
A Division of Macmillan Computer Publishing
201 West 103rd St., Indianapolis, Indiana, 46290 USA

Davis Chapman

Visual C++® 6
in 21 Days

Teach Yourself

000 31240-9 FM 4/27/00 11:02 AM Page i

Sams Teach Yourself Visual
C++® 6 in 21 Days
Copyright © 1998 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-31240-9

Library of Congress Catalog Card Number: 98-84508

Printed in the United States of America

First Printing: August, 1998

01 00 99 98 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Visual C++ is a registered trademark of Microsoft Corporation.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

EXECUTIVE EDITOR

Brad Jones

ACQUISITIONS EDITOR

Kelly Marshall

DEVELOPMENT EDITOR

Matt Purcell

MANAGING EDITOR

Jodi Jensen

PROJECT EDITOR

Dana Rhodes Lesh

COPY EDITOR

Kris Simmons

INDEXER

Erika Millen

TECHNICAL EDITOR

Larry Richardson

PRODUCTION

Marcia Deboy
Michael Dietsch
Jennifer Earhart
Cynthia Fields
Susan Geiselman

000 31240-9 FM 4/27/00 11:02 AM Page ii

Overview
Introduction 1

WEEK 1 AT A GLANCE 5
Day 1 The Visual C++ Development Environment—Building Your First

Visual C++ Application 7

2 Using Controls in Your Application 25

3 Allowing User Interaction—Integrating the Mouse and Keyboard in
Your Application 47

4 Working with Timers 67

5 Getting User Feedback—Adding Dialog Boxes to Your Application 83

6 Creating Menus for Your Application 105

7 Working with Text and Fonts 121

WEEK 1 IN REVIEW 143

WEEK 2 AT A GLANCE 147
Day 8 Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 149

9 Adding ActiveX Controls to Your Application 179

10 Creating Single Document Interface Applications 199

11 Creating Multiple Document Interface Applications 229

12 Adding Toolbars and Status Bars 243

13 Saving and Restoring Work—File Access 279

14 Retrieving Data from an ODBC Database 315

WEEK 2 IN REVIEW 337

WEEK 3 AT A GLANCE 341
Day 15 Updating and Adding Database Records Through ADO 343

16 Creating Your Own Classes and Modules 379

17 Sharing Your Functionality with Other Applications—Creating DLLs 405

000 31240-9 FM 4/27/00 11:02 AM Page iii

18 Doing Multiple Tasks at One Time—Multitasking 429

19 Building Your Own Widgets—Creating ActiveX Controls 473

20 Internet Applications and Network Communications 495

21 Adding Web Browsing Functionality to Your Applications 521

WEEK 3 IN REVIEW 537

APPENDIXES 541
A C++ Review 541

B Answers 579

C Printing and Print Previewing 637

D Understanding and Exception Handling 661

E Using the Debugger and Profiler 677

F Using MFC’s Helper Classes 699

Index 731

000 31240-9 FM 4/27/00 11:02 AM Page iv

Contents
INTRODUCTION 1

WEEK 1 AT A GLANCE 5

DAY 1 THE VISUAL C++ DEVELOPMENT ENVIRONMENT—BUILDING YOUR FIRST

VISUAL C++ APPLICATION 7

The Visual C++ Development Environment ..8
The Output Pane ..9
The Editor Area ..9
Menu Bars ..10
Rearranging the Developer Studio Environment ..10

Starting Your First Project ..11
Creating the Project Workspace ..11
Using the Application Wizard to Create the Application Shell12

Designing Your Application Window..15
Adding Code to Your Application ..17
Finishing Touches ..20

Creating the Dialog Box Icon ..20
Adding Maximize and Minimize Buttons..21

Summary ..22
Q&A ..22
Workshop ..23

Quiz ..23
Exercise ..23

DAY 2 USING CONTROLS IN YOUR APPLICATION 25

The Basic Windows Controls ..26
The Static Text Control ..26
The Edit Box Control ..26
The Command Button Control ..27
The Check Box Control..27
The Radio Button Control ..27
The Drop-Down List Box Control ..27

Adding Controls to Your Window ..27
Creating the Application Shell and Dialog Layout ..28

000 31240-9 FM 4/27/00 11:02 AM Page v

Specifying the Control Tab Order ..30
Attaching Variables to Your Controls ..32
Attaching Functionality to the Controls ..33

Closing the Application ..36
Showing the User’s Message ..37
Clearing the User’s Message..38
Disabling and Hiding the Message Controls..39
Running Another Application ..42

Summary ..44
Q&A ..44
Workshop ..45

Quiz ..45
Exercises ..45

DAY 3 ALLOWING USER INTERACTION—INTEGRATING THE MOUSE AND KEYBOARD

IN YOUR APPLICATION 47

Understanding Mouse Events ..48
Drawing with the Mouse ..49
Improving the Drawing Program ..53
Adding the Finishing Touches..55

Capturing Keyboard Events ..56
Changing the Drawing Cursor..57
Making the Change Stick ..60

Summary ..64
Q&A ..64
Workshop ..65

Quiz ..65
Exercises ..65

DAY 4 WORKING WITH TIMERS 67

Understanding Windows Timers..68
Placing a Clock on Your Application ..68

Creating the Project and Application ..68
Adding the Timer IDs ..70
Starting the Clock Timer ..71
Handling the Clock Timer Event..72

Adding a Second Timer to Your Application ..74
Adding the Application Variables ..74
Starting and Stopping the Counting Timer ..75
Enabling the Stop Button ..79

Summary ..81

vi Sams Teach Yourself Visual C++ 6 in 21 Days

000 31240-9 FM 4/27/00 11:02 AM Page vi

Q&A ..81
Workshop ..82

Quiz ..82
Exercise ..82

DAY 5 GETTING USER FEEDBACK—ADDING DIALOG BOXES TO YOUR APPLICATION 83

Using Pre-existing (or System) Dialog Windows ..84
Using Message Boxes ..84
Using Common Dialogs ..90

Creating Your Own Dialog Windows..93
Creating the Dialog Window..93
Using the Dialog in Your Application..96

Summary ..101
Q&A ..101
Workshop ..103

Quiz ..103
Exercises ..104

DAY 6 CREATING MENUS FOR YOUR APPLICATION 105

Menus ..106
Menu Styles ..106
Keyboard Shortcut–Enabling Menus ..106
Menu Standards and Conventions..107

Designing Menus ..108
Creating a Menu ..108

Creating the Application ..108
Adding and Customizing a Menu ..109
Attaching the Menu to Your Dialog Window ..112
Attaching Functionality to Menu Entries ..112

Creating Pop-Up Menus ..116
Creating a Menu with Accelerators ..118
Summary ..119
Q&A ..119
Workshop ..120

Quiz ..120
Exercises ..120

DAY 7 WORKING WITH TEXT AND FONTS 121

Finding and Using Fonts..122
Listing the Available Fonts ..122
Using a Font ..125

Contents vii

000 31240-9 FM 4/27/00 11:02 AM Page vii

Using Fonts ..129
Creating the Application Shell ..129
Building a List of Fonts..131
Setting the Font Sample Text ..135
Selecting a Font to Display ..136

Summary ..139
Q&A ..139
Workshop ..140

Quiz ..140
Exercises ..140

WEEK 1 IN REVIEW 143

WEEK 2 AT A GLANCE 147

DAY 8 ADDING FLASH—INCORPORATING GRAPHICS, DRAWING, AND BITMAPS 149

Understanding the Graphics Device Interface ..150
Device Contexts..150
Mapping Modes and Coordinate Systems..156

Creating a Graphics Application..157
Generating the Application Shell ..157
Adding the Graphics Capabilities ..163

Summary ..177
Q&A ..177
Workshop ..177

Quiz ..178
Exercises ..178

DAY 9 ADDING ACTIVEX CONTROLS TO YOUR APPLICATION 179

What Is an ActiveX Control? ..180
ActiveX and the IDispatch Interface ..180
ActiveX Containers and Servers ..182

Adding an ActiveX Control to Your Project ..183
Registering the Control ..183
Adding the Control to Your Dialog..186

Using an ActiveX Control in Your Application ..187
Interacting with the Control ..187
Responding to Control Events..193

Summary ..196
Q&A ..196
Workshop ..197

Quiz ..197
Exercise ..197

viii Sams Teach Yourself Visual C++ 6 in 21 Days

000 31240-9 FM 4/27/00 11:02 AM Page viii

DAY 10 CREATING SINGLE DOCUMENT INTERFACE APPLICATIONS 199

The Document/View Architecture ..200
Creating an SDI Application..202

Building the Application Shell ..202
Creating a Line Class ..203
Implementing the Document Functionality..205
Showing the User ..208

Saving and Loading the Drawing ..213
Deleting the Current Drawing ..214
Saving and Restoring the Drawing ..215

Interacting with the Menu..218
Adding Color to the CLine Class ..218
Adding Color to the Document ..219
Modifying the Menu ..222

Summary ..226
Q&A ..227
Workshop ..228

Quiz ..228
Exercise ..228

DAY 11 CREATING MULTIPLE DOCUMENT INTERFACE APPLICATIONS 229

What Is an MDI Application?..229
Creating an MDI Drawing Program ..231

Building the Application Shell ..231
Building the Drawing Functionality ..232
Adding Menu Handling Functionality ..233

Adding a Context Menu ..236
Summary ..239
Q&A ..239
Workshop ..240

Quiz ..240
Exercise ..241

DAY 12 ADDING TOOLBARS AND STATUS BARS 243

Toolbars, Status Bars, and Menus ..244
Designing a Toolbar ..245

Creating a New Toolbar ..246
Attaching the Toolbar to the Application Frame..247
Controlling the Toolbar Visibility ..254

Adding a Combo Box to a Toolbar ..257
Editing the Project Resources ..257
Creating the Toolbar Combo Box ..260

Contents ix

000 31240-9 FM 4/27/00 11:02 AM Page ix

Handling the Toolbar Combo Box Events ..267
Updating the Toolbar Combo Box ..268

Adding a New Status Bar Element..271
Adding a New Status Bar Pane ..271
Setting a Status Bar Pane Text ..273

Summary ..275
Q&A ..276
Workshop ..277

Quiz ..277
Exercises ..277

DAY 13 SAVING AND RESTORING WORK—FILE ACCESS 279

Serialization ..279
The CArchive and CFile Classes ..280
The Serialize Function..281
Making Objects Serializable ..281

Implementing a Serializable Class ..283
Creating a Serialized Application ..284
Creating a Serializable Class..288
Building Support in the Document Class ..294
Adding Navigating and Editing Support in the View Class305

Summary ..311
Q&A ..311
Workshop ..313

Quiz ..313
Exercise ..313

DAY 14 RETRIEVING DATA FROM AN ODBC DATABASE 315

Database Access and ODBC..316
The Open Database Connector (ODBC) Interface ..316
The CRecordset Class..317

Creating a Database Application Using ODBC ..322
Preparing the Database ..322
Creating the Application Shell ..324
Designing the Main Form ..325
Adding New Records ..331
Deleting Records ..334

Summary ..335
Q&A ..335
Workshop ..336

Quiz ..336
Exercise ..336

x Sams Teach Yourself Visual C++ 6 in 21 Days

000 31240-9 FM 4/27/00 11:02 AM Page x

WEEK 2 IN REVIEW 337

WEEK 3 AT A GLANCE 341

DAY 15 UPDATING AND ADDING DATABASE RECORDS THROUGH ADO 343

What Is ADO?..344
ADO Objects ..345
Using the ADO ActiveX Control ..346
Importing the ADO DLL..349
Connecting to a Database ..350
Executing Commands and Retrieving Data ..351
Navigating the Recordset ..352
Accessing Field Values ..353
Updating Records ..356
Adding and Deleting ..356
Closing the Recordset and Connection Objects357

Building a Database Application Using ADO ..358
Creating the Application Shell ..358
Building a Custom Record Class ..361
Connecting and Retrieving Data ..365
Populating the Form ..367
Saving Updates ..370
Navigating the Record Set..371
Adding New Records ..373
Deleting Records ..375

Summary ..376
Q&A ..377
Workshop ..377

Quiz ..377
Exercise ..378

DAY 16 CREATING YOUR OWN CLASSES AND MODULES 379

Designing Classes ..380
Encapsulation..380
Inheritance ..380
Visual C++ Class Types ..381

Creating Library Modules..382
Using Library Modules..383

Creating the Library Module..383
Creating a Test Application ..393
Updating the Library Module ..398

Contents xi

000 31240-9 FM 4/27/00 11:02 AM Page xi

Summary ..401
Q&A ..402
Workshop ..403

Quiz ..403
Exercise ..403

DAY 17 SHARING YOUR FUNCTIONALITY WITH OTHER APPLICATIONS—CREATING DLLS 405

Why Create DLLs? ..406
Creating and Using DLLs ..406
Designing DLLs ..409

Creating and Using an MFC Extension DLL..410
Creating the MFC Extension DLL ..410
Adapting the Test Application..413
Changing the DLL..414

Creating and Using a Regular DLL ..416
Creating the Regular DLL..417
Adapting the Test Application..423

Summary ..426
Q&A ..427
Workshop ..428

Quiz ..428
Exercises ..428

DAY 18 DOING MULTIPLE TASKS AT ONE TIME—MULTITASKING 429

What Is Multitasking?..430
Performing Multiple Tasks at One Time..430
Idle Processing Threads..431
Spawning Independent Threads ..431

Building a Multitasking Application ..441
Creating a Framework ..441
Designing Spinners ..443
Supporting the Spinners ..449
Adding the OnIdle Tasks ..455
Adding Independent Threads ..460

Summary ..468
Q&A ..468
Workshop ..471

Quiz ..471
Exercises ..471

xii Sams Teach Yourself Visual C++ 6 in 21 Days

000 31240-9 FM 4/27/00 11:02 AM Page xii

DAY 19 BUILDING YOUR OWN WIDGETS—CREATING ACTIVEX CONTROLS 473

What Is an ActiveX Control? ..474
Properties ..474
Methods ..475
Events ..476

Creating an ActiveX Control ..476
Building the Control Shell..477
Modifying the CModArt Class ..478
Adding Properties ..481
Designing and Building the Property Page ..483
Adding Basic Control Functionality ..485
Adding Methods ..487
Adding Events ..489
Testing the Control ..491

Summary ..493
Q&A ..493
Workshop ..494

Quiz ..494
Exercises ..494

DAY 20 INTERNET APPLICATIONS AND NETWORK COMMUNICATIONS 495

How Do Network Communications Work? ..496
Sockets, Ports, and Addresses ..497
Creating a Socket..498
Making a Connection ..500
Sending and Receiving Messages ..501
Closing the Connection ..503
Socket Events ..503
Detecting Errors..504

Building a Networked Application ..505
Creating the Application Shell ..505
Window Layout and Startup Functionality ..505
Inheriting from the CAsyncSocket Class ..509
Connecting the Application ..511
Sending and Receiving ..515
Ending the Connection ..517

Summary ..519
Q&A ..519
Workshop ..520

Quiz ..520
Exercise ..520

Contents xiii

000 31240-9 FM 4/27/00 11:02 AM Page xiii

DAY 21 ADDING WEB BROWSING FUNCTIONALITY TO YOUR APPLICATIONS 521

The Internet Explorer ActiveX Model ..522
The CHtmlView Class ..523

Navigating the Web ..523
Controlling the Browser ..524
Getting the Browser Status ..524

Building a Web-Browsing Application..525
Creating the Application Shell ..525
Adding Navigation Functionality ..526

Summary ..535
Q&A ..535
Workshop ..536

Quiz ..536
Exercises ..536

WEEK 3 IN REVIEW 537

APPENDIXES 541

APPENDIX A C++ REVIEW 541

Creating Your First Application ..541
Helloworld.cpp ..543
The if Statement, Operators, and Polymorphism ..549
Global and Local Variables ..552

Pointers ..554
References ..557

Classes..559
Constructors and Destructors ..564

Inheritance..569
Summary ..577

APPENDIX B ANSWERS 579

Day 1..579
Quiz ..579
Exercise ..580

Day 2..580
Quiz ..580
Exercises 581

Day 3..585
Quiz ..585
Exercises ..585

Day 4..591
Quiz ..591
Exercise ..591

Day 5..593

xiv Sams Teach Yourself Visual C++ 6 in 21 Days

000 31240-9 FM 4/27/00 11:02 AM Page xiv

Quiz ..593
Exercises ..594

Day 6..596
Quiz ..596
Exercises ..596

Day 7..597
Quiz ..597
Exercises ..598

Day 8..602
Quiz ..602
Exercises ..602

Day 9..604
Quiz ..604
Exercise ..604

Day 10..605
Quiz ..605
Exercise ..606

Day 11..612
Quiz ..612
Exercise ..612

Day 12..614
Quiz ..614
Exercises ..615

Day 13..616
Quiz ..616
Exercise ..617

Day 14..620
Quiz ..620
Exercise ..621

Day 15..623
Quiz ..623
Exercise ..624

Day 16..625
Quiz ..625
Exercises ..625

Day 17..626
Quiz ..626
Exercises ..626

Day 18..628
Quiz ..628
Exercises ..628

Day 19..631

Contents xv

000 31240-9 FM 4/27/00 11:02 AM Page xv

Quiz ..631
Exercises ..631

Day 20..632
Quiz ..632
Exercises ..633

Day 21..634
Quiz ..634
Exercises ..634

APPENDIX C PRINTING AND PRINT PREVIEWING 637

Using the Framework’s Functionality ..637
Using Default Print Functionality ..638
Overriding OnPrint() ..641
Using the Printer Device Context ..643
Maintaining the Aspect Ratio ..645

Pagination and Orientation ..647
Setting the Start and End Pages ..647
Using the Print Dialog Box ..650
Using Portrait and Landscape Orientations..654
Adding GDI Objects with OnBeginPrinting() ..654
Customizing Device Context Preparation ..656
Aborting the Print Job ..657

Direct Printing Without the Framework ..657
Invoking the Print Dialog Box Directly ..657
Using StartDoc() and EndDoc() ..659
Using StartPage() and EndPage() ..660

APPENDIX D UNDERSTANDING AND EXCEPTION HANDLING 661

Using Exceptions ..661
Running Code and Catching the Errors ..661
Throwing Exceptions..666
Deleting Exceptions..668

MFC Exception Types ..668
Using the CException Base Class ..668
Using the Memory Exception ..669
Using the Resource Exceptions..670
Using the File and Archive Exceptions..670
Using the Database Exceptions ..672
Using OLE Exceptions ..673
Using the Not Supported Exception ..674
Using the User Exception ..674
Generating Your Own Custom Exception Classes ..675

xvi Sams Teach Yourself Visual C++ 6 in 21 Days

000 31240-9 FM 4/27/00 11:02 AM Page xvi

APPENDIX E USING THE DEBUGGER AND PROFILER 677

Creating Debugging and Browse Information ..677
Using Debug and Release Modes ..678
Setting Debug Options and Levels ..679
Creating and Using Browse Information ..681
Using Remote and Just-in-Time Debugging..683

Tracing and Single Stepping..685
Using the TRACE Macro ..685
Using the ASSERT and VERIFY macros ..687
Using Breakpoints and Single Stepping the Program....................................689
Using Edit and Continue ..692
Watching Program Variables ..692
Other Debugger Windows ..694

Additional Debugging Tools..694
Using Spy++ ..695
Process Viewer ..697
The OLE/COM Object Viewer ..697
The MFC Tracer ..698

APPENDIX F USING MFC’S HELPER CLASSES 699

Using the Collection Classes ..699
Using the Array Classes ..700
Using the List Classes ..702
Using the Map Classes ..704
Creating Custom Collection Classes ..707

Using the Coordinate-Handling Classes..710
Using the CPoint Class ..710
Using the CRect Class ..712
Using the CSize Class ..717

Using the Time-Handling Classes ..718
Using the COleDateTime Class ..719
Using the COleDateTimeSpan Class..722

Using the String Manipulation Class ..724
Using the CString Class ..724
String Manipulation..727
Searching Strings..727
Formatting Text for Display ..728

INDEX 731

Contents xvii

000 31240-9 FM 4/27/00 11:02 AM Page xvii

About the Authors
DAVIS CHAPMAN first began programming computers while working on his master’s
degree in music composition. Writing applications for computer music, he discovered
that he enjoyed designing and developing computer software. It wasn’t long before he
came to the realization that he stood a much better chance of eating if he stuck with his
new-found skill and demoted his hard-earned status as a “starving artist” to a part-time
hobby. Since that time, Davis has focused on the art of software design and development,
with a strong emphasis on the practical application of client/server technology. Davis
is the lead author of Web Development with Visual Basic 5 and Building Internet
Applications with Delphi 2. Davis is also a contributing author of Special Edition Using
Active Server Pages and Running a Perfect Web Site, Second Edition. He has been a
consultant working and living in Dallas, Texas, for the past eight years, and he can be
reached at davischa@onramp.net.

Contributing Author
JON BATES has worked on a whole range of commercial, industrial, and military software
development projects worldwide over the past fifteen years. He is currently working
as a self-employed software design consultant and contract software developer, specializ-
ing in Visual C++ application development for Windows NT/95/98.

Jon began his career writing computer games for popular microcomputers and has since
worked with a number of operating systems, such as CPM, DOS, TRIPOS, UNIX, and
Windows, and a number of Assembly, third-generation, and object-oriented languages.

He has written system and application software as diverse as device drivers, email, pro-
duction modeling, motion video, image analysis, network and telecommunications, data
capture, control systems, estimating and costing, and visualization software. He has also
written a number of technical articles for computing journals on a range of topics.

Jon lives with his wife, Ruth, and dog, Chaos, in the middle of cool Britannia. When not
playing with computers, he likes to sleep and dream of fractals.

You can reach Jon at jon@chaos1.demon.co.uk and visit his Web site at
www.chaos1.demon.co.uk.

000 31240-9 FM 4/27/00 11:02 AM Page xviii

Dedication
To Dore, and the rest of my family, for being very patient with me while I

was busy writing yet another book.

Acknowledgments
There are numerous people without whom this book might never have been written.
Among those who deserve credit is Kelly Marshall, for enabling me to take on this pro-
ject and for sticking with me even though I know I made her life stressful at times.
Credit needs to go to the entire editing team at Macmillan. I’ve seen what some of the
material you have to work with looks like when it comes in from the authors, and I don’t
want to trade jobs with any of you. I’d also like to thank my family for continuing to
allow me to put in the work required to produce this book—and for not disowning me in
the process.

000 31240-9 FM 4/27/00 11:02 AM Page xix

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As the executive editor for the Programming team at Macmillan Computer Publishing, I
welcome your comments. You can fax, email, or write me directly to let me know what
you did or didn’t like about this book—as well as what we can do to make our books
stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Fax: 317-817-7070

Email: adv_prog@mcp.com

Mail: Executive Editor
Programming
Macmillan Computer Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

000 31240-9 FM 4/27/00 11:02 AM Page xx

Introduction
Welcome to Visual C++. Over the next 21 days, you will learn how to use the features
that Microsoft has built into its C++ development environment to enable you to create
very advanced applications for the Windows and NT platforms. When Microsoft’s devel-
opers first came up with the idea behind Visual C++, they decided to take their world-
class C++ compiler and create a development environment and set of tools that would
enable developers to create Windows applications with a level of ease and speed that was
unheard of among C++ development environments. Since that first version, Microsoft
has continued to improve the tools that are a part of Visual C++ to make it even easier to
create Windows applications. As Microsoft has introduced new technologies into the
Windows platforms, it has also introduced tools into the Visual C++ suite to make it easy
to integrate these new technologies into your applications.

If you are new to C++, don’t worry. I’ve tried to make it easy for you to learn the C++
programming language while also learning how to build applications using the Visual
C++ tools. Just in case you find yourself having trouble understanding some aspect of
C++, I’ve included a brief overview of the programming language in Appendix A,
“C++ Review.”

If you’ve looked at previous versions of this book, you might notice that I’ve completely
rewritten the entire book. Our goal with this new version is not just to introduce you to
and guide you through the various tools and resources that you will use to build applica-
tions with Visual C++; I’ve also tried to include a great deal more detail about the vari-
ous options that are available to you with each of the features that are covered. This way,
you’ll be able to get a lot of use out of this book long after the initial 21 days.

How This Book Is Organized
This book is organized in weeks, with each set of seven days set off into a part unto
itself. However, even though the book is organized in weeks, the topics are not neces-
sarily organized that way.

For the first week, you’ll be covering the basics of building applications with Visual
C++. You’ll learn how to use designers to design your application windows. You’ll learn
how to use various controls available to you as a Windows application developer. You’ll
also learn a lot about the Visual C++ development environment and the tools that it
makes available to you.

001 31240-9 INTRO 4/27/00 11:03 AM Page 1

2 Sams Teach Yourself Visual C++ 6 in 21 Days

By the time you begin the second week, you’ll be doing more and more programming, as
the topics become more involved. You’ll still be using the Visual C++ tools to construct
your applications, but the programming code will be getting a little more involved.
You’ll also start learning about more advanced topics, such as displaying graphics and
creating SDI and MDI applications. Toward the end of the second week, you’ll begin to
work with databases. This topic spills over into the third and final week.

In the third week, you’ll learn how to create your own modules, DLLs, and ActiveX con-
trols. You’ll also learn how to build multitasking applications, which perform multiple
tasks at a time. Finally, you’ll learn how to integrate Microsoft Internet Explorer, and the
ActiveX controls it provides, into your applications so that you can extend your applica-
tions over the Internet.

After you finish the third week, you’ll be ready to tackle the world of Windows program-
ming with Visual C++. You’ll have the skills and know-how required to build most
Windows applications available today.

Conventions Used in This Book
While you are reading this book, you will probably notice a couple conventions that have
been used to make it easier for you to learn the topic being discussed.

All the source code in this book is provided in a monospaced font, as shown in Listing
0.1. This includes all the source code from the applications that you will be building and
illustrations of how various functions can be used. Whenever you are adding new code,
or changing code in a function with other code already there, the line numbers of the
code that you add or change will be pointed out in the text.

LISTING 0.1. SOME SAMPLE CODE.

1: void main()
2: {
3: // if you are adding or changing code in an existing
4: // code snippet, I will point out the line numbers in the text.
5: }

If a topic needs special attention, it will be set apart from the rest of the text by one of
several special markers:

● Notes

● Tips

● Cautions

001 31240-9 INTRO 4/27/00 11:03 AM Page 2

Introduction 3

Notes offer a deeper explanation of a topic or explain interesting or impor-
tant points.

Note

Tips are pieces of information that can make things easier.Tip

Cautions warn you about traps that you will want to avoid.Caution

At the end of each day, you’ll find a short quiz and one or two exercises to help make
sure that you learned the topic you were studying. Don’t worry—just in case you need
the answers to the quizzes and some guidance when building the exercises, the solutions
are provided in Appendix B, “Answers.”

Enough said! You didn’t buy this book to read about this book. You bought this book to
learn how to use Visual C++ to build Windows applications. So go ahead and flip the
page and get started programming…

001 31240-9 INTRO 4/27/00 11:03 AM Page 3

001 31240-9 INTRO 4/27/00 11:03 AM Page 4

At a Glance
Welcome to the world of Visual C++. Over the next three
weeks, you’ll learn how to build a wide variety of applica-
tions using this extremely flexible and complete program-
ming tool. Each day you’ll learn about a different area of
functionality and how you can use it in your applications.
What’s more—every one of the areas of functionality will be
accompanied with a hands-on sample application that you
will build yourself. There’s not a more effective way of learn-
ing new technologies than to work with them yourself.
Learning by doing…that’s what you’ll do as you make your
way through this book.

Over the course of the first week, you’ll learn about several
of the basics that are involved in building applications with
Visual C++. This starts on the first day as you learn about and
become familiar with the Visual C++ development environ-
ment by building a simple application.

On Day 2, you’ll begin learning more about the specifics of
building applications in Visual C++. You’ll learn about the
standard controls that are used in Windows applications, how
you can place and configure these on an application window,
and how you can interact with them.

On Day 3, you’ll learn how you can capture mouse and key-
board events and react to them in your applications. You’ll
see how you can determine where the mouse is in your appli-
cation space. You’ll also learn how to determine what keys
the user is pressing on the keyboard and how you can react to
these user actions.

WEEK 1 1

2

3

4

5

6

7

002 31240-9 AAG Wk1 4/27/00 11:04 AM Page 5

6 Week 1

On Day 4, you’ll learn how to work with timers in a Visual C++ application. You’ll learn
how to have two or more timers running at the same time and how you can tell them
apart.

On Day 5, you’ll see how you can add additional windows to your application and how
you can use them to get information from the user. You’ll see how you can use built-in
dialogs to ask the user simple questions and how you can build your own custom dialogs
to get more detailed information.

On Day 6, you’ll learn how to create menus to add to your application. You’ll see how
you can call functions in your application from menus that you have added to your appli-
cation.

On Day 7, you’ll learn about the font infrastructure in Windows and how you can access
it in your Visual C++ applications. You’ll see how you can build a list of available fonts
and how you can display text in any of these fonts.

That will end the first week of this book. At that time, you can look back over what you
have learned during the week and think about all that you can do with what you have
learned when you build applications. So, without further ado, go ahead and jump in and
get started.

002 31240-9 AAG Wk1 4/27/00 11:04 AM Page 6

DAY 1

WEEK 1

The Visual C++
Development
Environment—Building
Your First Visual C++
Application

Welcome to Sams Teach Yourself Visual C++ 6 in 21 Days. Over the next three
weeks, you will learn how to build a wide variety of applications with
Microsoft’s Visual C++. What’s even better is that you will learn how to create
these types of applications by actually building them yourself. As you read this
book, you will be gaining actual programming experience using Visual C++. So
let’s get started!

Today, your focus will be on learning about the Visual C++ development envi-
ronment and some of the tools that it provides for building applications.
Although Visual C++ provides more tools than you would probably use in any

003 31240-9 CH01 4/27/00 11:04 AM Page 7

one application development effort—even more than you could possibly learn to use in a
single day—I limit the focus to the primary tools that you will use throughout this book,
as well as in just about every application you build with Visual C++. Today, you’ll learn
about the following:

• The primary areas of the Visual C++ development environment

• The Application Wizard—how you can use it to build the basic infrastructure for
your applications

• The Dialog Painter—how you can use it to paint dialog windows, much in the
same way that you can build windows with Visual Basic, PowerBuilder, or Delphi

• The Class Wizard—how you can use it to attach functionality to your application
windows

The Visual C++ Development Environment
Before you begin your quick tour around the Visual C++ development environment, you
should start Visual C++ on your computer so that you can see firsthand how each of the
areas are arranged and how you can change and alter that arrangement yourself.

After Developer Studio (the Microsoft Visual development environment) starts, you see
a window that looks like Figure 1.1. Each of the areas has a specific purpose in the
Developer Studio environment. You can rearrange these areas to customize the
Developer Studio environment so that it suits your particular development needs.

The Workspace

When you start Visual C++ for the first time, an area on the left side of Developer Studio
looks like it is taking up a lot of real estate and providing little to show for it. This area
is known as the workspace, and it is your key to navigating the various pieces and parts
of your development projects. The workspace allows you to view the parts of your appli-
cation in three different ways:

• Class View allows you to navigate and manipulate your source code on a C++
class level.

• Resource View allows you to find and edit each of the various resources in your
application, including dialog window designs, icons, and menus.

• File View allows you to view and navigate all the files that make up your appli-
cation.

8 Day 1

003 31240-9 CH01 4/27/00 11:04 AM Page 8

9

1

Building Your First Visual C++ Application

The Output Pane
The Output pane might not be visible when you start Visual C++ for the first time. After
you compile your first application, it appears at the bottom of the Developer Studio envi-
ronment and remains open until you choose to close it. The Output pane is where
Developer Studio provides any information that it needs to give you; where you see all
the compiler progress statements, warnings, and error messages; and where the Visual
C++ debugger displays all the variables with their current values as you step through
your code. After you close the Output pane, it reopens itself when Visual C++ has any
message that it needs to display for you.

The Editor Area
The area on the right side of the Developer Studio environment is the editor area. This is
the area where you perform all your editing when using Visual C++, where the code edi-
tor windows display when you edit C++ source code, and where the window painter
displays when you design a dialog box. The editor area is even where the icon painter
displays when you design the icons for use in your applications. The editor area is basi-
cally the entire Developer Studio area that is not otherwise occupied by panes, menus,
or toolbars.

FIGURE 1.1.
The Visual C++ open-
ing screen.

Workspace pane

Output pane

Build minibar

Wizard toolbar

Standard toolbar

Editor area

003 31240-9 CH01 4/27/00 11:04 AM Page 9

Menu Bars
The first time you run Visual C++, three toolbars display just below the menu bar. Many
other toolbars are available in Visual C++, and you can customize and create your own
toolbars to accommodate how you best work. The three toolbars that are initially open
are the following:

• The Standard toolbar contains most of the standard tools for opening and saving
files, cutting, copying, pasting, and a variety of other commands that you are likely
to find useful.

• The WizardBar toolbar enables you to perform a number of Class Wizard actions
without opening the Class Wizard.

• The Build minibar provides you with the build and run commands that you are
most likely to use as you develop and test your applications. The full Build toolbar
also lets you switch between multiple build configurations (such as between the
Debug and Release build configurations).

Rearranging the Developer Studio Environment
The Developer Studio provides two easy ways to rearrange your development environ-
ment. The first is by right-clicking your mouse over the toolbar area. This action opens
the pop-up menu shown in Figure 1.2, allowing you to turn on and off various toolbars
and panes.

10 Day 1

FIGURE 1.2.
Toolbar on and off
menu.

Another way that you can easily rearrange your development environment is to grab the
double bars at the left end of any of the toolbars or panes with the mouse. You can drag
the toolbars away from where they are currently docked, making them floating toolbars,
as in Figure 1.3. You can drag these toolbars (and panes) to any other edge of the
Developer Studio to dock them in a new spot. Even when the toolbars are docked, you
can use the double bars to drag the toolbar left and right to place the toolbar where you
want it to be located.

003 31240-9 CH01 4/27/00 11:05 AM Page 10

Building Your First Visual C++ Application 11

1

Starting Your First Project
For your first Visual C++ application, you are going to create a simple application that
presents the user with two buttons, as in Figure 1.4. The first button will present the user
with a simple greeting message, shown in Figure 1.5, and the second button will close
the application. In building this application, you will need to do the following things:

1. Create a new project workspace.

2. Use the Application Wizard to create the application framework.

3. Rearrange the dialog that is automatically created by the Application Wizard to
resemble how you want the application to look.

4. Add the C++ code to show the greeting to the user.

5. Create a new icon for the application.

FIGURE 1.3.
Example of a floating
minibar.

On the workspace and Output panes, the double bars that you can use to
drag the pane around the Developer Studio environment might appear on
the top of the pane or on the left side, depending on how and where the
pane is docked.

Note

FIGURE 1.4.
Your first Visual C++
application.

Creating the Project Workspace
Every application development project needs its own project workspace in Visual C++.
The workspace includes the directories where the application source code is kept, as well

FIGURE 1.5.
If the user clicks the
first button, a simple
greeting is shown.

003 31240-9 CH01 4/27/00 11:05 AM Page 11

as the directories where the various build configuration files are located. You can create a
new project workspace by following these steps:

1. Select File | New. This opens the New Wizard shown in Figure 1.6.

12 Day 1

FIGURE 1.6.
The New Wizard.

2. On the Projects tab, select MFC AppWizard (exe).

3. Type a name for your project, such as Hello, in the Project Name field.

4. Click OK. This causes the New Wizard to do two things: create a project directory
(specified in the Location field) and then start the AppWizard.

Using the Application Wizard to Create the
Application Shell
The AppWizard asks you a series of questions about what type of application you are
building and what features and functionality you need. It uses this information to create
a shell of an application that you can immediately compile and run. This shell provides
you with the basic infrastructure that you need to build your application around. You will
see how this works as you follow these steps:

1. In Step 1 of the AppWizard, specify that you want to create a Dialog-based appli-
cation. Click Next at the bottom of the wizard.

2. In Step 2 of the AppWizard, the wizard asks you about a number of features that
you can include in your application. You can uncheck the option for including sup-
port for ActiveX controls if you will not be using any ActiveX controls in your
application. Because you won’t be using any ActiveX controls in today’s applica-
tion, go ahead and uncheck this box.

3. In the field near the bottom of the wizard, delete the project name (Hello) and type
in the title that you want to appear in the title bar of the main application window,

003 31240-9 CH01 4/27/00 11:05 AM Page 12

Building Your First Visual C++ Application 13

1
such as My First Visual C++ Application. Click Next at the bottom of the
wizard.

4. In Step 3 of the AppWizard, leave the defaults for including source file comments
and using the MFC library as a DLL. Click Next at the bottom of the wizard to
proceed to the final AppWizard step.

5. The final step of the AppWizard shows you the C++ classes that the AppWizard
will create for your application. Click Finish to let AppWizard generate your appli-
cation shell.

6. Before AppWizard creates your application shell, it presents you with a list of what
it is going to put into the application shell, as shown in Figure 1.7, based on the
options you selected when going through the AppWizard. Click OK and
AppWizard generates your application.

FIGURE 1.7.
The New Project
Information screen.

7. After the AppWizard generates your application shell, you are returned to the
Developer Studio environment. You will notice that the workspace pane now pre-
sents you with a tree view of the classes in your application shell, as in Figure 1.8.
You might also be presented with the main dialog window in the editor area of the
Developer Studio area.

8. Select Build | Build Hello.exe to compile your application.

9. As the Visual C++ compiler builds your application, you see progress and other
compiler messages scroll by in the Output pane. After your application is built, the
Output pane should display a message telling you that there were no errors or
warnings, as in Figure 1.9.

003 31240-9 CH01 4/27/00 11:05 AM Page 13

10. Select Build | Execute Hello.exe to run your application.

11. Your application presents a dialog with a TODO message and OK and Cancel but-
tons, as shown in Figure 1.10. You can click either button to close the application.

14 Day 1

FIGURE 1.8.
Your workspace with a
tree view of the pro-
ject’s classes.

FIGURE 1.9.
The Output pane dis-
plays any compiler
errors.

003 31240-9 CH01 4/27/00 11:05 AM Page 14

Building Your First Visual C++ Application 15

1

Designing Your Application Window
Now that you have a running application shell, you need to turn your focus to the win-
dow layout of your application. Even though the main dialog window may already be
available for painting in the editor area, you should still navigate to find the dialog win-
dow in the workspace so that you can easily find the window in subsequent develop-
ment efforts. To redesign the layout of your application dialog, follow these steps:

1. Select the Resource View tab in the workspace pane, as in Figure 1.11.

FIGURE 1.10.
The unmodified appli-
cation shell.

FIGURE 1.11.
The Resource View tab
in the workspace pane.

2. Expand the resources tree to display the available dialogs. At this point, you can
double-click the IDD_DAY1_DIALOG dialog to open the window in the Developer
Studio editor area.

3. Select the text displayed in the dialog and delete it using the Delete key.

4. Select the Cancel button, drag it down to the bottom of the dialog, and resize it so
that it is the full width of the layout area of the window, as in Figure 1.12.

003 31240-9 CH01 4/27/00 11:05 AM Page 15

5. Right-click the mouse over the Cancel button, opening the pop-up menu in Figure
1.13. Select Properties from the menu, and the properties dialog in Figure 1.14
opens.

16 Day 1

FIGURE 1.12.
Positioning the Cancel
button.

FIGURE 1.13.
Right-clicking the
mouse to open a pop-
up menu.

6. Change the value in the Caption field to &Close. Close the properties dialog by
clicking the Close icon in the upper-right corner of the dialog.

7. Move and resize the OK button to around the middle of the window, as in Figure
1.15.

FIGURE 1.14.
The Cancel button
properties dialog.

003 31240-9 CH01 4/27/00 11:05 AM Page 16

Building Your First Visual C++ Application 17

1

8. On the OK button properties dialog, change the ID value to IDHELLO and the cap-
tion to &Hello.

9. Now when you compile and run your application, it will look like what you’ve just
designed, as shown in Figure 1.16.

FIGURE 1.15.
Positioning the OK
button.

Adding Code to Your Application
You can attach code to your dialog through the Visual C++ Class Wizard. You can use
the Class Wizard to build the table of Windows messages that the application might
receive, including the functions they should be passed to for processing, that the MFC
macros use for attaching functionality to window controls. You can attach the functional-
ity for this first application by following these steps:

1. To attach some functionality to the Hello button, right-click over the button and
select Class Wizard from the pop-up menu.

2. If you had the Hello button selected when you opened the Class Wizard, it is
already selected in the list of available Object IDs, as in Figure 1.17.

FIGURE 1.16.
Running your
redesigned applica-
tion.

If you play with your application, you will notice that the Close button still
closes the application. However, the Hello button no longer does anything
because you changed the ID of the button. MFC applications contain a series
of macros in the source code that determine which functions to call based
on the ID and event message of each control in the application. Because you
changed the ID of the Hello button, these macros no longer know which
function to call when the button is clicked.

Note

003 31240-9 CH01 4/27/00 11:05 AM Page 17

3. With IDHELLO selected in the Object ID list, select BN_CLICKED in the list of mes-
sages and click Add Function. This opens the Add Member Function dialog shown
in Figure 1.18. This dialog contains a suggestion for the function name. Click OK
to create the function and add it to the message map.

18 Day 1

FIGURE 1.17.
The Class Wizard.

FIGURE 1.18.
The Class Wizard Add
Member Function dia-
log.

4. After the function is added for the click message on the Hello button, select the
OnHello function in the list of available functions, as in Figure 1.19. Click the Edit
Code button so that your cursor is positioned in the source code for the function,
right at the position where you should add your functionality.

FIGURE 1.19.
The list of available
functions in the Class
Wizard.

003 31240-9 CH01 4/27/00 11:05 AM Page 18

Building Your First Visual C++ Application 19

1
5. Add the code in Listing 1.1 just below the TODO comment line, as shown in Figure

1.20.

FIGURE 1.20.
Source code view
where you insert
Listing 1.1.

LISTING 1.1. HELLODLG.CPP—THE OnHello FUNCTION.

1: Void CHelloDlg::OnHello()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Say hello to the user
10: MessageBox(“Hello. This is my first Visual C++ Application!”);
11:
12: ///////////////////////
13: // MY CODE ENDS HERE
14: ///////////////////////
15: }

6. When you compile and run your application, the Hello button should display the
message shown in Figure 1.21.

003 31240-9 CH01 4/27/00 11:05 AM Page 19

Finishing Touches
Now that your application is functionally complete, you can still add a few details to fin-
ish off the project. Those finishing touches include

• Creating the dialog box icon

• Adding maximize and minimize buttons

Creating the Dialog Box Icon
If you noticed the icon in the top-left corner of your application window, you saw three
blocks with the letters M, F, and C. What does MFC have to do with your application?
MFC stands for Microsoft Foundation Classes. Technically, it’s the C++ class library that
your application is built with, but do you want to broadcast that to every user who sees
your application? Most likely not. You need to edit the application icon to display an
image that you do want to represent your application. Let’s get busy!

1. In the tree view of your application resources in the workspace pane, expand the
icon branch and select the IDR_MAINFRAME icon, as in Figure 1.22. This brings the
application icon into the editor area of the Developer Studio.

20 Day 1

FIGURE 1.21.
Now your application
will say hello to you.

FIGURE 1.22.
The standard MFC
icon.

003 31240-9 CH01 4/27/00 11:05 AM Page 20

Building Your First Visual C++ Application 21

1
2. Using the painting tools provided, repaint the icon to display an image that you

want to use to represent your application, as in Figure 1.23.

FIGURE 1.23.
Your own custom icon
for your application.

3. When you compile and run your application, you will notice your custom icon in
the top-left corner of your application window. Click the icon and select About
Hello from the drop-down menu.

4. On the About dialog that Visual C++ created for you, you can see a large version
of your custom icon in all its glory, as shown in Figure 1.24.

FIGURE 1.24.
Your application’s
About window.

Adding Maximize and Minimize Buttons
In the dialog editor, where you design your application window, you can add the mini-
mize and maximize buttons to the title bar of your application window by following
these steps:

1. Select the dialog window itself as if you were going to resize the window.

2. Using the pop-up menu (from right-clicking the mouse), select the dialog proper-
ties.

3. Select the Styles tab, as shown in Figure 1.25.

When you open an application icon in the icon designer, the icon is sized by
default at 32×32. You can also select a 16×16 size icon from the drop-down
list box just above where you are drawing the icon. You should draw both
of these icons because there are some instances in which the large icon will
be displayed and some instance in which the small icon will be shown. You
will want both icons to show the same image to represent your application.

Note

003 31240-9 CH01 4/27/00 11:05 AM Page 21

4. After you turn on the minimize and maximize boxes, you can compile and run
your application. The minimize and maximize buttons appear on the title bar, as in
Figure 1.26.

22 Day 1

FIGURE 1.25.
Turning the minimize
and maximize buttons
on and off.

FIGURE 1.26.
The application win-
dow with the minimize
and maximize buttons.

Summary
Today you got your first taste of building applications using Visual C++. You learned
about the different areas of the Visual C++ Developer Studio and what function each of
these areas serves. You also learned how you can rearrange the Developer Studio envi-
ronment to suit the way you work. You also learned how you can use the Visual C++
wizards to create an application shell and then attach functionality to the visual compo-
nents that you place on your application windows.

Q&A
Q How can I change the title on the message box, instead of using the applica-

tion name?

A By default, the message box window uses the application name as the window
title. You can change this by adding a second text string to the MessageBox func-
tion call. The first string is always the message to be displayed, and the second
string is used as the window title. For example, the OnHello function would look
like
// Say hello to the user
MessageBox(“Hello. This is my first Visual C++ Application!”,

“My First Application”);

003 31240-9 CH01 4/27/00 11:05 AM Page 22

Building Your First Visual C++ Application 23

1
Q Can I change the text on the About window to give my company name and

more detailed copyright information?

A Yes, the About window is in the Dialogs folder in the Resources View tab of the
workspace pane. If you double-click the IDD_ABOUTBOX dialog, the About box will
be opened in the dialog designer, where you can redesign it however you want.

Workshop
The Workshop provides quiz questions to help solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. How do you change the caption on a button?

2. What can you do with the Visual C++ AppWizard?

3. How do you attach functionality to the click of a button?

Exercise
Add a second button to the About window in your application. Have the button display a
different message from the one on the first window.

003 31240-9 CH01 4/27/00 11:05 AM Page 23

003 31240-9 CH01 4/27/00 11:05 AM Page 24

DAY 2

WEEK 1

Using Controls in Your
Application

Some of the things that you will find in just about every Windows application
are buttons, check boxes, text fields, and drop-down list boxes. These are
known as controls, and many of these controls are built into the operating sys-
tem itself. With Visual C++, using these common controls is as easy as placing
them on a dialog window with a drag-and-drop window design method. Today
you are going to learn

• What the basic controls in Visual C++ are

• How to declare and attach variables to a controls

• How to synchronize the values between a control and a variable

• How to specify the order users navigate around your application windows

• How to trigger actions with controls

• How to manipulate and alter the appearance of controls (while your
application is running)

004 31240-9 CH02 4/27/00 11:06 AM Page 25

The Basic Windows Controls
Several standard controls are built into the Windows operating system, including such
things as sliders, tree and list controls, progress bars, and so on. However, today you will
work with a half dozen controls that appear in just about every Windows application:

• Static text

• Edit box

• Command button

• Check box

• Radio button

• Drop-down list box (also known as a combo box)

These and other controls are readily available for use in Visual C++ applications. They
can be found on the controls palette in the Dialog Painter editor in the Developer Studio,
as shown in Figure 2.1.

26 Day 2

FIGURE 2.1.
The standard controls
available on the
Control palette.

The Static Text Control
You use the static text control to present text to the user. The user will not be able to
change the text or otherwise interact with the control. Static text is intended as a read-
only control. However, you can easily change the text displayed by the control as your
application is running through the code you create for your application.

The Edit Box Control
An edit box allows the user to enter or change text. The edit box is one of the primary
tools for allowing the user to enter specific information that your application needs. It is
a control that allows the user to type a specific amount of text, which you can capture

Rich Text Edit
Tab Control

Custom Control
Month Calendar

List Control

Edit Box

Extended Combo
Box

IP Address
Date/Time Picker

Animate
Tree Control

Hot Key
Progress Bar

Vertical Scrollbar
List Box

Radio Button
Command Button

Picture

Slider
Spin

Horizontal ScrollbarDrop-Down
List Box

(Combo Box)

Check Box
Group Box

Static Text
Select

004 31240-9 CH02 4/27/00 11:06 AM Page 26

Using Controls in Your Application 27

2

and use for any needed purpose. The edit box accepts plain text only; no formatting is
available to the user.

The Command Button Control
A command button is a button that the user can press to trigger some action. Command
buttons have a textual label that can give users some idea of what will happen when they
click that button. Buttons can also have images as part of the button, allowing you to
place an image on the button—alone or along with a textual description—to convey what
the button does.

The Check Box Control
A check box is a square that the user can click to check (×) or uncheck. The check box
control is used to turn a particular value on and off. They are basically on/off switches
with an occasional third, in-between state. You normally use check boxes to control dis-
crete, on/off-type variables.

The Radio Button Control
A radio button is a circle that the user can click to fill with a black spot. The radio button
is similar to the check box control, but it is used in a group of two or more where only
one of the values can be in the on state at a time. You normally use radio buttons in
groups of at least three, surrounded by a group box. The group box allows each group of
radio buttons to be independent so that only one radio button in each group can be in the
on state at any time.

The Drop-Down List Box Control
A drop-down list box, or combo control, is an edit box with a list of available values
attached. You use the drop-down list box to provide a list of choices, from which the
user may select one value from the list. Sometimes, the user is given the option of typing
in his own value when a suitable one isn’t provided in the list.

Adding Controls to Your Window
The application you are going to build today will have a number of controls on a single
dialog window, as shown in Figure 2.2. These controls have a number of different func-
tions. At the top of the window is an edit field where the user can enter a message that
displays in a message box when he or she clicks the button beside the field. Below this
edit field are two buttons that either populate the edit field with a default message or
clear the edit field. Below these buttons is a drop-down list box that contains a list of

004 31240-9 CH02 4/27/00 11:06 AM Page 27

standard Windows applications. When the user selects one of these programs and then
clicks the button beside the drop-down list, the selected program will run. Next are two
groups of check boxes that affect the controls you add to the top half of the dialog: the
controls for displaying a user message and the controls for running another program.
The left set of check boxes will enable and disable each group of controls you provide.
The right set of check boxes will show and hide each group of controls. At the bottom
of the dialog box is a button that can be clicked to close the application.

28 Day 2

FIGURE 2.2.
Today’s application
will use a number of
standard controls.

Creating the Application Shell and Dialog Layout
Using what you learned yesterday, create a new application shell and design the applica-
tion dialog layout as follows:

1. Create a new AppWizard workspace project, calling the project Day2.

2. Use the same settings in the AppWizard as you used yesterday; specify the dialog
title Visual C++ Controls.

3. After you create the application shell, lay out the main dialog as shown earlier in
Figure 2.2.

4. Configure the control properties as specified in Table 2.1.

TABLE 2.1. PROPERTY SETTINGS FOR THE CONTROLS ON THE APPLICATION DIALOG.

Object Property Setting

Static Text ID IDC_STATIC

Caption This is an example of a Visual C++

Application using a number of controls.

Static Text ID IDC_STATICMSG

Caption Enter a &Message:

Static Text ID IDC_STATICPGM

Caption Run a &Program:

004 31240-9 CH02 4/27/00 11:06 AM Page 28

Using Controls in Your Application 29

2

Edit Box ID IDC_MSG

Button ID IDC_SHWMSG

Caption &Show Message

Button ID IDC_DFLTMSG

Caption &Default Message

Button ID IDC_CLRMSG

Caption &Clear Message

Button ID IDC_RUNPGM

Caption &Run Program

Button ID IDC_EXIT

Caption E&xit

Combo Box ID IDC_PROGTORUN

Group Box ID IDC_STATIC

Caption Enable Actions

Group Box ID IDC_STATIC

Caption Show Actions

Check Box ID IDC_CKENBLMSG

Caption &Enable Message Action

Check Box ID IDC_CKENBLPGM

Caption E&nable Program Action

Check Box ID IDC_CKSHWMSG

Caption S&how Message Action

Check Box ID IDC_CKSHWPGM

Caption Sh&ow Program Action

Object Property Setting

When adding a combo box control to the window, it is important that you
click and drag the area for the control as large as you want the drop-down
list to be. After you draw the control on the window, you can resize the
width of the control as you would normally expect to do. To resize how far
the list drops down, you need to click the arrow, as if you were trying to
trigger the drop-down list while the application was running.

Tip

004 31240-9 CH02 4/27/00 11:06 AM Page 29

5. After you place all these controls on the dialog window and configure all their
properties, reopen the properties dialog for the combo box that you placed on the
window. On the Data tab of the properties dialog, enter the following values, using
a Control+Enter key combination to add the second and third items, as shown in
Figure 2.3.

• Notepad

• Paint

• Solitaire

30 Day 2

FIGURE 2.3.
Use the properties dia-
log to add entries in
the combo box’s drop-
down list.

Specifying the Control Tab Order
Now that you have all the controls laid out on the window, you need to make sure that
the user navigates in the order you want if he or she uses the Tab key to move around
the window. You can specify the tab order by following these steps:

1. Select either the dialog window or one of the controls on the window in the editing
area of the Developer Studio.

2. Choose Layout | Tab Order from the menu. By turning on the Tab Order, you see
a number beside each of the controls on the window. The numbers indicate the
order in which the dialog will be navigated, as shown in Figure 2.4.

FIGURE 2.4.
Turning on Tab Order
shows the order in
which the dialog will
be navigated.

3. Using the mouse, click each of the number boxes in the order that you want the
user to navigate the window. The controls will renumber themselves to match the
order in which you selected them.

004 31240-9 CH02 4/27/00 11:06 AM Page 30

Using Controls in Your Application 31

2

4. Once you specify the tab order, select Layout | Tab Order once again to return to
the layout editor.

Any static text that has a mnemonic should appear just before the control
that accompanies the text in the tab order. Because the user cannot interact
with the static text, when the user chooses the mnemonic, the focus will go
directly to the next control in the tab order.

Note

A mnemonic is the underlined character in the caption on a button, check box, menu, or
other control label. The user can press this underlined character and the Alt key at the
same time to go directly to that control or to trigger the clicked event on the control. You
specify a mnemonic by placing an ampersand (&) in front of the character to be used as
the mnemonic when you type the Caption value. It is important to make certain that you
do not use the same mnemonic more than once on the same window, or set of menus,
because the user can get confused when choosing a mnemonic doesn’t result in the
action that he or she expects.

One last thing that you want to do before getting into the details of the application code
is check your mnemonics to make certain that there are no conflicts in your controls.
Follow these steps:

1. Select the dialog window or one of the controls in the layout editor. Right-click the
mouse and select Check Mnemonics.

2. If there are no conflicts in your mnemonics, Visual C++ returns a message box
dialog, letting you know that there are no conflicts (see Figure 2.5).

FIGURE 2.5.
The mnemonic checker
tells you whether there
are conflicts.

3. If any conflicts exist, the dialog indicates the conflicting letter and gives you the
option of automatically selecting the controls containing the conflicting mnemon-
ics, as in Figure 2.6.

FIGURE 2.6.
Duplicate mnemonics
can be automatically
selected.

004 31240-9 CH02 4/27/00 11:06 AM Page 31

Attaching Variables to Your Controls
At this point, if you’ve programmed using Visual Basic or PowerBuilder, you probably
figure that you’re ready to start slinging some code. Well, with Visual C++, it’s not quite
the same process. Before you can begin coding, you have to assign variables to each of
the controls that will have a value attached—everything except the static text and the
command buttons. You will interact with these variables when you write the code for
your application. The values that the user enters into the screen controls are placed into
these variables for use in the application code. Likewise, any values that your application
code places into these variables are updated in the controls on the window for the user
to see.

How do you declare these variables and associate them with the controls that you placed
on the window? Follow these steps:

1. Open the Class Wizard, as you learned yesterday.

2. Select the Member Variables tab, as shown in Figure 2.7.

32 Day 2

FIGURE 2.7.
The Member Variables
tab on the Class
Wizard is where you
add variables to
controls.

3. Select the ID of one of the controls that you need to attach a variable to, such as
IDC_MSG.

4. Click the Add Variable button.

5. In the Add Member Variable dialog, enter the variable name, specifying the catego-
ry and variable type, as shown in Figure 2.8. Click OK.

6. Repeat steps 3 through 5 for all the other controls for which you need to add vari-
ables. You should add the variables for your application as listed in Table 2.2.

004 31240-9 CH02 4/27/00 11:06 AM Page 32

Using Controls in Your Application 33

2

TABLE 2.2. VARIABLES FOR APPLICATION CONTROLS.

Control Variable Name Category Type

IDC_MSG m_strMessage Value CString

IDC_PROGTORUN m_strProgToRun Value CString

IDC_CKENBLMSG m_bEnableMsg Value BOOL

IDC_CKENBLPGM m_bEnablePgm Value BOOL

IDC_CKSHWMSG m_bShowMsg Value BOOL

IDC_CKSHWPGM m_bShowPgm Value BOOL

FIGURE 2.8.
Adding a variable to a
control.

All these variables are prefixed with m_ because they are class member vari-
ables. This is an MFC naming convention. After the m_, a form of Hungarian
notation is used, in which the next few letters describe the variable type. In
this case, b means boolean, and str indicates that the variable is a string.
You’ll see this naming convention in use in this book and other books about
programming with Visual C++ and MFC. Following this naming convention
will make your code more readable for other programmers; knowing the
convention will make it easier for you to read other programmer’s code as
well.

Tip

7. After you add all the necessary variables, click the OK button to close the Class
Wizard.

Attaching Functionality to the Controls
Before you begin adding code to all the controls on your application window, you need
to add a little bit of code to initialize the variables, setting starting values for most of
them. Do this by following these steps:

004 31240-9 CH02 4/27/00 11:06 AM Page 33

1. Using the Class Wizard, on the Message Maps tab, select the OnInitDialog func-
tion in the list of member functions. You can do this by finding the function in the
Member Functions list, or by selecting the CDay2Dlg object in the list of object IDs
and then selecting the WM_INITDIALOG message in the messages list, as shown in
Figure 2.9.

34 Day 2

FIGURE 2.9.
You can use the Class
Wizard to locate exist-
ing functions.

2. Click Edit Code to be taken to the source code for the OnInitDialog function.

3. Find the TODO marker, which indicates where to begin adding your code, and add
the code in Listing 2.1.

LISTING 2.1. DAY2DLG.CPP—THE OnInitDialog FUNCTION IS WHERE YOU NEED TO ADD
INITIALIZATION CODE.

1: BOOL CDay2Dlg::OnInitDialog()
2: {
3: CDialog::OnInitDialog();
4:
5: .
6: .
7: .
8:
9: // TODO: Add extra initialization here
10:
11: ///////////////////////
12: // MY CODE STARTS HERE
13: ///////////////////////
14:
15: // Put a default message in the message edit
16: m_strMessage = “Place a message here”;
17:
18: // Set all of the check boxes to checked

004 31240-9 CH02 4/27/00 11:06 AM Page 34

Using Controls in Your Application 35

2

19: m_bShowMsg = TRUE;
20: m_bShowPgm = TRUE;
21: m_bEnableMsg = TRUE;
22: m_bEnablePgm = TRUE;
23:
24: // Update the dialog with the values
25: UpdateData(FALSE);
26:
27: ///////////////////////
28: // MY CODE ENDS HERE
29: ///////////////////////
30:
31: return TRUE; // return TRUE unless you set the focus to a

➥ control
32: }

There is more code in the OnInitDialog function than has been included in
Listing 2.1. I won’t include all the code for every function in the code listings
throughout this book as a means of focusing on the code that you need to
add or modify (and as a means of keeping this book down to a reasonable
size). You are welcome to look at the code that has been left out, to learn
what it is and what it does, as you build your understanding of MFC and
Visual C++.

Note

This initialization code is simple. You are setting an initial message in the edit box that
you will use to display messages for the user. Next, you are setting all the check boxes
to the checked state. It’s the last line of the code you added to this function that you real-
ly need to notice.

The UpdateData function is the key to working with control variables in Visual C++.
This function takes the data in the variables and updates the controls on the screen with
the variable values. It also takes the data from the controls and populates the attached

If you’ve programmed in C or C++ before, you’ve noticed that you are set-
ting the value of the m_strMessage variable in a very un–C-like manner. It
looks more like how you would expect to set a string variable in Visual Basic
or PowerBuilder. That’s because this variable is a CString type variable. The
CString class enables you to work with strings in a Visual C++ application in
much the same way that you would work with strings in one of these other
programming languages. However, because this is the C++ programming
language, you still need to add a semicolon at the end of each command.

Note

004 31240-9 CH02 4/27/00 11:06 AM Page 35

variables with any values changed by the user. This process is controlled by the argu-
ment passed into the UpdateData function. If the argument is FALSE, the values in the
variables are passed to the controls on the window. If the argument is TRUE, the variables
are updated with whatever appears in the controls on the window. As a result, which
value you pass this function depends on which direction you need to update. After you
update one or more variables in your code, then you need to call UpdateData, passing it
FALSE as its argument. If you need to read the variables to get their current value, then
you need to call UpdateData with a TRUE value before you read any of the variables.
You’ll get the hang of this as you add more code to your application.

Closing the Application
The first thing that you want to take care of is making sure that the user can close your
application. Because you deleted the OK and Cancel buttons and added a new button for
closing the application window, you need to place code into the function called by the
Exit button to close the window. To do this, follow these steps:

1. Using the Class Wizard, add a function for the IDC_EXIT object on the BN_CLICKED
message, as you learned to do yesterday.

2. Click the Edit Code button to take you to the new function that you just added.

3. Enter the code in Listing 2.2.

LISTING 2.2. DAY2DLG.CPP—THE OnExit FUNCTION.

1: void CDay2Dlg::OnExit()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Exit the program
10: OnOK();
11:
12: ///////////////////////
13: // MY CODE ENDS HERE
14: ///////////////////////
15: }

A single function call within the OnExit function closes the Window and exits the appli-
cation. Where did this OnOK function come from, and why didn’t you have to call it in
yesterday’s application? Two functions, OnOK and OnCancel, are built into the ancestor

36 Day 2

004 31240-9 CH02 4/27/00 11:06 AM Page 36

Using Controls in Your Application 37

2

CDialog class from which your CDay2Dlg class is inherited. In the CDialog class, the
message map already has the object IDs of the OK and Cancel buttons attached to the
OnOK and OnCancel buttons so that buttons with these IDs automatically call these
functions. If you had specified the Exit button’s object ID as IDOK, you would not have
needed to add any code to the button unless you wanted to override the base OnOK
functionality.

Showing the User’s Message
Showing the message that the user typed into the edit box should be easy because it’s
similar to what you did in yesterday’s application. You can add a function to the Show
Message button and call the MessageBox function, as in Listing 2.3.

LISTING 2.3. DAY2DLG.CPP—THE OnShwmsg FUNCTION DISPLAYS THE USER MESSAGE.

1: void CDay2Dlg::OnShwmsg()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Display the message for the user
10: MessageBox(m_strMessage);
11:
12: ///////////////////////
13: // MY CODE ENDS HERE
14: ///////////////////////
15: }

If you compile and run the application at this point, you’ll see one problem with this
code. It displays the string that you initialized the m_strMessage variable within the
OnInitDialog function. It doesn’t display what you type into the edit box. This happens
because the variable hasn’t been updated with the contents of the control on the window
yet. You need to call UpdateData, passing it a TRUE value, to take the values of the con-
trols and update the variables before calling the MessageBox function. Alter the OnShwmsg
function as in Listing 2.4.

LISTING 2.4. DAY2DLG.CPP—UPDATED OnShwmsg FUNCTION.

1: void CDay2Dlg::OnShwmsg()
2: {

continues

004 31240-9 CH02 4/27/00 11:06 AM Page 37

3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Update the message variable with what the user entered
10: UpdateData(TRUE);
11:
12: // Display the message for the user
13: MessageBox(m_strMessage);
14:
15: ///////////////////////
16: // MY CODE ENDS HERE
17: ///////////////////////
18: }

Now if you compile and run your application, you should be able to display the message
you type into the edit box, as shown in Figure 2.10.

38 Day 2

LISTING 2.4. CONTINUED

FIGURE 2.10.
The message entered
in the edit box is dis-
played to the user.

Clearing the User’s Message
If the user prefers the edit box to be cleared before he or she types a message, you can
attach a function to the Clear Message button to clear the contents. You can add this
function through the Class Wizard in the usual way. The functionality is a simple matter
of setting the m_strMessage variable to an empty string and then updating the controls
on the window to reflect this. The code to do this is in Listing 2.5.

LISTING 2.5. DAY2DLG.CPP—THE OnClrmsg FUNCTION.

1: void CDay2Dlg::OnClrmsg()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Clear the message

004 31240-9 CH02 4/27/00 11:06 AM Page 38

Using Controls in Your Application 39

2

10: m_strMessage = “”;
11:
12: // Update the screen
13: UpdateData(FALSE);
14:
15: ///////////////////////
16: // MY CODE ENDS HERE
17: ///////////////////////
18: }

Disabling and Hiding the Message Controls
The last thing that you want to do with the message controls is add functionality to the
Enable Message Action and Show Message Action check boxes. The first of these check
boxes enables or disables the controls dealing with displaying the user message. When
the check box is in a checked state, the controls are all enabled. When the check box is
in an unchecked state, all those same controls are disabled. In a likewise fashion, the sec-
ond check box shows and hides this same set of controls. The code for these two func-
tions is in Listing 2.6.

LISTING 2.6. DAY2DLG.CPP—THE FUNCTIONS FOR THE ENABLE AND SHOW MESSAGE ACTIONS
CHECK BOXES.

1: void CDay2Dlg::OnCkenblmsg()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Get the current values from the screen
10: UpdateData(TRUE);
11:
12: // Is the Enable Message Action check box checked?
13: if (m_bEnableMsg == TRUE)
14: {
15: // Yes, so enable all controls that have anything
16: // to do with showing the user message
17: GetDlgItem(IDC_MSG)->EnableWindow(TRUE);
18: GetDlgItem(IDC_SHWMSG)->EnableWindow(TRUE);
19: GetDlgItem(IDC_DFLTMSG)->EnableWindow(TRUE);
20: GetDlgItem(IDC_CLRMSG)->EnableWindow(TRUE);
21: GetDlgItem(IDC_STATICMSG)->EnableWindow(TRUE);
22: }

continues

004 31240-9 CH02 4/27/00 11:06 AM Page 39

23: else
24: {
25: // No, so disable all controls that have anything
26: // to do with showing the user message
27: GetDlgItem(IDC_MSG)->EnableWindow(FALSE);
28: GetDlgItem(IDC_SHWMSG)->EnableWindow(FALSE);
29: GetDlgItem(IDC_DFLTMSG)->EnableWindow(FALSE);
30: GetDlgItem(IDC_CLRMSG)->EnableWindow(FALSE);
31: GetDlgItem(IDC_STATICMSG)->EnableWindow(FALSE);
32: }
33:
34: ///////////////////////
35: // MY CODE ENDS HERE
36: ///////////////////////
37: }
38:
39: void CDay2Dlg::OnCkshwmsg()
40: {
41: // TODO: Add your control notification handler code here
42:
43: ///////////////////////
44: // MY CODE STARTS HERE
45: ///////////////////////
46:
47: // Get the current values from the screen
48: UpdateData(TRUE);
49:
50: // Is the Show Message Action check box checked?
51: if (m_bShowMsg == TRUE)
52: {
53: // Yes, so show all controls that have anything
54: // to do with showing the user message
55: GetDlgItem(IDC_MSG)->ShowWindow(TRUE);
56: GetDlgItem(IDC_SHWMSG)->ShowWindow(TRUE);
57: GetDlgItem(IDC_DFLTMSG)->ShowWindow(TRUE);
58: GetDlgItem(IDC_CLRMSG)->ShowWindow(TRUE);
59: GetDlgItem(IDC_STATICMSG)->ShowWindow(TRUE);
60: }
61: else
62: {
63: // No, so hide all controls that have anything
64: // to do with showing the user message
65: GetDlgItem(IDC_MSG)->ShowWindow(FALSE);
66: GetDlgItem(IDC_SHWMSG)->ShowWindow(FALSE);
67: GetDlgItem(IDC_DFLTMSG)->ShowWindow(FALSE);
68: GetDlgItem(IDC_CLRMSG)->ShowWindow(FALSE);
69: GetDlgItem(IDC_STATICMSG)->ShowWindow(FALSE);
70: }
71:

40 Day 2

LISTING 2.6. CONTINUED

004 31240-9 CH02 4/27/00 11:06 AM Page 40

Using Controls in Your Application 41

2

72: ///////////////////////
73: // MY CODE ENDS HERE
74: ///////////////////////
75: }

By now, you should understand the first part of these functions. First, you update the
variables with the current values of the controls on the window. Next, you check the
value of the boolean variable attached to the appropriate check box. If the variable is
TRUE, you want to enable or show the control. If the variable if FALSE, you want to dis-
able or hide the control.

At this point, the code begins to be harder to understand. The first function, GetDlgItem,
is passed the ID of the control that you want to change. This function returns the object
for that control. You can call this function to retrieve the object for any of the controls on
the window while your application is running. The next part of each command is where
a member function of the control object is called. The second function is a member func-
tion of the object returned by the first function. If you are not clear on how this works,
then you might want to check out Appendix A, “C++ Review,” to brush up on your C++.

The second functions in these calls, EnableWindow and ShowWindow, look like they
should be used on windows, not controls. Well, yes, they should be used on windows;
they happen to be members of the CWnd class, which is an ancestor of the CDialog class
from which your CDay2Dlg class is inherited. It just so happens that, in Windows, all
controls are themselves windows, completely separate from the window on which they
are placed. This allows you to treat controls as windows and to call windows functions
on them. In fact, all the control classes are inherited from the CWnd class, revealing their
true nature as windows.

If you compile and run your application now, you can try the Enable and Show Message
Action check boxes. They should work just fine, as shown in Figure 2.11.

FIGURE 2.11.
The user message con-
trols can now be dis-
abled.

004 31240-9 CH02 4/27/00 11:06 AM Page 41

Running Another Application
The last major piece of functionality to be implemented in your application is for the set
of controls for running another program. If you remember, you added the names of three
Windows applications into the combo box, and when you run your application, you can
see these application names in the drop-down list. You can select any one of them, and
the value area on the combo box is updated with that application name. With that part
working as it should, you only need to add code to the Run Program button to actually
get the value for the combo box and run the appropriate program. Once you create the
function for the Run Program button using the Class Wizard, add the code in Listing 2.7
to the function.

LISTING 2.7. DAY2DLG.CPP—THE OnRunpgm FUNCTION STARTS OTHER WINDOWS APPLICATIONS.

1: void CDay2Dlg::OnRunpgm()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Get the current values from the screen
10: UpdateData(TRUE);
11:
12: // Declare a local variable for holding the program name
13: CString strPgmName;
14:
15: // Copy the program name to the local variable
16: strPgmName = m_strProgToRun;
17:
18: // Make the program name all uppercase
19: strPgmName.MakeUpper();
20:
21: // Did the user select to run the Paint program?
22: if (strPgmName == “PAINT”)
23: // Yes, run the Paint program
24: WinExec(“pbrush.exe”, SW_SHOW);
25:
26: // Did the user select to run the Notepad program?
27: if (strPgmName == “NOTEPAD”)
28: // Yes, run the Notepad program
29: WinExec(“notepad.exe”, SW_SHOW);
30:
31: // Did the user select to run the Solitaire program?
32: if (strPgmName == “SOLITAIRE”)
33: // Yes, run the Solitaire program
34: WinExec(“sol.exe”, SW_SHOW);

42 Day 2

004 31240-9 CH02 4/27/00 11:06 AM Page 42

Using Controls in Your Application 43

2

35:
36: ///////////////////////
37: // MY CODE ENDS HERE
38: ///////////////////////
39: }

As you expect, the first thing that you do in this function is call UpdateData to populate
the variables with the values of the controls on the window. The next thing that you do,
however, might seem a little pointless. You declare a new CString variable and copy the
value of the combo box to it. Is this really necessary when the value is already in a
CString variable? Well, it depends on how you want your application to behave. The
next line in the code is a call to the CString function MakeUpper, which converts the
string to all uppercase. If you use the CString variable that is attached to the combo box,
the next time that UpdateData is called with FALSE as the argument, the value in the
combo box is converted to uppercase. Considering that this is likely to happen at an odd
time, this is probably not desirable behavior. That’s why you use an additional CString
in this function.

Once you convert the string to all uppercase, you have a series of if statements that
compare the string to the names of the various programs. When a match is found, the
WinExec function is called to run the application. Now, if you compile and run your
application, you can select one of the applications in the drop-down list and run it by
clicking the Run Program button.

It is important to understand the difference in C and C++ between using a
single equal sign (=) and a double equal sign (==). The single equal sign per-
forms an assignment of the value on the right side of the equal sign to the
variable on the left side of the equal sign. If a constant is on the left side of
the equal sign, your program will not compile, and you’ll get a nice error
message telling you that you cannot assign the value on the right to the
constant on the left. The double equal sign (==) is used for comparison. It is
important to make certain that you use the double equal sign when you
want to compare two values because if you use a single equal sign, you alter
the value of the variable on the left. This confusion is one of the biggest
sources of logic bugs in C/C++ programs.

Caution

004 31240-9 CH02 4/27/00 11:07 AM Page 43

Summary
Today, you learned how you can use standard windows controls in a Visual C++ applica-
tion. You learned how to declare and attach variables to each of these controls and how
to synchronize the values between the controls and the variables. You also learned how
you can manipulate the controls by retrieving the control objects using their object ID
and how you can manipulate the control by treating it as a window. You also learned
how to specify the tab order of the controls on your application windows, thus enabling
you to control how users navigate your application windows. Finally, you learned how to
attach application functionality to the controls on your application window, triggering
various actions when the user interacts with various controls. As an added bonus, you
learned how you can run other Windows applications from your own application.

Q&A
Q When I specified the object IDs of the controls on the window, three controls

had the same ID, IDC_STATIC. These controls were the text at the top of the
window and the two group boxes. The other two static text controls started
out with this same ID until I changed them. How can these controls have the
same ID, and why did I have to change the ID on the two static texts where I
did change them?

A All controls that don’t normally have any user interaction, such as static text and
group boxes, are by default given the same object ID. This works fine as long as
your application doesn’t need to perform any actions on any of these controls. If
you do need to interact with one of these controls, as you did with the static text
prompts for the edit box and combo box, then you need to give that control a
unique ID. In this case, you needed the unique ID to be able to retrieve the control
object so that you could enable or disable and show or hide the control. You also

44 Day 2

The WinExec function is an obsolete Windows function. You really should use
the CreateProcess function instead. However, the CreateProcess function
has a number of arguments that are difficult to understand this early in pro-
gramming using Visual C++. The WinExec function is still available and is
implemented as a macro that calls the CreateProcess function. This allows
you to use the much simpler WinExec function to run another application
while still using the function that Windows wants you to use.

Another API function that can be used to run another application is the
ShellExecute function. This function was originally intended for opening or
printing files, but can also be used to run other programs.

Note

004 31240-9 CH02 4/27/00 11:07 AM Page 44

Using Controls in Your Application 45

2

need to assign it a unique ID if you want to attach a variable to the control so that
you could dynamically alter the text on the control.

The application behaves in a somewhat unpredictable way if you try to alter any of
the static controls that share the same ID. As a general rule of thumb, you can
allow static controls to share the same object ID if you are not going to alter the
controls at all. If you might need to perform any interaction with the controls, then
you need to assign each one a unique object ID.

Q Is there any other way to manipulate the controls, other than retrieving the
control objects using their object IDs?

A You can declare variables in the Control category. This basically gives you an
object that is the control’s MFC class, providing you with a direct way of altering
and interacting with the control. You can then call all of the CWnd class functions
on the control, as you did to enable or disable and show or hide the controls in
your application, or you can call the control class methods, enabling you to do
things in the code that are specific to that type of control. For instance, if you add
another variable to the combo box control and specify that it is a Control category
variable, you can use it to add items to the drop-down list on the control.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises appear in Appendix B,
“Answers.”

Quiz
1. Why do you need to specify the tab order of the controls on your application win-

dows?

2. How can you include a mnemonic in a static text field that will take the user to the
edit box or combo box beside the text control?

3. Why do you need to give unique object IDs to the static text fields in front of the
edit box and combo boxes?

4. Why do you need to call the UpdateData function before checking the value of one
of the controls?

Exercises
1. Add code to the Default Message button to reset the edit box to say Enter a

message here.

004 31240-9 CH02 4/27/00 11:07 AM Page 45

2. Add code to enable or disable and show or hide the controls used to select and run
another application.

3. Extend the code in the OnRunpgm function to allow the user to enter his own pro-
gram name to be run.

46 Day 2

004 31240-9 CH02 4/27/00 11:07 AM Page 46

DAY 3

WEEK 1

Allowing User
Interaction—Integrating
the Mouse and Keyboard
in Your Application

Depending on the type of application you are creating, you might need to
notice what the user is doing with the mouse. You need to know when and
where the mouse was clicked, which button was clicked, and when the button
was released. You also need to know what the user did while the mouse button
was being held down.

Another thing that you might need to do is read the keyboard events. As with
the mouse, you might need to know when a key was pressed, how long it was
held down, and when it was released.

005 31240-9 CH03 4/27/00 11:08 AM Page 47

Today you are going to learn

• What mouse events are available for use and how to determine which one is appro-
priate for your application’s needs.

• How you can listen to mouse events and how to react to them in your Visual C++
application.

• What keyboard events are available for use and what actions will trigger each of
these events.

• How to capture keyboard events and take action based on what the user pressed.

Understanding Mouse Events
As you learned yesterday, when you are working with most controls, you are limited to a
select number of events that are available in the Class Wizard. When it comes to mouse
events, you are limited for the most part to click and double-click events. Just looking at
your mouse tells you that there must be more to capturing mouse events than recognizing
these two. What about the right mouse button? How can you tell if it has been pressed?
And what about drawing programs? How can they follow where you drag the mouse?

If you open the Class Wizard in one of your projects, select the dialog in the list of
object IDs, and then scroll through the list of messages that are available, you will find a
number of mouse-related events, which are also listed in Table 3.1. These event mes-
sages enable you to perform any task that might be required by your application.

TABLE 3.1. MOUSE EVENT MESSAGES.

Message Description

WM_LBUTTONDOWN The left mouse button has been pressed.

WM_LBUTTONUP The left mouse button has been released.

WM_LBUTTONDBLCLK The left mouse button has been double-clicked.

WM_RBUTTONDOWN The right mouse button has been pressed.

WM_RBUTTONUP The right mouse button has been released.

WM_RBUTTONDBLCLK The right mouse button has been double-clicked.

WM_MOUSEMOVE The mouse is being moved across the application window space.

WM_MOUSEWHEEL The mouse wheel is being moved.

48 Day 3

005 31240-9 CH03 4/27/00 11:08 AM Page 48

Integrating the Mouse and Keyboard in Your Application 49

3

Drawing with the Mouse
Today you are going to build a simple drawing program that uses some of the available
mouse events to let the user draw simple figures on a dialog window. This application
depends mostly on the WM_MOUSEMOVE event message, which signals that the mouse is
being moved. You will look at how you can tell within this event function whether the
left mouse button is down or up. You will also learn how you can tell where the mouse is
on the window. Sound’s fairly straight ahead, so let’s get going by following these steps:

1. Create a new MFC AppWizard workspace project, calling the project Mouse.

2. Specify that this project will be a dialog-based application in the first AppWizard
step.

3. Use the default settings in the AppWizard. In the second step, specify a suitable
dialog title, such as Mouse and Keyboard.

4. After the application shell is created, remove all controls from the dialog window.
This provides the entire dialog window surface for drawing. This step is also nec-
essary for your application to capture any keyboard events.

If there are any controls on a dialog, all keyboard events are directed to the
control that currently has input focus—the control that is highlighted or has
the cursor visible in it. To capture any keyboard events in a dialog, you have
to remove all controls from the dialog.

Note

5. Open the Class Wizard. Select WM_MOUSEMOVE from the list of messages, and add a
function by clicking the Add Function button. Click the OK button to accept the
suggested function name.

6. Click the Edit Code button to edit the OnMouseMove function you just created,
adding the code in Listing 3.1.

LISTING 3.1. THE OnMouseMove FUNCTION.

1: void CMouseDlg::OnMouseMove(UINT nFlags, CPoint point)
2: {
3: // TODO: Add your message handler code here and/or call default
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:

continues

005 31240-9 CH03 4/27/00 11:08 AM Page 49

9: // Check to see if the left mouse button is down
10: if ((nFlags & MK_LBUTTON) == MK_LBUTTON)
11: {
12: // Get the Device Context
13: CClientDC dc(this);
14:
15: // Draw the pixel
16: dc.SetPixel(point.x, point.y, RGB(0, 0, 0));
17: }
18:
19: ///////////////////////
20: // MY CODE ENDS HERE
21: ///////////////////////
22:
23: CDialog::OnMouseMove(nFlags, point);
24: }

Look at the function definition at the top of the listing. You will notice that two argu-
ments are passed into this function. The first of these arguments is a set of flags that can
be used to determine whether a mouse button is depressed (and which one). This deter-
mination is made in the first line of your code with the if statement:

if ((nFlags & MK_LBUTTON) == MK_LBUTTON)

In the first half of the condition being evaluated, the flags are filtered down to the one
that indicates that the left mouse button is down. In the second half, the filtered flags are
compared to the flag that indicates that the left mouse button is down. If the two match,
then the left mouse button is down.

The second argument to this function is the location of the mouse. This argument gives
you the coordinates on the screen where the mouse currently is. You can use this infor-
mation to draw a spot on the dialog window.

Before you can draw any spots on the dialog window, you need to get the device context
for the dialog window. This is done by declaring a new instance of the CClientDC class.
This class encapsulates the device context and most of the operations that can be per-
formed on it, including all the screen drawing operations. In a sense, the device context
is the canvas upon which you can draw with your application. Until you have a canvas,
you cannot do any drawing or painting. After the device context object is created, you
can call its SetPixel function, which colors the pixel at the location specified in the first
two arguments with the color specified in the third argument. If you compile and run
your program, you can see how it allows you to draw on the window surface with the
mouse, as shown in Figure 3.1.

50 Day 3

LISTING 3.1. CONTINUED

005 31240-9 CH03 4/27/00 11:08 AM Page 50

Integrating the Mouse and Keyboard in Your Application 51

3

Using the AND and OR Binaries
If you are new to C++, you need to understand how the different types of AND and OR
work. The two categories of ANDs and ORs are logical and binary. The logical ANDs and
ORs are used in logical or conditional statements, such as an if or while statement that is
controlling the logic flow. The binary ANDs and ORs are used to combine two values on a
binary level.

The ampersand character (&) is used to denote AND. A single ampersand (&) is a binary
AND, and a double ampersand (&&) is a logical AND. A logical AND works much like the
word AND in Visual Basic or PowerBuilder. It can be used in an if statement to say “if
this condition AND this other condition…” where both conditions must be true before
the entire statement is true. A binary AND is used to set or unset bits. When two values are
binary ANDed, only the bits that are set to 1 in both values remain as 1; all the rest of the
bits are set to 0. To understand how this works, start with two 8-bit values such as the
following:

Value 1 01011001

Value 2 00101001

If you binary AND these two values together, you wind up with the following value:

ANDed Value 00001001

FIGURE 3.1.
Drawing on the win-
dow with the mouse. Mouse moved slowly

Mouse moved quickly

In Windows, colors are specified as a single number that is a combination of
three numbers. The three numbers are the brightness levels for the red,
green, and blue pixels in your computer display. The RGB function in your
code is a macro that combines these three separate values into the single
number that must be passed to the SetPixel function or to any other func-
tion that requires a color value. These three numbers can be any value
between and including 0 and 255.

Note

005 31240-9 CH03 4/27/00 11:08 AM Page 51

All the bits that had 1 in one of the values, but not in the other value, were set to 0. All
the bits that were 1 in both values remained set to 1. All the bits that were 0 in both val-
ues remained 0.

OR is represented by the pipe character (|), and as with AND, a single pipe (|) is a binary
OR, whereas a double pipe (||) is a logical OR. As with AND, a logical OR can be used in
conditional statements such as if or while statements to control the logical flow, much
like the word OR in Visual Basic and PowerBuilder. It can be used in an if statement to
say “if this condition OR this other condition…” and if either condition is true, the entire
statement is true. You can use a binary OR to combine values on a binary level. With OR,
if a bit is set to 1 in either value, the resulting bit is set to 1. With a binary OR, the only
way that a bit is set to 0 in the resulting value is if the bit was already 0 in both values.
Take the same two values that were used to illustrate the binary AND:

Value 1 01011001

Value 2 00101001

If you binary OR these two values together, you get the following value:

ORed Value 01111001

In this case, every bit that was set to 1 in either value was set to 1 in the resulting value.
Only those bits that were 0 in both values were 0 in the resulting value.

Binary Attribute Flags
Binary ANDs and ORs are used in C++ for setting and reading attribute flags. Attribute
flags are values where each bit in the value specifies whether a specific option is turned
on or off. This enables programmers to use defined flags. A defined flag is a value with
only one bit set to 1 or a combination of other values in which a specific combination of
bits is set to 1 so that multiple options are set with a single value. The flags controlling
various options are ORed together, making a composite flag specifying which options
should be on and which should be off.

If two flags that specify certain conditions are specified as two different bits in a byte,
those two flags can often be ORed together as follows:

Flag 1 00001000

Flag 2 00100000

Combination 00101000

This is how flags are combined to specify a number of settings in a limited amount of
memory space. In fact, this is what is done with most of the check box settings on the

52 Day 3

005 31240-9 CH03 4/27/00 11:08 AM Page 52

Integrating the Mouse and Keyboard in Your Application 53

3

window and control properties dialogs. These on/off settings are ORed together to form
one or two sets of flags that are examined by the Windows operating system to deter-
mine how to display the window or control and how it should behave.

On the flip side of this process, when you need to determine if a specific flag is included
in the combination, you can AND the combination flag with the specific flag that you are
looking for as follows:

Combination 00101000

Flag 1 00001000

Result 00001000

The result of this operation can be compared to the flag that you used to filter the com-
bined flag. If the result is the same, the flag was included. Another common approach is
to check whether the filtered combination flag is nonzero. If the flag being used for fil-
tering the combination had not been included, the resulting flag would be zero. As a
result, you could have left the comparison out of the if statement in the preceding code,
leaving you with an if statement that looks like the following:

if (nFlags & MK_LBUTTON)

You can modify this approach to check whether a flag is not in the combination as fol-
lows:

if (!(nFlags & MK_LBUTTON))

You might find one of these ways of checking for a flag easier to understand than the
others. You’ll probably find all of them in use.

Improving the Drawing Program
If you ran your program, you probably noticed a small problem. To draw a solid line,
you need to move the mouse very slowly. How do other painting programs solve this
problem? Simple, they draw a line between two points drawn by the mouse. Although
this seems a little like cheating, it’s the way that computer drawing programs work.

As you move the mouse across the screen, your computer is checking the location of the
mouse every few clock ticks. Because your computer doesn’t have a constant trail of
where your mouse has gone, it has to make some assumptions. The way your computer
makes these assumptions is by taking the points that the computer does know about and
drawing lines between them. When you draw lines with the freehand tool in Paint, your
computer is playing connect the dots.

005 31240-9 CH03 4/27/00 11:08 AM Page 53

Because all the major drawing programs draw lines between each pair of points, what do
you need to do to adapt your application so that it also uses this technique? First, you
need to keep track of the previous position of the mouse. This means you need to add
two variables to the dialog window to maintain the previous X and Y coordinates. You
can do this by following these steps:

1. In the workspace pane, select the Class View tab.

2. Select the dialog class—in this case, the CMouseDlg class.

3. Right-click the mouse and select Add Member Variable from the pop-up menu.

4. Enter int as the Variable Type and m_iPrevY as the Variable Name and specify
Private for the access in the Add Member Variable dialog, as shown in Figure 3.2.

54 Day 3

FIGURE 3.2.
The Add Member
Variable dialog.

5. Click OK to add the variable.

6. Repeat steps 3 through 5, specifying the Variable Name as m_iPrevX to add the
second variable.

After you add the variables needed to keep track of the previous mouse position, you can
make the necessary modifications to the OnMouseMove function, as shown in Listing 3.2.

LISTING 3.2. THE REVISED OnMouseMove FUNCTION.

1: void CMouseDlg::OnMouseMove(UINT nFlags, CPoint point)
2: {
3: // TODO: Add your message handler code here and/or call default
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Check to see if the left mouse button is down
10: if ((nFlags & MK_LBUTTON) == MK_LBUTTON)
11: {
12: // Get the Device Context
13: CClientDC dc(this);
14:
15: // Draw a line from the previous point to the current point
16: dc.MoveTo(m_iPrevX, m_iPrevY);

005 31240-9 CH03 4/27/00 11:08 AM Page 54

Integrating the Mouse and Keyboard in Your Application 55

3

17: dc.LineTo(point.x, point.y);
18:
19: // Save the current point as the previous point
20: m_iPrevX = point.x;
21: m_iPrevY = point.y;
22: }
23:
24: ///////////////////////
25: // MY CODE ENDS HERE
26: ///////////////////////
27:
28: CDialog::OnMouseMove(nFlags, point);
29: }

Look at the code that draws the line from the previous point to the current point:

dc.MoveTo(m_iPrevX, m_iPrevY);
dc.LineTo(point.x, point.y);

You see that you need to move to the first position and then draw a line to the second
point. The first step is important because without it, there is no telling where Windows
might think the starting position is. If you compile and run your application, it draws a
bit better. However, it now has a peculiar behavior. Every time you press the left mouse
button to begin drawing some more, your application draws a line from where you ended
the last line you drew, as shown in Figure 3.3.

FIGURE 3.3.
The drawing program
with a peculiar
behavior.

Adding the Finishing Touches
Your application is doing all its drawing on the mouse move event when the left button
is held down. Initializing the previous position variables with the position of the mouse
when the left button is pressed should correct this application behavior. Let’s try this
approach by following these steps:

1. Using the Class Wizard, add a function for the WM_LBUTTONDOWN message on the
dialog object.

005 31240-9 CH03 4/27/00 11:08 AM Page 55

2. Edit the OnLButtonDown function that you just created, adding the code in Listing
3.3.

LISTING 3.3. THE OnLButtonDown FUNCTION.

1: void CMouseDlg::OnLButtonDown(UINT nFlags, CPoint point)
2: {
3: // TODO: Add your message handler code here and/or call default
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Set the current point as the starting point
10: m_iPrevX = point.x;
11: m_iPrevY = point.y;
12:
13: ///////////////////////
14: // MY CODE ENDS HERE
15: ///////////////////////
16:
17: CDialog::OnLButtonDown(nFlags, point);
18: }

When you compile and run your application, you should find that you can draw much
like you would expect with a drawing program, as shown in Figure 3.4.

56 Day 3

FIGURE 3.4.
The finished drawing
program.

Capturing Keyboard Events
Reading keyboard events is similar to reading mouse events. As with the mouse, there
are event messages for when a key is pressed and when it is released. These events are
listed in Table 3.2.

005 31240-9 CH03 4/27/00 11:08 AM Page 56

Integrating the Mouse and Keyboard in Your Application 57

3

TABLE 3.2. KEYBOARD EVENT MESSAGES.

Message Description

WM_KEYDOWN A key has been pressed down.

WM_KEYUP A key has been released.

The keyboard obviously has fewer messages than the mouse does. Then again, there are
only so many things that you can do with the keyboard. These event messages are avail-
able on the dialog window object and are triggered only if there are no enabled controls
on the window. Any enabled controls on the window have input focus, so all keyboard
events go to them. That’s why you remove all controls from the main dialog for your
drawing application.

Changing the Drawing Cursor
To get a good idea of how you can use keyboard-related event messages, why don’t you
use certain keys to change the mouse cursor in your drawing application? Make the A
key change the cursor to the default arrow cursor, which your application starts with.
Then you can make B change the cursor to the I-beam and C change the cursor to the
hourglass. To get started adding this functionality, follow these steps:

1. Using the Class Wizard, add a function for the WM_KEYDOWN message on the dialog
object.

2. Edit the OnKeyDown function that you just created, adding the code in Listing 3.4.

LISTING 3.4. THE OnKeyDown FUNCTION.

1: void CMouseDlg::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags)
2: {
3: // TODO: Add your message handler code here and/or call default
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: char lsChar; // The current character being pressed
10: HCURSOR lhCursor; // The handle to the cursor to be displayed
11:
12: // Convert the key pressed to a character
13: lsChar = char(nChar);
14:
15: // Is the character “A”
16: if (lsChar == ‘A’)

continues

005 31240-9 CH03 4/27/00 11:08 AM Page 57

17: {
18: // Load the arrow cursor
19: lhCursor = AfxGetApp()->LoadStandardCursor(IDC_ARROW);
20: // Set the screen cursor
21: SetCursor(lhCursor);
22: }
23:
24: // Is the character “B”
25: if (lsChar == ‘B’)
26: {
27: // Load the I beam cursor
28: lhCursor = AfxGetApp()->LoadStandardCursor(IDC_IBEAM);
29: // Set the screen cursor
30: SetCursor(lhCursor);
31: }
32:
33: // Is the character “C”
34: if (lsChar == ‘C’)
35: {
36: // Load the hourglass cursor
37: lhCursor = AfxGetApp()->LoadStandardCursor(IDC_WAIT);
38: // Set the screen cursor
39: SetCursor(lhCursor);
40: }
41:
42: // Is the character “X”
43: if (lsChar == ‘X’)
44: {
45: // Load the arrow cursor
46: lhCursor = AfxGetApp()->LoadStandardCursor(IDC_ARROW);
47: // Set the screen cursor
48: SetCursor(lhCursor);
49: // Exit the application
50: OnOK();
51: }
52:
53: ///////////////////////
54: // MY CODE ENDS HERE
55: ///////////////////////
56:
57: CDialog::OnKeyDown(nChar, nRepCnt, nFlags);
58: }

In the function definition, you see three arguments to the OnKeyDown function. The first is
the key that was pressed. This argument is the character code of the character, which
needs to be converted into a character in the first line of your code. After you convert the

58 Day 3

LISTING 3.4. CONTINUED

005 31240-9 CH03 4/27/00 11:08 AM Page 58

Integrating the Mouse and Keyboard in Your Application 59

3

character, you can perform straight-ahead comparisons to determine which key was
pressed:

void CMouseDlg::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags)

The second argument to the OnKeyDown function is the number of times that the key is
pressed. Normally, if the key is pressed and then released, this value is 1. If the key is
pressed and held down, however, the repeat count rises for this key. In the end, this value
tells you how many times that Windows thinks the key has been pressed.

The third argument to the OnKeyDown function is a combination flag that can be exam-
ined to determine whether the Alt key was pressed at the same time as the key or
whether the key being pressed is an extended key. This argument does not tell you
whether the shift or control keys were pressed.

When you determine that a specific key was pressed, then it’s time to change the cursor
to whichever cursor is associated with that key. There are two steps to this process. The
first step is to load the cursor into memory. You accomplish this step with the
LoadStandardCursor function, which loads one of the standard Windows cursors and
returns a handle to the cursor.

A sister function, LoadCursor, can be passed the file or resource name of a
custom cursor so that you can create and load your own cursors. If you
design your own cursor in the resource editor in Visual C++, you can pass the
cursor name as the only argument to the LoadCursor function. For example,
if you create your own cursor and name it IDC_MYCURSOR, you can load it
with the following line of code:

lhCursor = AfxGetApp()->LoadCursor(IDC_MYCURSOR);

After you load your own cursor, you can set the mouse pointer to your cur-
sor using the SetCursor function, as with a standard cursor.

Note

After the cursor is loaded into memory, the handle to that cursor is passed to the
SetCursor function, which switches the cursor to the one the handle points to. If you
compile and run your application, you should be able to press one of these keys and get
the cursor to change, as in Figure 3.5. However, the moment you move the mouse to do
any drawing, the cursor switches back to the default arrow cursor. The following section
describes how to make your change stick.

005 31240-9 CH03 4/27/00 11:08 AM Page 59

Making the Change Stick
The problem with your drawing program is that the cursor is redrawn every time you
move the mouse. There must be some way of turning off this behavior.

Each time the cursor needs to be redrawn—because the mouse has moved, because
another window that was in front of your application has gone away, or because of what-
ever other reason—a WM_SETCURSOR event message is sent to your application. If you
override the native behavior of your application on this event, the cursor you set remains
unchanged until you change it again. To do this, follow these steps:

1. Add a new variable to the CMouseDlg class, as you did for the previous position
variables. This time, declare the type as BOOL and name the variable m_bCursor, as
shown in Figure 3.6.

60 Day 3

FIGURE 3.5.
Changing the cursor
with specific keys.

FIGURE 3.6.
Defining a class mem-
ber variable.

2. Initialize the m_bCursor variable in the OnInitDialog with the code in Listing 3.5.

LISTING 3.5. THE OnInitDialog FUNCTION.

1: BOOL CMouseDlg::OnInitDialog()
2: {
3: CDialog::OnInitDialog();
4:
5: .
6: .
7: .
8: // Set the icon for this dialog. The framework does this

➥ automatically

005 31240-9 CH03 4/27/00 11:08 AM Page 60

Integrating the Mouse and Keyboard in Your Application 61

3

9: // when the application’s main window is not a dialog
10: SetIcon(m_hIcon, TRUE); // Set big icon
11: SetIcon(m_hIcon, FALSE); // Set small icon
12:
13: // TODO: Add extra initialization here
14:
15: ///////////////////////
16: // MY CODE STARTS HERE
17: ///////////////////////
18:
19: // Initialize the cursor to the arrow
20: m_bCursor = FALSE;
21:
22: ///////////////////////
23: // MY CODE ENDS HERE
24: ///////////////////////
25:
26: return TRUE; // return TRUE unless you set the focus to a

➥ control
27: }

3. Alter the OnKeyDown function to set the m_bCursor flag to TRUE when you change
the cursor, as in Listing 3.6.

LISTING 3.6. THE OnKeyDown FUNCTION.

1: void CMouseDlg::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags)
2: {
3: // TODO: Add your message handler code here and/or call default
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: char lsChar; // The current character being pressed
10: HCURSOR lhCursor; // The handle to the cursor to be displayed
11:
12: // Convert the key pressed to a character
13: lsChar = char(nChar);
14:
15: // Is the character “A”
16: if (lsChar == ‘A’)
17: // Load the arrow cursor
18: lhCursor = AfxGetApp()->LoadStandardCursor(IDC_ARROW);
19:
20: // Is the character “B”
21: if (lsChar == ‘B’)

continues

005 31240-9 CH03 4/27/00 11:08 AM Page 61

22: // Load the I beam cursor
23: lhCursor = AfxGetApp()->LoadStandardCursor(IDC_IBEAM);
24:
25: // Is the character “C”
26: if (lsChar == ‘C’)
27: // Load the hourglass cursor
28: lhCursor = AfxGetApp()->LoadStandardCursor(IDC_WAIT);
29:
30: // Is the character “X”
31: if (lsChar == ‘X’)
32: {
33: // Load the arrow cursor
34: lhCursor = AfxGetApp()->LoadStandardCursor(IDC_ARROW);
35: // Set the cursor flag
36: m_bCursor = TRUE;
37: // Set the screen cursor
38: SetCursor(lhCursor);
39: // Exit the application
40: OnOK();
41: }
42: else
43: {
44: // Set the cursor flag
45: m_bCursor = TRUE;
46: // Set the screen cursor
47: SetCursor(lhCursor);
48: }
49:
50: ///////////////////////
51: // MY CODE ENDS HERE
52: ///////////////////////
53:
54: CDialog::OnKeyDown(nChar, nRepCnt, nFlags);
55: }

4. Using the Class Wizard, add a function for the WM_SETCURSOR message on the dia-
log object.

5. Edit the OnSetCursor function that you just created, adding the code in Listing 3.7.

LISTING 3.7. THE OnSetCursor FUNCTION.

1: BOOL CMouseDlg::OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message)
2: {
3: // TODO: Add your message handler code here and/or call default
4:

62 Day 3

LISTING 3.6. CONTINUED

005 31240-9 CH03 4/27/00 11:08 AM Page 62

Integrating the Mouse and Keyboard in Your Application 63

3

5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // If the cursor has been set, then return TRUE
10: if (m_bCursor)
11: return TRUE;
12: else
13:
14: ///////////////////////
15: // MY CODE ENDS HERE
16: ///////////////////////
17:
18: return CDialog::OnSetCursor(pWnd, nHitTest, message);
19: }

The OnSetCursor function needs to always return TRUE or else call the ancestor function.
The ancestor function resets the cursor and does need to be called when the application
first starts. Because of this, you need to initialize your variable to FALSE so that until the
user presses a key to change the cursor, the default OnSetCursor processing is executed.
When the user changes the cursor, you want to bypass the default processing and return
TRUE instead. This allows the user to draw with whichever cursor has been selected,
including the hourglass, as shown in Figure 3.7.

FIGURE 3.7.
Drawing with the
hourglass cursor.

The most common cursor change that you are likely to use in your programs
is setting the cursor to the hourglass while your program is working on
something that might take a while. There are actually two functions avail-
able in MFC that you can use to handle this task. The first is
BeginWaitCursor, which displays the hourglass cursor for the user. The sec-
ond function is EndWaitCursor, which restores the cursor to the default cur-
sor. Both of these functions are members of the CCmdTarget class, from
which all of the MFC window and control classes are derived.

Note

005 31240-9 CH03 4/27/00 11:08 AM Page 63

Summary
In this chapter, you learned about how you can capture mouse event messages and per-
form some simple processing based upon these events. You used the mouse events to
build a simple drawing program that you could use to draw freehand figures on a dialog
window.

You also learned how to grab keyboard events and determine which key is being pressed.
You used this information to determine which cursor to display for drawing. For this to
work, you had to learn about the default cursor drawing in MFC applications and how
you could integrate your code with this behavior to make your application behave the
way you want it to.

From here, you will learn how to use the Windows timer to trigger events at regular
intervals. You will also learn how to use additional dialog windows to get feedback from
the user so that you can integrate that feedback into how your application behaves. After
that, you will learn how to create menus for your applications.

Q&A
Q How can I change the type of line that I am drawing? I would like to draw a

larger line with a different color.

A When you use any of the standard device context commands to draw on the screen,
you are drawing with what is known as a pen, much like the pen you use to draw
on a piece of paper. To draw bigger lines, or different color lines, you need to
select a new pen. You can do this by adapting the code in the OnMouseMove func-
tion, starting where you get the device context. The following code enables you to
draw with a big red pen:
// Get the Device Context
CClientDC dc(this);

// Create a new pen
CPen lpen(PS_SOLID, 16, RGB(255, 0, 0));

64 Day 3

If you have a single function controlling all the processing during which you
need to display the hourglass and you don’t need to display the hourglass
after the function has finished, an easier way to show the hourglass cursor is
to declare a variable of the CWaitCursor class at the beginning of the func-
tion. This automatically displays the hourglass cursor for the user. As soon as
the program exits the function, the cursor will be restored to the previous
cursor.

005 31240-9 CH03 4/27/00 11:08 AM Page 64

Integrating the Mouse and Keyboard in Your Application 65

3

// Use the new pen
dc.SelectObject(&lpen);

// Draw a line from the previous point to the current point
dc.MoveTo(m_iPrevX, m_iPrevY);
dc.LineTo(point.x, point.y);

Q How can you tell whether the Shift or Ctrl keys are being held down when you
receive the WM_KEYDOWN message?

A You can call another function, ::GetKeyState, with a specific key code to deter-
mine whether that key is being held down. If the return value of the
::GetKeyState function is negative, the key is being held down. If the return value
is nonnegative, the key is not being held down. For instance, if you want to deter-
mine whether the Shift key is being held down, you can use this code:
if (::GetKeyState(VK_SHIFT) < 0)

MessageBox(“Shift key is down!”);

A number of virtual key codes are defined in Windows for all the special keys.
These codes let you look for special keys without worrying about OEM scan codes
or other key sequences. You can use these virtual key codes in the ::GetKeyState
function and pass them to the OnKeyDown function as the nChar argument. Refer to
the Visual C++ documentation for a list of the virtual key codes.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What are the possible mouse messages that you can add functions for?

2. How can you tell if the left mouse button is down on the WM_MOUSEMOVE event mes-
sage?

3. How can you prevent the cursor from changing back to the default cursor after you
set it to a different one?

Exercises
1. Modify your drawing program so that the left mouse button can draw in red and

the right mouse button can draw in blue.

005 31240-9 CH03 4/27/00 11:08 AM Page 65

2. Extend the OnKeyDown function to add some of the following standard cursors:

• IDC_CROSS

• IDC_UPARROW

• IDC_SIZEALL

• IDC_SIZENWSE

• IDC_SIZENESW

• IDC_SIZEWE

• IDC_SIZENS

• IDC_NO

• IDC_APPSTARTING

• IDC_HELP

66 Day 3

005 31240-9 CH03 4/27/00 11:08 AM Page 66

DAY 4

WEEK 1

Working with Timers
You may often find yourself building an application that needs to perform a
specific action on a regular basis. The task can be something simple such as
displaying the current time in the status bar every second or writing a recovery
file every five minutes. Both of these actions are regularly performed by sever-
al applications that you probably use on a daily basis. Other actions that you
might need to perform include checking specific resources on a regular basis,
as a resource monitor or performance monitor does. These examples are just a
few of the situations where you want to take advantage of the availability of
timers in the Windows operating system.

Today you are going to learn

• How to control and use timers in your Visual C++ applications.

• How to set multiple timers, each with a different recurrence interval.

• How to know which timer has triggered.

• How you can incorporate this important resource into all your Visual C++
applications.

006 31240-9 CH04 4/27/00 11:09 AM Page 67

Understanding Windows Timers
Windows timers are mechanisms that let you set one or more timers to be triggered at a
specific number of milliseconds. If you set a timer to be triggered at a 1,000 millisecond
interval, it triggers every second. When a timer triggers, it sends a WM_TIMER message to
your application. You can use the Class Wizard to add a function to your application to
handle this timer message.

Timer events are placed only in the application event queue if that queue is empty and
the application is idle. Windows does not place timer event messages in the application
event queue if the application is already busy. If your application has been busy and has
missed several timer event messages, Windows places only a single timer message in the
event queue. Windows does not send your application all the timer event messages that
occurred while your application was busy. It doesn’t matter how many timer messages
your application may have missed; Windows still places only a single timer message in
your queue.

When you start or stop a timer, you specify a timer ID, which can be any integer value.
Your application uses this timer ID to determine which timer event has triggered, as well
as to start and stop timers. You’ll get a better idea of how this process works as you build
your application for today.

Placing a Clock on Your Application
In the application that you will build today, you will use two timers. The first timer
maintains a clock on the window. This timer is always running while the application is
running. The second timer is configurable to trigger at whatever interval the user speci-
fies in the dialog. The user can start and stop this timer at will. Let’s get started.

Creating the Project and Application
You will build today’s sample application in three phases. In the first phase, you will add
all the controls necessary for the entire application. In the second phase, you will add the
first of the two timers. This first timer will control the clock on the application dialog. In
the third phase, you will add the second timer, which the user can tune, start, and stop as
desired.

To create today’s application, follow these steps:

1. Create a new project, named Timers, using the same AppWizard settings that
you’ve used for the past three days. Specify the application title as Timers.

68 Day 4

006 31240-9 CH04 4/27/00 11:09 AM Page 68

Working with Timers 69

4

2. Lay out the dialog window as shown in Figure 4.1, using the control properties in
Table 4.1. Remember that when you place a control on the window, you can right-
click the mouse to open the control’s properties from the pop-up menu.

FIGURE 4.1.
The Timers application
dialog layout.

TABLE 4.1. CONTROL PROPERTY SETTINGS.

Object Property Setting

Static Text ID IDC_STATIC

Caption Timer &Interval:

Edit Box ID IDC_INTERVAL

Button ID IDC_STARTTIME

Caption &Start Timer

Button ID IDC_STOPTIMER

Caption S&top Timer

Disabled Checked

Static Text ID IDC_STATIC

Caption Time:

Static Text ID IDC_STATICTIME

Caption Current Time

continues

006 31240-9 CH04 4/27/00 11:09 AM Page 69

Static Text ID IDC_STATIC

Caption Count:

Static Text ID IDC_STATICCOUNT

Caption 0

Button ID IDC_EXIT

Caption E&xit

3. Set the tab order as you learned on Day 2, “Using Controls in Your Application.”

4. Add code to the Exit button to close the application, as you did on Day 2.

Adding the Timer IDs
Because you will be using two timers in this application, you should add two IDs to your
application to represent the two timer IDs. This can be done by following these steps:

1. On the Resource View tab in the workspace pane, right-click the mouse over the
Timers resources folder at the top of the resource tree. Select Resource Symbols
from the pop-up menu, as in Figure 4.2.

70 Day 4

TABLE 4.1. CONTINUED

Object Property Setting

FIGURE 4.2.
The Resource pop-up
menu.

2. On the Resource Symbols dialog, click the New button.

006 31240-9 CH04 4/27/00 11:09 AM Page 70

Working with Timers 71

4

3. On the New Symbol dialog, enter ID_CLOCK_TIMER as the symbol name and 1 as
the value, as shown in Figure 4.3.

FIGURE 4.3.
Adding a new resource
symbol.

4. Repeat steps 2 and 3, specifying ID_COUNT_TIMER as the symbol name and 2 as the
value.

5. Click the Close button to close the Resource Symbols dialog. The two timer IDs
are now in your application and ready for use.

Starting the Clock Timer
To start the clock timer, you need to edit the OnInitDialog function, as you did in the
previous two days. Add the new code in Listing 4.1.

LISTING 4.1. THE OnInitDialog FUNCTION.

1: BOOL CTimersDlg::OnInitDialog()
2: {
3: CDialog::OnInitDialog();
4: .
5: .
6: .
7: // TODO: Add extra initialization here
8:
9: ///////////////////////

continues

006 31240-9 CH04 4/27/00 11:09 AM Page 71

10: // MY CODE STARTS HERE
11: ///////////////////////
12:
13: // Start the clock timer
14: SetTimer(ID_CLOCK_TIMER, 1000, NULL);
15:
16: ///////////////////////
17: // MY CODE ENDS HERE
18: ///////////////////////
19:
20: return TRUE; // return TRUE unless you set the focus to a

➥ control
21: }.

In this listing, you started the clock timer with the SetTimer function. The first argument
that you passed to the SetTimer function is the ID for the clock timer. The second argu-
ment is how often you want to trigger the event. In this case, the clock timer event is
triggered every 1,000 milliseconds, or about every second. The third argument is the
address of an optional callback function that you can specify to bypass the WM_TIMER
event. If you pass NULL for this argument, the WM_TIMER event is placed in the application
message queue.

72 Day 4

LISTING 4.1. CONTINUED

A callback function is a function you create that is called directly by the
Windows operating system. Callback functions have specific argument defin-
itions, depending on which subsystem calls the function and why. After you
get past the function definition, however, you can do whatever you want or
need to do in the function.

A callback function works by passing the address of the function as an argu-
ment to a Windows function that accepts callback functions as arguments.
When you pass the function address to Windows, your function is called
directly every time the circumstances occur that require Windows to call the
callback function.

Note

Handling the Clock Timer Event
Now that you’ve started a timer, you need to add the code to handle the timer event mes-
sage. You can do this by following these steps:

1. Using the Class Wizard, add a variable to the IDC_STATICTIME control of type
CString named m_sTime.

006 31240-9 CH04 4/27/00 11:09 AM Page 72

Working with Timers 73

4

2. Using the Class Wizard, add a function to handle the WM_TIMER message for the
CTimersDlg object.

3. Edit the OnTimer function, adding the code in Listing 4.2.

LISTING 4.2. THE OnTimer FUNCTION.

1: void CTimersDlg::OnTimer(UINT nIDEvent)
2: {
3: // TODO: Add your message handler code here and/or call default
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Get the current time
10: CTime curTime = CTime::GetCurrentTime();
11:
12: // Display the current time
13: m_sTime.Format(“%d:%d:%d”, curTime.GetHour(),
14: curTime.GetMinute(),
15: curTime.GetSecond());
16:
17: // Update the dialog
18: UpdateData(FALSE);
19:
20: ///////////////////////
21: // MY CODE ENDS HERE
22: ///////////////////////
23:
24: CDialog::OnTimer(nIDEvent);
25: }

In this listing, you declare an instance of the CTime class, initializing it to the current sys-
tem time. The next thing that you do is set the m_sTime string to the current time, using
the Format method to format the time in the familiar HH:MM:SS format. Finally, you
update the dialog window with the current time. If you compile and run your application
now, you should see a clock running in the middle of your dialog window, as in Figure
4.4.

FIGURE 4.4.
A running clock on
your application
dialog.

006 31240-9 CH04 4/27/00 11:09 AM Page 73

Adding a Second Timer to Your Application
As you have seen, adding a single timer to an application is a pretty simple task. All it
takes is calling the SetTimer function and then placing the timer code in the OnTimer
function. However, sometimes you need more than one timer running simultaneously in
the same application. Then things get a little bit more involved.

Adding the Application Variables
Before you add the second timer to your application, you need to add a few variables to
the controls. With the clock timer, you needed only a single variable for updating the
clock display. Now you need to add a few other variables for the other controls, as listed
in Table 4.2.

TABLE 4.2. CONTROL VARIABLES.

Object Name Category Type

IDC_STATICCOUNT m_sCount Value CString

IDC_INTERVAL m_iInterval Value int

IDC_STARTTIME m_cStartTime Control CButton

IDC_STOPTIMER m_cStopTime Control CButton

After you add all the variables using the Class Wizard, follow these steps:

1. Using the Class Wizard, select the m_iInterval variable and specify a Minimum
Value of 1 and a Maximum Value of 100000 in the two edit boxes below the list of
variables, as shown in Figure 4.5.

74 Day 4

FIGURE 4.5.
Specifying a range
for a variable.

006 31240-9 CH04 4/27/00 11:09 AM Page 74

Working with Timers 75

4

2. On the Class View tab in the workspace pane, add a member variable to the
CTimersDlg class as you learned yesterday. Specify the variable type as int, the
variable name as m_iCount, and the access as Private.

3. Using the Class Wizard, add a function on the EN_CHANGE event message for the
IDC_INTERVAL control ID (the edit box). Edit the function and add the code in
Listing 4.3.

LISTING 4.3. THE OnChangeInterval FUNCTION.

1: void CTimersDlg::OnChangeInterval()
2: {
3: // TODO: If this is a RICHEDIT control, the control will not
4: // send this notification unless you override the

➥ CDialog::OnInitialUpdate()
5: // function and call CRichEditCrtl().SetEventMask()
6: // with the EN_CHANGE flag ORed into the mask.
7:
8: // TODO: Add your control notification handler code here
9:
10: ///////////////////////
11: // MY CODE STARTS HERE
12: ///////////////////////
13:
14: // Update the variables
15: UpdateData(TRUE);
16:
17: ///////////////////////
18: // MY CODE ENDS HERE
19: ///////////////////////
20: }

When you specify a value range for the timer interval variable, Visual C++ automatically
prompts the user, stating the available value range if the user enters a value outside of
the specified range. This prompt is triggered by the UpdateData function call in the
OnChangeInterval function. The last variable that was added through the workspace
pane is used as the actual counter, which is incremented with each timer event.

Starting and Stopping the Counting Timer
To make your second timer operational, you need to

• Initialize the m_iInterval variable.

• Start the timer when the IDC_STARTTIME button is clicked.

• Increment the m_iCount variable and update the dialog on each timer event.

• Stop the timer when the IDC_STOPTIMER button is clicked.

006 31240-9 CH04 4/27/00 11:09 AM Page 75

To implement this additional functionality, perform the following steps:

1. Edit the OnInitDialog function, updating the code as in Listing 4.4.

LISTING 4.4. THE UPDATED OnInitDialog FUNCTION.

1: BOOL CTimersDlg::OnInitDialog()
2: {
3: CDialog::OnInitDialog();
4: .
5: .
6: .
7: // TODO: Add extra initialization here
8:
9: ///////////////////////
10: // MY CODE STARTS HERE
11: ///////////////////////
12:
13: // Initialize the counter interval
14: m_iInterval = 100;
15:
16: // Update the dialog
17: UpdateData(FALSE);
18:
19: // Start the clock timer
20: SetTimer(ID_CLOCK_TIMER, 1000, NULL);
21:
22: ///////////////////////
23: // MY CODE ENDS HERE
24: ///////////////////////
25:
26: return TRUE; // return TRUE unless you set the focus to a

➥ control
27: }

2. Using the Class Wizard, add a function to the BN_CLICKED message on the
IDC_STARTTIME button. Edit the OnStarttime function as in Listing 4.5.

LISTING 4.5. THE OnStarttime FUNCTION.

1: void CTimersDlg::OnStarttime()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Update the variables

76 Day 4

006 31240-9 CH04 4/27/00 11:09 AM Page 76

Working with Timers 77

4

10: UpdateData(TRUE);
11:
12: // Initialize the count
13: m_iCount = 0;
14: // Format the count for displaying
15: m_sCount.Format(“%d”, m_iCount);
16:
17: // Update the dialog
18: UpdateData(FALSE);
19: // Start the timer
20: SetTimer(ID_COUNT_TIMER, m_iInterval, NULL);
21:
22: ///////////////////////
23: // MY CODE ENDS HERE
24: ///////////////////////
25: }

3. Using the Class Wizard, add a function to the BN_CLICKED message on the
IDC_STOPTIMER button. Edit the OnStoptimer function as in Listing 4.6.

LISTING 4.6. THE OnStoptimer FUNCTION.

1: void CTimersDlg::OnStoptimer()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Stop the timer
10: KillTimer(ID_COUNT_TIMER);
11:
12: ///////////////////////
13: // MY CODE ENDS HERE
14: ///////////////////////
15: }

4. Edit the OnTimer function, updating the code as in Listing 4.7.

LISTING 4.7. THE UPDATED OnTimer FUNCTION.

1: void CTimersDlg::OnTimer(UINT nIDEvent)
2: {
3: // TODO: Add your message handler code here and/or call default
4:

continues

006 31240-9 CH04 4/27/00 11:09 AM Page 77

5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Get the current time
10: CTime curTime = CTime::GetCurrentTime();
11:
12: // Which timer triggered this event?
13: switch (nIDEvent)
14: {
15: // The clock timer?
16: case ID_CLOCK_TIMER:
17: // Display the current time
18: m_sTime.Format(“%d:%d:%d”, curTime.GetHour(),
19: curTime.GetMinute(),
20: curTime.GetSecond());
21: break;
22: // The count timer?
23: case ID_COUNT_TIMER:
24: // Increment the count
25: m_iCount++;
26: // Format and display the count
27: m_sCount.Format(“%d”, m_iCount);
28: break;
29: }
30:
31: // Update the dialog
32: UpdateData(FALSE);
33:
34: ///////////////////////
35: // MY CODE ENDS HERE
36: ///////////////////////
37:
38: CDialog::OnTimer(nIDEvent);
39: }

In the OnInitDialog function, you added the initialization of the m_iInterval variable,
starting it at 100. This initialization is reflected on the dialog window by calling the
UpdateData function.

In the OnStarttime function, you first synchronize the variables with the control values,
allowing you to get the current setting of the m_iInterval variable. Next, you initialize
the m_iCount variable, setting it to 0, and then format the value in the m_sCount CString

variable, which is updated in the dialog window. The last thing that you do is to start the
timer, specifying the ID_COUNT_TIMER ID and using the interval from the m_iInterval
variable.

78 Day 4

LISTING 4.7. CONTINUED

006 31240-9 CH04 4/27/00 11:09 AM Page 78

Working with Timers 79

4

In the OnStoptimer function, all you really need to do is stop the timer. You do this by
calling the KillTimer function, passing the timer ID as the only argument.

It is in the OnTimer function that things begin to get interesting. Here, you still see the
code for handling the clock timer event. To add the functionality for the counter timer,
you need to determine which timer has triggered this function. The only argument to the
OnTimer function just happens to be the timer ID. You can use this ID in a switch state-
ment to determine which timer has called this function and to control which set of code
is executed. The clock timer code is still the same as it was in Listing 4.2. The counter
timer code is placed into its spot in the switch statement, incrementing the counter and
then updating the m_sCount variable with the new value. You can compile and run your
application at this point, and you can specify a timer interval and start the timer running,
as in Figure 4.6.

FIGURE 4.6.
A running counter on
your application
dialog.

Enabling the Stop Button
If you run your application, you’ll find that it works well except for one small problem.
When you start your second timer, you can’t stop it. When you were specifying all the
properties of the controls, you disabled the Stop Timer button. Before you can stop the
timer, you need to enable this button.

What makes the most sense is enabling the stop button and disabling the start button
once the timer starts. Then you reverse the situation when the timer stops again. You can
do this in the same way you enabled and disabled controls on Day 2, or you can modify
your approach just a little.

Remember that when you added variables to the controls, you added variables to the
start and stop buttons. These were not normal variables, but control variables. Instead of
getting a pointer to these controls using their IDs, you can work directly with the control
variables. Try that now by updating the OnStarttime and OnStoptimer functions as in
Listing 4.8.

006 31240-9 CH04 4/27/00 11:09 AM Page 79

LISTING 4.8. THE REVISED OnStarttime AND OnStoptimer FUNCTIONS.

1: void CTimersDlg::OnStarttime()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Update the variables
10: UpdateData(TRUE);
11:
12: // Initialize the count
13: m_iCount = 0;
14: // Format the count for displaying
15: m_sCount.Format(“%d”, m_iCount);
16:
17: // Update the dialog
18: UpdateData(FALSE);
19: // Start the timer
20: SetTimer(ID_COUNT_TIMER, m_iInterval, NULL);
21:
22: // Enable the Stop Timer button
23: m_cStopTime.EnableWindow(TRUE);
24: // Disable the Start Timer button
25: m_cStartTime.EnableWindow(FALSE);
26:
27: ///////////////////////
28: // MY CODE ENDS HERE
29: ///////////////////////
30: }
31:
32: void CTimersDlg::OnStoptimer()
33: {
34: // TODO: Add your control notification handler code here
35:
36: ///////////////////////
37: // MY CODE STARTS HERE
38: ///////////////////////
39:
40: // Stop the timer
41: KillTimer(ID_COUNT_TIMER);
42:
43: // Disable the Stop Timer button
44: m_cStopTime.EnableWindow(FALSE);
45: // Enable the Start Timer button
46: m_cStartTime.EnableWindow(TRUE);
47:
48: ///////////////////////
49: // MY CODE ENDS HERE

80 Day 4

006 31240-9 CH04 4/27/00 11:09 AM Page 80

Working with Timers 81

4

50: ///////////////////////
51: }

Now when you compile and run your application, it looks more like Figure 4.7, where
you can start and stop the counter timer. This enables you to play with the timer interval,
putting in a variety of time intervals and observing the difference, with the clock ticking
above the counter for reference.

FIGURE 4.7.
The finished appli-
cation.

Summary
Today you learned how to use the timers built into the Windows operating system to
trigger your application at various time intervals that you can control. You learned how
to use multiple timers in the same application, running them simultaneously and trigger-
ing different actions.

In the coming days, you’ll learn how to use additional dialog windows to get feedback
from the user so that you can integrate that feedback into how your application behaves.
After that, you will learn how to a create menus for your applications. Then you will
learn how you can work with text and fonts in your applications.

Q&A
Q What is the interval range that I can set for timers in my applications?

A The available range that you can set for timers in your applications is around 55
milliseconds on the short end to 232 - 1 milliseconds, or around 49 1/2 days, on the
long end.

Q How many timers can I have running at the same time in my application?

A That depends. There are a limited number of timers available to all applications in
the Windows operating system. Although the number that is available should be
more than sufficient for all running applications using no more than a handful of
timers, if an application goes overboard and begins hogging the timers, the operat-
ing system may run out. It could be your application that is denied the use of some
timers, or it could be other applications that don’t have any to use. As a general

006 31240-9 CH04 4/27/00 11:09 AM Page 81

rule, if you use more than two or three timers at the same time, you might want to
reconsider your application design and determine if there is another way to design
and build your application so that it can work with fewer timers.

Q Is there any way to trigger my application to perform some work when it is
idle, instead of using a timer to trigger the work when I think my app might
be idle?

A Yes, there is. All Windows applications have an OnIdle function that can be used
to trigger idle processing. OnIdle is discussed later on Day 18, “Doing Multiple
Tasks at One Time—Multitasking.”

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What did you accomplish by adding the two timer IDs to the resource symbols?

2. What is another way to add these two IDs to the application?

3. How can you tell two timers apart in the OnTimer function?

4. How many timer events does your application receive if the timer is set for one
second and your application has been busy for one minute, preventing it from
receiving any timer event messages?

Exercise
Update your application so that when the counter timer is started, the clock timer is reset
to run at the same interval as the counter timer. When the counter timer is stopped, return
the clock timer to a one-second interval.

82 Day 4

006 31240-9 CH04 4/27/00 11:09 AM Page 82

DAY 5

WEEK 1

Getting User Feedback—
Adding Dialog Boxes to
Your Application

With most applications that you might use, there are numerous situations where
the application asks you for information—how you want the application config-
ured or whether you want to save your work before exiting, for example. In
most of these situations, the application opens a new window to ask these ques-
tions. These windows are called dialog windows.

Dialog windows typically have one or more controls and some text explaining
what information the program needs from you. Dialog windows typically do
not have a large blank work area, as you find in the main windows of a word
processor or a programming editor. All the applications that you have built in
the preceding days have been dialog windows, and your projects will continue
to be dialog windows for the next few days.

All the dialogs that you have created up to now have been single window dia-
log applications. Today you are going to learn

007 31240-9 CH05 4/27/00 11:44 AM Page 83

• How to use dialog windows in a more flexible way.

• How to call other dialog windows and take the information entered by the user on
these windows back to the main application window for use in the application.

• How to use both standard dialogs, such as the message boxes you used in previous
days and custom dialogs that you have created.

Using Pre-existing (or System) Dialog
Windows

The Windows operating system provides a number of pre-existing dialog windows.
Simple dialog windows, also known as message boxes, present the user with a message
and provide one to three buttons to click. More complex dialogs, such as the File Open,
Save, or Print dialogs, are also provided with Windows. These system (or common)
dialogs are created and used with a combination of a variable declaration of a C++ class
and a series of interactions with the class instance.

Using Message Boxes
As you learned in the previous days, using message boxes is as simple as making a sin-
gle function call, passing the message text as the only argument. This results in a mes-
sage box that displays the message to the user with an icon and gives the user one button
to click to acknowledge the message. As you probably know from using other Windows
software, you have a whole range of other message box possibilities with various button
combinations and various icons that can be displayed.

The MessageBox Function
As you have seen in previous days, the MessageBox function can be passed one or two
arguments. The first argument is the message to be displayed to the user. The second
argument, which is completely optional, is displayed in the title bar on the message box.
You can use a third argument, which is also optional, to specify the buttons to be pre-
sented to the user and the icon to be displayed beside the message. In addition to this
third argument, the MessageBox function returns a result value that indicates which but-
ton was clicked by the user. Through the combination of the third argument and the
return value, the MessageBox function can provide a whole range of functionality in your
Visual C++ applications.

84 Day 5

007 31240-9 CH05 4/27/00 11:44 AM Page 84

Getting User Feedback—Adding Dialog Boxes to Your Application 85

5

The button combinations that you can use in the MessageBox function are limited. You
do not have the freedom to make up your own button combination. If you get to the
point where you need to make up your own, you have to create a custom dialog window
that looks like a message box. The button combinations that you can use are listed in
Table 5.1.

TABLE 5.1. MESSAGEBOX BUTTON COMBINATION IDS.

ID Buttons

MB_ABORTRETRYIGNORE Abort, Retry, Ignore

MB_OK OK

MB_OKCANCEL OK, Cancel

MB_RETRYCANCEL Retry, Cancel

MB_YESNO Yes, No

MB_YESNOCANCEL Yes, No, Cancel

To specify the icon to be displayed, you can add the icon ID to the button combination
ID. The icons that are available are listed in Table 5.2. If you want to specify either the
icon or the button combination, and you want to use the default for the other, you can
just specify the one ID that you want to use.

TABLE 5.2. MESSAGEBOX ICON IDS.

ID Icon

MB_ICONINFORMATION Informational icon

MB_ICONQUESTION Question mark icon

MB_ICONSTOP Stop sign icon

MB_ICONEXCLAMATION Exclamation mark icon

When you do specify a button combination, you want to capture the return value so that
you can determine which button the user clicked. The return value is defined as an inte-
ger data type; the return value IDs are listed in Table 5.3.

If you use the third argument to the MessageBox function to specify the but-
tons or the icon to be presented to the user, the second argument (the mes-
sage box title) is no longer optional. You must provide a value for the title
bar of the message box.

Note

007 31240-9 CH05 4/27/00 11:44 AM Page 85

TABLE 5.3. MESSAGEBOX RETURN VALUE IDS.

ID Button Clicked

IDABORT Abort

IDRETRY Retry

IDIGNORE Ignore

IDYES Yes

IDNO No

IDOK OK

IDCANCEL Cancel

Creating a Dialog Application
To get a good understanding of how you can use the MessageBox function in your appli-
cations to get information from the user, you will build a simple application that uses the
MessageBox function in a couple of different ways. Your application will have two sepa-
rate buttons that call two different versions of the MessageBox function so that you can
see the differences and similarities between the various options of the function. Later in
the day, you will add a standard File Open dialog so that you can see how the standard
dialogs can be used to allow the user to specify a filename or perform other standard
functions. Finally, you will create a custom dialog that allows the user to enter a few dif-
ferent types of values, and you will see how you can read these values from the main
application dialog after the user has closed the custom dialog.

To start this application, follow these steps:

1. Create a new MFC AppWizard workspace project, naming it Dialogs.

2. Choose the same settings as for the previous days’ applications, giving the applica-
tion a title of Dialogs.

3. Lay out the main application dialog as shown in Figure 5.1 using the properties in
Table 5.4.

TABLE 5.4. CONTROL PROPERTY SETTINGS.

Object Property Setting

Command Button ID IDC_YESNOCANCEL

Caption &Yes, No, Cancel

Command Button ID IDC_ABORTRETRYIGNORE

Caption &Abort, Retry, Ignore

86 Day 5

007 31240-9 CH05 4/27/00 11:44 AM Page 86

Getting User Feedback—Adding Dialog Boxes to Your Application 87

5

Command Button ID IDC_FILEOPEN

Caption &File Open

Command Button ID IDC_BCUSTOMDIALOG

Caption &Custom Dialog

Command Button ID IDC_BWHICHOPTION

Caption &Which Option?

Disabled Checked

Command Button ID IDC_EXIT

Caption E&xit

Static Text ID IDC_STATIC

Caption Dialog Results:

Edit Box ID IDC_RESULTS

Multiline Checked

Auto Vscroll Checked

FIGURE 5.1.
The application main
dialog layout.

Object Property Setting

4. Using the Class Wizard, attach variables to the controls as listed in Table 5.5.

007 31240-9 CH05 4/27/00 11:44 AM Page 87

TABLE 5.5. CONTROL VARIABLES.

Object Name Category Type

IDC_RESULTS m_sResults Value CString

IDC_BWHICHOPTION m_cWhichOption Control CButton

5. Using the Class Wizard, attach code to the Exit button to close the application, as
on previous days.

Coding the Message Box Dialogs
For the first command button (the Yes, No, Cancel button), create a function on the
clicked event using the Class Wizard, just as you did on previous days. Edit the function
on this button, adding the code in Listing 5.1.

LISTING 5.1. THE OnYesnocancel FUNCTIONS.

1: void CDialogsDlg::OnYesnocancel()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: int iResults; // This variable will capture the button selection
10:
11: // Ask the user
12: iResults = MessageBox(“Press the Yes, No, or Cancel button”,
13: “Yes, No, Cancel Dialog”,
14: MB_YESNOCANCEL | MB_ICONINFORMATION);
15:
16: // Determine which button the user clicked
17: // Give the user a message showing which button was clicked
18: switch (iResults)
19: {
20: case IDYES: // The Yes button?
21: m_sResults = “Yes! Yes! Yes!”;
22: break;
23: case IDNO: // The No button?
24: m_sResults = “No, no, no, no, no.”;
25: break;
26: case IDCANCEL: // The Cancel button?
27: m_sResults = “Sorry, canceled.”;
28: break;
29: }
30:
31: // Update the dialog

88 Day 5

007 31240-9 CH05 4/27/00 11:44 AM Page 88

Getting User Feedback—Adding Dialog Boxes to Your Application 89

5

32: UpdateData(FALSE);
33:
34: ///////////////////////
35: // MY CODE ENDS HERE
36: ///////////////////////
37: }

If you compile and run your application, you can see how selecting the different buttons
on the message box can determine the next course of action in your application. If you
add a function to the clicked event of the Abort, Retry, Ignore button using the Class
Wizard and enter the same code as in Listing 5.1, substituting the MB_ABORTRETRYIGNORE
and MB_ICONQUESTION values and changing the prompts and messages, you can see how
this other button combination can be used in the same way.

Both of these control event functions are virtually the same. In each function, there is an
integer variable declared to capture the return value from the MessageBox function. Next,
the MessageBox function is called with a message to be displayed to the user, a title for
the message box, and a combination of a button combination ID and an icon ID.

When the return value is captured from the MessageBox function, that value is passed
through a switch statement to determine which value was returned. A message is dis-
played to the user to indicate which button was clicked on the message box. You can just
as easily use one or two if statements to control the program execution based on the
user’s selection, but the return value being an integer lends itself to using a switch
statement.

If you compile and run your application at this point, you can click either of the top two
buttons and see a message box, as in Figure 5.2. When you click one of the message box
buttons, you see a message in the edit box on the main dialog, indicating which button
you selected, as in Figure 5.3.

FIGURE 5.2.
The MessageBox with
three choices.

FIGURE 5.3.
A message is displayed
based on which button
was clicked.

007 31240-9 CH05 4/27/00 11:44 AM Page 89

Using Common Dialogs
Using common dialogs is not quite as simple and easy as using the MessageBox function,
but it’s still quite easy. The Microsoft Foundation Classes (MFC) provides several C++
classes for common Windows dialogs. These classes are listed in Table 5.6.

TABLE 5.6. COMMON DIALOG CLASSES.

Class Dialog Type

CFileDialog File selection

CFontDialog Font selection

CColorDialog Color selection

CPageSetupDialog Page setup for printing

CPrintDialog Printing

CFindReplaceDialog Find and Replace

The common dialogs encapsulated in these classes are the standard dialogs that you use
every day in most Windows applications to open and save files, configure printing
options, print, perform find and replace on documents, and so on. In addition to these
choices, a series of OLE common dialog classes provide several common functions to
OLE or ActiveX components and applications.

All these dialogs are used in the same manner, although the individual properties and
class functions vary according to the dialog functionality. To use one of these dialogs,
you must follow these steps:

1. Declare a variable of the class type.

2. Set any properties that need to be configured before displaying the dialog to the
user.

3. Call the DoModal method of the class to display the dialog to the user.

4. Capture the return value of the DoModal method to determine whether the user
clicked the OK or Cancel button.

5. If the user clicks the OK button, read any properties that the user may have set
when using the dialog.

To better understand how this works, you’ll add the CFileDialog class to your applica-
tion. To do this, add a function to the clicked message on the File Open button using the
Class Wizard. Edit this function, adding the code in Listing 5.2.

90 Day 5

007 31240-9 CH05 4/27/00 11:44 AM Page 90

Getting User Feedback—Adding Dialog Boxes to Your Application 91

5

LISTING 5.2. THE OnFileopen FUNCTION.

1: void CDialogsDlg::OnFileopen()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: CFileDialog m_ldFile(TRUE);
10:
11: // Show the File open dialog and capture the result
12: if (m_ldFile.DoModal() == IDOK)
13: {
14: // Get the filename selected
15: m_sResults = m_ldFile.GetFileName();
16: // Update the dialog
17: UpdateData(FALSE);
18: }
19:
20: ///////////////////////
21: // MY CODE ENDS HERE
22: ///////////////////////
23: }

In this code, the first thing that you do is declare an instance of the CFileDialog class.
This instance is passed TRUE as an argument to the class constructor. This tells the class
that it is a File Open dialog. If you pass it FALSE, it displays as a File Save dialog.
There’s no real functional difference between these two, only a visual difference. You
can pass many more arguments to the constructor, specifying the file extensions to show,
the default starting file and location, and filters to use when displaying the files. All the
rest of these constructor arguments have default values, so you don’t have to supply any
of them.

After creating the instance of the File Open dialog, you call its DoModal function. This is
a member function of the CDialog ancestor class, and it is available in all dialog win-
dows. The DoModal function displays the File Open dialog to the user, as shown in
Figure 5.4. The return value of the DoModal function is examined to determine which
button the user clicked. If the user clicks the Open button, the IDOK value is returned, as
with the MessageBox function. This is how you can determine whether your application
needs to take any action on what the user selected with the dialog window.

007 31240-9 CH05 4/27/00 11:44 AM Page 91

To display the name of the file selected, you set the m_sResults variable to the return
value from the GetFileName method of the CFileDialog class. This method returns only
the filename without the directory path or drive name, as shown in Figure 5.5. You can
use other class methods for getting the directory path (GetPathName) or file extension
(GetFileExt).

92 Day 5

FIGURE 5.4.
The File Open dialog.

There are two modes in which a dialog window can be displayed to the
user. The first is as a modal window. A modal window halts all other user
interaction while it is displayed. The user cannot do anything else in the
application until the dialog is closed. A good example of a modal dialog
window is a message box where the user cannot continue working with the
application until she clicks one of the buttons on the message box.

The second mode in which a dialog window can be displayed to the user is
as a modeless window. A modeless window can be open while the user is
doing something else in the application, and it doesn’t prevent the user
from performing other tasks while the dialog is visible. Good examples of a
modeless dialog window are the Find and Find and Replace dialogs in
Microsoft Word. These dialog windows can be open and displayed on the
screen while you are still editing the document that you are searching.

Note

FIGURE 5.5.
Displaying the selected
filename.

007 31240-9 CH05 4/27/00 11:44 AM Page 92

Getting User Feedback—Adding Dialog Boxes to Your Application 93

5

Creating Your Own Dialog Windows
Now you have an understanding of using standard dialogs. What if you need to create a
custom dialog for your application? This task is fairly simple to do because it is mostly a
combination of the process that you have already used to create and use the main dialog
windows in all your applications and the methods you employed to use the common
dialogs. You have to work through a few additional steps, but they are few and you
should be comfortable with them soon.

Creating the Dialog Window
For the custom dialog that you will add to your application, you will provide the user
with a edit box in which to enter some text and a group of radio buttons from which the
user can select one. When the user clicks the OK button, your application will display
the text entered by the user in the display area of the main application dialog window.
There is another button that the user can, can click to display which one of the radio but-
tons was selected. This exercise enables you to see how you can use custom dialog win-
dows to gather information from the user and how you can read the user’s selections
after the dialog window is closed.

To create a custom dialog for your application, you need to

• Add another dialog to your application resources.

• Design the dialog window layout.

• Declare the base class from which the dialog will be inherited.

• Attach variables to the controls on the dialog.

After doing these things, your custom dialog will be ready for your application. To
accomplish these tasks, follow these steps:

1. Select the Resource View tab in the project workspace pane.

2. Right-click the Dialogs folder, and select Insert Dialog from the pop-up menu.

3. Right-click the new dialog in the resource tree view, and select Properties from the
pop-up menu.

4. Change the object ID for the new dialog to IDD_MESSAGEDLG.

5. When editing the new dialog window, do not delete the OK and Cancel buttons.
Move them to the location shown in Figure 5.6.

007 31240-9 CH05 4/27/00 11:44 AM Page 93

6. Design the rest of the window using the object properties in Table 5.7.

TABLE 5.7. THE CUSTOM DIALOG CONTROL PROPERTY SETTINGS.

Object Property Setting

Static Text ID IDC_STATIC

Caption Enter a &message:

Edit Box ID IDC_MESSAGE

Multiline Checked

Auto Vscroll Checked

Group Box ID STATIC

Caption Select an Option

Radio Button ID IDC_OPTION1

Caption &Option 1

Group Checked

Radio Button ID IDC_OPTION2

Caption O&ption 2

Radio Button ID IDC_OPTION3

Caption Op&tion 3

Radio Button ID IDC_OPTION4

Caption Opt&ion 4

7. After you design the dialog, open the Class Wizard. You see the dialog in
Figure 5.7.

94 Day 5

FIGURE 5.6.
The custom dialog
window layout.

FIGURE 5.7.
The Adding a Class
dialog.

007 31240-9 CH05 4/27/00 11:44 AM Page 94

Getting User Feedback—Adding Dialog Boxes to Your Application 95

5

8. Leave the selection on this dialog at the default setting of Create a New Class and
click OK. Another dialog appears to allow you to specify the name for the new
class and the base class from which it is inherited.

9. Enter the class name CMsgDlg into the Name field, and make sure that the Base
Class is set to CDialog, as shown in Figure 5.8.

FIGURE 5.8.
The New Class dialog.

10. Click OK, leaving the other settings on this dialog at their defaults.

11. Once the Class Wizard opens, attach the variables to the controls on the new dia-
log as specified in Table 5.8.

TABLE 5.8. CONTROL VARIABLES.

Object Name Category Type

IDC_MESSAGE m_sMessage Value CString

IDC_OPTION1 m_iOption Value int

You should notice two things in the way that you configured the control properties and
variables in the custom dialog. First, you should have selected the Group property on
only the first of the radio buttons. This designates that all the radio buttons following
that one belong to a single group, where only one of the radio buttons may be selected at
a time. If you select the Group property on all the radio buttons, they are all independent
of each other, allowing you to select all the buttons simultaneously. This property makes
them behave somewhat like check boxes, but the primary difference is that the user
would find it difficult to uncheck one of these controls due to the default behavior where
one radio button in each group is always checked. The other difference is in their
appearance; the radio buttons have round selection areas instead of the square areas of
check boxes.

007 31240-9 CH05 4/27/00 11:44 AM Page 95

The other thing to notice is that you declared a single integer variable for the one radio
button with the Group property checked. This variable value is controlled by which radio
button is selected. The first radio button causes this variable to have a value of 0, the
second sets this variable to 1, and so on. Likewise, if you want to automatically select a
particular radio button, you can set this variable to one less than the sequence number of
the radio button in the group of radio buttons.

96 Day 5

Because this is the C++ programming language, all numbering begins with
0, not 1. Therefore, the first position in an array or a set of controls is posi-
tion 0. The second position is position 1. The third position is number 2, and
so on.

Note

You have now finished all that you need to do to the second dialog window to make it
ready for use. You would expect to need an UpdateData or two in the code behind the
dialog, but because you didn’t remove the OK and Cancel buttons from the dialog, the
UpdateData call is already performed when the user clicks the OK button. As a result,
you don’t have to touch any code in this second dialog, only in the first dialog.

Using the Dialog in Your Application
Now that your custom dialog is ready for your application, using it is similar to the way
that you use the common dialogs that are built into Windows. First, you have to declare
an instance of the custom dialog class, which calls the class constructor and creates an
instance of the class. Next, you call the dialog’s DoModal method and capture the return
value of that function. Finally, you read the values of the variables that you associated
with the controls on the dialog.

Creating the Dialog Instance
Before you can use your custom dialog in your application, you have to make your main
dialog window aware of the custom dialog, its variables, and methods and how your
main dialog can interact with your custom dialog. You accomplish this by including the
header file for your custom dialog in the main source file for your main application dia-
log. Follow these steps:

1. Select the File View tab on the workspace pane.

2. Expand the Dialog Files and Source Files folders.

3. Double-click the DialogsDlg.cpp file. This opens the source code file for the
main application dialog in the editing area of Developer Studio.

007 31240-9 CH05 4/27/00 11:44 AM Page 96

Getting User Feedback—Adding Dialog Boxes to Your Application 97

5

4. Scroll to the top of the source code file where the #include statements are located,
and add an include for the MsgDlg.h file before the DialogsDlg.h file, as in
Listing 5.3.

LISTING 5.3. THE HEADER FILE INCLUDES.

1: // DialogsDlg.cpp : implementation file
2: //
3:
4: #include “stdafx.h”
5: #include “Dialogs.h”
6: #include “MsgDlg.h”
7: #include “DialogsDlg.h”
8:
9: #ifdef _DEBUG
10: #define new DEBUG_NEW
11: #undef THIS_FILE
12: static char THIS_FILE[] = __FILE__;
13: #endif
14:
15:///
16: // CAboutDlg dialog used for App About

It is important that you place the #include statement for the MsgDlg.h file before the
#include statement for the DialogsDlg.h file. The reason is that you will be adding a
variable declaration for your custom dialog to the main dialog class in the main dialog’s
header file. If the MsgDlg.h header file is included after the header file for the main dia-
log, the compiler will complain loudly and will refuse to compile your application until
you move the #include of the MsgDlg.h file above the #include of the DialogsDlg.h
file.

The #include statement is what is known as a compiler directive in the C
and C++ programming languages. What it tells the compiler to do is read
the contents of the file named into the source code that is being compiled.
It is used to separate class, structure, and function declarations into a file
that can be included in any source code that needs to be aware of the infor-
mation in the header file. For more information on how the #include state-
ments work, and why you use them, see Appendix A, “C++ Review.”

Note

007 31240-9 CH05 4/27/00 11:44 AM Page 97

Now that you have made your main application dialog aware of the custom dialog that
you created, you need to declare a variable of your custom dialog. Follow these steps:

1. Select the Class View tab in the workspace pane.

2. Right-click the CDialogsDlg class to bring up the pop-up menu.

3. Select Add Member Variable from the pop-up menu.

4. Specify the Variable Type as CMsgDlg, the Variable Name as m_dMsgDlg, and the
Access as Private. Click OK to add the variable to your main dialog.

If you expand the CDialogsDlg class in the tree view, you should see the instance of
your custom dialog as a member of the main application dialog class. This means that
you are ready to begin using the custom dialog in your application.

Calling the Dialog and Reading the Variables
Now that you have added your custom dialog to the main application dialog as a variable
that is always available, not just as a local variable available only within a single func-
tion (as with the CFileDialog variable), you can add code to use the dialog. To do this,
follow these steps:

1. Open the Class Wizard and add a function to the clicked event message of the
IDC_BCUSTOMDIALOG button.

2. Add a function for the clicked event message (BN_CLICKED) for the IDC_
BWHICHOPTION button.

3. Edit the OnBcustomdialog function, adding the code in Listing 5.4.

LISTING 5.4. THE OnBcustomdialog FUNCTION.

1: void CDialogsDlg::OnBcustomdialog()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Show the message dialog and capture the result
10: if (m_dMsgDlg.DoModal () == IDOK)
11: {
12: // The user checked OK, display the message the
13: // user typed in on the message dialog
14: m_sResults = m_dMsgDlg.m_sMessage;
15: // Update the dialog
16: UpdateData(FALSE);
17: // Enable the Which Option button

98 Day 5

007 31240-9 CH05 4/27/00 11:44 AM Page 98

Getting User Feedback—Adding Dialog Boxes to Your Application 99

5

18: m_cWhichOption.EnableWindow(TRUE);
19: }
20:
21: ///////////////////////
22: // MY CODE ENDS HERE
23: ///////////////////////
24: }

4. Edit the OnBwhichoption function, adding the code in Listing 5.5.

LISTING 5.5. THE OnBwhichoption FUNCTION.

1: void CDialogsDlg::OnBwhichoption()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Determine which radio button was selected, and display
10: // a message for the user to show which one was selected.
11: switch(m_dMsgDlg.m_iOption)
12: {
13: case 0: // Was it the first radio button?
14: m_sResults = “The first option was selected.”;
15: break;
16: case 1: // Was it the second radio button?
17: m_sResults = “The second option was selected.”;
18: break;
19: case 2: // Was it the third radio button?
20: m_sResults = “The third option was selected.”;
21: break;
22: case 3: // Was it the fourth radio button?
23: m_sResults = “The fourth option was selected.”;
24: break;
25: default: // Were none of the radio buttons selected?
26: m_sResults = “No option was selected.”;
27: break;
28: }
29:
30: // Update the dialog
31: UpdateData(FALSE);
32:
33: ///////////////////////
34: // MY CODE ENDS HERE
35: ///////////////////////
36:

007 31240-9 CH05 4/27/00 11:44 AM Page 99

In the first listing, you called the DoModal method of the custom dialog, which displayed
the dialog for the user, waiting for the user to click one of the two buttons on the dialog,
as in Figure 5.9. If the user clicks the OK button, you copy the message the user typed in
the custom dialog into the edit box variable to be displayed to the user. After updating
the dialog display with the new variable values, you enable the Which Option button, as
shown in Figure 5.10. If the user clicks the Cancel button, none of this is done. The dia-
log display is not changed.

100 Day 5

FIGURE 5.9.
The custom dialog
allows the user to
enter a message.

When the user clicks the Which Option button, you pass the radio button variable on the
custom dialog to a switch statement, selecting a message that tells the user which radio
button was selected, as shown in Figure 5.11. Notice that in both of these functions, you
can access the control variables on the custom dialog directly from the main dialog. That
is because the Class Wizard automatically declares the variables associated with controls
as public, making them completely accessible outside the dialog class. You can change
this by placing a private: access specifier where the public: access specifier is. You
don’t want to place anything after the //{{AFX_DATA line, where the variables are
declared, because the variables are declared within an MFC Class Wizard macro, which
enables the Developer Studio wizards to locate and manipulate the variables as needed
without interfering with the Visual C++ compiler when you compile your application.

FIGURE 5.10.
The message entered
on the custom dialog is
displayed for the user.

007 31240-9 CH05 4/27/00 11:44 AM Page 100

Getting User Feedback—Adding Dialog Boxes to Your Application 101

5

Summary
Today you learned how you can use additional dialog windows in your application to
provide interactive experience for your users. You learned about the options available to
you with the simple MessageBox function, how you can provide your users a variety of
button combinations, and how you can determine which button the user selects. You saw
how you can use this information to determine which path to take in your application
logic.

You also learned about some of the common dialogs that are built into the Windows
operating systems and how they have been encapsulated into C++ classes in the MFC
class library. You learned how you can use the File Open dialog to present the user with
the standard file selection dialog and how you can determine which file the user selected.

Finally, you learned how you can design your own additional dialogs that you can add to
your applications to get information from the user and how you can capture that informa-
tion and use it in your application.

Q&A
Q There was no code added to the custom dialog. Do I have to design my custom

dialogs this way, or can I add code to them?

A The custom dialog windows are no different from the main dialog windows that
you have been using in all your applications so far. If you need to control the
behavior of the dialog on an interactive basis, you can put as much code into the
dialog as you need. You didn’t add any code to the custom dialog today because
there wasn’t any need to add any code. The only functionality that the dialog
needed to perform was calling the UpdateData function before closing, which is
automatically done by the OnOK function. Because you did not delete the OK and
Cancel buttons, you already had this functionality built in.

FIGURE 5.11.
The option selected on
the custom dialog is
displayed for the user.

007 31240-9 CH05 4/27/00 11:44 AM Page 101

Q What happens if I specify two or more button combinations in the same
MessageBox function call?

A Nothing happens. Your application compiles just fine, but when the MessageBox
function is called, nothing happens. The message box does not open, and the user
does not get to answer the question you are presenting.

Q How can I integrate the File Open dialog into my application where it opens
in a specific directory that I specify?

A The CFileDialog class has a public property called m_ofn. This property is a struc-
ture that contains numerous attributes of the File Open dialog, including the initial
directory. This structure is defined as the OPENFILENAME structure in Listing 5.6.

LISTING 5.6. THE OPENFILENAME STRUCTURE.

1: typedef struct tagOFN { // ofn
2: DWORD lStructSize;
3: HWND hwndOwner;
4: HINSTANCE hInstance;
5: LPCTSTR lpstrFilter;
6: LPTSTR lpstrCustomFilter;
7: DWORD nMaxCustFilter;
8: DWORD nFilterIndex;
9: LPTSTR lpstrFile;
10: DWORD nMaxFile;
11: LPTSTR lpstrFileTitle;
12: DWORD nMaxFileTitle;
13: LPCTSTR lpstrInitialDir;
14: LPCTSTR lpstrTitle;
15: DWORD Flags;
16: WORD nFileOffset;
17: WORD nFileExtension;
18: LPCTSTR lpstrDefExt;
19: DWORD lCustData;
20: LPOFNHOOKPROC lpfnHook;
21: LPCTSTR lpTemplateName;
22: } OPENFILENAME;

You can set any of these attributes before calling the DoModal class method to con-
trol the behavior of the File Open dialog. For instance, if you set the starting direc-
tory to C:\Temp before calling the DoModal method, as in Listing 5.7, the File
Open dialog opens in that directory.

102 Day 5

007 31240-9 CH05 4/27/00 11:44 AM Page 102

Getting User Feedback—Adding Dialog Boxes to Your Application 103

5

LISTING 5.7. THE REVISED OnFileopen FUNCTION.

1: void CDialogsDlg::OnFileopen()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: CFileDialog m_ldFile(TRUE);
10:
11: // Initialize the starting directory
12: m_ldFile.m_ofn.lpstrInitialDir = “C:\\Temp\\”;
13:
14: // Show the File open dialog and capture the result
15: if (m_ldFile.DoModal() == IDOK)
16: {
17: // Get the filename selected
18: m_sResults = m_ldFile.GetFileName();
19: // Update the dialog
20: UpdateData(FALSE);
21: }
22:
23: ///////////////////////
24: // MY CODE ENDS HERE
25: ///////////////////////
26: }

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What are the possible return codes that your application might receive from the

MessageBox function call when you specify the MB_RETRYCANCEL button combina-
tion?

2. What are the common dialogs that are built into the Windows operating systems
that are defined as MFC classes?

007 31240-9 CH05 4/27/00 11:44 AM Page 103

3. What is the difference between a modal dialog and a modeless dialog?

4. How can you display a File Save dialog for the user instead of the File Open dia-
log that you did have in your application?

5. Why did you not need to create any functions and add any code to your custom
dialog?

Exercises
1. Modify your application so that it includes the directory with the filename in the

application. (Hint: The GetFileName function returns the path and filename that
was selected in the File Open dialog.)

2. Add a button on the custom dialog that calls the MessageBox function with a Yes or
No selection. Pass the result back to the main application dialog.

104 Day 5

007 31240-9 CH05 4/27/00 11:44 AM Page 104

DAY 6

WEEK 1

Creating Menus for Your
Application

Most Windows applications use pull-down menus to provide the user a number
of functions without having to provide buttons on the window. This enables
you to provide your users a large amount of functionality while preserving most
of your valuable screen real estate for other stuff.

Today you will learn

● How to create menus for your Visual C++ application

● How to attach a menu to your application’s main dialog window

● How to call application functions from a menu

● How to create a pop-up menu that can be triggered with the right mouse
button

● How to set up accelerator keys for keyboard shortcuts to menus

008 31240-9 CH06 4/27/00 11:46 AM Page 105

Menus
Back when the first computer terminals were introduced and users began using computer
software, even on large mainframe systems software developers found the need to pro-
vide the users with some sort of menu of the functions that the computer could perform.
These early menus were crude by today’s standards and were difficult to use and navi-
gate. Menus have progressed since then; they’ve become standardized in how they are
used and easy to learn.

The software designers that first came up with the idea of a graphical user interface
(GUI) planned to make computer systems and applications easier to learn by making
everything behave in a consistent manner. Menus used for selecting application function-
ality were one part of the GUI design that could be more easily learned if they all
worked the same. As a result, a number of standard menu styles were developed.

Menu Styles
The first menu styles that were standardized are the pull-down and cascading menus.
These are the menus with the categories all listed in a row across the top of the applica-
tion window. If you select one of the categories, a menu drops down below the category,
with a number of menu entries that can be selected to trigger various functions in the
application.

A variation on this menu style is the cascading menu, which has another submenu that
opens to the right of a menu entry. This submenu is similar to the pull-down menu, with
a number of entries that trigger application functions. The menu designers placed no
limit on how many cascading menus can be strung together, but it quickly became clear
to most developers that more than two cascading levels is a little unwieldy.

Eventually, a third style of menu was developed, called a pop-up or context menu—a
menu that pops up in the middle of the application area, floating freely above the appli-
cation work area. This is also called a context menu because the specific menu that pops
up is dependent on the selected object or workspace area where the cursor or mouse
pointer is.

Keyboard Shortcut–Enabling Menus
When users began working with keyboard-intensive applications, such as word proces-
sors, it was discovered that taking your hands off the keyboard to use the mouse to make
menu selections dramatically reduced productivity. Software designers decided that they
needed to add keyboard shortcuts for the various menu entries (especially the most fre-
quently used menu options). For this reason, keyboard shortcuts (accelerators) and
hotkeys were added.

106 Day 6

008 31240-9 CH06 4/27/00 11:46 AM Page 106

Creating Menus for Your Applications 107

6

Hotkeys are letters that are underlined in each menu entry. If you press the Alt key with
the underlined letter, you can select the menu entry that contains the underlined letter.
This is a means of navigating application menus without taking your hands off the key-
board.

For more advanced users, application designers added keyboard shortcuts, or accelera-
tors. An accelerator is a single key combination that you can press to trigger an applica-
tion function instead of having to navigate through the application menus. This allows
advanced users to avoid the overhead of using menus for the most common application
functions. To enable users to learn what accelerators are available in an application, the
key combination is placed on the menu entry that it can be used to replace, positioned at
the right edge of the menu window.

Menu Standards and Conventions
Although there are no standards in how menus are designed, there are a number of con-
ventions for how they are designed and organized. All these conventions are available in
Windows Interface Guidelines for Software Design, published by Microsoft for use by
Windows software developers. The purpose of this publication is to facilitate the devel-
opment of consistent application behaviors, which will help accomplish one of the pri-
mary goals behind the development of GUI systems. The conventions are as follows:

● Use single-word menu categories across the top menu bar. A two-word category
can easily be mistaken for two one-word categories.

● The File menu is located as the first menu on the left. It contains all file-oriented
functions (such as New, Open, Save, Print, and so on), as well as the Exit function.
The Exit option is located at the bottom of the menu, separated from the rest of the
menu entries by a border.

● The Edit menu is next to the File menu. The Edit menu contains all editing func-
tions such as Copy, Cut, Paste, Undo, Redo, and so on.

● The View menu contains menu entries that control and affect the appearance of the
application work area.

● The Window menu is used in Multiple Document Interface (MDI) style applica-
tions. This has functions for controlling the child windows, selecting the current
window, and altering the layout. This menu is the next-to-last menu from the right
end of the menu bar.

● The Help menu is the final menu on the right end of the menu bar. It contains
menu entries that provide instruction or documentation on the application. If the
application has any copyrighted or corporate information that needs to be available
for viewing, this should be located as the final entry on this menu, labeled About
<application name>.

008 31240-9 CH06 4/27/00 11:46 AM Page 107

Designing Menus
Menus are defined as a resource in Visual C++ applications. Because they are a resource,
you can design menus in the Visual C++ editor through the Resource View tab on the
workspace pane. When you first create a dialog-style application, there won’t be a menu
folder in the resource tree, but you can change that.

108 Day 6

Various aspects of Windows applications are considered to be resources,
including window layouts, menus, toolbars, images, text strings, accelera-
tors, and so on. All these features are organized in what is known as a
resource file, which is used by the Visual C++ compiler to create these
objects from their definitions. The resource file is a text file with an .rc file-
name extension and contains a textual description of all the various objects,
including IDs, captions, dimensions, and so on.

Some resources, such as images and sounds, cannot be described in text, but
have to be stored in a binary format. These resources are stored in individ-
ual files, with the filenames and locations included in the resource file.

Note

Creating a Menu
Creating a menu is not difficult. You will follow several steps:

1. Create the application that will house the menu.

2. Add a menu resource to your project.

3. Customize the menu resource to include the menu items for your application.

4. Add functionality to your menu by connecting routines to your menu items.

Creating the Application
For the example in this chapter, you will create a simple dialog-style application that
contains a single button and a menu. To create your application, do the following:

1. Create a new MFC AppWizard application, naming the project Menus.

2. Select the default AppWizard settings on all screens. For the dialog title, enter
Menus.

3. When the AppWizard has generated your application shell, delete all the controls
from the dialog.

4. Add a single button to the dialog. Name the button IDC_EXIT, and specify the cap-
tion as E&xit.

008 31240-9 CH06 4/27/00 11:46 AM Page 108

Creating Menus for Your Applications 109

6

5. Add a function to the button using the Class Wizard. Change the code in this func-
tion to call OnOK. Remember, the OnOK function causes the application to close.

If you don’t remember how to add the OnOK function, review the section
“Closing the Application” on Day 2, “Using Controls in Your Application,”
for an example.

Note

Adding and Customizing a Menu
Now that you have the basic application built, it’s time to start creating a menu for the
application. To create a menu, you will first add a menu resource to your project. When
you add the resource, Visual C++ automatically invokes the Menu Designer, which
allows you to customize the menu. The following steps show you how to add and cus-
tomize a menu:

1. Select the Resource View tab in the workspace pane.

2. Select the project resources folder at the top of the tree; in your example, this is
Menus.

3. Right-click the mouse to bring up a pop-up menu.

4. Select Insert from the pop-up menu.

5. In the Insert Resource dialog that opens, select Menu from the list of available
resources, as in Figure 6.1. Click the New button.

6. The Menu Designer opens in the editing area of Developer Studio. The first menu
spot is highlighted, as shown in Figure 6.2.

FIGURE 6.1.
The Insert Resource
dialog.

008 31240-9 CH06 4/27/00 11:46 AM Page 109

At this point, you have created the menu resource and you are ready to customize it by
adding menu items. To add a menu item, follow these steps:

1. Right-click the mouse on the highlighted area and select Properties from the pop-
up menu.

2. Enter the menu item’s Caption. For this example, enter &File and close the
Properties dialog.

110 Day 6

FIGURE 6.2.
An empty menu.

You are in the menu Properties dialog to specify the text that the user will
see on the menu bar while the application is running. Because the Pop-up
check box is checked (by default on any menu items on the top-level menu
bar), this menu element doesn’t trigger any application functionality and
thus doesn’t need to have an object ID assigned to it.

Note

3. The first drop-down menu location is highlighted. To add this menu item, right-
click the mouse again on the highlighted area and select Properties from the pop-
up menu.

4. Enter an ID and caption for the menu item. For this example, enter
IDM_FILE_HELLO for the ID and &Hello for the Caption. Close the dialog.

008 31240-9 CH06 4/27/00 11:46 AM Page 110

Creating Menus for Your Applications 111

6

At this point you have created a menu with a single menu item. You can continue to add
menu items by repeating steps 3 and 4 of the preceding list for each of the highlighted
areas. You can also add separators onto the menu. A separator is a dividing line that runs
across the menu to separate two functional areas of menu selections. To add a separator,
perform the following steps:

This time in the menu Properties dialog, you not only specify the text that
the user will see when the menu is opened from the menu bar, but you also
specify the object ID that will be used in the event message handler to
determine what function receives each of the menu events.

Note

FIGURE 6.3.
Specifying a menu sep-
arator.

1. Select the highlighted area where you want the separator to be placed. In the exam-
ple you created, the second drop-down menu location should be highlighted. Open
the properties dialog as you did in step 3 in the preceding list. To add a separator,
simply select the Separator option, as shown in Figure 6.3, and close the dialog.

To complete your sample program, follow the same steps I just described to add an Exit
item to your File menu and a second menu called Help with one menu item called
About. The following steps, which resemble the preceding list of steps, walk you
through adding these additional items:

1. Open the properties dialog for the third drop-down location and specify the ID as
IDM_FILE_EXIT and the caption as E&xit. Close the dialog.

2. Select the second top-level menu location and open the properties dialog. Specify
the caption as &Help and close the dialog.

3. Open the properties dialog for the first drop-down location on the second top-level
menu. Specify the ID as ID_HELP_ABOUT and the caption as &About. Close the dia-
log.

At this point, your menu is created; however, it is not attached to your application.

008 31240-9 CH06 4/27/00 11:46 AM Page 111

112 Day 6

FIGURE 6.4.
Attaching the menu to
the dialog window.

FIGURE 6.5.
The menu is now part
of the application dia-
log.

Attaching the Menu to Your Dialog Window
You now have a menu that you can use in your application. If you compile and run
your application at this point, however, the menu doesn’t appear. You still need to
attach the menu to your dialog window. You can attach a menu by following these
steps:

1. Open the dialog painter by double-clicking the primary application dialog in
the Dialog folder in the Workspace pane. For this example, double-click on
IDD_MENUS_DIALOG.

2. Select the entire dialog window, making sure that no controls are selected, and
open the dialog’s properties dialog. (What you are doing is opening the prop-
erties for the dialog window itself, not for any of the controls that might be on
the window.)

3. Select the menu you have designed from the Menu drop-down list box, as
shown in Figure 6.4.

If you compile and run your application, you find that the menu is attached to the appli-
cation dialog, as shown in Figure 6.5. You can select menu entries as you do with any
other Windows application—with one small difference. At this point, when you select
one of the menu entries, nothing happens. You still need to attach functionality to your
menu.

Attaching Functionality to Menu Entries
Now that you have a menu as part of your application, it sure would be nice if it actually
did something. Well, before your menu can do anything, you have to tell it what to do,
just like everything else in your Visual C++ applications. To attach some functionality to
your menu, follow these steps:

008 31240-9 CH06 4/27/00 11:46 AM Page 112

Creating Menus for Your Applications 113

6

1. Open the Menu Designer to your menu.

2. Open the Class Wizard from the View menu.

3. The Adding a Class dialog is displayed for you, just as it was yesterday when you
added a second dialog. Leave the dialog selection on Select an Existing Class and
click OK (see Figure 6.6).

Yesterday, when you were adding a second dialog window to your application, you
needed to create a new C++ class for that window. For today’s menu, you want to
attach it to the existing C++ class for the dialog window to which the menu is
attached.

4. Choose the C++ class of the primary dialog window from the list of available
classes in the Select Class dialog. For this example, select CMenusDlg, as shown in
Figure 6.7. This tells Visual C++ that all the functionality that you will call from
the various menu entries is part of the same dialog class of the window that it’s
attached to.

FIGURE 6.6.
The menu is now part
of the application.

FIGURE 6.7.
The Select Class dia-
log.

For the menu elements that you want to use to trigger new functions in your application,
you can add event-handler functions through the Class Wizard, just as you can with con-
trols that you place on the dialog window.

For this example, add a function for the IDM_FILE_HELLO object (the Hello menu) on the
COMMAND event message. Name the function OnHello and add the code in Listing 6.1 to
the function.

008 31240-9 CH06 4/27/00 11:46 AM Page 113

LISTING 6.1. THE ONHELLO FUNCTION.

1: void CMenusDlg::OnHello()
2: {
3: // TODO: Add your command handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Display a message for the user
10: MessageBox(“Hello there”, “Hello”);
11:
12: ///////////////////////
13: // MY CODE ENDS HERE
14: ///////////////////////
15: }

114 Day 6

The COMMAND event message is the message that is passed to the application
window when a menu entry is selected. Placing a function on this event
message has the same effect as placing a function on the menu entry selec-
tion.

Note

You can call existing event handlers from menu elements by adding the existing function
to the menu COMMAND event. You can do this by adding a function to the menu object ID
and then specifying the existing function name instead of accepting the suggested func-
tion name.

To reuse the OnExit function for the Exit menu element, reopen the Menu Designer and
then reopen the Class Wizard. When the Class Wizard is displayed, add a function for
the IDM_FILE_EXIT object on the COMMAND event message. Do not accept the default
function name presented to you by the Class Wizard. Enter the function name OnExit.
This automatically attaches the existing OnExit function that you created with your Exit
button earlier.

To round out your example’s functionality, add a function to the ID_HELP_ABOUT object
on the COMMAND event message. Edit the function as in Listing 6.2.

LISTING 6.2. THE ONHELPABOUT FUNCTION.

1: void CMenusDlg::OnHelpAbout()
2: {
3: // TODO: Add your command handler code here
4:

008 31240-9 CH06 4/27/00 11:46 AM Page 114

Creating Menus for Your Applications 115

6

5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Declare an instance of the About window
10: CAboutDlg dlgAbout;
11:
12: // Show the About window
13: dlgAbout.DoModal();
14:
15: ///////////////////////
16: // MY CODE ENDS HERE
17: ///////////////////////
18: }

You attached the File | Exit menu entry to an existing function that closes the application.
On the File | Hello, you added a new function that called the MessageBox function to dis-
play a simple message to the user. With Help | About, you added another function that
declared an instance of the About dialog window and called its DoModal method.

If you compile and run your application, you find that all the menu entries are working.
If you select Help | About, as shown in Figure 6.8, you see the application About dialog
(see Figure 6.9). If you select File | Hello, you see a Hello there message box, as shown
in Figure 6.10. And if you select File | Exit, your application closes.

FIGURE 6.8.
The Help | About
menu entry.

FIGURE 6.9.
The About dialog.

FIGURE 6.10.
The Hello there mes-
sage box.

008 31240-9 CH06 4/27/00 11:46 AM Page 115

Creating Pop-Up Menus
Most Windows applications have what are called either pop-up or context menus, which
are triggered by the user right-clicking an object. These are called pop-up menus because
they pop up in the middle of the application area, not attached to a menu bar, the window
frame, or anything else on the computer screen (not counting the mouse pointer). These
menus are often referred to as context menus because the contents of a menu depend on
the context in which it is opened; the elements available on the menu depend on what
objects are currently selected in the application or what the mouse pointer is positioned
over.

To provide a pop-up menu in your application, you have two approaches available. You
can either design a menu specifically for use as a pop-up menu, or you can use one of
the pull-down menus from the primary menu that you have already designed. If you
design a menu specifically for use as a pop-up menu, you will need to skip the top-level,
menu bar element by placing a space or some other text in the caption, knowing that it
will not be seen. You will see how this works when you build a custom menu specifical-
ly for use as a pop-up menu on Day 11, “Creating Multiple Document Interface
Applications,” in the section “Adding a Context Menu.”

Every drop-down portion of a menu can also be used as a pop-up menu. To use it in this
way, you must get a handle to the submenu (the drop-down menu) and then call the
TrackPopupMenu function on the submenu. The rest of the pop-up menu functionality is
already covered in the other menu building and coding that you have already done. To
add a pop-up menu to your application, follow these steps:

1. Using the Class Wizard, add a function for the WM_CONTEXTMENU event message in
your dialog window.

116 Day 6

There are two dialog event messages that you can use to trigger your con-
text menu. The event that you’d expect to use is the WM_RBUTTONDOWN event,
which is triggered by the user right-clicking. The other event that can (and
should) be used is the WM_CONTEXTMENU event, which is intended for use
specifically to trigger a context menu. This event is triggered by a couple
user actions: One of these is the release of the right mouse button, and
another is the pressing of the context menu button on one of the newer
Windows-enabled keyboards.

Note

2. Edit the function, adding the code in Listing 6.3.

008 31240-9 CH06 4/27/00 11:46 AM Page 116

Creating Menus for Your Applications 117

6

LISTING 6.3. THE ONCONTEXTMENU FUNCTION.

1: void CMenusDlg:: OnContextMenu(CWnd* pWnd, CPoint point)
2: {
3: // TODO: Add your message handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Declare local variables
10: CMenu *m_lMenu; // A pointer to the menu
11: CPoint m_pPoint; // A copy of the mouse position
12:
13: // Copy the mouse position to a local variable
14: m_pPoint = point;
15: // Convert the position to a screen position
16: ClientToScreen(&m_pPoint);
17: // Get a pointer to the window menu
18: m_lMenu - GetMenu();
19: // Get a pointer to the first submenu
20: m_lMenu = m_lMenu->GetSubMenu(0);
21: // Show the Popup Menu
22: m_lMenu->TrackPopupMenu(TPM_CENTERALIGN + TPM_LEFTBUTTON,
23: m_pPoint.x, m_pPoint.y, this, NULL);
24:
25: ///////////////////////
26: // MY CODE ENDS HERE
27: ///////////////////////
28: }

In Listing 6.3, the first thing that you did was make a copy of the mouse position. This
mouse position is a relative position within the window area. It must be converted to an
absolute position on the entire screen area for displaying the pop-up menu. If you don’t
convert the position coordinates, you can’t predict where your pop-up menu will appear.

After you convert the position to an absolute position, you get a pointer to the window
menu. This pointer should always be a local pointer within the function where you are
going to use it because the location of the menu might change as the application runs.
From the menu pointer, you next get a pointer to the first drop-down menu (submenu
numbering begins with 0, like just about everything else in C/C++). After you have a
pointer to the submenu, you can treat it as a regular CMenu class instance.

The final piece in this puzzle is the call to the CMenu member function TrackPopupMenu.
This function takes five arguments and uses them to determine where and how to show

008 31240-9 CH06 4/27/00 11:46 AM Page 117

the pop-up menu. The first argument is a combination of two flags. The first flag,
TPM_CENTERALIGN, centers the pop-up menu on the mouse point. You can also use
TPM_LEFTALIGN or TPM_RIGHTALIGN instead. These flags line up the left or right edge of
the pop-up menu with the mouse position. The second part of this flag combination is
TPM_LEFTBUTTON, which makes the pop-up menu trigger from the left mouse button. You
can also use TPM_RIGHTBUTTON to make the menu trigger from the right mouse button.

The second and third arguments to the TrackPopupMenu function specify the screen posi-
tion for the pop-up menu. This is the absolute position on the screen, not a relative posi-
tion within the window area. The fourth argument is a pointer to the window that
receives the menu command messages. The final argument is a rectangle that the user
can click without closing the pop-up menu. By passing NULL, you specify that if the user
clicks outside the pop-up menu, the menu closes. This code enables you to include a
pop-up menu in your application, as shown in Figure 6.11.

118 Day 6

FIGURE 6.11.
The pop-up menu in
action.

Creating a Menu with Accelerators
One of the original keyboard shortcuts for selecting menu entries were accelerator keys.
As mentioned earlier in the chapter, accelerator keys are specific key combinations, usu-
ally the Ctrl key combined with another key, or function keys, that are unique within the
entire application. Each of these key combinations triggers one menu event function.

The way that accelerator keys work is similar to the way menus work. They are also an
application resource that is defined in a table in the resource tab of the workspace pane.
Each table entry has an object ID and a key code combination. After you define the
accelerators, you can attach functionality to the object IDs. You can also assign accelera-
tor entries the same object ID as the corresponding menu entry so that you have to
define only a single entry in the application message map.

After you define all your accelerator keys, you can add the key combination to the menu
entry so that the user will know about the accelerator key combination. Add \t to the
end of the menu entry caption, followed by the key combination. The \t is replaced in
the menu display by a tab, which separates the menu caption from the accelerator key
combination.

008 31240-9 CH06 4/27/00 11:46 AM Page 118

Creating Menus for Your Applications 119

6

Unfortunately, accelerator keys don’t work in dialog-style windows, so you cannot add
them to today’s application. You will learn how to attach accelerator keys to menus in a
few days when you learn about single and multi-document interface style applications.

Summary
Today you learned about menus in Visual C++ applications. You learned how to use the
tools in Visual C++ to create a menu for use in your application and then how to attach
the menu to a window in your application. After you had the menu attached to your win-
dow, you learned how to attach functionality to the various menu entries. Later in the
day, you learned how you can use a portion of your menu as a pop-up, or context, menu.
Finally, you learned how accelerator keys are added to most applications.

Q&A
Q Do I have to name my menu items the same names everyone else uses?

For example, a lot of applications use File and Help. Can I name my menus
something else?

A You can name your top-level menus anything you want. However, there are ac-
cepted menu name conventions that place all file-oriented functionality under a
menu labeled File and all help-related functionality under a menu labeled Help. If
you have a menu with entries such as Broccoli, Corn, and Carrots, you will proba-
bly want to call the menu Vegetables, although an equally valid label would be
Food or Plants. In general, if you want to make your application easy for your
users to learn, you will want to use menu labels that make sense for the entries o
n the pull-down portion of the menu.

Q Why can’t I specify a single character as an accelerator key?

A The single character would trigger the WM_KEY messages, not the menu messages.
When the designers of Windows were deciding how accelerator keys would work,
they decided that single-character keys would most likely be input to the active
application. If they had allowed single-character accelerators, Windows wouldn’t
be able to determine whether the character was input or a shortcut. By requiring a
key combination (with the exception of function keys), the designers ensured that
Windows won’t have to make this determination.

008 31240-9 CH06 4/27/00 11:46 AM Page 119

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions are provided in Appendix B, “Answers.”

Quiz
1. What event message does a menu selection send to the window message queue?

2. How do you attach a menu to a dialog window?

3. Which existing class do you specify for handling event messages for the menu?

4. What event message should a pop-up menu be triggered by?

Exercises
1. Add a button to the main window and have it call the same function as the Hello

menu entry.

2. Add a pop-up menu to your application that uses the Help drop-down menu as the
pop-up menu.

120 Day 6

008 31240-9 CH06 4/27/00 11:46 AM Page 120

DAY 7

WEEK 1

Working with Text
and Fonts

In most Windows applications, you don’t need to worry about specifying fonts,
much less their weight, height, and so on. If you don’t specify the font to be
used, Windows supplies a default font for your application. If you do need to
use a particular font, you can specify a font to use for a particular dialog win-
dow through the dialog properties. Sometimes, however, you want or need to
control the font used in your application. You might need to change the font
being used or allow the user to select a font to use in a particular instance. It is
for those circumstances that you will learn how to change and list fonts today.
Among the things that you will learn are

• How to build a list of available fonts.

• How to specify a font for use.

• How to change fonts dynamically.

009 31240-9 CH07 4/27/00 11:49 AM Page 121

Finding and Using Fonts
One of the first things that you need to know when working with fonts is that not every
system that your applications run on will have the same fonts installed. Fonts are speci-
fied in files that can be installed and removed from Windows systems with relative ease.
Every computer user can customize his system with whatever combination of fonts he
wants. If you specify a font that doesn’t exist on the system, Windows will choose either
the system default font or what the operating system considers to be a reasonably close
alternative font.

What you can do instead is ask the operating system what fonts are available. This
method allows you to make your own decisions on which font to use or let the user make
the decision. When you ask what fonts are available, you can limit the types of fonts that
are listed, or you can choose to list them all and select various fonts based on various
attributes.

Listing the Available Fonts
To get a list of all available fonts on a computer, you call a Windows API (Application
Programming Interface) function called EnumFontFamiliesEx. This function tells
Windows that you want a list of the fonts on the system. Before you start using this func-
tion and expecting it to pass you a big list of available fonts, you need to understand how
it gives you the list.

Callback Functions
One of the key arguments to the EnumFontFamiliesEx function is the address of another
function. This second function is what is known as a callback function, which is called
by the operating system. For almost every enumeration function in the Windows operat-
ing system, you pass the address of a callback function as an argument because the call-
back function is called once for each of the elements in the enumerated list. In other
words, you have to include a function in your application to receive each individual font
that is on the system and then build the list of fonts yourself.

When you create this function to receive each font and build your list, you cannot define
your callback function in any way you want. All callback functions are already defined
in the Windows API. You have to use a specific type of callback function to receive the
list of fonts. For getting a list of fonts, the function type is EnumFontFamProc. This func-
tion type specifies how your function must be defined, what its arguments must be, and
what type of return value it must return. It does not specify what your function should be
named or how it needs to work internally. These aspects are left completely up to you.

122 Day 7

009 31240-9 CH07 4/27/00 11:49 AM Page 122

Working with Text and Fonts 123

7

The EnumFontFamiliesEx Function
The EnumFontFamiliesEx function, which you call to request the list of available fonts,
takes five arguments. A typical use of this function follows:

// Create a device context variable
CClientDC dc (this);
// Declare a LOGFONT structure
LOGFONT lLogFont;

// Specify the character set
lLogFont.lfCharSet = DEFAULT_CHARSET;
// Specify all fonts
lLogFont.lfFaceName[0] = NULL;
// Must be zero unless Hebrew or Arabic
lLogFont.lfPitchAndFamily = 0;
// Enumerate the font families
::EnumFontFamiliesEx((HDC) dc, &lLogFont,
(FONTENUMPROC) EnumFontFamProc, (LPARAM) this, 0);

The first argument is a device context, which can be an instance of the CClientDC class.
Every application running within the Windows operating system has a device context.
The device context provides a lot of necessary information to the operating system about
what is available to the application and what is not.

The second argument is a pointer to a LOGFONT structure. This structure contains informa-
tion about the fonts that you want listed. You can specify in this structure which charac-
ter set you want to list or whether you want all the fonts in a particular font family. If
you want all the fonts on the system, you pass NULL in the place of this argument.

The third argument is the address of the callback function that will be used to build your
list of fonts. Passing the address of your callback function is a simple matter of using the
function name as the argument. The Visual C++ compiler takes care of replacing the
function name with the function address. However, you do need to cast the function as
the type of callback function that the function requires.

The fourth argument is a LPARAM value that will be passed to the callback function. This
parameter is not used by Windows but provides your callback function with a context in
which to build the font list. In the example, the value being passed is a pointer to the
window in which the code is being run. This way, the callback function can use this
pointer to access any structures it needs to build the list of fonts. This pointer can also be
the first node in a linked list of fonts or other such structure.

The fifth and final argument is always 0. This reserved argument may be used in future
versions of Windows, but for now, it must be 0 so that your application passes a value
that won’t cause the function to misbehave.

009 31240-9 CH07 4/27/00 11:49 AM Page 123

The EnumFontFamProc Function Type
When you create your callback function, it must be defined as an independent function,
not as a member of any C++ class. A typical EnumFontFamProc function declaration
follows:

int CALLBACK EnumFontFamProc(
LPENUMLOGFONT lpelf,
LPNEWTEXTMETRIC lpntm,
DWORD nFontType,
long lParam)
{

// Create a pointer to the dialog window
CMyDlg* pWnd = (CMyDlg*) lParam;

// Add the font name to the list box
pWnd->m_ctlFontList.AddString(lpelf->elfLogFont.lfFaceName);
// Return 1 to continue font enumeration
return 1;

}

The first argument to this function is a pointer to an ENUMLOGFONTEX structure. This struc-
ture contains information about the logical attributes of the font, including the font name,
style, and script. You may have numerous fonts listed with the same name but different
styles. You can have one for normal, one for bold, one for italic, and one for bold italic.

The second argument is a pointer to a NEWTEXTMETRICEX structure. This structure con-
tains information about the physical attributes of the font, such as height, width, and
space around the font. These values are all relative in nature because they need to scale
as the font is made larger or smaller.

The third argument is a flag that specifies the type of font. This value may contain a
combination of the following values:

• DEVICE_FONTYPE

• RASTER_FONTYPE

• TRUETYPE_FONTYPE

Finally, the fourth argument is the value that was passed into the EnumFontFamiliesEx
function. In the example, it was a pointer to the dialog on which the list of fonts is being
built. If you cast this value as a pointer to the dialog, the function can access a list box
control to add the font names.

The return value from this function determines whether the listing of fonts continues. If 0
is returned from this function, the operating system quits listing the available fonts. If 1
is returned, the operating system continues to list the available fonts.

124 Day 7

009 31240-9 CH07 4/27/00 11:49 AM Page 124

Working with Text and Fonts 125

7

Using a Font
To use a particular font in an application, you call an instance of the CFont class. By
calling the CreateFont method, you can specify the font to be used, along with the size,
style, and orientation. Once you’ve created a font, you can tell a control or window to
use the font by calling the object’s SetFont method. An example of this process follows:

CFont m_fFont; // The font to be used

// Create the font to be used
m_fFont.CreateFont(12, 0, 0, 0, FW_NORMAL,

0, 0, 0, DEFAULT_CHARSET, OUT_CHARACTER_PRECIS,
CLIP_CHARACTER_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH |
FF_DONTCARE, m_sFontName);

// Set the font for the display area
m_ctlDisplayText.SetFont(&m_fFont);

The CFont variable used in the previous code should be declared as a mem-
ber variable of the class in which this code is placed. In the sample code, it is
declared above where it is used to show how it is declared. This variable
should not be declared or used as a local variable in a function.

Tip

Seems simple enough—just two function calls—but that CreateFont function needs an
awful lot of arguments passed to it. It is these arguments that make the CreateFont
method a flexible function with a large amount of functionality. Once you create the font,
using it is a simple matter of passing the font to the SetFont method, which is a member
of the CWnd class and thus available to all window and control classes in Visual C++. This
means that you can use this technique on any visible object within a Visual C++ application.

To understand how the CreateFont function works, let’s look at the individual argu-
ments that you have to pass to it. The function is defined as

BOOL CreateFont(
int nHeight,

int nWidth,
int nEscapement,
int nOrientation,
int nWeight,
BYTE bItalic,
BYTE bUnderline,
BYTE cStrikeOut,
BYTE nCharSet,

009 31240-9 CH07 4/27/00 11:49 AM Page 125

BYTE nOutPrecision,
BYTE nClipPrecision,
BYTE nQuality,
BYTE nPitchAndFamily,
LPCTSTR lpszFaceName);

The first of these arguments, nHeight, specifies the height of the font to be used. This
logical value is translated into a physical value. If the value is 0, a reasonable default
value is used. If the value is greater or less than 0, the absolute height is converted into
device units. It is key to understand that height values of 10 and -10 are basically the
same.

The second argument, nWidth, specifies the average width of the characters in the font.
This logical value is translated into a physical value in much the same way as the height is.

The third argument, nEscapement, determines the angle at which the text will be printed.
This value is specified in 0.1-degree units in a counterclockwise pattern. If you want to
print vertical text that reads from bottom to top, you supply 900 as the value for this
argument. For printing normal horizontal text that flows from left to right, supply 0 as
this value.

The fourth argument, nOrientation, determines the angle of each individual character in
the font. This works on the same basis as the previous argument, but it controls the out-
put on a character basis, not a line-of-text basis. To print upside-down characters, set this
value to 1800. To print characters on their backs, set this value to 900.

The fifth argument, nWeight, specifies the weight, or boldness, of the font. This can be
any value from 0 to 1000, with 1000 being heavily bolded. You can use constants defined
for this argument to control this value with ease and consistency. These constants are
listed in Table 7.1.

TABLE 7.1. FONT WEIGHT CONSTANTS.

Constant Value

FW_DONTCARE 0

FW_THIN 100

FW_EXTRALIGHT 200

FW_ULTRALIGHT 200

FW_LIGHT 300

FW_NORMAL 400

FW_REGULAR 400

FW_MEDIUM 500

126 Day 7

009 31240-9 CH07 4/27/00 11:49 AM Page 126

Working with Text and Fonts 127

7

Constant Value

FW_SEMIBOLD 600

FW_DEMIBOLD 600

FW_BOLD 700

FW_EXTRABOLD 800

FW_ULTRABOLD 800

FW_BLACK 900

FW_HEAVY 900

The actual interpretation and availability of these weights depend on the font. Some fonts
only have FW_NORMAL, FW_REGULAR, and FW_BOLD weights. If you specify FW_DONTCARE, a
default weight is used, just as with most of the rest of the arguments.

The sixth argument, bItalic, specifies whether the font is to be italicized. This is a
boolean value; 0 indicates that the font is not italicized, and any other value indicates
that the font is italicized.

The seventh argument, bUnderline, specifies whether the font is to be underlined. This
is also a boolean value; 0 indicates that the font is not underlined, and any other value
indicates that the font is underlined.

The eighth argument, cStrikeOut, specifies whether the characters in the font are dis-
played with a line through the character. This is another boolean value using a non-zero
value as TRUE and 0 as FALSE.

The ninth argument, nCharSet, specifies the font’s character set. The available constants
for this value are listed in Table 7.2.

TABLE 7.2. FONT CHARACTER SET CONSTANTS.

Constant Value

ANSI_CHARSET 0

DEFAULT_CHARSET 1

SYMBOL_CHARSET 2

SHIFTJIS_CHARSET 128

OEM_CHARSET 255

The system on which your application is running might have other character sets, and the
OEM character set is system dependent, making it different for systems from different

009 31240-9 CH07 4/27/00 11:49 AM Page 127

manufacturers. If you are using one of these character sets, it is risky to try to manipulate
the strings to be output, so it’s best to just pass along the string to be displayed.

The tenth argument, nOutPrecision, specifies how closely the output must match the
requested font’s height, width, character orientation, escapement, and pitch. The avail-
able values for this argument are

• OUT_CHARACTER_PRECIS

• OUT_DEFAULT_PRECIS

• OUT_DEVICE_PRECIS

• OUT_RASTER_PRECIS

• OUT_STRING_PRECIS

• OUT_STROKE_PRECIS

• OUT_TT_PRECIS

The OUT_DEVICE_PRECIS, OUT_RASTER_PRECIS, and OUT_TT_PRECIS values control which
font is chosen if there are multiple fonts with the same name. For instance, if you use the
OUT_TT_PRECIS value and specify a font with both a TrueType and raster version, then
the TrueType version is used. In fact, the OUT_TT_PRECIS value forces the system to use a
TrueType font, even when the specified font does not have a TrueType version.

The eleventh argument, nClipPrecision, specifies how to clip characters that are par-
tially outside of the display area. The values for this argument are

• CLIP_CHARACTER_PRECIS

• CLIP_DEFAULT_PRECIS

• CLIP_ENCAPSULATE

• CLIP_LH_ANGLES

• CLIP_MASK

• CLIP_STROKE_PRECIS

• CLIP_TT_ALWAYS

These values can be ORed together to specify a combination of clipping techniques.

The twelfth argument, nQuality, specifies the output quality and how carefully the GDI
(Graphics Device Interface) must attempt to match the logical font attributes to the phys-
ical font output. The available values for this argument are

• DEFAULT_QUALITY

• DRAFT_QUALITY

• PROOF_QUALITY

128 Day 7

009 31240-9 CH07 4/27/00 11:49 AM Page 128

Working with Text and Fonts 129

7

The thirteenth argument, nPitchAndFamily, specifies the pitch and family of the font.
This value consists of two values that are ORed together to create a combination value.
The first set of available values is

• DEFAULT_PITCH

• VARIABLE_PITCH

• FIXED_PITCH

This value specifies the pitch to be used with the font. The second set of available values
specifies the family of fonts to be used. The available values for this portion of the argu-
ment are

• FF_DECORATIVE

• FF_DONTCARE

• FF_MODERN

• FF_ROMAN

• FF_SCRIPT

• FF_SWISS

The font family describes in a general way the appearance of a font. You can use the font
family value to choose an alternative font when a specific font does not exist on a system.
The final argument, lpszFacename, is a standard C-style string that contains the name of
the font to be used. This font name comes from the font information received by the
EnumFontFamProc callback function.

Using Fonts
Today you will build an application that allows the user to select from a list of available
fonts to be displayed. The user will be able to enter some text to be displayed in the
selected font, allowing the user to see what the font looks like.

Creating the Application Shell
To begin today’s application, follow these steps:

1. Create a new project workspace using the MFC AppWizard. Name the project
Day7.

2. Use the same defaults that you used for the previous day’s projects, giving the
application a title of Fonts.

3. Design the main dialog as in Figure 7.1, using the properties in Table 7.3.

009 31240-9 CH07 4/27/00 11:49 AM Page 129

TABLE 7.3. CONTROL PROPERTY SETTINGS.

Object Property Setting

Static Text ID IDC_STATIC

Caption &Enter Some Text:

Edit Box ID IDC_ESAMPTEXT

Static Text ID IDC_STATIC

Caption &Select a Font

List Box ID IDC_LFONTS

Group Box ID IDC_STATIC

Caption Font Sample

Static Text ID IDC_DISPLAYTEXT

(inside group box; size to Caption Empty string
fill the group box)

Command Button ID IDC_EXIT

Caption E&xit

4. Using the Class Wizard, add the variables in Table 7.4 to the controls on the dia-
log.

130 Day 7

FIGURE 7.1.
The main dialog
layout.

009 31240-9 CH07 4/27/00 11:49 AM Page 130

Working with Text and Fonts 131

7

TABLE 7.4. CONTROL VARIABLES.

Object Name Category Type

IDC_DISPLAYTEXT m_ctlDisplayText Control CStatic

m_strDisplayText Value CString

IDC_LFONTS m_ctlFontList Control CListBox

m_strFontName Value CString

IDC_ESAMPTEXT m_strSampText Value CString

5. Attach a function to the IDC_EXIT button to close the application, as in the previ-
ous day’s applications.

Building a List of Fonts
To be able to create your list of fonts, you need to add your callback function to get each
font list and add it to the list box that you placed on the dialog window. To do this, edit
the Day7Dlg.h header file and add the function declaration in Listing 7.1 near the top of
the file. This function cannot be added through any of the tools available in Visual C++.
You need to open the file and add it yourself.

LISTING 7.1. THE CALLBACK FUNCTION DECLARATION IN THE Day7Dlg.h HEADER FILE.

1: #if _MSC_VER > 1000
2: #pragma once
3: #endif // _MSC_VER > 1000
4:
5: int CALLBACK EnumFontFamProc(LPENUMLOGFONT lpelf,
6: LPNEWTEXTMETRIC lpntm, DWORD nFontType, long lParam);
7:
8: //
9: // CDay7Dlg dialog
10:
11: class CDay7Dlg : public CDialog
12: .
13: .
14: .

Once you add the function declaration to the header file, open the Day7Dlg.cpp source-
code file, scroll to the bottom of the file, and add the function definition in Listing 7.2.

009 31240-9 CH07 4/27/00 11:49 AM Page 131

LISTING 7.2. THE CALLBACK FUNCTION DEFINITION IN THE Day7Dlg.cpp SOURCE FILE.

1: int CALLBACK EnumFontFamProc(LPENUMLOGFONT lpelf,
2: LPNEWTEXTMETRIC lpntm, DWORD nFontType, long lParam)
3: {
4: // Create a pointer to the dialog window
5: CDay7Dlg* pWnd = (CDay7Dlg*) lParam;
6:
7: // Add the font name to the list box
8: pWnd->m_ctlFontList.AddString(lpelf->elfLogFont.lfFaceName);
9: // Return 1 to continue font enumeration
10: return 1;
11: }

Now that you have the callback function defined, you need to add a function to request
the list of fonts from the operating system. To add this function, follow these steps:

1. Select the Class View tab on the project workspace pane.

2. Select the CDay7Dlg class, right-click the mouse, and select Add Member Function
from the pop-up menu.

3. Specify the function type as void, the function declaration as FillFontList, and
the access as Private. Click the OK button to close the dialog and add the function.

4. Edit the function definition as in Listing 7.3.

LISTING 7.3. THE FillFontList FUNCTION.

1: void CDay7Dlg::FillFontList()
2: {
3: LOGFONT lf;
4:
5: // Initialize the LOGFONT structure
6: lf.lfCharSet = DEFAULT_CHARSET;
7: strcpy(lf.lfFaceName, “”);
8: // Clear the list box
9: m_ctlFontList.ResetContent();
10: // Create a device context variable
11: CClientDC dc (this);
12: // Enumerate the font families
13: ::EnumFontFamiliesEx((HDC) dc, &lf,
14: (FONTENUMPROC) EnumFontFamProc, (LPARAM) this, 0);
15: }

5. Edit the OnInitDialog function to call the FillFontList function, as in Listing 7.4.

132 Day 7

009 31240-9 CH07 4/27/00 11:49 AM Page 132

Working with Text and Fonts 133

7

LISTING 7.4. THE EDITED OnInitDialog FUNCTION.

1: BOOL CDay7Dlg::OnInitDialog()
2: {
3: CDialog::OnInitDialog();
4: .
5: .
6: .
7: // TODO: Add extra initialization here
8:
9: ///////////////////////
10: // MY CODE STARTS HERE
11: ///////////////////////
12:
13: // Fill the font list box
14: FillFontList();
15:
16: ///////////////////////
17: // MY CODE ENDS HERE
18: ///////////////////////
19:
20: return TRUE; // return TRUE unless you set the focus to a control
21: }

If you compile and run your application now, you should find that your list box is filled
with the names of all the fonts available on the system. However, there’s one aspect of
this list that you probably don’t want in your application. Figure 7.2 shows many dupli-
cate entries in the list of fonts in the list box. It would be nice if you could eliminate
these duplicates and have only one line per font.

It turns out that the EnumFontFamiliesEx function call is synchronous in nature. This
means that it doesn’t return until all the fonts in the system are listed in calls to your

FIGURE 7.2.
Listing all the fonts in
the system.

009 31240-9 CH07 4/27/00 11:49 AM Page 133

callback function. You can place code in the FillFontList function to remove all the
duplicate entries once the list box is filled. To do this, modify the FillFontList function
as in Listing 7.5.

LISTING 7.5. THE MODIFIED FillFontList FUNCTION.

1: void CDay7Dlg::FillFontList()
2: {
3: int iCount; // The number of fonts
4: int iCurCount; // The current font
5: CString strCurFont; // The current font name
6: CString strPrevFont = “”; // The previous font name
7: LOGFONT lf;
8:
9: // Initialize the LOGFONT structure
10: lf.lfCharSet = DEFAULT_CHARSET;
11: strcpy(lf.lfFaceName, “”);
12: // Clear the list box
13: m_ctlFontList.ResetContent();
14: // Create a device context variable
15: CClientDC dc (this);
16: // Enumerate the font families
17: ::EnumFontFamiliesEx((HDC) dc, &lf,
18: (FONTENUMPROC) EnumFontFamProc, (LPARAM) this, 0);
19: // Get the number of fonts in the list box
20: iCount = m_ctlFontList.GetCount();
21: // Loop from the last entry in the list box to the first,
22: // searching for and deleting the duplicate entries
23: for (iCurCount = iCount; iCurCount > 0; iCurCount--)
24: {
25: // Get the current font name
26: m_ctlFontList.GetText((iCurCount - 1), strCurFont);
27: // Is it the same as the previous font name?
28: if (strCurFont == strPrevFont)
29: {
30: // If yes, then delete it
31: m_ctlFontList.DeleteString((iCurCount - 1));
32: }
33: // Set the previous font name to the current font name
34: strPrevFont = strCurFont;
35: }
36: }

Notice that the for loop started at the end of the list and worked backward. This allowed
you to delete the current entry without worrying about manipulating the loop counter to
prevent skipping lines in the list box. If you compile and run your application, there
shouldn’t be any duplicate entries in the list of available fonts.

134 Day 7

009 31240-9 CH07 4/27/00 11:49 AM Page 134

Working with Text and Fonts 135

7

Setting the Font Sample Text
Before you can display the font for the user, you need to place some text into the display
area. The edit box near the top of the dialog is where the user enters text to be displayed
in the font selected. To add the functionality, do the following:

1. Edit the OnInitDialog function to add code to initialize the edit box and display
text, as in Listing 7.6.

LISTING 7.6. THE MODIFIED OnInitDialog FUNCTION.

1: BOOL CDay7Dlg::OnInitDialog()
2: {
3: CDialog::OnInitDialog();
4: .
5: .
6: .
7: // TODO: Add extra initialization here
8:
9: ///////////////////////
10: // MY CODE STARTS HERE
11: ///////////////////////
12:
13: // Fill the font list box
14: FillFontList();
15:
16: // Initialize the text to be entered
17: m_strSampText = “Testing”;
18: // Copy the text to the font sample area
19: m_strDisplayText = m_strSampText;
20: // Update the dialog
21: UpdateData(FALSE);
22:
23: ///////////////////////
24: // MY CODE ENDS HERE
25: ///////////////////////
26:
27: return TRUE; // return TRUE unless you set the focus to a control
28: }

2. Using the Class Wizard, add a function on the EN_CHANGE event message for the
IDC_ESAMPTEXT edit box control.

3. Edit the function you just added, adding the code in Listing 7.7.

009 31240-9 CH07 4/27/00 11:49 AM Page 135

LISTING 7.7. THE OnChangeEsamptext FUNCTION.

1: void CDay7Dlg::OnChangeEsamptext()
2: {
3: // TODO: If this is a RICHEDIT control, the control will not
4: // send this notification unless you override the

➥ CDialog::OnInitialUpdate()
5: // function and call CRichEditCrtl().SetEventMask()
6: // with the EN_CHANGE flag ORed into the mask.
7:
8: // TODO: Add your control notification handler code here
9:
10: ///////////////////////
11: // MY CODE STARTS HERE
12: ///////////////////////
13:
14: // Update the variables with the dialog controls
15: UpdateData(TRUE);
16:
17: // Copy the current text to the font sample
18: m_strDisplayText = m_strSampText;
19:
20: // Update the dialog with the variables
21: UpdateData(FALSE);
22:
23: ///////////////////////
24: // MY CODE ENDS HERE
25: ///////////////////////
26: }

If you compile and run your application, you should be able to type text into the edit box
and see it change in the font display area in the group box below.

Selecting a Font to Display
Before you can start changing the font for the display area, you’ll need to have a CFont
member variable of the dialog class that you can use to set and change the display font.
To add this variable, follow these steps:

1. In the Class View of the workspace pane, right-click the mouse on the CDay7Dlg
class. Select Add Member Variable from the pop-up menu.

2. Specify the variable type as CFont, the variable name as m_fSampFont, and the
access as Private. Click the OK button to close the dialog box and add the
variable.

When adding the code to use the selected font, you’ll add it as a separate function that is
not attached to a control. Why you do this will become clear as you proceed further

136 Day 7

009 31240-9 CH07 4/27/00 11:49 AM Page 136

Working with Text and Fonts 137

7

through building and running today’s application. To add the function to display and use
the selected font, follow these steps:

1. In the Class View of the workspace pane, right-click the mouse on the CDay7Dlg
class. Select Add Member Function from the pop-up menu.

2. Specify the function type as void, the function declaration as SetMyFont, and the
access as Private. Click the OK button to close the dialog and add the function.

3. Edit the function, adding the code in Listing 7.8.

LISTING 7.8. THE SetMyFont FUNCTION.

1: void CDay7Dlg::SetMyFont()
2: {
3: CRect rRect; // The rectangle of the display area
4: int iHeight; // The height of the display area
5:
6: // Has a font been selected?
7: if (m_strFontName != “”)
8: {
9: // Get the dimensions of the font sample display area
10: m_ctlDisplayText.GetWindowRect(&rRect);
11: // Calculate the area height
12: iHeight = rRect.top - rRect.bottom;
13: // Make sure the height is positive
14: if (iHeight < 0)
15: iHeight = 0 - iHeight;
16: // Release the current font
17: m_fSampFont.Detach();
18: // Create the font to be used
19: m_fSampFont.CreateFont((iHeight - 5), 0, 0, 0, FW_NORMAL,
20: 0, 0, 0, DEFAULT_CHARSET, OUT_CHARACTER_PRECIS,
21: CLIP_CHARACTER_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH |
22: FF_DONTCARE, m_strFontName);
23:
24: // Set the font for the sample display area
25: m_ctlDisplayText.SetFont(&m_fSampFont);
26: }
27: }

4. Using the Class Wizard, add a function to the LBN_SELCHANGE event message for
the IDC_LFONTS list box. Edit the function, adding the code in Listing 7.9.

009 31240-9 CH07 4/27/00 11:49 AM Page 137

LISTING 7.9. THE OnSelchangeLfonts FUNCTION.

1: void CDay7Dlg::OnSelchangeLfonts()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Update the variables with the dialog controls
10: UpdateData(TRUE);
11:
12: // Set the font for the sample
13: SetMyFont();
14:
15: ///////////////////////
16: // MY CODE ENDS HERE
17: ///////////////////////
18: }

In the SetMyFont function, you first checked to make sure that a font had been selected.
Next, you retrieved the area of the static text control that will be used to display the font.
This enables you to specify a font height just slightly smaller than the height of the area
you have available to display the font in. After you calculated the height of the static text
control and made sure that it is a positive value, you created the selected font and told
the static text control to use the newly created font.

In the OnSelchangeLfonts function, you copy the control values to the attached vari-
ables and then call the SetMyFont function to use the selected font. If you compile and
run your application, you should be able to select a font and see it displayed in the sam-
ple static text control, as in Figure 7.3.

138 Day 7

FIGURE 7.3.
Displaying the selected
font.

009 31240-9 CH07 4/27/00 11:49 AM Page 138

Working with Text and Fonts 139

7

Summary
Today you learned how to use fonts in Visual C++ applications. You learned how to get a
list of the available fonts that are loaded on the system and then how to create a font for
use on a display object. You learned how you can create and use callback functions to
get a list of resources from the Windows operating system. You also learned how you
can access controls from the callback function using a window pointer that you passed to
the function requesting the resource list.

Q&A
Q The CreateFont function has a lot of arguments to specify and pass. Is there

any other alternative to using this function?

A Yes, there is, although you still specify all of the same information. A structure
called LOGFONT contains all the same attributes that are passed to the CreateFont
function. You can declare an instance of this structure, initializing the attributes to
default values, and then pass this structure to the CreateFontIndirect function. If
you make numerous font changes, this approach is preferable because you could
use the same instance of the structure, modifying those attributes that are changing
from the current settings and using it to create the various fonts.

The way that you use this alternative way of creating the font is to declare an
instance of the LOGFONT structure as a member of the dialog class and then initial-
ize all the attributes before calling the SetMyFont function. In the SetMyFont func-
tion, you modify it as shown in Listing 7.10.

LISTING 7.10. THE MODIFIED SetMyFont FUNCTION.

1: void CDay7Dlg::SetMyFont()
2: {
3:
4: // Has a font been selected?
5: if (m_strFontName != “”)
6: {
7: // Assume that the font size has already been initialized in the
8: // m_lLogFont structure. This allows you to only have to specify
9: // the font name.
10: tcscpy(m_lLogFont.lfFaceName, m_strFontName);
11: // Create the font to be used
12: m_fSampFont.CreateFontIndirect(&m_lLogFont);
13:
14: // Set the font for the sample display area
15: m_ctlDisplayText.SetFont(&m_fSampFont);
16: }
17: }

009 31240-9 CH07 4/27/00 11:49 AM Page 139

Q How can I limit the fonts in my list to just the TrueType fonts?

A You can check the nFontType argument to your callback function to determine the
font type. For instance, if you want to include only TrueType fonts in your list of
fonts, you modify your callback function to mask the nFontType argument with the
TRUETYPE_FONTTYPE constant and check to see if the resulting value equals the
TRUETYPE_FONTTYPE value, as in the following:

int CALLBACK EnumFontFamProc(LPENUMLOGFONT lpelf,
LPNEWTEXTMETRIC lpntm, DWORD nFontType, long lParam)
{

// Create a pointer to the dialog window
CDay7Dlg* pWnd = (CDay7Dlg*) lParam;

// Limit the list to TrueType fonts
if ((nFontType & TRUETYPE_FONTTYPE) == TRUETYPE_FONTTYPE)
{

// Add the font name to the list box
pWnd->m_ctlFontList.AddString(

lpelf->elfLogFont.lfFaceName);
}
// Return 1 to continue font enumeration
return 1;

}

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. How can you specify that the text is to be underlined?

2. How can you print your text upside down?

3. How many times is the EnumFontFamProc callback function called by the operating
system?

Exercises
1. Add a check box to switch between using the entered text to display the font and

using the font name to display the font, as in Figure 7.4.

140 Day 7

009 31240-9 CH07 4/27/00 11:49 AM Page 140

Working with Text and Fonts 141

7

2. Add a check box to display the font sample in italics, as in Figure 7.5.

FIGURE 7.4.
Displaying the selected
font with the font
name.

FIGURE 7.5.
Displaying the selected
font in italics.

009 31240-9 CH07 4/27/00 11:49 AM Page 141

009 31240-9 CH07 4/27/00 11:49 AM Page 142

In Review
Well, you’ve made it through the first week. By this point,
you’ve gotten a good taste for what’s possible when building
applications with Visual C++. Now it’s time to look back
over what’s been covered and what you should have learned
up to this point.

What you might want to do at this point, to cement your
understanding of how you can use these elements in your
own applications, is to try designing and building a couple of
simple applications of your own. You can use a variety of
controls and add some additional dialogs, just so you can
make sure that you do understand and are comfortable with
these topics. In fact, you might want to try out all the topics
that I’ve covered up to this point in small applications of your
own design. That’s the true test of your understanding of how
the concepts work. You might also want to dive into the MFC
documentation to learn a little about some of the more
advanced functionality that I haven’t covered to see if you
can figure out how you can use and incorporate it into your
applications.

One of the most important things that you should understand
at this point is how you can use controls and dialog windows
in your applications to get and display information to the
user. This is an important part of any Windows application
because just about every application interacts with the user in
some way. You should be able to place any of the standard
controls on a dialog in your application and be able to incor-
porate them into your application without any problem.
Likewise, you should be comfortable with using the standard
message box and dialog windows provided to your applica-
tion by the Windows operating system. You should also be

WEEK 1 1

2

3

4

5

6

7

010 31240-9 Rev 1 4/27/00 11:50 AM Page 143

144 Week 1

able to create and incorporate your own custom dialog windows into any application you
might want to build. If you don’t feel comfortable with any of these topics, you might
want to go back and review Day 2 to get a better understanding of how you can use con-
trols and Day 5 to understand how you can incorporate standard and custom dialog win-
dows into your applications.

Another key skill that you will be using in the majority of your applications is the ability
to build and incorporate menus into your applications. You need to have a firm under-
standing of how to design a good menu, how to make sure that there are no conflicting
mnemonics, and how you can attach application functionality to the menu selections. At
this point, you should be able to create your own customized menus, with entries for
each of the various functions that your application performs, and integrate it with your
application with no problems. If you aren’t 100% comfortable with this topic, you might
want to go back and study Day 6 a little more.

You will find that there are various situations in which you need to have some means of
triggering actions on a regular basis or in which you need to keep track of how long
some process has been running. For both of these situations, as well as numerous others,
you’ll often find yourself turning to the use of timers in your application. If you are even
slightly foggy on how you can integrate timers into your applications, you will definitely
want to go back and review Day 4.

Understanding how you can use text and fonts in your applications will allow you to
build more flexibility into the appearance of your applications—to give your users the
ability to customize the appearance as they want. You will be able to examine the avail-
able fonts on the computer on which your application is running and, if a font that you
want to use in your application isn’t available, choose another font that is close to use
instead. If you still have any questions on how the font infrastructure in Windows works
and how you can use it in your applications, you’ll want to go back and review Day 7
once more.

Depending on the nature of your application, being able to capture and track mouse and
keyboard actions by the user can be very important. If you are building a drawing appli-
cation, this is crucial information. If you are building an application that needs to include
drag-and-drop capabilities, this is important once again. There are any number of situa-
tions in which you’ll want to include this functionality into your applications. By this
point, you should understand how you can capture the various mouse events and deter-
mine which mouse buttons are involved in the event. You should also be able to capture
keyboard events in situations where the keyboard input isn’t captured by any controls
that are on the window. If you don’t feel like you have a complete grasp of this, you
should take another look at Day 3.

010 31240-9 Rev 1 4/27/00 11:50 AM Page 144

In Review 145

Finally, you should be familiar with the Visual C++ development environment, the
Developer Studio. You should have a good understanding of what each area of the envi-
ronment is for and how you can use the various tools and utilities in building your appli-
cations. You should be comfortable with using the workspace pane to navigate around
your application project, locating and bringing into the various editors and designers any
part of your application. You should be comfortable with locating and redesigning the
icon that will be displayed to represent your application and with finding any member
functions or variables in any of your application’s classes.

By now you should be getting fairly comfortable working with Visual C++. If you feel
like you understand all the topics that I’ve covered so far, you are ready to continue for-
ward, learning more about the various things that you can do, and functionality that you
can build, using Visual C++ as your programming tool. With that said, it’s on to the sec-
ond week…

010 31240-9 Rev 1 4/27/00 11:50 AM Page 145

010 31240-9 Rev 1 4/27/00 11:50 AM Page 146

At a Glance
In the second week, you’ll dive into several more involved
topics. These topics are still very much core to building
Windows applications. You’ll find yourself using what you
learn in this week, along with what you learned during the
first week, in just about all the applications that you build
with Visual C++.

To start the week, on Day 8, you’ll learn how to draw
graphics in a Windows application. You’ll learn how to
draw simple lines, rectangles, and ellipses. What’s more
important—you’ll learn about the device context and how
you can use it to draw your graphics without worrying
about the graphics hardware your users might or might not
have in their computers.

On Day 9, you’ll learn how easy it is to incorporate ActiveX
controls into your applications. You’ll see how Visual C++
builds custom C++ classes around the controls that you add
to your project, enabling you to interact with an added control
just as if it were another C++ object.

On Day 10, you’ll learn how to build a basic Single
Document Interface (SDI) application. You’ll learn about the
Document/View architecture that is used with Visual C++ for
building this style of application, and you’ll learn how you
can use it to build your own applications.

On Day 11, you’ll learn how you can apply what you learned
about building SDI applications to building Multiple
Document Interface (MDI) applications. You’ll see how you
can use the same Document/View architecture to create MDI
applications, some of the most common style of Windows
applications available today.

WEEK 2 8

9

10

11

12

13

14

011 31240-9 AAG Wk2 4/27/00 11:53 AM Page 147

148 Week 2

On Day 12, you’ll learn how you can create and modify your own toolbars and status
bars. You’ll learn how you can attach toolbar buttons to menus in your application and
how you can add additional toolbars. You’ll also learn how you can place your own
informational elements on the status bar at the bottom of most Windows applications and
how you can keep the status bar updated with the status of your application.

On Day 13, you’ll see how you can use the structure provided for you by the
Document/View architecture to save and restore the data created in your application.
You’ll learn how flexible this facility is and how you can store different data types in the
same file, restoring them to your application just as they were when you first saved them.

Finally, rounding out the week on Day 14, you’ll learn how easy it is to build a database
application with an ODBC database. You’ll learn how to query a set of records from the
database and how to allow the user to edit and modify them, saving the changes back to
the database.

When you finish this week, you’ll be well prepared for tackling most basic application
development tasks with Visual C++. You might want to take a short break at that point to
experiment a bit—trying to build various types of applications, pushing your skills, and
learning what your limits are (and aren’t)—before jumping into the final week of more
advanced topics.

011 31240-9 AAG Wk2 4/27/00 11:53 AM Page 148

DAY 8

WEEK 2

Adding Flash—
Incorporating Graphics,
Drawing, and Bitmaps

You’ve probably noticed that a large number of applications use graphics and
display images. This adds a certain level of flash and polish to the application.
With some applications, graphics are an integral part of their functionality.
Having a good understanding of what’s involved in adding these capabilities to
your applications is a key part of programming for the Windows platform.
You’ve already learned how you can draw lines and how you can string a series
of these lines together to make a continuous drawing. Today, you’re going to go
beyond that capacity and learn how you can add more advanced graphics capa-
bilities to your applications. Today, you will learn

• How Windows uses a device context to translate drawing instructions into
graphics output.

• How you can determine the level of control you have over the graphics
output through different mapping modes.

012 31240-9 CH08 4/27/00 11:54 AM Page 149

• How Windows uses pens and brushes to draw different portions of the graphics
image.

• How you can load and display bitmaps dynamically.

Understanding the Graphics Device Interface
The Windows operating system provides you with a couple of levels of abstraction for
creating and using graphics in your applications. During the days of DOS programming,
you needed to exercise a great deal of control over the graphics hardware to draw any
kind of images in an application. This control required an extensive knowledge and
understanding of the various types of graphics cards that users might have in their com-
puters, along with their options for monitors and resolutions. There were a few graphics
libraries that you could buy for your applications, but overall, it was fairly strenuous pro-
gramming to add this capability to your applications.

With Windows, Microsoft has made the job much easier. First, Microsoft provides you
with a virtual graphics device for all of your Windows applications. This virtual device
doesn’t change with the hardware but remains the same for all possible graphics hard-
ware that the user might have. This consistency provides you with the ability to create
whatever kind of graphics you want in your applications because you know that the task
of converting them to something that the hardware understands isn’t your problem.

Device Contexts
Before you can create any graphics, you must have the device context in which the
graphics will be displayed. The device context contains information about the system,
the application, and the window in which you are drawing any graphics. The operating
system uses the device context to learn in which context a graphic is being drawn, how
much of the area is visible, and where on the screen it is currently located.

When you draw graphics, you always draw them in the context of an application win-
dow. At any time, this window may be full view, minimized, partly hidden, or complete-
ly hidden. This status is not your concern because you draw your graphics on the win-
dow using its device context. Windows keeps track of each device context and uses it to
determine how much and what part of the graphics you draw to actually display for the
user. In essence, the device context you use to display your graphics is the visual context
of the window in which you draw them.

The device context uses two resources to perform most of its drawing and graphics func-
tions. These two resources are pens and brushes. Much like their real-world counterparts,
pens and brushes perform similar yet different tasks. The device context uses pens to

150 Day 8

012 31240-9 CH08 4/27/00 11:54 AM Page 150

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 151

8
draw lines and shapes, whereas brushes paint areas of the screen. It’s the same idea as
working on paper when you use a pen to draw an outline of an image and then pick up a
paintbrush to fill in the color between the lines.

The Device Context Class
In Visual C++, the MFC device context class (CDC) provides numerous drawing func-
tions for drawing circles, squares, lines, curves, and so on. All these functions are part of
the device context class because they all use the device context information to draw on
your application windows.

You create a device context class instance with a pointer to the window class that you
want to associate with the device context. This allows the device context class to place
all of the code associated with allocating and freeing a device context in the class con-
structor and destructors.

Device context objects, as well as all of the various drawing objects, are clas-
sified as resources in the Windows operating system. The operating system
has only a limited amount of these resources. Although the total number of
resources is large in recent versions of Windows, it is still possible to run out
of resources if an application allocates them and doesn’t free them correctly.
This loss is known as a resource leak, and much like a memory leak, it can
eventually lock up a user’s system. As a result, it’s advisable to create these
resources in the functions where they will be used and then delete them as
soon as you are finished with them.

Following this advised approach to using device contexts and their drawing
resources, you use them almost exclusively as local variables within a single
function. The only real exception is when the device context object is created
by Windows and passed into the event-processing function as an argument.

Note

The Pen Class
You have already seen how you can use the pen class, CPen, to specify the color and
width for drawing lines onscreen. CPen is the primary resource tool for drawing any kind
of line onscreen. When you create an instance of the CPen class, you can specify the line
type, color, and thickness. After you create a pen, you can select it as the current drawing
tool for the device context so that it is used for all of your drawing commands to the

012 31240-9 CH08 4/27/00 11:54 AM Page 151

device context. To create a new pen, and then select it as the current drawing pen, you
use the following code:

// Create the device context
CDC dc(this);
// Create the pen
CPen lPen(PS_SOLID, 1, RGB(0, 0, 0));
// Select the pen as the current drawing pen
dc.SelectObject(&lPen);

You can use a number of different pen styles. These pen styles all draw different patterns
when drawing lines. Figure 8.1 shows the basic styles that can be used in your applica-
tions with any color.

PS_NULL

PS_SOLID

PS_DOT

PS_DASH

PS_DASDOT

PS_DASHDOTDOT

PS_INSIDEFRAME

152 Day 8

FIGURE 8.1.
Windows pen styles.

When you use any of these line styles with a pen thickness greater than 1,
all of the lines appear as solid lines. If you want to use any line style other
than PS_SOLID, you need to use a pen width of 1.

Note

Along with the line style that the pen should draw, you also have to specify the pen’s
width and color. The combination of these three variables specifies the appearance of
the resulting lines. The line width can range from 1 on up, although when you reach a
width of 32, it’s difficult to exercise any level of precision in your drawing efforts.

You specify the color as a RGB value, which has three separate values for the brightness
of the red, green, and blue color components of the pixels on the computer screen. These
three separate values can range from 0 to 255, and the RGB function combines them into a
single value in the format needed by Windows. Some of the more common colors are
listed in Table 8.1.

012 31240-9 CH08 4/27/00 11:54 AM Page 152

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 153

8
TABLE 8.1. COMMON WINDOWS COLORS.

Color Red Green Blue

Black 0 0 0

Blue 0 0 255

Dark blue 0 0 128

Green 0 255 0

Dark green 0 128 0

Cyan 0 255 255

Dark cyan 0 128 128

Red 255 0 0

Dark red 128 0 0

Magenta 255 0 255

Dark magenta 128 0 128

Yellow 255 255 0

Dark yellow 128 128 0

Dark gray 128 128 128

Light gray 192 192 192

White 255 255 255

The Brush Class
The brush class, CBrush, allows you to create brushes that define how areas will be filled
in. When you draw shapes that enclose an area and fill in the enclosed area, the outline is
drawn with the current pen, and the interior of the area is filled by the current brush.
Brushes can be solid colors (specified using the same RGB values as with the pens), a
pattern of lines, or even a repeated pattern created from a small bitmap. If you want to
create a solid-color brush, you need to specify the color to use:

CBrush lSolidBrush(RGB(255, 0, 0));

To create a pattern brush, you need to specify not only the color but also the pattern
to use:

CBrush lPatternBrush(HS_BDIAGONAL, RGB(0, 0, 255));

After you create a brush, you can select it with the device context object, just like you do
with pens. When you select a brush, it is used as the current brush whenever you draw
something that uses a brush.

012 31240-9 CH08 4/27/00 11:54 AM Page 153

As with pens, you can select a number of standard patterns when creating a brush, as
shown in Figure 8.2. In addition to these patterns, an additional style of brush, HS_BITMAP,
uses a bitmap as the pattern for filling the specified area. This bitmap is limited in size to
8 pixels by 8 pixels, which is a smaller bitmap than normally used for toolbars and other
small images. If you supply it with a larger bitmap, it takes only the upper-left corner,
limiting it to an 8-by-8 square. You can create a bitmap brush by creating a bitmap
resource for your application and assigning it an object ID. After you do this, you can
create a brush with it by using the following code:

CBitmap m_bmpBitmap;

// Load the image
m_bmpBitmap.LoadBitmap(IDB_MYBITMAP);
// Create the brush
CBrush lBitmapBrush(&m_bmpBitmap);

HS_SOLID

HS_BDIAGONAL

HS_CROSS

HS_DIAGCROSS

HS_FDIAGONAL

HS_HORIZONTAL

HS_VERTICAL

154 Day 8

FIGURE 8.2.
Standard brush
patterns.

If you want to create your own custom pattern for use as a brush, you can
create the pattern as an 8-by-8 bitmap and use the bitmap brush. This
allows you to extend the number of brush patterns far beyond the limited
number of standard patterns.

Tip

The Bitmap Class
When you want to display images in your applications, you have a couple of options.
You can add fixed bitmaps to your application, as resources with object IDs assigned to

012 31240-9 CH08 4/27/00 11:54 AM Page 154

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 155

8
them and use static picture controls or an ActiveX control that displays images. You can
also use the bitmap class, CBitmap, to exercise complete control over the image display.
If you use the bitmap class, you can dynamically load bitmap images from files on the
system disk, resizing the images as necessary to make them fit in the space you’ve
allotted.

If you add the bitmap as a resource, you can create an instance of the CBitmap class
using the resource ID of the bitmap as the image to be loaded. If you want to load a
bitmap from a file, you can use the LoadImage API call to load the bitmap from the file.
After you load the bitmap, you can use the handle for the image to attach the image to
the CBitmap class, as follows:

// Load the bitmap file
HBITMAP hBitmap = (HBITMAP)::LoadImage(AfxGetInstanceHandle(),

m_sFileName, IMAGE_BITMAP, 0, 0,
LR_LOADFROMFILE | LR_CREATEDIBSECTION);

// Attach the loaded image to the CBitmap object.
m_bmpBitmap.Attach(hBitmap);

After you load the bitmap into the CBitmap object, you can create a second device con-
text and select the bitmap into it. When you’ve created the second device context, you
need to make it compatible with the primary device context before the bitmap is selected
into it. Because device contexts are created by the operating system for a specific output
device (screen, printer, and so on), you have to make sure that the second device context
is also attached to the same output device as the first.

// Create a device context
CDC dcMem;
// Make the new device context compatible with the real DC
dcMem.CreateCompatibleDC(dc);
// Select the bitmap into the new DC
dcMem.SelectObject(&m_bmpBitmap);

When you select the bitmap into a compatible device context, you can copy the bitmap
into the regular display device context using the BitBlt function:

// Copy the bitmap to the display DC
dc->BitBlt(10, 10, bm.bmWidth,

bm.bmHeight, &dcMem, 0, 0,
SRCCOPY);

You can also copy and resize the image using the StretchBlt function:

// Resize the bitmap while copying it to the display DC
dc->StretchBlt(10, 10, (lRect.Width() - 20),

(lRect.Height() - 20), &dcMem, 0, 0,
bm.bmWidth, bm.bmHeight, SRCCOPY);

012 31240-9 CH08 4/27/00 11:54 AM Page 155

By using the StretchBlt function, you can resize the bitmap so that it will fit in any
area on the screen.

Mapping Modes and Coordinate Systems
When you are preparing to draw some graphics on a window, you can exercise a lot of
control over the scale you are using and the area in which you can draw. You can control
these factors by specifying the mapping mode and the drawing area.

By specifying the mapping mode, you can control how the coordinates that you specify
are translated into locations on the screen. The different mapping modes translate each
point into a different distance. You can set the mapping mode by using the SetMapMode
device context function:

dc->SetMapMode(MM_ANSIOTROPIC);

The available mapping modes are listed in Table 8.2.

TABLE 8.2. MAPPING MODES.

Mode Description

MM_ANSIOTROPIC Logical units are converted into arbitrary units with arbitrary axes.

MM_HIENGLISH Each logical unit is converted into 0.001 inch. Positive x is to the
right, and positive y is up.

MM_HIMETRIC Each logical unit is converted into 0.01 millimeter. Positive x is to
the right, and positive y is up.

MM_ISOTROPIC Logical units are converted into arbitrary units with equally scaled
axes.

MM_LOENGLISH Each logical unit is converted into 0.01 inch. Positive x is to the
right, and positive y is up.

MM_LOMETRIC Each logical unit is converted into 0.1 millimeter. Positive x is to the
right, and positive y is up.

MM_TEXT Each logical unit is converted into 1 pixel. Positive x is to the right,
and positive y is down.

MM_TWIPS Each logical unit is converted into 1/20 of a point (approximately
1/1440 inch). Positive x is to the right, and positive y is up.

If you use either the MM_ANSIOTROPIC or MM_ISOTROPIC mapping modes, you can use
either the SetWindowExt or SetViewportExt functions to specify the drawing area where
your graphics should appear.

156 Day 8

012 31240-9 CH08 4/27/00 11:54 AM Page 156

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 157

8
Creating a Graphics Application

To get a good understanding of how you can put all of this information to use, you’ll
build an application that incorporates a lot of what I’ve covered so far today. This appli-
cation will have two independent windows, one with a number of options to choose for
the shape, tool, and color to be displayed. The other window will act as a canvas, where
all of the selected options will be drawn. The user can select whether to display lines,
squares, circles, or a bitmap on the second window. The user can also specify the color
and choose whether to display the pen or brush for the circles and squares.

Generating the Application Shell
As you have learned by now, the first step in building an application is generating the
initial application shell. This shell provides the basic application functionality, displaying
your first application dialog, along with all startup and shutdown functionality.

For the application that you will build today, you need to start with a standard dialog-
style application shell. You can create this for your application by starting a new
AppWizard project, providing a suitable project name, such as Graphics. After you are
in the AppWizard, specify that you are creating a dialog-style application. At this point,
you can accept all of the default settings, although you won’t need ActiveX support, and
you can specify a more descriptive window title if you want.

Designing the Main Dialog
After you make your way through the AppWizard, you’re ready to start designing your
primary dialog. This window will contain three groups of radio buttons: one group for
specifying the drawing tool, the next to specify the drawing shape, and the third to spec-
ify the color. Along with these groups of radio buttons, you’ll have two buttons on the
window: one to open a File Open dialog, for selecting a bitmap to be displayed, and the
other to close the application.

To add all these controls to your dialog, lay them out as shown in Figure 8.3 and specify
the control properties listed in Table 8.3.

012 31240-9 CH08 4/27/00 11:54 AM Page 157

TABLE 8.3. CONTROL PROPERTY SETTINGS.

Object Property Setting

Group Box ID IDC_STATIC

Caption Drawing Tool

Radio Button ID IDC_RTPEN

Caption &Pen

Group Checked

Radio Button ID IDC_RTBRUSH

Caption &Brush

Radio Button ID IDC_RTBITMAP

Caption B&itmap

Group Box ID IDC_STATIC

Caption Drawing Shape

Radio Button ID IDC_RSLINE

Caption &Line

Group Checked

Radio Button ID IDC_RSCIRCLE

Caption &Circle

158 Day 8

FIGURE 8.3.
The main dialog
layout.

012 31240-9 CH08 4/27/00 11:54 AM Page 158

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 159

8
Object Property Setting

Radio Button ID IDC_RSSQUARE

Caption &Square

Group Box ID IDC_STATIC

Caption Color

Radio Button ID IDC_RCBLACK

Caption Bl&ack

Group Checked

Radio Button ID IDC_RCBLUE

Caption Bl&ue

Radio Button ID IDC_RCGREEN

Caption &Green

Radio Button ID IDC_RCCYAN

Caption Cya&n

Radio Button ID IDC_RCRED

Caption &Red

Radio Button ID IDC_RCMAGENTA

Caption &Magenta

Radio Button ID IDC_RCYELLOW

Caption &Yellow

Radio Button ID IDC_RCWHITE

Caption &White

Command Button ID IDC_BBITMAP

Caption Bi&tmap

Command Button ID IDC_BEXIT

Caption E&xit

When you finish designing your main dialog, you need to assign one variable to each of
the groups of radio buttons. To do this, open the Class Wizard and assign one integer
variable to each of the three radio button object IDs there. Remember that only the object
IDs for the radio buttons with the Group option checked will appear in the Class Wizard.
All of the radio buttons that follow will be assigned to the same variable, with sequential
values, in the order of the object ID values. For this reason, it is important to create all of
the radio buttons in each group in the order that you want their values to be sequenced.

012 31240-9 CH08 4/27/00 11:54 AM Page 159

To assign the necessary variables to the radio button groups in your application, open the
Class Wizard and add the variables in Table 8.4 to the objects in your dialog.

TABLE 8.4. CONTROL VARIABLES.

Object Name Category Type

IDC_RTPEN m_iTool Value int

IDC_RSLINE m_iShape Value int

IDC_RCBLACK m_iColor Value int

While you have the Class Wizard open, you might want to switch back to the first tab
and add an event-handler function to the Exit button, calling the OnOK function in the
code for this button. You can compile and run your application now, making sure that
you have all of the radio button groups defined correctly, that you can’t select two or
more buttons in any one group, and that you can select one button in each group without
affecting either of the other two groups.

Adding the Second Dialog
When you design the main dialog, you’ll add the second window that you’ll use as a
canvas to paint your graphics on. This dialog will be a modeless dialog, which will
remain open the entire time the application is running. You will put no controls on the
dialog, providing a clean canvas for drawing.

To create this second dialog, go to the Resources tab in the workspace pane. Right-click
the Dialogs folder in the resource tree. Select Insert Dialog from the pop-up menu. When
the new dialog is open in the window designer, remove all of the controls from the win-
dow. After you remove all of the controls, open the properties dialog for the window and
uncheck the System Menu option on the second tab of properties. This will prevent the
user from closing this dialog without exiting the application. You’ll also want to give this
dialog window an object ID that will describe its function, such as IDD_PAINT_DLG.

After you finish designing the second dialog, create a new class for this window by
opening the Class Wizard. When you try to open the Class Wizard, you’ll be asked if you
want to create a new class for the second dialog window. Leave this option at its default
setting and click the OK button. When asked to specify the name of the new class on the
next dialog, give the class a suitable name, such as CPaintDlg, and be sure that the base
class is set to CDialog. After you click OK on this dialog and create the new class, you
can close the Class Wizard.

160 Day 8

012 31240-9 CH08 4/27/00 11:54 AM Page 160

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 161

8You need to make sure that the new dialog is selected when you try to open
the Class Wizard. If the dialog is not selected, and you’ve switched to another
object, or even some code in your application, the Class Wizard will not
know that you need a class for the second dialog in your application.

Note

Now that you have the second dialog defined, you need to add the code in the first dia-
log window to open the second dialog. You can accomplish this by adding two lines of
code to the OnInitDialog function in the first window’s class. First, create the dialog
using the Create method of the CDialog class. This function takes two arguments: the
object ID of the dialog and a pointer to the parent window, which will be the main dia-
log. The second function will be the ShowWindow function, passing the value SW_SHOW as
the only argument. This function displays the second dialog next to the first dialog. Add
a couple of lines of variable initialization to make your OnInitDialog function resemble
Listing 8.1.

LISTING 8.1. THE OnInitDialog FUNCTION.

1: BOOL CGraphicsDlg::OnInitDialog()
2: {
3: CDialog::OnInitDialog();
4:
.
.
.
27:
28: // TODO: Add extra initialization here
29:
30: ///////////////////////
31: // MY CODE STARTS HERE
32: ///////////////////////
33:
34: // Initialize the variables and update the dialog window
35: m_iColor = 0;
36: m_iShape = 0;
37: m_iTool = 0;
38: UpdateData(FALSE);
39:
40: // Create the second dialog window
41: m_dlgPaint.Create(IDD_PAINT_DLG, this);
42: // Show the second dialog window
43: m_dlgPaint.ShowWindow(SW_SHOW);

continues

012 31240-9 CH08 4/27/00 11:54 AM Page 161

LISTING 8.1. CONTINUED

44:
45: ///////////////////////
46: // MY CODE ENDS HERE
47: ///////////////////////
48:
49: return TRUE; // return TRUE unless you set the focus to a control
50: }

Before you can compile and run your application, you’ll need to include the header for
the second dialog class in the source code for the first dialog. You’ll also need to add the
second dialog class as a variable to the first—which is a simple matter of adding a mem-
ber variable to the first dialog class, specifying the variable type as the class type, in this
case CPaintDlg, giving the variable the name that you used in Listing 8.1, m_dlgPaint,
and specifying the variable access as private. To include the header file in the first dia-
log, scroll to the top of the source code for the first dialog and add an include statement,
as in Listing 8.2.

LISTING 8.2. THE INCLUDE STATEMENT OF THE MAIN DIALOG.

1: // GraphicsDlg.cpp : implementation file
2: //
3:
4: #include “stdafx.h”
5: #include “Graphics.h”
6: #include “PaintDlg.h”
7: #include “GraphicsDlg.h”
8:

Conversely, you’ll need to include the header file for the main dialog in the source code
for the second dialog. You can edit this file, PaintDlg.cpp, making the include statements
match those in Listing 8.2.

If you compile and run your application, you should see your second dialog window
open along with the first window. What you’ll also noticed is that when you close the
first dialog, and thus close the application, the second dialog window also closes, even
though you didn’t add any code to make this happen. The second dialog is a child win-
dow to the first dialog. When you created the second dialog, on line 41 of the code list-
ing, you passed a pointer to the first dialog window as the parent window for the second
window. This set up a parent-child relationship between these two windows. When the

162 Day 8

012 31240-9 CH08 4/27/00 11:54 AM Page 162

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 163

8
parent closes, so does the child. This is the same relationship the first dialog window has
with all of the controls you placed on it. Each of those controls is a child window of the
dialog. In a sense, what you’ve done is make the second dialog just another control on
the first dialog.

Adding the Graphics Capabilities
Because all of the radio button variables are declared as public, the second dialog will be
able to see and reference them as it needs to. You can place all of the graphic drawing
functionality into the second dialog class. However, you do need to place some function-
ality into the first dialog to keep the variables synchronized and to tell the second dialog
to draw its graphics. Accomplishing this is simpler than you might think.

Whenever a window needs to be redrawn (it may have been hidden behind another
window and come to the front or minimized or off the visible screen and now in view),
the operating system triggers the dialog’s OnPaint function. You can place all the func-
tionality for drawing your graphics in this function and make persistent the graphics you
display.

Now that you know where to place your code to display the graphics, how can you cause
the second dialog to call its OnPaint function whenever the user changes one of the
selections on the first dialog? Well, you could hide and then show the second dialog, but
that might look a little peculiar to the user. Actually, a single function will convince the
second window that it needs to redraw its entire dialog. This function, Invalidate,
requires no arguments and is a member function of the CWnd class, so it can be used on
any window or control. The Invalidate function tells the window, and the operating
system, that the display area of the window is no longer valid and that it needs to be
redrawn. You can trigger the OnPaint function in the second dialog at will, without
resorting to any awkward tricks or hacks.

At this point, we have determined that all of the radio buttons can use the same function-
ality on their clicked events. You can set up a single event-handler function for the clicked
event on all of the radio button controls. In this event function, you’ll need to synchronize
the class variables with the dialog controls by calling the UpdateData function and then
tell the second dialog to redraw itself by calling its Invalidate function. You can write a
single event handler that does these two things with the code in Listing 8.3.

012 31240-9 CH08 4/27/00 11:54 AM Page 163

LISTING 8.3. THE OnRSelection FUNCTION.

1: void CGraphicsDlg::OnRSelection()
2: {
3: // TODO: Add your control notification handler code here
4:
5: // Synchronize the data
6: UpdateData(TRUE);
7: // Repaint the second dialog
8: m_dlgPaint.Invalidate();
9: }

Drawing Lines
You can compile and run your application at this point, and the second dialog redraws
itself whenever you choose a different radio button on the main dialog, but you wouldn’t
notice anything happening. At this point, you are triggering the redraws, but you haven’t
told the second dialog what to draw, which is the next step in building this application.

The easiest graphics to draw on the second dialog will be different styles of lines because
you already have some experience drawing them. What you’ll want to do is create one
pen for each of the different pen styles, using the currently selected color. After you have
created all of the pens, you’ll loop through the different pens, selecting each one in turn
and drawing a line across the dialog with each one. Before you start this loop, you need
to perform a few calculations to determine where each of the lines should be on the dia-
log, with their starting and stopping points.

To begin adding this functionality to your application, you first add a color table, with
one entry for each of the colors in the group of available colors on the first dialog. To
create this color table, add a new member variable to the second dialog class, CPaintDlg,
and specify the variable type as static const COLORREF, the name as m_crColors[8],
and the access as public. Open the source code file for the second dialog class, and add
the color table in Listing 8.4 near the top of the file before the class constructor and
destructor.

LISTING 8.4. THE COLOR TABLE.

1: const COLORREF CPaintDlg::m_crColors[8] = {
2: RGB(0, 0, 0), // Black
3: RGB(0, 0, 255), // Blue
4: RGB(0, 255, 0), // Green
5: RGB(0, 255, 255), // Cyan
6: RGB(255, 0, 0), // Red
7: RGB(255, 0, 255), // Magenta

164 Day 8

012 31240-9 CH08 4/27/00 11:54 AM Page 164

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 165

8
8: RGB(255, 255, 0), // Yellow
9: RGB(255, 255, 255) // White
10: };
11: ///
12: // CPaintDlg dialog
.
.
.

With the color table in place, you can add a new function for drawing the lines. To keep
the OnPaint function from getting too cluttered and difficult to understand, it makes
more sense to place a limited amount of code in it to determine what should be drawn
on the second dialog and then call other more specialized functions to draw the various
shapes. With this in mind, you need to create a new member function for the second dia-
log class for drawing the lines. Declare this as a void function, and specify its declaration
as DrawLine(CPaintDC *pdc, int iColor) and its access as private. You can edit this
function, adding the code in Listing 8.5.

LISTING 8.5. THE DrawLine FUNCTION.

1: void CPaintDlg::DrawLine(CPaintDC *pdc, int iColor)
2: {
3: // Declare and create the pens
4: CPen lSolidPen (PS_SOLID, 1, m_crColors[iColor]);
5: CPen lDotPen (PS_DOT, 1, m_crColors[iColor]);
6: CPen lDashPen (PS_DASH, 1, m_crColors[iColor]);
7: CPen lDashDotPen (PS_DASHDOT, 1, m_crColors[iColor]);
8: CPen lDashDotDotPen (PS_DASHDOTDOT, 1, m_crColors[iColor]);
9: CPen lNullPen (PS_NULL, 1, m_crColors[iColor]);
10: CPen lInsidePen (PS_INSIDEFRAME, 1, m_crColors[iColor]);
11:
12: // Get the drawing area
13: CRect lRect;
14: GetClientRect(lRect);
15: lRect.NormalizeRect();
16:
17: // Calculate the distance between each of the lines
18: CPoint pStart;
19: CPoint pEnd;
20: int liDist = lRect.Height() / 8;
21: CPen *lOldPen;
22: // Specify the starting points
23: pStart.y = lRect.top;
24: pStart.x = lRect.left;

continues

012 31240-9 CH08 4/27/00 11:54 AM Page 165

LISTING 8.5. CONTINUED

25: pEnd.y = pStart.y;
26: pEnd.x = lRect.right;
27: int i;
28: // Loop through the different pens
29: for (i = 0; i < 7; i++)
30: {
31: // Which pen are we on?
32: switch (i)
33: {
34: case 0: // Solid
35: lOldPen = pdc->SelectObject(&lSolidPen);
36: break;
37: case 1: // Dot
38: pdc->SelectObject(&lDotPen);
39: break;
40: case 2: // Dash
41: pdc->SelectObject(&lDashPen);
42: break;
43: case 3: // Dash Dot
44: pdc->SelectObject(&lDashDotPen);
45: break;
46: case 4: // Dash Dot Dot
47: pdc->SelectObject(&lDashDotDotPen);
48: break;
49: case 5: // Null
50: pdc->SelectObject(&lNullPen);
51: break;
52: case 6: // Inside
53: pdc->SelectObject(&lInsidePen);
54: break;
55: }
56: // Move down to the next position
57: pStart.y = pStart.y + liDist;
58: pEnd.y = pStart.y;
59: // Draw the line
60: pdc->MoveTo(pStart);
61: pdc->LineTo(pEnd);
62: }
63: // Select the original pen
64: pdc->SelectObject(lOldPen);
65: }

Now you need to edit the OnPaint function so that the OnLine function is called when it
needs to be called. Add this function through the Class Wizard as an event-handler func-
tion for the WM_PAINT message. You’ll notice that the generated code for this function
creates a CPaintDC variable instead of the normal CDC class. The CPaintDC class is a

166 Day 8

012 31240-9 CH08 4/27/00 11:54 AM Page 166

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 167

8
descendent of the CDC device context class. It automatically calls the BeginPaint and
EndPaint API functions that all Windows applications must call before drawing any
graphics during the WM_PAINT event message processing. It can be treated just like a reg-
ular device context object, calling all of the same functions.

When you are in the OnPaint function, you need to get a pointer to the parent window so
that you can check the values of the variables tied to the groups of radio buttons to deter-
mine the color, tools, and shape to be drawn on the second dialog. This information tells
you whether to call the DrawLine function or another function that you haven’t written
yet.

To add this functionality to your application, add an event handler for the WM_PAINT mes-
sage on the second dialog class, adding the code in Listing 8.6 to the function created in
your class.

LISTING 8.6. THE OnPaint FUNCTION.

1: void CPaintDlg::OnPaint()
2: {
3: CPaintDC dc(this); // device context for painting
4:
5: // TODO: Add your message handler code here
6:
7: // Get a pointer to the parent window
8: CGraphicsDlg *pWnd = (CGraphicsDlg*)GetParent();
9: // Do we have a valid pointer?
10: if (pWnd)
11: {
12: // Is the tool a bitmap?
13: if (pWnd->m_iTool == 2)
14: {
15: }
16: else // No, we’re drawing a shape
17: {
18: // Are we drawing a line?
19: if (pWnd->m_iShape == 0)
20: DrawLine(&dc, pWnd->m_iColor);
21: }
22: }
23: // Do not call CDialog::OnPaint() for painting messages
24:}

At this point, if you compile and run your application, you should be able to draw lines
across the second dialog, as shown in Figure 8.4.

012 31240-9 CH08 4/27/00 11:54 AM Page 167

Drawing Circles and Squares
Now that you have the basic structure in place, and you can see how you can change
what is drawn on the second dialog at will, you are ready to add code to the second dia-
log to draw the circles and squares. To draw these figures, you use the Ellipse and
Rectangle device context functions. These functions will use the currently selected pen
and brush to draw these figures at the specified location. With both functions, you pass a
CRect object to specify the rectangle in which to draw the specified figure. The
Rectangle function fills the entire space specified, and the Ellipse function draws a cir-
cle or ellipse where the middle of each side of the rectangle touches the edge of the
ellipse. Because these functions use both the pen and brush, you’ll need to create and
select an invisible pen and invisible brush to allow the user to choose either the pen or
the brush. For the pen, you can use the null pen for this purpose, but for the brush, you’ll
need to create a solid brush the color of the window background (light gray).

When you calculate the position for each of these figures, you need to take a different
approach from what you used with the lines. With the lines, you were able to get the
height of the window, divide it by 8, and then draw a line at each of the divisions from
the left edge to the right edge. With the ellipses and rectangles, you’ll need to divide the
dialog window into eight even rectangles. The easiest way to do this is to create two
rows of figures with four figures in each row. Leave a little space between each figure so
that the user can see the different pens used to outline each figure.

To add this functionality to your application, add a new function to the second dialog
class. Specify the function type as void, the declaration as DrawRegion(CPaintDC *pdc,
int iColor, int iTool, int iShape), and the access as private. Edit the code in this
function, adding the code in Listing 8.7.

168 Day 8

FIGURE 8.4.
Drawing lines on the
second dialog.

012 31240-9 CH08 4/27/00 11:54 AM Page 168

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 169

8
LISTING 8.7. THE DrawRegion FUNCTION.

1: void CPaintDlg::DrawRegion(CPaintDC *pdc, int iColor, int iTool, int
➥ iShape)

2: {
3: // Declare and create the pens
4: CPen lSolidPen (PS_SOLID, 1, m_crColors[iColor]);
5: CPen lDotPen (PS_DOT, 1, m_crColors[iColor]);
6: CPen lDashPen (PS_DASH, 1, m_crColors[iColor]);
7: CPen lDashDotPen (PS_DASHDOT, 1, m_crColors[iColor]);
8: CPen lDashDotDotPen (PS_DASHDOTDOT, 1, m_crColors[iColor]);
9: CPen lNullPen (PS_NULL, 1, m_crColors[iColor]);
10: CPen lInsidePen (PS_INSIDEFRAME, 1, m_crColors[iColor]);
11:
12: // Declare and create the brushes
13: CBrush lSolidBrush(m_crColors[iColor]);
14: CBrush lBDiagBrush(HS_BDIAGONAL, m_crColors[iColor]);
15: CBrush lCrossBrush(HS_CROSS, m_crColors[iColor]);
16: CBrush lDiagCrossBrush(HS_DIAGCROSS, m_crColors[iColor]);
17: CBrush lFDiagBrush(HS_FDIAGONAL, m_crColors[iColor]);
18: CBrush lHorizBrush(HS_HORIZONTAL, m_crColors[iColor]);
19: CBrush lVertBrush(HS_VERTICAL, m_crColors[iColor]);
20: CBrush lNullBrush(RGB(192, 192, 192));
21:
22: // Calculate the size of the drawing regions
23: CRect lRect;
24: GetClientRect(lRect);
25: lRect.NormalizeRect();
26: int liVert = lRect.Height() / 2;
27: int liHeight = liVert - 10;
28: int liHorz = lRect.Width() / 4;
29: int liWidth = liHorz - 10;
30: CRect lDrawRect;
31: CPen *lOldPen;
32: CBrush *lOldBrush;
33: int i;
34: // Loop through all of the brushes and pens
35: for (i = 0; i < 7; i++)
36: {
37: switch (i)
38: {
39: case 0: // Solid
40: // Determine the location for this figure.
41: // Start the first row
42: lDrawRect.top = lRect.top + 5;
43: lDrawRect.left = lRect.left + 5;
44: lDrawRect.bottom = lDrawRect.top + liHeight;
45: lDrawRect.right = lDrawRect.left + liWidth;
46: // Select the appropriate pen and brush

continues

012 31240-9 CH08 4/27/00 11:54 AM Page 169

LISTING 8.7. CONTINUED

47: lOldPen = pdc->SelectObject(&lSolidPen);
48: lOldBrush = pdc->SelectObject(&lSolidBrush);
49: break;
50: case 1: // Dot - Back Diagonal
51: // Determine the location for this figure.
52: lDrawRect.left = lDrawRect.left + liHorz;
53: lDrawRect.right = lDrawRect.left + liWidth;
54: // Select the appropriate pen and brush
55: pdc->SelectObject(&lDotPen);
56: pdc->SelectObject(&lBDiagBrush);
57: break;
58: case 2: // Dash - Cross Brush
59: // Determine the location for this figure.
60: lDrawRect.left = lDrawRect.left + liHorz;
61: lDrawRect.right = lDrawRect.left + liWidth;
62: // Select the appropriate pen and brush
63: pdc->SelectObject(&lDashPen);
64: pdc->SelectObject(&lCrossBrush);
65: break;
66: case 3: // Dash Dot - Diagonal Cross
67: // Determine the location for this figure.
68: lDrawRect.left = lDrawRect.left + liHorz;
69: lDrawRect.right = lDrawRect.left + liWidth;
70: // Select the appropriate pen and brush
71: pdc->SelectObject(&lDashDotPen);
72: pdc->SelectObject(&lDiagCrossBrush);
73: break;
74: case 4: // Dash Dot Dot - Forward Diagonal
75: // Determine the location for this figure.
76: // Start the second row
77: lDrawRect.top = lDrawRect.top + liVert;
78: lDrawRect.left = lRect.left + 5;
79: lDrawRect.bottom = lDrawRect.top + liHeight;
80: lDrawRect.right = lDrawRect.left + liWidth;
81: // Select the appropriate pen and brush
82: pdc->SelectObject(&lDashDotDotPen);
83: pdc->SelectObject(&lFDiagBrush);
84: break;
85: case 5: // Null - Horizontal
86: // Determine the location for this figure.
87: lDrawRect.left = lDrawRect.left + liHorz;
88: lDrawRect.right = lDrawRect.left + liWidth;
89: // Select the appropriate pen and brush
90: pdc->SelectObject(&lNullPen);
91: pdc->SelectObject(&lHorizBrush);
92: break;
93: case 6: // Inside - Vertical
94: // Determine the location for this figure.

170 Day 8

012 31240-9 CH08 4/27/00 11:54 AM Page 170

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 171

8
95: lDrawRect.left = lDrawRect.left + liHorz;
96: lDrawRect.right = lDrawRect.left + liWidth;
97: // Select the appropriate pen and brush
98: pdc->SelectObject(&lInsidePen);
99: pdc->SelectObject(&lVertBrush);
100: break;
101: }
102: // Which tool are we using?
103: if (iTool == 0)
104: pdc->SelectObject(lNullBrush);
105: else
106: pdc->SelectObject(lNullPen);
107: // Which shape are we drawing?
108: if (iShape == 1)
109: pdc->Ellipse(lDrawRect);
110: else
111: pdc->Rectangle(lDrawRect);
112: }
113: // Reset the original brush and pen
114: pdc->SelectObject(lOldBrush);
115: pdc->SelectObject(lOldPen);
116:}

Now that you have the capability to draw the circles and squares in the second dialog,
you’ll need to call this function when the user has selected either of these two figures
with either a pen or a brush. To do this, add the two lines starting at line 21 in Listing 8.8
to the OnPaint function.

LISTING 8.8. THE MODIFIED OnPaint FUNCTION.

1: void CPaintDlg::OnPaint()
2: {
3: CPaintDC dc(this); // device context for painting
4:
5: // TODO: Add your message handler code here
6:
7: // Get a pointer to the parent window
8: CGraphicsDlg *pWnd = (CGraphicsDlg*)GetParent();
9: // Do we have a valid pointer?
10: if (pWnd)
11: {
12: // Is the tool a bitmap?
13: if (pWnd->m_iTool == 2)
14: {
15: }
16: else // No, we’re drawing a shape

continues

012 31240-9 CH08 4/27/00 11:54 AM Page 171

LISTING 8.8. CONTINUED

17: {
18: // Are we drawing a line?
19: if (m_iShape == 0)
20: DrawLine(&dc, pWnd->m_iColor);
21: else // We’re drawing a ellipse or rectangle
22: DrawRegion(&dc, pWnd->m_iColor, pWnd->m_iTool,

➥ pWnd->m_iShape);
23: }
24: }
25: // Do not call CDialog::OnPaint() for painting messages
26:}

Now you should be able to compile and run your application and display not only lines,
but also squares and circles, switching between displaying the outlines and the filled-in
figure without any outline, as shown in Figure 8.5.

Loading Bitmaps
Now that you can draw various graphic images on the second dialog window, all that’s
left is to add the functionality to load and display bitmaps. You could easily add the
bitmaps to the resources in the application, give them their own object IDs, and then use
the LoadBitmap and MAKEINTRESOURCE functions to load the bitmap into a CBitmap class
object, but that isn’t extremely useful when you start building your own applications.
What would be really useful is the ability to load bitmaps from files on the computer
disk. To provide this functionality, you use the LoadImage API function to load the
bitmap images into memory and then attach the loaded image to the CBitmap object.

To do this in your application, you can attach a function to the bitmap button on the first
dialog that displays the File Open dialog to the user, allowing the user to select a bitmap
to be displayed. You’ll want to build a filter for the dialog, limiting the available files to

172 Day 8

FIGURE 8.5.
Drawing rectangles on
the second dialog.

012 31240-9 CH08 4/27/00 11:54 AM Page 172

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 173

8
bitmaps that can be displayed in the second dialog. After the user selects a bitmap, you’ll
get the file and path name from the dialog and load the bitmap using the LoadImage
function. When you have a valid handle to the bitmap that was loaded into memory,
you’ll delete the current bitmap image from the CBitmap object. If there was a bitmap
loaded into the CBitmap object, you’ll detach the CBitmap object from the now deleted
image. After you make sure that there isn’t already an image loaded in the CBitmap
object, you attach the image you just loaded into memory, using the Attach function. At
this point, you want to invalidate the second dialog so that if it’s displaying a bitmap, it
displays the newly loaded bitmap.

To support this functionality, you need to add a string variable to hold the bitmap name,
and a CBitmap variable to hold the bitmap image, to the first dialog class. Add these two
variables as listed in Table 8.5.

TABLE 8.5. BITMAP VARIABLES.

Name Type Access

m_sBitmap CString Public

m_bmpBitmap CBitmap Public

After you add the variables to the first dialog class, add an event-handler function to the
clicked event of the Bitmap button using the Class Wizard. After you add this function,
edit it, adding the code in Listing 8.9.

LISTING 8.9. THE OnBbitmap FUNCTION.

1: void CGraphicsDlg::OnBbitmap()
2: {
3: // TODO: Add your control notification handler code here
4:
5: // Build a filter for use in the File Open dialog
6: static char BASED_CODE szFilter[] = “Bitmap Files (*.bmp)|*.bmp||”;
7: // Create the File Open dialog
8: CFileDialog m_ldFile(TRUE, “.bmp”, m_sBitmap,
9: OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT, szFilter);
10:
11: // Show the File Open dialog and capture the result
12: if (m_ldFile.DoModal() == IDOK)
13: {
14: // Get the filename selected
15: m_sBitmap = m_ldFile.GetPathName();
16: // Load the selected bitmap file

continues

012 31240-9 CH08 4/27/00 11:54 AM Page 173

LISTING 8.9. CONTINUED

17: HBITMAP hBitmap = (HBITMAP) ::LoadImage(AfxGetInstanceHandle(),
18: m_sBitmap, IMAGE_BITMAP, 0, 0,
19: LR_LOADFROMFILE | LR_CREATEDIBSECTION);
20:
21: // Do we have a valid handle for the loaded image?
22: if (hBitmap)
23: {
24: // Delete the current bitmap
25: if (m_bmpBitmap.DeleteObject())
26: // If there was a bitmap, detach it
27: m_bmpBitmap.Detach();
28: // Attach the currently loaded bitmap to the bitmap object
29: m_bmpBitmap.Attach(hBitmap);
30: }
31: // Invalidate the second dialog window
32: m_dlgPaint.Invalidate();
33: }
34: }

Displaying Bitmaps
Now that you can load bitmaps into memory, you need to display them for the user. You
need to copy the bitmap from the CBitmap object to a BITMAP structure, using the
GetBitmap function, which will get the width and height of the bitmap image. Next,
you’ll create a new device context that is compatible with the screen device context.
You’ll select the bitmap into the new device context and then copy it from this second
device context to the original device context, resizing it as it’s copied, using the
StretchBlt function.

To add this functionality to your application, add a new member function to the second
dialog class. Specify the function type as void, the function declaration as
ShowBitmap(CPaintDC *pdc, CWnd *pWnd), and the function access as private. Edit
the function, adding the code in Listing 8.10.

174 Day 8

Notice that you have declared the window pointer being passed in as a
pointer to a CWnd object, instead of the class type of your main dialog. To
declare it as a pointer to the class type of the first dialog, you’d need to
declare the class for the first dialog before the class declaration for the sec-
ond dialog. Meanwhile, the first dialog requires that the second dialog class
be declared first. This affects the order in which the include files are added
to the source code at the top of each file. You cannot have both classes

Note

012 31240-9 CH08 4/27/00 11:54 AM Page 174

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 175

8declared before the other; one has to be first. Although there are ways to
get around this problem, by declaring a place holder for the second class
before the declaration of the first class, it’s easier to cast the pointer as a
pointer to the first dialog class in the function in this instance. To learn how
to declare a place holder for the second class, see Appendix A, “C++
Review.”

LISTING 8.10. THE ShowBitmap FUNCTION.

1: void CPaintDlg::ShowBitmap(CPaintDC *pdc, CWnd *pWnd)
2: {
3: // Convert the pointer to a pointer to the main dialog class
4: CGraphicsDlg *lpWnd = (CGraphicsDlg*)pWnd;
5: BITMAP bm;
6: // Get the loaded bitmap
7: lpWnd->m_bmpBitmap.GetBitmap(&bm);
8: CDC dcMem;
9: // Create a device context to load the bitmap into
10: dcMem.CreateCompatibleDC(pdc);
11: // Select the bitmap into the compatible device context
12: CBitmap* pOldBitmap = (CBitmap*)dcMem.SelectObject

➥ (lpWnd->m_bmpBitmap);
13: CRect lRect;
14: // Get the display area available
15: GetClientRect(lRect);
16: lRect.NormalizeRect();
17: // Copy and resize the bitmap to the dialog window
18: pdc->StretchBlt(10, 10, (lRect.Width() - 20),
19: (lRect.Height() - 20), &dcMem, 0, 0,
20: bm.bmWidth, bm.bmHeight, SRCCOPY);
21: }

Now that you have the ability to display the currently selected bitmap on the dialog,
you’ll need to add the functionality to call this function to the OnPaint function in the
second dialog. You can determine whether a bitmap has been specified by checking
the value of the m_sBitmap variable on the first dialog. If this string is empty, there is no
bitmap to be displayed. If the string is not empty, you can call the ShowBitmap function.
To add this last bit of functionality to this application, edit the OnPaint function, adding
lines 15 through 18 from Listing 8.11.

012 31240-9 CH08 4/27/00 11:54 AM Page 175

LISTING 8.11. THE MODIFIED OnPaint FUNCTION.

1: void CPaintDlg::OnPaint()
2: {
3: CPaintDC dc(this); // device context for painting
4:
5: // TODO: Add your message handler code here
6:
7: // Get a pointer to the parent window
8: CGraphicsDlg *pWnd = (CGraphicsDlg*)GetParent();
9: // Do we have a valid pointer?
10: if (pWnd)
11: {
12: // Is the tool a bitmap?
13: if (pWnd->m_iTool == 2)
14: {
15: // Is there a bitmap selected and loaded?
16: if (pWnd->m_sBitmap != “”)
17: // Display it
18: ShowBitmap(&dc, pWnd);
19: }
20: else // No, we’re drawing a shape
21: {
22: // Are we drawing a line?
23: if (m_iShape == 0)
24: DrawLine(&dc, pWnd->m_iColor);
25: else // We’re drawing a ellipse or rectangle
26: DrawRegion(&dc, pWnd->m_iColor, pWnd->m_iTool,
27: pWnd->m_iShape);
28: }
29: }
30: // Do not call CDialog::OnPaint() for painting messages
31:}

At this point, you should be able to select a bitmap from your system and display it in
the second dialog, as shown in Figure 8.6.

176 Day 8

FIGURE 8.6.
Showing a bitmap in
the second dialog.

012 31240-9 CH08 4/27/00 11:54 AM Page 176

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 177

8
Summary

What a way to start the week! You learned a lot today. You learned how Windows uses
device context objects to allow you to draw graphics in the same way every time, with-
out having to worry about what hardware users might have in their computers. You
learned about some of the basic GDI objects, such as pens and brushes, and how they are
used to draw figures on windows and dialogs. You also learned how you can load
bitmaps from the system disk and display them onscreen for the user to see. You learned
about the different pen and brush styles and how you can use these to draw the type of
figure you want to draw. You also learned how you can specify colors for use with pens
and brushes so that you can control how images appear to the user.

Q&A
Q Why do I need to specify both a pen and a brush if I just want to display one

or the other?

A You are always drawing with both when you draw any object that is filled in. The
pen draws the outline, and the brush fills in the interior. You cannot choose to use
one or the other; you have to use both. If you only want to display one or the other,
you need to take special steps.

Q Why do all of the pen styles become solid when I increase the pen width
above 1?

A When you increase the pen width, you are increasing the size of the dot that is used
to draw with. If you remember Day 3, “Allowing User Interaction—Integrating the
Mouse and Keyboard in Your Application,” when you first tried to draw by captur-
ing each spot the mouse covered, all you drew were a bunch of dots. Well, when
you increase the size of the dots that you are drawing the line with, the gaps
between the dots are filled in from both sides, providing an unbroken line.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

012 31240-9 CH08 4/27/00 11:54 AM Page 177

Quiz
1. What are the three values that are combined to specify a color?

2. What do you use to draw on windows without needing to know what graphics card
the user has?

3. What size bitmap can you use to make a brush from it?

4. What event message is sent to a window to tell it to redraw itself?

5. How can you cause a window to repaint itself?

Exercises
1. Make the second dialog window resizable, and make it adjust the figures drawn on

it whenever it’s resized.

2. Add a bitmap brush to the set of brushes used to create the rectangles and ellipses.

178 Day 8

012 31240-9 CH08 4/27/00 11:54 AM Page 178

DAY 9

WEEK 2

Adding ActiveX Controls
to Your Application

In today’s application develop market, there are thousands of prebuilt compo-
nents that you can plug into your applications, extending the functionality of
your applications instantaneously. Originally the domain of Visual Basic pro-
grammers, now you can use readily available ActiveX controls with just about
any Windows programming language, including Visual C++. Today you will
learn how you can add ActiveX controls to your Visual C++ applications, tak-
ing advantage of their existing functionality. Some of the topics that you will
cover today are

• What ActiveX controls are and how they work.

• How you can add ActiveX controls to your project workspace.

• How you can use the ActiveX control in your Visual C++ application.

• How to call the various methods associated with the ActiveX control.

• How to handle events that are triggered by the ActiveX control.

013 31240-9 CH09 4/27/00 11:57 AM Page 179

What Is an ActiveX Control?
An ActiveX control is a software component that can be plugged into many different
programs and used as if it were a native part of the program. It’s similar to the concept of
separate stereo components. If you buy a new tape deck, you can just plug it into the rest
of your stereo and it works with everything else you already have. ActiveX controls
bring this same type of interoperability to software applications.

ActiveX used to be called OLE 2.0. OLE 2.0 was Microsoft’s technology for combining
two or more applications to make them work as one (or at least to switch between the
various applications within the same application shell). This idea was an expansion from
the original OLE (Object Linking and Embedding) technology, which only enabled you
to combine documents created with different applications into a single document. When
revamping OLE technologies to work in a distributed environment (such as on the
Internet), Microsoft decided to also revamp the name. Thus, ActiveX was born.

ActiveX and the IDispatch Interface
The ActiveX technology is built on top of Microsoft’s COM (Component Object Model)
technology, utilizing its interface and interaction model for making ActiveX control inte-
gration fairly seamless. The COM technology defines how ActiveX objects are constructed
and how their interfaces are designed. The ActiveX technology defines a layer that is
built on top of COM, what interfaces various objects should support, and how different
types of objects should interact.

180 Day 9

Microsoft’s COM technology defines how applications and components can
interact through the use of interfaces. An interface is like a function call
into an ActiveX component. However, COM specifies how that function call
must be built and called, and what supporting functionality must accom-
pany the function call.

There are interfaces, like the IUnknown interface, that are required in every
COM object, and which are used to query the component to find out what
other interfaces are supported by the component. Each interface supports a
specific set of functionality; you might have one interface to handle the
visual appearance of the control, another to control how the control
appearance interacts with the surrounding application, another that triggers
events in the surrounding application, and so on.

Note

013 31240-9 CH09 4/27/00 11:57 AM Page 180

Adding ActiveX Controls to Your Application 181

9

One of the key technologies in ActiveX controls is automation. Automation enables an
application embedded within another application to activate itself and control its part of
the user interface or document, making its changes and then shutting itself down when
the user moves on to another part of the application that isn’t controlled by the embedded
application.

This process is what happens when you have an Excel spreadsheet embedded within a
Word document. If you click the spreadsheet, Excel becomes active and you can edit the
spreadsheet using Excel, even though you’re still working in Word. Then, once you fin-
ish making your changes to the spreadsheet, Excel closes itself down and you can contin-
ue working in Word.

One of the keys to making automation work is a special interface called the IDispatch
(also known as the dispinterface) interface. The IDispatch interface consists of a pointer
to a table of available methods that can be run in the ActiveX control or embedded appli-
cation. These methods have ID numbers, called DISPIDs, which are also loaded into a
table that can be used to look up the ID for a specific method. Once you know the
DISPID for a specific method, you can call that method by calling the Invoke method of
the IDispatch interface, passing the DISPID to identify the method to be run. Figure 9.1
shows how the IDispatch interface uses the Invoke method to run methods in the
ActiveX object.

FIGURE 9.1.
The IDispatch ActiveX
interface.

013 31240-9 CH09 4/27/00 11:57 AM Page 181

ActiveX Containers and Servers
To embed one ActiveX object within another ActiveX object, you have to implement the
embedded object as an ActiveX server, and the object containing the first object must be
an ActiveX container. Any ActiveX object that can be embedded within another is an
ActiveX server, whether it is an entire application or just a small ActiveX control. Any
ActiveX object that can have other ActiveX objects embedded within it is an ActiveX
container.

182 Day 9

Don’t confuse the use of the terms container and server with the term client
in the previous figure. The client is the object calling the other object’s
IDispatch interface. As you’ll learn in a page or so, both the container and
server call the other’s IDispatch interfaces, making each one the client of
the other.

Note

These two types of ActiveX objects are not mutually exclusive. An ActiveX server can
also be an ActiveX container. A good example of this concept is Microsoft’s Internet
Explorer Web browser. Internet Explorer is implemented as an ActiveX server that runs
within an ActiveX container shell (that can also house Word, Excel, PowerPoint, or any
other ActiveX server application). At the same time that Internet Explorer is an ActiveX
server running within the browser shell, it can contain other ActiveX controls.

ActiveX controls are a special instance of an ActiveX server. Some ActiveX servers are
also applications that can run on their own. ActiveX controls cannot run on their own
and must be embedded within an ActiveX container. By using ActiveX components in
your Visual C++ application, you automatically make your application an ActiveX con-
tainer.

Most of the interaction between the ActiveX container and an ActiveX control takes
place through three IDispatch interfaces. One of these IDispatch interfaces is on the
control, and it is used by the container to make calls to the various methods that the
ActiveX control makes available to the container.

The container provides two IDispatch interfaces to the control. The first of these
IDispatch interfaces is used by the control to trigger events in the container application.
The second interface is used to set properties of the control, as shown in Figure 9.2.
Most properties of an ActiveX control are actually provided by the container but are
maintained by the control. When you set a property for the control, the container calls a
method in the control to tell the control to read the properties from the container. Most of
this activity is transparent to you because Visual C++ builds a series of C++ classes
around the ActiveX control’s interfaces. You will interact with the methods exposed by
the C++ classes, not directly calling the control’s IDispatch interface.

013 31240-9 CH09 4/27/00 11:57 AM Page 182

Adding ActiveX Controls to Your Application 183

9

Adding an ActiveX Control to Your Project
Looking into how ActiveX controls work can be deceptive because of how easy it really
is to use them in your applications. Visual C++ makes it easy to add ActiveX controls to
your applications and even easier to use them. Before you begin adding the ActiveX con-
trol to your application, let’s create an application shell into which you will add an
ActiveX control:

1. Create a new MFC AppWizard project named ActiveX.

2. Use the same defaults on the AppWizard as in previous days, but leave the check
box for ActiveX Controls checked on the second AppWizard step. Give your appli-
cation the title ActiveX Controls.

3. Once you generate an application shell, remove all the controls and add a single
command button.

4. Set the button’s ID to IDC_EXIT and its caption to E&xit.

5. Using the Class Wizard, add a function to your command button on the
BN_CLICKED event message.

6. Edit the function you just created, calling the OnOK function, as on earlier days.

Registering the Control
Before you add an ActiveX control to your dialog window, you need to register the con-
trol, both with Windows and with Visual C++. There are two possible ways to register
the ActiveX control with Windows. The first way is to run any installation routine that
came with the ActiveX control. If you do not have an installation routine, you need to
register the control manually. To register the control manually, follow these steps:

1. Open a DOS shell.

2. Change directory to where the ActiveX control is on your system.

3. Run the regsvr32 command, specifying the name of the ActiveX control as the

ActiveX
Container

IDispatch
(events)

IDispatch
(properties)

IDispatch

ActiveX
Control

FIGURE 9.2.
An ActiveX container
and control interact
primarily through
a few IDispatch
interfaces.

013 31240-9 CH09 4/27/00 11:57 AM Page 183

only command-line argument. For instance, if you were registering a control
named MYCTL.OCX and it was located in your WINDOWS\SYSTEM directory, you would
perform the following:

C:\WINDOWS> CD system
C:\WINDOWS\SYSTEM> regsvr32 MYCTL.OCX

184 Day 9

It is preferable to run any installation routine that comes with the control
because registering the control manually might not enable the control for
development usage. Controls can be licensed for development or deploy-
ment. If a control is licensed for deployment, you will not be able to use it in
your Visual C++ applications. This is a mechanism that protects control devel-
opers by requiring that developers purchase a development license for con-
trols; they can’t just use the controls they may have installed on their system
with another application.

Caution

COM and ActiveX objects store a lot of information in the Windows Registry
database. Whenever an application uses an ActiveX object, the operating
system refers to the information in the Windows Registry to find the object
and to determine whether the application can use the object in the way
that it requested. Using the regsvr32.exe utility to register an ActiveX con-
trol places most of the required information about the control into the sys-
tem Registry. However, there may be additional information about the con-
trol that needs to be in the Registry for the control to function properly.

Note

Now that the ActiveX control that you want to use is registered with the operating sys-
tem, you need to register it with Visual C++ and add it to your project. To do this, follow
these steps:

1. Select Project | Add To Project | Components and Controls from the Visual C++
menu.

2. In the Components and Controls Gallery dialog, navigate to the Registered
ActiveX Controls folder, as in Figure 9.3.

013 31240-9 CH09 4/27/00 11:57 AM Page 184

Adding ActiveX Controls to Your Application 185

9

3. Select the control you want to register, such as the Microsoft FlexGrid control, and
click the Insert button.

4. Click OK on the message box asking whether you want to insert this component in
your project.

5. On the Confirm Classes dialog, click the OK button to add the C++ classes speci-
fied, as in Figure 9.4.

6. Click the Close button on the Components and Controls Gallery dialog to finish
adding controls to your project.

7. The FlexGrid control should have been added to the Control Palette for your dialog
window, as in Figure 9.5.

FIGURE 9.3.
The ActiveX controls
that can be added to
your project.

FIGURE 9.4.
Visual C++ tells you
what classes will be
added to your project.

013 31240-9 CH09 4/27/00 11:57 AM Page 185

If you examine the Class View area of the workspace pane, you see the four classes that
Visual C++ added to your project. Expand the class trees and you see numerous methods
for these classes. Visual C++ created these classes and methods by examining the
ActiveX control that you just added and created class methods to call each of the methods
in the control’s IDispatch interface.

186 Day 9

FIGURE 9.5.
The ActiveX control
FlexGrid is added to
the Control Palette for
use on your dialog
windows.

The FlexGrid control

If you use older ActiveX controls in your Visual C++ applications, Visual C++
might not be able to generate the classes and methods to encapsulate the
control’s functionality. The information in the control that provided Visual
C++ with the information necessary to build these classes and methods is a
more recent addition to the ActiveX specification. As a result, older controls
might not provide this information, making them more difficult to use with
Visual C++.

Note

Adding the Control to Your Dialog
Now that you have added the FlexGrid control to your project, you can add it to your dia-
log window just as you would any other control. Set the control properties as in Table 9.1.

TABLE 9.1. CONTROL PROPERTY SETTINGS.

Object Property Setting

FlexGrid control ID IDC_MSFGRID

Rows 20

Cols 4

MergeCells 2 - Restrict Rows

Format < Region |< Product

(FormatString) |< Employee |>Sales

013 31240-9 CH09 4/27/00 11:58 AM Page 186

Adding ActiveX Controls to Your Application 187

9

Once you add the control to your dialog window, you will notice that there is an addi-
tional tab on the properties dialog with all the control properties, as in Figure 9.6. You
can choose to use this tab to set all the properties on the control, or you can go through
the other tabs to set the properties, just as you would with the standard controls.

Once you have finished setting all the properties for the control, you’ll need to add a
variable for the control so that you can interact with the control in your code. To add this
variable, open the Member Variables tab on the Class Wizard and add a variable for the
control. Because you are adding a variable for an ActiveX control, you can only add a
control variable, so the only thing available for you to specify is the variable name. For
this example application, name the variable m_ctlFGrid.

Using an ActiveX Control in Your Application
Once Visual C++ has generated all the classes to encapsulate the ActiveX control, work-
ing with the control is a simple matter of calling the various methods and responding to
control events just like the standard controls. You’ll start with using the control methods
to get information about the control and to modify data within the control. Then you’ll
learn how to respond to control events with Visual C++.

Interacting with the Control
The application that you are building today will generate a number of product sales over
five sales regions with four salespeople. You will be able to scroll through the data,
which will be sorted by region and product, to compare how each salesperson did for
each product.

To make this project, you will build an array of values that will be loaded into cells in
the grid. The grid will then be sorted in ascending order, using the FlexGrid control’s
internal sorting capabilities.

FIGURE 9.6.
ActiveX controls have
a property tab that
contains all control
properties.

013 31240-9 CH09 4/27/00 11:58 AM Page 187

Loading Data into the Control
The first thing you will do is create a function to load data into the FlexGrid control. Add
a new function to the CActiveXDlg class by right-clicking the Class View of the work-
space and choosing Add Member Function. Specify the Function Type as void, the
Function Declaration as LoadData, and the access as Private. Click the OK button and
edit the function, adding the code in Listing 9.1.

LISTING 9.1. THE LoadData FUNCTION.

1: void CActiveXDlg::LoadData()
2: {
3: int liCount; // The grid row count
4: CString lsAmount; // The sales amount
5:
6: // Initialize the random number generator
7: srand((unsigned)time(NULL));
8: // Create Array in the control
9: for (liCount = m_ctlFGrid.GetFixedRows();
10: liCount < m_ctlFGrid.GetRows(); liCount++)
11: {
12: // Generate the first column (region) values
13: m_ctlFGrid.SetTextArray(GenID(liCount, 0), RandomStringValue(0));
14: // Generate the second column (product) values
15: m_ctlFGrid.SetTextArray(GenID(liCount, 1), RandomStringValue(1));
16: // Generate the third column (employee) values
17: m_ctlFGrid.SetTextArray(GenID(liCount, 2), RandomStringValue(2));
18: // Generate the sales amount values
19: lsAmount.Format(“%5d.00”, rand());
20: // Populate the fourth column
21: m_ctlFGrid.SetTextArray(GenID(liCount, 3), lsAmount);
22: }
23:
24: // Merge the common subsequent rows in these columns
25: m_ctlFGrid.SetMergeCol(0, TRUE);
26: m_ctlFGrid.SetMergeCol(1, TRUE);
27: m_ctlFGrid.SetMergeCol(2, TRUE);
28:
29: // Sort the grid
30: DoSort();
31: }

In this function, the first thing that you do is initialize the random number generator.
Next, you loop through all of the rows in the control, placing data in each of the cells.
You get the total number of rows in the control by calling the GetRows method and the
number of the header row by calling the GetFixedRows method. You are able to add data

188 Day 9

013 31240-9 CH09 4/27/00 11:58 AM Page 188

Adding ActiveX Controls to Your Application 189

9

to the control cells by calling the SetTextArray method, which has the cell ID as the
first argument and the cell contents as the second argument, both of which are generated
by functions you’ll be creating in a few moments.

Once you have data in the grid cells, you call SetMergeCol, which tells the control that it
can merge cells in the first three columns if adjacent rows contain the same value.
Finally, you sort the control, using another function you have yet to create.

Calculating the Cell ID
The cells in the FlexGrid control are numbered sequentially from left to right, top to bot-
tom. With your control, the first row, which contains the headers (and is already populat-
ed), has cells 0 through 3, the second row cells 4 through 7, and so on. Therefore, you
can calculate the ID of a cell by adding its column number to the total number of columns
in the control, multiplied by the current row number. For instance, if your control has
four columns, and you are in the third column and fourth row, you can calculate your cell
ID as 2 + (4 * 3) = 14. (Remember that the column and row numbers start with 0, so the
third column is 2 and the fourth row is number 3.)

Now that you understand how you can calculate the cell ID, you need to implement that
formula in a function. Add a new function to the CActiveXDlg class using the same
method as for the LoadData function. The type of this function should be int and the
description should be GenID(int m_iRow, int m_iCol). Once you add the function,
edit it with the code in Listing 9.2.

LISTING 9.2. THE GenID FUNCTION.

1: int CActiveXDlg::GenID(int m_iRow, int m_iCol)
2: {
3: // Get the number of columns
4: int liCols = m_ctlFGrid.GetCols();
5:
6: // Generate an ID based on the number of columns,
7: // the current column, and the current row
8: return (m_iCol + liCols * m_iRow);
9: }

Generating Random Data
To populate the first three columns in the grid, you want to randomly generate data. In
the first column, you want to put region names. In the second column, you want to put
product names. And in the third column, you want to put salesperson names. By using a
switch statement to determine which column you are generating data for and then using a

013 31240-9 CH09 4/27/00 11:58 AM Page 189

modulus division on a randomly generated number in another switch statement, you can
randomly select between a limited set of data strings.

To implement this functionality, add another function to the CActiveXDlg class with a
type of CString and a description of RandomStringValue(int m_iColumn). Edit the
resulting function, adding the code in Listing 9.3.

LISTING 9.3. THE RandomStringValue FUNCTION.

1: CString CActiveXDlg::RandomStringValue(int m_iColumn)
2: {
3: CString lsStr; // The return string
4: int liCase; // A random value ID
5:
6: // Which column are we generating for?
7: switch (m_iColumn)
8: {
9: case 0: // The first column (region)
10: // Generate a random value between 0 and 4
11: liCase = (rand() % 5);
12: // What value was generated?
13: switch (liCase)
14: {
15: case 0:
16: // 0 - Northwest region
17: lsStr = “Northwest”;
18: break;
19: case 1:
20: // 1 - Southwest region
21: lsStr = “Southwest”;
22: break;
23: case 2:
24: // 2 - Midwest region
25: lsStr = “Midwest”;
26: break;
27: case 3:
28: // 3 - Northeast region
29: lsStr = “Northeast”;
30: break;
31: default:
32: // 4 - Southeast region
33: lsStr = “Southeast”;
34: break;
35: }
36: break;
37: case 1: // The second column (product)
38: // Generate a random value between 0 and 4
39: liCase = (rand() % 5);
40: // What value was generated?
41: switch (liCase)

190 Day 9

013 31240-9 CH09 4/27/00 11:58 AM Page 190

Adding ActiveX Controls to Your Application 191

9

42: {
43: case 0:
44: // 0 - Dodads
45: lsStr = “Dodads”;
46: break;
47: case 1:
48: // 1 - Thingamajigs
49: lsStr = “Thingamajigs”;
50: break;
51: case 2:
52: // 2 - Whatchamacallits
53: lsStr = “Whatchamacallits”;
54: break;
55: case 3:
56: // 3 - Round Tuits
57: lsStr = “Round Tuits”;
58: break;
59: default:
60: // 4 - Widgets
61: lsStr = “Widgets”;
62: break;
63: }
64: break;
65: case 2: // The third column (employee)
66: // Generate a random value between 0 and 3
67: liCase = (rand() % 4);
68: // What value was generated?
69: switch (liCase)
70: {
71: case 0:
72: // 0 - Dore
73: lsStr = “Dore”;
74: break;
75: case 1:
76: // 1 - Harvey
77: lsStr = “Harvey”;
78: break;
79: case 2:
80: // 2 - Pogo
81: lsStr = “Pogo”;
82: break;
83: default:
84: // 3 - Nyra
85: lsStr = “Nyra”;
86: break;
87: }
88: break;
89: }
90: // Return the generated string
91: return lsStr;
92: }

013 31240-9 CH09 4/27/00 11:58 AM Page 191

Sorting the Control
To sort the Grid control, you need to select all the columns and then set the sort to
ascending. To implement this functionality, add one more function to the CActiveXDlg
class with a type of void and a definition of DoSort. Edit the function as in Listing 9.4.

LISTING 9.4. THE DoSort FUNCTION.

1: void CActiveXDlg::DoSort()
2: {
3: // Set the current column to column 0
4: m_ctlFGrid.SetCol(0);
5: // Set the column selection to all columns
6: m_ctlFGrid.SetColSel((m_ctlFGrid.GetCols() - 1));
7: // Generic Ascending Sort
8: m_ctlFGrid.SetSort(1);
9: }

In the DoSort function, you set the current column to the first column using the SetCol
method. Next you select from the current column to the last column using the SetColSel
method, effectively selecting all columns in the control. Finally, you tell the control to
sort the columns in ascending order by using the SetSort method, passing 1 as the flag
for the sort order.

Now that you have all the functionality necessary to load the control with data, you need
to call the LoadData function in the OnInitDialog function to load the data before the
control is visible to the user. Edit the OnInitDialog function as in Listing 9.5 to load the
data.

LISTING 9.5. THE OnInitDialog FUNCTION.

1: BOOL CActiveXDlg::OnInitDialog()
2: {
3: CDialog::OnInitDialog();
4: .
5: .
6: .
7: // TODO: Add extra initialization here
8:
9: ///////////////////////
10: // MY CODE STARTS HERE
11: ///////////////////////
12:
13: // Load data into the Grid control
14: LoadData();

192 Day 9

013 31240-9 CH09 4/27/00 11:58 AM Page 192

Adding ActiveX Controls to Your Application 193

9

15:
16: ///////////////////////
17: // MY CODE ENDS HERE
18: ///////////////////////
19:
20: return TRUE; // return TRUE unless you set the focus to a control
21: }

If you compile and run your application at this point, you find that it is loading the data
and sorting it, as in Figure 9.7.

Responding to Control Events
If you play with your application at this point, you know that the Grid control does not
respond to any input that you might try to give it. If you click one of the cells and try to
change the value, it doesn’t respond. What you need to do is add a control event to han-
dle the input. ActiveX controls make several events available for use in Visual C++
applications. You can use the Class Wizard to browse through the available events and
determine which events you need to give functionality and which to ignore. Most
ActiveX controls don’t have any default functionality attached to the available events but
instead expect you to tell the control what to do on each event.

You are going to add two control events to capture the mouse clicks and movements.
You will add functionality to allow the user to click a column header and drag it to
another position, thus rearranging the column order. To implement this functionality, you
have to capture two control events, when the mouse button is pressed down and when it
is released. On the first event, you need to check whether the user clicked a header, and
if so, you capture the column selected. On the second event, you need to move the
selected column to the column on which the mouse button was released.

To accomplish this functionality, you need to create a new class variable to maintain the
clicked column number between the two events. Add a new variable to the CActiveXDlg
class, just like you added the functions earlier, specifying the type as int, the variable
name as m_iMouseCol, and the access as Private.

FIGURE 9.7.
The FlexGrid populated
with data.

013 31240-9 CH09 4/27/00 11:58 AM Page 193

Capturing the Column Selected
To capture the mouse click event for the control, follow these steps:

1. Using the Class Wizard, add a function for the MouseDown event message for the
IDC_MSFGRID object.

2. Edit the function using the code in Listing 9.6.

LISTING 9.6. THE OnMouseDownMsfgrid FUNCTION.

1: void CActiveXDlg::OnMouseDownMsfgrid(short Button, short Shift, long
➥ x, long y)

2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Did the user click on a data row and not the
10: // header row?
11: if (m_ctlFGrid.GetMouseRow() != 0)
12: {
13: // If so, then zero out the column variable
14: // and exit
15: m_iMouseCol = 0;
16: return;
17: }
18: // Save the column clicked on
19: m_iMouseCol = m_ctlFGrid.GetMouseCol();
20:
21: ///////////////////////
22: // MY CODE ENDS HERE
23: ///////////////////////
24: }

In this function, you checked the row clicked by calling the GetMouseRow method. If the
row is not the first row, then zero out the column-holding variable and exit the function.
Otherwise, you need to get the column clicked by calling the GetMouseCol method. You
can store the returned column number in the m_iMouseCol variable that you just added to
the class.

Moving the Column Where Released
Now that you are capturing the selected column number, you need to capture the column
on which the mouse is released. To capture the mouse release event for the control, fol-
low these steps:

194 Day 9

013 31240-9 CH09 4/27/00 11:58 AM Page 194

Adding ActiveX Controls to Your Application 195

9

1. Using the Class Wizard, add a function for the MouseUp event message for the
IDC_MSFGRID object.

2. Edit the function using the code in Listing 9.7.

LISTING 9.7. THE OnMouseUpMsfgrid FUNCTION.

1: void CActiveXDlg::OnMouseUpMsfgrid(short Button, short Shift, long x,
➥ long y)

2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // If the selected column was the first column,
10: // there’s nothing to do
11: if (m_iMouseCol == 0)
12: return;
13: // Turn the control redraw off
14: m_ctlFGrid.SetRedraw(FALSE);
15: // Change the selected column position
16: m_ctlFGrid.SetColPosition(m_iMouseCol, m_ctlFGrid.GetMouseCol());
17: // Resort the grid
18: DoSort();
19: // Turn redraw back on
20: m_ctlFGrid.SetRedraw(TRUE);
21:
22: ///////////////////////
23: // MY CODE ENDS HERE
24: ///////////////////////
25: }

In this function, you first check to see if there is a selected column to be moved. If not,
you exit the function with nothing to do. If there is a column selected, you turn off the
redraw on the control using the SetRedraw method so that none of the movement is seen
by the user. Next, you move the selected column to the release column using the
SetColPosition method. Once you move the column, you resort the grid by calling the
DoSort function. Finally, you turn the control’s redraw back on so that the control is
refreshed to show the user the moved column. If you compile and link your application,
you should now be able to grab column headers and move the columns about, as in
Figure 9.8.

013 31240-9 CH09 4/27/00 11:58 AM Page 195

Summary
Today you learned how you can use ActiveX controls in your Visual C++ applications to
easily extend your application’s functionality. You learned the basics of how ActiveX
controls work and how they interact with the containing application. You also learned
how you can add an ActiveX control to your development project so that you can use it
in your application. You saw how Visual C++ creates C++ classes to encapsulate the
ActiveX controls that you add and how you can interact with the control through the
exposed methods of these generated C++ classes. You also saw how you can capture
events that are generated by the ActiveX control so that you can program your applica-
tion to react to the events.

Q&A
Q How can I determine what methods are available to me when working with an

ActiveX control?

A By examining the C++ classes that Visual C++ builds to encapsulate the control,
you can get a good idea of what functionality is available to you. If you have docu-
mentation for the control, you can compare it to the C++ class to determine which
class method calls which control method. You can examine the events listed for the
control in the Class Wizard to determine which events are also available.

Q How can I use the ActiveX controls that were installed on my machine with
another application in my Visual C++ applications?

A It depends on how the controls are licensed and what application installed the con-
trols. If the controls were installed by another application development tool,
chances are that you have a development license for the control, in which case you
should be able to use them in your Visual C++ applications. If the controls were
installed by an end-user application, such as Word or Quicken, then odds are that
you have only a runtime license for the control. If you want to use these controls in
your own applications, you need to contact the control developer to acquire a
development license for the controls.

196 Day 9

FIGURE 9.8.
The FlexGrid with
reordered columns.

013 31240-9 CH09 4/27/00 11:58 AM Page 196

Adding ActiveX Controls to Your Application 197

9

Q Because the FlexGrid control does not allow me to enter data directly into the
control, how can I let my users enter data into the grid as if they were using a
spreadsheet?

A To implement this functionality for the FlexGrid control, you need to add a floating
Edit Box control to your window. Your code needs to determine which cell the user
wants to edit and float the edit box in front of that cell. This arrangement allows
the user to feel as if he is entering data directly into the cell. Another approach is to
have a data-entry field outside the grid, much like is used in Excel, into which the
user enters the data. You can highlight the cells as the user maneuvers around the
Grid control to give the user visceral feedback for her actions.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. How does an ActiveX container call methods in an ActiveX control?

2. How does an ActiveX control trigger events in the container application?

3. What AppWizard option must be selected for ActiveX controls to work properly in
a Visual C++ application?

4. How does Visual C++ make it easy to work with ActiveX controls?

5. Why might it be difficult to work with older controls in Visual C++?

Exercise
Modify the application so that the user can double-click a column header and make it the
first column in the grid.

013 31240-9 CH09 4/27/00 11:58 AM Page 197

013 31240-9 CH09 4/27/00 11:58 AM Page 198

DAY 10

WEEK 2

Creating Single Document
Interface Applications

Today you will learn a different way of approaching application development
with Visual C++ than you have used with the previous days’ lessons. Today
you will learn how to create Single Document Interface (SDI) applications. An
SDI application is a document-centric application that can only work with one
document at a time, and can only work with one type of document.

Some good examples of SDI applications are Notepad, WordPad, and Paint. All
of these applications can do only one type of task and can only work on one
task at a time. WordPad is almost like an SDI version of Word. It’s able to per-
form a large number of the tasks that Word does, but although Word allows you
to work on numerous documents at the same time, WordPad limits you to only
one document.

Some of the things that you will learn today are

• The Document/View architecture that Visual C++ uses for creating SDI
applications.

014 31240-9 CH10 4/27/00 12:19 PM Page 199

• How to create an SDI application shell.

• How to separate your data from the visual representation of the data.

• How to encapsulate your data in its own C++ class.

• How to create interaction between the data and the menus.

The Document/View Architecture
When you create an SDI application, more classes are created for an SDI application
than for a dialog-style application. Each of these classes serves a specific purpose in how
SDI applications operate. Ignoring the About window dialog class, four specific classes
make up an SDI application:

• The CWinApp-derived class

• The CFrameView-derived class

• The CDocument-derived class

• The CView-derived class

The CWinApp class creates all the other components in the application. It is the class that
receives all the event messages and then passes the messages to the CFrameView and
CView classes.

The CFrameView class is the window frame. It holds the menu, toolbar, scrollbars, and
any other visible objects attached to the frame. This class determines how much of the
document is visible at any time. Very little (if any) of your programming efforts on SDI
applications will require making any modifications or additions to either of these first
two classes.

The CDocument class houses your document. This class is where you will build the data
structures necessary to house and manipulate the data that makes up your document. This
class receives input from the CView class and passes display information to the CView
class. This class is also responsible for saving and retrieving the document data from
files.

The CView class is the class that displays the visual representation of your document for
the user. This class passes input information to the CDocument class and receives display
information from the CDocument class. Most of the coding that you will do for this class
consists of drawing the document for the user and handling the input from the user. The
CView class has several descendent classes that can be used as the ancestor for the view
class. These descendent classes are listed in Table 10.1.

200 Day 10

014 31240-9 CH10 4/27/00 12:19 PM Page 200

Creating Single Document Interface Applications 201

10

TABLE 10.1. THE CView DESCENDENT CLASSES.

Class Description

CEditView Provides the functionality of a edit box control. Can be used to
implement simple text-editor functionality.

CFormView The base class for views containing controls. Can be used to provide
form-based documents in applications.

CHtmlView Provides the functionality of a Web browser. This view directly han-
dles the URL navigation, hyperlinking, and so on. Maintains a history
list for browsing forward and back.

CListView Provides list-control functionality in the Document/View architecture.

CRichEditView Provides character and paragraph formatting functionality. Can be
used to implement a word-processor application.

CScrollView Provides scrolling capabilities to a CView class.

CTreeView Provides tree-control functionality in the Document/View architecture.

All four of these classes work together to make up the full functionality of an SDI appli-
cation, as shown in Figure 10.1. By taking advantage of this architecture, you can build
powerful document-centric applications with relative ease.

Document object
(CDocument)

Messages passed to the
frame window and view

object

Two-way flow of
information between

the document and the
view objects

Application object
(CWinApp)

(CFrameView)

Frame window

View object
(CView)

FIGURE 10.1.
The Document/View
architecture.

014 31240-9 CH10 4/27/00 12:19 PM Page 201

202 Day 10

Don’t let the term document mislead you. This doesn’t mean that you can
only create applications such as word processors and spreadsheets. In this sit-
uation, the term document refers to the data that is processed by your
application, whereas view refers to the visual representation of that data.
For instance, the Solitaire application could be implemented as a
Document/View application, with the document being the cards and their
position in the playing area. In this case, the view is the display of the cards,
drawing each card where the document specifies it should be.

Note

Creating an SDI Application
To get a good idea of how the Document/View architecture works, and of how you can
use it to build applications, you will build a new version of the drawing application you
created on Day 3, “Allowing User Interaction—Integrating the Mouse and Keyboard in
Your Application.” In this version, the user’s drawing will be persistent, which means it
is not erased each time another window is placed in front of the application. This version
will also be able to save and restore drawings.

Building the Application Shell
To create the application shell for today’s application, follow these steps:

1. Create a new AppWizard project. Name the project Day10.

2. On the first step of the AppWizard, select Single Document.

3. Use the default values on the second step of the AppWizard.

4. On the third step of the AppWizard, uncheck the support for ActiveX Controls.

5. On the fourth step of the AppWizard, leave all the default values. Click the
Advanced button.

6. In the Advanced Options dialog, enter a three-letter file extension for the files that
your application will generate (for example, dhc or dvp). Click the Close button to
close the dialog and then click Next to move to the next step of the AppWizard.

7. Use the default settings on the fifth step of the AppWizard.

8. On the sixth and final AppWizard step, you can choose the base class on which
your view class will be based. Leave the base class as CView and click Finish. The
AppWizard will generate the application shell.

014 31240-9 CH10 4/27/00 12:19 PM Page 202

Creating Single Document Interface Applications 203

10

Creating a Line Class
One of the first issues that you will need to tackle is how to represent your data in the
document class. For the drawing application, you have a series of lines. Each line con-
sists of a starting point and ending point. You might think that you can use a series of
points for the data representation. If you do this, you also have to make special accom-
modations for where one series of lines between points ends and the next begins. It
makes much more sense to represent the drawing as a series of lines. This allows you to
store each individual line that is drawn on the window without having to worry where
one set of contiguous lines ends and where the next begins.

Unfortunately, the Microsoft Foundation Classes (MFC) does not have a line object
class, although it does have a point object class (CPoint). I guess you’ll just have to cre-
ate your own line class by following these steps:

1. In the Class View tab of the workspace pane, select the top-level object in the tree
(Day10 classes). Right-click the mouse and select New Class from the pop-up
menu.

2. In the New Class dialog, select Generic Class for the class type. Enter CLine for
the class name and click in the first line in the Base Class list box. Enter CObject
as the base class, leaving the class access as public, as in Figure 10.2.

3. When you click the OK button to add the CLine class, you may be told that the
Class Wizard cannot find the appropriate header file for inheriting the CLine class
from the CObject class, as in Figure 10.3. Click on the OK button on this message
box.

FIGURE 10.2.
The New Class Wizard.

014 31240-9 CH10 4/27/00 12:19 PM Page 203

204 Day 10

FIGURE 10.3.
Warning about
including the base
class definition.

The appropriate header class is already included in the CLine class files. Until
your compiler complains because it can’t find the definition for the CObject
class, don’t worry about this message. However, if you are using a base class
that’s a bit further down the MFC class hierarchy, you might need to heed
this message and add the appropriate header file to the include statements
in the class source code file.

Note

Constructing the CLine Class
At this time, your CLine class needs to hold only two data elements, the two end points
of the line that it represents. You want to add those two data elements and add a class
constructor that sets both values when creating the class instance. To do this, follow
these steps:

1. In the Class View tab of the workspace pane, select the CLine class.

2. Right-click the CLine class and choose Add Member Variable from the pop-up
menu.

3. Enter CPoint as the variable type and m_ptFrom as the variable name, and mark the
access as Private. Click OK to add the variable.

4. Repeat steps 2 and 3, naming this variable m_ptTo.

5. Right-click the CLine class and choose Add Member Function from the pop-up
menu.

6. Leave the function type blank, and enter CLine(CPoint ptFrom, CPoint ptTo)
for the function declaration. Click OK to add the function.

7. Edit the new function, adding the code in Listing 10.1.

LISTING 10.1. THE CLine CONSTRUCTOR.

1: CLine::CLine(CPoint ptFrom, CPoint ptTo)
2: {
3: //Initialize the from and to points
4: m_ptFrom = ptFrom;
5: m_ptTo = ptTo;
6: }

014 31240-9 CH10 4/27/00 12:19 PM Page 204

Creating Single Document Interface Applications 205

10

In this object constructor, you are initializing the from and to points with the points that
were passed in to the constructor.

Drawing the CLine Class
To follow correct object-oriented design, your CLine class should be able to draw itself
so that when the view class needs to render the line for the user, it can just pass a mes-
sage to the line object, telling it to draw itself. To add this functionality, follow these
steps:

1. Add a new function to the CLine class by selecting Add Member Function from the
pop-up menu.

2. Specify the function type as void and the function declaration as Draw(CDC *pDC).

3. Add the code in Listing 10.2 to the Draw function you just added.

LISTING 10.2. THE CLine Draw FUNCTION.

1: void CLine::Draw(CDC * pDC)
2: {
3: // Draw the line
4: pDC->MoveTo(m_ptFrom);
5: pDC->LineTo(m_ptTo);
6: }

This function is taken almost directly from the application you built a week ago. It’s a
simple function that moves to the first point on the device context and then draws a line
to the second point on the device context.

Implementing the Document Functionality
Now that you have an object to use for representing the drawings made by the user, you
can store these CLine objects on the document object in a simple dynamic array. To hold
this array, you can add a CObArray member variable to the document class.

The CObArray class is an object array class that dynamically sizes itself to accommodate
the number of items placed in it. It can hold any objects that are descended from the
CObject class, and it is limited in size only by the amount of memory in the system.
Other dynamic array classes in MFC include CStringArray, CByteArray, CWordArray,
CDWordArray, and CPtrArray. These classes differ by the type of objects they can hold.

Add the CObArray to CDay10Doc, using the Add Member Variable Wizard and giving it a
name of m_oaLines.

014 31240-9 CH10 4/27/00 12:19 PM Page 205

Adding Lines
The first functionality that you need to add to the document class is the ability to add
new lines. This should be a simple process of getting the from and to points, creating a
new line object, and then adding it to the object array. To implement this function, add
a new member function to the CDay10Doc class, specifying the type as CLine* and the
declaration as AddLine(CPoint ptFrom, CPoint ptTo) with public access. Edit the
function, adding the code in Listing 10.3.

LISTING 10.3. THE CDay10Doc AddLine FUNCTION.

1: CLine * CDay10Doc::AddLine(CPoint ptFrom, CPoint ptTo)
2: {
3: // Create a new CLine object
4: CLine *pLine = new CLine(ptFrom, ptTo);
5: try
6: {
7: // Add the new line to the object array
8: m_oaLines.Add(pLine);
9: // Mark the document as dirty
10: SetModifiedFlag();
11: }
12: // Did we run into a memory exception?
13: catch (CMemoryException* perr)
14: {
15: // Display a message for the user, giving him or her the
16: // bad news
17: AfxMessageBox(“Out of memory”, MB_ICONSTOP | MB_OK);
18: // Did we create a line object?
19: if (pLine)
20: {
21: // Delete it
22: delete pLine;
23: pLine = NULL;
24: }
25: // Delete the exception object
26: perr->Delete();
27: }
28: return pLine;
29: }

At first, this function is understandable. You create a new CLine instance, passing the
from and to points as constructor arguments. Right after that, however, you have some-
thing interesting, the following flow control construct:

1: try
2: {
3: .

206 Day 10

014 31240-9 CH10 4/27/00 12:19 PM Page 206

Creating Single Document Interface Applications 207

10

4: .
5: .
6: }
7: catch (...)
8: {
9: .
10: .
11: .
12: }

What is this? This construct is an example of structured exception handling. Some code
could fail because of a factor beyond your control, such as running out of memory or
disk space, you can place a try section around the code that might have a problem. The
try section should always be followed by one or more catch sections. If a problem
occurs during the code in the try section, the program immediately jumps to the catch
sections. Each catch section specifies what type of exception it handles (in the case of
the AddLine function, it specifically handles memory exceptions only), and if there is a
matching catch section for the type of problem that did occur, that section of code is
executed to give the application a chance to recover from the problem. If there is no
catch section for the type of problem that did occur, your program jumps to a default
exception handler, which will most likely shut down your application. For more informa-
tion on structured exception handling, see Appendix A, “C++ Review.”

Within the try section, you add the new CLine instance to the array of line objects. Next,
you call the SetModifiedFlag function, which marks the document as “dirty” (unsaved)
so that if you close the application or open another file without saving the current draw-
ing first, the application prompts you to save the current drawing (with the familiar Yes,
No, Cancel message box).

In the catch section, you inform the user that the system is out of memory and then
clean up by deleting the CLine object and the exception object.

Finally, at the end of the function, you return the CLine object to the calling routine. This
enables the view object to let the line object draw itself.

Getting the Line Count
The next item you will add to the document class is a function to return the number of
lines in the document. This functionality is necessary because the view object needs to
loop through the array of lines, asking each line object to draw itself. The view object
will need to be able to determine the total number of lines in the document and retrieve
any specific line from the document.

Returning the number of lines in the document is a simple matter of returning the num-
ber of lines in the object array, so you can just return the return value from the GetSize

014 31240-9 CH10 4/27/00 12:19 PM Page 207

method of the CObArray class. To implement this function, add a new member function
to the CDay10Doc class, specifying the type as int and the declaration as GetLineCount
with public access. Edit the function, adding the code in Listing 10.4.

LISTING 10.4. THE CDay10Doc GetLineCount FUNCTION.

1: int CDay10Doc::GetLineCount()
2: {
3: // Return the array count
4: return m_oaLines.GetSize();
5: }

Retrieving a Specific Line
Finally, you need to add a function to return a specific line from the document. This is a
simple matter of returning the object at the specified position in the object array. To
implement this function, add a new member function to the CDay10Doc class, specifying
the type as CLine* and the declaration as GetLine(int nIndex) with public access. Edit
the function, adding the code in Listing 10.5.

LISTING 10.5. THE CDay10Doc GetLine FUNCTION.

1: CLine * CDay10Doc::GetLine(int nIndex)
2: {
3: // Return a pointer to the line object
4: // at the specified point in the object array
5: return (CLine*)m_oaLines[nIndex];
6: }

208 Day 10

Notice that the object being returned had to be cast as a pointer to a CLine
object. Because the CObArray class is an array of CObjects, every element
that is returned by the array is a CObject instance, not a CLine object
instance.

Note

Showing the User
Now that you have built the capability into the document class to hold the drawing, you
need to add the functionality to the view object to read the user’s drawing input and to
draw the image. The mouse events to capture the user input are almost identical to those
you created a week ago. The second part of the functionality that you need to implement

014 31240-9 CH10 4/27/00 12:19 PM Page 208

Creating Single Document Interface Applications 209

10

is drawing the image. You will make an addition to a function that already exists in the
view object class.

Before adding these functions, you need to add a member variable to the CDay10View
class to maintain the previous mouse point, just as you did a week ago. Add a member
variable to the CDay10View class through the workspace pane, specifying the type as
CPoint, the name as m_ptPrevPos, and the access as private.

Adding the Mouse Events
To add the mouse events to capture the user’s drawing efforts, open the Class Wizard and
add functions to the CDay10View class for the WM_LBUTTONDOWN, WM_LBUTTONUP, and
WM_MOUSEMOVE event messages. Edit the functions as in Listing 10.6.

LISTING 10.6. THE CDay10View MOUSE FUNCTIONS.

1: void CDay10View::OnLButtonDown(UINT nFlags, CPoint point)
2: {
3: // TODO: Add your message handler code here and/or call default
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Capture the mouse, so no other application can
10: // grab it if the mouse leaves the window area
11: SetCapture();
12: // Save the point
13: m_ptPrevPos = point;
14:
15: ///////////////////////
16: // MY CODE ENDS HERE
17: ///////////////////////
18:
19: CView::OnLButtonDown(nFlags, point);
20: }
21:
22: void CDay10View::OnLButtonUp(UINT nFlags, CPoint point)
23: {
24: // TODO: Add your message handler code here and/or call default
25:
26: ///////////////////////
27: // MY CODE STARTS HERE
28: ///////////////////////
29:
30: // Have we captured the mouse?

continues

014 31240-9 CH10 4/27/00 12:19 PM Page 209

LISTING 10.6. CONTINUED

31: if (GetCapture() == this)
32: // If so, release it so other applications can
33: // have it
34: ReleaseCapture();
35:
36: ///////////////////////
37: // MY CODE ENDS HERE
38: ///////////////////////
39:
40: CView::OnLButtonUp(nFlags, point);
41: }
42:
43: void CDay10View::OnMouseMove(UINT nFlags, CPoint point)
44: {
45: // TODO: Add your message handler code here and/or call default
46:
47: ///////////////////////
48: // MY CODE STARTS HERE
49: ///////////////////////
50:
51: // Check to see if the left mouse button is down
52: if ((nFlags & MK_LBUTTON) == MK_LBUTTON)
53: {
54: // Have we captured the mouse?
55: if (GetCapture() == this)
56: {
57: // Get the Device Context
58: CClientDC dc(this);
59:
60: // Add the line to the document
61: CLine *pLine = GetDocument()->AddLine(m_ptPrevPos, point);
62:
63: // Draw the current stretch of line
64: pLine->Draw(&dc);
65:
66: // Save the current point as the previous point
67: m_ptPrevPos = point;
68: }
69: }
70:
71: ///////////////////////
72: // MY CODE ENDS HERE
73: ///////////////////////
74:
75: CView::OnMouseMove(nFlags, point);
76: }

210 Day 10

014 31240-9 CH10 4/27/00 12:19 PM Page 210

Creating Single Document Interface Applications 211

10

In the OnLButtonDown function, the first thing you do is call the SetCapture function.
This function “captures” the mouse, preventing any other applications from receiving
any mouse events, even if the mouse leaves the window space of this application. This
enables the user to drag the mouse outside the application window while drawing and
then drag the mouse back into the application window, without stopping the drawing. All
mouse messages are delivered to this application until the mouse is released in the
OnLButtonUp function, using the ReleaseCapture function. In the meantime, by placing
the GetCapture function in an if statement and comparing its return value to this, you
can determine whether your application has captured the mouse. If you capture the
mouse, you want to execute the rest of the code in those functions; otherwise, you don’t.

In the OnMouseMove function, after you create your device context, you do several things
in a single line of code. The line

CLine *pLine = GetDocument()->AddLine(m_ptPrevPos, point);

creates a new pointer to a CLine class instance. Next, it calls the GetDocument function,
which returns a pointer to the document object. This pointer is used to call the document
class’s AddLine function, passing the previous and current points as arguments. The
return value from the AddLine function is used to initialize the CLine object pointer. The
CLine pointer can now be used to call the line object’s Draw function.

A pointer is the address of an object. It is used to pass an object more effi-
ciently around a program. Passing a pointer to an object, instead of the
object itself, is like telling someone that the remote control is “on the couch
between the second and third cushion, beside the loose pocket change”
instead of handing the remote to the person. Actually, in programming
terms, handing the remote to the person requires making an exact copy of
the remote and handing the copy to the other person. It is obviously more
efficient to tell the person where to find the remote than to manufacture
an exact copy of the remote.

The notation -> denotes that the object’s functions or properties are
accessed through a pointer, as opposed to directly through the object itself
with the period (.) notation.

Note

Drawing the Painting
In the view class, the function OnDraw is called whenever the image presented to the user
needs to be redrawn. Maybe another window was in front of the application window, the
window was just restored from being minimized, or a new document was just loaded
from a file. Why the view needs to be redrawn doesn’t matter. All you need to worry

014 31240-9 CH10 4/27/00 12:19 PM Page 211

about as the application developer is adding the code to the OnDraw function to render the
document that your application is designed to create.

Locate the OnDraw function in the CDay10View class and add the code in Listing 10.7.

LISTING 10.7. THE CDay10View OnDraw FUNCTION.

1: void CDay10View::OnDraw(CDC* pDC)
2: {
3: CDay10Doc* pDoc = GetDocument();
4: ASSERT_VALID(pDoc);
5:
6: // TODO: add draw code for native data here
7:
8: ///////////////////////
9: // MY CODE STARTS HERE
10: ///////////////////////
11:
12: // Get the number of lines in the document
13: int liCount = pDoc->GetLineCount();
14:
15: // Are there any lines in the document?
16: if (liCount)
17: {
18: int liPos;
19: CLine *lptLine;
20:
21: // Loop through the lines in the document
22: for (liPos = 0; liPos < liCount; liPos++)
23: {
24: // Get the from and to point for each line
25: lptLine = pDoc->GetLine(liPos);
26: // Draw the line
27: lptLine->Draw(pDC);
28: }
29: }
30:
31: ///////////////////////
32: // MY CODE ENDS HERE
33: ///////////////////////
34: }

In this function, the first thing you did was find out how many lines are in the document
to be drawn. If there aren’t any lines, then there is nothing to do. If there are lines in the
document, you loop through the lines using a for loop, getting each line object from
the document and then calling the line object’s Draw function.

212 Day 10

014 31240-9 CH10 4/27/00 12:19 PM Page 212

Creating Single Document Interface Applications 213

10

Before you can compile and run your application, you’ll need to include the header file
for the Cline class in the source code file for the document and view classes. To add this
to your application, edit both of these files (Day10Doc.cpp and Day10View.cpp), adding
the Line.h file to the includes, as shown in Listing 10.8.

LISTING 10.8. THE CDay10Doc includes.

1: #include “stdafx.h”
2: #include “Day10.h”
3: #include “MainFrm.h”
4: #include “Line.h”
5: #include “Day10Doc.h”

At this point, you should be able to compile and run your application, drawing figures in
it as shown in Figure 10.4. If you minimize the window and then restore it, or if you
place another application window in front of your application window, your drawing
should still be there when your application window is visible again (unlike the applica-
tion you built a week ago).

Saving and Loading the Drawing
Now that you can create drawings that don’t disappear the moment you look away, it’d
be nice if you could make them even more persistent. If you play with the menus on
your application, it appears that the Open, Save, and Save As menu entries on the File
menu activate, but they don’t seem to do anything. The printing menu entries all work,
but the entries for saving and loading a drawing don’t. Not even the New menu entry
works! Well, you can do something to fix this situation.

FIGURE 10.4.
Drawing with your
application.

014 31240-9 CH10 4/27/00 12:19 PM Page 213

Deleting the Current Drawing
If you examine the CDay10Doc class, you’ll see the OnNewDocument function that you can
edit to clear out the current drawing. Wrong! This function is intended for initializing
any class settings for starting work on a new drawing and not for clearing out an existing
drawing. Instead, you need to open the Class Wizard and add a function on the
DeleteContents event message. This event message is intended for clearing the current
contents of the document class. Edit this new function, adding the code in Listing 10.9.

LISTING 10.9. THE CDay10Doc DeleteContents FUNCTION.

1: void CDay10Doc::DeleteContents()
2: {
3: // TODO: Add your specialized code here and/or call the base class
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Get the number of lines in the object array
10: int liCount = m_oaLines.GetSize();
11: int liPos;
12:
13: // Are there any objects in the array?
14: if (liCount)
15: {
16: // Loop through the array, deleting each object
17: for (liPos = 0; liPos < liCount; liPos++)
18: delete m_oaLines[liPos];
19: // Reset the array
20: m_oaLines.RemoveAll();
21: }
22:
23: ///////////////////////
24: // MY CODE ENDS HERE
25: ///////////////////////
26:
27: CDocument::DeleteContents();
28: }

This function loops through the object array, deleting each line object in the array. Once
all the lines are deleted, the array is reset by calling its RemoveAll method. If you com-
pile and run your application, you’ll find that you can select File | New, and if you decide
not to save your current drawing, your window is wiped clean.

214 Day 10

014 31240-9 CH10 4/27/00 12:19 PM Page 214

Creating Single Document Interface Applications 215

10

Saving and Restoring the Drawing
Adding the functionality to save and restore your drawings is pretty easy to implement,
but it might not be so easy to understand. That’s okay; you’ll spend an entire day on
understanding saving and restoring files, also known as serialization, in three days. In the
meantime, find the Serialize function in the CDay10Doc class. The function should look
something like

1: void CDay10Doc::Serialize(CArchive& ar)
2: {
3: if (ar.IsStoring())
4: {
5: // TODO: add storing code here
6: }
7: else
8: {
9: // TODO: add loading code here
10: }
11: }

Remove all the contents of this function, and edit the function so that it looks like
Listing 10.10.

LISTING 10.10. THE CDay10Doc Serialize FUNCTION.

1: void CDay10Doc::Serialize(CArchive& ar)
2: {
3: ///////////////////////
4: // MY CODE STARTS HERE
5: ///////////////////////
6:
7: // Pass the serialization on to the object array
8: m_oaLines.Serialize(ar);
9:
10: ///////////////////////
11: // MY CODE ENDS HERE
12: ///////////////////////
13: }

This function takes advantage of the functionality of the CObArray class. This object
array will pass down its array of objects, calling the Serialize function on each of the
objects. This means that you need to add a Serialize function to the CLine class.
Specify it as a void function type with the declaration of Serialize(CArchive& ar).
Edit the function, adding the code in Listing 10.11.

014 31240-9 CH10 4/27/00 12:19 PM Page 215

LISTING 10.11. THE CLine Serialize FUNCTION.

1: void CLine::Serialize(CArchive &ar)
2: {
3: CObject::Serialize(ar);
4:
5: if (ar.IsStoring())
6: ar << m_ptFrom << m_ptTo;
7: else
8: ar >> m_ptFrom >> m_ptTo;
9: }

This function follows basically the same flow that the original Serialize function would
have followed in the CDay10Doc class. It uses the I/O stream functionality of C++ to save
and restore its contents.

At this point, if you compile and run your application, you expect the save and open
functions to work. Unfortunately, they don’t (yet). If you run your application and try to
save a drawing, a message box will tell you that the application was unable to save the
file, as in Figure 10.5.

The reason that you are unable to save your drawing is that Visual C++ must be told that
a class should be serializable. To do this, you add one line to the CLine class header file
and one line to the CLine source code file. Open the CLine header file (Line.h), and add
the DECLARE_SERIAL line in Listing 10.12 just after the first line of the class definition.

LISTING 10.12. THE Line.h EDIT FOR SERIALIZATION.

1: class CLine : public CObject
2: {
3: DECLARE_SERIAL (CLine)
4: public:
5: CLine(CPoint ptFrom, CPoint ptTo, UINT nWidth, COLORREF crColor);

Next, open the CLine source code file, and add the IMPLEMENT_SERIAL line in Listing 10.13
just before the class constructor functions.

216 Day 10

FIGURE 10.5.
Unable to save
drawings.

014 31240-9 CH10 4/27/00 12:19 PM Page 216

Creating Single Document Interface Applications 217

10

LISTING 10.13. THE Line.cpp EDIT FOR SERIALIZATION.

1: // Line.cpp: implementation of the CLine class.
2: //
3: //
4:
5: #include “stdafx.h”
6: #include “Day10.h”
7: #include “Line.h”
8:
9: #ifdef _DEBUG
10: #undef THIS_FILE
11: static char THIS_FILE[]=__FILE__;
12: #define new DEBUG_NEW
13: #endif
14:
15: IMPLEMENT_SERIAL (CLine, CObject, 1)
16: //
17: // Construction/Destruction
18: //
19:
20: CLine::CLine()
21: {
22:
23: }

Now if you compile and run your application, you should be able to draw your own self-
portrait and save it for posterity, as shown in Figure 10.6.

FIGURE 10.6.
My self-portrait.

014 31240-9 CH10 4/27/00 12:19 PM Page 217

Interacting with the Menu
Now that you have a working drawing program, it would be nice if the user could choose
the color with which she wants to draw. Adding this functionality requires making
changes in the CLine class to associate the color with the line and to CDay10Doc to main-
tain the currently selected color. Finally, you need to add a pull-down menu to select the
desired color.

Adding Color to the CLine Class
The changes to the CLine class are fairly straightforward. The first thing that you need to
do is to add another member variable to the CLine class to hold the color of each line.
Next, you need to modify the class constructor to add color to the list of attributes to be
passed in. Third, you need to modify the Draw function to use the specified color. Finally,
you need to modify the Serialize function to save and restore the color information
along with the point information. To do all these things, follow these steps:

1. Select the CLine class in the Class View tab of the workspace pane. Right-click the
mouse and select Add Member Variable from the pop-up menu.

2. Specify the variable type as COLORREF, the name as m_crColor, and the access as
private. Click OK to add the variable.

3. Right-click the CLine constructor in the Class View tree. Select Go to Declaration
from the pop-up menu.

4. Add COLORREF crColor as a third argument to the constructor declaration.

5. Right-click the CLine constructor in the Class View tree. Select Go to Definition
from the pop-up menu.

6. Modify the constructor to add the third argument and to set the m_crColor member
to the new argument, as in Listing 10.14.

LISTING 10.14. THE MODIFIED CLine CONSTRUCTOR.

1: CLine::CLine(CPoint ptFrom, CPoint ptTo, COLORREF crColor)
2: {
3: //Initialize the from and to points
4: m_ptFrom = ptFrom;
5: m_ptTo = ptTo;
6: m_crColor = crColor;
7: }

7. Scroll down to the Draw function and modify it as in Listing 10.15.

218 Day 10

014 31240-9 CH10 4/27/00 12:19 PM Page 218

Creating Single Document Interface Applications 219

10

LISTING 10.15. THE MODIFIED Draw FUNCTION.

1: void CLine::Draw(CDC * pDC)
2: {
3: // Create a pen
4: CPen lpen (PS_SOLID, 1, m_crColor);
5:
6: // Set the new pen as the drawing object
7: CPen* pOldPen = pDC->SelectObject(&lpen);
8: // Draw the line
9: pDC->MoveTo(m_ptFrom);
10: pDC->LineTo(m_ptTo);
11: // Reset the previous pen
12: pDC->SelectObject(pOldPen);
13: }

8. Scroll down to the Serialize function and modify it as in Listing 10.16.

LISTING 10.16. THE MODIFIED Serialize FUNCTION.

1: void CLine::Serialize(CArchive &ar)
2: {
3: CObject::Serialize(ar);
4:
5: if (ar.IsStoring())
6: ar << m_ptFrom << m_ptTo << (DWORD) m_crColor;
7: else
8: ar >> m_ptFrom >> m_ptTo >> (DWORD) m_crColor;
9: }

The only part of any of these steps that should be a surprise is that you are capturing the
return value from the SelectObject function when you are specifying the pen to use in
drawing the lines. You didn’t do this last week. The return value from the SelectObject
function is the pen that was in use before you changed it. This way, you can use the pre-
vious pen to restore it to the device context when you are done drawing.

Adding Color to the Document
The changes that you need to make to the CDay10Doc class are just slightly more exten-
sive than those made to the CLine class. You need to add a member variable to hold the
current color and a color table to convert color IDs into RGB values. You need to initial-
ize the current color variable in the OnNewDocument function. Then, you need to modify
the AddLine function to add the current color to the CLine constructor. Finally, you add a
function to return the current color. That’s all that you need to do for now until you start

014 31240-9 CH10 4/27/00 12:19 PM Page 219

adding menu message handlers for setting the current color. To do these things, follow
these steps:

1. Select the CDay10Doc class in the Class View tab on the workspace pane. Right-
click the mouse and choose Add Member Variable from the pop-up menu.

2. Specify the variable type as UINT, the name as m_nColor, and the access as private.
Click OK to add the variable.

3. Repeat step 1.

4. Specify the variable type as “static const COLORREF,” the name as
m_crColors[8], and the access as public.

5. Open the CDay10Doc source code (Day10Doc.cpp) and add the population of the
m_crColors color table as in Listing 10.17.

LISTING 10.17. THE COLOR TABLE SPECIFICATION.

1: //}}AFX_MSG_MAP
2: END_MESSAGE_MAP()
3:
4: const COLORREF CDay10Doc::m_crColors[8] = {
5: RGB(0, 0, 0), // Black
6: RGB(0, 0, 255), // Blue
7: RGB(0, 255, 0), // Green
8: RGB(0, 255, 255), // Cyan
9: RGB(255, 0, 0), // Red
10: RGB(255, 0, 255), // Magenta
11: RGB(255, 255, 0), // Yellow
12: RGB(255, 255, 255) // White
13: };
14:
15: //
16: // CDay10Doc construction/destruction
17:
18: CDay10Doc::CDay10Doc()
19: .
20: .
21: .
22: }

6. Scroll down to the OnNewDocument function and edit it as in Listing 10.18.

220 Day 10

014 31240-9 CH10 4/27/00 12:19 PM Page 220

Creating Single Document Interface Applications 221

10

LISTING 10.18. THE MODIFIED OnNewDocument FUNCTION.

1: BOOL CDay10Doc::OnNewDocument()
2: {
3: if (!CDocument::OnNewDocument())
4: return FALSE;
5:
6: // TODO: add reinitialization code here
7: // (SDI documents will reuse this document)
8:
9: ///////////////////////
10: // MY CODE STARTS HERE
11: ///////////////////////
12:
13: // Initialize the color to black
14: m_nColor = ID_COLOR_BLACK - ID_COLOR_BLACK;
15:
16: ///////////////////////
17: // MY CODE ENDS HERE
18: ///////////////////////
19:
20: return TRUE;
21: }

7. Scroll down to the AddLine function, and modify it as in Listing 10.19.

LISTING 10.19. THE MODIFIED AddLine FUNCTION.

1: CLine * CDay10Doc::AddLine(CPoint ptFrom, CPoint ptTo)
2: {
3: // Create a new CLine object
4: CLine *pLine = new CLine(ptFrom, ptTo, m_crColors[m_nColor]);
5: try
6: {
7: // Add the new line to the object array
8: m_oaLines.Add(pLine);
9: // Mark the document as dirty
10: SetModifiedFlag();
11: }
12: // Did we run into a memory exception?
13: catch (CMemoryException* perr)
14: {
15: // Display a message for the user, giving him or her the
16: // bad news
17: AfxMessageBox(“Out of memory”, MB_ICONSTOP | MB_OK);
18: // Did we create a line object?
19: if (pLine)

continues

014 31240-9 CH10 4/27/00 12:19 PM Page 221

LISTING 10.19. CONTINUED

20: {
21: // Delete it
22: delete pLine;
23: pLine = NULL;
24: }
25: // Delete the exception object
26: perr->Delete();
27: }
28: return pLine;
29: }

8. Add a new member function to the CDay10Doc class. Specify the function type as
UINT, the declaration as GetColor, and the access as public.

9. Edit the GetColor function, adding the code in Listing 10.20.

LISTING 10.20. THE GetColor FUNCTION.

1: UINT CDay10Doc::GetColor()
2: {
3: // Return the current color
4: return ID_COLOR_BLACK + m_nColor;
5: }

In the OnNewDocument and the GetColor functions, the color is added and subtracted
from ID_COLOR_BLACK. This is the lowest numbered color menu ID when you add the
menu entries. These calculations maintain the variable as a number between 0 and 7, but
when working with the menus, they allow comparison with the actual menu IDs.

Modifying the Menu
Now comes the fun part. You need to add a new pull-down menu to the main menu. You
need to add menu entries for all the colors in the color table. You need to add message
handlers for all the color menu entries. Finally, you need to add event handlers to check
the menu entry that is the current color. To do all of this, follow these steps:

1. Select the Resource View tab in the workspace pane. Expand the tree so that you
can see the contents of the Menu folder. Double-click the menu resource.

2. Grab the blank top-level menu (at the right end of the menu bar) and drag it to the
left, dropping it in front of the View menu entry.

3. Open the properties for the blank menu entry. Specify the caption as &Color. Close
the properties dialog.

222 Day 10

014 31240-9 CH10 4/27/00 12:19 PM Page 222

Creating Single Document Interface Applications 223

10

4. Add submenu entries below the Color top-level menu. Specify the submenus in
order, setting their properties as specified in Table 10.2. You should wind up with a
menu looking like Figure 10.7.

TABLE 10.2. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry ID ID_COLOR_BLACK

Caption &Black

Menu Entry ID ID_COLOR_BLUE

Caption B&lue

Menu Entry ID ID_COLOR_GREEN

Caption &Green

Menu Entry ID ID_COLOR_CYAN

Caption &Cyan

Menu Entry ID ID_COLOR_RED

Caption &Red

Menu Entry ID ID_COLOR_MAGENTA

Caption &Magenta

Menu Entry ID ID_COLOR_YELLOW

Caption &Yellow

Menu Entry ID ID_COLOR_WHITE

Caption &White

5. Open the Class Wizard. Select the CDay10Doc in the Class Name combo box.

6. Add functions for both the COMMAND and UPDATE_COMMAND_UI event messages for
all the color menu entries.

7. After the final menu entry function has been added, click Edit Code.

8. Edit the Black menu functions as in Listing 10.21.

FIGURE 10.7.
The Color menu as
designed.

014 31240-9 CH10 4/27/00 12:19 PM Page 223

LISTING 10.21. THE BLACK MENU FUNCTIONS.

1: void CDay10Doc::OnColorBlack()
2: {
3: // TODO: Add your command handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Set the current color to black
10: m_nColor = ID_COLOR_BLACK - ID_COLOR_BLACK;
11:
12: ///////////////////////
13: // MY CODE ENDS HERE
14: ///////////////////////
15: }
16:
17: void CDay10Doc::OnUpdateColorBlack(CCmdUI* pCmdUI)
18: {
19: // TODO: Add your command update UI handler code here
20:
21: ///////////////////////
22: // MY CODE STARTS HERE
23: ///////////////////////
24:
25: // Determine if the Black menu entry should be checked
26: pCmdUI->SetCheck(GetColor() == ID_COLOR_BLACK ? 1 : 0);
27:
28: ///////////////////////
29: // MY CODE ENDS HERE
30: ///////////////////////
31: }

9. Edit the Blue menu functions as in Listing 10.22. Edit the remaining menu func-
tions in the same way, substituting their menu IDs for ID_COLOR_BLUE.

LISTING 10.22. THE BLUE MENU FUNCTIONS.

1: void CDay10Doc::OnColorBlue()
2: {
3: // TODO: Add your command handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Set the current color to blue

224 Day 10

014 31240-9 CH10 4/27/00 12:19 PM Page 224

Creating Single Document Interface Applications 225

10

10: m_nColor = ID_COLOR_BLUE - ID_COLOR_BLACK;
11:
12: ///////////////////////
13: // MY CODE ENDS HERE
14: ///////////////////////
15: }
16:
17: void CDay10Doc::OnUpdateColorBlue(CCmdUI* pCmdUI)
18: {
19: // TODO: Add your command update UI handler code here
20:
21: ///////////////////////
22: // MY CODE STARTS HERE
23: ///////////////////////
24:
25: // Determine if the Blue menu entry should be checked
26: pCmdUI->SetCheck(GetColor() == ID_COLOR_BLUE ? 1 : 0);
27:
28: ///////////////////////
29: // MY CODE ENDS HERE
30: ///////////////////////
31: }

In the first of the two menu functions, the COMMAND function, the current color variable is
set to the new color. If you add the menu entries in the correct order, their ID numbers
are sequential, starting with ID_COLOR_BLACK. Subtracting ID_COLOR_BLACK from the
menu ID should always result in the correct position in the color table for the selected
color. For example, the Black color is position 0 in the color table. ID_COLOR_BLACK −
ID_COLOR_BLACK = 0. Blue is position 1 in the color table. Because ID_COLOR_BLUE
should be one greater than ID_COLOR_BLACK, ID_COLOR_BLUE — ID_COLOR_BLACK = 1.

The second function, the UPDATE_COMMAND_UI function, may need a little explaining. The
UPDATE_COMMAND_UI event is called for each menu entry just before it is displayed. You
can use this event message function to check or uncheck the menu entry, based on
whether it is the current color. You can also use this event to enable or disable menu
entries or make other modifications as necessary. The code in this function

pCmdUI->SetCheck(GetColor() == ID_COLOR_BLUE ? 1 : 0);

does several things. First, the pCmdUI object that is passed in as the only argument is a
pointer to a menu object. The SetCheck function can check or uncheck the menu entry,
depending on whether the argument passed is 1 or 0 (1 checks, 0 unchecks). The argu-
ment portion for the SetCheck function is a flow-control construct that can be somewhat

014 31240-9 CH10 4/27/00 12:19 PM Page 225

confusing if you haven’t spent a large amount of time programming in C/C++. The
first half

GetColor() == ID_COLOR_BLUE

is a simple boolean conditional statement. It results in a true or false result. The portion
following this conditional statement

? 1 : 0

is basically an if...else statement in shorthand. If the conditional statement is true,
then the value is 1, and if the statement is false, the value is 0. This is a fancy way of
placing an if..else flow control within the argument to another function.

If you compile and run your application, you should be able to change the color that you
are drawing with. When you pull down the color menu, you should see the current draw-
ing color checked on the menu, as in Figure 10.8.

Summary
Whew! What a day! You learned quite a bit today because this was a packed chapter.
You initially learned about the SDI style application and about a couple of standard
applications that you have probably used that are SDI applications. You next learned
about the Document/View architecture that Visual C++ uses for SDI applications. You
learned to create a simple class of your own for use in your drawing application. You
created a drawing application that can maintain the images drawn using it. You learned
how you can save and restore documents in the Document/View architecture. You also
learned about the CObArray object array class and how you can use it to create a dynamic
object array for storing various classes. Finally, you learned how you can check and
uncheck menu entries in MFC applications.

226 Day 10

FIGURE 10.8.
Specifying the current
color on the menu.

014 31240-9 CH10 4/27/00 12:19 PM Page 226

Creating Single Document Interface Applications 227

10

Q&A
Q Is there any way that you can reduce the number of COMMAND and UPDATE_

COMMAND_UI functions for the menus?

A Yes, you can send all the color COMMAND events to the same function. From there,
you can examine the nID value (which is passed as an argument) and compare it to
the menu IDs to determine which menu is calling the function. As a result, you can
write the COMMAND function for the color menus as follows:
void CDay10Doc::OnColorCommand(UINT nID)
{

// TODO: Add your command handler code here

///////////////////////
// MY CODE STARTS HERE
///////////////////////

// Set the current color to blue
m_nColor = nID - ID_COLOR_BLACK;

///////////////////////
// MY CODE ENDS HERE
///////////////////////

}

For the UPDATE_COMMAND_UI functions, you can do the same thing, only slightly
differently. In this case, you can examine the pCmdUI->m_nID value to determine
which menu the function is being called for. This makes the UPDATE_COMMAND_UI
function look like the following:
void CDay10Doc::OnUpdateColor(CCmdUI* pCmdUI)
{

// TODO: Add your command update UI handler code here

///////////////////////
// MY CODE STARTS HERE
///////////////////////

// Determine if the Blue menu entry should be checked
pCmdUI->SetCheck(GetColor() == pCmdUI->m_nID ? 1 : 0);

///////////////////////
// MY CODE ENDS HERE
///////////////////////

}

014 31240-9 CH10 4/27/00 12:19 PM Page 227

Q What’s the difference between SDI and MDI applications?

A Although SDI applications can perform only one task, MDI (Multiple Document
Interface) applications can have multiple documents open at the same time. Plus, in
an MDI application, not all document types need be the same. You’ll learn more
about MDI applications tomorrow.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What does SDI stand for?

2. What functionality is in the view class?

3. What function is called to redraw the document if the window has been hidden
behind another window?

4. Where do you place code to clear out the current document before starting a new
document?

5. What is the purpose of the document class?

Exercise
Add another pull-down menu to control the width of the pen used for drawing. Give it
the following settings:

Menu Entry Width Setting

Very Thin 1

Thin 8

Medium 16

Thick 24

Very Thick 32

228 Day 10

In the pen constructor, the second argument is the width.Tip

014 31240-9 CH10 4/27/00 12:19 PM Page 228

DAY 11

WEEK 2

Creating Multiple
Document Interface
Applications

Today, you will learn how to build Multiple Document Interface (MDI) appli-
cations using Visual C++. You will be able to build applications that allow
users to work on multiple documents at one time, switching between the win-
dows of the application to do their work. In this chapter, you will learn

• The difference between SDI and MDI applications.

• How to create an MDI application.

• How to send multiple menu entries to a single event-handling function.

• How to add a context menu to a Document/View style application.

What Is an MDI Application?
As far as coding an MDI application with Visual C++, there’s little difference
between creating an SDI and an MDI application. However, when you get

015 31240-9 CH11 4/27/00 12:28 PM Page 229

deeper into the two application styles, you’ll find quite a few differences. Although an
SDI application allows the user to work on only one document at a time, it also normally
limits the user to working on a specific type of document. MDI applications not only
enable the user to work on multiple documents at the same time, but also MDI applica-
tions can allow the user to work on multiple types of documents.

An MDI application uses a window-in-a-window style, where there is a frame window
around one or more child windows. This is a common application style with many popu-
lar software packages, including Word and Excel.

Architecturally, an MDI application is similar to an SDI application. In fact, with a sim-
ple MDI application, the only difference is the addition of a second frame class to the
other classes that the AppWizard creates, as shown in Figure 11.1. As you can see, the
Document/View architecture is still very much the approach you use for developing MDI
applications as well as SDI applications.

When you create an MDI application, you will create just one more class than you created
with an SDI application. The classes are

• The CWinApp derived class

• The CMDIFrameWnd derived class

• The CMDIChildWnd derived class

• The CDocument derived class

• The CView derived class

Document object
(CDocument)

Messages passed to the
frame window and view

object

Two-way flow of
information between

the document and the
view objects

Application object
(CWinApp)

Main Frame window
(CMainFrame)

Child Frame window

View object
(CView)

(CChildView)

230 Day 11

FIGURE 11.1.
The MDI Document/
View architecture.

015 31240-9 CH11 4/27/00 12:28 PM Page 230

Creating Multiple Document Interface Applications 231

11

The two MDI derived classes, CMDIFrameWnd (the CMainFrame class in your project) and
CMDIChildWnd (the CChildFrame class in your project), are the only two classes that are
different from the SDI application that you created.

The first of these two classes, the CMDIFrameWnd-derived CMainFrame, is the main frame
of the application. It provides an enclosed space on the desktop within which all applica-
tion interaction takes place. This frame window is the frame to which the menu and tool-
bars are attached.

The second of these two classes, the CMDIChildWnd-derived CChildFrame class, is the
frame that holds the CView class. It is the frame that passes messages and events to the
view class for processing or display.

In a sense, the functionality of the frame class in the SDI application has been split into
these two classes in an MDI application. There is additional support for running multiple
child frames with their own document/view class instances at the same time.

Creating an MDI Drawing Program
To get a good understanding of just how alike the Document/View architectures are for
the SDI and MDI applications, today you will implement that same drawing application
that you created yesterday, only this time as an MDI application.

Building the Application Shell
To create the application shell for today’s application, follow these steps:

1. Create a new AppWizard project. Name the project Day11.

2. On the first step of the AppWizard, select Multiple Documents, as shown in
Figure 11.2.

FIGURE 11.2.
Specifying an MDI
application.

015 31240-9 CH11 4/27/00 12:28 PM Page 231

3. Use the default values on the second step of the AppWizard.

4. On the third step of the AppWizard, uncheck the support for ActiveX Controls.

5. On the fourth step of the AppWizard, leave all the default values. Click the
Advanced button.

6. In the Advanced Options dialog, enter a three-letter file extension for the files that
your application will generate (for example, dhc or dvp). Click the Close button to
close the dialog and then click Next to move to the next step of the AppWizard.

7. Use the default settings on the fifth step of the AppWizard.

8. On the sixth and final AppWizard step, leave the base class as CView and click
Finish. The AppWizard generates the application shell.

Building the Drawing Functionality
Because you are creating the same application that you created yesterday, only as an
MDI application this time, you need to add the same functionality to the application that
you added yesterday. To save time, and to reemphasize how alike these two application
architectures are, perform the same steps you did yesterday to create the CLine class and
add the functionality to the CDay11Doc and CDay11View classes. Add the support into the
CDay11Doc and CLine classes for selecting colors and widths, but do not add any menu
event message handlers or create the color menu. When you finish adding all that func-
tionality, you should have an application in which you can open multiple drawings, all
drawing with only the color black.

232 Day 11

Because you haven’t created the menus yet, and the color initialization uses
the color menu IDs, you will probably have to hard-code the initialization of
the color to 0 to get your application to compile. Once you add the color
menu, the menu IDs should have been added, so you will be able to return
to using the IDs in your code. For the time being, change the line of code in
the OnNewDocument function in the CDay11Doc class from

m_nColor = ID_COLOR_BLACK - ID_COLOR_BLACK;

to

m_nColor = 0;

You will also need to make the same sort of change to the GetColor function
because it uses one of the color menu IDs also.

Caution

015 31240-9 CH11 4/27/00 12:28 PM Page 232

Creating Multiple Document Interface Applications 233

11

Adding Menu Handling Functionality
Now that you’ve got all the functionality in your application, you would probably like to
add the color menu so you can use all those available colors in your drawings. When you
expand the Resource View tree and look in the Menu folder, you’ll find not one, but two
menus defined. Which one do you add the color menu to?

The IDR_MAINFRAME menu is the menu that is available when no child windows are open.
If you run your application and close all child windows, you’ll see the menu change,
removing all the menus that apply to child windows. Once you open another document,
either by creating a new document or by opening an existing document, the menu
changes back, returning all the menus that apply to the documents.

The IDR_DAY11TYPE menu is the menu that appears when a child window is open. This
menu contains all the functions that apply to documents. Therefore, this is the menu that
you need to add the color menu to. Add the color menu by following the same directions
as yesterday, using the same menu properties.

Once you add all the menus, you need to add the menu event handlers. Today, you are
going to take a different approach to implementing the menu event handlers than you did
yesterday. The Q&A section at the end of yesterday’s chapter had a discussion of using a
single event-handler function for all the color menus. That is what you are going to
implement today. Unfortunately, the Class Wizard doesn’t understand how to route multi-
ple menu event messages to the same function correctly, so you’re going to implement
this yourself by following these steps:

1. Open the Day11Doc.h header file.

2. Scroll down toward the bottom of the header file until you find the protected sec-
tion where the AFX_MSG message map is declared (search for
//{{AFX_MSG(CDay11Doc)).

3. Add the function declarations in Listing 11.1 before the line that you searched for.
(The string that you searched for is the beginning marker for the Class Wizard
maintained message map. Anything you place between it and the end marker,
//}}AFX_MSG, is likely to be removed or corrupted by the Class Wizard.)

LISTING 11.1. THE EVENT-HANDLER DECLARATIONS IN Day11Doc.h.

.

.

.
1: #ifdef _DEBUG
2: virtual void AssertValid() const;

continues

015 31240-9 CH11 4/27/00 12:28 PM Page 233

LISTING 11.1. CONTINUED

3: virtual void Dump(CDumpContext& dc) const;
4: #endif
5:
6: protected:
7:
8: // Generated message map functions
9: protected:
10: afx_msg void OnColorCommand(UINT nID);
11: afx_msg void OnUpdateColorUI(CCmdUI* pCmdUI);
12: //{{AFX_MSG(CDay11Doc)
13: // NOTE - the ClassWizard will add and remove member functions
➥ here.
14: // DO NOT EDIT what you see in these blocks of generated
➥ code !
15: //}}AFX_MSG
16: DECLARE_MESSAGE_MAP()
17: private:
18: UINT m_nColor;
19: CObArray m_oaLines;
20: };

4. Open the Day11Doc.cpp source-code file.

5. Search for the line BEGIN_MESSAGE_MAP and add the lines in Listing 11.2 just after
it. It’s important that this code be between the BEGIN_MESSAGE_MAP line and the
//{{AFX_MSG_MAP line. If these commands are between the //{{AFX_MSG_MAP and
//}}AFX_MSG_MAP lines, then the Class Wizard will remove or corrupt them.

LISTING 11.2. THE EVENT-HANDLER MESSAGE MAP ENTRIES IN Day11Doc.cpp.

1: //
2: // CDay11Doc
3:
4: IMPLEMENT_DYNCREATE(CDay11Doc, CDocument)
5:
6: BEGIN_MESSAGE_MAP(CDay11Doc, CDocument)
7: ON_COMMAND_RANGE(ID_COLOR_BLACK, ID_COLOR_WHITE, OnColorCommand)
8: ON_UPDATE_COMMAND_UI_RANGE(ID_COLOR_BLACK, ID_COLOR_WHITE,

➥ OnUpdateColorUI)
9: //{{AFX_MSG_MAP(CDay11Doc)
10: // NOTE - the ClassWizard will add and remove mapping macros
➥ here.

234 Day 11

015 31240-9 CH11 4/27/00 12:28 PM Page 234

Creating Multiple Document Interface Applications 235

11

11: // DO NOT EDIT what you see in these blocks of generated
➥ code!
12: //}}AFX_MSG_MAP
13: END_MESSAGE_MAP()
14:
15: const COLORREF CDay11Doc::m_crColors[8] = {
16: RGB(0, 0, 0), // Black
17: RGB(0, 0, 255), // Blue
18: .
19: .
20: .

6. Scroll to the bottom of the file and add the two event message handler functions in
Listing 11.3.

LISTING 11.3. THE COLOR MENU EVENT-HANDLER FUNCTIONS.

1: void CDay11Doc::OnColorCommand(UINT nID)
2: {
3: // Set the current color
4: m_nColor = nID - ID_COLOR_BLACK;
5: }
6:
7: void CDay11Doc::OnUpdateColorUI(CCmdUI* pCmdUI)
8: {
9: // Determine if the menu entry should be checked
10: pCmdUI->SetCheck(GetColor() == pCmdUI->m_nID ? 1 : 0);
11: }

In Listing 11.1, the two function declarations that you added are specified as event mes-
sage handlers by the afx_msg function type declarations. These type of function declara-
tions need to have protected access. Otherwise, they are virtually identical to any other
class member function declaration.

In Listing 11.2, the two message map entries, ON_COMMAND_RANGE and
ON_UPDATE_COMMAND_UI_RANGE, are standard message map entries, but the Class Wizard
does not support or understand them. If you examine the message map entries from the
previous day’s applications, you will notice that there are ON_COMMAND and
ON_UPDATE_COMMAND_UI message map entries. These macros have two arguments, the mes-
sage ID and the event-handler function name that should be called for the event message.
These new message map entries function in the same way, but they have two event ID
arguments instead of one. The two event ID arguments mark the two ends of a range of

015 31240-9 CH11 4/27/00 12:28 PM Page 235

event IDs that should be passed to the function specified. These two event IDs should be
the first and last menu entries you created when building the color menu.

236 Day 11

The message map is a mechanism used by Visual C++ and MFC to easily
specify event messages and the functions that should be called to handle the
event. These message-map commands are converted by the Visual C++ com-
piler into a fast and efficient map for calling the appropriate event functions
when a message is received by the application. Whenever you add a function
through the Class Wizard, you are not only adding the function to the code,
but you are also adding an entry into the message map for that class.

Note

When you use the ON_COMMAND_RANGE message-map entry, the event message ID is auto-
matically passed as an argument to the event-handler function. This allows you to create
the function in Listing 11.3 to handle the color selection event messages. If you compile
and run your application at this point, you should find that the color selection functional-
ity is all working just as it did yesterday, as shown in Figure 11.3.

Adding a Context Menu
In most Windows applications, you can right-click the mouse and what is known as a
context menu, or pop-up menu, appears. Back on Day 6, “Creating Menus for Your
Application,” you implemented a simple pop-up menu. However, there is a mechanism
for creating and using these context menus when Windows thinks that the menu should
be opened. This process allows you to add context menus that behave more consistently

FIGURE 11.3.
Running the MDI
application.

015 31240-9 CH11 4/27/00 12:29 PM Page 236

Creating Multiple Document Interface Applications 237

11

with other Windows applications (and if Microsoft changes how the context menus are
triggered with a new version of Windows, yours will still behave according to the
Windows standard).

An event message WM_CONTEXTMENU is passed to the event queue when the right mouse
button is released or when the context menu button is pressed (if you have a newer
Windows-enabled keyboard with the context menu button). If you place an event-handler
function on the WM_CONTEXTMENU event message, you can display a pop-up menu with
confidence that you are showing it at the appropriate time.

To add the context menu to your application, you create a new menu for use as the con-
text menu. To do this, follow these steps:

1. In the Resource View tab on the workspace pane, right-click the Menu folder.

2. Select Insert Menu from the pop-up menu (or should I say context menu).

3. Select the new menu (still in the workspace pane), open its properties dialog, and
name the menu IDR_CONTEXTMENU.

4. In the Menu Designer, specify the top-level menu caption as a single space. This
causes Visual C++ to add the first entry in the drop-down portion of the menu.

5. In the first drop-down menu entry, specify the caption as &Width and check the
Pop-up check box. (This causes the ID combo box to be disabled and an arrow to
display beside the caption, along with another menu entry to the right of the menu
entry you are modifying.)

6. Do not add any menu entries into the Width cascading menu at this time (that is
left for an exercise at the end of the chapter). Instead, select the menu entry below
the Width entry and open its properties dialog. Specify the caption as &Colors and
check the Pop-up check box.

7. In the colors cascading menu, add the color menu entries as you did for the
IDR_DAY11TYPE menu, using the same property settings. You can select the ID from
the drop-down list of IDs, if you would rather search for them instead of type.
When you finish, your menu should look like the one in Figure 11.4.

8. Select the Class View tab in the workspace pane.

9. Select the CDay11View class. Open the Class Wizard by selecting View |
ClassWizard from the menu.

015 31240-9 CH11 4/27/00 12:29 PM Page 237

10. Add a function for the WM_CONTEXTMENU event message on the CDay11View class.

11. Edit the function, adding the code in Listing 11.4.

LISTING 11.4. THE CDay11View OnContextMenu FUNCTION.

1: void CDay11View::OnContextMenu(CWnd* pWnd, CPoint point)
2: {
3: // TODO: Add your message handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: CMenu menu;
10:
11: // Load the context menu
12: menu.LoadMenu(IDR_CONTEXTMENU);
13: // Get the first sub menu (the real menu)
14: CMenu *pContextMenu = menu.GetSubMenu(0);
15:
16: // Display the context menu for the user
17: pContextMenu->TrackPopupMenu(TPM_LEFTALIGN |
18: TPM_LEFTBUTTON | TPM_RIGHTBUTTON,
19: point.x, point.y, AfxGetMainWnd());
20:
21: ///////////////////////

238 Day 11

FIGURE 11.4.
The context menu
design.

015 31240-9 CH11 4/27/00 12:29 PM Page 238

Creating Multiple Document Interface Applications 239

11

22: // MY CODE ENDS HERE
23: ///////////////////////
24: }

This code should all look familiar to you from what you learned on Day 6. If you com-
pile and run your application now, you should be able to click your right mouse button
on the child window and change your drawing color from the context menu that opened,
as shown in Figure 11.5.

Summary
That wasn’t too bad; was it? After yesterday, you probably needed the easy day today,
along with all the review of what you did yesterday to help it all sink in. But you did get
to learn some new things today. You learned about MDI applications, what they are, and
how they differ from SDI applications. You learned how you could take a series of
menus and use a single event-handler function for all of them. You also learned how you
can create a menu specifically for use as a pop-up context menu and how you can inte-
grate it into an MDI application.

Q&A
Q Because it’s basically the same code to create an MDI or SDI application, why

would I want to create an SDI application? Why wouldn’t I want to make all
my applications MDI applications?

A It depends on the application and how it’s going to be used. You probably use both
types of applications on a daily basis. If you are writing a memo or working on a

FIGURE 11.5.
Using the context
menu to change
drawing colors.

015 31240-9 CH11 4/27/00 12:29 PM Page 239

240 Day 11

spreadsheet, you are probably using an MDI application. If you are browsing the
World Wide Web, your Web browser is most likely an SDI application. A simple
text editor such as Notepad would probably be more difficult for the user as an
MDI style application, but as an SDI application, it’s just about right (for the task it
handles). Certain applications make more sense implemented as an SDI application
than as an MDI application. You need to think through how your application is
going to be used and determine which model it’s more suited for.

Q Some entries on my color menu are changing to the wrong color. How can I
determine the problem?

A The problem is that the color menu IDs are probably not in sequential order or are
out of order. You can check them by right-clicking on the Day11 resources in the
Resource View tab of the workspace pane. Select Resource Symbols from the pop-
up menu to display a list of the IDs and the numbers assigned to them in alphabeti-
cal order. Start with the Black ID and make sure that the numbers increase by 1
without skipping any numbers. Be sure to check these IDs in the order that the col-
ors appear on the menu (and in the color table in the Day11Doc.cpp file), not in the
alphabetical order in which they are displayed in this list. If you find some errors,
you have to close Visual C++ and open the Resource.h file in a text editor to
renumber the IDs correctly. Once you make the corrections (be sure to delete any
duplicates), save your corrections, restart Visual C++, and recompile your applica-
tion. The color menu should work correctly.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What are the five base classes that are used in MDI applications?

2. Why do you have to place the ON_COMMAND_RANGE message map entry outside the
section maintained by the Class Wizard?

3. What argument does ON_COMMAND_RANGE pass to the event function?

4. What event message should you use to display a pop-up menu?

015 31240-9 CH11 4/27/00 12:29 PM Page 240

Creating Multiple Document Interface Applications 241

11

Exercise
Add the pull-down and context menus for the width, using the same pen widths as
yesterday.

015 31240-9 CH11 4/27/00 12:29 PM Page 241

015 31240-9 CH11 4/27/00 12:29 PM Page 242

DAY 12

WEEK 2

Adding Toolbars and
Status Bars

When you created your SDI and MDI applications, they not only came with
default menus already attached, but also they came with simple toolbars to go
with the menus. These simple toolbars had the standard set of functions (New,
Open, Save, Print, Cut, Copy, and Paste) that are on the toolbars of most
Windows applications. Most applications don’t limit their toolbars to just this
standard selection of functions but have customized toolbars that reflect the
specific functionality of the application.

In addition to the toolbars, the SDI and MDI applications have a status bar at
the bottom of the frame that provides textual descriptions of the toolbar buttons
and menu entries. The status bar also has default areas that display whether the
Caps, Num, and Scroll Lock keys are on.

Today, you will learn

● How to design your own toolbar.

● How to attach your toolbar to the application frame.

016 31240-9 CH12 4/27/00 12:29 PM Page 243

● How to show and hide your toolbar with a menu entry.

● How to place a combo box on your toolbar.

● How to display descriptions of your toolbar entries in the status bar.

● How to add your own status bar elements.

Toolbars, Status Bars, and Menus
One of the driving intentions behind the development of Graphical User Interfaces (GUI)
such as Windows was the goal of making computers easier to use and learn. In the effort
to accomplish this goal, GUI designers stated that all applications should use a standard
set of menus and that the menus should be organized in a standardized manner. When
Microsoft designed the Windows operating system, it followed this same philosophy,
using a standard set of menus organized in a standard order on most of its applications.

A funny thing happened once Windows became widely used. The application designers
found that new users still had a difficult time learning new applications and that
advanced users found the menus cumbersome. As a result, the application designers
invented toolbars as one solution to both problems.

A toolbar is a small band attached to the window frame or a dialog window that is float-
ing independent of the application frame. This band (or dialog) has a number of small
buttons containing graphic images that can be used in place of the menus. The applica-
tion designers place the most commonly used functions for their applications on these
toolbars and do their best to design graphical images that illustrate the functions the but-
tons serve.

Once advanced users learned what each of the toolbar buttons do, the toolbars were a hit.
However, novice users still had problems learning what the toolbar does. As a result, the
application designers went back to the drawing board to come up with ways to help the
new user learn how use the toolbar buttons.

One of the solutions was to use the information bar that many of them had begun placing
at the bottom of application windows to provide detailed descriptions of both menu
entries and toolbar buttons. One of the other solutions was to provide a little pop-up win-
dow with a short description of the button that appears whenever the mouse is positioned
over the button for more than a couple of seconds. The first of these solutions became
known as the status bar, and the second became known as tooltips. Both solutions are in
common practice with most Windows applications today.

If you want to design and use your own toolbars and status bars in your applications, you
might think that Visual C++ provides plenty of support for your efforts and even makes

244 Day 12

016 31240-9 CH12 4/27/00 12:29 PM Page 244

Adding Toolbars and Status Bars 245

12

it easy to implement. After all, Microsoft’s own application developers have been in the
forefront of developing these elements, and most, if not all, of Microsoft’s Windows
applications are developed using its own Visual C++. Well, you are correct in making
that assumption, and today, you’ll learn how to create your own custom toolbars and sta-
tus bars for your applications.

Designing a Toolbar
For learning how to create your own toolbar, you will modify the application that you
created on Day 10, “Creating Single Document Interface Applications,” the SDI drawing
application, to add a toolbar for selecting the color to use in drawing.

Although the sample application you are working with today is an extension
to the application you built on Day 10, all file and class names have been
changed from Day10 to Toolbar. If you are making the changes in the Day
10 project, then when the following text specifies that you make changes to
the CToolbarDoc class, you should make the changes to the CDay10Doc class.
Likewise, when you are asked to edit the Toolbar.rc file, you can edit the
Day10.rc file.

Note

If all you want to do is add a few additional toolbar buttons to the default toolbar that the
AppWizard creates when you start a new SDI or MDI application, you can pull up the
toolbar in the Visual C++ designer through the Resource View in the workspace pane
and begin adding new buttons. Just as in the Menu Designer, the end of the toolbar
always has a blank entry, waiting for you to turn it into another toolbar button, as shown
in Figure 12.1. All you have to do is select this blank button, drag it to the right if you
want a separator between it and the button beside it, or drag it to a different position if
you want it moved. After you have the button in the desired location, you paint an icon
on the button that illustrates the function that the button will trigger. Finally, double-
click the button in the toolbar view to open the button’s properties dialog and give the
button the same ID as the menu that it will trigger. The moment that you compile and
run your application, you will have a new toolbar button that performs a menu selection
that you chose. If you want to get rid of a toolbar button, just grab it on the toolbar view,
and drag it off the toolbar.

016 31240-9 CH12 4/27/00 12:30 PM Page 245

Creating a New Toolbar
To insert a new toolbar, right-click on the Toolbar folder and select Insert Toolbar from
the pop-up menu. This creates an empty toolbar with a single blank button. As you start
drawing an icon on each of the blank buttons in the toolbar, another blank button is
added on the end.

For use in your drawing application, fill eight buttons with the eight colors available in
the drawing application.

Once you draw icons on each of the buttons in your toolbar, double-click on the first but-
ton in the toolbar view. This should open the toolbar button properties dialog. In the ID
field, enter (or select from the drop-down list) the ID of the menu that this toolbar button
should trigger. In the Prompt field, enter the description that should appear in the status
bar for this toolbar button. (If you entered a prompt for the menu, then this field is auto-
matically populated with the menu description.) At the end of the status bar description,
add \n and a short description to appear in the tooltips for the toolbar button.

246 Day 12

FIGURE 12.1.
The toolbar designer.

016 31240-9 CH12 4/27/00 12:30 PM Page 246

Adding Toolbars and Status Bars 247

12

For example, for the black button on the toolbar that you are creating for your drawing
application, enter an ID of ID_COLOR_BLACK and a prompt of Black drawing
color\nBlack, as shown in Figure 12.2.

In C/C++, the \n string is a shorthand notation for “begin a new line.” In the
prompt for toolbar buttons and menu entries, this string is used to separate
the status bar descriptions of the menu entries and the tooltips pop-up
prompt that appears when the mouse is held over a toolbar button for a
few seconds. The first line of the prompt is used for the status bar descrip-
tion, and the second line is used for the tooltips description. The tooltips
description is only used with the toolbars, so there’s no reason to add this
for menu entries that will have no toolbar equivalents.

Note

FIGURE 12.2.
The toolbar button
properties dialog.

Once you finish designing your toolbar and have icons on all of your buttons with the
properties set for each button, you will change the toolbar ID. In the workspace pane,
right-click the new toolbar that you just added and open its properties dialog. Change the
toolbar ID to a descriptive name.

As an example, for the color toolbar that you created for your drawing application,
change the toolbar ID to IDR_TBCOLOR.

Attaching the Toolbar to the Application Frame
In the previous SDI and MDI applications, you didn’t add any functionality that required
you to touch the frame window. Well, because the toolbar is attached to the frame, you’ll
have to begin adding and modifying code in that module. If you open the CMainFrame
class to the OnCreate function, you’ll see where it’s creating the existing toolbar and
then later in this function where the toolbar is being attached to the frame.

Before you can add your toolbar to the application frame, you need to add a variable to
the CMainFrame class to hold the new toolbar. This variable of type CToolBar should be
protected in accessibility.

016 31240-9 CH12 4/27/00 12:30 PM Page 247

To add your color toolbar to your draw application, right-click the CMainFrame class in
the Class View tab of the workspace pane. Select Add Member Variable from the pop-up
menu, and specify the variable type as CToolBar, the name as m_wndColorBar, and the
access as protected.

After you add a variable for your toolbar, you need to add some code in the OnCreate
function in the CMainFrame class to add the toolbar and attach it to the frame. Make the
modifications in Listing 12.1 to add the color toolbar to your drawing application.

LISTING 12.1. THE MODIFIED CMainFrame.OnCreate FUNCTION.

1: int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
2: {
3: if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
4: return -1;
5:
6: if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT,

➥ WS_CHILD | WS_VISIBLE | CBRS_TOP
7: | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY |

➥ CBRS_SIZE_DYNAMIC) ||
8: !m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
9: {
10: TRACE0(“Failed to create toolbar\n”);
11: return -1; // fail to create
12: }
13:
14: ///////////////////////
15: // MY CODE STARTS HERE
16: ///////////////////////
17:
18: // Add the color toolbar
19: int iTBCtlID;
20: int i;
21:
22: // Create the Color Toolbar
23: if (!m_wndColorBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD |
24: WS_VISIBLE | CBRS_TOP | CBRS_GRIPPER | CBRS_TOOLTIPS |
25: CBRS_FLYBY | CBRS_SIZE_DYNAMIC) ||
26: !m_wndColorBar.LoadToolBar(IDR_TBCOLOR))
27: {
28: TRACE0(“Failed to create toolbar\n”);
29: return -1; // fail to create
30: }
31: // Find the Black button on the toolbar
32: iTBCtlID = m_wndColorBar.CommandToIndex(ID_COLOR_BLACK);
33: if (iTBCtlID >= 0)
34: {

248 Day 12

016 31240-9 CH12 4/27/00 12:30 PM Page 248

Adding Toolbars and Status Bars 249

12

35: // Loop through the buttons, setting them to act as radio
➥ buttons

36: for (i= iTBCtlID; i < (iTBCtlID + 8); i++)
37: m_wndColorBar.SetButtonStyle(i, TBBS_CHECKGROUP);
38: }
39:
40: ///////////////////////
41: // MY CODE ENDS HERE
42: ///////////////////////
43:
44: if (!m_wndStatusBar.Create(this) ||
45: !m_wndStatusBar.SetIndicators(indicators,
46: sizeof(indicators)/sizeof(UINT)))
47: {
48: TRACE0(“Failed to create status bar\n”);
49: return -1; // fail to create
50: }
51:
52: // TODO: Delete these three lines if you don’t want the toolbar to
53: // be dockable
54: m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
55:
56: ///////////////////////
57: // MY CODE STARTS HERE
58: ///////////////////////
59:
60: // Enable docking for the Color Toolbar
61: m_wndColorBar.EnableDocking(CBRS_ALIGN_ANY);
62:
63: ///////////////////////
64: // MY CODE ENDS HERE
65: ///////////////////////
66:
67: EnableDocking(CBRS_ALIGN_ANY);
68: DockControlBar(&m_wndToolBar);
69:
70: ///////////////////////
71: // MY CODE STARTS HERE
72: ///////////////////////
73:
74: // Dock the Color Toolbar
75: DockControlBar(&m_wndColorBar);
76:
77: ///////////////////////
78: // MY CODE ENDS HERE
79: ///////////////////////
80:
81: return 0;
82: }

016 31240-9 CH12 4/27/00 12:30 PM Page 249

Creating the Toolbar
The first part of the code you added,

if (!m_wndColorBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD |
WS_VISIBLE | CBRS_TOP | CBRS_GRIPPER | CBRS_TOOLTIPS |
CBRS_FLYBY | CBRS_SIZE_DYNAMIC) ||
!m_wndColorBar.LoadToolBar(IDR_TBCOLOR))

contains two separate functions that are necessary in creating a toolbar. The first func-
tion, CreateEx, creates the toolbar itself, whereas the second, LoadToolBar, loads the
toolbar that you designed in the toolbar designer. The second function, LoadToolBar,
requires a single argument, the ID for the toolbar that you want to create.

The CreateEx function has several arguments that you can pass with the function. The
first argument, and the only required argument, is a pointer to the parent window. In this
case (which is normally the case), this argument is a pointer to the frame window to
which the toolbar will be attached.

The second argument is the style of controls on the toolbar that is to be created. Several
toolbar control styles are available for use, some of which have been introduced with the
last two versions of Internet Explorer. Table 12.1 lists the available styles.

TABLE 12.1. TOOLBAR CONTROL STYLES.

Style Description

TBSTYLE_ALTDRAG Allows the user to move the toolbar by dragging it while holding
down the Alt key.

TBSTYLE_CUSTOMERASE Generates a NM_CUSTOMDRAW message when erasing the toolbar and
button background, allowing the programmer to choose when and
whether to control the background erasing process.

TBSTYLE_FLAT Creates a flat toolbar. Button text appears under the bitmap
image.

TBSTYLE_LIST Button text appears to the right of the bitmap image.

TBSTYLE_REGISTERDROP For use in dragging and dropping objects onto toolbar buttons.

TBSTYLE_TOOLTIPS Creates a tooltip control that can be used to display descriptive
text for the buttons.

TBSTYLE_TRANSPARENT Creates a transparent toolbar.

TBSTYLE_WRAPABLE Creates a toolbar that can have multiple rows of buttons.

The third argument is the style of the toolbar itself. This argument is normally a combi-
nation of window and control bar styles. Normally, only two or three window styles are
used, and the rest of the toolbar styles are control bar styles. The list of the normally
used toolbar styles appears in Table 12.2.

250 Day 12

016 31240-9 CH12 4/27/00 12:30 PM Page 250

Adding Toolbars and Status Bars 251

12

TABLE 12.2. TOOLBAR STYLES.

Style Description

WS_CHILD The toolbar is created as a child window.

WS_VISIBLE The toolbar will be visible when created.

CBRS_ALIGN_TOP Allows the toolbar to be docked to the top of the view area of the
frame window.

CBRS_ALIGN_BOTTOM Allows the toolbar to be docked to the bottom of the view area of
the frame window.

CBRS_ALIGN_LEFT Allows the toolbar to be docked to the left side of the view area
of the frame window.

CBRS_ALIGN_RIGHT Allows the toolbar to be docked to the right side of the view area
of the frame window.

CBRS_ALIGN_ANY Allows the toolbar to be docked to any side of the view area of
the frame window.

CBRS_BORDER_TOP Places a border on the top edge of the toolbar when the top of the
toolbar is not docked.

CBRS_BORDER_BOTTOM Places a border on the bottom edge of the toolbar when the top of
the toolbar is not docked.

CBRS_BORDER_LEFT Places a border on the left edge of the toolbar when the top of the
toolbar is not docked.

CBRS_BORDER_RIGHT Places a border on the right edge of the toolbar when the top of
the toolbar is not docked.

CBRS_FLOAT_MULTI Allows multiple toolbars to be floated in a single miniframe
window.

CBRS_TOOLTIPS Causes tooltips to be displayed for the toolbar buttons.

CBRS_FLYBY Causes status bar message text to be updated for the toolbar but-
tons at the same time as the tooltips.

CBRS_GRIPPER Causes a gripper to be drawn on the toolbar.

The fourth argument, which you did not provide in your code, is the size of the toolbar
borders. This argument is passed as a standard CRect rectangle class to provide the
length and height desired for the toolbar. The default value is 0 for all of the rectangle
dimensions, thus resulting in a toolbar with no borders.

The fifth and final argument, which you also did not provide in your code, is the tool-
bar’s child window ID. This defaults to AFX_IDW_TOOLBAR, but you can specify any
defined ID that you need or want to use for the toolbar.

016 31240-9 CH12 4/27/00 12:30 PM Page 251

Setting the Button Styles
After you create the toolbar, there is a curious bit of code:

// Find the Black button on the toolbar
iTBCtlID = m_wndColorBar.CommandToIndex(ID_COLOR_BLACK);
if (iTBCtlID >= 0)
{

// Loop through the buttons, setting them to act as radio buttons
for (i= iTBCtlID; i < (iTBCtlID + 8); i++)

m_wndColorBar.SetButtonStyle(i, TBBS_CHECKGROUP);
}

The first line in this code snippet uses the CommandToIndex toolbar function to locate the
control number of the ID_COLOR_BLACK button. If you design your toolbar in the order of
colors that you used on the menu, this should be the first control, with a index of 0. It’s
best to use the CommandToIndex function to locate the index of any toolbar button that
you need to alter, just in case it’s not where you expect it to be. This function returns the
index of the toolbar control specified, and you use this as a starting point to specify the
button style of each of the color buttons.

In the loop, where you are looping through each of the eight color buttons on the toolbar,
you use the SetButtonStyle function to control the behavior of the toolbar buttons. The
first argument to this function is the index of the button that you are changing. The sec-
ond argument is the style of button that you want for the toolbar button specified. In this
case, you are specifying that each of the buttons be TBBS_CHECKGROUP buttons, which
makes them behave like radio buttons, where only one of the buttons in the group can be
selected at any time. The list of the available button styles is in Table 12.3.

TABLE 12.3. TOOLBAR BUTTON STYLES.

Style Description

TBSTYLE_AUTOSIZE The button’s width will be calculated based on the text on the button.

TBSTYLE_BUTTON Creates a standard push button.

TBSTYLE_CHECK Creates a button that acts like a check box, toggling between the
pressed and unpressed state.

TBSTYLE_CHECKGROUP Creates a button that acts like a radio button, remaining in the
pressed state until another button in the group is pressed. This is
actually the combination of the TBSTYLE_CHECK and TBSTYLE_GROUP
button styles.

TBSTYLE_DROPDOWN Creates a drop-down list button.

TBSTYLE_GROUP Creates a button that remains pressed until another button in the
group is pressed.

252 Day 12

016 31240-9 CH12 4/27/00 12:30 PM Page 252

Adding Toolbars and Status Bars 253

12

Style Description

TBSTYLE_NOPREFIX The button text will not have an accelerator prefix associated with it.

TBSTYLE_SEP Creates a separator, making a small gap between the buttons on
either side.

Docking the Toolbar
The last thing that you do in the code that you add to the OnCreate function in the
CMainFrame class is the following:

// Enable docking for the Color Toolbar
m_wndColorBar.EnableDocking(CBRS_ALIGN_ANY);

EnableDocking(CBRS_ALIGN_ANY); // (AppWizard generated line)

// Dock the Color Toolbar
DockControlBar(&m_wndColorBar);

In the first of these lines, you called the EnableDocking toolbar function. This function
enables the toolbar for docking with the frame window. The value passed to this toolbar
function must match the value passed in the following EnableDocking function that is
called for the frame window. The available values for these functions are listed in Table
12.4. These functions enable the borders of the toolbar, and the frame window, for dock-
ing. If these functions are not called, then you will not be able to dock the toolbar with
the frame window. If a specific side is specified in these functions for use in docking,
and the sides do not match, you will not be able to dock the toolbar with the frame.

TABLE 12.4. TOOLBAR DOCKING SIDES.

Style Description

CBRS_ALIGN_TOP Allows the toolbar to be docked to the top of the view area of the
frame window.

CBRS_ALIGN_BOTTOM Allows the toolbar to be docked to the bottom of the view area of the
frame window.

CBRS_ALIGN_LEFT Allows the toolbar to be docked to the left side of the view area of
the frame window.

CBRS_ALIGN_RIGHT Allows the toolbar to be docked to the right side of the view area of
the frame window.

CBRS_ALIGN_ANY Allows the toolbar to be docked to any side of the view area of the
frame window.

CBRS_FLOAT_MULTI Allows multiple toolbars to be floated in a single miniframe window.

0 The toolbar will not be able to dock with the frame.

016 31240-9 CH12 4/27/00 12:30 PM Page 253

The final function that you added was a frame window function, DockControlBar, which
is passed the address of the toolbar variable. This function physically docks the toolbar
to the frame window. Because all of this code appears in the OnCreate function for the
frame window, the toolbar is docked before the user sees either the window or the tool-
bar.

Now, after adding all of this code to the OnCreate function of the CMainFrame class, if
you compile and run your application, you’ll find a working color toolbar that you can
use to select the drawing color, as shown in Figure 12.3.

254 Day 12

FIGURE 12.3.
The color toolbar on
the drawing pro-
gram.

Controlling the Toolbar Visibility
Now that you have your color toolbar on the frame of your drawing application, it would
be nice to be able to show and hide it just as you can the default toolbar and status bar
through the View menu. This is simple enough functionality to add, but it doesn’t neces-
sarily work the way you might expect it to.

The first thing you need to do is add a menu entry to toggle the visibility of the color
bar. Do this through the Menu Designer, adding a new menu entry on the View menu.
Specify the menu properties as shown in Table 12.5.

TABLE 12.5. COLOR BAR MENU PROPERTIES.

Property Setting

ID ID_VIEW_COLORBAR

Caption &Color Bar

Prompt Show or hide the colorbar\nToggle ColorBar

016 31240-9 CH12 4/27/00 12:30 PM Page 254

Adding Toolbars and Status Bars 255

12

Updating the Menu
To determine whether the toolbar is visible or hidden, you can get the current style of the
toolbar and mask out for the WS_VISIBLE style flag. If the flag is in the current toolbar
style, then the toolbar is visible. By placing this evaluation into the SetCheck function in
the UPDATE_COMMAND_UI event message handler, you can check and uncheck the color bar
menu entry as needed.

To add this functionality to your drawing program, add an event handler for the
UPDATE_COMMAND_UI event message on the ID_VIEW_COLOR menu. Be sure to add this
event-handler function into the CMainFrame class. (You’re still making all of your coding
changes so far in the frame class.) Edit the event-handler function, adding the code in
Listing 12.2.

LISTING 12.2. THE MODIFIED CMainFrame.OnUpdateViewColorbar FUNCTION.

1: void CMainFrame::OnUpdateViewColorbar(CCmdUI* pCmdUI)
2: {
3: // TODO: Add your command update UI handler code here
4: ///////////////////////
5: // MY CODE STARTS HERE
6: ///////////////////////
7:
8: // Check the state of the color toolbar
9: pCmdUI->SetCheck(((m_wndColorBar.GetStyle() & WS_VISIBLE) != 0));
10:
11: ///////////////////////
12: // MY CODE ENDS HERE
13: ///////////////////////
14: }

Toggling the Toolbar Visibility
Because the CToolBar class is derived from the CWnd class (via the CControlBar class),
you might think that you could call the ShowWindow function on the toolbar itself to show
and hide the toolbar. Well, you can, but the background for the toolbar will not be hidden
along with the toolbar. All the user would notice is the toolbar buttons appearing and dis-
appearing. (Of course, this might be the effect you are after, but your users might not like
it.)

Instead, you use a frame window function, ShowControlBar, to show and hide the tool-
bar. This function takes three arguments. The first argument is the address for the toolbar
variable. The second argument is a boolean, specifying whether to show the toolbar.

016 31240-9 CH12 4/27/00 12:30 PM Page 255

(TRUE shows the toolbar; FALSE hides the toolbar.) Finally, the third argument specifies
whether to delay showing the toolbar. (TRUE delays showing the toolbar; FALSE shows the
toolbar immediately.)

Once a toolbar is toggled on or off, you need to call another frame window function,
RecalcLayout. This function causes the frame to reposition all of the toolbars, status
bars, and anything else that is within the frame area. This is the function that causes the
color toolbar to move up and down if you toggle the default toolbar on and off.

To add this functionality to your drawing program, add an event handler for the COMMAND
event message on the ID_VIEW_COLOR menu. Be sure to add this event-handler function
into the CMainFrame class. (You’re still making all of your coding changes so far in the
frame class.) Edit the event-handler function, adding the code in Listing 12.3.

LISTING 12.3. THE MODIFIED CMainFrame.OnViewColorbar FUNCTION.

1: void CMainFrame::OnViewColorbar()
2: {
3: // TODO: Add your command handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8: BOOL bVisible;
9:
10: // Check the state of the color toolbar
11: bVisible = ((m_wndColorBar.GetStyle() & WS_VISIBLE) != 0);
12:
13: // Toggle the color bar
14: ShowControlBar(&m_wndColorBar, !bVisible, FALSE);
15: // Reshuffle the frame layout
16: RecalcLayout();
17:
18: ///////////////////////
19: // MY CODE ENDS HERE
20: ///////////////////////
21: }

At this point, after compiling and running your application, you should be able to toggle
your color toolbar on and off using the View menu.

256 Day 12

016 31240-9 CH12 4/27/00 12:30 PM Page 256

Adding Toolbars and Status Bars 257

12

Adding a Combo Box to a Toolbar
It’s commonplace now to use applications that have more than just buttons on toolbars.
Look at the Visual C++ Developer Studio, for example. You’ve got combo boxes that
enable you to navigate through your code by selecting the class, ID, and function to edit
right on the toolbar. So how do you add a combo box to a toolbar? It’s not available in
the toolbar designer; all you have there are buttons that you can paint icons on. You can’t
add a combo box to any toolbar by using any of the Visual C++ wizards. You have to
write a little C++ code to do it.

To learn how to add a combo box to a toolbar, you’ll add a combo box to the color tool-
bar you just created. The combo box will be used to select the width of the pen the user
will use to draw images. (If you haven’t added the support for different drawing widths
from the exercise at the end of Day 10, you might want to go back and add that now.)

Editing the Project Resources
To add a combo box to your toolbar, the first thing that you need to do is what Visual
C++ was designed to prevent you from having to do. You need to edit the resource file
yourself. You cannot do this through the Visual C++ Developer Studio. If you try to open
the resource file in the Developer Studio, you will be popped into the Resource View tab
of the workspace pane, editing the resource file through the various resource editors and
designers. No, you’ll have to edit this file in another editor, such as Notepad.

Close Visual C++, the only way to guarantee that you don’t write over your changes.
Open Notepad and navigate to your project directory. Open the resource file, which is
named after the project with a .rc filename extension. Once you open this file in
Notepad, scroll down until you find the toolbar definitions. (You can search for the word
“toolbar.”) Once you’ve found the toolbar definitions, go to the end of the Color toolbar
definition and add two separator lines at the bottom of the toolbar definition.

For instance, to make these changes to your drawing application, you need to navigate to
the Toolbar project directory and then open the Toolbar.rc file. (If you are adding these
toolbars to the MDI drawing application, you need to look for the Day11.rc file.) Search
for the toolbar section, and then add two SEPARATOR lines just before the end of the
IDR_TBCOLOR section, as shown in Listing 12.4. Once you add these two lines, save the
file, exit Notepad, and restart Visual C++, reloading the project.

016 31240-9 CH12 4/27/00 12:30 PM Page 257

LISTING 12.4. THE MODIFIED PROJECT RESOURCE FILE (Toolbar.rc).

1: //
2: //
3: // Toolbar
4: //
5:
6: IDR_MAINFRAME TOOLBAR DISCARDABLE 16, 15
7: BEGIN
8: BUTTON ID_FILE_NEW
9: BUTTON ID_FILE_OPEN
10: BUTTON ID_FILE_SAVE
11: SEPARATOR
12: BUTTON ID_EDIT_CUT
13: BUTTON ID_EDIT_COPY
14: BUTTON ID_EDIT_PASTE
15: SEPARATOR
16: BUTTON ID_FILE_PRINT
17: BUTTON ID_APP_ABOUT
18: END
19:
20: IDR_TBCOLOR TOOLBAR DISCARDABLE 16, 15
21: BEGIN
22: BUTTON ID_COLOR_BLACK
23: BUTTON ID_COLOR_BLUE
24: BUTTON ID_COLOR_GREEN
25: BUTTON ID_COLOR_CYAN
26: BUTTON ID_COLOR_RED
27: BUTTON ID_COLOR_MAGENTA
28: BUTTON ID_COLOR_YELLOW
29: BUTTON ID_COLOR_WHITE
30: SEPARATOR
31: SEPARATOR
32: END

You added these two SEPARATOR lines in the toolbar definition so that the second separa-
tor can act as a place holder for the combo box that you are going to add to the toolbar.
There are two reasons that you had to make this edit by hand and not use the Visual C++
toolbar designer. The first reason is that the toolbar designer would not allow you to add
more than one separator to the end of the toolbar. The second reason is that, if you don’t
add anything else on the end of your toolbar after the separator, the toolbar designer
decides that the separator is a mistake and removes it for you. In other words, the Visual
C++ toolbar designer does not allow you to add the place holder for the combo box to
your toolbar.

258 Day 12

016 31240-9 CH12 4/27/00 12:30 PM Page 258

Adding Toolbars and Status Bars 259

12

Next, you need to add the text strings that you will load into your combo box. To add
these strings, you need to open the string table in the Resource View of the workspace
pane. Here you find all of the strings that you entered as prompts in various properties
dialogs. This table has a number of IDs, the values of those IDs, and textual strings that
are associated with those IDs, as shown in Figure 12.4. You’ll need to add the strings to
be placed into your toolbar combo box in the string table; each line in the drop-down list
must have a unique ID and entry in the strings table.

FIGURE 12.4.
The string table
editor.

For instance, to add the strings for the combo box that you will be adding to the color
toolbar, insert a new string, either by selecting Insert|New String from the menu or by
right-clicking the string table and selecting New String from the pop-up menu.

In the String properties dialog, specify a string ID for the string and then enter the string
to appear in the drop-down list. Close the properties dialog to add the string. For the
strings in the Width combo box that you are going to add to the color toolbar, add the
strings in Table 12.6.

016 31240-9 CH12 4/27/00 12:30 PM Page 259

TABLE 12.6. WIDTH TOOLBAR COMBO BOX STRINGS.

ID Caption

IDS_WIDTH_VTHIN Very Thin

IDS_WIDTH_THIN Thin

IDS_WIDTH_MEDIUM Medium

IDS_WIDTH_THICK Thick

IDS_WIDTH_VTHICK Very Thick

Creating the Toolbar Combo Box
Before you can add the combo box to the color toolbar, you need to create a combo box
variable that you can use for the combo box. Because you are not able to add this combo
box through any of the designers, you need to add it as a variable to the CMainFrame
class.

To add the combo box variable to the main frame class for the color toolbar, select the
Class View tab in the workspace pane. Right-click the CMainFrame class and select Add
Member Variable from the pop-up menu. Specify the variable type as CComboBox, the
name as m_ctlWidth, and the access as protected.

Once you add the combo box variable to the main frame class, you need to perform a
series of actions, all once the toolbar has been created:

1. Set the width and the ID of the combo box place holder on the toolbar to the width
and ID of the combo box.

2. Get the position of the toolbar placeholder and use it to size and position the
combo box.

3. Create the combo box, specifying the toolbar as the parent window of the combo
box.

4. Load the strings into the drop-down list on the combo box.

To organize this so that it doesn’t get too messy, it might be advisable to move the cre-
ation of the color toolbar to its own function that can be called from the OnCreate func-
tion of the main frame class. To create this function, right-click the CMainFrame class in
the workspace pane and select Add Member Function from the pop-up menu. Specify the
function type as BOOL, the function description as CreateColorBar, and the access as
public. Edit the new function, adding the code in Listing 12.5.

260 Day 12

016 31240-9 CH12 4/27/00 12:30 PM Page 260

Adding Toolbars and Status Bars 261

12

LISTING 12.5. THE CMainFrame CreateColorBar FUNCTION.

1: BOOL CMainFrame::CreateColorBar()
2: {
3: int iTBCtlID;
4: int i;
5:
6: if (!m_wndColorBar.CreateEx(this, TBSTYLE_FLAT,

➥ WS_CHILD | WS_VISIBLE | CBRS_TOP
7: | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY |

➥ CBRS_SIZE_DYNAMIC) ||
8: !m_wndColorBar.LoadToolBar(IDR_TBCOLOR))
9: {
10: TRACE0(“Failed to create toolbar\n”);
11: return FALSE; // fail to create
12: }
13: iTBCtlID = m_wndColorBar.CommandToIndex(ID_COLOR_BLACK);
14: if (iTBCtlID >= 0)
15: {
16: for (i= iTBCtlID; i < (iTBCtlID + 8); i++)
17: m_wndColorBar.SetButtonStyle(i, TBBS_CHECKGROUP);
18: }
19: // Add the Combo
20: int nWidth = 100;
21: int nHeight = 125;
22:
23: // Configure the combo place holder
24: m_wndColorBar.SetButtonInfo(9, IDC_CBWIDTH, TBBS_SEPARATOR,

➥ nWidth);
25:
26: // Get the colorbar height
27: CRect rect;
28: m_wndColorBar.GetItemRect(9, &rect);
29: rect.bottom = rect.top + nHeight;
30:
31: // Create the combo box
32: m_ctlWidth.Create(WS_CHILD | WS_VISIBLE | WS_VSCROLL |
33: CBS_DROPDOWNLIST, rect, &m_wndColorBar, IDC_CBWIDTH);
34:
35: // Fill the combo box
36: CString szStyle;
37: if (szStyle.LoadString(IDS_WIDTH_VTHIN))
38: m_ctlWidth.AddString((LPCTSTR)szStyle);
39: if (szStyle.LoadString(IDS_WIDTH_THIN))
40: m_ctlWidth.AddString((LPCTSTR)szStyle);
41: if (szStyle.LoadString(IDS_WIDTH_MEDIUM))
42: m_ctlWidth.AddString((LPCTSTR)szStyle);
43: if (szStyle.LoadString(IDS_WIDTH_THICK))

continues

016 31240-9 CH12 4/27/00 12:30 PM Page 261

LISTING 12.5. CONTINUED

44: m_ctlWidth.AddString((LPCTSTR)szStyle);
45: if (szStyle.LoadString(IDS_WIDTH_VTHICK))
46: m_ctlWidth.AddString((LPCTSTR)szStyle);
47:
48: return TRUE;
49: }

On line 24 in Listing 12.5, you specify that the combo box should be created using the
object ID IDC_CBWIDTH. This object ID is used to identify the combo box when the
combo box sends an event message to the application or when you need to specify what
list entry is displayed in the edit field. However, this object ID doesn’t exist in your
application. Before you can compile the application, you’ll need to add this ID to the
project resource IDs, just as you did on Day 4, “Working with Timers.” To add this ID to
your project, select the Resource view in the workspace pane. Select the top of the
resource tree and right-click the mouse to trigger the context menu. Select Resource
Symbols from the pop-up menu and add the object ID IDC_CBWIDTH. Make sure that you
add the new object ID with a unique numerical value so that it won’t conflict with any
other objects in use in your application.

Configuring the Placeholder
After creating the toolbar and configuring all of the toolbar buttons, the first thing you
need to do is to configure the separator that is acting as the place holder for the combo
box you are about to create. You do this with the SetButtonInfo toolbar function, as fol-
lows:

m_wndColorBar.SetButtonInfo(9, IDC_CBWIDTH, TBBS_SEPARATOR, nWidth);

This function takes four arguments. The first argument is the current index of the control
in the toolbar—in this case, the tenth control in the toolbar (eight color buttons and two
separators). The second argument is the new ID of the toolbar control. This is the ID that
will be placed in the event message queue when a control event occurs. The third argu-
ment is the type of toolbar control this control should be. The fourth and final argument
is somewhat deceptive. If you look at the function documentation, the fourth argument is
the new index of the control in the toolbar. This is the position to which the control will
be moved. However, if the control is a separator, this argument specifies the width of the
control and doesn’t move it anywhere. Because this toolbar control is a separator, this
argument has the effect of setting it to be as wide as the combo box that you are going to
create.

262 Day 12

016 31240-9 CH12 4/27/00 12:30 PM Page 262

Adding Toolbars and Status Bars 263

12

Getting the Toolbar Combo Box Position
Now that you have configured the toolbar separator as the place holder for the combo
box, you need to get the position of the combo box place holder on the toolbar so that
you can use it to set the position of the combo box:

m_wndColorBar.GetItemRect(9, &rect);
rect.bottom = rect.top + nHeight;

In the first line, you called the toolbar function GetItemRect to get the position and size
of the placeholder for the combo box. In the next line, you added the height of the drop-
down list to the height that the combo box will eventually be.

Creating the Combo Box
Now that you’ve got a place holder sized correctly, and you have the position and size
for the combo box, it’s time to create the combo box. You do this with the Create combo
box function, as follows:

m_ctlWidth.Create(WS_CHILD | WS_VISIBLE | WS_VSCROLL |
CBS_DROPDOWNLIST, rect, &m_wndColorBar, IDC_CBWIDTH);

The first argument to the combo box Create function is the combo box style. Normally,
several style flags are combined to create a combination style value. Table 12.7 lists the
flags that you can use in this value.

TABLE 12.7. COMBO BOX STYLES.

Style Description

WS_CHILD Designates this as a child window (required).

WS_VISIBLE Makes the combo box visible.

WS_DISABLED Disables the combo box.

WS_VSCROLL Adds vertical scrolling to the drop-down list.

WS_HSCROLL Adds horizontal scrolling to the drop-down list.

WS_GROUP Groups controls.

WS_TABSTOP Includes the combo box in the tabbing order.

CBS_AUTOHSCROLL Automatically scrolls the text in the edit control to the right when the
user types a character at the end of the line. This allows the user to
enter text wider than the edit control into the combo box.

CBS_DROPDOWN Similar to CBS_SIMPLE, but the list is not displayed unless the user
selects the icon next to the edit control.

continues

016 31240-9 CH12 4/27/00 12:30 PM Page 263

TABLE 12.7. CONTINUED

Style Description

CBS_DROPDOWNLIST Similar to CBS_DROPDOWN, but the edit control is replaced with a
static-text item displaying the currently selected item in the list.

CBS_HASSTRINGS The owner of the list box is responsible for drawing the list box con-
tents. The list box items consist of strings.

CBS_OEMCONVERT Text entered in the edit control is converted from ANSI to the OEM
character set and then back to ANSI.

CBS_OWNERDRAWFIXED The owner of the list box is responsible for drawing the list box con-
tents. The contents of the list are fixed in height.

CBS_OWNERDRAWVARIABLE The owner of the list box is responsible for drawing the list box con-
tents. The contents of the list are variable in height.

CBS_SIMPLE The list box is displayed at all times.

CBS_SORT Automatically sorts the strings in the list box.

CBS_DISABLENOSCROLL List shows a disabled scrollbar when there are not enough items in
the list to require scrolling.

CBS_NOINTEGRALHEIGHT Specifies that the combo box is exactly the size specified.

The second argument is the rectangle that the combo box is to occupy. This argument is
the position within the parent window—in this case, the toolbar—that the combo box
will stay in. It will move with the parent window (the toolbar), staying in this position
the entire time.

The third argument is a pointer to the parent window. This is the address of the color
toolbar variable.

The fourth argument is the object ID for the combo box.

Populating the Combo Box
The final action that you have to do in creating the combo box on the color toolbar is
populate the drop-down list with the available items that the user can select from. You do
this with the combination of two functions:

if (szStyle.LoadString(IDS_WIDTH_VTHIN))
m_ctlWidth.AddString((LPCTSTR)szStyle);

The first function is a CString function, LoadString. This function takes a string ID and
loads the string matching the ID from the string table. The second function is a combo
box function, AddString, which adds the string passed in as an argument to the drop-
down list. By calling this function combination for each of the elements that should be in
the drop-down list, you can populate the combo box from the application string table.

264 Day 12

016 31240-9 CH12 4/27/00 12:30 PM Page 264

Adding Toolbars and Status Bars 265

12

Updating the OnCreate Function
After moving all of the code to create the color toolbar to a separate function, you can
update the OnCreate function so that it calls the CreateColorBar function where it used
to create the color toolbar, as in Listing 12.6.

LISTING 12.6. THE MODIFIED CMainFrame.OnCreate FUNCTION.

1: int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
2: {
3: if (CFrameWnd::OnCreate(lpCreateStruct) == -1)
4: return -1;
5:
6: if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT,

➥ WS_CHILD | WS_VISIBLE | CBRS_TOP
7: | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY |

➥ CBRS_SIZE_DYNAMIC) ||
8: !m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
9: {
10: TRACE0(“Failed to create toolbar\n”);
11: return -1; // fail to create
12: }
13:
14: ///////////////////////
15: // MY CODE STARTS HERE
16: ///////////////////////
17:
18: // Add the color toolbar
19: if (!CreateColorBar())
20: {
21: TRACE0(“Failed to create color toolbar\n”);
22: return -1; // fail to create
23: }
24:
25: ///////////////////////
26: // MY CODE ENDS HERE
27: ///////////////////////
28:
29: if (!m_wndStatusBar.Create(this) ||
30: !m_wndStatusBar.SetIndicators(indicators,
31: sizeof(indicators)/sizeof(UINT)))
32: {
33: TRACE0(“Failed to create status bar\n”);
34: return -1; // fail to create
35: }
36:
37: // TODO: Delete these three lines if you don’t want the toolbar to
38: // be dockable
39: m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);

continues

016 31240-9 CH12 4/27/00 12:30 PM Page 265

LISTING 12.6. CONTINUED

40:
41: ///////////////////////
42: // MY CODE STARTS HERE
43: ///////////////////////
44:
45: // Enable docking for the Color Toolbar
46: m_wndColorBar.EnableDocking(CBRS_ALIGN_ANY);
47:
48: ///////////////////////
49: // MY CODE ENDS HERE
50: ///////////////////////
51:
52: EnableDocking(CBRS_ALIGN_ANY);
53: DockControlBar(&m_wndToolBar);
54:
55: ///////////////////////
56: // MY CODE STARTS HERE
57: ///////////////////////
58:
59: // Dock the Color Toolbar
60: DockControlBar(&m_wndColorBar);
61:
62: ///////////////////////
63: // MY CODE ENDS HERE
64: ///////////////////////
65:
66: return 0;
67: }

Now when you compile and run your application, you should have a combo box on the
end of your color toolbar, as in Figure 12.5. However, the combo box doesn’t do any-
thing yet.

266 Day 12

FIGURE 12.5.
The color toolbar
with a width combo
box.

016 31240-9 CH12 4/27/00 12:30 PM Page 266

Adding Toolbars and Status Bars 267

12

Handling the Toolbar Combo Box Events
Adding an event handler for the combo box is fairly simple, although it does have to be
done by hand (because the Class Wizard doesn’t even know that the combo box exists).
You have to add an ON_CBN_SELCHANGE entry into the message map and then add the
actual message-handler function into the CMainFrame class.

To start with, add the message-handler function by selecting the CMainFrame class in
the workspace pane and selecting New Member Function from the pop-up menu.
Enter the function type as afx_msg void, the function definition as OnSelChangeWidth,
and the access as protected. Edit the new function as in Listing 12.7.

LISTING 12.7. THE OnSelChangeWidth FUNCTION.

1: void CMainFrame::OnSelChangeWidth()
2: {
3: // Get the new combo selection
4: int nIndex = m_ctlWidth.GetCurSel();
5: if (nIndex == CB_ERR)
6: return;
7:
8: // Get the active document
9: CToolbarDoc* pDoc = (CToolbarDoc*)GetActiveDocument();
10: // Do we have a valid document?
11: if (pDoc)
12: // Set the new drawing width
13: pDoc->SetWidth(nIndex);
14:
15: }

In this function, you first get the current selection from the combo box. Remember that
the entries were added in order, and the CBS_SORT flag was not specified in the combo
box creation, so the selection index numbers should correspond to the widths in the doc-
ument. As a result, you can get a pointer to the current document instance, using the
GetActiveDocument function, and then pass the new width to the document using its
SetWidth function.

For the combo box selection changes to call this message-handler function, you need to
add the appropriate entry to the CMainFrame message map. Scroll to the top of the
CMainFrame source code until you find the message map section. Add line 12 in Listing
12.8 to the message map.

016 31240-9 CH12 4/27/00 12:30 PM Page 267

LISTING 12.8. THE MODIFIED CMainFrame MESSAGE MAP.

1:///
2: // CMainFrame
3:
4: IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)
5:
6: BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
7: //{{AFX_MSG_MAP(CMainFrame)
8: ON_WM_CREATE()
9: ON_COMMAND(ID_VIEW_COLORBAR, OnViewColorbar)
10: ON_UPDATE_COMMAND_UI(ID_VIEW_COLORBAR, OnUpdateViewColorbar)
11: //}}AFX_MSG_MAP
12: ON_CBN_SELCHANGE(IDC_CBWIDTH, OnSelChangeWidth)
13: END_MESSAGE_MAP()

This message map entry

ON_CBN_SELCHANGE(IDC_CBWIDTH, OnSelChangeWidth)

specifies that on combo box selection change events with the object ID of the color tool-
bar combo box, the OnSelChangeWidth function should be called. Now if you compile
and run your application, you should be able to change the drawing width with the
combo box on the color toolbar.

Updating the Toolbar Combo Box
The one remaining problem with the combo box is that it needs to be updated if the user
selects a new value from the menu instead of the combo box. One of the most efficient
methods of doing this is to set the current selection in the combo box when any of the
menu selections are triggered. This requires a function in the main frame class that can
be called from the document class to accomplish this action. All the function in the main
frame needs to do is to set the current selection in the combo box.

To implement this function in the main frame, add a new member function to the
CMainFrame class, specifying the function type as void, the definition as
UpdateWidthCB(int nIndex), and the access as public. Once you add this function, edit
the function as in Listing 12.9.

268 Day 12

016 31240-9 CH12 4/27/00 12:30 PM Page 268

Adding Toolbars and Status Bars 269

12

LISTING 12.9. THE CMainFrame.UpdateWidthCB FUNCTION.

1: void CMainFrame::UpdateWidthCB(int nIndex)
2: {
3: // Set the new selection in the combo box
4: m_wndColorBar.m_ctlWidth.SetCurSel(nIndex);
5: }

This function uses a single combo box function, SetCurSel, which sets the current selec-
tion in the combo box drop-down list to the entry specified with the index number. The
edit control of the combo box is updated with the new selected list entry. If an index
number that doesn’t exist in the drop-down list is supplied to the combo box, then the
function returns an error.

On the document side, you need to call this function in the main frame whenever the
appropriate menu event-handling functions are called. Because this could occur in sev-
eral functions, it makes the most sense to enclose the necessary functionality in a single
function. This function needs to get a pointer to the view associated with the document
and then, through the view, get a pointer to the frame, which can then be used to call the
UpdateWidthCB function that you just added to the main frame class.

To add this function to your application, select the CToolbarDoc class in the workspace
pane, and select Add Member Function from the pop-up menu. Specify void as the func-
tion type, UpdateColorbar(int nIndex) as the function definition, and private as the
function access. Edit the function as in Listing 12.10.

LISTING 12.10. THE CToolbarDoc.UpdateColorbar FUNCTION.

1: void CToolbarDoc::UpdateColorbar(int nIndex)
2: {
3: // Get the position of the first view
4: POSITION pos = GetFirstViewPosition();
5: // Did we get a valid position?
6: if (pos != NULL)
7: {
8: // Get a pointer to the view in that position
9: CView* pView = GetNextView(pos);
10: // Do we have a valid pointer to the view?
11: if (pView)
12: {
13: // Get a pointer to the frame through the view

continues

016 31240-9 CH12 4/27/00 12:30 PM Page 269

LISTING 12.10. CONTINUED

14: CMainFrame* pFrame = (CMainFrame*)pView-
➥ GetTopLevelFrame();
15: // Did we get a pointer to the frame?
16: if (pFrame)
17: // Update the combo box on the color toolbar
18: // through the frame
19: pFrame->UpdateWidthCB(nIndex);
20: }
21: }
22: }

This function traces through the path that you have to follow to get to the application
frame from the document class. The first thing that you did was get the position of the
first view associated with the document, using the GetFirstViewPosition function. A
document may have multiple views open at the same time, and this function returns the
position of the first of those views.

The next function, GetNextView, returns a pointer to the view specified by the position.
This function also updates the position variable to point to the next view in the list of
views associated with the current document.

Once you have a pointer to the view, you can call the window function,
GetTopLevelFrame, which returns a pointer to the application frame window. You have
to call this function through the view because the document is not descended from the
CWnd class, although the view is.

Once you have a pointer to the frame window, you can use this pointer to call the func-
tion you created earlier to update the combo box on the toolbar. Now if you call this new
function from the Width menu command event handlers, as in Listing 12.11, the combo
box that you placed on the color toolbar is automatically updated to reflect the currently
selected drawing width, regardless of whether the width was selected from the combo
box or the pull-down menu.

LISTING 12.11. AN UPDATED WIDTH MENU COMMAND EVENT HANDLER.

1: void CToolbarDoc::OnWidthVthin()
2: {
3: // TODO: Add your command handler code here
4: // Set the new width
5: m_nWidth = 0;
6: // Update the combo box on the color toolbar
7: UpdateColorbar(0);
8: }

270 Day 12

016 31240-9 CH12 4/27/00 12:30 PM Page 270

Adding Toolbars and Status Bars 271

12

Adding a New Status Bar Element
Earlier today, you learned how to specify status bar messages and tooltips for both tool-
bar buttons and menus. What if you want to use the status bar to provide the user with
more substantial information? What if, as in the Visual C++ Developer Studio, you want
to provide information about what the user is doing, where he is in the document he is
editing, or the mode that the application is in? This information goes beyond the Caps,
Num, and Scroll lock keys that Visual C++ automatically reports on the status bar.

It’s actually easy to add additional panes to the status bar, as well as take away the panes
that are already there. To learn just how easy a change this is, you will add a new pane to
the status bar in your drawing application that will display the color currently in use.

Adding a New Status Bar Pane
Before you add a new status bar pane, you need to add a new entry to the application
string table for use in the status bar pane. This string table entry will perform two func-
tions for the status bar pane. The first thing it will do is provide the object ID for the sta-
tus bar pane. You will use this ID for updating the pane as you need to update the text in
the pane. The second function this string table entry will perform is size the pane. To size
the pane correctly, you need to provide a caption for the string table entry that is at least
as wide as the widest string that you will place in the status bar pane.

Add a new string to your application string table, using the same steps you used earlier
when adding the text for the combo box you placed on the color toolbar. Specify the
string ID as ID_INDICATOR_COLOR and the caption as MAGENTA (the widest string that you
will put into the status bar pane).

A small section in the first part of the main frame source code defines the status bar lay-
out. This small table contains the object IDs of the status bar panes as table elements, in
the order in which they are to appear from left to right on the status bar.

To add the color pane to the status bar, add the ID of the color pane to the status bar indi-
cator table definition, just after the message map in the source-code file for the main
frame. Place the color pane ID in the table definition in the position that you want it to
be on the status bar, as in line 18 of Listing 12.12.

016 31240-9 CH12 4/27/00 12:30 PM Page 271

LISTING 12.12. A MODIFIED STATUS BAR INDICATOR TABLE DEFINITION.

1:///
2: // CMainFrame
3:
4: IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)
5:
6: BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
7: //{{AFX_MSG_MAP(CMainFrame)
8: ON_WM_CREATE()
9: ON_COMMAND(ID_VIEW_COLORBAR, OnViewColorbar)
10: ON_UPDATE_COMMAND_UI(ID_VIEW_COLORBAR, OnUpdateViewColorbar)
11: //}}AFX_MSG_MAP
12: ON_CBN_SELCHANGE(IDC_CBWIDTH, OnSelChangeWidth)
13: END_MESSAGE_MAP()
14:
15: static UINT indicators[] =
16: {
17: ID_SEPARATOR, // status line indicator
18: ID_INDICATOR_COLOR,
19: ID_INDICATOR_CAPS,
20: ID_INDICATOR_NUM,
21: ID_INDICATOR_SCRL,
22: };
23:
24:///
25: // CMainFrame construction/destruction

If you want to drop any of the lock key indicators from the status bar, just remove them
from the indicators table definition. If you examine the OnCreate function, where the sta-
tus bar is created (just after the toolbars are created), you’ll see where this table is used
to create the status bar with the following code:

if (!m_wndStatusBar.Create(this) ||
!m_wndStatusBar.SetIndicators(indicators,
sizeof(indicators)/sizeof(UINT)))

Once the status bar is created, the SetIndicators function is called on the status bar to
add the panes as they are defined in the indicators table. The strings associated with the
IDs in the indicators table are used to initialize the panes and set their size. If you com-
pile and run your application at this point, you see the new color pane on the status bar
with the caption from the string table displayed within.

272 Day 12

016 31240-9 CH12 4/27/00 12:30 PM Page 272

Adding Toolbars and Status Bars 273

12

Setting a Status Bar Pane Text
Once you’ve added the pane to the status bar, you can let the UPDATE_COMMAND_UI event
do all the updating of the pane. All you need to do is add an event handler for this event
on the object ID of the pane and use this event to set the pane text. Because the status
bar is always visible, the UPDATE_COMMAND_UI event for the panes on the status bar is
triggered every time that the application is idle. This means that it is triggered after the
application is finished processing just about every keystroke and mouse movement. In
almost a week, on Day 18, “Doing Multiple Tasks at One Time—Multitasking,” you will
learn more about how often and when any tasks that are performed when the application
is idle are triggered.

In the event handler, you need to create a string containing the name of the current color
(or whatever other text you want to display in the status bar pane). Next, you have to
make sure that the pane is enabled. Finally, you need to set the text of the pane to the
string that you have created.

To implement this in your application, you need to create an UPDATE_COMMAND_UI event
handler. Once again, the Class Wizard does not know about the status bar pane, so you
have to create the message handler and add it to the message map yourself. To create the
message handler, add a new member function to the document class (CToolbarDoc) with
a type of afx_msg void, a definition of OnUpdateIndicatorColor (CCmdUI *pCmdUI),
and an access of protected. Edit the newly created function, adding the code in Listing
12.13.

LISTING 12.13. THE OnUpdateIndicatorColor FUNCTION.

1: void CToolbarDoc::OnUpdateIndicatorColor(CCmdUI *pCmdUI)
2: {
3: CString strColor;
4:
5: // What is the current color?
6: switch (m_nColor)
7: {
8: case 0: // Black
9: strColor = “BLACK”;
10: break;
11: case 1: // Blue
12: strColor = “BLUE”;
13: break;
14: case 2: // Green

continues

016 31240-9 CH12 4/27/00 12:30 PM Page 273

LISTING 12.13. CONTINUED

15: strColor = “GREEN”;
16: break;
17: case 3: // Cyan
18: strColor = “CYAN”;
19: break;
20: case 4: // Red
21: strColor = “RED”;
22: break;
23: case 5: // Magenta
24: strColor = “MAGENTA”;
25: break;
26: case 6: // Yellow
27: strColor = “YELLOW”;
28: break;
29: case 7: // White
30: strColor = “WHITE”;
31: break;
32: }
33: // Enable the status bar pane
34: pCmdUI->Enable(TRUE);
35: // Set the text of the status bar pane
36: // to the current color
37: pCmdUI->SetText(strColor);
38: }

In this function, you followed three steps exactly: You created a string with the current
color name, made sure that the pane was enabled, and set the pane text to the string that
you had created.

Now, to make sure that your new message handler is called when it is supposed to be,
you need to add an ON_UPDATE_COMMAND_UI entry to the message map at the top of the
document source code file, as specified in Listing 12.14.

LISTING 12.14. THE MODIFIED CToolbarDoc MESSAGE MAP.

1:///
2: // CToolbarDoc
3:
4: IMPLEMENT_DYNCREATE(CToolbarDoc, CDocument)
5:
6: BEGIN_MESSAGE_MAP(CToolbarDoc, CDocument)
7: ON_UPDATE_COMMAND_UI(ID_INDICATOR_COLOR, OnUpdateIndicatorColor)
8: //{{AFX_MSG_MAP(CToolbarDoc)
9: ON_UPDATE_COMMAND_UI(ID_WIDTH_VTHIN, OnUpdateWidthVthin)
10: .

274 Day 12

016 31240-9 CH12 4/27/00 12:30 PM Page 274

Adding Toolbars and Status Bars 275

12

11: .
12: ON_COMMAND(ID_WIDTH_VTHIN, OnWidthVthin)
13: //}}AFX_MSG_MAP
14: END_MESSAGE_MAP()

After adding the message handler and message map entry, you should now be able to
compile and run your application and see the color status bar pane automatically updated
to reflect the current drawing color, as shown in Figure 12.6.

FIGURE 12.6.
The drawing appli-
cation with the cur-
rent color displayed
in the status bar.

Summary
You learned quite a bit today. (Is this becoming a trend?) You learned how to design and
create your own toolbars. Along with learning how to design toolbars, you learned how
to specify status bar prompts for the toolbar buttons and menus, along with tooltips text
that will display after holding the mouse over toolbar buttons for a couple of seconds.
You learned how to create these toolbars and how to attach them to the application
frame. You also learned how you can control whether the toolbar is visible from a menu
entry.

Next you learned how to place a combo box on a toolbar so that you can provide your
application users with the same level of convenience that you have when using many
popular software packages. In learning how to add this combo box to the toolbar, you
learned how to create a combo box in code, without having to depend on the dialog
designers to create combo boxes, and how to populate the combo box drop-down list
with text entries. Then, you learned how to tie the combo box into your application by

016 31240-9 CH12 4/27/00 12:30 PM Page 275

adding event handlers for the combo box events and how to update the combo box to
reflect changes made through the application menus.

Finally, you learned how to add your own panes to the status bar and how you can
update the pane to reflect the current status of the application.

Q&A
Q In some applications, toolbars have the option of showing text, as in Internet

Explorer. How can I add text to my toolbar buttons?

A Unfortunately, the toolbar designer provides no way to add text to the toolbar but-
tons. This means that you have to add the text to the buttons in your application
code, much in the same way that you had to specify for all of the color toolbar but-
tons to behave as radio buttons. You use the SetButtonText function to set the text
on each toolbar button individually. This function takes two arguments: The first is
the index number of the button, and the second is the text for the button. If you
really want to place text on the toolbar buttons, you also have to resize the toolbar
to allow the room for the text to be displayed.

Q I made some changes to the color toolbar in the toolbar designer, and now I
get an assertion error every time I try to run my application. What happened?

A The problem is that the toolbar designer found the separators you added to the
resource file as place holders for the combo box. The toolbar designer assumed
that these were mistakes and removed them for you. The error that you are getting
occurs because you are trying to work with a control in the color toolbar that
doesn’t exist. To fix this problem, reopen the resource file in Notepad and again
add the two separators at the end of the color toolbar definition. Then, reload the
project into Visual C++ and recompile the application.

Q The combo box on my toolbars looks too big. How can I get it to fit within the
toolbar a little better?

A To make the combo box fit within the toolbar like the combo boxes in the Visual
C++ Developer Studio, you need to do a couple of things. First, lower the top of
the combo box by 3; this places a small border between the top of the combo box
and the edge of the toolbar. Next, set the font in the combo box to a smaller font
that will fit within the toolbar better. You can experiment with fonts and pitches
until you have a font that you like for the combo box in the toolbar.

276 Day 12

016 31240-9 CH12 4/27/00 12:30 PM Page 276

Adding Toolbars and Status Bars 277

12

Q How can I set the text in the first section of the status bar other than by using
menu and toolbar prompts?

A You can use SetWindowText to set the text in the first pane of the status bar. As a
default setting, the first pane in the status bar is a separator that automatically
expands to fill the width of the status bar with the other panes right-justified on the
bar. The SetWindowText function, called on the status bar variable, sets the text in
the first pane only. If you want to set the text in any other pane, at any other time
than in the ON_UPDATE_COMMAND_UI event handler, you can use the SetPaneText
function. There are two ways that you can set the text in the main part of the status
bar. The first is like this:
CString myString = “This is my string”
m_wndStatusBar.SetWindowText(myString);

The other method is
CString myString = “This is my string”
m_wndStatusBar.SetPaneText(0, myString);

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. How do you tie a toolbar button to a menu entry that triggers that same function?

2. How do you make sure that a toolbar can be docked with the frame window?

3. How can you remove the Num Lock status indicator from the status bar?

4. Why do you have to edit the resource file to add a combo box to a toolbar?

Exercises
1. Add another pane to the status bar to display the current width selected.

2. Add a button to the main toolbar that can be used to toggle the color toolbar on
and off, as in Figure 12.7.

016 31240-9 CH12 4/27/00 12:30 PM Page 277

278 Day 12

FIGURE 12.7.
The color toolbar
on/off button.

016 31240-9 CH12 4/27/00 12:30 PM Page 278

DAY 13

WEEK 2

Saving and Restoring
Work—File Access

Most applications provide the user the option of saving what has been created.
The creation can be a word-processing document, a spreadsheet, a drawing, or
a set of data records. Today, you will explore how Visual C++ provides you
with the means to implement this functionality easily. Today, you will learn

● How Visual C++ uses C++ streams to save information about your appli-
cation

● How to store your application data in binary files

● How to make your application objects serializable

● How you can store variables of differing data types into a single file

Serialization
There are two parts of serialization. When application data is stored on the sys-
tem drive in the form of a file, it is called serialization. When the application

017 31240-9 CH13 4/27/00 12:51 PM Page 279

state is restored from the file, it is called deserialization. The combination of these two
parts makes up the serialization of application objects in Visual C++.

The CArchive and CFile Classes
Serialization in Visual C++ applications is accomplished through the CArchive class. The
CArchive class is designed to act as an input/output (I/O) stream for a CFile object, as
shown in Figure 13.1. It uses C++ streams to enable efficient data flow to and from the
file that is the storage of the application data. The CArchive class cannot exist without a
CFile class object to which it is attached.

280 Day 13

Application
Object

CArchive

Serialize
Function

CFile

FIGURE 13.1.
The CArchive class
stores application data
in a CFile object.

The CArchive class can store data in a number of types of files, all of which are descen-
dants of the CFile class. By default, the AppWizard includes all the functionality to cre-
ate and open regular CFile objects for use with CArchive. If you want or need to work
with one of these other file types, you might need to add additional code to your applica-
tion to enable the use of these different file types.

017 31240-9 CH13 4/27/00 12:51 PM Page 280

Saving and Restoring Work—File Access 281

13

The Serialize Function
The CArchive class is used in the Serialize function on the document and data objects
in Visual C++ applications. When an application is reading or writing a file, the docu-
ment object’s Serialize function is called, passing the CArchive object that is used to
write to or read from the file. In the Serialize function, the typical logic to follow is to
determine whether the archive is being written to or read from by calling the CArchive
IsStoring or IsLoading functions. The return value from either of these two functions
determines if your application needs to be writing to or reading from the CArchive
class’s I/O stream. A typical Serialize function in the view class looks like Listing 13.1.

LISTING 13.1. A TYPICAL Serialize FUNCTION.

1: void CAppDoc::Serialize(CArchive& ar)
2: {
3: // Is the archive being written to?
4: if (ar.IsStoring())
5: {
6: // Yes, write my variable
7: ar << m_MyVar;
8: }
9: else
10: {
11: // No, read my variable
12: ar >> m_MyVar;
13: }
14: }

You can place a Serialize function in any classes you create so that you can call their
Serialize function from the document Serialize function. If you place your custom
objects into an object array, such as the CObArray that you used in your drawing applica-
tion for the past three days, you can call the array’s Serialize function from the docu-
ment’s Serialize function. The object array will, in turn, call the Serialize function of
any objects that have been stored in the array.

Making Objects Serializable
When you created the CLine class on Day 10, “Creating Single Document Interface
Applications,” you had to add two macros before you could save and restore your draw-
ings. These two macros, DECLARE_SERIAL and IMPLEMENT_SERIAL, include functionality
in your classes that are necessary for the Serialize function to work correctly.

017 31240-9 CH13 4/27/00 12:51 PM Page 281

Including the DECLARE_SERIAL Macro
You must include the DECLARE_SERIAL macro in your class declaration, as shown in
Listing 13.2. The DECLARE_SERIAL macro takes a single argument, the class name. This
macro automatically adds to your class some standard function and operator declarations
that are necessary for serialization to work correctly.

LISTING 13.2. INCLUDING THE DECLARE_SERIAL MACRO IN THE CLASS DECLARATION.

1: class CMyClass : public CObject
2: {
3: DECLARE_SERIAL (CMyClass)
4: public:
5: virtual void Serialize(CArchive &ar);
6: CMyClass();
7: virtual ~CMyClass();
8: };

Including the IMPLEMENT_SERIAL Macro
You need to add the IMPLEMENT_SERIAL macro to the implementation of your class. This
macro needs to appear outside any other class functions because it adds the code for the
class functions that were declared with the DECLARE_SERIAL macro.

The IMPLEMENT_SERIAL macro takes three arguments. The first argument is the class
name, as in the DECLARE_SERIAL macro. The second argument is the name of the base
class, from which your class is inherited. The third argument is a version number that
can be used to determine whether a file is the correct version for reading into your appli-
cation. The version number, which must be a positive number, should be incremented
each time the serialization method of the class is changed in any way that alters the data
being written to or read from a file. A typical usage of the IMPLEMENT_SERIAL macro is
provided in Listing 13.3.

LISTING 13.3. INCLUDING THE IMPLEMENT_SERIAL MACRO IN THE CLASS IMPLEMENTATION.

1: // MyClass.cpp: implementation of the CMyClass class.
2: //
3: //
4:
5: #include “stdafx.h”
6: #include “MyClass.h”
7:
8: #ifdef _DEBUG
9: #undef THIS_FILE
10: static char THIS_FILE[]=__FILE__;

282 Day 13

017 31240-9 CH13 4/27/00 12:51 PM Page 282

Saving and Restoring Work—File Access 283

13

11: #define new DEBUG_NEW
12: #endif
13:
14: IMPLEMENT_SERIAL (CMyClass, CObject, 1)
15: //
16: // Construction/Destruction
17: //
18:
19: CMyClass::CMyClass()
20: {
21: }
22:
23: CMyClass::~CMyClass()
24: {
25: }

Defining the Serialize Function
Along with the two macros, you need to include a Serialize function in your class. This
function should be declared as a void function with a single argument (CArchive &ar),
public access, and the virtual check box selected—producing the function declaration in
Listing 13.2. When you implement the Serialize function for your class, you typically
use the same approach as that used in the document class, shown in Listing 13.1, where
you check to determine whether the file is being written to or read from.

Implementing a Serializable Class
When you begin designing a new application, one of the first things you need to design
is how to store the data in the document class that your application will create and oper-
ate on. If you are creating a data-oriented application that collects sets of data from the
user, much like a contact database application, how are you going to hold that data in the
application memory? What if you are building a word processor application—how are
you going to hold the document being written in the application memory? Or a spread-
sheet? Or a painting program? Or…you get the idea.

Once you determine how you are going to design the data structures on which your
application will operate, then you can determine how best to serialize your application
and classes. If you are going to hold all data directly in the document class, all you need
to worry about is writing the data to and reading the data from the CArchive object in the
document’s Serialize function. If you are going to create your own class to hold your
application data, you need to add the serialization functionality to your data classes so
that they can save and restore themselves.

017 31240-9 CH13 4/27/00 12:51 PM Page 283

In the application that you are going to build today, you will create a simple, flat-file
database application that illustrates how you can combine a mixture of data types into a
single data stream in the application serialization. Your application will display a few
fields of data, some of which are variable-length strings, and others that are integer or
boolean, and will save and restore them in a single data stream to and from the CArchive
object.

Creating a Serialized Application
You can create your own classes, which can also be serialized, for use in an SDI or MDI
application. In short, any application that works with any sort of data, whether a database
or a document, can be serialized. Now you will create a simple, flat-file database appli-
cation that you will serialize.

284 Day 13

A flat-file database is one of the original types of databases. It is a simple
file-based database, with the records sequentially appended to the end of
the previous record. It has none of the fancy relational functionality that is
standard in most databases today. The database that you will build today is
closer to an old dBASE or Paradox database, without any indexes, than to
databases such as Access or SQL Server.

Note

Creating the Application Shell
To get your application started, create a new AppWizard application. Give your applica-
tion a name, such as Serialize, and click OK to start the AppWizard.

In the AppWizard, select to create a single document style application using the
Document/View architecture. You can choose to include support for ActiveX controls in
the third AppWizard step, although it’s not really necessary for the example that you will
build.

In the fourth step, be sure to specify the file extension for the files that your application
will create and read. An example of a file extension that you might want to use is ser for
serialize or fdb for flat-file database.

In the sixth AppWizard step, you need to specify which base class to use for the applica-
tion view class. For a description of the different base classes available for inheriting the
view class from, refer to Day 10 in the section “The Document/View Architecture.” For
the sample application you are building, because it will be a database application, you’ll

017 31240-9 CH13 4/27/00 12:51 PM Page 284

Saving and Restoring Work—File Access 285

13

find it easiest to use CFormView as the base class from which your view class will be
inherited. This enables you to use the dialog designer for your application view.

Once you finish making your way through the AppWizard and let the AppWizard create
your application shell, you will see a large window canvas in the dialog designer as if
you had created a dialog-style application, only without the OK and Cancel buttons, as
shown in Figure 13.2.

FIGURE 13.2.
The window designer
for an SDI appli-
cation.

Designing Your Application Window
After you create an SDI or MDI application where the view class is based on the
CFormView class, you need to design your application view. Designing the view is much
like designing the window layout for a dialog window, but you don’t need to worry
about including any buttons to close the window while either saving or canceling the
work done by the user. With an SDI or MDI application, the functionality to save and
exit the window is traditionally located on the application menus or on the toolbar. As a
result, you need to include only the controls for the function that your application win-
dow will perform.

If you are building dialog-style applications, the AppWizard doesn’t provide
any serialization code in your application shell. If you need to serialize a
dialog-style application, you’ll need to add all this code yourself.

Note

017 31240-9 CH13 4/27/00 12:51 PM Page 285

For the sample application that you are building today, lay out controls on the window
canvas as shown in Figure 13.3 using the control properties listed in Table 13.1.

286 Day 13

TABLE 13.1. CONTROL PROPERTY SETTINGS.

Object Property Setting

Static Text ID IDC_STATIC

Caption &Name:

Edit Box ID IDC_ENAME

Static Text ID IDC_STATIC

Caption &Age

Edit Box ID IDC_EAGE

Static Text ID IDC_STATIC

Caption Marital Status:

Radio Button ID IDC_RSINGLE

Caption &Single

Group Checked

Radio Button ID IDC_RMARRIED

Caption &Married

Radio Button ID IDC_RDIVORCED

Caption &Divorced

FIGURE 13.3.
The sample applica-
tion window layout.

017 31240-9 CH13 4/27/00 12:51 PM Page 286

Saving and Restoring Work—File Access 287

13

Object Property Setting

Radio Button ID IDC_RWIDOW

Caption &Widowed

Check Box ID IDC_CBEMPLOYED

Caption &Employed

Button ID IDC_BFIRST

Caption &First

Button ID IDC_BPREV

Caption &Previous

Button ID IDC_BNEXT

Caption Nex&t

Button ID IDC_BLAST

Caption &Last

Static Text ID IDC_SPOSITION

Caption Record 0 of 0

When you were developing dialog-style applications or windows, you attached variables
to the controls on the window in the dialog class. However, with an SDI or MDI applica-
tion, which class do you create the variables in? Because the UpdateData function is a
member of the CWnd class, and the view class is descended from the CWnd class, although
the document is not, then the view class is the most logical place to add the variables that
you will attach to the controls you placed on the window.

To attach variables to the controls in your sample application, open the Class Wizard and
add variables to the controls, specifying that the place to add them is the view class (in
this case, CSerializeView). For the sample application, add the variables in Table 13.2
to the controls specified.

TABLE 13.2. CONTROL VARIABLES.

Object Name Category Type

IDC_CBEMPLOYED m_bEmployed Value BOOL

IDC_EAGE m_iAge Value int

IDC_ENAME m_sName Value CString

IDC_RSINGLE m_iMaritalStatus Value int

IDC_SPOSITION m_sPosition Value CString

017 31240-9 CH13 4/27/00 12:51 PM Page 287

If you examine the source code for the view class, you will notice that there is no OnDraw
function. If you are using the CFormView ancestor class for your SDI or MDI application,
you don’t need to worry about the OnDraw function. Instead, you treat the view class very
much as you would the dialog class in a dialog window or dialog-style application. The
primary difference is that the data that you need to use to populate the controls on the
window are not in the view class, but in the document class. As a result, you need to
build the interaction between these two classes to pass the data for the controls back and
forth.

Creating a Serializable Class
When you create a form-based application, it is assumed that your application will hold
multiple records in the form and that the user will be able to scroll through the records to
make changes. The user will be able to add additional records or even remove records
from the record set. The challenge at this point in building this application is how you
represent this set of records, supporting all the necessary functionality.

One approach is to create a class that would encapsulate each record, and then hold these
records in an array, much as you did with the drawing application that you created and
enhanced over the past few days. This class would need to descend from the CObject
class and would need to contain variables for all the control variables that you added to
the view class, along with methods to read and write all of these variables. Along with
adding the methods to set and read all of the variables, you need to make the class serial-
izable by adding the Serialize function to the class, as well as the two macros that
complete the serialization of the class.

Creating the Basic Class
As you may remember from Day 10, when you want to create a new class, you can
select the project in the Class View tab of the workspace pane, right-click the mouse but-
ton, and select New Class from the context menu. This opens the New Class dialog.

In the New Class dialog, you specify the type of class, whether it’s an MFC class, and
generic class, or a form class. To create a class that can contain one record’s data, you
most likely want to create a generic class. You’ll learn more about how to determine
which of these types of classes to create on Day 16, “Creating Your Own Classes and
Modules.” The other things that you need to do are give your class a name and specify
the base class from which it will be inherited.

For your sample application, because the form that you created has information about a
person, you might want to call your class something like CPerson. To be able to hold
your class in the object array, you need to give it CObject as the base class. Just like on

288 Day 13

017 31240-9 CH13 4/27/00 12:51 PM Page 288

Saving and Restoring Work—File Access 289

13

Day 10, the New Class dialog will claim that it cannot find the header with the base class
in it and that you need to add this. Well, it’s already included, so you can ignore this
message. (On Day 16, you’ll learn when you need to pay attention to this message.)

Once you create your new class, you’ll need to add the variables for holding the data ele-
ments that will be displayed on the screen for the user. Following good object-oriented
design, these variables will all be declared as private variables, where they cannot be
directly manipulated by other classes. The variable types should match the variable types
of the variables that are attached to the window controls in the view class.

With the sample application you are creating, you need to add the variables in Table
13.3.

TABLE 13.3. CLASS VARIABLES FOR THE CPerson CLASS.

Name Type

m_bEmployed BOOL

m_iAge int

m_sName CString

m_iMaritalStatus int

Adding Methods for Reading and Writing Variables
Once you create your class, you need to provide a means for reading and writing to the
variables in the class. One of the easiest ways to provide this functionality is to add
inline functions to the class definition. You create a set of inline functions to set each of
the variables and then make another set for retrieving the current value of each variable.

An inline function is a short C++ function in which, when the application is
being compiled, the function body is copied in place of the function call. As
a result, when the compiled application is running, the function code is exe-
cuted without having to make a context jump to the function and then
jump back once the function has completed. This reduces the overhead in
the running application, increasing the execution speed slightly, but also
makes the resulting executable application slightly larger. The more places
the inline function is called, the larger the application will eventually get.
For more information on inline functions, consult Appendix A, “C++
Review.”

Note

017 31240-9 CH13 4/27/00 12:51 PM Page 289

If you want to implement the Get and Set variable functions for your CPerson class in
the sample application that you are building, edit the Person.h header file, adding the
lines in Listing 13.4.

LISTING 13.4. THE Get AND Set INLINE FUNCTION DECLARATIONS.

1: class CPerson : public CObject
2: {
3: public:
4: // Functions for setting the variables
5: void SetEmployed(BOOL bEmployed) { m_bEmployed = bEmployed;}
6: void SetMaritalStat(int iStat) { m_iMaritalStatus = iStat;}
7: void SetAge(int iAge) { m_iAge = iAge;}
8: void SetName(CString sName) { m_sName = sName;}
9: // Functions for getting the current settings of the variables
10: BOOL GetEmployed() { return m_bEmployed;}
11: int GetMaritalStatus() { return m_iMaritalStatus;}
12: int GetAge() {return m_iAge;}
13: CString GetName() {return m_sName;}
14: CPerson();
15: virtual ~CPerson();
16:
17: private:
18: BOOL m_bEmployed;
19: int m_iMaritalStatus;
20: int m_iAge;
21: CString m_sName;
22: };

After you have the methods for setting and retrieving the values of the variables in your
custom class, you’ll probably want to make sure that the variables are initialized when
the class is first created. You can do this in the class constructor by setting each of the
variables to a default value. For instance, in your sample application, you add the code in
Listing 13.5 to the constructor of the CPerson class.

LISTING 13.5. THE CPerson CONSTRUCTOR.

1: CPerson::CPerson()
2: {
3: // Initialize the class variables
4: m_iMaritalStatus = 0;
5: m_iAge = 0;
6: m_bEmployed = FALSE;
7: m_sName = “”;
8: }

290 Day 13

017 31240-9 CH13 4/27/00 12:51 PM Page 290

Saving and Restoring Work—File Access 291

13

Serializing the Class
After you have your custom class with all variables defined and initialized, you need to
make the class serializable. Making your class serializable involves three steps. The first
step is adding the Serialize function to the class. This function writes the variable val-
ues to, and reads them back from, the CArchive object using C++ streams. The other two
steps consist of adding the DECLARE_SERIAL and IMPLEMENT_SERIAL macros. Once you
add these elements, your custom class will be serializable and ready for your application.

To add the Serialize function to your custom class, add a member function through the
Class View tab in the workspace pane. Specify the function type as void, the function
declaration as Serialize(CArchive &ar), and the access as public and check the Virtual
check box. This should add the Serialize function and place you in the editor, ready to
flesh out the function code.

In the Serialize function, the first thing you want to do is to call the ancestor’s
Serialize function. When you call the ancestor’s function first, any foundation informa-
tion that has been saved is restored first, providing the necessary support for your class
before the variables in your class are restored. Once you call the ancestor function, you
need to determine whether you need to read or write the class variables. You can do this
by calling CArchive’s IsStoring method. This function returns TRUE if the archive is
being written to and FALSE if it’s being read from. If the IsStoring function returns
TRUE, you can use C++ I/O streams to write all your class variables to the archive. If the
function returns FALSE, you can use C++ streams to read from the archive. In both cases,
you must be certain to order the variables in the same order for both reading and writing.
If you need more information about C++ streams, see Appendix A.

An example of a typical Serialize function for your sample custom class is shown in
Listing 13.6. Notice that the CPerson variables are in the same order when writing to and
reading from the archive.

LISTING 13.6. THE CPerson.Serialize FUNCTION.

1: void CPerson::Serialize(CArchive &ar)
2: {
3: // Call the ancestor function
4: CObject::Serialize(ar);
5:
6: // Are we writing?
7: if (ar.IsStoring())
8: // Write all of the variables, in order
9: ar << m_sName << m_iAge << m_iMaritalStatus << m_bEmployed;
10: else
11: // Read all of the variables, in order
12: ar >> m_sName >> m_iAge >> m_iMaritalStatus >> m_bEmployed;
13: }

017 31240-9 CH13 4/27/00 12:51 PM Page 291

Once you have the Serialize function in place, you need to add the macros to your cus-
tom class. The first macro, DECLARE_SERIAL, needs to go in the class header and is
passed the class name as its only argument.

For example, to add the DECLARE_SERIAL macro to the custom CPerson class in your
sample application, you add the macro just below the start of the class declaration, where
it will receive the default access for the class. You specify the class name, CPerson, as
the only argument to the macro, as in Listing 13.7.

LISTING 13.7. THE SERIALIZED CPerson CLASS DECLARATION.

1: class CPerson : public CObject
2: {
3: DECLARE_SERIAL (CPerson)
4: public:
5: // Functions for setting the variables
6: void SetEmployed(BOOL bEmployed) { m_bEmployed = bEmployed;}
7: void SetMaritalStat(int iStat) { m_iMaritalStatus = iStat;}
8: void SetAge(int iAge) { m_iAge = iAge;}
9: void SetName(CString sName) { m_sName = sName;}
10: // Functions for getting the current settings of the variables
11: BOOL GetEmployed() { return m_bEmployed;}
12: int GetMaritalStatus() { return m_iMaritalStatus;}
13: int GetAge() {return m_iAge;}
14: CString GetName() {return m_sName;}
15: CPerson();
16: virtual ~CPerson();
17:
18: private:
19: BOOL m_bEmployed;
20: int m_iMaritalStatus;
21: int m_iAge;
22: CString m_sName;
23: };

292 Day 13

The default access permission for functions and variables in C++ classes is
public. All functions and variables that are declared before the first access
declaration are public by default. You could easily add all of the public class
functions and variables in this area of the class declaration, but explicitly
declaring the access permission for all functions and variables is better
practice—because that way, there is little to no confusion about the visibility
of any of the class functions or variables.

Note

017 31240-9 CH13 4/27/00 12:51 PM Page 292

Saving and Restoring Work—File Access 293

13

To complete the serialization of your custom class, you need to add the IMPLEMENT_
SERIAL macro to the class definition. The best place to add this macro is before the
constructor definition in the CPP file containing the class source code. This macro takes
three arguments: the custom class name, the base class name, and the version number.
If you make any changes to the Serialize function, you should increment the version
number argument to the IMPLEMENT_SERIAL macro. This version number indicates when
a file was written using a previous version of the Serialize function and thus may not
be readable by the current version of the application.

Most C++ functions need a semicolon at the end of the line of code. The
two serialization macros do not, due to the C preprocessor, which replaces
each of the macros with all of the code before compiling the application. It
doesn’t hurt to place the semicolons there; they are simply ignored.

Note

In practice, if you read a file that was written using a previous version of the
Serialize function in your class, your application will raise an exception,
which you can then catch using standard C++ exception-handling tech-
niques. This allows you to add code to your application to recognize and
convert files created with earlier versions of your application. For informa-
tion on C++ exception handling, see Appendix A.

Note

To add the IMPLEMENT_SERIAL macro to your sample application, add it into the
Person.cpp file just before the CPerson class constructor. Pass CPerson as the first argu-
ment (the class name), CObject as the second argument (the base class), and 1 as the ver-
sion number, as in Listing 13.8.

LISTING 13.8. THE IMPLEMENT_SERIAL MACRO IN THE CPerson CODE.

1: // Person.cpp: implementation of the CPerson class.
2: //
3: //
4:
5: #include “stdafx.h”
6: #include “Serialize.h”
7: #include “Person.h”
8:
9: #ifdef _DEBUG
10: #undef THIS_FILE

continues

017 31240-9 CH13 4/27/00 12:52 PM Page 293

LISTING 13.8. CONTINUED

11: static char THIS_FILE[]=__FILE__;
12: #define new DEBUG_NEW
13: #endif
14:
15: IMPLEMENT_SERIAL (CPerson, CObject, 1)
16: //
17: // Construction/Destruction
18: //
19:
20: CPerson::CPerson()
21: {
22: // Initialize the class variables
23: m_iMaritalStatus = 0;
24: m_iAge = 0;
25: m_bEmployed = FALSE;
26: m_sName = “”;
27: }

Building Support in the Document Class
When you build a form-based application, where the form on the window is the primary
place for the user to interact with the application, there is an unstated assumption that
your application will allow the user to work with a number of records. This means that
you need to include support for holding and navigating these records. The support for
holding the records can be as simple as adding an object array as a variable to the docu-
ment class, as you did back on Day 10. This allows you to add additional record objects
as needed. The navigation could be a number of functions for retrieving the first, last,
next, or previous record objects. Finally, you need informational functionality so that you
can determine what record in the set the user is currently editing.

To hold and support this functionality, the document class will probably need two vari-
ables, the object array and the current record number in the array. These two variables
will provide the necessary support for holding and navigating the record set.

For your example, add the two variables for supporting the record set of CPerson objects
as listed in Table 13.4. Specify private access for both variables.

TABLE 13.4. DOCUMENT CLASS VARIABLES.

Name Type

m_iCurPosition int

m_oaPeople CObArray

294 Day 13

017 31240-9 CH13 4/27/00 12:52 PM Page 294

Saving and Restoring Work—File Access 295

13

The other thing that you need to do to the document class to provide support for the
record objects is make sure that the document knows about and understands the record
object that it will be holding. You do this by including the custom class header file
before the header file for the document class is included in the document class source
code file. Because the document class needs to trigger actions in the view class, it’s a
good idea to also include the header file for the view class in the document class.

To include these header files in your sample application, open the source-code file for
the document class and add the two #include statements as shown in Listing 13.9.

LISTING 13.9. INCLUDING THE CUSTOM AND VIEW CLASSES IN THE DOCUMENT CLASS
IMPLEMENTATION.

1: // SerializeDoc.cpp : implementation of the CSerializeDoc class
2: //
3:
4: #include “stdafx.h”
5: #include “Serialize.h”
6:
7: #include “Person.h”
8: #include “SerializeDoc.h”
9: #include “SerializeView.h”
10:
11: #ifdef _DEBUG
12: #define new DEBUG_NEW
13: #undef THIS_FILE
14: static char THIS_FILE[] = __FILE__;
15: #endif
16:
17: //
18: // CSerializeDoc

Adding New Records
Before you can navigate the record set, you need to be able to add new records to the
object array. If you add a private function for adding new records, you can add new
records to the set dynamically as new records are needed. Because new records should
be presenting the user with blank or empty data fields, you don’t need to set any of the
record variables when adding a new record to the object array, so you can use the default
constructor.

Following the same logic that you used to add new line records on Day 10, you should
add a new person record to the object array in your document class in today’s sample

017 31240-9 CH13 4/27/00 12:52 PM Page 295

application. Once you add a new record, you can return a pointer to the new record so
that the view class can directly update the variables in the record object.

Once the new record is added, you will want to set the current record position marker to
the new record in the array. This way, the current record number can easily be deter-
mined by checking the position counter.

If there are any problems in creating the new person record object, let the user know that
the application has run out of available memory and delete the allocated object, just as
you did on Day 10.

To add this functionality to your sample application, add a new member function to the
document class. Specify the type as a pointer to your custom class. If you named your
custom class CPerson, the function type is CPerson*. This function needs no arguments.
Give the function a name that reflects what it does, such as AddNewRecord. Specify the
access for this function as private because it will only be accessed from other functions
within the document class. You can edit the resulting function, adding the code in Listing
13.10.

LISTING 13.10. THE CSerializeDoc.AddNewRecord FUNCTION.

1: CPerson * CSerializeDoc::AddNewRecord()
2: {
3: // Create a new CPerson object
4: CPerson *pPerson = new CPerson();
5: try
6: {
7: // Add the new person to the object array
8: m_oaPeople.Add(pPerson);
9: // Mark the document as dirty
10: SetModifiedFlag();
11: // Set the new position mark
12: m_iCurPosition = (m_oaPeople.GetSize() - 1);
13: }
14: // Did we run into a memory exception?
15: catch (CMemoryException* perr)
16: {
17: // Display a message for the user, giving them the
18: // bad news
19: AfxMessageBox(“Out of memory”, MB_ICONSTOP | MB_OK);
20: // Did we create a line object?
21: if (pPerson)
22: {
23: // Delete it
24: delete pPerson;

296 Day 13

017 31240-9 CH13 4/27/00 12:52 PM Page 296

Saving and Restoring Work—File Access 297

13

25: pPerson = NULL;
26: }
27: // Delete the exception object
28: perr->Delete();
29: }
30: return pPerson;
31: }

Getting the Current Position
To aid the user in navigating the record set, it’s always helpful to provide a guide about
where the user is in the record set. To provide this information, you need to be able to
get the current record number and the total number of records from the document to dis-
play for the user.

The functions to provide this information are both fairly simple. For the total number of
records in the object array, all you need to do is get the size of the array and return that
to the caller.

For your sample application, add a new member function to the document class. Specify
the function type as int, the function name as GetTotalRecords, and the access as pub-
lic. Once you add the function, edit it using the code in Listing 13.11.

LISTING 13.11. THE CSerializeDoc.GetTotalRecords FUNCTION.

1: int CSerializeDoc::GetTotalRecords()
2: {
3: // Return the array count
4: return m_oaPeople.GetSize();
5: }

Getting the current record number is almost just as simple. If you are maintaining a posi-
tion counter in the document class, this variable contains the record number that the user
is currently editing. As a result, all you need to do is return the value of this variable to
the calling routine. Because the object array begins with position 0, you probably need to
add 1 to the current position before returning to display for the user.

To add this function to your sample application, add another new member function to the
document class. Specify the type as int, the function name as GetCurRecordNbr, and the
access as public. Edit the function using the code in Listing 13.12.

017 31240-9 CH13 4/27/00 12:52 PM Page 297

LISTING 13.12. THE CSerializeDoc.GetCurRecordNbr FUNCTION.

1: int CSerializeDoc::GetCurRecordNbr()
2: {
3: // Return the current position
4: return (m_iCurPosition + 1);
5: }

Navigating the Record Set
To make your application really useful, you will need to provide the user with some way
of navigating the record set. A base set of functionality for performing this navigation is
a set of functions in the document class to get pointers to specific records in the record
set. First is a function to get a pointer to the current record. Next are functions to get
pointers to the first and last records in the set. Finally, you need functions to get the pre-
vious record in the set and the next record in the set. If the user is already editing the last
record in the set and attempts to move to the next record, you can automatically add a
new record to the set and provide the user with this new, blank record.

To add all this functionality, start with the function to return the current record. This
function needs to check the value in the position marker to make sure that the current
record is a valid array position. Once it has made sure that the current position is valid,
the function can return a pointer to the current record in the array.

To add this function to your sample application, add a new member function to the docu-
ment class. Specify the function type as CPerson* (a pointer to the custom class), the
function name as GetCurRecord, and the access as public. Edit the function, adding the
code in Listing 13.13.

LISTING 13.13. THE CSerializeDoc.GetCurRecord FUNCTION.

1: CPerson* CSerializeDoc::GetCurRecord()
2: {
3: // Are we editing a valid record number?
4: if (m_iCurPosition >= 0)
5: // Yes, return the current record
6: return (CPerson*)m_oaPeople[m_iCurPosition];
7: else
8: // No, return NULL
9: return NULL;
10: }

The next function you might want to tackle is the function to return the first record in the
array. In this function, you need to first check to make sure that the array has records. If

298 Day 13

017 31240-9 CH13 4/27/00 12:52 PM Page 298

Saving and Restoring Work—File Access 299

13

there are records in the array, set the current position marker to 0 and return a pointer to
the first record in the array.

To add this function to your sample application, add a new member function to the docu-
ment class. Specify the function type as CPerson* (a pointer to the custom class), the
function name as GetFirstRecord, and the access as public. Edit the function, adding
the code in Listing 13.14.

LISTING 13.14. THE CSerializeDoc.GetFirstRecord FUNCTION.

1: CPerson* CSerializeDoc::GetFirstRecord()
2: {
3: // Are there any records in the array?
4: if (m_oaPeople.GetSize() > 0)
5: {
6: // Yes, move to position 0
7: m_iCurPosition = 0;
8: // Return the record in position 0
9: return (CPerson*)m_oaPeople[0];
10: }
11: else
12: // No records, return NULL
13: return NULL;
14: }

For the function to navigate to the next record in the set, you need to increment the cur-
rent position marker and then check to see if you are past the end of the array. If you are
not past the end of the array, you need to return a pointer to the current record in the
array. If you are past the end of the array, you need to add a new record to the end of the
array.

To add this function to your sample application, add a new member function to the docu-
ment class. Specify the function type as CPerson* (a pointer to the custom class), the
function name as GetNextRecord, and the access as public. Edit the function, adding the
code in Listing 13.15.

LISTING 13.15. THE CSerializeDoc.GetNextRecord FUNCTION.

1: CPerson * CSerializeDoc::GetNextRecord()
2: {
3: // After incrementing the position marker, are we
4: // past the end of the array?
5: if (++m_iCurPosition < m_oaPeople.GetSize())
6: // No, return the record at the new current position

continues

017 31240-9 CH13 4/27/00 12:52 PM Page 299

LISTING 13.15. CONTINUED

7: return (CPerson*)m_oaPeople[m_iCurPosition];
8: else
9: // Yes, add a new record
10: return AddNewRecord();
11: }

For the function to navigate to the previous record in the array, you need to make several
checks. First, you need to verify that the array has records. If there are records in the
array, you need to decrement the current position marker. If the marker is less than zero,
you need to set the current position marker to equal zero, pointing at the first record in
the array. Once you’ve made it through all of this, you can return a pointer to the current
record in the array.

To add this function to your sample application, add a new member function to the docu-
ment class. Specify the function type as CPerson* (a pointer to the custom class), the
function name as GetPrevRecord, and the access as public. Edit the function, adding the
code in Listing 13.16.

LISTING 13.16. THE CSerializeDoc.GetPrevRecord FUNCTION.

1: CPerson * CSerializeDoc::GetPrevRecord()
2: {
3: // Are there any records in the array?
4: if (m_oaPeople.GetSize() > 0)
5: {
6: // Once we decrement the current position,
7: // are we below position 0?
8: if (--m_iCurPosition < 0)
9: // If so, set the record to position 0
10: m_iCurPosition = 0;
11: // Return the record at the new current position
12: return (CPerson*)m_oaPeople[m_iCurPosition];
13: }
14: else
15: // No records, return NULL
16: return NULL;
17: }

For the function that navigates to the last record in the array, you still need to check to
make sure that there are records in the array. If the array does have records, you can get
the current size of the array and set the current position marker to one less than the num-
ber of records in the array. This is actually the last record in the array because the first

300 Day 13

017 31240-9 CH13 4/27/00 12:52 PM Page 300

Saving and Restoring Work—File Access 301

13

record in the array is record 0. Once you set the current position marker, you can return a
pointer to the last record in the array.

To add this function to your sample application, add a new member function to the docu-
ment class. Specify the function type as CPerson* (a pointer to the custom class), the
function name as GetLastRecord, and the access as public. Edit the function, adding the
code in Listing 13.17.

LISTING 13.17. THE CSerializeDoc.GetLastRecord FUNCTION.

1: CPerson * CSerializeDoc::GetLastRecord()
2: {
3: // Are there any records in the array?
4: if (m_oaPeople.GetSize() > 0)
5: {
6: // Move to the last position in the array
7: m_iCurPosition = (m_oaPeople.GetSize() - 1);
8: // Return the record in this position
9: return (CPerson*)m_oaPeople[m_iCurPosition];
10: }
11: else
12: // No records, return NULL
13: return NULL;
14: }

Serializing the Record Set
When filling in the Serialize functionality in the document class, there’s little to do
other than pass the CArchive object to the object array’s Serialize function, just as you
did on Day 10.

When reading data from the archive, the object array will query the CArchive object to
determine what object type it needs to create and how many it needs to create. The
object array will then create each object in the array and call its Serialize function,
passing the CArchive object to each in turn. This enables the objects in the object array
to read their own variable values from the CArchive object in the same order that they
were written.

When writing data to the file archive, the object array will call each object’s Serialize
function in order, passing the CArchive object (just as when reading from the archive).
This allows each object in the array to write its own variables into the archive as neces-
sary.

For the sample application, edit the document class’s Serialize function to pass the
CArchive object to the object array’s Serialize function, as in Listing 13.18.

017 31240-9 CH13 4/27/00 12:52 PM Page 301

Listing 13.18. THE CSerializeDoc.Serialize FUNCTION.

1: void CSerializeDoc::Serialize(CArchive& ar)
2: {
3: // Pass the serialization on to the object array
4: m_oaPeople.Serialize(ar);
5: }

Cleaning Up
Now you need to add the code to clean up the document once the document is closed or
a new document is opened. This consists of looping through all objects in the object
array and deleting each and every one. Once all the objects are deleted, the object array
can be reset when you call its RemoveAll function.

To implement this functionality in your sample application, add an event-handler func-
tion to the document class on the DeleteContents event message using the Class
Wizard. When editing the function, add the code in Listing 13.19.

LISTING 13.19. THE CSerializeDoc.DeleteContents FUNCTION.

1: void CSerializeDoc::DeleteContents()
2: {
3: // TODO: Add your specialized code here and/or call the base class
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Get the number of lines in the object array
10: int liCount = m_oaPeople.GetSize();
11: int liPos;
12:
13: // Are there any objects in the array?
14: if (liCount)
15: {
16: // Loop through the array, deleting each object
17: for (liPos = 0; liPos < liCount; liPos++)
18: delete m_oaPeople[liPos];
19: // Reset the array
20: m_oaPeople.RemoveAll();
21: }
22:
23: ///////////////////////
24: // MY CODE ENDS HERE
25: ///////////////////////
26:
27: CDocument::DeleteContents();
28: }

302 Day 13

017 31240-9 CH13 4/27/00 12:52 PM Page 302

Saving and Restoring Work—File Access 303

13

Opening a New Document
When a new document is started, you need to present the user with an empty form, ready
for new information. To make that empty record ready to accept new information, you
need to add a new record into the object array, which is otherwise empty. This results in
only one record in the object array. Once the new record is added to the array, you must
modify the view to show that a new record exists; otherwise, the view will continue to
display the last record edited from the previous record set (and the user will probably
wonder why your application didn’t start a new record set).

To implement this functionality, you will need to edit the OnNewDocument function in
your document class. This function is already in the document class, so you do not need
to add it through the Class Wizard. The first thing that you do in this function is add a
new record to the object array. Once the new record is added, you need to get a pointer
to the view object. You use the GetFirstViewPosition function to get the position of the
view object. Using the position returned for the view object, you can use the
GetNextView function to retrieve a pointer to the view object. Once you have a valid
pointer, you can use it to call a function that you will create in the view class to tell the
view to refresh the current record information being displayed in the form.

One thing to keep in mind when writing this code is that you need to cast
the pointer to the view as a pointer of the class of your view object. The
GetNextView function returns a pointer of type CView, so you will not be
able to call any of your additions to the view class until you cast the pointer
to your view class. Casting the pointer tells the compiler that the pointer is
really a pointer to your view object class and thus does contain all the func-
tions that you have added. If you don’t cast the pointer, the compiler will
assume that the view object does not contain any of the functions that you
have added and will not allow you to compile your application.

Note

Locate the OnNewDocument function in the document class source code, and add the code
in Listing 13.20. Before you will be able to compile your application, you will need to
add the NewDataSet function to the view class.

LISTING 13.20. THE CSerializeDoc.OnNewDocument FUNCTION.

1: BOOL CSerializeDoc::OnNewDocument()
2: {
3: if (!CDocument::OnNewDocument())
4: return FALSE;
5:

continues

017 31240-9 CH13 4/27/00 12:52 PM Page 303

LISTING 13.20. CONTINUED

6: // TODO: add reinitialization code here
7: // (SDI documents will reuse this document)
8:
9: ///////////////////////
10: // MY CODE STARTS HERE
11: ///////////////////////
12:
13: // If unable to add a new record, return FALSE
14: if (!AddNewRecord())
15: return FALSE;
16:
17: // Get a pointer to the view
18: POSITION pos = GetFirstViewPosition();
19: CSerializeView* pView = (CSerializeView*)GetNextView(pos);
20: // Tell the view that it’s got a new data set
21: if (pView)
22: pView->NewDataSet();
23:
24: ///////////////////////
25: // MY CODE ENDS HERE
26: ///////////////////////
27:
28: return TRUE;
29: }

When opening an existing data set, you don’t need to add any new records, but you still
need to let the view object know that it needs to refresh the record being displayed for
the user. As a result, you can add the same code to the OnOpenDocument function as you
added to the OnNewDocument, only leaving out the first part where you added a new
record to the object array.

Add an event-handler function to the document class for the OnOpenDocument event
using the Class Wizard. Once you add the function, edit it adding the code in Listing
13.21.

LISTING 13.21. THE CSerializeDoc.OnOpenDocument FUNCTION.

1: BOOL CSerializeDoc::OnOpenDocument(LPCTSTR lpszPathName)
2: {
3: if (!CDocument::OnOpenDocument(lpszPathName))
4: return FALSE;
5:
6: // TODO: Add your specialized creation code here
7:

304 Day 13

017 31240-9 CH13 4/27/00 12:52 PM Page 304

Saving and Restoring Work—File Access 305

13

8: ///////////////////////
9: // MY CODE STARTS HERE
10: ///////////////////////
11:
12: // Get a pointer to the view
13: POSITION pos = GetFirstViewPosition();
14: CSerializeView* pView = (CSerializeView*)GetNextView(pos);
15: // Tell the view that it’s got a new data set
16: if (pView)
17: pView->NewDataSet();
18:
19: ///////////////////////
20: // MY CODE ENDS HERE
21: ///////////////////////
22:
23: return TRUE;
24: }

Adding Navigating and Editing Support in the View
Class
Now that you’ve added support for the record set to your document class, you need to
add the functionality into the view class to navigate, display, and update the records.
When you first designed your view class, you placed a number of controls on the win-
dow for viewing and editing the various data elements in each record. You also included
controls for navigating the record set. Now you need to attach functionality to those con-
trols to perform the record navigation and to update the record with any data changes the
user makes.

Because of the amount of direct interaction that the form will have with the record
object—reading variable values from the record and writing new values to the record—it
makes sense that you want to add a record pointer to the view class as a private variable.
For your example, add a new member variable to the view class, specify the type as
CPerson*, give it a name such as m_pCurPerson, and specify the access as private. Next,
edit the view source code file and include the header file for the person class, as in
Listing 13.22.

LISTING 13.22. INCLUDING THE CUSTOM OBJECT HEADER IN THE VIEW CLASS SOURCE CODE.

1: // SerializeView.cpp : implementation of the CSerializeView class
2: //
3:
4: #include “stdafx.h”
5: #include “Serialize.h”
6:

continues

017 31240-9 CH13 4/27/00 12:52 PM Page 305

LISTING 13.22. CONTINUED

7: #include “Person.h”
8: #include “SerializeDoc.h”
9: #include “SerializeView.h”
10:
11: #ifdef _DEBUG
12: .
13: .
14: .

Displaying the Current Record
The first functionality that you will want to add to the view class is the functionality to
display the current record. Because this functionality will be used in several different
places within the view class, it makes the most sense to create a separate function to per-
form this duty. In this function, you get the current values of all the variables in the
record object and place those values in the view class variables that are attached to the
controls on the window. The other thing that you want to do is get the current record
number and the total number of records in the set and display those for the user so that
the user knows his or her relative position within the record set.

In your sample application, add a new member function, specify the function type as
void, give the function a name that makes sense, such as PopulateView, and specify the
access as private. In the function, get a pointer to the document object. Once you have a
valid pointer to the document, format the position text display with the current record
number and the total number of records in the set, using the GetCurRecordNbr and
GetTotalRecords functions that you added to the document class earlier. Next, if you
have a valid pointer to a record object, set all the view variables to the values of their
respective fields in the record object. Once you set the values of all of the view class
variables, update the window with the variable values, as shown in Listing 13.23.

LISTING 13.23. THE CSerializeView.PopulateView FUNCTION.

1: void CSerializeView::PopulateView()
2: {
3: // Get a pointer to the current document
4: CSerializeDoc* pDoc = GetDocument();
5: if (pDoc)
6: {
7: // Display the current record position in the set
8: m_sPosition.Format(“Record %d of %d”, pDoc->GetCurRecordNbr(),
9: pDoc->GetTotalRecords());
10: }

306 Day 13

017 31240-9 CH13 4/27/00 12:52 PM Page 306

Saving and Restoring Work—File Access 307

13

11: // Do we have a valid record object?
12: if (m_pCurPerson)
13: {
14: // Yes, get all of the record values
15: m_bEmployed = m_pCurPerson->GetEmployed();
16: m_iAge = m_pCurPerson->GetAge();
17: m_sName = m_pCurPerson->GetName();
18: m_iMaritalStatus = m_pCurPerson->GetMaritalStatus();
19: }
20: // Update the display
21: UpdateData(FALSE);
22: }

Navigating the Record Set
If you added navigation buttons to your window when you were designing the form, then
adding navigation functionality is a simple matter of adding event-handler functions for
each of these navigation buttons and calling the appropriate navigation function in the
document. Once the document navigates to the appropriate record in the set, you need to
call the function you just created to display the current record. If the document naviga-
tion functions are returning pointers to the new current record object, you should capture
that pointer before calling the function to display the current record.

To add this functionality to your sample application, add an event handler to the clicked
event for the First button using the Class Wizard. In the function, get a pointer to the
document object. Once you have a valid pointer to the document, call the document
object’s GetFirstRecord function, capturing the returned object pointer in the view
CPerson pointer variable. If you receive a valid pointer, call the PopulateView function
to display the record data, as in Listing 13.24.

LISTING 13.24. THE CSerializeView.OnBfirst FUNCTION.

1: void CSerializeView::OnBfirst()
2: {
3: // TODO: Add your control notification handler code here
4:
5: // Get a pointer to the current document
6: CSerializeDoc * pDoc = GetDocument();
7: if (pDoc)
8: {
9: // Get the first record from the document
10: m_pCurPerson = pDoc->GetFirstRecord();
11: if (m_pCurPerson)
12: {

continues

017 31240-9 CH13 4/27/00 12:52 PM Page 307

LISTING 13.24. CONTINUED

13: // Display the current record
14: PopulateView();
15: }
16: }
17: }

For the Last button, perform the same steps as for the First button, but call the document
object’s GetLastRecord function, as in Listing 13.25.

LISTING 13.25. THE CSerializeView.OnBlast FUNCTION.

1: void CSerializeView::OnBlast()
2: {
3: // TODO: Add your control notification handler code here
4:
5: // Get a pointer to the current document
6: CSerializeDoc * pDoc = GetDocument();
7: if (pDoc)
8: {
9: // Get the last record from the document
10: m_pCurPerson = pDoc->GetLastRecord();
11: if (m_pCurPerson)
12: {
13: // Display the current record
14: PopulateView();
15: }
16: }
17: }

For the Previous and Next buttons, repeat the same steps again, but call the document
object’s GetPrevRecord and GetNextRecord functions. This final step provides your
application with all the navigation functionality necessary to move through the record
set. Also, because calling the document’s GetNextRecord on the last record in the set
automatically adds a new record to the set, you also have the ability to add new records
to the set as needed.

Saving Edits and Changes
When the user enters changes to the data in the controls on the screen, these changes
somehow need to make their way into the current record in the document. If you are
maintaining a pointer in the view object to the current record object, you can call the
record object’s various set value functions, passing in the new value, to set the value in
the record object.

308 Day 13

017 31240-9 CH13 4/27/00 12:52 PM Page 308

Saving and Restoring Work—File Access 309

13

To implement this in your sample application, add an event handler to the CLICKED event
for the Employed check box using the Class Wizard. In the function that you created,
first call the UpdateData to copy the values from the form to the view variables. Check
to make sure that you have a valid pointer to the current record object, and then call the
appropriate Set function on the record object (in this case, the SetEmployed function as
in Listing 13.26).

LISTING 13.26. THE CSerializeView.OnCbemployed FUNCTION.

1: void CSerializeView::OnCbemployed()
2: {
3: // TODO: Add your control notification handler code here
4:
5: // Sync the data in the form with the variables
6: UpdateData(TRUE);
7: // If we have a valid person object, pass the data changes to it
8: if (m_pCurPerson)
9: m_pCurPerson->SetEmployed(m_bEmployed);
10: }

Repeat these same steps for the other controls, calling the appropriate record object func-
tions. For the Name and Age edit boxes, you add an event handler on the EN_CHANGE
event and call the SetName and SetAge functions. For the marital status radio buttons,
add an event handler for the BN_CLICKED event and call the same event-handler function
for all four radio buttons. In this function, you call the SetMaritalStat function in the
record object.

Displaying a New Record Set
The last functionality that you need to add is the function to reset the view whenever a
new record set is started or opened so that the user doesn’t continue to see the old record
set. You will call the event handler for the First button, forcing the view to display the
first record in the new set of records.

To implement this functionality in your sample application, add a new member function
to the view class. Specify the function type as void, give the function the name that you
were calling from the document object (NewDataSet), and specify the access as public
(so that it can be called from the document class). In the function, call the First button
event handler, as in Listing 13.27.

017 31240-9 CH13 4/27/00 12:52 PM Page 309

LISTING 13.27. THE CSerializeView.NewDataSet FUNCTION.

1: void CSerialize1View::NewDataSet()
2: {
3: // Display the first record in the set
4: OnBfirst();
5: }

Wrapping Up the Project
Before you can compile and run your application, you need to include the header file for
your custom class in the main application source-code file. This file is named the same
as your project with the CPP extension. Your custom class header file should be included
before the header files for either the document or view classes. For your sample applica-
tion, you edit the Serialize.cpp file, adding line 8 in Listing 13.28.

LISTING 13.28. INCLUDING THE RECORD CLASS HEADER IN THE MAIN SOURCE FILE.

1: // Serialize.cpp : Defines the class behaviors for the application.
2: //
3:
4: #include “stdafx.h”
5: #include “Serialize.h”
6:
7: #include “MainFrm.h”
8: #include “Person.h”
9: #include “SerializeDoc.h”
10: #include “SerializeView.h”
11:
12: #ifdef _DEBUG
13: .
14: .
15: .

At this point, you can add, edit, save, and restore sets of records with your application. If
you compile and run your application, you can create records of yourself and all your
family members, your friends, and anyone else you want to include in this application. If
you save the record set you create and then reopen the record set the next time that you
run your sample application, you should find that the records are restored back to the
state that you originally entered them, as in Figure 13.4.

310 Day 13

017 31240-9 CH13 4/27/00 12:52 PM Page 310

Saving and Restoring Work—File Access 311

13

Summary
Today, you learned quite a bit. You learned how serialization works and what it does.
You learned how to make a custom class serializable and why and how to use the two
macros that are necessary to serialize a class. You also learned how to design and build a
form-based SDI application, maintaining a set of records in a flat-file database for use in
the application. You learned how to use serialization to create and maintain the flat-file
database and how to construct the functionality in the document and view classes to pro-
vide navigating and editing capabilities on these record sets.

Q&A
Q If I make any changes to one of the records in my record set after I save the

record set and then I close the application, or open a different set of records,
my application doesn’t ask if I want to save my changes. How do I get it to ask
me? How do I get my application to prompt for saving when data has been
changed?

A One function call in the AddNewRecord function in the document object is the key
to this problem. After adding a new record to the object array, you call the
SetModifiedFlag function. This function marks the document as “dirty.” When
you save the record set, the document is automatically set to a “clean” state (unless
the application is unable to save the record set for any reason). What you need to
do when saving the edits is set the document to the “dirty” state so that the applica-
tion knows that the document has unsaved changes.

FIGURE 13.4.
The running serializa-
tion application.

017 31240-9 CH13 4/27/00 12:52 PM Page 311

You can fix this by adding some code to each of your data control event handlers.
Once you save the new value to the current record, get a pointer to the document
object and call the document’s SetModifiedFlag function, as in Listing 13.29. If
you make this same addition to all the data change event handlers, your application
will ask you whether to save the changes you made since the last time the record
set was saved.

LISTING 13.29. THE MODIFIED CSerializeView.OnCbemployed FUNCTION.

1: void CSerializeView::OnCbemployed()
2: {
3: // TODO: Add your control notification handler code here
4:
5: // Sync the data in the form with the variables
6: UpdateData(TRUE);
7: // If we have a valid person object, pass the data changes to it
8: if (m_pCurPerson)
9: m_pCurPerson->SetEmployed(m_bEmployed);
10: // Get a pointer to the document
11: CSerializeDoc * pDoc = GetDocument();
12: if (pDoc)
13: // Set the modified flag in the document
14: pDoc->SetModifiedFlag();
15: }

Q Why do I need to change the version number in the IMPLEMENT_SERIAL macro
if I change the Serialize function in the record custom class?

A Whether you need to increment the version number depends on the type of change
you make. For instance, if you add a calculated field in the record class and you
add the code to calculate this new variable from the values you read in the vari-
ables from the CArchive object, then you don’t really need to increment the ver-
sion number because the variables and order of the variables that you are writing to
and reading from the archive did not change. However, if you add a new field to
the record class and add the new field into the I/O stream being written to and read
from the CArchive object, then what you are writing to and reading from the
archive will have changed, and you do need to increment the version number. If
you don’t increment the version number, reading files created using the previous
version of your application will result in an “Unexpected file format” message
instead of the file being read. Once you increment the version number and you
read a file written with the old version number, you get the same message, but you
have the option of writing your own code to handle the exception and redirecting
the archive to a conversion routine to convert the file to the new file format.

312 Day 13

017 31240-9 CH13 4/27/00 12:52 PM Page 312

Saving and Restoring Work—File Access 313

13

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What two macros do you have to add to a class to make it serializable?

2. How can you determine whether the CArchive object is reading from or writing to
the archive file?

3. What arguments do you need to pass to the IMPLEMENT_SERIAL macro?

4. What class do you need to inherit the view class from to be able to use the dialog
designer to create a form for the main window in an SDI or MDI application?

5. What type of file does the CArchive write to by default?

Exercise
Add a couple of radio buttons to the form to specify the person’s sex, as shown in Figure
13.5. Incorporate this change into the CPerson class to make the field persistent.

FIGURE 13.5.
The running serializa-
tion application with
the person’s sex.

017 31240-9 CH13 4/27/00 12:52 PM Page 313

017 31240-9 CH13 4/27/00 12:52 PM Page 314

DAY 14

WEEK 2

Retrieving Data from
an ODBC Database

A large number of applications use a database. Everything from a personal
organizer to a large, corporate personnel system uses a database to store and
maintain all the records that the applications use and manipulate. Visual C++
provides you with four different technologies for using and accessing databases
in your applications, Data Access Objects (DAO), ODBC, OLE DB, and
ActiveX Data Objects (ADO). Today and tomorrow, you’ll learn about two of
these technologies, how they differ, and how you can use them in your own
applications. Today, you will learn

● How the ODBC interface allows you to use a consistent way to access a
database.

● How Visual C++ uses the CRecordset class to provide access to an
ODBC data source.

● How you can create a simple database application using the Wizards in
Visual C++.

● How you can add and delete records from an ODBC database in Visual
C++.

018 31240-9 CH14 4/27/00 12:52 PM Page 315

Database Access and ODBC
Most business applications work with data. They maintain, manipulate, and access
records of data that are stored in databases. If you build business applications, odds are
that you will need to be able to access a database with your applications. The question is,
which database?

There are a number of databases on the market. If you need to create a single-user appli-
cation that is self-contained on a single computer, you can use any one of numerous PC-
based databases, such as Microsoft’s Access, FoxPro, or Borland’s Paradox. If you are
building applications that need to access large, shared databases, you are probably using
an SQL-based (Structured Query Language) database such as SQL Server or Oracle. All
of these databases provide the same basic functionality, maintaining records of data.
Each will allow you to retrieve several records or a single record, depending on your
needs. They’ll all let you add, update, or delete records as needed. Any of these data-
bases will be able to serve your application’s needs, so you should be able to use any
database for one application and then switch to another for the next application, based on
the needs of the application and which database is most suited for the specific applica-
tion needs (or your employer’s whim).

316 Day 14

To be completely honest, there are numerous differences between the vari-
ous databases that are available today. Each of these databases has specific
strengths and weaknesses, making one more suitable for a specific situation
than another. However, a discussion of the differences between any of these
databases is beyond the scope of this book. For the discussions of databases
today and tomorrow, you can assume that all of these databases are func-
tionally equal and interchangeable.

Note

The problem that you will encounter when you switch from one database to another is
that each database requires you to use a different interface for accessing the database.
Therefore, you have to learn and use a whole new set of programming techniques and
functions for each database that you need to work with. This is the problem that the
ODBC interface was designed to correct.

The Open Database Connector (ODBC) Interface
Microsoft saw the incompatibility between database interfaces as a problem. Each data-
base had its own application development language that was well integrated with the
database but didn’t work with any other database. This presented a problem to any devel-
oper who needed to use one database for an application and then a different database for

018 31240-9 CH14 4/27/00 12:52 PM Page 316

Retrieving Data from an ODBC Database 317

14

the next application. The developer had to learn the specific development language for
each of the databases and couldn’t use any languages that she already knew. For pro-
grammers to work with any database with the programming language of the developer’s
choice, they needed a standardized interface that works with every database.

The Open Database Connector (ODBC) interface is implemented as a standard, SQL-
based interface that is an integral part of the Windows operating system. Behind this
interface are plug-ins for each database that take the ODBC function calls and convert
them into calls to the specific interface for that database. The ODBC interface also uses a
central set of database connection configurations, with a standardized way of specifying
and maintaining them. This setup allows programmers to learn and use a single database
interface for all databases. This also allowed programming language vendors to add
ODBC support into their languages and development tools to make database access all
but transparent.

The CRecordset Class
In the Visual C++ development environment, most of the ODBC functionality has been
encapsulated into two classes, CRecordset and CDatabase. The CDatabase class contains
the database connection information and can be shared across an entire application. The
CRecordset class encapsulates a set of records from the database. The CRecordset class
allows you to specify a SQL query to be run, and the CRecordset class will run the
query and maintain the set of records that are returned by the database. You can modify
and update the records in the record set, and your changes will be passed back to the
database. You can add or delete records from the record set, and those same actions can
be passed back to the database.

Connecting to the Database
Before the CRecordset class can perform any other functions, it has to be connected to a
database. This is accomplished through the use of the CDatabase class. You don’t need to
create or set the CDatabase instance; the first instance of the CRecordset class does this
for you. When you create an application using the AppWizard and choose to include
ODBC database support, the AppWizard includes the database connection information in
the first CRecordset-derived class that it creates. When this CRecordset class is created
without being passed a CDatabase object, it uses the default connection information,
which was added by the AppWizard, to create its own database connection.

Opening and Closing the Record Set
Once the CRecordset object is created and connected to the database, you need to open
the record set to retrieve the set of records from the database. Do this by calling the Open
member function of the CRecordset object. You can call this function without any

018 31240-9 CH14 4/27/00 12:52 PM Page 317

arguments if you want to take the default values for everything, including the SQL state-
ment to be executed.

The first argument to the Open function is the record set type. The default value for this,
AFX_DB_USE_DEFAULT_TYPE, is to open the record set as a snapshot set of records. Table
14.1 lists the four types of record set types. Only two of these record set types are avail-
able in the AppWizard when you are specifying the data source.

TABLE 14.1. RECORD SET TYPES.

Type Description

CRecordset::dynaset A set of records that can be refreshed by calling the Fetch function so
that changes made to the record set by other users can be seen.

CRecordset::snapshot A set of records that cannot be refreshed without closing and then
reopening the record set.

CRecordset::dynamic Very similar to the CRecordset::dynaset type, but it is not available in
many ODBC drivers.

CRecordset::forwardOnly A read-only set of records that can only be scrolled from the first to the
last record.

The second argument to the Open function is the SQL statement that is to be executed to
populate the record set. If a NULL is passed for this argument, the default SQL statement
that was created by the AppWizard is executed.

The third argument is a set of flags that you can use to specify how the set of records is
to be retrieved into the record set. Most of these flags require an in-depth understanding
of the ODBC interface so you understand how the flags can and should be used in your
applications. Because of this, I’ll discuss only a few of these flags in Table 14.2.

TABLE 14.2. RECORD SET OPEN FLAGS.

Flag Description

CRecordset::none The default value for this argument; specifies that no options affect how
the record set is opened and used.

CRecordset::appendOnly This flag prevents the user from being able to edit or delete any of the
existing records in the record set. The user will only be able to add new
records to the set of records. You cannot use this option with the
CRecordset::readOnly flag.

CRecordset::readOnly This flag specifies that the record set is read-only and no changes can be
made by the user. You cannot use this option with the
CRecordset::appendOnly flag.

318 Day 14

018 31240-9 CH14 4/27/00 12:52 PM Page 318

Retrieving Data from an ODBC Database 319

14

Once the user finishes working with the record set, you can call the Close function to
close the record set and free any resources used by the record set. The Close function
doesn’t take any arguments.

Navigating the Record Set
Once you have a set of records retrieved from the database, you need to be able to navi-
gate the set of records (unless the set has only one record). The CRecordset class pro-
vides several functions for navigating the record set, allowing you to move the user to
any record. Table 14.3 lists the functions that you use to navigate the record set.

TABLE 14.3. RECORD SET NAVIGATION FUNCTIONS.

Function Description

MoveFirst Moves to the first record in the set.

MoveLast Moves to the last record in the set.

MoveNext Moves to the next record in the set.

MovePrev Moves to the previous record in the set.

Move Can be used to move a specific number of records from the current record or
from the first record in the set.

SetAbsolutePosition Moves to the specified record in the set.

IsBOF Returns TRUE if the current record is the first record in the set.

IsEOF Returns TRUE if the current record is the last record in the set.

GetRecordCount Returns the number of records in the set.

Of all of these navigation and informational functions, only two, Move and
SetAbsolutePosition, take any arguments. The SetAbsolutePosition function takes a
single numeric argument to specify the row number of the record toward which to navi-
gate. If you pass 0, it navigates to the beginning-of-file (BOF) position, whereas 1 takes
you to the first record in the set. You can pass negative numbers to this function to cause
it to count backward from the last record in the set. (For example, –1 takes you to the
last record in the set, –2 to the next-to-last record, and so on.)

The Move function takes two arguments. The first argument is the number of rows to
move. This can be a positive or negative number; a negative number indicates a back-
ward navigation through the record set. The second argument specifies how you will
move through the set of rows. The possible values for the second argument are listed in
Table 14.4 with descriptions of how they affect the navigation.

018 31240-9 CH14 4/27/00 12:52 PM Page 319

TABLE 14.4. MOVE NAVIGATION TYPES.

Type Description

SQL_FETCH_RELATIVE Moves the specified number of rows from the current row.

SQL_FETCH_NEXT Moves to the next row, ignoring the number of rows specified. The same as
calling the MoveNext function.

SQL_FETCH_PRIOR Moves to the previous row, ignoring the number of rows specified. The same
as calling the MovePrev function.

SQL_FETCH_FIRST Moves to the first row, ignoring the number of rows specified. The same as
calling the MoveFirst function.

SQL_FETCH_LAST Moves to the last row, ignoring the number of rows specified. The same as
calling the MoveLast function.

SQL_FETCH_ABSOLUTE Moves the specified number of rows from the start of the set of rows. The
same as calling the SetAbsolutePosition function.

Adding, Deleting, and Updating Records
Navigating a set of records from a database is only part of what you need to be able to
do. You also need to be able to add new records to the record set, edit and update exist-
ing records, and delete records. These actions are all possible through the various func-
tions that the CRecordset class provides. The functions that you will use to provide this
functionality to the user are listed in Table 14.5.

TABLE 14.5. RECORD SET EDITING FUNCTIONS.

Function Description

AddNew Adds a new record to the record set.

Delete Deletes the current record from the record set.

Edit Allows the current record to be edited.

Update Saves the current changes to the database.

Requery Reruns the current SQL query to refresh the record set.

None of these functions takes any arguments. However, some of them require following
a few specific steps to get them to work correctly.

To add a new record to the database, you can call the AddNew function. The next thing
that you need to do is set default values in any of the fields that require values, such as
the key fields. Next, you must call the Update function to add the new record to the data-
base. If you try to navigate to another record before calling the Update function, the new

320 Day 14

018 31240-9 CH14 4/27/00 12:53 PM Page 320

Retrieving Data from an ODBC Database 321

14

record will be lost. Once you save the new record, you need to call the Requery function
to refresh the record set so that you can navigate to the new record and let the user edit
it. This sequence of function calls typically looks like the following:

// Add a new record to the record set
m_pSet.AddNew();
// Set the key field on the new record
m_pSet.m_AddressID = m_lNewID;
// Save the new record to the database
m_pSet.Update();
// Refresh the record set
m_pSet.Requery();
// Move to the new record
m_pSet.MoveLast();

When you need to delete the current record, you can simply call the Delete function.
Once you delete the current record, you need to navigate to another record so the user
isn’t still looking at the record that was just deleted. Once you delete the current record,
there is no current record until you navigate to another one. You do not need to explicitly
call the Update function because the navigation functions call it for you. This allows you
to write the following code to delete the current record:

// Delete the current record
m_pSet.Delete();
// Move to the previous record
m_pSet.MovePrev();

Finally, to allow the user to edit the current record, you need to call the Edit function.
This allows you to update the fields in the record with the new values entered by the user
or calculated by your application. Once all changes are made to the current record, you
need to call the Update function to save the changes:

// Allow the user to edit the current record
m_pSet.Edit();
// Perform all data exchange, updating the fields in the recordset
.
.
// Save the user’s changes to the current record
m_pSet.Update();

You might be wondering how you get to the fields in the records to update them. When
the AppWizard creates the CRecordset-derived class for your application, it adds all the
fields in the records that will be in the record set as member variables in order of the
record set class. As a result, you can access the member variables in order to access and
manipulate the data elements in the database records that are members of the record set.

018 31240-9 CH14 4/27/00 12:53 PM Page 321

Creating a Database Application Using ODBC
For the sample application that you will build today, you’ll create an SDI application
with ODBC database support. The application will retrieve records from an ODBC data-
base, allowing the user to edit and update any of the records. You’ll also add function-
ality to enable the user to add new records to the database and to delete records from the
database.

Preparing the Database
Before you can begin building an application that uses a database, you need a database to
use with your application. Almost every database that you can purchase for your applica-
tions comes with tools for creating a new database. You’ll need to use these tools to cre-
ate your database and then use the ODBC administrator to configure an ODBC data
source for your new database.

For the sample application in this chapter, I used Access 95 to create a new database. I
used the Access Database Wizard to create the database, choosing the Address Book
database template as the database to be created. When the Database Wizard started, I
selected the default set of fields for including in the database and selected the option to
include sample data, as shown in Figure 14.1. I then accepted the rest of the default set-
tings offered in the Database Wizard.

322 Day 14

FIGURE 14.1.
Including sample data
in the database.

Once you create the database, you need to configure an ODBC data source to point to
the database you just created. To do this, run the ODBC Administrator, which is in the
Control Panel on your computer.

Once in the ODBC Administrator, you’ll add a new data source. You can do this by
clicking the Add button, as shown in Figure 14.2. This opens another dialog, which
allows you to select the database driver for the new data source, as shown in Figure 14.3.

018 31240-9 CH14 4/27/00 12:53 PM Page 322

Retrieving Data from an ODBC Database 323

14

For the sample application that you will build today, because the database was created
using Access, select the Microsoft Access Driver and click the Finish button.

FIGURE 14.2.
The ODBC Data
Source Administrator.

FIGURE 14.3.
The Create New Data
Source dialog.

In the ODBC Microsoft Access Setup dialog, shown in Figure 14.4, you’ll provide a
short, simple name for the data source. Your application will use this name to specify the
ODBC data source configuration to use for the database connection, so it should reflect
the function that the database will be serving, or it should be similar to the name of the
application that will be using this database. For the purposes of the sample application
database, name your data source TYVCDB (for Teach Yourself Visual C++ Database) and
enter a description for the database in the next field.

Once you enter a name and description for the data source, you need to specify where
the database is. Click the Select button and then specify the Access database that you
created. Once you finish configuring the ODBC data source for your database, click the
OK button to add the new data source to the ODBC Administrator. You can click the OK
button to finish the task and close the ODBC Administrator because you are now ready
to turn your attention to building your application.

018 31240-9 CH14 4/27/00 12:53 PM Page 323

Creating the Application Shell
For the sample application that you will build today, you’ll create a standard SDI-style
application with database support. First, start a new project, selecting the AppWizard,
and give your application a suitable name, such as DbOdbc.

On the first AppWizard form, specify that you want to build an SDI application. On the
second AppWizard form, specify that you want to include Database view with file sup-
port. Click the Data Source button to specify which data source you will use in your
application. In the Database Options dialog, specify that you are using an ODBC data
source, and select the ODBC configuration from the list that you configured for your
Access database, as shown in Figure 14.5. You can set the record set type to either
Snapshot or Dynaset.

324 Day 14

FIGURE 14.4.
The ODBC Microsoft
Access 97 Setup
dialog.

FIGURE 14.5.
The Database Options
dialog.

Once you click the OK button, another dialog opens, presenting you with the available
tables in the database you selected. Select the Addresses table, as shown in Figure 14.6,
and click the OK button to close this dialog and return to the AppWizard.

You can continue through the rest of the AppWizard, accepting all of the default settings.
When you reach the final AppWizard step, you’ll notice that the AppWizard is going to
create an extra class. If you select this class, you’ll see that it is derived from the
CRecordset class, and it is the record set class for your application. You’ll also notice

018 31240-9 CH14 4/27/00 12:53 PM Page 324

Retrieving Data from an ODBC Database 325

14

that the view class is derived from the CRecordView class, which is a descendent of the
CFormView class, with some added support for database functionality.

FIGURE 14.6.
The Select Database
Tables dialog.

If you want to save a little time when building the example, you can leave
out most of the controls and database fields from the application. The key
fields that you’ll need to include are ID, First and Last Names, Birthdate, and
Send Card. If you want to leave out the other fields from the application,
that’s fine.

Tip

Designing the Main Form
Once you create the application shell, you need to design the main form that will be used
for viewing and editing the database records. You can design this form using the stan-
dard controls that are part of Visual C++, without adding any special ActiveX controls.
For designing the main form in your sample application, lay out the main form as shown
in Figure 14.7, and configure the controls with the properties specified in Table 14.6.

continues

TABLE 14.6. CONTROL PROPERTY SETTINGS.

Object Property Setting

Static Text ID IDC_STATIC

Caption ID:

Edit Box ID IDC_EID

Static Text ID IDC_STATIC

Caption First Name:

Edit Box ID IDC_EFNAME

Static Text ID IDC_STATIC

Caption Last Name:

Edit Box ID IDC_ELNAME

018 31240-9 CH14 4/27/00 12:53 PM Page 325

TABLE 14.6. CONTINUED

Object Property Setting

Static Text ID IDC_STATIC

Caption Spouse Name:

Edit Box ID IDC_ESNAME

Static Text ID IDC_STATIC

Caption Address:

Edit Box ID IDC_EADDR

Multiline Checked

Static Text ID IDC_STATIC

Caption City:

Edit Box ID IDC_ECITY

Static Text ID IDC_STATIC

Caption State:

Edit Box ID IDC_ESTATE

Static Text ID IDC_STATIC

Caption Zip:

Edit Box ID IDC_EZIP

Static Text ID IDC_STATIC

Caption Country:

Edit Box ID IDC_ECOUNTRY

Static Text ID IDC_STATIC

Caption E-Mail:

Edit Box ID IDC_EEMAIL

Static Text ID IDC_STATIC

Caption Home Phone:

Edit Box ID IDC_EHPHONE

Static Text ID IDC_STATIC

Caption Work Phone:

Edit Box ID IDC_EWPHONE

Static Text ID IDC_STATIC

Caption Extension:

Edit Box ID IDC_EWEXT

Static Text ID IDC_STATIC

Caption Fax:

326 Day 14

018 31240-9 CH14 4/27/00 12:53 PM Page 326

Retrieving Data from an ODBC Database 327

14

Object Property Setting

Edit Box ID IDC_EFAX

Static Text ID IDC_STATIC

Caption Birthdate:

Edit Box ID IDC_EDOB

Check Box ID IDC_CBCARD

Caption Send Card

Static Text ID IDC_STATIC

Caption Notes:

Edit Box ID IDC_ENOTES

Multiline Checked

FIGURE 14.7.
The main form design.

Once you have added and configured all the controls on the main form for your applica-
tion, you’re ready to begin associating the controls with database fields. When you click
the Member Variables tab of the Class Wizard and select a control to add a variable for,
you’ll notice that the Add Member Variable dialog has a drop-down combo box where
you enter the variable name. If you click the arrow to drop down the list, you’ll find that
it’s filled with the fields in the record set, as shown in Figure 14.8. This enables you to
attach the database fields directly to the controls on the form. To attach the database
fields to the controls on your application form, add the variables specified in Table 14.7.

018 31240-9 CH14 4/27/00 12:53 PM Page 327

TABLE 14.7. CONTROL VARIABLES.

Object Name

IDC_CBCARD m_pSet->m_SendCard

IDC_EADDR m_pSet->m_Address

IDC_ECITY m_pSet->m_City

IDC_ECOUNTRY m_pSet->m_Country

IDC_EEMAIL m_pSet->m_EmailAddress

IDC_EFAX m_pSet->m_FaxNumber

IDC_EFNAME m_pSet->m_FirstName

IDC_EHPHONE m_pSet->m_HomePhone

IDC_EID m_pSet->m_AddressID

IDC_ELNAME m_pSet->m_LastName

IDC_ENOTES m_pSet->m_Notes

IDC_ESNAME m_pSet->m_SpouseName

IDC_ESTATE m_pSet->m_StateOrProvince

IDC_EWEXT m_pSet->m_WorkExtension

IDC_EWPHONE m_pSet->m_WorkPhone

IDC_EZIP m_pSet->m_PostalCode

You probably noticed when it was time to attach a database field to the birthdate control
that the birthday field is missing from the list of database fields. If you look at the record
set class in the class view and expand its tree, you’ll notice that the birthdate field is
included as one of the database fields, but it’s not available in the list of available
columns for use with the controls. Double-click on the birthdate field in the record set
class to view its definition. You’ll notice that the m_Birthdate variable is declared as a
CTime variable. This is the reason that it’s not available in the list of database fields that
can be attached to controls. There isn’t a macro or function you can call for exchanging

328 Day 14

FIGURE 14.8.
The Add Member
Variable dialog with
record set fields.

018 31240-9 CH14 4/27/00 12:53 PM Page 328

Retrieving Data from an ODBC Database 329

14

data between a control and a CTime variable. This is also a problem because the CTime
variable type cannot handle dates before December 31, 1969. To use this database field,
you’ll need to change its definition from a CTime to a COleDateTime variable type, as in
line 17 in Listing 14.1. Once you change the variable type of this database field, you will
be able to attach it to the IDC_EDOB control.

LISTING 14.1. THE DATABASE FIELD VARIABLE DECLARATIONS.

1: // Field/Param Data
2: //{{AFX_FIELD(CTestdb5Set, CRecordset)
3: long m_AddressID;
4: CString m_FirstName;
5: CString m_LastName;
6: CString m_SpouseName;
7: CString m_Address;
8: CString m_City;
9: CString m_StateOrProvince;
10: CString m_PostalCode;
11: CString m_Country;
12: CString m_EmailAddress;
13: CString m_HomePhone;
14: CString m_WorkPhone;
15: CString m_WorkExtension;
16: CString m_FaxNumber;
17: COleDateTime m_Birthdate;
18: BOOL m_SendCard;
19: CString m_Notes;
20: //}}AFX_FIELD

Normally, you do not want to edit the portions of code in your applications
that are created and maintained by the various wizards. The change I out-
line here is one of the few exceptions to this rule. This obstacle could
possibly be considered a bug in the Visual C++ AppWizard, although it’s
technically not a bug. You can convert the date/time database field to sev-
eral variable types when creating a class variable to represent that field.
CTime is one of these variable types; COleDateTime is another. Because these
are both equally valid choices, and the functions that populate this variable
can work with either, making this change is possible without dire conse-
quences.

Note

Once you make the change to the variable type for the m_Birthdate variable in the
record set class (CDbOdbcSet), and attach this database field to the Birthdate control on
the form, you might think that you are ready to compile and run your application.
Unfortunately, your application will not compile. You’ll get a compiler error stating that

018 31240-9 CH14 4/27/00 12:53 PM Page 329

the DDX_FieldText cannot convert the COleDateTime variable type. What you need to do
is add the code to perform this conversion yourself. Return to the Class Wizard and
delete the variable that you added to the IDC_EDOB control. Add a new variable to this
control. Specify that the variable is type COleDateTime, and give the variable a name
such as m_oledtDOB. Pull up the DoDataExchange function in the view class,
CDbOdbcView, into the editor, and add lines 4 through 6 and lines 26 through 28
to the function, as shown in Listing 14.2.

LISTING 14.2. THE CDbOdbcView DoDataExchange FUNCTION.

1: void CDbOdbcView::DoDataExchange(CDataExchange* pDX)
2: {
3: CRecordView::DoDataExchange(pDX);
4: // Copy the DOB from the record set to the view variable
5: if (pDX->m_bSaveAndValidate == FALSE)
6: m_oledtDOB = m_pSet->m_Birthdate;
7: //{{AFX_DATA_MAP(CTestdb5View)
8: DDX_FieldText(pDX, IDC_EID, m_pSet->m_AddressID, m_pSet);
9: DDX_FieldText(pDX, IDC_EFNAME, m_pSet->m_FirstName, m_pSet);
10: DDX_FieldText(pDX, IDC_ELNAME, m_pSet->m_LastName, m_pSet);
11: DDX_FieldText(pDX, IDC_ESNAME, m_pSet->m_SpouseName, m_pSet);
12: DDX_FieldText(pDX, IDC_ESTATE, m_pSet->m_StateOrProvince, m_pSet);
13: DDX_FieldText(pDX, IDC_ECITY, m_pSet->m_City, m_pSet);
14: DDX_FieldText(pDX, IDC_EADDR, m_pSet->m_Address, m_pSet);
15: DDX_FieldCheck(pDX, IDC_CBCARD, m_pSet->m_SendCard, m_pSet);
16: DDX_FieldText(pDX, IDC_ECOUNTRY, m_pSet->m_Country, m_pSet);
17: DDX_FieldText(pDX, IDC_EEMAIL, m_pSet->m_EmailAddress, m_pSet);
18: DDX_FieldText(pDX, IDC_EFAX, m_pSet->m_FaxNumber, m_pSet);
19: DDX_FieldText(pDX, IDC_EHPHONE, m_pSet->m_HomePhone, m_pSet);
20: DDX_FieldText(pDX, IDC_ENOTES, m_pSet->m_Notes, m_pSet);
21: DDX_FieldText(pDX, IDC_EWEXT, m_pSet->m_WorkExtension, m_pSet);
22: DDX_FieldText(pDX, IDC_EWPHONE, m_pSet->m_WorkPhone, m_pSet);
23: DDX_FieldText(pDX, IDC_EZIP, m_pSet->m_PostalCode, m_pSet);
24: DDX_Text(pDX, IDC_EDOB, m_oledtDOB);
25: //}}AFX_DATA_MAP
26: // Copy the DOB variable back from the view variable to the record

➥ set
27: if (pDX->m_bSaveAndValidate == TRUE)
28: m_pSet->m_Birthdate = m_oledtDOB;
29: }

In addition to the above change, you have to remove the initialization of the
m_Birthdate variable in the set class. This is also code that was added by the
AppWizard, and once again you have to break the rules by modifying the code that you
are never supposed to touch. To make this change, you can take the simple approach by

330 Day 14

018 31240-9 CH14 4/27/00 12:53 PM Page 330

Retrieving Data from an ODBC Database 331

14

commenting out the initialization of this variable in the set class constructor, in line 19 of
Listing 14.3.

LISTING 14.3. THE CDbOdbcSet CONSTRUCTOR.

1: CDbOdbcSet::CDbOdbcSet(CDatabase* pdb)
2: : CRecordset(pdb)
3: {
4: //{{AFX_FIELD_INIT(CTestdb5Set)
5: m_AddressID = 0;
6: m_FirstName = _T(“”);
7: m_LastName = _T(“”);
8: m_SpouseName = _T(“”);
9: m_Address = _T(“”);
10: m_City = _T(“”);
11: m_StateOrProvince = _T(“”);
12: m_PostalCode = _T(“”);
13: m_Country = _T(“”);
14: m_EmailAddress = _T(“”);
15: m_HomePhone = _T(“”);
16: m_WorkPhone = _T(“”);
17: m_WorkExtension = _T(“”);
18: m_FaxNumber = _T(“”);
19: //m_Birthdate = 0;
20: m_SendCard = FALSE;
21: m_Notes = _T(“”);
22: m_nFields = 17;
23: //}}AFX_FIELD_INIT
24: m_nDefaultType = dynaset;
25: }

Now compile and run your application once again. You’ll find that you have a fully func-
tioning database application that retrieves a set of records from the database and allows
you to scroll through them and make changes to the data, as shown in Figure 14.9.

Adding New Records
You’ve already created a fully functioning database application without writing a single
line of code. However, a few functions are missing. Most database applications let the
user add new records to the database. To add a new record to the database, you’ll want to
figure out what the next ID number should be, so you’ll scroll to the last record in the set
to get the ID and then increment it by one. Next, you’ll call the AddNew function to add a
new record, set the ID field to the new ID you calculated, and then call the Update func-
tion to save the new record. Finally, you’ll call the Requery function to refresh the set of
records and then scroll to the last record in the set to let the user enter data into the new
record.

018 31240-9 CH14 4/27/00 12:53 PM Page 331

332 Day 14

FIGURE 14.9.
The running appli-
cation.

To add this functionality to your application, start by adding a function to your record set
class to determine the next ID number to be used. Add a member function to the record
set class, CDbOdbcSet. Specify the function type as long, the function declaration as
GetMaxID, and the access as public. Edit the function, adding the code in Listing 14.4.

LISTING 14.4. THE CDbOdbcSet GetMaxID FUNCTION.

1: long CDbOdbcSet::GetMaxID()
2: {
3: // Move to the last record
4: MoveLast();
5: // return the ID of this record
6: return m_AddressID;
7: }

Because the ID field in the database in defined as an AutoIncrement field,
you do not normally specify your own ID for the field. However, because the
record set is creating a new record with the ID field, you need to assign a
valid ID to the record or you won’t be able to add it to the database. The
method used in this application will not work with any multiuser database
because each person would generate the same IDs for new records. In this
situation, a centralized method for generating new IDs, such as a counter
field in the database, is a better solution. The other option is to create a SQL
statement to insert a new record into the database that was missing the ID
field. This allows the auto-increment functionality to work correctly.

Tip

018 31240-9 CH14 4/27/00 12:53 PM Page 332

Retrieving Data from an ODBC Database 333

14

Next, you’ll need a menu entry that the user can select to add a new record to the data-
base. Add a new menu entry to the Record menu. Configure the new menu entry with the
properties in Table 14.8.

TABLE 14.8. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry ID IDM_RECORD_NEW

Caption N&ew Record

Prompt Add a new record\nNew Record

Using the Class Wizard, add an event-handler function for the COMMAND event message
for this menu to the view class, CDbOdbcView. Edit this function, adding the code in
Listing 14.5.

LISTING 14.5. THE CDbOdbcView OnRecordNew FUNCTION.

1: void CDbOdbcView::OnRecordNew()
2: {
3: // TODO: Add your command handler code here
4: // Get a pointer to the record set
5: CRecordset* pSet = OnGetRecordset();
6: // Make sure that any changes to the current record
7: // have been saved
8: if (pSet->CanUpdate() && !pSet->IsDeleted())
9: {
10: pSet->Edit();
11: if (!UpdateData())
12: return;
13:
14: pSet->Update();
15: }
16: // Get the ID for the new record
17: long m_lNewID = m_pSet->GetMaxID() + 1;
18: // Add the new record
19: m_pSet->AddNew();
20: // Set the ID in the new record
21: m_pSet->m_AddressID = m_lNewID;
22: // Save the new record
23: m_pSet->Update();
24: // Refresh the record set
25: m_pSet->Requery();
26: // Move to the new record
27: m_pSet->MoveLast();
28: // Update the form
29: UpdateData(FALSE);
30: }

018 31240-9 CH14 4/27/00 12:53 PM Page 333

Add a new toolbar button for the New Record menu, and then compile and run your
application. You should be able to add new records to the database, entering the data you
want into the records.

Deleting Records
The only functionality remaining is the ability to delete the current record from the data-
base. You’ll need to add another menu entry to trigger this action. Once the action is trig-
gered, you’ll verify that the user really does want to delete the current record and then
call the Delete function to remove the record. Once the record has been deleted, you’ll
call the MovePrev function to navigate to the previous record in the set.

To add this functionality to your application, you’ll need a menu entry that the user can
select to delete the current record from the database. Add a new menu entry to the
Record menu. Configure the new menu entry with the properties in Table 14.9.

TABLE 14.9. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry ID IDM_RECORD_DELETE

Caption &Delete Record

Prompt Delete the current record\nDelete Record

Using the Class Wizard, add an event-handler function for the COMMAND event message
for this menu to the view class, CDbOdbcView. Edit this function, adding the code in
Listing 14.6.

LISTING 14.6. THE CDbOdbcView OnRecordDelete FUNCTION.

1: void CTestdb5View::OnRecordDelete()
2: {
3: // TODO: Add your command handler code here
4: // Make sure the user wants to delete this record
5: if (MessageBox(“Are you sure you want to delete this record?”,
6: “Delete this record?”, MB_YESNO | MB_ICONQUESTION) ==

➥ IDYES)
7: {
8: // Delete the record
9: m_pSet->Delete();
10: // Move to the previous record
11: m_pSet->MovePrev();
12: // Update the form
13: UpdateData(FALSE);
14: }
15: }

334 Day 14

018 31240-9 CH14 4/27/00 12:53 PM Page 334

Retrieving Data from an ODBC Database 335

14

Add another button to the toolbar and associate it with the IDM_RECORD_DELETE menu ID
so that the user can delete the current record without having to go to the menu. If you
compile and run your application at this point, you’ll have a full-function database appli-
cation in which you can add, edit, and delete records, as shown in Figure 14.10.

FIGURE 14.10.
The completed appli-
cation.

Summary
Today, you learned how you can use the ODBC interface to build database applications
that can be easily run against any database you might need to use. You saw how the
CRecordset class provides you with a substantial amount of functionality so that you can
provide database functionality in your applications. You also saw how the AppWizard
provides you with a large amount of database functionality without your typing a single
line of code.

Tomorrow, you will learn about Microsoft’s newest database access technology, ActiveX
Data Objects, and how this can be combined with the ODBC interface to make your
database access even easier.

Q&A
Q Why would I want to use the ODBC interface instead of the Data Access

Objects?

A The Data Access Objects (DAO) use the Microsoft Jet database engine to perform
all of the database access. This adds at least a megabyte of overhead to your appli-
cation, and if you’re using a SQL-based database, the database is already doing all
of the work that the Jet engine is doing for you. What’s more, the Jet database

018 31240-9 CH14 4/27/00 12:53 PM Page 335

engine uses the ODBC interface to access any SQL-based databases. As a result,
unless you are using PC-based databases, such as Access, FoxPro, or Paradox, you
get better performance from going directly to the ODBC interface yourself.

Q How can I add different record sets in an MDI application?

A You can add additional CRecordset-derived classes through the New Class Wizard
in an MDI application project. You need to specify that the new class is an MFC
class and that its base class is the CRecordset class. The New Class Wizard will
have you specify the data source, just as the AppWizard had you do when creating
the shell for today’s application. Once you create the record set class, you can cre-
ate a new view class the same way, specifying the base class as CRecordView.
Once you click the OK button, the New Class Wizard asks you to specify which of
the record set classes to use with the new record view class.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What does ODBC stand for?

2. What functions can you use to navigate the record set in a CRecordset object?

3. What view class should you use with an ODBC application?

4. What sequence of functions do you need to call to add a new record to a record
set?

5. What function do you need to call before the fields in the CRecordset object can
be updated with any changes?

Exercise
Add a menu entry and dialog to let the user indicate the record number to move to, and
then move to that record.

336 Day 14

018 31240-9 CH14 4/27/00 12:53 PM Page 336

In Review
Now that you’ve finished the second week, you should be
getting very comfortable working with Visual C++. You
should be beginning to understand how you can use the MFC
class hierarchy to provide a substantial amount of existing
functionality in your applications. You should also be starting
to understand how much supporting infrastructure your appli-
cations start with when you use the Visual C++ wizards to
construct as much of your application as you can.

This is a good time to take a little break and try some of the
things that you’ve learned on your own. Build an MDI appli-
cation, using a custom document type that you’ve come up
with yourself. See how you can save and restore the docu-
ment, as well as maintain it. Practicing on your own is key to
cementing your understanding of what you’ve learned in this
book. This will help you identify any areas that you might
need to go back and read again, as well as those areas where
you feel comfortable enough to not review.

By this time, you should have a good understanding of the
Document/View architecture and how it can be used to main-
tain the separation of the data from the representation of the
data that is displayed for the user. You’ve used this model for
both Single Document Interface (SDI) and Multiple
Document Interface (MDI) style applications, and you’ve
used it for reading and writing files to the disk drive. This
model is one of the main building blocks of MFC applica-
tions built with Visual C++. You should know where to place
any initialization information for a new set of data and where
to clean up when closing a set of data.

WEEK 2 8

9

10

11

12

13

14

019 31240-9 Rev 2 4/27/00 12:54 PM Page 337

338 Week 2

You should also have a good understanding of how the SDI and MDI application styles
are alike and how they differ from each other and from the dialog application style. You
should have a good idea of when an application you are building should use one of these
styles and when it should use a different style. You should be able to create your own
SDI and MDI applications, as you need to, without any significant problems. If you’ve
got any questions about either of these areas, you might want to take another look at
Days 10 and 11 to review how the Document/View architecture works in both SDI and
MDI style applications.

You should understand how, in SDI and MDI style applications, you can save and restore
complex data structures in files on the system hard drive. You should be able to create
mixed-type objects that you create and maintain in the document object in your applica-
tions, be able to use the Serialize function with the CArchive object to write the
objects to a file, and then be able to restore the objects at a later time. If you are having
any trouble understanding how this works or are running into any problems trying to
implement this functionality in your own applications, review Day 13.

Along with reading and writing files, you also have learned how you can design and
build toolbars for use in your SDI and MDI applications. At this point, you should be
completely comfortable with designing and creating your own toolbars and using them
in your applications. You should understand the importance of matching the toolbar but-
ton ID to the ID of the menu for which the toolbar will be used as a substitute. You
should also have a basic understanding of creating and using your own customized status
bar elements in SDI and MDI applications. You should understand how you can use the
UPDATE_COMMAND_UI event message to evaluate and alter the status of menu, toolbar, and
status bar elements, relieving you of all the work of setting each of these elements, and
how to maintain their appearance and status yourself. If you aren’t clear on how you can
do any of these things, you might want to go back over Day 12 one more time.

You’ve seen how you can build a simple database application, pulling data from a data-
base through the ODBC interface. You should have a basic understanding of how you
can build database applications using this approach, how to maintain the data, how to
add new records, and how to delete records. You should know how all the database inter-
action is directed through the record set class and how you can directly control the data
through this object. If you’re not sure of some of this, you might want to look back at
Day 14 for a quick refresher.

You learned how easy it is to add ActiveX controls to your projects and how Visual C++
builds C++ classes around the control, enabling you to interact with the control as if it
were just another C++ object. You should have a good grasp of how to add any ActiveX
control (armed with the documentation for the control) to your application and interact

019 31240-9 Rev 2 4/27/00 12:54 PM Page 338

In Review 339

with it in a seamless manner. You should be able to declare a variable for the control, set
the control’s properties, call its methods, and react to its events just as if it were a stan-
dard part of the Visual C++ development environment. If you aren’t sure how you can
do some of this, you might want to go back and reread Day 9.

Finally, you started this week by learning how to draw graphics on the windows of your
applications. You learned how to draw lines, circles, and squares, using a variety of pens
and brushes. You even learned how you can make a customized brush from a bitmap.
You learned how you can load a bitmap image from a file and display it for the user to
see. But most importantly, you learned about the device context and how it is used to
draw all these features on the windows of your applications. You should be able to use
these and other figure drawing device context methods to draw any image you might
want to draw on the window for the user to see and interact with. If you are unsure about
how you can do this, you probably want to look back at Day 8 once more.

By this time, you have built up quite a set of programming skills with Visual C++. You
are probably ready to tackle most of the smaller programming tasks you might
encounter—and maybe even a few not-so-small tasks. At this point, you are well on your
way to becoming an accomplished Visual C++ programmer. That said—now is not the
time to stop because there’s still more to be learned. There’s only one more week to go,
so tallyho!

019 31240-9 Rev 2 4/27/00 12:54 PM Page 339

019 31240-9 Rev 2 4/27/00 12:54 PM Page 340

At a Glance
For the third and final week, you’ll be learning about several
of the more advanced aspects of building applications with
Visual C++. Some of these topics you’ll use more than
others, but if you do much work with Visual C++, odds
are that you’ll work with most, if not all, of these areas
before long.

You’ll begin the week by picking up where you left off the
previous week with building database applications. On Day
15, you’ll learn about Microsoft’s latest database access tech-
nology, ActiveX Data Objects (ADO), and how you can
incorporate it into your Visual C++ applications to provide
database access to your application’s users. You’ll learn how
using ADO is similar to and different from building database
applications using ODBC.

On Day 16, you’ll learn how to create your own custom
classes and how to approach the design of these classes.
You’ll also learn how to build your functionality into library
modules that you can give to other Visual C++ programmers
for use in their applications.

On Day 17, you’ll learn a different means of allowing other
programmers to use your code by building DLLs. You’ll learn
how to build two different types of DLLs: those that can be
used only by other Visual C++ applications and those that can
be used by applications built with any other Windows devel-
opment language or tool.

On Day 18, you’ll learn how you can enable your applica-
tions to work on two or more separate tasks at the same time.
You’ll learn how to trigger some background processing
whenever your application is sitting idle and how to spin off
independent threads that continue to work even when your
application is busy.

WEEK 3 15

16

17

18

19

20

21

020 31240-9 AAG Wk3 4/27/00 12:54 PM Page 341

342 Week 3

On Day 19, you’ll learn how to build your own ActiveX controls that can be used in
other applications or even in Web pages. You’ll see how you can define the properties
and methods for your control and how you can trigger events in the containing applica-
tion from your control.

On Day 20, you’ll learn how Internet applications communicate with each other using
the Winsock interface. You’ll learn how you can use this same interface to enable your
applications to communicate over a network or even on the same machine.

Finally, on Day 21, you’ll see how easy it is to incorporate the Microsoft Internet
Explorer Web browser into your own Visual C++ application. You’ll learn how you can
control the Web browser, specifying what Web pages for it to display, and how you can
provide the user with information about what the browser is doing.

When you finish this final week, you’ll be knowledgeable about most areas of Visual
C++ programming. Although there will still be areas and technologies that require more
in-depth study for you to master, you’ll know and understand what those areas are all
about. You’ll be prepared to dive head first into all areas of Visual C++ programming,
and by then you might already have identified some areas that you want to learn more
about than can be covered in this book.

You have only one week left to go, so go ahead and dive in and get going.

020 31240-9 AAG Wk3 4/27/00 12:54 PM Page 342

DAY 15

WEEK 3

Updating and Adding
Database Records
Through ADO

Now that you’ve gotten your feet wet with an ODBC database application, one
of the oldest Microsoft database access technologies, it’s time to turn your
attention to the newest Microsoft database access technology, ActiveX Data
Objects (ADO). Designed for use with all of Microsoft’s programming and
scripting technologies, ADO presents the Visual C++ programmer with new
challenges in database programming, while still keeping the functionality famil-
iar. Today, you will learn

● How ADO works and how it uses the OLE DB technology for providing
simple database access.

● How you can build a simple ADO application in a couple of minutes
using ActiveX controls.

021 31240-9 CH15 4/27/00 12:55 PM Page 343

● How you can build a complete database application using regular forms controls.

● How you can use special ADO macros to build a custom record set class for use in
your database applications.

344 Day 15

This chapter works with some features that may not be included in all
versions of Visual C++. Although ADO is an important new area of pro-
gramming with Microsoft data access technologies, this chapter discusses
some things that you may not have the ability to do with your version of
Visual C++.

Caution

What Is ADO?
A couple years ago, Microsoft designed a new data access technology called OLE DB.
This data access technology was intended to be much more than simply a way of getting
data into and out of databases. This technology was intended to be the means of access-
ing data, regardless of where that data may be located. Through the OLE DB technology,
you could access mail messages, spreadsheets, files, and so on. Anything that might have
data could possibly be accessed through the OLE DB technology. This was one of the
first technologies to be produced from the research and development of the object-
oriented file system at the heart of what Microsoft has been calling “Cairo” for the
past few years.

Many of the technologies bundled under the product name of Cairo will be
released some time next year in the Windows NT 5.0 operating system.

Note

As you can imagine, with the range of functionality that OLE DB must have to access
data in all of those different sources, it might be quite complex to work with this tech-
nology. Well, it is. This is where ActiveX Data Objects come into play. ADO was
designed as another layer on top of OLE DB, specifically for providing database access.

One of the goals in designing ADO was to create a control that could be used to provide
data access and control in Web pages, caching the data records on the client. Part of the
reason for this goal was to allow a Web browser user to access an entire set of data
records, without having to pull down each individual record, one at a time, to navigate
and make changes to the records. Because of this capability with ADO, the ADO control
is distributed with Microsoft’s Internet Explorer Web browser (version 4.0 and above).

021 31240-9 CH15 4/27/00 12:55 PM Page 344

Updating and Adding Database Records Through ADO 345

15
ADO Objects
To make ADO as easily usable in scripting languages such as VBScript as it is in pro-
gramming environments such as Visual Basic, Microsoft tried to keep the number of
objects to a minimum. As a result, you have a small number of basic objects:

● Connection

● Error

● Command

● Parameter

● Recordset

● Field

Along with these objects, you have collection objects for containing collections of Error,
Parameter, and Field objects.

The Connection Object
The Connection object is used for establishing and maintaining a connection to a data-
base. This object is configured with the connection information, including database loca-
tion, user ID, and password, before opening the connection. Once all of this information
is appropriately configured, the connection object should have its Open method called to
open the connection. Once the Connection object goes out of scope, the connection is
automatically closed. If you want more control over closing and opening the database
connection, you can call the Connection object’s Close method to close the connection.

The Connection object is also the object through which any high-level connection func-
tionality is controlled. This includes all transaction control, through the Connection
object’s BeginTrans, CommitTrans, and RollbackTrans methods.

The Error Object
Whenever a database error occurs, the error information from the database is placed into
an ADO Error object. The error information in the error object is the database error
information, not ADO error information. Whenever you encounter an error and need to
look up the error information to determine what went wrong, you’ll need to examine the
database error codes and descriptions, not the ADO error codes.

The Command Object
The Command object is used to execute commands in the database. You can use this object
to run SQL statements or call stored procedures (SQL functions that are stored in the

021 31240-9 CH15 4/27/00 12:55 PM Page 345

database). Any time that a command returns rows of data, you need to attach the Command
object to a Recordset object for the returned data to be stored in.

When you call a stored procedure, as with functions in any other programming language,
you’ll often need to pass parameters to the stored procedure. To pass these parameters,
you’ll attach a series of Parameter objects to the Command object. Each of the Parameter
objects will have the name of the parameter that it holds the value for, along with the
value that should be passed to the database for that particular parameter.

The Parameter Object
The Parameter object is used for passing variables and for calling stored procedures or
parameterized queries. These are attached to a Command object for use in calling the com-
mand that has been programmed into the Command object.

The Recordset Object
The Recordset object contains a set of records from the database. The set of records is
the result of a command being sent to the database that results in a set of records being
returned. You can navigate through the Recordset, much like you do with the Recordset
objects for other database access technologies. You can also access the fields in each
record in the Recordset through the Field objects that are associated with the
Recordset. You can update the records in the Recordset, and then use the Recordset to
update the database. You can also insert new records into the Recordset, or delete
records and have those changes made in the database.

The Field Object
The Field object represents a single column in the Recordset. Each Field object con-
tains the column name, data value, and how the data value should be represented.
Because ADO was designed to be used in Microsoft’s scripting languages, and the only
data type available in these scripting languages is the Variant data type, the Field
objects always contain a Variant data value. The data value is automatically converted
to the correct data type when updating to the database. As the programmer working with
the ADO objects, you will have to convert the value from a Variant to whatever data
type you need it to be, as well as convert it back to a Variant when updating the value.

Using the ADO ActiveX Control
There are two different ways in which you can use the ADO control in your Visual C++
applications. The simple way to incorporate ADO into your application is through the
use of ActiveX controls. You can add the ADO data control to your Visual C++ project,
just like any other ActiveX control, as shown in Figure 15.1.

346 Day 15

021 31240-9 CH15 4/27/00 12:55 PM Page 346

Updating and Adding Database Records Through ADO 347

15

Once you add the ADO control to your project, and place it on a window, you’ll need to
specify the data connection in the control properties, as shown in Figure 15.2. You’ll also
need to specify the source for the records that will be retrieved by the control, as shown
in Figure 15.3.

FIGURE 15.1.
Adding the ADO
ActiveX control to a
project.

FIGURE 15.2.
Specifying the data-
base connection.

FIGURE 15.3.
Specifying the record
source.

To use the ADO control efficiently, you’ll also want to use data-bound controls that are
ADO-enabled, such as the Microsoft DataGrid control. When you add these controls to
the window with the ADO control, you’ll specify the ADO control as the data source

021 31240-9 CH15 4/27/00 12:55 PM Page 347

for the control, as shown in Figure 15.4. If the control is designed to only provide access
to a single field in a record set, you’ll also need to specify which field is to be used for
the control.

348 Day 15

FIGURE 15.4.
Specifying the data
source.

Once you add all these controls to the window and configure them, you can run your
application and have full database access through ADO without having written a single
line of code, as shown in Figure 15.5.

FIGURE 15.5.
A running ADO
control database
application.

This is such a simple way to build database applications: Just place controls on a window
and configure the properties to tell it where to get the data. What’s the downside of
building ADO applications this way? First, using this approach involves a lot of unneces-
sary overhead in building ADO applications. For each SQL query or table that you want
to pull in a separate record set, you have to add a separate ADO control. Each of these
ADO controls will establish a separate connection to the database, which could cause
problems with databases that have a limited number of connections available (not to

021 31240-9 CH15 4/27/00 12:55 PM Page 348

Updating and Adding Database Records Through ADO 349

15
mention the additional overhead on the application). Finally, not all data-bound controls
are ADO enabled. ADO is such a new technology that there are few controls that you can
use with it at this time. You may find some controls that allow you to retrieve and dis-
play data for the user, but do not allow the user to change and edit the data. Others may
not even provide you with that much functionality.

Importing the ADO DLL
If you look around in the MFC class hierarchy, you’ll find that there are no classes for
use with ADO. If you don’t want to use the controls approach, then what are your
options? Do you have to create the classes yourself? No, Microsoft has provided other
means for you to create and use classes for each of the objects in ADO, through the use
of a new C++ precompiler directive called #import.

The #import precompiler directive was first added to Visual C++ with the 5.0 release.
You can use this directive to import an ActiveX DLL that has been built with the
IDispatch interface description included in the DLL. This directive tells the Visual C++
compiler to import the DLL specified by the #import directive and to extract the object
information from the DLL, creating a couple of header files that are automatically
included in your project. These header files have the filename extensions .TLH and .TLI
and are in the output directory for your project (the Debug or Release directory, the same
directory where you’ll find the executable application after you’ve compiled your pro-
ject). These two files contain definitions of classes for each of the objects in the DLL
that you can use in your code. The #import directive also tells the compiler to include
the DLL as part of the project, eliminating the need to include the .LIB file for the DLL
in your project.

You can import the ADO DLL by placing the following code at the beginning of the
header file in which you are defining any database objects:

#define INITGUID
#import “C:\Program Files\Common Files\System\ADO\msado15.dll”

➥ rename_namespace(“ADOCG”) rename(“EOF”, “EndOfFile”)
using namespace ADOCG;
#include “icrsint.h”

In these four lines of directives, the first line defines a constant that needs to be defined
for ADO. The second imports the ADO DLL, creating the two header files mentioned
earlier. After the filename to be imported, this directive includes two attributes to the
#import directive. The first, rename_namespace, renames the namespace into which
the DLL has been imported. This is followed with the line following the #import, where
the renamed namespace is specified as the one used. The second attribute, rename,
renames an element in the header files that are created using the #import directive.

021 31240-9 CH15 4/27/00 12:55 PM Page 349

The reason you rename elements in these header files is to prevent conflicts with another
element named elsewhere. If you examine the header file, the element specified is not
renamed in the file, but when the compiler reads the file, the element is renamed. The
final line includes the ADO header file, which contains the definition of some macros
that you will use when writing your ADO applications.

Connecting to a Database
Before you can use any of the ADO objects, you need to initialize the COM environment
for your application. You can do this by calling the CoInitialize API function, passing
NULL as the only parameter, as follows:

::CoInitialize(NULL);

This enables you to make calls to ActiveX objects. If you leave out this one line of code
from your application, or don’t put it before you begin interacting with the objects, you
get an COM error whenever you run your application.

When you are finished with all ADO activity, you also need to shut down the COM envi-
ronment by calling the CoUninitialize function, as follows:

CoUninitialize();

This function cleans up the COM environment and prepares your application for shutting
down.

Once you initialize the COM environment, you can create a connection to the database.
The best way to do this is not to declare a Connection object variable, but to declare a
Connection object pointer, _ConnectionPtr, and use it for all your interaction with the
Connection object. Once you declare a Connection object pointer, you can initialize it
by creating an instance of the Connection object, calling the CreateInstance function,
passing it the UUID of the Connection object as its only parameter, as follows:

_ConnectionPtr pConn;
pConn.CreateInstance(__uuidof(Connection));

350 Day 15

When you work with these objects and functions, you need to use the cor-
rect number of underscore characters in front of the various object and
function names. The _ConnectionPtr object has only a single underscore
character, whereas the __uuidof function has two.

Tip

Once you create the object, you can call the Open function to establish the connection to
the database. This function takes four parameters. The first parameter is the connection
definition string. This string defines the OLE DB data source for the database. It may be

021 31240-9 CH15 4/27/00 12:55 PM Page 350

Updating and Adding Database Records Through ADO 351

15
an ODBC OLE DB driver, where OLE DB is sitting on top of an ODBC data source, as
you’ll use in your sample application. If you are using SQL Server or Oracle databases,
it may be a direct connection to the OLE DB interface provided by the database itself.
The second parameter is the user ID for connecting to the database. The third parameter
is the password for connecting to the database. The fourth parameter is the cursor type to
use with the database. These types are defined in the msado15.tlh header file that is cre-
ated by the #import directive. A typical use of the Open function to connect to an ODBC
data source that doesn’t need a user ID or password is like the following:

pConn->Open(L”Provider=MSDASQL.1;Data Source=TYVCDB”, L””, L””,
➥ adOpenUnspecified);

Executing Commands and Retrieving Data
Once you have the connection open, you can use a Command object to pass SQL com-
mands to the database. This is the normal method of executing SQL commands with
ADO. To create a Command object, follow the same process that you used to create a
Connection object. Declare a Command object pointer, _CommandPtr, and then create an
instance of it using the UUID of the Command object, as follows:

_CommandPtr pCmd;
pCmd.CreateInstance(__uuidof(Command));

Once you create your Command object, assuming that you have already established the
connection to the database, set the active connection property of the Command object to
the open Connection object pointer, as follows:

pCmd->ActiveConnection = pConn;

Next, specify the SQL command to be executed by setting the CommandText property of
the Command object, as follows:

pCmd->CommandText = “Select * from Addresses”;

At this point, you have two options for how you execute this command and retrieve the
records. The first is to call the Command object’s Execute method, which will return a
new Recordset object, which you’ll want to set to a Recordset object pointer, as
follows:

_RecordsetPtr pRs;
pRs = pCmd->Execute();

The other approach to running the command and retrieving the records is to specify that
the Command object is the source for the records in the Recordset. This requires creating
the Recordset object as follows:

_RecordsetPtr pRs;
pRs.CreateInstance(__uuidof(Recordset));
pRs->PutRefSource(pCmd);

021 31240-9 CH15 4/27/00 12:55 PM Page 351

Now, you’ll need to create two NULL variant values to pass as the first two parameters
to the Recordset’s Open method. The third parameter will be the cursor type to use, fol-
lowed by the locking method to use. Finally, the fifth parameter to the Recordset’s Open
method is an options flag that indicates how the database should evaluate the command
being passed in. You do this with the following code:

// Create the variant NULL
_variant_t vNull;
vNull.vt = VT_ERROR;
vNull.scode = DISP_E_PARAMNOTFOUND;

// Open the recordset
pRs->Open(vNull, vNull, adOpenDynamic, adLockOptimistic, adCmdUnknown);

You could take another approach to accomplish all of the preceding tasks with only a
few lines of code. Skip the use of the Command and Connection objects altogether, plac-
ing all the necessary connection information in the Recordset’s Open function. You can
specify the SQL command as the first parameter and the connection information as the
second parameter, instead of the two NULLs that you passed previously. This method
reduces all of the preceding code to the following few lines:

_RecordsetPtr pRs;
pRs.CreateInstance(__uuidof(Recordset));
pRs->Open(_T(“Provider=MSDASQL.1;Data Source=TYVCDB”),

_T(“select * from Addresses”), adOpenDynamic,
adLockOptimistic, adCmdUnknown);

352 Day 15

Although placing all of the command and connection information into the
Recordset Open function is fine for a simple application, such as the one that
you will build today, you are better off using the Connection object with any
application that has more than a couple of database queries. This allows you
to make a single connection to the database and use that one connection
for all interaction with the database.

Tip

Navigating the Recordset
Once you’ve retrieved a set of records from the database, and you are holding them in a
Recordset object, you’ll need to navigate the set of records. This functionality is avail-
able, just as you would expect, through the MoveFirst, MoveLast, MovePrevious, and
MoveNext functions. None of these functions take any parameters because they perform
the functions that you would expect them to perform.

021 31240-9 CH15 4/27/00 12:55 PM Page 352

Updating and Adding Database Records Through ADO 353

15
Along with these functions, the Recordset object also has two properties, BOF and EOF
(which you should normally rename to prevent a collision with the default definition of
EOF), which can be checked to determine if the current record in the set is beyond either
end of the set of records.

Accessing Field Values
When you need to begin accessing the data values in each of the fields is where working
with ADO in Visual C++ begins to get interesting. Because ADO is intended to be easy
to use in Microsoft’s scripting languages, VBScript and JScript, which only have
variant data types, all data elements that you’ll retrieve from fields in the ADO
Recordset are variant values. They have to be converted into the data types that you
need them to be. There are two ways of doing this. The first way is the straight-forward
way of retrieving the values into a variant and then converting them, as in the following
code:

_variant_t vFirstName;
CString strFirstName;

vFirstName = pRs->GetCollect(_variant_t(“FirstName”));
vFirstName.ChangeType(VT_BSTR);
strFirstName = vFirstName.bstrVal;

The not-so-straight-forward way to do this is actually the better way, and in the long run,
is a lot easier to work with. Microsoft has created a series of macros that perform the
conversion for you and that maintain a set of variables of the records in the set. To do
this, you’ll define a new class to use as the interface for your record set. This class will
be a descendent of the CADORecordBinding class, which is defined in the icrsint.h
header file, which you included just after the #import directive. This class will not have
any constructor or destructor but will have a series of macros, along with a number of
variables. Each field in the set of records has two variables, an unsigned long, which is
used to maintain the status of the variable, and the field variable itself. These variables
must be regular C variables, and they cannot be C++ classes such as CString. A simple
example of this class declaration is the following:

class CCustomRs :
public CADORecordBinding

{
BEGIN_ADO_BINDING(CCustomRs)

ADO_FIXED_LENGTH_ENTRY(1, adInteger, m_lAddressID, lAddressIDStatus,
➥ FALSE)
ADO_VARIABLE_LENGTH_ENTRY2(2, adVarChar, m_szFirstName,

➥ sizeof(m_szFirstName), lFirstNameStatus, TRUE)
ADO_FIXED_LENGTH_ENTRY(3, adDate, m_dtBirthdate, lBirthdateStatus,
➥ TRUE)
ADO_FIXED_LENGTH_ENTRY(4, adBoolean, m_bSendCard, lSendCardStatus,
➥ TRUE)

021 31240-9 CH15 4/27/00 12:55 PM Page 353

END_ADO_BINDING()

public:
LONG m_lAddressID;
ULONG lAddressIDStatus;
CHAR m_szFirstName[51];
ULONG lFirstNameStatus;
DATE m_dtBirthdate;
ULONG lBirthdateStatus;
VARIANT_BOOL m_bSendCard;
ULONG lSendCardStatus;

};

Once you define this record layout class to match the record layout that will be returned
by your database query, you can declare a variable of this class for use in your applica-
tion, as follows:

CCustomRs m_rsRecSet;

Next, you need to create a pointer to an IADORecordBinding interface, as follows:

IADORecordBinding *picRs = NULL;

This is a pointer to a COM interface that is part of the ADO Recordset object. Once you
retrieve the set of records, you need to retrieve the pointer to the IADORecordBinding
interface and bind the custom record set class to the Recordset object, as in the follow-
ing code:

if (FAILED(pRs->QueryInterface(__uuidof(IADORecordBinding), (LPVOID
➥ *)&picRs)))

_com_issue_error(E_NOINTERFACE);
picRs->BindToRecordset(&m_rsRecSet);

Now, as you navigate the records in the set, you just need to access the member variables
of your custom record class to retrieve the current value for each field.

The BEGIN_ADO_BINDING and END_ADO_BINDING Macros
The key to the second method of accessing the data values in the record set is in the
macros that are used in defining the record class. The set of macros start with the
BEGIN_ADO_BINDING macro, which takes the class name as its only parameter. This macro
sets up the structure definition that is created with the rest of the macros that follow.

The set of macros is closed by the END_ADO_BINDING macro. This macro doesn’t take any
parameters, and it wraps up the definition of the record binding structure that is created
in the class. It is in the rest of the macros, which are used between these two, where the
real work is done.

354 Day 15

021 31240-9 CH15 4/27/00 12:55 PM Page 354

Updating and Adding Database Records Through ADO 355

15
The ADO_FIXED_LENGTH_ENTRY Macros
The ADO_FIXED_LENGTH_ENTRY macro is used for any database fields that are fixed in
size. It can be used with a date or boolean field, or even a text field that is a fixed size,
with no option for any variation in the database. There are two versions of this macro;
you add a 2 to the end of the name of the second version (ADO_FIXED_LENGTH_ENTRY2).

Both versions require the same first three and last parameters. The first version requires
an additional parameter that is not required in the second version. The first parameter is
the ordinal number of the field in the record set. This is the position in the field order as
returned by the SQL query that is run to populate the record set. The second parameter is
the data type of the field; the available data types are defined in the header file created
by the #import directive. The third parameter is the variable into which the data value is
to be copied. For the first version of the macro, the fourth parameter is the variable for
the field status (the unsigned long that you defined with the variable for the actual
value). The last variable is a boolean that specifies whether this field can be modified.

The ADO_NUMERIC_ENTRY Macros
You use the ADO_NUMERIC_ENTRY macros with numeric fields only. They are similar to the
ADO_FIXED_LENGTH_ENTRY macros in that there are two different versions of the macro,
named in the same way. In these macros, the first five parameters are the same in both
versions, along with the final parameter. Like with the ADO_FIXED_LENGTH_ENTRY
macros, the first version has an additional parameter that is not used in the second ver-
sion.

The first three parameters for the ADO_NUMERIC_ENTRY macros are the same as those for
the ADO_FIXED_LENGTH_ENTRY macros, as are the last parameter and the next to last para-
meter for the first version. It is the fourth and fifth parameters that are unique to these
macros. The fourth parameter specifies the precision of the value in this field of the
record set. The fifth parameter specifies the scale of the value. Both of these parameters
are crucial in correctly converting the value to and from a variant data type.

The ADO_VARIABLE_LENGTH_ENTRY Macros
The final series of macros is the ADO_VARIABLE_LENGTH_ENTRY macros. You use this
series of macros with database fields that are likely to vary in length. With a SQL-based
database, you want to use this series of macros with any varchar (variable-length char-
acter string) columns. There are three versions of this macro. In all three versions, the
first four parameters are the same, and the final parameter is the same. It is the parame-
ters between them that vary.

021 31240-9 CH15 4/27/00 12:55 PM Page 355

The first parameter is the ordinal position of the column in the record set as returned by
the SQL query. The second parameter is the data type. The third parameter is the variable
in which the data value should be placed. The fourth parameter for all versions of the
macro is the size of the variable into which the value is to be placed. This prevents the
data from being written past the end of the variable that you defined for it to be placed
in. As with the previous macros, the final parameter specifies whether the field is update-
able.

In the first version of this macro, there are two parameters between the fourth and final
parameters. The second version of this macro only has the first of these two parameters,
and the third version only has the second of these two parameters. The first of these two
parameters is the status variable for use with this field. The second of these two parame-
ters is the length of the field in the database. The preceding example used the second
version of this macro.

Updating Records
When you need to update values in a record in the recordset, how you handle it depends
on which of the two methods you used to retrieve the data elements from the recordset.
If you retrieved each field and converted it from a variant yourself, you need to update
each individual field that has been changed. The update is done using the Recordset
object’s Update method, which takes two variables, the field being updated and the new
value for the field. You could make this update using the following code:

_variant_t vName, vValue;
vName.SetString(“FirstName”);
vValue.SetString(“John”);
pRs->Update(vName, vValue);

If you created your record class and bound it to the recordset, updating the record is a lit-
tle simpler. Once you have copied the new values into the variables in the record class,
you can call the record-bound version of the Update function, as in the following:

picRs->Update(&m_rsRecSet);

This updates the record in the Recordset object to be updated with the values in the
record class that you have bound to the set.

Adding and Deleting
Adding and deleting records from an ADO recordset is similar to how you accomplish
it in other database access technologies. However, there are some slight subtleties to how
you perform the addition of new records.

356 Day 15

021 31240-9 CH15 4/27/00 12:55 PM Page 356

Updating and Adding Database Records Through ADO 357

15
For deleting the current record, you can call the Recordset object’s Delete method. This
method requires a single parameter that specifies how the delete is supposed to be done.
Most likely, you’ll pass the adAffectCurrent value so that only the current record in the
recordset is deleted, as in the following code:

pRs->Delete(adAffectCurrent);
pRs->MovePrevious();

As with any other database access technology, once you’ve deleted the current record,
there is no current record, so you need to navigate to another record before allowing the
user to do anything else.

When you are adding a new record, you can call the Recordset object’s AddNew method.
Once you have added a new record, the new record is the current record in the record set.
If you check the variables in the record class that you created, you’ll find that they are all
empty. However, you cannot just begin entering data values into these fields. To allow
the user to immediately enter the various data elements in the new record, you’ll blank
out the values in the record class and pass this variable as the only parameter to the Add
New class. You need to call it through the record-binding interface pointer, as in the fol-
lowing example:

CString strBlank = “ “;
COleDateTime dtBlank;

m_rsRecSet.m_lAddressID = 0;
strcpy(m_rsRecSet.m_szFirstName, (LPCTSTR)strBlank);
m_rsRecSet.m_dtBirthdate = (DATE)dtBlank;
m_rsRecSet.m_bSendCard = VARIANT_FALSE;
picRs->AddNew(&m_rsRecSet);

This allows you to provide the user with a blank record, ready for editing. Once the user
has entered all the various values in the record, copy all these values back to the record
variable. Then, call the Update method to save the record.

Closing the Recordset and Connection Objects
Once you finish working with a record set, you’ll close the record set by calling the
Close method, as follows:

pRs->Close();

Once you finish all database interaction for the entire application, you’ll also close the
connection to the database by calling the Connection object’s Close method:

pConn->Close();

021 31240-9 CH15 4/27/00 12:55 PM Page 357

Building a Database Application Using ADO
The sample application that you will build today is another simple database application,
basically the same as the one you built yesterday. You’ll use ADO to retrieve a set of
records from an Access database, providing functionality to navigate the record set. The
user will be able to make changes to the data in the record set, and those changes will be
reflected in the database as well. The user will also be able to add new records to the
record set and delete records as desired. You will accomplish all of this using ADO as
the means of accessing the database, which will go through the ODBC driver that was
configured yesterday.

Creating the Application Shell
The application that you will build today will be an SDI-style application. As with sev-
eral other sample applications that you build in the course of reading this book, every-
thing that you do in today’s application is just as applicable to an MDI or dialog-style
application. To start the application, you’ll use the MFC AppWizard to build the applica-
tion shell, using most of the SDI-style application default settings.

To start your application, create a new AppWizard project, naming the project something
appropriate, such as DbAdo. Specify on the first panel of the AppWizard that you are
building an SDI-style application. Accept all the default settings for steps 2 through 5,
being sure to leave the second step stating that you want no database support included in
the application. On the final AppWizard step, specify that the view class should be inher-
ited from the CFormView class.

Once you finish creating your application shell, design the main dialog form for use in
your application. Add the standard controls for each of the fields in the Addresses table
from the database you used yesterday (or if you used a different database yesterday, add
controls for all the fields in the table that you used), as shown in Figure 15.6. Configure
the controls using the properties listed in Table 15.1.

358 Day 15

If you want to save a little time when building the example, you can leave
out most of the controls and database fields from the application. The key
fields that you’ll need to include on the screen are ID, First and Last Names,
Birthdate, and Send Card. If you want to leave out the other fields from the
application, that’s fine. You will need to include these fields in the
CCustomRs class that you create in this chapter.

Tip

021 31240-9 CH15 4/27/00 12:55 PM Page 358

Updating and Adding Database Records Through ADO 359

15

TABLE 15.1. CONTROL PROPERTY SETTINGS.

Object Property Setting

Static Text ID IDC_STATIC

Caption Address ID

Edit Box ID IDC_EDIT_ADDRESSID

Static Text ID IDC_STATIC

Caption First Name

Edit Box ID IDC_EDIT_FIRSTNAME

Static Text ID IDC_STATIC

Caption Last Name

Edit Box ID IDC_EDIT_LASTNAME

Static Text ID IDC_STATIC

Caption Spouse Name

Edit Box ID IDC_EDIT_SPOUSENAME

Static Text ID IDC_STATIC

Caption Address

Edit Box ID IDC_EDIT_ADDRESS

FIGURE 15.6.
The main form layout.

continues

021 31240-9 CH15 4/27/00 12:55 PM Page 359

TABLE 15.1. CONTINUED

Object Property Setting

Static Text ID IDC_STATIC

Caption City

Edit Box ID IDC_EDIT_CITY

Static Text ID IDC_STATIC

Caption State Or Province

Edit Box ID IDC_EDIT_STATEORPROVINCE

Static Text ID IDC_STATIC

Caption Postal Code

Edit Box ID IDC_EDIT_POSTALCODE

Static Text ID IDC_STATIC

Caption Country

Edit Box ID IDC_EDIT_COUNTRY

Static Text ID IDC_STATIC

Caption Email Address

Edit Box ID IDC_EDIT_EMAILADDRESS

Static Text ID IDC_STATIC

Caption Home Phone

Edit Box ID IDC_EDIT_HOMEPHONE

Static Text ID IDC_STATIC

Caption Work Phone

Edit Box ID IDC_EDIT_WORKPHONE

Static Text ID IDC_STATIC

Caption Work Extension

Edit Box ID IDC_EDIT_WORKEXTENSION

Static Text ID IDC_STATIC

Caption Fax Number

Edit Box ID IDC_EDIT_FAXNUMBER

Static Text ID IDC_STATIC

Caption Birthdate

Edit Box ID IDC_EDIT_BIRTHDATE

Static Text ID IDC_STATIC

Caption Send Card

360 Day 15

021 31240-9 CH15 4/27/00 12:55 PM Page 360

Updating and Adding Database Records Through ADO 361

15
Object Property Setting

Check Box ID IDC_CHECK_SENDCARD

Static Text ID IDC_STATIC

Caption Notes

Edit Box ID IDC_EDIT_NOTES

Once you add all of the controls to the form, use the Class Wizard to attach variables to
each of these controls, as specified in Table 15.2. The variables should match the data
types of the columns in the database that the control will be used to display.

TABLE 15.2. CONTROL VARIABLES.

Object Name Category Type

IDC_CHECK_SENDCARD m_bSendCard Value BOOL

IDC_EDIT_ADDRESS m_strAddress Value CString

IDC_EDIT_ADDRESSID m_lAddressID Value long

IDC_EDIT_BIRTHDATE m_oledtBirthdate Value COleDateTime

IDC_EDIT_CITY m_strCity Value CString

IDC_EDIT_COUNTRY m_strCountry Value CString

IDC_EDIT_EMAILADDRESS m_strEmailAddress Value CString

IDC_EDIT_FAXNUMBER m_strFaxNumber Value CString

IDC_EDIT_FIRSTNAME m_strFirstName Value CString

IDC_EDIT_HOMEPHONE m_strHomePhone Value CString

IDC_EDIT_LASTNAME m_strLastName Value CString

IDC_EDIT_NOTES m_strNotes Value CString

IDC_EDIT_POSTALCODE m_strPostalCode Value CString

IDC_EDIT_SPOUSENAME m_strSpouseName Value CString

IDC_EDIT_STATEORPROVINCE m_strStateOrProvince Value CString

IDC_EDIT_WORKEXTENSION m_strWorkExtension Value CString

IDC_EDIT_WORKPHONE m_strWorkPhone Value CString

Building a Custom Record Class
Before you go any further in building your application, you need to create your custom
record class that you will bind to the record set. This class will need public variables
for each of the columns in the database table that you are selecting, as well as status

021 31240-9 CH15 4/27/00 12:55 PM Page 361

variables for each of these columns. You’ll also build the set of macros to exchange the
column values between the record set and the class variables. To create this class, create
a new class using the same method you used in previous days, specifying that a generic
class. Specify a suitable class name, such as CCustomRs, and specify the base class as
CADORecordBinding with public access.

Once you have created your new class, delete the constructor and destructor functions
from both the header and source code files for the new class. Edit the header file for
your new class, importing the ADO DLL and filling in the macros and variables, as in
Listing 15.1.

LISTING 15.1. THE CUSTOM RECORD CLASS.

1: #define INITGUID
2: #import “C:\Program Files\Common Files\System\ADO\msado15.dll”

➥ rename_namespace(“ADOCG”) rename(“EOF”, “EndOfFile”)
3: using namespace ADOCG;
4: #include “icrsint.h”
5:
6: class CCustomRs :
7: public CADORecordBinding
8: {
9: BEGIN_ADO_BINDING(CCustomRs)
10: ADO_FIXED_LENGTH_ENTRY(1, adInteger, m_lAddressID,

➥ lAddressIDStatus,FALSE)
11: ADO_VARIABLE_LENGTH_ENTRY2(2, adVarChar, m_szFirstName,

➥ sizeof(m_szFirstName), lFirstNameStatus, TRUE)
12: ADO_VARIABLE_LENGTH_ENTRY2(3, adVarChar, m_szLastName,

➥ sizeof(m_szLastName), lLastNameStatus, TRUE)
13: ADO_VARIABLE_LENGTH_ENTRY2(4, adVarChar, m_szSpouseName,

➥ sizeof(m_szSpouseName), lSpouseNameStatus, TRUE)
14: ADO_VARIABLE_LENGTH_ENTRY2(5, adVarChar, m_szAddress,

➥ sizeof(m_szAddress), lAddressStatus, TRUE)
15: ADO_VARIABLE_LENGTH_ENTRY2(6, adVarChar, m_szCity,

➥ sizeof(m_szCity),lCityStatus, TRUE)
16: ADO_VARIABLE_LENGTH_ENTRY2(7, adVarChar, m_szStateOrProvince,

➥ sizeof(m_szStateOrProvince), lStateOrProvinceStatus, TRUE)
17: ADO_VARIABLE_LENGTH_ENTRY2(8, adVarChar, m_szPostalCode,

➥ sizeof(m_szPostalCode), lPostalCodeStatus, TRUE)
18: ADO_VARIABLE_LENGTH_ENTRY2(9, adVarChar, m_szCountry,

➥ sizeof(m_szCountry), lCountryStatus, TRUE)
19: ADO_VARIABLE_LENGTH_ENTRY2(10, adVarChar, m_szEmailAddress,

➥ sizeof(m_szEmailAddress), lEmailAddressStatus, TRUE)
20: ADO_VARIABLE_LENGTH_ENTRY2(11, adVarChar, m_szHomePhone,

➥ sizeof(m_szHomePhone), lHomePhoneStatus, TRUE)
21: ADO_VARIABLE_LENGTH_ENTRY2(12, adVarChar, m_szWorkPhone,

➥ sizeof(m_szWorkPhone), lWorkPhoneStatus, TRUE)

362 Day 15

021 31240-9 CH15 4/27/00 12:55 PM Page 362

Updating and Adding Database Records Through ADO 363

15
22: ADO_VARIABLE_LENGTH_ENTRY2(13, adVarChar, m_szWorkExtension,

➥ sizeof(m_szWorkExtension), lWorkExtensionStatus, TRUE)
23: ADO_VARIABLE_LENGTH_ENTRY2(14, adVarChar, m_szFaxNumber,

➥ sizeof(m_szFaxNumber), lFaxNumberStatus, TRUE)
24: ADO_FIXED_LENGTH_ENTRY(15, adDate, m_dtBirthdate,

➥ lBirthdateStatus,TRUE)
25: ADO_FIXED_LENGTH_ENTRY(16, adBoolean, m_bSendCard,

➥ lSendCardStatus,TRUE)
26: ADO_VARIABLE_LENGTH_ENTRY2(17, adLongVarChar, m_szNotes,

➥ sizeof(m_szNotes), lNotesStatus, TRUE)
27: END_ADO_BINDING()
28:
29: public:
30: LONG m_lAddressID;
31: ULONG lAddressIDStatus;
32: CHAR m_szFirstName[51];
33: ULONG lFirstNameStatus;
34: CHAR m_szLastName[51];
35: ULONG lLastNameStatus;
36: CHAR m_szSpouseName[51];
37: ULONG lSpouseNameStatus;
38: CHAR m_szAddress[256];
39: ULONG lAddressStatus;
40: CHAR m_szCity[51];
41: ULONG lCityStatus;
42: CHAR m_szStateOrProvince[21];
43: ULONG lStateOrProvinceStatus;
44: CHAR m_szPostalCode[21];
45: ULONG lPostalCodeStatus;
46: CHAR m_szCountry[51];
47: ULONG lCountryStatus;
48: CHAR m_szEmailAddress[51];
49: ULONG lEmailAddressStatus;
50: CHAR m_szHomePhone[31];
51: ULONG lHomePhoneStatus;
52: CHAR m_szWorkPhone[31];
53: ULONG lWorkPhoneStatus;
54: CHAR m_szWorkExtension[21];
55: ULONG lWorkExtensionStatus;
56: CHAR m_szFaxNumber[31];
57: ULONG lFaxNumberStatus;
58: DATE m_dtBirthdate;
59: ULONG lBirthdateStatus;
60: VARIANT_BOOL m_bSendCard;
61: ULONG lSendCardStatus;
62: CHAR m_szNotes[65536];
63: ULONG lNotesStatus;
64: };

021 31240-9 CH15 4/27/00 12:55 PM Page 363

Once you’ve created this class, you need to add a variable to the document class. Add a
new member variable to the document class, specifying the variable type as CCustomRs,
the name as m_rsRecSet, and the access as private. You’ll also need to include the cus-
tom record class header file in the document source code file, as in Listing 15.2.

LISTING 15.2. THE DOCUMENT SOURCE CODE INCLUDES.

1: // dbadoDoc.cpp : implementation of the CDbAdoDoc class
2: //
3:
4: #include “stdafx.h”
5: #include “dbado.h”
6:
7: #include “CustomRs.h”
8: #include “dbadoDoc.h”
9: #include “dbadoView.h”

Another detail that you need to attend to before going any further is providing a way for
the view to get a pointer to the record class from the document class. This function
should return a pointer to the record class variable. To add this function to your applica-
tion, add a new member function to the document class, specifying the function type as
CCustomRs*, the function declaration as GetRecSet, and the function access as public.
Edit this function, adding the code in Listing 15.3.

LISTING 15.3. THE CDbAdoDoc GetRecSet FUNCTION.

1: CCustomRs* CDbAdoDoc::GetRecSet()
2: {
3: // Return a pointer to the record object
4: return &m_rsRecSet;
5: }

One last piece of functionality that you’ll add before getting to the real heart of ADO
programming is the function for reporting ADO and database errors. This function will
display a message to the user, reporting that an error occurred and displaying the error
code and error message for the user. To add this function to your application, add a new
member function to your document class. Specify the function type as void, the function
declaration as GenerateError(HRESULT hr, PWSTR pwszDescription), and the access
as public. Edit the function, entering the code in Listing 15.4.

364 Day 15

021 31240-9 CH15 4/27/00 12:55 PM Page 364

Updating and Adding Database Records Through ADO 365

15
LISTING 15.4. THE CDbAdoDoc GenerateError FUNCTION.

1: void CDbAdoDoc::GenerateError(HRESULT hr, PWSTR pwszDescription)
2: {
3: CString strError;
4:
5: // Format and display the error message
6: strError.Format(“Run-time error ‘%d (%x)’”, hr, hr);
7: strError += “\n\n”;
8: strError += pwszDescription;
9:
10: AfxMessageBox(strError);
11: }

Connecting and Retrieving Data
You can perform all of the connecting to the database and retrieving the record set in the
OnNewDocument function in the document class. Before you can add this functionality,
you need to add a few more variables to the document class. You’ll need a Recordset
object pointer, an IADORecordBinding interface pointer, a couple of string variables for
holding the database connection string, and the SQL command to execute to populate the
record set. Add all of these variables to the document class as specified in Table 15.3.

TABLE 15.3. DOCUMENT CLASS MEMBER VARIABLES.

Name Type Access

m_pRs _RecordsetPtr Private

m_piAdoRecordBinding IADORecordBinding* Private

m_strConnection CString Private

m_strCmdText CString Private

In the OnNewDocument function, you’ll perform a series of steps for connecting and
retrieving the record set. First, you’ll set the strings for the database connection and the
SQL command to be run. Next, you’ll initialize the COM environment and initialize the
two pointers so that they are both NULL. You’ll create the Recordset object using the
CreateInstance function. Open the Recordset, connecting to the database and running
the SQL command at the same time. Bind the record class to the record set using the
IADORecordBinding interface pointer. Finally, tell the view class to refresh the bound
data, displaying the initial record for the user using a view class function that you’ll add
in a little while. To add all this functionality, edit the OnNewDocument function in the doc-
ument class, adding the code starting with line 8 in Listing 15.5.

021 31240-9 CH15 4/27/00 12:55 PM Page 365

LISTING 15.5. THE CDbAdoDoc OnNewDocument FUNCTION.

1: BOOL CDbAdoDoc::OnNewDocument()
2: {
3: if (!CDocument::OnNewDocument())
4: return FALSE;
5:
6: // TODO: add reinitialization code here
7: // (SDI documents will reuse this document)
8: // Set the connection and SQL command strings
9: m_strConnection = _T(“Provider=MSDASQL.1;Data Source=TYVCDB”);
10: m_strCmdText = _T(“select * from Addresses”);
11:
12: // Initialize the Recordset and binding pointers
13: m_pRs = NULL;
14: m_piAdoRecordBinding = NULL;
15: // Initialize the COM environment
16: ::CoInitialize(NULL);
17: try
18: {
19: // Create the record set object
20: m_pRs.CreateInstance(__uuidof(Recordset));
21:
22: // Open the record set object
23: m_pRs->Open((LPCTSTR)m_strCmdText, (LPCTSTR)m_strConnection,
24: adOpenDynamic, adLockOptimistic, adCmdUnknown);
25:
26: // Get a pointer to the record binding interface
27: if (FAILED(m_pRs->QueryInterface(__uuidof(IADORecordBinding),
28: (LPVOID *)&m_piAdoRecordBinding)))
29: _com_issue_error(E_NOINTERFACE);
30: // Bind the record class to the record set
31: m_piAdoRecordBinding->BindToRecordset(&m_rsRecSet);
32:
33: // Get a pointer to the view
34: POSITION pos = GetFirstViewPosition();
35: CDbAdoView* pView = (CDbAdoView*)GetNextView(pos);
36: if (pView)
37: // Sync the data set with the form
38: pView->RefreshBoundData();
39: }
40: // Any errors?
41: catch (_com_error &e)
42: {
43: // Display the error
44: GenerateError(e.Error(), e.Description());
45: }
46:
47: return TRUE;
48: }

366 Day 15

021 31240-9 CH15 4/27/00 12:55 PM Page 366

Updating and Adding Database Records Through ADO 367

15
Before moving any further, it’s a good idea to make sure that you add all the code neces-
sary to clean up as your application is closing. You need to close the record set and
release the pointer to the record binding interface. You’ll also shut down the COM envi-
ronment. To add all this functionality to your application, add a function to the
DeleteContents event message in the document class. Edit this function, adding the
code in Listing 15.6.

LISTING 15.6. THE CDbAdoDoc DeleteContents FUNCTION.

1: void CDbAdoDoc::DeleteContents()
2: {
3: // TODO: Add your specialized code here and/or call the base class
4: // Close the record set
5: if (m_pRs)
6: m_pRs->Close();
7: // Do we have a valid pointer to the record binding?
8: if (m_piAdoRecordBinding)
9: // Release it
10: m_piAdoRecordBinding->Release();
11: // Set the record set pointer to NULL
12: m_pRs = NULL;
13:
14: // Shut down the COM environment
15: CoUninitialize();
16:
17: CDocument::DeleteContents();
18: }

Populating the Form
To display the record column values for the user, you’ll add a function for copying the
values from the record class to the view variables. This function first needs to get a
pointer to the record class from the document class. Next, it will check the status of each
individual field in the record class to make sure that it’s okay to copy, and then it will
copy the value. Once all values have been copied, you can call UpdateData to display the
values in the controls on the form. To add this functionality to your application, add a
new member function to the view class. Specify the function type as void, the function
declaration as RefreshBoundData, and the access as public. Edit this new function,
adding the code in Listing 15.7.

021 31240-9 CH15 4/27/00 12:55 PM Page 367

LISTING 15.7. THE CDbAdoView RefreshBoundData FUNCTION.

1: void CDbAdoView::RefreshBoundData()
2: {
3: CCustomRs* pRs;
4:
5: // Get a pointer to the document object
6: pRs = GetDocument()->GetRecSet();
7:
8: // Is the field OK
9: if (adFldOK == pRs->lAddressIDStatus)
10: // Copy the value
11: m_lAddressID = pRs->m_lAddressID;
12: else
13: // Otherwise, set the value to 0
14: m_lAddressID = 0;
15: // Is the field OK
16: if (adFldOK == pRs->lFirstNameStatus)
17: // Copy the value
18: m_strFirstName = pRs->m_szFirstName;
19: else
20: // Otherwise, set the value to 0
21: m_strFirstName = _T(“”);
22: if (adFldOK == pRs->lLastNameStatus)
23: m_strLastName = pRs->m_szLastName;
24: else
25: m_strLastName = _T(“”);
26: if (adFldOK == pRs->lSpouseNameStatus)
27: m_strSpouseName = pRs->m_szSpouseName;
28: else
29: m_strSpouseName = _T(“”);
30: if (adFldOK == pRs->lAddressStatus)
31: m_strAddress = pRs->m_szAddress;
32: else
33: m_strAddress = _T(“”);
34: if (adFldOK == pRs->lCityStatus)
35: m_strCity = pRs->m_szCity;
36: else
37: m_strCity = _T(“”);
38: if (adFldOK == pRs->lStateOrProvinceStatus)
39: m_strStateOrProvince = pRs->m_szStateOrProvince;
40: else
41: m_strStateOrProvince = _T(“”);
42: if (adFldOK == pRs->lPostalCodeStatus)
43: m_strPostalCode = pRs->m_szPostalCode;
44: else
45: m_strPostalCode = _T(“”);
46: if (adFldOK == pRs->lCountryStatus)
47: m_strCountry = pRs->m_szCountry;
48: else

368 Day 15

021 31240-9 CH15 4/27/00 12:55 PM Page 368

Updating and Adding Database Records Through ADO 369

15
49: m_strCountry = _T(“”);
50: if (adFldOK == pRs->lEmailAddressStatus)
51: m_strEmailAddress = pRs->m_szEmailAddress;
52: else
53: m_strEmailAddress = _T(“”);
54: if (adFldOK == pRs->lHomePhoneStatus)
55: m_strHomePhone = pRs->m_szHomePhone;
56: else
57: m_strHomePhone = _T(“”);
58: if (adFldOK == pRs->lWorkPhoneStatus)
59: m_strWorkPhone = pRs->m_szWorkPhone;
60: else
61: m_strWorkPhone = _T(“”);
62: if (adFldOK == pRs->lWorkExtensionStatus)
63: m_strWorkExtension = pRs->m_szWorkExtension;
64: else
65: m_strWorkExtension = _T(“”);
66: if (adFldOK == pRs->lFaxNumberStatus)
67: m_strFaxNumber = pRs->m_szFaxNumber;
68: else
69: m_strFaxNumber = _T(“”);
70: if (adFldOK == pRs->lBirthdateStatus)
71: m_oledtBirthdate = pRs->m_dtBirthdate;
72: else
73: m_oledtBirthdate = 0L;
74: if (adFldOK == pRs->lSendCardStatus)
75: m_bSendCard = VARIANT_FALSE == pRs->m_bSendCard ? FALSE :

➥ TRUE;
76: else
77: m_bSendCard = FALSE;
78: if (adFldOK == pRs->lNotesStatus)
79: m_strNotes = pRs->m_szNotes;
80: else
81: m_strNotes = _T(“”);
82:
83: // Sync the data with the controls
84: UpdateData(FALSE);
85: }

Because you are working directly with the custom record class that you cre-
ated in this function, you must include the header file for your custom
record class in the view class source file, just as you did with the document
class source file.

Note

021 31240-9 CH15 4/27/00 12:55 PM Page 369

Saving Updates
When you need to copy changes back to the record set, reverse the process of copying
data from the controls on the form to the variables in the record class. You could take the
approach of copying all values, regardless of whether their values have changed, or you
could compare the two values to determine which have changed and need to be copied
back. Call the function that does this before navigating to any other records in the record
set so that any changes that the user has made are saved to the database. To add this
functionality to your application, add a new member function to the view class. Specify
the function type as void, the function declaration as UpdateBoundData, and the access
as private. Edit the function, adding the code in Listing 15.8.

LISTING 15.8. THE CDbAdoView UpdateBoundData FUNCTION.

1: void CDbAdoView::UpdateBoundData()
2: {
3: CCustomRs* pRs;
4:
5: // Get a pointer to the document
6: pRs = GetDocument()->GetRecSet();
7:
8: // Sync the controls with the variables
9: UpdateData(TRUE);
10:
11: // Has the field changed? If so, copy the value back
12: if (m_lAddressID != pRs->m_lAddressID)
13: pRs->m_lAddressID = m_lAddressID;
14: if (m_strFirstName != pRs->m_szFirstName)
15: strcpy(pRs->m_szFirstName, (LPCTSTR)m_strFirstName);
16: if (m_strLastName != pRs->m_szLastName)
17: strcpy(pRs->m_szLastName, (LPCTSTR)m_strLastName);
18: if (m_strSpouseName != pRs->m_szSpouseName)
19: strcpy(pRs->m_szSpouseName, (LPCTSTR)m_strSpouseName);
20: if (m_strAddress != pRs->m_szAddress)
21: strcpy(pRs->m_szAddress, (LPCTSTR)m_strAddress);
22: if (m_strCity != pRs->m_szCity)
23: strcpy(pRs->m_szCity, (LPCTSTR)m_strCity);
24: if (m_strStateOrProvince != pRs->m_szStateOrProvince)
25: strcpy(pRs->m_szStateOrProvince,

➥ (LPCTSTR)m_strStateOrProvince);
26: if (m_strPostalCode != pRs->m_szPostalCode)
27: strcpy(pRs->m_szPostalCode, (LPCTSTR)m_strPostalCode);
28: if (m_strCountry != pRs->m_szCountry)
29: strcpy(pRs->m_szCountry, (LPCTSTR)m_strCountry);
30: if (m_strEmailAddress != pRs->m_szEmailAddress)
31: strcpy(pRs->m_szEmailAddress, (LPCTSTR)m_strEmailAddress);
32: if (m_strHomePhone != pRs->m_szHomePhone)

370 Day 15

021 31240-9 CH15 4/27/00 12:55 PM Page 370

Updating and Adding Database Records Through ADO 371

15
33: strcpy(pRs->m_szHomePhone, (LPCTSTR)m_strHomePhone);
34: if (m_strWorkPhone != pRs->m_szWorkPhone)
35: strcpy(pRs->m_szWorkPhone, (LPCTSTR)m_strWorkPhone);
36: if (m_strWorkExtension != pRs->m_szWorkExtension)
37: strcpy(pRs->m_szWorkExtension, (LPCTSTR)m_strWorkExtension);
38: if (m_strFaxNumber != pRs->m_szFaxNumber)
39: strcpy(pRs->m_szFaxNumber, (LPCTSTR)m_strFaxNumber);
40: if (((DATE)m_oledtBirthdate) != pRs->m_dtBirthdate)
41: pRs->m_dtBirthdate = (DATE)m_oledtBirthdate;
42: if (m_bSendCard == TRUE)
43: pRs->m_bSendCard = VARIANT_TRUE;
44: else
45: pRs->m_bSendCard = VARIANT_FALSE;
46: if (m_strNotes != pRs->m_szNotes)
47: strcpy(pRs->m_szNotes, (LPCTSTR)m_strNotes);
48: }

Navigating the Record Set
For navigating the record set, add a series of menus for each of the four basic navigation
choices: first, previous, next, and last. Because the Recordset object and the record-
binding interface pointers are in the document object, the event messages for these
menus must be passed to the document class to update the current record and then to
navigate to the selected record. However, the view class needs to receive the event
message first because it needs to copy back any changed values from the controls on
the form before the update is performed. Once the navigation is complete, the view also
needs to update the form with the new record’s column values. Looking at the sequence
of where the event message needs to be passed, it makes the most sense to add the event
message handler to the view class, and from there, call the event message handler for the
document class.

To add this functionality to your application, add the four menu entries and the corre-
sponding toolbar buttons. Using the Class Wizard, add a event message handler function
to the view class for the command event for all four of these menus. Edit the event func-
tion for the Move First menu, adding the code in Listing 15.9.

LISTING 15.9. THE CDbAdoView OnDataFirst FUNCTION.

1: void CDbAdoView::OnDataFirst()
2: {
3: // TODO: Add your command handler code here
4: // Update the current record
5: UpdateBoundData();

continues

021 31240-9 CH15 4/27/00 12:55 PM Page 371

LISTING 15.9. CONTINUED

6: // Navigate to the first record
7: GetDocument()->MoveFirst();
8: // Refresh the form with the new record’s data
9: RefreshBoundData();
10: }

Now add the MoveFirst function to the document class and perform all the actual record
set functionality for this function. To add this, add a member function to the document
class in your application. Specify the function type as void, the declaration as
MoveFirst, and the access as public. Edit this function, adding the code in Listing 15.10.

LISTING 15.10. THE CDBADODOC MOVEFIRST FUNCTION.

1: void CDbAdoDoc::MoveFirst()
2: {
3: try
4: {
5: // Update the current record
6: m_piAdoRecordBinding->Update(&m_rsRecSet);
7: // Move to the first record
8: m_pRs->MoveFirst();
9: }
10: // Any errors?
11: catch (_com_error &e)
12: {
13: // Generate the error message
14: GenerateError(e.Error(), e.Description());
15: }
16: }

Edit and add the same set of functions to the view and document classes for the
MovePrevious, MoveNext, and MoveLast ADO functions. Once you’ve added all these
functions, you should be ready to compile and run your application. Your application will
be capable of opening the Addresses database table and presenting you with each indi-
vidual record, which you can edit and update, as in Figure 15.7.

372 Day 15

021 31240-9 CH15 4/27/00 12:55 PM Page 372

Updating and Adding Database Records Through ADO 373

15

Adding New Records
Now that you are able to retrieve and navigate the set of records in the database table, it
would be nice if you could add some new records to the table. You can add this function-
ality in exactly the same fashion that you added the navigation functionality. Add a
menu, trigger an event function in the view class from the menu, update the current
record values back to the record set, call a function in the document class, and refresh
the current record from the record set. As far as the menu and the view class are con-
cerned, the only difference between this functionality and any of the navigation menus
and functions is the ID of the menu and the name of the functions that are called, just as
with the different navigation functions. It’s in the document function where things begin
to diverge just a little.

In the document class function for adding a new record, once you’ve updated the current
record, you’ll make sure that adding a new record is an option. If it is, then you’ll build
an empty record and add it to the record set. Once you’ve added the empty record, navi-
gate to the last record in the set because this will be the new record. At this point, you
can exit this function and let the view class refresh the form with the data values from
the new, empty record.

To add this functionality to your application, add a new menu entry for adding a new
record. Add a command event-handler function to the view class for this new menu,
adding the same code to the function as you did with the navigation functions, but call
the AddNew function in the document class. Now, add the AddNew function to the docu-
ment class. Add a new member function to the document class, specifying the type as
void, the declaration as AddNew, and the access as public. Edit the function, adding the
code in Listing 15.11.

FIGURE 15.7.
The running
application.

021 31240-9 CH15 4/27/00 12:55 PM Page 373

LISTING 15.11. THE CDbAdoDoc AddNew FUNCTION.

1: void CDbAdoDoc::AddNew()
2: {
3: try
4: {
5: // Update the current record
6: m_piAdoRecordBinding->Update(&m_rsRecSet);
7: // Can we add a new record?
8: if (m_pRs->Supports(adAddNew))
9: {
10: // Create a blank record
11: CreateBlankRecord();
12: // Add the blank record
13: m_piAdoRecordBinding->AddNew(&m_rsRecSet);
14: // Move to the last record
15: m_pRs->MoveLast();
16: }
17: }
18: // Any errors?
19: catch (_com_error &e)
20: {
21: // Generate an error message
22: GenerateError(e.Error(), e.Description());
23: }
24: }

Now add the function that creates the blank record. In this function, you’ll set each of
the field variables in the record class to an almost empty string. To add this function to
your class, add a new member function to the document class. Specify its type as void,
its declaration as CreateBlankRecord, and its access as private. Edit this new function,
adding the code in Listing 15.12.

LISTING 15.12. THE CDbAdoDoc CreateBlankRecord FUNCTION.

1: void CDbAdoDoc::CreateBlankRecord()
2: {
3: // Create the blank values to be used
4: CString strBlank = “ “;
5: COleDateTime dtBlank;
6:
7: // Set each of the values in the record object
8: m_rsRecSet.m_lAddressID = 0;
9: strcpy(m_rsRecSet.m_szFirstName, (LPCTSTR)strBlank);
10: strcpy(m_rsRecSet.m_szLastName, (LPCTSTR)strBlank);

374 Day 15

021 31240-9 CH15 4/27/00 12:55 PM Page 374

Updating and Adding Database Records Through ADO 375

15
11: strcpy(m_rsRecSet.m_szSpouseName, (LPCTSTR)strBlank);
12: strcpy(m_rsRecSet.m_szAddress, (LPCTSTR)strBlank);
13: strcpy(m_rsRecSet.m_szCity, (LPCTSTR)strBlank);
14: strcpy(m_rsRecSet.m_szStateOrProvince, (LPCTSTR)strBlank);
15: strcpy(m_rsRecSet.m_szPostalCode, (LPCTSTR)strBlank);
16: strcpy(m_rsRecSet.m_szCountry, (LPCTSTR)strBlank);
17: strcpy(m_rsRecSet.m_szEmailAddress, (LPCTSTR)strBlank);
18: strcpy(m_rsRecSet.m_szHomePhone, (LPCTSTR)strBlank);
19: strcpy(m_rsRecSet.m_szWorkPhone, (LPCTSTR)strBlank);
20: strcpy(m_rsRecSet.m_szWorkExtension, (LPCTSTR)strBlank);
21: strcpy(m_rsRecSet.m_szFaxNumber, (LPCTSTR)strBlank);
22: m_rsRecSet.m_dtBirthdate = (DATE)dtBlank;
23: m_rsRecSet.m_bSendCard = VARIANT_FALSE;
24: strcpy(m_rsRecSet.m_szNotes, (LPCTSTR)strBlank);
25: }

If you compile and run your application, you should be able to insert and edit new
records in the database table.

Deleting Records
The final piece of functionality that you’ll add to your application is the ability to delete
the current record from the set. This function can follow the same form as all the naviga-
tion and add functions with a menu entry calling an event-handler function in the view
class. The function in the view class can even follow the same set of code that you used
in these previous functions, updating the current record, calling the corresponding func-
tion in the document class, and then refreshing the current record to the form.

In the document class function, the record deletion should follow almost the same path
that you took for adding a new record. Update the current record, check to see if it’s
possible to delete the current record, check with the user to verify that he wants to delete
the current record, and then call the Delete function and navigate to another record in
the set.

To add this functionality to your application, add a new menu entry for the delete func-
tion and then attach an event-handler function for the menu’s command event in the view
class. Edit this function, adding the same code as in the navigation and add record func-
tions and calling the Delete function in the document class. Now, add a new member
function to the document class. Specify the new function’s type as void, the declaration
as Delete, and the access as public. Edit this function, adding the code in Listing 15.13.

021 31240-9 CH15 4/27/00 12:55 PM Page 375

LISTING 15.13. THE CDbAdoDoc Delete FUNCTION.

1: void CDbAdoDoc::Delete()
2: {
3: try
4: {
5: // Update the current record
6: m_piAdoRecordBinding->Update(&m_rsRecSet);
7: // Can we delete a record?
8: if (m_pRs->Supports(adDelete))
9: {
10: // Make sure the user wants to delete this record
11: if (AfxMessageBox(“Are you sure you want to delete this

➥ record?”,
12: MB_YESNO | MB_ICONQUESTION) == IDYES)
13: {
14: // Delete the record
15: m_pRs->Delete(adAffectCurrent);
16: // Move to the previous record
17: m_pRs->MovePrevious();
18: }
19: }
20: }
21: // Any errors?
22: catch (_com_error &e)
23: {
24: // Generate an error message
25: GenerateError(e.Error(), e.Description());
26: }
27: }

When you compile and run your application, you should be able to delete any records
from the set that you want.

Summary
Today, you learned about Microsoft’s newest database access technology, ActiveX Data
Objects. You saw how you can use ADO as a simple ActiveX control to provide database
access through data-bound controls without any additional programming. You also
learned how to import the DLL, providing a rich set of data access functionality that you
can use and control in your applications. You learned how to retrieve a set of data,
manipulate the records in the set, and save your changes back in the database. You
learned two different ways of accessing and updating the data values in a record in the
record set and how you can do a little more work up front to save a large amount of
work in the midst of the application coding.

376 Day 15

021 31240-9 CH15 4/27/00 12:55 PM Page 376

Updating and Adding Database Records Through ADO 377

15
Q&A

Q Because Visual C++ doesn’t support ADO with its wizards, why would I want
to use it?

A ADO is the database access technology direction for Microsoft. It’s still in the
early stages of this technology, but it will gradually become the data access tech-
nology for use with all programming languages and applications.

Q If ADO uses ODBC to get to my database, why wouldn’t I want to just go
straight to the ODBC interface to access my database?

A ADO can use ODBC to access those databases that don’t have a native OLE DB
interface. If you are using either Microsoft’s SQL Server database or an Oracle
database, there are OLE DB interfaces available, in which case ADO would not go
through ODBC to get to the database. In these cases, using ADO gives your appli-
cation better performance than using the ODBC interface. With the upcoming
operating system releases from Microsoft, you’ll find that using ADO is likely to
provide you with access capabilities that extend far beyond conventional databases.
ADO is a new technology that you’ll start seeing in more use in the coming years.
Because of its growing importance, it’s a good thing to start working with ADO
now so that you’ll already be prepared to work with it when it’s everywhere.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What does ADO stand for?

2. What does ADO use for database access?

3. What are the objects in ADO?

4. How do you initialize the COM environment?

5. How do you associate a Connection object with a Command object?

6. How do you associate a Command object with and populate a Recordset object?

021 31240-9 CH15 4/27/00 12:55 PM Page 377

Exercise
Enable and disable the navigation menus and toolbar buttons based on whether the
recordset is at the beginning of file (BOF) or end of file (EOF, renamed to EndOfFile).

378 Day 15

021 31240-9 CH15 4/27/00 12:55 PM Page 378

DAY 16

WEEK 3

Creating Your Own
Classes and Modules

Sometimes you need to build a set of application functionality that will be used
in an application that another programmer is working on. Maybe the functional-
ity will be used in a number of applications. Another possibility is that you
want to separate some functionality from the rest of the application for organi-
zational purposes. You might develop this separate set of functionality and then
give a copy of the code to your friend to include in his application, but then
every time you make any changes to your set of functionality, it has to be
reincorporated into the other set of application code. It would be much more
practical if you could give a compiled version of your functionality to the other
programmer so that every time you updated your part, all you had to hand over
was a new compiled file. The new file could just replace the previous version,
without having to make any changes to the other programmer’s code.

Well, it is possible to place your set of functionality into a self-contained com-
piled file, link it into another programmer’s application, and avoid adding any
new files to the finished application. Today, you will learn

022 31240-9 CH16 4/27/00 12:56 PM Page 379

● How to design your own classes.

● How to create compiled modules that can be linked into other applications.

● How to include these modules into an application.

Designing Classes
You’ve already designed and built your own classes over the past few days, so the basics
of creating a new class is not a new topic. Why did you create these classes? Each of
the new classes that you created encapsulated a set of functionality that acted as a self-
contained unit. These units consisted of both data and functionality that worked together
to define the object.

Encapsulation
Object-oriented software design is the practice of designing software in the same way
that everything else in the world is designed. For instance, you can consider your car
built from a collection of objects: the engine, the body, the suspension, and so on. Each
of these objects consists of many other objects. For instance, the engine contains either
the carburetor or the fuel injectors, the combustion chamber and pistons, the starter, the
alternator, the drive chain, and so on. Once again, each of these objects consists of even
more objects.

Each of these objects has a function that it performs. Each of these objects knows how to
perform its own functions with little, if any, knowledge of how the other objects perform
their functions. Each of the objects knows how it interacts with the other objects and
how they are connected to the other objects, but that’s about all they know about the
other objects. How each of these objects work internally is hidden from the other objects.
The brakes on your car don’t know anything about how the transmission works, but if
you’ve got an automatic transmission, the brakes do know how to tell the transmission
that they are being applied, and the transmission decides how to react to this information.

You need to approach designing new classes for your applications in the same way. The
rest of the application objects do not need to know how your objects work; they only
need to know how to interact with your objects. This principle, called encapsulation, is
one of the basic principles of object-oriented software.

Inheritance
Another key principle of object-oriented software design is the concept of inheritance.
An object can be inherited from another object. The descendent object inherits all the
existing functionality of the base object. This allows you to define the descendent object
in terms of how it’s different from the base object.

380 Day 16

022 31240-9 CH16 4/27/00 12:56 PM Page 380

Creating Your Own Classes and Modules 381

16

Let’s look at how this could work with a thermostat. Suppose you had a basic thermostat
that you could use in just about any setting. You could set the temperature for it to main-
tain, and it would turn on the heating or the air-conditioning as needed to maintain that
temperature. Now let’s say you needed to create a thermostat for use in a freezer. You
could start from scratch and build a customized thermostat, or you could take your exist-
ing thermostat and specify how the freezer version differs from the original. These differ-
ences might include that it’s limited to turning on the air conditioning and could never
turn on the heater. You would probably also put a strict limit on the range of tempera-
tures to which the thermostat could be set, such as around and below 32° Fahrenheit, or
0° Celsius. Likewise, if you needed a thermostat for an office building, you would proba-
bly want to limit the temperature range to what is normally comfortable for people and
not allow the temperature to be set to an extremely cold or hot setting.

With inheritance in creating your own classes, this method just described represents the
same principle that you want to apply. If possible, you should start with an existing C++
class that has the basic functionality that you need and then program how your class is
different from the base class that you inherited from. You have the ability to add new
data elements, extend existing functionality, or override existing functionality, as you
see fit.

Visual C++ Class Types
In most application projects, when you are creating a new class, you have a few options
on the type of class that you are creating. These options are

● Generic class

● MFC class

● Form class

Which of these types of classes you choose to create depends on your needs and what
your class will be doing. It also depends on whether your class needs to descend from
any of the MFC classes.

Generic Class
You use a generic class for creating a class that is inherited from a class you have
already created. This class type is intended for creating classes that are not inherited
from any MFC classes (although you have already seen where you need to use it to cre-
ate classes that are based on MFC classes). If you want to create a more specialized ver-
sion of the CLine class, for instance, a CRedLine class, that only drew in red, you create
it as a generic class because it’s inherited from another class that you created.

022 31240-9 CH16 4/27/00 12:56 PM Page 381

When you create a generic class, the New Class Wizard tries to locate the declaration of
the base class (the header file with the class declared). If it cannot find the appropriate
header file, it tells you that you might need to make sure that the header file with the
base class definition is included in the project. If the base class happens to be an MFC
class that is not accessible as an MFC class (such as CObject), then you can ignore this
warning because the correct header file is already part of the project.

MFC Class
If you want to make a reusable class that is based on an existing MFC class, such as an
edit box that automatically formats numbers as currency, you want to create an MFC
class. The MFC class type is for creating new classes that are inherited from existing
MFC classes.

Form Class
The form class is a specialized type of MFC class. You need to create this type of class if
you are creating a new form style window. It can be a dialog, form view, or database
view class. This new class will be associated with a document class for use with the view
class. If you are building a database application, you will probably create a number of
this style of classes.

Creating Library Modules
When you create new classes for your application, they might be usable in other applica-
tions as well. Often, with a little thought and effort, classes you create can be made flexi-
ble enough so that they could be used in other applications. When this is the case, you
need some way of packaging the classes for other applications without having to hand
over all your source code. This is the issue that library modules address. They allow you
to compile your classes and modules into a compiled object code library that can be
linked into any other Visual C++ application.

Library modules were one of the first means available to provide compiled code to other
programmers for use in their applications. The code is combined with the rest of the
application code by the linker as the final step in the compilation process. Library mod-
ules are still a viable means of sharing modules with other developers. All the developer
needs is the library (.lib) file and the appropriate header files that show all the exposed
classes, methods, functions, and variables, which the other programmer can access and
use. The easiest way to do this is to provide the same header file that you used to create
the library file, but you can also edit the header so that only the parts that other program-
mers need are included.

382 Day 16

022 31240-9 CH16 4/27/00 12:56 PM Page 382

Creating Your Own Classes and Modules 383

16

By using library files to share your modules with other programmers, you are arranging
that your part of the application is included in the same executable file as the rest of the
application. Your modules are not included in a separate file, such as a DLL or ActiveX
control. This results in one less file to be distributed with the application. It also means
that if you make any changes to the module, fix any bugs, or enhance any functionality,
then the applications that use your module must be relinked. Using library files has a
slight disadvantage to creating DLLs, where you may be able to just distribute the new
DLL without having to make any changes to the application, but you’ll learn all about
that tomorrow.

Using Library Modules
To get a good idea of how to use library modules, it’s helpful to create a library module,
use it in another application, and then make some modifications to the library module.
For today’s sample application, you’ll create a module that generates a random drawing
on the window space specified. It’ll be able to save and restore any of these drawings.
You’ll then use this module in an SDI application, where every time a new document is
specified, a new drawing is generated. The initial module will only use eight colors and
will generate only a limited number of line sequences. Later, you’ll modify the module
so that it will generate any number of colors and will generate a larger number of line
sequences.

Creating the Library Module
To create a library module project, you need to specify in the New dialog that you want
to create a Win32 Static Library, as shown in Figure 16.1. This tells Visual C++ that the
output from the project compilation will be a library module instead of an executable
application. From there, all you have to do is define the classes and add the code. You
have the options of including support for MFC and using precompiled headers in your
project, as in Figure 16.2, the only step in the Project Wizard.

The library that you will create for today’s sample application will consist of two classes.
The first class will be the CLine class that you first created on Day 10, “Creating Single
Document Interface Applications.” The second class will be the class that creates the ran-
dom drawings on the drawing surface. This class will contain an object array of the
CLine objects that it will create and populate with each of the drawing efforts. This sec-
ond class will also need functionality to save and restore the drawing, as well as to delete
the existing drawing so that a new drawing can be started. It will need to know the
dimensions of the drawing area so that it can generate a drawing that will fit in the draw-
ing area. Once you create this module, you’ll take a look at how you can use this module
in an application project.

022 31240-9 CH16 4/27/00 12:56 PM Page 383

Creating a Library Project
To start the library project for today’s example, you need to create a new project, speci-
fying that the project is a Win32 Static Library project. Give the project a suitable name
and click OK to create the project.

For today’s sample project, specify on the one wizard step to include both MFC and pre-
compiled header support. Although the precompiled header support is not necessary, it
will speed up most compiles that you perform while building the module.

Once you create your module project, you’ll find yourself working with a project that
has no classes. You’ve got a blank slate from which you can create whatever type of
module you need.

For your sample project, because you already have the CLine class built, copy it from the
Day 10 project area into the project directory for today’s project. Add both the header

384 Day 16

FIGURE 16.1.
Specifying a library
module project.

FIGURE 16.2.
Specifying project sup-
port options.

022 31240-9 CH16 4/27/00 12:56 PM Page 384

Creating Your Own Classes and Modules 385

16

and source code file to today’s project by choosing Project | Add To Project \ Files. Once
you add both of these files to the project, you should see the CLine class appear in the
Class View of your project.

Defining the Classes
Now that you’ve got a basic library module project ready to go, it’s time to begin adding
the meat of the module. Using the CLine class is an easy way of reusing some function-
ality that you created earlier in another setting. However, the real functionality of this
module will be in its ability to generate random drawings, or squiggles. For this func-
tionality, you’ll need to create a new class.

To start this new class, add a new class to the project by selecting New Class from the
pop-up menu in the Class View tab. The first thing that you’ll notice in the New Class
dialog is that you are limited to creating generic classes. Because you are creating a
static library that will be linked into the application, Visual C++ is making some assump-
tions about the type of class that you want to create. Because this is not an MFC project,
even though MFC support is included, you are prevented from creating a new MFC or
form class. If you need to inherit a new class from an MFC class, you have to add it as if
it were a generic class.

Use the New Class dialog to create your new class. Give the class a name that reflects its
functionality, such as CModArt, and specify that it’s derived from the CObject class as
public. You’ll receive the same warning that the base class header file cannot be found,
but because you specified that MFC support should be included, you can ignore that
message.

Once you create your class, you need to add a couple of variables to the class. First, you
need somewhere to hold all the lines that will make up the drawing, so you’ll add an
object array. Second, you need to know the area of the drawing surface, so you’ll want a
CRect to hold the drawing area specification. You can add both of these variables to your
new class using the types and names in Table 16.1.

TABLE 16.1. CModArt VARIABLES.

Type Name Access

static const COLORREF m_crColors[8] Public

CRect m_rDrawArea Private

CObArray m_oaLines Private

022 31240-9 CH16 4/27/00 12:56 PM Page 385

Setting the Drawing Area

Before you can draw anything, you need to know the area that you have to draw within.
You can add a public function to your class that will copy the passed in CRect to the
member CRect variable. To add this function to your project, add a new member function
to your new class, specifying the type as void, the declaration as SetRect(CRect
rDrawArea), and the access as public. Edit the function as in Listing 16.1.

LISTING 16.1. THE CModArt SetRect FUNCTION.

1: void CModArt::SetRect(CRect rDrawArea)
2: {
3: // Set the drawing area rectangle
4: m_rDrawArea = rDrawArea;
5: }

Creating a New Drawing

One of the key pieces to this module is the ability to generate random squiggles that
appear on the drawing area. By generating a whole series of these squiggles, your mod-
ule will be able to create an entire drawing. Starting with the single squiggle, you can
design a function that generates one squiggle and then calls this function a number of
times to generate the entire drawing.

This first function, the squiggle generator, needs to determine how many lines will be in
the squiggle. It needs to determine the color and width of the pen to be used when draw-
ing the squiggle. It also needs to determine the starting point for the squiggle. From this
point, it could loop through the appropriate number of lines, generating a new destination
to continue the squiggle from the previous destination point.

To add this functionality to your project, add a new member function to the drawing
class. Specify the function type as void, the definition as NewLine, and the access as pri-
vate because this function will only be called by the master loop that is determining how
many of these squiggles will be in the final drawing. Edit the new function with the code
in Listing 16.2.

LISTING 16.2. THE CModArt NewLine FUNCTION.

1: void CModArt::NewLine()
2: {
3: int lNumLines;
4: int lCurLine;
5: int nCurColor;
6: UINT nCurWidth;

386 Day 16

022 31240-9 CH16 4/27/00 12:56 PM Page 386

Creating Your Own Classes and Modules 387

16

7: CPoint pTo;
8: CPoint pFrom;
9:
10: // Normalize the rectangle before determining the width and height
11: m_rDrawArea.NormalizeRect();
12: // get the area width and height
13: int lWidth = m_rDrawArea.Width();
14: int lHeight = m_rDrawArea.Height();
15:
16: // Determine the number of parts to this squiggle
17: lNumLines = rand() % 100;
18: // Are there any parts to this squiggle?
19: if (lNumLines > 0)
20: {
21: // Determine the color
22: nCurColor = rand() % 8;
23: // Determine the pen width
24: nCurWidth = (rand() % 8) + 1;
25: // Determine the starting point for the squiggle
26: pFrom.x = (rand() % lWidth) + m_rDrawArea.left;
27: pFrom.y = (rand() % lHeight) + m_rDrawArea.top;
28: // Loop through the number of segments
29: for (lCurLine = 0; lCurLine < lNumLines; lCurLine++)
30: {
31: // Determine the end point of the segment
32: pTo.x = ((rand() % 20) - 10) + pFrom.x;
33: pTo.y = ((rand() % 20) - 10) + pFrom.y;
34: // Create a new CLine object
35: CLine *pLine = new CLine(pFrom, pTo, nCurWidth,

➥ m_crColors[nCurColor]);
36: try
37: {
38: // Add the new line to the object array
39: m_oaLines.Add(pLine);
40: }
41: // Did we run into a memory exception?
42: catch (CMemoryException* perr)
43: {
44: // Display a message for the user, giving him the
45: // bad news
46: AfxMessageBox(“Out of memory”, MB_ICONSTOP | MB_OK);
47: // Did we create a line object?
48: if (pLine)
49: {
50: // Delete it
51: delete pLine;
52: pLine = NULL;
53: }
54: // Delete the exception object

continues

022 31240-9 CH16 4/27/00 12:56 PM Page 387

LISTING 16.2. CONTINUED

55: perr->Delete();
56: }
57: // Set the starting point to the end point
58: pFrom = pTo;
59: }
60: }
61: }

In this function, the first thing that you did was get the area that you had available for
drawing with the following three lines:

m_rDrawArea.NormalizeRect();
int lWidth = m_rDrawArea.Width();
int lHeight = m_rDrawArea.Height();

In the first of these lines, you normalized the rectangle. This is necessary to guarantee
that the width and height returned in the next two lines are both positive values. Because
of the coordinate system used in Windows, getting the width by subtracting the left-side
position from the right-side position can result in a negative number. The same can hap-
pen with the height. By normalizing the rectangle, you are guaranteeing that you’ll get
positive results for these two values.

Once you determined the drawing area, you determined the number of line segments you
would use in this squiggle:

lNumLines = rand() % 100;

The rand function is capable of returning numbers in a wide range. By getting the modu-
lus of 100, you are guaranteeing that the resulting number will be between 0 and 100.
This is a common technique for generating random numbers within a certain range, using
the modulus function with the upper limit of the value range (or the upper limit minus
the lower limit, if the lower limit is not equal to 0, and then adding the lower limit to the
resulting number). You use the same technique to determine the color, width, and starting
position for the squiggle:

nCurColor = rand() % 8;
nCurWidth = (rand() % 8) + 1;
pFrom.x = (rand() % lWidth) + m_rDrawArea.left;
pFrom.y = (rand() % lHeight) + m_rDrawArea.top;

Notice how when you were determining the starting position, you added the left and top
of the drawing area to the position that you generated. This guarantees that the starting

388 Day 16

022 31240-9 CH16 4/27/00 12:56 PM Page 388

Creating Your Own Classes and Modules 389

16

position is within the drawing area. Once you enter the loop, generating all the line seg-
ments in the squiggle, you limit the available area for the next destination within 10 of
the current position:

pTo.x = ((rand() % 20) - 10) + pFrom.x;
pTo.y = ((rand() % 20) - 10) + pFrom.y;
CLine *pLine = new CLine(pFrom, pTo, nCurWidth, m_crColors[nCurColor]);
m_oaLines.Add(pLine);

You can easily increase this distance to make the drawings more angular. Once you gen-
erate the next line segment, you create the line object and add it to the object array.
Finally, you set the starting position to the ending position of the line segment you just
generated:

pFrom = pTo;

Now you are ready to go through the loop again and generate the next line segment, until
you have generated all line segments in this squiggle.

Now that you can generate a single squiggle, the rest of the process is easy. First, you
determine how many squiggles will be in the drawing. Next, you loop for the number of
squiggles that need to be generated and call the NewLine function once for each squiggle.
To add this functionality to your project, add a new member function to the drawing
class. Specify the type as void, the declaration as NewDrawing, and the access as public.
Edit the function as in Listing 16.3.

LISTING 16.3. THE CModArt NewDrawing FUNCTION.

1: void CModArt::NewDrawing()
2: {
3: int lNumLines;
4: int lCurLine;
5:
6: // Determine how many lines to create
7: lNumLines = rand() % 10;
8: // Are there any lines to create?
9: if (lNumLines > 0)
10: {
11: // Loop through the number of lines
12: for (lCurLine = 0; lCurLine < lNumLines; lCurLine++)
13: {
14: // Create the new line
15: NewLine();
16: }
17: }
18: }

022 31240-9 CH16 4/27/00 12:56 PM Page 389

Displaying the Drawing

To draw the set of squiggles on the drawing area, you can add a function that will loop
through the object array, calling the Draw function on each line segment in the array. This
function needs to receive the device context as the only argument and must pass it along
to each of the line segments. To add this function to your project, add a new member
function to the drawing class. Specify the function type as void, the function declaration
as Draw(CDC *pDC), and the access as public. Edit the function as in Listing 16.4.

LISTING 16.4. THE CModArt Draw FUNCTION.

1: void CModArt::Draw(CDC *pDC)
2: {
3: // Get the number of lines in the object array
4: int liCount = m_oaLines.GetSize();
5: int liPos;
6:
7: // Are there any objects in the array?
8: if (liCount)
9: {
10: // Loop through the array, drawing each object
11: for (liPos = 0; liPos < liCount; liPos++)
12: ((CLine*)m_oaLines[liPos])->Draw(pDC);
13: }
14: }

Serializing the Drawing

Because you are using the line segment class that you created earlier and have already
made serializable, you do not need to add the serialization macros to the drawing class.
What you do need to add is a Serialize function that passes the archive object on to the
object array, letting the object array and line segment objects do all the serialization
work. To add this function to your project, add a new member function to the drawing
class. Specify the function type as void, the declaration as Serialize(CArchive &ar),
and the access as public. Edit the function as in Listing 16.5.

LISTING 16.5. THE CModArt Serialize FUNCTION.

1: void CModArt::Serialize(CArchive &ar)
2: {
3: // Pass the archive object on to the array
4: m_oaLines.Serialize(ar);
5: }

390 Day 16

022 31240-9 CH16 4/27/00 12:56 PM Page 390

Creating Your Own Classes and Modules 391

16

Clearing the Drawing

To provide full functionality, you need to be able to delete a drawing from the drawing
class so that a new drawing can be created or an existing drawing can be loaded. This is
a simple matter of looping through the object array and destroying every line segment
object and then resetting the object array. To add this functionality to your project, add a
new member function to the drawing class. Specify the type as void, the declaration as
ClearDrawing, and the access as public. Edit the function as in Listing 16.6.

LISTING 16.6. THE CModArt ClearDrawing FUNCTION.

1: void CModArt::ClearDrawing()
2: {
3: // Get the number of lines in the object array
4: int liCount = m_oaLines.GetSize();
5: int liPos;
6:
7: // Are there any objects in the array?
8: if (liCount)
9: {
10: // Loop through the array, deleting each object
11: for (liPos = 0; liPos < liCount; liPos++)
12: delete m_oaLines[liPos];
13: // Reset the array
14: m_oaLines.RemoveAll();
15: }
16: }

Completing the Class

Finally, to wrap up your drawing class, you need to initialize the random number genera-
tor. The random number generator function, rand, generates a statistically random num-
ber sequence based on a series of mathematical calculations. If the number generator
starts with the same number each time, then the sequence of numbers is the same each
time. To get the random number generator to produce a different sequence of numbers
each time your application runs, you need to seed it with a value that is different each
time. The typical way to do this is to feed the current system time into the srand func-
tion, which seeds the random number generator with a different time each time that the
application runs. This seeding of the number generator must be done only once each time
the application is run, so you can add this functionality by editing the drawing class con-
structor with the code in Listing 16.7.

022 31240-9 CH16 4/27/00 12:56 PM Page 391

LISTING 16.7. THE CModArt CONSTRUCTOR.

1: CModArt::CModArt()
2: {
3: // Initialize the random number generator
4: srand((unsigned)time(NULL));
5: }

To complete the class, you need to include all of the necessary header files for the func-
tionality that you’ve added to this class. The random number generator needs the
stdlib.h and time.h header files, and the object array needs the header file for the
CLine class. You also need to populate the color table for use when generating squiggles.
You can add all of these finishing touches by scrolling to the top of the source code file
for the drawing class and adding lines 5, 6, 9, and 12 through 21 in Listing 16.8.

LISTING 16.8. THE CModArt INCLUDES AND COLOR TABLE.

1: // ModArt.cpp: implementation of the CModArt class.
2: //
3: //
4:
5: #include <stdlib.h>
6: #include <time.h>
7:
8: #include “stdafx.h”
9: #include “Line.h”
10: #include “ModArt.h”
11:
12: const COLORREF CModArt::m_crColors[8] = {
13: RGB(0, 0, 0), // Black
14: RGB(0, 0, 255), // Blue
15: RGB(0, 255, 0), // Green
16: RGB(0, 255, 255), // Cyan
17: RGB(255, 0, 0), // Red
18: RGB(255, 0, 255), // Magenta
19: RGB(255, 255, 0), // Yellow
20: RGB(255, 255, 255) // White
21: };

You have now completed your library module. Before you go any further, you need to
compile your project. Once you compile your project, you cannot run anything because
you need to create an application that uses your library module in order to run and test
your code. To get ready for creating this test application, close the entire workspace so
that you will start with a clean workspace for the test application.

392 Day 16

022 31240-9 CH16 4/27/00 12:56 PM Page 392

Creating Your Own Classes and Modules 393

16

Creating a Test Application
To be able to test your module, you need to create a test application that uses the module.
This plain application can contain just enough functionality to thoroughly test the mod-
ule. All you want to do at this point is test all the functionality in the module; you don’t
have to create a full-blown application.

When you create your test application, you need to include the header file for the draw-
ing class in the relevant classes in your application. In a typical SDI or MDI application,
this means including the header file in the document class at a minimum and probably
the view and application class source files also. You also have to add the library file that
your module created in the application project so that it will be linked into your appli-
cation.

Creating the Test App Shell
Creating a test application shell is a simple matter of creating a standard SDI or MDI
application shell. For the purposes of keeping the test application as simple as possible,
it’s probably advisable to use an SDI application. However, if you’ve got some function-
ality in your module that is intended for use in an MDI application, then that application
style might be a better selection as your test application.

For the test application for the sample module you created, create a standard SDI appli-
cation shell using the AppWizard. Give the project a name such as TestApp or some
other suitable name. Specify a file extension on the advanced button on the fourth
AppWizard step. Otherwise, just go ahead and use the default settings for everything
else.

Once you create the application shell, you need to add the library module to the project.
You can do this by selecting Project | Add To Project | Files. Once in the Insert Files dia-
log, specify the file types as library files, as shown in Figure 16.3. Navigate to the debug
directory of the module project to find the library module that you created with the pre-
vious project. This typically requires moving up one directory level, finding the project
directory for the module, and then navigating through it to the debug directory. (If you
are building the release version of the module and application, you want to navigate
down to the release directory of the module project.) You should be able to find the
library file for the module you created, as shown in Figure 16.4. Select this module and
click OK to add it to the project.

022 31240-9 CH16 4/27/00 12:56 PM Page 393

Once you add the library file to the project, you also need to add the header files for any
of the classes in the module that will be used into the appropriate application source code
files. For the test application that you are building, this entails adding line 7 in Listing
16.9. You want to add the same line in the include sections of the source code files for
the view and application classes as well.

LISTING 16.9. THE CTestAppDoc INCLUDES.

1: // TestAppDoc.cpp : implementation of the CTestAppDoc class
2: //
3:
4: #include “stdafx.h”
5: #include “TestApp.h”
6:
7: #include “..\ModArtMod\ModArt.h”
8: #include “TestAppDoc.h”

The last thing that you need to do in preparing the application shell is add a variable for
any classes from the library module that need to be included in any of the application

394 Day 16

FIGURE 16.3.
Specifying library files.

FIGURE 16.4.
Adding a library file to
the project.

022 31240-9 CH16 4/27/00 12:56 PM Page 394

Creating Your Own Classes and Modules 395

16

classes. In the case of the test application that you are building, this is a variable in the
document class of the drawing class that you created in the library module project. To
add this variable to your application, add a new member variable to the document class.
Specify the variable type as the drawing class from the library module (in this instance,
CModArt) and specify the name as m_maDrawing and the access as private.

Creating a New Drawing
The first place where you want to put some of the functionality of your module is when
you are creating a new document. This is the time to be generating a new drawing. As a
result, you want to do two things. First, get the drawing area of the view class, passing it
along to the drawing object. Second, tell the drawing object to generate a new drawing.
This is all fairly straightforward. To add this functionality to your application, edit the
OnNewDocument function in the document class, adding the lines 9–23 in Listing 16.10.

LISTING 16.10. THE CTestAppDoc OnNewDocument FUNCTION.

1: BOOL CTestAppDoc::OnNewDocument()
2: {
3: if (!CDocument::OnNewDocument())
4: return FALSE;
5:
6: // TODO: add reinitialization code here
7: // (SDI documents will reuse this document)
8:
9: // Get the position of the view
10: POSITION pos = GetFirstViewPosition();
11: // Did we get a valid position?
12: if (pos != NULL)
13: {
14: // Get a pointer to the view
15: CView* pView = GetNextView(pos);
16: RECT lWndRect;
17: // Get the display area rectangle
18: pView->GetClientRect(&lWndRect);
19: // Set the drawing area
20: m_maDrawing.SetRect(lWndRect);
21: // Create a new drawing
22: m_maDrawing.NewDrawing();
23: }
24:
25: return TRUE;
26: }

022 31240-9 CH16 4/27/00 12:56 PM Page 395

Saving and Deleting a Drawing
The other functionality that you want to add to the document class is to save and restore
the drawing and to delete the current drawing. These tasks are the last of the document-
related functionality of your library module.

To add the functionality to save and restore drawings to your application, edit the
Serialize function in the document class. Delete all the current contents of the function,
replacing it with a call to the drawing object’s Serialize function, as in Listing 16.11.

LISTING 16.11. THE CTestAppDoc Serialize FUNCTION.

1: void CTestAppDoc::Serialize(CArchive& ar)
2: {
3: // Serialize the drawing
4: m_maDrawing.Serialize(ar);
5: }

To add the functionality to delete the current drawing so that a new drawing can be gen-
erated or a saved drawing can be loaded, you need to add the event handler for the
DeleteContents function to the document class. In this function, you call the drawing
object’s ClearDrawing function. To add this functionality to your application, use the
Class Wizard to add the event handler for the DeleteContents event to the document
class. Edit this function, adding line 5 in Listing 16.12.

LISTING 16.12. THE CTestAppDoc DeleteContents FUNCTION.

1: void CTestAppDoc::DeleteContents()
2: {
3: // TODO: Add your specialized code here and/or call the base class
4: // Delete the drawing
5: m_maDrawing.ClearDrawing();
6:
7: CDocument::DeleteContents();
8: }

Viewing a Drawing
You need to add one final set of functionality to your test application before you can test
your library module: the drawing functionality to the application. This functionality
belongs in the view class because it is the object that knows when it needs to redraw
itself. Before you can add this functionality to the view class, you need some way for the
view class to get access to the drawing object. The easiest way to add this capability is to

396 Day 16

022 31240-9 CH16 4/27/00 12:56 PM Page 396

Creating Your Own Classes and Modules 397

16

add another function to the document class that can be called to get a pointer to the
drawing object. Once the view has this pointer, it can call the drawing object’s own Draw
function.

To add the capability to get a pointer to the drawing object to your document class, add a
new member function to the document class. Specify the function type as a pointer to the
drawing object, in this case, CModArt*, and specify the function declaration as
GetDrawing and the access as public. Edit the function, adding the code in Listing 16.13.

LISTING 16.13. THE CTestAppDoc GetDrawing FUNCTION.

1: CModArt* CTestAppDoc::GetDrawing()
2: {
3: // Return the drawing object
4: return &m_maDrawing;
5: }

Adding the drawing functionality to the view class is a simple matter of editing the
OnDraw function in the view class. In this function, you need to get a pointer to the draw-
ing object and then call its Draw function, as in Listing 16.14.

LISTING 16.14. THE CTestAppView OnDraw FUNCTION.

1: void CTestAppView::OnDraw(CDC* pDC)
2: {
3: CModTestAppDoc* pDoc = GetDocument();
4: ASSERT_VALID(pDoc);
5:
6: // TODO: add draw code for native data here
7:
8: // Get the drawing object
9: CModArt* m_maDrawing = pDoc->GetDrawing();
10: // Draw the drawing
11: m_maDrawing->Draw(pDC);
12: }

Once you add all this functionality, you can compile and run your application to test the
functionality of your library module. Each time you select File | New from your applica-
tion menu, a new drawing is created, as in Figure 16.5.

022 31240-9 CH16 4/27/00 12:56 PM Page 397

Updating the Library Module
Now that you have a working application, let’s go back to the library module and make
some changes. Whenever you make any changes to the library module code, no matter
how minor, you need to relink all applications that use the module in order to get the
updates into those applications. This is because the library module is linked into the EXE
of the application. It does not remain in a separate file.

To see how this works, reopen the library module project. You will make three changes
to this module. First, you’ll increase the number of squiggles that may be included in a
single drawing. Second, you’ll increase the number of line segments that may make up a
single squiggle. Third, you’ll generate random colors, beyond just the eight colors
included in the color table. Once you make these changes, you’ll recompile your library
module. Once you generate a new module, you’ll relink your test application so that you
can incorporate these changes into the application.

To make the first change in your module, increasing the number of squiggles that can be
in a drawing, edit the NewDrawing function in the drawing class, increasing the modulus
value in line 7 of the function, as in Listing 16.15. This will increase the number of pos-
sible squiggles in a single drawing from a maximum of 10 to a maximum of 50. There
may still be an occasional drawing that doesn’t have any squiggles, but you can ignore
this possibility for now.

LISTING 16.15. THE MODIFIED CModArt NewDrawing FUNCTION.

1: void CModArt::NewDrawing()
2: {
3: int lNumLines;
4: int lCurLine;

398 Day 16

FIGURE 16.5.
Creating random
squiggle drawings.

022 31240-9 CH16 4/27/00 12:56 PM Page 398

Creating Your Own Classes and Modules 399

16

5:
6: // Determine how many lines to create
7: lNumLines = rand() % 50;
8: // Are there any lines to create?
9: if (lNumLines > 0)
10: {
11: // Loop through the number of lines
12: for (lCurLine = 0; lCurLine < lNumLines; lCurLine++)
13: {
14: // Create the new line
15: NewLine();
16: }
17: }
18: }

With the increased number of squiggles that can be included in a drawing, next you want
to increase the number of line segments that may be in a squiggle. To do this, edit the
NewLine function and increase the modulus number on line 20 in Listing 16.16 from 100
to 200. While you’re in this function, you can also increase the number of colors that
may be generated for use in each drawing. First, add three integer variable declarations,
one for each of the three additive colors (red, green, and blue, as in lines 9 through 11 in
Listing 16.16). Next, generate random values for each of these integers between the val-
ues of 0 and 255 (lines 26 through 28). Finally, when creating the CLine object, pass
these colors through the RGB function to create the actual color that will be used in the
drawing, as in line 41 of Listing 16.16.

LISTING 16.16. THE MODIFIED CModArt NewLine FUNCTION.

1: void CModArt::NewLine()
2: {
3: int lNumLines;
4: int lCurLine;
5: // int nCurColor;
6: UINT nCurWidth;
7: CPoint pTo;
8: CPoint pFrom;
9: int cRed;
10: int cBlue;
11: int cGreen;
12:
13: // Normalize the rectangle before determining the width and height
14: m_rDrawArea.NormalizeRect();
15: // get the area width and height
16: int lWidth = m_rDrawArea.Width();

continues

022 31240-9 CH16 4/27/00 12:56 PM Page 399

LISTING 16.16. CONTINUED

17: int lHeight = m_rDrawArea.Height();
18:
19: // Determine the number of parts to this squiggle
20: lNumLines = rand() % 200;
21: // Are there any parts to this squiggle?
22: if (lNumLines > 0)
23: {
24: // Determine the color
25: // nCurColor = rand() % 8;
26: cRed = rand() % 256;
27: cBlue = rand() % 256;
28: cGreen = rand() % 256;
29: // Determine the pen width
30: nCurWidth = (rand() % 8) + 1;
31: // Determine the starting point for the squiggle
32: pFrom.x = (rand() % lWidth) + m_rDrawArea.left;
33: pFrom.y = (rand() % lHeight) + m_rDrawArea.top;
34: // Loop through the number of segments
35: for (lCurLine = 0; lCurLine < lNumLines; lCurLine++)
36: {
37: // Determine the end point of the segment
38: pTo.x = ((rand() % 20) - 10) + pFrom.x;
39: pTo.y = ((rand() % 20) - 10) + pFrom.y;
40: // Create a new CLine object
41: CLine *pLine = new CLine(pFrom, pTo, nCurWidth,

➥ RGB(cRed, cGreen, cBlue));
42: try
43: {
44: // Add the new line to the object array
45: m_oaLines.Add(pLine);
46: }
47: // Did we run into a memory exception?
48: catch (CMemoryException* perr)
49: {
50: // Display a message for the user, giving him the
51: // bad news
52: AfxMessageBox(“Out of memory”, MB_ICONSTOP | MB_OK);
53: // Did we create a line object?
54: if (pLine)
55: {
56: // Delete it
57: delete pLine;
58: pLine = NULL;
59: }
60: // Delete the exception object
61: perr->Delete();
62: }
63: // Set the starting point to the end point

400 Day 16

022 31240-9 CH16 4/27/00 12:56 PM Page 400

Creating Your Own Classes and Modules 401

16

64: pFrom = pTo;
65: }
66: }
67: }

Now that you’ve made all the necessary changes to the library module, compile it so that
it’s ready for use in the test application. If you run your test application from the Start |
Run Taskbar option, as in Figure 16.6, you’ll notice that there is no noticeable difference
in how your application behaves. This is because the application hasn’t changed. The
application is still using the old version of your library module. To get the test applica-
tion to use the new version of the library module, reopen the test application project in
Visual C++. Build the project, which should not do anything other than relink the pro-
ject, and then run the application. You should see a significant difference in the drawings
that your application is now generating, as shown in Figure 16.7.

FIGURE 16.7.
The updated test appli-
cation.

Summary
Today you learned about how to approach creating and designing new classes for your
applications. You learned the differences between the different types of classes that are
available to you through the New Class Wizard in Visual C++. You also learned how you
can create a library module with a set of your functionality that you can hand to other

FIGURE 16.6.
Run the test applica-
tion from the Start
menu.

022 31240-9 CH16 4/27/00 12:56 PM Page 401

programmers for including in their applications. You learned how this module will be
linked into the actual applications, thus not requiring a separate file to be distributed
along with the applications.

Tomorrow you will learn about a different approach to creating reusable packaged func-
tionality that you can give to other programmers. You will learn how to create DLLs
using Visual C++, what the differences are between creating library modules and DLL,
and how you need to approach each task.

Q&A
Q Isn’t most functionality packaged in DLLs now? Why would I want to create

library modules instead of DLLs?

A Yes, the trend toward packaging functionality modules has been to create DLLs
instead of library modules for a number of years now. However, there are still
instances where library modules are preferable. If you are creating a module that
contains proprietary functionality that you do not want to risk exposing to others,
but that is needed for any applications that you or another programmer in your
company is building, then you would probably want all that functionality packaged
in a library module so that it is internal to the application. Using library modules
makes it effectively inaccessible to your competition without significant disassem-
bly and reverse engineering efforts.

Q Why does the header file need to be included in the application that is using
my library file?

A The application needs to know about the objects that are in the library file. In the
sample application, you didn’t need to include the header file for the CLine class
because the application didn’t directly use or reference the CLine class. However,
the application did use the drawing object that was in your library module, so it did
need to know about that object, how it is defined, and what functions are available
for it. If you don’t want the other programmers to know all of the internal structure
of your classes, then you can create another header file to be distributed with your
library module. This header would contain definitions of all of the same classes
that are in the library module but would only provide the public functions and vari-
ables that the other programmers can actually access.

402 Day 16

022 31240-9 CH16 4/27/00 12:56 PM Page 402

Creating Your Own Classes and Modules 403

16

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. When do you want to create a new MFC class?

2. When you make changes to a library file, what do you have to do to the applica-
tions that use the library file?

3. What are the different types of classes that you can create?

4. When you package some functionality in a library file, what do you need to give to
other programmers who want to use your library module?

5. What are two of the basic principles in object-oriented software design?

Exercise
Separate the CLine class into a different library module from the drawing class so that
you have two library modules instead of one. Link them into the test application.

022 31240-9 CH16 4/27/00 12:56 PM Page 403

022 31240-9 CH16 4/27/00 12:56 PM Page 404

DAY 17

WEEK 3

Sharing Your
Functionality with Other
Applications—Creating
DLLs

Yesterday you learned how you could create a set of functionality that might be
useful for multiple applications and how you could package it in a library file
that could be linked into those applications. Today you will learn how to do this
same thing, only with a much more dynamic package.

Often, a family of applications will have some functionality in common. When
you place this shared functionality into DLLs instead of library modules, all
the applications can use the same functionality with only a single copy of the
functionality distributed in the form of DLLs, instead of duplicating the same
functionality in each of the applications. This method saves disk space on any
systems where the applications are installed.

023 31240-9 CH17 4/27/00 12:57 PM Page 405

Today, you will learn

● About the different types of DLLs that you can create with Visual C++ and how to
determine which type best suits your needs.

● How to build two of these types of DLLs and the different approaches for the
various DLL types.

● How to use the functionality for both of these types of DLLs in a Visual C++
application.

● How to determine when an application needs to be relinked when you make modi-
fications to a DLL that is used by the application.

Why Create DLLs?
Dynamic link libraries (DLL) were introduced by Microsoft back in the early days of
Windows. DLLs are similar to library modules in that they both contain sets of function-
ality that have been packaged for use by applications. The difference is when the appli-
cations link to the library. With a library module (LIB), the application is linked to the
functionality in the library during the compile and build process. The functionality con-
tained in the library file becomes part of the application executable file. With a DLL, the
application links to the functionality in the library file when the application is run. The
library file remains a separate file that is referenced and called by the application.

There are several reasons for creating DLLs instead of library module files. First, you
can reduce the size of the application executable files by placing functionality that is
used by multiple applications into DLLs that are shared by all of the applications. You
can update and modify functionality in the DLLs without having to update the applica-
tion executable (assuming that the exported interface for the DLL doesn’t change).
Finally, you can use DLLs with just about any other Windows programming language,
which makes your functionality available to a wider number of programmers, not just
fellow Visual C++ programmers.

Creating and Using DLLs
DLLs are library files with compiled code that can be used by other applications. The
DLLs expose certain functions and classes to these applications by exporting the func-
tion. When a function is exported, it is added to a table that is included in the DLL. This
table lists the location of all exported functions contained in the DLL, and it is used to
locate and call each of these functions. Any functions that are not exported are not added
to this table, and they cannot be seen or called by any outside application or DLL.

406 Day 17

023 31240-9 CH17 4/27/00 12:57 PM Page 406

Sharing Your Functionality with Other Applications—Creating DLLs 407

17

An application can call the functions in the DLL in two ways. The more involved
method of calling these functions is to look up the location of the desired function in the
DLL and get a pointer to this function. The pointer can then be used to call the function.

The other, much easier way (and the only way that you’ll use in any of the examples in
this book) is to link the application with the LIB file that is created with the DLL. This
LIB file is treated by the linker as a standard library file, just like the one that you cre-
ated yesterday. However, this LIB file contains stubs for each of the exported functions
in the DLL. A stub is a pseudo-function that has the same name and argument list as the
real function. In the interior of the function stub is a small amount of code that calls the
real function in the DLL, passing all of the arguments that were passed to the stub. This
allows you to treat the functions in the DLL as if they were part of the application code
and not as a separate file.

There are two types of DLLs that you can easily create using Visual C++. These two
types are MFC extension DLLs and regular DLLs.

The LIB file for a DLL is automatically created for the DLL during the compil-
ing of the DLL. There is nothing extra that you need to do to create it.

Note

Not only is it easier to create your applications using the LIB files for any
DLLs that you will be using, but also it can be safer when running the appli-
cation. When you use the LIB files, any DLLs that are used by your applica-
tion are loaded into memory the moment the application is started. If any
of the DLLs are missing, the user is automatically informed of the problem
by Windows, and your application does not run. If you don’t use the LIB
files, then you are responsible for loading the DLL into memory and
handling any errors that occur if the DLL cannot be found.

Tip

You can create other types of DLLs using Visual C++. All these other types of
DLLs involve a significant amount of ActiveX functionality, so they are
beyond the scope of this book. If you need to build ActiveX in-process
server DLLs, or other types of ActiveX DLLs, I recommend that you find an
advanced book on Visual C++ that provides significant coverage for these
topics.

Note

023 31240-9 CH17 4/27/00 12:57 PM Page 407

MFC Extension DLLs
MFC DLLs are the easiest to code and create because you can treat them just like any
other collection of classes. For any classes that you want to export from the DLL, the
only thing that you need to add is the AFX_EXT_CLASS macro in the class declaration, as
follows:

class AFX_EXT_CLASS CMyClass
{
.
.
.
};

This macro exports the class, making it accessible to Visual C++ applications. You need
to include this macro in the header file that is used by the applications that will use the
DLL, where it will import the class from the DLL so that it can be used.

The one drawback to creating MFC extension DLLs is that they cannot be used by any
other programming languages. They can be used with other C++ compilers as long as the
compiler supports MFC (such as with Borland’s and Symantec’s C++ compilers).

Regular DLLs
The other type of DLL is a regular DLL. This type of DLL exports standard functions
from the DLL, not C++ classes. As a result, this type of DLL can require a little more
thought and planning than an MFC extension DLL. Once inside the DLL, you can use
classes all you want, but you must provide straight function calls to the external applica-
tions.

To export a function, declare it as an export function by preceding the function name
with

extern “C” <function type> PASCAL EXPORT <function declaration>

Include all this additional stuff in both the header file function prototype and the actual
source code. The extern “C” portion declares that this is a standard C function call
so that the C++ name mangler does not mangle the function name. PASCAL tells the
compiler that all function arguments are to be passed in PASCAL order, which places the
arguments on the stack in the reverse order from how they are normally placed. Finally,
EXPORT tells the compiler that this function is to be exported from the DLL and can be
called outside the DLL.

The other thing that you need to do to export the functions from your DLL is to add all
the exported function names to the DEF file for the DLL project. This file is used to
build the stub LIB file and the export table in the DLL. It contains the name of the DLL,

408 Day 17

023 31240-9 CH17 4/27/00 12:57 PM Page 408

Sharing Your Functionality with Other Applications—Creating DLLs 409

17

or library, a brief description of the DLL, and the names of all functions that are to be
exported. This file has to follow a specific format, so you should not modify the default
DEF file that is automatically created by the DLL Wizard other than to add exported
function names. A typical DEF file follows:

LIBRARY “mydll”
DESCRIPTION ‘mydll Windows Dynamic Link Library’

EXPORTS
; Explicit exports can go here
MyFunc1
MyFunc2

If you are using MFC classes in your regular DLLs, you need to call the
AFX_MANAGE_STATE macro as the first line of code in all exported functions. This is nec-
essary to make the exported functions threadsafe, which allows your class functions to be
called simultaneously by two or more programs (or threads). The AFX_MANAGE_STATE
macro takes a single argument, a pointer to a AFX_MODULE_STATE structure, which can be
retrieved by calling the AfxGetStaticModuleState function. A typical exported function
that uses MFC looks like the following:

extern “C” void PASCAL EXPORT MyFunc(...)
{

AFX_MANAGE_STATE(AfxGetStaticModuleState());
// normal function body here

.

.

.
}

Designing DLLs
When you are designing your DLLs, you should be aware that any of the functions in
your DLLs can be called simultaneously by multiple applications all running at the same
time. As a result, all the functionality in any DLLs that you create must be threadsafe.

All variables that hold any values beyond each individual function call must be held and
maintained by the application and not the DLL. Any application variables that must be
manipulated by the DLL must be passed in to the DLL as one of the function arguments.
Any global variables that are manipulated within the DLL may be swapped with vari-
ables from other application processes while the function is running, leading to unpre-
dictable results.

023 31240-9 CH17 4/27/00 12:57 PM Page 409

Creating and Using an MFC Extension DLL
To see how easy it is to create and use an MFC extension DLL, you’ll convert the library
module that you created yesterday into an MFC extension DLL today. After you see how
easy it is, and what types of changes you have to make to use the DLL, you’ll then reim-
plement the same functionality as a regular DLL so that you can get an understanding of
the different approaches that are necessary with the two DLL styles.

Creating the MFC Extension DLL
To convert the library module you created yesterday into an MFC extension DLL, you
need to create a new MFC DLL Wizard project, specifying that the project is an MFC
extension DLL. Copy the source code and header files for the line and drawing classes
into the project directory. Load the files for the line and drawing classes into the current
project. Add the AFX_EXT_CLASS macro to the drawing class. Finally, move the color
table from a global static table to a local variable inside the function that creates the
squiggles.

To create this DLL, start a new project. Give the project a suitable name, such as
ModArtDll, and specify that the project is an MFC AppWizard (DLL) project, as in
Figure 17.1. Once in the DLL Wizard, specify that the DLL is an MFC Extension DLL,
as in Figure 17.2.

410 Day 17

FIGURE 17.1.
Selecting the MFC
DLL Wizard.

Once you create the DLL shell, open the file explorer and copy the source code and
header files for the line and drawing classes (line.cpp, line.h, ModArt.cpp, and
ModArt.h) from the library module project you created yesterday into the project direc-
tory that you just created. Add all four of these files to the project. Both classes should
appear in the Class View of the workspace pane.

023 31240-9 CH17 4/27/00 12:57 PM Page 410

Sharing Your Functionality with Other Applications—Creating DLLs 411

17Open the header file containing the definition of the drawing class. Add the
AFX_EXT_CLASS macro to the class declaration as shown in Listing 17.1. Remove the
color table variable from the class declaration also.

LISTING 17.1. THE MODIFIED CModArt CLASS DECLARATION.

1: class AFX_EXT_CLASS CModArt : public CObject
2: {
3: public:
4: void NewDrawing();
5: virtual void Serialize(CArchive &ar);
6: void Draw(CDC *pDC);
7: void ClearDrawing();
8: void SetRect(CRect rDrawArea);
9: CModArt();
10: virtual ~CModArt();
11:
12: private:
13: void NewLine();
14: CRect m_rDrawArea;
15: CObArray m_oaLines;
16: };

You cannot have public static tables in DLLs, so you cannot declare the color table as a
public, static member of the drawing class, as it was yesterday. As a result, you’ll move
it to a local variable in the NewLine member function. Edit the NewLine function to add
this local variable and to reset the function to behave as it did in its initial incarnation,
as in Listing 17.2.

FIGURE 17.2.
Specifying the DLL
type.

023 31240-9 CH17 4/27/00 12:57 PM Page 411

LISTING 17.2. THE CModArt NewLine FUNCTION.

1: void CModArt::NewLine()
2: {
3: int lNumLines;
4: int lCurLine;
5: int nCurColor;
6: UINT nCurWidth;
7: CPoint pTo;
8: CPoint pFrom;
9:
10: // Normalize the rectangle before determining the width and height
11: m_rDrawArea.NormalizeRect();
12: // get the area width and height
13: int lWidth = m_rDrawArea.Width();
14: int lHeight = m_rDrawArea.Height();
15:
16: COLORREF crColors[8] = {
17: RGB(0, 0, 0), // Black
18: RGB(0, 0, 255), // Blue
19: RGB(0, 255, 0), // Green
20: RGB(0, 255, 255), // Cyan
21: RGB(255, 0, 0), // Red
22: RGB(255, 0, 255), // Magenta
23: RGB(255, 255, 0), // Yellow
24: RGB(255, 255, 255) // White
25: };
26:
27: // Determine the number of parts to this squiggle
28: lNumLines = rand() % 100;
29: // Are there any parts to this squiggle?
30: if (lNumLines > 0)
31: {
32: // Determine the color
33: nCurColor = rand() % 8;
34: // Determine the pen width
35: nCurWidth = (rand() % 8) + 1;
36: // Determine the starting point for the squiggle
37: pFrom.x = (rand() % lWidth) + m_rDrawArea.left;
38: pFrom.y = (rand() % lHeight) + m_rDrawArea.top;
39: // Loop through the number of segments
40: for (lCurLine = 0; lCurLine < lNumLines; lCurLine++)
41: {
42: // Determine the end point of the segment
43: pTo.x = ((rand() % 20) - 10) + pFrom.x;
44: pTo.y = ((rand() % 20) - 10) + pFrom.y;
45: // Create a new CLine object
46: CLine *pLine = new CLine(pFrom, pTo, nCurWidth,

➥ crColors[nCurColor]);
47: try

412 Day 17

023 31240-9 CH17 4/27/00 12:57 PM Page 412

Sharing Your Functionality with Other Applications—Creating DLLs 413

17

48: {
49: // Add the new line to the object array
50: m_oaLines.Add(pLine);
51: }
52: // Did we run into a memory exception?
53: catch (CMemoryException* perr)
54: {
55: // Display a message for the user, giving him the
56: // bad news
57: AfxMessageBox(“Out of memory”, MB_ICONSTOP | MB_OK);
58: // Did we create a line object?
59: if (pLine)
60: {
61: // Delete it
62: delete pLine;
63: pLine = NULL;
64: }
65: // Delete the exception object
66: perr->Delete();
67: }
68: // Set the starting point to the end point
69: pFrom = pTo;
70: }
71: }
72: }

After making these changes to the drawing class, you are ready to compile your DLL.
Once you compile the DLL, switch over to the file explorer, find the DLL in the debug
subdirectory under the project directory, and copy the DLL to the debug directory in the
test application project directory.

Adapting the Test Application
To adapt the test application to use the DLL, open the test application project that you
created yesterday. You are going to delete the library module that you created yesterday
and add the LIB file that was created with the DLL. You are also going to change the
header file that is included for the drawing class. After making these two changes, your
test application will be ready to use with the DLL.

To delete the library module from the project, open the File View in the workspace pane.
Select the LIB file from the list of project files and press the Delete key. Once you delete
the library file from the project, select Project | Add To Project | Files from the main
menu. Specify the Library Files (.lib) file type, and then navigate to the debug directory
of the DLL project. Select the LIB file that was created with your DLL, in this case,
ModArtDll.lib. Click OK to add the file to the project.

023 31240-9 CH17 4/27/00 12:57 PM Page 413

Once you add the DLL’s LIB file, edit the source-code files for the document, view, and
application classes, changing the include of the drawing class to point to the project
directory of the DLL, as in line 7 in Listing 17.3.

LISTING 17.3. THE CTestAppDoc INCLUDES.

1: // TestAppDoc.cpp : implementation of the CTestAppDoc class
2: //
3:
4: #include “stdafx.h”
5: #include “TestApp.h”
6:
7: #include “..\ModArtDll\ModArt.h”
8: #include “TestAppDoc.h”

After making this change to all three source-code files, you are ready to compile and run
your test application. You should find your test application running just like it did yester-
day, only generating shorter squiggles and using only the eight colors in the color table.

Changing the DLL
Now that you have the test application running with the DLL, you’ll make the same
changes to the DLL that you made to the library module yesterday. You’ll increase the
number of squiggles that can be included in a drawing, increase the possible length of
each squiggle, and generate any number of colors for use in the squiggles.

To make these changes, switch back to the DLL project. Increase the number of lines
that may be generated in the NewDrawing member function of the drawing class. Increase
the possible length of the squiggles in the NewLine member function, and add the random
colors back in, as in Listing 17.4.

LISTING 17.4. THE MODIFIED CModArt NewLine FUNCTION.

1: void CModArt::NewLine()
2: {
3: int lNumLines;
4: int lCurLine;
5: // int nCurColor;
6: UINT nCurWidth;
7: CPoint pTo;
8: CPoint pFrom;
9: int cRed;
10: int cBlue;
11: int cGreen;
12:

414 Day 17

023 31240-9 CH17 4/27/00 12:57 PM Page 414

Sharing Your Functionality with Other Applications—Creating DLLs 415

17

13: // Normalize the rectangle before determining the width and height
14: m_rDrawArea.NormalizeRect();
15: // get the area width and height
16: int lWidth = m_rDrawArea.Width();
17: int lHeight = m_rDrawArea.Height();
18:
19: // COLORREF crColors[8] = {
20: // RGB(0, 0, 0), // Black
21: // RGB(0, 0, 255), // Blue
22: // RGB(0, 255, 0), // Green
23: // RGB(0, 255, 255), // Cyan
24: // RGB(255, 0, 0), // Red
25: // RGB(255, 0, 255), // Magenta
26: // RGB(255, 255, 0), // Yellow
27: // RGB(255, 255, 255) // White
28: // };
29:
30: // Determine the number of parts to this squiggle
31: lNumLines = rand() % 200;
32: // Are there any parts to this squiggle?
33: if (lNumLines > 0)
34: {
35: // Determine the color
36: // nCurColor = rand() % 8;
37: cRed = rand() % 256;
38: cBlue = rand() % 256;
39: cGreen = rand() % 256;
40: // Determine the pen width
41: nCurWidth = (rand() % 8) + 1;
42: // Determine the starting point for the squiggle
43: pFrom.x = (rand() % lWidth) + m_rDrawArea.left;
44: pFrom.y = (rand() % lHeight) + m_rDrawArea.top;
45: // Loop through the number of segments
46: for (lCurLine = 0; lCurLine < lNumLines; lCurLine++)
47: {
48: // Determine the end point of the segment
49: pTo.x = ((rand() % 20) - 10) + pFrom.x;
50: pTo.y = ((rand() % 20) - 10) + pFrom.y;
51: // Create a new CLine object
52: CLine *pLine = new CLine(pFrom, pTo, nCurWidth,

➥ RGB(cRed, cGreen, cBlue));
53: try
54: {
55: // Add the new line to the object array
56: m_oaLines.Add(pLine);
57: }
58: // Did we run into a memory exception?
59: catch (CMemoryException* perr)
60: {

continues

023 31240-9 CH17 4/27/00 12:57 PM Page 415

LISTING 17.4. CONTINUED

61: // Display a message for the user, giving him the
62: // bad news
63: AfxMessageBox(“Out of memory”, MB_ICONSTOP | MB_OK);
64: // Did we create a line object?
65: if (pLine)
66: {
67: // Delete it
68: delete pLine;
69: pLine = NULL;
70: }
71: // Delete the exception object
72: perr->Delete();
73: }
74: // Set the starting point to the end point
75: pFrom = pTo;
76: }
77: }
78: }

After making these changes, compile the DLL again. Once you compile the DLL, switch
to the file explorer and copy the DLL into the debug directory of the test application
again. Once you copy the DLL, run the test application from the Start | Run Taskbar, as in
Figure 17.3. You should find that the application has been updated, and it is now includ-
ing more squiggles and using many different colors.

416 Day 17

FIGURE 17.3.
Starting the sample
application.

Creating and Using a Regular DLL
You might think that you broke the rules about using variables that are not owned by the
application in a DLL when you created and used the MFC extension DLL. Well, you
didn’t. The instance of the drawing class was a member of the document class in the test
application. It was created and maintained by the application, not the DLL. Now that you
are turning your attention to implementing the same functionality as a regular DLL, this
will become clearer.

To convert the MFC extension DLL into a regular DLL, you’ll have to convert the draw-
ing class into a series of regular function calls. In the course of making this conversion,

023 31240-9 CH17 4/27/00 12:57 PM Page 416

Sharing Your Functionality with Other Applications—Creating DLLs 417

17

the object array must become a member variable of the application document class and
must be passed as an argument to every exported function in the DLL.

Creating the Regular DLL
To convert the MFC extension DLL into a regular DLL, you have to start a new project.
Visual C++ has to build a project that tells the compiler what type of file it’s creating.
You can create this new project using the same steps you used to create the MFC exten-
sion DLL project, but specify on the DLL Wizard that you are creating a regular DLL.
(You can leave the wizard at the default settings.) Once you create the project, you can
copy the line and drawing class source code and header files into the project directory
and add these files to the project. Once you add these files to the project, you need to
begin the process of converting the drawing class into a series of straight function calls.

Altering the Header File
To start with, you need to radically alter the header file for the drawing class so that it
will work for a regular DLL. You have to eliminate every trace of the actual class from
the header file, leaving only the function calls. All of these functions must be passed in
any objects that they need to work with. (Every function will need to be passed the
object array as one of its arguments.) Next, you need to slightly modify all the function
names so that the compiler does not get mixed up and call a member function of any
class by mistake (such as the Serialize function). Finally, each of the public functions
must be declared as an exportable function. Making these changes to the header file, you
end up replacing the entire class declaration with the function prototypes in Listing 17.5.

LISTING 17.5. THE MODIFIED ModArt HEADER FILE.

1: extern “C” void PASCAL EXPORT ModArtNewDrawing(CRect pRect,
➥ CObArray *poaLines);

2: extern “C” void PASCAL EXPORT ModArtSerialize(CArchive &ar,
➥ CObArray *poaLines);

3: extern “C” void PASCAL EXPORT ModArtDraw(CDC *pDC, CObArray *poaLines);
4: extern “C” void PASCAL EXPORT ModArtClearDrawing(CObArray *poaLines);
5: void NewLine(CRect pRect, CObArray *poaLines);

Notice that the object array is always passed as a pointer to each of these
functions. Because these functions are adding and removing objects from
the array, they need to work with the actual array and not a copy of it.

Note

023 31240-9 CH17 4/27/00 12:57 PM Page 417

Adapting the Drawing Generation Functions
Moving to the source-code file, you need to make numerous small yet significant
changes to these functions. Starting with the NewDrawing function, you need to pass in
the CRect object to get the drawing area. You dropped the function for setting the draw-
ing area because you have no local variables in which you can hold this object. As a
result, you are better off passing it to the drawing generation functions. The other change
is where you pass in the object array as another argument to the function. You aren’t
doing anything with either of these arguments in this function, just passing them along to
the squiggle generating function. The other alteration in this function is the addition of
the AFX_MANAGE_STATE macro as the first line in the body of the function. After making
these changes, the NewDrawing function will look like the one in Listing 17.6.

LISTING 17.6. THE ModArtNewDrawing FUNCTION.

1: extern “C” void PASCAL EXPORT ModArtNewDrawing(CRect pRect,
➥ CObArray *poaLines)

2: {
3: AFX_MANAGE_STATE(AfxGetStaticModuleState());
4: // normal function body here
5: int lNumLines;
6: int lCurLine;
7:
8: // Initialize the random number generator
9: srand((unsigned)time(NULL));
10: // Determine how many lines to create
11: lNumLines = rand() % 50;
12: // Are there any lines to create?
13: if (lNumLines > 0)
14: {
15: // Loop through the number of lines
16: for (lCurLine = 0; lCurLine < lNumLines; lCurLine++)
17: {
18: // Create the new line
19: NewLine(pRect, poaLines);
20: }
21: }
22: }

Another change that is required in the NewDrawing function is the addition of the random
number generator seeding on line 9. Because there is no class constructor any more, you
cannot seed the random number generator in it. Therefore, the next logical place to add
this is in the NewDrawing function before any random numbers are generated.

418 Day 17

023 31240-9 CH17 4/27/00 12:57 PM Page 418

Sharing Your Functionality with Other Applications—Creating DLLs 419

17

On the NewLine function, the changes are more extensive. First, the CRect object and the
object array are passed in as arguments. Second, because this is not an exported function,
you do not need to add the AFX_MANAGE_STATE macro. Third, all the places where the
CRect member variable is used must be changed to use the CRect that is passed as an
argument to the function. Finally, when adding objects to the object array, you need to
change this to use the object array pointer that was passed as an argument. Making these
changes leaves you with the code in Listing 17.7.

LISTING 17.7. THE NewLine FUNCTION.

1: void NewLine(CRect pRect, CObArray *poaLines)
2: {
3: int lNumLines;
4: int lCurLine;
5: // int nCurColor;
6: UINT nCurWidth;
7: CPoint pTo;
8: CPoint pFrom;
9: int cRed;
10: int cBlue;
11: int cGreen;
12:
13: // Normalize the rectangle before determining the width and

➥ height
14: pRect.NormalizeRect();
15: // get the area width and height
16: int lWidth = pRect.Width();
17: int lHeight = pRect.Height();
18:
19: // COLORREF crColors[8] = {
20: // RGB(0, 0, 0), // Black
21: // RGB(0, 0, 255), // Blue
22: // RGB(0, 255, 0), // Green
23: // RGB(0, 255, 255), // Cyan
24: // RGB(255, 0, 0), // Red
25: // RGB(255, 0, 255), // Magenta
26: // RGB(255, 255, 0), // Yellow
27: // RGB(255, 255, 255) // White
28: // };
29:
30: // Determine the number of parts to this squiggle
31: lNumLines = rand() % 200;
32: // Are there any parts to this squiggle?
33: if (lNumLines > 0)
34: {
35: // Determine the color

continues

023 31240-9 CH17 4/27/00 12:57 PM Page 419

LISTING 17.7. CONTINUED

36: // nCurColor = rand() % 8;
37: cRed = rand() % 256;
38: cBlue = rand() % 256;
39: cGreen = rand() % 256;
40: // Determine the pen width
41: nCurWidth = (rand() % 8) + 1;
42: // Determine the starting point for the squiggle
43: pFrom.x = (rand() % lWidth) + pRect.left;
44: pFrom.y = (rand() % lHeight) + pRect.top;
45: // Loop through the number of segments
46: for (lCurLine = 0; lCurLine < lNumLines; lCurLine++)
47: {
48: // Determine the end point of the segment
49: pTo.x = ((rand() % 20) - 10) + pFrom.x;
50: pTo.y = ((rand() % 20) - 10) + pFrom.y;
51: // Create a new CLine object
52: CLine *pLine = new CLine(pFrom, pTo, nCurWidth,

➥ RGB(cRed, cGreen, cBlue));
53: try
54: {
55: // Add the new line to the object array
56: poaLines->Add(pLine);
57: }
58: // Did we run into a memory exception?
59: catch (CMemoryException* perr)
60: {
61: // Display a message for the user, giving him the
62: // bad news
63: AfxMessageBox(“Out of memory”, MB_ICONSTOP | MB_OK);
64: // Did we create a line object?
65: if (pLine)
66: {
67: // Delete it
68: delete pLine;
69: pLine = NULL;
70: }
71: // Delete the exception object
72: perr->Delete();
73: }
74: // Set the starting point to the end point
75: pFrom = pTo;
76: }
77: }
78: }

Adapting the Other Functions
Making the necessary changes to the other functions is less involved than the changes to
the drawing generation functions. With the rest of the functions, you must add a pointer

420 Day 17

023 31240-9 CH17 4/27/00 12:57 PM Page 420

Sharing Your Functionality with Other Applications—Creating DLLs 421

17

to the object array as a function argument and then alter the uses of the array to use the
pointer instead of the no longer existing member variable. You also need to add the
AFX_MANAGE_STATE macro as the first line in each of the remaining functions. This leaves
you with the functions shown in Listings 17.8, 17.9, and 17.10.

LISTING 17.8. THE ModArtDraw FUNCTION.

1: extern “C” void PASCAL EXPORT ModArtDraw(CDC *pDC, CObArray *poaLines)
2: {
3: AFX_MANAGE_STATE(AfxGetStaticModuleState());
4: // normal function body here
5: // Get the number of lines in the object array
6: int liCount = poaLines.GetSize();
7: int liPos;
8:
9: // Are there any objects in the array?
10: if (liCount)
11: {
12: // Loop through the array, drawing each object
13: for (liPos = 0; liPos < liCount; liPos++)
14: ((CLine*)poaLines[liPos])->Draw(pDC);
15: }
16: }

LISTING 17.9. THE ModArtSerialize FUNCTION.

1: extern “C” void PASCAL EXPORT ModArtSerialize(CArchive &ar,
➥ CObArray *poaLines)

2: {
3: AFX_MANAGE_STATE(AfxGetStaticModuleState());
4: // normal function body here
5: // Pass the archive object on to the array
6: poaLines.Serialize(ar);
7: }

LISTING 17.10. THE ModArtClearDrawing FUNCTION.

1: extern “C” void PASCAL EXPORT ModArtClearDrawing(CObArray *poaLines)
2: {
3: AFX_MANAGE_STATE(AfxGetStaticModuleState());
4: // Normal function body here
5: // Get the number of lines in the object array
6: int liCount = poaLines.GetSize();
7: int liPos;

continues

023 31240-9 CH17 4/27/00 12:57 PM Page 421

LISTING 17.10. CONTINUED

8:
9: // Are there any objects in the array?
10: if (liCount)
11: {
12: // Loop through the array, deleting each object
13: for (liPos = 0; liPos < liCount; liPos++)
14: delete poaLines[liPos];
15: // Reset the array
16: poaLines.RemoveAll();
17: }
18: }

Once you make the changes to these functions, the only thing remaining is to remove all
code for the class constructor and destructor, along with the code for the SetRect func-
tion.

Building the Module Definition File
Before you compile the DLL, you need to add all the function names to the module defi-
nition file. You can find this file in the list of source-code files in the File View of the
workspace pane. When you open this file, you’ll find that it briefly describes the module
that you are building in generic terms. You’ll see a place at the bottom of the file where
you can add the exports for the DLL. Edit this file, adding the exportable function
names, as in Listing 17.11.

LISTING 17.11. THE DLL MODULE DEFINITION FILE.

1: ; ModArtRDll.def : Declares the module parameters for the DLL
2:
3: LIBRARY “ModArtRDll”
4: DESCRIPTION ‘ModArtRDll Windows Dynamic Link Library’
5:
6: EXPORTS
7: ; Explicit exports can go here
8: ModArtNewDrawing
9: ModArtSerialize
10: ModArtDraw
11: ModArtClearDrawing

You are now ready to compile your regular DLL. Once you compile the DLL, copy it
into the debug directory of the test application.

422 Day 17

023 31240-9 CH17 4/27/00 12:57 PM Page 422

Sharing Your Functionality with Other Applications—Creating DLLs 423

17

Adapting the Test Application
To adapt the test application to use the new DLL that you have just created, you need to
make a number of changes. First, you need to change the member variable of the docu-
ment class from an instance of the drawing class to the object array. Next, you need to
change the include in the document and view source code to include the header from the
new DLL instead of the header from the old DLL. (You can completely remove the
include in the application source-code file.) Drop the DLL LIB file and add the LIB file
for the new DLL to the project. Change all of the drawing class function calls to call
functions in the new DLL instead. Finally, change the GetDrawing function in the docu-
ment class so that it returns a pointer to the object array, instead of the drawing object.

You can start making these changes by deleting the LIB file from the test application
project. Once you delete the file, add the LIB file for the new DLL to the project by
selecting Project | Add To Project | Files from the main menu.

Once you switch the LIB files in the project, edit the source code for the document and
view classes to change the include statement, changing the project directory to the new
DLL project directory. You can edit the application class source-code file and remove the
include from this file. Because you are not creating any instances of the drawing class,
the application file doesn’t need to know about anything in the DLL.

Once you make all those changes, open the header file for the document class. Edit the
document class declaration: Change the function type of the GetDrawing function to
return a pointer to an object array, remove the drawing class variable, and add an object
array variable, as in Listing 17.12. Make only these three changes; do not change any-
thing else in the class declaration.

LISTING 17.12. THE CTestAppDoc CLASS DECLARATION.

1: class CTestAppDoc : public CDocument
2: {
3: protected: // create from serialization only
4: CTestAppDoc();
5: DECLARE_DYNCREATE(CTestAppDoc)
6: .
7: .
8: .
9: // Implementation
10: public:
11: CObArray* GetDrawing();
12: virtual ~CTestAppDoc();
13: .

continues

023 31240-9 CH17 4/27/00 12:57 PM Page 423

LISTING 17.12. CONTINUED

14: .
15: .
16: private:
17: CObArray m_oaLines;
18: };

Modifying the Document Functions
Now that you’ve made the general changes to the test application, it’s time to start mak-
ing the functionality changes. All the calls to a class method of the drawing object must
be changed to the appropriate function call in the new DLL.

The changes necessary in the OnNewDocument function consist of dropping the function
call to pass the CRect to the drawing object and replacing the NewDocument function call
with the new DLL function—in this instance, ModArtNewDrawing, as shown in line 19 in
Listing 17.13.

LISTING 17.13. THE CTestAppDoc OnNewDocument FUNCTION.

1: BOOL CTestAppDoc::OnNewDocument()
2: {
3: if (!CDocument::OnNewDocument())
4: return FALSE;
5:
6: // TODO: add reinitialization code here
7: // (SDI documents will reuse this document)
8:
9: // Get the position of the view
10: POSITION pos = GetFirstViewPosition();
11: // Did we get a valid position?
12: if (pos != NULL)
13: {
14: // Get a pointer to the view
15: CView* pView = GetNextView(pos);
16: RECT lWndRect;
17: // Get the display area rectangle
18: pView->GetClientRect(&lWndRect);
19: // Create a new drawing
20: ModArtNewDrawing(lWndRect, &m_oaLines);
21: }
22:
23: return TRUE;
24: }

424 Day 17

023 31240-9 CH17 4/27/00 12:57 PM Page 424

Sharing Your Functionality with Other Applications—Creating DLLs 425

17

In the Serialize function, change the drawing object Serialize function call to the new
DLL serialization function—in this case, ModArtSerialize, as in Listing 17.14.

LISTING 17.14. THE CTestAppDoc Serialize FUNCTION.

1: void CTestAppDoc::Serialize(CArchive& ar)
2: {
3: // Serialize the drawing
4: ModArtSerialize(ar, &m_oaLines);
5: }

For the DeleteContents function, you need to change the call to the ClearDrawing func-
tion to the new DLL function, ModArtClearDrawing, as in line 5 of Listing 17.15.

LISTING 17.15. THE CTestAppDoc DeleteContents FUNCTION.

1: void CTestAppDoc::DeleteContents()
2: {
3: // TODO: Add your specialized code here and/or call the base class
4: // Delete the drawing
5: ModArtClearDrawing(&m_oaLines);
6:
7: CDocument::DeleteContents();
8: }

Finally, for the GetDrawing function, you need to change the function declaration to des-
ignate that it’s returning a pointer to an object array, just as you did in the header file.
Next, you need to change the variable that is being returned to the object array variable
that you added to the header file, as in Listing 17.16.

LISTING 17.16. THE CTestAppDoc GetDrawing FUNCTION.

1: CObArray* CTestAppDoc::GetDrawing()
2: {
3: // Return the drawing object
4: return &m_oaLines;
5: }

Modifying the View Functions
Switching to the view class, there’s only one simple change to make to the OnDraw func-
tion. In this function, you need to change the type of pointer retrieved from the
GetDrawing function from a drawing object to an object array object, as in line 9 of

023 31240-9 CH17 4/27/00 12:57 PM Page 425

Listing 17.17. Next, call the DLL function, ModArtDraw, to perform the drawing on the
window, as shown in line 11.

LISTING 17.17. THE CTestAppView OnDraw FUNCTION.

1: void CTestAppView::OnDraw(CDC* pDC)
2: {
3: CModTestAppDoc* pDoc = GetDocument();
4: ASSERT_VALID(pDoc);
5:
6: // TODO: add draw code for native data here
7:
8: // Get the drawing object
9: CObArray* m_oaLines = pDoc->GetDrawing();
10: // Draw the drawing
11: ModArtDraw(pDC, m_oaLines);
12: }

After making all these changes to the test application, you are ready to compile and test
it. You should find that the application is working just as it did with the previous DLL.
You can also play around with it, going back and changing the DLL, copying the new
DLL into the debug directory for the test application, and seeing how the changes are
reflected in the behavior of the test application.

426 Day 17

The particular example of a regular DLL that you developed in this exercise
is still not usable by other programming languages. The reason is that you
are passing MFC classes as the arguments for each of the DLL’s functions.
This still limits the usage to other applications that are built using MFC. To
make this DLL truly portable, you need to pass the bare-bones structures
instead of the classes (such as the RECT structure instead of the CRect class)
and then convert the structures to the classes inside the DLL.

Caution

Summary
Today you learned about two more ways that you can package your functionality for
other programmers. You learned how you can easily package your classes as an MFC
extension DLL and how easily it can be used by a Visual C++ application. You saw how
you can make changes to the DLL without having to recompile the applications that use
it. You also learned what’s involved in creating a regular DLL that can be used with
other, non-Visual C++ applications. You saw how you needed to convert the exported
classes from the DLL into standard C-style functions and what’s involved in adapting an
application to use this style of DLL.

023 31240-9 CH17 4/27/00 12:57 PM Page 426

Sharing Your Functionality with Other Applications—Creating DLLs 427

17

Q&A
Q How can I convert the regular DLL so that it can be used by non-Visual C++

applications?

A First, you have to make all the arguments to the functions use the bare-bones struc-
tures, instead of the MFC classes. For instance, to convert the ModArtNewDrawing
function, change it to receive the RECT structure instead of the CRect class and also
to receive a generic pointer instead of a pointer to an object array. You have to
make the conversions to the appropriate classes in the DLL, as in lines 4 through 9
in Listing 17.18.

LISTING 17.18. THE ModArtNewDrawing FUNCTION.

1: extern “C” void PASCAL EXPORT ModArtNewDrawing(RECT spRect,
➥ LPVOID lpoaLines)

2: {
3: AFX_MANAGE_STATE(AfxGetStaticModuleState());
4: CRect pRect;
5: pRect.top = spRect.top;
6: pRect.left = spRect.left;
7: pRect.right = spRect.right;
8: pRect.bottom = spRect.bottom;
9: CObArray* poaLines = (CObArray*)lpoaLines;
10: // Normal function body here
11: int m_lNumLines;
12: int m_lCurLine;
13:
14: // Initialize the random number generator
15: srand((unsigned)time(NULL));
16: // Determine how many lines to create
17: m_lNumLines = rand() % 50;
18: // Are there any lines to create?
19: if (m_lNumLines > 0)
20: {
21: // Loop through the number of lines
22: for (m_lCurLine = 0; m_lCurLine < m_lNumLines; m_lCurLine++)
23: {
24: // Create the new line
25: NewLine(pRect, poaLines);
26: }
27: }
28: }

You also have to add functions to create and destroy the object array, with the
application storing the object array as a generic pointer as in Listing 17.19.

023 31240-9 CH17 4/27/00 12:57 PM Page 427

LISTING 17.19. THE ModArtInit FUNCTION.

1: extern “C” LPVOID PASCAL EXPORT ModArtInit()
2: {
3: AFX_MANAGE_STATE(AfxGetStaticModuleState());
4: // Create the object array
5: return (LPVOID)new CObArray;
6: }

Q When do I need to recompile the applications that use my DLLs?

A Whenever you change any of the exported function calls. Changing, adding, or
removing arguments to any of these functions would mean recompiling the
applications that use the DLL. If you are working with an MFC extension DLL,
the applications that use the DLL need to be recompiled if the public interface for
the exported classes change or a new function or variable is added or removed.
It doesn’t matter if the application isn’t using any of the functions that were
changed; it’s still good practice to recompile the applications, just to be sure.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What kind of DLL do you have to create to make classes in the DLL available to

applications?

2. What do you have to add to the class to export it from a DLL?

3. What kind of DLL can be used with other programming languages?

4. If you make changes in a DLL, do you have to recompile the applications that use
the DLL?

5. What function does the LIB file provide for a DLL?

Exercises
1. Separate the line class into its own MFC extension DLL and use it with the second

(regular) DLL.

2. Alter the line class DLL so that it uses a consistent line width for all lines.

428 Day 17

023 31240-9 CH17 4/27/00 12:57 PM Page 428

DAY 18

WEEK 3

Doing Multiple Tasks at
One Time—Multitasking

Sometimes it is convenient to let your applications do more than one thing at a
time. Your application could write a backup file or print in the background
while the user is working on the same document. Your application could per-
form calculations while the user enters new data or draws multiple images
simultaneously. There are many different reasons why you might want to add
this capability, called multitasking, to your applications. Windows provides sev-
eral facilities specifically for building this into applications.

Today, you will learn

● How tasks can be performed while an application is idle.

● How tasks can run independently of the rest of the application.

● How to coordinate access to resources that are shared between multiple
independent tasks.

● How to start and stop independently running tasks.

024 31240-9 CH18 4/27/00 12:59 PM Page 429

What Is Multitasking?
In the days of Windows 3.x, all Windows applications were single-threaded, with only
one path of execution at any point in time. The version of multitasking that Windows 3.x
offered is known as cooperative multitasking. The key to cooperative multitasking is that
each individual application makes the decision about when to give up the processor for
another application to perform any processing that it might be waiting to perform. As a
result, Windows 3.x was susceptible to an ill-behaved application that would hold other
applications prisoner while it performed some long, winding process or even got itself
stuck in some sort of loop.

With Windows NT and Windows 95, the nature of the operating system changed. No
more cooperative multitasking—the new method was preemptive multitasking. With pre-
emptive multitasking, the operating system decides when to take the processor away
from the current application and give the processor to another application that is waiting
for it. It doesn’t matter whether the application that has the processor is ready to give it
up; the operating system takes the processor without the application’s permission. This is
how the operating system enables multiple applications to perform computation-intensive
tasks and still let all the applications make the same amount of progress in each of their
tasks. Giving this capability to the operating system prevents a single application from
holding other applications prisoner while hogging the processor.

430 Day 18

Performing Multiple Tasks at One Time
Along with the capability to allow multiple applications to run simultaneously comes the
capability for a single application to execute multiple threads of execution at any time. A
thread is to an application what an application is to the operating system. If an
application has multiple threads running, it is basically running multiple applications

With the 16/32 bit structure of Windows 95, it is still possible for an ill-
behaved 16-bit application to lock up the system because a large amount of
16-bit code remains a core part of the operating system. The 16-bit code on
Windows 95 is still a cooperative multitasking environment, so only one
application can execute 16-bit code at a time. Because all the USER functions,
and a good portion of the GDI functions, thunk down to the 16-bit version,
it is still possible for a single 16-bit application to lock up the entire system.

On Windows NT, if all of the 16-bit applications run in a shared memory
space, an ill-behaved application can lock up all of the 16-bit applications,
but this has no effect on any 32-bit applications.

Note

024 31240-9 CH18 4/27/00 12:59 PM Page 430

Doing Multiple Tasks at One Time––Multitasking 431

18

within the whole application. This lets the application accomplish more things simultane-
ously, such as when Microsoft Word checks your spelling at the same time you are typ-
ing your document.

Idle Processing Threads
One of the easiest ways to let your application perform multiple tasks at one time is to
add some idle processing tasks. An idle processing task is a task that is performed when
an application is sitting idle. Literally, a function in the application class is called when
there are no messages in the application message queue. The idea behind this function is
that while the application is idle, it can perform work such as cleaning up memory (also
known as garbage collection) or writing to a print spool.

The OnIdle function is a holdover from the Windows 3.x days. It is a member of the
CWinApp class, from which your application class is inherited. By default, no processing
in this function is added by the AppWizard, so if you want this function in your applica-
tion, you must add it to your application class through the Class Wizard. (OnIdle is one
of the available messages for the App class in your applications.)

The OnIdle function receives one argument, which is the number of times the OnIdle
function has been called since the last message was processed by your application. You
can use this to determine how long the application has been idle and when to trigger any
functionality that you need to run if the application is idle for more than a certain amount
of time.

One of the biggest concerns in adding OnIdle processing to your applications is that any
functionality you add must be small and must quickly return control to the user. When an
application performs any OnIdle processing, the user cannot interact with the application
until the OnIdle processing finishes and returns control to the user. If you need to per-
form some long, drawn-out task in the OnIdle function, break it up into many small and
quick tasks so that control can return to the user; then, you can continue your OnIdle
task once the message queue is empty again. This means that you also have to track your
application’s progress in the OnIdle task so that the next time the OnIdle function is
called, your application can pick up the task where it left off.

Spawning Independent Threads
If you really need to run a long background task that you don’t want interfering with the
user, you should spawn an independent thread. A thread is like another application run-
ning within your application. It does not have to wait until the application is idle to per-
form its tasks, and it does not cause the user to wait until it takes a break.

024 31240-9 CH18 4/27/00 12:59 PM Page 431

The two methods of creating an independent thread use the same function to create and
start the thread. To create and start an independent thread, you call the AfxBeginThread
function. You can choose to pass it a function to call for performing the thread’s tasks, or
you can pass it a pointer to the runtime class for an object derived from the CWinThread
class. Both versions of the function return a pointer to a CWinThread object, which runs
as an independent thread.

In the first version of the AfxBeginThread function, the first argument is a pointer to the
main function for the thread to be started. This function is the equivalent of the main
function in a C/C++ program. It controls the top-level execution for the thread. This
function must be defined as a UINT function with a single LPVOID argument:

UINT MyThreadFunction(LPVOID pParam);

This version of the AfxBeginThread function also requires a second argument that is
passed along to the main thread function as the only argument to that function. This
argument can be a pointer to a structure containing any information that the thread needs
to know to perform its job correctly.

The first argument to the second version of the AfxBeginThread function is a pointer to
the runtime class of an object derived from the CWinThread class. You can get a pointer
to the runtime class of your CWinThread class by using the RUNTIME_CLASS macro, pass-
ing your class as the only argument.

After these initial arguments, the rest of the arguments to the AfxBeginThread function
are the same for both versions, and they are all optional. The first of these arguments is
the priority to be assigned to the thread, with a default priority of
THREAD_PRIORITY_NORMAL. Table 18.1 lists the available thread priorities.

TABLE 18.1. THREAD PRIORITIES.

Priority Description

0 The thread will inherit the thread priority of the application creat-
ing the thread.

THREAD_PRIORITY_NORMAL A normal (default) priority.

THREAD_PRIORITY_ABOVE_NORMAL 1 point above normal priority.

THREAD_PRIORITY_BELOW_NORMAL 1 point below normal priority.

THREAD_PRIORITY_HIGHEST 2 points above normal priority.

THREAD_PRIORITY_LOWEST 2 points below normal priority.

THREAD_PRIORITY_IDLE Priority level of 1 for most threads (all non-real-time threads).

THREAD_PRIORITY_TIME_CRITICAL Priority level of 15 for most threads (all non-real-time threads).

432 Day 18

024 31240-9 CH18 4/27/00 12:59 PM Page 432

Doing Multiple Tasks at One Time––Multitasking 433

18

The next argument to the AfxBeginThread function is the stack size to be provided for
the new thread. The default value for this argument is 0, which provides the thread the
same size stack as the main application.

The next argument to the AfxBeginThread function is the thread-creation flag. This flag
can contain one of two values and controls how the thread is started. If
CREATE_SUSPENDED is passed as this argument, the thread is created in suspended mode.
The thread does not run until the ResumeThread function is called for the thread. If you
supply 0 as this argument, which is the default value, the thread begins executing the
moment it is created.

The final argument to the AfxBeginThread function is a pointer to the security attributes
for the thread. The default value for this argument is NULL, which causes the thread to be
created with the same security profile as the application. Unless you are building applica-
tions to run on Windows NT and you need to provide a thread with a specific security
profile, you should always use the default value for this argument.

Building Structures
Imagine that you have an application running two threads, each parsing its own set of
variables at the same time. Imagine also that the application is using a global object array
to hold these variables. If the method of allocating and resizing the array consisted of
checking the current size and adding one position onto the end of the array, your two
threads might build an array populated something like the one in Figure 18.1, where
array positions populated by the first thread are intermingled with those created by the
second thread. This could easily confuse each thread as it retrieves values from the array
for its processing needs because each thread is just as likely to pull a value that actually
belongs to the other thread. This would cause each thread to operate on wrong data and
return the wrong results.

Thread priority controls how much of the CPU’s time the thread gets in rela-
tion to the other threads and processes running on the computer. If a thread
will not be performing any tasks that need to be completed quickly, you
should give the thread a lower priority when creating it. It is not advisable
to give a thread a priority higher than normal unless it is vitally important
that the thread perform its tasks faster than other processes running on the
computer. The higher a thread’s priority, the more CPU time that thread will
receive, and the less CPU time all other processes and threads on the com-
puter will receive.

Note

024 31240-9 CH18 4/27/00 12:59 PM Page 433

If the application built these arrays as localized arrays, instead of global arrays, it could
keep access to each array limited to only the thread that builds the array. In Figure 18.2,
for example, there is no intermingling of data from multiple threads. If you take this
approach to using arrays and other memory structures, each thread can perform its pro-
cessing and return the results to the client, confident that the results are correct because
the calculations were performed on uncorrupted data.

434 Day 18

FIGURE 18.1.
Two threads populat-
ing a common array.

Thread 1 Thread 2

Created by thread 1

Created by thread 2

Created by thread 2

Created by thread 1

Created by thread 1

Created by thread 2

Created by thread 1

FIGURE 18.2.
Two threads populat-
ing localized arrays. Thread 1

Created by thread 1

Created by thread 1

Created by thread 1

Created by thread 1

Thread 2

Created by thread 2

Created by thread 2

Created by thread 2

Created by thread 2

Managing Access to Shared Resources
Not all variables can be localized, and you will often want to share some resources
between all the threads running in your applications. Such sharing creates an issue with
multithreaded applications. Suppose that three threads all share a single counter, which is
generating unique numbers. Because you don’t know when control of the processor is

024 31240-9 CH18 4/27/00 12:59 PM Page 434

Doing Multiple Tasks at One Time––Multitasking 435

18

going to switch from one thread to the next, your application might generate duplicate
“unique” numbers, as shown in Figure 18.3.

FIGURE 18.3.
Three threads sharing
a single counter. 1

Counter

2

3

2

counter = 1

Thread 1 checks the
counter value.

counter = 1

Thread 2 checks the
counter value.

counter = 2

Thread 2 increments
the counter value.

Thread 2 gets the
processor.

counter = 2

Thread 3 checks the
counter value.

counter = 3

Thread 3 increments
the counter value.

Thread 3 gets the
processor.

counter = 2

Thread 1 increments
the counter value

(still thinking
its value is 1).

Thread 1 gets the
processor.

P
ro

ce
ss

 T
im

e

As you can see, this sharing doesn’t work too well in a multithreaded application. You
need a way to limit access to a common resource to only one thread at a time. In reality,
there are four mechanisms for limiting access to common resources and synchronizing
processing between threads, all of which work in different ways and whose suitability
depends on the circumstances. The four mechanisms are

● Critical sections

● Mutexes

● Semaphores

● Events

024 31240-9 CH18 4/27/00 12:59 PM Page 435

Critical Sections

A critical section is a mechanism that limits access to a certain resource to a single
thread within an application. A thread enters the critical section before it needs to work
with the specific shared resource and then exits the critical section after it is finished
accessing the resource. If another thread tries to enter the critical section before the first
thread exits the critical section, the second thread is blocked and does not take any
processor time until the first thread exits the critical section, allowing the second to enter.
You use critical sections to mark sections of code that only one thread should execute at
a time. This doesn’t prevent the processor from switching from that thread to another; it
just prevents two or more threads from entering the same section of code.

If you use a critical section with the counter shown in Figure 18.3, you can force each
thread to enter a critical section before checking the current value of the counter. If each
thread does not leave the critical section until after it has incremented and updated the
counter, you can guarantee that—no matter how many threads are executing and regard-
less of their execution order—truly unique numbers are generated, as shown in Figure
18.4.

If you need to use a critical section object in your application, create an instance of the
CCriticalSection class. This object contains two methods, Lock and Unlock, which you
can use to gain and release control of the critical section.

Mutexes

Mutexes work in basically the same way as critical sections, but you use mutexes when
you want to share the resource between multiple applications. By using a mutex, you can
guarantee that no two threads running in any number of applications will access the same
resource at the same time.

Because of their availability across the operating system, mutexes carry much more over-
head than critical sections do. A mutex lifetime does not end when the application that
created it shuts down. The mutex might still be in use by other applications, so the oper-
ating system must track which applications are using a mutex and then destroy the mutex
once it is no longer needed. In contrast, critical sections have little overhead because
they do not exist outside the application that creates and uses them. After the application
ends, the critical section is gone.

If you need to use a mutex in your applications, you will create an instance of the CMutex
class. The constructor of the CMutex class has three available arguments. The first argu-
ment is a boolean value that specifies whether the thread creating the CMutex object is
the initial owner of the mutex. If so, then this thread must release the mutex before any
other threads can access it.

436 Day 18

024 31240-9 CH18 4/27/00 12:59 PM Page 436

Doing Multiple Tasks at One Time––Multitasking 437

18

FIGURE 18.4.
Three threads using
the same counter,
which is protected by
a critical section.

1

Counter

2

3

4

Thread 2 tries to enter
the critical section and

is blocked.

Thread 2 gets the
processor.

Thread 3 tries to enter
the critical section and

is blocked.

Thread 3 gets the
processor.

counter = 1

Thread 1 checks the
 counter value.

Thread 1 enters the
critical section.

counter = 2

Thread 1 increments
the counter value.

Thread 1 gets the
processor.

Thread 1 leaves the
critical section.

P
ro

ce
ss

 T
im

e

Thread 3 enters the
critical section.

Thread 3 gets the
processor.

counter = 2

Thread 3 checks the
counter value.

counter = 3

Thread 3 increments
the counter value.

Thread 3 leaves the
critical section.

Thread 2 enters the
critical section.

Thread 2 gets the
processor.

counter = 3

Thread 2 checks the
counter value.

counter = 4

Thread 2 increments
the counter value.

Thread 2 leaves the
critical section.

024 31240-9 CH18 4/27/00 12:59 PM Page 437

The second argument is the name for the mutex. All the applications that need to share
the mutex can identify it by this textual name. The third and final argument to the
CMutex constructor is a pointer to the security attributes for the mutex object. If a NULL is
passed for this pointer, the mutex object uses the security attributes of the thread that cre-
ated it.

Once you create a CMutex object, you can lock and unlock it using the Lock and Unlock
member functions. This allows you to build in the capabilities to control access to a
shared resource between multiple threads in multiple applications.

Semaphores

Semaphores work very differently from critical sections and mutexes. You use sema-
phores with resources that are not limited to a single thread at a time— a resource that
should be limited to a fixed number of threads. A semaphore is a form of counter, and
threads can increment or decrement it. The trick to semaphores is that they cannot go any
lower than zero. Therefore, if a thread is trying to decrement a semaphore that is at zero,
that thread is blocked until another thread increments the semaphore.

Suppose you have a queue that is populated by multiple threads, and one thread removes
the items from the queue and performs processing on each item. If the queue is empty,
the thread that removes and processes items has nothing to do. This thread could go into
an idle loop, checking the queue every so often to see whether something has been
placed in it. The problem with this scenario is that the thread takes up processing cycles
doing absolutely nothing. These processor cycles could go to another thread that does
have something to do. If you use a semaphore to control the queue, each thread that
places items into the queue can increment the semaphore for each item placed in the
queue, and the thread that removes the items can decrement the semaphore just before
removing each item from the queue. If the queue is empty, the semaphore is zero, and
the thread removing items is blocked on the call to decrement the queue. This thread
does not take any processor cycles until one of the other threads increments the sema-
phore to indicate that it has placed an item in the queue. Then, the thread removing items
is immediately unblocked, and it can remove the item that was placed in the queue and
begin processing it, as shown in Figure 18.5.

If you need to use a semaphore in your application, you can create an instance of the
CSemaphore class. This class has four arguments that can be passed to the class construc-
tor. The first argument is the starting usage count for the semaphore. The second argu-
ment is the maximum usage count for the semaphore. You can use these two arguments
to control how many threads and processes can have access to a shared resource at any
one time. The third argument is the name for the semaphore, which is used to identify

438 Day 18

024 31240-9 CH18 4/27/00 12:59 PM Page 438

Doing Multiple Tasks at One Time––Multitasking 439

18the semaphore by all applications running on the system, just as with the CMutex class.
The final argument is a pointer to the security attributes for the semaphore.

With the CSemaphore object, you can use the Lock and Unlock member functions to gain
or release control of the semaphore. When you call the Lock function, if the semaphore
usage count is greater than zero, the usage count is decremented and your program is
allowed to continue. If the usage count is already zero, the Lock function waits until the
usage count is incremented so that your process can gain access to the shared resource.
When you call the Unlock function, the usage count of the semaphore is incremented.

Events

As much as thread synchronization mechanisms are designed to control access to limited
resources, they are also intended to prevent threads from using unnecessary processor
cycles. The more threads running at one time, the slower each of those threads performs
its tasks. Therefore, if a thread does not have anything to do, block it and let it sit idle,
allowing other threads to use more processor time and thus run faster until the conditions
are met that provide the idle thread with something to do.

This is why you use events—to allow threads to be idle until the conditions are such that
they have something to do. Events take their name from the events that drive most
Windows applications, only with a twist. Thread synchronization events do not use the
normal event queuing and handling mechanisms. Instead of being assigned a number and

FIGURE 18.5.
Multiple threads plac-
ing objects into a
queue. Multiple threads placing

items into a queue
As items are placed into

the queue, the semaphore
is incremented

As items are removed from
the queue, the semaphore

is decremented

A single thread removing
items from the queue for

processing

024 31240-9 CH18 4/27/00 12:59 PM Page 439

then waiting for that number to be passed through the Windows event handler, thread
synchronization events are actual objects held in memory. Each thread that needs to wait
for an event tells the event that it is waiting for it to be triggered and then goes to sleep.
When the event is triggered, it sends wake-up calls to every thread that told it that it was
waiting to be triggered. The threads pick up their processing at the exact point where
they each told the event that they were waiting for it.

If you need to use an event in your application, you can create a CEvent object. You need
to create the CEvent object when you need to access and wait for the event. Once the
CEvent constructor has returned, the event has occurred and your thread can continue on
its way.

The constructor for the CEvent class can take four arguments. The first argument is a
boolean flag to indicate whether the thread creating the event will own it initially. This
value should be set to TRUE if the thread creating the CEvent object is the thread that will
determine when the event has occurred.

The second argument to the CEvent constructor specifies whether the event is an auto-
matic or manual event. A manual event remains in the signaled or unsignaled state until
it is specifically set to the other state by the thread that owns the event object. An auto-
matic event remains in the unsignaled state most of the time. When the event is set to the
signaled state, and at least one thread has been released and continued on its execution
path, the event is returned to the unsignaled state.

The third argument to the event constructor is the name for the event. This name will be
used to identify the event by all threads that need to access the event. The fourth and
final argument is a pointer to the security attributes for the event object.

The CEvent class has several member functions that you can use to control the state of
the event. Table 18.2 lists these functions.

TABLE 18.2. CEvent MEMBER FUNCTIONS.

Function Description

SetEvent Puts the event into the signaled state.

PulseEvent Puts the event into the signaled state and then resets the event back to the
unsignaled state.

ResetEvent Puts the event into the unsignaled state.

Unlock Releases the event object.

440 Day 18

024 31240-9 CH18 4/27/00 12:59 PM Page 440

Doing Multiple Tasks at One Time––Multitasking 441

18

Building a Multitasking Application
To see how you can create your own multitasking applications, you’ll create an applica-
tion that has four spinning color wheels, each running on its own thread. Two of the
spinners will use the OnIdle function, and the other two will run as independent threads.
This setup will enable you to see the difference between the two types of threading, as
well as learn how you can use each. Your application window will have four check boxes
to start and stop each of the threads so that you can see how much load is put on the sys-
tem as each runs alone or in combination with the others.

Creating a Framework
For the application that you will build today, you’ll need an SDI application framework,
with the view class inherited from the CFormView class, so that you can use the dialog
editor to lay out the few controls on the window. It will use the document class to house
the spinners and the independent threads, whereas the view will have the check boxes
and variables that control whether each thread is running or idle.

To create the framework for your application, create a new project workspace using the
MFC Application Wizard. Give your application a suitable project name, such as
Tasking.

In the AppWizard, specify that you are creating a single document (SDI) application.
You can accept the defaults through most of the rest of the AppWizard, although you
won’t need support for ActiveX controls, a docking toolbar, the initial status bar, or
printing and print preview, so you can unselect these options if you so desire. Once you
reach the final AppWizard step, specify that your view class is inherited from the
CFormView class.

Once you create the application framework, remove the static text from the main applica-
tion window, and add four check boxes at approximately the upper-left corner of each
quarter of the window space, as in Figure 18.6. Set the properties of the check boxes as
in Table 18.3.

TABLE 18.3. CONTROL PROPERTY SETTINGS.

Object Property Setting

Check Box ID IDC_CBONIDLE1

Caption On &Idle Thread 1

Check Box ID IDC_CBTHREAD1

Caption Thread &1

continues

024 31240-9 CH18 4/27/00 12:59 PM Page 441

TABLE 18.3. CONTINUED

Object Property Setting

Check Box ID IDC_CBONIDLE2

Caption On Idle &Thread 2

Check Box ID IDC_CBTHREAD2

Caption Thread &2

442 Day 18

FIGURE 18.6.
The main window
design.

Once you add the check boxes to the window and configure their properties, use the
Class Wizard to add a variable to each of them. Make all of the variables BOOL, and give
them names like in Table 18.4.

TABLE 18.4. CONTROL VARIABLES.

Object Name Category Type

IDC_CBONIDLE1 m_bOnIdle1 Value BOOL

IDC_CBONIDLE2 m_bOnIdle2 Value BOOL

IDC_CBTHREAD1 m_bThread1 Value BOOL

IDC_CBTHREAD2 m_bThread2 Value BOOL

024 31240-9 CH18 4/27/00 12:59 PM Page 442

Doing Multiple Tasks at One Time––Multitasking 443

18

Designing Spinners
Before you can start adding threads to your application, you’ll create the spinning color
wheel that the threads will operate. Because four of these color wheels will all spin inde-
pendently of each other, it makes sense to encapsulate all of the functionality into a sin-
gle class. This class will track what color is being drawn, where in the spinning it needs
to draw the next line, the size of the color wheel, and the location of the color wheel on
the application window. It will also need a pointer to the view class so that it can get the
device context in which it is supposed to draw itself. For the independent spinners, the
class will need a pointer to the flag that will control whether the spinner is supposed to
be spinning.

To start the spinner class, create a new generic class, inherited from the CObject base
class. Provide the new class with a name that is descriptive of what it will be doing, such
as CSpinner.

Setting Spinner Variables
Once you create a new class for your spinner object, you’ll add some variables to the
class. To follow good object-oriented design principles, you need to make all these vari-
ables private and add methods to the class to set and retrieve the values of each.

The variables you’ll add are

● The current color.

● The current position in the rotation of the color wheel.

● The size of the color wheel.

● The position on the application window for the color wheel.

● The color table from which the colors are picked for drawing in the color wheel.

● A pointer to the view object so that the spinner can get the device context that it
will need for drawing on the window.

● A pointer to the check box variable that specifies whether the thread should be
running.

You can add all these variables to the spinner class using the names and types specified
in Table 18.5.

TABLE 18.5. CSpinner CLASS VARIABLES.

Name Type Description

m_crColor int The current color from the color table.

m_nMinute int The position in the rotation around the wheel.

continues

024 31240-9 CH18 4/27/00 12:59 PM Page 443

TABLE 18.5. CONTINUED

Name Type Description

m_iRadius int The radius (size) of the wheel.

m_pCenter CPoint The center point of the wheel.

m_crColors[8] static COLORREF The color table with all of the colors to be drawn in the
color wheel.

m_pViewWnd CWnd* A pointer to the view object.

m_bContinue BOOL* A pointer to the check box variable that specifies
whether this thread should be running.

Once you add all the necessary variables, you need to make sure that your class either
initializes them or provides a suitable means of setting and retrieving the values of each.
All the integer variables can be initialized as zero, and they’ll work their way up from
that point. The pointers should be initialized with NULL. You can do all of this initializa-
tion in the class constructor, as in Listing 18.1.

LISTING 18.1. THE CSpinner CONSTRUCTOR.

1: CSpinner::CSpinner()
2: {
3: // Initialize the position, size, and color
4: m_iRadius = 0;
5: m_nMinute = 0;
6: m_crColor = 0;
7: // Nullify the pointers
8: m_pViewWnd = NULL;
9: m_bContinue = NULL;
10: }

For those variables that you need to be able to set and retrieve, your spinner class is sim-
ple enough that you can write all the set and get functions as inline functions in the class
declaration. The color and position will be automatically calculated by the spinner
object, so you don’t need to add set functions for those two variables, but you do need to
add set functions for the rest of the variables (not counting the color table). The only
variables that you need to retrieve from the spinner object are the pointers to the view
class and the check box variable. You can add all these functions to the CSpinner class
declaration by opening the Spinner header file and adding the inline functions in Listing
18.2.

444 Day 18

024 31240-9 CH18 4/27/00 12:59 PM Page 444

Doing Multiple Tasks at One Time––Multitasking 445

18

LISTING 18.2. THE CSpinner CLASS DECLARATION.

1: class CSpinner : public CObject
2: {
3: public:
4: BOOL* GetContinue() {return m_bContinue;}
5: void SetContinue(BOOL* bContinue) { m_bContinue = bContinue;}
6: CWnd* GetViewWnd() { return m_pViewWnd;}
7: void SetViewWnd(CWnd* pWnd) { m_pViewWnd = pWnd;}
8: void SetLength(int iLength) { m_iRadius = iLength;}
9: void SetPoint(CPoint pPoint) { m_pCenter = pPoint;}
10: CSpinner();
11: virtual ~CSpinner();
12:
13: private:
14: BOOL* m_bContinue;
15: CWnd* m_pViewWnd;
16: static COLORREF m_crColors[8];
17: int m_iRadius;
18: CPoint m_pCenter;
19: int m_nMinute;
20: int m_crColor;
21: };

Now that you have added all the support functions for setting and retrieving the neces-
sary variables, you need to declare and populate the color table. This will look just like
the color table definition you added to the drawing application on Day 10, “Creating
Single Document Interface Applications.” The color table will consist of eight RGB val-
ues, with each value being either 0 or 255, with every combination of these two settings.
The best place to add this table declaration is in the spinner source code file, just before
the class constructor, as in Listing 18.3.

LISTING 18.3. THE CSpinner COLOR TABLE.

1: static char THIS_FILE[]=__FILE__;
2: #define new DEBUG_NEW
3: #endif
4:
5: COLORREF CSpinner::m_crColors[8] = {
6: RGB(0, 0, 0), // Black
7: RGB(0, 0, 255), // Blue
8: RGB(0, 255, 0), // Green
9: RGB(0, 255, 255), // Cyan
10: RGB(255, 0, 0), // Red
11: RGB(255, 0, 255), // Magenta
12: RGB(255, 255, 0), // Yellow
13: RGB(255, 255, 255) // White

continues

024 31240-9 CH18 4/27/00 12:59 PM Page 445

LISTING 18.3. CONTINUED

14: };
15:
16: //
17: // Construction/Destruction
18: //
19:
20: CSpinner::CSpinner()
21: {
22: // Initialize the position, size, and color
23: m_iRadius = 0;
24: .
25: .
26: .

Drawing the Spinner
Now comes the fun part: getting the spinner object to actually spin. To accomplish this,
you’ll calculate the new position of the starting and ending points of each line, set the
view port origination point, select the drawing color, and create a pen to draw in that
color. Once you have all of this, you will be able to draw the line from the starting point
to the ending point. Once the line is drawn, you can restore the pen to what it was before
the line was drawn. Next, you’ll calculate the position of the next line to draw before
exiting the function.

To add this functionality to your spinner object, add a member function to the CSpinner
class. Specify the type as void, the name as Draw, and the access as public. Edit the func-
tion, adding the code in Listing 18.4.

LISTING 18.4. THE CSpinner Draw FUNCTION.

1: void CSpinner::Draw()
2: {
3: // Get a pointer to the device context
4: CDC *pDC = m_pViewWnd->GetDC();
5: // Set the mapping mode
6: pDC->SetMapMode (MM_LOENGLISH);
7: // Copy the spinner center
8: CPoint org = m_pCenter;
9: CPoint pStartPoint;
10: // Set the starting point
11: pStartPoint.x = (m_iRadius / 2);
12: pStartPoint.y = (m_iRadius / 2);
13: // Set the origination point
14: org.x = m_pCenter.x + (m_iRadius / 2);

446 Day 18

024 31240-9 CH18 4/27/00 12:59 PM Page 446

Doing Multiple Tasks at One Time––Multitasking 447

18

15: org.y = m_pCenter.y + m_iRadius;
16: // Set the viewport origination point
17: pDC->SetViewportOrg(org.x, org.y);
18:
19: CPoint pEndPoint;
20: // Calculate the angle of the next line
21: double nRadians = (double) (m_nMinute * 6) * 0.017453292;
22: // Set the end point of the line
23: pEndPoint.x = (int) (m_iRadius * sin(nRadians));
24: pEndPoint.y = (int) (m_iRadius * cos(nRadians));
25:
26:
27: // Create the pen to use
28: CPen pen(PS_SOLID, 0, m_crColors[m_crColor]);
29: // Select the pen for use
30: CPen* pOldPen = pDC->SelectObject(&pen);
31:
32: // Move to the starting point
33: pDC->MoveTo (pEndPoint);
34: // Draw the line to the end point
35: pDC->LineTo (pStartPoint);
36:
37: // Reselect the previous pen
38: pDC->SelectObject(&pOldPen);
39:
40: // Release the device context
41: m_pViewWnd->ReleaseDC(pDC);
42:
43: // Increment the minute
44: if (++m_nMinute == 60)
45: {
46: // If the minutes have gone full circle, reset to 0
47: m_nMinute = 0;
48: // Increment the color
49: if (++m_crColor == 8)
50: // If we’ve gone through all colors, start again
51: m_crColor = 0;
52: }
53: }

That was quite a bit of code to type. What does it do? Well, to understand what this func-
tion is doing, and how it’s going to make your spinner draw a color wheel on the win-
dow, let’s take a closer look at the code.

To make efficient use of the spinner by the different threads, it’ll only draw one line each
time the function is called. This function will be called 60 times for each complete circle,
once for each “minute” in the clockwise rotation. Each complete rotation will cause the
spinner to switch to the next color in the color table.

024 31240-9 CH18 4/27/00 12:59 PM Page 447

One of the first things that you need to do in order to perform any drawing on the win-
dow is get the device context of the window. You do this by calling the GetDC function
on the view object pointer:

CDC *pDC = m_pViewWnd->GetDC();

This function returns a CDC object pointer, which is an MFC class that encapsulates the
device context.

Once you have a pointer to the device context, you can call its member function,
SetMapMode, to set the mapping mode:

pDC->SetMapMode (MM_LOENGLISH);

The mapping mode determines how the x and y coordinates are translated into positions
on the screen. The MM_LOENGLISH mode converts each logical unit to 0.01 inch on the
screen. There are several different mapping modes, each converting logical units to dif-
ferent measurements on the screen.

At this point, you start preparing to draw the current line for the color wheel. You start
by calculating the starting point for the line that will be drawn. This point will be consis-
tent for all lines drawn by the spinner object. After you calculate the starting point for the
line, you calculate the position of the viewport. The viewport is used as the starting point
for the coordinates used for drawing.

448 Day 18

The starting point for the line to be drawn is calculated in an off-center
position. If you want the starting point for the lines to be in the center of
the color wheel, set both the x and y coordinates of the starting point to 0.

Note

Once the viewport origination point is calculated, use the SetViewportOrg function to
set the viewport:

pDC->SetViewportOrg(org.x, org.y);

Now that you’ve got the drawing area specified, and the starting point for the line that
you are going to be drawing, you need to figure out where the other end of the line will
be. You’ll perform this calculation using the following three lines of code:

double nRadians = (double) (m_nMinute * 6) * 0.017453292;
pEndPoint.x = (int) (m_iRadius * sin(nRadians));
pEndPoint.y = (int) (m_iRadius * cos(nRadians));

024 31240-9 CH18 4/27/00 12:59 PM Page 448

Doing Multiple Tasks at One Time––Multitasking 449

18

In the first of these calculations, convert the minutes into degrees, which can then be fed
into the sine and cosine functions to set the x and y coordinates to draw a circle. This
sets the end point of the line that will be drawn.

Now that you’ve figured out the starting and ending points of the line, you’ll create a pen
to use in drawing the line:

CPen pen(PS_SOLID, 0, m_crColors[m_crColor]);

You’ve specified that the pen will be solid and thin, and you are picking the current color
from the color table. Once you create the pen to use, select the pen for drawing, being
sure to capture the current pen as the return value from the device context object:

CPen* pOldPen = pDC->SelectObject(&pen);

Now you are ready to draw the line, which is done using the MoveTo and LineTo func-
tions that you’re well familiar with by now. Once the line is drawn, release the device
context so that you don’t have a resource leak in your application:

m_pViewWnd->ReleaseDC(pDC);

At this point, you’ve drawn the line, so all that’s left to do is increment the minute
counter, resetting it if you’ve made it all the way around the circle. Each time you com-
plete a circle, you increment the color counter until you’ve gone through all eight colors,
at which time you reset the color counter.

In order to be able to use the trigonometric functions in this function, include the math.h
header file in the Spinner class source file. To add this, scroll up to the top of the source
code file and add another #include line, specifying the math.h header file as the file to
be included, as in Listing 18.5.

LISTING 18.5. THE CSpinner SOURCE FILE.

1: // Spinner.cpp : implementation of the CSpinner class
2: //
3: //
4:
5: #include “stdafx.h”
6: #include <math.h>
7: #include “Tasking.h”
8: #include “Spinner.h”

Supporting the Spinners
Now that you’ve created the spinner class for drawing the spinning color wheel on the
window, add some support for the spinners. You can add an array to hold the four

024 31240-9 CH18 4/27/00 12:59 PM Page 449

spinners in the document class, but you’ll still need to calculate where each spinner
should be placed on the application window and set all the variables in each of the
spinners.

You can add all of this code to the document class, starting with the array of spinners.
Add a member variable to the document class (in this instance, CTaskingDoc), specifying
the type as CSpinner, the name as m_cSpin[4], and the access as private. Once you add
the array, open the source code to the document class and include the spinner header file,
as in Listing 18.6.

LISTING 18.6. THE CTaskingDoc SOURCE FILE.

1: // TaskingDoc.cpp : implementation of the CTaskingDoc class
2: //
3:
4: #include “stdafx.h”
5: #include “Tasking.h”
6:
7: #include “Spinner.h”
8: #include “TaskingDoc.h”
9: #include “TaskingView.h”
10: .
11: .
12: .

Calculating the Spinner Positions
One of the preparatory things that needs to happen while initializing the application is
determining the locations of all four spinners. The window is roughly broken up into
four quarters by the check boxes that will turn the spinner threads on and off, so it makes
sense to divide the window area into four quarter squares and place one spinner in each
quarter.

To calculate the location of each spinner, it is easiest to create a function that calculates
the location for one spinner, placing the spinner into the quarter square appropriate for
the spinner number. If the function was passed a pointer to the spinner object, it could
update the spinner object directly with the location.

To add this functionality to your application, add a new member function to the docu-
ment class (for instance, in the CTaskingDoc class). Specify the function type as void, the
declaration as CalcPoint(int nID, CSpinner *pSpin), and the access as private. Edit
the function, adding the code in Listing 18.7.

450 Day 18

024 31240-9 CH18 4/27/00 12:59 PM Page 450

Doing Multiple Tasks at One Time––Multitasking 451

18

LISTING 18.7. THE CTaskingDoc CalcPoint FUNCTION.

1: void CTaskingDoc::CalcPoint(int nID, CSpinner *pSpin)
2: {
3: RECT lWndRect;
4: CPoint pPos;
5: int iLength;
6: CTaskingView *pWnd;
7:
8: // Get a pointer to the view window
9: pWnd = (CTaskingView*)pSpin->GetViewWnd();
10: // Get the display area rectangle
11: pWnd->GetClientRect(&lWndRect);
12: // Calculate the size of the spinners
13: iLength = lWndRect.right / 6;
14: // Which spinner are we placing?
15: switch (nID)
16: {
17: case 0: // Position the first spinner
18: pPos.x = (lWndRect.right / 4) - iLength;
19: pPos.y = (lWndRect.bottom / 4) - iLength;
20: break;
21: case 1: // Position the second spinner
22: pPos.x = ((lWndRect.right / 4) * 3) - iLength;
23: pPos.y = (lWndRect.bottom / 4) - iLength;
24: break;
25: case 2: // Position the third spinner
26: pPos.x = (lWndRect.right / 4) - iLength;
27: pPos.y = ((lWndRect.bottom / 4) * 3) - (iLength * 1.25);
28: break;
29: case 3: // Position the fourth spinner
30: pPos.x = ((lWndRect.right / 4) * 3) - iLength;
31: pPos.y = ((lWndRect.bottom / 4) * 3) - (iLength * 1.25);
32: break;
33: }
34: // Set the size of the spinner
35: pSpin->SetLength(iLength);
36: // Set the location of the spinner
37: pSpin->SetPoint(pPos);
38: }

In this function, the first thing that you do is move the pointer to the view window from
the spinner object by calling the GetViewWnd function:

pWnd = (CTaskingView*)pSpin->GetViewWnd();

By moving the pointer directly from the spinner object, you save a few steps by taking a
more direct route to get the information that you need.

024 31240-9 CH18 4/27/00 12:59 PM Page 451

Once you have a pointer to the view object, you can call the window’s GetClientRect
function to get the size of the available drawing area:

pWnd->GetClientRect(&lWndRect);

Once you have the size of the drawing area, you can calculate a reasonable color wheel
size by dividing the length of the drawing area by 6:

iLength = lWndRect.right / 6;

Dividing the drawing area by 4 will position you at the middle of the upper-left square.
Subtract the size of the circle from this point, and you have the upper-left corner of the
drawing area for the first spinner:

pPos.x = (lWndRect.right / 4) - iLength;
pPos.y = (lWndRect.bottom / 4) - iLength;

You can then include variations on this position, mostly by multiplying the center of the
quadrant by 3 to move it to the center of the right or lower quadrant, and you can calcu-
late the positions of the other three spinners.

Once you calculate the length and position for the spinner, you call the SetLength and
SetPoint functions to pass these values to the spinner that they have been calculated for:

pSpin->SetLength(iLength);
pSpin->SetPoint(pPos);

Initializing the Spinners
Because you wrote the previous function to calculate the location of each spinner on the
window to work on only one spinner each time it is called, you need some routine that
will initialize each spinner, calling the previous function once for each spinner. You need
this function to get a pointer to the view object and pass that along to the spinner. You
also need to get pointers to the check box variables for the spinners that will be used by
the independently running threads. Your code can do all this by just looping through the
array of spinners, setting both of these pointers for each spinner, and then passing the
spinner to the function you just finished.

To create this function for your application, add a new member function to the document
class (CTaskingDoc in this instance). Specify the type as void, and give the function a
suitable name (for instance, InitSpinners), and then specify the access as private
because you’ll only need to call this function once when the application is starting. Edit
the new function, adding the code in Listing 18.8.

452 Day 18

024 31240-9 CH18 4/27/00 12:59 PM Page 452

Doing Multiple Tasks at One Time––Multitasking 453

18

LISTING 18.8. THE CTaskingDoc InitSpinners FUNCTION.

1: void CTaskingDoc::InitSpinners()
2: {
3: int i;
4:
5: // Get the position of the view
6: POSITION pos = GetFirstViewPosition();
7: // Did we get a valid position?
8: if (pos != NULL)
9: {
10: // Get a pointer to the view
11: CView* pView = GetNextView(pos);
12:
13: // Loop through the spinners
14: for (i = 0; i < 4; i++)
15: {
16: // Set the pointer to the view
17: m_cSpin[i].SetViewWnd(pView);
18: // Initialize the pointer to the continuation indicator
19: m_cSpin[i].SetContinue(NULL);
20: switch (i)
21: {
22: case 1: // Set the pointer to the first thread
23: // continuation indicator
24: m_cSpin[i].SetContinue(&((CTaskingView*)pView)-

➥ >m_bThread1);
25: break;
26: case 3: // Set the pointer to the second thread
27: // continuation indicator
28: m_cSpin[i].SetContinue(&((CTaskingView*)pView)-

➥ >m_bThread2);
29: break;
30: }
31: // Calculate the location of the spinner
32: CalcPoint(i, &m_cSpin[i]);
33: }
34: }
35: }

In this function, you first went through the steps of getting a pointer to the view class
from the document, as you did initially back on Day 10. Once you have a valid pointer
to the view, start a loop to initialize each of the spinners in the array. You call the
SetViewWnd spinner function to set the spinner’s pointer to the view window and then
initialize the spinner’s pointer to the check box variable to NULL for all spinners. If the
spinner is either of the two that will be used by independent threads, you pass a pointer
to the appropriate check box variable. Once you set all of this, call the CalcPoint

024 31240-9 CH18 4/27/00 12:59 PM Page 453

function that you created just a few minutes earlier to calculate the location of the spin-
ner on the view window.

454 Day 18

Now that you’ve created the routines to initialize all the spinners, make sure that this
routine is called when the application is started. The best place to put this logic is the
OnNewDocument function in the document class. This function will be called when the
application is started, so it is a logical place to trigger the initialization of the spinner
objects. To add this code to the OnNewDocument function, add the code in Listing 18.9
to the OnNewDocument function in the document class.

LISTING 18.9. THE CTaskingDoc OnNewDocument FUNCTION.

1: BOOL CTaskingDoc::OnNewDocument()
2: {
3: if (!CDocument::OnNewDocument())
4: return FALSE;
5:
6: // TODO: add reinitialization code here
7: // (SDI documents will reuse this document)

Although you’ve seen several examples of using pointers, the way that you
are passing a pointer to the check box variable to the spinner deserves tak-
ing a closer look:

m_cSpin[i].SetContinue(&((CTaskingView*)pView)->m_bThread1);

In this statement, you take the pointer to the view object, pView, which is a
pointer for a CView object, and cast it as a pointer to the specific view class
that you have created in your application:

(CTaskingView*)pView

Now that you can treat the pointer to the view object as a CTaskingView
object, you can get to the check box variable, m_bThread1, which is a public
member of the CTaskingView class:

((CTaskingView*)pView)->m_bThread1

Once you access the m_bThread1 variable, get the address of this variable by
placing an ampersand in front of this whole string:

&((CTaskingView*)pView)->m_bThread1

Passing this address for the m_bThread1 variable to the SetContinue function,
you are, in effect, passing a pointer to the m_bThread1 variable, which can
be used to set the pointer to this variable that the spinner object contains.

Note

024 31240-9 CH18 4/27/00 12:59 PM Page 454

Doing Multiple Tasks at One Time––Multitasking 455

18

8:
9: ///////////////////////
10: // MY CODE STARTS HERE
11: ///////////////////////
12:
13: // Initialize the spinners
14: InitSpinners();
15:
16: ///////////////////////
17: // MY CODE ENDS HERE
18: ///////////////////////
19:
20: return TRUE;
21: }

Spinning the Spinner
Once last thing that you’ll add to the document class for now is a means of calling the
Draw function for a specific spinner from outside the document class. Because the array
of spinners was declared as a private variable, no outside objects can get access to the
spinners, so you need to add access for the outside objects. You can add a function to
provide this access by adding a new member function to your document class. Specify
the function type as void, specify the function declaration with a name and a single inte-
ger argument for the spinner number, such as DoSpin(int nIndex), and then specify the
function’s access as public. Once you have added the function, you can add the code in
Listing 18.10 to the function to perform the actual call to the specified spinner.

LISTING 18.10. THE CTaskingDoc DoSpin FUNCTION.

1: void CTaskingDoc::DoSpin(int nIndex)
2: {
3: // Spin the Spinner
4: m_cSpin[nIndex].Draw();
5: }

Adding the OnIdle Tasks
Now that you have the supporting functionality in place, it’s time to turn your attention
to adding the various threads that will turn the various spinners. The first threads to add
are the ones executing while the application is idle. You’ll add a clicked event handler
for the two On Idle check boxes so that you can keep the variables for these two check
boxes in sync with the window. You’ll also add the code to the application’s OnIdle
function to run these two spinners when the application is idle and the check boxes for
these two spinner threads are checked.

024 31240-9 CH18 4/27/00 12:59 PM Page 455

Starting and Stopping the OnIdle Tasks
The OnIdle function will check the values of the two check box variables that specify
whether each should run, so all your application needs to do when either of these check
boxes is clicked is make sure that the variables in the view object are synchronized with
the controls on the window. All that you need to do to accomplish this is call the
UpdateData function when either of these controls is clicked. You need to be able to start
and stop the OnIdle tasks by adding a single event handler for both of the On Idle
Thread check boxes and then calling the UpdateData function in this event function.

To add this to your application, open the Class Wizard and select the view class (in this
case, CTaskingView). Select one of the On Idle check boxes and add a function for the
BN_CLICKED event. Change the name of the suggested function to OnCbonidle and click
OK. Do the same thing for the other On Idle check box. Once you specify that both of
these events use the same code, click on the Edit Code button and add the code in
Listing 18.11.

LISTING 18.11. THE CTaskingView OnCbonidle FUNCTION.

1: void CTaskingView::OnCbonidle()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Sync the variables with the dialog
10: UpdateData(TRUE);
11:
12: ///////////////////////
13: // MY CODE ENDS HERE
14: ///////////////////////
15: }

456 Day 18

The use of the term thread in the preceding is slightly misleading. Any
functionality that you place in the OnIdle function is running in the main
application thread. All the OnIdle processing that you add to the sample
application won’t be running as an independent thread, but will be just
functions that can be called from the main thread.

Note

024 31240-9 CH18 4/27/00 12:59 PM Page 456

Doing Multiple Tasks at One Time––Multitasking 457

18

Building the OnIdle Threads
If you examine the application class (CTaskingApp) source code, you’ll find that the
OnIdle function isn’t there. All the functionality that the OnIdle function needs to per-
form by default is in the ancestor class of the application class that was created for your
project. The only reason to have an OnIdle function in your application class is that your
application needs some specific functionality to be performed during this event. As a
result, you need to specifically add this event handler to your application using the Class
Wizard.

Once you add the OnIdle function to your application class, what does it need to do?
First, it needs to get a pointer to the view so that it can check the status of the check box
variables. Next, it needs to get a pointer to the document class so that it can call the
DoSpin function to trigger the appropriate spinner object. The key to both of these
actions is getting pointers to each of these objects. When you begin looking at what is
necessary to get these pointers, you’ll find that you have to reverse the order in which
you get the pointers. You need to get a pointer to the document object in order to get a
pointer to the view. However, to get a pointer to the document, you have to go through
the document template, getting a pointer to the template before you can get a pointer to
the document. Each of these steps requires the same sequence of events, first getting the
position of the first object and then getting a pointer to the object in that position. What
you’ll do is get the position of the first document template and then get a pointer to the
document template in that position. Next, you’ll use the document template to get the
position of the first document and then use the document template to get a pointer to the
document in that first position. Finally, you’ll use the document to get the position of the
first view and then use the document again to get a pointer to the view in the position
specified. Once you’ve got a pointer to the view, you can check the value of the check
boxes and call the appropriate spinner.

To add this functionality to your application, use the Class Wizard to add a function to
the OnIdle event message for the application class (in this case, CTaskingApp). Once you
add the function, click the Edit Code button and add the code in Listing 18.12.

LISTING 18.12. THE CTaskingApp OnIdle FUNCTION.

1: BOOL CTaskingApp::OnIdle(LONG lCount)
2: {
3: // TODO: Add your specialized code here and/or call the base class
4:
5: // Get the position of the first document template
6: POSITION pos = GetFirstDocTemplatePosition();
7: // Do we have a valid template position?
8: if (pos)

continues

024 31240-9 CH18 4/27/00 12:59 PM Page 457

LISTING 18.12. CONTINUED

9: {
10: // Get a pointer to the document template
11: CDocTemplate* pDocTemp = GetNextDocTemplate(pos);
12: // Do we have a valid pointer?
13: if (pDocTemp)
14: {
15: // Get the position of the first document
16: POSITION dPos = pDocTemp->GetFirstDocPosition();
17: // Do we have a valid document position?
18: if (dPos)
19: {
20: // Get a pointer to the document
21: CTaskingDoc* pDocWnd =
22: (CTaskingDoc*)pDocTemp->GetNextDoc(dPos);
23: // Do we have a valid pointer?
24: if (pDocWnd)
25: {
26: // Get the position of the view
27: POSITION vPos = pDocWnd->GetFirstViewPosition();
28: // Do we have a valid view position?
29: if (vPos)
30: {
31: // Get a pointer to the view
32: CTaskingView* pView =

➥ (CTaskingView*)pDocWnd->GetNextView(vPos);
33: // Do we have a valid pointer?
34: if (pView)
35: {
36: // Should we spin the first idle thread?
37: if (pView->m_bOnIdle1)
38: // Spin the first idle thread
39: pDocWnd->DoSpin(0);
40: // Should we spin the second idle thread?
41: if (pView->m_bOnIdle2)
42: // Spin the second idle thread
43: pDocWnd->DoSpin(2);
44: }
45: }
46: }
47: }
48: }
49: }
50:
51: // Call the ancestor’s idle processing
52: return CWinApp::OnIdle(lCount);
53: }

If you compile and run your application now, you should be able to check either of the
On Idle Thread check boxes, and see the spinner drawing a color wheel, as shown in

458 Day 18

024 31240-9 CH18 4/27/00 12:59 PM Page 458

Doing Multiple Tasks at One Time––Multitasking 459

18

Figure 18.7, as long as you are moving the mouse. However, the moment you let the
application become totally idle—no mouse movement or anything else—the spinner will
stop spinning.

FIGURE 18.7.
On Idle Thread draw-
ing a color wheel.

Making the OnIdle Tasks Continuous
It’s not very practical to keep moving the mouse around to make your application contin-
ue performing the tasks that it’s supposed to do when the application is idle. There must
be a way to get the application to continue to call the OnIdle function as long as the
application is idle. Well, there is. If you look at the last line in the OnIdle function,
you’ll notice that the OnIdle function returns the result value from the ancestor OnIdle
function. It just so happens that this function returns FALSE as soon as there is no OnIdle
functionality to be performed.

You want the OnIdle function to always return TRUE. This will cause the OnIdle function
to continue to be called, over and over, whenever the application is idle. If you move the
call to the ancestor OnIdle function to the first part of the function and then return TRUE,
as in Listing 18.13, you will get your spinner to continue turning, no matter how long the
application sits idle.

LISTING 18.13. THE MODIFIED CTaskingApp OnIdle FUNCTION.

1: BOOL CTaskingApp::OnIdle(LONG lCount)
2: {
3: // TODO: Add your specialized code here and/or call the base class
4:
5: // Call the ancestor’s idle processing
6: CWinApp::OnIdle(lCount);
7:

continues

024 31240-9 CH18 4/27/00 12:59 PM Page 459

LISTING 18.13. CONTINUED

8: // Get the position of the first document template
9: POSITION pos = GetFirstDocTemplatePosition();
10: // Do we have a valid template position?
11: if (pos)
12: {
.
.
.
51: }
52: return TRUE;
53: }

If you compile and run your application, you can turn on the OnIdle tasks and see them
continue to turn, even when you are not moving the mouse. However, if you activate any
of the menus, or if you open the About window, both of these tasks come to a complete
stop, as in Figure 18.8. The reason is that the open menus, and any open modal dialog
windows, prevent the OnIdle function from being called. One of the limitations of
OnIdle processing is that certain application functionality prevents it from being per-
formed.

460 Day 18

FIGURE 18.8.
On Idle Thread
stopped by the menu.

Adding Independent Threads
Now that you’ve seen what is involved in adding an OnIdle task, it’s time to see what’s
involved in adding an independent thread to your application. To add a thread to your
application, you’ll add a main function for the threads. You’ll also add the code to start
and stop the threads. Finally, you’ll add the code to the independent thread check boxes
to start and stop each of these threads.

024 31240-9 CH18 4/27/00 12:59 PM Page 460

Doing Multiple Tasks at One Time––Multitasking 461

18

Creating the Main Thread Function
Before you can spin off any independent threads, the thread must know what to do. You
will create a main thread function to be executed by the thread when it starts. This func-
tion will act as the main function for the thread, and the thread will end once the function
ends. Therefore, this function must act as the primary control of the thread, keeping the
thread running as long as there is work for the thread to do and then exiting once the
thread’s work is completed.

When you create a function to be used as the main function for a thread, you can pass a
single parameter to this function. This parameter is a pointer to anything that contains all
the information the thread needs to perform its tasks. For the application you’ve been
building in this chapter, the parameter can be a pointer to the spinner that the thread will
operate. Everything else that the thread needs can be extracted from the spinner object.

Once the thread has a pointer to its spinner, it can get a pointer to the check box variable
that tells it whether to continue spinning or stop itself. As long as the variable is TRUE,
the thread should continue spinning.

To add this function to your application, add a new member function to the document
class in your application. Specify the function type as UINT, the function declaration as
ThreadFunc(LPVOID pParam), and the access as private. You’ll start the thread from
within the document class, so there’s no need for any other classes to see this function.
Once you’ve added this function, edit it with the code in Listing 18.14.

LISTING 18.14. THE CTaskingDoc ThreadFunc FUNCTION.

1: UINT CTaskingDoc::ThreadFunc(LPVOID pParam)
2: {
3: // Convert the argument to a pointer to the
4: // spinner for this thread
5: CSpinner* lpSpin = (CSpinner*)pParam;
6: // Get a pointer to the continuation flag
7: BOOL* pbContinue = lpSpin->GetContinue();
8:
9: // Loop while the continue flag is true
10: while (*pbContinue)
11: // Spin the spinner
12: lpSpin->Draw();
13: return 0;
14: }

024 31240-9 CH18 4/27/00 12:59 PM Page 461

Starting and Stopping the Threads
Now that you have a function to call for the independent threads, you need some way of
controlling the threads, starting and stopping them. You need to be able to hold onto a
couple of pointers for CWinThread objects, which will encapsulate the threads. You’ll add
these pointers as variables to the document object and then use them to capture the return
variable from the AfxBeginThread function that you will use to start both of the threads.

To add these variables to your application, add a new member variable to your document
class. Specify the variable type as CWinThread*, the variable name as
m_pSpinThread[2], and the variable access as private. This will provide you with a two
slot array for holding these variables.

Now that you have a place to hold the pointers to each of the two threads, you’ll add the
functionality to start the threads. You can add a single function to start either thread, if
it’s not currently running, or to wait for the thread to stop itself, if it is running. This
function will need to know which thread to act on and whether to start or stop the thread.

To add this functionality, add a new member function to the document class. Specify the
function type as void, the function declaration as SuspendSpinner(int nIndex, BOOL
bSuspend), and the function access as public, and check the Static check box. Edit the
code for this function, adding the code in Listing 18.15.

LISTING 18.15. THE CTaskingDoc SuspendSpinner FUNCTION.

1: void CTaskingDoc::SuspendSpinner(int nIndex, BOOL bSuspend)
2: {
3: // if suspending the thread
4: if (!bSuspend)
5: {
6: // Is the pointer for the thread valid?
7: if (m_pSpinThread[nIndex])
8: {
9: // Get the handle for the thread
10: HANDLE hThread = m_pSpinThread[nIndex]->m_hThread;
11: // Wait for the thread to die
12: ::WaitForSingleObject (hThread, INFINITE);
13: }
14: }
15: else // We are running the thread
16: {
17: int iSpnr;
18: // Which spinner to use?
19: switch (nIndex)
20: {
21: case 0:

462 Day 18

024 31240-9 CH18 4/27/00 12:59 PM Page 462

Doing Multiple Tasks at One Time––Multitasking 463

18

22: iSpnr = 1;
23: break;
24: case 1:
25: iSpnr = 3;
26: break;
27: }
28: // Start the thread, passing a pointer to the spinner
29: m_pSpinThread[nIndex] = AfxBeginThread(ThreadFunc,
30: (LPVOID)&m_cSpin[iSpnr]);
31: }
32: }

The first thing that you do in this function is check to see if the thread is being stopped
or started. If the thread is being stopped, check to see if the pointer to the thread is valid.
If the pointer is valid, you retrieve the handle for the thread by reading the value of the
handle property of the CWinThread class:

HANDLE hThread = m_pSpinThread[nIndex]->m_hThread;

Once you have the handle, you use the handle to wait for the thread to stop itself with
the WaitForSingleObject function.

::WaitForSingleObject (hThread, INFINITE);

The WaitForSingleObject function is a Windows API function that tells the operating
system you want to wait until the thread, whose handle you are passing, has stopped. The
second argument to this function specifies how long you are willing to wait. By specify-
ing INFINITE, you tell the operating system that you will wait forever, until this thread
stops. If you specify a timeout value, and the thread does not stop by the time you
specify, the function returns a value that indicates whether the thread has stopped.
Because you specify INFINITE for the timeout period, you don’t need to worry about
capturing the return value because this function does not return until the thread stops.

If the thread is being started, you determine which spinner to use and then start that
thread by calling the AfxBeginThread function.

m_pSpinThread[nIndex] = AfxBeginThread(ThreadFunc,
(LPVOID)&m_cSpin[iSpnr]);

You passed the function to be called as the main function for the thread and the address
of the spinner to be used by that thread.

Triggering the Threads from the View Object
Now that you have a means of starting and stopping each of the independent threads, you
need to be able to trigger the starting and stopping from the check boxes on the window.

024 31240-9 CH18 4/27/00 12:59 PM Page 463

When each of the two check boxes is checked, you’ll start each of the threads. When the
check boxes are unchecked, each of the threads must be stopped. The second part of this
is easy: As long as the variable tied to the check box is kept in sync with the control,
once the check box is unchecked, the thread will stop itself. However, when the check
box is checked, you’ll need to call the document function that you just created to start
the thread.

To add this functionality to the first of the two thread check boxes, use the Class Wizard
to add a function to the BN_CLICKED event for the check box. Once you add the function,
edit it with the code in Listing 18.16.

LISTING 18.16. THE CTaskingView OnCbthread1 FUNCTION.

1: void CTaskingView::OnCbthread1()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Sync the variables with the dialog
10: UpdateData(TRUE);
11:
12: // Get a pointer to the document
13: CTaskingDoc* pDocWnd = (CTaskingDoc*)GetDocument();
14: // Did we get a valid pointer?
15: ASSERT_VALID(pDocWnd);
16:
17: // Suspend or start the spinner thread
18: pDocWnd->SuspendSpinner(0, m_bThread1);
19:
20: ///////////////////////
21: // MY CODE ENDS HERE
22: ///////////////////////
23: }

In this function, the first thing that you do is to call UpdateData to keep the variables in
sync with the controls on the window. Next, you retrieve a pointer to the document.
Once you have a valid pointer, you call the document’s SuspendSpinner function, speci-
fying the first thread and passing the current value of the variable tied to this check box
to indicate whether the thread is to be started or stopped.

To add this same functionality to the other thread check box, perform the same steps,
adding the code in Listing 18.17.

464 Day 18

024 31240-9 CH18 4/27/00 12:59 PM Page 464

Doing Multiple Tasks at One Time––Multitasking 465

18

LISTING 18.17. THE CTaskingView OnCbthread2 FUNCTION.

1: void CTaskingView::OnCbthread2()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Sync the variables with the dialog
10: UpdateData(TRUE);
11:
12: // Get a pointer to the document
13: CTaskingDoc* pDocWnd = (CTaskingDoc*)GetDocument();
14: // Did we get a valid pointer?
15: ASSERT_VALID(pDocWnd);
16:
17: // Suspend or start the spinner thread
18: pDocWnd->SuspendSpinner(1, m_bThread2);
19:
20: ///////////////////////
21: // MY CODE ENDS HERE
22: ///////////////////////
23: }

Now that you’ve added the ability to start and stop the independent threads, compile and
run your application. You’ll see that you can start and stop the independent threads with
their check boxes, as well as the OnIdle tasks.

At this point, if you play around with your application for a while, you’ll notice a bit of a
difference between the two types of threads. If you have all threads running and are
actively moving the mouse, you might notice the OnIdle spinners slowing down in their
spinning (unless you have a very fast machine). The independent threads are taking a
good deal of the processor time away from the main application thread, leaving less
processor time to be idle. As a result, it’s easier to keep your application busy. The other
thing that you might notice is that if you activate the menus or open the About window,
although the OnIdle tasks come to a complete stop, the independent threads continue to
run, as in Figure 18.9. These two threads are completely independent processes running
within your application, so they are not affected by the rest of the application.

024 31240-9 CH18 4/27/00 12:59 PM Page 465

Shutting Down Cleanly
You might think that you are done with this application until you try to close the applica-
tion while one or both of the independent threads is running. You’ll see an unpleasant
notification that you still have some work to do, as in Figure 18.10. It seems that leaving
the threads running when you closed the application caused it to crash.

466 Day 18

FIGURE 18.9.
The threads are not
affected by the menu.

FIGURE 18.10.
Application error
notification.

Even though the application was closing, the threads were continuing to run. When these
threads checked the value of the variable indicating whether to continue running or spin
their spinners, they were trying to access a memory object that no longer existed. This
problem causes one of the most basic and most fatal application memory errors, which
you should eliminate before allowing anyone else to use the application.

What you need to do to prevent this error is stop both of the threads before allowing the
application to close. The logical place to take this action is the OnDestroy event message
processing in the view class. This event message is sent to the view class to tell it to
clean up anything that it needs to clean up before closing the application. You can add
code to set both of the check box variables to FALSE so that the threads will stop them-
selves and then call the SuspendSpinner function for each thread to make sure that both
threads have stopped before allowing the application to close. You do not need to call
UpdateData to sync the variables with the controls because the user doesn’t need to see
when you’ve change the value of either check box.

024 31240-9 CH18 4/27/00 12:59 PM Page 466

Doing Multiple Tasks at One Time––Multitasking 467

18

To add this functionality to your application, add an event-handler function for the
OnDestroy event message to the view class. This function does not normally exist in the
view class that is created by the AppWizard, so you need to add it when it is needed in
the descendent view class. Edit the function, adding the code in Listing 18.18.

LISTING 18.18. THE CTaskingView OnDestroy FUNCTION.

1: void CTaskingView::OnDestroy()
2: {
3: CFormView::OnDestroy();
4:
5: // TODO: Add your message handler code here
6:
7: ///////////////////////
8: // MY CODE STARTS HERE
9: ///////////////////////
10:
11: // Is the first thread running?
12: if (m_bThread1)
13: {
14: // Specify to stop the first thread
15: m_bThread1 = FALSE;
16: // Get a pointer to the document
17: CTaskingDoc* pDocWnd = (CTaskingDoc*)GetDocument();
18: // Did we get a valid pointer?
19: ASSERT_VALID(pDocWnd);
20:
21: // Suspend the spinner thread
22: pDocWnd->SuspendSpinner(0, m_bThread1);
23: }
24: // Is the second thread running?
25: if (m_bThread2)
26: {
27: // Specify to stop the second thread
28: m_bThread2 = FALSE;
29: // Get a pointer to the document
30: CTaskingDoc* pDocWnd = (CTaskingDoc*)GetDocument();
31: // Did we get a valid pointer?
32: ASSERT_VALID(pDocWnd);
33:
34: // Suspend the spinner thread
35: pDocWnd->SuspendSpinner(1, m_bThread2);
36: }
37:
38: ///////////////////////
39: // MY CODE ENDS HERE
40: ///////////////////////
41: }

024 31240-9 CH18 4/27/00 12:59 PM Page 467

In this function, you do exactly what you need to do. You check first one check box vari-
able and then the other. If either is TRUE, you set the variable to FALSE, get a pointer to
the document, and call the SuspendSpinner function for that thread. Now when you
close your application while the independent threads are running, your application will
close without crashing.

Summary
Today, you learned quite a bit. You learned about the different ways you can make your
applications perform multiple tasks at one time. You also learned about some of the con-
siderations to take into account when adding this capability to your applications. You
learned how to make your application perform tasks when the application is sitting idle,
along with some of the limitations and drawbacks associated with this approach. You
also learned how to create independent threads in your application that will perform their
tasks completely independently of the rest of the application. You implemented an appli-
cation that uses both of these approaches so that you could experience how each
approach works.

468 Day 18

When you start adding multitasking capabilities to your applications to per-
form separate tasks, be aware that this is a very advanced aspect of pro-
gramming for Windows. You need to understand a lot of factors and take
into account far more than we can reasonably cover in a single day. If you
want to build applications using this capability, get an advanced book on
programming Windows applications with MFC or Visual C++. The book
should include a substantial section devoted to multithreading with MFC
and cover all the synchronization classes in much more detail than we did
here. Remember that you need a book that focuses on MFC, not the Visual
C++ development environment. (MFC is supported by most commercial C++
development tools for building Windows applications, including Borland
and Symantec’s C++ compilers, so coverage for this topic extends beyond the
Visual C++ environment.)

Tip

Q&A
Q How can I use the other version of the AfxBeginThread to encapsulate a thread

in a custom class?

A First, the other version of AfxBeginThread is primarily for creating user-interface
threads. The version that you used in today’s sample application is for creating
what are called worker threads that immediately take off on a specific task. If you

024 31240-9 CH18 4/27/00 12:59 PM Page 468

Doing Multiple Tasks at One Time––Multitasking 469

18

want to create a user-interface thread, you need to inherit your custom class from
the CWinThread class. Next, override several ancestor functions in your custom
class. Once the class is ready to use, you use the RUNTIME_CLASS macro to get a
pointer to the runtime class of your class and pass this pointer to the
AfxBeginThread function, as follows:
CWinThread* pMyThread =

AfxBeginThread(RUNTIME_CLASS(CMyThreadClass));

Q Can I use SuspendThread and ResumeThread to start and stop my independent
threads in my sample application?

A Yes, but you need to make a few key changes to your application. First, in the
OnNewDocument function, initialize the two thread pointers to NULL, as shown in
Listing 18.19.

LISTING 18.19. THE MODIFIED CTaskingDoc OnNewDocument FUNCTION.

1: BOOL CTaskingDoc::OnNewDocument()
2: {
3: if (!CDocument::OnNewDocument())
4: return FALSE;
5:
6: // TODO: add reinitialization code here
7: // (SDI documents will reuse this document)
8:
9: ///////////////////////
10: // MY CODE STARTS HERE
11: ///////////////////////
12:
13: // Initialize the spinners
14: InitSpinners();
15:
16: // Initialize the thread pointers
17: m_pSpinThread[0] = NULL;
18: m_pSpinThread[1] = NULL;
19:
20: ///////////////////////
21: // MY CODE ENDS HERE
22: ///////////////////////
23:
24: return TRUE;
25: }

Next, modify the thread function so that the thread does not stop itself when the
check box variable is FALSE but continues to loop, as shown in Listing 18.20.

024 31240-9 CH18 4/27/00 12:59 PM Page 469

LISTING 18.20. THE MODIFIED CTaskingDoc ThreadFunc FUNCTION.

1: UINT CTaskingDoc::ThreadFunc(LPVOID pParam)
2: {
3: // Convert the argument to a pointer to the
4: // spinner for this thread
5: CSpinner* lpSpin = (CSpinner*)pParam;
6: // Get a pointer to the continuation flag
7: BOOL* pbContinue = lpSpin->GetContinue();
8:
9: // Loop while the continue flag is true
10: while (TRUE)
11: // Spin the spinner
12: lpSpin->Draw();
13: return 0;
14: }

Finally, modify the SuspendSpinner function so that if the thread pointer is valid,
it calls the SuspendThread function on the thread pointer to stop the thread and the
ResumeThread function to restart the thread, as shown in Listing 18.21.

LISTING 18.21. THE MODIFIED CTaskingDoc SuspendSpinner FUNCTION.

1: void CTaskingDoc::SuspendSpinner(int nIndex, BOOL bSuspend)
2: {
3: // if suspending the thread
4: if (!bSuspend)
5: {
6: // Is the pointer for the thread valid?
7: if (m_pSpinThread[nIndex])
8: {
9: // Suspend the thread
10: m_pSpinThread[nIndex]->SuspendThread();
11: }
12: }
13: else // We are running the thread
14: {
15: // Is the pointer for the thread valid?
16: if (m_pSpinThread[nIndex])
17: {
18: // Resume the thread
19: m_pSpinThread[nIndex]->ResumeThread();
20: }
21: else
22: {
23: int iSpnr;
24: // Which spinner to use?
25: switch (nIndex)

470 Day 18

024 31240-9 CH18 4/27/00 12:59 PM Page 470

Doing Multiple Tasks at One Time––Multitasking 471

18

26: {
27: case 0:
28: iSpnr = 1;
29: break;
30: case 1:
31: iSpnr = 3;
32: break;
33: }
34: // Start the thread, passing a pointer to the spinner
35: m_pSpinThread[nIndex] = AfxBeginThread(ThreadFunc,
36: (LPVOID)&m_cSpin[iSpnr]);
37: }
38: }
39: }

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. When is the OnIdle function called?

2. How can you cause the OnIdle function to be repeatedly called while the applica-
tion is sitting idle?

3. What is the difference between an OnIdle task and a thread?

4. What are the four thread synchronization objects?

5. Why shouldn’t you specify a higher than normal priority for the threads in your
application?

Exercises
1. If you open a performance monitor on your system while the application that you

built today is running, you’ll find that even without any of the threads running, the
processor usage remains 100 percent, as shown in Figure 18.11. The OnIdle func-
tion is continuously being called even when there is nothing to be done.

Modify the OnIdle function so that if there’s nothing to be done, neither of the
OnIdle tasks are active. Then, the OnIdle function will not continue to be called
until one of these threads is active, at which time it should be continuously called
until both threads are once again turned off. This will allow the processor to drop
to a minimal utilization, as shown in Figure 18.12.

024 31240-9 CH18 4/27/00 12:59 PM Page 471

2. When starting the independent threads, give one of the threads a priority of
THREAD_PRIORITY_NORMAL and the other a priority of THREAD_PRIORITY_LOWEST.

472 Day 18

FIGURE 18.11.
Processor utilization at
100 percent.

FIGURE 18.12.
Processor utilization at
normal levels.

024 31240-9 CH18 4/27/00 12:59 PM Page 472

DAY 19

WEEK 3

Building Your Own
Widgets—Creating
ActiveX Controls

The software industry has seen a revolution over the past couple years. How
software is built and packaged has moved from a model where all applications
are large, monolithic pieces of executable code to a model where most applica-
tions consist of small building blocks. These small building blocks, often called
components, can be created using any of several different languages and can
take many different forms. One of the most popular components is the ActiveX
control. If you know how to create your own ActiveX controls, you can build
your own components and provide them to other programmers. Today, you will
learn

● How to use the Visual C++ wizards to build ActiveX controls.

● How to add properties and methods to your controls using the Class
Wizard.

● How to test your control using the tools provided with Visual C++.

025 31240-9 CH19 4/27/00 1:00 PM Page 473

What Is an ActiveX Control?
An ActiveX control is a set of functionality packaged in a COM (Component Object
Model) object. This COM object is self-contained, although it does not have the ability
to run by itself. An ActiveX control can only run within a ActiveX container, such as a
Visual C++ or Visual Basic application.

As you learned on Day 9, “Adding ActiveX Controls to Your Application,” ActiveX con-
trols provide a series of interfaces used by the container application to trigger the various
sets of functionality contained in the control. Many of these interfaces are used for trig-
gering events in the control or in the containing application. Others are for specifying
the property page of the control or for communicating whether the control has been
activated. All in all, so many interfaces are built into most ActiveX controls that coding
the functionality for each of these interfaces yourself would take quite some time.
Luckily, the Visual C++ App and Class Wizards add much of this functionality for you,
allowing you to focus on the specific functionality that the control is supposed to have.

Among the aspects of the control you create that you still must plan yourself are what
properties, methods, and events you will expose for your control. You can add these ele-
ments to your control through the Class Wizard, but if any of the properties or events
require special code on your part, then you must add it yourself. As should be expected
with any methods that you add to your controls, you have to supply all of the code. The
Class Wizard will add the surrounding structure and code to allow the containing appli-
cation to see and call the method, just as it will add all the code necessary to call any
event handlers for your applications.

Properties
Properties are attributes of controls that are visible to, and often modifiable by, the con-
tainer application. The four basic types of properties are ambient, extended, stock, and
custom. Ambient properties are provided by the container application to the control—
such things as background color or the default font to be used—so that the control looks
like part of the container application. Extended properties are not actually properties of
the control but instead are provided and implemented by the container application, such
as tab order. The control may extend these properties somewhat; for example, if the
control contains two or more standard controls, it may control the tab order within the
overall control, returning the tab order control to the application once the control has
completed its internal tab order. Stock properties are implemented by the ActiveX control
development kit, such as control font or control background color. The final type of
properties, custom properties, are what you are most concerned with because these

474 Day 19

025 31240-9 CH19 4/27/00 1:00 PM Page 474

Building Your Own Widgets—Creating ActiveX Controls 475

19

properties are specific to your control and are directly related to the functionality of your
control.

You can specify any properties you need in your control using the Automation tab on the
Class Wizard. When you add a new property to your control through the Class Wizard,
you’ll specify several aspects of the property.

The first aspect is the external property name, which is the name shown to the containing
application for the property. Another aspect that you can specify is the internal variable
name, which is used in your code, but only if the property is implemented as a member
variable. You also specify the variable type for the property.

If you specify that the property is to be implemented as a member variable (the property
is a member variable of the control class), then you can specify the name of the notifica-
tion function, which is called when the property is changed by the containing applica-
tion. If the property is not a member variable of the control class, you need to specify
that it is altered and viewed through Get and Set methods, where the containing applica-
tion calls a Get method to get the current value of the property and calls a Set method to
change the value of the property. If the property is maintained through Get and Set
methods, then you can specify the names of these two methods.

For all these aspects of a property, the Add Property dialog suggests appropriate names
for everything once you enter the external name for the property. If you want to accept
the default names, the only things you need to specify are the external name, the type,
and whether the property is a member variable or uses Get and Set methods. If you
choose a stock property from the list of available stock properties, the rest of the ele-
ments are automatically specified for you. Once you specify all of this information, the
Class Wizard adds all of the necessary code and variables to your control project.

Methods
Methods are functions in the control that can be called by the container application.
These functions are made available to other applications through the IDispatch inter-
face, which we discussed on Day 9. Because of the way the IDispatch works in calling
the methods in a control, the variables passed to the method have to be packaged in a
structure that is passed to the control. This structure is machine independent so that it
doesn’t matter whether your control is running with Windows 95/98 on an Intel Pentium
II or on a Windows NT with a MIPS or Alpha processor; the structure will look the
same. It is the responsibility of each side of the function call to convert the parameters as
necessary to fit them into the structure correctly or to extract them from the structure.
This process of packaging the method parameters is called marshaling.

025 31240-9 CH19 4/27/00 1:00 PM Page 475

When you add a new method to your control through the Class Wizard on the
Automation tab, the Class Wizard adds all of the necessary code to perform the marshal-
ing of the parameters, as well as all other supporting functionality, including building the
IDispatch interface and table.

When you add a new method to your control through the Class Wizard, you are asked to
provide the external name for the method called by the container application. Your
method will get a default internal name, which you can override by entering your own
internal name. Other aspects of your control methods that you have to specify are the
method’s return type and the parameters for the method. Once you finish entering all this
information, the Class Wizard adds all the necessary code to the control.

Events
Events are notification messages that are sent from the control to the container applica-
tion. They are intended to notify the application that a certain event has happened, and
the application can take action on that event if desirable. You can trigger two types of
events from your control, stock or custom events. Stock events are implemented by the
ActiveX control development kit and are available as function calls within the control.
These stock events enable you to trigger events in the container application for mouse or
keyboard events, errors, or state changes.

Along with the stock events, you can add your own custom events to be triggered in the
container application. These events should be related to the specific functionality of your
control. You can specify arguments to be passed with the event to the container applica-
tion so that the application can have the data it needs for reacting to the event message.

When you need to trigger any of these events, all you do is call the internal event func-
tion that fires the event, passing all the necessary parameters to the function. The Class
Wizard will have added all of the necessary code to trigger the event message from the
internal function call.

Events are one of the three elements that you do not add to your controls through the
Automation tab in the Class Wizard. Events are added through the ActiveX Events tab in
the Class Wizard.

Creating an ActiveX Control
The ActiveX control that you will build as the example today is the squiggle drawing
module that you packaged as a library module and then as DLLs on Day 16, “Creating
Your Own Classes and Modules,” and Day 17, “Sharing Your Functionality with Other
Applications—Creating DLLs.” In converting this module into an ActiveX control,

476 Day 19

025 31240-9 CH19 4/27/00 1:00 PM Page 476

Building Your Own Widgets—Creating ActiveX Controls 477

19

you’ll expose the maximum number of squiggles that the control will draw, as well as
the maximum length of the squiggles, as properties that the container application can set.
Every time the control is clicked, you’ll program it to create a new squiggle drawing.
You’ll also add a method to load a squiggle drawing into the control that was created
with the previous versions of the squiggle module. Finally, you’ll have the control fire an
event to let the container application know that the control has loaded the drawing.

Building the Control Shell
You’ve probably noticed by now that one of the options on the new project dialog is an
MFC ActiveX Control Wizard. This is another project wizard just like the AppWizard for
creating application and DLL projects. You can use it to build a shell for any ActiveX
controls that you want to build. It will create all of the necessary files and configure the
project so that the compiler will build an ActiveX control when you compile.

When you start the Control Wizard, you are asked some simple questions about your
control project, such as how many controls will be in the project and whether the con-
trols will have runtime licenses.

Runtime licenses are a means of making sure that the user of your control
has purchased a license to use the control. Controls developed for selling to
developers often have runtime licenses. The license prevents use of a control
by users who haven’t paid for it. When you use the control in an applica-
tion, either the runtime license for the control is installed in the user’s
registry by the install routine or the runtime license is compiled into the
application. These means prevent someone from using the control to build
new applications.

Note

In the second step of the Control Wizard, the questions get a little more involved but are
still fairly easy to answer. In this step, you can click the Edit Names button to provide
the control with descriptive names for the user. At the bottom of the Control Wizard,
you’ll find a combo box that lists a number of window classes that you can subclass in
your control. If you want to create a special edit box that performs some special edits on
anything the user types into the box, you choose EDIT from the list of window classes in
the drop-down portion of this combo box. If you choose to click the Advanced button,
the questions about your project require a fairly thorough understanding of ActiveX
controls.

To begin the sample control project today, start a new project, selecting the MFC
ActiveX Control Wizard and giving the project a suitable name, such as Squiggle, as
shown in Figure 19.1.

025 31240-9 CH19 4/27/00 1:00 PM Page 477

Leave all the options with their default settings in the first Control Wizard step because
you’ll create only a single control today, and you won’t need to include any runtime
licensing. On the second Control Wizard step, click the Edit Names button and make
sure that the type name is sufficiently descriptive of the control. Click OK to approve the
names, returning to the second Control Wizard step. If you had specified in the first step
that you were creating multiple controls, then you would choose each control in the
drop-down list beside the Edit Names button, specifying the names for each individual
control in the project. You can leave the rest of the options in the Control Wizard at their
default settings for this sample project.

Modifying the CModArt Class
Once you create the control shell, copy the Line and ModArt files from the library mod-
ule project directory, the project you built on Day 16. Load all four of these files into the
control project, adding the CLine and CModArt classes to the project.

The primary changes that you need to make to the CModArt class for your control is set-
ting the maximum number of squiggles and length of squiggles variables that can be
exposed as control properties. To be able to implement this, you’ll add two member vari-
ables to the CModArt class, one to control the length of the squiggles and the other to
control the number of squiggles. Add these two variables to the CModArt class as in Table
19.1.

TABLE 19.1. MEMBER VARIABLES FOR CModArt CLASS.

Name Type Access

m_iLength int Private

m_iSegments int Private

478 Day 19

FIGURE 19.1.
Starting an ActiveX
control project.

025 31240-9 CH19 4/27/00 1:00 PM Page 478

Building Your Own Widgets—Creating ActiveX Controls 479

19

You need to provide a way for these variables to be retrieved and updated from the
exposed properties. This means that you’ll need functions for getting the current value,
and for setting the new value, for each of these variables. To add these functions for the
m_iLength variable, add a member function to the CModArt class, specifying the type as
int, the declaration as GetLength, and the access as public. Edit the function with the
code in Listing 19.1.

LISTING 19.1. THE CModArt GetLength FUNCTION.

1: int CModArt::GetLength()
2: {
3: // Return the current value for the m_iLength variable
4: return m_iLength;
5: }

Next, add another member function to the CModArt class, specifying the function type as
void, the declaration as SetLength(int iLength), and the access as public. Edit this
function, adding the code in Listing 19.2.

LISTING 19.2. THE CModArt SetLength FUNCTION.

1: void CModArt::SetLength(int iLength)
2: {
3: // Set the current value for the m_iLength variable
4: m_iLength = iLength;
5: }

Add the same two functions for the m_iSegments variable so that it can also be exposed
as a property of the control.

Now that you have made these two properties available for the control, you’ll make sure
that they have been initialized to reasonable values before the control is used. To initial-
ize these values, modify the CModArt constructor as in Listing 19.3.

LISTING 19.3. THE MODIFIED CModArt CONSTRUCTOR.

1: CModArt::CModArt()
2: {
3: // Initialize the random number generator
4: srand((unsigned)time(NULL));
5: // Initialize the property variables
6: m_iLength = 200;
7: m_iSegments = 50;
8: }

025 31240-9 CH19 4/27/00 1:00 PM Page 479

Finally, you’ll modify the two function that create the squiggle drawings so that they use
these variables instead of the hard-coded values that they currently use. To modify the
NewDrawing function, replace the maximum number of squiggles in line 7 with the vari-
able m_iSegments, as in Listing 19.4.

LISTING 19.4. THE MODIFIED CModArt NewDrawing FUNCTION.

1: void CModArt::NewDrawing()
2: {
3: int lNumLines;
4: int lCurLine;
5:
6: // Determine how many lines to create
7: lNumLines = rand() % m_iSegments;
8: // Are there any lines to create?
9: if (lNumLines > 0)
10: {
11: // Loop through the number of lines
12: for (lCurLine = 0; lCurLine < lNumLines; lCurLine++)
13: {
14: // Create the new line
15: NewLine();
16: }
17: }
18: }

Finally, replace the maximum length of each squiggle with the m_iLength variable on
line 20 in the NewLine function, as in Listing 19.5.

LISTING 19.5. THE MODIFIED CModArt NewLine FUNCTION.

1: void CModArt::NewLine()
2: {
3: int lNumLines;
.
.
.
18:
19: // Determine the number of parts to this squiggle
20: lNumLines = rand() % m_iLength;
21: // Are there any parts to this squiggle?
.
.
.
67: }

480 Day 19

025 31240-9 CH19 4/27/00 1:00 PM Page 480

Building Your Own Widgets—Creating ActiveX Controls 481

19

You have made all of the necessary modifications to the CModArt and CLine classes for
your ActiveX control. Now you have to add an instance of the CModArt class to the con-
trol class as a member variable. Add a new member variable to the control class,
CSquiggleCtrl, specifying its type as CModArt, its name as m_maDrawing, and its access
as private. You also need to include the header file for the CModArt class in the control
class source code file, so open this file, scroll to the top of the file, and add an include
statement for the ModArt.h file, as in Listing 19.6.

LISTING 19.6. THE CSquiggleCtrl INCLUDES.

1: // SquiggleCtl.cpp : Implementation of the CSquiggleCtrl ActiveX
Control class.
2:
3: #include “stdafx.h”
4: #include “Squiggle.h”
5: #include “SquiggleCtl.h”
6: #include “SquigglePpg.h”
7: #include “ModArt.h”

Adding Properties
Because the two variables that you added to the CModArt class are not variables of the
control class (CSquiggleCtrl), you will probably want to add Get and Set methods to
set and retrieve the property value. If these two variables were members of the control
class, you could add them through the Class Wizard as member variables. You would
still know when and if the variables had been changed because you would have a notifi-
cation method in the control class that would be called when the property values are
changed. However, because they are members of an internal class, you’ll want to exer-
cise a little more control over their values.

Even if the variables that you want to expose are member variables of the
control class, you might still want to use the Get and Set methods for access-
ing the variables as control properties. Using the Get and Set methods allow
you to add validation on the new value for the properties so that you can
make certain that the container application is setting an appropriate value
to the property.

Tip

To add these properties to your control, open the Class Wizard and select the Automation
tab, as in Figure 19.2. Click on the Add Property button to add the first property. In the
Add Property dialog, enter the external name that you want your property to have, such

025 31240-9 CH19 4/27/00 1:00 PM Page 481

as SquiggleLength, and specify the type as short (the int type is not available, only
short and long). Click the Get/Set methods radio button, and the dialog enters function
names for these two methods, as in Figure 19.3. Click OK to add this property.

482 Day 19

FIGURE 19.2.
The Class Wizard
Automation tab.

FIGURE 19.3.
The Add Property
dialog.

Click the Edit Code button to add the code for the Get and Set methods. In each method,
you’ll call the Get and Set functions that you added to the CModArt class to control
access to the length variable. Edit these two methods as shown in Listing 19.7.

LISTING 19.7. THE CSquiggleCtrl Get/SetSquiggleLength FUNCTIONS.

1: short CSquiggleCtrl::GetSquiggleLength()
2: {
3: // TODO: Add your property handler here
4: // Return the result from the GetLength function
5: return m_maDrawing.GetLength();
6: }
7:

025 31240-9 CH19 4/27/00 1:00 PM Page 482

Building Your Own Widgets—Creating ActiveX Controls 483

19

8: void CSquiggleCtrl::SetSquiggleLength(short nNewValue)
9: {
10: // TODO: Add your property handler here
11: // Set the new length value
12: m_maDrawing.SetLength(nNewValue);
13: SetModifiedFlag();
14: }

Add another property for the number of squiggles in a drawing by following the same
steps, substituting an appropriate property name, such as NumberSquiggles.

One last property you might want to add to your control is a boolean property that the
container application could use to keep the control from creating any new drawings and
to keep the current drawing visible. Add a new property through the Class Wizard, giv-
ing it a suitable name such as KeepCurrentDrawing, and specify the type as BOOL. Leave
this property set as a member variable and click OK. The Class Wizard automatically
adds the variable to the control class, along with all of the necessary code to maintain the
variable.

Designing and Building the Property Page
You need to provide a property page with your control that developers can use when they
are working with your control. This property page will provide the users with a means of
setting the properties of the control, even if their own development tools do not provide
them with a facility to get to these properties in any way other than with code.

Adding a property page to your control is pretty easy. If you select the Resources view
tab in the workspace and expand the dialog folder, you’ll see a dialog for your control’s
property page already in the folder. Open this dialog, and you’ll find that it’s a standard
dialog window that you can design using the standard controls available in the dialog
designer. To design the property page for your sample control, lay out the property page
dialog as shown in Figure 19.4, using the property settings in Table 19.2.

FIGURE 19.4.
The control property
page layout.

025 31240-9 CH19 4/27/00 1:00 PM Page 483

TABLE 19.2. CONTROL PROPERTY SETTINGS.

Object Property Setting

Static Text ID IDC_STATIC

Caption Maximum Number of Squiggles:

Edit Box ID IDC_ENBRSQUIG

Static Text ID IDC_STATIC

Caption Maximum Length of Squiggles:

Edit Box ID IDC_ELENSQUIG

Check Box ID IDC_CMAINTDRAW

Caption Maintain Current Drawing

Once you add all the controls and specify their properties, open the Class Wizard to add
variables for these controls. When you add a variable to one of the controls on the prop-
erty page dialog, you’ll notice an additional combo box on the Add Member Variable
dialog. This new combo box is for the external name of the property that the variable
should be tied to in the control. The drop-down list on this combo box is a list of all of
the standard properties that you might want to tie the property page control to, but if you
are tying it to a custom property, you have to enter the property name yourself, as shown
in Figure 19.5.

484 Day 19

FIGURE 19.5.
The Add Member
Variable dialog.

Add variables to the controls on the property page for your control, tying them to the
control’s properties, as specified in Table 19.3.

TABLE 19.3. CONTROL VARIABLES.

Object Name Category Type Property

IDC_CMAINTDRAW m_bKeepDrawing Value BOOL KeepCurrentDrawing

IDC_ELENSQUIG m_iLenSquig Value int SquiggleLength

IDC_ENBRSQUIG m_iNbrSquiggles Value int NumberSquiggles

025 31240-9 CH19 4/27/00 1:00 PM Page 484

Building Your Own Widgets—Creating ActiveX Controls 485

19

Click the OK button to add all these variables to the control property page class.

Adding Basic Control Functionality
The basic functionality that your control needs is the ability to respond to mouse clicks
by generating a new drawing. To control this behavior, you’ll add a second boolean vari-
able to the control class so that the OnDraw function knows that a mouse click has been
triggered. The easiest place to get the drawing area of the control is the OnDraw function,
so this is where the new drawing needs to be generated. Do you want the control to gen-
erate a new drawing every time the user moves the application using your control in
front of another application? Probably not. You will most likely want a greater amount of
control over the behavior of the control, so it makes sense to add this second boolean
variable. Add a member variable to the control class (CSquiggleCtrl), specifying the
variable type as BOOL, the variable name as m_bGenNewDrawing, and the variables access
as private.

Before you start adding the code to perform all the various tasks, it’s important that you
initialize all the member variables in the control class. This consists of the member vari-
able property, m_keepCurrentDrawing, and the member variable that you just added,
m_bGenNewDrawing. You’ll want your control to generate a new drawing right off the bat,
and you probably don’t want it to maintain any drawings, unless the container applica-
tion explicitly specifies that a drawing is to be maintained. You’ll set these two variables
accordingly in the control class constructor, as shown in Listing 19.8.

LISTING 19.8. THE CSquiggleCtrl CONSTRUCTOR.

1: CSquiggleCtrl::CSquiggleCtrl()
2: {
3: InitializeIIDs(&IID_DSquiggle, &IID_DSquiggleEvents);
4:
5: // TODO: Initialize your control’s instance data here.
6: // Initialize the variables
7: m_bGenNewDrawing = TRUE;
8: m_keepCurrentDrawing = FALSE;
9: }

Next, you’ll add the code to generate and display the squiggle drawings. The place to
add this functionality is the OnDraw function in the control class. This function is called
every time that the control needs to draw itself, whether it was hidden or something trig-
gered the redrawing by calling the Invalidate function on the control. Once in the
OnDraw function, you’ll determine whether you need to generate a new drawing or just
draw the existing drawing. Another thing to keep in mind is that you are responsible for

025 31240-9 CH19 4/27/00 1:00 PM Page 485

drawing the entire area that the control occupies. This means that you need to draw the
background of the squiggle drawing, or else the squiggles will be drawn on top of what-
ever was displayed in that same spot on the screen. (Who knows? That might be the
effect you are looking for.) To add this functionality to your control, edit the OnDraw
function in the control class, adding the code in Listing 19.9.

LISTING 19.9. THE CSquiggleCtrl OnDraw FUNCTION.

1: void CSquiggleCtrl::OnDraw(
2: CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)
3: {
4: // TODO: Replace the following code with your own drawing code.
5: //pdc->FillRect(rcBounds, CBrush::FromHandle((HBRUSH)

➥ GetStockObject(WHITE_BRUSH)));
6: //pdc->Ellipse(rcBounds);
7: // Do we need to generate a new drawing?
8: if (m_bGenNewDrawing)
9: {
10: // Set the drawing area for the new drawing
11: m_maDrawing.SetRect(rcBounds);
12: // Clear out the old drawing
13: m_maDrawing.ClearDrawing();
14: // Generate the new drawing
15: m_maDrawing.NewDrawing();
16: // Reset the control flag
17: m_bGenNewDrawing = FALSE;
18: }
19: // Fill in the background
20: pdc->FillRect(rcBounds,
21: CBrush::FromHandle((HBRUSH)GetStockObject(WHITE_BRUSH)));
22: // Draw the squiggle drawing
23: m_maDrawing.Draw(pdc);
24: }

Finally, you’ll trigger the control to generate a new drawing whenever the control is
clicked. This requires adding an event handler for the control’s OnClick event. First,
however, you’ll add a stock method to the control to make sure that it receives the
OnClick event message. To add this stock method, open the Class Wizard and select the
Automation tab. Add a new method to the control class, selecting the DoClick method
from the drop-down list of stock methods that can be added to your control, as shown in
Figure 19.6. Click the OK button to add the method to your control, and then select the
Message Maps tab in the Class Wizard. Select the OnClick event message from the list
of available event messages, and add a function to handle this event message. Edit the
code for the OnClick event handler, adding the code in Listing 19.10.

486 Day 19

025 31240-9 CH19 4/27/00 1:00 PM Page 486

Building Your Own Widgets—Creating ActiveX Controls 487

19

LISTING 19.10. THE CSquiggleCtrl OnClick FUNCTION.

1: void CSquiggleCtrl::OnClick(USHORT iButton)
2: {
3: // TODO: Add your specialized code here and/or call the base class
4: // Can we generate a new drawing?
5: if (!m_keepCurrentDrawing)
6: {
7: // Set the flag so a new drawing will be generated
8: m_bGenNewDrawing = TRUE;
9: // Invalidate the control to trigger the OnDraw function
10: Invalidate();
11: }
12: COleControl::OnClick(iButton);
13: }

In the OnClick function, you check to see whether you could generate a new drawing or
maintain the current drawing. If you could generate a new drawing, you set the
m_bGenNewDrawing flag to TRUE and invalidated the control, which triggers the OnDraw
function.

Adding Methods
Remember the functionality that you are going to give your control: One of the functions
is loading a squiggle drawing created with the version of the Squiggle module that you
created on Day 16. To add this functionality, you’ll add a method to the control that the
container application can call to pass a filename to be loaded. You’ve already added one
method to your application, a stock method. Adding a custom method is similar, but you
have to provide a little more information to the Add Method dialog.

In the method to load an existing drawing, you’ll create a CFile object for the filename
that was passed as a parameter. The CFile constructor will take the filename and the flag
CFile::modeRead to let it know that you are opening the file for reading only. Once you

FIGURE 19.6.
The Add Method
dialog.

025 31240-9 CH19 4/27/00 1:01 PM Page 487

create the CFile object, you’ll create a CArchive object to read the file. The CArchive
constructor will take the CFile object that you just created and the CArchive::load flag
to tell it that it needs to load the file. At this point, you can pass the CArchive object to
the drawing object’s Serialize function and let it read and load the drawing. Once the
drawing is loaded, you need to display the drawing by invalidating the control. Before
you invalidate the control, you probably want to make sure that the m_bGenNewDrawing
flag is set to FALSE so that the drawing you just loaded won’t be overwritten.

To add this functionality to your control, open the Class Wizard and select the
Automation tab. Click the Add Method button to add a custom method. Enter the exter-
nal method name in the first combo box; in this case, call it LoadDrawing. The internal
name will automatically be generated based on the external name you entered. Next,
specify the return type as BOOL so that you can let the container application know
whether you were able to load the drawing. Finally, add a single parameter to the para-
meter list, giving it a name such as sFileName and specifying its type as LPCTSTR (the
CString type is not available, but the LPCTSTR type is compatible), as shown in Figure
19.7. Click the OK button to add the method to your control. Once you add the method,
click the Edit Code button to edit the method, adding the code in Listing 19.11.

488 Day 19

FIGURE 19.7.
The Add custom
Method dialog.

LISTING 19.11. THE CSquiggleCtrl LoadDrawing FUNCTION.

1: BOOL CSquiggleCtrl::LoadDrawing(LPCTSTR sFileName)
2: {
3: // TODO: Add your dispatch handler code here
4: try
5: {
6: // Create a CFile object
7: CFile lFile(sFileName, CFile::modeRead);
8: // Create a CArchive object to load the file
9: CArchive lArchive(&lFile, CArchive::load);
10: // Load the file

025 31240-9 CH19 4/27/00 1:01 PM Page 488

Building Your Own Widgets—Creating ActiveX Controls 489

19

11: m_maDrawing.Serialize(lArchive);
12: // Make sure that the loaded drawing won’t be overwritten
13: m_bGenNewDrawing = FALSE;
14: // Draw the loaded drawing
15: Invalidate();
16: }
17: catch (CFileException err)
18: {
19: return FALSE;
20: }
21: return TRUE;
22: }

Adding Events
The final part of building your control is adding the events that your control will trigger
in the container application. When using your control, the user will be able to add code
to be triggered on these events. Adding these events to your control is done through the
ActiveX Events tab of the Class Wizard. If you want to add a stock event to be triggered
by your control, then you just click the Add Event button and select a stock event from
the drop-down list of stock events. If you need to add a custom event to your control,
then in the Add Event dialog, instead of selecting a stock event, you enter the name of
your custom event. At the bottom of the Add Event dialog is an area for adding parame-
ters that you can pass from your control to the container application with the event.

For the sample control, you’ll add one event, a custom event to let the application know
that the drawing file specified has been loaded. To add this event, open the Class Wizard
and select the ActiveX Events tab, as shown in Figure 19.8. Click the Add Event button
to add the event. Enter the name for your custom event, FileLoaded. You’ll notice that
the Add Event dialog automatically builds an internal name for the event, in this case,
FireFileLoaded, as shown in Figure 19.9. This internal name is the name for the func-
tion that you need to call in your code when you want to trigger this event. Click the OK
button to add this event. To add a stock event, select the desired stock event from the
drop-down list of stock events, and click the OK button to add this second event.

Now that you’ve added your event to your control, you need to make the necessary
changes to the code to trigger this event at the appropriate places. You’ll trigger your
event at the end of your LoadDrawing function, assuming that you are able to load the
drawing correctly. Add this additional functionality to the LoadDrawing function, as
shown in line 17 of Listing 19.12.

025 31240-9 CH19 4/27/00 1:01 PM Page 489

LISTING 19.12. THE MODIFIED CSquiggleCtrl LoadDrawing FUNCTION.

1: BOOL CSquiggleCtrl::LoadDrawing(LPCTSTR sFileName)
2: {
3: // TODO: Add your dispatch handler code here
4: try
5: {
6: // Create a CFile object
7: CFile lFile(sFileName, CFile::modeRead);
8: // Create a CArchive object to load the file
9: CArchive lArchive(&lFile, CArchive::load);
10: // Load the file
11: m_maDrawing.Serialize(lArchive);
12: // Make sure that the loaded drawing won’t be overwritten
13: m_bGenNewDrawing = FALSE;
14: // Draw the loaded drawing
15: Invalidate();
16: // Fire the FileLoaded event
17: FireFileLoaded();
18: }
19: catch (CFileException err)

490 Day 19

FIGURE 19.8.
The ActiveX Events tab
of the Class Wizard.

FIGURE 19.9.
The Add Event dialog.

025 31240-9 CH19 4/27/00 1:01 PM Page 490

Building Your Own Widgets—Creating ActiveX Controls 491

19

20: {
21: return FALSE;
22: }
23: return TRUE;
24: }

Testing the Control
Now you are ready to compile and begin testing your control. Before you run to the store
to pick up a copy of Visual Basic, you already have a tool just for testing ActiveX con-
trols. On the Tools menu is one entry labeled ActiveX Control Test Container. This is a
utility that is designed specifically for testing ActiveX controls that you have built. Once
you compile your control, run the ActiveX Control Test Container to test your control.

If Visual C++ is unable to register your control, but is able to compile it, you
might need to register your control yourself. You can do this by selecting
Tools | Register Control from the menu. This will register the compiled con-
trol in the Registry database.

Tip

When you first start the test container, you see a blank area where your control will
appear. You need to insert your control into this container area by selecting Edit | Insert
New Control. This will open the Insert Control dialog, as shown in Figure 19.10. Select
your control from the list of available controls and click the OK button to add your con-
trol to the container area, as shown in Figure 19.11.

FIGURE 19.10.
The Insert Control
dialog.

Now that you have your control loaded into the test container, you can play with it,
resize it, click it, and check when it generates a new drawing and when it just redraws
the existing drawing. If you trigger any events for your control, you’ll see the event that
your control fired in the bottom pane of the test container so that you can watch as each
of the events you added to your control are triggered.

025 31240-9 CH19 4/27/00 1:01 PM Page 491

With your control selected, if you select Edit | Properties from the menu, you’ll open the
property page that you designed for your control, allowing you to modify the various
properties of the control so that you can see whether they work correctly, as shown in
Figure 19.12.

492 Day 19

FIGURE 19.11.
The squiggle control in
the test container.

FIGURE 19.12.
The Squiggle Control
Properties page.

Finally, to test the methods that you added to your control, select Control | Invoke
Methods. This opens the Invoke Methods dialog, as shown in Figure 19.13. In here, you
can select from the list of available methods in your control, entering each of the para-
meters required for the methods, and then click the Invoke button to call that method.
You can watch as your methods are called and your control responds.

025 31240-9 CH19 4/27/00 1:01 PM Page 492

Building Your Own Widgets—Creating ActiveX Controls 493

19

Summary
Today, you learned how you can use the tools and wizards in Visual C++ to build
ActiveX controls with little effort on your part. You learned how you can create the shell
of the control project using the Control Wizard. You also learned how you can use the
Class Wizard to add properties, methods, and events to your control. You saw how you
can design a property page for your control and how you can use the Class Wizard to
attach the controls on this dialog to the properties you defined for your control without
having to add any code. Finally, you learned how you can use the ActiveX Control Test
Container to test your control, triggering all the functionality by using the tools of this
utility.

Q&A
Q How do I change the icon that appears in the toolbox for my control?

A In the Resource View tab of the workspace pane, open the Bitmap folder. You
should find a single bitmap in this folder. This image is displayed in the toolbox
for your control when you add it to a Visual C++ or Visual Basic project. You
should edit this bitmap so that it displays the image that you want to represent your
control.

Q Why does my control have an About box?

A If you are building ActiveX controls that will be used by other developers, whether
you sell the control or give it away, you probably want to include some way of
indicating that you wrote the control, and that you, or your employer, owns the
copyright on the control. This acts as a legal identification on the control so that
whoever obtains your control cannot turn around and sell it as his creation.

FIGURE 19.13.
The Invoke Methods
dialog.

025 31240-9 CH19 4/27/00 1:01 PM Page 493

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What are the three aspects of a control that are visible to the container application?

2. Why do you need to design a property page for your control?

3. What are the four types of properties that a control might have?

4. What happens to the parameters that are passed to the methods of a control?

5. What tool can you use to test your controls?

Exercises
1. Add a method to your control to enable the container application to trigger the gen-

eration of a new squiggle drawing.

2. Add a method to your control to save a squiggle drawing. Use the
CFile::modeWrite and CArchive::store flags when creating the CFile and
CArchive objects.

494 Day 19

025 31240-9 CH19 4/27/00 1:01 PM Page 494

DAY 20

WEEK 3

Internet Applications and
Network Communications

Thanks in part to the explosion in popularity of the Internet, more applications
have the ability to communicate with other applications over networks, includ-
ing the Internet. With Microsoft building networking capabilities into its operat-
ing systems, starting with Windows NT and Windows 95, these capabilities are
becoming commonplace in all sorts of applications.

Some applications perform simple networking tasks such as checking with a
Web site to see whether there are any updates to the program and giving the
user the option of updating her copy of the program. Some word processing
applications will format documents as Web pages, giving the user the option of
loading the pages onto the Web server. You’ve got computer games that allow
the user to play against another person halfway around the world instead of just
competing against the game itself.

Applications can have any number of networking functions, and they all are
built around the Winsock interface. If you know and understand how to pro-
gram using the Winsock interface and the MFC Winsock classes, this entire

026 31240-9 CH20 4/27/00 10:34 AM Page 495

realm of application programming is open to you, expanding your programming options
considerably. Today, you will learn

● How applications use the Winsock interface to perform network communications
between two or more computers.

● The difference between a client and a server application and the role each plays in
establishing a communications link.

● How the MFC Winsock classes simplify the process of writing Internet applica-
tions.

● How you can create your own Winsock class, descended from the MFC Winsock
classes, to easily build an event-driven, networking application.

How Do Network Communications Work?
Most applications that communicate over a network, whether it’s the Internet or a small
office network, use the same principles and functionality to perform their communica-
tion. One application sits on a computer, waiting for another application to open a com-
munication connection. This application is “listening” for this connection request, much
like you listen for the phone to ring if you are expecting someone to call.

Meanwhile, another application, most likely on another computer (but not necessarily),
tries to connect to the first application. This attempt to open a connection is similar to
calling someone on the telephone. You dial the number and hope that the other person is
listening for the phone on the other end. As the person making the call, you have to
know the phone number of the person you are calling. If you don’t know the phone num-
ber, you can look it up using the person’s name. Likewise, the application trying to con-
nect to the first application has to know the network location, or address, of the first
application.

Once the connection is made between the two applications, messages can pass back and
forth between the two applications, much like you can talk to the person on the other end
of the phone. This connection is a two-way communications channel, with both sides
sending information, as shown in Figure 20.l.

496 Day 20

FIGURE 20.1.
The basic socket con-
nection process.

Messages sent both directions

Accepts connection request

Tries to open connection

Client Server (Listening for connections)

026 31240-9 CH20 4/27/00 10:34 AM Page 496

Internet Applications and Network Communications 497

20

Finally, once one or both sides have finished their sides of the conversation, the connec-
tion is closed, much like you hang up the phone after you have finished talking to the
person you called. Once the connection is closed from either side, the other side can
detect it and close its side, just like you can tell if the person on the other end of the
phone has hung up on you or if you’ve been disconnected by some other means. This
is a basic explanation of how network communications work between two or more
applications.

This is a basic description of how network communications work with the
TCP/IP network protocol, which is the primary network protocol over the
Internet. Many other network protocols use a subtle variation on this
description. Other protocols, such as the UDP protocol, are more like radio
broadcasts, where there is no connection between the two applications; one
sends messages, and the other is responsible for making sure that it receives
all of the messages. These protocols are more involved than we have the
luxury to discuss today. If you want to learn more about network protocols
and how they work, many books cover this one topic and look at the various
Internet applications and how they communicate over the connections they
establish.

Note

Sockets, Ports, and Addresses
The basic object used by applications to perform most network communications is called
a socket. Sockets were first developed on UNIX at the University of California at
Berkley. Sockets were designed so that most network communications between applica-
tions could be performed in the same way that these same applications would read and
write files. Sockets have progressed quite a bit since then, but the basics of how they
work are still the same.

During the days of Windows 3.x, before networking was built into the Windows operat-
ing system, you could buy the network protocols required for network communications
from numerous different companies. Each of these companies had a slightly different
way that an application performed network communications. As a result, any applica-
tions that performed network communications had a list of the different networking soft-
ware that the application would work with. Many application developers were not happy
with this situation. As a result, all the networking companies, including Microsoft, got
together and developed the Winsock (Windows Sockets) API. This provided all applica-
tion developers with a consistent API to perform all network communications, regardless
of the networking software used.

026 31240-9 CH20 4/27/00 10:34 AM Page 497

When you want to read or write a file, you must use a file object to point to the file.
Although this was hidden from you in most of the Visual C++ applications so far, with
the ActiveX control you created yesterday, you had to work through the steps of creating
the file object for reading and writing. A socket is similar; it is an object used to read and
write messages that travel between applications.

Making a socket connection to another application does require a different set of infor-
mation than opening a file. To open a file, you need to know the file’s name and loca-
tion. To open a socket connection, you need to know the computer on which the other
application is running and the port on which it’s listening. A port is like a phone exten-
sion, and the computer address is like the phone number. If you call someone at a large
office building, you may dial the main office number, but then you need to specify the
extension number. Likewise, ports are used to route network communications (see Figure
20.2). As with the phone number, there are means of looking up the port number, if you
don’t already know what it is, but this requires your computer to be configured with the
information about which port the connecting application is listening on. If you specify
the wrong computer address or port number, you may get a connection to a different
application; with making the phone call, someone other than the person you called may
answer the phone call. You also may not get an answer at all if there is no application lis-
tening at the other end.

498 Day 20

Only one application may be listening on any specific port on a single com-
puter. Although numerous applications may listen for connection requests
on a single computer at the same time, each of these applications must lis-
ten on a different port.

Note

Creating a Socket
When you build applications with Visual C++, you can use the MFC Winsock classes to
add network communications capabilities with relative ease. The base class,
CAsyncSocket, provides complete, event-driven socket communications. You can create
your own descendent socket class that captures and responds to each of these events.

This discussion of socket communications assumes that you check the
AppWizard option for adding support for Windows Sockets. This adds sup-
porting functionality to the application that is not discussed here.

Caution

026 31240-9 CH20 4/27/00 10:34 AM Page 498

Internet Applications and Network Communications 499

20

To create a socket that you can use in your application, the first thing you need to do is
declare a variable of CAsyncSocket (or your descendent class) as a class member for one
of the main application classes:

class CMyDlg : public CDialog
{
.
.
.
private:

CAsyncSocket m_sMySocket;
};

Before you can begin using the socket object, you must call its Create method. This
actually creates the socket and prepares it for use. How you call the Create method
depends on how you will be using the socket. If you will be using the socket to connect
to another application, as the one placing the call (the client), then you do not need to
pass any parameters to the Create method:

if (m_sMySocket.Create())
{

// Continue on

FIGURE 20.2.
Ports are used to route
network communica-
tions to the correct
application.

The network interface in a
computer uses socket ports
to direct network messages
to the correct application.

Network Interface

Port 100

Port 150

Port 200

Port 50

Port 4000

Port 801

Networked
Application

Networked
Application

Networked
Application

Networked
Application

Networked
Application

Networked
Application

026 31240-9 CH20 4/27/00 10:34 AM Page 499

}
else

// Perform error handling here

However, if the socket is going to be listening for another application to connect to it,
waiting for the call (the server), then you need to pass at least the port number on which
the socket should be listening:

if (m_sMySocket.Create(4000))
{

// Continue on
}
else

// Perform error handling here

You can include other parameters in the Create method call, such as the type of socket
to create, the events that the socket should respond to, and the address that the socket
should listen on (in case the computer has more than one network card). All these
options require a more thorough understanding of sockets than we’ll be able to cover
today.

Making a Connection
Once you create a socket, you are ready to open a connection with it. Three steps go
along with opening a single connection. Two of these steps take place on the server, the
application listing for the connection, and the third step takes place on the client, the one
making the call.

For the client, opening the connection is a simple matter of calling the Connect method.
The client has to pass two parameters to the Connect method: the computer name, or net-
work address, and the port of the application to connect to. The Connect method could
be used in the following two ways:

if (m_sMySocket.Connect(“thatcomputer.com”, 4000))
{

// Continue on
}
else

// Perform error handling here

The second form is

if (m_sMySocket.Connect(“178.1.25.82”, 4000))
{

// Continue on
}
else

// Perform error handling here

500 Day 20

026 31240-9 CH20 4/27/00 10:34 AM Page 500

Internet Applications and Network Communications 501

20

Once the connection is made, an event is triggered to let your application know that it is
connected or that there were problems and the connection couldn’t be made. (I’ll cover
how these events work in the section “Socket Events,” later in this chapter.)

For the server, or listening, side of the connection, the application first must tell the
socket to listen for incoming connections by calling the Listen method. The Listen
method takes only a single argument, which you do not need to supply. This parameter
specifies the number of pending connections that can be queued, waiting for the connec-
tion to be completed. By default this value is 5, which is the maximum. The Listen
method can be called as follows:

if (m_sMySocket.Listen())
{

// Continue on
}
else

// Perform error handling here

Whenever another application is trying to connect to the listening application, an event is
triggered to let the application know that the connection request is there. The listening
application must accept the connection request by calling the Accept method. This
method requires the use of a second CAsyncSocket variable, which is connected to the
other application. Once a socket is placed into listen mode, it stays in listen mode.
Whenever connection requests are received, the listening socket creates another socket,
which is connected to the other application. This second socket should not have the
Create method called for it because the Accept method creates the socket. You call the
Accept method as follows:

if (m_sMySocket.Accept(m_sMySecondSocket))
{

// Continue on
}
else

// Perform error handling here

At this point, the connecting application is connected to the second socket on the listen-
ing application.

Sending and Receiving Messages
Sending and receiving message through a socket connection gets slightly involved.
Because you can use sockets to send any kind of data, and they don’t care what the data
is, the functions to send and receive data expect to be passed a pointer to a generic
buffer. For sending data, this buffer should contain the data to be sent. For receiving
data, this buffer will have the received data copied into it. As long as you are sending

026 31240-9 CH20 4/27/00 10:34 AM Page 501

and receiving strings and text, you can use fairly simple conversions to and from
CStrings with these buffers.

To send a message through a socket connection, you use the Send method. This method
requires two parameters and has a third, optional parameter that can be used to control
how the message is sent. The first parameter is a pointer to the buffer that contains the
data to be sent. If your message is in a CString variable, you can use the LPCTSTR opera-
tor to pass the CString variable as the buffer. The second parameter is the length of the
buffer. The method returns the amount of data that was sent to the other application. If an
error occurs, the Send function returns SOCKET_ERROR. You can use the Send method as
follows:

CString strMyMessage;
int iLen;
int iAmtSent;
.
.
.
iLen = strMyMessage.GetLength();
iAmtSent = m_sMySocket.Send(LPCTSTR(strMyMessage), iLen);
if (iAmtSent == SOCKET_ERROR)
{

// Do some error handling here
}
else
{

// Everything’s fine
}

When data is available to be received from the other application, an event is triggered on
the receiving application. This lets your application know that it can receive and process
the message. To get the message, the Receive method must be called. This method
takes the same parameters as the Send method with a slight difference. The first parame-
ter is a pointer to a buffer into which the message may be copied. The second parameter
is the size of the buffer. This tells the socket how much data to copy (in case more is
received than will fit into the buffer). Like the Send method, the Receive method will
return the amount that was copied into the buffer. If an error occurs, the Receive method
also returns SOCKET_ERROR. If the message your application is receiving is a text mes-
sage, it can be copied directly into a CString variable. This allows you to use the
Receive method as follows:

char *pBuf = new char[1025];
int iBufSize = 1024;
int iRcvd;
CString strRecvd;

iRcvd = m_sMySocket.Receive(pBuf, iBufSize);

502 Day 20

026 31240-9 CH20 4/27/00 10:34 AM Page 502

Internet Applications and Network Communications 503

20

if (iRcvd == SOCKET_ERROR)
{

// Do some error handling here
}
else
{

pBuf[iRcvd] = NULL;
strRecvd = pBuf;
// Continue processing the message

}

Closing the Connection
Once your application has finished all of its communications with the other application,
it can close the connection by calling the Close method. The Close method doesn’t take
any parameters, and you use it as follows:

m_sMySocket.Close();

When receiving text messages, it’s always a good idea to place a NULL in the
buffer position just after the last character received, as in the preceding
example. There may be garbage characters in the buffer that your applica-
tion might interpret as part of the message if you don’t add the NULL to
truncate the string.

Tip

The Close function is one of the few CAsyncSocket methods that does not
return any status code. For all the previous member functions that we have
examined, you can capture the return value to determine if an error has
occurred.

Note

Socket Events
The primary reason that you create your own descendent class of CAsyncSocket is that
you want to capture the events that are triggered when messages are received, connec-
tions are completed, and so on. The CAsyncSocket class has a series of functions that are
called for each of these various events. These functions all use the same definition—the
function name is the only difference—and they are intended to be overridden in descen-
dent classes. All of these functions are declared as protected members of the
CAsyncSocket class and probably should be declared as protected in your descendent
classes. The functions all have a single integer parameter, which is an error code that

026 31240-9 CH20 4/27/00 10:34 AM Page 503

should be checked to make sure that no error has occurred. Table 20.1 lists these event
functions and the events they signal.

TABLE 20.1. CAsyncSocket OVERRIDABLE EVENT-NOTIFICATION FUNCTIONS.

Function Event Description

OnAccept This function is called on a listening socket to signal that a connection request from
another application is waiting to be accepted.

OnClose This function is called on a socket to signal that the application on the other end of the
connection has closed its socket or that the connection has been lost. This should be fol-
lowed by closing the socket that received this notification.

OnConnect This function is called on a socket to signal that the connection with another application
has been completed and that the application can now send and receive messages through
the socket.

OnReceive This function is called to signal that data has been received through the socket connec-
tion and that the data is ready to be retrieved by calling the Receive function.

OnSend This function is called to signal that the socket is ready and available for sending data.
This function is called right after the connection has been completed. Usually, the other
time that this function is called is when your application has passed the Send function
more data than can be sent in a single packet. In this case, this is a signal that all of the
data has been sent, and the application can send the next buffer-full of data.

Detecting Errors
Whenever any of the CAsyncSocket member functions return an error, either FALSE for
most functions or SOCKET_ERROR on the Send and Receive functions, you can call the
GetLastError method to get the error code. This function returns only error codes, and
you have to look up the translation yourself. All the Winsock error codes are defined
with constants, so you can use the constants in your code to determine the error message
to display for the user, if any. You can use the GetLastError function as follows:

int iErrCode;

iErrCode = m_sMySocket.GetLastError();
switch (iErrCode)
{
case WASNOTINITIALISED:
.
.
.
}

504 Day 20

026 31240-9 CH20 4/27/00 10:34 AM Page 504

Internet Applications and Network Communications 505

20

Building a Networked Application
For the sample application that you will build today, you’ll create a simple dialog appli-
cation that can function as either the client or server in a Winsock connection. This will
allow you to run two copies of the sample application, one for each end of the connec-
tion, on the same computer or to copy the application to another computer so that you
can run the two copies on separate computers and see how you can pass messages across
a network. Once the application has established a connection with another application,
you will be able to enter text messages and send them to the other application. When the
message has been sent, it will be added to a list of messages sent. Each message that is
received will be copied into another list of all messages received. This will allow you to
see the complete list of what is sent and received. It will also allow you to compare what
one copy of the application has sent and what the other has received. (The two lists
should be the same.)

Creating the Application Shell
For today’s sample application, just to keep things simple, you’ll create a dialog-style
application. Everything that you are doing in today’s application can be done in an SDI
or MDI application just as easily as with a dialog-style application. By using a dialog-
style application today, we are getting everything that might distract from the basic
socket functionality (such as questions about whether the socket variable belongs in the
document or view class, how much of the application functionality belongs in which of
these two classes, and so on) away from the sample application.

To start today’s sample application, create a new MFC AppWizard project, giving the
project a suitable name, such as Sock. On the first step of the AppWizard, specify that
the application will be a dialog-based application. On the second step of the AppWizard,
specify that the application should include support for Windows Sockets, as in Figure
20.3. You can accept the default settings for the rest of the options in the AppWizard.

Window Layout and Startup Functionality
Once you create your application shell, you can lay out the main dialog for your applica-
tion. On this dialog, you’ll need a set of radio buttons to specify whether the application
is running as the client or server. You’ll also need a couple of edit boxes for the
computer name and port that the server will be listening on. Next, you’ll need a com-
mand button to start the application listening on the socket or opening the connection to
the server, and a button to close the connection. You’ll also need an edit box for entering
the message to be sent to the other application and a button to send the message. Finally,
you’ll need a couple of list boxes into which you can add each of the messages sent and

026 31240-9 CH20 4/27/00 10:34 AM Page 505

received. Place all these controls on the dialog, as shown in Figure 20.4, setting all of the
control properties as specified in Table 20.2.

506 Day 20

FIGURE 20.3.
Including sockets
support.

TABLE 20.2. CONTROL PROPERTY SETTINGS.

Object Property Setting

Group Box ID IDC_STATICTYPE

Caption Socket Type

Radio Button ID IDC_RCLIENT

Caption &Client

Group Checked

FIGURE 20.4.
The main dialog
layout.

026 31240-9 CH20 4/27/00 10:34 AM Page 506

Internet Applications and Network Communications 507

20

Object Property Setting

Radio Button ID IDC_RSERVER

Caption &Server

Static Text ID IDC_STATICNAME

Caption Server &Name:

Edit Box ID IDC_ESERVNAME

Static Text ID IDC_STATICPORT

Caption Server &Port:

Edit Box ID IDC_ESERVPORT

Command Button ID IDC_BCONNECT

Caption C&onnect

Command Button ID IDC_BCLOSE

Caption C&lose

Disabled Checked

Static Text ID IDC_STATICMSG

Caption &Message:

Disabled Checked

Edit Box ID IDC_EMSG

Disabled Checked

Command Button ID IDC_BSEND

Caption S&end

Disabled Checked

Static Text ID IDC_STATIC

Caption Sent:

List Box ID IDC_LSENT

Tab Stop Unchecked

Sort Unchecked

Selection None

Static Text ID IDC_STATIC

Caption Received:

List Box ID IDC_LRECVD

Tab Stop Unchecked

Sort Unchecked

Selection None

026 31240-9 CH20 4/27/00 10:34 AM Page 507

Once you have the dialog designed, open the Class Wizard to attach variables to the con-
trols on the dialog, as specified in Table 20.3.

TABLE 20.3. CONTROL VARIABLES.

Object Name Category Type

IDC_BCONNECT m_ctlConnect Control CButton

IDC_EMSG m_strMessage Value CString

IDC_ESERVNAME m_strName Value CString

IDC_ESERVPORT m_iPort Value int

IDC_LRECVD m_ctlRecvd Control CListBox

IDC_LSENT m_ctlSent Control CListBox

IDC_RCLIENT m_iType Value int

So that you can reuse the Connect button to place the server application into listen mode,
you’ll add a function to the clicked event message for both radio buttons, changing the
text on the command button depending on which of the two is currently selected. To add
this functionality to your application, add a function to the BN_CLICKED event message
for the IDC_RCLIENT control ID, naming the function OnRType. Add the same function to
the BN_CLICKED event message for the IDC_RSERVER control ID. Edit this function,
adding the code in Listing 20.1.

LISTING 20.1. THE CSockDlg OnRType FUNCTION.

1: void CSockDlg::OnRType()
2: {
3: // TODO: Add your control notification handler code here
4: // Sync the controls with the variables
5: UpdateData(TRUE);
6: // Which mode are we in?
7: if (m_iType == 0) // Set the appropriate text on the button
8: m_ctlConnect.SetWindowText(“C&onnect”);
9: else
10: m_ctlConnect.SetWindowText(“&Listen”);
11: }

Now, if you compile and run your application, you should be able to select one and then
the other of these two radio buttons, and the text on the command button should change
to reflect the part the application will play, as in Figure 20.5.

508 Day 20

026 31240-9 CH20 4/27/00 10:34 AM Page 508

Internet Applications and Network Communications 509

20

Inheriting from the CAsyncSocket Class
So that you will be able to capture and respond to the socket events, you’ll create your
own descendent class from CAsyncSocket. This class will need its own versions of the
event functions, as well as a means of passing this event to the dialog that the object will
be a member of. So that you can pass each of these events to the dialog-class level,
you’ll add a pointer to the parent dialog class as a member variable of your socket class.
You’ll use this pointer to call event functions for each of the socket events that are mem-
ber functions of the dialog, after checking to make sure that no errors have occurred (of
course).

To create this class in your application, select Insert | New Class from the menu. In the
New Class dialog, leave the class type with the default value of MFC Class. Enter a
name for your class, such as CMySocket, and select CAsyncSocket from the list of avail-
able base classes. This is all that you can specify on the New Class dialog, so click the
OK button to add this new class to your application.

Once you have created the socket class, add a member variable to the class to serve as a
pointer to the parent dialog window. Specify the variable type as CDialog*, the variable
name as m_pWnd, and the access as private. You also need to add a method to the class to
set the pointer, so add a member function to your new socket class. Specify the function
type as void, the declaration as SetParent(CDialog* pWnd), and the access as public.
Edit this new function, setting the pointer passed as a parameter to the member variable
pointer, as in Listing 20.2.

LISTING 20.2. THE CMySocket SetParent FUNCTION.

1: void CMySocket::SetParent(CDialog *pWnd)
2: {
3: // Set the member pointer
4: m_pWnd = pWnd;
5: }

FIGURE 20.5.
Changing the button
text.

026 31240-9 CH20 4/27/00 10:34 AM Page 509

The only other thing that you need to do to your socket class is add the event functions,
which you’ll use to call similarly named functions on the dialog class. To add a function
for the OnAccept event function, add a member function to your socket class. Specify the
function type as void, the function declaration as OnAccept(int nErrorCode), and the
access as protected and check the virtual check box. Edit this function, adding the code
in Listing 20.3.

LISTING 20.3. The CMySocket OnAccept FUNCTION.

1: void CMySocket::OnAccept(int nErrorCode)
2: {
3: // Were there any errors?
4: if (nErrorCode == 0)
5: // No, call the dialog’s OnAccept function
6: ((CSockDlg*)m_pWnd)->OnAccept();
7: }

Add similar functions to your socket class for the OnConnect, OnClose, OnReceive, and
OnSend functions, calling same-named functions in the dialog class, which you’ll add
later. After you’ve added all these functions, you’ll need to include the header file for
your application dialog in your socket class, as in line 7 of Listing 20.4.

LISTING 20.4. THE CMySocket INCLUDES.

1: // MySocket.cpp: implementation file
2: //
3:
4: #include “stdafx.h”
5: #include “Sock.h”
6: #include “MySocket.h”
7: #include “SockDlg.h”

Once you’ve added all the necessary event functions to your socket class, you’ll add a
variable of your socket class to the dialog class. For the server functionality, you’ll need
two variables in the dialog class, one to listen for connection requests and the other to be
connected to the other application. Because you will need two socket objects, add two
member variables to the dialog class (CSockDlg). Specify the type of both variables as
your socket class (CMySocket) and the access for both as private. Name one variable
m_sListenSocket, to be used for listening for connection requests, and the other
m_sConnectSocket, to be used for sending messages back and forth.

510 Day 20

026 31240-9 CH20 4/27/00 10:34 AM Page 510

Internet Applications and Network Communications 511

20

Once you’ve added the socket variables, you’ll add the initialization code for all the vari-
ables. As a default, set the application type to client, the server name as loopback, and
the port to 4000. Along with these variables, you’ll set the parent dialog pointers in your
two socket objects so that they point to the dialog class. You can do this by adding the
code in Listing 20.5 to the OnInitDialog function in the dialog class.

LISTING 20.5. THE CSockDlg OnInitDialog FUNCTION.

1: BOOL CSockDlg::OnInitDialog()
2: {
3: CDialog::OnInitDialog();
4:
5: // Add “About...” menu item to system menu.
6:
.
.
.
26: SetIcon(m_hIcon, FALSE); // Set small icon
27:
28: // TODO: Add extra initialization here
29: // Initialize the control variables
30: m_iType = 0;
31: m_strName = “loopback”;
32: m_iPort = 4000;
33: // Update the controls
34: UpdateData(FALSE);
35: // Set the socket dialog pointers
36: m_sConnectSocket.SetParent(this);
37: m_sListenSocket.SetParent(this);
38:
39: return TRUE; // return TRUE unless you set the focus to a

➥ control
40: }

Connecting the Application
When the user clicks the Connect button, you’ll disable all the top controls on the dialog.
At this point, you don’t want the user to think that she is able to change the settings of

The computer name loopback is a special name used in the TCP/IP network
protocol to indicate the computer you are working on. It’s an internal com-
puter name that is resolved to the network address 127.0.0.1. This is a com-
puter name and address that is commonly used by applications that need to
connect to other applications running on the same computer.

Note

026 31240-9 CH20 4/27/00 10:34 AM Page 511

the computer that she’s connecting to or change how the application is listening. You’ll
call the Create function on the appropriate socket variable, depending on whether the
application is running as the client or server. Finally, you’ll call either the Connect or
Listen function to initiate the application’s side of the connection. To add this function-
ality to your application, open the Class Wizard and add a function to the BN_CLICKED
event message for the Connect button (ID IDC_BCONNECT). Edit this function, adding the
code in Listing 20.6.

LISTING 20.6. The CSockDlg OnBconnect FUNCTION.

1: void CSockDlg::OnBconnect()
2: {
3: // TODO: Add your control notification handler code here
4: // Sync the variables with the controls
5: UpdateData(TRUE);
6: // Disable the connection and type controls
7: GetDlgItem(IDC_BCONNECT)->EnableWindow(FALSE);
8: GetDlgItem(IDC_ESERVNAME)->EnableWindow(FALSE);
9: GetDlgItem(IDC_ESERVPORT)->EnableWindow(FALSE);
10: GetDlgItem(IDC_STATICNAME)->EnableWindow(FALSE);
11: GetDlgItem(IDC_STATICPORT)->EnableWindow(FALSE);
12: GetDlgItem(IDC_RCLIENT)->EnableWindow(FALSE);
13: GetDlgItem(IDC_RSERVER)->EnableWindow(FALSE);
14: GetDlgItem(IDC_STATICTYPE)->EnableWindow(FALSE);
15: // Are we running as client or server?
16: if (m_iType == 0)
17: {
18: // Client, create a default socket
19: m_sConnectSocket.Create();
20: // Open the connection to the server
21: m_sConnectSocket.Connect(m_strName, m_iPort);
22: }
23: else
24: {
25: // Server, create a socket bound to the port specified
26: m_sListenSocket.Create(m_iPort);
27: // Listen for connection requests
28: m_sListenSocket.Listen();
29: }
30: }

Next, to complete the connection, you’ll add the socket event function to the dialog class
for the OnAccept and OnConnect event functions. These are the functions that your
socket class is calling. They don’t require any parameters, and they don’t need to return
any result code. For the OnAccept function, which is called for the listening socket when

512 Day 20

026 31240-9 CH20 4/27/00 10:34 AM Page 512

Internet Applications and Network Communications 513

20

another application is trying to connect to it, you’ll call the socket object’s Accept func-
tion, passing in the connection socket variable. Once you’ve accepted the connection,
you can enable the prompt and edit box for entering and sending messages to the other
application.

To add this function to your application, add a member function to the dialog class
(CSockDlg). Specify the function type as void, the declaration as OnAccept, and the
access as public. Edit the function, adding the code in Listing 20.7.

LISTING 20.7. THE CSockDlg OnAccept FUNCTION.

1: void CSockDlg::OnAccept()
2: {
3: // Accept the connection request
4: m_sListenSocket.Accept(m_sConnectSocket);
5: // Enable the text and message controls
6: GetDlgItem(IDC_EMSG)->EnableWindow(TRUE);
7: GetDlgItem(IDC_BSEND)->EnableWindow(TRUE);
8: GetDlgItem(IDC_STATICMSG)->EnableWindow(TRUE);
9: }

For the client side, there’s nothing to do once the connection has been completed except
enable the controls for entering and sending messages. You’ll also enable the Close but-
ton so that the connection can be closed from the client side (but not the server side). To
add this functionality to your application, add another member function to the dialog
class (CSockDlg). Specify the function type as void, the function declaration as
OnConnect, and the access as public. Edit the function, adding the code in Listing 20.8.

LISTING 20.8. THE CSockDlg OnConnect FUNCTION.

1: void CSockDlg::OnConnect()
2: {
3: // Enable the text and message controls
4: GetDlgItem(IDC_EMSG)->EnableWindow(TRUE);
5: GetDlgItem(IDC_BSEND)->EnableWindow(TRUE);
6: GetDlgItem(IDC_STATICMSG)->EnableWindow(TRUE);
7: GetDlgItem(IDC_BCLOSE)->EnableWindow(TRUE);
8: }

If you could compile and run your application now, you could start two copies, put one
into listen mode, and then connect to it with the other. Unfortunately, you probably can’t
even compile your application right now because your socket class is looking for several
functions in your dialog class that you haven’t added yet. Add three member functions to

026 31240-9 CH20 4/27/00 10:34 AM Page 513

the dialog class (CSockDlg). Specify all of them as void functions with public access.
Specify the first function’s declaration as OnSend, the second as OnReceive, and the third
as OnClose. You should now be able to compile your application.

Once you’ve compiled your application, start two copies of the application, side-by-side.
Specify that one of these two should be the server, and click the Listen button to put it
into listen mode. Leave the other as the client and click the Connect button. You should
see the connection controls disable and the message sending controls enable as the con-
nection is made, as in Figure 20.6.

514 Day 20

FIGURE 20.6.
Connecting the two
applications.

Be sure that you have the server application listening before you try to con-
nect it to the client application. If you try to connect to it with the client
application before the server is listening for the connection, the connection
will be rejected. Your application will not detect that the connection was
rejected because you haven't added any error handling to detect this event.

Tip

To run these applications and get them to connect, you’ll need TCP/IP run-
ning on your computer. If you have a network card in your computer, you
may already have TCP/IP running. If you do not have a network card, and

Tip

026 31240-9 CH20 4/27/00 10:35 AM Page 514

Internet Applications and Network Communications 515

20

Sending and Receiving
Now that you are able to connect the two running applications, you’ll need to add func-
tionality to send and receive messages. Once the connection is established between the
two applications, the user can enter text messages in the edit box in the middle of the
dialog window and then click the Send button to send the message to the other applica-
tion. Once the message is sent, it will be added to the list box of sent messages. To pro-
vide this functionality, when the Send button is clicked, your application needs to check
whether there is a message to be sent, get the length of the message, send the message,
and then add the message to the list box. To add this functionality to your application,
use the Class Wizard to add a function to the clicked event of the Send (IDC_BSEND) but-
ton. Edit this function, adding the code in Listing 20.9.

LISTING 20.9. The CSockDlg OnBsend FUNCTION.

1: void CSockDlg::OnBsend()
2: {
3: // TODO: Add your control notification handler code here
4: int iLen;
5: int iSent;
6:
7: // Sync the controls with the variables
8: UpdateData(TRUE);
9: // Is there a message to be sent?
10: if (m_strMessage != “”)
11: {
12: // Get the length of the message
13: iLen = m_strMessage.GetLength();
14: // Send the message
15: iSent = m_sConnectSocket.Send(LPCTSTR(m_strMessage), iLen);
16: // Were we able to send it?

you use a modem to connect to the Internet, then you will probably need to
be connected to the Internet when you run and test these applications.
When you connect to the Internet through a modem, your computer usually
starts running TCP/IP once the connection to the Internet is made. If you do
not have a network card in your computer, and you do not have any means
of connecting to the Internet, or any other outside network that would
allow you to run networked applications, you may not be able to run and
test today’s applications on your computer.

continues

026 31240-9 CH20 4/27/00 10:35 AM Page 515

LISTING 20.9. CONTINUED

17: if (iSent == SOCKET_ERROR)
18: {
19: }
20: else
21: {
22: // Add the message to the list box.
23: m_ctlSent.AddString(m_strMessage);
24: // Sync the variables with the controls
25: UpdateData(FALSE);
26: }
27: }
28: }

When the OnReceive event function is triggered, indicating that a message has arrived,
you’ll retrieve the message from the socket using the Receive function. Once you’ve
retrieved the message, you’ll convert it into a CString and add it to the message-
received list box. You can add this functionality by editing the OnReceive function of the
dialog class, adding the code in Listing 20.10.

LISTING 20.10. THE CSockDlg OnReceive FUNCTION.

1: void CSockDlg::OnReceive()
2: {
3: char *pBuf = new char[1025];
4: int iBufSize = 1024;
5: int iRcvd;
6: CString strRecvd;
7:
8: // Receive the message
9: iRcvd = m_sConnectSocket.Receive(pBuf, iBufSize);
10: // Did we receive anything?
11: if (iRcvd == SOCKET_ERROR)
12: {
13: }
14: else
15: {
16: // Truncate the end of the message
17: pBuf[iRcvd] = NULL;
18: // Copy the message to a CString
19: strRecvd = pBuf;
20: // Add the message to the received list box
21: m_ctlRecvd.AddString(strRecvd);
22: // Sync the variables with the controls
23: UpdateData(FALSE);
24: }
25: }

516 Day 20

026 31240-9 CH20 4/27/00 10:35 AM Page 516

Internet Applications and Network Communications 517

20

At this point, you should be able to compile and run two copies of your application, con-
necting them as you did earlier. Once you’ve got the connection established, you can
enter a message in one application and send it to the other application, as shown in
Figure 20.7.

FIGURE 20.7.
Sending messages
between the applica-
tions.

Ending the Connection
To close the connection between these two applications, the client application user can
click the Close button to end the connection. The server application will then receive the
OnClose socket event. The same thing needs to happen in both cases. The connected
socket needs to be closed, and the message sending controls need to be disabled. On the
client, the connection controls can be enabled because the client could change some of
this information and open a connection to another server application. Meanwhile, the
server application continues to listen on the port that it was configured to listen to. To
add all this functionality to your application, edit the OnClose function, adding the code
in Listing 20.11.

LISTING 20.11. THE CSockDlg OnClose FUNCTION.

1: void CSockDlg::OnClose()
2: {

continues

026 31240-9 CH20 4/27/00 10:35 AM Page 517

LISTING 20.11. CONTINUED

3: // Close the connected socket
4: m_sConnectSocket.Close();
5: // Disable the message sending controls
6: GetDlgItem(IDC_EMSG)->EnableWindow(FALSE);
7: GetDlgItem(IDC_BSEND)->EnableWindow(FALSE);
8: GetDlgItem(IDC_STATICMSG)->EnableWindow(FALSE);
9: GetDlgItem(IDC_BCLOSE)->EnableWindow(FALSE);
10: // Are we running in Client mode?
11: if (m_iType == 0)
12: {
13: // Yes, so enable the connection configuration controls
14: GetDlgItem(IDC_BCONNECT)->EnableWindow(TRUE);
15: GetDlgItem(IDC_ESERVNAME)->EnableWindow(TRUE);
16: GetDlgItem(IDC_ESERVPORT)->EnableWindow(TRUE);
17: GetDlgItem(IDC_STATICNAME)->EnableWindow(TRUE);
18: GetDlgItem(IDC_STATICPORT)->EnableWindow(TRUE);
19: GetDlgItem(IDC_RCLIENT)->EnableWindow(TRUE);
20: GetDlgItem(IDC_RSERVER)->EnableWindow(TRUE);
21: GetDlgItem(IDC_STATICTYPE)->EnableWindow(TRUE);
22: }
23: }

Finally, for the Close button, call the OnClose function. To add this functionality to your
application, use the Class Wizard to add a function to the clicked event for the Close but-
ton (IDC_BCLOSE). Edit the function to call the OnClose function, as in Listing 20.12.

LISTING 20.12. THE CSockDlg OnBclose FUNCTION.

1: void CSockDlg::OnBclose()
2: {
3: // TODO: Add your control notification handler code here
4: // Call the OnClose function
5: OnClose();
6: }

If you compile and run your application, you can connect the client application to the
server, send some messages back and forth, and then disconnect the client by clicking the
Close button. You’ll see the message-sending controls disable themselves in both appli-
cations, as in Figure 20.8. You can reconnect the client to the server by clicking the
Connect button again and then pass some more messages between the two, as if they had
never been connected in the first place. If you start a third copy of the application,

518 Day 20

026 31240-9 CH20 4/27/00 10:35 AM Page 518

Internet Applications and Network Communications 519

20

change its port number, designate it as a server, and put it into listening mode, you can
take your client back and forth between the two servers, connecting to one, closing the
connection, changing the port number, and then connecting to the other.

FIGURE 20.8.
Closing the connection
between the applica-
tions.

Summary
Today, you learned how you can enable your applications to communicate with others
across a network or across the Internet by using the MFC Winsock classes. You took a
good look at the CAsyncSocket class and learned how you could create your own
descendent class from it that would provide your applications with event-driven network
communications. You learned how to create a server application that can listen for and
accept connections from other applications. You also learned how to build a client appli-
cation that can connect to a server. You learned how to send and receive messages over a
socket connection between two applications. Finally, you learned how to close the con-
nection and how to detect that the connection has been closed.

Q&A
Q How do Internet applications work?

A Most Internet applications use the same functionality that you created today. The
primary difference is that the applications have a script of messages that are passed
back and forth. The messages consist of a command and the data that needs to

026 31240-9 CH20 4/27/00 10:35 AM Page 519

accompany that command. The server reads the command and processes the data
appropriately, sending back a status code to let the client know the success or fail-
ure of the command. If you want to learn more about how Internet applications do
this, several books cover this subject area in detail.

Q How does a server application handle a large number of simultaneous connec-
tions from clients?

A With a full-strength server, the connection sockets are not declared as class vari-
ables. The server instead uses some sort of dynamic allocation of sockets, in an
array or link-list, to create sockets for the clients as the connection requests come
in. Another approach often taken by servers is to spin off a separate thread for each
connection request. This allows the application to have a single socket connection
per thread, and keeping track of the sockets is much easier. In any case, server
applications don’t normally have a single connection socket variable.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What are the two things that a client application must know to be able to connect

to a server application?

2. What CAsyncSocket function is used to enable a server application to detect con-
nection efforts by client applications?

3. What CAsyncSocket member function is called to signal that data has arrived
through a socket connection?

4. What function is called to signal that a connection has been established?

5. What function do you use to send a message through a socket connection to the
application on the other end?

Exercise
The server application that you wrote can handle only a single connection at a time. If a
second application tries to open a connection to it while it’s got an existing connection to
an application, the server application will crash. The server tries to accept the second
connection into the socket that is already connected to the first client application. Add a
third socket object to the application that will be used to reject additional client connec-
tions until the first client closes the connection.

520 Day 20

026 31240-9 CH20 4/27/00 10:35 AM Page 520

DAY 21

WEEK 3

Adding Web Browsing
Functionality to Your
Applications

When Microsoft made the decision a few years ago to make all its applications
Internet-enabled, it wasn’t just talking about making Word read and write
HTML pages. It wanted to make the Internet an integrated part of every appli-
cation, in some way or another. Well, when it comes to development tools,
making the editor double as an email client isn’t really a practical integration.
However, making it easy for the users of development tools to build Internet-
enabled applications is a very practical feature. And this is exactly what
Microsoft did.

One of the capabilities that Microsoft made available to its application develop-
ment tools is using Internet Explorer as an integrated part of any application.
This means that you can include Internet Explorer, and all its associated com-
ponents, in your own applications. The possibilities extend far beyond

027 31240-9 CH21 4/27/00 1:04 PM Page 521

providing your users Web browsing capability; your applications can also house, and
interact with, Java applets. You can provide your users with not one, but two macro lan-
guages, VBScript and JScript (Microsoft’s version of JavaScript).

Today, you will learn

● How the Internet Explorer ActiveX Object Model enables you to integrate all the
components into your applications.

● How the CHtmlView view class encapsulates most of the Internet Explorer func-
tionality in a ready-made class.

● How to build a simple Web browser using the CHtmlView class and Internet
Explorer.

The Internet Explorer ActiveX Model
When Microsoft came up with the idea of integrating ActiveX with its Web browser,
Internet Explorer, it realized that it would need to reengineer Internet Explorer to support
the use of ActiveX controls. Well, the developers looked at what they would need to do,
and what was possible, and decided to make Internet Explorer a lot more than just a Web
browser.

The first thing that Microsoft did was separate the Web browser from the ActiveX
objects that perform all the work. As a result, it ended up with the Internet Explorer
application, which is little more than an ActiveX document container, and the Internet
Explorer HTML viewer control, which ran as an ActiveX document server inside the
application. This meant that the Internet Explorer application could host more than just
Web pages; it could also be used to host Word documents, Excel spreadsheets,
PowerPoint presentations, and any other ActiveX document that had an ActiveX docu-
ment server installed on the same computer, as shown in Figure 21.1.

Within the HTML viewer component, Microsoft added the capability to host other con-
trols, including scripting engines and ActiveX controls, as shown in Figure 21.2. This
gave Microsoft the flexibility to add more scripting languages to Internet Explorer as
they were requested and created. This also enabled Internet Explorer to host any ActiveX
controls that developers might want to create.

In designing Internet Explorer this way, Microsoft not only gave itself a lot of flexibility
for future expansion of the functionality supported by Internet Explorer, but it also made
the entire workings of Internet Explorer available to any developer that wants to take
advantage of it and integrate Internet Explorer into his or her applications.

522 Day 21

027 31240-9 CH21 4/27/00 1:04 PM Page 522

Adding Web Browsing Functionality to Your Applications 523

21

The CHtmlView Class
To make it easy to incorporate the Internet Explorer HTML viewer into Visual C++
applications, Microsoft wrapped it in the CHtmlView class. This class can be used as the
base class for the view class in your Single Document Interface (SDI) or Multiple
Document Interface (MDI) applications. You can easily create applications that have
built-in Web browsing capabilities.

Navigating the Web
Several functions available in the CHtmlView class cover navigating the Web. There are
functions for returning the browser to the starting page of the user or for taking the user

FIGURE 21.1.
The Internet Explorer
ActiveX document
model.

FIGURE 21.2.
The Internet Explorer
HTML viewer ActiveX
object model.

Frame

Web Browser

Object

ActiveX Documents
Container Interfaces

Other ActiveX
Documents Server

(Excel)

Other ActiveX
Documents Server

(Word)

HTML Viewer

ActiveX Documents
Server Interfaces

ActiveX Scripting
Engine

ActiveX
Scripting
Engine

Interfaces

HTML Viewer

ActiveX
Control

ActiveX
Control

ActiveX
Scripting Host

Interfaces

ActiveX Control
Container
Interfaces

ActiveX
Controls

Interfaces

027 31240-9 CH21 4/27/00 1:04 PM Page 523

to an Internet search page. There are also functions for taking the user to the previous or
next page or even to a remote Web page. All these functions are members of the
CHtmlView class and thus are member functions of your application view class (when
using the CHtmlView class as the base class for your view class).

The navigation functions for the CHtmlView class are listed in Table 21.1.

TABLE 21.1. CHtmlView NAVIGATION FUNCTIONS.

Function Definition Description

GoBack() Takes the user to the previous Web page.

GoForward() Takes the user to the next Web page. (This assumes that the user has
backed up from at least one Web page.)

GoHome() Takes the user to the start page for Internet Explorer.

GoSearch() Takes the user to an Internet search page.

Navigate(LPCTSTR URL) Takes the user to the Web page specified in the URL variable.

The first four functions do not take any arguments and perform the exact same function
as their toolbar equivalents in Internet Explorer. The last function does take arguments;
the only required argument is the URL of the Web page to display.

Controlling the Browser
Along with the functions for navigating around the Web, you use some functions for
controlling the browser. Two of these functions are Refresh(), which makes the HTML
viewer control reload the current Web page, and Stop(), which halts a download in
progress. As with most of the navigation functions, these functions do not take any argu-
ments and work just like their equivalent toolbar buttons in Internet Explorer.

Getting the Browser Status
Another category of functions that are available in the CHtmlView class is informational
in nature. You can use these functions to get information about the current state of the
browser. For instance, if you want to get the current Web page in the browser, you can
call GetLocationURL(), which returns a CString containing the URL. If you want to
determine if the browser is busy with a download, you can call GetBusy(), which returns
a boolean value specifying whether the browser is busy.

Many more functions are available in the CHtmlView class, and some of them only work
on Internet Explorer itself, not on the browser control.

524 Day 21

027 31240-9 CH21 4/27/00 1:04 PM Page 524

Adding Web Browsing Functionality to Your Applications 525

21

Building a Web-Browsing Application
For an example of how you can integrate the Internet Explorer Web browser component
into your own applications, you will build a simple Web browser application. You will
create an SDI application using the CHtmlView class as the base for your own view class.
You’ll add a menu with functions for the back and forward navigation options. You’ll
also add a dialog for getting from the user a URL that you will use to navigate the
browser to the specified Web page.

Creating the Application Shell
To create a Web browser application, you can create a standard SDI or MDI application
shell. The only other thing that you need to ensure is that Internet Explorer is installed on
the computer where your application will run. For your development computer, this is
not a problem because the Visual C++ installation probably required you to install the
latest version of Internet Explorer. On any computers where you run your application,
however, you might need to make sure that Internet Explorer is installed or install it
yourself.

To create the shell of the application that you will build today, start a new project using
the MFC AppWizard to create the application shell. Give the project a suitable name,
such as WebBrowse, and click the OK button to start the AppWizard.

In the AppWizard, you can just as easily create an MDI Web browsing application as you
can create an SDI application. For the purposes of the sample application that you are
building today, go ahead and specify that the application is a Single document (SDI)
application. You can accept the default settings for the rest of the AppWizard; for this
example, however, choose the Internet Explorer ReBars for the toolbar appearance on the
fourth AppWizard step.

Finally, on the sixth step, specify the CHtmlView class as the base class for your view
class. This causes your application to be created using the Internet Explorer Web browser
control as the main application view.

Once you finish generating the shell for your application, if you compile and run it while
connected to the Internet, you’ll find that you already have a working Web browser, as
shown in Figure 21.3. However, you do not have the ability to specify where your
browser will take you, other than clicking links in the Web pages displayed.

027 31240-9 CH21 4/27/00 1:04 PM Page 525

Adding Navigation Functionality
Now that you’ve got a working Web browser, it would be nice if you could control
where it takes you. What you need to add is an edit control where the user can enter a
URL. Looking at the toolbar of the running application, you notice there’s a place to put
this control.

Specifying a URL
You probably noticed when you ran your application that the second toolbar had some
static text telling you to lay out the dialog bar. The dialog bar is different from what you
have worked with before. It is a toolbar with dialog controls on it. You even design the
bar in the dialog layout designer. When you look for this dialog bar in the resource tab,
you won’t find it in the toolbar folder; it’s in the dialogs folder.

If you open the dialogs folder and double-click the IDR_MAINFRAME dialog to open it in
the dialog designer, you’ll see that it’s the second toolbar in your application. You can
place edit boxes, buttons, combo boxes, and check boxes on this toolbar. You can place
any control that you can use on a dialog window on this toolbar.

For your Web browser, modify the static text control already on the dialog bar and add
an edit box, as shown in Figure 21.4. Specify an ID for the edit box; for this example,
use the ID IDC_EADDRESS.

Before you open the Class Wizard to begin adding variables and event functions to the
dialog bar, be aware that the dialog bar will automatically send its events to the main
frame class in your application. When you open the Class Wizard, it assumes that you
need to associate the dialog bar with a class and prompts you to create a new class. This
association is not necessary because you can map all its events through the frame and
from there feed them to the view or document classes.

526 Day 21

FIGURE 21.3.
The initial Web brows-
ing application.

027 31240-9 CH21 4/27/00 1:04 PM Page 526

Adding Web Browsing Functionality to Your Applications 527

21

For this example, you don’t even need to use the Class Wizard to add any event handlers
to the dialog bar. You need to trigger an action when the user finishes entering a URL
into the edit box. The closest event available to you through the Class Wizard is the
EN_CHANGED event, which will trigger for each letter the user types. What you need is an
event that will trigger when the user presses the Enter key. Fortunately, when the user
types in the edit box on the dialog bar and presses the Enter key, the IDOK command ID
is sent to the frame class. What you can do is add a command handler in the message
map to call a function on the IDOK command.

In your command handler, you need to get the window text from the edit box on the dia-
log bar. You can pass this string to the Navigate function in the view class, making the
browser go to the page specified by the user.

To add this functionality to your application, add a new member function to the
CMainFrame class. Specify the function type as void, the function declaration as
OnNewAddress, and the access as public. Edit the new function, adding the code in
Listing 21.1.

LISTING 21.1. THE CMainFrame OnNewAddress FUNCTION.

1: void CMainFrame::OnNewAddress()
2: {
3: CString sAddress;
4:
5: // Get the new URL

FIGURE 21.4.
The dialog bar layout.

continues

027 31240-9 CH21 4/27/00 1:04 PM Page 527

LISTING 21.1. CONTINUED

6: m_wndDlgBar.GetDlgItem(IDC_EADDRESS)->GetWindowText(sAddress);
7: // Navigate to the new URL
8: ((CWebBrowseView*)GetActiveView())->Navigate(sAddress);
9: }

In this function, line 6 got the text in the edit box using the GetWindowText function,
placing the text into the m_sAddress variable. The dialog bar was declared in the
CMainFrame class as the m_wndDlgBar variable, so you were able to use the GetDlgItem
function on the dialog bar variable to get a pointer to the edit box.

In line 8, you cast the return pointer from the GetActiveView function as a pointer to the
CWebBrowseView class. This allowed you to call the Navigate function on the view class,
passing it the URL that was entered into the edit box.

Now that you are able to take the URL that the user entered and tell the browser compo-
nent to go to that Web page, how do you trigger this function? You have to add the
message-map entry by hand because this is one that the Class Wizard isn’t able to add. In
the message map, after the closing marker of the AFX_MSG_MAP (the section maintained
by the Class Wizard), add the ON_COMMAND macro, specifying the IDOK command and
your new function as the handler to be called, as in Listing 21.2. You can also add this
entry before the Class Wizard section as long as it’s on either side and not inside the
section maintained by the Class Wizard.

LISTING 21.2. THE CMainFrame MESSAGE MAP.

1: BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
2: //{{AFX_MSG_MAP(CMainFrame)
3: // NOTE - the ClassWizard will add and remove mapping macros

➥ here.
4: // DO NOT EDIT what you see in these blocks of generated

➥ code !
5: ON_WM_CREATE()
6: //}}AFX_MSG_MAP
7: ON_COMMAND(IDOK, OnNewAddress)
8: END_MESSAGE_MAP()

If you compile and run your application, you can enter a URL into the edit box on the
toolbar and press the Enter key, and your application should browse to the Web page you
specified, as in Figure 21.5.

528 Day 21

027 31240-9 CH21 4/27/00 1:04 PM Page 528

Adding Web Browsing Functionality to Your Applications 529

21

Displaying the Current URL
When surfing the Web, you often follow links on Web pages that take you to other Web
sites. When you do this, you wouldn’t know what Web site you accessed if your browser
didn’t place the URL into the address box, indicating the site where you are and provid-
ing the opportunity to copy or modify the URL to find another page on the same site.

Getting the current URL from the browser is a simple matter of calling the
GetLocationURL function and passing the result to the dialog bar. The problem is when
to get the URL. It turns out that some event functions in the CHtmlView class can be
overridden in your class. These functions will be triggered on various events that are
triggered by the browser control. There are event functions for starting the navigation,
beginning a download, monitoring a download’s progress, and, most important for our
needs, indicating a download has finished. None of these event handler functions can be
added to your view class through the Class Wizard. You have to add them all.

To add the download-complete event handler to your application, add a new member
function to the view class of your application. Specify the function type as void, the
function declaration as OnDocumentComplete(LPCTSTR lpszUrl), and the access as pub-
lic. Edit the function, adding the code in Listing 21.3.

LISTING 21.3. THE CWebBrowseView OnDocumentComplete FUNCTION.

1: void CWebBrowseView::OnDocumentComplete(LPCTSTR lpszUrl)
2: {
3: // Pass the new URL to the address bar
4: ((CMainFrame*)GetParentFrame())->SetAddress(lpszUrl);
5: }

FIGURE 21.5.
Browsing to a specified
URL.

027 31240-9 CH21 4/27/00 1:04 PM Page 529

You’ll notice in this function that you didn’t need to call the GetLocationURL function
after all. The URL that is downloaded is passed as an argument to this function. This
allows you to pass the URL along to the frame, where you’ll add another function to
populate the edit box on the dialog bar with the URL.

To add the function to populate the dialog bar with the new URL, add a member function
to the main frame class, CMainFrame. Specify the function type as void, the function dec-
laration as SetAddress(LPCTSTR lpszURL), and the access as public. Edit the function,
adding the code in Listing 21.4.

LISTING 21.4. THE CMainFrame SetAddress FUNCTION.

1: void CMainFrame::SetAddress(LPCTSTR lpszURL)
2: {
3: // Set the new URL in the address edit control
4: m_wndDlgBar.GetDlgItem(IDC_EADDRESS)->SetWindowText(lpszURL);
5: }

In this function, you took the opposite path from the one you used to get the text from
the edit box. You used the SetWindowText to change the text in the edit box to the URL
that you are passing in. When you run your application, you should be able to see the
URL address on the dialog bar change to reflect the Web page that you are viewing.

Back and Forth
Now that you can enter a URL into the dialog bar and have your application go to that
Web site, and you can see the address of any Web sites that you view, it’d be nice if you
could back up from where you might have gone. This is a simple matter of calling the
GoBack and GoForward functions on the view class in your application. You can call
these functions from menu entries, which also allows you to attach toolbar buttons to
perform the same calls.

To add this functionality, open the main menu in the Menu Designer. You can delete the
Edit menu from the bar, and all of the entries below it, because they are of no use in the
application that you are building today. Grab the blank menu entry on the bar, and drag it
to the left of the Help menu. Open the properties dialog for this menu entry and give it a
caption of &Go. This is the menu where all navigation functions will be located.

To provide the back-and-forth functionality, you need to add two menu entries, one for
the GoBack function and one for the GoForward function. Specify the properties for these
two menu entries as shown in Table 21.2.

530 Day 21

027 31240-9 CH21 4/27/00 1:04 PM Page 530

Adding Web Browsing Functionality to Your Applications 531

21

TABLE 21.2. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry ID IDM_GO_BACK

Caption &Back\tCtrl + B

Prompt Back to the previous page\nBack

Menu Entry ID IDM_GO_NEXT

Caption &Next\tCtrl + N

Prompt Go forward to the next page\nNext

Once you add the menu entries, you can use the Class Wizard to add functions to the
view class on both of these menu events. For the IDM_GO_BACK menu ID, add an event
function on the COMMAND event message. Edit the function, adding the code in Listing
21.5.

LISTING 21.5. THE CWebBrowseView OnGoBack FUNCTION.

1: void CWebBrowseView::OnGoBack()
2: {
3: // TODO: Add your command handler code here
4:
5: // Go to the previous page
6: GoBack();
7: }

Open the Class Wizard again, and add an event-handler function for the IDM_GO_NEXT
object ID on the COMMAND event message. Edit this function with the code in Listing 21.6.

LISTING 21.6. THE CWebBrowseView OnGoNext FUNCTION.

1: void CWebBrowseView::OnGoNext()
2: {
3: // TODO: Add your command handler code here
4:
5: // Go to the next page
6: GoForward();
7: }

Now you can run your application and use the menus to back up to the previous Web
pages from wherever you surfed to and then trace your steps forward again. However,
it’s somewhat difficult using the menus, so what you need to do is add an accelerator for
each of these menu entries.

027 31240-9 CH21 4/27/00 1:04 PM Page 531

If you open the accelerator table in the resources tree, you see a bunch of accelerators
tied to menu IDs. Each of these accelerators consist of an ID and a key combination. If
you right-click anywhere in the accelerator table, you see the option of adding a new
accelerator to the table. Choosing this option presents you a dialog to enter the accelera-
tor information. First, you need to specify the menu ID that the accelerator will be tied
to. (As with toolbar buttons, accelerators are tied to menu entries.) Below that, you can
enter the key that will trigger the accelerator, or you can select a key from the drop-down
list.

On the right side of the dialog, you can select the modifiers for the key. Modifiers are the
other keys that must be pressed in combination with the key that you’ve already speci-
fied for the accelerator to be triggered. Once you’ve entered all the necessary informa-
tion for the accelerator, close the dialog and the information you specified is added to the
table.

532 Day 21

It’s recommended that you use either the Ctrl or Alt key as one of the modi-
fier keys on all accelerators using standard keys. If you don’t use one of
these two keys as part of the accelerator, your application might get con-
fused about when the user is typing information into your application and
when the user is triggering an accelerator.

Tip

To add accelerators to the back and forward menus in your application, delete the accel-
erator for the ID_FILE_OPEN menu ID because you won’t use it in this application. Add a
new accelerator and specify the ID as IDM_GO_BACK and the key as B and select the Ctrl
modifier. Add a second accelerator, specifying the ID as IDM_GO_NEXT and the key as N
and select the Ctrl modifier. When you run your application, you can use the Ctrl+B
key combination to back up to the previous page and the Ctrl+N key combination to go
forward.

To really make your application work like most available Web browsers, you would also
add toolbar buttons for these two menu entries with arrows pointing to the left for back
and to the right for forward.

Controlling the Browser
Often when browsing, you come across a Web page that you don’t want to wait to down-
load. You’ll want to stop the transfer part-way through. Maybe you entered the wrong
URL or maybe the download is taking too long. It doesn’t matter why you want to stop
the download; it’s enough that you want to stop it. This is why the CHtmlView class has
the Stop function. It cancels the download currently in progress. To add this functionali-

027 31240-9 CH21 4/27/00 1:04 PM Page 532

Adding Web Browsing Functionality to Your Applications 533

21

ty to your application, add a new menu entry to the View menu in the Menu Designer.
Specify the menu entry properties in Table 21.3.

TABLE 21.3. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry ID IDM_VIEW_STOP

Caption Sto&p

Prompt Stop the current transfer\nStop

Using the Class Wizard, add an event-handler function to the view class for this menu ID
on the COMMAND event message. Edit the function with the code in Listing 21.7.

LISTING 21.7. THE CWebBrowseView OnViewStop FUNCTION.

1: void CWebBrowseView::OnViewStop()
2: {
3: // TODO: Add your command handler code here
4:
5: // Stop the current download
6: Stop();
7: }

If you run your application, you can use this menu entry to stop any download of a Web
page that you don’t want to wait on. It would be more convenient if you added a toolbar
button for this menu ID.

Another control function that most browsers have is the capability to reload the current
Web page. This function is handy for Web pages that contain dynamic elements that
change each time the page is downloaded. It’s also helpful for Web pages that your
browser may have in its cache so that it doesn’t retrieve the newest version of the page.
It’s necessary to be able to force the browser to reload the page and not just display the
cached version (especially if it’s a Web page that you are in the process of creating). The
browser component has the capability built in with the Refresh function. One call to this
function means the current page is reloaded.

You can add this functionality to your application by adding another menu entry to
the View menu. Specify the properties for the new menu entry using the settings in
Table 21.4. You can add a separator bar between the two View menu entries that were
originally there, and the two new entries, to make your menu look like the one in
Figure 21.6.

027 31240-9 CH21 4/27/00 1:04 PM Page 533

TABLE 21.4. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry ID IDM_VIEW_REFRESH

Caption &Refresh

Prompt Refresh the current page\nRefresh

534 Day 21

FIGURE 21.6.
The modified View
menu.

Once you add the menu entry, use the Class Wizard to add an event-handler function to
the view class for the COMMAND event message for this menu entry. Edit the function,
adding the code in Listing 21.8.

LISTING 21.8. THE CWebBrowseView OnViewRefresh FUNCTION.

1: void CWebBrowseView::OnViewRefresh()
2: {
3: // TODO: Add your command handler code here
4:
5: // Reload the current page
6: Refresh();
7: }

Now you can test this functionality by finding a Web site that returns a different page
each time that you refresh the browser, such as the Random Monty Python Skit Server in

027 31240-9 CH21 4/27/00 1:04 PM Page 534

Adding Web Browsing Functionality to Your Applications 535

21

Figure 21.7. As with the rest of the menu functions that you added to this application,
this one should also be added to the toolbar.

FIGURE 21.7.
The Refresh function
will perform a new
download.

Summary
Today you learn how Microsoft designed its Internet Explorer Web browser as a series of
ActiveX components that could be used in other applications. You saw how Microsoft
encapsulated the browser into the CHtmlView class, which can be used in SDI and MDI
applications to provide Web browsing functionality to almost any application. You
learned how you can use this view class to build a Web browser. You saw how you could
use the dialog bar to place controls on a toolbar and how the events for these controls
can be handled in the frame class for the application. Finally, you learned how to add
menus to your application to call the various functions of the Web browser to provide a
complete surfing experience.

Q&A
Q Why is Print Preview not included on the default menus when I choose

CHtmlView as the base class for my view class?

A The printing for the CHtmlView class is performed by the browser, not the view
class. You don’t have print preview because the browser doesn’t support it.

Q How can I get the HTML source code from the browser so that I can see or
edit it?

A The CHtmlView class has a member function, GetHtmlDocument, that returns a
pointer to the IDispatch interface of the document object in the browser. You have
to use the Invoke IDispatch function to call the functions in the document object

027 31240-9 CH21 4/27/00 1:04 PM Page 535

to retrieve the HTML source code. For documentation on how to do this, check out
the Microsoft Developer Network CD that you received with your copy of Visual
C++ 6.

Workshop
The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you’ve
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What does the CHtmlView class encapsulate for use in Visual C++ applications?

2. How can you get the URL for the current Web page from the CHtmlView class?

3. What command is triggered for the frame class when the user presses the Enter key
in the edit box on the dialog bar?

4. What functions can you call to navigate the browser to the previous and the next
Web pages?

5. How can you stop a download in progress?

Exercises
1. Add the GoSearch function to the menu and toolbar.

2. Add the GoHome function to the menu and toolbar.

3. Disable the Stop toolbar button and menu entry when the application is not down-
loading a Web page.

536 Day 21

027 31240-9 CH21 4/27/00 1:04 PM Page 536

In Review
You made it! You now have the skills to tackle most of the
Windows programming tasks in Visual C++, with the excep-
tion of those that require specialized knowledge and under-
standing. Although there’s still plenty for you to learn, you
have covered the vast majority of the topics in a very short
amount of time. From here you will probably want to delve
into one or two more specialized areas of Windows program-
ming—the type that an entire book can be written on—
because at this point, you’ve got just about all the generalized
skills down.

Just in case you don’t have them all down, it’s not a bad idea
to take some time once again to come up with some of your
own applications where you can apply the things you’ve
learned. This will help pinpoint any areas that you might need
to go back and review before jumping into any more
advanced topics. Let’s take a quick look back at what you
should have learned during the past week, just to make sure.

You started off the week by learning about Microsoft’s latest
database application development technology, ActiveX Data
Objects (ADO). You learned how ADO sits on top of the
OLE DB technology, simplifying database access consider-
ably. You learned how you can easily build a database appli-
cation by using ADO as an ActiveX control and connecting it
to some ADO-compatible, data-bound ActiveX controls. You
also learned how you can import the DLL and dive into the
code, exerting complete control over how your application
deals with the database. You learned how you can read and
write each of the fields in a record in the record set by con-
verting it from and to the variant data type. You also learned
how you can design your own custom record class and can

WEEK 3 15

16

17

18

19

20

21

028 31240-9 Rev 3 4/27/00 1:05 PM Page 537

538 Week 3

bind it to the record set object, providing you with a much more convenient way to
access the individual field values in the database. If you are having problems with any of
this, you might want to review Day 15 once more.

You learned three different ways of sharing the functionality modules that you develop
with other programmers, without having to share your code. First you learned how to
build your modules into library files that can be linked into applications by other Visual
C++ developers. You saw how with this approach, if any change is made to the library
module, then all the applications that it’s used in have to be rebuilt. You learned how you
can create these modules without making any special changes to the way you write your
code. If you don’t remember how you did all of this, you can go back to Day 16 to
review it.

The second way that you learned to share your functionality with other programmers
was to build DLLs. You learned how you can create two different types of DLLs: one
that can be used only by other Visual C++ applications and one that can be used by any
other application, regardless of what programming language was used to build it. You
saw how you can create a DLL for use by other Visual C++ programmers without having
to make any real changes to the way you design or code your modules. You also learned
how you need to make dramatic changes to how your module is used and interacted with
when creating DLLs that can be used by all programming languages. You learned how to
provide straight function calls as an interface for use by other applications, with all nec-
essary information to be passed in as parameters to the functions. You also learned how
to build a definition file, with the names of all functions to be exported included in it. If
you need any reminders of how you can do any of this, you’ll want to look over Day 17
again.

The third and final way that you learned to share the functionality of your modules with-
out sharing the code was to package it as an ActiveX control. You learned how to use the
Control and Class Wizards to add in all the properties, methods, and events that you
want to have in your control. You learned how to read and write the properties in your
control. You saw how there are two different ways that the properties in your control can
be implemented, and you learned how to determine which type is appropriate for each of
your control’s properties. You learned how you can raise events in the container applica-
tion from your control by firing the event in your code. Along with all of this, you
learned how you can use the ActiveX Control Test Container utility to test your control,
calling all its methods and triggering all the events that it’s capturing. You saw how you
can monitor the events that your control is firing in the containing application to make
sure that they are being fired as and when they should. If you need any reminders of how
all this works, you can look back at Day 19 for a refresher.

028 31240-9 Rev 3 4/27/00 1:05 PM Page 538

In Review 539

An important thing that you learned was how you can enable your applications to per-
form more than one task at a time. This is an important piece of functionality, and more
applications are requiring this capability every day. Not only did you learn how to make
your applications perform multiple tasks at once, but you also learned two different ways
to do so. First, you learned about the OnIdle function and how you can hook into this
function to trigger your own functionality to be run when the application is sitting idle.
You also learned about the shortcomings of using this approach to adding a second task
to your application and how it can prevent your application from responding to the user.
You need to slice the background task into little pieces that can be done quickly, which
requires you to develop some elaborate way of keeping track of where the task is and
where it needs to pick back up when the application is idle again.

The second way that you learned to give your applications a second or third task to do is
by spinning off separate threads, which run completely independent of the main user-
interface thread. You learned how to create a callback function that controls the top
level of execution for the threads and how you can start and stop the thread as necessary.
You also saw how these independent threads are completely independent from the rest of
the application and how they’ll continue to run, even when the rest of the application is
also busy. If you feel the need to look at all this a second time, you might want to read
Day 18 again.

Another area of growing importance that you learned about was how to build Internet
applications using the Winsock interface classes. You learned how you can build one
application that connects to another over a network and sends messages back and forth.
You learned that, just like with a telephone, for one application to connect to another, the
second application has to be listening for the connection. You saw how easy it is to send
messages and to be notified when a message has arrived after the connection between
the two applications has been made. If you need to review some of this, you might want
to look back at Day 20.

Finally, you learned how you can incorporate the Microsoft Internet Explorer Web
browser into your application without any effort whatsoever. You learned how you can
control the browser by specifying the URL that it should load and display for the user
and how you can display informational messages to the user to show what the browser is
doing and when it’s busy. If you need to look back at this to refresh your memory, you
can go back to Day 21.

That’s it. You’re done. You’ve covered a lot of ground and learned some advanced top-
ics, especially over this last week. Now it’s time to put this book down and get busy pro-
gramming, building your own applications using what you’ve learned. Good luck. If you
find that you need a little help or advice, a good place to turn is the Microsoft news-
groups on the Internet. They are full of people who are both knowledgeable and helpful.

028 31240-9 Rev 3 4/27/00 1:05 PM Page 539

028 31240-9 Rev 3 4/27/00 1:05 PM Page 540

APPENDIX A
C++ Review

The appendix is designed to provide you with a quick review of the fundamen-
tals of the C++ programming language. After reading this appendix, you will
have a thorough understanding of the various aspects of C++ and its syntax.

Creating Your First Application
Your first example is a simple program that displays “Hello World” on the
screen. For this, you create a workspace and the C++ file required for the pro-
gram. The procedure for writing a C++ program using Visual C++ is simple
and easy. Follow these steps:

1. From the main menu, select Visual C++.

2. Select File | New from the Visual C++ toolbar.

Make sure the Projects tab is selected (see Figure A.1).

3. Select Win32 Console Application from the options on the left.

029 31240-9 App A 4/27/00 1:06 PM Page 541

4. Type Hello on the right side under Project Name.

5. Select OK.

Visual C++ creates the workspace of your application. Visual C++ actually creates a
directory Hello, which enables you to store all files related to a particular project in one
area. You will begin adding the files you require for this project:

1. Once again, select File | New from the toolbar.

2. Select the Files tab if it is not already selected.

3. Highlight C++ Source File.

4. Check the Add to Project box on the right side.

5. In the File Name edit box, type Helloworld (see Figure A.2).

6. Click OK.

542 Appendix A

FIGURE A.1.
Setting up the Hello
workspace.

FIGURE A.2.
Setting up the
Helloworld project.

029 31240-9 App A 4/27/00 1:06 PM Page 542

C++ Review 543

A
The Helloworld.cpp file is where you add the C++ source code. All C++ source code
files have a .cpp extension. Later, I will cover other file types.

You create all the tutorial examples in this section in a similar way. The only difference
is that the names of the workspaces and the files are different.

Helloworld.cpp
The Helloworld program displays HELLO WORLD on the screen. Listing A.1 contains the
code. Type the code exactly as shown in the Helloworld.cpp window. Do not type the
line numbers; they are for reference only. C++ is case sensitive, so main is not the same
as MAIN, which is not the same as Main.

LISTING A.1. Helloworld.cpp.

1: // Workspace Name: Hello
2: // Program Name: Helloworld.cpp
3:
4: # include <iostream.h>
5:
6: int main()
7:
8: {
9: cout<< “HELLO WORLD \n”;
10: return 0;
11: }

To run the program, follow these steps:

1. Select File | Save to save your work.

2. Select Build | Set Active Configuration (see Figure A.3).

3. Highlight Hello - Win32 Debug and click OK (see Figure A.4).

4. Select Build | Build Hello.exe.

Visual C++ compiles and links the program to create an executable file. The configura-
tion window indicates the success or failure of the compilation. A successful compilation
returns

Hello.exe - 0 error(s), 0 warning(s)

If you encounter any errors, verify that all the lines of the program were typed exactly as
shown.

To execute the Helloworld program, select Build | Execute Hello.exe.

029 31240-9 App A 4/27/00 1:06 PM Page 543

544 Appendix A

FIGURE A.3.
Setting the active con-
figuration.

FIGURE A.4.
Selecting Win32
Debug.

The program executes by opening an MS-DOS shell and displaying the text HELLO
WORLD (see Figure A.5).

FIGURE A.5.
HELLO WORLD display.

029 31240-9 App A 4/27/00 1:06 PM Page 544

C++ Review 545

A
Components of Helloworld.cpp
The first two lines of the program are comment lines:

// Workspace Name: Hello
// Program Name: Helloworld.cpp

The double slash command (//) tells the compiler to ignore everything after the slash. It
is good programming practice to comment your work because it makes the program easi-
er to read, especially for someone who did not write it. Comments become important
when you are working on a complex program for months. When you want to make
changes, comments assist you in recollecting your thoughts from more than a month ago.

The third line begins with the pound symbol (#):

include <iostream.h>

This is a directive to the preprocessor to search for the filename that follows
(iostream.h) and include it. The angled brackets (< >) cause the preprocessor to search
for the file in the default directories. The iostream.h file contains definitions for the
insertion (<<) and extraction (>>) operators. This directive is required to process the cout
statement defined on line 9 in the program. The iostream.h file is a precompiled header
provided with your compiler. You may experiment with the Helloworld program by com-
menting out the include line. To do this, insert the backslash (//) before the pound sign
(#). When you compile and execute this program, you get an error:

Compiling...
Helloworld.cpp
C:\cplusplus\Hello\Helloworld.cpp(9) : error C2065:
➥ ‘cout’ : undeclared identifier
C:\cplusplus\Hello\Helloworld.cpp(9) : error C2297: ‘<<’ : bad right
➥ operand
Error executing cl.exe.

Hello.exe - 2 error(s), 0 warning(s)

Without the iostream.h file, the program does not recognize the cout command or the
insertion operator (<<).

The next line of code, line 6, is actually where program execution begins. This is the
entry point of your code:

int main()

This line tells the compiler to process a function named main. Every C++ program is a
collection of functions. You will cover functions in greater detail later in this appendix.
For now, you define a function as the entry point for a block of code with a given name.
The empty parentheses indicate that the function does not pass any parameters. Passing

029 31240-9 App A 4/27/00 1:06 PM Page 545

parameters by functions is described in the section “Functions and Variables,” later in
this chapter.

Every C++ program must have the function main(). It is the entry point to begin pro-
gram execution. If a function returns a value, its name must be preceded by the type of
value it will return; in this case, main() returns a value of type int.

The block of code defined by any function should be enclosed in curly brackets ({ }):

{
cout<< “HELLO WORLD \n”;
return 0;
}

All code within these brackets belongs to the named function—in this case, main().

The next line executes the cout object. It is followed by the redirection operator <<,
which passes the information to be displayed. The text to be displayed is enclosed in
quotes. This is followed by the newline operator (\n). The redirection or insertion opera-
tor (<<) tells the code that whatever follows is to be inserted to cout.

546 Appendix A

Line 9 ends with a semicolon. All statements in C++ must end with a semi-
colon.

Note

Line 10 of the code has a return statement. Programmers often use return statements
either to return certain values or to return errors. Also remember that on line 7 when you
defined the main() function, you defined its return type to be an integer (int). You may
rerun this code by deleting the return statement on line 10, in which case line 7 would
have to be modified as follows:

void main()

It is good programming practice to include return codes for complex programs. They
will help you identify and track down bugs in your program.

Functions and Variables
The Helloworld program consists of only one function, main(). A functional C++ pro-
gram typically consists of more than a single function. To use a function, you must first
declare it. A function declaration is also called its prototype. A prototype is a concise
representation of the entire function. When you prototype a function, you are actually

029 31240-9 App A 4/27/00 1:06 PM Page 546

C++ Review 547

A
writing a statement, and as mentioned before, all statements in C++ should end with
semicolons. A function prototype consists of a return type, name, and parameter list. The
return type in the main() function is int, the name is main, and the parameter list is (),
null.

A function must have a prototype and a definition. The prototype and the definition of a
function must agree in terms of return type, name, and parameter list. The only differ-
ence is that the prototype is a statement and must end with a semicolon. Listing A.2
illustrates this point with a simple program to calculate the area of a triangle.

LISTING A.2. Area.cpp.

1: // Workspace: Triangle
2: // Program name: Area.cpp
3: // The area of a triangle is half its base times height
4: // Area of triangle = (Base length of triangle * Height of triangle)/2
5:
6: #include <iostream.h> // Precompiled header
7:
8: double base,height,area; // Declaring the variables
9: double Area(double,double); // Function Prototype/declaration
10:
11: int main()
12: {
13: cout << “Enter Height of Triangle: “; // Enter a number
14: cin >> height; // Store the input in variable
15: cout << “Enter Base of Triangle: “; // Enter a number
16: cin >> base; // Store the input in variable
17:
18: area = Area(base,height); // Store the result from the Area

➥ function
19: // in the variable area
20: cout << “The Area of the Triangle is: “<< area << endl ; // Output the

➥ area
21:
22: return 0;
23: }
24:
25: double Area (double base, double height) // Function definition
26: {
27: area = (0.5*base*height);
28: return area;
29: }

This program declares three variables, base, height, and area, on line 8. Variables store
values that are used by the program. The type of a variable specifies the values to be
stored in the variable. Table A.1 shows the various types supported by C++.

029 31240-9 App A 4/27/00 1:06 PM Page 547

TABLE A.1. VARIABLE DATA TYPES.

Variable Data Type Values

unsigned short int 0 to 65,535

short int –32,768 to 32,767

unsigned long int 0 to 4,294,967,925

long int –2,147,483,648 to 2,147,483,647

int –2,147,483,648 to 2,147,483,647 (32 bit)

unsigned int 0 to 4,294,967,295 (32 bit)

char 256 character values

float 1.2e–38 to 3.4e38

double 2.2e–308 to 1.8e308

To define a variable, you first define its type, followed by the name. You may also assign
values to variables by using the assignment (=) operator, as in these two examples:

double base = 5;

unsigned long int base =5;

In C++, you may also define your own type definition. You do this by using the keyword
typedef, followed by the existing type and name:

typedef unsigned long int ULONG;

ULONG base =5;

Defining your own type does save you the trouble of typing the entire declaration.

The next line of the code, line 9, defines the prototype of your function:

double Area (double,double);

This function has a type double, a name Area, and a parameter list of two variables of
type double. When you define the prototype, it is not necessary to define the parameters,
but it is a good practice to do so. This program takes two inputs from the user, namely
base and height of the triangle, and calculates the area of the triangle. The base,
height, and area are all variables. The Helloworld.cpp example used the insertion (<<)
operator. In this example, you use the extraction (>>) operator. The program queries the
user to enter a value for the height of the triangle on line 13. When the user enters a
value for height, the data from the screen is extracted and placed into the variable
height. The process is repeated for the base of the triangle on lines 15 and 16. After

548 Appendix A

029 31240-9 App A 4/27/00 1:06 PM Page 548

C++ Review 549

A
accepting the input from the user, the function main() passes execution to the function
Area(base,height) along with the parameter values for base and height. When main()
passes the execution to the function Area(base, height), it expects a value of type
double in return from the function. The calculation of the area of the triangle is
conducted on line 27:

area = (0.5*base*height);

Area is the name of a function, and area is a variable name. Because C++ is
case sensitive, it clearly distinguishes these two names.

Note

This statement uses the standard operators, the assignment operator (=), and the multipli-
cation operator (*). The assignment operator assigns the result of (0.5*base*height) to
the variable area. The multiplication operator (*) calculates the resulting values of
(0.5*base*height). The assignment operator (=) has an evaluation order from right-to-
left. Hence, the multiplication is carried out prior to assigning the values to area. The
five basic mathematical operators are addition (+), subtraction (–), multiplication (*),
division (/), and modulus (%).

Line 28 of the Area function returns the value of the variable area to the main() func-
tion. At this point, the control of the program is returned to line 18 of the main() func-
tion. The remainder of the program displays the result of area to the screen.

The if Statement, Operators, and Polymorphism
While programming large complex programs, it is often necessary to query the user and
provide direction to the program based on his input. This is accomplished by using the
if statement. The next example demonstrates the application of an if statement. The
format of the if statement is

if (this expression)
do this;

The if statement is often used in conjunction with relational operators. Another format
of the if statement is

if (this expression)
do this;

else
do this;

Because if statements often use relational operators, let’s review relational operators.
Relational operators are used to determine if two expressions or numbers are equal. If

029 31240-9 App A 4/27/00 1:06 PM Page 549

the two expressions or numbers are not equal, the statement will evaluate to either 0 or
false. Table A.2 lists the six relational operators defined in C++.

TABLE A.2. RELATIONAL OPERATORS.

Operator Name

== Comparative

!= Not equal

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

C++ also has logical operators. The advantage of logical operators is the ability to com-
pare two individual expressions and conclude whether they are true or false. Table A.3
lists the three logical operators.

TABLE A.3. LOGICAL OPERATORS.

Symbol Operator

&& AND

|| OR

! NOT

An important and powerful feature of C++ is function overloading, or polymorphism.
Polymorphism is the ability to have more than one function with the same name that dif-
fer in their parameter lists. The next example is an extension of the previous triangle
code. In this program, you will calculate the area of a triangle and a circle. You will be
asked whether you want to calculate the area of a triangle or a circle. Depending upon
your response, 1 for triangle and 2 for circle, the program collects your input and calcu-
lates the area. In Listing A.3, the Area function is overloaded. The same function name is
used to calculate the area of the triangle or the circle. The functions differ only in their
parameter lists.

LISTING A.3. Overload.ccp.

1: // Workspace Name: Overload
2: // Program Name: Overload.cpp
3:
4: # include <iostream.h>
5:

550 Appendix A

029 31240-9 App A 4/27/00 1:06 PM Page 550

C++ Review 551

A
6: double base,height,radius; // Global variables
7: double Area_of_triangle,Area_of_circle; // Global variables
8: int choice; // Global variable
9:
10: double Area (double,double); // Function prototype
11: double Area (double); // Function prototype
12:
13: const double pi = 3.14; // Constant variable
14:
15: void main() // main function
16:
17: {
18: cout << “To find the area of a Triangle, input 1 \n”;
19: cout << “To find the area of a Circle, input 2 \n”;
20: cin >> choice;
21:
22: if (choice == 1)
23:
24: {
25: cout << “Enter the base of the triangle: “;
26: cin >> base;
27: cout << “Enter the height of the triangle: “;
28: cin >> height;
29:
30: Area_of_triangle = Area(base,height);
31:
32: cout << “The Area of the Triangle is: “<<Area_of_triangle<<endl;
33: }
34:
35: if (choice == 2)
36:
37: {
38: cout << “Enter radius of the Circle: “;
39: cin >> radius;
40: Area_of_circle = Area(radius);
41: cout << “The area of the Circle is: “<<Area_of_circle<<endl;
42: }
43:
44: if (choice != 1 && choice != 2)
45:
46: {
47: cout << “Sorry! You must enter either 1 or 2 \n”;
48: }
49: }
50:
51: double Area (double base, double height)
52: {
53: return (0.5*base*height)
54: }

continues

029 31240-9 App A 4/27/00 1:06 PM Page 551

LISTING A.3. CONTINUED

55:
56: double Area(double radius)
57: {
58: return (pi*radius*radius);
59: }

Global and Local Variables
In all of the preceding examples, the variables have been declared at the beginning of the
program, prior to defining the main() function. Declaring variables in this fashion is
more akin to C programs than C++. They are global variables and can be accessed by all
the functions. However, you may also define local variables that have a scope only in a
particular function. Local variables can have the same names as the global variables, but
they do not change the global variables. Local variables refer only to the function in
which they are defined. This difference can be confusing and lead to erratic results.

The program in Listing A.4 clearly shows the difference between global and local vari-
ables. You will calculate the area of a circle using global variables and local variables.

LISTING A.4. Global.cpp.

1: // Workspace: Variable
2: // Program name: Global.cpp
3:
4: #include <iostream.h>
5:
6: double area;
7: double Area (double);
8: const double pi = 3.14;
9: double radius = 5;
10:
11: int main()
12:
13: {
14: cout<<”This Program Calculates The Area Of A Circle \n”;
15: area = Area (radius);
16: cout << “The Area of the Circle is: “<<area<<endl;
17: cout << “The Radius In the Main() Function is: “<<radius<<endl;
18: return 0;
19: }
20:
21: double Area (double radius)
22: {
23: area = (pi*radius*radius);
24: cout<<”The Radius In the Area() Function is: “<<radius<<endl;

552 Appendix A

029 31240-9 App A 4/27/00 1:06 PM Page 552

C++ Review 553

A
25: return area;
26: }

The variable radius is accessible in the main() function and also the Area() function,
and it is the same. The result of executing this program is shown in Figure A.6.

FIGURE A.6.
Global.cpp—using a
global variable.

As the program executes, it shows the value of the variable radius in the different func-
tions. You will now modify the global variable to be a local variable. Add an additional
line to the Area function defining a local variable:

double radius = 2;

Compile and execute this program. The results are shown in Figure A.7.

FIGURE A.7.
Global.cpp—global
and local variables.

You will notice that the value of the variable radius remains unchanged in the main()
function and changes locally in the Area() function. The area of the circle is calculated
based on the value of the local variable, whereas at the same time, the value of the glob-
al variable is not changed but is hidden from the function Area().

029 31240-9 App A 4/27/00 1:06 PM Page 553

554 Appendix A

It is always advisable to differentiate your global and local variables by pre-
fixing them with a g for global and l for local.

Note

Pointers
Pointers are one of the most important features of C++, and they are always confusing to
new programmers of C++. Pointers work by providing access to the original data direct-
ly, which increases efficiency. Pointers primarily work with two operators, the indirec-
tion operator (*) and the address-of operator (&). It is common practice to add a p to the
beginning of a pointer variable’s name to distinguish it from other variables. A pointer is
just another variable, but the difference is it holds a memory address. You declare a
pointer by putting an asterisk (*) in front of the pointer name. To access the address of
the variable, you put the & operator in front of the variable name.

To understand pointers, you need a brief overview of how variables are stored. You cov-
ered different variable types in Table A.1. Table A.4 shows the size of the variable types.

TABLE A.4. VARIABLE TYPE SIZES.

Variable Type Size in Bytes

unsigned short int 2 bytes

short int 2 bytes

unsigned long int 4 bytes

long int 4 bytes

int 4 bytes (32 bit)

unsigned int 2 bytes(32 bit)

char 1 byte

float 4 bytes

double 8 bytes

In the program address.cpp in Listing A.5, the two variables base and radius each
occupy 8 and 4 bytes. Assume that your computer memory has a certain space to store
these variables, they are sequentially numbered from 1 through 12, and each space is 1
byte. When you declare the variable base of type double, it occupies 8 bytes. Assume
these 8 bytes reside at locations beginning from 1 through 8. You also declared another

029 31240-9 App A 4/27/00 1:06 PM Page 554

C++ Review 555

A
variable radius of type int, which occupies 4 bytes and its location is byte 9 through
byte 12. The location of each of these variables is termed as its address. Hence, the vari-
able base has an address beginning at address 1 and ending at address 8. Similarly, the
variable radius has an address beginning at address 9 and ending at address 12. When
you use the address-of operator (&) on a variable, this is the address returned. The vari-
able base has an address from 1 through 8, but the address-of operator returns its address
as 1. Internally, the system already knows that the total addresses occupied are 8 because
you defined its type as double.

The byte size shown in Table A.4 is not fixed. It can be different depending
on your compiler and the hardware on which it runs. To determine the size
of the variable for your individual compiler and hardware settings, use the
sizeof() function as implemented in Listing A.5 on lines 13 and 16.

Note

The program in Listing A.5 shows how to access the memory address of variables.

LISTING A.5. Address.cpp.

1: // Workspace: Pointers
2: // Program name: Address.cpp
3:
4: #include <iostream.h>
5:
6: double base = 5.0;
7: int radius = 2;
8:
9: void main()
10: {
11: cout<<”The VALUE of base is: “<<base<<endl;
12: cout<<”The ADDRESS of base is: “<<&base<<endl;
13: cout<<”The SIZE of double base is: “<<sizeof(double)<< “bytes \n”;
14: cout<<”The VALUE of radius is: “<<radius<<endl;
15: cout<<”The ADDRESS of radius is: “<<&radius<<endl;
16: cout<<”The SIZE of integer radius is: “<<sizeof(int)<<” bytes \n”;
17: }

The address of the variables is accessed directly on lines 12 and 15 by using the address-
of operator (&).The addresses of the variables base and radius are shown in Figure A.8.
The addresses of the variables depend on your system, so they might not be the same.

029 31240-9 App A 4/27/00 1:06 PM Page 555

556 Appendix A

FIGURE A.8.
Using the address-of
operator.

The indirection operator (*) operates by providing access to the value stored in the
address of the variable. When a pointer is declared for a specific variable type (such as
int), it should not be used with any other type unless it is recast to a new type. You
should remember that a pointer is a variable, and like all other variables, it should be
declared and initialized. A pointer that is not initialized could be dangerous. The pro-
gram in Listing A.5 is modified to access the values of the variables radius and base.
The modified program is provided in Listing A.6.

LISTING A.6. Address.cpp.

1: // Workspace: Pointers
2: // Program name: Address.cpp
3:
4: #include <iostream.h>
5:
6: double base =5.0;
7: int radius =2;
8:
9: double *pBase =0; // Initialize the pointer variable
10: int *pRadius =0; // Initialize the pointer variable
11:
12: void main()
13: {
14: pBase = &base; // Assign the address of base

029 31240-9 App A 4/27/00 1:06 PM Page 556

C++ Review 557

A
15: pRadius = &radius; // Assign the address of radius
16: cout<<”The VALUE of base is: “<<base<<endl; // Output value of base
17: cout<<”The ADDRESS of base is: “<<&base<<endl; // Output address of

➥ base
18: cout<<”The SIZE of double base is: “<<sizeof(double)<< “bytes \n
19: cout<<”The VALUE of pBase is: “<<*pBase<<endl;

➥ // Output redirected value of base
20:
21: cout<<”The VALUE of radius is: “<<radius<<endl;

➥ // Output value of radius
22: cout<<”The ADDRESS of radius is: “<<&radius<<endl;

➥ // Output address of base
23: cout<<”The SIZE of integer radius is: “<<sizeof(int)<<” bytes \n”;
24: cout<<”The VALUE of pRadius is: “<<*pRadius<<endl;

➥ // Output redirected value of radius
25:
26: }

References
An important feature in C++ that is used often with function parameters is references.
Reference is simply a synonym for variable. Until now, you have passed parameters in
functions by value. You will learn how to pass parameters by reference. You create a ref-
erence variable by specifying its type and preceding the name with the reference operator
(&). If you have a variable float radius, you create a reference with

void functionname (float &rfradius);

You can give the reference variable any name you want; in the following example, the
reference variable names have an rf prefix. The advantage of a reference is that you can
pass it as a parameter, like any other variable. However, unlike regular parameters,
changes made to the reference’s value while in a function are stored in the original
variable. The example in Listing A.7 shows how the reference changes the value of the
variable in the main() function.

LISTING A.7. Refer.cpp.

1: // Workspace: Reference
2: // Program name: Refer.cpp
3:
4: #include <iostream.h>
5:
6: void squareit (float &num);
7: int main()
8:

continues

029 31240-9 App A 4/27/00 1:06 PM Page 557

LISTING A.7. CONTINUED

9: {
10: float num=5.0;
11:
12: cout<<”In Main: before squaring number: “<<num*num<<”\n”;
13:
14: squareit (num);
15: cout<<”In Main: after squaring number: “<<num*num<<”\n”;
16: return 0;
17:
18: }
19:
20: void squareit (float &rfnum)
21: {
22:
23: cout<<”In Squareit: before squaring number: “<<rfnum*rfnum<<”\n”;
24:
25: rfnum = rfnum+5;
26:
27: cout<<”In Squareit: after squaring number: “<<rfnum*rfnum<<”\n”;
28:
29: }

You define a function squareit on line 6, and its parameters are references. This is the
function prototype. On line 10, the variable num is given a value of 5. The square of the
number is displayed to the screen on line 15. On line 14, you call the squareit function.

558 Appendix A

You pass the variable num and not its address.Note

Only when execution jumps to line 20 from line 14 are the variables identified as refer-
ences. On line 27, the references are squared and displayed. They should be the same as
the variables because they are just like aliases for the variables. On line 25, you add 5 to
the reference, which in turn changes the variable num. The incremented value is squared
and displayed to the screen. Execution returns to main() on line 15, where the display
confirms the variable was changed. The output for this program is shown in Figure A.9.

029 31240-9 App A 4/27/00 1:06 PM Page 558

A

C++ Review 559

FIGURE A.9.
Passing parameters by
reference.

Classes
In the previous sections, you used data types (int, float, and so on) that are inherently
built into C++. In large complex programs, it is easier to define your own type, which
could be a combination of the inherent types. Classes were added to C++ primarily for
this purpose—to enable the programmer to be able to define custom data types and meth-
ods. The concept of classes in C++ evolved due to certain limitations of the concept of
structures in C. To thoroughly understand classes, you have to step back into C and
understand structures first.

A structure in C/C++ is a way of representing your own custom data. When you defined
variables, you first defined their data types, followed by their names:

int radius;

To define your own data types, you use the keyword struct. The syntax for declaring a
structure is

struct [structure_name]
{
data_members
}

The data_members of a structure are variables and functions. When functions are associ-
ated with classes, they are more appropriately referred to as methods. From now on, you
use the term function for program code that is not a part of a structure or class. A refer-
ence to methods indicates that the function is associated with a class structure. To under-
stand how structures are used, review the example in Listing A.8.

029 31240-9 App A 4/27/00 1:06 PM Page 559

LISTING A.8. Struct.cpp.

1: // Workspace Name: Class1
2: // Program Name: Struct.cpp
3: #include <iostream.h>
4:
5: struct farm_house
6: {
7: int pig_values;
8: };
9:
10: int main()
11: {
12: farm_house pig1, pig2, pig3;
13:
14: pig1.pig_values = 12;
15: pig2.pig_values = 13;
16: pig3.pig_values = 14;
17:
18: cout << “The value of pig1 is “ << pig1.pig_values<< “\n”;
19: cout << “The value of pig2 is “ << pig2.pig_values << “\n”;
20: cout << “The value of pig3 is “ << pig3.pig_values << “\n”;
21:
22: return 0;
23: }.

On line 5, the struct keyword is followed by the name of the structure. The actual defi-
nition of the structure is enclosed in the curly brackets. This particular structure defines a
data member of type int and name pig_value. If you remember, I mentioned earlier that
when you define a structure, you basically define a custom-made data type. All data
types end with a semicolon, so the structure should also end with a semicolon. On line
12, you define three instances of the same type of farm_house, each of which contains a
single int type variable.

560 Appendix A

If you strictly use C, then to define instances on line 12, you must use the
keyword struct:

struct farm_house pig1, pig2, pig3;

This is no longer required in C++.

Note

029 31240-9 App A 4/27/00 1:06 PM Page 560

C++ Review 561

A
On lines 14 through 16, you assign values to the member variables of each structure. The
structure member operator (.), also called the dot operator, is used to access member
variables of the structure. On lines 18 through 20, the assigned values are output to the
screen. Figure A.10 shows the output from this program.

FIGURE A.10.
Structure output.

The most important concept of object-oriented programming is encapsulation.
Encapsulation can involve one or more classes. Encapsulation promotes safeguards and
data hiding. The struct.cpp program had no encapsulation or classes. What do encapsu-
lation and classes mean in object-oriented programming?

Let’s start with describing the syntax and components of a class:

class class_name
{
public:
class_name_constructor;
~class_name_destructor;
class_method_prototypes();
class_member_variables;
private:
class_method_prototypes();
class_member_variables;
};

The words in bold are keywords. You declare a class by using the class keyword. This
is followed by the name of the class. The data and methods of a class are enclosed in
curly brackets ({ }). The methods of a class are function prototypes. They determine the
behavior of the objects of your class. The member variables are the variables in your
class. Classes have constructors and destructors. The methods and variables can be clas-
sified as either public or private.

029 31240-9 App A 4/27/00 1:06 PM Page 561

You will now re-create the previous example of Struct.cpp in Listing A.8, employing
the class and encapsulation methodology. The output from this program in Listing A.9 is
identical to the previous example, Struct.cpp.

LISTING A.9. Clasfarm.cpp.

1: // Workspace: Class2
2: // Program Name: Clasfarm.cpp
3: #include <iostream.h>
4:
5: class farm_house
6: {
7: int pig_values;
8: public:
9: void set(int input);
10: int get(void);
11: };
12:
13: void farm_house::set(int input)
14: {
15: pig_values = input;
16: }
17:
18: int farm_house::get(void)
19: {
20: return pig_values;
21: }
22:
23: int main()
24: {
25: farm_house pig1, pig2, pig3;
26:
27:
28: pig1.set(12);
29: pig2.set(13);
30: pig3.set(14);
31:
32: cout << “The value of pig1 is “ << pig1.get() << “\n”;
33: cout << “The value of pig2 is “ << pig2.get() << “\n”;
34: cout << “The value of pig3 is “ << pig3.get() << “\n”;
35:
36: return 0;
37:
38: }

Compare the struct declaration of the Struct.cpp program in Listing A.8 (lines 5
through 7) to the class declaration of the Clasfarm.cpp program in Listing A.9 (lines 5

562 Appendix A

029 31240-9 App A 4/27/00 1:06 PM Page 562

C++ Review 563

A
through 11). The difference is in the private and public portions of their declarations. In
the struct declaration, everything is public, whereas in the class declaration, you begin
with a private section. All data and methods at the beginning of a class are private. This
means the member variable

int pig_values;

is private and hidden to methods outside the class. This means that the variable pig_
values is not accessible inside main(). In other words, this member variable is hidden.
This member variable is accessible to the methods of its class, mainly

void set (int input);
int get(void);

These methods are defined to be public. Because they are public, these methods can be
accessed by any objects of this class. On line 25, you defined pig1, pig2, and pig3 to be
instances or objects of the class. What? I am sure you are wondering why pig1 is an
object.

You defined on line 5 a class farm_house. Remember when you declare a class, all you
are doing is declaring a new type. When you declare a variable, you declare its type and
then the variable name, as shown here:

long somevariable, anotherone, onemore;

Similarly, to define an object of a class, you declare the type, which in this case is
farm_house, and the object name, which is pig1:

farm_house pig1,pig2,pig3;

On line 28, you set the value of pig1 to 12. This is done using the dot operator (.). The
object pig1 has access to the method set(). The set() method is a method of the class
farm_house, so it has access to its private data. The implementation of the set() method
is shown on line 13. For the program to know that the set() method is within the scope
of the class farm_house, you use the scope (::) operator. On line 15, the variable input
is set to the variable pig_values.

The class farm_house declared two public methods. The other method is the get()
method. The get() method is implemented on line 18. The get() method takes no
parameters but only returns the pig_values because it also is within the scope of the
class farm_house.

On line 32, the get() method is again called by the objects pig1, pig2, and pig3 to
return the pig_values to the screen.

029 31240-9 App A 4/27/00 1:06 PM Page 563

If you compare the two programs struct.cpp and clasfarm.cpp, you notice that one is
about 23 lines, whereas the other is 38 lines. The code just got longer by implementing
classes! This is true. The big benefits of using classes are really seen in more complex
and larger programs. Also, because you hide critical data from the user, using classes is
safer and less error prone. It enables the compiler to find mistakes before they become
bugs.

Constructors and Destructors
Earlier, I defined the syntax of a class. In the syntax, I mentioned constructors and
destructors. However, in the example clasfarm.cpp, you did not define any constructors
or destructors. If a constructor or a destructor is not defined, the compiler creates one for
you.

The Constructor Function
A constructor is a class initialization function that is executed automatically when a class
instance is created. A constructor must abide by the following rules:

● The constructor must have the same name as its class name:
class farm_house
{
public:
farm_house(); //constructor
.....
.....
}

● The constructor cannot be defined with a return value.

● A constructor without any arguments is a default constructor.

● The constructor must be declared with the public keyword.

The Destructor Function
A destructor function is the opposite of a constructor function, which is executed auto-
matically when the block in which the object is initialized is exited. A destructor releases
the object and hence frees up the memory that was allocated. A destructor must abide by
the following rules:

● The destructor must have the same name as the class.

● The destructor function must be preceded by ~.

● The destructor has neither arguments nor a return value.

● The destructor function must be declared with the keyword public.

class farm_house
{

564 Appendix A

029 31240-9 App A 4/27/00 1:06 PM Page 564

C++ Review 565

A
public:
farm_house (); // Constructor function
~farm_house(); // Destructor function
.....
}

Friend Functions and Friend Classes
Methods and members that are declared private are accessible only to that part of the
program that is part of the class. However, a function outside the class or another class
may be defined as a friend class or function. You can declare an entire class or individual
functions as friends. You must follow some critical rules when declaring friend func-
tions:

● The use of friends should be kept to a minimum because it overrides the benefit of
hiding the data.

● Declaring x as a friend of y does not necessarily mean that y has access to the
methods and members of x.

Class Declarations and Definitions
Whenever you use classes, they have their own private and public member variables and
methods. As you saw in the previous Clasfarm.cpp example, the program is getting
lengthy. There are no hard rules, but there are some standard practices followed by
almost all programmers. The procedure is to put all class declarations in the header files.
A header file is a file with an .h or .hpp extension. All the class definitions are placed in
the .cpp file. The beginning of the .cpp file has an include directive for the header file.
For example, the clasfarm program would be separated into clasfarm.h and
Clasfarm.cpp. The Clasfarm.h file would look like Listing A.10.

LISTING A.10. Clasfarm.h.

1: // Workspace: Class2
2: // Program Name: Clasfarm.hpp
3: #include <iostream.h>
4:
5: class farm_house
6: {
7: int pig_values;
8: public:
9: void set(int input);
10: int get(void);
11: };

029 31240-9 App A 4/27/00 1:06 PM Page 565

The Clasfarm.cpp file is in Listing A.11.

LISTING A.11. Clasfarm.cpp.

1: #include <clasfarm.h>
2: void farm_house::set(int input)
3: {
4: pig_values = input;
5: }
6:
7: int farm_house::get(void)
8: {
9: return pig_values;
10: }
11:
12: int main()
13: {
14: farm_house pig1, pig2, pig3;
15:
16:
17: pig1.set(12);
18: pig2.set(13);
19: pig3.set(14);
20:
21: cout << “The value of pig1 is “ << pig1.get() << “\n”;
22: cout << “The value of pig2 is “ << pig2.get() << “\n”;
23: cout << “The value of pig3 is “ << pig3.get() << “\n”;
24:
25: return 0;
26:
27: };

Classes Within a Class
It is perfectly legal to have another class declaration within a given class. This is often
referred to as nesting classes. The following example declares two classes, Lot_size and
Tax_assessment. The Tax_assessment class object taxes is defined within the
Lot_size class. The main() method has no objects of the Tax_assessment class, so the
methods or members of the Tax_assessment class cannot be directly accessed from the
main() function. Let’s review the program in Listing A.12.

LISTING A.12. Class3.cpp.

1: // Workspace Name: Class3
2: // Program Name: Class3.cpp
3: #include <iostream.h>

566 Appendix A

029 31240-9 App A 4/27/00 1:06 PM Page 566

C++ Review 567

A
4:
5: class Tax_assessment
6: {
7: int city_tax;
8: int prop_tax;
9: public:
10: void set(int in_city, int in_prop)
11: {city_tax = in_city; prop_tax = in_prop; }
12: int get_prop_tax(void) {return prop_tax;}
13: int get_city_tax(void) {return city_tax;}
14: };
15:
16:
17: class Lot_size {
18: int length;
19: int width;
20: Tax_assessment taxes;
21: public:
22: void set(int l, int w, int s, int p) {
23: length = l;
24: width = w;
25: taxes.set(s, p); }
26: int get_area(void) {return length * width;}
27: int get_data(void) {return taxes.get_prop_tax() ;}
28: int get_data2(void) {return taxes.get_city_tax() ;}
29: };
30:
31:
32: int main()
33: {
34: Lot_size small, medium, large;
35:
36: small.set(5, 5, 5, 25);
37: medium.set(10, 10, 10, 50);
38: large.set(20, 20, 15, 75);
39:
40:
41: cout << “For a small lot of area “<< small.get_area ()<< “\n”;
42: cout << “the city taxes are $ “<< small.get_data2 () << “\n”;
43: cout << “and property taxes are $ “ << small.get_data ()<< “\n”;
44:
45: cout << “For a medium lot of area “<< medium.get_area ()<< “\n”;
46: cout << “the city taxes are $ “<< medium.get_data2 () << “\n”;
47: cout << “and property taxes are $ “ << medium.get_data ()<< “\n”;
48:
49: cout << “For a Large lot of area “<< large.get_area ()<< “\n”;
50: cout << “the city taxes are $ “<< large.get_data2 () << “\n”;
51: cout << “and property taxes are $ “ << large.get_data ()<< “\n”;
52: return 0;
53: }

029 31240-9 App A 4/27/00 1:06 PM Page 567

When you execute this program, it outputs the area of an rectangle and also the hypothet-
ical taxes on rectangular area. The output is shown in Figure A.11.

568 Appendix A

FIGURE A.11.
Output from
Class3.cpp.

In lines 5 through 14, the class Tax_assessment is defined. It consists of two private
data members, int city_tax and int prop_tax. The class has three public methods. It
is important to note the declaration and definition of these methods. In the earlier exam-
ples, you only declared the methods in the class. The function definitions were accessed
using the scope (::) operator. In this example, you declare the method and also write its
definition. This technique is referred to as inline implementation of the function. If a
function definition is small and concise, this is a good technique to employ. This tech-
nique is also used to increase program efficiency (speed of execution) because the pro-
gram does not have to jump in and out of a function definition.

The data members city_tax and prop_tax are private so they can only be accessed via
their member methods—namely, set(), get_prop_tax(), and get_city_tax().

Lines 17 through 29 declare the class Lot_size with its data members and methods. On
line 20, the class Tax_assessment is embedded in this class. The object taxes is also
declared on this line, and it is under the privacy of the class Lot_size. The only methods
that would be able to access this object are the ones belonging to the Lot_size class.
The Lot_size class has four public methods declared and defined on line 22 and lines 26
through 28. Line 25 of the set() method has another set() method defined. This is not
a recursive method but rather another example of function overloading. The set()
method on line 10 and line 22 differ in the number of parameters. The set() method on
line 25 can access the object taxes because it is defined under the class Tax_assessment
on line 20.

029 31240-9 App A 4/27/00 1:06 PM Page 568

C++ Review 569

A
The main() function begins on line 32 and has a return type int. On line 34, the objects
of class Lot_size are declared. On lines 36 through line 38, the values of the objects are
set using the set() method. An important point to note is that the class Tax_assessment
has no objects in the main() method, so you cannot access any data member or method
of this class from main().

On line 41, the area of the Lot_size is output by operating the get_area() method on
an object of class Lot_size. On line 42, the city taxes are output by operating the
method get_data2 on an object of Lot_size. This approach is required because the
city_tax is a member data of class Tax_assessment, which cannot be operated on
directly in the main() method. You use the method get_data2, which is a method of
Lot_size and has access to the object taxes, which in turn can be accessed via
get_city_tax.

Inheritance
One of the advantages of programming in C++ or any other object-oriented language is
taking a global to local approach. Suppose you need to develop a program that compre-
hends all metals and their characteristics. If you take the class approach of the previous
section, you would probably have one class named metals. The data members of metals
would probably be density and volume. You could have another class named gold and
one for aluminum. The data members describing gold and aluminum would need all the
properties of metals in addition to their own data members such as color and shine. If
you could devise a hierarchy of classes such that the classes for gold and aluminum
would have only their individual data members but inherit the generic properties from
the parent metals class—then you would be using inheritance.

Inheritance is also called derivation. The new class inherits the functionality of an exist-
ing class. The existing class is called the base class, and the new class is called the
derived class. A similar inheritance can be derived for animals, mammals, and dogs.

To derive a new class from a base class, you use the colon (:) operator:

class human : public mammal

In this example, the new class human is derived from the base class mammal. The derived
class human would have all the functionality of the base class mammal. In addition, the
human class can have other functionality, such as the ability to drive a car and work for
food. The example in Listing A.13 shows how to create the objects of type human and
access its data and functions.

029 31240-9 App A 4/27/00 1:06 PM Page 569

LISTING A.13. Inherit1.cpp.

1: // Workspace Name: Inherit
2: // Program Name : Inherit1.cpp
3:
4: #include <iostream.h>
5: enum GENDER { MALE, FEMALE };
6:
7: class Mammal
8: {
9: public:
10: // constructors
11: Mammal():itsAge(35), itsWeight(180){}
12: ~Mammal(){}
13:
14: int GetAge()const { return itsAge; }
15: void SetAge(int age) { itsAge = age; }
16: int GetWeight() const { return itsWeight; }
17: void SetWeight(int weight) { itsWeight = weight; }
18:
19:
20: protected:
21: int itsAge;
22: int itsWeight;
23: };
24:
25: class Human : public Mammal
26: {
27: public:
28:
29: // Constructors
30: Human():itsGender(MALE){}
31: ~Human(){}
32:
33: GENDER GetGender() const { return itsGender; }
34: void SetGender(GENDER gender) { itsGender = gender; }
35:
36: void Drive() { cout << “Driving to work...\n”; }
37: void Work() { cout << “working...\n”; }
38:
39: private:
40: GENDER itsGender;
41: };
42:
43: void main()
44: {
45: Human John_doe;
46: John_doe.Drive();
47: John_doe.Work();
48: cout << “John_doe is “ << John_doe.GetAge() << “ years old\n”;

570 Appendix A

029 31240-9 App A 4/27/00 1:06 PM Page 570

C++ Review 571

A
49: cout << “And weighs “ <<John_doe.GetWeight() << “ lbs \n”;
50: }

The output from Listing A.13 is shown in Figure A.12.

FIGURE A.12.
Inheritance output.

On line 5, a new keyword enum is defined. Enumerate defines a new data type with a list
of identifiers. The identifiers are fixed values that increment automatically. In this exam-
ple, the variable MALE has a value 0 and the variable FEMALE has a value 1 by default.
You could also specify a value:

enum Alphabets (A, B, C=5, D=1)

In this case, A has a value 0, B is 1, C is 5, and D is 1. If you did not specify any values,
then

A is 0

B is 1

C is 2

D is 3

On line 20, another new keyword protected is defined in the class Mammal. You covered
public and private in the section on classes where all the data members were defined
under the private keyword. When the data member is defined as private, the derived
class cannot access them. For the derived classes to be able to access the data members
and methods of a class, they must be defined as protected. The protected keyword
restricts the access only to the derived classes. Another alternative is to define these
methods and members as public, in which case all classes have free access. Although
this is a solution, it is not a desired solution because it moves you away from encapsula-
tion.

029 31240-9 App A 4/27/00 1:06 PM Page 571

Line 7 declares the base class Mammal. The constructor is on line 11, and the destructor is
on line 12. In classes, whenever an object of the class is created, the class constructor is
called. The constructor class performs an additional function of initializing its member
data, itsAge(35) and itsWeight(180). This could have been accomplished by initializ-
ing the member data in the body of the constructor, as shown in the following:

Mammal()
{
itsAge = 35;
itsWeight = 180;
};

The technique of initializing the data members in the constructor declaration (as shown
on line 11 of Listing A.14) is far more efficient due to the internal initialization of classes
in C++. Use this technique whenever possible because it increases code efficiency.

With derived classes, when an object is created in the derived class, the constructor of
the base class is called first and then the constructor of the derived class is called. In this
example, when the object John_doe is created for the first time, the constructor of the
base class Mammal is called. The object John_doe is not created until both the base con-
structor and derived class constructor are called. With destructors, the reverse order is
followed; when the object John_doe ceases to exist, the derived class destructor is called
before the base class destructor. On line 25, you define the name of the derived class and
its relevant base class.

Line 48 and line 49 are critical in terms of how the data is accessed and output. On lines
48 and 49, the Human object John_doe accesses information directly from the base class
of Mammal. Remember from the example class3.cpp, to output data from a nested class,
you had to use indirect access to the class Tax_assessment.

Inheritance is a significant tool in object-oriented programming, and if it’s used effec-
tively, it provides code reusability. The inherit1.cpp program gave you an overall fla-
vor of inheritance and its properties. However, when programs are written in real life,
they are structured more efficiently. The next program involves a more logical and for-
mal process of writing a program.

Assume you are writing a program for the automobile market. The automobile market
consists of cars, trucks, minivans, and SUVs (sport utility vehicles). automobile is the
parent or base class, and the others are the derived classes. Let’s start by defining the
automobile class. Listing A.14 shows the code.

572 Appendix A

029 31240-9 App A 4/27/00 1:06 PM Page 572

C++ Review 573

A
LISTING A.14. Auto.h.

1: // Workspace name: Inherit2
2: // Program name: Auto.h
3:
4: #ifndef AUTO_H
5: #define AUTO_H
6:
7: class automobile
8: {
9: protected:
10: int miles_per_gallon;
11: float fuel_capacity;
12: public:
13: void initialize(int in_mpg, float in_fuel);
14: int get_mpg(void);
15: float get_fuel(void);
16: float travel_distance(void);
17: }
18:
19: #endif

Lines 4 and 5 include directives to the preprocessor. The directive on line 4 is covered in
detail toward the end of this section. On line 7, the class automobile is defined. This
class has two data members and four methods. The class is included in the header file
only. The definition of the methods of this class are contained in the Auto.cpp file in
Listing A.15.

LISTING A.15. Auto.cpp.

1: // Workspace name : Inherit2
2: // Program name : Auto.cpp
3: #include “auto.h”
4:
5:
6: void automobile::initialize(int in_mpg, float in_fuel)
7: {
8: miles_per_gallon = in_mpg;
9: fuel_capacity = in_fuel;
10: }
11:
12: // Get the rated fuel economy - miles per gallon
13: int automobile::get_mpg()
14: {
15: return miles_per_gallon;
16: }
17:

continues

029 31240-9 App A 4/27/00 1:06 PM Page 573

LISTING A.15. CONTINUED

18: // Get the fuel tank capacity
19: float automobile::get_fuel()
20: {
21: return fuel_capacity;
22: }
23:
24: // Return the travel distance possible
25: float automobile::travel_distance()
26: {
27: return miles_per_gallon * fuel_capacity;
28: }

The method get_mpg provides the value for the miles per gallon for a particular vehicle.
The get_fuel method provides the gas tank capacity. Next, you define the first derived
class, a car, in Listing A.16.

LISTING A.16. Car.h.

1: // Workspace name: Inherit2
2: // Program name: Car.h
3:
4: #ifndef CAR_H
5: #define CAR_H
6:
7: #include “auto.h”
8:
9: class car : public automobile
10: {
11: int Total_doors;
12: public:
13: void initialize(int in_mpg, float in_fuel, int door = 4);
14: int doors(void);
15: };
16:
17: #endif

The class car is a derived class from the automobile class. Because it is a derived class,
it has access to all of the methods of the base class automobile. In addition, this class
has a data member for the number of doors in the car. The methods of this class are
defined in Car.cpp in Listing A.17.

574 Appendix A

029 31240-9 App A 4/27/00 1:06 PM Page 574

C++ Review 575

A
LISTING A.17. Car.cpp.

1: // Workspace name: Inherit2
2: // Program name: Car.cpp
3:
4: #include “car.h”
5:
6: void car::initialize(int in_mpg, float in_fuel, int door)
7: {
8: Total_doors = door;
9: miles_per_gallon = in_mpg;
10: fuel_capacity = in_fuel;
11: }
12:
13:
14: int car::doors(void)
15: {
16: return Total_doors;
17: }

The initialization method is defined in lines 6 through 11. It is important to note that
the base class of the automobile (auto.h) also had an initialization method. The
initialization in the car class overrides the base class initialization. Last but not
least is the main() definition. The main() method is defined in Allauto.cpp in Listing
A.18.

LISTING A.18. Allauto.cpp.

1: // Workspace name: Inherit2
2: // Program name: Allauto.cpp
3:
4: #include <iostream.h>
5: #include “auto.h”
6: #include “car.h”
7:
8: int main()
9: {
10:
11: car sedan;
12:
13: sedan.initialize(24, 20.0, 4);
14: cout << “The sedan can travel “ << sedan.travel_distance() <<
15: “ miles.\n”;
16: cout << “The sedan has “ << sedan.doors() << “ doors.\n”;
17:
18: return 0;
19: }

029 31240-9 App A 4/27/00 1:06 PM Page 575

The main() definition has only one object defined. On line 11, an object of class car is
declared. The initialization is on line 13. The initialization passes the fuel efficiency
of the car (miles per gallon) and the tank capacity. This information is used to access the
method travel_distance in the base class define in auto.cpp. The derived class has
access to the methods of the base class. Additionally, the derived class passes informa-
tion to its own data member about the number of doors in the vehicle. The result of exe-
cuting this program is shown in Figure A.13.

576 Appendix A

FIGURE A.13.
Vehicle class results.

You can now add more classes for other vehicle types. You can make your own classes
for a truck and minivan and derive them from the base class exactly like the car class.

If you add another class for trucks, it is important to include the preprocessor directives
from Listing A.14’s lines 4 and 19. These lines are listed again in the following:

4 #ifndef AUTO.H
5 #define AUTO.H
.
.
.
19 #endif

Because the truck class is derived from the parent class automobile, it must include the
file Auto.h in Truck.h. The header of the car class, Car.h, already includes Auto.h for
the same reason. Now, if you create a method that uses both the truck and car classes,
you could potentially include Auto.h twice, which would generate in a compiler error.
To prevent this, you add lines 4 and 5 of Listing A.14. Line 4 issues a command to the
compiler to verify whether the class AUTO.H has been defined; if it hasn’t been defined,
the program jumps to line 5 and defines it, and if it has been defined, the program jumps
to line 19 and ends.

029 31240-9 App A 4/27/00 1:06 PM Page 576

C++ Review 577

A
Summary

Congratulations! You have covered almost all of the features and properties of C++. You
should now have a solid footing to take full advantage of Visual C++ and object-oriented
programming.

029 31240-9 App A 4/27/00 1:06 PM Page 577

029 31240-9 App A 4/27/00 1:06 PM Page 578

APPENDIX B
Answers

This appendix provides the answers to the quiz questions and exercises at the
end of each chapter.

Day 1

Quiz
1. How do you change the caption on a button?

In the window layout editor, select the button to be changed. Right-click
the mouse and select Properties from the pop-up menu. Change the value
in the Caption field.

2. What can you do with the Visual C++ AppWizard?

You can use it to build a shell for your application, based on the type of
application and the functionality needs of the application. The shell will
have support for the desired functionality already built in.

030 31240-9 APP B 4/27/00 1:07 PM Page 579

3. How do you attach functionality to the click of a button?

By using the Class Wizard, you can create a function and attach it to an object for
handling a specific Windows message. The Class Wizard creates the function and
can take you right to the spot in the function’s code where you need to begin
adding your own code.

Exercise
Add a second button to the About window in your application. Have the button display a
different message from the one on the first window.

1. In the workspace pane, select the Resource View tab.

2. Expand the dialog tree branch and double-click the IDD_ABOUTBOX dialog, bringing
it into the Developer Studio editor.

3. Click the button control on the toolbar.

4. Click and drag the mouse on the window where you want the button to be placed.

5. Open the properties dialog for the new button, changing the ID and caption to
describe the message to be displayed by the button. Close the properties dialog.

6. Open the Class Wizard and add a new function for the clicked message for your
new button.

7. Click the Edit Code button in the Class Wizard to take you to the spot in your code
where your new function is.

8. Add the MessageBox function to display a message to the user.

9. Compile and run your application to test your new button.

Day 2
Quiz

1. Why do you need to specify the tab order of the controls on your application win-
dows?

By specifying the tab order of the controls on your application windows, you can
control the order in which the user navigates the application window. If the user is
using the keyboard to navigate around the application window, then the two
primary means of navigating between controls are the tab key and mnemonics
that jump directly to specific controls. The tab order helps provide the user with
a consistent and predictable experience when using your application.

580 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 580

Answers 581

B

2. How can you include a mnemonic in a static text field that will take the user to the
edit box or combo box beside the text control?

If you place a mnemonic in a static text control and then make sure that the static
text control is just before the edit control associated with the static text, the user
can select the mnemonic in the static text control to jump directly to the edit box
control.

3. Why do you need to give unique object IDs to the static text fields in front of the
edit box and combo boxes?

The unique object IDs on the two static text controls were necessary because you
need to manipulate those two controls with the check boxes that enable or disable
and show or hide sets of controls.

4. Why do you need to call the UpdateData function before checking the value of one
of the controls?

If the user has changed the value of the control on the screen, the UpdateData
function must be called, passing it TRUE as the function argument, to copy the val-
ues from the controls on the window to the variables that are associated with those
controls. If UpdateData is not called, then the values of the variables may not cor-
rectly reflect what the user has changed on the screen.

Exercises
1. Add code to the Default Message button to reset the edit box to say Enter a

message here.

Using the Class Wizard, add a function to the Default Message button’s clicked
event. In this function, add the code in Listing B.1.

LISTING B.1. DAY2DLG.CPP—THE CODE TO PLACE A DEFAULT MESSAGE IN THE EDIT BOX.

1: void CDay2Dlg::OnDfltmsg()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Set the message to a default message
10: m_strMessage = “Enter a message here”;
11:
12: // Update the screen
13: UpdateData(FALSE);

continues

030 31240-9 APP B 4/27/00 1:07 PM Page 581

LISTING B.1. CONTINUED

14:
15: ///////////////////////
16: // MY CODE ENDS HERE
17: ///////////////////////
18: }

2. Add code to enable or disable and show or hide the controls used to select and run
another application.

Add functions to the Enable and Show Program Action check boxes. In these func-
tions, add the code in Listing B.2.

LISTING B.2. DAY2DLG.CPP—THE CODE TO ENABLE OR DISABLE AND SHOW OR HIDE THE RUN
PROGRAM CONTROLS.

1: void CDay2Dlg::OnCkenblpgm()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Get the current values from the screen
10: UpdateData(TRUE);
11:
12: // Is the Enable Program Action check box checked?
13: if (m_bEnablePgm == TRUE)
14: {
15: // Yes, so enable all controls that have anything
16: // to do with running a program
17: GetDlgItem(IDC_PROGTORUN)->EnableWindow(TRUE);
18: GetDlgItem(IDC_RUNPGM)->EnableWindow(TRUE);
19: GetDlgItem(IDC_STATICPGM)->EnableWindow(TRUE);
20: }
21: else
22: {
23: // No, so disable all controls that have anything
24: // to do with running a program
25: GetDlgItem(IDC_PROGTORUN)->EnableWindow(FALSE);
26: GetDlgItem(IDC_RUNPGM)->EnableWindow(FALSE);
27: GetDlgItem(IDC_STATICPGM)->EnableWindow(FALSE);
28: }
29:
30: ///////////////////////
31: // MY CODE ENDS HERE
32: ///////////////////////

582 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 582

Answers 583

B

33: }
34:
35: void CDay2Dlg::OnCkshwpgm()
36: {
37: // TODO: Add your control notification handler code here
38:
39: ///////////////////////
40: // MY CODE STARTS HERE
41: ///////////////////////
42:
43: // Get the current values from the screen
44: UpdateData(TRUE);
45:
46: // Is the Show Program Action check box checked?
47: if (m_bShowPgm == TRUE)
48: {
49: // Yes, so show all controls that have anything
50: // to do with running a program
51: GetDlgItem(IDC_PROGTORUN)->ShowWindow(TRUE);
52: GetDlgItem(IDC_RUNPGM)->ShowWindow(TRUE);
53: GetDlgItem(IDC_STATICPGM)->ShowWindow(TRUE);
54: }
55: else
56: {
57: // No, so hide all controls that have anything
58: // to do with running a program
59: GetDlgItem(IDC_PROGTORUN)->ShowWindow(FALSE);
60: GetDlgItem(IDC_RUNPGM)->ShowWindow(FALSE);
61: GetDlgItem(IDC_STATICPGM)->ShowWindow(FALSE);
62: }
63:
64: ///////////////////////
65: // MY CODE ENDS HERE
66: ///////////////////////
67: }

3. Extend the code in the OnRunpgm function to allow the user to enter his own pro-
gram name to be run.

Modify the OnRunpgm function as in Listing B.3.

LISTING B.3. DAY2DLG.CPP—THE CODE TO RUN ANY PROGRAM NAME TYPED INTO THE RUN
PROGRAM COMBO BOX.

1: void CDay2Dlg::OnRunpgm()
2: {
3: // TODO: Add your control notification handler code here
4:

continues

030 31240-9 APP B 4/27/00 1:07 PM Page 583

LISTING B.3. CONTINUED

5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Get the current values from the screen
10: UpdateData(TRUE);
11:
12: // Declare a local variable for holding the program name
13: CString strPgmName;
14:
15: // Copy the program name to the local variable
16: strPgmName = m_strProgToRun;
17:
18: // Make the program name all uppercase
19: strPgmName.MakeUpper();
20:
21: // Did the user select to run the Paint program?
22: if (strPgmName == “PAINT”)
23: // Yes, run the Paint program
24: WinExec(“pbrush.exe”, SW_SHOW);
25:
26: // Did the user select to run the Notepad program?
27: if (strPgmName == “NOTEPAD”)
28: // Yes, run the Notepad program
29: WinExec(“notepad.exe”, SW_SHOW);
30:
31: // Did the user select to run the Solitaire program?
32: if (strPgmName == “SOLITAIRE”)
33: // Yes, run the Solitaire program
34: WinExec(“sol.exe”, SW_SHOW);
35:
36: // Run any other program name typed into the combo box
37: if ((strPgmName != “PAINT”) && (strPgmName != “NOTEPAD”) &&
38: (strPgmName != “SOLITAIRE”))
39: // Yes, run the program typed into the combo box
40: WinExec(strPgmName, SW_SHOW);
41:
42: ///////////////////////
43: // MY CODE ENDS HERE
44: ///////////////////////
45: }

584 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 584

Answers 585

B

Day 3
Quiz

1. What are the possible mouse messages that you can add functions for?

WM_LBUTTONDOWN, WM_LBUTTONUP, WM_LBUTTONDBLCLK, WM_RBUTTONDOWN,
WM

_RBUTTONUP, WM_RBUTTONDBLCLK, WM_MOUSEMOVE, and WM_MOUSEWHEEL.

2. How can you tell if the left mouse button is down on the WM_MOUSEMOVE event
message?

You can mask the flags passed to the OnMouseMove function with the MK_LBUTTON
flag, as follows:

((nFlags & MK_LBUTTON) == MK_LBUTTON)

3. How can you prevent the cursor from changing back to the default cursor after you
set it to a different one?

Return TRUE in the OnSetCursor event function, preventing the ancestor
OnSetCursor function from being called.

Exercises
1. Modify your drawing program so that the left mouse button can draw in red and

the right mouse button can draw in blue.

Add a function for the WM_RBUTTONDOWN event message and write the code for it as
in Listing B.4.

LISTING B.4. MOUSEDLG.CPP—THE OnRButtonDown FUNCTION.

1: void CMouseDlg::OnRButtonDown(UINT nFlags, CPoint point)
2: {
3: // TODO: Add your message handler code here and/or call default
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Set the current point as the starting point
10: m_iPrevX = point.x;
11: m_iPrevY = point.y;
12:
13: ///////////////////////
14: // MY CODE ENDS HERE
15: ///////////////////////
16:
17: CDialog::OnRButtonDown(nFlags, point);
18: }

030 31240-9 APP B 4/27/00 1:07 PM Page 585

Extend the OnMouseMove function as in Listing B.5.

LISTING B.5. MOUSEDLG.CPP—THE MODIFIED OnMouseMove FUNCTION.

1: void CMouseDlg::OnMouseMove(UINT nFlags, CPoint point)
2: {
3: // TODO: Add your message handler code here and/or call default
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Check to see if the left mouse button is down
10: if ((nFlags & MK_LBUTTON) == MK_LBUTTON)
11: {
12: // Get the Device Context
13: CClientDC dc(this);
14:
15: // Create a new pen
16: CPen lpen(PS_SOLID, 16, RGB(255, 0, 0));
17:
18: // Use the new pen
19: dc.SelectObject(&lpen);
20:
21: // Draw a line from the previous point to the current point
22: dc.MoveTo(m_iPrevX, m_iPrevY);
23: dc.LineTo(point.x, point.y);
24:
25: // Save the current point as the previous point
26: m_iPrevX = point.x;
27: m_iPrevY = point.y;
28: }
29:
30: // Check to see if the right mouse button is down
31: if ((nFlags & MK_RBUTTON) == MK_RBUTTON)
32: {
33: // Get the Device Context
34: CClientDC rdc(this);
35:
36: // Create a new pen
37: CPen rpen(PS_SOLID, 16, RGB(0, 0, 255));
38:
39: // Use the new pen
40: rdc.SelectObject(&rpen);
41:
42: // Draw a line from the previous point to the current point
43: rdc.MoveTo(m_iPrevX, m_iPrevY);
44: rdc.LineTo(point.x, point.y);
45:
46: // Save the current point as the previous point

586 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 586

Answers 587

B

47: m_iPrevX = point.x;
48: m_iPrevY = point.y;
49: }
50:
51: ///////////////////////
52: // MY CODE ENDS HERE
53: ///////////////////////
54:
55: CDialog::OnMouseMove(nFlags, point);
56: }

2. Extend the OnKeyDown function to add some of the following standard cursors:

● IDC_CROSS

● IDC_UPARROW

● IDC_SIZEALL

● IDC_SIZENWSE

● IDC_SIZENESW

● IDC_SIZEWE

● IDC_SIZENS

● IDC_NO

● IDC_APPSTARTING

● IDC_HELP

Your modified OnKeyDown function can look something like the following:
void CMouseDlg::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags)
{

// TODO: Add your message handler code here and/or call default

///////////////////////
// MY CODE STARTS HERE
///////////////////////

char lsChar; // The current character being pressed
HCURSOR lhCursor; // The handle to the cursor to be displayed

// Convert the key pressed to a character
lsChar = char(nChar);

// Is the character “A”
if (lsChar == ‘A’)
{

// Load the arrow cursor
lhCursor = AfxGetApp()->LoadStandardCursor(IDC_ARROW);
// Set the cursor flag

030 31240-9 APP B 4/27/00 1:07 PM Page 587

m_bCursor = TRUE;
// Set the screen cursor
SetCursor(lhCursor);

}

// Is the character “B”
if (lsChar == ‘B’)
{

// Load the I beam cursor
lhCursor = AfxGetApp()->LoadStandardCursor(IDC_IBEAM);
// Set the cursor flag
m_bCursor = TRUE;
// Set the screen cursor
SetCursor(lhCursor);

}

// Is the character “C”
if (lsChar == ‘C’)
{

// Load the hourglass cursor
lhCursor = AfxGetApp()->LoadStandardCursor(IDC_WAIT);
// Set the cursor flag
m_bCursor = TRUE;
// Set the screen cursor
SetCursor(lhCursor);

}

// Is the character “D”
if (lsChar == ‘D’)
{

// Load the cross hair cursor
lhCursor = AfxGetApp()->LoadStandardCursor(IDC_CROSS);
// Set the cursor flag
m_bCursor = TRUE;
// Set the screen cursor
SetCursor(lhCursor);

}

// Is the character “E”
if (lsChar == ‘E’)
{

// Load the up arrow cursor
lhCursor = AfxGetApp()->LoadStandardCursor(IDC_UPARROW);
// Set the cursor flag
m_bCursor = TRUE;
// Set the screen cursor
SetCursor(lhCursor);

}

// Is the character “F”
if (lsChar == ‘F’)

588 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 588

Answers 589

B

{
// Load the size cursor
lhCursor = AfxGetApp()->LoadStandardCursor(IDC_SIZEALL);
// Set the cursor flag
m_bCursor = TRUE;
// Set the screen cursor
SetCursor(lhCursor);

}

// Is the character “G”
if (lsChar == ‘G’)
{

// Load the up/right-down/left size cursor
lhCursor = AfxGetApp()->LoadStandardCursor(IDC_SIZENWSE);
// Set the cursor flag
m_bCursor = TRUE;
// Set the screen cursor
SetCursor(lhCursor);

}

// Is the character “H”
if (lsChar == ‘H’)
{

// Load the up/left-down/right size cursor
lhCursor = AfxGetApp()->LoadStandardCursor(IDC_SIZENESW);
// Set the cursor flag
m_bCursor = TRUE;
// Set the screen cursor
SetCursor(lhCursor);

}

// Is the character “I”
if (lsChar == ‘I’)
{

// Load the left-right size cursor
lhCursor = AfxGetApp()->LoadStandardCursor(IDC_SIZEWE);
// Set the cursor flag
m_bCursor = TRUE;
// Set the screen cursor
SetCursor(lhCursor);

}

// Is the character “J”
if (lsChar == ‘J’)
{

// Load the up-down size cursor
lhCursor = AfxGetApp()->LoadStandardCursor(IDC_SIZENS);
// Set the cursor flag
m_bCursor = TRUE;
// Set the screen cursor
SetCursor(lhCursor);

}

030 31240-9 APP B 4/27/00 1:07 PM Page 589

if (lsChar == ‘K’)
{

// Load the no cursor
lhCursor = AfxGetApp()->LoadStandardCursor(IDC_NO);
// Set the cursor flag
m_bCursor = TRUE;
// Set the screen cursor
SetCursor(lhCursor);

}

if (lsChar == ‘L’)
{

// Load the app starting cursor
lhCursor = AfxGetApp()->LoadStandardCursor(IDC_APPSTARTING);
// Set the cursor flag
m_bCursor = TRUE;
// Set the screen cursor
SetCursor(lhCursor);

}

if (lsChar == ‘M’)
{

// Load the help cursor
lhCursor = AfxGetApp()->LoadStandardCursor(IDC_HELP);
// Set the cursor flag
m_bCursor = TRUE;
// Set the screen cursor
SetCursor(lhCursor);

}

// Is the character “X”
if (lsChar == ‘X’)
{

// Load the arrow cursor
lhCursor = AfxGetApp()->LoadStandardCursor(IDC_ARROW);
// Set the cursor flag
m_bCursor = TRUE;
// Set the screen cursor
SetCursor(lhCursor);
// Exit the application
OnOK();

}

///////////////////////
// MY CODE ENDS HERE
///////////////////////

CDialog::OnKeyDown(nChar, nRepCnt, nFlags);
}

590 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 590

Answers 591

B

Day 4
Quiz

1. What did you accomplish by adding the two timer IDs to the resource symbols?

You defined the two IDs so that they were available as constants throughout the
application.

2. What is another way to add these two IDs to the application?

Add them as #define constants in the class header file (Day2Dlg.h), as follows:
///
// CTimersDlg dialog

#define ID_CLOCK_TIMER 1
#define ID_COUNT_TIMER 2

class CTimersDlg : public CDialog
{
.
.
.

3. How can you tell two timers apart in the OnTimer function?

You use the timer ID to determine which timer triggered the event.

4. How many timer events does your application receive if the timer is set for one
second and your application has been busy for one minute, preventing it from
receiving any timer event messages?

One.

Exercise
Update your application so that when the counter timer is started, the clock timer is reset
to run at the same interval as the counter timer. When the counter timer is stopped, return
the clock timer to a one-second interval.

To change the interval at which a timer is running, you need to first stop the timer and
then restart it, as in Listing B.6.

030 31240-9 APP B 4/27/00 1:07 PM Page 591

LISTING B.6. THE REVISED OnStarttime AND OnStoptimer FUNCTIONS.

1: void CTimersDlg::OnStarttime()
2: {
3: // TODO: Add your control notification handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Update the variables
10: UpdateData(TRUE);
11:
12: // Initialize the count
13: m_iCount = 0;
14: // Format the count for displaying
15: m_sCount.Format(“%d”, m_iCount);
16:
17: // Update the dialog
18: UpdateData(FALSE);
19: // Start the timer
20: SetTimer(ID_COUNT_TIMER, m_iInterval, NULL);
21:
22: // Stop the clock timer
23: KillTimer(ID_CLOCK_TIMER);
24: // Restart the clock timer with the counter interval
25: SetTimer(ID_CLOCK_TIMER, m_iInterval, NULL);
26:
27: // Enable the Stop Timer button
28: m_cStopTime.EnableWindow(TRUE);
29: // Disable the Start Timer button
30: m_cStartTime.EnableWindow(FALSE);
31:
32: ///////////////////////
33: // MY CODE ENDS HERE
34: ///////////////////////
35: }
36:
37: void CTimersDlg::OnStoptimer()
38: {
39: // TODO: Add your control notification handler code here
40:
41: ///////////////////////
42: // MY CODE STARTS HERE
43: ///////////////////////
44:
45: // Stop the timer
46: KillTimer(ID_COUNT_TIMER);
47:
48: // Stop the clock timer

592 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 592

Answers 593

B

49: KillTimer(ID_CLOCK_TIMER);
50: // Restart the clock timer with 1 second interval
51: SetTimer(ID_CLOCK_TIMER, 1000, NULL);
52:
53: // Disable the Stop Timer button
54: m_cStopTime.EnableWindow(FALSE);
55: // Enable the Start Timer button
56: m_cStartTime.EnableWindow(TRUE);
57:
58: ///////////////////////
59: // MY CODE ENDS HERE
60: ///////////////////////
61: }

Day 5
Quiz

1. What are the possible return codes that your application might receive from the
MessageBox function call when you specify the MB_RETRYCANCEL button combina-
tion?

IDRETRY and IDCANCEL.

2. What are the common dialogs that are built into the Windows operating systems
that are defined as MFC classes?

The common Windows dialogs that are defined as MFC classes are

● File selection

● Font selection

● Color selection

● Page setup for printing

● Printing

● Find and replace

3. What is the difference between a modal dialog and a modeless dialog?

A modal dialog stops all application processing until the user responds to the dia-
log. A modeless dialog allows the user to continue working with the rest of the
application while the dialog is open for use.

030 31240-9 APP B 4/27/00 1:07 PM Page 593

4. How can you display a File Save dialog for the user instead of the File Open dia-
log that you did have in your application?

In the class instance variable declaration, pass FALSE instead of TRUE. This makes
the variable declaration look like this:

CFileDialog m_ldFile(FALSE);

5. Why did you not need to create any functions and add any code to your custom
dialog?

The only functionality that was needed on the custom dialog was calling
UpdateData before closing the dialog. Because the OK and Cancel buttons were
never deleted from the dialog, the OK button automatically performed this func-
tionality.

Exercises
1. Modify your application so that it includes the directory with the filename in the

application. (Hint: The GetFileName function returns the path and filename that
was selected in the File Open dialog.)

Modify the OnFileopen function as follows:
void CDialogsDlg::OnFileopen()
{

// TODO: Add your control notification handler code here

///////////////////////
// MY CODE STARTS HERE
///////////////////////

CFileDialog m_ldFile(TRUE);

// Show the File open dialog and capture the result
if (m_ldFile.DoModal() == IDOK)
{

// Get the filename selected
m_sResults = m_ldFile.GetPathName();
// Update the dialog
UpdateData(FALSE);

}

///////////////////////
// MY CODE ENDS HERE
///////////////////////

}

The GetPathName function returns the path and filename, so changing the function
call from GetFileName to GetPathName alters the display to include the path with
the filename.

594 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 594

Answers 595

B

2. Add a button on the custom dialog that calls the MessageBox function with a Yes or
No selection. Pass the result back to the main application dialog.

Follow these steps:

1. Using the Class View, add a member variable to the CMsgDlg class. Specify
the variable type as int, the name as m_iYesNo, and the access as Public.

2. Using the Resource View, bring the custom dialog into the editor area. Add a
command button to the window, named IDC_YESNO with a caption &Yes or
No.

3. Using the Class Wizard, add a function to the new button you just added and
edit the function. Include the following code:
void CMsgDlg::OnYesno()
{

// TODO: Add your control notification handler code here

///////////////////////
// MY CODE STARTS HERE
///////////////////////

// Ask the user
m_iYesNo = MessageBox(“Choose Yes or No”, “Yes or No”,

➥ MB_YESNO);

///////////////////////
// MY CODE ENDS HERE
///////////////////////

}

4. Add a button to the main dialog window named IDC_YESNO with the caption
Y&es or No.

5. Using the Class Wizard, add a function to the new button, including the fol-
lowing code:
void CDialogsDlg::OnYesno()
{

// TODO: Add your control notification handler code here

///////////////////////
// MY CODE STARTS HERE
///////////////////////

// What did the user answer
switch (m_dMsgDlg.m_iYesNo)
{
case IDYES: // Did the user answer YES?

m_sResults = “Yes!”;
break;

030 31240-9 APP B 4/27/00 1:07 PM Page 595

case IDNO: // Did the user answer NO?
m_sResults = “No!”;
break;

}

// Update the dialog
UpdateData(FALSE);

///////////////////////
// MY CODE ENDS HERE
///////////////////////

}

Day 6
Quiz

1. What event message does a menu selection send to the window message queue?

COMMAND.

2. How do you attach a menu to a dialog window?

In the dialog designer, open the properties dialog for the window, and choose the
menu from the drop-down list of menus.

3. Which existing class do you specify for handling event messages for the menu?

The dialog class for the window on which the menu appears.

4. What event message should a pop-up menu be triggered by?

The WM_CONTEXTMENU event.

Exercises
1. Add a button to the main window and have it call the same function as the Hello

menu entry.

Follow these steps:

1. Add a button to the dialog screen. Supply a button ID of IDC_HELLO and a
caption of &Hello.

2. Using the Class Wizard, add a function to the button. Name the function
OnHello.

2. Add a pop-up menu to your application that uses the Help drop-down menu as the
pop-up menu.

596 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 596

Answers 597

B

Follow these steps:

1. Using the Class Wizard, add a function for the WM_CONTEXTMENU event mes-
sage in your dialog window.

2. Edit the function, adding the following code:
void CMenusDlg::OnContextMenu(CWnd* pWnd, CPoint point)
{

// TODO: Add your message handler code here and/or call
➥ default

///////////////////////
// MY CODE STARTS HERE
///////////////////////

// Declare local variables
CMenu *m_lMenu; // A pointer to the menu
CPoint m_pPoint; // A copy of the mouse position

// Copy the mouse position to a local variable
m_pPoint = point;
// Convert the position to a screen position
ClientToScreen(&m_pPoint);
// Get a pointer to the window menu
m_lMenu - GetMenu();
// Get a pointer to the first submenu
m_lMenu = m_lMenu->GetSubMenu(1);
// Show the Pop-up Menu
m_lMenu->TrackPopupMenu(TPM_CENTERALIGN + TPM_LEFTBUTTON,

m_pPoint.x, m_pPoint.y, this, NULL);

///////////////////////
// MY CODE ENDS HERE
///////////////////////

CDialog::OnRButtonDown(nFlags, point);
}

Day 7
Quiz

1. How can you specify that the text is to be underlined?

Pass 1 as the value for the bUnderline argument to the CreateFont function.

2. How can you print your text upside down?

Pass 1800 as the nEscapement argument to the CreateFont function.

030 31240-9 APP B 4/27/00 1:07 PM Page 597

3. How many times is the EnumFontFamProc callback function called by the operating
system?

The function is called once for each font that is available in the system, unless the
callback function returns 0 and stops the listing of fonts.

Exercises
1. Add a check box to switch between using the entered text to display the font and

using the font name to display the font, as in Figure 7.4.

Add the check box to the dialog. Set its properties as follows:

ID: IDC_CBUSETEXT

Caption: &Use Entered Text

Using the Class Wizard, attach a variable to this control. Specify the variable type
as a boolean with the name m_bUseText.

Using the Class Wizard, add a function for the BN_CLICKED event message for the
check box. Edit the function, adding the following code:
void CDay7Dlg::OnCbusetext()
{

// TODO: Add your control notification handler code here

///////////////////////
// MY CODE STARTS HERE
///////////////////////

// Update the variables with the dialog controls
UpdateData(TRUE);
// Using the font name for the font sample?
if (!m_bUseText)

// Using the font name
m_strDisplayText = m_strFontName;

else
// Using the entered text
m_strDisplayText = m_strSampText;

// Update the dialog
UpdateData(FALSE);

///////////////////////
// MY CODE ENDS HERE
///////////////////////

}

Modify the OnInitDialog function to initialize the check box as follows:
BOOL CDay7Dlg::OnInitDialog()
{

598 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 598

Answers 599

B

CDialog::OnInitDialog();
.
.
.

// TODO: Add extra initialization here

///////////////////////
// MY CODE STARTS HERE
///////////////////////

// Fill the font list box
FillFontList();

// Initialize the text to be entered
m_strSampText = “Testing”;
// Copy the text to the font sample area
m_strDisplayText = m_strSampText;
// Initialize the check box
m_bUseText = TRUE;
// Update the dialog
UpdateData(FALSE);

///////////////////////
// MY CODE ENDS HERE
///////////////////////

return TRUE; // return TRUE unless you set the focus
// to a control

}

Modify the OnSelchangeLfonts function as follows:
void CDay7Dlg::OnSelchangeLfonts()
{

// TODO: Add your control notification handler code here

///////////////////////
// MY CODE STARTS HERE
///////////////////////

// Update the variables with the dialog controls
UpdateData(TRUE);
// Using the font name for the font sample?
if (!m_bUseText)
{

// Copy the font name to the font sample
m_strDisplayText = m_strFontName;
// Update the dialog with the variables
UpdateData(FALSE);

}
// Set the font for the sample
SetMyFont();

030 31240-9 APP B 4/27/00 1:07 PM Page 599

///////////////////////
// MY CODE ENDS HERE
///////////////////////

}

Finally, modify the OnChangeEsamptext function as follows:
void CDay7Dlg::OnChangeEsamptext()
{

// TODO: If this is a RICHEDIT control, the control will not
// send this notification unless you override the
// CDialog::OnInitialUpdate()
// function and call CRichEditCrtl().SetEventMask()
// with the EN_CHANGE flag ORed into the mask.

// TODO: Add your control notification handler code here

///////////////////////
// MY CODE STARTS HERE
///////////////////////

// Update the variables with the dialog controls
UpdateData(TRUE);
// Using the text for the font sample?
if (m_bUseText)
{

// Copy the current text to the font sample
m_strDisplayText = m_strSampText;
// Update the dialog with the variables
UpdateData(FALSE);

}

///////////////////////
// MY CODE ENDS HERE
///////////////////////

}

2. Add a check box to display the font sample in italics, as in Figure 7.5.

Add the check box to the dialog. Set its properties as follows:

ID: IDC_CBITALIC

Caption: &Italic

Using the Class Wizard, attach a variable to this control. Specify the variable type
as a boolean with the name m_bItalic.

Using the Class Wizard, add a function for the BN_CLICKED event message for the
check box. Edit the function, adding the following code:

600 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 600

Answers 601

B

void CDay7Dlg::OnCbitalic()
{

// TODO: Add your control notification handler code here

///////////////////////
// MY CODE STARTS HERE
///////////////////////

// Update the variables with the dialog controls
UpdateData(TRUE);
// Set the font for the sample
SetMyFont();

///////////////////////
// MY CODE ENDS HERE
///////////////////////

}

Modify the SetMyFont function as in the following code:

void CDay7Dlg::SetMyFont()
{

CRect rRect; // The rectangle of the display area
int iHeight; // The height of the display area
int iItalic = 0; // Italicize the font?

// Has a font been selected?
if (m_strFontName != “”)
{

// Get the dimensions of the font sample display area
m_ctlDisplayText.GetWindowRect(&rRect);
// Calculate the area height
iHeight = rRect.top - rRect.bottom;
// Make sure the height is positive
if (iHeight < 0)

iHeight = 0 - iHeight;
// Should the font be italicized?
If (m_bItalic)

iItalic = 1;
// Create the font to be used
m_fSampFont.CreateFont((iHeight - 5), 0, 0, 0,

FW_NORMAL, iItalic, 0, 0, DEFAULT_CHARSET,
OUT_CHARACTER_PRECIS, CLIP_CHARACTER_PRECIS,
DEFAULT_QUALITY, DEFAULT_PITCH |
FF_DONTCARE, m_strFontName);

// Set the font for the sample display area
m_ctlDisplayText.SetFont(&m_fSampFont);

}
}

030 31240-9 APP B 4/27/00 1:07 PM Page 601

Day 8
Quiz

1. What are the three values that are combined to specify a color?

Red, green, and blue.

2. What do you use to draw on windows without needing to know what graphics card
the user has?

The device context.

3. What size bitmap can you use to make a brush from it?

8 pixels by 8 pixels.

4. What event message is sent to a window to tell it to redraw itself?

The WM_PAINT message.

5. How can you cause a window to repaint itself?

Use the Invalidate function on it.

Exercises
1. Make the second dialog window resizable, and make it adjust the figures drawn on

it whenever it’s resized.

Open the second dialog in the dialog layout designer. Open the properties for the
window. Select the Style tab. Change the border to Resizing. Open the Class
Wizard and add an event-handler function for the WM_SIZE event message. Edit the
function that you just created and call the Invalidate function, as in Listing B.7.

LISTING B.7. THE OnSize FUNCTION.

1: void CPaintDlg::OnSize(UINT nType, int cx, int cy)
2: {
3: CDialog::OnSize(nType, cx, cy);
4:
5: // TODO: Add your message handler code here
6: // Redraw the window
7: Invalidate();
8:}

2. Add a bitmap brush to the set of brushes used to create the rectangles and ellipses.

Open the Resources View tab on the workspace pane. Right-click on the top folder
of the resource tree. Select Insert from the pop-up menu. Select Bitmap from the

602 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 602

Answers 603

B

list of available resources to add. Paint a pattern on the bitmap that you just
created. Right-click on the bitmap ID in the workspace pane. Open the properties
dialog and change the object ID to IDB_BITMAPBRUSH. Open the source code for the
DrawRegion function. Add the code in Listing B.8, lines 22 through 24 and lines
105 through 112. Increase the number of loops in the for statement on line 39.

LISTING B.8. THE DrawRegion FUNCTION.

1: void CPaintDlg::DrawRegion(CPaintDC *pdc, int iColor, int iTool, int
➥ iShape)

2: {
3: // Declare and create the pens
.
.
.
19: CBrush lVertBrush(HS_VERTICAL, m_crColors[iColor]);
20: CBrush lNullBrush(RGB(192, 192, 192));
21:
22: CBitmap lBitmap;
23: lBitmap.LoadBitmap(IDB_BITMAPBRUSH);
24: CBrush lBitmapBrush(&lBitmap);
25:
26: // Calculate the size of the drawing regions
27: CRect lRect;
28: GetClientRect(lRect);
.
.
.
37: int i;
38: // Loop through all of the brushes and pens
39: for (i = 0; i < 8; i++)
40: {
41: switch (i)
42: {
.
.
.
103: pdc->SelectObject(&lVertBrush);
104: break;
105: case 7: // Null - Bitmap
106: // Determine the location for this figure.
107: lDrawRect.left = lDrawRect.left + liHorz;
108: lDrawRect.right = lDrawRect.left + liWidth;
109: // Select the appropriate pen and brush
110: pdc->SelectObject(&lNullPen);
111: pdc->SelectObject(&lBitmapBrush);
112: break;
113: }

continues

030 31240-9 APP B 4/27/00 1:07 PM Page 603

LISTING B.8. CONTINUED

114: // Which tool are we using?
.
.
.
126: pdc->SelectObject(lOldBrush);
127: pdc->SelectObject(lOldPen);
128:}

Day 9
Quiz

1. How does an ActiveX container call methods in an ActiveX control?

By using the IDispatch interface, the container can call the Invoke method, pass-
ing the DISPID of the control’s method that the container wants to run.

2. How does an ActiveX control trigger events in the container application?

The container application has its own IDispatch interface, through which the con-
trol can trigger events.

3. What AppWizard option must be selected for ActiveX controls to work properly in
a Visual C++ application?

You select the ActiveX Controls check box in the second step of the AppWizard.

4. How does Visual C++ make it easy to work with ActiveX controls?

It generates C++ classes that encapsulate the control’s functionality.

5. Why might it be difficult to work with older controls in Visual C++?

Older controls might not contain the information necessary for Visual C++ to gen-
erate the C++ classes that are used to encapsulate the control’s functionality.

Exercise
Modify the application so that the user can double-click a column header and make it the
first column in the grid.

Using the Class Wizard, add a function to the DblClick event message for the grid con-
trol.

Edit the function in exercise 1 to add the following code:

void CActiveXDlg::OnDblClickMsfgrid()
{

// TODO: Add your control notification handler code here

604 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 604

Answers 605

B

///////////////////////
// MY CODE STARTS HERE
///////////////////////

// Did the user click on a data row and not the
// header row?
if (m_ctlFGrid.GetMouseRow() != 0)
{

// If so, then zero out the column variable
// and exit
m_iMouseCol = 0;
return;

}
// Save the column clicked on
m_iMouseCol = m_ctlFGrid.GetMouseCol();
// If the selected column was the first column,
// there’s nothing to do
if (m_iMouseCol == 0)

return;
// Turn the control redraw off
m_ctlFGrid.SetRedraw(FALSE);
// Change the selected column position
m_ctlFGrid.SetColPosition(m_iMouseCol, 0);
// Resort the grid
DoSort();
// Turn redraw back on
m_ctlFGrid.SetRedraw(TRUE);

///////////////////////
// MY CODE ENDS HERE
///////////////////////

}

Day 10
Quiz

1. What does SDI stand for?

Single Document Interface.

2. What functionality is in the view class?

The view class is responsible for displaying the document for the user.

3. What function is called to redraw the document if the window has been hidden
behind another window?

The OnDraw function in the view class is called to redraw the document.

030 31240-9 APP B 4/27/00 1:07 PM Page 605

4. Where do you place code to clear out the current document before starting a new
document?

The DeleteContents function in the document class is where you place code to
clear the current document.

5. What is the purpose of the document class?

The document class is where the data is managed and manipulated. It maintains the
abstract representation of the document being edited and processed.

Exercise
Add another pull-down menu to control the width of the pen used for drawing. Give it
the following settings:

Menu Entry Width Setting

Very Thin 1

Thin 8

Medium 16

Thick 24

Very Thick 32

Follow these steps:

1. Select the CLine class in the Class View tab of the workspace pane. Right-click the
mouse and select Add Member Variable from the pop-up menu.

2. Specify the variable type as UINT, the name as m_nWidth, and the access as private.
Click OK to add the variable.

3. Right-click the CLine constructor in the Class View tree. Select Go to Declaration
from the pop-up menu.

4. Add UINT nWidth as a fourth argument to the constructor declaration.

5. Right-click the CLine constructor in the Class View tree. Select Go to Definition
from the pop-up menu.

6. Modify the constructor to add the fourth argument and to set the m_nWidth member
to the new argument, as in Listing B.9.

LISTING B.9. THE MODIFIED CLine CONSTRUCTOR.

1: CLine::CLine(CPoint ptFrom, CPoint ptTo, COLORREF crColor, UINT nWidth)
2: {
3: //Initialize the from and to points

606 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 606

Answers 607

B

4: m_ptFrom = ptFrom;
5: m_ptTo = ptTo;
6: m_crColor = crColor;
7: m_nWidth = nWidth;
8: }

7. Scroll down to the Draw function and modify it as in Listing B.10.

LISTING B.10. THE MODIFIED Draw FUNCTION.

1: void CLine::Draw(CDC * pDC)
2: {
3: // Create a pen
4: CPen lpen (PS_SOLID, m_nWidth, m_crColor);
5:
6: // Set the new pen as the drawing object
7: CPen* pOldPen = pDC->SelectObject(&lpen);
8: // Draw the line
9: pDC->MoveTo(m_ptFrom);
10: pDC->LineTo(m_ptTo);
11: // Reset the previous pen
12: pDC->SelectObject(pOldPen);
13: }

8. Scroll down to the Serialize function and modify it as in Listing B.11.

LISTING B.11. THE MODIFIED Serialize FUNCTION.

1: void CLine::Serialize(CArchive &ar)
2: {
3: CObject::Serialize(ar);
4:
5: if (ar.IsStoring())
6: ar << m_ptFrom << m_ptTo << (DWORD) m_crColor << m_nWidth;
7: else
8: ar >> m_ptFrom >> m_ptTo >> (DWORD) m_crColor >> m_nWidth;
9: }

9. Select the CDay10Doc class in the Class View tab on the workspace pane. Right-
click the mouse and choose Add Member Variable from the pop-up menu.

10. Specify the variable type as UINT, the name as m_nWidth, and the access as private.
Click OK to add the variable.

11. Open the CDay10Doc source code (Day10Doc.cpp), scroll down to the
OnNewDocument function, and edit it as in Listing B.12.

030 31240-9 APP B 4/27/00 1:07 PM Page 607

LISTING B.12. THE MODIFIED OnNewDocument FUNCTION.

1: BOOL CDay10Doc::OnNewDocument()
2: {
3: if (!CDocument::OnNewDocument())
4: return FALSE;
5:
6: // TODO: add reinitialization code here
7: // (SDI documents will reuse this document)
8:
9: ///////////////////////
10: // MY CODE STARTS HERE
11: ///////////////////////
12:
13: // Initialize the color to black
14: m_nColor = ID_COLOR_BLACK - ID_COLOR_BLACK;
15: // Initialize the width to thin
16: m_nWidth = ID_WIDTH_VTHIN - ID_WIDTH_VTHIN;
17:
18: ///////////////////////
19: // MY CODE ENDS HERE
20: ///////////////////////
21:
22: return TRUE;
23: }

12. Scroll down to the AddLine function, and modify it as in Listing B.13.

LISTING B.13. THE MODIFIED AddLine FUNCTION.

1: CLine * CDay10Doc::AddLine(CPoint ptFrom, CPoint ptTo)
2: {
3: static UINT nWidths[5] = { 1, 8, 16, 24, 32};
4:
5: // Create a new CLine object
6: CLine *pLine = new CLine(ptFrom, ptTo,

➥ m_crColors[m_nColor], nWidths[m_nWidth]);
7: try
8: {
9: // Add the new line to the object array
10: m_oaLines.Add(pLine);
11: // Mark the document as dirty
12: SetModifiedFlag();
13: }
14: // Did we run into a memory exception?
15: catch (CMemoryException* perr)

608 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 608

Answers 609

B

16: {
17: // Display a message for the user, giving him or her the
18: // bad news
19: AfxMessageBox(“Out of memory”, MB_ICONSTOP | MB_OK);
20: // Did we create a line object?
21: if (pLine)
22: {
23: // Delete it
24: delete pLine;
25: pLine = NULL;
26: }
27: // Delete the exception object
28: perr->Delete();
29: }
30: return pLine;
31: }

13. Add a new member function to the CDay10Doc class. Specify the function type as
UINT, the declaration as GetWidth, and the access as public.

14. Edit the GetWidth function, adding the code in Listing B.14.

LISTING B.14. THE GetWidth FUNCTION.

1: UINT CDay10Doc::GetWidth()
2: {
3: // Return the current width
4: return ID_WIDTH_VTHIN + m_nWidth;
5: }

15. Select the Resource View tab in the workspace pane. Expand the tree so that you
can see the contents of the Menu folder. Double-click the menu resource.

16. Grab the blank top-level menu (at the right end of the menu bar) and drag it to the
left, dropping it in front of the View menu entry.

17. Open the properties for the blank menu entry. Specify the caption as &Width. Close
the properties dialog.

18. Add submenu entries below the Width top-level menu. Specify the submenus in
order, setting their properties as specified in Table B.1.

030 31240-9 APP B 4/27/00 1:07 PM Page 609

TABLE B.1. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry ID ID_WIDTH_VTHIN

Caption &Very Thin

Menu Entry ID ID_WIDTH_THIN

Caption Thi&n

Menu Entry ID ID_WIDTH_MEDIUM

Caption &Medium

Menu Entry ID ID_WIDTH_THICK

Caption Thic&k

Menu Entry ID ID_WIDTH_VTHICK

Caption Very &Thick

19. Open the Class Wizard. Select the CDay10Doc in the Class Name combo box.

20. Add functions for both the COMMAND and UPDATE_COMMAND_UI event messages for
all the width menu entries.

21. After you add the final menu entry function, click Edit Code.

22. Edit the Very Thin menu functions as in Listing B.15.

LISTING B.15. THE VERY THIN MENU FUNCTIONS.

1: void CDay10Doc::OnWidthVthin()
2: {
3: // TODO: Add your command handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Set the current width to Very Thin
10: m_nColor = ID_WIDTH_VTHIN - ID_WIDTH_VTHIN;
11:
12: ///////////////////////
13: // MY CODE ENDS HERE
14: ///////////////////////
15: }
16:
17: void CDay10Doc::OnUpdateWidthVthin(CCmdUI* pCmdUI)
18: {
19: // TODO: Add your command update UI handler code here
20:

610 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 610

Answers 611

B

21: ///////////////////////
22: // MY CODE STARTS HERE
23: ///////////////////////
24:
25: // Determine if the Very Thin menu entry should be checked
26: pCmdUI->SetCheck(GetWidth() == ID_WIDTH_VTHIN ? 1 : 0);
27:
28: ///////////////////////
29: // MY CODE ENDS HERE
30: ///////////////////////
31: }

23. Edit the Thin menu functions as in Listing B.16. Edit the remaining menu func-
tions in the same way, substituting their menu IDs for ID_WIDTH_THIN.

LISTING B.16. THE THIN MENU FUNCTIONS.

1: void CDay10Doc::OnWidthThin()
2: {
3: // TODO: Add your command handler code here
4:
5: ///////////////////////
6: // MY CODE STARTS HERE
7: ///////////////////////
8:
9: // Set the current width to Thin
10: m_nColor = ID_WIDTH_THIN - ID_WIDTH_VTHIN;
11:
12: ///////////////////////
13: // MY CODE ENDS HERE
14: ///////////////////////
15: }
16:
17: void CDay10Doc::OnUpdateWidthThin(CCmdUI* pCmdUI)
18: {
19: // TODO: Add your command update UI handler code here
20:
21: ///////////////////////
22: // MY CODE STARTS HERE
23: ///////////////////////
24:
25: // Determine if the Thin menu entry should be checked
26: pCmdUI->SetCheck(GetWidth() == ID_WIDTH_THIN ? 1 : 0);
27:
28: ///////////////////////
29: // MY CODE ENDS HERE
30: ///////////////////////
31: }

030 31240-9 APP B 4/27/00 1:07 PM Page 611

Day 11
Quiz

1. What are the five base classes that are used in MDI applications?

The CWinApp-derived class, the CMDIFrameWnd-derived class, the CMDIChildWnd-
derived class, the CDocument-derived class, and the CView-derived class.

2. Why do you have to place the ON_COMMAND_RANGE message map entry outside the
section maintained by the Class Wizard?

The Class Wizard doesn’t understand the ON_COMMAND_RANGE message map entry
and thus would either remove or corrupt it.

3. What argument does ON_COMMAND_RANGE pass to the event function?

The ID of the event message.

4. What event message should you use to display a pop-up menu?

WM_CONTEXTMENU.

Exercise
Add the pull-down and context menus for the width, using the same pen widths as yes-
terday.

Follow these steps:

1. Add the Width handling code as in yesterday’s exercise.

2. Add the Width menu entries using the same settings as yesterday.

3. Open the Day11Doc.h header file.

4. Scroll down toward the bottom of the header file until you find the protected sec-
tion where the AFX_MSG message map is declared (search for
//{{AFX_MSG(CDay11Doc)).

5. Add the function declarations in Listing B.17 before the line that you searched for.
(The string that you searched for is the beginning marker for the Class Wizard
maintained message map. Anything you place between it and the end marker,
//}}AFX_MSG, is likely to be removed or corrupted by the Class Wizard.)

LISTING B.17. THE EVENT-HANDLER DECLARATIONS IN DayllDoc.H.

.

.

.
1: #ifdef _DEBUG
2: virtual void AssertValid() const;
3: virtual void Dump(CDumpContext& dc) const;

612 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 612

Answers 613

B

4: #endif
5:
6: protected:
7:
8: // Generated message map functions
9: protected:
10: afx_msg void OnColorCommand(UINT nID);
11: afx_msg void OnWidthCommand(UINT nID);
12: afx_msg void OnUpdateColorUI(CCmdUI* pCmdUI);
13: afx_msg void OnUpdateWidthUI(CCmdUI* pCmdUI);
14: //{{AFX_MSG(CDay11Doc)
15: // NOTE - the ClassWizard will add and remove member functions

//here.
16: // DO NOT EDIT what you see in these blocks of generated

//code !
17: //}}AFX_MSG
18: DECLARE_MESSAGE_MAP()
19: private:
20: UINT m_nColor;
21: CObArray m_oaLines;
22: };

6. Open the Day11Doc.cpp source-code file.

7. Search for the line BEGIN_MESSAGE_MAP and add the lines in Listing B.18 just after
it. It’s important that this code be between the BEGIN_MESSAGE_MAP line and the
//{{AFX_MSG_MAP line. If these commands are between the //{{AFX_MSG_MAP and
//}}AFX_MSG_MAP lines, then the Class Wizard will remove or corrupt them.

LISTING B.18. THE EVENT-HANDLER MESSAGE MAP ENTRIES IN Day11Doc.cpp.

1:///
2: // CDay11Doc
3:
4: IMPLEMENT_DYNCREATE(CDay11Doc, CDocument)
5:
6: BEGIN_MESSAGE_MAP(CDay11Doc, CDocument)
7: ON_COMMAND_RANGE(ID_COLOR_BLACK, ID_COLOR_WHITE, OnColorCommand)
8: ON_COMMAND_RANGE(ID_WIDTH_VTHIN, ID_WIDTH_VTHICK, OnWidthCommand)
9: ON_UPDATE_COMMAND_UI_RANGE(ID_COLOR_BLACK, ID_COLOR_WHITE,

➥ OnUpdateColorUI)
10: ON_UPDATE_COMMAND_UI_RANGE(ID_WIDTH_VTHIN, ID_WIDTH_VTHICK,

➥ OnUpdateWidthUI)
11: //{{AFX_MSG_MAP(CDay11Doc)
12: // NOTE - the ClassWizard will add and remove mapping macros

//here.

continues

030 31240-9 APP B 4/27/00 1:07 PM Page 613

LISTING B.18. CONTINUED

13: // DO NOT EDIT what you see in these blocks of generated
//code!

14: //}}AFX_MSG_MAP
15: END_MESSAGE_MAP()
16:
17: const COLORREF CDay11Doc::m_crColors[8] = {
18: RGB(0, 0, 0), // Black
19: RGB(0, 0, 255), // Blue
.
.
.

8. Scroll to the bottom of the file and add the two event message handler functions in
Listing B.19.

LISTING B.19. THE WIDTH MENU EVENT HANDLER FUNCTIONS.

1: void CDay11Doc::OnWidthCommand(UINT nID)
2: {
3: // Set the current width
4: m_nWidth = nID - ID_WIDTH_VTHIN;
5: }
6:
7: void CDay11Doc::OnUpdateWidthUI(CCmdUI* pCmdUI)
8: {
9: // Determine if the menu entry should be checked
10: pCmdUI->SetCheck(GetWidth() == pCmdUI->m_nID ? 1 : 0);
11: }

9. Open the IDR_CONTEXTMENU in the Menu Designer.

10. In the Width cascading menu, add the width menu entries just like you did for the
IDR_DAY11TYPE menu, using the same property settings. You can select the ID from
the drop-down list of IDs if you would rather search for them instead of type.

Day 12
Quiz

1. How do you tie a toolbar button to a menu entry that triggers that same function?

Give the toolbar button the same object ID as the menu entry.

2. How do you make sure that a toolbar can be docked with the frame window?

Both must have docking enabled on the same sides (using the EnableDocking
function) in the OnCreate function of the frame class.

614 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 614

Answers 615

B

3. How can you remove the Num Lock status indicator from the status bar?

Remove the ID_INDICATOR_NUM from the indicators table near the top of the main
frame source code file.

4. Why do you have to edit the resource file to add a combo box to a toolbar?

You need to add a separator to the toolbar as a placeholder in the toolbar. The tool-
bar designer will do its best to prevent you from adding the separators, assuming
that they are a mistake.

Exercises
1. Add another pane to the status bar to display the current width selected.

Add an entry to the strings table with an ID of ID_INDICATOR_WIDTH and a caption
of VERY THICK.

Add another entry to the status bar indicators table at the beginning of
CMainFrame.cpp:
static UINT indicators[] =
{

ID_SEPARATOR, // status line indicator
ID_INDICATOR_WIDTH,
ID_INDICATOR_COLOR,
ID_INDICATOR_CAPS,
ID_INDICATOR_NUM,
ID_INDICATOR_SCRL,

};

Add a new member function to the CToolbarDoc class. Specify the function type as
afx_msg void, the function definition as OnUpdateIndicatorWidth (CCmdUI
*pCmdUI), and the access as protected. Edit the function as follows:
void CToolbarDoc::OnUpdateIndicatorWidth(CCmdUI *pCmdUI)
{

CString strWidth;

// What is the current width?
switch (m_nWidth)
{
case 0: // Very Thin

strWidth = “VERY THIN”;
break;

case 1: // Thin
strWidth = “THIN”;
break;

case 2: // Medium
strWidth = “MEDIUM”;
break;

case 3: // Thick
strWidth = “THICK”;
break;

030 31240-9 APP B 4/27/00 1:07 PM Page 615

case 4: // Very Thick
strWidth = “VERY THICK”;
break;

}
// Enable the status bar pane
pCmdUI->Enable(TRUE);
// Set the text of the status bar pane
// to the current width
pCmdUI->SetText(strWidth);

}

Edit the CToolbarDoc message map, adding the ON_UPDATE_COMMAND_UI message
handler entry as follows:
//
// CToolbarDoc

IMPLEMENT_DYNCREATE(CToolbarDoc, CDocument)

BEGIN_MESSAGE_MAP(CToolbarDoc, CDocument)
ON_UPDATE_COMMAND_UI(ID_INDICATOR_WIDTH,

➥ OnUpdateIndicatorWidth)
ON_UPDATE_COMMAND_UI(ID_INDICATOR_COLOR,

➥ OnUpdateIndicatorColor)
//{{AFX_MSG_MAP(CToolbarDoc)
ON_UPDATE_COMMAND_UI(ID_WIDTH_VTHIN, OnUpdateWidthVthin)

.

.
ON_COMMAND(ID_WIDTH_VTHIN, OnWidthVthin)
//}}AFX_MSG_MAP

END_MESSAGE_MAP()

2. Add a button to the main toolbar that can be used to toggle the color toolbar on
and off, as in Figure 12.7.

Open the IDR_MAINFRAME toolbar in the toolbar designer. Paint an icon for the
blank button at the end of the toolbar. Double-click the button to open its proper-
ties dialog. Specify the button ID as ID_VIEW_COLORBAR and enter an appropriate
prompt for the button. Recompile and run your application, and the color toolbar
toggle should be working on the main toolbar.

Day 13
Quiz

1. What two macros do you have to add to a class to make it serializable?

DECLARE_SERIAL and IMPLEMENT_SERIAL.

2. How can you determine whether the CArchive object is reading from or writing to
the archive file?

616 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 616

Answers 617

B

You call the IsStoring or IsLoading functions.

3. What arguments do you need to pass to the IMPLEMENT_SERIAL macro?

The class name, the base class name, and the version number.

4. What class do you need to inherit the view class from to be able to use the dialog
designer to create a form for the main window in an SDI or MDI application?

CFormView.

5. What type of file does the CArchive write to by default?

CFile.

Exercise
Add a couple of radio buttons to the form to specify the person’s sex, as in Figure 13.5.
Incorporate this change into the CPerson class to make the field persistent.

In the window designer, add the two radio buttons and the static text prompt. Specify the
control properties in Table B.2.

TABLE B.2. CONTROL PROPERTY SETTINGS.

Object Property Setting

Static Text ID IDC_STATIC

Caption Sex:

Radio Button ID IDC_RMALE

Caption Mal&e

Group Checked

Radio Button ID IDC_RFEMALE

Caption &Female

Move the mnemonic in the First button from &First to Fi&rst to prevent a conflict with
the new radio buttons.

Attach a variable to the new radio buttons as in Table B.3.

TABLE B.3. CONTROL VARIABLES.

Object Name Category Type

IDC_RMALE m_iSex Value int

030 31240-9 APP B 4/27/00 1:07 PM Page 617

Increment the version number in the IMPLEMENT_SERIAL macro in the CPerson class. Add
a new member variable to the CPerson class. Specify the type as int, the name as
m_iSex, and the access as private. Update the CPerson constructor function, adding the
m_iSex variable to the initializations as in line 8 of Listing B.20.

LISTING B.20. THE MODIFIED CPerson CONSTRUCTOR.

1: CPerson::CPerson()
2: {
3: // Initialize the class variables
4: m_iMaritalStatus = 0;
5: m_iAge = 0;
6: m_bEmployed = FALSE;
7: m_sName = “”;
8: m_iSex = 0;
9: }

Add the inline functions to the CPerson class declaration to set and get the value of this
new variable, as in lines 9 and 15 of Listing B.21.

LISTING B.21. THE MODIFIED CPerson CLASS DECLARATION.

1: class CPerson : public CObject
2: {
3: DECLARE_SERIAL (CPerson)
4: public:
5: // Functions for setting the variables
6: void SetEmployed(BOOL bEmployed) { m_bEmployed = bEmployed;}
7: void SetMaritalStat(int iStat) { m_iMaritalStatus = iStat;}
8: void SetAge(int iAge) { m_iAge = iAge;}
9: void SetSex(int iSex) { m_iSex = iSex;}
10: void SetName(CString sName) { m_sName = sName;}
11: // Functions for getting the current settings of the variables
12: BOOL GetEmployed() { return m_bEmployed;}
13: int GetMaritalStatus() { return m_iMaritalStatus;}
14: int GetAge() {return m_iAge;}
15: int GetSex() {return m_iSex;}
16: CString GetName() {return m_sName;}
17: CPerson();
18: virtual ~CPerson();
19:
20: private:
21: BOOL m_bEmployed;
22: int m_iMaritalStatus;
23: int m_iAge;
24: CString m_sName;
25: };

618 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 618

Answers 619

B

Update the Serialize function in the CPerson class to include the m_iSex variable as in
lines 9 and 12 of Listing B.22.

LISTING B.22. THE MODIFIED CPerson.Serialize FUNCTION.

1: void CPerson::Serialize(CArchive &ar)
2: {
3: // Call the ancestor function
4: CObject::Serialize(ar);
5:
6: // Are we writing?
7: if (ar.IsStoring())
8: // Write all of the variables, in order
9: ar << m_sName << m_iAge << m_iMaritalStatus << m_bEmployed <<

➥ m_iSex;
10: else
11: // Read all of the variables, in order
12: ar >> m_sName >> m_iAge >> m_iMaritalStatus >> m_bEmployed >>

➥ m_iSex;
13:
14: }

Modify the PopulateView function in the view object to include the Sex variable in the
data exchange, as in line 19 of Listing B.23.

LISTING B.23. THE MODIFIED CSerializeView.POPULATEVIEW FUNCTION.

1: void CSerializeView::PopulateView()
2: {
3: // Get a pointer to the current document
4: CSerializeDoc* pDoc = GetDocument();
5: if (pDoc)
6: {
7: // Display the current record position in the set
8: m_sPosition.Format(“Record %d of %d”, pDoc->GetCurRecordNbr(),
9: pDoc->GetTotalRecords());
10: }
11: // Do we have a valid record object?
12: if (m_pCurPerson)
13: {
14: // Yes, get all of the record values
15: m_bEmployed = m_pCurPerson->GetEmployed();
16: m_iAge = m_pCurPerson->GetAge();
17: m_sName = m_pCurPerson->GetName();
18: m_iMaritalStatus = m_pCurPerson->GetMaritalStatus();
19: m_iSex = m_pCurPerson->GetSex();
20: }
21: // Update the display
22: UpdateData(FALSE);
23: }

030 31240-9 APP B 4/27/00 1:07 PM Page 619

Add an event handler for the clicked event of both new radio buttons, using the same
function for both event handlers. Update the record object’s field using the Set function,
as in Listing B.24.

LISTING B.24. THE CSerializeView.OnSex FUNCTION.

1: void CSerializeView::OnSex()
2: {
3: // TODO: Add your control notification handler code here
4:
5: // Sync the data in the form with the variables
6: UpdateData(TRUE);
7: // If we have a valid person object, pass the data changes to it
8: if (m_pCurPerson)
9: m_pCurPerson->SetSex(m_iSex);
10: // Get a pointer to the document
11: CSerializeDoc * pDoc = GetDocument();
12: if (pDoc)
13: // Set the modified flag in the document
14: pDoc->SetModifiedFlag();
15: }

Day 14
Quiz

1. What does ODBC stand for?

Open Database Connector.

2. What functions can you use to navigate the record set in a CRecordset object?

Move, MoveNext, MovePrev, MoveFirst, MoveLast, and SetAbsolutePosition.

3. What view class should you use with an ODBC application?

CRecordView.

4. What sequence of functions do you need to call to add a new record to a record
set?

AddNew, Update, and Requery.

5. What function do you need to call before the fields in the CRecordset object can
be updated with any changes?

Edit.

620 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 620

Answers 621

B

Exercise
Add a menu entry and dialog to let the user indicate the record number to move to, and
then move to that record.

1. Create a new dialog, designing the dialog layout as in Figure B.1. Configure the
controls as in Table B.4.

TABLE B.4. DIALOG PROPERTY SETTINGS.

Object Property Setting

Static Text ID IDC_STATIC

Caption Move to record:

Edit Box ID IDC_ERECNBR

2. Open the Class Wizard. Create a new class for the new dialog. Give the new class
the name CMoveToDlg. After you create the new class, add a variable to the Edit
Box control. Specify the variable type as long and the name as m_lRowNbr.

3. Add another menu entry to the main application menu. Specify the menu
properties as in Table B.5.

FIGURE B.1.
The Move To dialog
layout.

030 31240-9 APP B 4/27/00 1:07 PM Page 621

TABLE B.5. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry ID IDM_RECORD_MOVE

Caption &Move To...

Prompt Move to a specific record\nMove To

4. Open the Class Wizard and add an event-handler function for the COMMAND message
for this new menu to the view class. Edit this function, adding the code in Listing
B.25.

LISTING B.25. THE CDbOdbcView OnRecordMove FUNCTION.

1: void CTestdb5View::OnRecordMove()
2: {
3: // TODO: Add your command handler code here
4: // Create an instance of the Move To dialog
5: CMoveToDlg dlgMoveTo;
6: // Get the row number to move to
7: if (dlgMoveTo.DoModal() == IDOK)
8: {
9: // Get a pointer to the record set
10: CRecordset* pSet = OnGetRecordset();
11: // Make sure that there are no outstanding changes to be saved
12: if (pSet->CanUpdate() && !pSet->IsDeleted())
13: {
14: pSet->Edit();
15: if (!UpdateData())
16: return;
17:
18: pSet->Update();
19: }
20: // Set the new position
21: pSet->SetAbsolutePosition(dlgMoveTo.m_lRowNbr);
22: // Update the form
23: UpdateData(FALSE);
24: }
25: }

5. Include the header file for the new dialog in the view class source code, as in line
10 of Listing B.26.

622 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 622

Answers 623

B

LISTING B.26. THE CDbOdbcView INCLUDES.

1: // DbOdbcView.cpp : implementation of the CDbOdbcView class
2: //
3:
4: #include “stdafx.h”
5: #include “DbOdbc.h”
6:
7: #include “DbOdbcSet.h”
8: #include “DbOdbcDoc.h”
9: #include “DbOdbcView.h”
10: #include “MoveToDlg.h”

6. Add a toolbar button for the new menu entry.

Day 15
Quiz

1. What does ADO stand for?

ActiveX Data Objects.

2. What does ADO use for database access?

OLE DB.

3. What are the objects in ADO?

Connection, Command, Parameter, Error, Recordset, and Field.

4. How do you initialize the COM environment?

::CoInitialize(NULL);

5. How do you associate a Connection object with a Command object?

pCmd->ActiveConnection = pConn;

6. How do you associate a Command object with and populate a Recordset object?

One of two ways:
_RecordsetPtr pRs;
pRs = pCmd->Execute();

Or
_RecordsetPtr pRs;
pRs.CreateInstance(__uuidof(Recordset));
pRs->PutRefSource(pCmd);

030 31240-9 APP B 4/27/00 1:07 PM Page 623

Exercise
Enable and disable the navigation menus and toolbar buttons based on whether the
recordset is at the beginning of file (BOF) or end of file (EOF, renamed to EndOfFile).

Add event-handler functions to the document class for the navigation menu entries’
UPDATE_COMMAND_UI event message. Edit these functions, adding the code in Listing B.27
to the functions for the First and Previous menus, and the code in Listing B.28 to the
functions for the Last and Next menus.

LISTING B.27. THE CDbAdoDoc OnUpdateDataFirst FUNCTION.

1: void CDbAdoDoc::OnUpdateDataFirst(CCmdUI* pCmdUI)
2: {
3: // TODO: Add your command update UI handler code here
4: // Does the record set exist?
5: if (m_pRs)
6: {
7: // Are we at the BOF?
8: if (m_pRs->BOF)
9: pCmdUI->Enable(FALSE);
10: else
11: pCmdUI->Enable(TRUE);
12: }
13: }

LISTING B.28. THE CDbAdoDoc OnUpdateDataLast FUNCTION.

1: void CDbAdoDoc::OnUpdateDataLast(CCmdUI* pCmdUI)
2: {
3: // TODO: Add your command update UI handler code here
4: // Does the record set exist?
5: if (m_pRs)
6: {
7: // Are we at the EOF?
8: if (m_pRs->EndOfFile)
9: pCmdUI->Enable(FALSE);
10: else
11: pCmdUI->Enable(TRUE);
12: }
13: }

624 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 624

Answers 625

B

Day 16
Quiz

1. When do you want to create a new MFC class?

When you need to create a new class that is inherited from an existing MFC class.

2. When you make changes to a library file, what do you have to do to the applica-
tions that use the library file?

They all have to be relinked.

3. What are the different types of classes that you can create?

MFC, generic, and form.

4. When you package some functionality in a library file, what do you need to give to
other programmers who want to use your library module?

The LIB library file and the header files for the objects in the module.

5. What are two of the basic principles in object-oriented software design?

Encapsulation and inheritance. The third principle is polymorphism, which was not
discussed today.

Exercises
Separate the CLine class into a different library module from the drawing class so that
you have two library modules instead of one. Link them into the test application.

1. Create a new project. Specify that the project is a Win32 Static Library project.
Give the project a suitable name, such as Line.

2. Specify that the project contain support for MFC and precompiled headers.

3. Copy the Line.cpp and Line.h files into the project directory. Add both of these
files to the project. Compile the library module.

4. Open the original library module project. Delete the Line.cpp and Line.h files
from the project. Edit the include statement at the top of the drawing object source-
code file to include the Line.h file from the Line module project directory, as on
line 9 of Listing B.29. Recompile the project.

LISTING B.29. THE CModArt INCLUDES AND COLOR TABLE.

1: // ModArt.cpp: implementation of the CModArt class.
2: //
3: //
4:

continues

030 31240-9 APP B 4/27/00 1:07 PM Page 625

LISTING B.29. CONTINUED

5: #include <stdlib.h>
6: #include <time.h>
7:
8: #include “stdafx.h”
9: #include “..\Line\Line.h”
10: #include “ModArt.h”

5. Open the test application project. Add the Line library file to the project. Build the
project.

Day 17
Quiz

1. What kind of DLL do you have to create to make classes in the DLL available to
applications?

An MFC extension DLL.

2. What do you have to add to the class to export it from a DLL?

The AFX_EXT_CLASS macro in the class declaration.

3. What kind of DLL can be used with other programming languages?

A regular DLL.

4. If you make changes in a DLL, do you have to recompile the applications that use
the DLL?

Normally, no. Only if changes were made in the exported interface for the DLL do
you need to recompile the applications that use the DLL.

5. What function does the LIB file provide for a DLL?

The LIB file contains stubs of the functions in the DLL, along with the code to
locate and pass the function call along to the real function in the DLL.

Exercises
1. Separate the line class into its own MFC extension DLL and use it with the second

(regular) DLL.

Create a new project. Specify that the project is an AppWizard (DLL) project, and
give the project a suitable name, such as LineDll.

Specify that the DLL will be an MFC extension DLL.

626 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 626

Answers 627

B

After generating the project skeleton, copy the line source code and header files
into the project directory. Add these files into the project.

Edit the CLine class declaration, adding the AFX_EXT_CLASS macro to the class dec-
laration.

Compile the DLL. Copy the DLL into the debug directory for the test application.

Open the regular DLL project. Delete the line source code and header files from
the project in the File View of the workspace pane. Add the line DLL LIB file to
the project. Edit the drawing functionality source-code file, changing the line class
header include to include the version in the CLine DLL project directory, as in
Listing B.30.

LISTING B.30. THE CModArt INCLUDES.

1: // ModArt.cpp: implementation of the CModArt class.
2: //
3: ///
4:
5: #include <stdlib.h>
6: #include <time.h>
7:
8: #include “stdafx.h”
9: #include “..\LineDll\Line.h”
10: #include “ModArt.h”

Compile the project. Copy the DLL into the test application project debug
directory.

Run the test application.

2. Alter the line class DLL so that it uses a consistent line width for all lines.

Open the line class DLL project that you created in the previous exercise. Edit the
class constructor, replacing the initialization of the m_nWidth variable with a con-
stant value, as in Listing B.31.

LISTING B.31. THE CLine CONSTRUCTOR.

1: CLine::CLine(CPoint ptFrom, CPoint ptTo, UINT nWidth, COLORREF crColor)
2: {
3: m_ptFrom = ptFrom;
4: m_ptTo = ptTo;
5: m_nWidth = 1;
6: m_crColor = crColor;
7: }

030 31240-9 APP B 4/27/00 1:07 PM Page 627

Compile the DLL. Copy the DLL into the test application project debug directory.
Run the test application.

Day 18
Quiz

1. When is the OnIdle function called?

When the application is idle and there are no messages in the application message
queue.

2. How can you cause the OnIdle function to be repeatedly called while the applica-
tion is sitting idle?

Returning a value of TRUE will cause the OnIdle function to continue to be called
as long as the application remains idle.

3. What is the difference between an OnIdle task and a thread?

An OnIdle task executes only when the application is idle and there are no mes-
sages in the message queue. A thread executes independently of the rest of the
application.

4. What are the four thread synchronization objects?

Critical sections, mutexes, semaphores, and events.

5. Why shouldn’t you specify a higher than normal priority for the threads in your
application?

The rest of the threads and processes running on the computer will receive a
greatly reduced amount of processor time.

Exercises
1. If you open a performance monitor on your system while the application that you

built today is running, you’ll find that even without any of the threads running, the
processor usage remains 100 percent, as in Figure 18.11. The OnIdle function is
continuously being called even when there is nothing to be done.

Modify the OnIdle function so that if there’s nothing to be done, neither of the
OnIdle tasks are active. Then, the OnIdle function will not continue to be called
until one of these threads is active, at which time it should be continuously called
until both threads are once again turned off. This will allow the processor to drop
to a minimal utilization, as in Figure 18.12.

Edit the OnIdle function as in Listing B.32.

628 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 628

Answers 629

B

LISTING B.32. THE MODIFIED CTaskingApp OnIdle FUNCTION.

1: BOOL CTaskingApp::OnIdle(LONG lCount)
2: {
3: // TODO: Add your specialized code here and/or call the base class
4:
5: // Call the ancestor’s idle processing
6: BOOL bRtn = CWinApp::OnIdle(lCount);
7:
8: // Get the position of the first document template
9: POSITION pos = GetFirstDocTemplatePosition();
10: // Do we have a valid template position?
11: if (pos)
12: {
13: // Get a pointer to the document template
14: CDocTemplate* pDocTemp = GetNextDocTemplate(pos);
15: // Do we have a valid pointer?
16: if (pDocTemp)
17: {
18: // Get the position of the first document
19: POSITION dPos = pDocTemp->GetFirstDocPosition();
20: // Do we have a valid document position?
21: if (dPos)
22: {
23: // Get a pointer to the document
24: CTaskingDoc* pDocWnd =
25: (CTaskingDoc*)pDocTemp->GetNextDoc(dPos);
26: // Do we have a valid pointer?
27: if (pDocWnd)
28: {
29: // Get the position of the view
30: POSITION vPos = pDocWnd->GetFirstViewPosition();
31: // Do we have a valid view position?
32: if (vPos)
33: {
34: // Get a pointer to the view
35: CTaskingView* pView =

➥ (CTaskingView*)pDocWnd->GetNextView(vPos);
36: // Do we have a valid pointer?
37: if (pView)
38: {
39: // Should we spin the first idle thread?
40: if (pView->m_bOnIdle1)
41: {
42: // Spin the first idle thread
43: pDocWnd->DoSpin(0);
44: bRtn = TRUE;
45: }
46: // Should we spin the second idle thread?
47: if (pView->m_bOnIdle2)

continues

030 31240-9 APP B 4/27/00 1:07 PM Page 629

LISTING B.32. CONTINUED

48: {
49: // Spin the second idle thread
50: pDocWnd->DoSpin(2);
51: bRtn = TRUE;
52: }
53: }
54: }
55: }
56: }
57: }
58: }
59: return bRtn;
60: }

2. When starting the independent threads, give one of the threads a priority of
THREAD_PRIORITY_NORMAL and the other a priority of THREAD_PRIORITY_LOWEST.

Edit the SuspendSpinner function as in Listing B.33.

LISTING B.33. THE MODIFIED CTaskingDoc SuspendSpinner FUNCTION.

1: void CTaskingDoc::SuspendSpinner(int nIndex, BOOL bSuspend)
2: {
3: // if suspending the thread
4: if (!bSuspend)
5: {
6: // Is the pointer for the thread valid?
7: if (m_pSpinThread[nIndex])
8: {
9: // Get the handle for the thread
10: HANDLE hThread = m_pSpinThread[nIndex]->m_hThread;
11: // Wait for the thread to die
12: ::WaitForSingleObject (hThread, INFINITE);
13: }
14: }
15: else // We are running the thread
16: {
17: int iSpnr;
18: int iPriority;
19: // Which spinner to use?
20: switch (nIndex)
21: {
22: case 0:
23: iSpnr = 1;
24: iPriority = THREAD_PRIORITY_NORMAL;
25: break;
26: case 1:
27: iSpnr = 3;
28: iPriority = THREAD_PRIORITY_LOWEST;

630 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 630

Answers 631

B

29: break;
30: }
31: // Start the thread, passing a pointer to the spinner
32: m_pSpinThread[nIndex] = AfxBeginThread(ThreadFunc,
33: (LPVOID)&m_cSpin[iSpnr], iPriority);
34: }
35: }

Day 19
Quiz

1. What are the three aspects of a control that are visible to the container application?

Properties, methods, and events.

2. Why do you need to design a property page for your control?

To provide the user with the ability to set the properties of the control.

3. What are the four types of properties that a control might have?

Ambient, extended, stock, and custom.

4. What happens to the parameters that are passed to the methods of a control?

They are marshaled into a standardized, machine-independent structure.

5. What tool can you use to test your controls?

The ActiveX Control Test Container.

Exercises
1. Add a method to your control to enable the container application to trigger the gen-

eration of a new squiggle drawing.

Open the Class Wizard to the Automation tab. Click the Add Method button. Enter
a method name, such as GenNewDrawing, and specify the return type as void. Click
OK to add the method. Edit the method, adding the code in Listing B.34.

LISTING B.34. THE CSquiggleCtrl GenNewDrawing FUNCTION.

1: void CSquiggleCtrl:: GenNewDrawing()
2: {
3: // TODO: Add your specialized code here and/or call the base class
4: // Set the flag so a new drawing will be generated
5: m_bGenNewDrawing = TRUE;
6: // Invalidate the control to trigger the OnDraw function
7: Invalidate();
8: }

030 31240-9 APP B 4/27/00 1:07 PM Page 631

2. Add a method to your control to save a squiggle drawing. Use the
CFile::modeWrite and CArchive::store flags when creating the CFile and
CArchive objects.

Open the Class Wizard to the Automation tab. Click the Add Method button. Enter
a method name, such as SaveDrawing, and specify the return type as BOOL. Add a
single parameter, sFileName, with a type of LPCTSTR. Click OK to add the method.
Edit the method, adding the code in Listing B.35.

LISTING B.35. THE CSquiggleCtrl SaveDrawing FUNCTION.

1: BOOL CSquiggleCtrl::SaveDrawing(LPCTSTR sFileName)
2: {
3: // TODO: Add your dispatch handler code here
4: try
5: {
6: // Create a CFile object
7: CFile lFile(sFileName, CFile::modeWrite);
8: // Create a CArchive object to store the file
9: CArchive lArchive(&lFile, CArchive::store);
10: // Store the file
11: m_maDrawing.Serialize(lArchive);
12: }
13: catch (CFileException err)
14: {
15: return FALSE;
16: }
17: return TRUE;
18: }

Day 20
Quiz

1. What are the two things that a client application must know to be able to connect
to a server application?

The network address (or name) of the computer and the port on which the server is
listening.

2. What CAsyncSocket function is used to enable a server application to detect con-
nection efforts by client applications?

Listen.

632 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 632

Answers 633

B

3. What CAsyncSocket member function is called to signal that data has arrived
through a socket connection?

OnReceive.

4. What function is called to signal that a connection has been established?

OnConnect.

5. What function do you use to send a message through a socket connection to the
application on the other end?

Send.

Exercises
The server application that you wrote can handle only a single connection at a time. If a
second application tries to open a connection to it while it has an existing connection to
an application, the server application will crash. The server tries to accept the second
connection into the socket that is already connected to the first client application. Add a
third socket object to the application that will be used to reject additional client connec-
tions until the first client closes the connection.

Follow these steps:

1. Add a member variable to the dialog class (CSockDlg). Specify the variable type as
BOOL, the name as m_bConnected, and the access as private.

2. Initialize the variable as FALSE in the OnInitDialog function.

3. Set the variable to TRUE in the OnAccept dialog function once the connection has
been accepted.

4. Set the variable to FALSE in the OnClose dialog function.

5. Modify the OnAccept dialog function as in Listing B.36.

LISTING B.36. THE MODIFIED CSockDlg OnAccept FUNCTION.

1: void CSockDlg::OnAccept()
2: {
3: if (m_bConnected)
4: {
5: // Create a rejection socket
6: CAsyncSocket sRjctSock;
7: // Create a message to send
8: CString strMsg = “Too many connections, try again later.”;
9: // Accept using the rejection socket
10: m_sListenSocket.Accept(sRjctSock);
11: // Send the rejection message
12: sRjctSock.Send(LPCTSTR(strMsg), strMsg.GetLength());

continues

030 31240-9 APP B 4/27/00 1:07 PM Page 633

LISTING B.36. CONTINUED

13: // Close the socket
14: sRjctSock.Close();
15: }
16: else
17: {
18: // Accept the connection request
19: m_sListenSocket.Accept(m_sConnectSocket);\
20: // Mark the socket as connected
21: m_bConnected = TRUE;
22: // Enable the text and message controls
23: GetDlgItem(IDC_EMSG)->EnableWindow(TRUE);
24: GetDlgItem(IDC_BSEND)->EnableWindow(TRUE);
25: GetDlgItem(IDC_STATICMSG)->EnableWindow(TRUE);
26: }
27: }

Day 21
Quiz

1. What does the CHtmlView class encapsulate for use in Visual C++ applications?

The Internet Explorer Web browser.

2. How can you get the URL for the current Web page from the CHtmlView class?

GetLocationURL().

3. What command is triggered for the frame class when the user presses the Enter key
in the edit box on the dialog bar?

IDOK.

4. What functions can you call to navigate the browser to the previous and the next
Web pages?

GoBack() and GoForward().

5. How can you stop a download in progress?

With the Stop() function.

Exercises
1. Add the GoSearch function to the menu and toolbar.

Add a menu entry to the Go menu. Specify the menu entry properties in Table B.6.

634 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 634

Answers 635

B

TABLE B.6. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry ID IDM_GO_SEARCH

Caption &Search

Prompt Search the Web\nSearch

Using the Class Wizard, add an event-handler function to the view class on the
IDM_GO_SEARCH ID for the COMMAND event message. Edit the code as in Listing
B.37.

LISTING B.37. THE CWebBrowseView OnGoSearch FUNCTION.

1: void CWebBrowseView::OnGoSearch()
2: {
3: // TODO: Add your command handler code here
4:
5: // Go to the search page
6: GoSearch();
7: }

Add a toolbar button for the menu ID IDM_GO_SEARCH.

2. Add the GoHome function to the menu and toolbar.

Add a menu entry to the Go menu. Specify the menu entry properties in Table B.7.

TABLE B.7. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry ID IDM_GO_START

Caption S&tart Page

Prompt Go to the start page\nHome

Using the Class Wizard, add an event-handler function to the view class on the
IDM_GO_START ID for the COMMAND event message. Edit the code as in Listing
B.38.

LISTING B.38. THE CWebBrowseView OnGoStart FUNCTION.

1: void CWebBrowseView::OnGoStart()
2: {
3: // TODO: Add your command handler code here

continues

030 31240-9 APP B 4/27/00 1:07 PM Page 635

LISTING B.38. CONTINUED

4:
5: // Go to the start page
6: GoHome();
7: }

Add a toolbar button for the menu ID IDM_GO_START.

3. Disable the Stop toolbar button and menu entry when the application is not down-
loading a Web page.

Using the Class Wizard, add an event handler to the view class for the
IDM_VIEW_STOP object ID on the UPDATE_COMMAND_UI event message. Edit the
function, adding the code in Listing B.39.

LISTING B.39. THE CWebBrowseView OnUpdateViewStop FUNCTION.

1: void CWebBrowseView::OnUpdateViewStop(CCmdUI* pCmdUI)
2: {
3: // TODO: Add your command update UI handler code here
4:
5: // Enable the button if busy
6: pCmdUI->Enable(GetBusy());
7: }

636 Appendix B

030 31240-9 APP B 4/27/00 1:07 PM Page 636

APPENDIX C
Printing and Print
Previewing

by Jon Bates

Using the Framework’s Functionality
The SDI and MDI frameworks created by the AppWizard add the hooks for
printing and previewing by default. These can be turned off by unchecking the
Printing and Print Preview option in Step 4 of the MFC AppWizard, but gener-
ally they are useful to include in any project and add very little overhead. Most
of the real work of printing is taken care of by the device context and GDI. The
framework presents you with a device context for a print document page; you
can treat it pretty much as if it’s a normal window device context.

031 31240-9 APP C 4/27/00 1:07 PM Page 637

Using Default Print Functionality
The SDI (Single Document Interface) framework supports printing images from views
based on information held in the document. Because this information is already dis-
played in your applications views, you can probably print it by modifying the view to
add printing support.

The framework calls your OnDraw() function in the view to display an image. There is a
corresponding OnPrint() function that it calls to let your view handle printing the infor-
mation. Often this task is simply a case of using the same drawing code as you’ve imple-
mented in your OnDraw() function. If this is so, you don’t actually need to implement the
OnPrint() function; the framework does this by default in the CView base class and calls
OnDraw(). The printer is then treated just like it would be for a screen because it offers a
device context for the drawing functions to use, as a substitute for the usual screen
device context. Your OnDraw() function can determine whether the device context it is
passed is a screen or printer device context, but because the drawing functions will work
in the same way on both, even this knowledge isn’t necessary.

You can explore the printing functionality added by the standard framework by creating
a standard SDI application with the AppWizard. Leave the Printing and Print Preview
option in Step 4 checked (this means you can click Finish on Step 1) and name the pro-
ject PrintIt.

638 Appendix C

STANDARD PRINT FRAMEWORK SUPPORT

The standard print and print preview support is available only in SDI and MDI applica-
tions. Dialog box-based applications must implement their own printing support.

The first thing you’ll need is a graphic to print. You can create a graphical test display in
the OnDraw() function of my CPrintItView class (just a normal CView) as shown in
Listing C.1. This test displays a line-art style picture with some centralized text in a large
font (see Figure C.1). The test image isn’t too important, but it will make a useful com-
parison between printed output and screen display.

LISTING C.1. LST23_1.CPP—DRAWING IN OnDraw TO PRODUCE A PRINT SAMPLE.

1: void CPrintItView::OnDraw(CDC* pDC)
2: {
3: CPrintItDoc* pDoc = GetDocument();
4: ASSERT_VALID(pDoc);
5:

031 31240-9 APP C 4/27/00 1:07 PM Page 638

Printing and Print Previewing 639

C

6: // TODO: add draw code for native data here
7:
8: // ** Set metric mapping
9: pDC->SetMapMode(MM_LOMETRIC);
10:
11: // ** Declare and create a font 2.2cm high
12: CFont fnBig;
13: fnBig.CreateFont(220,0,0,0,FW_HEAVY,FALSE,FALSE,0,
14: ANSI_CHARSET,OUT_DEFAULT_PRECIS,
15: CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,
16: FF_SWISS+VARIABLE_PITCH,”Arial”);
17:
18: //** Select the new font and store the original
19: CFont* pOldFont = pDC->SelectObject(&fnBig);
20:
21: //** Declare a client rectangle
22: CRect rcClient;
23: GetClientRect(&rcClient);
24:
25: // ** Convert to logical units
26: pDC->DPtoLP(&rcClient);
27:
28: // ** Set up some drawing variables
29: const int nPoints = 50;
30: int xm = rcClient.Width();
31: int ym = rcClient.Height();
32: double dAspW = xm/(double)nPoints;
33: double dAspH = ym/(double)nPoints;
34:
35: // ** Select a black pen
36: CPen* pOldPen =
37: (CPen*)pDC->SelectStockObject(BLACK_PEN);
38:
39: // ** Draw the lines
40: for(int i=0;i<nPoints;i++)
41: {
42: int xo = (int)(i * dAspW);
43: int yo = (int)(i * dAspH);
44:
45: pDC->MoveTo(xo,0);
46: pDC->LineTo(xm,yo);
47: pDC->LineTo(xm-xo,ym);
48: pDC->LineTo(0,ym-yo);
49: pDC->LineTo(xo,0);
50: }
51:
52: // ** Reselect the old pen
53: pDC->SelectObject(pOldPen);
54:

continues

031 31240-9 APP C 4/27/00 1:07 PM Page 639

LISTING C.1. CONTINUED

55: // ** Draw the text on top
56: pDC->SetTextAlign(TA_CENTER+TA_BASELINE);
57: pDC->SetBkMode(TRANSPARENT);
58:
59: // ** Set gray text
60: pDC->SetTextColor(RGB(64,64,64));
61: pDC->TextOut(xm/2,ym/2,”Sample Print”);
62:
63: // ** Reselect the old font
64: pDC->SelectObject(pOldFont);
65: }

640 Appendix C

FIGURE C.1.
Graphical test output
of PrintIt in a window.

Although there is a fair bit of code in this OnDraw() function, none of it is unusual. It just
draws lines inside the client rectangle and writes some text in the middle. Notice at line
9, the mapping mode is set to MM_LOMETRIC; this sets the logical coordinates to tenths of
a millimeter.

A 2.2cm high font is created at line 13 and used to draw the sample text at line 61. Lines
40 to 50 draw the arty “peg and string” frame using the client rectangle coordinates. I’ll
let you decipher the details; the important thing here is to investigate the business of
printing.

031 31240-9 APP C 4/27/00 1:08 PM Page 640

Printing and Print Previewing 641

C

If you build and run the program after adding these lines to the OnDraw() function of
Listing C.1, you should see a graphical display in your application window, as shown in
Figure C.1.

So the big question is this: What must you do to print this image output? Surprisingly
little—because the standard framework tries to print this by calling your OnDraw() func-
tion and passing the device context for the printer rather than for the window.

If you click the File menu of the PrintIt application and choose Print Preview, you’ll see
a small representation of the image in the top-left corner, although the font is too big for
the line drawing. This isn’t the framework’s fault; it has done its best to represent your
window, but it was passed the wrong coordinates for the device context. The problem
lies with the GetClientRect()used in line 23.

Notice that GetClientRect() is a member of the view, not of the device context. This
works fine for the window because the device context is the same size as the window
rectangle. Now you’re passing the window rectangle to the printer device context (which
is small in comparison) but creating a 2.2cm high font that is always the same size
(because of the mapping mode).

Overriding OnPrint()
To fix the client rectangle coordinate size problem, you must pass the correct rectangle
for the printer rather than the window. Fortunately, the framework calls a virtual function
that you can override in your view and use to find all the information you need. As you
read earlier, this function is named OnPrint() and is analogous to OnDraw(). When
drawing in a window, OnDraw() is called; when drawing on a printer, OnPrint() is
called. You might be wondering how the drawing code in OnDraw() was executed to
print preview the sample graphical display. The default CView implementation of
OnPrint() simply calls OnDraw(), passing its printer device context.

Your OnPrint() doesn’t have to call OnDraw(); you can override OnPrint() to make it
draw something entirely different, but many applications must print out what the user
sees. These applications reuse their OnDraw() code with the printer device context.

To override the OnPrint() virtual function, perform the following steps:

1. Click the ClassView tab of the Project Workspace view.

2. Click the top plus sign to open the view of the project classes.

3. Right-click the view class to which you want to add the OnPrint() override (such
as CPrintItView in the PrintIt example) to display the context menu.

4. Select the Add Virtual Function option to display the New Virtual Override dialog
box.

031 31240-9 APP C 4/27/00 1:08 PM Page 641

5. You should see an OnPrint virtual function in the New Virtual Functions list.

6. Click the Add and Edit button to start editing the OnPrint() virtual function.

The standard override for OnPrint() looks like this:

void CPrintItView::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{

// TODO: Add your specialized code here
CView::OnPrint(pDC, pInfo);

}

The first thing you’ll notice that’s different from OnDraw() is the second parameter, the
pointer to a CPrintInfo object pInfo. This is where you’ll find the details about the cur-
rent print, specifically the rectangle coordinates for the printer device context you
require. There are lots of useful CPrintInfo member variables. Some of these are shown
in Table C.1.

TABLE C.1. CPrintInfo MEMBER VARIABLES SPECIFIC TO PRINT INFORMATION.

Variable Name Description of Contents

m_nCurPage The current page number for multipage prints

m_nNumPreviewPages Either 1 or 2, depending on the preview pages shown

m_rectDraw The coordinates of the print page rectangle

m_pPD Pointer to a CPrintDialog class if the Print dialog box is used

m_bDirect TRUE if the Print dialog box has been bypassed

m_bPreview TRUE if currently in print preview

m_strPageDesc A format string to help generate the page number

m_lpUserData A pointer that can be used to hold user data

Some other member variables in CPrintInfo are covered later in this chapter, but first
you’ll need to find the printing rectangle coordinates rather than the window’s rectangle.
The m_rectDraw member holds the coordinate rectangle of the current print page. You
can use these coordinates with the printer device context in the OnDraw() function. There
is a problem though, in that this structure isn’t passed to the OnDraw(), but you can copy
the coordinates into a member variable held in your CPrintItView class.

Add the following lines to store the rectangle after the // TODO comment, but before the
CView::OnPrint() call:

// ** copy the print rectangle from the pInfo
if (pInfo) m_rcPrintRect = pInfo->m_rectDraw;

642 Appendix C

031 31240-9 APP C 4/27/00 1:08 PM Page 642

Printing and Print Previewing 643

C

This will store the printing rectangle in the m_rcPrintRect member of the CPrintItView
class. You must therefore declare this member variable, which is easily done by right-
clicking the CPrintItView class in the ClassView pane of the Project Workspace view
and choosing the Add Member Variable option. The Variable Type is a CRect, and the
declaration is obviously m_rcPrintRect. Access should be private because you don’t
need or want any other classes to know about this internal rectangle.

Using the Printer Device Context
The device context passed to OnPrint() differs slightly from the display context in that
it may have fewer colors and is probably larger that your display. Other than these attrib-
utes, you can use it to draw in exactly the same way as the screen device context. This is
how you can use the same OnDraw() to print as well as view in a window. The base class
call CView::OnPrint() implements code that does exactly this.

The device context holds a flag that you can interrogate via the IsPrinting() function
to determine whether you are drawing to a screen-based device context or a printer-based
device context. You might use this difference to change the printed output from the
screen output, or more subtly to adjust the coordinates used to produce the printed
output.

For the sample program it only remains to use the m_rcPrintRect coordinates when
printing in the OnDraw() function. The code necessary to use the IsPrinting() function
to determine whether the window’s client rectangle or the printer’s rectangle should be
used is shown in Listing C.2. The output produced is shown by the print preview in
Figure C.2.

LISTING C.2. LST23_2.CPP—ADDING PRINTING RECTANGLE SUPPORT TO THE STANDARD
OnDraw() IMPLEMENTATION.

1: // Declare a client rectangle
2: CRect rcClient;
3:
4: // ** Check the device context for printing mode
5: if (pDC->IsPrinting())
6: {
7: // ** Printing, so use the print rectangle
8: rcClient = m_rcPrintRect;
9: }
10: else
11: {
12: // ** Not printing, so client rect will do
13: GetClientRect(&rcClient);

continues

031 31240-9 APP C 4/27/00 1:08 PM Page 643

LISTING C.2. CONTINUED

14: }
15:
16: // Convert to logical units
17: pDC->DPtoLP(&rcClient);

Notice in Listing C.2 that an if statement is used in line 5 to call the device context’s
IsPrinting() function. This function returns TRUE if this is a printer device context (or
preview) and FALSE for any other device contexts. In the printing case, you can assign
the stored print page rectangle to rcClient, as shown in line 8. In the normal screen
window case you can just use the standard GetClientRect() to find the window’s rec-
tangle, as shown in line 13.

Because you’ve used a mapping mode, you must convert both printing and display rec-
tangle coordinates from device units to logical units. This is done by the DPtoLP() func-
tion in line 17. If you change and add lines 4–14 to your existing OnDraw() function and
then build and run the application, you should be able to run the print preview as before,
with better results (see Figure C.2).

644 Appendix C

FIGURE C.2.
Print preview using the
full print page rectan-
gle coordinates.

031 31240-9 APP C 4/27/00 1:08 PM Page 644

Printing and Print Previewing 645

C

Maintaining the Aspect Ratio
As you can see from Figure C.2, because the paper is much longer and thinner than the
window, the printed output becomes stretched. The relationship between the width and
the height is the aspect ratio. To stop the image from stretching one way or another, you
must keep the same aspect ratio as the image in the window. The code in Listing C.2
doesn’t try to maintain aspect ratios, which isn’t very satisfactory in most cases, so you
would need to add some code to maintain the aspect ratio of the printed output.

The best tactic to use in this case is to find out whether setting either the width or the
height to the full width or height of the paper will give maximum coverage and then
shorten the other dimension to maintain the aspect ratio.

To do this, you need some information about the paper dimensions and its own aspect
ratio. There is a device context function that retrieves these details (and many more)
named GetDeviceCaps(). By passing the ASPECTX or ASPECTY flags to GetDeviceCaps(),
you can find the relationship between the width of a pixel and its height. If the relation-
ship is 1:1 the pixel is square; otherwise, it is oblong and might differ from the screen’s
own aspect ratio. If it differs, you can decide which axis will give you the largest image,
while maintaining the same aspect ratio as the screen. That way you can avoid a
stretched looking image.

Code that does just that in the OnDraw() function is demonstrated in Listing C.3.

LISTING C.3. LST23_3.CPP—MAINTAINING THE ASPECT RATIO WHILE PRODUCING THE LARGEST
PRINTED REPRESENTATION.

1: //** Declare a client rectangle and get the client rect
2: CRect rcClient;
3: GetClientRect(&rcClient);
4:
5: // ** Check the device context for printing mode
6: if (pDC->IsPrinting())
7: {
8: // ** Find the Print width : Window width ratio

DEVICE ASPECT RATIOS

For most printers, you’ll probably find that the aspect ratio is 1:1. But if you look closely
at thermal printer output like those in fax machines, you can see a very distinctive aspect
ratio difference in their pixels.

continues

031 31240-9 APP C 4/27/00 1:08 PM Page 645

LISTING C.3. CONTINUED

9: double dWidthRatio=(double)m_rcPrintRect.Width()/
10: (double)rcClient.Width();
11:
12: // ** Find the Print height : Window height ratio
13: double dHeightRatio=(double)m_rcPrintRect.Height()/
14: (double)rcClient.Height();
15:
16: // ** Calculate the device’s aspect ratio
17: double dAspect=(double)pDC->GetDeviceCaps(ASPECTX)/
18: (double)pDC->GetDeviceCaps(ASPECTY);
19:
20: // ** Find the new relative height
21: int nHeight=(int)(rcClient.Height() *
22: dWidthRatio * dAspect);
23:
24: // ** Find the new relative width
25: int nWidth=(int)(rcClient.Width() *
26: dHeightRatio * (1.0 / dAspect));
27:
28: // ** Set the whole rectangle
29: rcClient=m_rcPrintRect;
30:
31: // ** Determine the best fit across or down the page
32: if (nHeight > nWidth)
33: {
34: // ** Down is best, so adjust the width
35: rcClient.BottomRight().x=
36: m_rcPrintRect.TopLeft().x + nWidth;
37: }
38: else
39: {
40: // ** Across is best, so adjust the height
41: rcClient.BottomRight().y=
42: m_rcPrintRect.TopLeft().y + nHeight;
43: }
44: }
45:
46: // Convert to logical units
47: pDC->DPtoLP(&rcClient);

Notice that both the screen window and printed case use the window coordinates that are
found from the GetClientRect() in line 3. In the onscreen window case, nothing else is
done and the code continues as normal.

However, a lot now happens when printing, if the IsPrinting() test in line 6 returns
TRUE. First, you must find the ratios of the window width to the paper width and the

646 Appendix C

031 31240-9 APP C 4/27/00 1:08 PM Page 646

Printing and Print Previewing 647

C

window height to the paper height. You can find these ratios as shown in lines 9 and 13
by dividing the paper dimensions by the window dimensions.

The next thing you must calculate is the device’s own aspect ratio peculiarities. You can
use the GetDeviceCaps() function in line 17 to find the ratio of width to height in the
device itself and store the result in dAspect.

Using these values, you can now calculate the device’s comparative width and height
coordinates in terms of the opposing window dimension, as shown in lines 21 and 25.
This calculation, which includes the device aspect ratio for each dimension, will yield
the adjusted height for the full page width or vice versa. Now you must decide whether
you can best fit the full width or height of a page and adjust the other dimension. The
condition on line 32 makes this decision based on the bigger width or height. This means
that if you have a tall, thin window, it is better to use the full height of the paper and
adjust the width; conversely, if you have a short, wide window, it is better to use the full
width and adjust the height. Depending on what is better, the adjustment is made on line
35 or 42 by setting the bottom-right point’s x- or y-coordinate to the adjusted width or
height.

Notice that all the other dimensions are set to rcClient from the paper in the assignment
on line 29, so the adjustment is the only change required. After this section, the program
continues and will use the adjusted rectangle to do its drawing.

If you build and run the application after adding the lines in Listing C.3 to the OnDraw()
function, you should see that printing or previewing the window will now maintain the
same aspect ratio as the onscreen window. If you stretch the window to make it higher
than it is wide, the printed output will use the full height of the page rather than the full
width, but still maintain the correct aspect ratios.

Pagination and Orientation
Printing a single page to represent the view in a window is a common requirement, but
largely the printing process is concerned with printing large and complex multipage doc-
uments from the user’s sophisticated data. The framework comes to the rescue again and
simplifies this process by providing a common Print Setup dialog box and a page enu-
meration system to print and preview the specified range of pages.

Setting the Start and End Pages
The first considerations for a multipage document are the start and end pages, which also
indicate how many pages you are going to print. A framework virtual function in the
view class is called first when printing begins. This function is OnPreparePrinting()

031 31240-9 APP C 4/27/00 1:08 PM Page 647

and it supplies one parameter, the CPrintInfo object pInfo. This is the first time you’ll
see the CPrintInfo, and this is where you can first change it to customize the print to
your requirements. The OnPreparePrinting() function is supplied automatically from
the AppWizard when you create the SDI, so you don’t have to add it yourself. You can
see the default implementation by double-clicking the OnPreparePrinting() member of
the CPrintItView class in the ClassView pane.

It should look like this:

BOOL CPrintItView::OnPreparePrinting(CPrintInfo* pInfo)
{

// default preparation
return DoPreparePrinting(pInfo);

}

By default, the DoPreparePrinting() function is called and passed the pInfo pointer to
the CPrintInfo object for the print. DoPreparePrinting() sets up the required device
context and calls the standard Print dialog box if you are printing (not previewing). This
dialog box is covered in more detail in the next section, but first you can set up a range
of pages to print by modifying the CPrintInfo object before the DoPreparePrinting().

To do this, add the following lines before the // default preparation comment:

pInfo->SetMinPage(2);
pInfo->SetMaxPage(8);

These two member functions of the CPrintInfo class will modify the CPrintInfo object
pointed at by pInfo to set the starting page at page 2 via SetMinPage() and the ending
page at page 8 via SetMaxPage().

Now when the document is printed, the OnPrint() function will be called six times. The
only difference between each of these calls will be the pInfo->m_nCurPage member vari-
able that will hold the current page as it iterates between 2 and 8.

Depending on the kind of application you write, the technique you’ll use to determine
the number of pages will vary. If you are selling music compact discs and want to print a
brochure of your product range, you would probably fit the cover picture and review of
each CD on one printed page, so if you sell 120 different CDs, you need 120 pages.
However, if you are printing a complex government tender with different bill elements
and formatted items, you’ll probably need to measure the height of all the different parts
and calculate a page count after performing your own pagination. Either way, when you
have the page count, OnPreparePrinting() is where you’ll set it into the CPrintInfo
object.

648 Appendix C

031 31240-9 APP C 4/27/00 1:08 PM Page 648

Printing and Print Previewing 649

C

To emphasize the difference between a full report and a window print, you can imple-
ment a completely different drawing in the OnPrint() function than OnDraw(), as shown
in Listing C.4. In this OnPrint(), the base class CView::OnPrint() function isn’t called
at all, which means that the default call of OnDraw() isn’t performed. So in this imple-
mentation, the printing output and the display output are entirely different.

LISTING C.4. LST23_4.CPP—IMPLEMENTING PAGE-SPECIFIC DRAWING IN OnPrint().

1: void CPrintItView::OnPrint(CDC* pDC, CPrintInfo* pInfo)
2: {
3: // TODO: Add your specialized code here
4:
5: // ** Create and select the font
6: CFont fnTimes;
7: fnTimes.CreatePointFont(720,”Times New Roman”,pDC);
8: CFont* pOldFont=(CFont*)pDC->SelectObject(&fnTimes);
9:
10: // ** Create and select the brush
11: CBrush brHatch(HS_CROSS,RGB(64,64,64));
12: CBrush* pOldBrush =
13: (CBrush*)pDC->SelectObject(&brHatch);
14:
15: // ** Create the page text
16: CString strDocText;
17: strDocText.Format(“Page Number %d”,
18: pInfo->m_nCurPage);
19:
20: pDC->SetTextAlign(TA_CENTER+TA_BASELINE);
21:
22: // ** Set up some useful point objects
23: CPoint ptCenter=pInfo->m_rectDraw.CenterPoint();
24: CPoint ptTopLeft=pInfo->m_rectDraw.TopLeft();
25: CPoint ptBotRight=pInfo->m_rectDraw.BottomRight();
26:
27: // ** Create the points for the diamond
28: CPoint ptPolyArray[4]=
29: {
30: CPoint(ptTopLeft.x,ptCenter.y),
31: CPoint(ptCenter.x,ptTopLeft.y),

BYPASSING THE PRINT DIALOG BOX WHEN PRINTING

You don’t always need to bother the user with the Print dialog box; this can be bypassed
by setting the pInfo->m_bDirect variable to TRUE in OnPreparePrinting().

continues

031 31240-9 APP C 4/27/00 1:08 PM Page 649

LISTING C.4. CONTINUED

32: CPoint(ptBotRight.x,ptCenter.y),
33: CPoint(ptCenter.x,ptBotRight.y)
34: };
35:
36: // ** Draw the diamond
37: pDC->Polygon(ptPolyArray,4);
38:
39: // ** Draw the text
40: pDC->TextOut(ptCenter.x,ptCenter.y,strDocText);
41:
42: // ** Unselect the fonts
43: pDC->SelectObject(pOldFont);
44: pDC->SelectObject(pOldBrush);
45:}

In lines 6–12 of Listing C.4, the resources for the print (a font and a brush) are set up.
Note that there is a better place to do this, as explained later in this chapter in the section
“Adding GDI Objects with OnBeginPrinting().”

You can use the current page number to draw the different textual content of each page
by its position in the printed document, as shown in line 17. In a real application you
would probably use this page number to reference the document and look up a specific
item of data. In the compact disc scenario mentioned earlier, this page number might be
used to reference a specific CD, and the drawing functions would then use that data. I
don’t have space to demonstrate anything quite so sophisticated here, so I’ve just used
the current page number from pInfo->m_nCurPage to illustrate the point.

Lines 22–37 set up a diamond-shaped polygon to draw as the background and line 40
draws the text containing the current page in the middle of the page. Lines 43–44 rese-
lect the old font and brush.

If you build and run the program after making these changes to OnPrint() and then
click the test application File menu and choose Print Preview, you should be able to
preview multiple pages using the Next Page and Prev Page buttons shown in Figure
C.3. If you have a printer attached, you’ll also be able to print the multipage document.

Using the Print Dialog Box
Notice that when you print a multipage document, you are first presented with a dialog
box that enables you to customize the print settings, as shown in Figure C.4. This is the
standard Print dialog box and is called from the CView::DoPreparePrinting() function
that was called from within the OnPreparePrinting() override. This dialog box lets you
set the page ranges to print, the number of copies, collation flags, the destination printer,
and a whole host of things specific to the printer properties.

650 Appendix C

031 31240-9 APP C 4/27/00 1:08 PM Page 650

C

Printing and Print Previewing 651

FIGURE C.3.
The Print Preview
output of a multipage
document.

FIGURE C.4.
The standard Print
dialog box.

THE Collate CHECK BOX

If the user unchecks the Collate check box on the Print dialog box, the printer driver will
automatically repeat the same pages together. You don’t need to do anything special in
your code to handle this—but the feature must be supported by the printer driver; other-
wise it will be disabled and inaccessible in the Print dialog box.

031 31240-9 APP C 4/27/00 1:08 PM Page 651

The user can change the print options from this dialog box, which will then update the
settings in the CPrintInfo object before it is passed to your application. You can cus-
tomize this dialog box to a small or great degree depending on the amount of customiza-
tion you require and the work you’re prepared to put into the job.

From the CPrintInfo class members in Table C.1, recall that there is an m_pPD pointer.
This points to a CPrintDialog class that is an MFC wrapper class for the Print dialog
box. This class also holds an m_pd member, which is a PRINTDLG structure holding the
default settings that are displayed in the Print dialog box. There are many members of
this structure, as shown in Listing C.5. This allows complete customization of the dialog
box defaults, even to the level of specifying a completely different dialog box template
than the default template (if you want a challenge). There isn’t enough space here to
describe all these members in detail; one of the more obvious members is the nCopies
member variable. You could change the default number of copies displayed in this dialog
box by setting the nCopies member of this structure directly before calling the
CView::DoPreparePrinting() function. To do this, add the following line to your
OnPreparePrinting() function:

pInfo->m_pPD->m_pd.nCopies = 15;

When you open the Print dialog box after adding this line, the number of copies will
default to 15 (if your printer or printer driver supports multiple copies). You can set the
other default values in the PRINTDLG accordingly.

652 Appendix C

USING THE DevMode STRUCTURE

The DevMode structure holds many useful attributes that describe the technical capabilities
and configuration of the device. The structure pointer is returned by the GetDevMode()
function in the CPrintDialog class.

LISTING C.5. LST23_5.CPP—THE PRINTDLG STRUCTURE.

1: typedef struct tagPD {
2: DWORD lStructSize;
3: HWND hwndOwner;
4: HANDLE hDevMode;
5: HANDLE hDevNames;
6: HDC hDC;
7: DWORD Flags;
8: WORD nFromPage;
9: WORD nToPage;
10: WORD nMinPage;
11: WORD nMaxPage;
12: WORD nCopies;

031 31240-9 APP C 4/27/00 1:08 PM Page 652

Printing and Print Previewing 653

C

13: HINSTANCE hInstance;
14: DWORD lCustData;
15: LPPRINTHOOKPROC lpfnPrintHook;
16: LPSETUPHOOKPROC lpfnSetupHook;
17: LPCTSTR lpPrintTemplateName;
18: LPCTSTR lpSetupTemplateName;
19: HANDLE hPrintTemplate;
20: HANDLE hSetupTemplate;
21: } PRINTDLG;

After the user has confirmed OK in the Print dialog box, you can retrieve the changes by
using the CPrintDialog class access functions shown in Table C.2. So if you wanted to
find the number of copies specified by the user before printing, you could catch the value
after it is returned from the CView::DoPreparePrinting() function, as shown in Listing
C.6.

Obviously, any of the values in the PRINTDLG structure pInfo->m_pPD->m_pd can be
tested here also.

TABLE C.2. CPrintDialog ACCESS FUNCTIONS.

Function Name Description

GetCopies() Returns the number of copies set by the user

GetFromPage() Returns the starting page as specified

GetToPage() Returns the last page as specified

GetPortName() Returns the selected printer port, for example, LPT1:

GetDriverName() Returns the selected print driver (destination printer)

GetPrinterDC() Returns a device context for the printer

PrintAll() Returns TRUE if all pages are selected

PrintCollate() Returns TRUE if collation is required

PrintRange() Returns TRUE if a range is specified

PrintSelection() Returns TRUE if a specific selection of pages is chosen

LISTING C.6. LST23_6.CPP—VALIDATING THE STANDARD PRINT DIALOG BOX FOR A SPECIFIC
NUMBER OF COPIES.

1: BOOL CPrintItView::OnPreparePrinting(CPrintInfo* pInfo)
2: {
3: pInfo->SetMinPage(1);
4: pInfo->SetMaxPage(10);

continues

031 31240-9 APP C 4/27/00 1:08 PM Page 653

LISTING C.6. CONTINUED

5:
6: pInfo->m_pPD->m_pd.nCopies = 3;
7:
8: do
9: {
10: // ** Check if user has cancelled print
11: if (DoPreparePrinting(pInfo) == FALSE)
12: return FALSE;
13:
14: // ** Warn the user if too many copies

➥ are specified
15: if (pInfo->m_pPD->GetCopies()>5)
16: AfxMessageBox(“Please choose less than

➥ 5 copies”);
17:
18: // ** Keep looping until they specify a

➥ valid number
19: } while(pInfo->m_pPD->GetCopies()>5);
20: return TRUE;
21: }

In Listing C.6 the CView::DoPreparePrinting() returns FALSE if the user has pressed
Cancel in lines 11 and 12. Otherwise, the number of copies set is checked in line 15, and
a warning is issued if more than five copies have been selected (my arbitrary criteria).
The loop is repeated at line 19 until the user enters a valid number of copies or presses
Cancel.

Using Portrait and Landscape Orientations
If you click the File menu from the application and choose the Print Setup option, you
can change the printer’s orientation defaults. You can choose either Portrait or Landscape
from the dialog. You don’t need to make any code changes to handle Landscape printing;
if you choose this option and then run a print preview, you should notice that the device
context is now drawn to the shape of the paper turned on its side. As long as your appli-
cation takes note of the rectDraw member of the CPrintInfo object, it should be able to
cope with landscape printing automatically.

Adding GDI Objects with OnBeginPrinting()
As I mentioned earlier, the code in Listing C.4 works fine, but there is a better way to
allocate the resources needed. Currently every time a page is printed, OnPrint() is called
to draw the page, and all the resources are created from scratch. That probably won’t
slow things down too much for this simple output, but in a large, complex report you

654 Appendix C

031 31240-9 APP C 4/27/00 1:08 PM Page 654

Printing and Print Previewing 655

C

might want to set up a number of resources and other calculations just once at the start of
the report. Then you can print a number of pages and clean up the resources at the end of
the report.

The OnBeginPrinting()virtual function is an ideal place to do this initialization, and its
sister function, OnEndPrinting(), is the place to clean up these resources.
OnBeginPrinting() is called after OnPreparePrinting() and is the first place where a
printer device context is passed in. This device context is the one that is used during the
printing process, so you can set up all the GDI objects and printer page coordinates at
this point. The default code supplied automatically by the ClassWizard just gives you an
empty function:

void CPrintItView::OnBeginPrinting(CDC* /*pDC*/,
➥ CPrintInfo* /*pInfo*/)
{

// TODO: add extra initialization before printing
}

Take a close look at that function definition. Notice the parameters are actually com-
mented out to the compiler, throwing warning messages about unused parameters when
you compile. You’ll have to remember to uncomment these parameters before you start
using them.

You can now add the GDI object creation calls to this function to avoid doing it on every
page:

m_fnTimes.CreatePointFont(720,”Times New Roman”,pDC);
m_brHatch.CreateHatchBrush(HS_CROSS,RGB(64,64,64));

Notice that the fnTimes and brHatch objects have been prefixed by an m_; this is a nam-
ing convention to indicate that the objects have class scope (are embedded in the class)
rather than local scope (are embedded in the function). Because you’ll need to access
these GDI objects in OnPrint(), you can add them to the class declaration. You can do
this by adding the font and brush objects to the class declaration like this:

protected:
CFont m_fnTimes;
CBrush m_brHatch;

You can add these either by double-clicking the CPrintItView class in the ClassView
and adding them directly or by using the Add Member Variable dialog box.

Also notice that the hatched brush is created with the CreateHatchBrush() function
rather than with the constructor. This is because the brush will exist as long as the view
does, but you must call DeleteObject() in the OnBeginPrinting() function so that the
underlying GDI resource is freed between prints. You can add the code to delete both the
font and brush GDI objects in OnEndPrinting(), as shown in these lines:

031 31240-9 APP C 4/27/00 1:08 PM Page 655

m_fnTimes.DeleteObject();
m_brHatch.DeleteObject();

All that remains is to remove the local GDI objects from the OnPrint() function itself
and replace their references with the member variable versions. You can do this by
replacing the CFont fnTimes and CBrush brHatch local variables and their creation func-
tions and just selecting the precreated font and brush:

CFont* pOldFont = (CFont*)pDC->SelectObject(&m_fnTimes);
CBrush* pOldBrush = (CBrush*)pDC->SelectObject(&m_brHatch);

If you were to build and run the application after making these changes, you’d probably
notice no difference. Functionally it’s the same, but the print and preview should be a lit-
tle faster. If you had a large, complex 100-page report using lots of GDI resources, you’d
definitely find this technique useful in speeding up the printing.

656 Appendix C

USING COORDINATES FROM OnBeginPrinting()

You might be tempted to also store the coordinates from OnBeginPrinting(). This won’t
work because CPrintInfo’s m_rectDraw member hasn’t been initialized by that stage and
random coordinates will be used.

Customizing Device Context Preparation
Before both OnDraw() and OnPrint() are called, the OnPrepareDC() virtual function is
called and can be overridden in your view class to perform any device context modifica-
tions that might be common to both OnDraw() and OnPrint(). You might want to set
mapping modes or set certain common draw modes to the device context for both
onscreen and printing modes. The override isn’t supplied by the AppWizard, but can
easily be added from the Add Virtual Function dialog box. One thing common to both
OnDraw() and OnPrint() in the example is the SetTextAlign() device context function.
You could add this to an OnPrepareDC() function like this:

void CPrintItView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{

pDC->SetTextAlign(TA_CENTER+TA_BASELINE);
}

There might be times, especially when preparing WYSIWYG printouts, that it is advan-
tageous to set mapping modes and window extents in a common function before the
draw or print function is called. OnPrepareDC() is the place to put any device
context–specific initialization code.

031 31240-9 APP C 4/27/00 1:08 PM Page 656

Printing and Print Previewing 657

C

Aborting the Print Job
Another use of OnPrepareDC() is to call printer escapes or other print document–specific
functions. If you had a particularly long report, you might want to give the user the
option of terminating the printing process and aborting the print. The AbortDoc() device
context function aborts the printing document for a printer device context. You can try
this by adding the following lines to OnPrepareDC() and aborting the document after
three pages:

if (pDC->IsPrinting())
if (pInfo->m_nCurPage==3) pDC->AbortDoc();

Direct Printing Without the Framework
So far in this chapter, I’ve shown you the SDI and MDI framework support for printing.
This support melds nicely into the Document/View architecture, but there are times when
you just want quick and easy access to a printer or don’t have the framework available—
in a dialog-based application, for example.

The framework support hides lower-level printing support that is the bedrock for all the
printing operations. This section explains how this support works and shows it in use in a
dialog box-based application example.

Invoking the Print Dialog Box Directly
You saw in the earlier section “Using the Print Dialog Box” how the CPrintDialog
class provides a wrapper for the common PRINTDLG dialog and how this was called from
CView::DoPreparePrinting().

The same dialog box and class can be used directly to set up the destination printer and
its default settings just like you’d use a normal modal dialog box. You can use the same
access functions to set the page numbers and copy defaults as you used from inside the
framework’s DoPreparePrinting() function.

Listing C.7 shows this dialog box being used directly to configure the printer for dialog
box-based printing and then prints a small document from the defaults set by the dialog
box.

The direct printing mechanism works via the StartDoc() and EndDoc() functions shown
in this listing and is explained in the next section.

You can use the AppWizard to create a dialog box-based application named DlgPrint
and create an OnOK() handler with the ClassWizard to implement the printing code, as
shown in Listing C.7.

031 31240-9 APP C 4/27/00 1:08 PM Page 657

LISITNG C.7. LST23_7.CPP—IMPLEMENTING A DIRECT DOCUMENT PRINT IN OnOK OF A DIALOG
BOX-BASED APPLICATION.

1: void CDlgPrintDlg::OnOK()
2: {
3: // TODO: Add extra validation here
4:
5: // ** Construct a CPrintDialog object
6: CPrintDialog dlgPrint(FALSE,PD_ALLPAGES,this);
7:
8: if (dlgPrint.DoModal()==IDOK)
9: {
10: // ** Attach the printer DC from the dialog
11: // ** to a CDC object
12: CDC dcPrint;
13: dcPrint.Attach(dlgPrint.GetPrinterDC());
14:
15: // ** Create and fill a DOCINFO structure
16: DOCINFO myPrintJob;
17: myPrintJob.cbSize = sizeof(myPrintJob);
18: myPrintJob.lpszDocName = “MyPrintJob”;
19: myPrintJob.lpszOutput = NULL;
20: myPrintJob.lpszDatatype = NULL;
21: myPrintJob.fwType = NULL;
22:
23: // ** Start the printing document
24: if (dcPrint.StartDoc(&myPrintJob)>=0)
25: {
26: // ** Start a page
27: dcPrint.StartPage();
28:
29: // ** Start drawing
30: dcPrint.TextOut(0,0,”My Small Print Job”);
31:
32: // ** Throw the page
33: dcPrint.EndPage();
34:
35: // ** Close the document
36: dcPrint.EndDoc();
37: }
38:
39: // ** Delete the printer device context
40: dcPrint.DeleteDC();
41: }
42:
43: // ** Carry on with the standard OnOK
44: CDialog::OnOK();
45: }

658 Appendix C

031 31240-9 APP C 4/27/00 1:08 PM Page 658

Printing and Print Previewing 659

C

Listing C.7 declares a CPrintDialog object dlgPrint at line 6 that takes three parame-
ters in its constructor. The first parameter is a flag that can be set as TRUE to display the
Print Setup dialog box, or FALSE to display the Print dialog box. The second parameter is
a set of combinable flags that customize the settings of the dialog box (too numerous to
cover here). The third parameter is a pointer to the parent window; in this case the C++
this pointer indicates that the dialog box is the parent.

On line 8, dlgPrint.DoModal()is called to display this dialog box. If the user clicks OK,
the print begins; otherwise, the block is skipped.

When the user has clicked OK in the Print dialog box, a device context for the printer is
created and attached to a CDC object in line 13 to make it easier to use. You must remem-
ber to delete the device context itself, as shown in line 40.

You can add the listing lines and handler, build and run it, and click OK of the dialog
box application to run the new code.

Using StartDoc() and EndDoc()
The CDC device context has many printer-specific functions. To start a new print,
Windows must create a spool document to store the print job and submit it to the printer
when it is complete. The StartDoc() function tells Windows to start spooling, and the
EndDoc() function tells it that the document is complete and can be sent to the printer.
You saw the AbortDoc() function earlier that will abort the print and cancel the print job
rather than send to the printer.

Listing C.7 calls the StartDoc() member of the printer device context object dcPrint at
line 24, passing a pointer to a DOCINFO structure. This structure holds the details of the
print job. The only detail you must specify is a name for the spool document, which is
assigned at line 18. Notice that it has an unusual cbSize member that holds the size of
the structure. This is assigned the value from sizeof(myPrintJob) at line 17. You see
this sort of strange action going on a lot at the Win32 API level because DOCINFO is an
old C-style structure; the cbSize is used because there are a few different forms of
DOCINFO and the only way to tell them apart is the size.

When StartDoc() is called, it will try to start the print job and return a positive value
if it succeeds. There are many reasons why it might fail, such as low disk space or
memory, or a corrupt printer driver, so it’s a good idea to carry on with the print only
after checking the return code.

After the document is printed, you should call EndDoc() as shown on line 36 to start
printing the document.

031 31240-9 APP C 4/27/00 1:08 PM Page 659

Using StartPage() and EndPage()
Another pair of printer device context functions are StartPage() and EndPage(). The
StartPage() function is used to initialize the device context ready for printing a new
page. This will reset some of the device context settings such as the current graphics
cursor position and set the document spooling information for starting a new page.

Typically, you’d call StartPage(), do some drawing in the device context for the details
to be printed on that page, and call EndPage() to write the page away to the spool file to
add it to the print document.

In Listing C.7, StartPage() is called on line 27, followed by a solitary TextOut() func-
tion to draw something on the printer page, followed by a call to EndPage() on line 33.

When EndPage() is called, the special printer codes for throwing a Form Feed are sent to
the spooler and the spool document registers another print page. You can repeat this
StartPage() and EndPage() sequence for all the document pages before calling
EndDoc() to complete the printing process. You can use the printer device context for
drawing in just the same way as the OnPrint() was used in the SDI application in
between the StartPage() and EndPage() calls. The same functions were called in the
SDI framework, but the framework hides it from you, only calling your OnPrint()
between start and end page calls.

660 Appendix C

WATCHING THE WINDOWS SPOOLER

You can watch the print document as it builds up by placing a breakpoint in the
OnPrint() function or after a StartDoc() function and opening your printer status icon
from the Printers group available from the main Windows Start menu under the Settings
option.

031 31240-9 APP C 4/27/00 1:08 PM Page 660

APPENDIX D
Understanding and
Exception Handling

by Jon Bates

Using Exceptions
An exception is an object that holds details about something that has gone
wrong. The clever thing about exception handling is that you can create an
exception when something goes wrong in a low-level function and have it auto-
matically bubble back up to a calling function that can deal with all such
exceptions in one place.

Running Code and Catching the Errors
The system automatically detects certain error conditions and generates excep-
tions for them. If you don’t deal with them in your application, they will bubble
back out of your code and be handled by Windows’s own exception-catching
mechanisms. If you want to see this in action, just add the following two lines
to any of your code and run it:

CDC* pNullDC = 0;
pNullDC->SetPixel(0,0,0);

032 31240-9 APP D 4/27/00 1:08 PM Page 661

The first line declares a device context pointer pNullDC and sets it to point the memory
address to zero (which isn’t a good place for any object to be). Obviously there isn’t a
valid object at this address, so when the following SetPixel() function is called, the
system tries to find the object at address zero. The memory management hardware and
software know that the program has no right being at this memory address and raise a
memory access violation exception.

If you run these lines of code from outside the Visual C++ debugger, you’ll see a dialog
box familiar to all Windows users, as shown in Figure D.1.

662 Appendix D

FIGURE D.1.
The Windows memory
access violation
Exception dialog box.

However, if you run the application from the Visual C++ debugger, the debugger first
catches the exception for you and displays the Developer Studio dialog box instead, as
shown in Figure D.2.

FIGURE D.2.
The Developer Studio-
handled memory
access violation
exception.

Memory access violations are very severe exceptions that will crash your program with-
out any chance to catch them. There are many less severe exceptions, such as the
file-handling exception CFileException. This exception is thrown when erroneous file
operations occur, such as attempting to seek to the beginning of an unopened file:

CFile fileNotOpen;
fileNotOpen.SeekToBegin();

This results in a system-generated dialog box (see Figure D.3). If you click OK, your
program will continue as usual.

032 31240-9 APP D 4/27/00 1:08 PM Page 662

Understanding and Exception Handling 663

D

Rather than letting the system catch the exception, you can catch the exception and deal
with it yourself in a more graceful manner. To do this, you must use the C++ try and
catch keywords. You can use these by defining a block of code to try; then, when a
specified exception is raised, an action is defined in the catch block (see Listing D.1).

LISTING D.1. LST29_1.CPP—USING A try AND catch BLOCK TO CATCH CFileExceptions.

1: // ** Try a block of code
2: try
3: {
4: CFile fileNotOpen;
5: fileNotOpen.SeekToBegin();
6: }
7: catch(CFileException* e) // Catch File Exceptions
8: {
9: // ** Check the cause of the exception
10: if (e->m_cause == CFileException::fileNotFound)
11: AfxMessageBox(“Oops, forgot to open the file!”);
12: e->Delete();
13: }

In Listing D.1, a try block is defined around the file operations at lines 4 and 5. If these
lines don’t raise an exception, the code will continue as normal. However, if a
CFileException is raised, it will be caught by the catch keyword in line 7, and the vari-
able e will point to the new exception. The CFileException object has an m_cause code
that defines exactly why the exception was raised. This is checked on line 10, and if this
was a CFileException::fileNotFound code, the message box on line 11 is displayed.

Notice that the Delete() member function of the CException class (the base class of
CFileException) in line 12 will delete the exception for you. You must ensure that
exceptions are always deleted when you are finished with them.

The try block can include calls to other functions and could be used to catch any speci-
fied exceptions raised in a large portion of the application, as shown in Listing D.2.

FIGURE D.3.
The Windows default
dialog box for a file
exception.

032 31240-9 APP D 4/27/00 1:08 PM Page 663

LISTING D.2. LST29_2.CPP—A try BLOCK CAN INCLUDE MANY FUNCTION CALLS AND CALLS
FROM THOSE FUNCTIONS.

1: try
2: {
3: // ... Lots of code
4: DoLotsOfFileHandling();
5: // ... More code
6: EvenMoreFileHandling();
7: // ... And more Code
8: }
9: catch(CFileException* e) // Catch File Exceptions
10: {
11: // ** Check the cause of the exception
12: if (e->m_cause == CFileException::fileNotFound)
13: AfxMessageBox(“Oops, forgot to open the file!”);
14: e->Delete();
15: }

In Listing D.2 the DoLotsOfFileHandling() function on line 4 could implement some
file handling itself, as well as calls to other functions, as with EvenMoreFileHandling()
on line 6. Should a file exception arise through any of these file operations, the exception
will bubble back so that the same catch block will be executed in lines 9 through 13
with e pointing to the CFileException object. Finally the exception is deleted in line 14.

If you want to catch two different exceptions from the try block, you can add catch
blocks to handle each different exception, as shown in Listing D.3.

LISTING D.3. LST29_3.CPP—HANDLING TWO DIFFERENT EXCEPTIONS WITH THE EXCEPTION-
SPECIFIC catch BLOCKS.

1: try
2: {
3: // ** This file operation is ok
4: CMemFile fileMemFile;
5: fileMemFile.SeekToBegin();
6:
7: // ** But you can’t have two different system
8: // ** resources with the same name.
9: CMutex mutex1(0,”Same Name”);
10: CSemaphore semaphore1(1,1,”Same Name”);
11: }
12: catch(CFileException* e) // Catch File Exceptions
13: {
14: if (e->m_cause == CFileException::fileNotFound)
15: AfxMessageBox(“Oops, forgot to open the file!”);
16: e->Delete();

664 Appendix D

032 31240-9 APP D 4/27/00 1:08 PM Page 664

Understanding and Exception Handling 665

D

17: }
18: catch(CResourceException* e)

➥ // Catch Resource Exceptions
19: {
20: // ** Report the Resource exception error
21: AfxMessageBox(“Oops, duplicate resource name”);
22: e->Delete();
23: }

In Listing D.3, the memory file is automatically created in line 4, so line 5 won’t cause a
file exception. However, naming two different system resources (a mutex and a sema-
phore) with the same name does cause a CResourceException in line 10 that is then
caught by the second catch block in line 18, which displays the message box in line 21.
If you try this code yourself, remember to add an #include <afxmt.h> line for the
CMutex and CSemaphore definitions.

If you want to do a blanket exception catch, you don’t need to have a catch block for
each type of exception; instead, you can catch the CException base class exception from
which all the other more specific exception classes are derived (see Listing D.4).

LISTING D.4. LST29_4.CPP—USING THE catch BLOCK TO CATCH ALL TYPES OF EXCEPTIONS.

1: // ** Try a block of code
2: try
3: {
4: // ** Lots of code ...
5: }
6: catch(CException* e)
7: {
8: // ** General Error message, details in e
9: AfxMessageBox(“Oops, something went wrong!”);
10: e->Delete();
11: }

Notice that on line 6 the CException base class is used rather than a specific exception
such as CFileException or CResourceException. You can test which type of exception
was raised using the IsKindOf() function inside the catch block. For example, to test
whether a file exception has been raised, you might use the following lines:

if (e->IsKindOf(RUNTIME_CLASS(CFileException)))
AfxMessageBox(“File Exception”);

Because exceptions are derived from CObject, they support the MFC runtime class
information. By using DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC, the class information

032 31240-9 APP D 4/27/00 1:08 PM Page 665

is bundled into the derived exception object so that the IsKindOf() function can be used
to check for a specific class type. The RUNTIME_CLASS macro turns class names into a
pointer to a CRuntimeClass object for the specified object. The IsKindOf() member
function will then return TRUE if the object being called is of that runtime class.

The “MFC Exception Types” section later in this chapter covers how you can determine
exception-specific information from each type of MFC exception caught in a catch
block.

666 Appendix D

FREEING SYSTEM RESOURCES

This exception-catching principle becomes very useful when you want to detect and han-
dle errors arising from large portions of code. It can save coding lots of individual error-
checking lines, but you must still free up any system resources that you’ve allocated in
lines before the exception was raised.

Throwing Exceptions
You can throw exceptions yourself from code embedded in any enclosing try block
when an error condition arises. The corresponding catch block will then handle the
exception. Or you can throw the exception again from within a catch section to a higher-
level catch section, enclosing the first.

Several AfxThrow... functions will automatically generate and throw various types of
MFC exceptions up to the next catch level, such as AfxThrowFileException() or
AfxThrowMemoryException(). These are covered in detail in the “MFC Exception
Types” section. However, these functions create a new instance of a specific
CException-derived object for you—using the C++ new keyword and then the throw
keyword to raise an exception, as shown in the code fragment in Listing D.5.

LISTING D.5. LST29_5.CPP—RAISING AN EXCEPTION WITH THE throw KEYWORD.

1: try
2: {
3: DoSomeFileHandling();
4: }
5: catch(CFileException* e)
6: {
7: e->ReportError();
8: e->Delete();
9: }
10:

032 31240-9 APP D 4/27/00 1:08 PM Page 666

Understanding and Exception Handling 667

D

11: return TRUE;
12: }
13:
14: BOOL bSomeThingWentWrong = TRUE;
15:
16: void CExceptionalDlg::DoSomeFileHandling()
17: {
18: // ** ... File handling functions
19: if (bSomeThingWentWrong == TRUE)
20: {
21: CFileException* pException =
22: new CFileException(CFileException::generic);
23: throw(pException);
24: }
25:
26: // ** ... Yet More file handling
27: }

In Listing D.5 the try block encloses a call to the DoSomeFileHandling() function in
line 16. This function may implement some file-handling procedures and raises an
exception when the error condition on line 19 is found to be TRUE. Line 22 creates a new
CFileException object passing the CFileException::generic flag to its constructor
and then throws the new object in line 23 to be caught by the catch section in line 5.

This process of newing a CException-derived object and then using the throw keyword
is the basis of the exception-raising mechanism. The specific details indicating the cause
of the error can be attached to the CException object, or extra information can be added
by deriving a class from the CException base class and adding extra variables to store
more specific information.

Your catch block can then determine whether the error is too severe to be handled at that
level. If so, you might want to throw the exception out to a higher-level enclosing catch
block. You can use the throw keyword (with no parameters) from within the catch block
to rethrow the exception before you delete it. Instead of deleting the exception, you
could rethrow it to a higher level catch block by changing the catch block shown in
Listing D.5 to add the throw keyword like this:

e->ReportError();
throw;

Then after reporting the error, the exception will be thrown again for an enclosing try
block to catch. If you haven’t implemented this nesting, the overall MFC outside the
catch block will catch it. You can use this nesting mechanism to determine the error
severity and implement appropriate recovery mechanisms at various hierarchical levels
in your program.

032 31240-9 APP D 4/27/00 1:08 PM Page 667

Deleting Exceptions
As you’ve seen, you are fundamentally responsible for new-ing exceptions and must also
delete these objects when you’ve handled them. If you delete one of the MFC excep-
tions, you shouldn’t use the normal C++ delete keyword (as you’ve seen) because the
exception might be a global object or a heap object. Instead, the CException base class
has a Delete() function that first checks to see whether the exception should be deleted.
The creator of the exception can specify whether the exception should be deleted or not
by passing TRUE into the b_AutoDelete parameter of the CException class’s constructor
(which is the only parameter).

MFC Exception Types
The Microsoft Foundation Classes have several predefined CException-derived
classes that are used during different types of MFC operations. You’ve already seen
CFileException and CResourceException in use. The following section covers each of
these various classes and how it is raised in more detail. Each class is based on the
CException class and extends the functionality of CException for different types of
exception handling. You can also derive your own exception classes from CException,
and a generic CUserException is used for user-oriented application exceptions.

Using the CException Base Class
CException itself has a constructor that takes an AutoDelete flag as discussed earlier,
and is defined like this:

CException(BOOL b_AutoDelete);

If you new a CException or derived class, you should ensure that this is set to TRUE so
that it will be deleted with the C++ delete keyword. Otherwise, a global or stack-based
exception should pass TRUE so that it is deleted only when it goes out of scope (at the end
of a function or program that declares it).

The base class contains the Delete()function and two error-reporting functions.
GetErrorMessage() can be used to store the error message into a predefined buffer and
specify the ID of a help message to show the user context-specific help pertinent to the
error. Its first parameter is the address of a destination buffer to hold the associated error
message. The second parameter specifies the maximum size of the buffer so that mes-
sages stored in the buffer don’t over-spill outside the buffer area. The third optional para-
meter can specify the context help ID as a UINT value.

668 Appendix D

032 31240-9 APP D 4/27/00 1:08 PM Page 668

Understanding and Exception Handling 669

D

You might use this function to help format an error message more relevant to your appli-
cation:

char msg[512];
e->GetErrorMessage(msg,sizeof(msg));
CString strMsg;
strMsg.Format(“The following error occurred in
➥ MyApp: %s”,msg);
AfxMessageBox(strMsg);

The sizeof() C++ operator in the GetErrorMessage() function returns the size of an
array or variable, so if the msg array is changed, you don’t have to change any other
code. The message is then formatted into the strMsg CString object and displayed in a
message box.

The ReportError()function displays the message text directly in the familiar exception
message box and would be used from the catch block:

e->ReportError();

Using the Memory Exception
The CMemoryException is raised automatically when a C++ new keyword fails. You can
also raise it yourself using the AfxThrowMemoryException(); function. The meaning of
this exception is exclusively that Windows can’t allocate any more memory via its
GlobalAlloc() or other memory allocation functions. This is a pretty dire situation for
any program; you would usually handle this exception by writing code that lets your pro-
gram die gracefully, freeing up memory and system resources as it goes. There are rare
cases in which you could take recovery action if you had a large block of memory allo-
cated and could free it without too much detriment to the users’ activities.

Due to the exclusivity of this exception, no other cause attributes or specific functions
extend the CException class’s functionality.

You can watch new automatically raise a CMemoryException with these lines:

MEMORYSTATUS mem;
GlobalMemoryStatus(&mem);
BYTE* pBig = new BYTE[mem.dwAvailVirtual+1];

The mem.dwAvailVirtual structure member of MEMORYSTATUS will hold the total avail-
able memory after the GlobalMemoryStatus() function retrieves the details. The new on
the next line requests one more byte than it could possibly have, thus throwing the
exception.

032 31240-9 APP D 4/27/00 1:08 PM Page 669

Using the Resource Exceptions
CResourceException is thrown in many places where system resources are compro-
mised, as you saw in the mutex and semaphore example in Listing D.3. If you want to
throw these exceptions yourself, use the corresponding AfxThrowResourceException()
function.

Windows can’t find or allocate the requested resource and doesn’t give any more specific
guidance; hence it has no other functions or attributes.

Using the File and Archive Exceptions
You already looked at CFileException in Listing D.5. This is probably one of the more
sophisticated MFC exceptions because of the number of things that can go wrong with
file access. You can throw these yourself using the AfxThrowFileException() function,
which takes three parameters, one mandatory and the other two optional. The first
mandatory parameter, cause, is a cause code for the exception. This will be placed in the
file exception’s m_cause member variable for interrogation in a catch block.

Table D.1 shows a list of the various cause codes. The second parameter, lOsError, can
be used to specify an operating system error code to be placed in the file exception’s
m_lOsError member variable. This long value can help clarify an error in more detail by
drawing on the operating system’s own list of file access errors. The third parameter,
strFileName, is placed into the file exception’s m_strFileName member string variable
to indicate the filename of the file that was being accessed when the error occurred.

TABLE D.1. THE CFileException m_cause CODES.

Cause Code Meaning

CFileException::none There was no error.

CFileException::generic No error code specified.

CFileException::tooManyOpenFiles Too many concurrently open files.

CFileException::fileNotFound Can’t find the specified file.

CFileException::badPath The path name specified is invalid.

CFileException::invalidFile An attempt was made to use an invalid file handle.

CFileException::badSeek The seek operation failed.

CFileException::endOfFile The end of the file was reached.

CFileException::diskFull There is no spare disk space.

CFileException::hardIO A hardware error occurred.

CFileException::accessDenied Permissions deny access to the file.

670 Appendix D

032 31240-9 APP D 4/27/00 1:08 PM Page 670

Understanding and Exception Handling 671

D

Cause Code Meaning

CFileException::directoryFull The directory has too many files and can’t add another.

CFileException::removeCurrentDir Can’t remove the current working directory.

CFileException::lockViolation Can’t lock an already locked region of the file.

CFileException::sharingViolation A shared region is locked or can’t be shared.

There is also a ThrowOsError()static member function that throws and configures a file
exception based on an operating system error code. You must pass ThrowOsError() the
operating system error code as its first parameter and an optional filename as its second
parameter. Another member function, ThrowErrno(), does the same thing but uses the
UNIX-style errno error codes as its only parameter (from the Errno.h header file).
Because these are static functions, you would use them with static scope to raise excep-
tions with lines like this:

CFileException::ThrowOsError(ERROR_BAD_PATHNAME);
➥ // Invalid Path
CFileException::ThrowErrno (ENOSPC); // Disk Full

Another static member function, OsErrorToException(), automatically converts
between operating system error codes and CFileException cause codes. By passing an
OS error code, it will return the corresponding cause code. A corresponding function
ErrnoToException() does the same when passed an errno error code.

When using archives with the CArchive class, you normally handle both
CFileExceptions and CArchiveException cases in conjunction: Many of the CArchive
operations are tied in with their underlying file and file access functions.
CArchiveException has its own m_cause member to hold archive-specific cause codes,
as shown in Table D.2. You can raise archive exceptions yourself through the
AfxThrowArchiveException() function, which requires a cause code parameter and a
lpszArchiveName string pointer for the archive object throwing the exception.

TABLE D.2. THE CArchiveException m_cause CODE VALUES.

Cause Code Meaning

CArchiveException::none No error occurred.

CArchiveException::generic The specific cause wasn’t specified.

CArchiveException::badSchema The wrong version of an object was read.

CArchiveException::badClass The class of the object being read was unexpected.

CArchiveException::badIndex The file format is invalid.

continues

032 31240-9 APP D 4/27/00 1:08 PM Page 671

TABLE D.2. CONTINUED

Cause Code Meaning

CArchiveException::readOnly Attempt to write on an archive opened for loading.

CArchiveException::writeOnly Attempt to read on an archive opened for storing.

CArchiveException::endOfFile The end of the file was reached unexpectedly while reading.

Using the Database Exceptions
There are two database exception classes: CDBException is used for ODBC-based data-
base access, and CDAOException is used for DAO-based database access. You can throw
these exceptions yourself with the AfxThrowDBException() function, which needs three
parameters. The first, nRetCode, specifies one of a huge number of database return codes
to define the type of error (you should look in the ODBC documentation for these). The
second parameter, pDB, is a pointer to the database associated with the exception, and
the third parameter, hstmt, is an ODBC handle to the SQL statement object that was
executed, causing the exception.

The RETCODE type is available from the CDBException object via its m_nRetCode member.
You can also access a human-readable piece of error text from the m_strError member
string and the error text returned from the ODBC driver itself in the
m_strStateNativeOrigin member.

The CDAOException class has a corresponding AfxThrowDaoException() function that
can throw the DAO exception objects. This function needs just two optional parameters.
The first, nAfxDaoError, is a DAO-specific error code that indicates problems with DAO
itself (see Table D.3). The second parameter is an OLE SCODE value that is the return
code from a DAO-based OLE call (see the section “Using OLE Exceptions” for a defini-
tion of SCODEs).

TABLE D.3. DAO COMPONENT-SPECIFIC ERROR CODES FROM nAfxDaoError.

Error Code Meaning

NO_AFX_DAO_ERROR The exception was due to a DAO-specific problem;
you should check the supplied CDaoErrorInfo object
and SCODE value.

AFX_DAO_ERROR_ENGINE_INITIALIZATION The Microsoft Jet Engine database engine failed dur-
ing initialization.

AFX_DAO_ERROR_DFX_BIND A DAO record set field exchange address is invalid.

AFX_DAO_ERROR_OBJECT_NOT_OPEN The queried table hasn’t been opened.

672 Appendix D

032 31240-9 APP D 4/27/00 1:08 PM Page 672

Understanding and Exception Handling 673

D

The CDAOException class has three member attributes: m_scode, which holds an asso-
ciated OLE SCODE value with the attempted operation; or S_OK, if the OLE operation was
successful. The m_nAfxDaoError member holds one of the DAO-specific values from
Table D.3. The m_pErrorInfo is a pointer to a CDaoErrorInfo structure that holds an
error code, descriptive error strings, and a help context ID that is defined like this:

struct CDaoErrorInfo
{

long m_lErrorCode;
CString m_strSource;
CString m_strDescription;
CString m_strHelpFile;
long m_lHelpContext;

};

By interrogating this structure, you can find most of the specific database error details
pertaining to the DAO exception.

DAO exceptions can describe more than one error at a time, so you can use the
GetErrorCount() member function to find out how many are being referenced. These
other errors can then be obtained by passing the GetErrorInfo() function a zero-based
index to the specific error. After calling GetErrorInfo() with a specific index in the
range returned by the GetErrorCount() function, m_pErrorInfo will be updated to
point to the specified object, and thus you can retrieve those values.

Using OLE Exceptions
There are two types of OLE exceptions, represented by two classes: the COleException
class, which is normally used for server-side or OLE-specific operations, and the
COleDispatchException class, which is used when dealing with client-side IDispatch-
based operations such as calling ActiveX object functions.

The simpler of the two is the COleException class, which can be generated by calling
the AfxThrowOleException() function passing an OLE SCODE value. An OLE SCODE
is a 32-bit error code that is used to represent any kind of error arising from an OLE
function.

This value would probably arise from the return code of a function call to a function on
one of the interfaces of an OLE object. This SCODE value will then be stored in the
exception’s m_sc member for analysis from within a catch block.

There is also a Process() static member function that is passed an exception object and
will turn that exception into an SCODE value to represent that exception.

032 31240-9 APP D 4/27/00 1:08 PM Page 673

The COleDispatchException class is used in conjunction with OLE IDispatch inter-
faces and is thrown by the AfxThrowOleDispatchException() function. This function
has two forms, both with two mandatory parameters and an optional parameter. The first
parameter for both forms is a wCode WORD value that is an application-specific error code.
The second parameter is an lpszDescription string pointer in one form, or
nDescriptionID for a UINT resource code; both types represent either a verbal string or a
string resource code for a verbal string describing the error. The last optional parameter
is a help context ID.

These values are then available as member variables of the COleDispatchException
object via m_wCode, m_strDescription, and m_dwHelpContext. If a help context is speci-
fied and a help file available, the framework will fill in an m_strHelpFile string identi-
fying the help file. The name of the application producing the error can also be sought
from the m_strSource attribute.

If you raise this exception from an OLE object such as an ActiveX control, Visual Basic
or any other application using the control or object will display these exception details.

Using the Not Supported Exception
The CNotSupportedException class represents exception objects that are generated
when an unsupported MFC, operating system, or user-application–specific feature is
requested. If you want to raise this exception, use AfxThrowNotSupportedException(),
which doesn’t required any parameters. There are also no extended members or functions
associated with this exception—it just means unsupported.

Using the User Exception
You can use the CUserException class to generate application-specific exception objects.
You might want to do this when your program is interacting with the user to halt the
process should she choose a certain option. For example, when you are using the
AppWizard, you can press Esc at any time to cancel the whole process. Microsoft might
have used CUserException to do this by detecting the Esc key and then raising a user
exception object.

This exception can be raised by a call to the AfxThrowUserException() function and
then caught in the usual try and catch blocks. There are some places in the MFC where
this exception is raised, such as during dialog box validation or if the file is too big for
an edit view.

674 Appendix D

032 31240-9 APP D 4/27/00 1:08 PM Page 674

Understanding and Exception Handling 675

D

Generating Your Own Custom Exception Classes
You can derive your own exception classes from CException and add your specific
extended functionality. Listing D.6 shows the class definition for such a custom excep-
tion class that extends the normal functionality by adding a m_strMessage CString vari-
able to the exception, enabling you to specify your own message when constructing the
exception.

LISTING D.6. LST29_6.CPP—CLASS DEFINITION FOR CCustomException IMPLEMENTED IN
CustomException.h.

1: // ** CustomException.h
2: // ** Header file for CCustomException
3:
4: class CCustomException : public CException
5: {
6: DECLARE_DYNAMIC(CCustomException);
7:
8: public:
9: CCustomException(CString strMessage);
10:
11: CString m_strMessage;
12: };

In Listing D.6 the class is implemented in its own CustomException.h header file and
derives from CException in line 4. The DECLARE_DYNAMIC macro in line 6 supplies the
MFC CObject-derived runtime class information required for you to decide the excep-
tion type in a catch-all catch block. The constructor definition in line 9 takes a CString
strMessage parameter to let you create the custom exception with the message that will
be stored in the m_strMessage CString variable declared in line 11.

The corresponding CCustomException class implementation is shown in Listing D.7.

LISTING D.7. LST29_7.CPP—IMPLEMENTATION OF THE CCustomException CLASS.

1: // ** CustomException.cpp
2: // ** Implementation for CCustomException exception
3:
4: #include “stdafx.h”
5: #include “CustomException.h”
6:
7: IMPLEMENT_DYNAMIC(CCustomException,CException);
8:
9: CCustomException::CCustomException(CString strMessage)
10: : m_strMessage(strMessage)
11: {
12: }

032 31240-9 APP D 4/27/00 1:08 PM Page 675

In Listing D.7 the usual header files are included, and the IMPLEMENT_DYNAMIC macro is
used in line 7 to implement the MFC runtime class information functions. The construc-
tor in line 9 takes the strMessage parameters and initializes the m_strMessage member
variable with this string value in line 10.

You can then use the custom exception class in your application, as shown in Listing
D.8.

LISTING D.8. LST29_8.CPP—USING THE NEW CCustomException CLASS.

1: try
2: {
3: // ** Something goes wrong
4: CCustomException* pCustomEx =
5: new CCustomException(“My custom error occured”);
6: throw(pCustomEx);
7: }
8: catch(CCustomException* e)
9: {
10: // ** Access the extended m_strMessage string
11: AfxMessageBox(e->m_strMessage);
12: e->Delete();
13: }

In Listing D.8 a new CCustomException object is created with the application-specific
error text in lines 4 and 5 and is thrown in line 6. This is then caught by the catch key-
word in line 8 and the custom information used by the message box in line 11. The
exception is then deleted in line 12.

If you try this, remember that the implementation code must also have an #include for
the CustomException.h header file to retrieve the class definition like this:

#include “CustomException.h”

676 Appendix D

032 31240-9 APP D 4/27/00 1:08 PM Page 676

APPENDIX E
Using the Debugger and
Profiler

by Jon Bates

Creating Debugging and Browse
Information

A large part of application development is actually debugging your program.
All software development is a tight cycle of application design, implementa-
tion, and debugging.

Visual C++ has an extensive debugging environment and a range of debugging
tools that really help with program development. You can quickly identify
problems, watch the contents of variables, and follow the flow of programs
through your own code and the MFC code.

Tools such as the Spy++ program can show you the messages passed between
Windows and your application and let you spy on applications to see which
user interface controls and Window styles they use.

033 31240-9 APP E 4/27/00 1:11 PM Page 677

Using Debug and Release Modes
There are two main compiler configurations that you can set to build your application:
Debug and Release mode. You can change these modes by clicking the Project menu and
selecting the Settings option or by pressing Alt+F7, which will display the Project
Settings dialog box (see Figure E.1). The main project settings are shown at the top level
and can be changed by selecting the options listed in the combo box. When one setting is
selected, changes that you make to any options on the tabs on the right will be set against
that configuration. When you build the application, it will be built using your current
configuration settings, or you can select All Configurations to build and make changes to
all configurations simultaneously.

678 Appendix E

FIGURE E.1.
The C/C++ tab of the
Project Settings dialog
box.

Both Release and Debug configurations are supplied whenever you create a new project;
they produce very different object code. When configured for Debug mode, your build
will produce a large and fairly slow executable program. This is because lots of debug-
ging information is included in your program and all the compiler optimizations are dis-
abled.

When you compile the same program in Release mode, you’ll see a small, fast exe-
cutable program, but you won’t be able to step through its source code or see any debug-
ging messages from it.

Normally, when developing an application, you leave the compiler set to Debug mode so
that you can easily spot and debug problems that arise in your code. When you’ve fin-
ished your application and are preparing to release it, you can set the configuration to
Release mode and produce a small, fast program for your users.

033 31240-9 APP E 4/27/00 1:11 PM Page 678

Using the Debugger and Profiler 679

E

Setting Debug Options and Levels
You can set a variety of debugging options and levels from the C/C++ tab of the Project
Settings dialog box. This dialog page is available from the Project menu by selecting the
Settings option (or by pressing Alt+F7) and then selecting the C/C++ tab.

With the General Category selected, the following items are available:

● Warning Level. This is the level of compiler warning messages given during com-
pilation. You can set it to any of the values shown in Table E.1. The default level is
Level 3, which is quite sensitive, although many good C++ programmers insist on
using Level 4 to get the most warning of potential problems from the compiler.
Level 1 and no warnings (None) should be used only in special circumstances
because they indicate only severe warnings (or none at all).

RELEASE MODE TESTING

You should always fully test your application after rebuilding it in Release mode before
sending it to users. Bugs can arise from things such as leaving proper program code in
ASSERT macros (discussed later this chapter), which are then removed, or because of the
effect of some speed and memory optimizations.

LEVEL 4 WARNINGS

At level 4, you’ll find that Microsoft’s own AppWizard-generated code gives warnings
(although usually only about unused function parameters that can be safely ignored).

● Warnings as Errors. When you check this, warning messages are shown as errors
that then stop the compiler.

● Generate Browse Info. When you check this, the compiler generates information
that can be used to help you locate functions, symbols, and class relationships
shown in a Browse window (discussed in the next section). Unfortunately, generat-
ing this useful information increases the compilation time quite a bit for large pro-
jects (where you most need it).

● Debug Info. This lets you specify the level of debugging information generated by
the compiler, as shown in Table E.2.

● Optimizations. In Debug mode, you would normally leave these disabled because
they interfere with the debugging process and take longer to compile. However, in

033 31240-9 APP E 4/27/00 1:11 PM Page 679

Release mode you can decide whether to Maximize Speed or Minimize Size of
your application (or a default that compromises to get the best of both).

● Preprocessor Definitions. This specifies manifest definitions that are defined when
your program is compiled. You can use these definitions in conjunction with the
#ifdef, #else, and #endif preprocessor commands to compile sections of code in
specific configurations. The _DEBUG definition is set by default when in Debug
mode. You can use this to compile Debug mode–only code in your application like
this:
int a = b * c / d + e;
#ifdef _DEBUG
CString strMessage;
strMessage.Format(“Result of sum was %d”,a);
AfxMessageBox(strMessage);
#endif

The message box code is then compiled and run when your application is built in
Debug mode. When you switch to Release mode, the code isn’t compiled into your
executable.

● Project Options. The compiler itself runs as a console-based application and con-
verts your Developer Studio options into several flags to be passed on the com-
mand line. You can add additional flag settings for more obscure compiler settings
that don’t have a user interface switch directly into this edit box.

TABLE E.1. COMPILER WARNING LEVELS.

Level Warnings Reported

None None

Level 1 Only the most severe

Level 2 Some less severe messages

Level 3 Default level (all reasonable warnings)

Level 4 Very sensitive (good for perfectionists)

TABLE E.2. DEBUG INFO SETTINGS.

Setting Debugging Information Generated

None Produces no debugging information—usually reserved for Release
modes.

Line Numbers Only This generates only line numbers that refer to the source code for
functions and global variables. However, compile time and executable
size are reduced.

680 Appendix E

033 31240-9 APP E 4/27/00 1:11 PM Page 680

Using the Debugger and Profiler 681

E

Setting Debugging Information Generated

C 7.0–Compatible This generates debugging information that is compatible with
Microsoft C 7.0. It places all the debugging information into the
executable files and increases their size, but allows full symbolic
debugging.

Program Database This setting produces a file with a .pdb extension that holds the max-
imum level of debugging information, but doesn’t create the Edit and
Continue information.

Program Database for This is the default and usual debug setting. It produces a .pdb
Edit and Continue file with the highest level of debugging and creates the information

required for the new Edit and Continue feature.

Creating and Using Browse Information
You can use the Source Browser tool to inspect your source code in detail. This tool can
be invaluable if you are examining someone else’s code or coming back to your own
code after you haven’t viewed it for awhile.

To use the Source Browser, you must compile the application with the Generate Browse
Info setting checked, in the C/C++ tab of the Project Settings dialog box. To run the tool,
press Alt+F12 or click the Tools menu and select the Source Browser option. (The first
time you run the tool, it will ask you to compile the browser information.)

The first dialog box the Source Browser presents requests an Identifier to browse for (as
shown in Figure E.2). This identifier can be a class name, structure name, function name,
or global or local variable name in your application. After you have entered an identifier,
the OK button is enabled, and you can browse for details about that identifier.

FIGURE E.2.
The Browse dialog box
requesting a symbol to
browse.

Select Query offers various options for details pertaining to your chosen symbol. You
can choose from any of the following:

● Definitions and References. This option shows you all the files that have refer-
ences to the specified identifier and whether they are references to the identifier

033 31240-9 APP E 4/27/00 1:11 PM Page 681

(places where it is used in the code) or definitions (places where the identifier is
defined), as shown in Figure E.3. The line numbers are listed along with the file-
names in each file. By double-clicking one of the references or definitions, the
code to which it refers will be loaded and shown in the Developer Studio editor at
that specific position. This is very useful for tracking all the places that a specific
variable or function is used.

682 Appendix E

FIGURE E.3.
Source Browser show-
ing definitions and ref-
erences.

● File Outline. This option shows you all the classes, data, functions, macros, and
types that are defined in the specified filename (identifier), as shown in Figure E.4.
You can filter each type in or out by pressing relevant buttons along the top of the
browser window.

FIGURE E.4.
The file outline display
of the source browser.

● Base Classes and Members. This arguably is one of the most useful options of the
source browser. By specifying a class as the identifier, all the classes’ hierarchy and
member functions and variables at each hierarchy level are displayed (see Figure
E.5). You can also set the filter options to show only certain types of member func-
tions and variables.

033 31240-9 APP E 4/27/00 1:11 PM Page 682

Using the Debugger and Profiler 683

E

● Derived Classes and Members. This view is also very useful and shows all the
classes that are derived from the specified class, along with their own member
functions and variables. You can also use the browser with the MFC classes to gain
more insight into the MFC implementation, as shown with the MFC CWnd class in
Figure E.6.

FIGURE E.5.
The Base Classes and
Members view of the
source browser.

FIGURE E.6.
The Derived Classes
and Members view
of the Source Browser
showing CWnd-derived
classes.

● Call Graph. The Call Graph option shows you all the functions that are called by a
specified identifier and the files in which they are defined and implemented. This
lets you quickly track the potential flow of a program.

● Callers Graph. The corresponding Callers Graph option shows you all the functions
that call the specified identifier. You can use this to track the possible callers of
your specified function.

Using Remote and Just-in-Time Debugging
The debugger includes tools that let you debug a program running on a remote
machine (even over the Internet via TCP/IP). This can be useful if you want to test

033 31240-9 APP E 4/27/00 1:11 PM Page 683

your application in a different environment other than your development machine. To do
this, you must have exactly the same versions of the .dll and .exe files on both
machines. After loading the project, you can debug it via a shared directory from the
remote machine by changing the Executable for Debug Session edit box to the path and
filename of your local .exe file (located in the Project Settings dialog box under the
Debug tab).

You must also add a path to the .exe file in the Remote Executable Path and File
Name edit box at the bottom of the Debug tab, leaving the Working Directory blank.
You can then start the remote debugger monitor on the remote computer by running the
MSVCMON.EXE program and connecting to it by clicking the Build menu and selecting the
Debugger Remote Connection option.

From the Remote Connection dialog box you can choose Local for a shared directory
debug session or Remote to debug via a TCP/IP connection. (You can set the address by
clicking Settings.) This will connect to the remote monitor that will start the remote
debugging session.

684 Appendix E

INSTALLING THE REMOTE DEBUGGER FILES

You will also need the following files to run the remote debugger monitor on the
remote machine: MSVCMON.EXE, MSVCRT.DLL, TLN0T.DLL, DM.DLL, MSVCP5O.DLL, and
MSDIS100.DLL. These files can be found in your installed ...\Microsoft Visual
Studio\Common\MSDev98\bin subdirectory.

Just-in-time debugging lets you debug a program that was run normally (not through the
debugger) and then developed a problem. If you have Visual C++ installed on a machine
and this option is enabled, any program that develops a fault will be loaded into a new
Developer Studio session ready for debugging and show the code that caused the crash.

This often raises a chuckle when Developer Studio itself crashes and then proceeds to
load another session of itself, offering you an assembly code view of where the crash
took place in the original for you to debug. It can be very useful to debug your own
applications when they crash unexpectedly (usually in a demonstration to your boss).
You can enable this option by clicking the Tools menu and selecting Options to display
the Options dialog box. Then select the Debug tab and ensure that the Just-in-Time
debugging check box is checked.

The OLE RPC debugging option on this tab is also very useful when developing COM
and DCOM applications because it lets the debugger traverse a function call into another

033 31240-9 APP E 4/27/00 1:11 PM Page 684

Using the Debugger and Profiler 685

E

out-of-process program or .dll and lets another debugger take over for the other
process. It then hands control back when returning from the remote function and works
across networks and different computers.

Tracing and Single Stepping
One of the most useful features of the Visual C++ debugging environment is the interac-
tive single stepping. This feature lets you step through the code one line at a time and
examine the contents of variables as you go. You can also set breakpoints so that the pro-
gram runs until it reaches a breakpoint and then stops at that point, letting you step from
that point until you want to continue running.

Trace statements and assertions are also very useful tools for finding program faults.
Trace statements let you display messages and variables from your program in the output
window as it runs through trace statements. You can use assertions to cause the program
to stop if a condition isn’t TRUE when you assert that it should be.

Using the TRACE Macro
You can add TRACE macros to your program at various places to indicate that various
parts of the code have been run or to display the contents of variables at those positions.
The TRACE macros are compiled into your code in the debug configuration and displayed
in the Output window on the Debug tab, when you run your program through the
debugger.

You can safely leave in the TRACE macros when you perform a release build because
these macros are automatically excluded from the destination object.

You can display simple messages or output variable contents by passing a format string
as the first parameter to the TRACE macro. This format string is exactly the same as you
would pass to a printf() or CString::Format() function. You can specify various spe-
cial formatting codes such as %d to display a number in decimal, %x to display a number
in hexadecimal, or %s to display a string. The following parameters should then corre-
spond to the order of the formatting codes. For example, the code

int nMyNum = 60;
char* szMyString = “This is my String”;
TRACE(“Number = %d, or %x in hex and my string is: %s\n”,

nMyNum, szMyString);

will result in this output trace line:

Number = 60, or 3c in hex and my string is
➥ This is my String

033 31240-9 APP E 4/27/00 1:11 PM Page 685

Listing E.1 shows the TRACE macro used to display the contents of an array before and
after sorting by a very inefficient but simple sort algorithm.

If you want to try the code shown in Listing E.1, you can use the AppWizard to build a
simple SDI framework. Simply add the code above the OnNewDocument() member func-
tion of your document class and then call it by adding a DoSort() call into your
OnNewDocument() function.

You can run the application through the debugger (click Build, select Start Debug, and
choose Go from the pop-up menu) to see the output trace.

You must ensure that the output window is visible (click the View menu and select
Output) when the tabbed output window is shown (same as the compiler output). Ensure
that the Debug tab is selected.

LISTING E.1. LSTE_1.CPP—A SIMPLE SORT ROUTINE TO DEMONSTRATE DEBUGGING TECHNIQUES.

1: void Swap(CUIntArray* pdwNumbers,int i)
2: {
3: UINT uVal = pdwNumbers->GetAt(i);
4: pdwNumbers->SetAt(i, pdwNumbers->GetAt(i+1));
5: pdwNumbers->SetAt(i+1,uVal);
6: }
7:
8: void DoSort()
9: {
10: CUIntArray arNumbers;
11: for(int i=0;i<10;i++) arNumbers.Add(1+rand()%100);
12:
13: TRACE(“Before Sort\n”);
14: for(i=0;i<arNumbers.GetSize();i++)
15: TRACE(“[%d] = %d\n”,i+1,arNumbers[i]);
16:
17: BOOL bSorted;
18: do
19: {
20: bSorted = TRUE;
21: for(i=0;i<arNumbers.GetSize()-1;i++)
22: {
23: if (arNumbers[i] > arNumbers[i+1])
24: {
25: Swap(&arNumbers,i);
26: bSorted = FALSE;
27: }
28: }
29: } while(!bSorted);
30:

686 Appendix E

033 31240-9 APP E 4/27/00 1:11 PM Page 686

Using the Debugger and Profiler 687

E

31: TRACE(“After Sort\n”);
32: for(i=0;i<arNumbers.GetSize();i++)
33: TRACE(“[%d] = %d\n”,i+1,arNumbers[i]);
34: }

Listing E.1 sorts an array of random numbers (between 1 and 100), generated in line 11.
Lines 13 to 15 then print out the contents of the array before sorting by TRACE state-
ments. Lines 17 through 29 sort the array by swapping pairs of numbers that are in the
wrong order (by calling the Swap() function in line 25). The Swap() function (lines 1 to
6) takes a pointer to the array and a position and then swaps the two numbers at that
position.

After sorting, the contents of the array are again printed in the output window by the
TRACE statements in lines 31 to 33.

The trace output of this program appears in the Output window of Developer Studio, as
shown in Table E.3.

TABLE E.3. OUTPUT FROM THE SORTING PROGRAM.

Before Sort After Sort

[1] = 42 [1] = 1

[2] = 68 [2] = 25

[3] = 35 [3] = 35

[4] = 1 [4] = 42

[5] = 70 [5] = 59

[6] = 25 [6] = 63

[7] = 79 [7] = 65

[8] = 59 [8] = 68

[9] = 63 [9] = 70

[10] = 65 [10] = 79

Using the ASSERT and VERIFY macros
You can use the ASSERT macro to ensure that conditions are TRUE. ASSERT is passed one
parameter that is either a TRUE or FALSE expression. If the expression is TRUE, all is well.
If the expression is FALSE, your program will stop and the Debug Assertion Failed dialog
box will be displayed (see Figure E.7), prompting you to Abort the program, Retry the
code, or Ignore the assertion. It also shows the program, source file, and line number

033 31240-9 APP E 4/27/00 1:11 PM Page 687

where the assertion failed. If you choose Abort, the debugging session is terminated.
Retry is probably the most useful option because the compiler will then show you the
code where the ASSERT macro has failed, enabling you to figure out what went wrong. If
you already know or don’t care about the assertion, you can choose Ignore and continue
running the program, which might then result in a more fatal error.

688 Appendix E

FIGURE E.7.
The Debug Assertion
Failed dialog box
helps you track down
bugs.

A common use of ASSERT is to ensure that input parameters to functions are correct. For
example, you can make the Sort() function (shown in Listing E.1) more robust by
checking its input parameters. To check the input parameters, add ASSERT macros at the
top of the Sort() function like this:

ASSERT(pdwNumbers);
ASSERT(i>=0 && i<10);

This will ensure that the pointer to the numbers array isn’t zero and that the position to
swap is between 0 and 9. If either of these is incorrect, the Debug Assertion Failed dia-
log box is displayed. This technique helps you track down errors caused by passing
faulty parameters to functions. It is a good practice to use the ASSERT macro to check that
the values passed to each of your functions conform to your expectations.

Another macro, ASSERT_VALID, can be used with CObject-derived classes such as most
MFC classes. This performs a more thorough check on the object and its contents to
ensure the entire object is in a correct and valid state. You can pass a pointer to the
object to be checked like this:

ASSERT_VALID(pdwNumbers);

Another ASSERT macro is ASSERT_KINDOF, which is used on CObject-derived classes to
check that they are of the correct class type. For example, you can check that a pointer to
your view object is of the correct view class like this:

ASSERT_KINDOF(CYourSpecialView,pYView);

033 31240-9 APP E 4/27/00 1:11 PM Page 688

Using the Debugger and Profiler 689

E

The Assertion Failed dialog box will be displayed if it isn’t of the correct class type or
any of its derivatives.

You must be careful not to put any code that is needed for normal program operation into
ASSERT macros because they are excluded in the release build. A common source of
release mode errors that are hard to track down is coding like this:

int a = 0;
ASSERT(++a > 0);
if (a>0) MyFunc();

In the debug build, this code will increment the integer a in the ASSERT line and then call
MyFunc() in the following line because a is greater than zero. When your sales team is
eager to demonstrate your new application, you might think it works fine because there
aren’t any Debug mode problems. So you recompile it in Release mode and hand it over
to your sales department, which demonstrates it to a customer, whereupon it crashes
badly. It crashes because the ++a isn’t performed—the release mode excludes ASSERT
lines.

The VERIFY macro helps with this problem. VERIFY works like ASSERT, and in Debug
mode it throws the same Assertion Failed dialog box if the expression is zero. However,
in release mode the expression is still evaluated, but a zero result won’t display the
Assertion dialog box. You will tend to use VERIFY when you always want to perform an
expression and ASSERT when you only want to check while debugging. Therefore, replac-
ing ASSERT in the previous example with VERIFY, as shown in the following example,
will enable the release build to work properly:

VERIFY(++a > 0);

You are more likely to use VERIFY to check return codes from functions:

VERIFY(MyFunc() != FALSE);

Using Breakpoints and Single Stepping the Program
The use of single stepping and breakpoints is probably the most effective debugging tool
for tracking down the majority of problems. The support for various types of breakpoints
and the single-stepping information available is very sophisticated in Visual C++; I can
only hope to give you a taste of the power of this debugging tool.

The key to single stepping is breakpoints. You can set a breakpoint anywhere in your
code and then run your program through the debugger. When the breakpoint is reached,
the code will be displayed in the editor window at the breakpoint position, ready for you
to single step or continue running.

033 31240-9 APP E 4/27/00 1:11 PM Page 689

You can add a breakpoint by selecting the specific code line (clicking the editor cursor
onto the line in the editor window) and then either clicking the Breakpoint icon in the
Build minibar (see Figure E.8) or by pressing F9. Alternatively, most sophisticated
breakpoints can be added or removed by clicking the Edit menu and selecting the
Breakpoints option to display the Breakpoints dialog box (see Figure E.9). When you
add a breakpoint, it’s displayed as a small red circle next to the line you have specified.
Breakpoints can be set only against valid code lines, so sometimes the Developer Studio
will move one of your breakpoints to the closest valid code line for you.

690 Appendix E

FIGURE E.8.
Adding a breakpoint to
your code via the Build
minibar toolbar or the
F9 key.

You can toggle the breakpoint on or off by clicking the Breakpoint (hand shaped) icon or
remove it by clicking the Remove or Remove All buttons on the Breakpoints dialog box.
You can leave them in position but disable them by clicking the check mark to the left of
each breakpoint listed in the Breakpoints dialog box. Clicking there again will show the
check and re-enable the breakpoint.

When you have set your breakpoint(s), you can run the code through the debugger by
choosing Build, Start Debug, Go. Alternatively, you can use the shortcut by clicking the
Go icon (to the left of the Breakpoint icon on the Build minibar toolbar—refer to Figure
E.8) or by pressing the F5 key.

The program will run as normal until it reaches the breakpoint, where it will stop and
display an arrow against the line with the breakpoint. At that point, you can use the
Debug toolbar to control the single stepping process, as shown in Figure E.10.

FIGURE E.9.
Adding a breakpoint
using the Breakpoints
dialog box.

033 31240-9 APP E 4/27/00 1:11 PM Page 690

Using the Debugger and Profiler 691

E

When stopped in the debugger, you can see the contents of most variables merely by
moving the cursor over them in the editor window. Their contents are then displayed in a
ToolTip at the cursor position. More detailed contents are shown by dragging the vari-
ables into the Watch window, as discussed in detail in the next section.

You can single step through the code using the four curly brace icons shown on the
Debug toolbar or by clicking the Debug menu and choosing one of the step options. The
available step options are shown in Table E.4. You can find these on the Debug menu
and the Debug toolbar.

TABLE E.4. STEP OPTIONS AVAILABLE IN SINGLE STEPPING.

Icon/Step Option Shortcut Key Effect When Selected

Step Into F11 The debugger will execute the current line and if
the cursor is over a function call, it will enter that
function.

Step Over F10 Like Step Into except when over a function call
line, it will run that function at normal speed and
then stop when it returns from the function, giving
the effect of stepping over it.

Step Out Shift+F11 The debugger will run the rest of the current func-
tion at normal speed and stop when it returns from
the function to the calling function.

Run to Cursor Ctrl+F10 The debugger will run until it reaches your speci-
fied cursor position. You can set this position by
clicking the line you want to run to.

Go F5 Continue running the program at normal speed
until the next breakpoint is encountered.

Stop Debugging Shift+F5 This stops the debugger and returns to editing
mode.

FIGURE E.10.
The debugger stopped
at a breakpoint ready
for single stepping
with the Debug
toolbar.

continues

033 31240-9 APP E 4/27/00 1:11 PM Page 691

TABLE E.4. CONTINUED

Icon/Step Option Shortcut Key Effect When Selected

Restart Ctrl+Shift+F5 This option restarts the program from the begin-
ning, stopping at the very first line of code.

Break Execution This option stops a program running at normal
speed in its tracks.

Apply Code Changes Alt+F10 This option lets you compile the code after making
changes during a debugging session and then con-
tinue debugging from where you left off.

By using these options, you can watch the flow of your program and see the contents of
the variables as they are manipulated by the code. The yellow arrow in the Editor win-
dow will always show the next statement to be executed.

The next sections describe some of the debugging windows you can use when you are
stopped in the debugger.

Using Edit and Continue
A great new feature of Visual C++ 6 is the capability to Edit and Continue. This means
that you can change or edit the code while you are stopped in the debugger. After edit-
ing, you’ll notice the Debug menu’s Apply Code Changes option becomes enabled (as
well as the corresponding debug toolbar icon). You can then select the Apply Code
Changes option (or toolbar button) to compile your new code changes and then continue
debugging the new changed code. By using this new feature, you can fix bugs while
debugging and continue the debug run from the same place in the code with the same
variable settings, which can be very useful when debugging large and complex
programs.

Watching Program Variables
The Watch and Variables windows are shown in Figure E.11. These windows display the
contents of variables when stopped in the debugger. You can view these windows by
clicking the View menu and selecting them from the Debug Windows pop-up menu or by
clicking the icons from the toolbar.

692 Appendix E

033 31240-9 APP E 4/27/00 1:11 PM Page 692

Using the Debugger and Profiler 693

E

The Variables window always shows the local variables of the function displayed in the
Context combo box at the top of the window. To get to your current function, you can
drop this combo box list to display all the functions that were called in turn. This is the
call stack and shows your current context within the program by showing the list of
functions that have been called in order to get to the program’s currently executing func-
tion where the debugger has stopped. When you select a different function, the relevant
local variables are shown for that function level.

You can expand any object pointers shown by clicking the plus symbol next to the
pointer name. The special C++ this pointer is always shown for class member functions
and can be opened to show all the member variables for the current object.

The Watch window lets you enter variable names from the keyboard or drag variable
names from the editor window (after selecting and inverting them with the mouse point).
The values that are held in the displayed variables are shown until they go out of scope
(that is, aren’t relevant to the function currently being debugged).

You can also enter simple casts and array indexes in the Watch window to show related
values. Right-clicking the mouse can switch the displayed values between hexadecimal

FIGURE E.11.
The Watch window dis-
plays contents of vari-
ables while debugging.

The Watch window

The Variables windowThe Context combo box

033 31240-9 APP E 4/27/00 1:11 PM Page 693

and decimal display. As you step through the program, the values shown in the Watch
and Variable windows are updated accordingly so that you can track how the program
changes the variables.

Other Debugger Windows
Other debugging display windows are available by clicking the View menu and selecting
them from the Debug Windows pop-up menu or alternatively by clicking the various
icons shown to the right of the Debug toolbar. These windows are

● QuickWatch. By clicking a variable in the listing and choosing QuickWatch or
pressing Shift+F9, you can display the contents of the select variable. You can also
enter variables directly and then click the Add Watch button to transfer them into
the main Watch window.

● Registers. The Registers window displays the current values in your CPU’s register
set. This probably isn’t too useful to you unless you are tracking machine or
assembly code-level problems.

● Memory. The Memory window displays the memory from the application’s address
space in columns that represent the address, the hex values, and the character val-
ues for each 8 bytes. You can change this display to show Byte, Short, or Long val-
ues by right-clicking to display the appropriate context menu options.

● Call Stack. The Call Stack window shows the list of functions that were called in
order to get to your current function and the parameter values that were passed to
each function. This can be very useful to investigate how the program flow reached
a specific function. By double-clicking any of the listed functions, you can display
the position where the function call was made in the code, shown by the Editor
window.

Where source code isn’t available, function entries are shown as follows:

KERNEL32! bff88f75()

If you click these entries, you’ll be shown assembly code rather than C++ code.

● Disassembly. By selecting the Disassembly toolbar button or menu option, you can
toggle between displaying the C++ code mixed with assembly code or just C++
code. Where the source code is unavailable, only assembly code is shown.

Additional Debugging Tools
Along with the integrated debugging tools are several nonintegrated but very useful
tools. You can start these by clicking the Tools menu and selecting the specific tool
option from the menu.

694 Appendix E

033 31240-9 APP E 4/27/00 1:11 PM Page 694

Using the Debugger and Profiler 695

E

These tools generally let you track operating-specific items such as Windows messaging,
running processes, and registered OLE objects to enhance your available information
while debugging your application.

Using Spy++
Spy++ is undoubtedly one of the most useful of these tools. With Spy++, you can see the
hierarchical relationships of parent to child windows, the position and flags settings for
windows, and base window classes. You can also watch messages as they are sent to a
window.

When you first run Spy++, it shows all the windows on the current desktop, their sib-
lings, and the base Windows class of each object (see Figure E.12). The view shown in
Figure E.12 has been scrolled to shown the standard Microsoft Windows CD Player.
Spy++ shows you all the buttons and combo boxes, which are windows in their own right
as child windows of the main CD Player window.

If you click the Spy menu, you are shown the following options:

● Messages. You might find that the Messages view is probably one of the most use-
ful options because you can use it to watch messages that are sent to any window
(including your own application). You can also filter these messages so that you
don’t receive an avalanche of Mouse Movement messages.

To use messages, select this option to display the Message Options dialog box
shown in Figure E.13. You can then drag the finder tool over any window in the

FIGURE E.12.
The Spy++ initial view
of the Windows desk-
top showing the CD
Player portion.

033 31240-9 APP E 4/27/00 1:11 PM Page 695

system, displaying the details of the window as it moves. Spy++ also highlights the
selected window, so you can see frame and client windows. When you’ve located
the window you want to view, just let go of the tool. At this point you can use the
other tabs to set filtering options and output formatting options. When you’re fin-
ished, click OK to close the Message Options box.

696 Appendix E

FIGURE E.13.
Using the Spy++
Message Options
Finder to locate
windows.

The output shown in Figure E.14 are the messages produced from using a normal
SDI application’s toolbar. As you can see, with no filtering you’ll receive many
mouse movements and cursor check messages, but you can also see the familiar
WM_LBUTTONUP message with its position parameters.

FIGURE E.14.
Windows Messages for
a toolbar logged by
Spy++.

● Windows. The Windows view is the view shown in Figure E.12 of the layout and
structure of the Windows desktop. If you double-click any of these windows, you’ll
be shown a property sheet containing all the selected windows’ positioning infor-
mation and flag settings. To update this information, you must click the Windows
menu and choose Refresh.

033 31240-9 APP E 4/27/00 1:11 PM Page 696

Using the Debugger and Profiler 697

E

● Processes. You can view all the running programs with the Processes view. These
can be opened to show each thread and any windows attached to those threads.

● Threads. The Threads option shows the same details without the processes level of
hierarchy, so you can see every thread running on your machine and the windows
that each thread owns.

Spy++ is too sophisticated to cover in its entirety here, but as a tool for understanding
the structure of Windows hierarchies and messaging, it is unsurpassed. You can glean a
lot of valuable knowledge just by looking at commercial applications with Spy++. It is
also a wonderful tool for debugging messaging problems in your own application to
ensure that your windows are getting the correct messages and to see how these mes-
sages are sequenced.

Process Viewer
You can see all the processes in more detail than shown in Spy++ with the Process
Viewer (PView95.exe). You can start this application from your system’s main Windows
Start menu from Programs under the Microsoft Visual Studio 6.0 Tools option (or similar
program group). This application lists the processes running on your machine and lets
you sort them by clicking any of the column headers. You can then click a process to
display all its threads. Figure E.15 shows Process Viewer running with the Developer
Studio application (MSDEV.EXE) selected and all its many threads displayed.

FIGURE E.15.
The Process Viewer
showing MSDEV.EXE
and its threads.

The OLE/COM Object Viewer
The OLE/COM Object Viewer tool shows you all the registered OLE/COM objects on
your system, including ActiveX controls, type libraries, embeddable objects, automation
objects, and many other categories.

You can even create instances of various objects and view their interfaces in detail. The
OLE/COM Object Viewer is very useful if you are developing an OLE/COM application
or looking for an elusive ActiveX control.

033 31240-9 APP E 4/27/00 1:11 PM Page 697

The MFC Tracer
Using the MFC Tracer tool shown in Figure E.16, you can stop the normal tracing or add
specific Windows trace output to the normal program trace output. When you select this
tool, you are shown a set of check boxes that you can check or uncheck to include that
tracing option.

698 Appendix E

FIGURE E.16.
The MFC Tracer tool
options.

You can add Windows messages, database messages, OLE messages, and many other
levels of trace output to help track down elusive problems. These messages are then
generated by the MFC code for the various selected flags.

You can even turn off the standard tracing generated by your application by unchecking
the Enable Tracing option.

033 31240-9 APP E 4/27/00 1:11 PM Page 698

APPENDIX F
Using MFC’s Helper
Classes

by Jon Bates

Using the Collection Classes
You’ll quickly find that in any object-oriented program you write, objects must
be grouped and stored into collections of different types and sizes. Once again,
the MFC comes to the rescue with sets of easy-to-use classes and templates to
help with this common requirement.

The collection classes fall into three broad categories—arrays, maps, and
lists—that have their particular niches.

Arrays are the mainstay of collection classes and are useful for implementing
object containers. Each object in an array has a zero-based position or index,
which is used to locate and reference the object.

Lists are useful when you want to think of your data as being linked sequential-
ly, each item to the next. They are useful when you must

034 31240-9 APP F 4/27/00 1:13 PM Page 699

quickly add or remove items to the head or tail of the list. You can also traverse the list
forward or backward from one item to the next.

Maps are used to associate data against a key item such as a string or number where the
associations are sparse and random. For example, you might use a map to associate
objects with zip or postal codes. They are good at fast retrieval of objects given the
association key and can be used as short-term data caches for large databases.

Using the Array Classes
MFC provides several predefined array classes and a generic array template so that you
can create arrays to hold your own customized objects. (The latter is covered later in this
chapter, in the “Creating Custom Collection Classes” section.)

Several predefined array classes offer quick and easy array access for common types of
variables and objects, as shown in Table F.1.

TABLE F.1. PREDEFINED ARRAY-BASED CLASSES.

Array Class Types of Variable Held Numeric Range of Type

CByteArray BYTE—8-bit 0 to 255
unsigned values

CWordArray WORD—16-bit 0 to 65535
unsigned values

CUIntArray UINT—32-bit 0 to 4294967295
unsigned integer
values

CDWordArray DWORD—32-bit 0 to 4294967295
unsigned integer
values

CStringArray CString—text
string objects

CObArray CObject—any
CObject-derived
objects

CPtrArray void*—any object
pointers or memory
addresses

There are several member functions for each array class that differ only by the type of
variables they hold. Each function discussed can be used with any array classes to deal
with variables of their corresponding type.

700 Appendix F

034 31240-9 APP F 4/27/00 1:13 PM Page 700

Using MFC’s Helper Classes 701

F

One of the most useful aspects of these array classes is their capability to grow dynami-
cally. Normal C/C++ arrays are predefined in size and can be extended only by lots of
messy reallocations of memory. The collection classes hide these reallocations so that
you can simply call the Add() member of an array object to add a new value. For exam-
ple, to add strings to a CStringArray, you can use code similar to this:

CStringArray myStringArray;
myStringArray.Add(“Red”);
myStringArray.Add(“Green”);
myStringArray.Add(“Blue”);

You can then find the size of an array by calling the GetSize() function; for example,
the following line used after the previous lines would return three items into
nNumberOfItems:

int nNumberOfItems = myStringArray.GetSize();

You can also set the array to a specific size using the corresponding SetSize() function,
which will extend or truncate the array to the specified size you pass.

Values can be set to the array by using the SetAt() function that passes a zero-based
index and the value to be stored. SetAt() will assert whether the index is larger than the
current array size. You can then retrieve values from the array using the GetAt() func-
tion, which will return the value at the index position that you specify. You might use
these functions with a CWordArray like this:

CWordArray myWordArray;
myWordArray.SetSize(20);
myWordArray.SetAt(0,200);
myWordArray.SetAt(19,500);
TRACE(“Value at index position 19 is %d\n”,

myWordArray.GetAt(19));

These lines will set the first element of a 20-element array to 200 and the last to 500 and
display the value 500 when executed. You can still grow the array by calling the Add()
function and find the uppermost valid index by calling GetUpperBound(), which will
return the zero-based index, or –1 if there are no elements present.

You can use the [] operators to set and get values at a specific index just like a normal
C++ array. For example, the GetAt() and SetAt() functions in the previous lines could
be replaced with the [] operators like this:

myWordArray[0] = 200;
myWordArray[19] = 500;
TRACE(“Value at index position 19 is %d\n”,

myWordArray.GetAt[19]);

034 31240-9 APP F 4/27/00 1:13 PM Page 701

Using the InsertAt() and RemoveAt() functions, you can insert or remove items at a
specific position, which results in all the items shifting up or down by one or more
elements.

The InsertAt() function has two forms; the first needs an index position and an element
to insert there. You can also optionally pass it a count to insert multiple copies of the
specified element. The second form lets you insert another whole array at a specified
index position.

The RemoveAt() function needs only one parameter to specify the index value of the
item to be removed, but you can also optionally pass a count as the second parameter to
remove a number of elements. The remaining array elements will then be shifted down
to fill the gap.

You can remove all the elements of an array by calling the RemoveAll() function.

702 Appendix F

MANAGING MEMORY WITH CObArray AND CPtrArray

You must be careful to delete objects that you have allocated with new and stored in a
CObArray or CPtrArray because these arrays only hold pointers to the elements (not ele-
ments themselves). Therefore, a RemoveAll() call will only remove the pointers to the
objects and not free the memory used by the objects themselves.

Using the List Classes
There are only three categories of lists as shown in Table F.2 and a template for your
own types (discussed later). There is seldom any need to have a list of simple integer
values. Instead, you would probably need a linked list of your own CObject-derived
classes or pointers to a number of C++ classes or structures.

TABLE F.2. THE LIST-BASED COLLECTION CLASSES.

Class Name Type of Variable Held

CObList CObject—Pointers to any CObject-derived objects.

CPtrList void*—Pointers to memory addresses holding any type of data.

CStringList CString—Text strings.

Linked lists are several objects linked to each other in a sequential fashion like carriages
on a train. There is a definite head and tail position, but every other element knows only
its immediate neighbor. A POSITION variable keeps track of a current position in a list.
You can declare multiple POSITION variables to track different places in the same list.

034 31240-9 APP F 4/27/00 1:13 PM Page 702

Using MFC’s Helper Classes 703

F

Each list’s member functions then use a POSITION variable to find the head, tail, or next
and previous elements in the list.

You can add elements to a list by calling the AddHead() or AddTail() functions or by
inserting items into a specific position using the InsertBefore() or InsertAfter()
functions. Each function then returns a POSITION value to indicate the position of the
new added item.

For example, you can construct a four-element list of CString items like this:

CStringList listMyStrings;
POSITION pos;
pos = listMyStrings.AddHead(“Hand”);
listMyStrings.AddTail(“Forearm”);
listMyStrings.InsertBefore(pos,”Fingers”);
listMyStrings.AddTail(“Elbow”);

These lines will produce a linked list of CString strings from head to tail like this:

Fingers-Hand-Forearm-Elbow

You can also pass other similar list objects to the AddHead() and AddTail() functions to
add another list to the head or tail of the current list.

When you’ve constructed a list, you can iterate through its members using a POSITION
variable. The head or tail positions can be found by calling GetHeadPosition() or
GetTailPosition(), respectively. These functions both return a POSITION value indicat-
ing the current position in the list. You can then pass the POSITION variable as a refer-
ence to GetNext() or GetPrev() to find the next or previous element in the list. These
functions then return the specific object and adjust the current position. When the end of
the list is reached, the POSITION variable will be set to NULL.

For example, the following lines will iterate through the previous listMyStrings, dis-
playing each element in turn:

POSITION posCurrent = listMyStrings.GetHeadPosition();
while(posCurrent) TRACE(“%s\n”, listMyStrings.GetNext(posCurrent);

You can find specific list elements by using the Find() function, which returns a
POSITION value if the search parameter you pass is found. You can also optionally pass
a position value, from which you can start the search.

For example, you can search for the string Fingers in the previous list by calling the
Find() function like this:

POSITION posFingers = Find(“Fingers”);

If the searched-for element isn’t found, a NULL value will be returned.

034 31240-9 APP F 4/27/00 1:13 PM Page 703

There is also a FindIndex() function that will find the nth element from the head of the
list (where n is the passed parameter).

You can find out how many elements are in the list by calling the GetCount() member
function, which returns the number of elements and doesn’t need any parameters.

The value of elements at a specific position can be retrieved or reset by using the
GetAt() and SetAt() functions, which are used in a similar way to their array equiva-
lents, but by passing a POSITION value rather than an array index.

You can remove elements from the list by using the RemoveAt() function and passing the
POSITION value to identify the element to be removed. For example, to remove the
Fingers item from the previous example, you might code the following:

RemoveAt(posFingers);

Using the Map Classes
The map classes work by associating a type value (or element) with a key value that can
be used to look up the element. The various map classes, and their key values and associ-
ated element types, are shown in Table F.3.

TABLE F.3. THE MAP-BASED COLLECTION CLASSES.

Class Name Key Type Element Type

CMapWordToOb WORD—16-bit CObject—
unsigned value CObject-derived

objects

CMapWordToPtr WORD—16-bit void*—
unsigned value Pointers to

memory

CMapPtrToPtr void*—Pointers void*—
to memory Pointers to

memory

CMapPtrToWord void*—Pointers WORD—16-bit
to memory unsigned value

CMapStringToOb CString—Text CObject—
strings CObject-derived

objects

CMapStringToPtr CString—Text void*—
strings Pointers to

memory

704 Appendix F

034 31240-9 APP F 4/27/00 1:13 PM Page 704

Using MFC’s Helper Classes 705

F

Class Name Key Type Element Type

CMapStringToString CString—Text CString—Text
strings strings

You can insert elements into a map by using the SetAt() function and passing a key
value as the first parameter and your element value as the second. For example, if you
must store your own CObject-derived objects indexed by a string value, you can use the
CMapStringToOb class and add elements like this:

CMapStringToOb mapPlanetDetails;
mapPlanetDetails.SetAt(“Mercury”,new CPlanetDets

➥ (4878, 0.054, 57.91, 87.969));
mapPlanetDetails.SetAt(“Venus”,new CPlanetDets

➥ (12100, 0.815, 108.21, 224.701));
mapPlanetDetails.SetAt(“Earth”,new CPlanetDets

➥ (12756, 1.000, 149.60, 365.256));

In the previous example, CPlanetDets is a CObject-derived class with a constructor that
takes four planetary detail parameters. The new objects are then associated with the
planet names as keys.

You can also use the [] operator overload instead of SetAt() by enclosing the key
value inside the square brackets like this:

mapPlanetDetails[“Mars”] = new CPlanetDets
➥ (6762, 0.107, 227.94, 686.98);

After you have set data to a map, you can retrieve it by calling the Lookup() member
function by passing the key value and a reference to a variable to hold the associated ele-
ment value if found. If the element isn’t found, a FALSE value is returned from Lookup().
For example, to retrieve details about a planet from the previous example, you can use
these lines:

CPlanetDets* pMyPlanet = NULL;
if (mapPlanetDetails.Lookup(“Earth”,(CObject*&)pMyPlanet))

TRACE(“Sidereal Period = %d days\n”, pMyPlanet->m_dSidereal);

The (CObject*&) cast is used to cast the pMyPlanet object pointer to a generic CObject
pointer reference.

The GetCount() function will return the number of elements current in the map. These
elements can be removed by calling the RemoveKey() function and passing the key of the
element to be removed like this:

mapPlanetDetails.RemoveKey(“Jupiter”);

034 31240-9 APP F 4/27/00 1:13 PM Page 705

Remember to delete the allocated objects. RemoveKey() just removes the pointer to the
object—not the object itself—so it won’t free up the used memory. You can also remove
all the elements by calling RemoveAll().

You can iterate through the list of associations using the GetNextAssoc() function,
which needs parameters that reference a current POSITION holding variable, a key vari-
able, and an element variable. You can find the position of the first element by calling
GetFirstPosition(), which returns the POSITION value for the first element. To iterate
through the associations, you might code the following:

POSITION pos = mapPlanetDetails.GetStartPosition();
while(pos!=NULL)
{
CString strPlanet;
CPlanet* pMyPlanet;
mapPlanetDetails.GetNextAssoc(pos,strPlanet, (CObject*&)pMyPlanet);
TRACE(“%s has a diameter of %d km\n”,strPlanet, pMyPlanet->m_dDiameter);
}

When GetNextAssoc() returns, pos will hold the position for the next association or
NULL if there are no more. The key and element values (strPlanet and pMyPlanet in the
previous example) will be set to each key-element pair in turn.

Because of a map’s capability to retrieve sparse data quickly and efficiently, it is often
advantageous to use a map as a memory cache for a slow database lookup.

For example, in the following lines, the planet details associated with strPlanetName are
required. When first called, this code won’t have a mapped version of the required
planet, so it will have to call GetPlanetFromSlowDB() to find it. Because it then stores
the retrieved planet in the mapPlanetDetails map, when it is next called with the same
strPlanetName, the details can be quickly returned from the cached version in memory:

CPlanetDets* pMyPlanet = NULL;
if (mapPlanetDetails.Lookup(strPlanetName,

➥ (CObject*&)pMyPlanet) == FALSE)
{
pMyPlanet = GetPlanetFromSlowDB(strPlanetName);
mapPlanetDetails.SetAt(strPlanetName,pMyPlanet);
}
return pMyPlanet;

This technique is easy to implement and can transform your application’s speed when
you are using slow retrieval devices such as databases or files.

706 Appendix F

034 31240-9 APP F 4/27/00 1:13 PM Page 706

Using MFC’s Helper Classes 707

F

Creating Custom Collection Classes
You might want to customize the collection classes to use your own objects rather than
the generic CObject-derived classes. Customization offers several benefits because you
can make an array, list, or map that will accept and return only your specific type of
object. If you accidentally try to add the wrong sort of object to a customized array, list,
or map, the compiler will issue an error message to notify you. The other advantage is
that you don’t have to cast generic CObject* pointers (that is, from a CObArray) back to
your specific object to use it.

This sort of customization is known as type-safety; in large programs it can be invaluable
for stopping accidental assignments of the wrong class. A set of templates, CArray,
Clist, and CMap, lets you easily create an array, list, or map to store, use, and return
objects of your specified type only. Templates are a complex subject, but you don’t
have to worry about writing templates; the MFC-provided templates defined in the
afxtempl.h header file will do for these type-safe collection classes. For the scope of
this section, it is best to think of templates as large macros that generate lots of code
based on your parameters when compiled.

The templates will give you access to all the normal functions in the array, list, or map
classes discussed in the previous sections. However, instead of using generic CObject-
based parameters and returned values, you can define your own types as parameters and
return values.

To use the templates in your program, you’ll need to include the following header line in
each module (.cpp/.h file) that uses the template definitions:

#include “afxtempl.h”

You can then define your own custom type-safe class using the template syntax like this
for an array of custom objects:

CArray<CMyCustomClass*, CMyCustomClass *> myCustomClassArray;

The < and > symbols used in the definition should be thought of as angle brackets (not
greater-than or less-than conditional operators). The previous line uses the CArray tem-
plate to create an instance of myCustomClassArray. The first CMyCustomClass* parame-
ter specifies types of object pointers you want the array to return when you use GetAt()
and other access functions. The second CMyCustomClass* specifies the type that should
be used for the input parameter definitions. Then all the functions that store objects, such
as SetAt() and Add(), will accept only pointers to objects of your specific
CMyCustomClass.

034 31240-9 APP F 4/27/00 1:13 PM Page 707

For example, you can create an array that takes and returns only pointers to the specific
CPlanetDets class, defined (and implemented) like this:

class CPlanetDets : public CObject
{
public:
CPlanetDets(double dDiameter,double dGravity,
➥ double dDistFromSun,double dSidereal):

m_dDiameter(dDiameter), m_dGravity(dGravity),
m_dDistFromSun(dDistFromSun), m_dSidereal(dSidereal) {}

double m_dDiameter,m_dGravity,m_dDistFromSun,m_dSidereal;
};

To declare a type-safe CArray-based array called myPlanetArray, you can then code the
following line:

CArray<CPlanetDets*,CPlanetDets*> myPlanetArray;

This declares that myPlanetArray can only accept pointers to a CPlanetDets object and
return pointers to a CPlanetDets object. You might then use the new array like this:

myPlanetArray.Add(new CPlanetDets
➥ (4878, 0.054, 57.91, 87.969));

myPlanetArray.Add(new CPlanetDets
➥ (12100, 0.815, 108.21, 224.701));

myPlanetArray.Add(new CPlanetDets
➥ (12756, 1.000, 149.60, 365.256));

for(int i=0;i<myPlanetArray.GetSize();i++)
TRACE(“Diameter = %f\n”, myPlanetArray[i]->m_dDiameter);

These lines create three new CPlanetDets type objects and add them to the array. The
last line displays the diameter in the TRACE macro without needing to cast the returned
value from myPlanetArray[i] because it’s already a pointer of the CPlanetDets* type.

However, later you might forget the exact nature of myPlanetArray and try to add a
CStatic object instead:

myPlanetArray.Add(new CStatic());

Fortunately, the compiler will spot the transgression and issue a compiler error such as

‘Add’ : cannot convert parameter 1 from ‘class
➥ CStatic *’ to ‘class CPlanetDets *

However, the error wouldn’t have been spotted if you had been using a CObArray to hold
the planet details:

CObArray myPlanetArray;

708 Appendix F

034 31240-9 APP F 4/27/00 1:13 PM Page 708

Using MFC’s Helper Classes 709

F

The CStatic object would be happily stored along with the CPlanetDets objects, caus-
ing untold havoc when you try to retrieve the CStatic object, thinking it’s a
CPlanetDets object.

The template used to generate type-safe lists is CList; it takes the same general form as
CArray:

CList<CMyCustomClass*, CMyCustomClass *> myCustomClassList;

Again, the first parameter is the required returned object type, and the second parameter
specifies the accepted object types for functions that accept elements for storage.

All the functions available for lists are available for your own specific type-safe cus-
tomized lists, again checking and returning your specified types. Therefore, the equiva-
lent list-based code for the planet storing array would be coded like this:

CList<CPlanetDets*,CPlanetDets*> myPlanetList;
myPlanetList.AddTail(new CPlanetDets

➥ (4878, 0.054, 57.91, 87.969));
myPlanetList.AddTail(new CPlanetDets

➥ (12100, 0.815, 108.21, 224.701));
myPlanetList.AddTail(new CPlanetDets

➥ (12756, 1.000, 149.60, 365.256));
POSITION pos = myPlanetList.GetHeadPosition();
while(pos) TRACE(“Diameter = %f\n”,myPlanetList.

➥ GetNext(pos)->m_dDiameter);

The template for customized maps differs from the list and arrays in that it needs four
parameters: an input and a return value for both the key and element value. So the
general form is like this:

CMap<MyType, MyArgType, CMyCustomClass *, CMyCustomClassArg *>
myCustomClassMap;

The first parameter, MyType, specifies the internally stored key value for each map asso-
ciation. This can be any of the basic types such as int, WORD, DWORD, double, float, or
CString, or it can be a pointer to your own specific type.

The second parameter, MyArgType, specifies the argument type used to pass key values in
and out of the map functions.

The third parameter, CMyCustomClass *, is how you want the internal element values to
be stored (as specific type-safe pointers to your objects).

The fourth parameter, CMyCustomClassArg *, specifies the argument type used to pass
your element values in and out of the map functions. For example, to associate the planet
details with their names, you might code the following:

034 31240-9 APP F 4/27/00 1:13 PM Page 709

CMap<CString,LPCSTR,CPlanetDets*,CPlanetDets*> myPlanetMap;
myPlanetMap.SetAt(“Mercury”,

new CPlanetDets(4878, 0.054, 57.91, 87.969));
myPlanetMap.SetAt(“Venus”,

new CPlanetDets(12100, 0.815, 108.21, 224.701));
myPlanetMap.SetAt(“Earth”,

new CPlanetDets(12756, 1.000, 149.60, 365.256));
CPlanetDets* pPlanet = NULL;
if (myPlanetMap.Lookup(“Venus”,pPlanet))
TRACE(“Diameter = %f\n”,pPlanet->m_dDiameter);

The map declaration indicates that the objects should be stored internally as CStrings
but use LPCSTR (pointers to constant character arrays) to pass values into and out of the
map. The planet’s details themselves will be both stored internally and accessed as
pointers to CPlanetDets objects (such as CPlanetDets*).

710 Appendix F

POTENTIAL PROBLEMS WHEN USING THE MAP’S INTERNAL HASH KEY TYPES

You must be wary of the conversion between the passed parameters and the internal
hash key storage system. For example, if you were to replace the CString in the previous
example with another LPCSTR for the internal storage object, the Lookup() would fail to
find “Venus” because it would be comparing the pointer values (to different instances of
“Venus”) rather than the contents of the strings.

Using the Coordinate-Handling Classes
Because Windows is a graphically oriented environment, you’ll often need to hold point
positions, rectangles, and sizes. Three MFC classes help store and manipulate these coor-
dinates: CPoint, CRect, and CSize. Each has several member functions and operator
overloads that take much of the work out of adding, constructing, and finding derivatives
of these coordinates.

Also several of the MFC and GDI functions understand their types or underlying types as
parameter values, so you don’t have to perform any messy mangling operations to pass
them into functions.

Using the CPoint Class
CPoint encapsulates a POINT structure that just holds an x and y position to represent a
point on a two-dimensional surface. You can always access x and y members directly to
get or set their current values like this:

034 31240-9 APP F 4/27/00 1:13 PM Page 710

Using MFC’s Helper Classes 711

F

CPoint ptOne;
ptOne.x = 5;
ptOne.y = 20;
TRACE(“Co-ordinate = (%d,%d)\n”,ptOne.x,ptOne.y);

You set these values when you construct a CPoint object by passing values to one of
CPoint’s several constructors, as shown in Table F.4.

TABLE F.4. CONSTRUCTOR TYPES FOR THE CPoint CLASS.

Constructor Definition Description

CPoint() Constructs an uninitialized object

CPoint(POINT ptInit) Copies the settings from a POINT structure or another CPoint object

CPoint(int x, int y) Initializes the object from the x and y parameter values

CPoint(DWORD dwInit) Uses the low 16 bits for the x value and the high 16 bits for the y
value

CPoint(SIZE sizeInit) Copies the settings from a SIZE structure or CSize object

For example, you could replace the last sample lines with these for the same result:

CPoint ptOne(5,20);
TRACE(“Co-ordinate = (%d,%d)\n”,ptOne.x,ptOne.y);

One of the most useful aspects of the CPoint class is its many operator overloads. By
using the +, -, +=, and -= operators with other CPoint, CRect, or CSize objects, you can
add or subtract coordinate pairs from other coordinate pairs or from rectangles or sizes.
For example, the long way to subtract two points from each other to give a third would
be like this:

CPoint ptOne(5,20);
CPoint ptTwo(25,40);
CPoint ptThree;
ptThree.x = ptTwo.x – ptOne.x;
ptThree.y = ptTwo.y – ptOne.y;

This can be simplified by using the operator overload:

CPoint ptOne(5,20);
CPoint ptTwo(25,40);
CPoint ptThree = ptTwo – ptOne;

Or you can add the coordinates of one point to another like this:

ptTwo += ptOne;

034 31240-9 APP F 4/27/00 1:13 PM Page 711

You can also use the == and != logical operator overloads to perform comparisons. For
example, to check whether ptTwo is equal to ptOne in both x and y values, you can
code the following:

if (ptOne == ptTwo) TRACE(“Points are the same”);

There is also an Offset() function that adds an offset value specified by passing x and y
values, or a CPoint class or POINT structure, or a CSize or SIZE structure. Therefore, the
following two lines are functionally identical:

ptOne.Offset(75,-15);
ptOne-=CPoint(-75,15);

Using the CRect Class
The CRect class encapsulates a RECT structure to hold two pairs of coordinates that
describe a rectangle by its top-left point and its bottom-right point. You can construct a
CRect object using one of its several constructors, as shown in Table F.5.

TABLE F.5. CONSTRUCTOR TYPES FOR THE CRect CLASS.

Constructor Definition Description

CRect() Constructs an uninitialized object

CRect(const RECT& rcInit) Copies the settings from another RECT structure or CRect
object

CRect(LPCRECT lprcInit) Copies the settings via a RECT or CRect pointer

CRect(int l,int t,int r,int b) Initializes the coordinates from left, top, right, and bottom
parameters

CRect(POINT point, SIZE size) Initializes from a POINT or CPoint and a SIZE or CSize

CRect(POINT ptTL, POINT ptBR) Initializes from a top-left POINT and a bottom-right POINT

After you’ve constructed a CRect object, you can access each of the top, left, bottom,
and right members individually using the (LPRECT) cast to cast it into a RECT structure
as shown in these lines:

CRect rcOne(15,15,25,20);
((LPRECT)rcOne)->bottom += 20;
TRACE(“Rect is (%d,%d)-(%d,%d)”,
((LPRECT)rcOne)->left,((LPRECT)rcOne)->top,

((LPRECT)rcOne)->right,((LPRECT)rcOne)->bottom);

Alternatively, you can access the members via either the top-left CPoint or the bottom-
right CPoint. References to these member objects are returned by the TopLeft() and
BottomRight() functions. When you’ve accessed either the top-left or bottom-right

712 Appendix F

034 31240-9 APP F 4/27/00 1:13 PM Page 712

Using MFC’s Helper Classes 713

F

points, you can then manipulate them using any of the CPoint functions shown in the
previous section. For example, the following lines are functionally identical to the previ-
ous lines, but differ in that they construct and access the rectangle using CPoint objects:

CRect rcOne(CPoint(15,15),CPoint(25,20));
rcOne.BottomRight().y += 20;
TRACE(“Rect is (%d,%d)-(%d,%d)”,

rcOne.TopLeft().x,rcOne.TopLeft().y,
rcOne.BottomRight().x,rcOne.BottomRight().y);

You can also use the SetRect() function to set the coordinates by passing four integers
to represent the top-left x- and y-coordinates and the bottom-right x- and y-coordinates.
SetRectEmpty() sets all these coordinates to zero to make a NULL rectangle. The
IsRectNull() function will return TRUE if called on such a NULL rectangle, and
IsRectEmpty() will return TRUE if the width and height are both zero (even if the
individual values are not zero).

Several helper functions help you calculate various aspects of the rectangle’s geometry.
The width and height can be found by calling the Width()and Height() functions, each
of which returns the relevant integer value. Alternatively, you can find a CSize that rep-
resents both width and height by calling the Size() function. For example, the following
line displays the width and height of the rectangle rcOne:

TRACE(“Rect Width = %d, Height = %d\n”,
rcOne.Width(), rcOne.Height());

The point in the center of the rectangle is often a useful coordinate to know; you can find
this by calling the CenterPoint() function, which returns a CPoint object to represent
the center of the rectangle.

You might use this to find the center of your window’s client area and draw a dot there
like this:

CRect rcClient;
GetClientRect(&rcClient);
dc.SetPixel(rcClient.CenterPoint(),0);

You can also find the union or intersection of two rectangles by calling UnionRect() and
InterSectRect(), which both take two source rectangles as parameters and set the coor-
dinates of the calling CRect object to the union or intersection. The union is the smallest
rectangle that will enclose the two source rectangles. The intersection is the largest rec-
tangle that is enclosed by both source rectangles. The diagram in Figure F.1 shows the
union and intersection of two source rectangles labeled A and B.

034 31240-9 APP F 4/27/00 1:13 PM Page 713

The following lines calculate the intersection and union of the source rectangles rcOne
and rcTwo:

CRect rcOne(10,10,100,100);
CRect rcTwo(50,50,150,200);
CRect rcUnion, rcIntersect;
rcUnion.UnionRect(rcOne,rcTwo);
rcIntersect.IntersectRect(rcOne,rcTwo);

When this code is run, rcUnion will be set to coordinates (10,10)–(150,200) and
rcIntersect will be set to coordinates (50,50)–(100,100).

You can use SubtractRect() to find the subtraction of one rectangle from another. This
is the smallest rectangle that contains all the points not intersected by the two source rec-
tangles (or the smallest non-overlapping section). For example, by adding the following
lines to an OnPaint() handler, you can see the effects of SubtractRect() to subtract
rcTwo from rcOne to produce rcDst. The resulting subtraction is the section that will be
drawn in blue at the bottom of the diagram, as shown in Figure F.2.

CRect rcOne(10,10,220,220), rcTwo(50,50,150,260), rcDst;
rcDst.SubtractRect(rcTwo,rcOne);
dc.FillSolidRect(rcOne,RGB(255,0,0));//red
dc.FillSolidRect(rcTwo,RGB(0,255,0));//green
dc.FillSolidRect(rcDst,RGB(0,0,255));//blue

When this code is run, the resulting rectangle rcDst will hold the coordinates
(50,220)–(150,26).

714 Appendix F

FIGURE F.1.
The union and inter-
section between two
rectangles. A

B

Intersection rectangle

The union rectangle sur-
rounds both A and B

034 31240-9 APP F 4/27/00 1:13 PM Page 714

Using MFC’s Helper Classes 715

F

You can increase or decrease the size of a rectangle using InflateRect() and
DeflateRect(). These both have several forms that accept various types of parameters,
as shown in Table F.6.

TABLE F.6. PARAMETER FORMS FOR InflateRect AND DeflateRect.

Parameters Description

(int x, int y) Inflate or deflate the left and right sides by the x value and
the top and bottom sides by the y value.

(SIZE size) Inflate or deflate the left and right sides by size.cx and the
top and bottom sides by size.cy.

(LPCRECT lpRect) Inflate each side by the corresponding left, top, right, and
bottom values from lpRect.

(int l, int t, int r, int b) Inflate each side by the corresponding left, top, right, and
bottom values.

For example, the following code inflates rcOne and deflates rcTwo:

CRect rcOne(10,10,100,100);
CRect rcTwo(50,50,150,200);
rcOne.InflateRect(5,5);
rcTwo.DeflateRect(10,20,30,40);

After these lines have run, rcOne will be set to the coordinates (5,5)–(105,105) and
rcTwo will be set to the coordinates (60,70)–(120,160).

You can perform hit-testing by determining whether a specified point (perhaps from a
mouse click) lies within the bounds of a rectangle by calling PtInRect() and passing
the point to be tested. If the point does lie within the rectangle, a TRUE value is returned;
otherwise a FALSE value is returned.

FIGURE F.2.
The effects of a sub-
traction operation on
two partially overlap-
ping rectangles.

‘A’-(Red)

‘B’=(Green)

Subtraction of ‘A’ and ‘B’-(Blue)

034 31240-9 APP F 4/27/00 1:13 PM Page 715

In the following lines, the Hit! – ptTest1 message is displayed because ptTest1 does
lie within the rcTestArea test area, whereas ptTest2 doesn’t, so PtInRect() returns
TRUE for ptTest1 and FALSE for ptTest2:

CRect rcTestArea(10,20,440,450);
CPoint ptTest1(200,200), ptTest2(500,500);
if (rcTestArea .PtInRect(ptTest1))

➥ AfxMessageBox(“Hit! – ptTest1”);
if (rcTestArea .PtInRect(ptTest2))

➥ AfxMessageBox(“Hit! – ptTest2”);

There are also several operator overloads for use with CRect objects, as shown in
Table F.7.

TABLE F.7. OPERATOR OVERLOADS USED WITH CRect.

Operator Description

= Copies all the coordinates from the right rectangle operand to the left rectangle, like
an ordinary numeric assignment.

+ Either displaces a rectangle position if a CPoint or CSize object is added to a rec-
tangle or inflates the coordinates with their corresponding counterparts if a CRect
object is added.

- Same as +, except that the coordinates are displaced in a negative direction or
deflated if a CRect is used.

+= Same overall effect as + but affects only the current rectangle.

-= Same overall effect as - but affects only the current rectangle.

& Creates an intersection rectangle from the two rectangle operands.

| Creates a union rectangle from the two rectangle operands.

&= Same overall effect as & but affects only the current rectangle.

|= Same overall effect as | but affects only the current rectangle.

== Returns TRUE if the rectangles are identical, otherwise FALSE.

!= Returns FALSE if the rectangles are identical; otherwise returns TRUE.

The following lines show some of the CRect operator overloads being used to manipulate
the rcStart rectangle:

CRect rcStart(10,10,100,100);
rcStart = rcStart + CPoint(5,5);
rcStart -= CSize(5,5);
rcStart += CRect(1,2,3,4);
if (rcStart == CRect(9,8,103,104)) AfxMessageBox(“TRUE”);

716 Appendix F

034 31240-9 APP F 4/27/00 1:13 PM Page 716

Using MFC’s Helper Classes 717

F

The final condition returns TRUE, thus displaying the message box because the final coor-
dinates are (9,8)–(103,104).

Using the CSize Class
The CSize class encapsulates the SIZE structure and provides several constructors and
operator overloads that manipulate the internal cx and cy values that define a size. The
various constructors you can use to create an instance of a CSize object are shown in
Table F.8.

TABLE F.8. CONSTRUCTOR TYPES FOR THE CSize CLASS.

Constructor Definition Description

CSize() Creates an uninitialized CSize object.

CSize(SIZE sizeInit) Copies the cx and cy values from another CSize object or SIZE
structure.

CSize(initCX, initCY) Initializes the object with initCX for the horizontal size and
initCY for the vertical size.

CSize(POINT ptInit) Initializes the object with the x and y values from a CPoint object
or POINT structure.

CSize(DWORD dwSize) Sets the cx value to the low-word (bottom 16 bits) of dwSize and
the cy value to the high-word (to 16 bits) of dwSize.

You can manipulate the cx and cy members directly like this:

CSize tstSize(10,10);
tstSize.cx = tstSize.cy * 2;

The only functions that the CSize class offers are operator overloads, as shown in
Table F.9.

USING THE NormalizeRect() FUNCTION

Sometimes you might perform an operation that makes the top-left point hold values
greater than the bottom-right point. If this is so, the width or height might be negative,
causing other functions to fail. If you suspect this might happen, you can call the
NormalizeRect() function to correct the coordinates so that the top-left coordinates have
lower values than the bottom-right coordinates.

034 31240-9 APP F 4/27/00 1:13 PM Page 717

TABLE F.9. OPERATOR OVERLOADS USED WITH CSize.

Operator Description

+ Add two size objects

- Subtract one size object from another

+= Add a SIZE object

-= Subtract a SIZE object

== Determine whether the two sizes are the same and return TRUE if identical

!= Determine whether the two sizes are different and return TRUE if different

These can be used just like normal arithmetic operators and affect both the cx and cy
members, as shown in the following lines that manipulate the contents of tstSize:

CSize tstSize(10,15);
tstSize += tstSize + tstSize - CSize(1,2);
if (tstSize == CSize(29,43)) AfxMessageBox(“TRUE”);

When run, this code will display the TRUE message box message because tstSize ends
up as the size 29×43.

Using the Time-Handling Classes
The capability to store dates and times is a common requirement for many applications.
You will probably also need to calculate elapsed times and time spans between stored
date and time values and be able to format those into user-readable text strings.

MFC provides four classes to handle all the aspects of date and time manipulation and
storage. Originally, there were just two classes; CTime and CTimeSpan, which are based
on the UNIX time_t (4 byte long value) system (the number of elapsed seconds since
1970). However, granularity of only one second and a limited range of dates between
1970 and 2038 proved too restrictive for many applications. Hence, two new replace-
ment classes, COleDateTime and COleDateTimeSpan, are now also supplied and should
be used in preference to CTime and CTimeSpan in newer applications.

COleDateTime is based on an underlying DATE structure (which is actually just a double
value). This greater capacity of storage type lets COleDateTime cover a range of dates
between January 1, 100, and December 31, 9999, and down to an approximate resolution
of 1 millisecond. The difference between two COleDateTime values can be represented
and manipulated by the COleDateTimeSpan object.

Because of the similarity between the CTime class and the newer COleDateTime class, the
following sections just describe COleDateTime, although many of the functions are iden-
tical in the CTime versions.

718 Appendix F

034 31240-9 APP F 4/27/00 1:13 PM Page 718

Using MFC’s Helper Classes 719

F

Using the COleDateTime Class
COleDateTime is connected with OLE in that it can be used in conjunction with the
VARIANT structure, often used in OLE automation. Because of the wide range of date and
time storage systems, especially in OLE environments, COleDateTime must be capable of
converting between all these various types. This support is reflected in its many con-
structor forms, as shown in Table F.10.

TABLE F.10. CONSTRUCTOR TYPES USED WITH COleDateTime.

Constructor Definition Description

COleDateTime() Creates an uninitialized COleDateTime object

COleDateTime(const COleDateTime& Copies the values from another
datesrc) COleDateTime object

COleDateTime(int nYear, int nMonth, Initializes the date and time from the
int nDay, int nHour, values passed
int nMinute, int nSecond)

COleDateTime(const VARIANT& varSrc) Converts a date time from a VARIANT structure

COleDateTime(DATE dtSrc) Copies a date time from a DATE structure

COleDateTime(time_t timeSrc) Copies a date time from a UNIX-style time_t struc-
ture

COleDateTime(WORD wDosDate) Copies a date time from the MS-DOS–style values
WORD and wDosTime

COleDateTime(const SYSTEMTIME& Copies a date time from a SYSTEMTIME structure
systimeSrc)

COleDateTime(const FILETIME& Copies a date time from a FILETIME structure
filetimeSrc)

USING CTime WITH DATABASES

You might find it convenient to use CTime when using ODBC-based databases because the
RFX recordset transfer macros know only how to handle CTime objects directly and don’t
know how to handle COleDateTime objects without conversion. If you use DAO databases,
COleDateTime can be used directly.

034 31240-9 APP F 4/27/00 1:13 PM Page 719

If you’ve constructed COleDateTime with a valid date time, the object will be marked
with a valid status flag (COleDateTime::valid). Otherwise, the status flag is invalid
(COleDateTime::invalid). You can check this status by calling the GetStatus()
member function to return the relevant flag value, or you can force the flag value by
passing it into the SetStatus() function.

The status flag is also updated when you set date and time values to the object by calling
the SetDateTime() function. This function takes six integer parameters for the year
(100–9999), month (1–12), day of the month (1–31), hour (0–23), minute (0–59), and
second (0–59). You can also set just the date or time components by calling SetDate()—
passing just the year, month, and day of the month—or by calling SetTime()—passing
only the hour, minute, and second values.

You can use the GetCurrentTime() static function to retrieve the current system time
and set it to a COleDateTime object using the = operator overload function like this:

COleDateTime dtCurrent;
dtCurrent = COleDateTime::GetCurrentTime();

After running these lines, dtCurrent will be set to your machine’s current system date
and time.

The same values (in the same ranges) can be retrieved by the return value of GetYear(),
GetMonth(), GetDay(), GetHour(), GetMinute(), or GetSecond(). There are also the
useful derivative functions: GetDayOfWeek() and GetDayOfYear(). GetDayOfWeek()
returns the day of the week in the range 1 to 7 where 1 is Sunday. The GetDayOfYear()
function returns a value in the range 1 to 366 starting at January 1.

You can retrieve a displayable formatted CString by using the Format() function. This
is probably one of the most useful COleDateTime functions because you can pass several
formatting codes to specify the exact format returned from Format(), as shown in Table
F.11. These codes are passed as either a string or a string resource identifier, and several
individual codes are strung together to add various aspects of the formatting.

These values are also modified by the current locale settings. The locale preferences can
affect things such as the names of days and months, the ordering of MM/DD/YY repre-
sentations, and the AM/PM indicators.

TABLE F.11. FORMATTING CODES TO FORMAT THE COleDateTime TEXT OUTPUT.

Code Example Description

%a Sat Abbreviated day of the week

%A Saturday Day of the week

%b Apr Abbreviated month

720 Appendix F

034 31240-9 APP F 4/27/00 1:13 PM Page 720

Using MFC’s Helper Classes 721

F

Code Example Description

%B April Month

%c 04/04/98 18:05:01 Date and time in the current locale format

%d 04 Day of the month (01–31)

%H 18 Hour (00–23) 24 hour

%I 06 Hour (01–12) 12 hour

%j 094 Day of the year

%m 04 Month (01–12)

%M 05 Minute (01–59)

%p PM AM/PM indicator for locale

%S 01 Second (01–59)

%U 13 Week of year (00–51) with Sunday as first day of week

%w 6 Weekday (0–6) 0=Sunday

%W 13 Week of year (00–51) with Monday as first day of week

%x 04/04/98 Date in the current locale format

%X 18:05:01 Time in the current locale format

%y 98 Two-digit year (00–99)

%Y 1998 Four-digit year (0100–9999)

%z or %Z GMT Daylight Time Time zone name/abbreviation

% % % A percent sign

%#c Saturday, April Current locale long date and
04, 1998 18:05:01 time

%#x Saturday, April Current locale long date
04, 1998

You can use the following lines to generate a message box displaying your machine’s
date and time like this:

COleDateTime dtCurrent;
dtCurrent = COleDateTime::GetCurrentTime();
AfxMessageBox(dtCurrent.Format(“Today is %a %b %d, %Y”));

When run, the time will then be displayed in a message box in the following format:

Today is Sat Apr 04, 1998

034 31240-9 APP F 4/27/00 1:13 PM Page 721

You can get COleDateTime to attempt to determine a date and time by calling
ParseDateTime() and passing a string for it to parse and a flag value to specify that only
the date or the time component is required. ParseDateTime() will then scan the string
for time in the format HH:MM:SS, and a date in the format DD/MM/YYYY, or in a long
format such as January 18th, 1998. If you only want to scan for the time, you
can pass VAR_TIMEVALUEONLY for the second parameter flag value, alternatively
VAR_DATEVALUEONLY for just the date. If you don’t want the users’ locale preferences to
be used to indicate the string format to check for, you can pass LOCALE_NOUSEROVERRIDE
as this flag value.

There are also several operator overloads you can use to add and subtract
COleDateTimeSpans and to compare date and time values with other date and time val-
ues as shown in Table F.12.

TABLE F.12. OPERATOR OVERLOADS USED IN COleDateTime.

Operator Description

= Copy a date/time value from another COleDateTime object, VARIANT structure, DATE
structure, time_t structure, SYSTEMTIME structure, or FILETIME structure.

+ Add a COleDateTimeSpan value to a COleDateTime value.

- Subtract a COleDateTimeSpan from a COleDateTime value or two COleDateTime
objects from each other to yield a COleDateTimeSpan result.

+= Add a COleDateTimeSpan value to the current COleDateTime object.

-= Subtract a COleDateTimeSpan value from the current COleDateTime object.

== Check whether two COleDateTime objects hold an identical date and time.

!= Check whether two COleDateTime objects hold different dates and times.

< Check whether one COleDateTime object is less than another.

> Check whether one COleDateTime object is greater than another.

<= Check whether one COleDateTime object is less than or equal to another.

>= Check whether one COleDateTime object is greater than or equal to another.

Using the COleDateTimeSpan Class
A COleDateTimeSpan object can hold the difference between two COleDateTime objects.
You can create one by subtracting one COleDateTime object from another or by using
one of the COleDateTimeSpan constructor forms shown in Table F.13.

722 Appendix F

034 31240-9 APP F 4/27/00 1:13 PM Page 722

Using MFC’s Helper Classes 723

F

TABLE F.13. CONSTRUCTOR TYPES USED WITH COleDateTimeSpan.

Constructor Definition Description

COleDateTimeSpan() Create a time span set to zero.

COleDateTimeSpan(const Copy the time span from
COleDateTimeSpan& srcSpan) another COleDateTimeSpan object.

COleDateTimeSpan(long Initialize the time span with
lDays, int nHours, the passed parameter values.
int nMins, int nSecs)

COleDateTimeSpan(double Initialize the time span with
dSpanSrc) the number of days passed value.

After you have a COleDateTimeSpan object, you can check or set its status using the
GetStatus() and SetStatus() functions just like the COleDateTime object. The only
differences are that the flag values are COleDateTimeSpan::valid and
COleDateTimeSpan::invalid.

You can also set a time span by passing the number of days, hours, minutes, and seconds
as integer parameters to SetDateTimeSpan(). You can then retrieve these values from a
valid COleDateTimeSpan object by calling the GetDays(), GetHours(), GetMinutes(),
and GetSeconds() functions that all return long values representing each portion of the
time span value. If you want to retrieve the overall time span expressed in days, hours,
minutes, or seconds in one double value, you can call GetTotalDays(),
GetTotalHours(), GetTotalMinutes(), or GetTotalSeconds(), respectively.

You can format COleDateTimeSpan values as strings in the same way as COleDateTime
values by passing a format string using the codes appropriate to time spans from
Table F.11.

Several operator overloads help you use COleDateTimeSpan objects arithmetically to add
and subtract time spans to and from each other and also use them in conditions, as shown
in Table F.14.

TABLE F.14. OPERATOR OVERLOADS USED IN COleDateTimeSpan.

Operator Description

= Copies time spans from other time span values

+ Adds two time spans

- Subtracts one time span from another

continues

034 31240-9 APP F 4/27/00 1:13 PM Page 723

TABLE F.14. CONTINUED

Operator Description

+= Adds a time span to the current object

-= Subtracts a time span from the current object

== Checks to see whether two time spans are identical

!= Checks to see whether two time spans are different

< Checks to see whether one time span is less than another

> Checks to see whether one time span is greater than another

<= Checks to see whether one time span is less than or equal to another

>= Checks to see whether one time span is greater than or equal to another

The following sample code shows how two COleDateTime objects can be subtracted to
yield a COleDateTimeSpan using the minus (-) operator overload:

COleDateTime dtMoonwalk;
dtMoonwalk = COleDateTime(1969,7,20,0,0,0);
COleDateTimeSpan dtDiff =

COleDateTime::GetCurrentTime()- dtMoonwalk;
CString strMessage;
strMessage.Format(“Days since first moonwalk: %d “,

(int)dtDiff.GetTotalDays());
AfxMessageBox(strMessage);

Using the String Manipulation Class
For several years C programmers secretly envied one (and only one) tool that BASIC
programmers had at their disposal: sophisticated and easy string handling. With C++,
that functionality can be naturally replicated, and has been with MFC’s CString class.

String handling is a very common application requirement, and Visual C++ applications
tend to be littered with instances of CString-based objects to accomplish the task.

Using the CString Class
You can easily construct CString objects as an empty string or initialized by passing one
of many differing types of text representation systems to the constructor. The various
forms of CString construction are shown in Table F.15.

724 Appendix F

034 31240-9 APP F 4/27/00 1:13 PM Page 724

Using MFC’s Helper Classes 725

F

TABLE F.15. CONSTRUCTOR TYPES USED WITH CString.

Constructor Definition Description

CString() Creates an empty zero-length string

CString(const CString& strSrc) Copies the contents from another CString

CString(LPCSTR lpsz) Copies the contents from a null-terminated string

CString(const unsigned char* psz) Copies the contents from a null-terminated string

CString(LPCTSTR lpch, int nLength) Copies nLength characters from a character array

CString(TCHAR ch, int nRepeat = 1) Fills the string with nRepeat copies of character ch

CString(LPCWSTR lpsz) Copies a Unicode null-terminated string

When you’ve constructed a CString object, there are many ways in which you can add
or assign text to it. The operator overloads provide simple assignments via the = operator,
or concatenation of two strings by the + or += operators, as shown in the following lines:

CString strTest;
strTest = “Mr Gorsky”;
strTest = “Good luck “ + strTest;
AfxMessageBox(strTest);

When this code is run, the string is initially set to “Mr Gorsky”; then “Good luck “ is
prefixed by the + operator.

You can find the length of a string by calling the GetLength() member function, which
returns an integer representing the number of characters the string currently holds. You
can also test whether a string is empty by calling IsEmpty(), which returns TRUE if it
holds no characters.

You can also drop the contents of a CString object by calling Empty(), which will then
force the string to be zero length.

Many functions require old C-style strings rather than a CString object; you can use the
(const char *) or LPCTSTR casts to give functions access to the CString object’s inter-
nal buffer as if it were a C-style null-terminated string (but only for read access). Visual
C++ will implicitly cast the CString to a null-terminated string if a specific function has
a prototype that requires it. However, because some functions might have a void*
prototype, the compiler will pass a pointer to the CString object rather than the null-
terminated string it expects, thus requiring you to perform the (LPCTSTR) cast on the
CString object.

034 31240-9 APP F 4/27/00 1:13 PM Page 725

You can access the string as an array of characters by using the GetAt() and SetAt()
functions. GetAt() will return the character at a specified (zero-based) position parame-
ter. SetAt() will set a character (second parameter) to a position (first parameter) within
the length of the string. You can also use the [] operator to get a character value from a
specific position instead of GetAt(). For example, the following lines transpose the e
and i characters to fix the spelling mistake:

CString strText(“Fix this spilleng”);
TCHAR ch1 = strText.GetAt(11);
strText.SetAt(11,strText[14]);
strText.SetAt(14,ch1);

You can also use the conditional operator overloads <, <=, ==, !=, >=, and > to test one
string lexicographically against another. The ASCII codes are compared when the strings
are compared, so numbers are less than letters and uppercase letters are less than lower-
case letters. Therefore, the following lines of code will cause the TRUE message box to
appear:

CString str1(“123”);
CString str2(“ABC”);
CString str3(“abc”);
CString str4(“bcd”);
if (str1 < str2 && str2 < str3 && str3 < str4)

AfxMessageBox(“TRUE”);

You can also use the Compare() function to compare the current string with another. This
will return zero if the two strings are equal, a negative value if the current string is less
than the tested string, or a positive value if the current string is greater than the tested
string. For example, the following lines will cause the TRUE message box to appear:

CString strName(“Peter”);
if (strName.Compare(“Piper”)<0) AfxMessageBox(“TRUE”);

This comparison also takes notice of the case of the compared strings. You can use the
CompareNoCase() equivalent to ignore differences in case.

726 Appendix F

USING NULL-TERMINATED STRINGS

NULL-terminated strings are character arrays that use a NULL or zero value character to
mark the end of the string. Therefore the length of the string is the number of characters
before the NULL character. There are several C-style functions such as strlen(), strcpy()
(find the length and copy a string), and many others that are used to manipulate NULL-
terminated strings.

034 31240-9 APP F 4/27/00 1:13 PM Page 726

Using MFC’s Helper Classes 727

F

String Manipulation
The BASIC language had three very useful manipulation functions—Mid$, Left$, and
Right$—which are now available as the CString Mid(), Left(), and Right() functions.
Their job is to copy out sections of a specified string. You can pass the Mid() function a
start position and optionally a number of characters to copy (it defaults to all characters
if not specified), and Mid() will return another CString containing the specified section.
You can extract a number of characters from the left of a string by passing the required
count to the Left() function. Right() returns the corresponding specified number of
characters from the right of the string as shown in these lines:

CString strText(“I saw three ships a sailing”);
TRACE(“%s\n”,strText.Left(5));
TRACE(“%s\n”,strText.Mid(6,11));
TRACE(“%s\n”,strText.Right(7));

When run, these lines will display the following trace output:

I saw
three ships
sailing

Notice that the word a used between ships and sailing isn’t displayed in the trace output
because that portion of the string is never extracted.

You can use the MakeUpper() and MakeLower() functions to change all the characters in
a string to upper- or lowercase and MakeReverse() to reverse the string.

Spaces, newline characters, and tabs can be trimmed from the left of a string with the
TrimLeft() function and from the right with the TrimRight() function.

Searching Strings
You can look for specific substrings or characters from a string by using the Find(),
ReverseFind(), or FindOneOf() functions.

You can pass a single character or string to the Find() member function to look for an
instance of that character or string in the context string. If the character or substring is
found, its zero-based position will be returned; otherwise –1 is returned to indicate that
the substring or character isn’t present. The following lines search for the word “you”
and display the substring starting at that position:

CString strTest(“Start as you mean to go on”);
int nPosn = strTest.Find(“you”);
if (nPosn!=-1) TRACE(strTest.Mid(nPosn) + “?”);

034 31240-9 APP F 4/27/00 1:13 PM Page 727

ReverseFind() searches for a specified character (no substring form) from the end of a
string and if found, returns its position from the beginning of the string; otherwise it
returns –1.

FindOneOf() lets you pass a number of characters to look for in a string. The position of
the first character from the set to be found is returned, or –1 is returned to indicate that
none were found. The following sample lines search for the characters g, m, i, and p; the
m is found first, so the string “mean to go on” is displayed in the trace output:

CString strTest(“Start as you mean to go on”);
int nPosn = strTest.FindOneOf(“gmip”);
if (nPosn!=-1) TRACE(strTest.Mid(nPosn));

Formatting Text for Display
A common use for CString objects is for formatting text before it is displayed. You can
use the Format() function for this formatting by passing a set of formatting instructions
as % coded instruction strings as the first parameter. Then you must pass a number of
value parameters that correspond to each of those instructions. Some of the possible for-
matting instruction flags and corresponding parameter types are shown in Table F.16.
Several of these codes can be combined to form a formatted string, which is then stored
in the calling CString object. This format string can also be passed as a string resource
ID from your application’s resources.

TABLE F.16. FORMATTING % INSTRUCTION CODES FOR USE WITH THE Format() FUNCTION.

Parameter
Flag Type Description

%c int Displays a single text character

%d int Displays a signed decimal integer

%u int Displays an unsigned decimal integer

%o int Displays an unsigned octal integer

%x int Displays an unsigned hexadecimal integer in lowercase

%X int Displays an unsigned hexadecimal integer in uppercase

%f double Displays a signed floating-point number

%s string Displays a string of text when passed a string pointer such as char*

%% none Display a percent sign %.

The following example combines some of these common types to display a message box
containing the text “There are 1.609340 Kilometers to 1 Mile”:

728 Appendix F

034 31240-9 APP F 4/27/00 1:13 PM Page 728

Using MFC’s Helper Classes 729

F

CString strFormatMe;
char *szKm = “Kilometer”;
double dKmsPerMile = 1.60934;
strFormatMe.Format(“There are %f %ss to %d %s”,

dKmsPerMile,szKm,1,”Mile”);
AfxMessageBox(strFormatMe);

You can pass extra formatting specification flags to the width and precision of each out-
put field and its alignment. These flags are passed after the % sign, but before the type
(refer to Table F.16) in the following format:

%[flags] [width] [.precision]type

The flag value can be any of the following characters:

● - Left-aligns the field (otherwise it is right-aligned).

● + Displays a + or – to indicate the numeric sign (defaults to just show – for nega-
tive numbers).

● 0 Pads the width with zeroes

The width then specifies the minimum number of characters that should be displayed,
and the .precision specifies how many characters should be displayed after a floating
point.

For example, you could change the text from the previous example to read “There are
+1.6 Kilometers to 1 Mile” by changing the format for %f to %+1.f like this:

strFormatMe.Format(“There are %+.1f %ss to %d %s”,
dKmsPerMile,szKm,1,”Mile”);

STRING FORMATTING

The CString Format() function uses the same format specifier codes as the C-style printf()
and sprintf() (print and string print) functions. C programmers might be more familiar
with the formatting codes of these printf() functions, which can also be used and applied
to the CString Format() function.

034 31240-9 APP F 4/27/00 1:13 PM Page 729

034 31240-9 APP F 4/27/00 1:13 PM Page 730

A

AbortDoc function, 657
About window, editing, 23
ABOVE_NORMAL thread

priority, 432
accelerators

creating, 118-119
defined, 107
restrictions, 119
Web Browser application,

532
Accept function, 501
accessing

field values, 353-354
structures, 561

ActiveX controls
adding to dialogs, 186-187
automation, 181
COM, 180-181
containers, 182-183
defined, 180, 474
event handling, 193-194,

476

FlexGrid
cell IDs, 189
loading data into,

188-189
random data generation,

189-191
sorting, 192-193

Internet Explorer support,
522

licensing issues, 184, 196,
477

methods, 475-476
properties

adding, 475
ambient, 474
custom, 474
extended, 474

registering
Registered ActiveX

Controls folder,
184-186

regsvr32 utility, 183
Squiggle

CModArt class, 478-481
control shell, 477-478

Symbols

& (ampersand), 31
address-of operator,

554-555
binary AND (&), 51-53
logical AND (&&), 51

= (equal sign), 43, 549
* (asterisk)

indirection operator, 554
multiplication operator, 549

{ } (braces), 546
// (double slashes), 545
>> (extraction operator), 548
| (pipe character)

binary OR (|), 52-53
logical OR (||), 52

<< (redirection operator), 546
:: (scope operator), 568
. (structure member

operator), 561
~ (tilde), 564

INDEX

035 31240-9 index 4/27/00 1:13 PM Page 731

event handling, 486-487
events, 489-491
methods, 487-489
properties, 481-483
property page, 483-485
testing, 491-492

see also ADO
ActiveX Data Objects, see

ADO
Add Member Function dialog

box, 18
Add Member Variable dialog

box, 32
Add Property dialog box, 475
Add function, 701
AddHead function, 703
Adding a Class dialog

box, 113
AddLine function, 206
AddNew function, 320, 357,

374
AddNewRecord function, 296
address-of operator (&),

554-555
AddString function, 264
AddTail function, 703
ADO (ActiveX Data Objects),

344-345
clean-up functions, 367
command execution, 351
Command object, 345-346
Connection object, 345
database connections

closing, 357
creating, 350-352,

365-366
DLLs, importing, 349-350
error handling, 364
Error object, 345
Field object, 346
forms, populating, 367-369
macros

ADO_FIXED_LENGTH
_ENTRY, 355

ADO_NUMERIC
_ENTRY, 355
ADO_VARIABLE

_LENGTH_ENTRY,
355-356

BEGIN_ADO
_BINDING, 354

END_ADO_BINDING,
354

Parameter object, 346
pointers, 364
records

adding, 357, 373-374
creating, 374-375
custom record classes,

361-364
deleting, 357, 375-376
saving, 370-371
updating, 356

recordsets
accessing, 353-354
closing, 357
navigating, 352-353,

371-372
RecordSet object, 346

see also DbAdo application
ADO_FIXED_LENGTH

_ENTRY macro, 355
ADO_NUMERIC_ENTRY

macro, 355
ADO_VARIABLE_LENGTH

_ENTRY macro, 355-356
AfxBeginThread function,

432-433, 468
AfxGetStaticModuleState

function, 409
AFX_EXT_CLASS macro,

408
AFX_MANAGE_STATE

macro, 409
aligning objects, 450-452

combo boxes, 263
toolbars, 251

ALTDRAG toolbar control
style, 250

ambient properties, 474
ampersand (&), 31

address-of operator,
554-555

binary AND (&), 51-53
logical AND (&&), 51

AND operators
binary AND (&), 51-53
logical AND (&&), 51

ANSIOTROPIC mapping
mode, 156

appendOnly flag (recordsets),
318

applications
controls

adding, 27-30
functions, 35
initialization code, 33-35
tab order, 30-31
variables, 32-33

flow, tracking, 685-687
menus

accelerators, 107,
118-119

attaching, 112
cascading, 106
context menus, 106,

116-118
creating, 109-110
event handling, 112-115
hotkeys, 107
naming, 119
pull-down menus, 106
separator lines, 111
Windows conventions,

107
Multiple Document

Interface, see MDI
applications

project workspace, creating,
11-12

resource files, 108
running, 543-544

732 ActiveX controls

035 31240-9 index 4/27/00 1:13 PM Page 732

Single Document Interface,
see SDI applications

toolbars, 244-245
attaching to application

frames, 247-249
borders, 251
buttons, 245, 252-253
child window IDs, 251
creating, 246, 250
docking, 253-254
hiding, 254-256
loading, 250
naming, 247
styles, 250-251

views, 8
see also names of individual

applications; listings
AppWizard

application frameworks,
creating, 12-14

printing/previewing, 637
arguments, passing by

reference, 557-558
arithmetic operators, 549
arrays

classes, 700-702
Spinner application,

449-450
threads, 433

aspect ratio
controlling, 645-647
fax machines, 645
printers, 645

ASSERT macro, 687-689
assignment operator (=), 549
attaching

menus, 112
toolbars to application

frames, 247-249
attribute flags (binary

operations), 52-53
AUTOHSCROLL combo box

style, 263
automation, 181

B

Back button (browser appli-
cation), 531

BeginWaitCursor function, 63
BEGIN_ADO_BINDING

macro, 354
BELOW_NORMAL thread

priority, 432
binary operators

AND (&), 51-52
attribute flags, 52-53
OR (|), 52

bItalic argument (CreateFont
function), 127

BitBlt function, 155
bitmaps

copying, 155
displaying, 174-176
loading, 155

LoadBitmap function,
172

LoadImage function,
172

OnBbitmap function,
173-174

resizing, 155
variables, 173

Black menu (SDI drawing
application), 224

Blue menu (SDI drawing
application), 224-225

borders (toolbars),
sizing, 251

BottomRight function, 712
braces ({}), 546
breakpoints, 685

setting, 689-690
toggling on/off, 690

Breakpoints dialog box, 690

browsers
Internet Explorer

ActiveX document
model, 522

controlling, 524
navigation functions,

523-524
status, 524

WebBrowse application
application shell, 525
Back button, 531
displaying URLs,

529-530
Forward button, 531
Refresh button, 533-535
specifying URLs,

526-528
Stop button, 532-533

browsing code (Source
Browser)

base classes, 682
Call Graph option, 683
Callers Graph option, 683
derived classes, 683
File Outline option, 682
for definitions/references,

681
identifiers, 681

brushes
creating, 153
patterns, 154
selecting, 153

Build toolbar, 10
bUnderline argument

(CreateFont function), 127
button combination IDs

(MessageBox function), 85
buttons

adding to toolbars, 245
Exit, creating, 36-37
icons, 246
maximize/minimize, 21-22
radio buttons, 27

buttons 733

035 31240-9 index 4/27/00 1:13 PM Page 733

removing from toolbars,
245

Run Program, 42-43
styles, 252-253
text, 276
WebBrowse application

Back, 530-532
Forward, 530-532
Refresh, 533-535
Stop, 532-533

C

cache, 704-706
CalcPoint function, 451
calculating

cell IDs, 189
object positions, 450-452

call stack
size, 433
viewing, 693-694

Call Stack window (debug-
ger), 694

callback functions, 72, 122
canceling print jobs, 657
canvases (graphics), creating,

160
captions, 110
capturing

keyboard events, 57-62
mouse events

OnLButtonDown func-
tion, 56

OnMouseMove func-
tion, 49-50, 54-55

CArchive class, 280
CArchiveException class,

671-672
cascading menus, 106
CAsyncSocket class, see

sockets
catch keyword, 663-664

catching exceptions, 661-666
blanket exception catch, 665
catch keyword, 663-664
multiple exceptions,

664-665
try keyword, 663-664

CBitmap class, 154-156
CBRS_ALIGN_ANY toolbar

style, 251-253
CBRS_ALIGN_BOTTOM

toolbar style, 251-253
CBRS_ALIGN_LEFT toolbar

style, 251-253
CBRS_ALIGN_RIGHT

toolbar style, 251-253
CBRS_ALIGN_TOP toolbar

style, 251
CBRS_BORDER_BOTTOM

toolbar style, 251
CBRS_BORDER_LEFT

toolbar style, 251
CBRS_BORDER_RIGHT

toolbar style, 251
CBRS_BORDER_TOP

toolbar style, 251
CBRS_FLOAT_MULTI

toolbar style, 251-253
CBRS_FLYBY toolbar style,

251
CBRS_GRIPPER toolbar

style, 251
CBRS_TOOLTIPS toolbar

style, 251
CBrush class, 153-154
CBS_AUTOHSCROLL

combo box style, 263
CBS_DISABLENOSCROLL

combo box style, 264
CBS_DROPDOWN combo

box style, 263
CBS_DROPDOWNLIST

combo box style, 264
CBS_HASSTRINGS combo

box style, 264

CBS_NOINTEGRAL-
HEIGHT combo box style,
264

CBS_OEMCONVERT combo
box style, 264

CBS_OWNERDRAWFIXED
combo box style, 264

CBS_OWNERDRAWVARI-
ABLE combo box style, 264

CBS_SIMPLE combo box
style, 264

CBS_SORT combo box style,
264

CByteArray class, 700
CChildFrame class, 231
CCriticalSection class, 436
CDAOException class,

672-673
CDbAdoDoc class

AddNew function, 374
CreateBlankRecord func-

tion, 374-375
Delete function, 376
DeleteContents function,

367
GenerateError function, 365
GetRecSet function, 364
OnNewDocument function,

366
CDbAdoView class

MoveFirst function, 372
OnDataFirst function, 371
RefreshBoundData function,

368-369
UpdateBoundData function,

370-371
CDBException class, 672-673
CDbOdbcSet constructor, 331
CDocument class, 200
CDWordArray class, 700
CEditView class, 201
cell IDs (FlexGrid control),

calculating, 189
CenterPoint function, 713

734 buttons

035 31240-9 index 4/27/00 1:13 PM Page 734

CEvent class, 440
CException class

Delete function, 668
extending, 675-676
GetErrorMessage function,

668-669
ReportError function, 669

CFileDialog class
properties, 102
sample application

DoModal function, 91
GetFileName function,

92
OnFileopen function,

90-91
CFileException class, 667,

670-671
CFormView class, 201
CFrameView class, 200
changing, see editing
char data type, 548
check boxes, 27
CHtmlView class, 201

browser controls, 524
browser status, 524
navigation functions,

523-524
circles, drawing, 168-171
Class View, 8
Class Wizard

Member Variables tab, 32
Message Maps tab, 34

classes
CArchive, 280
CArchiveException,

671-672
CBitmap, 154-156
CBrush, 153-154
CByteArray, 700
CChildFrame, 231
CCriticalSection, 436
CDAOException, 672-673

CDbAdoDoc
AddNew function, 374
CreateBlankRecord

function, 374-375
Delete function, 376
DeleteContents function,

367
GenerateError function,

365
GetRecSet function, 364
OnNewDocument func-

tion, 366
CDbAdoView

MoveFirst function, 372
OnDataFirst function,

371
RefreshBoundData

function, 368-369
UpdateBoundData

function, 370-371
CDBException, 672-673
CDocument, 200
CDWordArray, 700
CEditView, 201
CEvent, 440
CException

Delete function, 668
extending, 675-676
GetErrorMessage func-

tion, 668-669
ReportError function,

669
CFileDialog, 90-92
CFileException, 667,

670-671
CFormView, 201
CFrameView, 200
CHtmlView, 201

browser controls, 524
browser status, 524
navigation functions,

523-524

CLine
color, 218-219
constructor, 204-205
creating, 203
drawing, 205
header file, 216
serialization, 217

CListView, 201
CMainFrame, 231

CreateColorbar function,
261-262

message map, 268
OnCreate function,

248-249, 265-266
OnSelChangeWidth

function, 267
OnUpdateViewColorbar

function, 255
OnViewColorbar func-

tion, 256
UpdateWidthCB func-

tion, 269
CMapPtrToPtr, 704
CMapPtrToWord, 704
CMapStringToOb, 704
CMapStringToPtr, 704
CMapStringToString, 705
CMapWordToOb, 704
CMapWordToPtr, 704
CMemoryException, 669
CModArt, see CModArt

class
CMutex, 436
CMyCustomClass*, 707
CNotSupportedException,

674
CObArray, 205, 700
CObList, 702
COleDispatchException,

673-674
COleException, 673-674
collection classes, 699-700

array classes, 700-702
customizing, 707-710

classes 735

035 31240-9 index 4/27/00 1:13 PM Page 735

list classes, 702-704
map classes, 704-706
type-safety, 707-710

constructors, 564
CPen, 151-153
CPerson, 288

constructor, 290
inline functions,

289-290
serializing, 291-294
variables, 289

CPoint class, 712
CPrintDialog, 653
CPtrArray, 700
CPtrList, 702
CRecordset

database connections,
317

editing functions,
320-321

recordset navigation,
319-320

CRect class, 712-717
CResourceException, 670
CRichEditView, 201
CScrollView, 201
CSemaphore, 438
CSize class, 717-718
CSpinner

color table, 445-446
constructor, 444
declaration, 445
Draw function, 446-447
source file, 449
variables, 443-444

CStringArray, 700
CStringList, 702
CTaskingApp, 457-459
CTaskingDoc

CalcPoint function, 451
DoSpin function, 455
InitSpinners function,

453
OnNewDocument func-

tion, 454-455, 469

source file, 450
SuspendSpinner func-

tion, 462-463, 470-471
ThreadFunc function,

461, 470
CTaskingView

OnCbthread1 function,
464

OnCbthread2 function,
465

OnDestroy function, 467
CTestAppDoc

declaration, 423-424
DeleteContents function,

425
GetDrawing function,

425
OnNewDocument func-

tion, 424
Serialize function, 425

CTestAppView, 425-426
CToolbarDoc

message map, 274
UpdateColorbar func-

tion, 269-270
CTreeView, 201
CUIntArray, 700
CUserException, 674
CView, 200
CWinApp, 200
CWordArray, 700
declaring, 385, 561-564
destructors, 564
device context, 151
encapsulation, 380
friend classes, 565
generic, 381-382
header files, 565-566
inheritance, 380-381

Car class example,
572-576

Human class example,
569-572

nesting, 566-569

objects, adding, 708-709
serializable classes, 283-284
string manipulation class,

724
adding text, 725
case sensitivity, 727
constructor types, 724
formatting, 728-729
manipulation functions,

727
NULL-terminated types,

726
searches, 727-728
size, 725

time-handling classes,
718-719

COleDateTime class,
719-722

COleDateTimeSpan
class, 722-724

formatting code,
720-721

ClearDrawing function, 391
clearing

drawings
ClearDrawing function,

391
ModArtClearDrawing

function, 421
message box text, 38-39

CLine class
color, 218-219
constructor, 204-205
creating, 203
drawing, 205
header file, 216
serialization, 217

CListView class, 201
clock timer

OnInitDialog function,
71-72

OnTimer function, 73
Close function, 319, 357, 503

736 classes

035 31240-9 index 4/27/00 1:13 PM Page 736

closing
applications, 36-37
database connections, 357
recordsets

ADO, 357
ODBC, 319

socket connections, 503,
517-519

CMainFrame class, 231
functions

CreateColorbar, 261-262
OnCreate, 248-249,

265-266
OnSelChangeWidth, 267
OnUpdateViewColorbar,

255
OnViewColorbar, 256
UpdateWidthCB, 269

message map, 268
CMapPtrToPtr class, 704
CMapPtrToWord class, 704
CMapStringToOb class, 704
CMapStringToPtr class, 704
CMapStringToString class,

705
CMapWordToOb class, 704
CMapWordToPtr class, 704
CMemoryException class,

669
CModArt class, 478-480

library module
ClearDrawing function,

391
color table, 392
constructor, 391
creating, 385
Draw function, 390
#include directives, 392
NewDrawing function,

389, 397-398
NewLine function, 386,

399
rand function, 388

Serialize function, 390
SetRect function, 386
variables, 385

MFC DLL
class declaration, 411
NewLine function,

411-416
testing, 413-414
regular DLL, 416

header file, 417
ModArtClearDrawing

function, 421-422
ModArtDraw function,

421
ModArtNewDrawing

function, 418
ModArtSerialize func-

tion, 421
module definition file,

422
NewLine function,

419-420
project file, 417

CMutex class, 436
CMyCustomClass* class, 707
CNotSupportedException

class, 674
CObArray class, 205, 700
CObList class, 702
code listings, see listings
CoInitialize function, 350
COleDateTime class, 722
COleDispatchException class,

673-674
COleException class, 673-674
Collate check box (Print

dialog box), 651
collection classes, 699-700

array classes, 700-702
customizing, 707-710
list classes, 702-704
map classes, 704-706
type-safety, 707-710

color
brushes, 153
CModArt class color table,

392
menus

event handlers, 235
troubleshooting, 240

pens, 152-153
SDI application

color table specification,
219-220

lines, 218-222
GetColor function, 222

specifying, 51
Spinner application,

445-446
COM (Component Object

Model), 180, 684
see also ActiveX controls

combo boxes
creating

Create function, 263
CreateColorBar func-

tion, 260-262
OnCreate function,

265-266
styles, 263-264

event handling
CMainFrame message

map, 267-268
OnSelChangeWidth

function, 267
placeholders, 262
populating, 264
positioning, 263
resource files, editing,

257-260
sizing, 276
updating, 268-270

command buttons, see
buttons

COMMAND function, 227
Command object, 345-346

Command object 737

035 31240-9 index 4/27/00 1:13 PM Page 737

commands
Control menu, Invoke

Methods, 492
Edit menu, Insert New

Control, 491
executing, 351
Layout menu, Tab Order, 30
regsvr32, 184
see also statements

CommandToIndex function,
252

comments, 545
common dialogs

adding to applications,
90-92

classes, 90
OnFileopen function, 91
see also dialog windows

Compare function, 726
CompareNoCase function,

726
compiler

configuration modes, 678
#import directive, 349-350
#include directive, 97

CModArt, 392
CModArt class, 392
CTestAppDoc, 394, 414
DbAdo application, 364
Graphics application,

162
Hello, World applica-

tion, 545
SDI application, 213
Sock application, 510
Squiggle control, 481

Component Object Model,
see COM

components, see controls
conditional statements, 549
configuring

combo box placeholders,
262

compiler modes, 678
ODBC data sources,

322-323

Connect function, 500
Connection object, 345
constructors

declaring, 564
default, 564
defined, 564
naming, 564
return values, 564

containers, 182-183, 700-702
context menus

creating, 116, 236-238
Menu Designer, 237-238
OnContextMenu func-

tion, 117, 238-239
TrackPopupMenu func-

tion, 117-118
WM_CONTEXTMENU

message, 237
defined, 106
designing, 116
event handling, 116

CONTEXTMENU event, 116
Control menu commands,

Invoke Methods, 492
control styles (toolbars), 250
controls (ActiveX)

adding to dialogs, 186-187
automation, 181
COM, 180-181
containers, 182-183
defined, 180, 474
event handling, 193-194,

476
FlexGrid

cell IDs, 189
loading data into,

188-189
random data generation,

189-191
sorting, 192-193

Internet Explorer support,
522

licensing issues, 184, 196,
477

methods, 475-476

properties
adding, 475
ambient, 474
custom, 474
extended, 474

registering
Registered ActiveX

Controls folder,
184-186

regsvr32 utility, 183
Squiggle

CModArt class, 478-481
control shell, 477-478
event handling, 486-487
events, 489-491
methods, 487-489
properties, 481-483
property page, 483-485
testing, 491-492

controls (Visual Basic compo-
nents), 25-26

adding to applications,
27-30

buttons, 27
Exit, 36-37
Run Program, 42-43

check boxes, 27
drop-down list boxes, 27
edit boxes, 26

clearing text, 38-39
disabling, 39-41
displaying text, 37-38
hiding, 39-41

functions, 35
initialization code, 33-35
mnemonics, 31
object IDs, 44-45
radio buttons, 27
static text, 26
tab order, specifying, 30-31
variables, assigning, 32-33

converting DLLs for non-C++
applications, 427-428

cooperative multitasking, 430

738 commands

035 31240-9 index 4/27/00 1:13 PM Page 738

coordinate handling classes,
710

CPoint class, 712
CRect class, 712-717
CSize class, 717-718
Offset function, 712
operator overloads, 711-712

coordinate systems
aspect ratio, 645
mapping modes, 156

copying bitmaps, 155
CoUninitialize function, 350
counting lines, 207-208
counting timer

control variables, 74-75
functions

OnChangeInterval, 75
OnInitDialog, 76
OnTimer, 77-79

starting, 76-77
Stop button, 79-81
stopping, 77

CPen class, 151-153
CPerson class, 288

constructor, 290
inline functions, 289-290
serializing

DECLARE_SERIAL
macro, 292

IMPLEMENT_SERIAL
macro, 293-294

Serialize function,
291-292

variables, 289
.cpp file extension, 565
CPrintDialog class, 653
CPrintInfo function, 642
CPtrArray class, 700
CPtrList class, 702
CreateBlankRecord function,

374-375
CreateColorbar function,

261-262
CreateEx function, 250-251

CreateFont function
alternatives to, 139
arguments

bItalic, 127
bUnderline, 127
cStrikeOut, 127
lpszFacename, 129
nCharSet, 127-128
nClipPrecision, 128
nEscapement, 126
nHeight, 126
nOrientation, 126
nOutPrecision, 128
nPitchAndFamily, 129
nQuality, 128
nWeight, 126-127
nWidth, 126

declaring, 125
example, 125

CreateHatchBrush function,
655

CreateInstance function, 350
CreateProcess function, 44
CRecordset class

database connections, 317
recordsets

closing, 319
editing, 320-321
navigating, 319-320
opening, 317-318

CResourceException class,
670

CRichEditView class, 201
CScrollView class, 201
CSemaphore class, 438
CSpinner class

color table, 445-446
constructor, 444
declaration, 445
Draw function, 446-447
source file, 449
variables, 443-444

cStrikeOut argument
(CreateFont function), 127

CStringArray class, 700
CStringList class, 702
CTaskingApp class, 457-459
CTaskingDoc class

functions
CalcPoint, 451
DoSpin, 455
InitSpinners, 453
OnNewDocument,

454-455, 469
SuspendSpinner,

462-463, 470-471
ThreadFunc, 461, 470

source file, 450
CTaskingView class

OnCbthread1 function, 464
OnCbthread2 function, 465
OnDestroy function, 467

CTestAppDoc class
declaration, 423-424
document functions

DeleteContents, 425
GetDrawing, 425
OnNewDocument, 424
Serialize, 425

CTestAppView class, 425-426
CToolbarDoc class

message map, 274
UpdateColorbar function,

269-270
CTreeView class, 201
CUIntArray class, 700
cursors, changing, 59
CUserException class, 674
custom properties, 474
CUSTOMERASE toolbar

control style, 250
customizing

collection classes, 707-710
dialog windows, 93-96

header files, 96-98
variables, 99-100

Print dialog box, 652
toolbars, 10, 245

customizing 739

035 31240-9 index 4/27/00 1:13 PM Page 739

CView class, 200-201
CWinApp class, 200
CWordArray class, 700

D

DAO (Data Access Objects),
672-673

data sources (ODBC), config-
uring, 322-323

data types
declaring, 559
sizes, 554-555
values, 547-548

databases, 284
cache, 704-706
clean-up functions, 302, 367
command execution, 351
connections

DbAdo example,
365-366

closing, 357
ODBC, 317
opening, 350-351

data source configuration,
322-323

error handling, 364
exception classes

CDAOException,
672-673

CDBException, 672-673
opening, 351-352
position counters, 297-298
records

adding, 295-297,
331-334, 357, 373-374

class headers, 310
counting, 297
creating, 374-375
custom record class,

361-363
deleting, 334-335, 357,

375-376

displaying, 306-307
saving updates, 308-312,

370-371
updating, 356

recordsets
closing, 319, 357
editing, 320-321
navigating, 298-301,

307-308, 319-320,
352-353, 371-372

opening, 317-318
pointers, 364
types, 318

views, 285
resetting, 309-310
view class, 305-306

see also DbAdo application;
DbOdbc application

date/time handling classes,
718-719

COleDateTime class,
719-722

COleDateTimeSpan class,
722-724

formatting code, 720-721
DbAdo application (ADO

database)
#include directives, 364
application shell, 358

control properties,
359-361

control variables, 361
clean-up functions, 367
connecting to, 365-366
form, populating, 367-369
navigation

MoveFirst function, 372
OnDataFirst function,

371
pointers, 364
records

adding, 373-374
creating, 374-375
custom record class,

361-363

deleting, 375-376
error handling, 364

saving updates, 370-371
DbOdbc application (ODBC

database)
application shell, 324-325
main form

CDbOdbcSet construc-
tor, 331

control properties,
325-327

control variables, 328
Database field variables,

329
DoDataExchange func-

tion, 330
records

adding, 331-334
deleting, 334-335

Debug Assertion Failed dialog
box, 687

Debug Info, 679
Debug mode, 678
debugger

call stack, viewing, 693-694
Disassembly toolbar, 694
Edit and Continue options,

692
windows

Memory, 694
QuickWatch, 694
Registers, 694
Variables, 692-694
Watch, 692-694

debugging techniques, 677
ASSERT macro, 687-689
breakpoints, 685
Debug mode, 678
just-in-time, 684
MFC Tracer tool, 698
networks, 685
OLE/COM Object Viewer

tool, 697
options/levels, 679-681

740 CView class

035 31240-9 index 4/27/00 1:13 PM Page 740

Debugging Information
settings, 680-681

Generate Browse Info,
679

Preprocessor
Definitions, 680

Project Options, 680
warning levels, 679
Warnings as Errors, 679

Process Viewer tool, 697
remote debugging, 683-684
single stepping, 685

breakpoints, 689-690
editing code, 692
step options, 691-692

Source Browser tool
base classes option, 682
Call Graph option, 683
Callers Graph option,

683
Definitions and

References option, 681
derived classes option,

683
File Outline option, 682
identifiers, entering, 681

Spy++ tool
Messages view, 695-696
Processes view, 697
Threads view, 697
Windows view, 696

TRACE macros, 685-687
variables, checking con-

tents, 692-694
VERIFY macro, 687-689
see also exceptions; trou-

bleshooting
DECLARE_SERIAL macro,

282, 292
declaring

classes, 385, 561-564
data types, 559
functions, 546-548

constructors, 564
destructors, 564

friends, 565
prototypes, 548

pointers, 554
variables, 548

DEF files, 408
default constructors, 564
defined flags, 52
DeflateRect function, 715
Delete function, 320-321, 376,

668
DeleteContents function, 214,

302, 367, 396, 425
deleting

drawings, 396
DeleteContents function,

425
SDI application, 214

exceptions, 668
records

ADO, 357, 375-376
ODBC, 321, 334-335

derivation, see inheritance
deserialization, 280
design

classes
encapsulation, 380
form classes, 382
generic classes, 381-382
inheritance, 380-381
MFC, 382

DLLs, 409
menus

context menus, 116
Windows conventions,

107
destructors, 564
Developer Studio

editor area, 9
Output pane, 9
toolbars, 10
workspace, 8

device contexts (graphics),
150-151

bitmaps, 154-156
brushes

creating, 153
patterns, 154
selecting, 153

device contexts class, 151
modifying, 656
pens

colors, 152-153
creating, 151
styles, 152

printing, 643-644
DevMode structure, 652
dialog windows

ActiveX controls, adding,
186-187

Add Member Function, 18
Add Member Variable, 32
Add Property, 475
Adding a Class, 113
breakpoints, 690
common dialogs

adding to applications,
90-92

classes, 90
OnFileopen function, 91

creating, 15-17
custom dialogs, 93-96

calling, 98
header files, 96-98
OnBcustomdialog func-

tion, 98-99
OnBwhichoption func-

tion, 99
reading variables,

99-100
Debug Assertion Failed, 687
defined, 83
exception handling, 674
Graphics application

canvas dialog, 160-162
main dialog, 157-160

dialog windows 741

035 31240-9 index 4/27/00 1:13 PM Page 741

icons, 20-21
Insert Control, 491
Insert Resource, 109
Invoke Methods, 492
menus

attaching, 112
cascading, 106
context menus, 106
creating, 109-111
event handling, 112-115
hotkeys, 107
pull-down menus, 106
Windows conventions,

107
message boxes

button combinations, 85
icons, 85
MessageBox function,

84
OnYesnocancel func-

tions, 88-89
sample application,

86-88
Message Options, 695
ODBC Microsoft Access

Setup, 323
Print

accessing directly,
657-659

bypassing, 649
Collate check box, 651

Project Settings, 678
Select Database Tables, 325

directives
#import, 349-350
#include directives, 97

CModArt, 392
CModArt class, 392
CTestAppDoc, 394, 414
DbAdo application, 364
Graphics application,

162
Hello, World applica-

tion, 545

SDI application, 213
Sock application, 510
Squiggle control, 481

DISABLENOSCROLL
combo box style, 264

disabling, see turning on/off
Disassembly toolbar (debug-

ger), 694
displaying

bitmaps, 174-176
current records, 306-307
current URL, 529-530
drawings

Draw function, 390
GetDrawing function,

425
ModArtDraw function,

421
ModArtNewDrawing

function, 418
message boxes, 37-38
processes, 697
threads, 697
toolbars, 254

OnUpdateViewColorbar
function, 255

OnViewColorbar func-
tion, 256

ShowControlBar func-
tion, 255

ShowWindow function,
255

DLLs (dynamic link
libraries), 406-407

ADO, importing, 349-350
advantages, 406
designing, 409
MFC DLLs

creating, 410-413
editing, 414-416
export operations, 408
test application, 413-414

non-Visual C++ applica-
tions, 427-428

regular DLLs
adapting functions,

421-422
creating, 416-420
DEF files, 408
export operations,

408-409
module definition files,

422
testing, 423-426

see also library modules
DockControlBar function,

254
docking toolbars, 253-254
Document/View architecture,

200-201
documents

opening
OnNewDocument func-

tion, 303-304
OnOpenDocument func-

tion, 304-305
printing, 647-650

DoDataExchange function,
330

DoModal function, 90
DoPreparePrinting function,

648
DoSort function, 192
DoSpin function, 455
double data type, 548
Draw function, 390, 446-447
drawing areas

finding size of, 452
setting, 386

drawings
circles, 168-171
clearing, 390-391

ClearDrawing function,
391

ModArtClearDrawing
function, 421

742 dialog windows

035 31240-9 index 4/27/00 1:13 PM Page 742

creating
Draw function, 446-447
ModArtDraw function,

421
ModArtNewDrawing

function, 418
NewDrawing function,

389, 398-399
OnNewDocument func-

tion, 395
deleting, 396

DeleteContents function,
425

SDI application, 214
displaying

Draw function, 389-390
GetDrawing function,

396, 425
OnDraw function, 397,

426
lines

colors, 164-165
DrawLine function,

165-166
NewLine function,

386-388, 399-401,
411-416, 419-420

loading, 488-491
random, 388-389
rectangles, 168-171
rendering, 211-212
saving, 215-217, 395
serializing, 390
start/end points, 448-449
viewpoints, 448
see also color; graphics

DrawLine function, 165-166
DrawRegion function,

168-171
drop-down list boxes, 27, 264
DROPDOWN combo box

style, 263
DROPDOWNLIST combo

box style, 264

dynamic link libraries, see
DLLs

dynamic record sets, 318
dynasets, 318

E

edit boxes, 26
disabling, 39-41
hiding, 39-41
text

clearing, 38-39
displaying, 37-38

see also message boxes
Edit function, 320
Edit menu

design conventions, 107
Insert New Control com-

mand, 491
editing

About window, 23
message box text, 22
recordsets, 320-321

editor area (Developer
Studio), 9

Empty function, 725
EnableDocking function, 253
encapsulation, 380
EndDoc function, 659
EndPage function, 660
EndWaitCursor function, 63
END_ADO_BINDING macro,

354
enum statement, 571
EnumFontFamiliesEx func-

tion, 122-123
EnumFontFamProc function,

124
ENUMLOGFONTEX struc-

ture, 124
equal sign (=), 43, 549
Error object, 345

errors, see exceptions
escapement (fonts), 126
event handling

ActiveX controls, 193-194
combo boxes

CMainFrame message
map, 267-268

OnSelChangeWidth
function, 267

Graphics application
OnPaint function, 167,

171-172
OnRSelection function,

163-164
menus, 112

color menu, 235
COMMAND event, 114
context menus, 116
event-handler declara-

tions, 233-234
message maps, 234-235
OnExit function, 114
OnHello function,

113-114
OnHelpAbout function,

114-115
SDI application, 209-211
sockets, 503-504
Squiggle control, 485-487

event messages, see messages
events

adding to ActiveX controls,
476

keyboard
GetKeyState function,

65
messages, 56-57
OnKeyDown function,

57-58, 61-62
virtual key codes, 65

mouse
drawing program, 49
messages, 48
OnLButtonDown func-

tion, 56

events 743

035 31240-9 index 4/27/00 1:13 PM Page 743

OnMouseMove func-
tion, 49-50, 54-55

tracking, 53-55
thread synchronization,

439-440
timers

clock timer, 71-73
counting timer, 74-81
defined, 68
IDs, 70-71
interval range, 81
maximum of, 81

exceptions
catching, 661-666

blanket exception catch,
665

catch keyword, 663-664
multiple exceptions,

664-665
try keyword, 207,

663-664
deleting, 668
defined, 661
MFC

CArchiveException
class, 671-672

CDAOException class,
672-673

CDBException class,
672-673

CException class,
668-669

CFileException class,
667, 670-671

CMemoryException
class, 669

CNotSupportedException
class, 674

COleDispatchException
class, 673-674

COleException class,
673-674

CResourceException
class, 670

CUserException class,
674

generating custom,
675-676

sockets, 504
testing exception type, 665
throwing, 666-667
see also debugging

techniques
executing commands, 351
Exit buttons, creating, 36-37
exporting

classes, 408
functions, 408-409

extended properties, 474
extraction operator (>>), 548

F

fax machines, 645
Field object, 346
fields, accessing, 353-354
file extensions

.cpp, 565

.h, 565

.hpp, 565

.rc, 108
File menus, designing, 107
File View, 8
files

DEF, 408
header files, 565-566

library modules, 402
ModArtDll, 417

resource files, 108
FillFontList function, 132-134
Find function, 727
FindIndex function, 704
FindOneOf function, 728
flags

binary operations, 52-53
defined, 52

TPM_CENTERALIGN,
118

TPM_LEFTALIGN, 118
TPM_LEFTBUTTON, 118
TPM_RIGHTBUTTON,

118
FLAT style toolbar control

style, 250
flat-file databases

application shell, 284-285
clean-up functions, 302
controls

properties, 286-287
variables, 287

defined, 284
documents

document class, 294-295
opening, 303-305

position counters, 297-298
record class header, 310
records

adding, 295-297
counting, 297
displaying, 306-307

recordsets
navigating, 298-301,

307-308
serializing, 301-302

saving changes, 308-309,
311-312

serializable classes, 288-289
constructors, 290
creating, 291-294
inline methods, 289-290

views, 285
view class, 305-306
resetting, 309-310

FlexGrid control
cell IDs, 189
event handling, 193-194
loading data into, 188-189
random data, generating,

189-191
sorting, 192-193

744 events

035 31240-9 index 4/27/00 1:13 PM Page 744

float data type, 548
fonts

CreateFont function
alternatives to, 139
bItalic argument, 127
bUnderline argument,

127
cStrikeOut argument,

127
declaring, 125
example, 125
lpszFacename argument,

129
nCharSet argument,

127-128
nClipPrecision argu-

ment, 128
nEscapement argument,

126
nHeight argument, 126
nOrientation argument,

126
nOutPrecision argument,

128
nPitchAndFamily argu-

ment, 129
nQuality argument, 128
nWeight argument,

126-127
nWidth argument, 126

listing available fonts
callback functions, 122
EnumFontFamiliesEx

function, 123
EnumFontFamProc

function, 124
TrueType fonts, 140

sample application
application shell,

129-131
font list, 131-132
OnChangeEsamptext

function, 136

OnInitDialog function,
133-135

OnSelchangeLfonts
function, 138

SetMyFont function,
137

form classes, 382
Format function, 720
formatting

dates/time, 720-721
strings, 728-729

forms, populating, 367-369
Forward button (browser

application), 531
forwardOnly recordsets, 318
frames, attaching toolbars to,

247-249
frameworks (MDI/SDI),

printing, 637
friend classes, 565
friend functions, 565
functions, 546

AbortDoc, 657
Accept, 501
Add, 701
AddHead, 703
AddLine, 206
AddNew, 320, 357, 374
AddNewRecord, 296
AddString, 264
AddTail, 703
AfxBeginThread, 432-433,

468
AfxGetStaticModuleState,

409
BeginWaitCursor, 63
BitBlt, 155
BottomRight, 712
CalcPoint, 451
callback functions, 72, 122
CenterPoint, 713
ClearDrawing, 391
Close, 319, 357, 503
CoInitialize, 350

COMMAND, 227
CommandToIndex, 252
Compare, 726
CompareNoCase, 726
Connect, 500
constructors, 564
CoUninitialize, 350
CPrintDialog class, 653
CPrintInfo, 642
CreateBlankRecord,

374-375
CreateColorbar, 261-262
CreateEx, 250-251
CreateFont

alternatives to, 139
bItalic argument, 127
bUnderline argument,

127
cStrikeOut argument,

127
declaring, 125
example, 125
lpszFacename argument,

129
nCharSet argument,

127-128
nClipPrecision argu-

ment, 128
nEscapement argument,

126
nHeight argument, 126
nOrientation argument,

126
nOutPrecision argument,

128
nPitchAndFamily argu-

ment, 129
nQuality argument, 128
nWeight argument,

126-127
nWidth argument, 126

CreateHatchBrush, 655
CreateInstance, 350
CreateProcess, 44

functions 745

035 31240-9 index 4/27/00 1:13 PM Page 745

declaring, 546
default access permissions,

292
DeflateRect, 715
Delete, 320-321, 376, 668
DeleteContents, 214, 302,

367, 396, 425
destructors, 564
DockControlBar, 254
DoDataExchange, 330
DoModal, 90
DoPreparePrinting, 648
DoSort, 192
DoSpin, 455
Draw, 390, 446-447
DrawLine, 165-166
DrawRegion, 168-171
Edit, 320
Empty, 725
EnableDocking, 253
EndDoc, 659
EndPage, 660
EndWaitCursor, 63
EnumFontFamiliesEx,

122-123
EnumFontFamProc, 124
exporting, 408-409
FillFontList, 132-134
Find, 727
FindIndex, 704
FindOneOf, 728
Format, 720
friend functions, 565
GenerateError, 365
GenID, 189
GetAt, 701, 704
GetBitmap, 174
GetBusy, 524
GetClientRect, 452
GetCopies, 653
GetCount, 704
GetCurRecord, 298
GetCurRecordNbr, 298
GetCurrentTime, 720

GetDay, 720
GetDayOfWeek, 720
GetDayOfYear, 720
GetDC, 448
GetDeviceCaps, 645
GetDlgItem, 39-41
GetDocument, 211
GetDrawing, 397, 425
GetDriverName, 653
GetErrorMessage, 668-669
GetFirstPosition, 706
GetFirstRecord, 299
GetFirstViewPosition, 270,

303
GetFixedRows, 188
GetFromPage, 653
GetHour, 720
GetItemRect, 263
GetKeyState, 65
GetLastError, 504
GetLastRecord, 301
GetLength, 479, 725
GetLine, 208
GetLineCount, 208
GetLocationURL, 524, 529
GetMaxID, 332
GetMinute, 720
GetMonth, 720
GetMouseCol, 194
GetMouseRow, 194
GetNext, 703
GetNextAssoc, 706
GetNextRecord, 299
GetNextView, 270, 303
GetPortName, 653
GetPrev, 703
GetPrevRecord, 300
GetPrinterDC, 653
GetRecordCount, 319
GetRecSe, 364
GetRows, 188
GetSecond, 720
GetSize, 701
GetSquiggleLength, 482

GetStatus, 720
GetToPage, 653
GetTopLevelFrame, 270
GetTotalDays, 723
GetTotalHours, 723
GetTotalMinutes, 723
GetTotalRecords, 297
GetTotalSeconds, 723
GetUpperBound, 701
GetViewWnd, 451
GetWindowText, 528
GetYear, 720
GoBack, 524
GoForward, 524
GoHome, 524
GoSearch, 524
Height, 713
InflateRect, 715
InitSpinners, 453
inline functions, 289
InsertAfter, 703
InsertAt, 702
InsertBefore, 703
InterSectRect, 713
Invalidate, 163
IsBOF, 319
IsEmpty, 725
IsEOF, 319
IsKindOf, 665
IsPrinting, 643
IsRectEmpty, 713
IsRectNull, 713
KillTimer, 79
Left, 727
Listen, 501
LoadBitmap, 172
LoadCursor, 59
LoadData, 188
LoadDrawing, 488-491
LoadStandardCursor, 59
LoadString, 264
LoadToolBar, 250
Lock, 439

746 functions

035 31240-9 index 4/27/00 1:13 PM Page 746

Lookup, 705
main (Hello, World applica-

tion), 545-546
MakeLower, 727
MakeReverse, 727
MakeUpper, 727
MessageBox, 22

arguments, 84-85
return value IDs, 85-86

Mid, 727
ModArtClearDrawing, 421
ModArtDraw, 421
ModArtInit, 428
ModArtNewDrawing, 427
Move, 319
MoveFirst, 319, 372
MoveLast, 319
MoveNext, 319
MovePrev, 319
Navigate, 524
NewDataSet, 310
NewDrawing, 398, 480

library module, 389
regular DLL, 418

NewLine, 399-401, 480
library module, 386-388
MFC DLL, 411-416
regular DLL, 419-420

NormalizeRect, 717
Offset, 712
OnAccept, 504, 510, 513
OnBbitmap, 173-174
OnBclose, 518
OnBconnect, 512
OnBcustomdialog, 98-99
OnBeginPrinting, 655
OnBfirst, 307
OnBlast, 308
OnBsend, 515-516
OnBwhichoption, 99
OnCbemployed, 309, 312
OnCbonidle, 456
OnCbthread1, 464
OnCbthread2, 465

OnChangeInterval, 75
OnChangeEsamptext, 136
OnClick, 487
OnClose, 504, 517-518
OnClrmsg, 38-39
OnConnect, 504, 513
OnContextMenu, 117,

238-239
OnCreate, 248-249,

265-266
OnDataFirst, 371
OnDestroy, 467
OnDocumentComplete, 529
OnDraw, 397, 426, 638-641

CSquiggleCtrl class, 486
SDI application, 212

OnEndPrinting, 655
OnExit, 36
OnFileopen, 91, 103
OnGoBack, 531
OnGoNext, 531
OnHello, 19, 114
OnHelpAbout, 114-115
OnIdle, 431, 457-460
OnInitDialog, 34-35, 511

ActiveX application,
192-193

clock timer, 71-72
counting timer, 76
Fonts application,

133-135
Graphics application,

161-162
Mouse drawing pro-

gram, 60-61
OnKeyDown, 57-58, 61-62
OnLButtonDown, 56
OnMouseDownMsfgrid,

194
OnMouseMove, 49-50,

54-55
OnMouseUpMsfgrid, 195
OnNewAddress, 527

OnNewDocument, 303,
366, 395, 424, 469

SDI application, 221
Spinner application,

454-455
OnOK, 36
OnOpenDocument, 304
OnPaint, 167, 171-172, 176,

714
OnPreparePrinting, 648
OnPrint, 638, 641-643
OnReceive, 504, 516
OnRecordDelete, 334
OnRecordNew, 333
OnRSelection, 164
OnRType, 508
OnRunpgm, 42-43
OnSelchangeLfonts, 138
OnSelChangeWidth, 267
OnSend, 504
OnSetCursor, 62-63
OnShwmsg, 37-38
OnStarttime, 76-77
OnStoptimer, 77
OnTimer

clock timer, 73
counting timer, 77-79

OnUpdateIndicatorColor,
273-274

OnUpdateViewColorbar,
255

OnViewColorbar, 256
OnViewRefresh, 534
OnViewStop, 533
OnYesnocancel, 88-89
Open, 318
overloading, 550-552
ParseDateTime, 722
PopulateView, 306
PrintAll, 653
PrintCollate, 653
PrintRange, 653
PrintSelection, 653

functions 747

035 31240-9 index 4/27/00 1:13 PM Page 747

prototypes, 546
declaring, 548
example, 547

PtInRect, 715
PulseEvent, 440
rand, 388
RandomStringValue,

190-191
RecalcLayout, 256
Receive, 502
Refresh, 524, 533
RefreshBoundData, 368-369
RemoveAll, 302, 702
RemoveAt, 702-704
ReportError, 669
Requery, 320-321
ResetEvent, 440
ResumeThread, 469
ReverseFind, 728
RGB, 51
Right, 727
SelectObject, 219
Send, 502
Serialize, 281, 396

CModArt class, 390
declaring, 283
example, 281, 291
SDI application,

215-216, 219
SetAbsolutePosition, 319
SetAddress, 530
SetAt, 701, 704
SetButtonInfo, 262
SetButtonStyle, 252
SetButtonText, 276
SetCapture, 211
SetCheck, 225, 255
SetColPosition, 195
SetColSel, 192
SetCurSel, 269
SetCursor, 59
SetDate, 720
SetDateTime, 720
SetDateTimeSpan, 723
SetEvent, 440
SetIndicators, 272

SetLength, 452, 479
SetMapMode, 156, 448
SetMergeCol, 189
SetMyFont, 137-140
SetPaneText, 277
SetParent, 509
SetPixel, 50
SetPoint, 452
SetRect, 386, 713
SetRectEmpty, 713
SetRedraw, 195
SetSize, 701
SetSort, 192
SetSquiggleLength, 482
SetStatus, 720
SetTextArray, 189
SetTime, 720
SetTimer, 72
SetViewportOrg, 448
SetWindowText, 277
ShellExecute, 44
ShowBitmap, 174-175
ShowControlBar, 255
ShowWindow, 255
Size, 713
StartDoc, 659
StartPage, 660
Stop, 524, 532
strcpy, 726
StretchBlt, 155
strlen, 726
SubtractRect, 714
SuspendSpinner, 462-463,

470-471
SuspendThread, 469
ThreadFunc, 461, 470
ThrowErrno, 671
ThrowOsError, 671
TopLeft, 712
TrackPopupMenu, 117
TrimLeft, 727
TrimRight, 727
UnionRect, 713
Unlock, 439-440

Update, 320, 356
UpdateBoundData, 370-371
UpdateColorbar, 269-270
UpdateData, 35, 456
UpdateWidthCB, 269
WaitForSingleObject, 463
Width, 713
WinExec, 44

G

g prefix, 554
GDI objects, printing, 655
GenerateError function, 365
generating random data,

189-191
generic classes, 381-382
GenID function, 189
GetAt function, 701, 704
GetBitmap function, 174
GetBusy function, 524
GetClientRect function, 452
GetCopies function, 653
GetCount function, 704
GetCurRecord function, 298
GetCurRecordNbr function,

298
GetCurrentTime function,

720
GetDay function, 720
GetDayOfWeek function, 720
GetDayOfYear function, 720
GetDC function, 448
GetDeviceCaps function, 645
GetDlgItem function, 39-41
GetDocument function, 211
GetDrawing function, 397,

425
GetDriverName function, 653
GetErrorMessage function,

668-669
GetFirstPosition function, 706

748 functions

035 31240-9 index 4/27/00 1:13 PM Page 748

GetFirstRecord function, 299
GetFirstViewPosition func-

tion, 270, 303
GetFixedRows function, 188
GetFromPage function, 653
GetHour function, 720
GetItemRect function, 263
GetKeyState function, 65
GetLastError function, 504
GetLastRecord function, 301
GetLength function, 479, 725
GetLine function, 208
GetLineCount function, 208
GetLocationURL function,

524, 529
GetMaxID function, 332
GetMinute function, 720
GetMonth function, 720
GetMouseCol function, 194
GetMouseRow function, 194
GetNext function, 703
GetNextAssoc function, 706
GetNextRecord function, 299
GetNextView function, 270,

303
GetPortName function, 653
GetPrev function, 703
GetPrevRecord function, 300
GetPrinterDC function, 653
GetRecordCount function,

319
GetRecSe function, 364
GetRows function, 188
GetSecond function, 720
GetSize function, 701
GetSquiggleLength function,

482
GetStatus function, 720
GetToPage function, 653
GetTopLevelFrame function,

270
GetTotalDays function, 723
GetTotalHours function, 723
GetTotalMinutes function,

723

GetTotalRecords function,
297

GetTotalSeconds function,
723

GetUpperBound function,
701

GetViewWnd function, 451
GetWindowText function, 528
GetYear function, 720
global variables

example, 552-553
naming conventions, 554

GoBack function, 524
GoForward function, 524
GoHome function, 524
GoSearch function, 524
graphical user interfaces, see

GUIs
graphics, 150

bitmaps
copying, 155
displaying, 174-176
loading, 155, 172-174
resizing, 155
variables, 173

color
brushes, 153
CModArt class color

table, 392
menus, 235, 240
pens, 152-153
SDI application,

218-222
specifying, 51
Spinner application,

445-446
coordinate-handling classes,

710
CPoint class, 712
CRect class, 712-717
Offset function, 712
operator overloads,

711-712, 716

device contexts, 150-151
bitmaps, 154-156
brushes, 153-154
device contexts class,

151
pens, 151-153

drawings, see drawings
icons, 20-21
mapping modes, 156
printing, 638-641
see also GUIs

grid control, see FlexGrid
control

GUIs (graphical user inter-
faces)

combo boxes
creating, 260-266
event handling, 267-268
placeholders, 262
populating, 264
positioning, 263
resource files, 257-260
sizing, 276
styles, 263-264
updating, 268-270

menus, see menus
status bars

adding panes, 271-272
messages, 273-275

toolbars, 244-245
attaching to application

frames, 247-249
borders, 251
buttons, 252-253, 276
child window IDs, 251
control styles, 250
creating, 246, 250
docking, 253-254
hiding, 254-256
loading, 250
naming, 247
styles, 250-251

GUIs 749

035 31240-9 index 4/27/00 1:13 PM Page 749

H

.h file extension, 565
hash keys, troubleshooting,

710
HASSTRINGS combo box

style, 264
header files, 565-566

custom dialog windows,
96-98

library modules, 402
ModArtDll, 417

height
fonts, 126
rectangles, 713

Height function, 713
Hello application

application framework,
12-14

dialog box icon, 20-21
project workspace, 11-12
source code, 17-19
window layout

designing, 15-17
maximize/minimize

buttons, 21-22
Hello, World application

comments, 545
main function, 545-546
preprocessor directives, 545
return statement, 546
running, 543
source code listing, 543
workspace, 541-543

Help menus, designing, 107
helper classes (MFC)

collection classes, 699-700
array classes, 700-702
customizing, 707-710
list classes, 702-704
map classes, 704-706
type-safety, 707-710

coordinate-handling classes,
710

CPoint class, 712
CRect class, 712-717
CSize class, 717-718
Offset function, 712
operator overloads,

711-712, 716-718
string manipulation class

adding text, 725
case sensitivity, 727
constructor types, 724
formatting, 728-729
manipulation functions,

727
NULL-terminated types,

726
searches, 727-728
size, 725

time-handling classes,
718-719

COleDateTime class,
719-722

COleDateTimeSpan
class, 722-724

formatting code,
720-721

hiding
edit boxes, 39-41
toolbars, 254

OnUpdateViewColorbar
function, 255

OnViewColorbar func-
tion, 256

ShowControlBar func-
tion, 255

ShowWindow function,
255

HIENGLISH mapping mode,
156

HIGHEST thread priority,
432

HIMETRIC mapping mode,
156

hit-testing rectangles, 715-716
hotkeys, 107
.hpp file extension, 565
HTML (Hypertext Markup

Language) viewer
browser controls, 524
browser status, 524
navigation functions,

523-524

I

icons
button icons, 246
creating, 20-21
message boxes, 85

IDispatch interface, 181
idle processing threads, 431

building, 457-459
continuous tasks, 459
OnIdle function, 455
starting, 456
stopping, 456

IDLE thread priority, 432
IDR_DAY11TYPE menu, 233
IDR_MAINFRAME menu,

233
IDs (identifiers)

controls, 44-45
message boxes, 85-86
timers, 70-71

if statement, 549
images, see graphics
IMPLEMENT_SERIAL

macro, 282-283, 293
#import directive, 349-350
importing ADO DLLs,

349-350
#include directives, 97

CModArt, 392
CModArt class, 392
CTestAppDoc, 394, 414

750 .h file extension

035 31240-9 index 4/27/00 1:13 PM Page 750

DbAdo application, 364
Graphics application, 162
Hello, World application,

545
SDI application, 213
Sock application, 510
Squiggle control, 481

independent threads, 431, 460
arrays, 433
clean-up procedures,

466-468
creating, 432
main thread functions, 461
priorities, 432-433
stack size, 433
starting, 462-463
stopping, 462-463
suspended mode, 433
synchronizing, 434-435

critical sections, 436
events, 439-440
mutexes, 436-438
semaphores, 438-439

triggering from view object,
463-464

indexing map classes, 704-706
indirection operator (*), 554
InflateRect function, 715
inheritance, 380-381

Car class example, 572-576
Human class example,

569-572
initializing

controls, 33-35
printing, 654, 660

InitSpinners function, 453
inline functions, 289

see also functions
Insert Control dialog box, 491
Insert Resource dialog box,

109
InsertAfter function, 703
InsertAt function, 702

InsertBefore function, 703
inserting

records
ADO, 357, 373-374
ODBC, 320, 331-334

toolbars, 246
int data type, 548
interfaces, IDispatch, 181
Internet applications, 519
Internet Explorer

ActiveX document model,
522

HTML viewer
browser controls, 524
browser status, 524
navigation function,

523-524
intersection (rectangles), 713
InterSectRect function, 713
Invalidate function, 163
Invoke Methods dialog box,

492
IsBOF function, 319
IsEmpty function, 725
IsEOF function, 319
IsKindOf function, 665
ISOTROPIC mapping mode,

156
IsPrinting function, 643
IsRectEmpty function, 713
IsRectNull function, 713
italic text, formatting, 127

J-K

just-in-time debugging, 684
see also debugging

techniques

KeepCurrentDrawing pro-
perty (Squiggle control), 483

keyboard events
drawing program

cursor, 59
OnInitDialog function,

60-61
OnKeyDown function,

57-58, 61-62
OnSetCursor function,

62-63
GetKeyState function, 65
messages, 56-57
virtual key codes, 65

keyboard shortcuts, 107
keys

accelerators
creating, 118-119
defined, 107
restrictions, 119
Web Browser applica-

tion, 532
hotkeys, 107
modifiers, 532

keywords, see statements
KillTimer function, 79

L

l prefix, 554
landscape orientation (print-

ing), 654
Layout menu commands, Tab

Order, 30
Left function, 727
library modules, 382-383

advantages, 402
creating, 383-385
header files, 402
static library project

class definitions, 385
clearing drawings,

390-391

library modules 751

035 31240-9 index 4/27/00 1:13 PM Page 751

creating drawings,
386-389

displaying drawings,
389-390

drawing area, 386
project module, 384-385
serializing drawings,

390
test application, 392-395

see also DLLs
licensing issues (ActiveX con-

trols), 184, 196, 477
lines

adding, 206
CLine class

color, 218-219
constructor, 204-205
creating, 203
header file, 216
serialization, 217

counting, 207-208
drawing, 164

colors, 164-165
DrawLine function,

165-166
NewLine function,

386-388, 411-416,
419-420

retrieving, 208
list classes, 702-704
LIST toolbar control style,

250
Listen function, 501
listening for messages, 501
listing available fonts

callback functions, 122
EnumFontFamiliesEx func-

tion, 123
EnumFontFamProc func-

tion, 124
example, 131-133
FillFontList function, 132
TrueType fonts, 140

listings
ActiveX application

DoSort function, 192
GenID function, 189
LoadData function, 188
OnInitDialog function,

192-193
OnMouseDownMsfgrid

function, 194
OnMouseUpMsfgrid

function, 195
RandomStringValue

function, 190-191
catching exceptions

all types of exceptions,
665

try…catch block, 663
try block with function

calls, 664
two different exceptions,

664-665
CCustomException class,

675-676
Clasfarm program

.cpp file, 566
header file, 565

classes
declarations, 562-563
nesting, 566-567

clock timer
OnInitDialog function,

71-72
OnTimer function, 73

CModArt class
constructor, 479
GetLength function, 479
NewDrawing function,

480
NewLine function, 480
SetLength function, 479

CModArt library module
#include directives, 392
ClearDrawing function,

391

color table, 392
constructor, 391
Draw function, 390
NewDrawing function,

389, 398
NewLine function, 386,

399
Serialize function, 390
SetRect function, 386

combo boxes
CMainFrame message

map, 268
CreateColorBar func-

tion, 261-262
OnCreate function,

265-266
OnSelChangeWidth

function, 267
OnUpdateViewColorbar

function, 255
OnViewColorbar func-

tion, 256
project resource files,

258
UpdateColorBar func-

tion, 269-270
UpdateWidthCB func-

tion, 269
Width menu command

event handler, 270
counting timer

OnInitDialog function,
76

OnStarttime function,
76-77

OnStoptimer function,
77

OnTimer function, 77-78
Stop button, 80-81

CTestAppDoc class
DeleteContents function,

396
GetDrawing function,

397

752 library modules

035 31240-9 index 4/27/00 1:13 PM Page 752

#include directives, 394
OnNewDocument func-

tion, 395
Serialize function, 396

CTestAppDoc class
declaration, 423-424
DeleteContents function,

425
GetDrawing function,

425
#include directives, 414
OnNewDocument func-

tion, 424
Serialize function, 425

CTestAppView class,
OnDraw function, 397,
426

DbAdo database
AddNew function, 374
CreateBlankRecord

function, 374-375
custom record class,

362-363
Delete function, 376
DeleteContents function,

367
GenerateError function,

365
GetRecSet function, 364
#include directives, 364
MoveFirst function, 372
OnDataFirst function,

371
OnNewDocument func-

tion, 366
RefreshBoundData func-

tion, 368-369
UpdateBoundData func-

tion, 370-371
DbOdbc database

CDbOdbcSet construc-
tor, 331

Database field variables,
329

DoDataExchange func-
tion, 330

GetMaxID function, 332
OnRecordDelete func-

tion, 334
OnRecordNew function,

333
dialog windows

header files, 97
OnBcustomdialog func-

tion, 98-99
OnBwhichoption func-

tion, 99
OnFileopen function, 91,

103
OnYesnocancel function,

88-89
OPENFILENAME

structure, 102
flat-file database

AddNewRecord func-
tion, 296-297

CPerson class declara-
tion, 292

CPerson constructor,
290

custom object header,
305-306

DeleteContents function,
302

document class imple-
mentation, 295

Get/Set inline functions,
290

GetCurRecord function,
298

GetCurRecordNbr func-
tion, 298

GetFirstRecord function,
299

GetLastRecord function,
301

GetNextRecord func-
tion, 299-300

GetPrevRecord function,
300

GetTotalRecords func-
tion, 297

IMPLEMENT_SERIAL
macro, 293-294

NewDataSet function,
310

OnBfirst function,
307-308

OnBlast function, 308
OnCbemployed func-

tion, 309, 312
OnNewDocument func-

tion, 303-304
OnOpenDocument func-

tion, 304-305
PopulateView function,

306-307
record class header, 310
Serialize function, 291,

302
Fonts application

FillFontList function,
132-134

listing available fonts,
131-132

OnChangeEsamptext
function, 136

OnInitDialog function,
133-135

OnSelchangeLfonts
function, 138

SetMyFont function,
137-140

function prototype, 547
GetDlgItem function, 39-41
global/local variables,

552-553
Graphics application

color table, 164-165
DrawLine function,

165-166

listings 753

035 31240-9 index 4/27/00 1:13 PM Page 753

DrawRegion function,
169-171

#include directives, 162
OnBbitmap function,

173-174
OnInitDialog function,

161-162
OnPaint function, 167,

171-172, 176
OnRSelection function,

164
ShowBitmap function,

175
Hello application, 19
Hello, World application,

543
inheritance

Allauto class example,
575

Auto class example,
573-574

Car class example,
574-575

Human class example,
570-571

MDI application
color menu event han-

dlers, 235
context menu, 238-239
event-handler declara-

tions, 233-234
message map entries,

234-235
menu functions

OnContextMenu func-
tion, 117

OnHello function, 114
OnHelpAbout function,

114-115
ModArtDll

CModArt class defini-
tion, 411

header file, 417
ModArtClearDrawing

function, 421-422

ModArtDraw function,
421

ModArtInit function,
428

ModArtNewDrawing
function, 418, 427

module definition file,
422

NewLine function,
412-416, 419-420

Serialize function, 421
Mouse drawing program

OnInitDialog function,
60-61

OnKeyDown function,
57-58, 61-62

OnLButtonDown func-
tion, 56

OnMouseMove func-
tion, 49-50, 54-55

OnSetCursor function,
62-63

OnClrmsg function, 38-39
OnExit function, 36
OnInitDialog function,

34-35
OnRunpgm function, 42-43
OnShwmsg function, 37-38
overloaded functions,

550-552
pointers, 555-557
raising exceptions, 666-667
SDI application

AddLine function, 206,
221-222

Black menu functions,
224

Blue menu functions,
224-225

CLine constructor, 204,
218

color table specification,
220

DeleteContents function,
214

Draw function, 205, 219
GetColor function, 222
GetLine function, 208
GetLineCount function,

208
#includes directives, 213
Line.cpp file, 217
Line.h file, 216
mouse functions,

209-210
OnDraw function, 212
OnNewDocument func-

tion, 221
Serialize function,

215-216, 219
serialization

DECLARE_SERIAL
macro, 282

IMPLEMENT_SERIAL
macro, 282-283

Serialize function, 281
Sock application

#include directives, 510
OnAccept function, 510,

513
OnBclose function, 518
OnBconnect function,

512
OnBsend function,

515-516
OnClose function,

517-518
OnConnect function,

513
OnInitDialog function,

511
OnReceive function, 516
OnRType function, 508
SetParent function, 509

Spinner application
CalcPoint function, 451
color table, 445-446
CSpinner class declara-

tion, 445

754 listings

035 31240-9 index 4/27/00 1:13 PM Page 754

CSpinner constructor,
444

CSpinner source file,
449

CTaskingDoc source
file, 450

DoSpin function, 455
Draw function, 446-447
InitSpinners function,

453
OnCbonidle function,

456
OnCbthread1 function,

464
OnCbthread2 function,

465
OnDestroy function, 467
OnIdle function,

457-460
OnNewDocument func-

tion, 454-455, 469
SuspendSpinner func-

tion, 462-463, 470
ThreadFunc function,

461, 470
Squiggle control

constructor, 485
GetSquiggleLength

function, 482
#include directives, 481
LoadDrawing function,

488-491
OnClick function, 487
OnDraw function, 486
SetSquiggleLength func-

tion, 482
status bars

CToolbarDoc message
map, 274

indicator table defini-
tion, 272

OnUpdateIndicatorColor
function, 273-274

structures, 560
toolbars, attaching to appli-

cation frames, 248-249
TRACE macro example,

686-687
WebBrowse application

CMainFrame message
map, 528

OnDocumentComplete
function, 529

OnGoBack function,
531

OnGoNext function, 531
OnNewAddress func-

tion, 527
OnViewRefresh func-

tion, 534
OnViewStop function,

533
SetAddress function,

530
LoadBitmap function, 172
LoadCursor function, 59
LoadData function, 188
LoadDrawing function,

488-491
loading data

bitmaps, 155
LoadBitmap function,

172
LoadImage function,

172
OnBbitmap function,

173-174
cursors into memory, 59
drawings, 488-491
FlexGrid control, 188-189
toolbars, 250

LoadStandardCursor func-
tion, 59

LoadString function, 264
LoadToolBar function, 250
local variables

example, 552-553
naming conventions, 554

Lock function, 439
locking semaphores, 439
LOENGLISH mapping mode,

156
LOGFONT structure, 123
logical operators, 550

AND (&&), 51
OR (||), 52

LOMETRIC mapping mode,
156

long int data type, 548
Lookup function, 705
loopback computer name, 511
LOWEST thread priority, 432
lpqzFacename argument

(CreateFont function), 129

M

macros
ADO_FIXED_LENGTH

_ENTRY, 355
ADO_NUMERIC_ENTRY,

355
ADO_VARIABLE

_LENGTH_ENTRY,
355-356

AFX_EXT_CLASS, 408
AFX_MANAGE_STATE,

409
ASSERT, 687-689
BEGIN_ADO_BINDING,

354
DECLARE_SERIAL, 282,

292
END_ADO_BINDING, 354
IMPLEMENT_SERIAL,

282-283, 293
TRACE, 685-687, 708
VERIFY, 687-689

main function (Hello, World
application), 545-546

main function 755

035 31240-9 index 4/27/00 1:13 PM Page 755

MakeLower function, 727
MakeReverse function, 727
MakeUpper function, 727
map classes, 704-706
mapping modes, 156, 448
mathematical operators, 549
maximize/minimize buttons,

21-22
MB_ABORTRETRYIG-

NORE button ID, 85
MB_OK button ID, 85
MB_OKCANCEL button ID,

85
MB_RETRYCANCEL button

ID, 85
MB_YESNO button ID, 85
MB_YESNOCANCEL button

ID, 85
MDI (Multiple Document

Interface) applications,
229-230

application shell, 231-232
classes, 230-231
context menus, 236-239
drawing functionality, 232
menu handling

color menu, 235
event-handler declara-

tions, 233-234
message maps, 234-235

SDI applications, compared,
239

Member Variables tab (Class
Wizard), 32

Memory window (debugger),
694

Menu Designer
creating menus

captions, 110
properties, 110
separators, 111

starting, 109

menus
accelerators

creating, 118-119
restrictions, 119

attaching, 112
captions, 110
cascading, 106
context menus, 106

creating, 116-118,
236-239

defined, 106
designing, 116
event handling, 116

designing, 107
event handling, 112

color menu, 235
COMMAND event, 114
event-handler declara-

tions, 233-234
message maps, 234-235
OnExit function, 114
OnHello function,

113-114
OnHelpAbout function,

114-115
hotkeys, 107
IDR_DAY11TYPE, 233
IDR_MAINFRAME, 233
items, adding, 110
menu resources, creating,

109
naming, 119
properties, 110
SDI application

Black menu functions,
224

Blue menu functions,
224-225

creating, 222
properties, 223

separator lines, 111
troubleshooting, 240

Menus application
application shell, 108-109
attaching menus, 112
creating menus

menu items, 110
menu resources, 109
separator lines, 111

event handling, 112
OnExit function, 114
OnHello function,

113-114
OnHelpAbout function,

114-115
message boxes

creating
button combinations, 85
icons, 85
MessageBox function,

84
MessageBox function,

85-86
sample application

control properties, 86-87
control variables, 88
OnYesnocancel func-

tions, 88-89
text, changing, 22

message maps
CMainFrame, 268
CToolbarDoc class, 274
MDI application, 234-235
ON_COMMAND_RANGE,

236
Message Maps tab (Class

Wizard), 34
Message Options dialog box,

695
MessageBox function, 22

arguments, 84-85
return value IDs, 85-86

messages
clearing, 38-39
disabling, 39-41

756 MakeLower function

035 31240-9 index 4/27/00 1:13 PM Page 756

displaying, 37-38
hiding, 39-41
keyboard events, 56-57
listening for, 501
mouse events, 48
receiving, 502-503, 516-517
sending, 502, 515-516
status bars, 273-275
windows, viewing, 695-696

methods, see functions
MFC (Microsoft Foundation

Classes), 382, 699-700
array classes, 700-702
coordinate-handling classes,

710
CPoint class, 712
CRect class, 712-717
CSize class, 717-718
Offset function, 712
operator overloads,

711-712, 716-718
customizing, 675-676,

707-710
exception classes

CArchiveException
class, 671-672

CDAOException class,
672-673

CDBException class,
672-673

CException class,
668-669

CFileException class,
667, 670-671

CMemoryException
class, 669

CNotSupportedException
class, 674

COleDispatchException
class, 673-674

COleException class,
673-674

CResourceException
class, 670

CUserException class,
674

form classes, 382
list classes, 702-704
map classes, 704-706
string manipulation class

adding text, 725
case sensitivity, 727
constructor types, 724
formatting, 728-729
manipulation functions,

727
NULL-terminated types,

726
searches, 727-728
size, 725

time-handling classes,
718-719

COleDateTime class,
719-722

COleDateTimeSpan
class, 722-724

formatting code,
720-721

type-safety, 707-710
MFC extension DLLs

creating, 410
export operations, 408
ModArtDll project

class declaration, 411
NewLine function,

411-416
project file, 410
test application, 413-414

see also DLLs
MFC Tracer tool, 698
Microsoft Foundation

Classes, see MFC
Mid function, 727
MM_ANSIOTROPIC map-

ping mode, 156
MM_HIENGLISH mapping

mode, 156

MM_HIMETRIC mapping
mode, 156

MM_ISOTROPIC mapping
mode, 156

MM_LOENGLISH mapping
mode, 156

MM_LOMETRIC mapping
mode, 156

MM_TEXT mapping mode,
156

MM_TWIPS mapping mode,
156

mnemonics, 31
modal dialog windows, 92

see also dialog windows
ModArt application, 478-480

library module (random
squiggle generator)

ClearDrawing function,
391

color table, 392
constructor, 391
creating, 385
Draw function, 390
#include directives, 392
NewDrawing function,

389, 397-398
NewLine function, 386,

399
rand function, 388
Serialize function, 390
SetRect function, 386
variables, 385

testing, 413-414
Squiggle control

CModArt class modifi-
cations, 478-481

control shell, 477-478
event handling, 485-487
events, 489-491
methods, 487-489
properties, 481-483
property page, 483-485
testing, 491-492

ModArtClearDrawing func-
tion, 421

ModArtClearDrawing function 757

035 31240-9 index 4/27/00 1:13 PM Page 757

ModArtDll application
MFC DLL

CModArt class declara-
tion, 411

NewLine function,
411-416

project file, 410
testing, 413-414

regular DLL, 416
header file, 417
ModArtClearDrawing

function, 421-422
ModArtDraw function,

421
ModArtNewDrawing

function, 418
ModArtSerialize func-

tion, 421
module definition file,

422
NewLine function,

419-420
project file, 417

testing, 423-426
ModArtDraw function, 421
ModArtInit function, 428
ModArtNewDrawing func-

tion, 427
modeless dialog windows, 92

see also dialog windows
modifier keys (Web Browser

application), 532
mouse events

handling
OnMouseDownMsfgrid

function, 194
OnMouseUpMsfgrid

function, 195
SDI application,

209-211
messages, 48
Mouse drawing program

application shell, 49
OnLButtonDown func-

tion, 56

OnMouseMove func-
tion, 49-50, 54-55

tracking mouse coordi-
nates, 53-55

Move function, 319
MoveFirst function, 319, 372
MoveLast function, 319
MoveNext function, 319
MovePrev function, 319
moving toolbars, 10
Multiple Document Interface,

see MDI applications
multiplication operator (*),

549
multitasking, 430

arrays, 433
clean-up procedures,

466-468
idle processing threads, 431

building, 457-459
continuous tasks, 459
OnIdle function, 455
starting, 456
stopping, 456
independent threads,

431, 460
creating, 432
main thread function,

461
priorities, 432-433
stack size, 433
starting, 462-463
stopping, 462-463
suspended mode, 433
trigging from view

object, 463-464
thread synchronization,

434-435
critical sections, 436
events, 439-440
mutexes, 436-438
semaphores, 438-439

mutexes, 436-438
m_ prefix, 33
m_ofn property (CFileDialog

class), 102

N

\n string, 247
naming conventions

constructors, 564
menus, 119
toolbars, 247
variables

global, 554
local, 554
m_ prefix, 33

Navigate function, 524
navigating

recordsets
ADO, 352-353
GetCurRecord function,

298
GetFirstRecord function,

299
GetLastRecord function,

301
GetNextRecord func-

tion, 299
GetPrevRecord function,

300
MoveFirst function, 372
ODBC, 319-320
OnBfirst function, 307
OnBlast function, 308
OnDataFirst function,

371
the Web, 523-524

nCharSet argument
(CreateFont function),
127-128

nClipPrecision argument
(CreateFont function), 128

758 ModArtDll application

035 31240-9 index 4/27/00 1:13 PM Page 758

nEscapement argument
(CreateFont function), 126

nested classes, 566-569
networks, 496-497

debugging across, 685
Internet applications, 519
protocols, 497
sockets, 497

closing connections,
503, 517-519

controls, 505-508
creating, 498-500
error handling, 504
event handling, 503-504
listening for messages,

501
opening connections,

500-501, 511-514
ports, 498
receiving messages,

502-503, 516-517
sending messages, 502,

515-516
socket class, 509-511

new keyword, 666
NewDataSet function, 310
NewDrawing function, 398,

480
library module, 389
regular DLL, 418

NewLine function, 399-401,
480

library module, 386-388
MFC DLL, 411-416
regular DLL, 419-420

NEWTEXTMETRICEX
structure, 124

nHeight argument
(CreateFont function), 126

NOINTEGRALHEIGHT
combo box style, 264

nOrientation argument
(CreateFont function), 126

NORMAL thread priority,
432

NormalizeRect function, 717
nOutPrecision argument

(CreateFont function), 128
nPitchAndFamily argument

(CreateFont function), 129
nQuality argument

(CreateFont function), 128
NULL-terminated strings,

726
NumberSquiggles property

(Squiggle control), 483
nWeight argument

(CreateFont function),
126-127

nWidth argument
(CreateFont function), 126

O

object IDs (controls), 44-45
Object Linking and

Embedding (OLE), 180
debugging objects, 684
exceptions, 673-674
see also ActiveX controls

object-oriented design
encapsulation, 380
inheritance, 380-381

Car class example,
572-576

Human class example,
569-572

objects
adding to classes, 708-709
ADO, see ADO
containers, 700-702
positioning, 450-452

ODBC (Open Database
Connectivity), 316-317

Administrator, 322
data source configuration,

322-323

database connections, 317
exceptions, 672-673
records

adding, 331-334
deleting, 334-335

recordsets
closing, 319
editing, 320-321
navigating, 319-320
opening, 317-318

sample application
application shell,

324-325
CDbOdbcSet construc-

tor, 331
control properties,

325-327
control variables, 328
Database field variables,

329
DoDataExchange func-

tion, 330
record management,

331-335
ODBC Microsoft Access

Setup dialog box, 323
OEMCONVERT combo box

style, 264
Offset function, 712
OLE (Object Linking and

Embedding), 180
debugging objects, 684
exceptions, 673-674
see also ActiveX controls

OLE/COM Object Viewer
tool, 697

OnAccept function, 504, 510,
513

OnBbitmap function, 173-174
OnBclose function, 518
OnBconnect function, 512
OnBcustomdialog function,

98-99
OnBeginPrinting function,

655

OnBeginPrinting function 759

035 31240-9 index 4/27/00 1:14 PM Page 759

OnBfirst function, 307
OnBlast function, 308
OnBsend function, 515-516
OnBwhichoption function, 99
OnCbemployed function, 309,

312
OnCbonidle function, 456
OnCbthread1 function, 464
OnCbthread2 function, 465
OnChangeEsamptext func-

tion, 136
OnChangeInterval function,

75
OnClick function, 487
OnClose function, 504,

517-518
OnClrmsg function, 38-39
OnConnect function, 504, 513
OnContextMenu function,

117, 238-239
OnCreate function, 248-249,

265-266
OnDataFirst function, 371
OnDestroy function, 467
OnDocumentComplete

function, 529
OnDraw function, 397, 426,

638-641
compared to OnPrint, 642
CSquiggleCtrl class, 486
SDI application, 212

OnEndPrinting function, 655
OnExit function, 36
OnFileopen function, 91, 103
OnGoBack function, 531
OnGoNext function, 531
OnHello function, 19, 114
OnHelpAbout function,

114-115
OnIdle function, 431, 457-460
OnInitDialog function, 34-35,

511
ActiveX application,

192-193

clock timer, 71-72
counting timer, 76
drawing program, 60-61
Fonts application, 133-135
Graphics application,

161-162
OnKeyDown function, 57-58,

61-62
OnLButtonDown function, 56
OnMouseDownMsfgrid func-

tion, 194
OnMouseMove function,

49-50, 54-55
OnMouseUpMsfgrid func-

tion, 195
OnNewAddress function, 527
OnNewDocument function,

303, 366, 395, 424, 469
SDI application, 221
Spinner application,

454-455
OnOK function, 36
OnOpenDocument function,

304
OnPaint function, 167,

171-172, 176, 714
OnPreparePrinting function,

648
OnPrint function, 638

compared to OnDraw, 642
overriding, 641-643

OnReceive function, 504, 516
OnRecordDelete function,

334
OnRecordNew function, 333
OnRSelection function, 164
OnRType function, 508
OnRunpgm function, 42-43
OnSelchangeLfonts function,

138
OnSelChangeWidth function,

267
OnSend function, 504

OnSetCursor function, 62-63
OnShwmsg function, 37-38
OnStarttime function, 76-77
OnStoptimer function, 77
OnTimer function

clock timer, 73
counting timer, 77-79

OnUpdateIndicatorColor
function, 273-274

OnUpdateViewColorbar
function, 255

OnViewColorbar function,
256

OnViewRefresh function, 534
OnViewStop function, 533
OnYesnocancel functions,

88-89
ON_COMMAND_RANGE

message map, 236
Open Database Connectivity,

see ODBC
Open function, 318
OPENFILENAME structure,

102
opening

database connections,
350-351

databases, 351-352
documents

OnNewDocument func-
tion, 303-304

OnOpenDocument func-
tion, 304-305

recordsets, 317-318
socket connections,

500-501, 511-514
operators

address-of (&), 554-555
assignment (=), 549
binary

AND (&), 51-52
attribute flags, 52-53
OR (|), 52

extraction operator (>>),
548

760 OnBfirst function

035 31240-9 index 4/27/00 1:14 PM Page 760

indirection (*), 554-556
logical, 550

AND (&&), 51
OR (||), 52

mathematical, 549
overloads, 711-712

COleDateTime class,
722

CRect class, 716
CSize class, 718

redirection (<<), 546
relational, 550
scope (::), 568
structure member oper-

ator (.), 561
optimizing printing, 656
OR operators

binary OR (|), 52-53
logical OR (||), 52

orientation (print jobs), 647,
654

Output pane (Developer
Studio), 9

overloaded functions, 550-552
overriding OnPrint function,

641-643
OWNERDRAWFIXED

combo box style, 264
OWNERDRAWVARIABLE

combo box style, 264

P

page ranges, printing,
647-648

panes (status bars), adding,
271-272

Parameter object, 346
ParseDateTime function, 722
passing arguments by refer-

ence, 557-558

pens
colors, 152-153
creating, 151
selecting, 64
styles, 152

pipe character (|)
binary OR (|), 52-53
logical OR (||), 52

pitch (fonts), 129
pointers

DbAdo database, 364
declaring, 554
defined, 211
examples, 555-557
Graphics application, 174
Spinner application, 454

points
hit-testing, 715-716
intersection, 713

polymorphism, 550-552
pop-up menus, see context

menus
PopulateView function, 306
populating

combo boxes, 264
forms, 367-369

portrait orientation (print
jobs), 654

ports, 498
positioning objects, 450-452

combo boxes, 263
toolbars, 251

precompiler directives
#import, 349-350
#include directives, 97

CModArt, 392
CModArt class, 392
CTestAppDoc, 394, 414
DbAdo application, 364
Graphics application,

162
Hello, World applica-

tion, 545

SDI application, 213
Sock application, 510
Squiggle control, 481

preemptive multitasking, see
multitasking

prefixes, m_, 33
previewing

AppWizard, 637
support, 638

Print dialog box, 650-654
accessing directly, 657-659
bypassing, 649
Collate check box, 651

PrintAll function, 653
PrintCollate function, 653
print jobs

accessing directly, 657-660
AppWizard, 637
aspect ratio, 645-647
canceling, 657
coordinates

converting, 644
locating, 642

device contexts, 643-644,
656

DevMode structure, 652
different display/printed

output, 649
GDI objects, 655
graphics, 638-641
initializing, 654, 660
MDI framework, 637
OnDraw function, 643
optimizing, 656
options, 652
orientation, 647, 654
page ranges, 648
pagination, 647
Print dialog box, 650-654

accessing directly,
657-659

bypassing, 649
Collate check box, 651

print jobs 761

035 31240-9 index 4/27/00 1:14 PM Page 761

SDI framework, 637-641
spooling, 659
start/end pages, 647-650
status, checking, 660
support, 638
WYSIWYG, 641

PrintRange function, 653
PrintSelection function, 653
priority levels (threads),

432-433
Process Viewer tool, 697
processes, viewing, 697
programs, see applications
progress bars

messages, 273-275
panes, 271-272

Project Settings dialog box,
678

properties (ActiveX controls)
ambient, 474
custom, 474
extended, 474
property page, 483-485
specifying, 475
Squiggle control, 481-483

control settings, 484
control variables, 484
layout, 483

protocols, 497
prototypes (functions), 546

declaring, 548
example, 547

PtInRect function, 715
pull-down menus, 106

Black menu functions, 224
Blue menu functions,

224-225
creating, 222
properties, 223

PulseEvent function, 440

Q-R

QuickWatch window (debug-
ger), 694

radio buttons, 27
rand function, 388
random data generation

FlexGrid control, 189-191
random squiggle generator

ClearDrawing function,
391

color table, 392
constructor, 391
creating, 385
Draw function, 390
#include directives, 392
NewDrawing function,

389, 397-398
NewLine function, 386,

399
rand function, 388
Serialize function, 390
SetRect function, 386
variables, 385

RandomStringValue function,
190-191

.rc filename extension, 108
readOnly flag (recordsets),

318
RecalcLayout function, 256
Receive function, 502
receiving messages, 502-503,

516-517
records

adding
AddNewRecord func-

tion, 295-297
ADO, 357, 373-374
ODBC, 320, 331-334

counting, 297
creating, 374-375
current record number,

returning, 297-298
deleting

ADO, 357, 375-376
ODBC, 321, 334-335

displaying current, 306-307
fields, accessing, 353-354
saving, 308-312, 370-371
updating, 356

recordsets, 346
accessing

ADO, 353-354
ODBC, 319

closing, 357
editing, 320-321
navigating, 298

ADO, 352-353
GetCurRecord function,

298
GetFirstRecord function,

299
GetLastRecord function,

301
GetNextRecord func-

tion, 299
GetPrevRecord function,

300
MoveFirst function, 372
ODBC, 319-320
OnBfirst function, 307
OnBlast function, 308
OnDataFirst function,

371
opening, 317-318
types, 318

rectangles
center, 713
drawing, 168-171
height/width, 713
hit-testing, 715-716
intersection, 713

762 print jobs

035 31240-9 index 4/27/00 1:14 PM Page 762

negative height/width, 717
sizing, 715

redirection operator (<<), 546
reference variables, 557-558
Refresh button (browser

application), 533-535
Refresh function, 524, 533
RefreshBoundData function,

368-369
REGISTERDROP toolbar

control style, 250
Registered ActiveX Controls

folder, 184
registering ActiveX controls

Registered ActiveX
Controls folder, 184-186

regsvr32 utility, 183
Registers window (debugger),

694
regsvr32 utility, 184
regular DLLs, see DLLs
relational operators, 550
Release mode, 678
remote debugging, 683-684
RemoveAll function, 302
RemoveAt function, 702-704
RemoverAll function, 702
ReportError function, 669
Requery function, 320-321
ResetEvent function, 440
resizing bitmaps, 155
Resource View, 8
resources

exception handling, 670
leaks, 151
resource files

defined, 108
editing, 257-260

ResumeThread function, 469
return statement, 546
return values

EnumFontFamProc func-
tion, 124

MessageBox function,
85-86

ReverseFind function, 728
RGB function, 51
Right function, 727
Run Program buttons, creat-

ing, 42-43
running applications, 543-544
runtime licenses, 477

S

saving
drawings, 215-217, 395
records, 308-312, 370-371

scope operator (::), 568
SDI (Single Document

Interface) applications
classes

CDocument, 200
CFrameView, 200
CObArray class, 205
CView, 200
CWinApp, 200

color
AddLine function,

221-222
color table specification,

219-220
GetColor function, 222
lines, 218-219
OnNewDocument func-

tion, 220-221
DbOdbc database

adding records, 331-334
application shell,

324-325
CDbOdbcSet construc-

tor, 331
control properties,

325-327
control variables, 328
Database field variables,

329

deleting records,
334-335

DoDataExchange func-
tion, 330

Document/View architec-
ture, 200

drawings
deleting, 214
saving, 215-217

exception handling, 207
#includes directives, 213
lines

adding, 206
counting, 207-208
drawing, 203-205
retrieving, 208

MDI applications, com-
pared, 239

mouse events, 209-211
printing, 637
pull-down menus

Black menu functions,
224

Blue menu functions,
224-225

creating, 222
properties, 223

rendering, 211-212
Select Database Tables dialog

box, 325
selecting

brushes, 153
fonts, 136

OnSelchangeLfonts
function, 138

SetMyFont function,
137

SelectObject function, 219
semaphores, 438-439
Send function, 502
sending messages, 502,

515-516
separators (menus), creating,

111

separators (menus), creating 763

035 31240-9 index 4/27/00 1:14 PM Page 763

serialization
classes

CArchive, 280
CModArt, 390
CTestAppDoc, 396, 425
design, 283-284

defined, 279
macros, 281

DECLARE_SERIAL,
282

IMPLEMENT_SERIAL,
282-283

ModArtDll project, 421
Serialize function, 281, 396

CModArt class, 390
declaring, 283
examples, 281, 291
SDI application,

215-216, 219
Serialize application

application shell, 284-285
clean-up functions, 302
controls

properties, 286-287
variables, 287

CPerson class, 288
constructor, 290
inline functions,

289-290
serializing, 291-294
variables, 289

document class
implementation, 295
variables, 294

documents, opening,
303-305

record class header, 310
records

adding, 295-297
counting, 297
current record numbers,

297-298
displaying, 306-307

navigating, 298-301,
307-308

saving, 308-312
views, 285

resetting, 309-310
view class, 305-306

Serialize function, 281, 396
CModArt class, 390
declaring, 283
example, 281, 291
SDI application, 215-216,

219
SetAbsolutePosition function,

319
SetAddress function, 530
SetAt function, 701, 704
SetButtonInfo function, 262
SetButtonStyle function, 252
SetButtonText function, 276
SetCapture function, 211
SetCheck function, 225, 255
SetColPosition function, 195
SetColSel function, 192
SetCurSel function, 269
SetCursor function, 59
SetDate function, 720
SetDateTime function, 720
SetDateTimeSpan function,

723
SetEvent function, 440
SetIndicators function, 272
SetLength function, 452, 479
SetMapMode function, 156,

448
SetMergeCol function, 189
SetMyFont function, 137-140
SetPaneText function, 277
SetParent function, 509
SetPixel function, 50
SetPoint function, 452
SetRect function, 386, 713
SetRectEmpty function, 713
SetRedraw function, 195
SetSize function, 701

SetSort function, 192
SetSquiggleLength function,

482
SetStatus function, 720
SetTextArray function, 189
SetTime function, 720
SetTimer function, 72
SetViewportOrg function, 448
SetWindowText function, 277
shapes

center, 713
circles, 168-171
height/width, 713, 717
hit-testing, 715-716
intersection, 713
lines

colors, 164-165
DrawLine function,

165-166
NewLine function,

386-388, 399-401,
411-416, 419-420

rectangles, 168-171
sizing, 715
see also drawings; graphics

ShellExecute function, 44
short int data type, 548
ShowBitmap function,

174-175
ShowControlBar function,

255
ShowWindow function, 255
SIMPLE combo box style,

264
Single Document Interface,

see SDI applications
single stepping (debugging)

breakpoints
setting, 689-690
toggling on/off, 690

step options, 691-692
Size function, 713
sizing

bitmaps, 155

764 serialization

035 31240-9 index 4/27/00 1:14 PM Page 764

combo boxes, 276
coordinate-handling classes

CSize class, 717-718
operator overloads, 718

rectangles, 715
strings, 725
toolbar borders, 251

slash command, 545
snapshot record sets, 318
Sock application (sockets)

connections
closing, 517-519
opening, 512-514

controls, 505
OnRType function, 508
properties, 506-507
variables, 508

#include directives, 510
initialization code, 511
messages

receiving, 516-517
sending, 515-516

shell, 505
socket class

member variables, 509
OnAccept function, 510
SetParent function, 509

sockets, 497
connections

closing, 503, 517-519
opening, 500-501,

511-514
creating, 498-500, 509-511
error handling, 504
event handling, 503-504
messages

listening for, 501
receiving, 502-503,

516-517
sending, 502, 515-516

ports, 498
see also Sock application

SORT combo box style, 264
sorting FlexGrid control,

192-193
Source Browser

base classes option, 682
Call Graph option, 683
Callers Graph option, 683
Definitions and References

option, 681
derived classes option, 683
File Outline option, 682
identifiers, 681

Spinner application
framework

control properties,
441-442

control variables, 442
idle processing threads

building, 457-459
continuous tasks, 459
OnIdle function, 455
starting, 456
stopping, 456

independent threads, 460
Main thread function,

461
starting, 462-463
stopping, 462-463
triggering from view

object, 463-464
shutdown procedures, 467
spinners

arrays, 449-450
class declaration,

444-445
color table, 445-446
designing, 443
drawing, 446-447
initializing, 452-455
positioning, 450-452
source file, 449
spinning, 455
start/end points, 448-449
variables, 443-444
viewpoint, 448

spooling print jobs, 659

Spy++ tool
Messages view, 695-696
Processes view, 697
Threads view, 697
Windows view, 696

Squiggle control
CModArt class modifica-

tions
constructor, 479
GetLength function, 479
member variables, 478
NewDrawing function,

480
NewLine function, 480
SetLength function, 479

control shell, 477-478
event handling, 485-487
events, 489-491
functions

class constructor, 485
LoadDrawing, 488-491
OnClick, 487
OnDraw, 486

#include directives, 481
properties

adding, 481-482
KeepCurrentDrawing,

483
NumberSquiggles, 483
property page, 483-485
SquiggleLength, 482

testing, 491-492
SquiggleLength property

(Squiggle control), 482
SQL_FETCH_ABSOLUTE

navigation type (Move func-
tion), 320

SQL_FETCH_FIRST naviga-
tion type (Move function),
320

SQL_FETCH_LAST naviga-
tion type (Move function),
320

SQL_FETCH_NEXT naviga-
tion type (Move function),
320

SQL_FETCH_NEXT navigation type 765

035 31240-9 index 4/27/00 1:14 PM Page 765

SQL_FETCH_PRIOR navi-
gation type (Move function),
320

SQL_FETCH_RELATIVE
navigation type (Move func-
tion), 320

stack
size, 433
viewing, 693-694

Standard toolbar, 10
start/end pages (print jobs),

647-650
StartDoc function, 659
starting applications

counting timer, 76-77
Menu Designer, 109
OnIdle tasks, 456
Run Program buttons, 42-43
threads, 462-463

StartPage function, 660
statements

catch, 663-664
enum, 571
if, 549
new, 666
return, 546
struct, 559
throw, 666
try, 663-664
typedef, 548
see also directives

static library project
class definitions, 385
drawing area, setting, 386
drawings

clearing, 390-391
creating, 386-389
displaying, 389-390
serializing, 390

project module, 384-385
test application, 392-395

static text control, 26

status bars
messages, 273-275
panes, 271-272

stepping through code, see
single stepping

Stop buttons, creating
browser application,

532-533
counting timer, 79-81

Stop function, 524, 532
stopping

counting timer
OnStoptimer function,

77
Stop button, 79-81

OnIdle tasks, 456
print jobs, 657
threads, 462-463

strcpy function, 726
StretchBlt function, 155
strikeout effect (fonts), 127
string manipulation class

case sensitivity, 727
constructor types, 724
formatting, 728-729
manipulation functions, 727
NULL-terminated types,

726
searches, 727-728
size, 725
text, adding, 725

strlen function, 726
struct statement, 559
structures

accessing, 561
defined, 559
ENUMLOGFONTEX, 124
example, 560
LOGFONT, 123
NEWTEXTMETRICEX,

124
OPENFILENAME, 102

SubtractRect function, 714

suspended mode (threads),
433

SuspendSpinner function,
462-463

SuspendThread function, 469
synchronizing threads,

434-435
critical sections, 436
events, 439-440
mutexes, 436-438
semaphores, 438-439

T

tab order (controls), specify-
ing, 30-31

Tab Order command (Layout
menu), 30

Tasking application, see
Spinner application

TBSTYLE_ALTDRAG tool-
bar control style, 250

TBSTYLE_AUTOSIZE tool-
bar button style, 252

TBSTYLE_BUTTON toolbar
button style, 252

TBSTYLE_CHECK toolbar
button style, 252

TBSTYLE_CHECKGROUP
toolbar button style, 252

TBSTYLE_CUSTOMERASE
toolbar control style, 250

TBSTYLE_DROPDOWN
toolbar button style, 252

TBSTYLE_FLAT toolbar
control style, 250

TBSTYLE_GROUP toolbar
button style, 252

TBSTYLE_LIST toolbar con-
trol style, 250

TBSTYLE_NOPREFIX tool-
bar button style, 253

766 SQL_FETCH_PRIOR navigation type

035 31240-9 index 4/27/00 1:14 PM Page 766

TBSTYLE_REGISTER-
DROP toolbar control style,
250

TBSTYLE_SEP toolbar but-
ton style, 253

TBSTYLE_TOOLTIPS tool-
bar control style, 250

TBSTYLE_TRANSPARENT
toolbar control style, 250

TBSTYLE_WRAPABLE
toolbar control style, 250

templates, 707-710
Test Container (ActiveX con-

trols), 491-492
TestApp application

application shell, 393
CTestAppDoc class,

423-424
document functions

DeleteContents function,
425

GetDrawing, 425
OnNewDocument, 424
Serialize, 425

drawings
creating, 395
deleting, 396
saving, 396
viewing, 397

#include directives, 393
view functions, 425-426

testing ActiveX controls,
491-492

text
buttons, 276
fonts

CreateFont function,
125-129

listing available,
122-124, 131-133

overview, 122
sample application,

129-131

selecting, 136-138
setting, 135-136

status bars, 273-275
strings, adding, 725

TEXT mapping mode, 156
ThreadFunc function, 461,

470
threads

arrays, 433
clean-up procedures,

466-468
idle processing threads, 431

building, 457-459
continuous tasks, 459
OnIdle function, 455
starting, 456
stopping, 456

independent threads, 431,
460

creating, 432
main thread function,

461
priorities, 432-433
stack size, 433
starting, 462-463
stopping, 462-463
suspended mode, 433
triggering from view

object, 463-464
synchronizing, 434-435

critical sections, 436
events, 439-440
mutexes, 436-438
semaphores, 438-439

viewing, 697
throw keyword, 666
ThrowErrno function, 671
throwing exceptions, 666-667
ThrowOsError function, 671
tilde (~), 564
time-handling classes,

718-719
COleDateTime class,

719-722

formatting code,
720-721

operator overloads, 722
COleDateTimeSpan class,

722-724
timers

clock timer
OnInitDialog function,

71-72
OnTimer function, 73

counting timer
control variables, 74-75
OnChangeInterval func-

tion, 75
OnInitDialog function,

76
OnTimer function, 77-79
starting, 76-77
Stop button, 79-81
stopping, 77

defined, 68
IDs, 70-71
interval range, 81
maximum number of, 81

TIME_CRITICAL thread
priority, 432

toolbars, 244-245
attaching to application

frames, 247-249
Build toolbar, 10
buttons

adding, 245
deleting, 245
icons, 246
styles, 252-253
text, 276

combo boxes
creating, 260-266
event handling, 267-268
placeholders, 262
populating, 264
positioning, 263
resource files, 257-260
sizing, 276

toolbars 767

035 31240-9 index 4/27/00 1:14 PM Page 767

styles, 263-264
updating, 268-270

creating, 246
borders, 251
child window IDs, 251
control styles, 250
CreateEx function, 250
IDs, 247
toolbar styles, 250-251

docking, 253-254
hiding, 254

OnUpdateViewColorbar
function, 255

OnViewColorbar func-
tion, 256

ShowControlBar func-
tion, 255

ShowWindow function,
255

loading, 250
moving, 10
Standard toolbar, 10
status bars

adding panes, 271-272
messages, 273-275

toggling on/off, 10
WizardBar, 10

tools
MFC Tracer, 698
OLE/COM Object Viewer,

697
Process Viewer, 697
regsvr32, 183
Spy++ tool

Messages view, 695-696
Processes view, 697
Threads view, 697
Windows view, 696

TOOLTIPS toolbar control
style, 250

TopLeft function, 712
TPM_CENTERALIGN flag,

118

TPM_LEFTALIGN flag, 118
TPM_LEFTBUTTON flag,

118
TPM_RIGHTBUTTON flag,

118
TRACE macros, 685-687, 708

listing, 686-687
output, 687

tracking mouse coordinates,
53-55

TrackPopupMenu function,
117

TRANSPARENT toolbar con-
trol style, 250

TrimLeft function, 727
TrimRight function, 727
troubleshooting

classes, 708-709
hash keys, 710
menu colors, 240
mnemonic conflicts, 31
resource leaks, 151
see also debugging

techniques
TrueType fonts, listing avail-

able, 140
try keyword, 663-664
try...catch blocks, 207
turning on/off

edit boxes, 39-41
maximize/minimize buttons,

21-22
toolbars, 10

TWIPS mapping mode, 156
typedef statement, 548
typefaces, see fonts
types, see data types

U

underlined fonts, 127
Uniform Resource Locators,

see URLs

UnionRect function, 713
unions, 714
Unlock function, 439-440
unlocking semaphores, 439
unsigned int data type, 548
unsigned long int data type,

548
unsigned short int data type,

548
Update function, 320, 356
UpdateBoundData function,

370-371
UpdateColorbar function,

269-270
UpdateData function, 35, 456
UpdateWidthCB function,

269
UPDATE_COMMAND_UI

function, 225-227
updating

combo boxes, 268-270
records, 356

URLs (Uniform Resource
Locators)

displaying, 529-530
specifying, 526-528

utilities, see tools

V

variables
controls, assigning, 32-33
CPrintInfo function, 642
data types

checking, 691-694
sizes, 554-555
values, 547-548

declaring, 548
default access permissions,

292

768 toolbars

035 31240-9 index 4/27/00 1:14 PM Page 768

global, 552-553
local, 552-553
naming conventions, 33,

554
reference variables, 557-558

Variables window (debugger),
692-694

VERIFY macro, 687-689
View menu, 107
viewing drawings, 396

GetDrawing function, 397
OnDraw function, 397, 426

viewpoints, 448
views, 8
virtual key codes, 65
virtual memory, 702
visibility of toolbars, 254

menu updates, 255
toggling, 255-256

W-Z

WaitForSingleObject func-
tion, 463

Watch window (debugger),
692-694

Web browsers, see browsers
WebBrowse application

application shell, 525
buttons

Back, 531
Forward, 531
Refresh, 533-535
Stop, 532-533

URLs
displaying, 529-530
specifying, 526-528

weight (fonts), specifying,
126-127

Width function, 713
Window menu, 107

windows, see menus; dialog
windows

Windows messages, see mes-
sages

WinExec function, 44
Winsock (Windows Sockets

API), 497-498
connections

closing, 503, 517-519
opening, 500-501,

511-514
error handling, 504
event handling, 503-504
messages

listening for, 501
receiving, 502-503,

516-517
sending, 502, 515-516

sockets, creating, 498-500,
509-511

see also Sock application
WizardBar, 10
wizards

Class Wizard
Member Variables tab,

32
Message Maps tab, 34

WizardBar, 10
WM_CONTEXTMENU mes-

sage, 237
WM_KEYDOWN message,

57
WM_KEYUP message, 57
WM_LBUTTONDBLCLK

message, 48
WM_LBUTTONDOWN mes-

sage, 48
WM_LBUTTONUP message,

48
WM_MOUSEMOVE mes-

sage, 48
WM_MOUSEWHEEL mes-

sage, 48

WM_RBUTTONDBLCLK
message, 48

WM_RBUTTONDOWN mes-
sage, 48

WM_RBUTTONUP message,
48

WM_TIMER message, 68
workspace

creating, 11-12, 541-543
defined, 8

WRAPABLE toolbar control
style, 250

WS_CHILD style
combo boxes, 263
toolbars, 251

WS_DISABLED combo box
style, 263

WS_GROUP combo box
style, 263

WS_HSCROLL combo box
style, 263

WS_TABSTOP combo box
style, 263

WS_VISIBLE style
combo boxes, 263
toolbars, 251

WS_VSCROLL combo box
style, 263

WYSIWYG (what you see is
what you get) printing, 641

WYSIWYG 769

035 31240-9 index 4/27/00 1:14 PM Page 769

035 31240-9 index 4/27/00 1:14 PM Page 770

035 31240-9 index 4/27/00 1:14 PM Page 771

035 31240-9 index 4/27/00 1:14 PM Page 772

	Visual C++ ® 6 in 21 Days Teach Yourself
	Copyright © 1998 by Sams Publishing
	Overview
	Contents

	Introduction
	Week 1 At a Glance
	DAY 1 The Visual C++ Development Environment—Building Your First Visual C++ Application
	DAY 2 Using Controls in Your Application
	DAY 3 Allowing User Interaction—Integrating the Mouse and Keyboard in Your Application
	DAY 4 Working with Timers
	DAY 5 Getting User Feedback— Adding Dialog Boxes to Your Application
	DAY 6 Creating Menus for Your Application
	DAY 7 Working with Text and Fonts
	Week 1 In Review

	Week 2 At a Glance
	DAY 8 Adding Flash— Incorporating Graphics, Drawing, and Bitmaps
	DAY 9 Adding ActiveX Controls to Your Application
	DAY 10 Creating Single Document Interface Applications
	DAY 11 Creating Multiple Document Interface Applications
	DAY 12 Adding Toolbars and Status Bars
	DAY 13 Saving and Restoring Work—File Access
	DAY 14 Retrieving Data from an ODBC Database
	Week 2 In Review

	Week 3 At a Glance
	DAY 15 Updating and Adding Database Records Through ADO
	DAY 16 Creating Your Own Classes and Modules
	DAY 17 Sharing Your Functionality with Other Applications—Creating DLLs
	DAY 18 Doing Multiple Tasks at One Time—Multitasking
	DAY 19 Building Your Own Widgets—Creating ActiveX Controls
	DAY 20 Internet Applications and Network Communications
	DAY 21 Adding Web Browsing Functionality to Your Applications
	Week 3 In Review

	APPENDIX A C++ Review
	APPENDIX B Answers
	APPENDIX C Printing and Print Previewing
	APPENDIX D Understanding and Exception Handling
	APPENDIX E Using the Debugger and Profiler
	APPENDIX F Using MFC’s Helper Classes
	INDEX

