

105

C H A P T E R

9

Applet Firewall
and Object Sharing

The Java Card platform is a multiapplication environment. Multiple applets from
different vendors can coexist in a single card, and additional applets can be down-
loaded after card manufacture. An applet often stores highly sensitive information,
such as electronic money, fingerprints, private cryptographic keys, and so on. Shar-
ing such sensitive data among applets must be carefully limited.

In the Java Card platform, applet isolation is achieved through the

applet fire-
wall

 mechanism. The applet firewall confines an applet to its own designated area.
An applet is prevented from accessing the contents or behaviors of objects owned
by other applets.

To support cooperative applications on a single card—for instance, providing
wallet, authentication, loyalty, and phone card functions—Java Card technology
provides well-defined and secure object sharing mechanisms.

The applet firewall and the sharing mechanisms affect the way you write
applets. This chapter explains the behavior of objects, exceptions, and applets in
the presence of the firewall and discusses how applets can safely share data by
using the Java Card APIs. JCRE implementation details that are not exposed to
applets are intentionally ignored.

9.1 Applet Firewall

With applet isolation, the applet firewall provides protection against the most fre-
quently anticipated security concern: developer mistakes and design oversights that
might allow sensitive data to be leaked to another applet. It also provides protection
against hacking. An applet might be able to obtain an object reference from a pub-
licly accessible location, but if the object is owned by another applet in a different

chapter 9.fm Page 105 Monday, May 8, 2000 12:45 PM

CHAPTER 9 APPLET FIREWALL AND OBJECT SHARING

106

package, the firewall prevents access to the object. Thus, a malfunctioning applet, or
even a “hostile” applet, cannot affect the operations of other applets or the JCRE.

9.1.1 Contexts

The applet firewall partitions the Java Card object system into separate protected
object spaces called

contexts

. The firewall is the boundary between one context and
another. When an applet instance is created, the JCRE assigns it a context. This con-
text is essentially a

group context

. All applet instances of a single Java package share
the same group context. There is no firewall between two applet instances in a group
context. Object access between applets in the same group context is allowed. How-
ever, accessing an object in a different group context is denied by the firewall.

In addition, the JCRE maintains its own

 JCRE context

. The JCRE context is a
dedicated system context that has special privileges: access from the JCRE con-
text to any applet’s context is allowed, but the converse, access from an applet’s
context to the JCRE context, is prohibited by the firewall. The Java Card object
system partitions are illustrated in Figure 9.1.

Figure 9.1 The object system partitions on the Java Card platform

JCRE context

system space

applet
context

applet
context

applet
context

group context

applet space

applet firewall

group context

package A

package B

chapter 9.fm Page 106 Monday, May 8, 2000 12:45 PM

 APPLET FIREWALL

107

9.1.2 Object Ownership

At any time, there is only one

active context

 within the virtual machine: either the
JCRE context or an applet’s group context. When a new object is created, it is
assigned an owning context—the currently active context. The object can be
accessed from within that context, that is, by all applet instances in its owning
context. Also, we say that the object is owned by the active applet in the current
context when the object is instantiated. If the JCRE context is the currently active
context, the object is owned by the JCRE.

Primitive type static arrays in applets can be initialized when they are
declared. Such static arrays are created and initialized by the converter. Because
they are statically created before any applet instance is instantiated on the card,
the ownership of these arrays can be assigned to any applet instance in their defin-
ing package. Any applet within this package can access these arrays. In other
words, the owning context of these arrays is the group context of the package.

9.1.3 Object Access

When an object is accessed, the Java language access controls are enforced. For
example, a private instance method cannot be invoked from outside the object. In
addition, the object’s owning context is compared to the currently active context. If
the contexts do not match, the access is denied, and the comparison results in a

SecurityException

. For instance, in the examples that follow, assume that object

b

owned is by context

A

. The following operations accessing object

b

 from context

A'

cause the Java Card virtual machine to throw a

SecurityException

:

• Get and set fields:

short a = b.field_a;// get object b's field

b.field_a = 5;// set object b's field

• Invoke a public instance method:

b.virtual_method_a();

• Invoke an interface method:

b.interface_method_a(); // if b is an interface type

• Throw it as an exception:

throw b;

chapter 9.fm Page 107 Monday, May 8, 2000 12:45 PM

CHAPTER 9 APPLET FIREWALL AND OBJECT SHARING

108

• Cast it to a given type:

(givenType)b;

• Determine whether it is of a given type:

if (b instanceof givenType)

• Access an array element:

short a = b[0];// if object b is an array type

b[0] = 5;

• Obtain the array length

int a = b.length;// if b is an array type

9.1.4 Transient Array and Context

Like a persistent object, a transient array of

CLEAR_ON_RESET

 type can be accessed
only when the currently active context is the array’s owning context.

Transient arrays of

CLEAR_ON_DESELECT

 type are applet-specific resources.
They can be created only when the currently active context is the context of the
currently selected applet. Because applets from the same package share a group
context, a transient array of

CLEAR_ON_DESELECT

 type can also be accessed by all
applets in its owning context. However, such access is granted only if one of these
applets is the currently selected applet.

9.1.5 Static Fields and Methods

Only instances of classes—objects—are owned by contexts; classes themselves are
not. No runtime context check is performed when a static field is accessed or when a
static method is invoked. In other words, static fields and methods are accessible
from any context. For example, any applet can invoke the static method

throwIt

 in
the class

ISOException

:

If (apdu_buffer[ISO7816.OFFSET_CLA] != EXPECTED_VALUE)

ISOException.throwIt(ISO7816.SW_CLA_NOT_SUPPORTED);

Of course, the Java access rules still apply to static fields and methods. For example,
static fields and methods with the

private

 modifier are visible only to their defining
classes.

chapter 9.fm Page 108 Monday, May 8, 2000 12:45 PM

 OBJECT SHARING ACROSS CONTEXTS

109

When a static method is invoked, it executes in the caller’s context. This sug-
gests that objects created inside a static method are assigned with the caller’s con-
text (the currently active context).

Static fields are accessible from any context. However, objects (including
arrays) referenced in static fields are like regular objects. Such objects are owned by
the applet (or the JCRE) that created them, and standard firewall access rules apply.

9.2 Object Sharing across Contexts

The applet firewall confines an applet’s actions to its designated context. The applet
cannot reach beyond its context to access objects owned by the JCRE or by another
applet in a different context. But in situations where applets need to execute cooper-
atively, Java Card technology provides well-defined and secure sharing mechanisms
that are accomplished by the following means:

• JCRE privileges

• JCRE entry point objects

• Global arrays

• Shareable interfaces

The sharing mechanisms essentially enable one context to access objects belonging
to another context under specific conditions.

9.2.1 Context Switch

Recall that there is only one active context at any time within the execution of the
Java Card virtual machine. All object accesses are checked by the virtual machine to
determine whether the access is allowed. Normally, such access is denied if the
owning context of the object being accessed is not the same as the currently active
context. When a sharing mechanism is applied, the Java Card virtual machine
enables access by performing a

context switch

.
Members in an object consist of instance methods and fields. Accessing

instance fields of an object in a different context does not cause a context switch.
Only the JCRE can access instance fields of an object in a different context. Con-
text switches occur only during invocation of and return from instance methods of
an object owned by a different context, as well as during exception exits from
those methods.

chapter 9.fm Page 109 Monday, May 8, 2000 12:45 PM

CHAPTER 9 APPLET FIREWALL AND OBJECT SHARING

110

During a context-switching method invocation, the current context is saved,
and the new context becomes the currently active context. The invoked method is
now executing in the new context and has the access rights of the current context.
When the method exits from a normal return or an exception, the original context
(the caller's context) is restored as the currently active context. For example, if an
applet invokes a method of a JCRE entry point object, a context switch occurs
from the applet's context to the JCRE context. Any objects created by the invoked
method are associated with the JCRE context.

Because method invocations can be nested, context switches can also be
nested in the Java Card virtual machine. When the virtual machine begins running
after a card reset, the JCRE context is always the currently active context.

The following sections explore each sharing mechanism and discuss when
and how context switch occurs in each access scenario.

9.2.2 JCRE Privileges

In the Java Card platform, the JCRE acts as the card executive. Because it is the
“system” context, the JCRE context has special privileges. It can invoke a method
on any object or access an instance field of any object on the card. Such system priv-
ileges enable the JCRE to control system resources and manage applets. For exam-
ple, when the JCRE receives an APDU command, it invokes the currently selected
applet’s

select

,

deselect

, or

process

 method.
When the JCRE invokes an applet’s method, the JCRE context is switched to

the applet’s context. The applet now takes control and loses the JCRE privileges.
Any objects created after the context switch are owned by the applet and associ-
ated with the current applet’s context. On return from the applet’s method, the
JCRE context is restored.

9.2.3 JCRE Entry Point Objects

The JCRE can access any applet contexts, but applets are not allowed to access the
JCRE context. A secure computer system must have a way for nonprivileged users
(those restricted to a subset of resources) to request system services that are per-
formed by privileged system routines. In the Java Card platform, this requirement is
accomplished by using

JCRE entry point objects

.
JCRE entry point objects are normal objects owned by the JCRE context, but

they have been flagged as containing entry point methods. Normally, the firewall
would completely protect such objects from access by any applets. The entry point
designation allows the public methods of such objects to be invoked from any con-

chapter 9.fm Page 110 Monday, May 8, 2000 12:45 PM

 OBJECT SHARING ACROSS CONTEXTS

111

text. When that occurs, a context switch to the JCRE context is performed. Thus,
these methods are the gateways through which applets request privileged JCRE ser-
vices. Notice that only the public methods of JCRE entry point objects are accessi-
ble through the firewall. The fields of these objects are still protected by the firewall.

The APDU object is perhaps the most frequently used JCRE entry point
object. Chapter 8 explains how applets instruct the JCRE to read or send APDU
data by invoking methods on the APDU object.

There are two categories of JCRE entry point objects:

•

Temporary JCRE entry point objects

—Like all JCRE entry point objects,
methods of temporary JCRE entry point objects can be invoked from any con-
text. However, references to these objects cannot be stored in class variables,
instance variables, or array fields (including transient arrays) of an applet. The
JCRE detects and restricts attempts to store references to these objects as part
of the firewall functions of preventing unauthorized reuse. The APDU object
and all JCRE-owned exception objects are examples of temporary JCRE entry
point objects.

•

Permanent JCRE entry point objects

—Like all JCRE entry point objects,
methods of permanent JCRE entry point objects can be invoked from any con-
text. Additionally, references to these objects can be stored and freely reused.
The JCRE-owned AID instances are examples of permanent JCRE entry point
objects. The JCRE creates an AID instance to encapsulate an applet’s AID
when the applet instance is created.

Only the JCRE itself can designate entry point objects and whether they are
temporary or permanent. JCRE implementors are responsible for implementing
the JCRE, including the mechanism by which JCRE entry point objects are desig-
nated and how they become temporary or permanent.

9.2.4 Global Arrays

JCRE entry point objects allow applets to access particular JCRE services by invok-
ing their respective entry point methods. The data encapsulated in the JCRE entry
point objects are not directly accessible by applets. But in the Java Card platform,
the global nature of some data requires that they be accessible from any applet and
the JCRE context.

To access global data in a flexible way, the firewall allows the JCRE to desig-
nate primitive arrays as

global

. Global arrays essentially provide a shared memory

chapter 9.fm Page 111 Monday, May 8, 2000 12:45 PM

CHAPTER 9 APPLET FIREWALL AND OBJECT SHARING

112

buffer whose data can be accessed by any applets and by the JCRE. Because there
is only one context executing at any time, access synchronization is not an issue.

Global arrays are a special type of JCRE entry point object. The applet fire-
wall enables public fields (array components and array length) of such arrays to
be accessed from any context. Public methods of global arrays are treated the
same way as methods of other JCRE entry point objects. The only method in the
array class is the

equals

 method, which is inherited from the root class

Object

.
As does invoking any method of a JCRE entry point object, invoking the

equals

method of a global array causes the current context to be switched to the JCRE
context.

Only primitive arrays can be designated as global, and only the JCRE itself
can designate global arrays. All global arrays must be temporary JCRE entry point
objects. Therefore, references to these arrays cannot be stored in class variables,
instance variables, or array components (including transient arrays).

The only global arrays required in the Java Card APIs are the APDU buffer
and the byte array parameter in an applet’s

install

 method. Typically, a JCRE
implementation passes the APDU buffer as the byte array parameter to the

install

 method. Because global arrays can be viewed and accessed by anyone,
the JCRE clears the APDU buffer whenever an applet is selected or before the
JCRE accepts a new APDU command, to prevent an applet’s sensitive data from
being potentially “leaked” to another applet via the global APDU buffer.

9.2.5 Object Shareable Interface Mechanism

To reiterate the sharing mechanisms between the JCRE and applets:

• The JCRE can access any object due to its privileged nature.

• An applet gains access to system services via JCRE entry point objects.

• The JCRE and applets share primitive data by using designated global arrays.

Java Card technology also enables object sharing between applets through the

share-
able interface

 mechanism.

9.2.5.1 Shareable Interface

A shareable interface is simply an interface that extends, either directly or indirectly,
the tagging interface

 javacard.framework.Shareable

.

public interface Shareable {}

chapter 9.fm Page 112 Monday, May 8, 2000 12:45 PM

 OBJECT SHARING ACROSS CONTEXTS

113

This interface is similar in concept to the

Remote

 interface used by the RMI facility.
Neither interface defines any methods or fields. Their sole purpose is to be extended
by other interfaces and to tag those interfaces as having special properties.

A shareable interface defines a set of methods that are available to other
applets. A class can implement any number of shareable interfaces and can extend
other classes that implement shareable interfaces.

9.2.5.2 Shareable Interface Object

An object of a class that implements a shareable interface is called a

shareable inter-
face object

 (SIO). To the owning context, an SIO is a normal object whose fields
and methods can be accessed. To any other context, the SIO is an instance of the
shareable interface type, and only the methods defined in the shareable interface are
accessible. All fields and other methods of the SIO are protected by the firewall.

9.2.5.3 Thoughts behind the Shareable Interface Mechanism

Applets store data in objects. Data sharing between applets means that an applet
makes an object it owns available to other applets, thus sharing the data encapsu-
lated in the object.

In the object-oriented world, an object’s behavior (aside from direct variable
access) is expressed through its methods. Message passing, or method invocation,
supports interactions and communications between objects. The shareable inter-
face mechanism enables applets sending messages to bypass the surveillance of
the firewall. An owning applet creates a shareable interface object and implements
methods defined in the shareable interface. These methods represent the public
interface of the owning applet, through which another applet can send messages
and consequently access services provided by this applet.

The sharing scenario illustrated in Figure 9.2 can be described as a client/
server relationship. Applet A (providing SIOs) is a server, and applets B and C
(using the SIOs of applet A) are clients. An applet may be a server to some applets
and yet a client of other applets.

In the Java programming language, an interface defines a reference type that
contains a collection of method signatures and constants. A client applet views an
SIO as having a shareable interface type. The class type of the SIO that imple-
ments the shareable interface is not exposed. In other words, only methods
defined in the shareable interface are presented to the client applet; instance fields
and other methods are not disclosed. In this way, a server applet can provide con-
trolled access to data it wants to share.

chapter 9.fm Page 113 Monday, May 8, 2000 12:45 PM

CHAPTER 9 APPLET FIREWALL AND OBJECT SHARING

114

When interacting with a different client applet, a server applet could wear a
different hat. This would require the server applet to customize its services with
respect to the client applet without having the door wide open. A server applet can
do so by defining multiple interfaces, each interface declaring methods that are
suitable for a group of client applets. If methods in interfaces are distinct, a server
applet may choose to create classes, each of which implements an interface. But
often services overlap; a server applet can define a class that implements multiple
interfaces. Therefore, an SIO of that class can play multiple roles.

9.2.5.4 An Example of Object Sharing between Applets

This section uses a wallet applet and an air-miles applet to provide an example of
object sharing between applets. The wallet applet stores electronic cash. The money
can be spent to purchase goods.

The air-miles applet provides travel incentives. Similar to the wallet applet,
the air-miles applet also stores values—the miles the card holder has traveled.
Under a comarketing deal, for every dollar spent using the wallet applet, one air
mile is credited to the air-miles applet.

Suppose that the wallet applet and the air-miles applet are in different con-
texts (they are defined in separate packages). Following are the steps of how they
interact in the presence of the firewall.

Figure 9.2 Shareable interface object mechanism

applet B

applet C

SIO

SIO

applet A

chapter 9.fm Page 114 Monday, May 8, 2000 12:45 PM

 OBJECT SHARING ACROSS CONTEXTS

115

1. The air-miles applet creates a shareable interface object (SIO).

2. The wallet applet requests the SIO from the air-miles applet.

3. The wallet applet requests miles to be credited by invoking a service method
of the SIO.

In this case, the air-miles applet is a server that grants miles on request from the wal-
let applet (a client), as shown in Figure 9.3.

Next, how to implement the wallet applet and the air-miles applet is dis-
cussed. The code examples are edited for brevity—methods and fields not perti-
nent to the discussion are omitted, and condition and boundary checks during a
transaction are also ignored.

9.2.5.5 Create a Shareable Interface Object

To create an SIO, the server applet (the air-miles applet) must first define a shareable
interface that extends

javacard.framework.Shareable

.

package com.fasttravel.airmiles;

import javacard.framework.Shareable;

public interface AirMilesInterface extends Shareable {

public void grantMiles (short amount);

}

Next, the server applet creates a service provider class (a service provider
class can be the applet class itself) that implements the shareable interface. The
server applet can then create one or more objects of the service provider class and
can share such objects (SIOs) with other applets in a different context.

Figure 9.3 Object sharing between the wallet applet and the air-miles applet

wallet applet

client applet

request miles
air-miles applet

server applet

chapter 9.fm Page 115 Monday, May 8, 2000 12:45 PM

CHAPTER 9 APPLET FIREWALL AND OBJECT SHARING

116

package com.fasttravel.airmiles;

import javacard.framework.*;

public class AirMilesApp extends Applet

implements AirMilesInterface {

private short miles;

public void grantMiles(short amount){

miles = (short)(miles + amount);

}

}

Before a client can request an SIO, it must find a way to identify the server. In
the Java Card platform, each applet instance is uniquely identified by an AID.

Recall from Chapter 7 that when an applet instance is created, it is registered
with the JCRE using one of the two

register

 methods. The method with no
parameter registers the applet with the JCRE using the default AID defined in the
CAP file. The other

register

 method allows the applet to specify an AID other
than the default one. The JCRE encapsulates the AID bytes in an AID object
(owned by the JCRE) and associates this AID object with the applet. During
object sharing, this AID object is used by a client applet to specify the server.

9.2.5.6 Request a Shareable Interface Object

Before requesting an SIO from a server applet, a client applet must first obtain the
AID object associated with the server applet. To do that, the client applet calls the

lookupAID method in the class JCSystem:

public static AID lookupAID

(byte[] buffer, short offset, byte length)

The client applet must know ahead of time the server applet’s AID bytes, and it sup-
plies the AID bytes in the parameter buffer. The lookupAID method returns the
JCRE-owned AID object of the server applet or returns null if the server applet is
not installed on the card. Because the AID object is a permanent JCRE entry point
object, the client applet can request it once and cache it in a permanent location for
later use.

chapter 9.fm Page 116 Monday, May 8, 2000 12:45 PM

 OBJECT SHARING ACROSS CONTEXTS 117

Next, the client applet calls the method JCSystem.getAppletShareableInter-
faceObject, using the AID object to identify the server:

public static Shareable

getAppletShareableInterfaceObject(AID server_aid, byte parameter)

The second parameter in the method getAppletShareableInterfaceObject is
interpreted by the server applet. It can be used to select an SIO if the server has more
than one available. Alternatively, the parameter can be used as a security token,
which carries a secret shared by the server and the client.

In the getAppletShareableInterfaceObject method, the JCRE looks up the
server applet by comparing the server_aid with the AIDs of applets that are regis-
tered with the JCRE. If the server applet is not found, the JCRE returns null. Other-
wise, the JCRE invokes the server applet's getShareableInterfaceObject method.

public Shareable

getShareableInterfaceObject(AID client_aid, byte parameter)

Notice that, in the getShareableInterfaceObject method, the JCRE replaces the
first argument with the client_aid object and passes along the same parameter byte
supplied by the client applet. The server applet uses both parameters to determine
whether to provide services to the requesting applet and if so, which SIO to export.

The method getShareableInterfaceObject is defined in the base applet class
javacard.framework.Applet. The default implementation returns null. An applet’s
class must override this method if it intends to share any SIOs. Here is how the air-
miles applet implements the getShareableInterfaceObject method. (The process
to authenticate the client is described in 9.2.5.10.)

public class AirMilesApp extends Applet

implements AirMilesInterface {

short miles;

public Shareable getShareableInterfaceObject(AID client_aid,

 byte parameter) {

// authenticate the client -- explained later

// ...

// return the shareable interface object

chapter 9.fm Page 117 Monday, May 8, 2000 12:45 PM

CHAPTER 9 APPLET FIREWALL AND OBJECT SHARING118

return this;

}

public void grantMiles(short amount){

miles = (short)(miles + amount);

}

}

When the server applet returns the SIO, the JCRE forwards it to the requester—
the client applet. The process of requesting a shareable interface object is summa-
rized in Figure 9.4.

9.2.5.7 Use a Shareable Interface Object

To enable a server to return any shareable interface type using a single interface,
both methods JCSystem.getAppletShareableInterfaceObject and Applet.

getShareableInterfaceObject have the return type Shareable—the base type of
all shareable interface objects. A client applet must cast the SIO returned to the
appropriate subinterface type and store it in an object reference of that type. For
example, the wallet applet casts the SIO to AirMilesInterface:

AirMilesInterface sio = (AirMilesInterface)

JCSystem.getAppletShareableInterfaceObject(server_aid, parameter);

JCRE

client

server

JCSystem.
getAppletShareableInterfaceObject

Applet.
getShareableInterfaceObject

SIO (or null)

SIO (or null)
1

2

3

4

Figure 9.4 Requesting an SIO

chapter 9.fm Page 118 Monday, May 8, 2000 12:45 PM

 OBJECT SHARING ACROSS CONTEXTS 119

After the client applet receives the SIO, it invokes the shareable interface
methods to access services from the server. However, only the methods defined in
the shareable interface are visible to the client applet.

For instance, in the preceding code snippet, even though the sio actually
points to the air-miles applet (its applet class implements the interface AirMiles-
Interface), all instance fields and nonshareable interface methods (such as meth-
ods process, select, and deselect) are protected by the firewall.

Following is an example of how the wallet applet requests air miles in a debit
transaction.

package com.smartbank.wallet;

import javacard.framework.*;

import com.fasttravel.airmiles.AirMilesInterface;

public class WalletApp extends Applet {

private short balance;

// hardcoded in the applet or assigned at

// applet personalization

private byte[] air_miles_aid_bytes = SERVER_AID_BYTES;

// called by the process method on receiving

// a DEBIT APDU command

private void debit(short amount) {

if (balance < amount)

ISOException.throwIt(SW_EXCEED_BALANCE);

// update the balance

balance = (short)(balance - amount);

 // ask the server to grant miles

requestMiles(amount);

 }

 private void requestMiles(short amount) {

// obtain the server AID object

chapter 9.fm Page 119 Monday, May 8, 2000 12:45 PM

CHAPTER 9 APPLET FIREWALL AND OBJECT SHARING120

AID air_miles_aid =

JCSystem.lookupAID(air_miles_aid_bytes,

 (short)0,

 (byte)air_miles_aid_bytes.length);

if (air_miles_aid == null)

ISOException.throwIt(SW_AIR_MILES_APP_NOT_EXIST);

// request the sio from the server

 AirMilesInterface sio = (AirMilesInterface)

 (JCSystem.getAppletShareableInterfaceObject(air_miles_aid,

 SECRET));

if (sio == null)

ISOException.throwIt(SW_FAILED_TO_OBTAIN_SIO);

// ask the server to grant miles

sio.grantMiles(amount);

}

}

When an error occurs, an applet can throw an ISOException by invoking the
static method throwIt (see the example in the requestMiles method). The
throwIt method throws the JCRE-owned ISOException object. Such an object is
a JCRE entry point object and can be accessed from any applet’s context.

9.2.5.8 Context Switches during Object Sharing

The JCRE, the client applet, and the server applet reside in separate contexts.
Context switches must occur to enable object sharing. The client applet calls the
JCSystem.getAppletShareableInterfaceObject method to request an SIO. An
internal mechanism in the method switches the client applet’s context to the JCRE
context. Then, the JCRE invokes the server applet’s getShareableInterface-
Object method. Such invocation results in another context switch so that the server
applet’s context becomes current. On return from both methods, the client applet’s
context is restored.

Next, the client applet can request service from the server applet by invoking
one of the shareable interface methods of the received SIO. During the invocation,
the Java Card virtual machine performs a context switch. The server applet’s con-
text becomes the currently active context.

Because execution is now in the server applet’s context, the code gains access
to the protected resources of the server applet—instance fields, other methods,

chapter 9.fm Page 120 Monday, May 8, 2000 12:45 PM

 OBJECT SHARING ACROSS CONTEXTS 121

and even objects owned by the server applet’s context. When the service method
completes, the client applet’s context is restored. Context switching during object
sharing is illustrated in Figure 9.5.

9.2.5.9 Parameter Types and Return Types in Shareable Interface Methods

In the Java programming language, method parameters and return values can be any
primitive or reference types. But in the Java Card platform, passing objects (includ-
ing arrays) as parameters or return values in a shareable interface method is allowed
in a limited fashion. For example, if the wallet applet passes one of its own objects
as a parameter in the grantMiles method, the firewall prevents the air-miles applet
from accessing this object. Likewise, if the air-miles applet returns one of its own
objects as a return value, the firewall prevents the wallet applet from accessing this
object. Although this may seem annoying, it is actually the applet firewall doing its job.

To avoid this problem, the following types of values can be passed in share-
able interface methods as parameters and return values:

• Primitive values—These are easily passed on the stack. The primitive types sup-
ported in the Java Card platform are boolean, byte, short, and (optionally) int.

• Static fields—Public static fields are accessible from any context. However,
objects referenced by such static fields are protected by the firewall.

• JCRE entry point objects—Public methods of these objects can be accessed
from any context.

Figure 9.5 Context switch during object sharing

JCRE

client applet server applet

invoke a shareable interface method

return from the method

JCSystem.
getAppletShareableInterfaceObject

Applet.
getShareableInterfaceObject

return an SIO (or null)return an SIO (or null)

applet firewall

1

4

2

3

5

6

chapter 9.fm Page 121 Monday, May 8, 2000 12:45 PM

CHAPTER 9 APPLET FIREWALL AND OBJECT SHARING122

• Global arrays—These can be accessed from any context. For example, the
APDU buffer can be used for this purpose.

• SIOs—Sharable interface methods of these objects can be accessed from any con-
text. An SIO returned from a client allows the server context to call back into the
client context to obtain some service or data. However, the developer should be
careful to avoid excessive context switching (which might reduce performance)
and deep nesting of context switches (which might use up extra stack space).

The code in the next section provides an example of passing objects and
arrays across the firewall.

9.2.5.10 Authenticate a Client Applet

To prevent an unauthorized client from gaining access to protected data, the server
applet should authenticate the client applet before granting an SIO and before exe-
cuting a service method on the SIO.

To determine whether to grant an SIO, a server can check the AID of the
requester (the client applet). For instance, the air-miles applet can enforce the fol-
lowing checks in the getShareableInterfaceObject method.

public class AirMilesApp extends Applet

implements AirMilesInterface {

public Shareable getShareableInterfaceObject(AID client_aid,

 byte parameter) {

// assume the wallet AID bytes are preknown

if (client_aid.equals(wallet_app_aid_bytes, (short)0,

(byte)(wallet_app_aid_bytes.length)) == false)

return null;

// examine the secret to further authenticate the

// wallet applet

if (parameter != SECRET)

return null;

// grant the SIO

return (this);

}

}

chapter 9.fm Page 122 Monday, May 8, 2000 12:45 PM

 OBJECT SHARING ACROSS CONTEXTS 123

When a shareable interface method is next invoked, the server should verify
the client applet again. This precaution is necessary because the client applet that
originally requests the SIO could break the contract and share the SIO with a third
party without getting the proper permission. The server applet must exclude this
scenario to protect sensitive data from an untrusted client. To find out the AID of
the actual caller, the server applet can invoke the JCSystem.getPreviousContext-
AID method (explained in 9.2.5.11). The code to detect the caller’s identity is
added to the grantMiles method as follows:

public void grantMiles (short amount) {

// get the caller’s AID

AID client_aid = JCSystem.getPreviousContextAID();

// check if this method is indeed invoked

// by the wallet applet

if (client_aid.equals(wallet_app_aid_bytes, (short)0,

 (byte)(wallet_app_aid_bytes.length)) == false)

ISOException.throwIt(SW_UNAUTHORIZED_CLIENT);

// grant miles

miles = (short)(miles + amount);

}

The security of the authentication scheme in the preceding code requires that
applet loading be controlled under restricted security measures to avoid applet
AID impersonation. Such a scheme may not be sufficient for an applet that
requires a higher degree of security. In this case, additional authentication meth-
ods must be defined, such as cryptographic exchange.

The following code implements an authentication scheme called challenge-
response in the wallet and air-miles applet example. When the service method
grantMiles is invoked, the air-miles applet generates a random challenge phrase
and sends the challenge to the wallet applet. The wallet applet encrypts the chal-
lenge and returns a response to the air-miles applet. By verifying the response,
the air-miles applet authenticates the wallet applet and adds requested miles to
its balance.

To support this scheme, first, the grantMiles method is updated to take two
additional parameters—an authentication object and a buffer.

chapter 9.fm Page 123 Monday, May 8, 2000 12:45 PM

CHAPTER 9 APPLET FIREWALL AND OBJECT SHARING124

public interface AirMilesInterface extends Shareable {

public void grantMiles(AuthenticationInterface authObject,

 byte[] buffer, short amount);

}

The air-miles applet authenticates the wallet applet by invoking the challenge
method of the authentication object. The buffer is used to pass challenge and
response data.

public class AirMilesApp extends Applet

implements AirMilesInterface {

public void grantMiles(AuthenticationInterface authObject,

 byte[] buffer, short amount) {

// generate a random challenge phrase in the buffer

generateChallenge(buffer);

// challenge the client applet

// the response is returned in the buffer

authObject.challenge(buffer);

// check the response

if (checkResponse(buffer) == false)

ISOException.throwIt(SW_UNAUTHORIZED_CLIENT);

miles = (short)(miles + amount);

}

}

Notice that the authentication object is created and owned by the caller—the
wallet applet. The applet firewall requires such an object to be an SIO:

public interface AuthenticationInterface extends Shareable {

public void challenge(byte[] buffer);

}

public class WalletApp extends Applet

 implements AuthenticationInterface {

chapter 9.fm Page 124 Monday, May 8, 2000 12:45 PM

 OBJECT SHARING ACROSS CONTEXTS 125

public void challenge(byte[] buffer) {

// get response.

// both challenge and response data are carried

// in the buffer

getResponse(buffer);

}

public void process(APDU apdu) {

if (getCommand(apdu) == DEBIT)

debit(apdu);

}

private void debit(APDU apdu) {

short amount = getDebitAmount(apdu);

// update the balance

balance = (short)(balance - amount);

// ask the air-miles applet to grant miles

requestMiles(apdu.getBuffer(), amount);

}

private void requestMiles(byte[] buffer, short amount) {

// obtain the AID object

AID air_miles_aid =

JCSystem.lookupAID(air_miles_aid_bytes,

 (short)0,

 (byte)air_miles_aid_bytes.length);

// request the SIO from the air-miles applet

 AirMilesInterface sio = (AirMilesInterface)

 (JCSystem.getAppletShareableInterfaceObject(air_miles_aid,

 SECRET));

// ask the air-miles applet to grant miles

sio.grantMiles(this, buffer, amount);

}

}

chapter 9.fm Page 125 Monday, May 8, 2000 12:45 PM

CHAPTER 9 APPLET FIREWALL AND OBJECT SHARING126

In this code example, the buffer used for passing the challenge and response
data is the APDU buffer. The APDU buffer is a global array that can be accessed
from any context.1

9.2.5.11 getPreviousContextAID Method

During object sharing, a server can find out the AID of the caller applet by invoking
the JCSystem.getPreviousContextAID method:

public AID getPreviousContextAID()

This method returns the JCRE-owned AID object associated with the applet
instance that was active at the time of the last context switch. In the code example
on page 123, when the wallet applet calls the shareable interface method grant-
Miles, a context switch occurs. The getPreviousContextAID method returns the
AID of the wallet applet that was active before the context switch.

Now consider a more complex scenario, as shown in Figure 9.6. Suppose that
two applet instances A and B share a group context. No group context switch
occurs if applet A calls a method of object b (owned by applet B). This action is
allowed regardless of whether object b is an SIO.

Now when object b accesses an SIO of applet C, execution moves into a new
context. The active applet at the last context switch was applet B, and thus, the
getPreviousContextAID method returns the AID of applet B.

1 Even so, there are still limitations in using the APDU buffet to pass structured data. For example,
data being passed may not be of the appropriate length or type for the APDU buffer. Both the
server and the client may need to put considerable effort to manipulate the APDU buffer.

Figure 9.6 Object sharing between applets A, B, and C

applet B

group context group context

applet C

SIO

1

2

applet A

b

chapter 9.fm Page 126 Monday, May 8, 2000 12:45 PM

 OBJECT SHARING ACROSS CONTEXTS 127

9.2.5.12 Summary

To conclude, the process of sharing objects between a server applet and a client
applet is summarized.

1. If a server applet A wants to share an object with another applet, it first defines
a shareable interface SI. A shareable interface extends the interface javacard.
framework.Shareable. The methods defined in the shareable interface SI rep-
resent services that applet A wishes to make accessible to other applets.

2. Applet A then defines a service provider class C that implements the shareable
interface SI. C provides actual implementations for the methods defined in SI.
C may also define other methods and fields, but these are protected by the ap-
plet firewall. Only the methods defined in SI are accessible to other applets.

3. Applet A creates an object instance O of class C. O belongs to applet A, and the
firewall allows A to access the fields and methods of O.

4. If a client applet B wants to access applet A's object O, it invokes the JCSys-
tem.getAppletShareableInterface method to request a shareable interface
object from applet A.

5. The JCRE searches its internal applet table for applet A. When found, it in-
vokes applet A’s getShareableInterfaceObject method.

6. Applet A receives the request and determines whether it wants to share object
O with applet B. If applet A agrees to share with applet B, A responds to the re-
quest with a reference to O.

7. Applet B receives the object reference from applet A, casts it to type SI, and
stores it in object reference SIO. Even though SIO actually refers to A’s object
O, SIO is of type SI. Only the shareable interface methods defined in SI are vis-
ible to B. The firewall prevents the other fields and methods of O from being
accessed by B. Applet B can request service from applet A by invoking one of
the shareable interface methods of SIO.

8. Before performing the service, the shareable interface method can authenticate
the client (B) to determine whether to grant the service.

chapter 9.fm Page 127 Monday, May 8, 2000 12:45 PM

chapter 9.fm Page 128 Monday, May 8, 2000 12:45 PM

