Davis Chapman

SAMS
Teach Yourself

Visual G++ b

in 21 Days

SAMS

A Division of Macmillan Computer Publishing
201 West 103rd ., Indianapolis, Indiana, 46290 USA

Sams Teach Yourself Visual

C++" 6 in 21 Days

Copyright © 1998 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-31240-9
Library of Congress Catalog Card Number: 98-84508
Printed in the United States of America

First Printing: August, 1998

01 00 99 98 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of thisinformation. Use of aterm in this book should not be
regarded as affecting the validity of any trademark or service mark.

Visual C++ is aregistered trademark of Microsoft Corporation.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness isimplied. The information provided is on
an “asis’ basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

EXEcuTIVE EDITOR
Brad Jones

ACQUISITIONS EDITOR
Kelly Marshall

DEVELOPMENT EDITOR
Matt Purcell

MANAGING EDITOR
Jodi Jensen

PRrROJECT EDITOR
Dana Rhodes Lesh

Copy EDITOR
Kris Simmons

INDEXER
Erika Millen

TECHNICAL EDITOR
Larry Richardson

PrRODUCTION
Marcia Deboy
Michael Dietsch
Jennifer Earhart
Cynthia Fields
Susan Geiselman

Overview

Introduction

WEEK 1 AT A GLANCE

Day 1 The Visual C++ Development Environment—Building Your First
Visua C++ Application

Using Controlsin Your Application

w N

Allowing User Interaction—Integrating the Mouse and Keyboard in
Your Application

4 Working with Timers

5 Getting User Feedback—Adding Dialog Boxes to Your Application
6 Creating Menus for Your Application

7 Working with Text and Fonts

WEEK 1 IN REVIEW

WEEK 2 AT A GLANCE
Day 8 Adding Flash—Incorporating Graphics, Drawing, and Bitmaps
9 Adding ActiveX Controls to Your Application
10 Creating Single Document Interface Applications
11 Creating Multiple Document Interface Applications
12 Adding Toolbars and Status Bars
13 Saving and Restoring Work—File Access
14 Retrieving Datafrom an ODBC Database

WEEK 2 IN REVIEW

WEEek 3 AT A GLANCE
Day 15 Updating and Adding Database Records Through ADO
16 Creating Your Own Classes and Modules

25

47
67
83
105
121

143

147
149
179
199
229
243
279
315

337

341
343
379

17 Sharing Your Functionality with Other Applications—Creating DLLs 405

18
19
20
21

Doing Multiple Tasks at One Time—M ultitasking
Building Your Own Widgets—Creating ActiveX Controls
Internet Applications and Network Communications
Adding Web Browsing Functionality to Your Applications

WEEK 3 IN REVIEW

APPENDIXES

A

mmOOO®

C++ Review

Answers

Printing and Print Previewing
Understanding and Exception Handling
Using the Debugger and Profiler

Using MFC's Helper Classes

Index

429
473
495
521

537

541
541
579
637
661
677
699
731

Contents

INTRODUCTION 1

WEEK 1 AT A GLANCE 5

DAy 1 THEe VisuAL C++ DEVELOPMENT ENVIRONMENT—BUILDING YOUR FIRST

VISUAL C++ APPLICATION 7
The Visual C++ Development EnVironmentcccoceoeereieneneiesenesese e 8
The OULPUL PaNE ...ttt 9
THE EItOr ATER......cvceeeieecestete e 9
MENU BAEIS ... e e 10
Rearranging the Developer Studio Environmentccccooeereeieinenncieeene 10
Starting YOUr First PrOJECEccoieiririecieeesecsie st 1
Creating the Project WOrkSpacecooceieoreneeneseree e 1
Using the Application Wizard to Create the Application Shell 12
Designing Your Application WINAOWccoeorereeereneneneee e 15
Adding Code to Your APPlICALIONcccooeeiiieeeieeeeeseeeeeee e 17
Finishing TOUCKES........couiiieeee e e e 20
Creating the Dialog BOX [CONcc.oiiiiiiiiieieieeees e 20
Adding Maximize and Minimize BUHtONS...........cccoooriieininnienereree e 21

DAY 2 UsING CONTROLS IN YOUR APPLICATION 25
The Basic WINAOWS CONEIOIScccoueiiirieicieecte s sveseenas 26

The Static TEXE CONIOlc.cceieeeieieiee e 26

The Edit BOX CONIOLccociieeieieiee ettt 26

The Command BUtton CONLrolcccueeveereeirieiieseeesiee s 27

The Check BOX CONLIOL.......ccoiueiiieieriiieisieeee et nan 27

The Radio BUtON CONLIOcccoeieiivieicieecesieese e 27

The Drop-Down List BOX CONIOlcccceveirieiiesiccseeseeee e 27

Adding Controls to YOUr WINAOWcccueeiiieiiiiieiieecesee e 27

Creating the Application Shell and Dialog Layoutcccoveevveevvieneeciieiennens 28

Vi

Sams Teach Yourself Visual C++ 6 in 21 Days

Dar 3

Day 4

Specifying the Control Tab OFderccvceieieieeseeseeesee e 30
Attaching Variables to YOUr CONtrolS.........ccceveeivieiserieisee e 32
Attaching Functionality to the ControlS.........ccceovveiiiereeisee e 33

Closing the APPlICaLION.......c.cceieiieeceeees et 36

Showing the USEr'S MESSAgEccuceiveeriiiieeiieice et nsenen 37

Clearing the USer'S MESSAQE.c.civeiieeeiisiee ettt saessenens 38

Disabling and Hiding the Message Controls...........ccoceceveiveneeisieiisesecssenes 39

Running Another APPliCaHIONccucevieiriicesiee et 42
SUMIMIBIY ..ttt sttt ettt te et stesbesbe st e e e e nse s e s besbeabesbeeseeneasseneeseesbesbenbensensennnens 44
QEA bbbt e b a4

ALLOWING USER INTERACTION—INTEGRATING THE MOUSE AND KEYBOARD

IN YOUR APPLICATION 47
Understanding MOUSE BEVENLS.........ccooiiiireeere e e 48
Drawing With the MOUSE...........cceiiieeeee e 49
Improving the Drawing Programcccccocoeenrineienieneee e 53
Adding the Finishing TOUCNES.........ccccoeiiiiieieeese e 55
Capturing Keyboard EVENEScccoiriieieeeeseese e 56
Changing the Drawing CUISO.........cccieeerereeerieneeieseeeseeseseeseeseseesesseseeessesessens 57
Making the Change StICK ... e 60
SUMIMIBIY ..ttt ettt st se e bt e e s e s e s e e Rt e bt eaeeae e e e e e nseseesbesbesbesbeeneeneens 64
Q& ettt et a et a ettt ne et nenn 64
LAY T o o TSRS 65
(.2 65
EXEICISES ..ottt ettt ne e 65
WORKING WITH TIMERS 67
Understanding WindoWS TIMEFS.......cc.ccuvireineisieseesesie e seseesesaesssseseesssaeseens 68
Placing a Clock on Your Application68
Creating the Project and Application68
Adding the Timer IDsc.ccccveeveenneee .70
Starting the Clock Timercccccevevnee. 7l
Handling the Clock Timer Event................. e f2
Adding a Second Timer to Your Application ... 74
Adding the Application Variables.................. 74

Starting and Stopping the Counting Timercccoeviireieneiseseceseeesiens 75
Enabling the Stop BULLONc.coviiiieiiciceeee e 79

Contents vii

QEA bbbt 81
LY 1o o SRS 82
QUIZ ettt 82
EXEICISE ..ttt bbb 82
DAY 5 GETTING USER FEEDBACK—ADDING DIALOG BOXES TO YOUR APPLICATION 83
Using Pre-existing (or System) Dialog Windowscccccoeerennieneccneneee e 84
USING MESSA0E BOXESc.eeueiiieieieieieneeie sttt sae et e se e 84
USiNg COMMON DialOgS ...c.coveieierieirierieierieesie et e 90
Creating Your Own Dialog WINAOWS.........ccoereireieneneeseeeeseeeseees e 93
Creating the Dialog WINAOWcoiiiirireiereieeese s 93
Using the Dialog in Your AppliCation...........ccouveerennenecnerese e 96
SUMIMIBIY ..ttt e e e e se e b b e bt aeese e e e s e b e nbesbesaeereeneenee e e es 101
Q&A ettt et ettt n e sene s 101
WVOPKSNOP .ttt ettt a et e e enesneneas 103
QUIZ ettt ettt b et At e e ae et bt ae e e es 103
EXEICISES ..ottt sttt sttt seene e b e enas 104
DAY 6 CREATING MENUS FOR YOUR APPLICATION 105
IVIBNUS ...ttt ettt 106
MENU SEYIES ...ttt sttt b saenas 106
Keyboard Shortcut—Enabling Menusccccceeeivecniencicece e 106
Menu Standards and CONVENLIONS..........c.veeiririeeierereeesere e s 107
DESIGNING MENUSooveiinieieieis ettt st b e s 108
Creating @ MENUoceuiieieieiees ettt sttt saene e ns 108
Creating the APPICAIONccceeiiciseeee e 108
Adding and Customizing @ MENUcccoeeeuirieiseeciseese e 109
Attaching the Menu to Your Dialog Windowccccccvevieenevenincesecenenns 112
Attaching Functionality to Menu ENntriescccoevveieiereenecesesee e 112
Creating POP-UP MENUSocveiiiiieiesieeseie ettt st na s nnan 116
Creating a Menu With ACCEIEIatorsccuveieieieeneesieiee s 118
SUMIMIBIY ..ttt sttt re b e et e seesbesbesbeebeeseeseene e s eneenteseeseenbensenne 119
Q&A e h bbb A bbb bR e e bRt e bbb n e s 119
WWOIKSNOP ettt st n bt b e enenneneas 120
QUIZ oottt a et a et e et e nnene e e e 120
EXEITISES ..ttt 120
DAy 7 WORKING WITH TEXT AND FONTS 121
Finding and USING FONES.........cccoiriieieee e 122

Listing the Available FONLSccocoiirrerieeeeee s 122
USING @ FONT ...ttt st 125

viii Sams Teach Yourself Visual C++ 6 in 21 Days

USING FONS.....eitiiciiieesecesie ettt s re et seeae st besaenas 129
Creating the Application Shell ... 129
Building @ List Of FONS........ccoociiieirireiiecesiee e 131
Setting the FONt SaMPIE TEXLc.covcviiiciceses e 135
Selecting a FONt t0 DIiSPlaycccoevieiiieerieesees e 136
SUMIMIBIY vttt st e et te st be s beese e s e e s e s e benbesbesbenbenseeneeneees 139
QEA bbbttt s 139
WWOIKSNOP c.eviiicicie ettt st e bbb enenneneas 140
QUIZ ettt et r ettt neene et e 140
EXEITISES ..ttt bbb 140
WEEK 1 N Review 143
WEEK 2 AT A GLANCE 147
DAy 8 ADDING FLASH—INCORPORATING GRAPHICS, DRAWING, AND BITMAPS 149
Understanding the Graphics Device INterfaceovvevnvneenneeenneecieee 150
DEVICE CONLEXLS.....c.oeiveieiieiiesieeie ettt sresresre e s e re e s e stestesresrestesresreennennens 150
Mapping Modes and Coordinate SYStEMS...........cvverrreererneeenereereeseseeeeees 156
Creating a GraphicS APPlICALION. ..o

Generating the Application Shell
Adding the Graphics Capabilities

DAy 9 ADDING AcTIVEX CONTROLS TO YOUR APPLICATION 179
What 1S an ACEIVEX CONLIOI?c.eouiieiiieieirieeee e 180
ActiveX and the IDispatch Interface......ccovvvinieceiesiescece e 180
ActiveX Containers and SEIVENS........cocireiererieeee et 182
Adding an ActiveX Control t0 YOUr PrOJECEccccceverererieienienineneeseesiesieens 183
Registering the CONtrol ..o 183
Adding the Control t0 YOUr Di@lOg.......c.cooeerereerierenienieeseesesie e 186
Using an ActiveX Control in Your AppliCationcccceereeirennienecnieesenene 187
Interacting With the COontrolcocoririiieineeree s 187
Responding to Control BEVENLS...........ccooeerireneinienereecsee e 193
SUMIMIBIY ..ttt b bbbt b b s bbbt b e nn e s 196
QBEA s 196
WVOPKSNOP .ttt bbb eb i 197
(U 2SS 197

Contents ix
DAY 10 CREATING SINGLE DOCUMENT INTERFACE APPLICATIONS 199
The Document/View ArChiteCtUrecccoveeirnieeierree s 200
Creating an SDI APPlICALION.........ccccivieiieeseee e 202
Building the Application Shell ... 202
Creating aLIiNE ClaSsccvveeiiiciseesee e 203
Implementing the Document FUNCtioNality..........coeevvevieiiviececiesiec e 205
SHOWING thE USEN ...t 208
Saving and Loading the Drawingcccceeiinieenereseseeseesesee e 213
Deleting the Current DIraWing........cccoveeirienisieseiseise e 214
Saving and Restoring the DIrawingccccceieveeeneieseiseseese e 215
Interacting With the MeNU.........cccoueiiiiciccce e 218
Adding Color tothe CLine ClasS........cccvieeiiveeieieieseieseeee e 218
Adding Color t0 the DOCUMENEcooveuiiieeeriieece e 219
MOdifyiNg thE MENUocueiiiiceceeee e 222
Summary
Q&A
Workshop
Quiz
Exercise
DAy 11 CREATING MuULTIPLE DOCUMENT INTERFACE APPLICATIONS 229
What 1S an MDI APPIICALIONT........coieiieieeieie e 229
Creating an MDI Drawing Programcccoceocererrensieneneseseeseesese s 231
Building the Application Shell ... 231
Building the Drawing FUNCHONAIILYccoorereiieirereec e 232
Adding Menu Handling FUNCEIONAlILYcccooeiiiiiiineeeeree e 233
Adding @ CONEXE MENUoeeiiieeiec et 236
SUMIMIBIY ..ttt ettt i e e e e e e b e b e st e seese e e e s e b e nbesbesbesaeeseenne e e es 239
Q& ettt a ettt et s eaene s 239
WVOPKSNOP .ttt et sttt e e eneneaneas 240
[U 2 240
S (o1 = PRSI 241
DAy 12 ADDING TOOLBARS AND STATUS BARS 243
Toolbars, Status Bars, and MENUScccceevirieirnieieenrieeesesieeeesesee s 244
DeSigning @ TOOIDAc.ccviieiiiieiieie e 245
Creating a New TOOIDArcccceeivieiieeceee e 246
Attaching the Toolbar to the Application Frame.........ccccccvvvveienereieniciesienens 247
Controlling the Toolbar Visibilitycccccovveiiiiiincccecesececesees 254
Adding a Combo Box t0 @ TOOIDArccccccvvieiiiieiceecee e 257

Editing the Project RESOUICESccccviieiiiieesieisiese et 257
Creating the Toolbar Combo BOXccccceiieeiiiiriseesieeesee e 260

X

Sams Teach Yourself Visual C++ 6 in 21 Days

Dar 13

DAy 14

Handling the Toolbar Combo BOX EVENLScccccovveeivevieirieice e 267
Updating the Toolbar COMBO BOXcc.covvieieienieiiieiseseec e 268
Adding aNew Status Bar EIEmMent...........ccccvveeeiiieiiereseeeseeeese e 271
Adding aNew Status Bar Pane.............ccoieeeivieiseneciseie e seeee s 271
Setting a Status Bar Pan@ TEXEccoovevveiiieeieesese e 273

Q&A

SAVING AND RESTORING WORK—TFILE ACCESS 279

SETAIZALION .o
The CArchive and CFile Classes..........
The Serialize Function..........cc.cooeveerennee
Making Objects Seridizable....................

Implementing a Serializable Class................
Creating a Serialized Application
Creating a Serializable Class........cociierrenieereeees e
Building Support in the Document Class
Adding Navigating and Editing Support in the View Class.........ccccccvenenene 305

RETRIEVING DATA FROM AN ODBC DATABASE 315

Database Access and ODBC..........ccoviiirnieeieeree e 316
The Open Database Connector (ODBC) Interfacecovevvvevieieviecinieniennns 316
The CRECOrdSEt ClaSS.....ccouvieiiiiiieieci et 317

Creating a Database Application Using ODBCcccccvivvieneinecceseesees 322
Preparing the Databasecccceveiiinieiieceses e
Creating the Application Shell
Designing the Main FOMM ..o
Adding New Records
Deleting Records.........

[0

Contents

Xi

WEEK 2 IN REVIEW

WEEK 3 AT A GLANCE

DAy 15 UPDATING AND ADDING DATABASE RECORDS THROUGH ADO

ADO ODJECES ...ttt
Using the ADO ActiveX CONrolccoveeeerirenieeniriniecnesieeeees
IMpOrting the ADO DLL ...t
Connecting to a Databasecovveevreereinrieee e
Executing Commands and Retrieving Datacovevnernenees
Navigating the RECOrdSEt ..o
Accessing Field ValUES ...
Updating RECOIScovvvereiieiniiiririeieesree et
Adding and DEELINGcceeirreireirieeeseee e
Closing the Recordset and Connection Objects...................
Building a Database Application UsSing ADOccccoveerevincenens
Creating the Application Shell ...
Building a Custom Record Classcccooveverirenieininniecnenineenes
Connecting and Retrieving Data..........ccccoevveeenneneinennecneens
Populating the FOrmM ..o

Saving Updates
Navigating the Record Set......
Adding New Records
Deleting Records.............

DAY 16 CREATING YOUR OWN CLASSES AND MODULES

DeSigning ClaSSeS......cccoeiueerienirerieeries et
ENCAPSUIBLION. ..ot e
INNEITEANCE ...t
Visual CH++ ClasS TYPES ..cecuereeerierieirieseeie et

Creating Library MoOAUIES..........c.cooeiiiiiiireeneeese e

Using Library MOAUIES........c.coeiiiirieereieee e
Creating the Library Module...........ccooeininiieniincseeeene
Creating a Test ApPliCationcccooeerineienireeeeree e
Updating the Library Module ...

Xii

Sams Teach Yourself Visual C++ 6 in 21 Days

Day 17

DAy 18

SHARING YOUR FUNCTIONALITY WITH OTHER APPLICATIONS—CREATING DLLs 405
WHY Create DLLS?....ccveieiieiierirteteeesie ettt s 406
Creating and USING DLLS ..ot 406
DESIGNING DLLS ...ttt 409
Creating and Using an MFC EXteNSION DLLccvviieiiennieeneec e 410
Creating the MFC EXtENSION DLL ..ot 410
Adapting the Test APPlICALTION........ccvveirreereirereee e 413
Changing the DLLc.ciiiieeeereesee e 414
Creating and Using aRegUIAr DLLcocueivirieieireieicesneeeeseseeee e 416
Creating the RegUIAr DLLoeeirriciieinesees e 417
Adapting the Test APPlICALION ..o 423
SUMIMEBIY ..ottt ettt r e e r e e sn e nr e 426
QEA bbb 427
WWOTKSNOP . 428
(O 2SS 428
EXEICISES ..ottt 428
DoING MuLTIPLE TASKS AT ONE TIME—MULTITASKING 429
What 1S MUITIEASKING?.......cueieeirieieicrieeeie st 430
Performing Multiple Tasks a ONne TiMe.......cccooeveirenneneecrereee e 430
Idle Processing THrEaOS.........coeveierieirieie st 431
Spawning Independent Threads ... 431
Building a Multitasking APPliCaLIONccoeerieiirereeriere e 441
Creating & Framework ... 441
DEeSIgNING SPINMELSoouiuiriiieirieie ettt se e e sbe e 443
SUPPOIting the SPINNEFSooiiiie e 449
Adding the ONTA1e TaSKS.....ccccirerererieiriereeie st 455
Adding Independent Threads ... 460
SUMIMIBIY .ttt e bbbt bbb bbbt eb e e e e e 468
Q&A s 468
WVOTKSNOP .ttt e e sb e 471
[U 2SS 471

Contents Xiii
DAY 19 BuUILDING YOUR OWN WIDGETS—CREATING ACTIVEX CONTROLS 473
What S an ACtivVeX CONIOI?cerrieieirerieieenrieeesesee e s 474
PrOPEITIES. ...ttt ae s 474
MEBENOAS ...ttt s 475
EVENES <o 476
Creating an ACtiveX CONIOlccccvvieiieieiece e 476
Building the Control Shell..........ccoeviiiieiiiceseese s 477
Modifying the CMOAArT ClaSScccverieirieicesiei s 478
Adding Propertiescviiiiiieicese ettt 481
Designing and Building the Property Page.........cccovvvieveeivecicie e 483
Adding Basic Control FUNCLIONAlILYccocevveirieiieiccseeseces e 485
Adding MEhOSccociiiiiiicicee e 487
AdAiNG EVENES ...t 489
Testing the CONLIOloocveeeicee e 491
Summary
Q&A
Workshop
Quiz
Exercises
DAy 20 INTERNET APPLICATIONS AND NETWORK COMMUNICATIONS 495
How Do Network CommunicationS WOFK?coeereeireneee e 496
Sockets, Ports, and AQArESSES..........eeiieie ettt s 497
Creating 8 SOCKEL........cciuiieeeirieeeie ettt se e see e 498
MaKing 8 CONNECHIONcccouiririerieiriereeie et 500
Sending and ReCaiVING MESSAEScocruiieierirereneerie s 501
Closing the CONNECLIONcc.eoeiieeeeriee et 503
SOCKEL EVENLS ...ttt 503
DELECHING EFTOIS......ceiieieieeetesieies ettt sttt s s be e 504
Building a Networked AppliCation............cocereererne e 505
Creating the Application Shell ... 505
Window Layout and Startup FUNCHIONAlILYcccoeieriririenirneneeeeriesieens 505
Inheriting from the CAsyncSocket Classccocvveirenneennseesneeeenenns 509
Connecting the APPlICALTIONceiiieeeeere e e 511
Sending and RECEIVINGc.coeiiiieeeeree et 515
Ending the CONNECLIONcco.oiieieiiirieeie et 517
SUMIMIBIY ..ttt sttt e e e e b bt bt e se e st e s e s e b e nbesbesreereeseenee e e es 519
Q& ettt a Rt a et e et R e aene s 519
WVOPKSNOP .ttt ettt sttt a et e e eneneeneas 520
[2SR 520

Xiv Sams Teach Yourself Visual C++ 6 in 21 Days

DAy 21 ADDING WEB BROWSING FUNCTIONALITY TO YOUR APPLICATIONS 521
The Internet Explorer ActiveX Modelcoooeveivieiieneeieeseceesee e 522

The CHEMLVLIEW ClaSS ..cuvcviiceiiieieti ettt sneneas 523

Navigating the WEDccoieicerccee e 523

Controlling the BrOWSESccucuiiieiieeiisie sttt 524

Getting the BroWSEr SEAEUSc.ccevveeiireeiriieesieese s 524

Building a Web-Browsing AppliCation..........cccceereirienisienei s 525

Creating the Application Shell ... 525

Adding Navigation FUNCHONGILYc.ccvverieirieiieecesee e 526

SUMIMIBIY vttt ettt e e et ee st besbeeseese et et e b e s besbesbenbensennaeneees 535

QEA bbbt 535

LYo 1] o SRS 536

QUIZ ettt ettt a R e et neene e 536

EXEITISES ..ttt s 536

WEEK 3 IN Review 537
APPENDIXES 541
APPENDIX A C++ ReviEw 541
Creating Your First APPlICAHONc.eoiveereiririeieire e 541
HELLOWOPLA . CPP cveereerreerieenreesieenreeeessreseesssesneessnesmeesseesseesneesneenseenessesnnenas 543

The if Statement, Operators, and Polymorphismccccoveevenneennennenne 549

Global and Local Variables..........ccceeeierineenieese e 552

Pointers

Contents XV

XVi

Sams Teach Yourself Visual C++ 6 in 21 Days

APPENDIX C

APPENDIX D

QUIZ oottt a et a bttt ne et e 631
EXEITISES ..ttt s 631
DAY 200t 632
QUIZ oottt a ettt neene e e 632
EXEITISES ..ttt s 633
DAY 2L...ieeeeee bbb 634
QUIZ ettt 634
EXEITISES ..ttt 634
PRINTING AND PRINT PREVIEWING 637
Using the Framework’s FUNCHIONAITTYccccoeoirirriieeee e 637
Using Default Print Functionality
(@207 gy o [Talo J 0 o1 3o g ol () SRS
Using the Printer Device Context
Maintaining the ASPECt RALIOcocvueiieeriereeeee e
Pagination and Orientationcoeeeererriereeeeree s
Setting the Start and End Pages ..o
Using the Print Dialog BOXccocoererrerieinieniee e sesie s
Using Portrait and Landscape Orientations.............coeereeereerenereeeseeneneneenes 654
Adding GDI Objects with OnBeginPrinting () .o 654
Customizing Device Context Preparation............ccoeoeveeeeererereeneseneeieseenenes 656
ADOrting the PrNt JODooiiiieee e 657
Direct Printing Without the Framework ... 657
Invoking the Print Dialog BOX DIr€Ctlycccoireeirenniiecee e 657
Using StartDoc () and ENADOC () woeeeeereerereereeereeeseesesueseeesiesesnesesesseseenas 659
Using StartPage () and ENAPAJE () -weerererereerereenereneneseenesiesesnesessesseseenas 660
UNDERSTANDING AND EXCEPTION HANDLING 661
USING EXCEPLIONSocveiiicieieisicie ettt sttt 661
Running Code and Catching the EITorsccoceveveievecicesece e 661
THroWiNg EXCEPLIONS......ccccviiieeeicieieeiecs ettt 666
Deleting EXCEPLIONS........cceiiriieiiieisieseesteie et 668
MPFC EXCEPLION TYPES .vouveveieiiitiieesie sttt s se st st sae e b saenas 668
Using the CException Base Classcccceveiivecisienieiseeee e 668
Using the Memory EXCEPtIONccvveieirieicesiee s 669
Using the RESOUICE EXCEPLIONS......ccccviveirieieiesieisieise et 670
Using the File and Archive EXCEPLIONS..........ccoveiveisenieicece e 670

Using the Database EXCEPLIONS..........cccevvieieenieisicise e 672
USING OLE EXCEPLIONScveviiciiieieiesieeses ettt st 673
Using the Not Supported EXCEPLIONccverieivieiserieisieece e 674
Using the USer EXCEPLIONcccoviviiiirieisiecesee e 674

Generating Your Own Custom Exception Classesccocevevvieveeneeesiennans 675

Contents Xvii

APPENDIX E USING THE DEBUGGER AND PROFILER 677
Creating Debugging and Browse INformationcccceceveveeneiesenisiesieeseeenns 677
Using Debug and RE€ase MOUESccvueiveneinicisesec e 678
Setting Debug Options and LEVES ... 679
Creating and Using Browse Informationcccceeeevevcieneccnenicesiecsees 681
Using Remote and Just-in-Time Debugging........ccoceeveereeirienienseeesereeresaenns 683
Tracing and SiNGIe SLEPPING.......coveirieiiirieiseeee e e sbeneas 685
USING the TRACE MECTO ...cuvcviicieieiciesieie ettt st 685
Using the ASSERT and VERIFY MACIOScccccevverirreisereerisieeereseesessesesseseens 687
Using Breakpoints and Single Stepping the Program...........cccccevevvveieiennnne. 689
Using Edit and CONtINUEc.coviueiriirieisieicesiee e 692
Watching Program Variables..........ccouveiieieiiicisecees e 692
Other Debugger WINAOWS.......c.coiieiiieeiice e 694
Additional Debugging TOOIS..........covvueiiirieiieeee e 694
USING SPYFF oottt se st a s st et e e nesae e beseenas 695
Process Viewer et bbbt E b e bbbt b et 697
The OLE/COM ODbJECt VIEWETc.ccerveeiiieectisiees et 697
THE MIFC TIACEN ..ottt 698
APPENDIX F USING MFC’s HELPER CLASSES 699
Using the ColleCtion ClIaSSEScoeveererrerieeriereee e 699
USING the ArTay ClIESSES ...ccoviieieieiriereer et 700
USING the LiSt ClaSSEScueeruiieierieirienieie et 702
USING the MaD ClESSEScoeruiieieieiriereeie et se e s seenas 704
Creating Custom Collection ClassesS.........coeeiererereiererese e 707
Using the Coordinate-Handling Classes........cocorerrerieneneneee e 710
USING the CPOINT ClaSS ..o s 710
USING the CRECT ClaSS ..ot s 712
USING the CS1ze ClaSSccvveiririirerieeeerre et 717
Using the Time-Handling ClaSSEScooreirrirennereeresie e 718
Using the COleDateTime ClaSS.......ccouoreirnmireiineneeesesreese e 719
Using the COleDateTimeSpan ClaSS.......ccoiirrnreerenrnreenesesreeeseerenees 722
Using the String Manipulation ClasScccverernerierne e 724
USING the CString ClasS ..o s 724
StriNG ManiPUIBETON.cc.eieeeiriecieeeees e 727
S (e 1T 0o S (o TSR 727
Formatting Text for DiSPlaycccccorereeriereeree s 728

INDEX 731

About the Authors

DAvis CHAPMAN first began programming computers while working on his master’s
degree in music composition. Writing applications for computer music, he discovered
that he enjoyed designing and devel oping computer software. It wasn't long before he
came to the realization that he stood a much better chance of eating if he stuck with his
new-found skill and demoted his hard-earned status as a “ starving artist” to a part-time
hobby. Since that time, Davis has focused on the art of software design and devel opment,
with a strong emphasis on the practical application of client/server technology. Davis

is the lead author of Web Development with Visual Basic 5 and Building Internet
Applications with Delphi 2. Davisis also a contributing author of Special Edition Using
Active Server Pages and Running a Perfect Web Ste, Second Edition. He has been a
consultant working and living in Dallas, Texas, for the past eight years, and he can be
reached at davischa@onramp.net.

Contributing Author

JoN Bates has worked on awhole range of commercia, industrial, and military software
development projects worldwide over the past fifteen years. He is currently working

as a self-employed software design consultant and contract software devel oper, specializ-
ing in Visual C++ application development for Windows NT/95/98.

Jon began his career writing computer games for popular microcomputers and has since
worked with a number of operating systems, such as CPM, DOS, TRIPOS, UNIX, and
Windows, and a number of Assembly, third-generation, and object-oriented languages.

He has written system and application software as diverse as device drivers, email, pro-
duction modeling, motion video, image analysis, network and telecommunications, data
capture, control systems, estimating and costing, and visualization software. He has also
written a number of technical articles for computing journals on arange of topics.

Jon lives with his wife, Ruth, and dog, Chaos, in the middle of cool Britannia. When not
playing with computers, he likes to sleep and dream of fractals.

You can reach Jon at jon@chaos1.demon.co.uk and visit his Web site at
www.chaos1.demon.co.uk.

Dedication

To Dore, and the rest of my family, for being very patient with me while |
was busy writing yet another book.

Acknowledgments

There are numerous people without whom this book might never have been written.
Among those who deserve credit is Kelly Marshall, for enabling me to take on this pro-
ject and for sticking with me even though | know | made her life stressful at times.
Credit needs to go to the entire editing team at Macmillan. |’ ve seen what some of the
material you have to work with looks like when it comes in from the authors, and | don’t
want to trade jobs with any of you. I'd also like to thank my family for continuing to
allow me to put in the work required to produce this book—and for not disowning mein
the process.

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we're doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As the executive editor for the Programming team at Macmillan Computer Publishing, |
welcome your comments. You can fax, email, or write me directly to let me know what
you did or didn’t like about this book—as well as what we can do to make our books
stronger.

Please note that | cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail | receive, | might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your

name and phone or fax number. | will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: 317-817-7070

Email: adv_progemcp.com

Mail: Executive Editor
Programming
Macmillan Computer Publishing
201 West 103rd Street

Indianapolis, IN 46290 USA

Introduction

Welcome to Visual C++. Over the next 21 days, you will learn how to use the features
that Microsoft has built into its C++ development environment to enable you to create
very advanced applications for the Windows and NT platforms. When Microsoft’s devel-
opers first came up with the idea behind Visual C++, they decided to take their world-
class C++ compiler and create a development environment and set of tools that would
enable developers to create Windows applications with a level of ease and speed that was
unheard of among C++ development environments. Since that first version, Microsoft
has continued to improve the tools that are a part of Visual C++ to make it even easier to
create Windows applications. As Microsoft has introduced new technologies into the
Windows platforms, it has also introduced tools into the Visual C++ suite to make it easy
to integrate these new technologies into your applications.

If you are new to C++, don’'t worry. I've tried to make it easy for you to learn the C++
programming language while a so learning how to build applications using the Visual
C++ tools. Just in case you find yourself having trouble understanding some aspect of
C++, I'veincluded a brief overview of the programming language in Appendix A,
“C++ Review.”

If you've looked at previous versions of this book, you might notice that I’ ve completely
rewritten the entire book. Our goal with this new version is not just to introduce you to
and guide you through the various tools and resources that you will use to build applica-
tions with Visual C++; I’ve aso tried to include a great deal more detail about the vari-
ous options that are available to you with each of the features that are covered. This way,
you'll be able to get alot of use out of this book long after the initial 21 days.

How This Book Is Organized

This book is organized in weeks, with each set of seven days set off into a part unto
itself. However, even though the book is organized in weeks, the topics are not neces-
sarily organized that way.

For the first week, you'll be covering the basics of building applications with Visual
C++. You'll learn how to use designers to design your application windows. You'll learn
how to use various controls available to you as a Windows application devel oper. You'll
also learn alot about the Visual C++ development environment and the tools that it
makes available to you.

Sams Teach Yourself Visual C++ 6 in 21 Days

By the time you begin the second week, you'll be doing more and more programming, as
the topics become more involved. You'll till be using the Visual C++ tools to construct
your applications, but the programming code will be getting a little more involved.

You'll also start learning about more advanced topics, such as displaying graphics and
creating SDI and MDI applications. Toward the end of the second week, you'll begin to
work with databases. This topic spills over into the third and final week.

In the third week, you'll learn how to create your own modules, DLLs, and ActiveX con-
trols. You'll also learn how to build multitasking applications, which perform multiple
tasks at atime. Finaly, you'll learn how to integrate Microsoft Internet Explorer, and the
ActiveX controls it provides, into your applications so that you can extend your applica-
tions over the Internet.

After you finish the third week, you'll be ready to tackle the world of Windows program-
ming with Visua C++. You'll have the skills and know-how required to build most
Windows applications available today.

Conventions Used in This Book

While you are reading this book, you will probably notice a couple conventions that have
been used to make it easier for you to learn the topic being discussed.

All the source code in this book is provided in amonospaced font, as shown in Listing
0.1. Thisincludes all the source code from the applications that you will be building and
illustrations of how various functions can be used. Whenever you are adding new code,
or changing code in a function with other code already there, the line numbers of the
code that you add or change will be pointed out in the text.

LisTING O.1. SOME SAMPLE CODE.

1: void main()

2: {

3: // if you are adding or changing code in an existing

4: // code snippet, I will point out the line numbers in the text.
5: }

If atopic needs special attention, it will be set apart from the rest of the text by one of
several special markers:

- Notes

- Tips

- Cautions

Introduction 3 |

N[ltﬂ Notes offer a deeper explanation of a topic or explain interesting or impor-
tant points.

Tips are pieces of information that can make things easier.

Tip
H Cautions warn you about traps that you will want to avoid.
Gaution y ps that y

At the end of each day, you'll find a short quiz and one or two exercises to help make
sure that you learned the topic you were studying. Don’'t worry—just in case you need
the answers to the quizzes and some guidance when building the exercises, the solutions
are provided in Appendix B, “Answers.”

Enough said! You didn’t buy this book to read about this book. You bought this book to
learn how to use Visual C++ to build Windows applications. So go ahead and flip the
page and get started programming...

WEEK 1

At a Glance

Welcome to the world of Visual C++. Over the next three
weeks, you'll learn how to build awide variety of applica-
tions using this extremely flexible and complete program-
ming tool. Each day you'll learn about a different area of
functionality and how you can use it in your applications.
What's more—every one of the areas of functionality will be
accompanied with a hands-on sample application that you
will build yourself. There's not a more effective way of learn-
ing new technologies than to work with them yourself.
Learning by doing...that's what you'll do as you make your
way through this book.

Over the course of the first week, you'll learn about severa

of the basics that are involved in building applications with
Visual C++. This starts on the first day as you learn about and
become familiar with the Visual C++ development environ-
ment by building a simple application.

On Day 2, you'll begin learning more about the specifics of
building applicationsin Visua C++. You'll learn about the
standard controls that are used in Windows applications, how
you can place and configure these on an application window,
and how you can interact with them.

On Day 3, you'll learn how you can capture mouse and key-
board events and react to them in your applications. You'll
see how you can determine where the mouse is in your appli-
cation space. You'll also learn how to determine what keys
the user is pressing on the keyboard and how you can react to
these user actions.

-

Week 1

On Day 4, you'll learn how to work with timersin aVisual C++ application. You'll learn
how to have two or more timers running at the same time and how you can tell them

apart.

On Day 5, you'll see how you can add additional windows to your application and how
you can use them to get information from the user. You'll see how you can use built-in
dialogs to ask the user simple questions and how you can build your own custom dialogs
to get more detailed information.

On Day 6, you'll learn how to create menus to add to your application. You'll see how
you can call functions in your application from menus that you have added to your appli-
cation.

On Day 7, you'll learn about the font infrastructure in Windows and how you can access
itin your Visual C++ applications. You'll see how you can build alist of available fonts
and how you can display text in any of these fonts.

That will end the first week of this book. At that time, you can look back over what you
have learned during the week and think about al that you can do with what you have
learned when you build applications. So, without further ado, go ahead and jump in and
get started.

WEEK 1

DAY 1

The Visual C++
Development
Environment—Building
Your First Visual C++
Application

Welcome to Sams Teach Yourself Visual C++ 6in 21 Days. Over the next three
weeks, you will learn how to build a wide variety of applications with
Microsoft’'s Visual C++. What's even better is that you will learn how to create
these types of applications by actually building them yourself. As you read this
book, you will be gaining actual programming experience using Visual C++. So
let's get started!

Today, your focus will be on learning about the Visual C++ development envi-
ronment and some of the tools that it provides for building applications.
Although Visual C++ provides more tools than you would probably use in any

Day 1

one application development effort—even more than you could possibly learnto usein a
single day—I limit the focus to the primary tools that you will use throughout this book,
aswell asin just about every application you build with Visual C++. Today, you'll learn
about the following:

e The primary areas of the Visual C++ development environment

» The Application Wizard—how you can use it to build the basic infrastructure for
your applications

» The Diaog Painter—how you can use it to paint dialog windows, much in the
same way that you can build windows with Visual Basic, PowerBuilder, or Delphi

» The Class Wizard—how you can use it to attach functionality to your application
windows

The Visual C++ Development Environment

Before you begin your quick tour around the Visual C++ development environment, you
should start Visual C++ on your computer so that you can see firsthand how each of the
areas are arranged and how you can change and alter that arrangement yourself.

After Developer Studio (the Microsoft Visual development environment) starts, you see
awindow that looks like Figure 1.1. Each of the areas has a specific purpose in the
Developer Studio environment. You can rearrange these areas to customize the
Developer Studio environment so that it suits your particular development needs.

The Workspace

When you start Visual C++ for the first time, an area on the left side of Developer Studio
looks like it istaking up alot of real estate and providing little to show for it. This area
is known as the workspace, and it is your key to navigating the various pieces and parts
of your development projects. The workspace allows you to view the parts of your appli-
cation in three different ways:

 Class View alows you to navigate and manipulate your source code on a C++
classlevel.

» Resource View alows you to find and edit each of the various resources in your
application, including dialog window designs, icons, and menus.

 FileView alows you to view and navigate all the files that make up your appli-
cation.

Building Your First Visual C++ Application

Standard toolbar Build minibar
FIGURE 11 *+i Microsoft Visual C++
File Edit View Inset Project Buid Tools Window Help
TheVisual C++ open- mEEoe 7 oo mEs @ Tl
Ing screen. =l | =
2l
Workspace pane
R
4 |
Output pane—ﬂ-— J
Build { Debug) Find in Files1 j Find in Files2 /] 4 | Llﬂ
Readu
Editor area Wizard toolbar

The Output Pane

The Output pane might not be visible when you start Visual C++ for the first time. After
you compile your first application, it appears at the bottom of the Developer Studio envi-
ronment and remains open until you choose to close it. The Output pane is where
Developer Studio provides any information that it needs to give you; where you see all
the compiler progress statements, warnings, and error messages; and where the Visual
C++ debugger displays al the variables with their current values as you step through
your code. After you close the Output pane, it reopens itself when Visual C++ has any
message that it needs to display for you.

The Editor Area

The area on the right side of the Developer Studio environment is the editor area. Thisis
the area where you perform all your editing when using Visual C++, where the code edi-
tor windows display when you edit C++ source code, and where the window painter
displays when you design a dialog box. The editor area is even where the icon painter
displays when you design the icons for use in your applications. The editor areais basi-
cally the entire Developer Studio areathat is not otherwise occupied by panes, menus,

or toolbars.

|1O

Day 1

FIGURE 1.2. v Oupa
lv ‘Warkspace

Toolbar on and off T

menu. Build

Menu Bars

The first time you run Visual C++, three toolbars display just below the menu bar. Many
other toolbars are available in Visual C++, and you can customize and create your own
toolbars to accommodate how you best work. The three toolbars that are initially open
are the following:

» The Standard toolbar contains most of the standard tools for opening and saving
files, cutting, copying, pasting, and a variety of other commands that you are likely
to find useful.

e The WizardBar toolbar enables you to perform a number of Class Wizard actions
without opening the Class Wizard.

» The Build minibar provides you with the build and run commands that you are
most likely to use as you develop and test your applications. The full Build toolbar
also lets you switch between multiple build configurations (such as between the
Debug and Release build configurations).

Rearranging the Developer Studio Environment

The Developer Studio provides two easy ways to rearrange your development environ-
ment. The first is by right-clicking your mouse over the toolbar area. This action opens
the pop-up menu shown in Figure 1.2, alowing you to turn on and off various toolbars
and panes.

[+ Build MiniBar
ATL
Resource
Edit
Debug
Browse

[v \wizardBar

Customize. .

Another way that you can easily rearrange your development environment is to grab the
double bars at the left end of any of the toolbars or panes with the mouse. You can drag
the toolbars away from where they are currently docked, making them floating toolbars,
asin Figure 1.3. You can drag these toolbars (and panes) to any other edge of the
Developer Studio to dock them in a new spot. Even when the toolbars are docked, you
can use the double bars to drag the toolbar left and right to place the toolbar where you
want it to be located.

Building Your First Visual C++ Application 11 |

Ficure 1.3.

Example of a floating
minibar.

Nﬂtﬂ On the workspace and Output panes, the double bars that you can use to
) drag the pane around the Developer Studio environment might appear on
' the top of the pane or on the left side, depending on how and where the
pane is docked.

Starting Your First Project

For your first Visual C++ application, you are going to create a ssimple application that
presents the user with two buttons, asin Figure 1.4. The first button will present the user
with a simple greeting message, shown in Figure 1.5, and the second button will close
the application. In building this application, you will need to do the following things:

1. Create a new project workspace.

2. Usethe Application Wizard to create the application framework.

3. Rearrange the dialog that is automatically created by the Application Wizard to
resemble how you want the application to look.

4. Add the C++ code to show the greeting to the user.
5. Create a new icon for the application.

FiGure 1.4.
Your first Visual C++ ‘ _ I
application. =

Close |
FIGURe 1.5. Doyl

Hello, This is my first Visual C++ Application!

If the user clicks the
first button, a simple
greeting is shown.

Creating the Project Workspace

Every application development project needs its own project workspace in Visual C++.
The workspace includes the directories where the application source code is kept, as well

12 Day 1

as the directories where the various build configuration files are located. You can create a
new project workspace by following these steps:

1. Select File | New. This opens the New Wizard shown in Figure 1.6.

FIGURE 1.6. HER
Files Projects Workspaces Other Documents
The New W zard. e | Viokom | !

£ ¥ Project name,
5] Custom Appwizard

FiR DevStudio Addin Wizard

P Extended Stored Procedurs Appwizard

Location:

1) 15471 Extension Wizard D:\MSVS\MyProjects =
| M akefile

8= MFC ActiveX Conlrolwizard

(58] MFC Appiwizard [dI] & Creste rw workspacs

5% MFC AppWwizard [exe) € feld o cument workspace

Ti Utiity Project I Degendenonict:

[&]win32 Application T
[]'win32 Consale Application

%] win32 Dynamic-Link Library

2] win32 Static Library Bl
Platforms:

2. On the Projects tab, select MFC AppWizard (exe).
3. Type aname for your project, such as Hello, in the Project Name field.

4. Click OK. This causes the New Wizard to do two things: create a project directory
(specified in the Location field) and then start the AppWizard.

Using the Application Wizard to Create the

Application Shell

The AppWizard asks you a series of questions about what type of application you are
building and what features and functionality you need. It uses this information to create
ashell of an application that you can immediately compile and run. This shell provides
you with the basic infrastructure that you need to build your application around. You will
see how this works as you follow these steps:

1. In Step 1 of the AppWizard, specify that you want to create a Dial og-based appli-
cation. Click Next at the bottom of the wizard.

2. In Step 2 of the AppWizard, the wizard asks you about a number of features that
you can include in your application. You can uncheck the option for including sup-
port for ActiveX controlsif you will not be using any ActiveX controlsin your
application. Because you won't be using any ActiveX controls in today’s applica-
tion, go ahead and uncheck this box.

3. Inthefield near the bottom of the wizard, delete the project name (Hello) and type
in the title that you want to appear in the title bar of the main application window,

Building Your First Visual C++ Application 13 |

such asMy First Visual C++ Application. Click Next at the bottom of the
wizard.

4. In Step 3 of the AppWizard, |eave the defaults for including source file comments
and using the MFC library asaDLL. Click Next at the bottom of the wizard to
proceed to the final AppWizard step.

5. Thefinal step of the AppWizard shows you the C++ classes that the AppWizard
will create for your application. Click Finish to let AppWizard generate your appli-
cation shell.

6. Before AppWizard creates your application shell, it presents you with a list of what
it is going to put into the application shell, as shown in Figure 1.7, based on the
options you selected when going through the AppWizard. Click OK and
AppWizard generates your application.

FIGURE 1.7 New Project Information
. Appwizard will create a new skeleton project with the fallawing specifications:
The New Project
. [Epplication ype of Dayl:
Information screen. Dislog-Based Applicalion targeting

Win32

Classes to be created
Application: CDay1App in Dayl.h and Dayl cpp
Diglog: CDay1Dlg in DaylDlgh and DiayiDlg.cpp

Features:
+ About box on system menu
+30 Contials
+ Uses shared DLL implementation (MFC42.DLL)
+ Localizable text in
Englsh (United States]

Project Directory:
D:AMSVS\MyProjects\Dayl

Cancel

7. After the AppWizard generates your application shell, you are returned to the
Developer Studio environment. You will notice that the workspace pane now pre-
sents you with atree view of the classes in your application shell, asin Figure 1.8.
You might also be presented with the main dialog window in the editor area of the
Developer Studio area.

8. Select Build | Build Hello.exe to compile your application.

9. Asthe Visual C++ compiler builds your application, you see progress and other
compiler messages scroll by in the Output pane. After your application is built, the
Output pane should display a message telling you that there were no errors or
warnings, asin Figure 1.9.

|14

Day 1

Ficure 1.8.

Your workspace with a
tree view of the pro-
ject’s classes.

FiGure 1.9.

The Output pane dis-
plays any compiler
errors.

*+, Dayl - Miciosoft Visual C++

File Edit View Insert Project Buid Layout Tools Window Help

[_[E]x]

B zRd |y e - BE =%

CDay1DIg (=][4 clsss members) =|[¢ CDay1DIg =R v| T Sy |
EEMIE Dayl.ic - IDD_DAY1_DIALDG [Dialog) [_[OI]
7 Dayl classes i
N
Fl
My First Visual C++ Application An abl
1 Mo
= = L)
- b TODO: Place dislog controls here. —— EB
7 @ g
: $ m
: > &
= i
= H
a5
B =
© B
B3 ClassView |] ResourceView | [=] FileView -
= e e e = = & =)
|
i j
Build { Debug K Find in Files1) Find in Files2 /] 4| | N »
Ready +: 0.0 [F185x%2 [FEAD

**. Dayl - Microsoft Visual C++

Eile Edit Wiew Inseit Project Build Lapout Tools Window Help

alsmals a|-_nvev||@§%*\%l—_lv [

CDay1Dlg =] 18 class members) =|[& CDayiDIg JJ oL
BE|
ED Day1 classes
P
: ook
2 X @
E] E
TODQ: Place dialog controls here
1 m g
* m
3 =
= iz
=H
B g B ab B
4 ClassView | 28] ResourceView | [E] Fileview
— FH =
=T | pege
H[Tinking. .. =]
4
Dayl.exs — 0 error(s). 0 warning(s)
L
¥ 1 Buitd {Debug) Findin Files 1) Findin Filesz /] 4| | >
F 00 0e0 [FEAD 4|

10. Select Build | Execute Hello.exe to run your application.

11. Your application presents a dialog with a Tobo message and OK and Cancel but-
tons, as shown in Figure 1.10. You can click either button to close the application.

Building Your First Visual C++ Application 15 |

Ficure 1.10.
The unmodified appli-
cation shell. TODO: Place dislog controls here &

Designing Your Application Window

Now that you have a running application shell, you need to turn your focus to the win-
dow layout of your application. Even though the main dialog window may already be
available for painting in the editor area, you should still navigate to find the dialog win-
dow in the workspace so that you can easily find the window in subsequent develop-
ment efforts. To redesign the layout of your application dialog, follow these steps:

1. Select the Resource View tab in the workspace pane, asin Figure 1.11.

Ficure 1.11. % Dayl - Microsoft Visual C++

File Edt View Insert Project Buld Tools Window Help
TheResourceMewtab 3o ga i nelo. o [nee(&l)
in the workspace pane.

COay101a [=[181 clsss members =1[¢ CDay1DIg B Hfﬁg Bt

Dayl.rc - IDD_DAY1_DIALOG (Dialog

A=

(3 Dayl resources |

Az ab|
Mo
o=

®
i
TODO: Place dislag controls here —E

H
808 ClassVien | G RresourceView | |=] Fieiew ab B
SN = i

X|[Tinking
7]

Dayl.exs — 0 srror(s). 0 warning(s)

=

-

of
s

2. Expand the resources tree to display the available dialogs. At this point, you can
double-click the 1DD_DAY1_DIALOG dialog to open the window in the Developer
Studio editor area.

3. Select the text displayed in the dialog and delete it using the Del ete key.

4. Select the Cancel button, drag it down to the bottom of the dialog, and resize it so
that it is the full width of the layout area of the window, asin Figure 1.12.

16 Day 1

FIGURE 1.12.
Positioning the Cancel Lo |
button.

Cencel g

5. Right-click the mouse over the Cancel button, opening the pop-up menu in Figure
1.13. Select Properties from the menu, and the properties dialog in Figure 1.14

opens.
Ficure 1.13.
. h | kl h File Edit View Inset Project Build Layout Tools Window Help
Right-clicking the P = 5
9 9 OEHO tee 2 - mEE & s
mouse to Open a pOp- CDay1DIg _=l[ibcancer |[en_cucken 1551 HJ?% i
up u. SEMIE Day1.rc - IDD_DAY1_DIALDG [Dialog) [l
=43 Day1 resources = ﬁ [Cont.. 3]
£-423 Didlog Lot b oot [y B
IDD_ABOUTEOY - —
DD _D&Y] DIALOE My First Visual C++ Application] S T_:I
leon =
(1 Stiing Table] oK R ®
(10 Version -
2 @ g
p $ m
= Cancel Ll ==
1= = E 13 cu
Copy
1 2 Eosie
B8 ClassView | £ ResourceView | |=] FileView T
= e me e [E = E =l @] T oT—
H[Tinking B Al et Edoes
A 22 Adn T Ecies
Dayl.sxs - 0 srror(s). 0 warning(s)
T Check Mnemorics
|13 Buita {Debug J Find i Files 1) Find in Files2 7] 4| AN Casiard..
Events,
S e propeies

FiGure 1.14.

The Cancel button | Cortors [cores

propertieﬁ d|alog ¥ Visible] G ™ HelpID
I Dissbled ¥ Tabstop s

B R Gened | Syks | Estended Sk |

6. Change the value in the Caption field to &Close. Close the properties dialog by
clicking the Close icon in the upper-right corner of the dialog.

7. Move and resize the OK button to around the middle of the window, as in Figure
1.15.

Building Your First Visual C++ Application

17|

FIGURE 1.15.
Positioning the OK ¥ T L
button. E :

Close

8. Onthe OK button properties dialog, change the ID value to IDHELLO and the cap-
tion to &Hello.

9. Now when you compile and run your application, it will look like what you’ ve just

designed, as shown in Figure 1.16.

FiIGURE 1.16. #2 My First Visual C++ Application [x]

Running your ‘
redesigned applica-
tion.

Close |

N“tﬂ If you play with your application, you will notice that the Close button still
closes the application. However, the Hello button no longer does anything
' because you changed the ID of the button. MFC applications contain a series
of macros in the source code that determine which functions to call based
on the ID and event message of each control in the application. Because you

changed the ID of the Hello button, these macros no longer know which
function to call when the button is clicked.

Adding Code to Your Application

You can attach code to your dialog through the Visual C++ Class Wizard. You can use
the Class Wizard to build the table of Windows messages that the application might
receive, including the functions they should be passed to for processing, that the MFC

macros use for attaching functionality to window controls. You can attach the functional -

ity for thisfirst application by following these steps:
1. To attach some functionality to the Hello button, right-click over the button and
select Class Wizard from the pop-up menu.

2. If you had the Hello button selected when you opened the Class Wizard, it is
aready selected in the list of available Object IDs, asin Figure 1.17.

|18

Day 1

Ficure 1.17.
The ClassWizard.

3. With 1DHELLO selected in the Object ID list, select BN_CLICKED in the list of mes-
sages and click Add Function. This opens the Add Member Function dialog shown
in Figure 1.18. This dialog contains a suggestion for the function name. Click OK

MFC Classwizard BE
Message Maps | MemberVariables | Automation | Activei Events | Class Info |
Proiect Class name: L
[EETTR - | [c0a10l = o
DiA.ADay1\DayiDlg h, DA ADay1\Day1Dlg.cpp &I
Object IDs Messages: Dl Furctin |

TDay10ig BN_CLICKED
[DCANCEL BN_DOUBLECLICKED Edit Code

Member functions

V¥ DoDataExchangs -
W OnlnitDialog ON_WM_INITDIALOG

W OnPaint ON_WwM_PAINT

W OnQueyDraglean ON_WM_GUERYDRAGICON

W OnSusCommand OM /M _SYSCOMMAND]
Description:

Cancel

to create the function and add it to the message map.

Ficure 1.18.

The ClassWzard Add
Member Function dia-
log.

4. After the function is added for the click message on the Hello button, select the
onHello function in the list of available functions, asin Figure 1.19. Click the Edit
Code button so that your cursor is positioned in the source code for the function,

Add Member Function [21x]

Member function name: [o |
OrER
Cancel

Message: BN_CLICKED
Obiject ID: IDHELLO

right at the position where you should add your functionality.

Ficure 1.19.

The list of available
functionsin the Class
Wizard.

MFC ClassWizard [21x]

Messags Maps | MemberVariables | Automation | Activei Events | Class Info |

Project Class pame: Add Class...
pajt LI |EDay1D|g j Add ;funclmn
DA\ ADay1\DayiDlgh, DiA..ADayl\Day1Dlg.cpp [asdrion
Obiect IDs Messages: Delete Function

[DCANCEL BN_DOUBLECLICKED L. EdtCode]

Member functions

V¥ DoDataExchangs -
OnHello ON_IDHELLO.EN_CLICKED

W OnlnitDislog ON_wM_INITDIALOG

W OnPaint ON_WM_PAINT

W OnBuerDraclcon OM M OUERYDRAGICON]
Description: Indicates the user clicked a button

OK Cancel

Building Your First Visual C++ Application

19|

5. Addthecodein Listing 1.1 just below the Tobo comment line, as shown in Figure

FIGURE 1.20. % Day] - Microsoft Visual C++ - [Dayl Dlg.cpp]
Fie Edt View Insett Projct Buld Took Window Help _8x|
Source code view A sEA|s =l DR m =l m
where you insert CDay1Dlg T I[(80 class members] 1=I[¢ OnHella i [-‘ & 5 ! iy |
Listi ng 1.1. 4|zl [HCURSOR CDayiDlg: :OmOueryDraglcon() EI
=} Bgﬂ resources return (HCURSOR) m_hIcon:
=] Dialog }
IDD_ABOUTEOX
woid CDaylDlg::OnHello()
T leon 7 TODO com
(13 Stiing Table
(23 Version i

"B ClassView | ResourceView [] FieView 1)

X|[Tinking W
A

Dayl exe — 0 error(s). 0 warning(s)

Build { Debug %, Find in Files1 3 Find in Files2 /]| 4 |

NaplEy

Ready [Ln175,Col1 _[REC [COL [OVF [READ

Hstart ||| @ &3 A B || @) Explring - E-\quettyve?1.. | ERVuePint- PEX File: [01fg3..| [0 Day? - Microsoft Visu...

LisTING 1.1. HELLODLG.CPP—THE OnHello FUNCTION.

[e13pPM

Void
A

1:
2
3
4:
5:
6.
7
8

©

10:
11:
12:
13:
14:
15: }

CHelloDl1lg: :0OnHello()
// TODO: Add your control notification handler code here

THETHEEE Tty
// MY CODE STARTS HERE

LEEHLETTEETTE LTty

// Say hello to the user
MessageBox("Hello. This is my first Visual C++ Application!");

THETHEEE i rry
// MY CODE ENDS HERE
THETHELEE Tty

6. When you compile and run your application, the Hello button should display the
message shown in Figure 1.21.

|20

Day 1

Ficure 1.21. D551

Now your application
will say hello to you.

Hello, This is my first Visual C++ Application!

(K

Finishing Touches

Now that your application is functionally complete, you can still add afew details to fin-
ish off the project. Those finishing touches include

 Creating the dialog box icon
* Adding maximize and minimize buttons

Creating the Dialog Box Icon

If you noticed the icon in the top-left corner of your application window, you saw three
blocks with the letters M, F, and C. What does MFC have to do with your application?
MFC stands for Microsoft Foundation Classes. Technically, it's the C++ class library that
your application is built with, but do you want to broadcast that to every user who sees
your application? Most likely not. You need to edit the application icon to display an
image that you do want to represent your application. Let’s get busy!

1. Inthetree view of your application resources in the workspace pane, expand the
icon branch and select the IDR_MAINFRAME icon, asin Figure 1.22. This brings the
application icon into the editor area of the Developer Studio.

FIGURE 1 . 22 . .. Dayl - Microsoft Visual C++ - [Dayl.rc - IDR_MAINFRAME (Icon)]
]:3 File Edit Wiew Insert Project Buid Image Toolks Window Help |
Th MF = = z
The standard MFC B I = I —
icon. CDaylDlg [=Af 20 class members) =l[& 0nHello =R JJ@ il ety i ‘
S | peyige: [standard (32:32) | =
=43 Day1 resources T oy)
-3 Dislog ’:g 7
IDD_ABOUTBOX @ O
= i0b_pavi_DIALOG g <
B4 leon N2 A
[A[IDA_MANFRAME]
(1 String Tabls omm=
L Version OO =
o® e
E|
— 7
5 = =
B3 ClassView |] ResourceView | [=] FileView |
H[Tinking. .. =
A
Dayl.exe - 0 error(s). 0 warning(s) B
Guild {Debug Findin Files 1) Findin Files2]| 4| | ! »

Building Your First Visual C++ Application

21|

2. Using the painting tools provided, repaint the icon to display an image that you
want to use to represent your application, asin Figure 1.23.

Ficure 1.23.

Your own custom icon
for your application.

3. When you compile and run your application, you will notice your custom iconin
the top-left corner of your application window. Click the icon and select About
Hello from the drop-down menu.

4. On the About dialog that Visual C++ created for you, you can see alarge version
of your custom icon in all its glory, as shown in Figure 1.24.

FIGURE 1.24.
Your application’s St DRl
AbOUt \NindOW =% Copyright [C) 1998
N[]tﬂ When you open an application icon in the icon designer, the icon is sized by
default at 32x32. You can also select a 16x16 size icon from the drop-down

list box just above where you are drawing the icon. You should draw both
of these icons because there are some instances in which the large icon will
be displayed and some instance in which the small icon will be shown. You
will want both icons to show the same image to represent your application.

Adding Maximize and Minimize Buttons

In the dialog editor, where you design your application window, you can add the mini-
mize and maximize buttons to the title bar of your application window by following
these steps:

1. Select the dialog window itself as if you were going to resize the window.

2. Using the pop-up menu (from right-clicking the mouse), select the dialog proper-
ties.

3. Select the Styles tab, as shown in Figure 1.25.

|22

Day 1

FIGURE 1.25. Dizlog Praperties
4R B Genmal [Sles | MoreStles | Extended Stles
Turning the minimize Styls ¥ Tite bar I™ Clg siblings
and maximize buttons Por =] |Spstemmeny [Cloghiden
on and off. Eu.rdel ™ Minimize box ™ Horizantal scroll
DidbgFrame =] [pMaimize box I Vettical serol

4, After you turn on the minimize and maximize boxes, you can compile and run
your application. The minimize and maximize buttons appear on the title bar, asin
Figure 1.26.

FlGURE 126 My First Visual C++ Application M=

The application win- [
dow with the minimize
and maximize buttons.

Hallo |

Close

Summary

Today you got your first taste of building applications using Visual C++. You learned
about the different areas of the Visual C++ Developer Studio and what function each of
these areas serves. You aso learned how you can rearrange the Developer Studio envi-
ronment to suit the way you work. You also learned how you can use the Visual C++
wizards to create an application shell and then attach functionality to the visual compo-
nents that you place on your application windows.

Q&A

Q How can | change thetitle on the message box, instead of using the applica-
tion name?

A By default, the message box window uses the application name as the window
title. You can change this by adding a second text string to the MessageBox func-
tion call. Thefirst string is aways the message to be displayed, and the second
string is used as the window title. For example, the onHel1o function would look
like
// Say hello to the user

MessageBox("Hello. This is my first Visual C++ Application!",
"My First Application");

Building Your First Visual C++ Application 23 |

Q Can | changethetext on the About window to give my company name and
mor e detailed copyright infor mation?

A Yes, the About window isin the Dialogs folder in the Resources View tab of the
workspace pane. If you double-click the 1Db_ABoUTBOX dialog, the About box will
be opened in the dialog designer, where you can redesign it however you want.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. How do you change the caption on a button?
2. What can you do with the Visual C++ AppWizard?
3. How do you attach functionality to the click of a button?

Exercise

Add a second button to the About window in your application. Have the button display a
different message from the one on the first window.

WEEK 1

DAY 2

Using Controls in Your
Application

Some of the things that you will find in just about every Windows application
are buttons, check boxes, text fields, and drop-down list boxes. These are
known as controls, and many of these controls are built into the operating sys-
tem itself. With Visual C++, using these common controls is as easy as placing
them on a dialog window with a drag-and-drop window design method. Today
you are going to learn

What the basic controls in Visual C++ are

How to declare and attach variables to a controls

How to synchronize the values between a control and a variable

How to specify the order users navigate around your application windows
How to trigger actions with controls

How to manipulate and alter the appearance of controls (while your
application is running)

|26 Day 2

The Basic Windows Controls

Several standard controls are built into the Windows operating system, including such
things as sliders, tree and list controls, progress bars, and so on. However, today you will
work with a half dozen controls that appear in just about every Windows application:

o Static text

* Edit box

» Command button

» Check box

* Radio button

 Drop-down list box (& so known as a combo box)

These and other controls are readily available for use in Visual C++ applications. They

can be found on the controls palette in the Dialog Painter editor in the Developer Studio,
as shown in Figure 2.1.

FIGURE 2.1. [
Select -k #H—Picture
The standard controls Static Text —— -« abl Edit Box
available on the Group Box £1 94— Command Button _
C | palett Check Box—F @ - Radio Button
ontrol pi e — List Box
Horizontal Scrollbar ® Vertical Scrollbar
D -D . N
ropiistongr;(Spin sia ¢ ; — Progress Bar
lder —i- = Hot Key
(Combo Box) List Control E — Tree Control
—_— Animate
Rich Text Edit Tab Control = AT Date/Time Picker
Month Calendar — IP Address
Custom Control € E— Extended Combo
Box

The Static Text Control

You use the static text control to present text to the user. The user will not be able to
change the text or otherwise interact with the control. Static text is intended as a read-
only control. However, you can easily change the text displayed by the control as your
application is running through the code you create for your application.

The Edit Box Control

An edit box allows the user to enter or change text. The edit box is one of the primary
tools for allowing the user to enter specific information that your application needs. It is
acontrol that allows the user to type a specific amount of text, which you can capture

Using Controls in Your Application 27 |

and use for any needed purpose. The edit box accepts plain text only; no formatting is
available to the user.

The Command Button Control

A command button is a button that the user can press to trigger some action. Command
buttons have a textual label that can give users some idea of what will happen when they
click that button. Buttons can also have images as part of the button, allowing you to
place an image on the button—alone or along with atextual description—to convey what
the button does.

The Check Box Control

A check box is a square that the user can click to check (x) or uncheck. The check box
control is used to turn a particular value on and off. They are basically on/off switches
with an occasional third, in-between state. You normally use check boxes to control dis-
crete, on/off-type variables.

The Radio Button Control

A radio button is a circle that the user can click to fill with ablack spot. The radio button
is similar to the check box control, but it is used in a group of two or more where only
one of the values can be in the on state at atime. You normally use radio buttonsin
groups of at least three, surrounded by a group box. The group box allows each group of
radio buttons to be independent so that only one radio button in each group can be in the
on state at any time.

The Drop-Down List Box Control

A drop-down list box, or combo control, is an edit box with alist of available values
attached. You use the drop-down list box to provide a list of choices, from which the
user may select one value from the list. Sometimes, the user is given the option of typing
in his own value when a suitable one isn't provided in the list.

Adding Controls to Your Window

The application you are going to build today will have a number of controls on asingle
dialog window, as shown in Figure 2.2. These controls have a number of different func-
tions. At the top of the window is an edit field where the user can enter a message that
displays in a message box when he or she clicks the button beside the field. Below this
edit field are two buttons that either populate the edit field with a default message or
clear the edit field. Below these buttons is a drop-down list box that contains a list of

|28

Day 2

standard Windows applications. When the user selects one of these programs and then
clicks the button beside the drop-down list, the selected program will run. Next are two
groups of check boxes that affect the controls you add to the top half of the dialog: the
controls for displaying a user message and the controls for running another program.
The left set of check boxes will enable and disable each group of controls you provide.
The right set of check boxes will show and hide each group of controls. At the bottom
of the dialog box is a button that can be clicked to close the application.

FIGURE 2.2. 25 Visual C++ Controls
) . This is an example of a Visual C++
TOda_y S appl ication T ST e
will use a number of Enter a Message: [ETPTISeroE Show Message
standard controls. Default Message | | Clear Message
Runafrogams| =] AunProgam

Enable Action: Show Action:
’V [V Enable Message Action ’V [¥ Show Message Action

I¥ Show Program Action

¥ Enable Program Action

Exit

Creating the Application Shell and Dialog Layout
Using what you learned yesterday, create a new application shell and design the applica-
tion dialog layout as follows:

1. Create anew AppWizard workspace project, calling the project bay2.

2. Use the same settings in the AppWizard as you used yesterday; specify the dialog
tittevisual C++ Controls.

3. After you create the application shell, lay out the main dialog as shown earlier in
Figure 2.2.

4. Configure the control properties as specified in Table 2.1.

TABLE 2.1. PROPERTY SETTINGS FOR THE CONTROLS ON THE APPLICATION DIALOG.

Object Property Setting
Static Text ID IDC_STATIC
Caption This is an example of a Visual C++
Application using a number of controls.
Static Text ID IDC_STATICMSG
Caption Enter a &Message:
Static Text ID IDC_STATICPGM

Caption Run a &Program:

Using Controls in Your Application

29|

Object Property Setting
Edit Box ID IDC_MSG
Button ID IDC_SHWMSG
Caption &Show Message
Button ID IDC_DFLTMSG
Caption &Default Message
Button ID IDC_CLRMSG
Caption &Clear Message
Button ID IDC_RUNPGM
Caption &Run Program
Button ID IDC_EXIT
Caption E&xit
Combo Box ID IDC_PROGTORUN
Group Box ID IDC_STATIC
Caption Enable Actions
Group Box ID IDC_STATIC
Caption Show Actions
Check Box ID IDC_CKENBLMSG
Caption &Enable Message Action
Check Box ID IDC_CKENBLPGM
Caption E&nable Program Action
Check Box 1D IDC_CKSHWMSG
Caption S&how Message Action
Check Box ID IDC_CKSHWPGM
Caption Sh&ow Program Action

Tip

When adding a combo box control to the window, it is important that you
click and drag the area for the control as large as you want the drop-down
list to be. After you draw the control on the window, you can resize the
width of the control as you would normally expect to do. To resize how far
the list drops down, you need to click the arrow, as if you were trying to
trigger the drop-down list while the application was running.

|3O

Day 2

5. After you place all these controls on the dialog window and configure all their
properties, reopen the properties dialog for the combo box that you placed on the
window. On the Data tab of the properties dialog, enter the following values, using
a Control+Enter key combination to add the second and third items, as shown in

Figure 2.3.

* Notepad

* Paint

o Solitaire
FIGURE 2.3.) _ 4 P General [Data | Sles | Estended Sijes
Use the properties dia- S = =
log to add entriesin fems. [Sainaie
the combo box's drop-
down list. =l

Specifying the Control Tab Order

Now that you have all the controls laid out on the window, you need to make sure that
the user navigates in the order you want if he or she uses the Tab key to move around
the window. You can specify the tab order by following these steps:

1. Select either the dialog window or one of the controls on the window in the editing
area of the Developer Studio.
2. Choose Layout | Tab Order from the menu. By turning on the Tab Order, you see

anumber beside each of the controls on the window. The numbers indicate the
order in which the dialog will be navigated, as shown in Figure 2.4.

FIGURE 2.4
. . .. example of aVisual C++
Turni ng on Tab Order Application using a number of contrals
shows the order in 2 o TN
which the dialog will . T -
be navigated. oot W
able Action: o Action:
“nahle Message Action mhuw Message Action
mEable Program Action mhgw Program Action
g |

3. Using the mouse, click each of the number boxes in the order that you want the
user to navigate the window. The controls will renumber themselves to match the
order in which you selected them.

Using Controls in Your Application

31|

4. Once you specify the tab order, select Layout | Tab Order once again to return to
the layout editor.

N“tﬂ Any static text that has a mnemonic should appear just before the control
) that accompanies the text in the tab order. Because the user cannot interact
' with the static text, when the user chooses the mnemonic, the focus will go
directly to the next control in the tab order.

A mnemonic is the underlined character in the caption on a button, check box, menu, or
other control label. The user can press this underlined character and the Alt key at the
same time to go directly to that control or to trigger the clicked event on the control. You
specify a mnemonic by placing an ampersand (&) in front of the character to be used as
the mnemonic when you type the Caption value. It isimportant to make certain that you
do not use the same mnemonic more than once on the same window, or set of menus,
because the user can get confused when choosing a mnemonic doesn’t result in the
action that he or she expects.

One last thing that you want to do before getting into the details of the application code
is check your mnemonics to make certain that there are no conflicts in your controls.
Follow these steps:

1. Select the dialog window or one of the controlsin the layout editor. Right-click the
mouse and select Check Mnemonics.

2. If there are no conflicts in your mnemonics, Visual C++ returns a message box
dialog, letting you know that there are no conflicts (see Figure 2.5).

FlGURE 25 Microsolt Visual C++
The mnemonic checker f\l‘) No duplicate mnemorics have been found.
tells you whether there

are conflicts.

3. If any conflicts exist, the dialog indicates the conflicting letter and gives you the
option of automatically selecting the controls containing the conflicting mnemon-
ics, asin Figure 2.6.

FIGURE 2.6. Microsoft Visual C++

Duplicate mnemanic found: 's"
; ; '
DUp| Icate mnemonics & Do you want the conflicting items to be selected?
can be automatically

selected. (] _tio | concel

|32 Day 2

Attaching Variables to Your Controls

At this point, if you've programmed using Visual Basic or PowerBuilder, you probably
figure that you' re ready to start slinging some code. Well, with Visual C++, it’s not quite
the same process. Before you can begin coding, you have to assign variables to each of
the controls that will have a value attached—everything except the static text and the
command buttons. You will interact with these variables when you write the code for
your application. The values that the user enters into the screen controls are placed into
these variables for use in the application code. Likewise, any values that your application
code places into these variables are updated in the controls on the window for the user

to see.

How do you declare these variables and associate them with the controls that you placed
on the window? Follow these steps:

1. Open the Class Wizard, as you learned yesterday.
2. Select the Member Variables tab, as shown in Figure 2.7.

FIGURE 2.7 MFC ClassWizard HE
. Message Maps | Member Variables | Automation | ActiveX Events | Class Info |
The Member Variables . F— rtm -
tab on the Class [EETEI—— | (2200 El =
. D\ ADay2\Dap2Dlg.h, DA ADap2\Day2Dla.cpp —
Wizard is where you - E— Member Doioatant |
add variables to e I = Updae Colars
IDC_CKSHWMSG
controls. |DC_CKSHWPEM Bird &1l

IDC_CLRMSG
IDC_DFLTMSG
|DC_EXIT

IDC_PROGTORLN
IDC_RUNPGM
IDC_SHWMSG |

Description:

Cancel

3. Select the ID of one of the controls that you need to attach a variable to, such as
IDC_MSG.

4. Click the Add Variable button.

5. Inthe Add Member Variable dialog, enter the variable name, specifying the catego-
ry and variable type, as shown in Figure 2.8. Click OK.

6. Repeat steps 3 through 5 for all the other controls for which you need to add vari-
ables. You should add the variables for your application as listed in Table 2.2.

Using Controls in Your Application

33|

FIGURE 2.8.

Adding a variableto a
control.

Add Member Variable

Member variable name

[m_szMessage

Category:
Value

Variable type
CSting

Description,

CStiing with length validation

Cancel

TABLE 2.2. VARIABLES FOR APPLICATION CONTROLS.

Control Variable Name Category Type
IDC_MSG m_strMessage Value cString
IDC_PROGTORUN m_strProgToRun Value CString
IDC_CKENBLMSG m_bEnableMsg Value BOOL
IDC_CKENBLPGM m_bEnablePgm Value BOOL
IDC_CKSHWMSG m_bShowMsg Value BOOL
IDC_CKSHWPGM m_bShowPgm Value BOOL

Tip

All these variables are prefixed with m_ because they are class member vari-
ables. This is an MFC naming convention. After the m_, a form of Hungarian
notation is used, in which the next few letters describe the variable type. In
this case, b means boolean, and str indicates that the variable is a string.
You’ll see this naming convention in use in this book and other books about
programming with Visual C++ and MFC. Following this naming convention
will make your code more readable for other programmers; knowing the
convention will make it easier for you to read other programmer’s code as
well.

7. After you add all the necessary variables, click the OK button to close the Class

Wizard.

Attaching Functionality to the Controls

Before you begin adding code to all the controls on your application window, you need

to add alittle bit of code to initialize the variables, setting starting values for most of
them. Do this by following these steps:

|34

Day 2

1. Using the Class Wizard, on the Message Maps tab, select the onInitDialog func-
tion in the list of member functions. You can do this by finding the function in the
Member Functions list, or by selecting the cbay2b1g object in the list of object IDs
and then selecting the wym_INITDIALOG message in the messages list, as shown in

Figure 2.9.
FIGURE 2 9 MFC ClassWizard
Message Maps | Member Variabes | Automation | ActiveX Events | Classlnfo |

You can use the Class Prect .

i Project: Class name: Add Class... ¥
Wizard to locate exist- Do i [e B =
. . D\ ADay2\Dap2Dlg h, Do\ ADay2\Day2Dla.cpp — —
ing functions. el e Deete Functon |

‘WhM_DESTROY -
IDC_CKENBLMS G WM_DR&WITEM 2l | Estcose

IDE_CKENBLPGM
IDE_CKSHWMSG

IDE_CKSHWPGM

IDE_CLRMSG

IDC_DFLTMSG =l

Member functions:

OnlnitDialog ON_WM_INITDIALOG [<]
W OnPaint ON_wM_PAINT
W OnQueyDraglean ON_WM_GUERYDRAGICON o
W OnAunpam ON_IDC_RUNPGM BN_CLICKED
W OnShwmsa ON IDC SHWMSGEN CLICKED =l
Description: Sent to a dialog box before the dialog box is displayed
Cancel

2. Click Edit Code to be taken to the source code for the onInitDialog function.

3. Find the Topo marker, which indicates where to begin adding your code, and add
the codein Listing 2.1.

LISTING 2.1. DAY2DLG.CPP—THE OnInitDialog FUNCTION IS WHERE YOU NEED TO ADD
INITIALIZATION CODE.

1: BOOL CDay2Dlg::0OnInitDialog()

2: {

3 CDialog::0OnInitDialog();

4:

5:

6.

7

8:

9: // TODO: Add extra initialization here
10:

11: [EEEETTTEEE i

12: // MY CODE STARTS HERE

13: [EELETTTEEE i

14:

15: // Put a default message in the message edit
16: m_strMessage = "Place a message here";
17:

18: // Set all of the check boxes to checked

Using Controls in Your Application

35|

19: m_bShowMsg = TRUE;

20: m_bShowPgm = TRUE;

21: m_bEnableMsg = TRUE;

22: m_bEnablePgm = TRUE;

23:

24: // Update the dialog with the values

25: UpdateData(FALSE) ;

26:

27: LIEETEETEET iy

28: // MY CODE ENDS HERE

29: TIEELEETEE T rrr

30:

31: return TRUE; // return TRUE unless you set the focus to a
Ocontrol

32: }

There is more code in the OnInitDialog function than has been included in
Listing 2.1. | won’t include all the code for every function in the code listings
throughout this book as a means of focusing on the code that you need to
add or modify (and as a means of keeping this book down to a reasonable
size). You are welcome to look at the code that has been left out, to learn
what it is and what it does, as you build your understanding of MFC and
Visual C++.

If you’ve programmed in C or C++ before, you’ve noticed that you are set-
ting the value of the m_strMessage variable in a very un-C-like manner. It
looks more like how you would expect to set a string variable in Visual Basic
or PowerBuilder. That’s because this variable is a CString type variable. The
CString class enables you to work with strings in a Visual C++ application in
much the same way that you would work with strings in one of these other
programming languages. However, because this is the C++ programming
language, you still need to add a semicolon at the end of each command.

This initialization code is smple. You are setting an initial message in the edit box that
you will use to display messages for the user. Next, you are setting all the check boxes
to the checked state. It's the last line of the code you added to this function that you real-
ly need to notice.

The updateData function is the key to working with control variablesin Visual C++.
This function takes the data in the variables and updates the controls on the screen with
the variable values. It also takes the data from the controls and populates the attached

|36

Day 2

variables with any values changed by the user. This process is controlled by the argu-
ment passed into the UpdateData function. If the argument is FALSE, the valuesin the
variables are passed to the controls on the window. If the argument is TRUE, the variables
are updated with whatever appears in the controls on the window. As a result, which
value you pass this function depends on which direction you need to update. After you
update one or more variables in your code, then you need to call updateData, passing it
FALSE asits argument. If you need to read the variables to get their current value, then
you need to call updateData with a TRUE value before you read any of the variables.
You'll get the hang of this as you add more code to your application.

Closing the Application

The first thing that you want to take care of is making sure that the user can close your
application. Because you deleted the OK and Cancel buttons and added a new button for
closing the application window, you need to place code into the function called by the
Exit button to close the window. To do this, follow these steps:

1. Using the Class Wizard, add a function for the IDc_EXIT object on the BN_CLICKED
message, as you learned to do yesterday.

2. Click the Edit Code button to take you to the new function that you just added.

3. Enter the codein Listing 2.2.

LisTING 2.2. DAY2DLG.CPP—THE OnEXit FUNCTION.

1: void CDay2D1lg::0nExit()

2: {

3: // TODO: Add your control notification handler code here
4:

5: [IEETTTEL T rr
6: // MY CODE STARTS HERE
7 FIEETEETEEEE iy
8:

9: // Exit the program

10: OnOoK() ;

11:

12: TIEETEETEETT i
13: // MY CODE ENDS HERE
14: [IEETTTEL T rr
15: }

A single function call within the onExit function closes the Window and exits the appli-
cation. Where did this onok function come from, and why didn’t you haveto call it in
yesterday’s application? Two functions, onok and onCancel, are built into the ancestor

Using Controls in Your Application 37 |

CDialog class from which your cbay2D1g classisinherited. In the cbialog class, the
message map aready has the object 1Ds of the OK and Cancel buttons attached to the
onOK and oncancel buttons so that buttons with these IDs automatically call these
functions. If you had specified the Exit button’s object ID as 100K, you would not have
needed to add any code to the button unless you wanted to override the base onok
functionality.

Showing the User’s Message

Showing the message that the user typed into the edit box should be easy because it’s
similar to what you did in yesterday's application. You can add a function to the Show
Message button and call the MessageBox function, asin Listing 2.3.

LISTING 2.3. DAY2DLG.CPP—THE OnShwmsg FUNCTION DISPLAYS THE USER MESSAGE.

1: void CDay2Dlg::0nShwmsg()

2: {

3: // TODO: Add your control notification handler code here
4:

5: TIEETEETEET i rr

6: // MY CODE STARTS HERE

7 [IEETTTEE i

8:

9: // Display the message for the user
10: MessageBox (m_strMessage);

11:

12: [EEEETTEEEL T rrrrrrr g

13: // MY CODE ENDS HERE

14: [EEEETTTEEL i

15: }

If you compile and run the application at this point, you'll see one problem with this
code. It displays the string that you initialized the m_strMessage variable within the
onInitDialog function. It doesn't display what you type into the edit box. This happens
because the variable hasn't been updated with the contents of the control on the window
yet. You need to call UpdateData, passing it a TRUE value, to take the values of the con-
trols and update the variables before calling the MessageBox function. Alter the onshwmsg
function asin Listing 2.4.

LISTING 2.4. DAY2DLG.CPP—UPDATED OnShwmsg FUNCTION.

1: void CDay2D1lg::0nShwmsg()
2: {

continues

38 Day 2

LISTING 2.4. CONTINUED

3: // TODO: Add your control notification handler code here
4:

5: [EEEETTTEEL i

6: // MY CODE STARTS HERE

7: [EELETTTEEE i

8:

9: // Update the message variable with what the user entered
10: UpdateData(TRUE) ;

11:

12: // Display the message for the user

13: MessageBox (m_strMessage);

14:

15: [EEEETTEEEE i rr

16: // MY CODE ENDS HERE

17: [EEEETTTEEL i

18: }

Now if you compile and run your application, you should be able to display the message
you type into the edit box, as shown in Figure 2.10.

Ficure 2.10.
The e entered This is a test
in the edit box isdis-

played to the user.

Clearing the User’s Message

If the user prefers the edit box to be cleared before he or she types a message, you can
attach a function to the Clear Message button to clear the contents. You can add this
function through the Class Wizard in the usual way. The functionality is a simple matter
of setting the m_strMessage variable to an empty string and then updating the controls
on the window to reflect this. The code to do thisisin Listing 2.5.

LisTING 2.5. DAY2DLG.CPP—THE OnC1lrmsg FUNCTION.

void CDay2Dlg::0nClrmsg()
s A

// TODO: Add your control notification handler code here

// MY CODE STARTS HERE

1:

2

3

4:

5: [EELETELLLEL iy
6:

7 [EELEILLLLLE ity
8

9

// Clear the message

Using Controls in Your Application 39 |

10: m_strMessage = "";

11:

12: // Update the screen
13: UpdateData(FALSE) ;

14:

15: LIEETEETEET iy
16: // MY CODE ENDS HERE
17: TIEETEETEETT i
18: }

Disabling and Hiding the Message Controls

The last thing that you want to do with the message controls is add functionality to the
Enable Message Action and Show Message Action check boxes. The first of these check
boxes enables or disables the controls dealing with displaying the user message. When
the check box isin a checked state, the controls are all enabled. When the check box is
in an unchecked state, all those same controls are disabled. In alikewise fashion, the sec-
ond check box shows and hides this same set of controls. The code for these two func-
tionsisin Listing 2.6.

LisTING 2.6. DAY2DLG.CPP—THE FUNCTIONS FOR THE ENABLE AND SHOW MESSAGE ACTIONS
CHECK BOXES.

1: void CDay2Dlg::0nCkenblmsg()

2: {

3: // TODO: Add your control notification handler code here
4:

5: TIEETELTEE T r

6: // MY CODE STARTS HERE

7 FIEETEEEEEETE i iy

8:

9: // Get the current values from the screen

10: UpdateData(TRUE) ;

11:

12: // Is the Enable Message Action check box checked?
13: if (m_bEnableMsg == TRUE)

14: {

15: // Yes, so enable all controls that have anything
16: // to do with showing the user message

17: GetDlgItem(IDC_MSG) ->EnableWindow(TRUE) ;

18: GetDlgItem(IDC_SHWMSG) ->EnableWindow(TRUE) ;
19: GetDlgItem(IDC_DFLTMSG) ->EnableWindow(TRUE) ;
20: GetDlgItem(IDC_CLRMSG) ->EnableWindow(TRUE) ;
21: GetDlgItem(IDC_STATICMSG) ->EnableWindow(TRUE) ;
22: }

continues

|40 Day 2

LISTING 2.6. CONTINUED

23: else

24: {

25: // No, so disable all controls that have anything
26: // to do with showing the user message

27: GetDlgItem(IDC_MSG) ->EnableWindow(FALSE) ;

28: GetDlgItem(IDC_SHWMSG) ->EnableWindow(FALSE) ;
29: GetDlgItem(IDC_DFLTMSG) ->EnableWindow (FALSE);
30: GetDlgItem(IDC_CLRMSG) ->EnableWindow(FALSE) ;
31: GetDlgItem(IDC_STATICMSG) ->EnableWindow(FALSE) ;
32: }

33:

34: TIEETEETEET i

35: // MY CODE ENDS HERE

36: TIELTEETEETE iy

37: }

38:

39: void CDay2Dlg::0nCkshwmsg()

40: {

41: // TODO: Add your control notification handler code here
42:

43: TIEETEETEET i

44: // MY CODE STARTS HERE

45: FIELTEETEETE iy

46:

47: // Get the current values from the screen

48: UpdateData(TRUE) ;

49:

50: // Is the Show Message Action check box checked?
51: if (m_bShowMsg == TRUE)

52: {

53: // Yes, so show all controls that have anything
54: // to do with showing the user message

55: GetDlgItem(IDC_MSG) ->ShowWindow(TRUE) ;

56: GetDlgItem(IDC_SHWMSG) ->ShowWindow (TRUE) ;

57: GetDlgItem(IDC_DFLTMSG) ->ShowWindow (TRUE) ;

58: GetDlgItem(IDC_CLRMSG) ->ShowWindow(TRUE) ;

59: GetDlgItem(IDC_STATICMSG) ->ShowWindow (TRUE);
60: }

61: else

62: {

63: // No, so hide all controls that have anything
64: // to do with showing the user message

65: GetDlgItem(IDC_MSG) ->ShowWindow (FALSE) ;

66: GetDlgItem(IDC_SHWMSG) ->ShowWindow (FALSE) ;

67: GetDlgItem(IDC_DFLTMSG) ->ShowWindow (FALSE) ;
68: GetDlgItem(IDC_CLRMSG) ->ShowWindow (FALSE) ;

69: GetDlgItem(IDC_STATICMSG) ->ShowWindow (FALSE) ;
70: }

71:

Using Controls in Your Application

41|

72: [IEETTTEE T
73: // MY CODE ENDS HERE
74: LIEETEETEET iy
75: }

By now, you should understand the first part of these functions. First, you update the
variables with the current values of the controls on the window. Next, you check the
value of the boolean variable attached to the appropriate check box. If the variable is
TRUE, you want to enable or show the control. If the variable if FALSE, you want to dis-
able or hide the control.

At this point, the code begins to be harder to understand. The first function, GetDIgltem,
is passed the ID of the control that you want to change. This function returns the object
for that control. You can call this function to retrieve the object for any of the controls on
the window while your application is running. The next part of each command is where
amember function of the control object is called. The second function is a member func-
tion of the object returned by the first function. If you are not clear on how this works,
then you might want to check out Appendix A, “C++ Review,” to brush up on your C++.

The second functions in these calls, EnableWindow and Showwindow, look like they
should be used on windows, not controls. Well, yes, they should be used on windows;
they happen to be members of the cwnd class, which is an ancestor of the cbialog class
from which your cbay2b1g classis inherited. It just so happens that, in Windows, all
controls are themselves windows, completely separate from the window on which they
are placed. This allows you to treat controls as windows and to call windows functions
on them. In fact, all the control classes are inherited from the cwnd class, revealing their
true nature as windows.

If you compile and run your application now, you can try the Enable and Show Message
Action check boxes. They should work just fine, as shown in Figure 2.11.

FIGURE 2.11.
The user message con- e
trols can now be dis- Erfeicbesec [Thmatest || Sz

abled.

Dt fessane || 2

Run a Program: ~| BunProgram

Enable Actian: Show Action
’V I” Enable Message Actiori ’V ¥ Show Messags Action

IV Enable Program Action ¥ Show Proaram Action

Exit

|42 Day 2

Running Another Application

The last major piece of functionality to be implemented in your application is for the set
of controls for running another program. If you remember, you added the names of three
Windows applications into the combo box, and when you run your application, you can
see these application names in the drop-down list. You can select any one of them, and
the value area on the combo box is updated with that application name. With that part
working as it should, you only need to add code to the Run Program button to actually
get the value for the combo box and run the appropriate program. Once you create the
function for the Run Program button using the Class Wizard, add the code in Listing 2.7
to the function.

LISTING 2.7. DAY2DLG.CPP—THE OnRunpgm FUNCTION STARTS OTHER VWINDOWS APPLICATIONS.

1: void CDay2Dlg: :0OnRunpgm()

2: {

3: // TODO: Add your control notification handler code here
4:

5: TIEETEETEET i

6: // MY CODE STARTS HERE

7 [HEEEETEEEE i rrrrr

8:

9: // Get the current values from the screen

10: UpdateData(TRUE) ;

11:

12: // Declare a local variable for holding the program name
13: CString strPgmName;

14:

15: // Copy the program name to the local variable

16: strPgmName = m_strProgToRun;

17:

18: // Make the program name all uppercase

19: strPgmName .MakeUpper() ;
20:
21: // Did the user select to run the Paint program?
22: if (strPgmName == "PAINT")
23: // Yes, run the Paint program
24: WinExec ("pbrush.exe", SW_SHOW);
25:
26: // Did the user select to run the Notepad program?
27: if (strPgmName == "NOTEPAD")
28: // Yes, run the Notepad program
29: WinExec("notepad.exe", SW_SHOW);
30:
31: // Did the user select to run the Solitaire program?
32: if (strPgmName == "SOLITAIRE")
33: // Yes, run the Solitaire program

34: WinExec("sol.exe", SW_SHOW);

Using Controls in Your Application

43|

35:

36: NNy,
37: // MY CODE ENDS HERE
38: [IEEEEEEEELrr i rirt
39: }

As you expect, the first thing that you do in this function is call UpdateData to populate
the variables with the values of the controls on the window. The next thing that you do,
however, might seem alittle pointless. You declare a new cstring variable and copy the
value of the combo box to it. Isthis realy necessary when the valueis aready in a
cstring variable? Well, it depends on how you want your application to behave. The
next line in the code is a call to the cstring function MakeUpper, which converts the
string to al uppercase. If you use the cstring variable that is attached to the combo box,
the next time that UpdateData is called with FALSE as the argument, the value in the
combo box is converted to uppercase. Considering that thisis likely to happen at an odd
time, thisis probably not desirable behavior. That's why you use an additional cstring
in this function.

Once you convert the string to all uppercase, you have a series of if statements that
compare the string to the names of the various programs. When a match is found, the
winExec function is caled to run the application. Now, if you compile and run your
application, you can select one of the applications in the drop-down list and run it by
clicking the Run Program button.

H It is important to understand the difference in C and C++ between using a
Gaution P 9

single equal sign (=) and a double equal sign (==). The single equal sign per-
forms an assignment of the value on the right side of the equal sign to the
variable on the left side of the equal sign. If a constant is on the left side of
the equal sign, your program will not compile, and you’ll get a nice error
message telling you that you cannot assign the value on the right to the
constant on the left. The double equal sign (==) is used for comparison. It is
important to make certain that you use the double equal sign when you
want to compare two values because if you use a single equal sign, you alter
the value of the variable on the left. This confusion is one of the biggest
sources of logic bugs in C/C++ programs.

| 44 Day 2

the CreateProcess function instead. However, the CreateProcess function
has a number of arguments that are difficult to understand this early in pro-
gramming using Visual C++. The WinExec function is still available and is
implemented as a macro that calls the CreateProcess function. This allows
you to use the much simpler WinExec function to run another application
while still using the function that Windows wants you to use.

Nﬂtﬂ The winExec function is an obsolete Windows function. You really should use

Another API function that can be used to run another application is the
ShellExecute function. This function was originally intended for opening or
printing files, but can also be used to run other programs.

Summary

Today, you learned how you can use standard windows controls in a Visual C++ applica
tion. You learned how to declare and attach variables to each of these controls and how
to synchronize the values between the controls and the variables. You also learned how
you can manipulate the controls by retrieving the control objects using their object ID
and how you can manipulate the control by treating it as a window. You aso learned
how to specify the tab order of the controls on your application windows, thus enabling
you to control how users navigate your application windows. Finally, you learned how to
attach application functionality to the controls on your application window, triggering
various actions when the user interacts with various controls. As an added bonus, you
learned how you can run other Windows applications from your own application.

Q&A

Q When | specified the object 1Ds of the controls on the window, three controls
had the same ID, 1Dc_STATIC. These controls were the text at the top of the
window and the two group boxes. The other two static text controls started
out with this same ID until | changed them. How can these controls have the
same | D, and why did | have to change the ID on the two static texts where |
did change them?

A All controlsthat don’'t normally have any user interaction, such as static text and
group boxes, are by default given the same object ID. This works fine aslong as
your application doesn’t need to perform any actions on any of these controls. If
you do need to interact with one of these controls, as you did with the static text
prompts for the edit box and combo box, then you need to give that control a
unique ID. In this case, you needed the unique ID to be able to retrieve the control
object so that you could enable or disable and show or hide the control. You also

Using Controls in Your Application

45|

need to assign it aunique ID if you want to attach a variable to the control so that
you could dynamically alter the text on the control.

The application behaves in a somewhat unpredictable way if you try to ater any of
the static controls that share the same ID. As a general rule of thumb, you can
alow static controls to share the same object ID if you are not going to ater the
controls at all. If you might need to perform any interaction with the controls, then
you need to assign each one a unique object ID.

Isthere any other way to manipulate the controls, other than retrieving the
control objects using their object 1Ds?

You can declare variables in the Control category. This basically gives you an
object that is the control’s MFC class, providing you with a direct way of atering
and interacting with the control. You can then call all of the cwnd class functions
on the control, as you did to enable or disable and show or hide the controlsin
your application, or you can call the control class methods, enabling you to do
things in the code that are specific to that type of control. For instance, if you add
another variable to the combo box control and specify that it is a Control category
variable, you can use it to add items to the drop-down list on the control.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises appear in Appendix B,
“Answers.”

Quiz

1.

Why do you need to specify the tab order of the controls on your application win-
dows?

2. How can you include a mnemonic in a static text field that will take the user to the
edit box or combo box beside the text control?

3. Why do you need to give unique object IDs to the static text fields in front of the
edit box and combo boxes?

4. Why do you need to call the UpdateData function before checking the value of one
of the controls?

Exercises
1. Add code to the Default Message button to reset the edit box to say Enter a

message here.

|46 Day 2

2. Add code to enable or disable and show or hide the controls used to select and run
another application.

3. Extend the code in the onRunpgm function to allow the user to enter his own pro-
gram name to be run.

WEEK 1

DAY 3

Allowing User
Interaction—Integrating
the Mouse and Keyboard
In Your Application

Depending on the type of application you are creating, you might need to
notice what the user is doing with the mouse. You need to know when and
where the mouse was clicked, which button was clicked, and when the button
was released. You also need to know what the user did while the mouse button
was being held down.

Another thing that you might need to do is read the keyboard events. As with
the mouse, you might need to know when a key was pressed, how long it was
held down, and when it was rel eased.

|48 Day 3

Today you are going to learn

» What mouse events are available for use and how to determine which one is appro-
priate for your application’s needs.

» How you can listen to mouse events and how to react to them in your Visual C++
application.

» What keyboard events are available for use and what actions will trigger each of
these events.

» How to capture keyboard events and take action based on what the user pressed.

Understanding Mouse Events

Asyou learned yesterday, when you are working with most controls, you are limited to a
select number of events that are available in the Class Wizard. When it comes to mouse
events, you are limited for the most part to click and double-click events. Just looking at
your mouse tells you that there must be more to capturing mouse events than recognizing
these two. What about the right mouse button? How can you tell if it has been pressed?
And what about drawing programs? How can they follow where you drag the mouse?

If you open the Class Wizard in one of your projects, select the dialog in the list of
object IDs, and then scroll through the list of messages that are available, you will find a
number of mouse-related events, which are also listed in Table 3.1. These event mes-
sages enable you to perform any task that might be required by your application.

TABLE 3.1. MOUSE EVENT MESSAGES.

Message Description

WM_LBUTTONDOWN The left mouse button has been pressed.

WM_LBUTTONUP The left mouse button has been released.

WM_LBUTTONDBLCLK The left mouse button has been double-clicked.

WM_RBUTTONDOWN The right mouse button has been pressed.

WM_RBUTTONUP The right mouse button has been released.

WM_RBUTTONDBLCLK The right mouse button has been double-clicked.

WM_MOUSEMOVE The mouse is being moved across the application window space.

WM_MOUSEWHEEL The mouse whesdl is being moved.

Integrating the Mouse and Keyboard in Your Application 49 |

Drawing with the Mouse

Today you are going to build a simple drawing program that uses some of the available
mouse events to let the user draw simple figures on a dialog window. This application
depends mostly on the wm_MOUSEMOVE event message, which signals that the mouse is
being moved. You will look at how you can tell within this event function whether the
left mouse button is down or up. You will also learn how you can tell where the mouseis
on the window. Sound's fairly straight ahead, so let’s get going by following these steps:

1. Create anew MFC AppWizard workspace project, calling the project Mouse.

2. Specify that this project will be a dialog-based application in the first AppWizard
step.

3. Usethe default settings in the AppWizard. In the second step, specify a suitable
dialog title, such asMouse and Keyboard.

4. After the application shell is created, remove all controls from the dialog window.
This provides the entire dialog window surface for drawing. This step is also nec-
essary for your application to capture any keyboard events.

Nﬂtﬂ If there are any controls on a dialog, all keyboard events are directed to the

control that currently has input focus—the control that is highlighted or has
the cursor visible in it. To capture any keyboard events in a dialog, you have
to remove all controls from the dialog.

5. Open the Class Wizard. Select wv_MouseMovE from the list of messages, and add a
function by clicking the Add Function button. Click the OK button to accept the
suggested function name.

6. Click the Edit Code button to edit the onMouseMove function you just created,
adding the code in Listing 3.1.

LisTING 3.1. THE OnMouseMove FUNCTION.

1: void CMouseDlg: :0OnMouseMove (UINT nFlags, CPoint point)

2: {

3: // TODO: Add your message handler code here and/or call default
4:

5: [EETEETTEEI i

6: // MY CODE STARTS HERE

7 FEEETTTTETEE LT r

8

continues

|50 Day 3

LISTING 3.1. CONTINUED

9: // Check to see if the left mouse button is down
10: if ((nFlags & MK_LBUTTON) == MK_LBUTTON)

11:

12: // Get the Device Context

13: CClientDC dc(this);

14:

15: // Draw the pixel

16: dc.SetPixel(point.x, point.y, RGB(0, 0, 0));
17: }

18:

19: [IEEEEEELErr iy

20: // MY CODE ENDS HERE

21: [EEEEEEEErr il

22:

23: CDialog: :0OnMouseMove (nFlags, point);

24: }

Look at the function definition at the top of the listing. You will notice that two argu-
ments are passed into this function. The first of these argumentsis a set of flags that can
be used to determine whether a mouse button is depressed (and which one). This deter-
mination is made in the first line of your code with the if statement:

if ((nFlags & MK_LBUTTON) == MK_LBUTTON)

In the first half of the condition being evaluated, the flags are filtered down to the one
that indicates that the left mouse button is down. In the second half, the filtered flags are
compared to the flag that indicates that the left mouse button is down. If the two match,
then the left mouse button is down.

The second argument to this function is the location of the mouse. This argument gives
you the coordinates on the screen where the mouse currently is. You can use this infor-
mation to draw a spot on the dialog window.

Before you can draw any spots on the dialog window, you need to get the device context
for the dialog window. This is done by declaring a new instance of the cclientDC class.
This class encapsulates the device context and most of the operations that can be per-
formed on it, including al the screen drawing operations. In a sense, the device context
is the canvas upon which you can draw with your application. Until you have a canvas,
you cannot do any drawing or painting. After the device context object is created, you
can cal its setPixel function, which colors the pixel at the location specified in the first
two arguments with the color specified in the third argument. If you compile and run
your program, you can see how it allows you to draw on the window surface with the
mouse, as shown in Figure 3.1.

Integrating the Mouse and Keyboard in Your Application 51 |

F'GURE 3.1. % Mouse and Keyboard
Drawing on the win- .
dow with the mouse. J\/\/\J — | Mouse moved slowly
Mouse moved quickly
Nﬂtﬂ In Windows, colors are specified as a single number that is a combination of
N three numbers. The three numbers are the brightness levels for the red,

green, and blue pixels in your computer display. The RGB function in your
code is a macro that combines these three separate values into the single
number that must be passed to the SetPixel function or to any other func-
tion that requires a color value. These three numbers can be any value
between and including 0 and 255.

Using the AND and OR Binaries

If you are new to C++, you need to understand how the different types of AND and OR
work. The two categories of ANDs and oRs are logical and binary. The logical ANDs and
ors are used in logical or conditional statements, such asan if or while statement that is
controlling the logic flow. The binary ANDS and ORs are used to combine two values on a
binary level.

The ampersand character (&) is used to denote AND. A single ampersand (&) is a binary
AND, and a double ampersand (8&) isalogical AND. A logical AND works much like the
word AND in Visual Basic or PowerBuilder. It can be used in an if statement to say “if
this condition AND this other condition...” where both conditions must be true before
the entire statement is true. A binary AND is used to set or unset bits. When two values are
binary ANDed, only the bits that are set to 1 in both values remain as 1; all the rest of the
bits are set to 0. To understand how this works, start with two 8-bit values such as the

following:
Value 1 01011001
Value 2 00101001

If you binary AND these two values together, you wind up with the following value:

ANDed Value 00001001

|52

Day 3

All the bits that had 1 in one of the values, but not in the other value, were set to 0. All
the bits that were 1 in both values remained set to 1. All the bits that were 0 in both val-
ues remained O.

OR is represented by the pipe character (}), and as with AND, asingle pipe (}) isabinary
OR, whereas a double pipe (! !) isalogical or. Aswith AND, alogical 0R can be used in
conditional statements such as if or while statements to control the logical flow, much
like the word oR in Visual Basic and PowerBuilder. It can be used in an if statement to
say “if this condition OR this other condition...” and if either condition is true, the entire
statement is true. You can use a binary oR to combine values on a binary level. With o,
if abitissetto1in either value, the resulting bit is set to 1. With a binary oR, the only
way that a bit is set to 0 in the resulting value is if the bit was already 0 in both values.
Take the same two values that were used to illustrate the binary AND:

Vaue 1 01011001
Value 2 00101001

If you binary or these two values together, you get the following value:

ORed Value 01111001

In this case, every hit that was set to 1 in either value was set to 1 in the resulting value.
Only those hits that were 0 in both values were 0 in the resulting value.

Binary Attribute Flags

Binary AnDs and ORs are used in C++ for setting and reading attribute flags. Attribute
flags are values where each bit in the value specifies whether a specific option is turned
on or off. This enables programmers to use defined flags. A defined flag is a value with
only one bit set to 1 or a combination of other values in which a specific combination of
bitsis set to 1 so that multiple options are set with a single value. The flags controlling
various options are ored together, making a composite flag specifying which options
should be on and which should be off.

If two flags that specify certain conditions are specified as two different bitsin a byte,
those two flags can often be ored together as follows:

Flag 1 00001000
Flag 2 00100000
Combination 00101000

Thisis how flags are combined to specify a number of settingsin a limited amount of
memory space. In fact, thisis what is done with most of the check box settings on the

Integrating the Mouse and Keyboard in Your Application

53|

window and control properties dialogs. These on/off settings are ored together to form
one or two sets of flags that are examined by the Windows operating system to deter-
mine how to display the window or control and how it should behave.

On the flip side of this process, when you need to determine if a specific flag is included
in the combination, you can AND the combination flag with the specific flag that you are
looking for as follows:

Combination 00101000
Flag 1 00001000
Result 00001000

The result of this operation can be compared to the flag that you used to filter the com-
bined flag. If the result is the same, the flag was included. Another common approach is
to check whether the filtered combination flag is nonzero. If the flag being used for fil-
tering the combination had not been included, the resulting flag would be zero. As a
result, you could have left the comparison out of the if statement in the preceding code,
leaving you with an if statement that looks like the following:

if (nFlags & MK_LBUTTON)

You can modify this approach to check whether a flag is not in the combination as fol-
lows:

if (!(nFlags & MK_LBUTTON))

You might find one of these ways of checking for aflag easier to understand than the
others. You'll probably find all of them in use.

Improving the Drawing Program

If you ran your program, you probably noticed a small problem. To draw a solid line,

you need to move the mouse very slowly. How do other painting programs solve this

problem? Simple, they draw a line between two points drawn by the mouse. Although
this seems a little like cheating, it's the way that computer drawing programs work.

As you move the mouse across the screen, your computer is checking the location of the
mouse every few clock ticks. Because your computer doesn’t have a constant trail of
where your mouse has gone, it has to make some assumptions. The way your computer
makes these assumptions is by taking the points that the computer does know about and
drawing lines between them. When you draw lines with the freehand tool in Paint, your
computer is playing connect the dots.

|54 Day 3

Because all the major drawing programs draw lines between each pair of points, what do
you need to do to adapt your application so that it also uses this technique? First, you
need to keep track of the previous position of the mouse. This means you need to add
two variables to the dialog window to maintain the previous X and Y coordinates. You
can do this by following these steps:

In the workspace pane, select the Class View tab.
Select the dialog class—in this case, the cMouseD1g class.
Right-click the mouse and select Add Member Variable from the pop-up menu.

A wDd P

Enter int as the Variable Type and m_iPrevY as the Variable Name and specify
Private for the access in the Add Member Variable dialog, as shown in Figure 3.2.

FlGURE 3 2 . Add Member Yariable

The Add Member e
Variable dial 0g. VVariable Name: &I

[m_iPrevy

Acc
[r Buble (" Protected & Prjvate

5. Click OK to add the variable.

6. Repeat steps 3 through 5, specifying the Variable Name asm_iPrevX to add the
second variable.

After you add the variables needed to keep track of the previous mouse position, you can
make the necessary modifications to the onMouseMove function, as shown in Listing 3.2.

LisTING 3.2. THE REVISED OnMouseMove FUNCTION.

1: void CMouseDlg: :0OnMouseMove (UINT nFlags, CPoint point)

2: {

3: // TODO: Add your message handler code here and/or call default
4:

5: [EELETTEEEL iy

6: // MY CODE STARTS HERE

7 [HEEELTEEEE i rrrr

8:

9: // Check to see if the left mouse button is down

10: if ((nFlags & MK_LBUTTON) == MK_LBUTTON)

11: {

12: // Get the Device Context

13: CClientDC dc(this);

14:

15: // Draw a line from the previous point to the current point

16: dc.MoveTo(m_iPrevX, m_iPrevY);

Integrating the Mouse and Keyboard in Your Application 55|

17: dc.LineTo(point.x, point.y);

18:

19: // Save the current point as the previous point
20: m_iPrevX = point.Xx;

21: m_iPrevY = point.y;

22: }

23:

24: TIEETEETEETT i

25: // MY CODE ENDS HERE

26: [IEETTTEE T

27:

28: CDialog: :OnMouseMove (nFlags, point);
29: }

Look at the code that draws the line from the previous point to the current point:

dc.MoveTo(m_iPrevX, m_iPrevY);
dc.LineTo(point.x, point.y);

You see that you need to move to the first position and then draw aline to the second
point. The first step is important because without it, there is no telling where Windows
might think the starting position is. If you compile and run your application, it draws a
bit better. However, it now has a peculiar behavior. Every time you press the left mouse
button to begin drawing some more, your application draws aline from where you ended
the last line you drew, as shown in Figure 3.3.

FIGURE 33 # Mouse and Keyboard
The drawing program

with a peculiar

behavior.

Adding the Finishing Touches

Your application is doing all its drawing on the mouse move event when the left button
is held down. Initializing the previous position variables with the position of the mouse
when the left button is pressed should correct this application behavior. Let’s try this
approach by following these steps:

1. Using the Class Wizard, add a function for the wv_LBUTTONDOWN message on the
dialog object.

|56 Day 3

2. Edit the onLButtonDown function that you just created, adding the codein Listing
3.3

LisTING 3.3. THE OnLButtonDown FUNCTION.

1: void CMouseDlg::0nLButtonDown(UINT nFlags, CPoint point)
2: {

3: // TODO: Add your message handler code here and/or call default
4:

5: TIEETEETEETT i rrr

6: // MY CODE STARTS HERE

7 [IEETTTEE T rr

8:

9: // Set the current point as the starting point

10: m_iPrevX = point.Xx;

11: m_iPrevY = point.y;

12:

13: [IEETTTEE T rr

14: // MY CODE ENDS HERE

15: FIEETEETEETE iy

16:

17: CDialog::0OnLButtonDown(nFlags, point);

18: }

When you compile and run your application, you should find that you can draw much
like you would expect with a drawing program, as shown in Figure 3.4.

Ficure 3.4. % Mouse and Keyhoard]

The finished drawing i

program.
Capturing Keyboard Events

Reading keyboard eventsis similar to reading mouse events. As with the mouse, there
are event messages for when a key is pressed and when it is released. These events are
listed in Table 3.2.

Integrating the Mouse and Keyboard in Your Application 57 |

TABLE 3.2. KEYBOARD EVENT MESSAGES.

Message Description
WM_KEYDOWN A key has been pressed down.
WM_KEYUP A key has been released.

The keyboard obviously has fewer messages than the mouse does. Then again, there are
only so many things that you can do with the keyboard. These event messages are avail-
able on the dialog window object and are triggered only if there are no enabled controls
on the window. Any enabled controls on the window have input focus, so all keyboard
events go to them. That’s why you remove all controls from the main dialog for your
drawing application.

Changing the Drawing Cursor

To get agood idea of how you can use keyboard-related event messages, why don’t you
use certain keys to change the mouse cursor in your drawing application? Make the A
key change the cursor to the default arrow cursor, which your application starts with.
Then you can make B change the cursor to the I-beam and C change the cursor to the
hourglass. To get started adding this functionality, follow these steps:

1. Using the Class Wizard, add a function for the wm_KEYDOWN message on the dialog
object.
2. Edit the onkeyDown function that you just created, adding the code in Listing 3.4.

LisTING 3.4. THE OnKeyDown FUNCTION.

1: void CMouseDlg: :0nKeyDown (UINT nChar, UINT nRepCnt, UINT nFlags)

2: {

3: // TODO: Add your message handler code here and/or call default
4:

5: [EEEETTEEEE T rrrrrrr g

6: // MY CODE STARTS HERE

7 [EELETTTEELE i

8:

9: char 1lsChar; // The current character being pressed
10: HCURSOR 1lhCursor; // The handle to the cursor to be displayed
11:
12: // Convert the key pressed to a character
13: 1sChar = char(nChar);
14:
15: // Is the character "A"
16: if (lsChar == 'A")

continues

|58

Day 3

LISTING 3.4. CONTINUED

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:

{

Il
if

Il
if

Il
if

}

// Load the arrow cursor

1hCursor = AfxGetApp()->LoadStandardCursor (IDC_ARROW) ;
// Set the screen cursor

SetCursor(lhCursor);

Is the character "B"
(1lsChar == 'B')

// Load the I beam cursor

1hCursor = AfxGetApp()->LoadStandardCursor(IDC_IBEAM);
// Set the screen cursor

SetCursor(lhCursor);

Is the character "C"
(1sChar == 'C')

// Load the hourglass cursor

1hCursor = AfxGetApp()->LoadStandardCursor(IDC_WAIT);
// Set the screen cursor

SetCursor(lhCursor);

Is the character "X"
(1lsChar == 'X")

// Load the arrow cursor

1hCursor = AfxGetApp()->LoadStandardCursor (IDC_ARROW) ;
// Set the screen cursor

SetCursor(lhCursor);

// Exit the application

0OnOK() ;

PIPTHEEET ity

I

MY CODE ENDS HERE

LIEETEEEE ity

CDialog: :0OnKeyDown(nChar, nRepCnt, nFlags);

In the function definition, you see three arguments to the onkeyDown function. The first is
the key that was pressed. This argument is the character code of the character, which
needs to be converted into a character in the first line of your code. After you convert the

Integrating the Mouse and Keyboard in Your Application 59 |

character, you can perform straight-ahead comparisons to determine which key was
pressed:

void CMouseD1lg: :0nKeyDown (UINT nChar, UINT nRepCnt, UINT nFlags)

The second argument to the onkeyDown function is the number of times that the key is
pressed. Normally, if the key is pressed and then released, thisvalueis 1. If the key is
pressed and held down, however, the repeat count rises for this key. In the end, this value
tells you how many times that Windows thinks the key has been pressed.

The third argument to the onkeybown function is a combination flag that can be exam-
ined to determine whether the Alt key was pressed at the same time as the key or
whether the key being pressed is an extended key. This argument does not tell you
whether the shift or control keys were pressed.

When you determine that a specific key was pressed, then it's time to change the cursor
to whichever cursor is associated with that key. There are two steps to this process. The
first step is to load the cursor into memory. You accomplish this step with the
LoadStandardcursor function, which loads one of the standard Windows cursors and
returns a handle to the cursor.

Nﬂtﬂ A sister function, LoadCursor, can be passed the file or resource name of a
) custom cursor so that you can create and load your own cursors. If you
' design your own cursor in the resource editor in Visual C++, you can pass the
cursor name as the only argument to the LoadCursor function. For example,

if you create your own cursor and name it IDC_MYCURSOR, you can load it
with the following line of code:

1hCursor = AfxGetApp()->LoadCursor(IDC_MYCURSOR) ;

After you load your own cursor, you can set the mouse pointer to your cur-
sor using the SetCursor function, as with a standard cursor.

After the cursor is loaded into memory, the handle to that cursor is passed to the
SetcCursor function, which switches the cursor to the one the handle points to. If you
compile and run your application, you should be able to press one of these keys and get
the cursor to change, asin Figure 3.5. However, the moment you move the mouse to do
any drawing, the cursor switches back to the default arrow cursor. The following section
describes how to make your change stick.

| 60 Day 3

FIGURE 35 % Mouse and Keyboard

Changing the cursor
with specific keys.

Making the Change Stick

The problem with your drawing program is that the cursor is redrawn every time you
move the mouse. There must be some way of turning off this behavior.

Each time the cursor needs to be redrawn—because the mouse has moved, because
another window that was in front of your application has gone away, or because of what-
ever other reason—awMm_SETCURSOR event message is sent to your application. If you
override the native behavior of your application on this event, the cursor you set remains
unchanged until you change it again. To do this, follow these steps:

1. Add anew variable to the cMouseD1g class, as you did for the previous position
variables. This time, declare the type as BooL and name the variable m_bCursor, as
shown in Figure 3.6.

FlGURE 3 . 6_ Add Member Variable HE
. . Variable Type:

Defining a class mem- o

ber variable. Vaiable Name |

[m_bCursor

2. Initialize them_bcCursor variable in the onInitDialog with the codein Listing 3.5.

LisTING 3.5. THE OnInitDialog FUNCTION.

BOOL CMouseDlg::0OnInitDialog()
: q
: CDialog::0OnInitDialog();

1:
2
3
4:
5:
6 .
7
8

// Set the icon for this dialog. The framework does this
Oautomatically

Integrating the Mouse and Keyboard in Your Application 61 |

9: // when the application's main window is not a dialog

10: SetIcon(m_hIcon, TRUE); // Set big icon

11: SetIcon(m_hIcon, FALSE); // Set small icon

12:

13: // TODO: Add extra initialization here

14:

15: [IEETTTEETEE i rr

16: // MY CODE STARTS HERE

17: [EEELTTEEEEEETT i

18:

19: // Initialize the cursor to the arrow

20: m_bCursor = FALSE;

21:

22: [EEEETTTEEEE i

23: // MY CODE ENDS HERE

24: [IEETTTEET i

25:

26: return TRUE; // return TRUE unless you set the focus to a
Ocontrol

27: }

3. Alter the onkeybown function to set the m_bcursor flag to TRUE when you change
the cursor, asin Listing 3.6.

LiIsTING 3.6. THE OnKeyDown FUNCTION.

1: void CMouseDlg: :0nKeyDown (UINT nChar, UINT nRepCnt, UINT nFlags)

2: {

3: // TODO: Add your message handler code here and/or call default

4:

5: [IEETETTELT T

6: // MY CODE STARTS HERE

7: [EEEETTTEEEE i

8:

9: char 1sChar; // The current character being pressed
10: HCURSOR 1lhCursor; // The handle to the cursor to be displayed
11:

12: // Convert the key pressed to a character

13: 1sChar = char(nChar);

14:

15: // Is the character "A"

16: if (lsChar == 'A")

17: // Load the arrow cursor

18: 1hCursor = AfxGetApp()->LoadStandardCursor (IDC_ARROW) ;
19:

20: // Is the character "B"

21: if (lsChar == 'B')

continues

|62 Day 3

LiSTING 3.6. CONTINUED

22: // Load the I beam cursor

23: 1hCursor = AfxGetApp()->LoadStandardCursor (IDC_IBEAM);
24:

25: // Is the character "C"

26: if (lsChar == 'C')

27: // Load the hourglass cursor

28: 1hCursor = AfxGetApp()->LoadStandardCursor(IDC_WAIT);
29:

30: // Is the character "X"

31: if (1sChar == 'X")

32: {

33: // Load the arrow cursor

34: 1hCursor = AfxGetApp()->LoadStandardCursor (IDC_ARROW) ;
35: // Set the cursor flag

36: m_bCursor = TRUE;

37: // Set the screen cursor

38: SetCursor(lhCursor);

39: // Exit the application

40: 0OnOK() ;

41: }

42: else

43: {

44: /! Set the cursor flag

45: m_bCursor = TRUE;

46: // Set the screen cursor

47: SetCursor(lhCursor);

48: }

49:

50: [EEEETTTEEL i

51: // MY CODE ENDS HERE

52: [EELETTTEEE i

53:

54: CDialog: :0OnKeyDown(nChar, nRepCnt, nFlags);
55: }

4. Using the Class Wizard, add a function for the wM_SETCURSOR message on the dia-
log object.
5. Edit the onSetcursor function that you just created, adding the code in Listing 3.7.

LisTING 3.7. THE OnSetCursor FUNCTION.

: BOOL CMouseDlg::0OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message)

1
2: {

3: // TODO: Add your message handler code here and/or call default
4:

Integrating the Mouse and Keyboard in Your Application

63|

N O

©

10:
11:
12:
13:
14:
15:
16:
17:
18:
19: }

TIETEEELT ity
// MY CODE STARTS HERE
PIEETETEE LTty

// If the cursor has been set, then return TRUE
if (m_bCursor)

return TRUE;
else

TIETEEELT ity
// MY CODE ENDS HERE
LIEETETEE ity

return CDialog::0nSetCursor(pWnd, nHitTest, message);

The onSetcursor function needs to always return TRUE or else call the ancestor function.
The ancestor function resets the cursor and does need to be called when the application
first starts. Because of this, you need to initialize your variable to FALSE so that until the
user presses a key to change the cursor, the default onsetCursor processing is executed.
When the user changes the cursor, you want to bypass the default processing and return
TRUE instead. This allows the user to draw with whichever cursor has been selected,

including the hourglass, as shown in Figure 3.7.

FIGURE 3.7.

Drawing with the
hourglass cursor.

* Mouse and Keyboard [x]

able in MFC that you can use to handle this task. The first is

which all of the MFC window and control classes are derived.

The most common cursor change that you are likely to use in your programs
is setting the cursor to the hourglass while your program is working on
something that might take a while. There are actually two functions avail-

BeginWaitCursor, which displays the hourglass cursor for the user. The sec-
ond function is EndwaitCursor, which restores the cursor to the default cur-
sor. Both of these functions are members of the cCmdTarget class, from

| 64 Day 3

If you have a single function controlling all the processing during which you
need to display the hourglass and you don’t need to display the hourglass
after the function has finished, an easier way to show the hourglass cursor is
to declare a variable of the cwaitCursor class at the beginning of the func-
tion. This automatically displays the hourglass cursor for the user. As soon as
the program exits the function, the cursor will be restored to the previous
cursor.

Summary

In this chapter, you learned about how you can capture mouse event messages and per-
form some simple processing based upon these events. You used the mouse events to
build a simple drawing program that you could use to draw freehand figures on a dialog
window.

You also learned how to grab keyboard events and determine which key is being pressed.
You used this information to determine which cursor to display for drawing. For thisto
work, you had to learn about the default cursor drawing in MFC applications and how
you could integrate your code with this behavior to make your application behave the
way you want it to.

From here, you will learn how to use the Windows timer to trigger events at regular
intervals. You will also learn how to use additional dialog windows to get feedback from
the user so that you can integrate that feedback into how your application behaves. After
that, you will learn how to create menus for your applications.

Q&A

Q How can | change thetype of linethat | am drawing? | would liketo draw a
larger line with a different color.

A When you use any of the standard device context commands to draw on the screen,
you are drawing with what is known as a pen, much like the pen you use to draw
on a piece of paper. To draw bigger lines, or different color lines, you need to
select a new pen. You can do this by adapting the code in the onMouseMove func-
tion, starting where you get the device context. The following code enables you to
draw with a big red pen:

// Get the Device Context
CClientDC dc(this);

// Create a new pen
CPen lpen(PS_SOLID, 16, RGB(255, 0, 0));

Integrating the Mouse and Keyboard in Your Application

65|

// Use the new pen
dc.SelectObject (&lpen);

// Draw a line from the previous point to the current point
dc.MoveTo(m_iPrevX, m_iPrevY);
dc.LineTo(point.x, point.y);

How can you tell whether the Shift or Ctrl keys are being held down when you
receive the WM_KEYDOWN message?

You can call another function, : :GetKeyState, with a specific key code to deter-
mine whether that key is being held down. If the return value of the

: :GetKeyState function is negative, the key is being held down. If the return value
is nonnegative, the key is not being held down. For instance, if you want to deter-
mine whether the Shift key is being held down, you can use this code:

if (::GetKeyState (VK _SHIFT) < 0)
MessageBox("Shift key is down!");

A number of virtual key codes are defined in Windows for all the special keys.
These codes let you look for special keys without worrying about OEM scan codes
or other key sequences. You can use these virtual key codesin the : :GetKeyState
function and pass them to the onkeyDown function as the nchar argument. Refer to
the Visual C++ documentation for alist of the virtual key codes.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz

1
2.

What are the possible mouse messages that you can add functions for?

How can you tell if the left mouse button is down on the wM_MOUSEMOVE event mes-
sage?

How can you prevent the cursor from changing back to the default cursor after you
set it to a different one?

Exercises

1

Modify your drawing program so that the left mouse button can draw in red and
the right mouse button can draw in blue.

|66 Day 3

2. Extend the onkeyDown function to add some of the following standard cursors:
e IDC_CROSS
e IDC_UPARROW
e IDC_SIZEALL
e IDC_SIZENWSE
e IDC_SIZENESW
e IDC_SIZEWE
e IDC_SIZENS
e IDC_NO
e IDC_APPSTARTING
e IDC_HELP

WEEK 1

DAY 4

Working with Timers

You may often find yourself building an application that needs to perform a
specific action on aregular basis. The task can be something simple such as
displaying the current time in the status bar every second or writing a recovery
file every five minutes. Both of these actions are regularly performed by sever-
al applications that you probably use on a daily basis. Other actions that you
might need to perform include checking specific resources on aregular basis,
as aresource monitor or performance monitor does. These examples are just a
few of the situations where you want to take advantage of the availability of
timers in the Windows operating system.

Today you are going to learn

« How to control and use timersin your Visual C++ applications.
» How to set multiple timers, each with a different recurrence interval.
« How to know which timer has triggered.

* How you can incorporate this important resource into all your Visual C++
applications.

|68 Day 4

Understanding Windows Timers

Windows timers are mechanisms that let you set one or more timers to be triggered at a
specific number of milliseconds. If you set atimer to be triggered at a 1,000 millisecond
interval, it triggers every second. When atimer triggers, it sends awMm_TIMER message to
your application. You can use the Class Wizard to add a function to your application to
handle this timer message.

Timer events are placed only in the application event queue if that queue is empty and
the application is idle. Windows does not place timer event messages in the application
event queue if the application is already busy. If your application has been busy and has
missed several timer event messages, Windows places only a single timer message in the
event queue. Windows does not send your application all the timer event messages that
occurred while your application was busy. It doesn’t matter how many timer messages
your application may have missed; Windows still places only a single timer message in
your queue.

When you start or stop a timer, you specify atimer 1D, which can be any integer value.
Your application uses this timer 1D to determine which timer event has triggered, as well
asto start and stop timers. You'll get a better idea of how this process works as you build
your application for today.

Placing a Clock on Your Application

In the application that you will build today, you will use two timers. The first timer
maintains a clock on the window. This timer is always running while the application is
running. The second timer is configurable to trigger at whatever interval the user speci-
fiesin the dialog. The user can start and stop this timer at will. Let's get started.

Creating the Project and Application

You will build today’s sample application in three phases. In the first phase, you will add
all the controls necessary for the entire application. In the second phase, you will add the
first of the two timers. This first timer will control the clock on the application dialog. In
the third phase, you will add the second timer, which the user can tune, start, and stop as
desired.

To create today’s application, follow these steps:

1. Create anew project, named Timers, using the same AppWizard settings that
you've used for the past three days. Specify the application title as Timers.

Working with Timers 69 |

2. Lay out the dialog window as shown in Figure 4.1, using the control propertiesin
Table 4.1. Remember that when you place a control on the window, you can right-
click the mouse to open the control’s properties from the pop-up menu.

FIGURE 4.1.
. Fle Edi Yiew |nsett Project Buid Layout Iooks Window Help =13
The'ﬁmersappllcallon & sE | Em,g_‘,@,ﬁ@m,—jrﬂ

dialog layout. TDay4Dig =110 class members) =1[& CDay4DIg 52 8 ”@ £ 0 (=l

- ol e

&7 Day# classes e = ’T &

. Az ab|

Timer Interval: [ot Start Timer Step Timer] ED

Time: Curent Time | rae

i Count:0

B

s m

Exit)

-]

= H

i = 5

.2 Class, [Reso. | (2] Fievi B =

D =) = A

<

E|
K]
Guild {Debug Findin Files 1) Findin Files2]| 4| | »

Ready [z 0.0 B 245483 FEAD /)

TABLE 4.1. CONTROL PROPERTY SETTINGS.

Object Property Setting

Static Text ID IDC_STATIC
Caption Timer &Interval:

Edit Box ID IDC_INTERVAL

Button ID IDC_STARTTIME
Caption &Start Timer

Button ID IDC_STOPTIMER
Caption S&top Timer
Disabled Checked

Static Text ID IDC_STATIC
Caption Time:

Static Text ID IDC_STATICTIME
Caption Current Time

continues

|7O

Day 4

TABLE 4.1. CONTINUED

Object Property Setting

Static Text ID IDC_STATIC
Caption Count:

Static Text ID IDC_STATICCOUNT
Caption 0

Button ID IDC_EXIT
Caption E&xit

3. Set the tab order as you learned on Day 2, “Using Controls in Your Application.”
4. Add code to the Exit button to close the application, as you did on Day 2.

Adding the Timer IDs

Because you will be using two timers in this application, you should add two |Ds to your
application to represent the two timer 1Ds. This can be done by following these steps:

1. On the Resource View tab in the workspace pane, right-click the mouse over the
Timers resources folder at the top of the resource tree. Select Resource Symbols
from the pop-up menu, asin Figure 4.2.

FIGURE 4.2. %, Dap# - Microsoft Visual C++ - [Dayd.ic - IDD_DAY4_DIALOG (Dialog)]
The R |Zl 6o Edt view et Proiect Build Took Window Help 1] x|
€ Resource pop-u e ~ 5
N O R Y E) —]
menu. J CDap4Dlg [=EI[IDC_STATICTIME [SI[EN_cUCkED 52 % v‘ J‘fé iy] Sl
EV%A:: LI\\II\\II\J [Cont... 53]
0 Persuce b Y-
E = s, —_ : Aq abl
imet [aterval £ it Stat Timer Stop Timer o
Cjv SsveDapdec = - 0o
(et Time: Curtent Time: R ®
Impat.. Count 0
[¥ Docking View m
Hide S m
Exit =
Properties 0= B2
=
= H
ab
B3 Clsss.. | g Reso.. [[£] Fievi B =
=) © &
S Em = =)
] =
Gl|payd exe - 0 error(s). 0 varning(s)
=
[T\ Build /Debug Findin Files1 » Findin Files2z]| 4| | >
Browses and edits the symbols in the resource fle 7

2. On the Resource Symbols dialog, click the New button.

Working with Timers 71 |

3. Onthe New Symbol dialog, enter ID_CLOCK_TIMER as the symbol name and 1 as
the value, as shown in Figure 4.3.

FIGURE 4.3. +..Dayd - Miciosolt Visual C++ - [Dagd.rc - IDD_DAY4_DIALOG (Dialog]]
i E\u Edit View Inset Project Buld Tools Window Help _18x]
Adding anewresource 5T Ga) me oo mmEal Skl
me0| CDaydDlg [=lfioc sTancrive [=lfen_cuckeo B2 | “@ 4 ' <y
—————— x| T
R [T g e Symbols B [(Cont |
[Diakog =
Dleon An abl
(1 Stiing Table
(10 Version E g
B
$ m
Lol
i
=H
ab 5]
"IjElaw..F!m. =] Filey i ol
|E B : 1
E =
4[pay4.exe — 0 error(s). 0 warning(s)
B =
Build { Debug K Find in Files 1) Find in Files2 /]| 4] | LI_‘
2

Ready

4. Repeat steps 2 and 3, specifying ID_COUNT_TIMER as the symbol name and 2 as the
value.

5. Click the Close button to close the Resource Symbols dialog. The two timer IDs
are now in your application and ready for use.

Starting the Clock Timer

To start the clock timer, you need to edit the onInitDialog function, asyou did in the
previous two days. Add the new codein Listing 4.1.

LISTING 4.1. THE OnInitDialog FUNCTION.

BOOL CTimersDlg::0OnInitDialog()
{

CDialog::0nInitDialog();

// TODO: Add extra initialization here

©oO~NOOODWN-—=

LIEEETTEEEEL iy

continues

|72 Day 4

LISTING 4.1. CONTINUED

10: // MY CODE STARTS HERE

11: [IEETETTEET i rr

12:

13: // Start the clock timer

14: SetTimer (ID_CLOCK TIMER, 1000, NULL);

15:

16: FIEETEETEETE iy

17: // MY CODE ENDS HERE

18: TIEETEETEE i rrr

19:

20: return TRUE; // return TRUE unless you set the focus to a
Ocontrol

21: }.

In thislisting, you started the clock timer with the setTimer function. The first argument
that you passed to the setTimer function isthe ID for the clock timer. The second argu-
ment is how often you want to trigger the event. In this case, the clock timer event is
triggered every 1,000 milliseconds, or about every second. The third argument is the
address of an optional callback function that you can specify to bypass the wm_TIMER
event. If you pass NULL for this argument, the wm_TIMER event is placed in the application

message queue.
Nﬂtﬂ A callback function is a function you create that is called directly by the
_ Windows operating system. Callback functions have specific argument defin-

itions, depending on which subsystem calls the function and why. After you
get past the function definition, however, you can do whatever you want or
need to do in the function.

A callback function works by passing the address of the function as an argu-
ment to a Windows function that accepts callback functions as arguments.
When you pass the function address to Windows, your function is called
directly every time the circumstances occur that require Windows to call the
callback function.

Handling the Clock Timer Event

Now that you' ve started a timer, you need to add the code to handle the timer event mes-
sage. You can do this by following these steps:

1. Using the Class Wizard, add a variable to the 1bc_STATICTIME control of type
CString named m_sTime.

Working with Timers 73 |

2. Using the Class Wizard, add a function to handle the wu_TIMER message for the
CTimersD1lg object.

3. Edit the onTimer function, adding the codein Listing 4.2.

LISTING 4.2. THE OnTimer FUNCTION.

1: void CTimersD1lg::0nTimer (UINT nIDEvent)

2: {

3: // TODO: Add your message handler code here and/or call default
4:

5: [EEEETTTEEL i r g

6: // MY CODE STARTS HERE

7 [EEEETTTEELE i

8:

9: // Get the current time

10: CTime curTime = CTime::GetCurrentTime();
11:

12: // Display the current time

13: m_sTime.Format("%d:%d:%d", curTime.GetHour(),
14: curTime.GetMinute(),

15: curTime.GetSecond());

16:

17: // Update the dialog

18: UpdateData(FALSE) ;

19:
20: [EEEETTEEEL i r
21: // MY CODE ENDS HERE
22: [EEEETTTEELE i
23:
24: CDialog::0OnTimer (nIDEvent);
25: }

In this listing, you declare an instance of the cTime class, initializing it to the current sys-
tem time. The next thing that you do is set the m_sTime string to the current time, using
the Format method to format the time in the familiar HH:MM:SS format. Finally, you
update the dialog window with the current time. If you compile and run your application
now, you should see a clock running in the middle of your dialog window, asin Figure

4.4,
FIGURE 4.4. # Tineis
. Timer Interval: D e
A running clock on o [EEE
your application s
dialog

Exit

|74

Day 4

Adding a Second Timer to Your Application

As you have seen, adding a single timer to an application is a pretty simple task. All it
takes is calling the setTimer function and then placing the timer code in the onTimer
function. However, sometimes you need more than one timer running simultaneously in
the same application. Then things get a little bit more involved.

Adding the Application Variables

Before you add the second timer to your application, you need to add a few variables to
the controls. With the clock timer, you needed only a single variable for updating the
clock display. Now you need to add a few other variables for the other controls, as listed

in Table 4.2.

TABLE 4.2. CONTROL VARIABLES.

Object Name Category Type
IDC_STATICCOUNT m_sCount Value CString
IDC_INTERVAL m_iInterval Value int
IDC_STARTTIME m_cStartTime Control CButton
IDC_STOPTIMER m_cStopTime Control CButton

After you add all the variables using the Class Wizard, follow these steps:

1. Using the Class Wizard, select the m_iInterval variable and specify a Minimum
Value of 1 and a Maximum Value of 100000 in the two edit boxes below the list of
variables, as shown in Figure 4.5.

FIGURE 4.5.

Soecifying a range
for avariable.

MFC ClassWizard HE
Message Maps | Member Variables | Automation | ActiveX Events | Class Info |
Proiect Class name: L
Dayd ~] [coawni -
L | |EE Add Varisble
D\ ADap#\DapDlg h, DA, ADay#\DapDlg.cpp
Contral IDs Type Member Delete Variable |

F INTE Vel Update Collme
CButton m_cStaitT me —

IDC_STATICCOUNT CString m_sCount Bird &1l

IDC_STATICTIME CSting m_sTime

IDC_STOPTIMER CButton m_cStopTime

Description: ~ int with validation

Minimum Yalue: 1
Magimum Value, 100000

Cancel

Working with Timers 75 |

2. Onthe Class View tab in the workspace pane, add a member variable to the
CTimersDlg class as you learned yesterday. Specify the variable type as int, the
variable name asm_iCount, and the access as Private.

3. Using the Class Wizard, add a function on the EN_CHANGE event message for the
IDC_INTERVAL control 1D (the edit box). Edit the function and add the code in
Listing 4.3.

LiISTING 4.3. THE OnChangeInterval FUNCTION.

1: void CTimersDlg::0nChangelInterval()

2: {

3: // TODO: If this is a RICHEDIT control, the control will not
4: // send this notification unless you override the

[JCDialog::0OnInitialUpdate()

5: // function and call CRichEditCrtl().SetEventMask()
6: // with the EN_CHANGE flag ORed into the mask.

7:

8: // TODO: Add your control notification handler code here
9:

10: [EEEETTTEEL i

11: // MY CODE STARTS HERE

12: [EEEEETEEEE iy

13:

14: // Update the variables

15: UpdateData(TRUE) ;

16:

17: [EEEETTEEEI i r g

18: // MY CODE ENDS HERE

19: [EEEETTTEEL i
20: }

When you specify a value range for the timer interval variable, Visual C++ automatically
prompts the user, stating the available value range if the user enters a value outside of
the specified range. This prompt is triggered by the updatebata function call in the
onChangeInterval function. The last variable that was added through the workspace
paneis used as the actual counter, which is incremented with each timer event.

Starting and Stopping the Counting Timer

To make your second timer operational, you need to

e Initializethem_iInterval variable.

» Start the timer when the 1DC_STARTTIME button is clicked.

* Increment them_icCount variable and update the dialog on each timer event.
 Stop the timer when the 1DC_STOPTIMER button is clicked.

|76 Day 4

To implement this additional functionality, perform the following steps:

1. Edit theonInitbDialog function, updating the code asin Listing 4.4.

LISTING 4.4. THE UPDATED OnInitDialog FUNCTION.

1: BOOL CTimersD1lg::0nInitDialog()

2: {

3: CDialog::0OnInitDialog();

4:

5:

6:

7: // TODO: Add extra initialization here

8:

9: [EEEETTTEEI i

10: // MY CODE STARTS HERE

11: [EEEETTEEEE iy

12:

13: // Initialize the counter interval

14: m_ilInterval = 100;

15:

16: // Update the dialog

17: UpdateData(FALSE) ;

18:

19: // Start the clock timer

20: SetTimer (ID_CLOCK_TIMER, 1000, NULL);

21:

22: [EEEETTTEEI i

23: // MY CODE ENDS HERE

24: [EEEETTTEEI i

25:

26: return TRUE; // return TRUE unless you set the focus to a
Ocontrol

27: }

2. Using the Class Wizard, add a function to the BN_CLICKED message on the
IDC_STARTTIME button. Edit the onstarttime function asin Listing 4.5.

LISTING 4.5. THE OnStarttime FUNCTION.

void CTimersD1lg::0OnStarttime()
A

// TODO: Add your control notification handler code here

// MY CODE STARTS HERE

1:

2

3

4:

5: [IEEEEEErrr i rrrt
6:

7 [IEEEEEEEErrrrrrrrrrrny
8

9

// Update the variables

Working with Timers 77 |

10: UpdateData(TRUE) ;

11:

12: // Initialize the count

13: m_iCount = 0;

14: // Format the count for displaying
15: m_sCount.Format("%d", m_iCount);
16:

17: // Update the dialog

18: UpdateData(FALSE) ;

19: // Start the timer

20: SetTimer (ID_COUNT_TIMER, m_iInterval, NULL);
21:

22: [IEETTTEE T

23: // MY CODE ENDS HERE

24: LEEEETTEEEE i

25: }

3. Using the Class Wizard, add a function to the BN_CLICKED message on the
IDC_STOPTIMER button. Edit the onStoptimer function asin Listing 4.6.

LISTING 4.6. THE OnStoptimer FUNCTION.

1: void CTimersD1lg: :0OnStoptimer()
2: {

3: // TODO: Add your control notification handler code here
4:

5: TIEELEETEE ey

6: // MY CODE STARTS HERE

7: TIEETELTEE T r

8:

9: // Stop the timer
10: KillTimer (ID_COUNT_TIMER);
11:
12: TIETELETEEET ity
13: // MY CODE ENDS HERE
14: TIEELEETEE ey
15: }

4. Edit the onTimer function, updating the code asin Listing 4.7.

LISTING 4.7. THE UPDATED OnTimer FUNCTION.

1: void CTimersD1lg::0nTimer (UINT nIDEvent)

2: {

3: // TODO: Add your message handler code here and/or call default
4:

continues

|78 Day 4

LISTING 4.7. CONTINUED

5: [EEEETTTEEL i

6: // MY CODE STARTS HERE

7: [EELETTTEEL i

8:

9: // Get the current time

10: CTime curTime = CTime::GetCurrentTime();
11:

12: // Which timer triggered this event?
13: switch (nIDEvent)

14: {

15: // The clock timer?

16: case ID_CLOCK_TIMER:

17: // Display the current time

18: m_sTime.Format("%d:%d:%d", curTime.GetHour(),
19: curTime.GetMinute(),

20: curTime.GetSecond());

21: break;

22: // The count timer?

23: case ID_COUNT_TIMER:

24: // Increment the count

25: m_iCount++;

26: // Format and display the count
27: m_sCount.Format("%d", m_iCount);
28: break;

29: }

30:

31: // Update the dialog

32: UpdateData(FALSE) ;

33:

34: [EELETTTEEL i

35: // MY CODE ENDS HERE

36: [EEEETTEEEE i r g

37:

38: CDialog::0OnTimer(nIDEvent);

39: }

Inthe onInitDialog function, you added the initialization of them_iInterval variable,
starting it at 100. Thisinitialization is reflected on the dialog window by calling the
UpdateData function

In the onstarttime function, you first synchronize the variables with the control values,
alowing you to get the current setting of them_iInterval variable. Next, you initialize
them_iCount variable, setting it to @, and then format the value in the m_sCount CString
variable, which is updated in the dialog window. The last thing that you do is to start the
timer, specifying the 10_COUNT_TIMER ID and using the interval from the m_iInterval
variable.

Working with Timers

79|

In the onstoptimer function, all you really need to do is stop the timer. You do this by
calling thekillTimer function, passing the timer ID as the only argument.

Itisinthe onTimer function that things begin to get interesting. Here, you still see the
code for handling the clock timer event. To add the functionality for the counter timer,
you need to determine which timer has triggered this function. The only argument to the
onTimer function just happens to be the timer ID. You can use this ID in a switch state-
ment to determine which timer has called this function and to control which set of code
is executed. The clock timer codeis still the same as it wasin Listing 4.2. The counter
timer code is placed into its spot in the switch statement, incrementing the counter and
then updating the m_sCount variable with the new value. You can compile and run your
application at this point, and you can specify atimer interval and start the timer running,
asin Figure 4.6.

FIGURE 4.6. 8 Timers
. Timer [nterval: et Timer oo T
A running counter on = [t |

your application e
dialog.

Count: B

Exit

Enabling the Stop Button

If you run your application, you'll find that it works well except for one small problem.
When you start your second timer, you can’t stop it. When you were specifying all the

properties of the controls, you disabled the Stop Timer button. Before you can stop the

timer, you need to enable this button.

What makes the most sense is enabling the stop button and disabling the start button
once the timer starts. Then you reverse the situation when the timer stops again. You can
do this in the same way you enabled and disabled controls on Day 2, or you can modify
your approach just alittle.

Remember that when you added variables to the controls, you added variables to the
start and stop buttons. These were not normal variables, but control variables. Instead of
getting a pointer to these controls using their 1Ds, you can work directly with the control
variables. Try that now by updating the onStarttime and onStoptimer functionsasin
Listing 4.8.

|80 Day 4

LISTING 4.8. THE REVISED OnStarttime AND OnStoptimer FUNCTIONS.

1: void CTimersD1lg::0OnStarttime()

2: {

3: // TODO: Add your control notification handler code here
4:

5: [EEEETTEEEL T rrrrr

6: // MY CODE STARTS HERE

7 [EELETTTEEL i

8:

9: // Update the variables

10: UpdateData(TRUE) ;

11:

12: // Initialize the count

13: m_iCount = 0;

14: // Format the count for displaying
15: m_sCount.Format("%d", m_iCount);
16:

17: // Update the dialog

18: UpdateData(FALSE) ;

19: /] Start the timer
20: SetTimer (ID_COUNT_TIMER, m_iInterval, NULL);
21:
22: // Enable the Stop Timer button
23: m_cStopTime.EnableWindow(TRUE) ;
24: // Disable the Start Timer button
25: m_cStartTime.EnableWindow (FALSE) ;
26:
27: [EEEETEEEEr i ny
28: // MY CODE ENDS HERE
29: [EEEETTEEEI i
30: }
31:
32: void CTimersD1lg::0nStoptimer()
33: {
34: // TODO: Add your control notification handler code here
35:
36: [EEEETEEEEr i ny
37: // MY CODE STARTS HERE
38: [EEEETTEEEL i rr
39:
40: // Stop the timer
41: KillTimer (ID_COUNT_TIMER);
42:
43: // Disable the Stop Timer button
44 m_cStopTime.EnableWindow (FALSE) ;
45: // Enable the Start Timer button
46: m_cStartTime.EnableWindow(TRUE) ;
47:
48: [EEEEEEEEEr i ny

49: // MY CODE ENDS HERE

Working with Timers 81 |

50: [IEEEEEEEELrr i rirt
51: }

Now when you compile and run your application, it looks more like Figure 4.7, where
you can start and stop the counter timer. This enables you to play with the timer interval,
putting in a variety of time intervals and observing the difference, with the clock ticking
above the counter for reference.

FIGURE 4.7. 8 Tincis
The finished appli- T" =
cation. o

Ezit
Summary

Today you learned how to use the timers built into the Windows operating system to
trigger your application at various time intervals that you can control. You learned how
to use multiple timers in the same application, running them simultaneously and trigger-
ing different actions.

In the coming days, you'll learn how to use additional dialog windows to get feedback
from the user so that you can integrate that feedback into how your application behaves.
After that, you will learn how to a create menus for your applications. Then you will
learn how you can work with text and fonts in your applications.

Q&A

Q What istheinterval rangethat | can set for timersin my applications?

A The available range that you can set for timersin your applications is around 55
milliseconds on the short end to 2% - 1 milliseconds, or around 49 1/2 days, on the
long end.

Q

How many timers can | have running at the same time in my application?

A That depends. There are alimited number of timers available to all applicationsin
the Windows operating system. Although the number that is available should be
more than sufficient for al running applications using no more than a handful of
timers, if an application goes overboard and begins hogging the timers, the operat-
ing system may run out. It could be your application that is denied the use of some
timers, or it could be other applications that don’t have any to use. As a genera

|82

Day 4

rule, if you use more than two or three timers at the same time, you might want to
reconsider your application design and determine if there is another way to design
and build your application so that it can work with fewer timers.

Isthere any way to trigger my application to perform somework when it is
idle, instead of using a timer to trigger the work when | think my app might
beidle?

Yes, thereis. All Windows applications have an onIdle function that can be used
to trigger idle processing. onIdle is discussed later on Day 18, “Doing Multiple
Tasks at One Time—M ultitasking.”

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz

1. What did you accomplish by adding the two timer IDs to the resource symbols?

> w D

What is another way to add these two I Ds to the application?
How can you tell two timers apart in the onTimer function?

How many timer events does your application receive if the timer is set for one
second and your application has been busy for one minute, preventing it from
receiving any timer event messages?

Exercise

Update your application so that when the counter timer is started, the clock timer is reset
to run at the same interval as the counter timer. When the counter timer is stopped, return
the clock timer to a one-second interval.

WEEK 1

DAY 5

Getting User Feedback—
Adding Dialog Boxes to
Your Application

With most applications that you might use, there are numerous situations where
the application asks you for information—how you want the application config-
ured or whether you want to save your work before exiting, for example. In
most of these situations, the application opens a new window to ask these ques-
tions. These windows are called dialog windows.

Dialog windows typically have one or more controls and some text explaining
what information the program needs from you. Dialog windows typically do
not have alarge blank work area, as you find in the main windows of aword
processor or a programming editor. All the applications that you have built in
the preceding days have been dialog windows, and your projects will continue
to be dialog windows for the next few days.

All the dialogs that you have created up to now have been single window dia-
log applications. Today you are going to learn

|84 Day 5

* How to use dialog windows in a more flexible way.

» How to call other dialog windows and take the information entered by the user on
these windows back to the main application window for use in the application.

» How to use both standard dialogs, such as the message boxes you used in previous
days and custom dialogs that you have created.

Using Pre-existing (or System) Dialog
Windows

The Windows operating system provides a number of pre-existing dialog windows.
Simple dialog windows, also known as message boxes, present the user with a message
and provide one to three buttons to click. More complex dialogs, such as the File Open,
Save, or Print dialogs, are also provided with Windows. These system (or common)
dialogs are created and used with a combination of a variable declaration of a C++ class
and a series of interactions with the class instance.

Using Message Boxes

Asyou learned in the previous days, using message boxes is as simple as making a sin-
gle function call, passing the message text as the only argument. This resultsin a mes-
sage box that displays the message to the user with an icon and gives the user one button
to click to acknowledge the message. As you probably know from using other Windows
software, you have a whole range of other message box possibilities with various button
combinations and various icons that can be displayed.

The MessageBox Function

As you have seen in previous days, the MessageBox function can be passed one or two
arguments. The first argument is the message to be displayed to the user. The second
argument, which is completely optional, is displayed in the title bar on the message box.
You can use a third argument, which is also optional, to specify the buttons to be pre-
sented to the user and the icon to be displayed beside the message. In addition to this
third argument, the MessageBox function returns a result value that indicates which but-
ton was clicked by the user. Through the combination of the third argument and the
return value, the MessageBox function can provide a whole range of functionality in your
Visual C++ applications.

Getting User Feedback—Adding Dialog Boxes to Your Application

85|

Nﬂlﬂ If you use the third argument to the MessageBox function to specify the but-
tons or the icon to be presented to the user, the second argument (the mes-
' sage box title) is no longer optional. You must provide a value for the title
bar of the message box.

The button combinations that you can use in the MessageBox function are limited. You
do not have the freedom to make up your own button combination. If you get to the
point where you need to make up your own, you have to create a custom dialog window
that looks like a message box. The button combinations that you can use are listed in
Table 5.1.

TABLE 5.1. MEssAGEBox BUTTON COMBINATION IDs.

ID Buttons
MB_ABORTRETRYIGNORE Abort, Retry, Ignore
MB_OK OK

MB_OKCANCEL OK, Cancel
MB_RETRYCANCEL Retry, Cancel
MB_YESNO Yes, No
MB_YESNOCANCEL Yes, No, Cancel

To specify the icon to be displayed, you can add the icon ID to the button combination
ID. Theicons that are available are listed in Table 5.2. If you want to specify either the
icon or the button combination, and you want to use the default for the other, you can
just specify the one ID that you want to use.

TABLE 5.2. MessageBox ICON IDs.

ID Icon
MB_ICONINFORMATION Informational icon
MB_ICONQUESTION Question mark icon
MB_ICONSTOP Stop sign icon
MB_ICONEXCLAMATION Exclamation mark icon

When you do specify a button combination, you want to capture the return value so that
you can determine which button the user clicked. The return value is defined as an inte-
ger data type; the return value IDs are listed in Table 5.3.

|86 Day 5

TABLE 5.3. MessaGeBox RETURN VALUE IDs.

ID Button Clicked
IDABORT Abort

IDRETRY Retry

IDIGNORE Ignore

IDYES Yes

IDNO No

IDOK OK

IDCANCEL Cancel

Creating a Dialog Application

To get a good understanding of how you can use the MessageBox function in your appli-
cations to get information from the user, you will build a simple application that uses the
MessageBox function in a couple of different ways. Your application will have two sepa-
rate buttons that call two different versions of the MessageBox function so that you can
see the differences and similarities between the various options of the function. Later in
the day, you will add a standard File Open dialog so that you can see how the standard
dialogs can be used to allow the user to specify a filename or perform other standard
functions. Finally, you will create a custom dialog that allows the user to enter afew dif-
ferent types of values, and you will see how you can read these values from the main
application dialog after the user has closed the custom dial og.

To start this application, follow these steps:

1. Create anew MFC AppWizard workspace project, naming it Dialogs.

2. Choose the same settings as for the previous days' applications, giving the applica-
tion atitle of pialogs.

3. Lay out the main application dialog as shown in Figure 5.1 using the propertiesin
Table 5.4.

TABLE 5.4. CONTROL PROPERTY SETTINGS.

Object Property Setting

Command Button ID IDC_YESNOCANCEL
Caption &Yes, No, Cancel

Command Button ID IDC_ABORTRETRYIGNORE

Caption &Abort, Retry, Ignore

Getting User Feedback—Adding Dialog Boxes to Your Application

87|

Object Property Setting
Command Button ID IDC_FILEOPEN
Caption &File Open
Command Button ID IDC_BCUSTOMDIALOG
Caption &Custom Dialog
Command Button ID IDC_BWHICHOPTION
Caption &Which Option?
Disabled Checked
Command Button ID IDC_EXIT
Caption E&xit
Static Text ID IDC_STATIC
Caption Dialog Results:
Edit Box ID IDC_RESULTS
Multiline Checked
Auto Vscroll Checked
FIGURE 5 1 #., Day5 - Microsoft Visual C++ - [Day5.ic - IDD_DAYS_DIALOG [Dialog)]
L . | e Edt view Insen Proect Buid Layoul Tooks Window Help =B x|
T_heappllcatlon main B D = L — ‘.‘,M‘
dialog layout. J ThayiDla =l[@l s menbers) <[@ CDayGDlg =E " JJ@ il wat L1 Bl
alx) T T TP T |
L1 Dideg s I~
£ leon e An abl
E\%’Z:Zi;ahle 7 ‘Yes, No, Cancel Abort, Retry, lgnore Mo
| Eile Open
- El
E Custom Dislog ifich Option? @ B
_: i Dialog Results: |Edit i oo
- ialog Result: [Edi e
. i
: 5 | = H
- & 2k
- . Bl -
30| g Reso. [[Pl] N s@
[EE = EEEET]
3 =
J Build {Debug » Findin Files1 Findin Files2 /]| 4 || LlJ
Ready [+ 0.0 i 232138 [0 A

4. Using the Class Wizard, attach variables to the controls as listed in Table 5.5.

|88 Day 5

TABLE 5.5. CONTROL VARIABLES.

Object Name Category Type
IDC_RESULTS m_sResults Vaue CString
IDC_BWHICHOPTION m_cWhichOption Control CButton

5. Using the Class Wizard, attach code to the Exit button to close the application, as
on previous days.

Coding the Message Box Dialogs

For the first command button (the Yes, No, Cancel button), create a function on the
clicked event using the Class Wizard, just as you did on previous days. Edit the function
on this button, adding the code in Listing 5.1.

LisTING 5.1. THE OnYesnocancel FUNCTIONS.

1: void CDialogsDlg::0OnYesnocancel()

2: {

3 // TODO: Add your control notification handler code here

4:

5: [EEEETTTEEL i

6: // MY CODE STARTS HERE

7 [EEEETTTEEL i

8:

9: int iResults; // This variable will capture the button selection
10:

11: // Ask the user

12: iResults = MessageBox("Press the Yes, No, or Cancel button",
13: "Yes, No, Cancel Dialog",

14: MB_YESNOCANCEL | MB_ICONINFORMATION);

15:

16: // Determine which button the user clicked

17: // Give the user a message showing which button was clicked
18: switch (iResults)

19: {
20: case IDYES: // The Yes button?
21: m_sResults = "Yes! Yes! Yes!";
22: break;
23: case IDNO: // The No button?
24: m_sResults = "No, no, no, no, no.";
25: break;
26: case IDCANCEL: // The Cancel button?
27: m_sResults = "Sorry, canceled.";
28: break;
29: }
30:

31: // Update the dialog

Getting User Feedback—Adding Dialog Boxes to Your Application 89 |

32: UpdateData(FALSE) ;

33:

34: [EEEETTEEEL i rr g
35: // MY CODE ENDS HERE
36: [EEEETTTEELE i
37: }

If you compile and run your application, you can see how selecting the different buttons
on the message box can determine the next course of action in your application. If you
add a function to the clicked event of the Abort, Retry, Ignore button using the Class
Wizard and enter the same code as in Listing 5.1, substituting the MB_ABORTRETRYIGNORE
and MB_ICONQUESTION values and changing the prompts and messages, you can see how
this other button combination can be used in the same way.

Both of these control event functions are virtually the same. In each function, thereis an
integer variable declared to capture the return value from the MessageBox function. Next,
the MessageBox function is called with a message to be displayed to the user, atitle for
the message box, and a combination of a button combination ID and an icon ID.

When the return value is captured from the MessageBox function, that value is passed
through a switch statement to determine which value was returned. A message is dis-
played to the user to indicate which button was clicked on the message box. You can just
as easily use one or two if statements to control the program execution based on the
user’s selection, but the return value being an integer lends itself to using a switch
Statement.

If you compile and run your application at this point, you can click either of the top two
buttons and see a message box, as in Figure 5.2. When you click one of the message box
buttons, you see a message in the edit box on the main dialog, indicating which button
you selected, asin Figure 5.3.

FiGURE 5.2. Yes. No, Cancel Dialog
The MessageBox With (\it) Press the Yes, No, or Cancel bulton

three choices. —

FIGURE 5.3. 4Dinlogs
A message is displayed TR
based on which button Fils Oen

was clicked. Custom Dislog UH e Unkionrd

Dialog Results: [Yes! Yes! Yes!

Exit

|9O

Day 5

Using Common Dialogs

Using common dialogs is not quite as simple and easy as using the MessageBox function,
but it's till quite easy. The Microsoft Foundation Classes (MFC) provides several C++
classes for common Windows dialogs. These classes are listed in Table 5.6.

TABLE 5.6. COMMON DIALOG CLASSES.

Class Dialog Type
CFileDialog File selection
CFontDialog Font selection
CColorDialog Color selection
CPageSetupDialog Page setup for printing
CPrintDialog Printing
CFindReplaceDialog Find and Replace

The common dialogs encapsulated in these classes are the standard dialogs that you use
every day in most Windows applications to open and save files, configure printing
options, print, perform find and replace on documents, and so on. In addition to these
choices, a series of OLE common dialog classes provide several common functions to
OLE or ActiveX components and applications.

All these dialogs are used in the same manner, athough the individual properties and
class functions vary according to the dialog functionality. To use one of these dialogs,
you must follow these steps:

1. Declare avariable of the class type.

2. Set any properties that need to be configured before displaying the dialog to the
user.

3. Call the boModal method of the class to display the dialog to the user.

4. Capture the return value of the DoModal method to determine whether the user
clicked the OK or Cancel button.

5. If the user clicks the OK button, read any properties that the user may have set
when using the dialog.

To better understand how this works, you'll add the cFileDialog class to your applica-
tion. To do this, add a function to the clicked message on the File Open button using the
Class Wizard. Edit this function, adding the code in Listing 5.2.

Getting User Feedback—Adding Dialog Boxes to Your Application 91 |

LisTING 5.2. THE OnFileopen FUNCTION.

1: void CDialogsDlg::0nFileopen()

2: {

3: // TODO: Add your control notification handler code here
4:

5: [EEEETTEEEE T rrrrrrr g

6: // MY CODE STARTS HERE

7 [EELETTTEEL i

8:

9: CFileDialog m_ldFile(TRUE);

10:

11: // Show the File open dialog and capture the result
12: if (m_ldFile.DoModal() == IDOK)

13: {

14: // Get the filename selected

15: m_sResults = m_ldFile.GetFileName();
16: // Update the dialog

17: UpdateData(FALSE) ;

18: }

19:
20: [EEEETTEEEE T rrrrrrr g
21: // MY CODE ENDS HERE
22: [EELETTTEEL i
23: }

In this code, the first thing that you do is declare an instance of the cFilebialog class.
This instance is passed TRUE as an argument to the class constructor. This tells the class
that it isa File Open dialog. If you passit FALSE, it displays as a File Save dialog.
There's no real functional difference between these two, only a visual difference. You
can pass many more arguments to the constructor, specifying the file extensions to show,
the default starting file and location, and filters to use when displaying the files. All the
rest of these constructor arguments have default values, so you don’'t have to supply any
of them.

After creating the instance of the File Open dialog, you call its DoModal function. Thisis
amember function of the cbialog ancestor class, and it is available in al dialog win-
dows. The boModal function displays the File Open dialog to the user, as shown in
Figure 5.4. The return value of the boModal function is examined to determine which
button the user clicked. If the user clicks the Open button, the 1Dok value is returned, as
with the MessageBox function. Thisis how you can determine whether your application
needs to take any action on what the user selected with the dialog window.

|92 Day 5
FIGURE 5.4. een HE
.) Lookin |3 0a5 =] M= N
The File Open dial 0g. 1 Debug TEIDas.dsw @] DayBDigepp (8] Stddfn.cpp
s [#]Day5 h |#] Day5DIgh o] Stddfxh
(] Day5.aps |#] DayS.nch] MsaDlg.cpp
o] Day5 v o] Day5 opt I MsaDig h
& DayS.cpp |#] Day5 plg (£] ReadMe.txt
Days.dsp @Daysic |#] Resource h
4 | |
Filename: [MsaDlgh Open |
Files of type: | | el

There are two modes in which a dialog window can be displayed to the
user. The first is as a modal window. A modal window halts all other user
interaction while it is displayed. The user cannot do anything else in the
application until the dialog is closed. A good example of a modal dialog
window is a message box where the user cannot continue working with the
application until she clicks one of the buttons on the message box.

The second mode in which a dialog window can be displayed to the user is
as a modeless window. A modeless window can be open while the user is
doing something else in the application, and it doesn’t prevent the user
from performing other tasks while the dialog is visible. Good examples of a
modeless dialog window are the Find and Find and Replace dialogs in
Microsoft Word. These dialog windows can be open and displayed on the
screen while you are still editing the document that you are searching.

To display the name of the file selected, you set them_sResults variable to the return
value from the GetFileName method of the CFileDialog class. This method returns only
the filename without the directory path or drive name, as shown in Figure 5.5. You can
use other class methods for getting the directory path (GetPathName) or file extension

(GetFileExt).
FiGURrE 5.5. b-4Dialogs
Displaying the selected el] ort, Aety Irore
filename.

LCustom Dialog

gl il

Dislog Results: [MsaDigh

Exit

Getting User Feedback—Adding Dialog Boxes to Your Application 93 |

Creating Your Own Dialog Windows

Now you have an understanding of using standard dialogs. What if you need to create a
custom dialog for your application? This task is fairly smple to do because it is mostly a
combination of the process that you have already used to create and use the main dialog
windows in all your applications and the methods you employed to use the common
dialogs. You have to work through a few additional steps, but they are few and you
should be comfortable with them soon.

Creating the Dialog Window

For the custom dialog that you will add to your application, you will provide the user
with a edit box in which to enter some text and a group of radio buttons from which the
user can select one. When the user clicks the OK button, your application will display
the text entered by the user in the display area of the main application dialog window.
There is another button that the user can, can click to display which one of the radio but-
tons was selected. This exercise enables you to see how you can use custom dialog win-
dows to gather information from the user and how you can read the user’s selections
after the dialog window is closed.

To create a custom dialog for your application, you need to

» Add another dialog to your application resources.
 Design the dialog window layout.
 Declare the base class from which the dialog will be inherited.
* Attach variables to the controls on the dialog.
After doing these things, your custom dialog will be ready for your application. To
accomplish these tasks, follow these steps:
1. Select the Resource View tab in the project workspace pane.
2. Right-click the Dialogs folder, and select Insert Dialog from the pop-up menu.
3. Right-click the new dialog in the resource tree view, and select Properties from the
pop-up menu.
4. Change the object ID for the new dialog to IDD_MESSAGEDLG.

5. When editing the new dialog window, do not delete the OK and Cancel buttons.
Move them to the location shown in Figure 5.6.

|94 Day 5

FlGURE 5 6 . Message and Dption Dialog

Enter s message: [E

The custom dialog
window layout.

~Select an Option
! C Option1 Option3

=

Cancel

 Option 2 € Dption 4

6. Design the rest of the window using the object propertiesin Table 5.7.

TABLE 5.7. THE CUSTOM DIALOG CONTROL PROPERTY SETTINGS.

Object Property Setting

Static Text ID IDC_STATIC
Caption Enter a &message:

Edit Box ID IDC_MESSAGE
Multiline Checked
Auto Vscroll Checked

Group Box ID STATIC
Caption Select an Option

Radio Button 1D IDC_OPTIONA1
Caption &0ption 1
Group Checked

Radio Button ID IDC_OPTION2
Caption O&ption 2

Radio Button ID IDC_OPTION3
Caption Op&tion 3

Radio Button ID IDC_OPTION4
Caption Opt&ion 4

7. After you design the dialog, open the Class Wizard. You see the diadlog in

Figure 5.7.
FIGURE 5.7 e e
IDD_MESSAGEDLG 5i it
The Adding a Class T e A e
anew class for it You can also select an e~
dialog ising clss.

e
@ [Create a new class

€ Select an existing class

Getting User Feedback—Adding Dialog Boxes to Your Application 95 |

8. Leave the selection on this dialog at the default setting of Create a New Class and
click OK. Another dialog appears to allow you to specify the name for the new
class and the base class from which it is inherited.

9. Enter the class name cMsgblg into the Name field, and make sure that the Base
Classis set to chialog, as shown in Figure 5.8.

FIGURE 5.8. New Class
- i Class information
The New Class dialog. N o []
FReane e _ Coreel |
Change.

Base class: m
Dialog ID: IDD_MESSAGEDLG 2

- Automation
' None

" Automation

€ GreatestlEbytpelD: [DayEiMsabla

10. Click OK, leaving the other settings on this dialog at their defaults.

11. Once the Class Wizard opens, attach the variables to the controls on the new dia-
log as specified in Table 5.8.

TABLE 5.8. CONTROL VARIABLES.

Object Name Category Type
IDC_MESSAGE m_sMessage Value CString
IDC_OPTION1 m_iOption Vaue int

You should notice two things in the way that you configured the control properties and
variables in the custom dialog. First, you should have selected the Group property on
only the first of the radio buttons. This designates that all the radio buttons following
that one belong to a single group, where only one of the radio buttons may be selected at
atime. If you select the Group property on all the radio buttons, they are al independent
of each other, allowing you to select al the buttons simultaneously. This property makes
them behave somewhat like check boxes, but the primary difference is that the user
would find it difficult to uncheck one of these controls due to the default behavior where
one radio button in each group is aways checked. The other differenceisin their
appearance; the radio buttons have round selection areas instead of the square areas of
check boxes.

|96

Day 5

The other thing to notice is that you declared a single integer variable for the one radio
button with the Group property checked. This variable value is controlled by which radio
button is selected. The first radio button causes this variable to have a value of 0, the
second sets this variable to 1, and so on. Likewise, if you want to automatically select a
particular radio button, you can set this variable to one less than the sequence number of
the radio button in the group of radio buttons.

Nﬂtﬂ Because this is the C++ programming language, all numbering begins with
. 0, not 1. Therefore, the first position in an array or a set of controls is posi-

tion 0. The second position is position 1. The third position is number 2, and
so on.

You have now finished al that you need to do to the second dialog window to make it
ready for use. You would expect to need an UpdateData or two in the code behind the
dialog, but because you didn’'t remove the OK and Cancel buttons from the dialog, the
UpdateData cal isaready performed when the user clicks the OK button. As a resullt,
you don’t have to touch any code in this second dialog, only in the first dialog.

Using the Dialog in Your Application

Now that your custom dialog is ready for your application, using it is similar to the way
that you use the common dialogs that are built into Windows. First, you have to declare
an instance of the custom dialog class, which calls the class constructor and creates an
instance of the class. Next, you call the dialog’s DoModal method and capture the return
value of that function. Finally, you read the values of the variables that you associated
with the controls on the dialog.

Creating the Dialog Instance

Before you can use your custom dialog in your application, you have to make your main
dialog window aware of the custom dialog, its variables, and methods and how your
main dialog can interact with your custom dialog. You accomplish this by including the
header file for your custom dialog in the main source file for your main application dia-
log. Follow these steps:

1. Select the File View tab on the workspace pane.

2. Expand the Dialog Files and Source Files folders.

3. Double-click the bialogsD1g.cpp file. This opens the source code file for the
main application dialog in the editing area of Developer Studio.

Getting User Feedback—Adding Dialog Boxes to Your Application 97 |

4. Scroll to the top of the source code file where the #include statements are located,
and add an include for the MsgD1g. h file before the DialogsDlg.h file, asin
Listing 5.3.

LisTING 5.3. THE HEADER FILE INCLUDES.

// DialogsDlg.cpp : implementation file
/]

#include "stdafx.h"
#include "Dialogs.h"
#include "MsgDlg.h"
#include "DialogsDlg.h"

©oONOODWN-=

#ifdef _DEBUG

10: #define new DEBUG_NEW

11: #undef THIS_FILE

12: static char THIS_FILE[] = _ FILE_ ;

13: #endif

14:
S/ i rrre
16: // CAboutDlg dialog used for App About

It is important that you place the #include statement for the MsgD1g. h file before the
#include statement for the DialogsDlg.h file. The reason isthat you will be adding a
variable declaration for your custom dialog to the main dialog class in the main dialog's
header file. If the MsgD1g.h header file isincluded after the header file for the main dia-
log, the compiler will complain loudly and will refuse to compile your application until
you move the #include of the MsgD1g.h file above the #include of the DialogsDlg.h
file

Nﬂtﬂ The #include statement is what is known as a compiler directive in the C
and C++ programming languages. What it tells the compiler to do is read
' the contents of the file named into the source code that is being compiled.
It is used to separate class, structure, and function declarations into a file
that can be included in any source code that needs to be aware of the infor-

mation in the header file. For more information on how the #include state-
ments work, and why you use them, see Appendix A, “C++ Review.”

|98

Day 5

Now that you have made your main application dialog aware of the custom dialog that

you created, you need to declare a variable of your custom dialog. Follow these steps:
1. Select the Class View tab in the workspace pane.

Right-click the cbialogsD1g classto bring up the pop-up menu.

Select Add Member Variable from the pop-up menu.

Specify the Variable Type as cMsgb1g, the Variable Name as m_dMsgblg, and the
Access as Private. Click OK to add the variable to your main dialog.

Ea N SN

If you expand the cDialogsDlg classin the tree view, you should see the instance of
your custom dialog as a member of the main application dialog class. This means that
you are ready to begin using the custom dialog in your application.

Calling the Dialog and Reading the Variables

Now that you have added your custom dialog to the main application dialog as a variable
that is aways available, not just as alocal variable available only within a single func-
tion (as with the cFileDialog variable), you can add code to use the dialog. To do this,
follow these steps:

1. Open the Class Wizard and add a function to the clicked event message of the
IDC_BCUSTOMDIALOG button.

2. Add afunction for the clicked event message (BN_CLICKED) for the 1DC_
BWHICHOPTION button.

3. Edit the onBcustomdialog function, adding the code in Listing 5.4.

LiISTING 5.4. THE OnBcustomdialog FUNCTION.

1: void CDialogsDlg: :0OnBcustomdialog()

2: {

3: // TODO: Add your control notification handler code here
4:

5: [EEEETTTEEL i

6: // MY CODE STARTS HERE

7 [EELETTTEEL i

8:

9: // Show the message dialog and capture the result
10: if (m_dMsgDlg.DoModal () == IDOK)

11: {

12: // The user checked OK, display the message the
13: // user typed in on the message dialog

14: m_sResults = m_dMsgDlg.m_sMessage;

15: // Update the dialog

16: UpdateData(FALSE) ;

17: // Enable the Which Option button

Getting User Feedback—Adding Dialog Boxes to Your Application 99 |

18: m_cWhichOption.EnableWindow(TRUE) ;
19: }

20:

21: THETELEEETEr ity

22: // MY CODE ENDS HERE

23: LEEEETTEEEE i

24: }

4. Edit the onBwhichoption function, adding the code in Listing 5.5.

LisTING 5.5. THE OnBwhichoption FUNCTION.

1: void CDialogsDlg: :0nBwhichoption()

2: {

3: // TODO: Add your control notification handler code here

4:

5: [EELETTTEEI i

6: // MY CODE STARTS HERE

7: [IEETTTELT T

8:

9: // Determine which radio button was selected, and display
10: // a message for the user to show which one was selected.
11: switch(m_dMsgDlg.m_iOption)

12: {

13: case 0: // Was it the first radio button?

14: m_sResults = "The first option was selected.";
15: break;

16: case 1: // Was it the second radio button?

17: m_sResults = "The second option was selected.";
18: break;

19: case 2: // Was it the third radio button?

20: m_sResults = "The third option was selected.";
21: break;

22: case 3: // Was it the fourth radio button?

23: m_sResults = "The fourth option was selected.";
24: break;

25: default: // Were none of the radio buttons selected?
26: m_sResults = "No option was selected.";

27: break;

28: }

29:

30: // Update the dialog

31: UpdateData(FALSE) ;

32:

33: [EEEETTTEEE i

34: // MY CODE ENDS HERE

35: [EEEETTTEEE i

36:

| 100

Day 5

In the first listing, you called the boModal method of the custom dialog, which displayed
the dialog for the user, waiting for the user to click one of the two buttons on the dialog,
asin Figure 5.9. If the user clicks the OK button, you copy the message the user typed in
the custom diaog into the edit box variable to be displayed to the user. After updating
the dialog display with the new variable values, you enable the Which Option button, as
shown in Figure 5.10. If the user clicks the Cancel button, none of thisis done. The dia-
log display is not changed.

FlGURE 5 9 . Message and Dption Dialog
. Enter 8 message: [This is a test message
The custom dialog
allows the user to
enter a message. Select an Option
€ Option 1 {plion 3
_DK
 Option 2 € Dption 4 — |
Ficure 5.10. TS
The n,.e$age entefed Yes, Mo, Cancel Abort, Retry, lgnore

on the custom dialog is File Dpen

displayed for the user. et

Dialog Results: |This is a test message

Exit

When the user clicks the Which Option button, you pass the radio button variable on the
custom dialog to a switch statement, selecting a message that tells the user which radio
button was selected, as shown in Figure 5.11. Notice that in both of these functions, you
can access the control variables on the custom dialog directly from the main dialog. That
is because the Class Wizard automatically declares the variables associated with controls
as public, making them completely accessible outside the dialog class. You can change
this by placing aprivate: access specifier where the public: access specifier is. You
don’t want to place anything after the //{{AFX_DATA line, where the variables are
declared, because the variables are declared within an MFC Class Wizard macro, which
enables the Devel oper Studio wizards to locate and manipulate the variables as needed
without interfering with the Visual C++ compiler when you compile your application.

Getting User Feedback—Adding Dialog Boxes to Your Application

101 |

FIGURE 5.11. E 4Dialogs =
The option selected on Yes, Mo, Cancel e an
the custom dialog is i Open

displayed for the user. DBy

Dialog Resuits: [The thid option was selected

Exit

Summary

Today you learned how you can use additional dialog windows in your application to
provide interactive experience for your users. You learned about the options available to
you with the simple MessageBox function, how you can provide your users a variety of
button combinations, and how you can determine which button the user selects. You saw
how you can use this information to determine which path to take in your application
logic.

You also learned about some of the common dialogs that are built into the Windows
operating systems and how they have been encapsulated into C++ classesin the MFC
class library. You learned how you can use the File Open dialog to present the user with
the standard file selection dialog and how you can determine which file the user selected.

Finally, you learned how you can design your own additional dialogs that you can add to
your applications to get information from the user and how you can capture that informa-
tion and use it in your application.

Q&A

Q Therewas no code added to the custom dialog. Do | have to design my custom
dialogs thisway, or can | add code to them?

A The custom dialog windows are no different from the main dialog windows that
you have been using in all your applications so far. If you need to control the
behavior of the dialog on an interactive basis, you can put as much code into the
dialog as you need. You didn’t add any code to the custom dialog today because
there wasn’t any need to add any code. The only functionality that the dialog
needed to perform was calling the updateData function before closing, which is
automatically done by the onok function. Because you did not delete the OK and
Cancel buttons, you already had this functionality built in.

| 102

Day 5

Q

A

LIsTING 5.

What happensif | specify two or more button combinations in the same
MessageBox function call?

Nothing happens. Your application compiles just fine, but when the MessageBox
function is called, nothing happens. The message box does not open, and the user
does not get to answer the question you are presenting.

How can | integrate the File Open dialog into my application where it opens
in a specific directory that | specify?

The cFileDialog class has a public property called m_ofn. This property is a struc-
ture that contains numerous attributes of the File Open dialog, including the initial
directory. This structure is defined as the OPENFILENAME structure in Listing 5.6.

6. THE OPENFILENAME STRUCTURE.

1:
2
3
4:
5:
6-
7
8

©

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

typedef struct tagOFN { // ofn

DWORD 1StructSize;
HWND hwndOwner;
HINSTANCE hInstance;
LPCTSTR lpstrFilter;
LPTSTR 1pstrCustomFilter;
DWORD nMaxCustFilter;
DWORD nFilterIndex;
LPTSTR lpstrFile;

DWORD nMaxFile;

LPTSTR lpstrFileTitle;
DWORD nMaxFileTitle;
LPCTSTR IpstriInitialDir;
LPCTSTR lpstrTitle;
DWORD Flags;

WORD nFileOffset;
WORD nFileExtension;
LPCTSTR lpstrDefExt;
DWORD 1CustData;
LPOFNHOOKPROC 1pfnHook;
LPCTSTR 1pTemplateName;

} OPENFILENAME;

You can set any of these attributes before calling the boModal class method to con-
trol the behavior of the File Open dialog. For instance, if you set the starting direc-
tory to C: \Temp before calling the bomModal method, asin Listing 5.7, the File
Open dialog opens in that directory.

Getting User Feedback—Adding Dialog Boxes to Your Application

103 |

LISTING 5.7. THE REVISED OnFileopen FUNCTION.

1:
2
3
4:
5:
6.
7
8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

void CDialogsDlg::0OnFileopen()

A

// TODO: Add your control notification handler code here

LIEETETEE ity
// MY CODE STARTS HERE

TIEETEETEET i
CFileDialog m_ldFile(TRUE);

// Initialize the starting directory
m_1ldFile.m_ofn.lpstrInitialDir = "C:\\Temp\\";

// Show the File open dialog and capture the result
if (m_ldFile.DoModal() == IDOK)

{
// Get the filename selected
m_sResults = m_ldFile.GetFileName();
// Update the dialog
UpdateData(FALSE) ;

}

LIEETETEE ity
// MY CODE ENDS HERE

THETHEEE LTy

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,

“Answers.”

Quiz
1. What are the possible return codes that your application might receive from the

MessageBox function call when you specify the MB_RETRYCANCEL button combina-

tion?

2. What are the common dialogs that are built into the Windows operating systems

that are defined as MFC classes?

104 Day 5

3. What is the difference between amodal dialog and a modeless dialog?

4. How can you display aFile Save dialog for the user instead of the File Open dia-
log that you did have in your application?

5. Why did you not need to create any functions and add any code to your custom
dialog?

Exercises
1. Modify your application so that it includes the directory with the filename in the
application. (Hint: The GetFileName function returns the path and filename that
was selected in the File Open dialog.)
2. Add abutton on the custom dialog that calls the MessageBox function with aYes or
No selection. Pass the result back to the main application dialog.

WEEK 1

DAY 6

Creating Menus for Your
Application

Most Windows applications use pull-down menus to provide the user a number
of functions without having to provide buttons on the window. This enables
you to provide your users alarge amount of functionality while preserving most
of your valuable screen real estate for other stuff.

Today you will learn

- How to create menus for your Visual C++ application
- How to attach a menu to your application’s main dialog window
- How to call application functions from a menu

- How to create a pop-up menu that can be triggered with the right mouse
button

- How to set up accelerator keys for keyboard shortcuts to menus

106 Day 6

Menus

Back when the first computer terminals were introduced and users began using computer
software, even on large mainframe systems software devel opers found the need to pro-
vide the users with some sort of menu of the functions that the computer could perform.
These early menus were crude by today’s standards and were difficult to use and navi-
gate. Menus have progressed since then; they’ ve become standardized in how they are
used and easy to learn.

The software designers that first came up with the idea of a graphical user interface
(GUI) planned to make computer systems and applications easier to learn by making
everything behave in a consistent manner. Menus used for selecting application function-
ality were one part of the GUI design that could be more easily learned if they all
worked the same. As aresult, a number of standard menu styles were developed.

Menu Styles

The first menu styles that were standardized are the pull-down and cascading menus.
These are the menus with the categories all listed in arow across the top of the applica
tion window. If you select one of the categories, a menu drops down below the category,
with a number of menu entries that can be selected to trigger various functionsin the
application.

A variation on this menu style is the cascading menu, which has another submenu that
opens to the right of a menu entry. This submenu is similar to the pull-down menu, with
anumber of entries that trigger application functions. The menu designers placed no
limit on how many cascading menus can be strung together, but it quickly became clear
to most developers that more than two cascading levelsis alittle unwieldy.

Eventually, athird style of menu was developed, called a pop-up or context menu—a
menu that pops up in the middle of the application area, floating freely above the appli-
cation work area. Thisis also called a context menu because the specific menu that pops
up is dependent on the selected object or workspace area where the cursor or mouse
pointer is.

Keyboard Shortcut-Enabling Menus

When users began working with keyboard-intensive applications, such as word proces-
sors, it was discovered that taking your hands off the keyboard to use the mouse to make
menu selections dramatically reduced productivity. Software designers decided that they
needed to add keyboard shortcuts for the various menu entries (especially the most fre-
guently used menu options). For this reason, keyboard shortcuts (accelerators) and
hotkeys were added.

Creating Menus for Your Applications

107 |

Hotkeys are letters that are underlined in each menu entry. If you press the Alt key with
the underlined letter, you can select the menu entry that contains the underlined letter.
Thisis a means of navigating application menus without taking your hands off the key-
board.

For more advanced users, application designers added keyboard shortcuts, or accelera-
tors. An accelerator is a single key combination that you can press to trigger an applica
tion function instead of having to navigate through the application menus. This allows
advanced users to avoid the overhead of using menus for the most common application
functions. To enable users to learn what accelerators are available in an application, the
key combination is placed on the menu entry that it can be used to replace, positioned at
the right edge of the menu window.

Menu Standards and Conventions

Although there are no standards in how menus are designed, there are a number of con-
ventions for how they are designed and organized. All these conventions are available in
Windows Interface Guidelines for Software Design, published by Microsoft for use by
Windows software developers. The purpose of this publication is to facilitate the devel-
opment of consistent application behaviors, which will help accomplish one of the pri-
mary goals behind the development of GUI systems. The conventions are as follows:

- Use single-word menu categories across the top menu bar. A two-word category
can easily be mistaken for two one-word categories.

- The File menu is located as the first menu on the left. It contains al file-oriented
functions (such as New, Open, Save, Print, and so on), as well as the Exit function.
The Exit option is located at the bottom of the menu, separated from the rest of the
menu entries by a border.

- The Edit menu is next to the File menu. The Edit menu contains all editing func-
tions such as Copy, Cut, Paste, Undo, Redo, and so on.

- The View menu contains menu entries that control and affect the appearance of the
application work area.

- The Window menu is used in Multiple Document Interface (MDI) style applica
tions. This has functions for controlling the child windows, selecting the current
window, and altering the layout. This menu is the next-to-last menu from the right
end of the menu bar.

- The Help menu is the final menu on the right end of the menu bar. It contains
menu entries that provide instruction or documentation on the application. If the
application has any copyrighted or corporate information that needs to be available
for viewing, this should be located as the final entry on this menu, labeled About
<application name>.

108 Day 6

Designing Menus

Menus are defined as a resource in Visual C++ applications. Because they are aresource,
you can design menus in the Visual C++ editor through the Resource View tab on the
workspace pane. When you first create a dialog-style application, there won’t be a menu
folder in the resource tree, but you can change that.

Nﬂtﬂ Various aspects of Windows applications are considered to be resources,
including window layouts, menus, toolbars, images, text strings, accelera-
' tors, and so on. All these features are organized in what is known as a
resource file, which is used by the Visual C++ compiler to create these
objects from their definitions. The resource file is a text file with an .rc file-

name extension and contains a textual description of all the various objects,
including IDs, captions, dimensions, and so on.

Some resources, such as images and sounds, cannot be described in text, but
have to be stored in a binary format. These resources are stored in individ-
ual files, with the filenames and locations included in the resource file.

Creating a Menu

Creating a menu is not difficult. You will follow several steps:

1. Create the application that will house the menu.

2. Add a menu resource to your project.

3. Customize the menu resource to include the menu items for your application.
4. Add functionality to your menu by connecting routines to your menu items.

Creating the Application
For the example in this chapter, you will create a simple dialog-style application that
contains a single button and a menu. To create your application, do the following:
1. Create anew MFC AppWizard application, naming the project Menus.
2. Select the default AppWizard settings on all screens. For the dialog title, enter
Menus.
3. When the AppWizard has generated your application shell, delete all the controls
from the dialog.
4. Add asingle button to the dialog. Name the button 1bc_EXIT, and specify the cap-
tion as E&xit.

Creating Menus for Your Applications 109 |

5. Add afunction to the button using the Class Wizard. Change the code in this func-
tion to call onok. Remember, the onok function causes the application to close.

Nl]tﬂ If you don’t remember how to add the 0nOK function, review the section
. “Closing the Application” on Day 2, “Using Controls in Your Application,”

for an example.

Adding and Customizing a Menu

Now that you have the basic application built, it's time to start creating a menu for the
application. To create a menu, you will first add a menu resource to your project. When
you add the resource, Visual C++ automatically invokes the Menu Designer, which
allows you to customize the menu. The following steps show you how to add and cus-
tomize a menu:

1. Select the Resource View tab in the workspace pane.

2. Select the project resources folder at the top of the tree; in your example, thisis
Menus.

3. Right-click the mouse to bring up a pop-up menu.
4. Select Insert from the pop-up menu.

5. Inthe Insert Resource dialog that opens, select Menu from the list of available
resources, asin Figure 6.1. Click the New button.

FIGURE 6.1. Insert Resource [21x]
Resource type: New
The Insert Resource '§ pys— —
. &3 Bimap Ml
dialog. B Cusor Costom.
Dialog
@ leon Cancel

B
b Sting Table
38 Toobar
Wersion

6. The Menu Designer opensin the editing area of Developer Studio. The first menu
spot is highlighted, as shown in Figure 6.2.

110 Day 6

F|GURE 6_2 . *% Menus - Microsoft Yisual C++ - [Menus.ic - IDR_MENU1 (Menu]]
=| File Edit ¥iew Insert Project Build Tools Window Help =121 x|
An empty menu. — Ea . .,
D EEB| B - - DR s =
CMenusDlg = 4 class members) =l[& CMenusDIg =R “ = i N Bl
= | ==
-4 Menus resources * oo
(1 Dialag
[leon
B3 Menu
£4[IDR_MENUT]
(L1 Shing Table
(1 Version
578 Class. Reso... | [E] Filevi

lelx

| A[*Th Build {Debug j Findin Files1) Find in Files2 A| 4] |
Ready

=
1 J
o

4

At this point, you have created the menu resource and you are ready to customize it by
adding menu items. To add a menu item, follow these steps:

1. Right-click the mouse on the highlighted area and select Properties from the pop-
up menu.

2. Enter the menu item’s Caption. For this example, enter &File and close the
Properties dialog.

Nﬂtﬂ You are in the menu Properties dialog to specify the text that the user will
_ see on the menu bar while the application is running. Because the Pop-up
check box is checked (by default on any menu items on the top-level menu

bar), this menu element doesn’t trigger any application functionality and
thus doesn’t need to have an object ID assigned to it.

3. Thefirst drop-down menu location is highlighted. To add this menu item, right-
click the mouse again on the highlighted area and select Properties from the pop-
up menu.

4. Enter an ID and caption for the menu item. For this example, enter
IDM_FILE_HELLO for the ID and &Hello for the Caption. Close the dialog.

Creating Menus for Your Applications 111 |

Nﬂtﬂ This time in the menu Properties dialog, you not only specify the text that
) the user will see when the menu is opened from the menu bar, but you also
' specify the object ID that will be used in the event message handler to
determine what function receives each of the menu events.

At this point you have created a menu with a single menu item. You can continue to add
menu items by repeating steps 3 and 4 of the preceding list for each of the highlighted
areas. You can also add separators onto the menu. A separator is adividing line that runs
across the menu to separate two functional areas of menu selections. To add a separator,
perform the following steps:

FIGURE 63 Menu Item Propertiss
2 T General | Extended Styles |
Specifying a menu sep- o] =] covion. |
arator. W Sepasiod T Fopop T lasie Bl ~

2| Checed 1= Gizped) I HED
Promet |

1. Select the highlighted area where you want the separator to be placed. In the exam-
ple you created, the second drop-down menu location should be highlighted. Open
the properties dialog as you did in step 3 in the preceding list. To add a separator,
simply select the Separator option, as shown in Figure 6.3, and close the dialog.

To complete your sample program, follow the same steps | just described to add an Exit
item to your File menu and a second menu called Help with one menu item called
About. The following steps, which resemble the preceding list of steps, walk you
through adding these additional items:

1. Open the properties dialog for the third drop-down location and specify the ID as
IDM_FILE_EXIT and the caption as E&xit. Close the dialog.

2. Select the second top-level menu location and open the properties dialog. Specify
the caption as &Help and close the dialog.

3. Open the properties dialog for the first drop-down location on the second top-level
menu. Specify the ID as ID_HELP_ABOUT and the caption as &About. Close the dia
log.

At this point, your menu is created; however, it is not attached to your application.

| 112

Day 6

FIGURE 6.4.

Attaching the menu to
the dialog window. Fon name: MS Sans Seif

Attaching the Menu to Your Dialog Window

You now have a menu that you can use in your application. If you compile and run
your application at this point, however, the menu doesn’t appear. You still need to
attach the menu to your dialog window. You can attach a menu by following these
steps:

1. Open the diaog painter by double-clicking the primary application dialog in
the Dialog folder in the Workspace pane. For this example, double-click on
IDD_MENUS_DIALOG.

2. Select the entire dialog window, making sure that no controls are selected, and
open the dialog's properties dialog. (What you are doing is opening the prop-
erties for the dialog window itself, not for any of the controls that might be on
the window.)

3. Select the menu you have designed from the Menu drop-down list box, as
shown in Figure 6.4.

40 R Generd | Stles | MoreSiyles | Etended Sty |

ID: [IDD_DAYE_DIALOG |Eaption: [Menus

Font size: 8

Fort. | ®Pos: [0 YPos [0 | Clows e

If you compile and run your application, you find that the menu is attached to the appli-
cation dialog, as shown in Figure 6.5. You can select menu entries as you do with any
other Windows application—with one small difference. At this point, when you select
one of the menu entries, nothing happens. You still need to attach functionality to your
menu.

FIGURE 6.5. 48 Menus 5

Help

The menu is now part Hello
of the application dia-

Attaching Functionality to Menu Entries

Now that you have a menu as part of your application, it sure would be nice if it actually
did something. Well, before your menu can do anything, you have to tell it what to do,
just like everything else in your Visual C++ applications. To attach some functionality to
your menu, follow these steps:

Creating Menus for Your Applications 113 |

FIGURE 66 Adding a Class

IDR_MENUT is & new resource. Since itis a

The menu is now part menu resource you may want to select an
existing view class to associate it with. You can e
H H also create a new class for it
of the application.

" Create a new class

(% Select an existing class

1. Open the Menu Designer to your menu.
2. Open the Class Wizard from the View menu.

3. TheAdding a Class dialog is displayed for you, just as it was yesterday when you
added a second dialog. Leave the dialog selection on Select an Existing Class and
click OK (see Figure 6.6).

Yesterday, when you were adding a second dialog window to your application, you
needed to create a new C++ class for that window. For today’s menu, you want to
attach it to the existing C++ class for the dialog window to which the menu is
attached.

4. Choose the C++ class of the primary dialog window from the list of available
classes in the Select Class dialog. For this example, select cMenusD1g, as shown in
Figure 6.7. Thistells Visual C++ that al the functionality that you will call from
the various menu entries is part of the same dialog class of the window that it's
attached to.

FIGURE 67 Select Class

The Menu resource IDR_MENUT

o iz not associated with a class. To
The Select Class dia i e ——
list below or bring a new class inta
| 0d. Classwizard using Create Class.

Class ist:

For the menu elements that you want to use to trigger new functions in your application,
you can add event-handler functions through the Class Wizard, just as you can with con-
trols that you place on the dialog window.

For this example, add a function for the 1DM_FILE_HELLO object (the Hello menu) on the
COMMAND event message. Name the function onHello and add the code in Listing 6.1 to
the function.

1114 Day 6

LisTING 6.1. THE ONHELLO FUNCTION.

1: void CMenusDlg::0nHello()
2: {
3: // TODO: Add your command handler code here
4:
5: TIEETEETEET iy
6: // MY CODE STARTS HERE
7: TIEETLTETT i
8:
9: // Display a message for the user
10: MessageBox("Hello there", "Hello");
11:
12: FIEETEEEEEEEE i iy
13: // MY CODE ENDS HERE
14: TIEETEETEET iy
15: }
N t . The COMMAND event message is the message that is passed to the application
ote window when a menu entry is selected. Placing a function on this event
) message has the same effect as placing a function on the menu entry selec-
tion

You can call existing event handlers from menu elements by adding the existing function
to the menu COMMAND event. You can do this by adding a function to the menu object ID
and then specifying the existing function name instead of accepting the suggested func-
tion name.

To reuse the onexit function for the Exit menu element, reopen the Menu Designer and
then reopen the Class Wizard. When the Class Wizard is displayed, add a function for
the IDM_FILE_EXIT object on the COMMAND event message. Do not accept the default
function name presented to you by the Class Wizard. Enter the function name onExit.
This automatically attaches the existing onExit function that you created with your Exit
button earlier.

To round out your exampl€e's functionality, add a function to the 1D_HELP_ABOUT object
on the COMMAND event message. Edit the function asin Listing 6.2.

LISTING 6.2. THE ONHELPABOUT FUNCTION.

: void CMenusD1lg::0nHelpAbout ()

1
2:
3: // TODO: Add your command handler code here
4:

Creating Menus for Your Applications 115 |

5: [IELEEEIEErrr it
6: // MY CODE STARTS HERE
7: [IELEEEILErr el
8:

9: // Declare an instance of the About window
10: CAboutDlg dlgAbout;

11:

12: // Show the About window
13: dlgAbout.DoModal();

14:

15: LEEETTEELELETE iy
16: // MY CODE ENDS HERE

17: NNy,
18: }

You attached the File| Exit menu entry to an existing function that closes the application.
On the File| Hello, you added a new function that called the MessageBox function to dis-
play a simple message to the user. With Help | About, you added another function that
declared an instance of the About dialog window and called its boModal method.

If you compile and run your application, you find that all the menu entries are working.
If you select Help | About, as shown in Figure 6.8, you see the application About dialog
(see Figure 6.9). If you select File|Hello, you see aHello there message box, as shown
in Figure 6.10. And if you select File| Exit, your application closes.

FIGURE 6.8. E
The Help | About
menu entry.

FIGURE 6.9. About Menus
H Menus Version 1.0

The AbOUt dlalog' Copyright [C] 1998

FIGURE 6.10.

Hello there

The Hello there mes-
sage box.

1116 Day 6

Creating Pop-Up Menus

Most Windows applications have what are called either pop-up or context menus, which
are triggered by the user right-clicking an object. These are called pop-up menus because
they pop up in the middle of the application area, not attached to a menu bar, the window
frame, or anything else on the computer screen (not counting the mouse pointer). These
menus are often referred to as context menus because the contents of a menu depend on
the context in which it is opened; the elements available on the menu depend on what
objects are currently selected in the application or what the mouse pointer is positioned
over.

To provide a pop-up menu in your application, you have two approaches available. You
can either design a menu specifically for use as a pop-up menu, or you can use one of
the pull-down menus from the primary menu that you have already designed. If you
design a menu specifically for use as a pop-up menu, you will need to skip the top-level,
menu bar element by placing a space or some other text in the caption, knowing that it
will not be seen. You will see how this works when you build a custom menu specifical-
ly for use as a pop-up menu on Day 11, “Creating Multiple Document Interface
Applications,” in the section “ Adding a Context Menu.”

Every drop-down portion of a menu can also be used as a pop-up menu. To use it in this
way, you must get a handle to the submenu (the drop-down menu) and then call the
TrackPopupMenu function on the submenu. The rest of the pop-up menu functionality is
aready covered in the other menu building and coding that you have aready done. To
add a pop-up menu to your application, follow these steps:

1. Using the Class Wizard, add a function for the wM_CONTEXTMENU event message in
your dialog window.

Nﬂtﬂ There are two dialog event messages that you can use to trigger your con-

) text menu. The event that you’d expect to use is the WM_RBUTTONDOWN event,
' which is triggered by the user right-clicking. The other event that can (and
should) be used is the WM_CONTEXTMENU event, which is intended for use
specifically to trigger a context menu. This event is triggered by a couple
user actions: One of these is the release of the right mouse button, and
another is the pressing of the context menu button on one of the newer
Windows-enabled keyboards.

2. Edit the function, adding the code in Listing 6.3.

Creating Menus for Your Applications 117 |

LiSTING 6.3. THE ONCONTEXTMENU FUNCTION.

1: void CMenusDlg:: OnContextMenu(CWnd* pWnd, CPoint point)
2: {

3: // TODO: Add your message handler code here

4:

5: FIEETEEEEEET iy

6: // MY CODE STARTS HERE

7 TIEETEEEELETE iy

8:

9: // Declare local variables

10: CMenu *m_1Menu; // A pointer to the menu

11: CPoint m_pPoint; // A copy of the mouse position
12:

13: // Copy the mouse position to a local variable

14: m_pPoint = point;

15: // Convert the position to a screen position

16: ClientToScreen(&m_pPoint);

17: // Get a pointer to the window menu

18: m_1Menu - GetMenu();

19: // Get a pointer to the first submenu
20: m_1Menu = m_lMenu->GetSubMenu(0);
21: // Show the Popup Menu
22: m_1Menu->TrackPopupMenu (TPM_CENTERALIGN + TPM_LEFTBUTTON,
23: m_pPoint.x, m_pPoint.y, this, NULL);
24:
25: TIEETEEEETE iy
26: // MY CODE ENDS HERE
27: FIEETEEELEETE i riny
28: }

In Listing 6.3, the first thing that you did was make a copy of the mouse position. This
mouse position is arelative position within the window area. It must be converted to an
absolute position on the entire screen area for displaying the pop-up menu. If you don’t
convert the position coordinates, you can't predict where your pop-up menu will appear.

After you convert the position to an absolute position, you get a pointer to the window
menu. This pointer should always be alocal pointer within the function where you are
going to use it because the location of the menu might change as the application runs.
From the menu pointer, you next get a pointer to the first drop-down menu (submenu
numbering begins with 0O, like just about everything else in C/C++). After you have a
pointer to the submenu, you can treat it as aregular cMenu class instance.

The fina piecein this puzzle is the call to the cMenu member function TrackPopupMenu.
This function takes five arguments and uses them to determine where and how to show

| 118

Day 6

the pop-up menu. The first argument is a combination of two flags. The first flag,
TPM_CENTERALIGN, centers the pop-up menu on the mouse point. You can also use
TPM_LEFTALIGN Or TPM_RIGHTALIGN instead. These flags line up the left or right edge of
the pop-up menu with the mouse position. The second part of this flag combination is
TPM_LEFTBUTTON, Which makes the pop-up menu trigger from the left mouse button. You
can also use TPM_RIGHTBUTTON to make the menu trigger from the right mouse button.

The second and third arguments to the TrackPopupMenu function specify the screen posi-
tion for the pop-up menu. Thisis the absolute position on the screen, not a relative posi-
tion within the window area. The fourth argument is a pointer to the window that
receives the menu command messages. The final argument is a rectangle that the user
can click without closing the pop-up menu. By passing NULL, You specify that if the user
clicks outside the pop-up menu, the menu closes. This code enables you to include a
pop-up menu in your application, as shown in Figure 6.11.

FIGURE 6.11. s
The pop-up menu in

action. —
Hello Exit

Exit

Creating a Menu with Accelerators

One of the original keyboard shortcuts for selecting menu entries were accelerator keys.
As mentioned earlier in the chapter, accelerator keys are specific key combinations, usu-
ally the Ctrl key combined with another key, or function keys, that are unique within the
entire application. Each of these key combinations triggers one menu event function.

The way that accelerator keys work is similar to the way menus work. They are aso an
application resource that is defined in atable in the resource tab of the workspace pane.
Each table entry has an object ID and a key code combination. After you define the
accelerators, you can attach functionality to the object IDs. You can also assigh accelera-
tor entries the same object ID as the corresponding menu entry so that you have to
define only a single entry in the application message map.

After you define all your accelerator keys, you can add the key combination to the menu
entry so that the user will know about the accelerator key combination. Add \t to the
end of the menu entry caption, followed by the key combination. The \t isreplaced in
the menu display by atab, which separates the menu caption from the accelerator key
combination.

Creating Menus for Your Applications 119 |

Unfortunately, accelerator keys don’'t work in dial og-style windows, so you cannot add
them to today’s application. You will learn how to attach accelerator keysto menusin a
few days when you learn about single and multi-document interface style applications.

Summary

Today you learned about menus in Visual C++ applications. You learned how to use the
toolsin Visual C++ to create a menu for use in your application and then how to attach
the menu to a window in your application. After you had the menu attached to your win-
dow, you learned how to attach functionality to the various menu entries. Later in the
day, you learned how you can use a portion of your menu as a pop-up, or context, menu.
Finally, you learned how accelerator keys are added to most applications.

Q&A
Q

O

Do | have to name my menu items the same names everyone else uses?

For example, alot of applications use File and Help. Can | hame my menus
something else?

You can name your top-level menus anything you want. However, there are ac-
cepted menu name conventions that place all file-oriented functionality under a
menu labeled File and all help-related functionality under a menu labeled Help. If
you have a menu with entries such as Broccoli, Corn, and Carrots, you will proba-
bly want to call the menu Vegetables, although an equally valid label would be
Food or Plants. In general, if you want to make your application easy for your
usersto learn, you will want to use menu labels that make sense for the entries o
n the pull-down portion of the menu.

Why can’t | specify a single character as an accelerator key?

The single character would trigger the wu_KEY messages, not the menu messages.
When the designers of Windows were deciding how accelerator keys would work,
they decided that single-character keys would most likely be input to the active
application. If they had allowed single-character accelerators, Windows wouldn’t
be able to determine whether the character was input or a shortcut. By requiring a
key combination (with the exception of function keys), the designers ensured that
Windows won't have to make this determination.

| 120

Day 6

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions are provided in Appendix B, “Answers.”

Quiz
1. What event message does a menu selection send to the window message queue?
How do you attach a menu to a dialog window?

N

3. Which existing class do you specify for handling event messages for the menu?
4. What event message should a pop-up menu be triggered by?

Exercises

1. Add a button to the main window and have it call the same function as the Hello
menu entry.

2. Add a pop-up menu to your application that uses the Help drop-down menu as the
pop-up menu.

WEEK 1

DAY 7

Working with Text
and Fonts

In most Windows applications, you don’t need to worry about specifying fonts,
much less their weight, height, and so on. If you don't specify the font to be
used, Windows supplies a default font for your application. If you do need to
use a particular font, you can specify afont to use for a particular dialog win-
dow through the dialog properties. Sometimes, however, you want or need to
control the font used in your application. You might need to change the font
being used or alow the user to select afont to use in a particular instance. It is
for those circumstances that you will learn how to change and list fonts today.
Among the things that you will learn are

» How to build alist of available fonts.
« How to specify afont for use.
* How to change fonts dynamically.

122 Day 7

Finding and Using Fonts

One of the first things that you need to know when working with fonts is that not every
system that your applications run on will have the same fonts installed. Fonts are speci-
fied in files that can be installed and removed from Windows systems with relative ease.
Every computer user can customize his system with whatever combination of fonts he
wants. If you specify afont that doesn’t exist on the system, Windows will choose either
the system default font or what the operating system considers to be a reasonably close
aternative font.

What you can do instead is ask the operating system what fonts are available. This
method allows you to make your own decisions on which font to use or let the user make
the decision. When you ask what fonts are available, you can limit the types of fonts that
are listed, or you can choose to list them all and select various fonts based on various
attributes.

Listing the Available Fonts

To get alist of al available fonts on a computer, you call a Windows APl (Application
Programming Interface) function called EnumFontFamiliesEx. This function tells
Windows that you want a list of the fonts on the system. Before you start using this func-
tion and expecting it to pass you a big list of available fonts, you need to understand how
it givesyou the list.

Callback Functions

One of the key arguments to the EnumFontFamiliesEx function is the address of another
function. This second function is what is known as a callback function, which is called
by the operating system. For almost every enumeration function in the Windows operat-
ing system, you pass the address of a callback function as an argument because the call-
back function is called once for each of the elements in the enumerated list. In other
words, you have to include a function in your application to receive each individual font
that is on the system and then build the list of fonts yourself.

When you create this function to receive each font and build your list, you cannot define
your callback function in any way you want. All callback functions are already defined
in the Windows API. You have to use a specific type of callback function to receive the
list of fonts. For getting alist of fonts, the function type is EnumFontFamProc. This func-
tion type specifies how your function must be defined, what its arguments must be, and
what type of return value it must return. It does not specify what your function should be
named or how it needs to work internally. These aspects are left completely up to you.

Working with Text and Fonts 123 |

The EnumFontFamiliesEx Function

The EnumFontFamiliesEx function, which you call to request the list of available fonts,
takes five arguments. A typical use of this function follows:

// Create a device context variable

CClientDC dc (this);

// Declare a LOGFONT structure
LOGFONT 1lLogFont;

/| Specify the character set

l1LogFont.1fCharSet = DEFAULT_CHARSET;

// Specify all fonts

1LogFont.1fFaceName[@] = NULL;

// Must be zero unless Hebrew or Arabic
1lLogFont.1fPitchAndFamily = 0;

// Enumerate the font families
::EnumFontFamilieskx((HDC) dc, &lLogFont,
(FONTENUMPROC) EnumFontFamProc, (LPARAM) this, 0);

The first argument is a device context, which can be an instance of the cclientDC class.
Every application running within the Windows operating system has a device context.
The device context provides alot of necessary information to the operating system about
what is available to the application and what is not.

The second argument is a pointer to a LOGFONT structure. This structure contains informa-
tion about the fonts that you want listed. You can specify in this structure which charac-
ter set you want to list or whether you want all the fontsin a particular font family. If
you want all the fonts on the system, you pass NULL in the place of this argument.

The third argument is the address of the callback function that will be used to build your
list of fonts. Passing the address of your callback function is a simple matter of using the
function name as the argument. The Visual C++ compiler takes care of replacing the
function name with the function address. However, you do need to cast the function as
the type of callback function that the function requires.

The fourth argument is a LPARAM value that will be passed to the callback function. This
parameter is not used by Windows but provides your callback function with a context in
which to build the font list. In the example, the value being passed is a pointer to the
window in which the code is being run. This way, the callback function can use this
pointer to access any structures it needs to build the list of fonts. This pointer can also be
the first node in alinked list of fonts or other such structure.

Thefifth and final argument is always 0. This reserved argument may be used in future
versions of Windows, but for now, it must be @ so that your application passes a value
that won't cause the function to misbehave.

| 124

Day 7

The EnumFontFamProc Function Type

When you create your callback function, it must be defined as an independent function,
not as a member of any C++ class. A typical EnumFontFamProc function declaration
follows:

int CALLBACK EnumFontFamProc(

LPENUMLOGFONT 1pelf,

LPNEWTEXTMETRIC lpntm,

DWORD nFontType,

long 1Param)

{
/| Create a pointer to the dialog window
CMyD1g* pWnd = (CMyDlg*) 1Param;

// Add the font name to the list box
pWnd->m_ctlFontList.AddString(lpelf->elfLogFont.1fFaceName);
// Return 1 to continue font enumeration

return 1;

}

The first argument to this function is a pointer to an ENUMLOGFONTEX structure. This struc-
ture contains information about the logical attributes of the font, including the font name,
style, and script. You may have numerous fonts listed with the same name but different
styles. You can have one for normal, one for bold, one for italic, and one for bold italic.

The second argument is a pointer to a NEWTEXTMETRICEX structure. This structure con-
tains information about the physical attributes of the font, such as height, width, and
space around the font. These values are all relative in nature because they need to scale
as the font is made larger or smaller.

The third argument is a flag that specifies the type of font. This value may contain a
combination of the following values:

* DEVICE_FONTYPE

* RASTER_FONTYPE

* TRUETYPE_FONTYPE
Finally, the fourth argument is the value that was passed into the EnumFontFamiliesEx
function. In the example, it was a pointer to the dialog on which the list of fontsis being

built. If you cast this value as a pointer to the dialog, the function can access a list box
control to add the font names.

The return value from this function determines whether the listing of fonts continues. If @
is returned from this function, the operating system quits listing the available fonts. If 1
is returned, the operating system continues to list the available fonts.

Working with Text and Fonts 125 |

Using a Font

To use a particular font in an application, you call an instance of the CFont class. By
calling the createFont method, you can specify the font to be used, along with the size,
style, and orientation. Once you' ve created a font, you can tell a control or window to
use the font by calling the object’s setFont method. An example of this process follows:

CFont m_fFont; // The font to be used

// Create the font to be used

m_fFont.CreateFont(12, 0, @, @, FW_NORMAL,
0, 0, 0, DEFAULT_CHARSET, OUT_CHARACTER_PRECIS,
CLIP_CHARACTER_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH |
FF_DONTCARE, m_sFontName);

// Set the font for the display area
m_ctlDisplayText.SetFont (&m_fFont);

'I'ip The CFont variable used in the previous code should be declared as a mem-

ber variable of the class in which this code is placed. In the sample code, it is
declared above where it is used to show how it is declared. This variable
should not be declared or used as a local variable in a function.

Seems simple enough—just two function calls—but that createFont function needs an
awful lot of arguments passed to it. It is these arguments that make the CreateFont
method a flexible function with a large amount of functionality. Once you create the font,
using it is a simple matter of passing the font to the setFont method, which is a member
of the cwnd class and thus available to all window and control classesin Visual C++. This
means that you can use this technique on any visible object within a Visual C++ application.

To understand how the createFont function works, let’s ook at the individual argu-
ments that you have to pass to it. The function is defined as

BOOL CreateFont(

int nHeight,
int nwidth,
int nEscapement,
int nOrientation,
int nWeight,
BYTE bItalic,
BYTE bUnderline,
BYTE cStrikeOut,
BYTE nCharSet,

| 126

Day 7

BYTE nOutPrecision,
BYTE nClipPrecision,
BYTE nQuality,

BYTE nPitchAndFamily,
LPCTSTR 1lpszFaceName);

The first of these arguments, nHeight, specifies the height of the font to be used. This
logical value istrandated into a physical value. If the value is @, a reasonable default
valueis used. If the value is greater or less than @, the absolute height is converted into
device units. It is key to understand that height values of 10 and -1 are basically the
same.

The second argument, nwidth, specifies the average width of the charactersin the font.
Thislogical value istrandated into a physical value in much the same way as the height is.

The third argument, nEscapement, determines the angle at which the text will be printed.
Thisvalue is specified in 0.1-degree units in a counterclockwise pattern. If you want to
print vertical text that reads from bottom to top, you supply 90 as the value for this
argument. For printing normal horizontal text that flows from left to right, supply o as
this value.

The fourth argument, norientation, determines the angle of each individua character in
the font. This works on the same basis as the previous argument, but it controls the out-
put on a character basis, not a line-of-text basis. To print upside-down characters, set this
value to 1800@. To print characters on their backs, set this value to 900.

The fifth argument, nweight, specifies the weight, or boldness, of the font. This can be
any value from o to 1000, with 1000 being heavily bolded. You can use constants defined
for this argument to control this value with ease and consistency. These constants are
listed in Table 7.1.

TABLE 7.1. FONT WEIGHT CONSTANTS.

Constant Value
FW_DONTCARE 0
FW_THIN 100
FW_EXTRALIGHT 200
FW_ULTRALIGHT 200
FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400

FW_MEDIUM 500

Working with Text and Fonts 127 |

Constant Value
FW_SEMIBOLD 600
FW_DEMIBOLD 600
FW_BOLD 700
FW_EXTRABOLD 800
FW_ULTRABOLD 800
FW_BLACK 900
FW_HEAVY 900

The actua interpretation and availability of these weights depend on the font. Some fonts
only have FW_NORMAL, FW_REGULAR, and Fw_BOLD weights. If you specify FW_DONTCARE, a
default weight is used, just as with most of the rest of the arguments.

The sixth argument, bItalic, specifies whether the font isto beitalicized. Thisisa
boolean value; o indicates that the font is not italicized, and any other value indicates
that the font isitalicized.

The seventh argument, bunderline, specifies whether the font is to be underlined. This
is aso aboolean value; o indicates that the font is not underlined, and any other value
indicates that the font is underlined.

The eighth argument, cStrikeout, specifies whether the charactersin the font are dis-
played with aline through the character. Thisis another boolean value using a non-zero
value as TRUE and @ as FALSE.

The ninth argument, ncharset, specifiesthe font’'s character set. The available constants
for thisvalue are listed in Table 7.2.

TABLE 7.2. FONT CHARACTER SET CONSTANTS.

Constant Value

ANSI_CHARSET 0

DEFAULT_CHARSET 1

SYMBOL_CHARSET 2
SHIFTJIS_CHARSET 128
OEM_CHARSET 255

The system on which your application is running might have other character sets, and the
OEM character set is system dependent, making it different for systems from different

| 128

Day 7

manufacturers. If you are using one of these character sets, it isrisky to try to manipulate
the strings to be output, so it’'s best to just pass aong the string to be displayed.

The tenth argument, noutPrecision, specifies how closely the output must match the
reguested font’s height, width, character orientation, escapement, and pitch. The avail-
able values for this argument are

* OUT_CHARACTER_PRECIS

* OUT_DEFAULT_PRECIS

* OUT_DEVICE_PRECIS

* OUT_RASTER_PRECIS

* OUT_STRING_PRECIS

* OUT_STROKE_PRECIS

* OUT_TT_PRECIS
The OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS, and OUT_TT_PRECIS values control which
font is chosen if there are multiple fonts with the same name. For instance, if you use the
OUT_TT_PRECIS value and specify afont with both a TrueType and raster version, then

the TrueType version is used. In fact, the ouT_TT_PRECIS value forces the system to use a
TrueType font, even when the specified font does not have a TrueType version.

The eleventh argument, nClipPrecision, specifies how to clip characters that are par-
tialy outside of the display area. The values for this argument are

* CLIP_CHARACTER_PRECIS

e CLIP DEFAULT_PRECIS

e CLIP_ENCAPSULATE

* CLIP_LH_ANGLES

e CLIP_MASK

e CLIP_STROKE_PRECIS

e CLIP_TT_ALWAYS

These values can be ored together to specify a combination of clipping techniques.

The twelfth argument, nquality, specifies the output quality and how carefully the GDI
(Graphics Device Interface) must attempt to match the logical font attributes to the phys-
ical font output. The available values for this argument are

e DEFAULT_QUALITY

* DRAFT_QUALITY

* PROOF_QUALITY

Working with Text and Fonts

The thirteenth argument, nPitchAndFamily, specifies the pitch and family of the font.
This value consists of two values that are ored together to create a combination value.
Thefirst set of available valuesis

e DEFAULT_PITCH

* VARIABLE_PITCH

e FIXED PITCH
This value specifies the pitch to be used with the font. The second set of available values
specifies the family of fonts to be used. The available values for this portion of the argu-
ment are

* FF_DECORATIVE

* FF_DONTCARE

e FF_MODERN

* FF_ROMAN

* FF_SCRIPT

e FF_SWISS
The font family describes in a general way the appearance of a font. You can use the font
family value to choose an dternative font when a specific font does not exist on a system.
The final argument, 1pszFacename, is a standard C-style string that contains the name of

the font to be used. This font name comes from the font information received by the
EnumFontFamProc callback function.

Using Fonts

Today you will build an application that allows the user to select from alist of available
fonts to be displayed. The user will be able to enter some text to be displayed in the
selected font, allowing the user to see what the font looks like.

Creating the Application Shell
To begin today’s application, follow these steps:
1. Create anew project workspace using the MFC AppWizard. Name the project
Day7.

2. Usethe same defaults that you used for the previous day’s projects, giving the
application atitle of Fonts.

3. Design the main dialog asin Figure 7.1, using the propertiesin Table 7.3.

| 130

Day 7

FIGURE 7.1. %, Day? - Miciosolt Visual C+ - [DayZ.rc - IDD_DAY7_DIALOG (Dialog)]
P EFie Edt View Insstt Project Buid Lsyout Tooks Window Help 13
The main dialog = Ed
layout TR 1 e —
CDay7Dig T=I[ioc_ExT =][BN_CLickED =@ - | ”sg,; B EL
2l T T T
523 Day? resources = = - —
& Diden i Erter Some Test [Et =]
& Slean . [Cont, 1]
[AIDR_MAINFRAME] : Select s Fart [n
221 Sting Table E I
[Version - Aa_abl
’ Mo
B B @
7
] @m 8
: s w
< | Font Samph - B2
- [e
=H
_ : = B
B4 Clas..|] Reso. | [5) Fievi : & | =
[ENEEE =l =) © @
ﬂDay?.ExE — 0 error(s), 0 warning(s) B
4
H Build { Debug K Find in Files 1) Find in Files2 /]| 4] | »
Ready 5191178 [43x16 [READ 7

TABLE 7.3. CONTROL PROPERTY SETTINGS.

Object Property Setting

Static Text 1D IDC_STATIC
Caption &Enter Some Text:

Edit Box 1D IDC_ESAMPTEXT

Static Text 1D IDC_STATIC
Caption &Select a Font

List Box 1D IDC_LFONTS

Group Box 1D IDC_STATIC
Caption Font Sample

Static Text D IDC_DISPLAYTEXT

(inside group box; sizeto Caption Empty string

fill the group box)

Command Button 1D IDC_EXIT
Caption E&xit

4. Using the Class Wizard, add the variables in Table 7.4 to the controls on the dia-

log.

Working with Text and Fonts

131 |

TABLE 7.4. CONTROL VARIABLES.

Object Name Category Type
IDC_DISPLAYTEXT m_ctlDisplayText Control CStatic
m_strDisplayText Value CString
IDC_LFONTS m_ctlFontList Control CListBox
m_strFontName Value CString
IDC_ESAMPTEXT m_strSampText Value CString

5. Attach afunction to the IDc_EXIT button to close the application, asin the previ-

ous day’s applications.

Building a List of Fonts

To be able to create your list of fonts, you need to add your callback function to get each
font list and add it to the list box that you placed on the dialog window. To do this, edit
the Day7D1g. h header file and add the function declaration in Listing 7.1 near the top of
the file. This function cannot be added through any of the tools available in Visual C++.

You need to open the file and add it yourself.

LISTING 7.1. THE CALLBACK FUNCTION DECLARATION IN THE Day7D1g.h HEADER FILE.

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

ONO O WN =

©

// CDay7Dlg dialog

—_
-

: class CDay7Dlg : public CDialog

—_
S 0N

int CALLBACK EnumFontFamProc (LPENUMLOGFONT lpelf,
LPNEWTEXTMETRIC lpntm, DWORD nFontType, long lParam);

NN NNy,

Once you add the function declaration to the header file, open the bay7D1g.cpp source-
code file, scroll to the bottom of the file, and add the function definition in Listing 7.2.

132 Day 7

LISTING 7.2. THE CALLBACK FUNCTION DEFINITION IN THE Day7D1g.cCpp SOURCE FILE.

1: int CALLBACK EnumFontFamProc (LPENUMLOGFONT lpelf,

2: LPNEWTEXTMETRIC lpntm, DWORD nFontType, long 1lParam)
3: {

4 // Create a pointer to the dialog window

5: CDay7Dlg* pWnd = (CDay7Dlg*) lParam;

6:

7: // Add the font name to the list box

8 pwnd->m_ctlFontList.AddString(lpelf->elfLogFont.1fFaceName);
9 // Return 1 to continue font enumeration
10 return 1;
11: }

Now that you have the callback function defined, you need to add a function to request
the list of fonts from the operating system. To add this function, follow these steps:
1. Select the Class View tab on the project workspace pane.

2. Select the cbay7D1g class, right-click the mouse, and select Add Member Function
from the pop-up menu.

3. Specify the function type as void, the function declaration asFillFontList, and
the access as Private. Click the OK button to close the dialog and add the function.

4. Edit the function definition asin Listing 7.3.

LisTING 7.3. THE FillFontList FUNCTION.

1: void CDay7Dlg::FillFontList()

2: {

3 LOGFONT 1f;

4:

5: // Initialize the LOGFONT structure
6: 1f.1fCharSet = DEFAULT_CHARSET;

7: strcpy(1f.1fFaceName, "");

8: // Clear the list box

9: m_ctlFontList.ResetContent();
10: // Create a device context variable
11: CClientDC dc (this);
12: // Enumerate the font families
13: ::EnumFontFamiliesEx((HDC) dc, &1f,
14: (FONTENUMPROC) EnumFontFamProc, (LPARAM) this, 0);
15: }

5. Edit theoninitDialog function to call the FillFontList function, asin Listing 7.4.

Working with Text and Fonts 133 |

LISTING 7.4. THE EDITED OnInitDialog FUNCTION.

1: BOOL CDay7Dlg::0OnInitDialog()

2: {

3 CDialog::0OnInitDialog();

4:

5:

6.

7 // TODO: Add extra initialization here

8:

9: [HEEETTEEEE iy
10: // MY CODE STARTS HERE
11: [EEEEETEEEE L rrrrrrr
12:

13: // Fill the font 1list box

14: FillFontList();

15:

16: [IEEEETEEEL i

17: // MY CODE ENDS HERE

18: [HEEETTEEEE iy

19:

20: return TRUE; // return TRUE unless you set the focus to a control
21: }

If you compile and run your application now, you should find that your list box isfilled
with the names of all the fonts available on the system. However, there's one aspect of
this list that you probably don’t want in your application. Figure 7.2 shows many dupli-
cate entriesin the list of fontsin the list box. It would be nice if you could eiminate
these duplicates and have only one line per font.

FIGURE 7.2. F? Fonts Bl E
P . Enter Some Text:
Listing all the fontsin : /
Select aFont [AbadiMT Conds d -~

the system. sk MT Conlanced e

Algerian

lgerian

Avial

Arial

Avial

Arial

Avial

Arial

il lck =

Font Sampl
Exit

It turns out that the EnumFontFamiliesEx function call is synchronousin nature. This
means that it doesn’t return until all the fonts in the system are listed in calls to your

1134 Day 7

callback function. You can place code in the FillFontList function to remove dl the
duplicate entries once the list box isfilled. To do this, modify the FillFontList function
asin Listing 7.5.

LISTING 7.5. THE MODIFIED FillFontList FUNCTION.

1: void CDay7Dlg::FillFontList()

2: {

3 int iCount; // The number of fonts

4: int iCurCount; // The current font

5: CString strCurFont; // The current font name

6: CString strPrevFont = ""; // The previous font name
7 LOGFONT 1f;

8:

9: // Initialize the LOGFONT structure

10: 1f.1fCharSet = DEFAULT_CHARSET;

11: strcpy(lf.1lfFaceName, "");

12: // Clear the list box

13: m_ctlFontList.ResetContent();

14: // Create a device context variable

15: CClientDC dc (this);

16: // Enumerate the font families

17: ::EnumFontFamiliesEx((HDC) dc, &1f,

18: (FONTENUMPROC) EnumFontFamProc, (LPARAM) this, 0);

19: // Get the number of fonts in the 1list box
20: iCount = m_ctlFontList.GetCount();
21: // Loop from the last entry in the 1list box to the first,
22: // searching for and deleting the duplicate entries
23: for (iCurCount = iCount; iCurCount > 0@; iCurCount--)
24: {
25: // Get the current font name
26: m_ctlFontList.GetText((iCurCount - 1), strCurFont);
27: // Is it the same as the previous font name?
28: if (strCurFont == strPrevFont)
29: {
30: // If yes, then delete it
31: m_ctlFontList.DeleteString((iCurCount - 1));
32: }
33: // Set the previous font name to the current font name
34: strPrevFont = strCurFont;
35: }
36: }

Notice that the for loop started at the end of the list and worked backward. This allowed
you to delete the current entry without worrying about manipulating the loop counter to
prevent skipping lines in the list box. If you compile and run your application, there
shouldn’t be any duplicate entriesin the list of available fonts.

Working with Text and Fonts 135 |

Setting the Font Sample Text

Before you can display the font for the user, you need to place some text into the display
area. The edit box near the top of the dialog is where the user enters text to be displayed
in the font selected. To add the functionality, do the following:

1. EdittheonInitbialog function to add code to initialize the edit box and display
text, asin Listing 7.6.

LISTING 7.6. THE MODIFIED OnInitDialog FUNCTION.

1: BOOL CDay7Dlg::0OnInitDialog()

2: {

3 CDialog::0OnInitDialog();

4:

5:

6.

7 // TODO: Add extra initialization here
8:

9: [HEEELTEEEE i

10: // MY CODE STARTS HERE

11: [EEEELTEEEL iy

12:

13: // Fill the font list box

14: FillFontList();

15:

16: // Initialize the text to be entered
17: m_strSampText = "Testing";

18: // Copy the text to the font sample area
19: m_strDisplayText = m_strSampText;
20: // Update the dialog
21: UpdateData(FALSE);
22:
23: [EEEELTEEEL iy
24: // MY CODE ENDS HERE
25: [HEEETTEEEE i rrrrr
26:
27: return TRUE; // return TRUE unless you set the focus to a control
28: }

2. Using the Class Wizard, add a function on the EN_CHANGE event message for the
IDC_ESAMPTEXT edit box control.

3. Edit the function you just added, adding the code in Listing 7.7.

136 Day 7

LisTING 7.7. THE OnChangeEsamptext FUNCTION.

1: void CDay7Dlg::0nChangeEsamptext()

2: {

3: // TODO: If this is a RICHEDIT control, the control will not
4: // send this notification unless you override the

0JCDialog::0OnInitialUpdate()

5: // function and call CRichEditCrtl().SetEventMask()
6: // with the EN_CHANGE flag ORed into the mask.

7:

8: // TODO: Add your control notification handler code here
9:

10: [EEEEETEEEE L rrrrrr

11: // MY CODE STARTS HERE

12: [IEEELTEEEL i

13:

14: // Update the variables with the dialog controls
15: UpdateData(TRUE);

16:

17: // Copy the current text to the font sample

18: m_strDisplayText = m_strSampText;

19:
20: // Update the dialog with the variables
21: UpdateData(FALSE) ;
22:
23: [HEEELTEEEE L rrrrrrr
24: // MY CODE ENDS HERE
25: [EEEEETEEEL i
26: }

If you compile and run your application, you should be able to type text into the edit box
and see it change in the font display areain the group box below.

Selecting a Font to Display

Before you can start changing the font for the display area, you'll need to have a CFont
member variable of the dialog class that you can use to set and change the display font.
To add this variable, follow these steps:

1. Inthe Class View of the workspace pane, right-click the mouse on the cbay7D1g
class. Select Add Member Variable from the pop-up menu.

2. Specify the variable type as CFont, the variable name as m_fSampFont, and the
access as Private. Click the OK button to close the dialog box and add the
variable.

When adding the code to use the selected font, you'll add it as a separate function that is
not attached to a control. Why you do this will become clear as you proceed further

Working with Text and Fonts 137 |

through building and running today’s application. To add the function to display and use
the selected font, follow these steps:

1. Inthe Class View of the workspace pane, right-click the mouse on the cbay7D1g
class. Select Add Member Function from the pop-up menu.

2. Specify the function type as void, the function declaration as setMyFont, and the
access as Private. Click the OK button to close the dialog and add the function.

3. Edit the function, adding the code in Listing 7.8.

LISTING 7.8. THE SetMyFont FUNCTION.

1: void CDay7Dlg::SetMyFont()

2: {

3 CRect rRect; // The rectangle of the display area
4: int iHeight; // The height of the display area

5:

6: // Has a font been selected?

7: if (m_strFontName != "")

8: {

9: // Get the dimensions of the font sample display area
10: m_ctlDisplayText.GetWindowRect (&rRect);

11: // Calculate the area height

12: iHeight = rRect.top - rRect.bottom;

13: // Make sure the height is positive

14: if (iHeight < 0)

15: iHeight = @ - iHeight;

16: // Release the current font

17: m_fSampFont.Detach();

18: // Create the font to be used

19: m_fSampFont.CreateFont ((iHeight - 5), @, @, @, FW_NORMAL,
20: 0, 0, 0, DEFAULT_CHARSET, OUT_CHARACTER_PRECIS,
21: CLIP_CHARACTER_PRECIS, DEFAULT_QUALITY, DEFAULT PITCH ,
22: FF_DONTCARE, m_strFontName) ;
23:
24: // Set the font for the sample display area
25: m_ctlDisplayText.SetFont (&m_fSampFont);
26: }
27: }

4. Using the Class Wizard, add a function to the LBN_SELCHANGE event message for
the I1DC_LFONTS list box. Edit the function, adding the code in Listing 7.9.

| 138

Day 7

LisTING 7.9. THE OnSelchangeLfonts FUNCTION.

1: void CDay7Dlg::0nSelchangeLfonts()

2: {

3: // TODO: Add your control notification handler code here
4:

5: FIEETEEEEEET T rrin

6: // MY CODE STARTS HERE

7: TIEETEEEEETE iy

8:

9: // Update the variables with the dialog controls
10: UpdateData(TRUE);

11:

12: // Set the font for the sample

13: SetMyFont();

14:

15: PIEETEEELEETrrrririny

16: // MY CODE ENDS HERE

17: FIEETEEEEEET i riny

18: }

In the setMyFont function, you first checked to make sure that a font had been selected.
Next, you retrieved the area of the static text control that will be used to display the font.
This enables you to specify afont height just slightly smaller than the height of the area
you have available to display the font in. After you calculated the height of the static text
control and made sure that it is a positive value, you created the selected font and told
the static text control to use the newly created font.

In the onselchangeLfonts f