1linux.ko

As you can see, the last module in the preceding list is the Linux ABI module, linux.ko. If the Linux
module is not loaded, it won't appear in the list.

If the module is not loaded, you can load it with kldload(8), as discussed in Chapter 4:

You should now be able to run Linux programs without any further configuration.

Identifying Programs

Modern UNIX binaries are in ELF format, which includes space for a comment, or brand. A binary
will be executed by the ABI for the brand. If a binary has no brand, it is assumed to be a FreeBSD
binary. FreeBSD recognizes four different brands: FreeBSD, Linux, Solaris, and SVR4.

While you cannot directly view the brand on a binary, you can examine and manipulate branding
with brandelf(1). To check the branding on a binary, just run brandelf on it:

brandelf /bin/sh
File '/bin/sh' is of brand 'FreeBSD' (9).

Here you see that this program is branded with FreeBSD, so it will be executed under the FreeBSD
ABI.

If you have a foreign program that will not run, check its brand. If it isn't branded, you've probably
discovered your problem: FreeBSD is trying to run the program under its native ABI. Change this by
setting the brand manually with brandelf —t. For example, to brand a program with Linux, do this:

The next time you try to run the program, it will attempt to run under the Linux ABI. If it's a Linux
program, it should give you better results.

260

What Is Linux_base?

The Linux kernel module handles the kernel support for Linux compatibility, and if you decide to use
the ABI for another UNIX, you'll need to implement much of this on your own. As such, it's a good
idea to understand how Linux mode works, to help you troubleshoot problems with other
compatibility modes.

One piece of the puzzle is to use the linux_base package. This package extracts a subsection of a
Red Hat Linux install under /usr/compat/linux. If you take a look there, you'll see something like the
following:

Looks a lot like the contents of your root directory, doesn't it? Well, if you poke around a bit, you'll
find that, generally speaking, the contents of /usr/compat/linux are comparable to that of the main
FreeBSD install. You'll find many of the same programs that you do on a base FreeBSD install.

Note One thing Linux devotees notice immediately is that the contents of linux_base are rather
minimal compared to what a Linux user is used to. You can add Linux programs to linux_base
as you like; we'll look at doing this later.

The Linux ABI tries to stay under /usr/compat/linux whenever possible. (It's somewhat like a weak
jail.) When you execute a Linux binary that calls other programs, the Linux ABI first checks for the
program under /usr/compat/linux. If it doesn't find the program there, it checks in the main FreeBSD
system.

For example, suppose you have a Linux binary that calls ping(8). The ABI will first check under
/usr/compat/linux for the ping program. When it finds that it's not there, the ABI will then check the
main FreeBSD system and will use /sbin/ping.

Alternatively, suppose a Linux binary wants to call sh(1). The Linux ABI will first check under
/usr/compat/linux and find bin/sh. When it finds sh there, it will execute that program instead of the
FreeBSD native /bin/sh.

Adding to Linux_base

As | mentioned earlier, the Linux install in linux_base is rather minimal, and some Linux programs
expect a broader range of shared libraries to be available. FreeBSD tries to keep ports as small as
possible, but compromises by making these additional Linux libraries available as additional ports.
The ports collection includes several ports that augment linux_base, most of which are shared
libraries. These increase the range of programs that FreeBSD's Linux mode can support. These
ports include the following:

e devel/linux-libglade is a graphic interface library required by various programs.
e devel/linux_devel is a collection of tools for developing Linux programs on FreeBSD.

261

e devel/linux_kdump is a Linux binary debugging tool.

e graphics/linux—jpeg contains shared libraries to handle JPEG image files.
e graphic/linux—png installs shared libraries to handle PNG image files.

e graphic/linux-tiff includes shared libraries to handle TIFF image files.

Installing these ports will round out 99 percent of the functionality you might want to provide to a
Linux program.

You may need a shared library or program that is not available in linux_base or a port. If so, the
simplest thing to do is to find a Linux system of the appropriate version, copy the files, and install
them in the appropriate locations under /usr/compat/linux. If you've created a new directory to
contain shared libraries, you'll need to tweak /usr/compat/linux/etc/Id.so.conf.

Configuring Linux Shared Libraries

FreeBSD's method for configuring shared libraries is very different from Linux's. Linux creates a
cache file from a plain—text configuration file, like the one found at /usr/compat/linux/etc/ld.so.conf:

cat 1ld.so.conf
/usr/i1486-1linux-1ibc5/1ib
/usr/X11R6/1ib

The initial slashes in these paths are misleading. Why? Remember, the Linux ABI looks for files
under /usr/compat/linux first, and if it finds the files, it uses them. These directories are actually
/usr/compat/linux/usr/i486-linuxlibc5/lib and /usr/compat/linux/usr/X11R6/lib. If you look in these
directories, you'll find the Linux shared libraries installed by linux_base. The Linux ABI kernel
module runs Linux Idconfig(8) to read this file, scan the directories listed, and create or update
/usr/compat/linux/etc/ld.so.cache.

When you add shared libraries to your Linux installation, you need to update this cache. You can do
this by unloading and reloading the Linux kernel module, but this might interrupt service. Instead,
you can run the cacheupdating program:

You won't get any output back, but you can check the date on Id.so.cache to be sure that the cache
has been updated. If the date is current, the cache has been updated.

To help keep things organized, if you add shared libraries to your system you can put them in a
separate directory. For example, | frequently create /usr/compat/linux/usr/local/lib for whatever
random crud | want to add to that system. To use those libraries, however, | must add the path to
Id.so.conf. (Remember to strip off the initial /Jusr/compat/linux, however!)

262

Installing Extra Linux Packages as RPMs

When a Linux program complains that it cannot find a necessary program, you may need to add
that program under /usr/compat/linux. Since FreeBSD's Linux mode is based on Red Hat Linux, you
can easily grab the appropriate components of Red Hat Linux and install them in your Linux
subsystem.

Red Hat Linux is distributed in RPM (Red Hat Package Manager) format. (You can find a good
selection of Red Hat Linux RPMs at FTP mirror sites around the world; see http://www.redhat.com/
for the latest mirror list.) RPM files are like FreeBSD's binary packages; they're just compressed
files containing everything needed to run a program, and they are designed to be installed and
uninstalled as a unit. Although people argue about the merits of RPM versus pkg_add versus the
many other package—-management systems used by opensource software, since FreeBSD's Linux
compatibility package is based on Red Hat Linux, we use Red Hat tools.

When using RPMs, be certain to install the software under /compat/linux. If you just blindly run RPM
as described in the rpm(8) man page, you'll wind up overwriting part of your FreeBSD system. This
would be bad; while FreeBSD can run Linux binaries, you cannot combine a FreeBSD and Linux
userland arbitrarily and expect anything to work. Trying this is a good way to become familiar with
the emergency repair process described in Chapter 3.

To safely install an RPM, do this:

Note Of course, RPM packages are completely separate from FreeBSD's usual package
system. You cannot pkg_delete these; you must use RPM to handle them.

Using Multiple Processors—SMP

Computers with multiple CPUs have been around for decades, but they are just now becoming
popular in the Intel-compatible world. FreeBSD has supported the use of multiple CPUs since
version 3, but hardware is just now becoming affordable enough for small companies and hobbyists
to implement it.

What Is SMP?

Symmetric multiprocessing (SMP) describes a system with multiple (more than one) identical
processors. Before you ask: Yes, there are other variants on multiple—processor handling that might
be used some day. Some computer scientists insist that asymmetrical multiprocessing will be more
efficient. You can't buy that hardware, however, so it's moot at the moment.

SMP has quite a few advantages over single processors, and it's not the obvious "more power!" If
you think about it on the microscopic level, a CPU can only do one thing at a time. Every process on
the computer competes for processor time. If the CPU is performing a database query, it isn't
accepting the packet that the Ethernet card is trying to deliver. Every fraction of a second, the CPU
does a context switch and works on some other process assigned by the kernel. This happens often

263

enough and quickly enough that it appears to be doing many things at once, much as a television
picture appears to move by showing individual frames very quickly. With multiple processors, your
computer can do multiple things simultaneously. This can be a wonderful thing, but it increases
system complexity dramatically.

Since one CPU can only do one thing at a time, many programs have been written to work around
this limitation. In fact, many programs that you would expect to be only one process aren't. The
Apache Web server, for example, actually starts quite a few processes to serve up Web pages,
allowing it to work well on multiple—processor systems.

SMP has long been a feature in commercial UNIX. Sun Microsystems just announced a 102-CPU
SPARC system. Even Windows 2000 supports multiple CPUs, in a somewhat goofy way. | had an
opportunity to take home a fourprocessor Intel 486 system at one point, and while | never would
have used it, part of me regrets dragging it to the curb. Today a variety of manufacturers provide
X86 SMP motherboards, including big—name dealers such as Dell and Compag.

Kernel Assumptions

To understand SMP and the problems associated with it, we have to delve into the kernel. All
operating systems face the same problems when supporting SMP, and the theory here is applicable
across a variety of platforms. FreeBSD is somewhat different from other operating systems, though,
because it has 30 years of UNIX heritage to deal with, and its development model doesn't allow
work to stop for a month at a time.

Now, that said, let me say that what follows is a gross simplification. Kernel design is a tricky
subject, and it's almost impossible to do it justice when describing it at a level for nonprogrammers.
But here's an explanation of how it all works, in its most basic form.

Your computer appears to be doing many things simultaneously: For example, | have WindowMaker
running, Netscape merrily soaking up the cable modem, and assorted port builds going on. Network
interrupts are arriving, the screen is displaying new text, the Apache Web server is sending out
pages, and so on. Actually, all this only looks simultaneous. Your average CPU can only do one
thing at a time.l®

FreeBSD divides CPU utilization into time slices; a slice is the length of time the CPU spends doing
one task. One process can use the CPU for either a full time slice or until there are no more tasks
for it to do, at which point the next process may run. The kernel uses a priority—based system to
allocate time slices and to determine which programs can run in which time slices. If a process is
running, but a higher—priority process presents itself, the kernel allows the first process to be
interrupted, or preempted. This is commonly referred to as preemptive multitasking.

Now, although the kernel is running, it isn't a process; processes are run by the kernel. A process
has certain sorts of data structures set up by the kernel, and the kernel manipulates them as it sees
fit. You can consider the kernel a special sort of process, one that is handled very differently from
regular processes. It cannot be interrupted by other programs—you cannot type kil11all kernel
and reboot the system. And traditionally the kernel doesn't show up in top and similar tools.

Older UNIX and FreeBSD kernels get around some of the SMP problems by declaring that the
kernel is nonpreemptive and cannot be interrupted. This simplifies kernel management issues
because it makes everything quite deterministic: When a part of the kernel allocates memory, it can
count on that chunk of memory being there when it executes the next instruction. No other part of
the kernel will grab that particular chunk of memory.

264

This situation changed (for the better) after version 2.2.

FreeBSD 3.0 SMP

The first implementation of FreeBSD SMP was pretty straightforward: Processes were scattered
between the CPUs (achieving a rough load balance), and there was a "lock" on the kernel. The
CPU had to hold this lock to run the kernel, and before a CPU would try to run the kernel, it checked
to see if the lock was available. If the lock was available, it took the lock and ran the kernel. If the
lock was unavailable, the CPU knew that the kernel was being run elsewhere and went on to handle
something else. This lock was called the Big Giant Lock (BGL). Under this system, the kernel could
know that data would not change from under it. Essentially, it guaranteed that the kernel would only
run on one CPU, just as it always had.

This strategy worked well enough for two CPUs: You could run a mediumlevel database and Web
server on a twin—CPU machine, and feel confident that the CPU wouldn't be your bottleneck. If one
CPU was busy serving up Web pages, the other would be free to answer database calls. But if you
wanted to run an eight—-CPU machine, you were in trouble; the system would spend a lot of time just
waiting for the Big Giant Lock to become available! The kernel still knew that it was only doing one
thing at a time, and if a kernel instruction changed some internal value, it would still be that way
when it returned.

There are many problems with this system, but fundamentally it's simplistic, and neither efficient nor
scalable. In fact, the standard textbooks on SMP rarely mention this method of handling the kernel
because it's so clunky. Still, it beats some other operating systems' methods of handling SMP. For
example, a twinprocessor Windows 2000 system's default setup dedicates one processor to the
user interface and uses the other processor for everything else. While the interface is snappy and
the mouse doesn't drag when you load the system, | would hope that most people don't purchase
SMP hardware to address graphical interface problems.

With the growth of system hardware, multiple—-CPU systems will become very common in just a few
years. For FreeBSD to continue to be a quality operating system, this problem must be addressed.

FreeBSD 5 SMP

One of the benefits of the BSDi/Walnut Creek merger was the release of the BSD/OS 5.0 code base
to the FreeBSD development community. BSD/OS contains a great deal of proprietary information,
so the source code cannot be released to the general public. Still, FreeBSD developers were able to
read portions of the code. The most interesting part of this code was that multiple CPUs could be in
the kernel at once—something that will be heavily implemented in version 5, and which will mark
one of the big differences between FreeBSD version 4 and version 5.

To prevent information corruption, the new FreeBSD SMP system combines the Big Giant Lock with
a smaller lock called a mutex. When a piece of the kernel wants to work on a chunk of data, it slaps
a mutex over it. When another part of the kernel tries to access this mutex—locked data, it says,
"Oh, | can't touch that," and either waits for the resource to become available or tries to allocate
some other resource. The goal is to eliminate the Big Giant Lock, and to have all kernel operations
only mutex—lock the small bits of data that they need. As the kernel's smaller systems are rewritten
to take advantage of mutexes, their need to hold the BGL will be eliminated. According to Greg
Lehey, a major FreeBSD developer and member of the SMP project, this method is expected to
scale to beyond 32 processors.

265

Note The BGL could have been ripped out entirely and replaced with mutexes everywhere in one
massive frenzy of hacking (as commercial OS vendors do), completing the process in only a
couple of months, so why not do so? Because doing so would have meant that
FreeBSD-current would have been utterly unusable for several months, and 5.0-release
would have been poorly debugged. Too, the volunteer developers working on other parts of
the system would have had nothing to do. (Telling volunteer developers that they can't do
anything is an excellent way to lose them.)

This should give you enough understanding of how SMP works that you can administer it
reasonably well. Now, let's look at the details of handling an SMP system.

Using SMP

When using SMP, remember that multiple processors don't necessarily make things go faster. One
processor can handle a certain number of operations per second; a second processor just means
that the computer can handle twice that many operations per second, but those operations are not
necessarily faster.

Think of the CPU count as lanes on a road.* If you have one lane, you can move one car at a time
past any one spot. If you have four lanes, you can move four cars past that spot. Although the
four-lane road won't necessarily allow those cars to reach their destination more quickly, there'll be
a lot more of them arriving at any one time. If you think this doesn't make a difference, contemplate
what would happen if someone replaced your local freeway with a one-lane road. CPU bandwidth
is important.

Most user processes don't have to worry about when to use SMP; a process just requests some
CPU time and the kernel allocates it. The program doesn't worry about where this CPU time is
coming from.

The problem with SMP occurs when you want to have one process use multiple CPUs. The short
answer is, you can't do that unless the program is threaded. Threaded programs are written
specifically to run on multiple processors. (Check the program documentation to see if the program
is threaded.) Programs such as Apache, which run multiple processes to serve requests, are not
threaded but might as well be. Taken as a whole, Apache takes excellent advantage of multiple
CPUs.

SMP and Upgrades

The most common "problem" people encounter with SMP is when performing the default torture
test, an upgrade from source. It appears that no matter what, the system never seems to use more
than one CPU at a time. The "top" program will show that the system is 50 percent idle, no matter
what.

Trust your eyes. If the system appears to be half idle, you're only using one of your CPUs. The
make program that handles building software issues a command, waits for a response, then issues
another command. Each of these subtasks might be assigned to a different CPU, but the actual
make command won't try to do anything until that original process comes back successful. It only
does one thing at a time.

You can get around this problem with make's -5 flag, which tells make to run multiple processes
simultaneously. The -7 flag takes its own argument, the number of make processes to run:

266

This line tells make to run four processes, and hopefully it will complete more quickly. This doesn't
mean that your make will be completed in one—fourth the time, however; you still have other issues
to contend with (see Chapter 14).

Note Not all programs can handle being built with the —j flag. At times, even buildworld fails. (There
is some discussion of disabling support for make —j in buildworld, as it causes many
problems.) It's worth trying, but if things go badly, you need to fall back to plain old serial
make.

Multiple processors are not the be-all and end-all of high—performance computing. Your application
must be written to take advantage of them. If it isn't, extra CPUs will not help.

BlSome CPUs (the Alpha) can do multiple things at once. These dual-issue and quad—issue
processors are slowly becoming more common. This is one reason why the Alpha was such
wonderful technology, and why it's bad for us all that the Alpha is no more.

4 This example assumes that everyone drives the speed limit, taking turns and not cutting each
other off, and in general not acting like real drivers in any American city. Advanced Software
Management

267

Chapter 12: Finding Hosts With DNS

The Domain Name Service (DNS) is one of those quiet, behind-the-scenes programs that doesn't
get half the attention it deserves. Although most users have never heard of it, DNS is what makes
the Internet, as we know it, work. DNS, or nameservice as it's also called, provides a map between
hostnames and IP addresses. Without DNS, your Web browser or email programs wouldn't use
convenient names like http://www.cnn.com/; instead, you'd have to type in IP addresses. This would
greatly reduce the Internet's popularity.

Any Internet service you implement will require DNS. We'll discuss how DNS works, how to check
DNS, how to configure your FreeBSD system to use DNS, and how to build your own DNS server.

How DNS Works

DNS simply maps IP addresses to hostnames, and hostnames to IP addresses. For example, a
user doesn't want to know that http://www.absolutebsd.com/ is actually 209.69.178.25; she just
wants to type the URL into her Web browser and go. DNS does the translation. As the system
administrator you must be able to install, inspect, and verify DNS information, and you must
understand how your system will perform those same operations.

DNS information can be available in any number of places: on the local system, on a local DNS
server, on a remote nameserver. UNIX systems use a resolver to provide this information, a
program that knows about all these information sources and interfaces with them. When a program
wants to know the IP address of a host or the hostname for an IP address, it asks the resolver,
which consults the appropriate information sources and returns the information to the program that
needs it. We'll look at how to configure the resolver later in this chapter.

Most commonly, a resolver will direct a DNS query from a program to a nameserver, a computer
running a program designed to gather DNS information from other computers on the Internet. Once
a DNS request hits a nameserver, the nameserver checks its local cache to see if it has looked up
that information recently. (Nameservers receive many identical DNS requests; for example, the
nameserver at one Internet service provider | worked for received several hundred requests an hour
for the IP address for http://www.cnn.com/. Multiply that by all the Yahoo!, eBay, and MSN requests
out there, and that cache quickly becomes quite effective.)

If the designated nameserver doesn't have the information, it asks a root server, which keeps a list
of the nameservers responsible for every domain on the Net. In a process called a recursive query,
the root server tells the nameserver to go ask the appropriate nameservers, which may in turn refer
the query to still other nameservers. Eventually, it is referred to the authoritative nameserver for that
domain and the original nameserver gets its answer.

NoteWhen you register a domain, you must list two nameservers. Hosts expect to be able to get
information for that domain from those nameservers. If one nameserver fails, the other should
pick up the load, and if all the nameservers for a domain fail, the domain vanishes from the
Internet. If that happens, the next time someone browses to www.yourdomain.com, they will
get a "domain not found" error. Mail will bounce. The world will believe that you don't exist.
Even big companies, such as Microsoft, do this on occasion. Your manager or customer will
notice you, and not in a good way. Pay attention to your nameservice!

268

Basic DNS Tools

FreeBSD includes several tools for inspecting DNS information. Since most DNS runs over the User
Datagram Protocol (UDP), you cannot use telnet to manually query a server as we will do with email
and Web services later. Your only access to live DNS information is through host(1) and dig(1).

The Host Command

To quickly check the IP address of a host, use the host(1) command. For example, to check my
publisher's Web page, | would do the following:

host www.nostarch.com

www.nostarch.com is a nickname for nostarch.com

nostarch.com has address 66.80.60.21

nostarch.com mail is handled (pri=20) bysmtp.lax.megapath.net
nostarch.com mail is handled (pri=10) by mail.nostarch.com

This is somewhat interesting because it shows us that under DNS, one host can have multiple
names and multiple Web pages on one IP address. This output tells us that the main No Starch
Press Web page is actually a nickname for another hostname, http://nostarch.com/; one IP address
can have any number of names. This is much like the phone system in a typical family household, in
which several people share one telephone. The people are like hostnames, while the phone number
is like an IP address. The host does have a single, canonical name, much as a phone is registered
to a single person.

Note Many server programs require much more than an IP address to function. For
example, if you enter http://66.80.60.21/ in your Web browser, you'll actually pull
up the page for No Starch Press's hosting provider, not the page for No Starch
Press. We'll look at how popular Web servers multiplex multiple Web sites onto a
single IP address in Chapter 15, but it's something you should keep in the back
of your mind for future reference.

Getting Detailed Information with Dig

While the host command is quite helpful, it's certainly not detailed. Also, you don't know where this
information came from—whether it was taken straight from the cache or whether the nameserver
dug it up from the domain's nameserver. The standard program for finding detailed DNS information
is dig(1). (Another tool, nslookup(1), was popular for many years but has since fallen out of favor.)
Dig has a variety of options that allow you to debug a wide range of nameservice problems, though
I'll cover only the most basic ones here.

In its most basic form, a dig command is simply dig and a hostname. For example, to dig up
information on my publisher, | would enter this command:

dig www.nostarch.com

v ; <<>> DiG 8.3 <<>>; www.nostarch.com

W ;; res options: init recurs defnam dnsrch
X ;; got answer:

269

;5 —>>HEADER<<- opcode: QUERY, status: y NOERROR, id: 4
;; flags: gr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 2, ADDITIONAL: 2
z ;; QUERY SECTION:

;; www.nostarch.com, type = A, class = IN

{ ;; ANSWER SECTION:

www.nostarch.com. 2hl13m2s IN CNAME nostarch.com.
nostarch.com. 2hl3m2s IN A 66.80.60.21

| ;; AUTHORITY SECTION:

nostarch.com. 7h48m45s IN NS NS1.MEGAPATH.NET.
nostarch.com. 7h48m45s IN NS NS2.MEGAPATH.NET.

} ;; ADDITIONAL SECTION:

NS1.MEGAPATH.NET. 7h48m35s IN A 216.200.176.4
NS2 .MEGAPATH.NET. 7h48m35s IN A 216.34.237.2

;7 Total query time: 11 msec

;7 FROM: blackhelicopters.org to SERVER: default -- 127.0.0.1
;5 WHEN: Sun Apr 7 12:24:17 2002

;; MSG SIZE sent: 34 rcvd: 144

Wow, talk about a lot of information! (When you're using dig, you're probably trying to debug
something. It's better to have too much information than not enough.)

So what have we learned? To start with, anything beginning with semicolons is a comment that
either lists the options used by dig or divides the answers into sections.

The first line (v) lists the version of dig you're using, and the command-line options you used. The
second line (w) lists the options that dig is using. (Since we didn't specify any options on the
command line, these are the default options; we'll discuss some useful options later.)

The third line (x) tells us whether dig got an answer (it did). The next line (y) contains an important
word, NOERROR, which tells us that dig found an answer that appears to be good. If you don't get a
NOERROR, you have a problem. (Common errors are NXDOMAIN, meaning that the domain doesn't
exist, or SERVFAIL, meaning that the domain is misconfigured on that server.)

The next couple of lines contain codes that really aren't of use unless you're heavily into debugging
DNS or doing some weird things. So let's jump to the four sections that follow: the query, answer,
authority, and additional sections.

The Query Section

In the query section (z), we see how dig is treating the query. In our sample we see the following:

Let's start with the easy bit, the c1ass. While DNS can manage many different naming systems, the
one we're concerned with is the Internet system, or IN. Internet domains should always have the
class IN.

270

The type is the type of record we're looking for. By default, dig looks for an A (address) record,
which means that we have the name, but want the IP address. A PTR (pointer) record request
means that we have an IP address and want the associated name.

The Answer Section

Next we have the answer section ({). The first thing it contains is the host we're looking for
(http://nostarch.com/). The next figure (2h13m2s IN CNAME) is the time to live for this
information—the amount of time your local nameserver may cache it. The 2h13m2s indicates that
this data expires in 2 hours, 13 minutes, and 2 seconds. The IN, again, indicates that this is Internet
data. Finally, CNAME means that what follows is a canonical name for the server, which tells us that
what we're looking for is actually an alias for something else. The dig output confirms that
http://www.nostarch.com/ is actually an alias for http://nostarch.com/.

The second line of the answer section is almost identical to the first, except it has an a instead of a
CNAME. This tells us that what follows is an IP address.

The Authority Section

To get the IP address of http://www.nostarch.com/, we have to follow the chain of authoritative
nameservers. The authority section (|) lists the servers responsible for the domain, their time to live,
and the sort of data and servers that they are. In this case, the nameservers are
nsl.megapath.net and ns2.megapath.net. Data for http://www.nostarch.com/ is to be cached
for 7 hours, 48 minutes, and 45 seconds, and these are (again) Internet (IN) records. The NS
means that these are nameservers.

The Additional Section

Finally, under the additional section (}), dig lists the IP addresses of all the hosts listed with the host
we want. Our example lists the nameservers for http://www.nostarch.com/: ns1 .megapath.net
and ns2.megapath.net. The interesting thing here is that the time to live is 7 hours, 48 minutes,
and 35 seconds. In this case, the time to live isn't the value for how long the local nameserver
should keep the information on the hosts, it's how long the data on the nameservers for
http://nostarch.com/ should be kept. Once this time passes, your nameserver will discard the
information and go fetch the nameserver list from one of the Internet's root nameservers. This isn't
necessarily good or bad, but if you're trying to solve a problem, it's good to know.

Do a dig on a couple of domains and become familiar with how the output should look.
Looking Up Hostnames with Dig

Suppose you have an IP address and want to identify the associated hostname; for example, you
might want to learn who owns a phone number. This is a common problem on the Internet—you
might see an IP address hitting your Web site every five seconds, and wonder who they are and
what they're trying to do.

To look up the name, use reverse lookup with dig's —x option. Since much of the result is
completely identical to what you see in the forward lookup, we'll only look at the section that's
different: the answer.

dig -x 66.80.60.21
;7 ANSWER SECTION:

271

21.60.80.66.in-addr.arpa. 2h24m IN PTR www.megapathdsl.net....

Although we know that at least http://www.nostarch.com/ and http://nostarch.com/ live on this IP
address, this reverse lookup shows us the most correct name for the host. Both of those machine
names live on a machine that is actually called http://www.megapathdsl.net/.

The PTR entry in the middle of the answer indicates that this is a pointer record. It is a specific sort
of entry used to mark IP-address—to—hostname records. When you set up DNS, every host with an
IP address will need both a PTR and an A record in your nameservice system.

More Dig Options

The dig program takes a wide variety of command-line options to control how it checks for
information. Check dig(1) for a complete list of these options. We'll only discuss the servername and
norecurse options here, because they're the ones most commonly used.

Server Name

The first option is the server name. By default, dig queries the first nameserver listed in
/etc/resolv.conf. If you're trying to debug a problem, however, you want to ask different
nameservers. You can do this on the command line by using the @ option. For example, to ask
http://dns1.yahoo.com/ what it knows about http://absolutebsd.com/ enter this:

The output from this command will look much like the sample output shown earlier, except that you'll
see references to Yahoo!'s nameserver. If you're debugging a problem, you should compare this
information carefully with that given by your local nameserver. If information from two different
nameservers conflicts, you may well have found your problem. (DNS information should only
change when you add hosts, rename hosts, or renumber hosts.) You can use some of dig's other
options to see exactly where the problem occurs.

Controlling How Dig Queries

Dig has two other sorts of options: those that control how dig itself runs, and those that control how
dig makes queries. The options that control how dig runs are prefaced with a minus sign (); those
that control how dig makes its queries are prefaced by a plus sign (+). While dig can do a lot of
really nifty tricks, they're beyond the scope of this chapter. Controlling how it makes the queries is
quite useful, however.

By default, a nameserver will recurse queries to return an answer. While this is helpful if you're
asking the nameserver about a domain, you don't want the nameserver to dig up the answer for you
when you're debugging; instead, you want to check each nameserver in turn. You can do this with
the norecurse option.

272

Try this one now, with a domain that you're pretty certain your local nameserver has never looked
at. My favorite DNS server test site is http://www.moo.com/, simply because it's cool, obscure, cute,
mostly harmless, and nobody ever looks at it. You're almost guaranteed that nobody on your
nameserver has looked at http://moo.com/ lately.

If your nameserver doesn't have this information cached, or if this information has expired from the
cache, your first section will look much like that of our previous example. The authority section,
however, will look quite different:

;; AUTHORITY SECTION:

com. 18h9m59s IN NS A.GTLD-SERVERS.NET.
com. 18h9m59s IN NS G.GTLD-SERVERS.NET.
com. 18h9m59s IN NS H.GTLD-SERVERS.NET.
com. 18h9m59s IN NS C.GTLD-SERVERS.NET.
com. 18h9m59s IN NS I.GTLD-SERVERS.NET.
com. 18h9m59s IN NS B.GTLD-SERVERS.NET.
com. 18h9m59s IN NS D.GTLD-SERVERS.NET.
com. 18h9m59s IN NS L.GTLD-SERVERS.NET.
com. 18h9m59s IN NS F.GTLD-SERVERS.NET.
com. 18h9m59s IN NS J.GTLD-SERVERS.NET.
com. 18h9m59s IN NS K.GTLD-SERVERS.NET.
com. 18h9m59s IN NS E.GTLD-SERVERS.NET.
com. 18h9m59s IN NS M.GTLD-SERVERS.NET.

The nameservers under GTLD-SERVERS.NET are the root servers. They contain the master lists
of which nameservers control which domains. By giving you this output, your local nameserver is
saying, "l don't know, I'll have to go ask someone else, but you told me to not recurse so I'm
stopping here."

To query a root nameserver, combine the norecurse option and server name dig commands and
try your query again:

Follow the chain of information for a site or two, and you'll start to really understand how DNS
works.

Configuring a DNS Client: The Resolver

Before you can have your system use a DNS server, you must tell the computer which nameserver
to use, and how it should be used. Even a DNS server needs to have the client portion of

273

nameservice set up, because the computer won't know it has a nameserver running unless you tell
it! Just about anything you do on a network will require a working nameservice client. Use keywords
in /etc/resolv.conf to tell your system's resolver where to look for information.

Domain or Search Keywords

When you're working on machines on your own network, you don't want to have to type the whole
hostname. (If you have 30 Web servers, typing ssh www19.mycompany.com gets old.) To tell the
resolver which domains to check by default, use either a domain or a search keyword in
/etc/resolv.conf.

Specifying the Local Domain

The domain keyword tells the resolver which local domain name to check, by default, for hosts. For
example, to specify http://absolutebsd.com/ as the local domain, enter this:

Once the local domain is specified, any command that would ordinarily require a domain name will
be assumed to be pointing to http://absolutebsd.com/. Were 1to ping www, the resolver would
append the name http://www.absolutebsd.com/ to that and tell ping to try
http://www.absolutebsd.com/.

Specifying a List of Domains with Search

Alternatively, | can use the search keyword to specify a list of domains to try. Perhaps my
company has several domain names in use in different parts of the network—I could enter the
following:

In this case, the resolver will check these three domain names in the order written, until it finds a
match.

For example, if | enter ping petulance, it will try to find petulance.AbsoluteBSD.com. If that fails,
it will check for petulance.blackhelicopters.org, the next domain in order. Finally, it will check for
petulance.stenchmaster.com. If no such host exists in any of these domains, the command will
eventually fail.

Note If you don't list either a domain or a search keyword, the resolver will use the local
machine's domain name.

274

The Nameserver List

Now that your resolver knows which domains to try by default, you can tell it which nameservers to
use. List each nameserver on a single line, in the order of preference. The nameservers will be tried
in order. It would look something like this:

nameserver 127.0.0.1
nameserver 209.168.70.3
nameserver 192.168.87.3

Note that the first entry in this list is the "loopback” IP address 127.0.0.1. You'll need this entry if the
machine is a nameserver because it tells the resolver to check the local host's nameserver. While in
some rare instances you might not want to use the local nameserver, you don't have to, but in most
cases it's a waste of network bandwidth not to.

With nameserver entries and either domain or search keywords, your /etc/resolv.conf is complete.

DNS Information Sources

To truly manage Internet services, you must be able to control your own domain naming service.
While many ISPs will provide this service for you, you don't want to have to coordinate with their
staff to make a vital change in your infrastructure.

Now that you know how to look at DNS data, and how the chain of DNS authority works, you can
start building your own nameserver. FreeBSD includes all the software you need to run a DNS
server; all you have to do is configure it and turn it on. We'll do so by building the two possible
sources of hosthame and IP address information: the hosts file and the named daemon. Each is
configured separately.

The Hosts File

The /etc/hosts file matches Internet addresses to hostnames for a single host. However, while the
hosts file is very simple, its contents are only effective on a single machine. One system cannot use
the hosts file from another system, without some unpleasant tricks.

Dynamic nameserver programs have largely superseded /etc/hosts, but the hosts file is still useful
on small networks or behind a Network Address Translation (NAT) device. For example, the hosts
file is just fine if you have one or two servers and if someone else is responsible for managing your
public nameservice. If you have multiple servers that would each have to be maintained separately,
you should investigate using a full-fledged nameserver.

Each line in /etc/hosts represents one host. The first entry on each line is an IP address, and the
second is the fully qualified domain name of the host, such as mail.mycompany.com. Following
these two entries you can list an arbitrary number of aliases for that host.

For example, a small company might have a single server that handles mail, FTP, Web services,
DNS, and a variety of other functions. A desktop on that network might have a hosts entry

275

something like this:

Using this /etc/hosts entry, the desktop could find that host (mail.mycompany.com) with either the
full domain name or any of the brief aliases listed (such as ftp.mycompany.com,
www.mycompany.com, and so on).

If you find that you need more than two or three hosts entries, or that maintaining hosts files is
becoming a problem, it's a sign that you need to build a nameserver to handle your hosts data. A
nameserver is far more scalable than a hosts file on each machine, and it's much simpler to
maintain once you set it up.

The Named Daemon

The most popular DNS server software is BIND (Berkeley Internet Name Daemon). (The actual
server program is called named(8).) BIND is actually a suite of tools that includes named and
supporting programs such as dig.

BIND is maintained by the Internet Software Consortium (http://www.isc.org/) and is released under
a BSD-style license. While there are competitors, such as djbdns (/usr/ports/net/djbdns), BIND is
considered the nameservice reference implementation, so we'll focus on it. The concepts used in
BIND are generally applicable to any nameserver programs.

Because BIND has been the target of malicious hackers over the last several years, its most recent
version was completely rewritten with a focus on security. It includes some very powerful security
features and extremely defensive programming.

Masters and Slaves

No matter what nameserver daemon you use, you'll keep running into the terms masters and
slaves. Every domain needs at least two nameservers, but only one can be the master; the rest are
slaves.

A master nameserver is the final authority on a domain. When you make changes to a domain, you
make the changes on the master nameserver. The slaves take their information from the master
nameserver for that domain.

One nameserver can be both a master for some domains and a slave for others. For example,
http://absolutebsd.com/ has two nameservers, http://blackhelicopters.org/ and
http://ralph.glblnet.com/; http://blackhelicopters.org/ holds the original reference files for this domain,
and any changes are to be made on that system. That makes http://blackhelicopters.org/ the master
nameserver. Every so often, http://ralph.glblnet.com/ updates its records for this domain from
http://blackhelicopters.org/, making it the slave. If the blackhelicopters.org system is abducted by
aliens, http://ralph.glblnet.com/ would continue to serve DNS information for
http://absolutebsd.com/.

On the other hand, http://ralph.glblnet.com/ holds the master records for many other domains, and
other nameservers update their records for these domains from http://ralph.glblnet.com/. Therefore,

276

http://ralph.glblnet.com/ is both a master and a slave nameserver, but for different domains.
Forward and Reverse DNS

You may have heard of or otherwise encountered the concepts of forward and reverse DNS.
Forward DNS is what you do when you have a hostname and you look up an IP address. You saw
examples of forward DNS in the 2 records in our dig examples:

nostarch.com. 2hl3m2s IN A 66.80.60.21

The A means that this is an address record, or forward DNS. This is known as an “A record” or an
“address record.”

Reverse DNS is what you do when you have an IP address and want a hostname. For example,
suppose your system logs show that someone keeps trying to connect to your SSH server from the
IP address 66.80.60.21, and you want to know the name of that host. You can look up IP addresses
using dig's —x option. Much of the output will look the same as a forward lookup, but the answer is
considerably different:

dig -x 66.80.60.21

;; ANSWER SECTION:
21.60.80.66.in-addr.arpa. 2h24m IN PTR www.megapathdsl.net. ..

Examining this output we see that, for historical reasons we won't delve into, IP addresses are
displayed in reverse order and as part of the domain in-addr.arpa when you're doing a reverse
lookup. Next we have the usual time-to-live data and the IN for Internet data.

The interesting part is the PTR or pointer record, which tells us that an IP address "points to" a
name. Basically, this is the canonical, most correct hostname for an IP address. This is much like a
phone system; again, while many people can share a phone number, it's only registered to one
person.

Forward and reverse DNS are generally expected to match, but since many hosts can share one IP
address, an A record does not necessarily need a matching PTR record. For example, we saw
earlier that http://nostarch.com/ has an IP of 66.80.60.21, but the hostname associated with that IP
address is http://www.megapathdsl.net/. The part that must match is the A record for
http://www.megapathdsl.net/. If the hostname given by a reverse lookup does not have a matching
forward record, DNS is not correctly configured, and the tools that rely upon DNS checking, such as
certain configurations of TCP wrappers, will reject connections from this system. Fortunately,
automated tools exist to check forward and reverse DNS matches.

277

In-addr.arpa
There's one major difficulty with PTR records: Often, when they appear, they're listed backwards.

You see, DNS checks hosts from left to right. When you check for the host
http://www.absolutebsd.com/, the nameserver first looks for a nameserver for .com. It then checks
under .com for http://absolutebsd.com/, then under http://absolutebsd.com/ for
http://www.absolutebsd.com/. The biggest units are on the left, but in an IP address, the biggest unit
is on the right. To check the IP address, we have to reverse it. For example, we turn 66.80.60.21
into 21.60.80.66.

It's very easy to confuse a forward IP address with a reversed IP address, so DNS uses a special
marker to indicate that an IP address is reversed. Reversed IP addresses have the string
"in—addr.arpa" on the end of them. (The reasons for this date back several years and are quite
boring, so we won't go into them.) The bottom line is that our 66.80.60.21 becomes
21.60.80.66.in—addr.arpa.

So why not just leave the IP address forward, and use the in-addr.arpa to indicate it's a reverse
DNS check? Glad you asked. The preceding address is a simple one, and if you ran dig, it would
check a very limited space. If you're running a large network, you might need to run a DNS query of
a much larger range of IP addresses, like 118.168.192.in-addr . arpa, which would translate to
everything under 192.168.118. You might even need to run 168.192.in-addr.arpa, Or even
192.in-addr.arpa. Each is a check of an increasingly large space—much like doing dig .com.
(You'll probably never need to run dig .com, but Internet backbone engineers do, and backbone
engineers are the ones who write this sort of program. One of the problems with using
professional-strength tools is that they're geared toward, well, professionals.)

Note If you're looking for quick—and-dirty answers, host(1) does this reversal for you. Dig also
does this for you, if you use the —x option. Don't be confused when you see in—addr.arpa,
however.

Configuring Named

Before you can start named, you need to set it up. The directory /etc/namedb contains the basic
named configuration files.

named.root

One file that must be present, but that doesn't need editing, is named.rooti, which lists the root
nameservers. If a nameserver receives a query for a site it doesn't have in its cache, it asks these
nameservers. (This file changes rarely—the last update was in August 1997.) You may need to edit
this file if your system is not on the Internet and if you have a private root server.

named.conf

The other important file is named.conf, named's central file. If your named.conf file is broken, your
nameserver is hosed.

The syntax of named.conf resembles C code. If you don't know C, though, don't worry, because the
rules are very simple, and the examples demonstrate everything you need to know. Any line
beginning with two slashes (/) is a comment. Similarly, any text contained within old—fashioned C
comment marks (/* and */) is a multi-line comment.

278

There are two types of entries in named.conf: options and zones. Everything in your configuration
file should be either an option, a zone, or a comment. A zone is a fancy name for a domain (while
they aren't, strictly speaking, identical, they're close enough for our purposes). Options control how
BIND operates.

Options

If you ignore the comments in the default named.conf, the file opens with a list of options, most of
which are obscure and are commented out by default. You use options by putting them in the
options section of the file, which contains the word options and a set of curly brackets. The actual
options go between the brackets and are separated from one another by semicolons. Here's a very
simple options section from a named.conf file:

options {
directory "/var/named"; listen-on {127.0.0.1; 209.69.178.18; };

In this example, the option directory has the value “/var/named”, and the 1isten-on option
lists two IP addresses.

Let's first look at the directory option, which specifies the directory where named.conf will look
for and store DNS files. Beginning here will make setting up your server more straightforward.

The default directory (/etc/namedb) should be fine if all you want to do is provide a nameservice for
a couple of domains. However, if you are providing DNS for dozens or hundreds of clients, this
directory will quickly become painfully full and will be unable to live on the root partition.

The standard alternative to /etc/namedb is /var/named, which is the location for nameservice files
on larger servers. | generally use /var/named even when | have just a few domains to serve, as
these files tend to accumulate.

The 1isten-on option controls which IP addresses named will accept connections on. If you have
dozens of IP addresses on a single network card, you might want to confine your named to
attaching to only one of those addresses. (This is particularly valuable if you have jails on your
system.)

BIND supports many more options, but these are perhaps the most popu- lar. You can check the
full BIND Operators’ Guide (at http://www.isc.org/) for the complete list of options and their usage.

Zones

The default named.conf defines three zones, or domains, that the nameserver handles by default:
the root zone, the IPv4 localhost, and the IPv6 localhost. Each of these zones has an entry in
named.conf, beneath the options list. You shouldn't need to tweak the default zones—in fact, if
you're thinking of changing them, you're almost certainly doing something wrong. But we'll discuss
what these zones are for and what they do.

279

The Root Zone

The nameserver uses the root zone when it has no information on a requested domain or host.
These queries are recursed to a root nameserver. Here's the named.conf entry for the root zone:

w type hint;
x file "named.root";

The first entry (v) tells which domain this entry is