Tcl and the Tk Toolkit

John K. Ousterhout
Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley CA 94720

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal
use only Any other form of duplication or reproduction requires prior written permis-
sion of the author or publishérhis statement must be easily visible on the first page
of any reproduced copies. The publisher does riet wfarranties in regard to this
draft.

Note to eaders:

This manuscript is a partial draft of a book to be published in early 1994 by Addison-
Wesley (ISBN 0-201-63337-X). Addisonéaley has given me permission to make
drafts of the book available to thelEommunity to help meet the need for introduc-
tory documentation oncland Tk until the book becomes available. Please observe
the restrictions set forth in the copyright notice above: you're welcome to make a
copy for yourself or a friend but any sort ofgarscale reproduction or reproduction

for profit requires advance permission from Addisoas\&y

| would be happy to receive any comments you might have on this draft; send them to
me via electronic mail atuster@cs.berkeley.edu . I'm patrticularly interested

in hearing about things that you foundfidifilt to learn or that werenadequately
explained in this document, but I'm also interested in hearing about inaccuracies,
typos, or any other constructive criticism you might have.

DRAFT (8/12/93): Distribution Restricted

Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Organization of the book 3
1.3 Notation 4

Chapter 2 An Overview of Tcl and Tk 5

2.1 Getting started 5

2.2 Hello world with Tk 7

2.3 Script files 9

2.4 Variables and substitutionsl0

2.5 Control structures 11

2.6 Event bindings 13

2.7 Subprocesses15

2.8 Additional features ofdl and Tk 18

2.9 Extensions and applicationsl8

2.9.1 Expect 19

2.9.2 Extended Tcl 19

293 XF 20

2.9.4 Distributed programming 20
295 Ak 22

Chapter 3 Tcl Language Syntax 25
3.1 Scripts, commands, and word25
3.2 Evaluating a command26
3.3 Variable substitution 28
3.4 Command substitution 29
3.5 Backslash substitution30
3.6 Quoting with double-quotes30
3.7 Quoting with braces 32
3.8 Comments 33
3.9 Normal and exceptional returns33

3.10 More on substitutions 34

DRAFT (8/12/93): Distribution Restricted

Chapter 4

Chapter 5

Chapter 6

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2

5.3
5.4
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Variables 37

Simple variables and the set commar&¥
Arrays 38

Variable substitution 39

Removing variables: unset40
Multi-dimensional arrays 41

The incr and append command41
Preview of other variable facilities42

Expressions 43

Numeric operands 43

Operators and precedencd4

5.2.1 Arithmetic operators 44
5.2.2 Relational operators 46
5.2.3 Logical operators 46
5.2.4 Bitwise operators 46
5.2.5 Choice operator 46

Math functions 47
Substitutions 47

String manipulation 49
Types and conversions49
Precision 50

Lists 51

Basic list structure and the lindex commartsil
Creating lists: concat, list, and llengtb3

Modifying lists: linsert, Ireplace, Irange, and lapperi#
Searching lists: Isearch56

Sorting lists: Isort 56

Converting between strings and lists: split and jo&Y
Lists and commands58

DRAFT (8/12/93): Distribution Restricted

Chapter 7

Chapter 8

Chapter 9

Chapter 10

7.1
7.2
7.3
7.4
7.5
7.6

8.1
8.2
8.3
8.4
8.5

9.1
9.2
9.3
9.4

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

Control Flow 61

The if command 61

Looping commands: while, fpand foreach 63
Loop control: break and continues5

The switch command 65

Eval 67

Executing from files: source68

Procedures 69

Procedure basics: proc and retur®9

Local and global variables71

Defaults and variable numbers ofaments 72
Call by reference: upvar73

Creating new control structures: uplevel4

Errors and Exceptions77
What happens after an error77
Generating errors fromcTscripts 79
Trapping errors with catch80
Exceptions in general 81

String Manipulation 85

Glob-style pattern matching85

Pattern matching with regular expressior&s

Using regular expressions for substitutior0
Generating strings with format91

Parsing strings with scan93

Extracting characters: string index and string rangé
Searching and comparisor94

Length, case conversion, and trimming5

DRAFT (8/12/93): Distribution Restricted

Chapter 11

Chapter 12

Chapter 13

Chapter 14

111
11.2
11.3
114
11.5
11.6
11.7
11.8

121
12.2
12.3
12.4
125

131
13.2

13.3
134
135
13.6
13.7

141

Accessing Files 97

File names 97

Basic file /O 99

Output bufering 101

Random access to filesl01

The current working directory 102
Manipulating file names: glob and fileL02
File information commands 105

Errors in system calls 107

Processes 109

Invoking subprocesses with exe@09

I/0 to and from a command pipelinel12
Process ids 113

Environment variables 113

Terminating the @ process with exit 113

Managing Tcl Internals 115

Querying the elements of an arragl15

The info command 117

13.2.1 Information about variables 117
13.2.2 Information about procedures 120
13.2.3 Information about commands 121
13.2.4 Tclversion and library 122

Timing command execution122
Tracing operations on variabled23
Renaming and deleting command$25
Unknown commands 126
Auto-loading 128

History 131
The history list 131

DRAFT (8/12/93): Distribution Restricted

14.2 Specifying events 133

14.3 Re-executing commands from the history lidt33
14.4 Shortcuts implemented by unknowri34

14.5 Current event number: history nextid 34

DRAFT (8/12/93): Distribution Restricted

DRAFT (8/12/93): Distribution Restricted

Chapter 1
| ntroduction

11

Introduction

This book is about two packages calleldnd Tk. Dgether they provide a programming
system for developing and using graphical user interface (GUI) applicatmssaids
for “tool command language” and is pronounced “tickle”; is a simple scripting language
for controlling and extending applications. It provides generic programming facilities that
are useful for a variety of applications, such as variables and loops and procedures. Fur-
thermore, Tl is embeddableits interpreter is implemented as a library of C procedures
that can easily be incorporated into applications, and each application can extend the core
Tcl features with additional commands specific to that application

One of the most useful extensions @i Tk. It is a toolkit for the X Widow Sys-
tem, and its name is pronounced “tee-kay”. Tk extends the cbfacilities with addi-
tional commands for building user interfaces, so that you can construct Motif user
interfaces by writing @l scripts instead of C code. LikelTTk is implemented as a library
of C procedures so it too can be used in marfgréifit applications. Individual applica-
tions can also extend the base Tk features with newintseface widgets and geometry
managers written in C.

Togethey Tcl and Tk provide four benefits to application developers and users. First,
Tcl makes it easy for any application to have a powerful scripting language. All that an
application needs to do is to implement a few nelxc@mmands that provide the basic
features of that application. Then the application can be linked wittctlt&rpreter to
produce a full-function scripting language that includes both the commands provided by
Tcl (called theTcl core) and those implemented by the application (see Figure 1.1).

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

Introduction

Tcl Library Application
Tcl Application
Interpreter Data Structures
[o Qaaa
Built-in Commands Application Command

Figure 1.1. To create a new application based ah @n application developer designs new C
structures specific to that application and writes C code to implement a fevelneymimands. Th
Tcl library provides everything else that is needed to produce a fully programmable comma
language. The application can then be modified and extended by wadtiscyipts.

For example, an application for reading electronic bulletin boards might contain C
code that implements onellcommand to query a bulletin board for new messages and
another Tl command to retrieve a given message. Once these commandsoesistpls
can be written to cycle through the new messages from all the bulletin boards and display
them one at a time, or keep a record in disk files of which messages have been read and
which havert, or search one or more bulletin boards for messages on a particular topic.
The bulletin board application would not have to implement any of these additional func-
tions in C; they could all be written aslBcripts, and users of the application could write
additional Tl scripts to add more functions to the application.

The second benefit otlfand Tk is rapid development. For example, many interest-
ing windowing applications can be written entirely aksEtripts with no C code at alll,
using a windowing shell calleglish . This allows you to program at a much higher level
than you would in C or C++, and many of the details that C programmers must address are
hidden from you. Compared to toolkits where you program entirely in C, such as Xt/

Motif, there is much less to learn in order to uskahd Tk and much less code to write.

New Tcl/Tk users can often create interesting user interfaces after just a few hours of
learning, and many people have reported ten-fold reductions in code size and development
time when they switched from other toolkits td &nd Tk.

Another reason for rapid development withh and Tk is that @l is an interpreted lan-
guage. When you use alBpplication such asish you can generate and execute new
scripts on-the-fly without recompiling or restarting the application. This allows you to test
out new ideas and fix bugs very rapidince Tl is interpreted it executes more slowly
than compiled C code, of course, but modern workstations are surprisingly fast. For exam-
ple, you can execute scripts with hundreds or even thousandkamiiimands on each
movement of the mouse with no perceptible ddiayhe rare cases where performance
becomes an issue, you can re-implement the most performance-critical parts afl your T
scripts in C.

DRAFT (8/12/93): Distribution Restricted

1.2 Organization of the book 3

1.2

The third benefit of @l is that it makes an excellent “glue language”. Because it is
embeddable, it can be used for manjedént purposes in many fifent programs. Once
this happens, it becomes possible to writes€Eripts that combine the features of all the
programs. For example, any windowing application based on Tk can isslscaift to
any other Tk application. This feature makes multi-mede&ctf much more accessible:
once audio and video applications have been built with Tk (and there exist several
already), any Tk application can issue “record” and “play” commands to them. In addi-
tion, spreadsheets can update themselves from database applicatieinserisee edi-
tors can modify the appearance and behavior of live applications as they run, and so on.
Tcl provides thdingua francathat allows application to work together

The fourth benefit of dl is user convenience. Once a user leachadd Tk, he or she
can write scripts for anycTand Tk application merely by learning the few application-
specific commands for the new application. This should make it possible for more users to
personalize and enhance their applications.

Organization of the book

Chapter 2 uses several simple scripts to provide a quick overview of the most important
features of €l and Tk. It is intended to give you the flavor of the systems and convince
you that they are useful without explaining anything in detail. The remainder of the book
goes through everything again in a more comprehensive fashion. It is divided into four
parts:

¢ Part | introduces the d scripting language. After reading this section you will be able
to write scripts for €l applications.

* Part Il describes the additionatlfcommands provided by Tk, which allow you to cre-
ate useiinterface widgets such as menus and scrollbars and arrange them in windowing
applications. After reading this section you'll be able to create new windowing applica-
tion aswish scripts and write scripts to enhance existing Tk applications.

* Part |1l discusses the C procedures in thHibrary and how to use them to create new
Tcl commands. After reading this section you'll be able to write nepdckages and
applications in C.

* Part |V describes TIs library procedures. After reading this section you'll be able to
create new widgets and geometry managers in C.

Each of these major parts contains about ten short chapters. Each chapter is intended to be
a self-contained description of a piece of the system, and you need not necessarily read the
chapters in ordet recommend that you start by reading through Chapters 3-9 quickly
then skip to Chapters XXX-YY)Yhen read other chapters as you need them.

Not every feature ofd and Tk is covered here, and the explanations genared to
provide a smooth introduction rather than a terse reference source. A separate set of refer-

DRAFT (8/12/93): Distribution Restricted

Introduction

1.3

ence manual entries is available with tleednd Tk distributions. These are much more
terse but they cover absolutely every feature of both systems.

This book assumes that you are familiar with the C programming language as defined
by the ANSI C standard, and that you have some experience with UNIX anthXGtder
to understand Part IV you will need to understand many of the features provided by the
Xlib interface, such as graphics contexts and window attributes; hqwiesse details are
not necessary except in Part Méu need not know anything about either dr Tk before
reading this book; both of them will be introduced from scratch.

Notation

Throughout the book | useGourier font for anything that might be typed to a com-
puter such as variable names, procedure and command nachssifts, and C code.
The examples ofdl scripts use notation like the following:
seta 44
0 44
Tcl commands such asét a 44 " is the example appear in Courier and their results,
such as 44" in the example, appear in Courier oblique. Thesymbol before the result
indicates that this is a normal return value. If an error occurséh@mmand then the
error message appears in Courier oblique, precededlbgyanbol to indicate that this is
an error rather than a normal return
seta 44 55
0 wrong # args: should be "set varName ?newValue?"

When describing the syntax oflfcommands, Courier oblique is used for formal
argument names. If angument or group of guments is enclosed in question marks it
means that the guments are optional. For example, the syntax odéhecommand is as
follows:

set varName 7newValue ?
This means that the wos#t would be entered verbatim to invoke the command, while
varName andnewValue are the names gkt 's aguments; when invoking the com-
mand you would type a variable name insteachoName and a new value for the vari-
able instead ofiewValue . ThenewValue argument is optional.

DRAFT (8/12/93): Distribution Restricted

Chapter 2
An Overview of Tcl and Tk

2.1

This chapter introducescifand Tk with a series of scripts that illustrate the main features
of the systems. Although you should be able to start writing simple scripts after reading
this chapterthe explanations here are not intended to be complete. All of the information
in this chapter will be revisited in more detail in later chapters, and several important
aspects of the systems, such as their C interfaces, are not discussed at all in this chapter
The purpose of this chapter is to show you the overall structurd ah@ Tk and the

kinds of things they can do, so that when individual features are discussed in detail you'll
be able to see why they are useful.

Getting started

In order to invoke @l scripts you must run aclfapplication. If El is installed on your sys-
tem then there should exist a simptag Jhell application callettlsh , which you can
use to try out some of the examples in this chaptec(ifids not been installed on your
system then refer to Appendix A for information on how to obtain and instalyfig the
command

tclsh
to your shell to invokéclsh ; tclsh will start up in interactive mode, readingl Tom-
mands from its standard input and passing them todhat&rpreter for evaluation. For
starters, type the following commandtétsh

expr2+2
Tclsh will print the result 4” and prompt you for another command.

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

An Overview of Tcl and Tk

This example illustrates several featuresaf First, Il commands are similar in
form to shell commands. Each command consists of one onwmowis separated by
spaces or tabs. In the example there are four wexgs:, 2, +, and2. The first word of
each command is its name: the name selects a C procedure in the application that will
carry out the function of the command. The other wordaig@mentghat are passed to
the C proceduré&xpr is one of the core commands built into tlodifterpreterso it
exists in every @l application. It concatenates itgaments into a single string and evalu-
ates the string as an arithmetic expression.

Each Tl command returns a result string. Forétxer command the result is the
value of the expression. Results are always returned as strirggrsaonverts its
numerical result back to a string in order to return it. If a command has no meaningful
result then it returns an empty string.

From now on | will use notation like the following to describe examples:

expr2+2
o 4

The first line is the command you type and the second line is the result returned by the
command. Thél symbol indicates that the line contains a return valud;lthll not
actually be printed out biglsh . | will omit return values in cases where they aren’
important, such as sequences of commands where only the last comreanti’matters.
Commands are normally terminated by newlines, so when you are typatghto
each line normally becomes a separate command. Semi-colons also act as command sepa-
rators, in case you wish to enter multiple commands on a single line. It is also possible for
a single command to span multiple lines; you'll see how to do this later
Theexpr command supports an expression syntax similar to that of expressions in
ANSI C, including the same precedence rules and most of the C operators. Here are a few
examples that you could typettish
expr 3 <<2
o 12
expr 14.1*6
0 84.6
expr(3>4) || (6<=7)
o1
The first example illustrates the bitwise left-shift operatorThe second example shows
that expressions can contain real values as well as integer values. The last example shows
the use of relational operatorsand<= and the logical or operatfjr . As in C, boolean
results are represented numerically with 1 for true and O for false.
To leavetclsh , invoke theexit command:
exit
This command will terminate the application and return you to your shell.

DRAFT (8/12/93): Distribution Restricted

2.2 Hello world with Tk 7

2.2

R S

I |hend .| |
— Hello, wuﬂd!l

Figure 2.1. The “hello world” application. All of the decorations around the “Hello, world!” bu
are provided by thenwnwindow manageif you use a dferent window manager then your
decorations may be @#frent.

Hello world with Tk

Although Tel provides a full set of programming features such as variables, loops, and
procedures, it is not intended to be a stand-alone programming environahént. T
intended to be used as part of applications that provide their civaorimands in addi-

tion to those in thed core. The application-specific commands provide interesting prim-
itives and Tl is used to assemble the primitives into useful functiocishyfitself isnt

very interesting and it is hard to motivate all of' § facilities until you have seen some
interesting application-specific commands to use them with.

Tk provides a particularly interesting set of commands to use walith@rogramming
tools. Most of the examples in the book will use an application calkd, which is sim-
ilar totclsh except that it also includes the commands defined by T&.cbkhmands
allow you to create graphical user interfacesclfand Tk have been installed on your
system then you can invokésh from your shell just likeéclsh ; it will display a small
empty window on your screen and then read commands from standard input. Here is a
simplewish script:

button .b -text "Hello, world!" -command exit

pack .b
If you type these twodl commands tavish the windows appearance will change to
what is shown in Figure 2.1. If you then move the pointer over the window and click
mouse button 1, the window will disappear ansh will exit.

There are several things to explain about this example. First let us deal with the syn-
tactic issues. The example contains two commadndn andpack , both of which
are implemented by Tk. Although these commands lode&rdifit than thexpr com-
mand in the previous section, they have the same basic structuredsathmands,
consisting of one or more words separated by white spacdéufiom command con-
tains six words and the pack command contains two words.

The fourth word of théutton command is enclosed in double quotes. This allows
the word to include white space characters: without the qudik; ” and “world! ”
would be separate words. The double-quotes are not part of the word itself; they are
removed by thedl interpreter before the word is passed to the command aglanent.

DRAFT (8/12/93): Distribution Restricted

An Overview of Tcl and Tk

For theexpr command the word structure doggnatter much sincexpr concate-
nates all its gguments togetheHowever for théutton andpack commands, and for
most €l commands, the word structure is important. Bhton command expects its
first agument to be the name of a window and the followiggigients to come in pairs,
where the first gument of each pair is the name afefiguration optiorand the second
agument is a value for that option. Thus if the double-quotes were omitted the value of
the-text option would be Hello, " and “world! " would be treated as the name of a
separate configuration option. Since there is no option defined with the vvanhd “ ”
the command would return an etror

Now let us move on to the behavior of the commands. The basic building block for a
graphical user interface in Tk isnadget A widget is a window with a particular appear-
ance and behavior (the terms “widget” and “window” are used synonymously in itk). W
gets are divided into classes such as buttons, menus, and scrollbars. All the widgets in the
same class have the same general appearance and bdtavixample, all button wid-
gets display a text string or bitmap and execute a particclaommand when they are
invoked with the mouse.

Widgets are aganized hierarchically in Tk, with names that reflect their position in
the hierarchyThemain widgetwhich appeared on the screen when you staitdd , has
the name “.”. The namé refers to a child of the main widgetidget names in Tk are
like file names in UNIX except that they us€' ‘as a separator character instead/df “
Thus.a.b.c refers to a widget that is a child of widget , which in turn is a child of
.a , which is a child of the main widget.

Tk provides one command for each class of widgets, which you invoke to create wid-
gets of that class. For example théton command creates button widgets. All of the
widget creation commands have the same form: the fgstrant is the name of a new
widget to create and additionagaments specify configuration options. feient widget
classes support dirent sets of options. Mgets typically have many options (there are
about 20 diferent options defined for buttons, for example), and default values are pro-
vided for the options that you daspecify When a widget creation command |ibet-
ton is invoked it creates a new window by the given name and configures it as specified
by the options.

Thebutton command in the example specifies two optietext , which is a
string to display in the button, ancbmmand, which is a Tl script to execute when the
user invokes the button. In this example4tmmmand option isexit . Here are a few
other button options that you can experiment with:

-background The background color for the button.
-foreground The color of the text in the button.

-font The name of the font to use for the button, such as
- times- medium-r-normal---120-* for a 12-point
Times Roman font.

DRAFT (8/12/93): Distribution Restricted

2.3 Script files 9

2.3

Thepack command makes the button widget appear on the screen. Creating a widget
does not automatically cause it to be displayed. Independent entitiegyestadtry man-
agersare responsible for computing the sizes and locations of widgets and making them
appear on the screen. Tipgck command in the example asks a geometry manager called
the packerto manageb . The command asks thét fill the entire area of its parent win-
dow; furthermore, if the parent has more space than needed by its child, as in the example,
the parent is shrunk so that it is jusglenough to hold the child. Thus when you typed
thepack command the main window shrunk from its original size to the size that appears
in Figure 2.1.

Script files

Note:

In the examples so far you have typetl Gdommands interactively talsh orwish .
You can also place commands into script files and invoke the script files just like shell
scripts. D do this for the hello world example, place the following text in a file named
hello

#!/usr/local/bin/wish -f

button .b -text "Hello, world!" -command exit

pack .b
This script is the same as the one you typed earlier except for the first line. Awifdr as
is concerned this line is a comment but if you make the file executable (type
“chmod 775 hello " to your shell, for example) you can then invoke the file directly
by typinghello to your shell. When you do this the system will inveksh , passing it
the file as a script to interprélish will display the same window shown in Figure 2.1
and wait for you to interact with it. In this case you will not be able to type commands
interactively to wish; all you can do is click on the button.
This script will only work ifvish is installed in/usr/local/bin . If wish has been
installed somewherelse then you'll need to change the first lineeftect its location on
your system.

In practice users of Tk applications rarely tymedommands; they interact with the
applications using the mouse and keyboard in the usual ways you would expect for graph-
ical applications. @ works behind the scenes where userstdwrmally see it. The
hello script behaves just the same as an application that has been coded in C with a tool-
kit such as Motif and compiled into a binary executable file.

During debugging, though, it is common for application developers to tigm-
mands interactivelyFor example, you could test out thedlo script by startingvish
interactively (typewish to your shell instead dfello). Then type the followingd
command:

source hello

DRAFT (8/12/93): Distribution Restricted

10

An Overview of Tcl and Tk

2.4

Source is a €l command that takes a file name agiarent. It reads the file and evalu-
ates it as adl script. This will generate the same user interface as if you had invoked
hello directly from your shell, but you can now type €ommands interactively too.
For example, you could edit the script file to changedbmmand option to
-command "puts Good-bye!; exit"
then type the following commands interactivelyigh without restarting the program:
destroy .b
source hello
The first command will delete the existing button and the second command will recreate
the button with the newcommand option. Now when you click on the button {inets
command will print a message on standard output befiste exits.

Variables and substitutions

Tcl allows you to store values in variables and use those values in commands. For exam-
ple, consider the following script, which you could type to eitblsh orwish :
seta 44
0 44
expr $a*4
0 176
The first command assigns the valdd ™ to variablea and returns the variabtevalue. In
the secon command t Becauses @l to performvariable substitutionthe Tl interpreter
replaces the dollesign and the variable name following it with the value of the variable,
so that the actual gmment received bgxpr is “44*4 ”. Variables need not be declared
in Tcl; they are created automatically when assignedanabe values are stored as
strings and arbitrary string values of any length are allowed. Of course, in this example an
error will occur inexpr if the value ofa doesnt make sense as an integer or real number
(try other values and see what happens).
Tcl also providegsommand substitutigrvhich allows you to use the result of one
command in an gument to another command:
seta 44
set b [expr $a*4]
0 176
Square brackets invoke command substitution: everything inside the brackets is evaluated
as a separatecliscript and the result of that script is substituted into the word in place of
the bracketed command. In this example the secgpuuireent of the second command will
be “176".

DRAFT (8/12/93): Distribution Restricted

2.5 Control structures 11

2.5 Control structures

The next example uses variables and substitutions along with some simple control struc-
tures to create acTprocedurgoower that raises a base to an integer power:
proc power {base p} {
set result 1
while {$p > 0} {
set result [expr $result*$bhase]
set p [expr $p-1]

return $result
}
If you type the above lines teish ortclsh , or if you enter them into a file and then
source the file, a new commanmmbwer will become available. The command takes two
arguments, a number and an integer powed its result is the number raised to the
power:

power 2 6
0O 64

power 1.15 5
0 2.01136

This example uses one additional pieceafsyntax: braces. Braces are like double-
quotes in that they can be placed around a word that contains embedded spaces, However
braces are dérent from double-quotes in two respects. First, braces nest. The last word
of theproc command starts after the open brace on the first line and contains everything
up to the close brace on the last line. Thiifterpreter removes the outer braces and
passes everything between them, including several nested pairs of brpoces, &s an
argument. The second tifence between braces and double-quotes is that no substitu-
tions occur inside braces, whereas they do inside quotes. All of the characters between the
braces are passed verbatinptoc without any special processing.

Theproc command takes threegaiments: the name of a procedure, a list gfiar
ment names separated by white space, and the body of the procedure, whitlsésiptT
Proc enters the procedure name into thEifiterpreter as a new command. Whenever the
command is invoked, the body of the procedure will be evaluated. While the procedure
body is executing it can access itguanents as variablesase will hold the first agu-
ment to power angd will hold the second gument.

The body of thggower procedure contains threeltommandsset , while , and
return . Thewhile command does most of the work of the procedure. It takes two
arguments, an expressiofig > 0 " and a bodywhich is another multi-linecT script.
Thewhile command evaluates its expressiaguanent and if the result is non-zero then
it evaluates the body as alBcript. It repeats this process over and over until eventually
the expression evaluates to zero. In the example, the bodywlfilee command multi-

DRAFT (8/12/93): Distribution Restricted

12

An Overview of Tcl and Tk

plies the result value dyase and then decrements Whenp reaches zero the result con-
tains the desired power bése .

Thereturn command causes the procedure to exit with the value of variable
result as the proceduretesult. If it is omitted then the return value of the procedure
will be the result of the last command in the procedusedy In the case gbower this
would be the result ofhile , which is always an empty string.

The use of braces in this example is crucial. The single mésuttifssue in writing
Tcl scripts is managing substitutions: making them happen when you want them and pre-
venting them from happening when you damant them. Braces prevent substitutions or
defer them until lateiThe body of the procedure must be enclosed in braces because we
don't want variable and command substitutions to occur at the time the body is passed to
proc as an agument; we want the substitutions to occur |atéren the body is evaluated
as a Tl script. The body of thewhile command is enclosed in braces for the same rea-
son: rather than performing the substitutions once, while parsingiitee command,
we want the substitutions to be performed over and eaeh time the body is evaluated.
Braces are also needed in tigg'> 0} " argument towvhile . Without them the value
of variablep would be substituted when parsing tit@le command; the expression
would have a constant value amtile would loop forever (you can try replacing some
of the braces in the example with double quotes to see what happens).

In the examples in this book | use a stylized syntax where the open brace fyu-an ar
ment that is adl script appears at the end of one line, the script follows on successive
lines indented, and the close brace is on a line by itself after the script. Although | think
that this makes for readable scriptsl doesnt require this particular syntax. Scripyar
ments are subject to the same syntax rules as any ajnenents; in fact thecT inter-
preter doest’even know that an gument is a script at the time it parses it. One

consequence of this is that the open parenthesis must be on the same line as the preceding

portion of the command. If the open brace is moved to a line by itself then the newline
before the open brace will terminate the command.

By now you have seen nearly the entickl&nguage syntax. The only remaining syn-
tactic feature is backslash substitution, which allows you to enter special characters such
as dollarsigns into a word without enclosing the entire word in braces. Notetiiat
andproc are not special syntactic elements ah They are just commands that take
arguments just like alld@ commands. The only special thing abatile andproc is
that they treat some of theigaiments asdl scripts and cause the scripts to be evaluated.
Many other commands also do this. Tutton command was one example @t®m-
mand option is a €l script), and you'll read about several other control structures later on,
such ador , foreach |, case, andeval .

One final note about procedures. The variables in a procedure are normally local to
that procedure and will not be visible outside the procedure. jpotier example the
local variables include thegumentdase andp as well as the variabtesult . A
fresh set of local variables is created for each call to a procedguen@mts are passed by
copying their values), and when a procedure returns its local variables are delated. V

DRAFT (8/12/93): Distribution Restricted

2.6 Event bindings 13

2.6

| |
=] power R

L |2.1 to the power |? is 180.109

Figure 2.2. A graphical user interface that computes powers of a base.

ables named outside any procedure are cgltduhl variablesthey last forever unless
explicitly deleted. ¥u'll find out later how a procedure can access global variables and
the local variables of other active procedures.

Event bindings

The next example provides a graphical front-end foptiveer procedure. In addition to
demonstrating two new widget classes it illustrates Bkiding mechanism. A binding
causes a particulaciTscript to be evaluated whenever a particular event occurs in a par-
ticular window The-command option for buttons is an example of a simple binding
implemented by a particular widget class. Tk also includes a more general mechanism that
can be used to extend the behavior of arbitrary widgets in nearly arbitrary ways.

To run the example, copy the following script into aitever and invoke the file
from your shell.

#!/usr/local/bin/wish -f
proc power {base p} {
set result 1
while {$p > 0} {
set result [expr $result*$bhase]
set p [expr $p-1]

return $result
}
entry .base -width 6 -relief sunken -textvariable base
label .labell -text "to the power"
entry .power -width 6 -relief sunken -textvariable power
label .label2 -text "is"
label .result -textvariable result
pack .base .labell .power .label2 .result \

-side left -padx 1m -pady 2m

bind .base <Return> {set result [power $base $power]}
bind .power <Return> {set result [power $hase $power]}

This script will produce a screen display like that in Figure 2.2. There are two entry wid-
gets in which you can click with the mouse and type numbers. If you type return in either

DRAFT (8/12/93): Distribution Restricted

14

An Overview of Tcl and Tk

of the entries, the result will appear on the right side of the windowcan compute dif-
ferent results by modifying either the base or the power and then typing return again.

This application consists of five widgets: two entries and three labels. Entries are wid-
gets that display one-line text strings that you can edit interactiMedytwo entries,

.base and.power , are used for entering the numbers. Each entry is configured with a
- width of 6, which means it will be lge enough to display about 6 digits, and a

- relief of sunken , which gives the entry a depressed appearance. The

- textvariable option for each entry specifies the name of a global variable to hold
the entrys text: any changes you make in the entry will be reflected in the variable and
vice versa.

Two of the labelslabell and.label2 , hold decorative text and the third,
result , holds the result of the power computation. Ttextvariable option for
result causes it to display whatever string is in global varieggelt
whereadabell and.label2 display constant strings.

Thepack command arranges the five widgets in a row from left to right. The com-
mand occupies two lines in the script; the backslash at the end of the first line is a line-con-
tinuation character: it causes the newline to be treated as a spaesid€&heoption
means that each widget is placed at the left side of the remaining space in the main widget:
first .base is placed at the left edge of the main winddwen.labell is placed at the
left side of the space not occupied.bgse , and so on. Thepadx and-pady options
make the display a bit more attractive by arranging for 1 millimeter of extra space on the
left and right sides of each widget, plus 2 millimeters of extra space above and below each
widget. The hi suffix specifies millimeters; you could also uge for centimeters, i*”
for inches, p” for points, or no suix for pixels.

Thebind commands connect the user interface tgptiveer procedure. Eachind
command has threeguments: the name of a windoan event specification, and el T
script to invoke when the given event occurs in the given windBeturn> specifies
an event consisting of the user typing the return key on the keyboard. Here are a few other
event specifiers that you might find useful:

<Button-1> Mouse button 1 is pressed.

<ButtonRelease-1> Mouse button 1 is released.

<Double-Button-1> Double-click on mouse button 1.

<1> Short-hand foxButton-1>

<Key-a> Key “a” is pressed.

<a> ora Short-hand fokKey-a> .

<Motion> Pointer motion with no buttons or modifier keys
pressed.

<B1-Motion> Pointer motion with button 1 pressed.

<Any-Motion> Pointer motion with any (or no) buttons or modifier

keys pressed.

DRAFT (8/12/93): Distribution Restricted

2.7 Subprocesses 15

2.7

The scripts for the bindings invoewer , passing it the values in the two entries,
and they store the resultiesult so that it will be displayed in theesult ~ widget.

These bindings extend the generic built-in behavior of the entries (editing text strings)
with application-specific behavior (computing a value based on two entries and displaying
that value in a third widget).

The script for a binding has access to several pieces of information about the event,
such as the location of the pointer when the event occurred. For an example veistt up
interactively and type the following command to it:

bind . <Any-Motion> {puts "pointer at %x,%y"}
Now move the pointer over the windolgach time the pointer moves a message will be
printed on standard output giving its new location. When the pointer motion event occurs,
Tk scans the script for % sequences and replaces them with information about the event
before passing the script talTor evaluation%axis replaced with the pointarx-coordi-
nate andsyis replaced with the pointary-coordinate.

Subprocesses

Normally Tel executes each command by invoking a C procedure in the application to
carry out its function; this is ddrent from a shell program likeh where each command
is normally executed in a separate subprocess. Howklelso allows you to create sub-
processes, using tlexec command. Here is a simple exampleréc :

exec grep #include tk.h
O #include <tcl.h>

#include <X11/Xlib.h>

#include <stddef.h>
Theexec command treats itsguments much like the words of a shell command line. In
this exampleexec creates a new process to runghep program and passes it
“#include " and ‘tk.n " as aguments, just as if you had typed

grep #include tk.h
to your shell. Thgrep program searches fite.h for lines that contain the string
#include and prints those lines on its standard output. Howexer arranges for
standard output from the subprocess to be piped badk t6XEc waits for the process to
exit and then it returns all of the standard output as its resitit tNi& mechanism you can
execute subprocesses and use their outp isclipts.Exec also supports input and out-
put redirection using standard shell notation such &%, and>, pipelines witH , and
background processes wigh

The example below creates a simple user interface for saving and re-invoking com-

monly used shell commandspe the following script into a file nameeldo and invoke
it:

DRAFT (8/12/93): Distribution Restricted

16

An Overview of Tcl and Tk

L[| redo R = | |
IR = relo i
. . |
@) Is
ditroff -ms paper.ms
| | Ipgy
= redo e rcsinfo
I [Is -1 RC3 [T
[Is |_ L L
' ' (c)
(b)

Figure 2.3. Theredo application. The user can type a command in the entry wirakim (a).
When the user types return the command is invoked as a subprocesxesirand a new button
created that can be used to re-invoke the commangddatar (b). Additional commands can be
typed to create additional buttons, up to a limit of five buttons as in (c).

#!/usr/local/bin/wish -t
setid O
entry .entry -width 30 -relief sunken -textvariable cmd
pack .entry -padx 1m -pady 1m
bind .entry <Return> {

set id [expr $id + 1]

if {$id > 5} {

destroy .b[expr $id - 5]

button .b$id -command "exec <@stdin >@stdout $cmd" \

-text $cmd
pack .b$id -f ill x
.b$id invoke

.entry delete 0 end

}
Initially the script creates an interface with a single entry widgai.can type a shell
command such ds into the entryas shown in Figure 2.3(a). When you type return the
command gets executed just as if you had typed it to the shell from which you invoked
redo , and output from the command appears in the sheitidow Furthermore, the
script creates a new button widget that displays the command (see Figure 2.3(b)) and you
can re-invoke the command later by clicking on the button. As you type more and more
commands, more and more buttons appgato a limit of five remembered commands as
in Figure 2.3(c).

DRAFT (8/12/93): Distribution Restricted

2.7 Subprocesses 17

Note:

This example suffersdim several limitations. For example, you cannot specify wildscar
such as “*"in command lines, and theed” command doeshbehave poperly In Part |
you'll read about @l facilities that you can use to eliminate these limitations.

The most interesting part of thedo script is in thebind command. The binding
for <Return> must execute the command, which is stored ircthé variable, and cre-
ate a new button widget. First it creates the widget. The button widgets have names like
b1 ,.b2 , and so on, where the number comes from the vaiidbldd starts at zero
and increments before each new button is created. The notdi$id “” generates a wid-
get name by.b " and the value oid . Before creating a new widget the script checks to
see if there are already five saved commands; if so then the oldest existing button is
deleted. The notationB[expr $id - 5] " produces the name of the oldest button by
subtracting five from the number of the new button and concatenating it.vithThe -
commandoption for the new button invokesec and redirects standard input and stan-
dard output for the subprocess(esyvish 's standard input and standard output, which
are the same as those of the shell from whiich was invoked: this causes output from
the subprocesses to appear in the sheihdow instead of being returnedvwcsh .

The commandpack .b$id -f illx " makes the new button appear at the bot-
tom of the windowThe option *f ill x " improves the appearance by stretching the
button horizontally so that it fills the width of the window even it it ddeslly need
that much space for its textryTomitting the-f ill option to see what happens without
it.

The last two commands of the binding script are callieildet commanddVhenever
a new widget is created a neel Tommand is also created with the same name as the
widget, and you can invoke this command to communicate with the widget. Thegiirst ar
ment to a widget command selects one of several operations and addiganadats are
used as parameters for that operation. Inrede script the first widget command causes
the button widget to invoke itsommand option just as if you had clicked the mouse
button on it. The second widget command clears the entry widget in preparation for a new
command to be typed.

Each class of widget supports aelient set of operations in its widget commands,
but many of the operations are similar from widget to widget. For example, every widget
class supportseonf igure widget command that can be used to modify any of the con-
figuration options for the widget. If you run theo script interactively you could type
the following command to change the background of the entry widget to yellow:

.entry conf igure -background yellow
Or, you could type

.b1 conf igure -foreground brown
.b1f lash

to change the color of the text in buttti to brown and then cause the button to flash.
One of the most important things abouat &nd Tk is that they make every aspect of
an application accessible and modifiable at run-time. For examplediescript modi-

DRAFT (8/12/93): Distribution Restricted

18

An Overview of Tcl and Tk

2.8

fies its own interface on the flyh addition, Tk provides commands that you can use to
query the structure of the widget hierarcagd you can ussonf igure widget com-
mands to query and modify the configuration options of individual widgets.

Additional features of T cl and Tk

2.9

The examples in this chapter used every aspect ofctHanguage syntax and they illus-
trated many of the most important featuresafand Tk. HoweverTcl and Tk contain

many other facilities that are not used in this chapter; all of these will be described later in
the book. Here is a sampler of some of the most useful features thatt lneegnimen-

tioned yet:

Arraysand lists. Tcl provides associative arrays for storing key-value pdiicaftly
and lists for managing aggregates of data.

Morecontrol structures. Tcl provides several additional commands for controlling the
flow of execution, such asval , for , foreach , andswitch

String manipulation. Tcl contains a number of commands for manipulating strings,
such as measuring their length and performing regular expression pattern matching and
substitution.

File access. You can read and write files fronalBcripts and retrieve directory infor-
mation and file attributes such as length and creation time.

More widgets. Tk contains many widget classes besides those shown here, such as
menus, scrollbars, a drawing widget callezhavas and a text widget that makes it
easy to achieve hypertexfets.

Accessto other X facilities. Tk provides commands for accessing all of the major
facilities in the X Whdow System, such as a command for communicating with the
window manager (to set the wind®aitle, for example), a command for retrieving the
selection, and a command to manage the input focus.

C interfaces. Tcl provides C library procedures that you can use to define your own
new Tcl commands in C, and Tk provides a library that you can use to create your own
widget classes and geometry managers in C.

Extensions and applications

Tcl and Tk have an active and rapidly-growing user community that now numbers in the
tens of thousands. Many people have built applications basexl andlTk and packages
that extend the base functionality afl &and Tk. Several of these packages and applica-
tions are publically available and widely used in thBTk community There isrt space

in this book to discuss all of the excitingl/Tk software in detail but this section gives a

DRAFT (8/12/93): Distribution Restricted

2.9 Extensions and applications 19

29.1

2.9.2

quick overview of five of the most popular extensions and applications. See Appendix A
for information on how you can obtain them and other contribut@ikrsoftware.

Expect

Expect is one of the oldestcT applications and also one of the most poplias a pro-
gram that “talks” to interactive programs. Following a scegpect knows what output
can be expected from a program and what the correct responses should be. It can be used
to automatically control programs likgp ,telnet ,rlogin ,crypt ,fsck ,tip ,and
others that cannot be automated from a shell script because they require interactive input.
Expect also allows the user to take control and interact directly with the program when
desired. For example, the followiegpect script logs into a remote machine using the
rlogin program, sets the working directory to that of the originating machine, then turns
control over to the user:

#!/usr/local/bin/expect

spawn rlogin [lindex $argv 1]

expect -re "(%|#) "

send "cd [pwd]\r"

interact
Thespawn, expect , send, andinteract = commands are implemented éxpect
andlindex andpwd are built-in Tl commands. Thepawn command starts ufo-
gin , using a command-linegument as the name of the remote machine €kpect
command waits forlogin ~ to output a prompt (eithefs or “#”, followed by a space),
thensend outputs a command to change the working direcjosy as if a user had typed
the command interactivelffinally, interact ~ cause&xpect to step out of the way so
that the user who invoked tle&pect script can now talk directly tdogin

Expect can be used for many purposes, such as a scriptable front-end to debuggers,
mailers, and other programs that ddréve scripting languages of their own. The pro-
grams require no changes to be driven by expeqtect is also useful for regression
testing of interactive programBExpect can be combined with Tk or othetlExten-
sions. For example, using Tk it is possible to make a graphical front end for an existing
interactive application without changing the application.
Expect was created by Don Libes.

Extended T cl

Extended €l (TclX) is a library package that augments the builtéhébmmands with

many additional commands and procedures oriented towards system programming tasks.
It can be used with anyclrapplication. Here are a few of the most popular features of

TclX:

* Access to many additional POSIX system calls and functions.
* A file scanning facility with functionality much like that of thevk program.

DRAFT (8/12/93): Distribution Restricted

20

An Overview of Tcl and Tk

293

294

* Keyed lists, which provide functionality similar to C structures.

¢ Commands for manipulating times and dates and converting them to and from ASCII.
* An on-line help facility

¢ Facilities for debugging, profiling, and program development.

Many of the best features o€lK are no longer part ofciX: they turned out to be so

widely useful that they were incorporated into tisecbre. Among the dl features pio-

neered by @IX are file input and output, array variables, real arithmetic and transcenden-

tal functions, auto-loading, XPG-based internationalization, andpb@ command.
Extended €l was created by Karl Lehenbauer and Mark Diekhans.

XF

Tk makes it relatively easy to create graphical user interfaces by wrdisgripts, but
XF makes it even easietF is an interactive interface builder: you design a user interface
by manipulating objects on the screen, then XF createbszilpt that will generate the
interface you have designed (see Figure 2.4). XF provides tools for creating and configur-
ing widgets, arranging them with B{jeometry managers, creating event bindings, and so
on. XF manipulates a live application while it is running, so the fidcebf each change
in the interface can be seen and tested immediately

XF supports all of Tls built-in widget classes and allows you to add new widget
classes by writing class-specificl Beripts for XF to use to handle the classea Y
neednt use XF exclusively: you can design part of a user interface with XF and part by
writing Tcl scripts. XF supports most of the currently available extensiond and Tk,
and XF itself is written in dl.

XF was created by Sven Delmas. It is based on an earlier interface builder for Tk
called BYO, which was developed at thietdria University of Véllington, New Zealand.

Distributed programming

Tcl Distributed Programming €FFDP) is a collection of @ commands that simplify the
development of distributed programsl-DP’s most important feature is@mote poce-
dure callfacility, which allows €l applications to communicate by exchangiet) T
scripts. For example, the following script usetDP to implement a trivial “id server”,
which returns unique identifiers in respons&tdld requests:
set myld O
proc Getld {} {
global myld;
set myld [expr $myld+1]
return $myld

}
MakeRPCServer 4545

DRAFT (8/12/93): Distribution Restricted

2.9 Extensions and applications 21

Hle Edit Configuration Programming Misc Options Help
B R +| k-
Ty = e B |®3)50) x (2PN Tm| 7| TIE
| cB (empty): 0
Current widget path:l .
Widget classes Templates

| Button {Tk} |||%|AlertBoxn

Canvas {Tk} F5Box

Checkbutton {Tk} TextBox

Entry {Tk> YesHoBox

Frane {Tk}

Label {Tk}

Listbox {Tk}

Henu {Tk}

Henubutton {Tk}

Heszage {Tk>

Radiobutton {Tk}

Scale {Tk}

Scrollbar {Tk}

Text {Tk}

Toplevel {Tk>
AR]| | |
Current widget type: | Button

Add with defaults | j‘je"” LT Configure and add |

Figure 2.4. A screen dump showing the main window of, 4R interactive application builder f
Tcl and Tk.

All of the code in this script except the last line is ordinarycbde that defines a global
variablemyld and a procedur@etld that increments the variable and returns its new
value. TheMakeRPCServer command is implemented bgHDP; it causes the applica-
tion to listen for requests on TCP socket 4545.
Other Tl applications can communicate with this server using scripts that look like

the following:

set server [MakeRPCClient server.company.com 4545]

RPC $server Getld
The first command opens a connection with the server and saves an identifier for that con-
nection. The uments ttMlakeRPCClient identify the servés host and the socket on
which the server is listening. TiRRPCcommand performs a remote procedure call. Its

DRAFT (8/12/93): Distribution Restricted

22

An Overview of Tcl and Tk

295

armguments are a connection identifier and an arbitrelrgcript. RPCforwards the script

to the server; the server executes the script and returns its result (a new identifier in this
case), which becomes the result of BRCcommand. Any script whatosever could be
substituted in place of tieetld command.

Tcl-DP also includes several other features, including asynchronous remote procedure
calls, where the client need not wait for the call to complete, a distributed object system in
which objects can be replicated in several applications and updates are automatically
propagated to all copies, and a simple name sendt®H has been used for applications
such as a video playback system, groupware, and gaokd3PTs more flexible than
most remote procedure call systems because it is not based on compiled interfaces
between clients and servers: it is easydhOP to connect an existing client to a new
server without recompiling or restarting the client.

Tcl-DP was created by Lawrence A. Rowe, Brian Smith, and Stewe Y

Ak

Ak is an audio extension forcll It is built on top of AudioFile, a network-transparent,
device independent audio system that runs on a variety of platforms. Ak prosidesit
mands for file playback, recording, telephone control, and synchronization. The basic
abstractions in Ak are connections to AudioFile servers, device contexts (which encapsu-
late the state for a particular audio device), and requests such as file playback. For exam-
ple, here is a script that plays back an audio file on a remote machine:

audioserver remote "server.company.com:0"

remote context room -device 1

room create play "announcement-f ile.au”
The first command opens a connection to the audio server on the machine
server.company.com and gives this connection the naramote . It also creates a
command nameremote , which is used to issue commands over the connection. The
second command creates a context narmenh, which is associated with audio device 1
on the serverand also creates a command nanoedn for communicating with the con-
text. The last command initiates a playback of a particular audio file.

Ak implements a unique model of time that allows clients to specify precisely when
audio samples are going to egerlt also provides a mechanism to execute arbitrary T
scripts at specified audio times; this can be used to achieve a variety of hypermedia
effects, such as displaying images or video in sync with an audio playback. When com-
bined with Tk, Ak provides a powerful and flexible scripting system for developing multi-
media applications such as tutorials and telephone inquiry systems.

Ak was created by Andrew C. Payne.

DRAFT (8/12/93): Distribution Restricted

Part |:

The Tcl Language

24

DRAFT (8/12/93): Distribution Restricted

Chapter 3
Tcl Language Syntax

3.1

In order to write Tl scripts you must learn two things. First, you must learnc¢hgyhtax,
which consists of about a half-dozen rules that determine how commands are parsed. The
Tcl syntax is the same for every command. Second, you must learn about the individual
commands that you use in your scriptd. @rovides about 60 built-in commands, Tk adds
several dozen more, and any application basedbor Tk will add a few more of its
own. You'll need to know all of the syntax rules right amayt you can learn about the
commands more gradually as you need them.

This chapter describes thelTanguage syntax. The remaining chapters in Part |
describe the built-ind commands, and Part Il describessT&bmmands.

Scripts, commands, and words

A Tcl script consists of one or moowmmmandsCommands are separated by newlines and
semi-colons. For example,

seta 24

setb 15
is a script with two commands separated by a newline charéhtesame script could be
written on a single line using a semi-colon separator:

seta24;setb 15

Each command consists of one or meeds, where the first word is the name of a
command and additional words argumnents to that command.ovds are separated by
spaces and tabs. Each of the commands in the above examples has three words. There may

25

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

26

Tcl Language Syntax

3.2

] Command String

Tcl Parser

> Words

PHHDHFIG

(Command Procedu@

'

| | Result

Figure 3.1. Tcl commands are evaluated in two steps. First thanferpreter parses the commze
string into words, performing substitutions along the.Wéen a command procedure processe
words to produce a result string. Each command has a separate command procedure.

be any number of words in a command, and each word may have an arbitrary string value.
The white space that separates words is not part of the words, nor are the newlines and
semi-colons that terminate commands

Evaluating a command

Tcl evaluates a command in two steps as shown in Figurpé8singandexecutionin

the parsing step thecllinterpreter applies the rules described in this chapter to divide the
command up into words and perform substitutions. Parsing is done in exactly the same
way for every command. During the parsing step ttiénterpreter does not apply any
meaning to the values of the wordsl jlist performs a set of simple string operations such
as replacing the charactefa" with the string stored in variabbe Tcl does not know or

care whethea or the resulting word is a number or the name of a widget or anything else.

DRAFT (8/12/93): Distribution Restricted

3.2 Evaluating a command 27

In the execution step meaning is applied to the words of the comn@rnikals the
first word as a command name, checking to see if the command is defined and locating a
command pycedue to carry out its function. If the command is defined then thander-
preter invokes its command procedure, passing all of the words of the command to the
command procedure. The command procedure is free to interpret the words in any way
that it pleases, and éifent commands apply very ftifent meanings to theirguments
Note: | use the terms “wa” and “argument” intechangeably toafer to the values passed to

command prcedues. The only diffence between these two terms is that the first
argument is the second vabr

The following commands illustrate some of meanings that are commonly applied to
arguments:
seta 122

In many cases, such as & command, g;uments may take any form
whatsoeverTheset command simply treats the firsgament as a variable
name and the secondyament as a value for the variable. The command
“set 122 a "is valid too: it creates a variable whose namel22” and
whose value isd”.
expr 24/3.2
The agument toexpr must be an arithmetic expression that follows the rules
described in Chapter 5. Several other commands also take expressigus as ar
ments.
eval {set a 122}
The agument tceval is a Tl script.Eval passes it to thecTinterpreter
where another round of parsing and execution occurs forghenant. Other
control-flow commands such ds andwhile also take scripts asgarments.
lindex {red green blue purple} 2
The first agument tdindex is alist consisting of four values separated by
spaces. This command will extract elementl#ug ") from the list and
return it. TI's commands for manipulating lists are described in Chapter 6.
string length abracadabra
Some commands, likering and the Tk widget commands, are actually
several commands rolled into one. The firguament of the command selects
one of several operations to perform and determines the meaning of the
remaining aguments. For examplestting length " requires one addi-
tional agument and computes its length, wheresigrig compare "
requires two additional guments.
button .b -text Hello -fg red

The aguments starting wititext — are option-value pairs that allow you to
specify the options you care about and use default values for the others.

DRAFT (8/12/93): Distribution Restricted

28

Tcl Language Syntax

3.3

In writing Tcl scripts one of the most important things to remember is thatthe T
parser doeshapply any meaning to the words of a command while it parses them. All of
the above meanings are applied by individual command procedures, not bl/ghesér
Another way of saying this is thatgarments are quoted by default; if you want evaluation
you must request it explicitlyrhis approach is similar to that of most shell languages but
different than most programming languages. For example, consider the following C pro-
gram:

X=4;

y = x+10;
In the first statement C stores the integer value 4 in varalitethe second statement C
evaluates the expressioxt+10 ", fetching the the value of varialskeand adding 10, and
stores the result in variabye At the end of execution has the integer value 14. If you
want to use a literal string in C without evaluation you must enclose it in quotes. Now con-
sider a similafooking program written in i

setx 4

sety x+10
The first command assigns thieing “4” to variablex. The value of the variable need not
have any particular form. The second command simply takes the stfibh@ ™ and stores
it as the new value for. At the end of the script y has the string valkel0 ", not the
integer value 14. Indl if you want evaluation you must ask for it explicitly:

setx 4

set y [expr $x+10]
Evaluation is requested twice in this example. First, the second word of the second com-
mand is enclosed in brackets, which tells tbiep@rser to evaluate the characters between
the brackets as allscript and use the result as the value of the word. Second, a dollar
sign has been placed beforeWhen Tl parses thexpr command it substitutes the
value of variablex for the$x. If the dollarsign were omitted theexpr 's agument
would contain the stringx”, resulting in a syntax erroAt the end of the scripgt has the
string value 14", which is almost the same as in the C example.

Variable substitution

Tcl provides three forms afubstitution:variable substitution, command substitution, and
backslash substitution. Each substitution causes some of the original characters of a word
to be replaced with some other value. Substitutions may occur in any word of a command,
including the command name, and there may be any number of substitutions within a sin-
gle word.

The first form of substitution igariable substitutionlt is triggered by a dollesign
character and it causes the value o€lav@riable to be inserted into a word. For example,
consider the following commands:

DRAFT (8/12/93): Distribution Restricted

3.4 Command substitution 29

3.4

set kgrams 20
expr $kgrams*2.2046

0 44.092
The first command sets the value of variddgjeams to 20. The second command com-
putes the corresponding weight in pounds by multiplying the valkgrams by 2.2046.
It does this using variable substitution: the stigrams is replaced with the value of
variablekgrams , so that the actualgument received by trexpr command procedure
is “20%2.2046 .

Variable substitution can occur anywhere within a word and any number of times as

in the following command:

expr $result*$hase
The variable name consists of all of the numbers, letters, and underscores following the
dollar-sign. Thus the first variable nanregult) extends up to the and the second
variable namehase) extends to the end of the word.

The examples above show only the simplest form of variable substitution. There are
two other forms of variable substitution, which are used for associative array references
and to provide more explicit control over the extent of a variable name (e.g. so that there
can be a letter immediately following the variable name). These other forms are discussed
in Chapter 4.

Command substitution

The second form of substitution provided gy} iE command substitutio©ommand sub-
stitution causes part or all of a command word to be replaced with the result of anbther T
command. Command substitution is invoked by enclosing a nested command in brackets:
set kgrams 20
set Ibs [expr $kgrams*2.2046]
0 44.092
The characters between the brackets must constitute a gbdidript. The script may con-
tain any number of commands separated by newlines or semi-colons in the usual fashion.
The brackets and all of the characters in between are replaced with the result of the script.
Thus in the example above tbepr command is executed while parsing the words for
set ; its result, the string44.092 ”, becomes the secondgament teset . As with vari-
able substitution, command substitution can occur anywhere in a word and there may be
more than one command substitution within a single word.

DRAFT (8/12/93): Distribution Restricted

30

Tcl Language Syntax

3.5

Backslash substitution

Note:

3.6

The final form of substitution incTis backslash substitutiorit is used to insert special
characters such as newlines into words and also to insert charactprariét® without
them being treated specially by thel parserFor example, consider the following com-
mand:

set msg Eggs:\ \$2.18/dozen\nGasoline:\ \$1.49/gallon
0 Eggs: $2.18/dozen

Gasoline: $1.49/gallon
There are two sequences of backslash followed by space; each of these sequences is
replaced in the word by a single space and the space characters are not treated as word
separators. There are also two sequences of backslash followed bgidolj@ach of
these is replaced in the word with a single dedign, and the dollar signs are treated like
ordinary characters (they do not trigger variable substitution). The backslash followed by
n is replaced with a newline character

Table 3.1 lists all of the backslash sequences supported.byhiEse include all of
the sequences defined for ANSI C, sucht aso insert a tab character axd4 to insert
the character whose hexadecimal value is 0xd4. If a backslash is followed by any charac-
ter not listed in the table, as\® or\[, then the backslash is dropped from the word and
the following character is included in the word as an ordinary char@bierallows you to
include any of the dl special characters in a word without the character being treated spe-
cially by the Tl parserThe sequencé will insert a single backslash into a word.
The sequence backslash-newline can be used to spread a long command across multi-

ple lines, as in the following example:

pack .base .labell .power .label2 .result \

-side left -padx 1m -pady 2m

The backslash and newline, plus any leading space on the next line, are replaced by a sin-
gle space character in the word. Thus the two lines together form a single command.
Backslash-newline sequences anusual in that they ameplaced in a separate
preprocessing step be®ihe Tl interpreter parses the command. This means, for

example, that the space character thgtlaces backslash-newline will bedted as a
word separator unless it is between double-quotes or braces.

Quoting with double-quotes

Tcl provides several ways for you to prevent the parser from giving special interpretation
to characters such &sand semi-colon. These techniques are cajlesting You have

already seen one form of quoting in backslash subsitution; for exafptauses a dol-
lar-sign to be inserted into a word without triggering variable substitution. In addition to
backslash substitutiorclTprovides two other forms of quoting: double-quotes and braces.

DRAFT (8/12/93): Distribution Restricted

3.6 Quoting with double-quotes 31

Backslash Sequence Replaced By

\a Audible alert (0x7)

\b Backspace (0x8)

\f Form feed (0xc)

\n Newline (Oxa)

\r Carriage return (0xd)

\t Tab (0x9)

\v Vertical tab (Oxb)

\ ddd Octal value given bgdd
(one, two, or thred’s)

\x hh Hex value given byah
(any number oh’s)

\ newline space A single space character

Table 3.1. Backslash substitutions supported lzy. Each of the sequences in the first column
replaced by the corresponding character from the second column. If a backslash is followe:
character other than those in the first column, then the two characters are replaced by the ¢
character

Double-quotes disable word and command separators, while braces disable almost all spe-
cial characters.

If a word is enclosed in double-quotes then spaces, tabs, newlines, and semi-colons
are treated as ordinary characters within the word. The example from page 30 can be
rewritten more cleanly with double-quotes as follows:

set msg "Eggs: \$2.18/dozen\nGasoline: \$1.49/gallon"
O Eggs: $2.18/dozen

Gasoline: $1.49/gallon
Note that the quotes themselves are not part of the wordnTimethe example could also
be replaced with an actual newline chara@eiin

set msg "Eggs: \$2.18/dozen

Gasoline: \$1.49/gallon”
but | think the script is more readable with.

Variable substitutions, command substitutions, and backslash substitutions all occur

as usual inside double-quotes. For example, the following scriphsgt® a string con-
taining the name of a variable, its value, and the square of its value:

DRAFT (8/12/93): Distribution Restricted

32

Tcl Language Syntax

3.7

seta2.1
set msg "a is $a; the square of a is [expr $a*$a]"

0 ais2.1; the square of ais 4.41
If you would like to include a double-quote in a word enclosed in double-quotes, then use
backlash substitution:

set name a.out
set msg "Couldn’t open f ile \"$name\""

0 Couldn't open f ile "a.out"

Quoting with braces

Braces provide a more radical form of quoting where all the special charaters lose their
meaning. If a word is enclosed in braces then the characters between the braces are the
value of the word, verbatim. No substitutions are performed on the word and spaces, tabs,
newlines, and semi-colons are treated as ordinary characters. The example on page 30 can
be rewritten with braces as follows:

set msg {Eggs: $2.18/dozen

Gasoline: $1.49/gallon}
The dollarsigns in the word do not trigger variable substitution and the newline does not
act as a command separatarthis casén cannot be used to insert a newline into the
wod as on page 31, because\thewill be included in the grlument as-is without trigger-
ing backslash substitution:

set msg {Eggs: $2.18/dozen\nGasoline: $1.49/gallon}

0 Eggs: $2.18/dozen\nGasoline: $1.49/gallon
One of the most important uses for braces tefer evaluationDeferred evaluation

means that special characters arprocessed immediately by thel parserinstead they
will be passed to the command procedure as part ofjisrent and the command proce-
dure will process the special characters itself. Braces are almost always used when passing
scripts to TI commands, as in the following example that computes the factorial of five:

set result 1

seti5

while {$i > 0} {

set result [expr $result*$i]
set i [expr $i-1]

The body of thavhile loop is enclosed in braces to defer substitutidfisle passes
the script back intodl for evaluation during each iteration of the loop and the subsitutions
will be performed at that time. In this case it is important to defer the substitutions so that
they are done afresh each time tlihile evaluates the loop bodyather than once-and-
for-all while parsing thevhile command.

Braces nest, as in the following example:

DRAFT (8/12/93): Distribution Restricted

3.8 Comments 33

proc power {base p} {
set result 1
while {$p > 0} {
set result [expr $result*base]
set p [expr $p-1]

return $result
}
In this case the third gument tgproc contains two pairs of nested braces (the outermost
braces are removed by thel parser). The command substitution requested \jatkp'
$p-1] " will not be performed when theroc command is parsed, or even when the
while command is parsed as part of executing the proceduody but only when
while evaluates its secondgaiment to execute the loop.
Note: If a brace is backslashed then it does not count in finding the matching close brace for a
word enclosed in braces. The backslash will notdmaved when the wbis parsed.

Note: The only form of substitution that occurs between braces is for backslash-newline. As
discussed in Section 3.5, backslash-newline sequereestaially emoved in a @
processing step be®the command is parsed.

3.8 Comments

If the first non-blank character of a command ihen the# and all the characters follow-

ing it up through the next newline are treated as a comment and discarded. Note that the
hash-mark must occur in a position whecéi¥ expecting the first character of a com-

mand. If a hash-mark occurs anywhere else then it is treated as an ordinary character that
forms part of a command word:

This is a comment

seta 100 # Not a comment
O wrong # args: should be "set varName ?newValue?"
set b 101; # This is a comment
0 101

The# on the second line is not treated as a comment character because it occurs in the
middle of a command. As a result the fsgt command receives 6garments and gener-
ates an erroiThe last# is treated as a comment charac@rce it occurs just after the
command was terminated with a semi-colon.

3.9 Normal and exceptional returns

A Tcl command can terminate in severafatiént ways. Aormal returnis the most com-
mon case; it means that the command completed successfully and the return includes a
string result. Tl also supportexceptional eturnsfrom commands. The most frequent

DRAFT (8/12/93): Distribution Restricted

34

Tcl Language Syntax

Note:

3.10

form of exceptional return is an err@¥hen an error return occurs, it means that the com-
mand could not complete its intended function. The command is aborted and any com-
mands that follow it in the script are skipped. An error return includes a string identifying
what went wrong; the string is normally displayed by the application. For example, the
following set command generates an error because it has too nganyents:
set state West Virginia
O wrong # args: should be "set varName ?newValue?"
Different commands generate errors unddemwint conditions. For examplexpr
accepts any number ofgarments but requires thegaments to have a particular syntax; it
generates an error if, for example, parenthesestanatched:
expr 3 * (20+4
0 unmatched parentheses in expression " 3*(20+4
The complete exceptional return mechanism fisTdiscussed in Chapter 9. It sup-
ports a number of exceptional returns other than errors, provides additional information
about errors besides the error message mentioned above, and allows errors to be “caught”
so that dects of the error can be contained within a piececbédde. For nowthough, all
you need to know is that commands normally return string results but they sometimes
return errors that causelicommand interpretation to be aborted.
You may also find therrorinfo variable useful. After an ar Tcl setserrorinfo to

hold a stack trace indicating exactly whehe eror occurred. Yu can print out this
variable with the commandsét errorinfo "

More on substitutions

The most common ditulty for new Tl users is understanding when substitutions do and
do not occurA typical scenario is for a user to be surprised at the behavior of a script
because a substitution dith@ccur when the user expected it to happen, or a substitution
occurred when it washéxpected. Howevel think that you'll find El's substitution
mechanism to be simple and predictable if you just remember two related rules:

1. Tcl parses a command and makes substitutions in a single pass from left to right. Each
character is scanned exactly once.

2. At most a single layer of substitution occurs for each character; the result of one substi-
tution is not scanned for further substitutions.

Tcl's substitutions are simpler and more regular than you may be used to if you've pro-
grammed with UNIX shells (particularlysh). When new users run into problems with
Tcl substitutions it is often because they have assumed a more complex model than actu-
ally exists.

For example, consider the following command:

DRAFT (8/12/93): Distribution Restricted

3.10 More on substitutions 35

set x [format {Earnings for July: $%.2f} $earnings]

0 Earnings for July: $1400.26
The characters between the brackets are scanned exactly once, during command substitu-
tion, and the value of thearnings variable is substituted at that time. Ihist the case
that Tel first scans the whokeet command to substitute variables, then makes another
pass to perform command substitution; everything happens in a single scan. The result of
theformat command is passed verbatimstet as its second gnment without any
additional scanning (for example, the dek&yn informat ’s result does not trigger vari-
able substitution).

One consequence of the substitution rules is that all the word boundaries within a
command are immediately evident and are rfectdd by substitutions. For example,
consider the following script:

set city "Los Angeles"

set bigCity $city
The secondet command is guaranteed to have exactly three words regardless of the
value of variablecity . In this caseity contains a space character but the spaoetis
treated as a word separator

In some situations the single-layafrsubstitutions rule can be a hindrance rather than
a help. For example, the following script is an erroneous attempt to delete all files with
names ending in.6 ”:

exec rm [glob *.0]
O rm:a.o b.o c.o nonexistent
Theglob command returns a list of all file names that match the pattern’; such as
“a.ob.oc.o ". Theexec command then attempts to invoke threprogram to delete
all of these files. Howevgthe entire list of files is passedrto as a single gument;rm
reports an error because it cannot find a file naraexity.o c.o ". For rm to work
correctly the result ajlob must be split up into multiple words.

Fortunatelyit is easy to add additional layers of parsing if you want them. Remember
that Tcl commands are evaluated in two phases: parsing and execution. The substitution
rules apply only to the parsing phase. Ondepésses the words of a command to a com-
mand procedure for execution, the command procedure can do anything it likes with them.
Some commands will reparse their words, for example by passing them backdb the T
interpreter agairEval is an example of such a command, and it can be used to solve the

problems withrm above:

eval exec rm [glob *.0]
Eval concatenates all of itsgarments with spaces in-between and then evaluates the
result as adl script, at which point another round of parsing and evaluation occurs. In this
exampleeval receives three guments: &xec ”, “rm”, and “a.o0 b.o c.o ". It con-
catenates them to form the strirexéc rm a.o b.o c.o ". When this string is

parsed as acT script it yields five words; each of the file names is passexkto and

DRAFT (8/12/93): Distribution Restricted

36

Tcl Language Syntax

then to them program as a separatgament, so the files are all removed successfully
See Section 7.5 for more details on this.

One final note. It is possible to use substitutions in very complex ways lg& you
not to do so. Substitutions work best when used in very simple ways such as
“set a $b”. If you use a great many substitutions in a single command, and particularly
if you use lots of backslashes, your code is unlikely to be unreadablesaaidadtunlikely
to work reliably In situations like these | suggest breaking up tfendfng command into
several commands that build up thguaments in simple stagescIprovides several com-
mands, such @rmat andlist , that should make this easy to do.

DRAFT (8/12/93): Distribution Restricted

Chapter 4
Variables

4.1

Tcl supports two kinds of variables: simple variables and associative arrays. This chapter
describes the basiclfcommands for manipulating variables and arrays, and it also pro-
vides a more complete description of variable substitution. 8gle #.1 for a summary of

the commands discussed in this chapter

Simple variables and the set command

A simple Tcl variable consists of two things: a name and a value. Both the name and the
value may be arbitrary strings of characters. For example, it is possible to have a variable
named kyz # 22 " or “March earnings: $100,472 ". In practice variable
names usually start with a letter and consist of a combination of letters, digits, and under-
scores, since that makes it easier to use variable substitution.
Variables may be created, read, and modified witséhecommand, which takes
either one or two guments. The first gument is the name of a variable and the second, if
present, is a new value for the variable:
set a {Eggs: $2.18/dozen}
O Eggs: $2.18/dozen
seta
O Eggs: $2.18/dozen
seta 44
0 44

37

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

38

Variables

4.2

append varName value “alue ..?
Appends each of thealue amguments to variablearName, in order If
varName doesrnt exist then it is created with an empty value before
appending. The return value is the new valugapName .

incr varName ?increment ?
Addsincrement to the value of variablearName. Increment and
the old value offarName must both be integer strings (decimal,
hexadecimal, or octal). iicrement is omitted then it defaults tb. The
new value is stored wmarName as a decimal string and returned as the
result of the command.

setvarName “value ?
If value is specified, sets the value of variabtdeName tovalue . In
any case the command returns the (new) value of the variable.

unset varName ?arName varName ..?
Deletes the variables given by erName aguments. Returns an empty
string.

Table 4.1. A summary of the basic commands for manipulating variables. Optignahants are
indicated by enclosing them in question-marks.

The first command above creates a new varialié doesnt already exist and sets its
value to the character sequenEg(s: $2.18/dozen ". The result of the command is
the new value of the variable. The seceatli command has only onegaimenta. In this
form it simply returns the current value of the variable. The 88td command changes
the value of to 44 and returns that new value.

Although the final value dd looks like a decimal integeit is stored as a character
string. Tcl variables can be used to represent many things, such as integers, floating-point
numbers, names, lists, and Ecripts, but they are always stored as strings. This use of a
single representation for all values allowdeti&nt values to be manipulated in the same
way and communicated easily

Tcl variables are created automatically when they are assigned valtiables
don't have types so there is no need for declarations.

Arrays

In addition to simple variablesiTalso providesrrays An array is a collection afle-

ments each of which is a variable with its own name and value. The name of an array ele-
ment has two parts: the name of the array and the name of the element within that array
Both array names and element names may be arbitrary strings. For this dasoay$

DRAFT (8/12/93): Distribution Restricted

4.3 Variable substitution 39

4.3

are sometimes callexksociative array$o distinguish them from arrays in other lan-
guages where the element names must be integers.

Array elements are referenced using notationdémings(January) where the
array namedarnings in this case) is followed by the element name in parentheses
(January in this case). Arrays may be used anywhere that simple variables may be used,
such as in theet command:

set earnings(January) 87966
0 87966
set earnings(February) 95400
0 95400
set earnings(January)
0 87966
The first command creates an array nasaaings |, if it doesnt already exist. Then it
creates an elemedanuary within the arrayif it doesnt already exist, and assigns it the
value87966 . The second command assigns a value t&é¢euary element of the
array and the third command returns the value ofldreuary element.

Variable substitution

Chapter 3 introduced the use$shotation for substituting variable values intd T
commands. This section describes the mechanism in more detail.

Variable substitution is triggered by the presence of an ung@iatbdracter in adl
command. The characters following thare treated as a variable name, andthad
name are replaced in the word by the value of the variatlierdvides three forms of
variable substitution. So far you have seen only the simplest form, which is used like this:

expr $a+2
In this form the$ is followed by a variable name consisting of letters, digits, and under-
scores. The first character that is not a letter or digit or undersedna the example)
terminates the name.

The second form of variable substitution allows array elements to be substituted. This
form is like the first one except that the variable name is followed immediately by an ele-
ment name enclosed in parenthesesiatle, command, and backslash substitutions are
performed on the element name in the same way as a command word in double-quotes,
and spaces in the element name are treated as part of the name rather than as word separa-
tors. For example, consider the following script:

set yearTotal O
foreach month {Jan Feb Mar Apr May Jun Jul Aug Sep \

Oct Nov Dec} {
set yearTotal [expr $yearTotal+$earnings($month)]

DRAFT (8/12/93): Distribution Restricted

40

Variables

Note:

4.4

In theexpr command $earnings($month) " is replaced with the value of an ele-
ment of the arragarnings . The elemeng name is given by the value of thenth
variable, which varies from iteration to iteration.

The last form of substitution is used for simple variables in places where the variable
name is followed by a letter or number or underscore. For example, suppose that you wish
to pass a value likel’5m” to a command as angarment but the number is in a variable
size (in Tk you might do this to specify a size in millimeters). If you try to substitute the
variable value with a form like$sizem ” then Tel will treat themas part of the variable
name. © get around this problem you can enclose the variable name in braces as in the
following command:

.canvas conf igure -width ${size}m
You can also use braces to specify variable names containing characters other than letters
or numbers or underscores.
Braces can only be used to delimit simple variables. Howtnesr shouldi’be needed
for arrays since the pantheses adrady indicate wherthe variable name ends.

Tcl's variable substitution mechanism is only intended to handle the most common
situations; there exist scenarios where none of the above forms of substitution achieves the
desired dfct. More complicated situations can be handled with a sequence of commands.
For example, théormat command can be used to generate a variable name of almost
any imaginable formset can be used to read or write the variable with that name, and
command substitution can be used to substitute the value of the variable into other com-
mands.

Removing variables: unset

Theunset command destroys variables. It takes any numbegahzents, each of
which is a variable name, and removes all of the variables. Future attempts to read the
variables will result in errors just as if the variables had never been set in the first place.
The aguments taunset may be either simple variables, elements of arrays, or whole
arrays, as in the following example:

unset a earnings(January) b

In this case the variablesandb are removed entirely and tdanuary element of the
earnings array is removed. Thearnings array continues to exist after theset
command. Ifa orb is an array then all of the elements of that array are removed along
with the array itself.

DRAFT (8/12/93): Distribution Restricted

4.5 Multi-dimensional arrays 41

4.5 Multi-dimensional arrays
Tcl only implements one-dimensional arrays, but multi-dimensional arrays can be simu-
lated by concatenating multiple indices into a single element name. The program below
simulates a two-dimensional array indexed with integers:
set matrix(1,1) 140
set matrix(1,2) 218
set matrix(1,3) 84
setil
setj2
set cell $matrix($i,$j)
0 218
Matrix is an array with three elements whose nameslate™and “1,2 " and “1,3 ".
However the array behaves just as if it were a two-dimensional array; in particatar
able substitution occurs while scanning the element name @xgiie command, so that
the values of andj get combined into an appropriate element name.
4.6 The incr and append commands

Incr andappend provide simple ways to change the value of a varidhte. takes
two aguments, which are the name of a variable and an integer; it adds the integer to the
variables value, stores the result back into the variable as a decimal string, and returns the
variables new value as result:
setx 43
incr x 12
0 55
The number can have either a positive or negative value. It can also be omitted, in which
case it defaults tt:
set x 43
Incr X
0 44
Both the variables original value and the increment must be integer strings, either in deci-
mal, octal (indicated by a leadi®g, or hexadecimal (indicated by a leadthg).
Theappend command adds text to the end of a variable. It takes uorants,
which are the name of the variable and the new text to add. It appends the new text to the
variable and returns the varialdeiew value. The following example usgpend to
compute a table of squares:

DRAFT (8/12/93): Distribution Restricted

42

Variables

4.7

set msg "™
foreachi{12 34 5}{
append msg "$i squared is [expr $i*$i]\n"

set msg

0 1squaredisl1

2 squared is 4

3 squared is 9

4 squared is 16

5 squared is 25

Neitherincr norappend adds any new functionality tcIT since the décts of

both of these commands can be achieved in other ways. Howeseprovide simple
ways to do common operations. In additiappend is implemented in a fashion that
avoids character copying. If you need to construct a vayg ktring incrementally from
pieces it will be much morefefient to use a command like

append x $piece
instead of a command like
set x "xpiece"”

Preview of other variable facilities

Tcl provides a number of other commands for manipulating variables. These com-
mands will be introduced in full after you've learned more about¢hkaiguage, but this
section contains a short preview of some of the facilities.

Thetrace command can be used to monitor a variable so thetsciipt gets
invoked whenever the variable is set or read or unaeaiMe tracing is sometimes useful
during debugging, and it allows you to create read-only variabbescah also use traces
for propagationso that, for example, a database or screen display gets updated whenever a
variable changes valuealable tracing is discussed in Section 13.4.

Thearray command can be used to find out the names of all the elements in an
array and to step through them one at a time (see Section 18.fppd$ible to find out
what variables exist using thifo command (see Section 13.2).

Theglobal andupvar commands can be used by a procedure to access variables
other than its own local variables. These commands are discussed in Chapter 8.

DRAFT (8/12/93): Distribution Restricted

Chapter 5
EXpressons

5.1

Expressions combine values @erand3} with operatorsto produce new values. For
example, the expressioA+2" contains two operands4" and “2”, and one operator
“+" it evaluates t@®. Many Tcl commands expect one or more of thejjuanents to be
expressions. The simplest such commareks , which just evaluates itsguments as
an expression and returns the result as a string:

expr (8+4) * 6.2

O 744

Another example i , which evaluates its firstgument as an expression and uses the
result to determine whether or not to evaluate its secquuirent as acl script:

if $x<2 then {set x 2}
This chapter uses tlexpr command for all of its examples, but the same syntax, substi-
tution, and evaluation rules apply to all other uses of expressions tocal3e&T for a
summary of thexpr command.

Numeric operands

Expression operands are normally integers or real numbers. Integers are usually specified
in decimal, but if the first character is 0 (zero) then the number is read in octal (base 8) and
if the first two characters afx then the number is read in hexadecimal (base 16). For
example 335 is a decimal numbed517 is an octal number with the same value, and

0x14f is a hexadecimal number with the same vag@. is not a valid integer: the lead-

ing 0 causes the number to be read in octaBhistnot a valid octal digit. Real operands

43

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

44

Expressions

Note:

5.2

expr arg “argarg ...?
Concatenates all therg values together (with spaces in between),
evaluates the result as an expression, and returns a string correspondi
the expressios’value.

Table 5.1. A summary of thexpr command.

may be specified using most of the forms defined for ANSI C, including the following
examples:

2.1

7.91e+16

6E4

3.

These same formseaallowable not just in expssions but anywhein Tl that an integer
or real value is equired.

Expression operands can also be non-numeric strings. String operands are discussed
in Section 5.5.

Operators and precedence

521

Note:

Table 5.2 lists all of the operators supporteddhekpressions; they are similar to the
operators for expressions in ANSI C. Horizontal lines separate groups of operators with
the same precedence, and operators with higher precedence appear in the table above
operators with lower precedence. For exampi2<7 evaluates t® because th& oper-
ator has higher precedence tharkexcept in the simplest and most obvious cases you
should use parentheses to indicate the way operators should be grouped; this will prevent
errors by you or by others who modify your programs.

Operators with the same precedence group from left to right. For exdidple3
is the same a40-4)-3 ; it evaluates tg.

Arithmetic operators

Tcl expressions support the arithmetic operators, *, / , and% The- operator may be
used either as a binary operator for subtraction, 42in or as a unary operator for nega-
tion, as in(6*$i) . The/ operator truncates its result to an integer value if both oper-
ands are integer%ois the modulus operator: its result is the remainder when its first
operand is divided by the second. Both of the operandérmust be integers.

The / and % operators have a raaonsistent behavior irciithan in ANSI C. Indl the
remainder is always positive and has an absolute value less than the absolute value of the

DRAFT (8/12/93): Distribution Restricted

5.2 Operators and precedence 45

Syntax Result Operand Ypes
-a Negative ofa int, float
la Logical NOT: 1 if a is zero, O otherwise int, float
~a Bit-wise complement cd int
a*b Multiply a andb int, float
alb Divide a by b int, float
a% Remainder after dividing by b int
atb Add a andb int, float
a-b Subtractb froma int, float
a<<b Left-shifta by b bits int
a>>b Arithmetic right-shifta by b bits int
a<b 1if a is less tha, O otherwise int, float, string
a>b 1if a is greater thab, O otherwise int, float, string
a<=b 1if a is less than or equal In O otherwise int, float, string
a>=b 1if a is greater than or equallbg O otherwise| int, float, string
a==b 1ifais equal td, O otherwise int, float, string
al=b 1if ais not equal td, O otherwise int, float, string
a&b Bit-wise AND ofa andb int
a"b Bit-wise exclusive OR o& andb int
alb Bit-wise OR ofa andb int
a&é&b Logical AND: 1 if botha andb are non-zero, | int, float
0 otherwise
all b Logical OR: 1 if eithem is non-zero ob is int, float
non-zero, 0 otherwise
a?b: ¢ | Choice: ifa is non-zero theb, elsec a: int, float

Table 5.2. Summary of the operators allowed icl €xpressions. These operators have the sa
behavior as in ANSI C except that some of the operators allow string operands. Groups of «
between horizontal lines have the same precedence; higher groups have higher precedenc

divisor ANSI C guarantees only the seconaarty: In both ANSI C anctilthe quotient
will always have the pperty that X/y)*y + x%y isx., for all x andy.

DRAFT (8/12/93): Distribution Restricted

46

Expressions

522

5.2.3

524

525

Relational operators

The operators (less than)<= (less than or equab=(greater than or equah, (greater
than),== (equal), and= (not equal) are used for comparing two values. Each operator
produces a result df (true) if its operands meet the condition &dalse) if they dort.

Logical operators

The logical operator&&, || , and! are typically used for combining the results of rela-
tional operators, as in the expression
($x > 4) && ($x < 10)

Each operator produce®ar 1 result.&& (logical “and”) produces & result if both its
operands are non-zelp, (logical “or”) produces 4 result if either of its operands is
non-zero, andl (“not”) produces d result if its single operand is zero.

In Tcl, as in ANSI C, a zero value is treated as false and anything other than zero is
treated as true. Whenevesl §enerates a true/false value it usder true and for false.

Bitwise operators

Tcl provides six operators that manipulate the individual bits of inte®gfs”, <<, >>,
and~. These operators require their operands to be integer&, Theand" operators
perform bitwise and, pand exclusive or: each bit of the result is generated by applying
the given operation to the corresponding bits of the left and right operands. Né&te that
and| do not always produce the same resuk&snd|| :
expr 8&&2
o1
expr 8&2
g o
The operators< and>> use the right operand as a shift count and produce a result
consisting of the left operand shifted left or right by that number of bits. During left shifts
zeros are shifted into the low-order bits. Right shifting is always “arithmetic right shift”,
meaning that it shifts in zeroes for positive numbers and ones for negative numbers. This
behavior is diferent from right-shifting in ANSI C, which is machine-dependent.
The~ operand (“ones complement”) takes only a single operand and produces a
result whose bits are the opposite of those in the operand: zeroes replace ones and vice
versa.

Choice operator

The ternary operaté@: may be used to select one of two results:
expr {($a < $b) ? $a : $b}

DRAFT (8/12/93): Distribution Restricted

5.3 Math functions 47

5.3

This expression returns the smallefsafand$b. The choice operator checks the value of

its first operand for truth or falsehood. If it is true (non-zero) then therant following

the? is evaluated and becomes the result; if the first operand is false (zero) then the third
operand is evaluated and becomes the result. Only one of the second andumehts

is evaluated.

Math functions

5.4

Tcl expressions support a number of mathematical functions ssan andexp . Math
functions are invoked using standard functional notation:

expr 2*sin($x)

expr hypot($x, $y) + $z
The aguments to math functions may be arbitrary expressions, and mulfjplaemts
are separated by commas. Sabl& 5.3 for a list of all the built-in functions.

Substitutions

Substitutions can occur in two ways for expression operands. The first way is through the
normal Tl parser mechanisms, as in the following command:

expr 2*sin($x)
In this case thecl parser substitutes the value of variableefore executing the com-
mand, so the first gument taexpr will have a value such ag*sin(0.8) ". The sec-

ond way is through the expression evaluatdrich performs an additional round of
variable and command substitution on the expression while evaluating it. For example,
consider the command:

expr {2*sin($x)}
In this case the braces prevent tieeparser from substituting the valuexagfso the agu-
ment toexpr is “2*sin($x) ". When the expression evaluator encounters the dollar

sign it performs variable substitution itself, using the value of variabkethe agument
tosin .

Having two layers of substitution doesunsually make any diérence for thexpr
command, but it is vitally important for other commands Vikéle that evaluate an
expression repeately and expect to gdersht results each time. For example, consider
the following script that raises a base to a power:

set result 1

while {$power>0} {
set result [expr $result*$base]
incr power -1

DRAFT (8/12/93): Distribution Restricted

48

Expressions

Function Result

abs(x) Absolute value ok.

acos(x) Arc cosine ofx, in the range 0 toc
asin(x) Arc sine ofx, in the range™?2 to1v2.
atan(x) Arc tangent ok, in the rangem2 to1v2.
atan2(x,y) Arc tangent ok/y, in the rangem™2 to1v2.
ceil(x) Smallest integer not less than

cos(x) Cosine ofx (x in radians).

cosh(x) Hyperbolic cosine ok.

double(i) Real value equal to integer

exp(x) eraised to the powex.

floor(x) Largest integer not greater than
fmod(x, y) Floating-point remainder of divided byy.
hypot(X,) Square root o +y?).

int(x) Integer value produced by truncatixag
log(x) Natural logarithm ok.

log10(x) Base 10 logarithm of.

pow(X, y) X raised to the powsr.

round(x) Integer value produced by rounding
sin(x) Sine ofx (x in radians).

sinh(x) Hyperbolic sine ok.

sqrt(- x) Square root oxX.

tan(x) Tangent ok (x in radians).

tanh(x) Hyperbolic tangent of.

Table 5.3. The mathematical functions supported ah @xpressions. In most cases the functio
have the same behavior as the ANSI C library procedures with the same names.

DRAFT (8/12/93): Distribution Restricted

The expression$power>0 " gets evaluated byhile at the beginning of each iteration

to decide whether or not to terminate the loop. It is essential that the expression evaluator
use a new value giower each time. If the variable substitution were performed while
parsing thevhile command, for examplevhile $power>0
argument would be a constant expression suclba@”; either the loop would never exe-
cute or it would execute forever

..." thenwhile 's

5.5 String manipulation 49

Note:

5.5

When the expssion evaluator performs variable or command substitution the value
substituted must be an integer eat number (or a string, as described below). It cannot
be an arbitrary expgssion.

String manipulation

5.6

Unlike expressions in ANSI C cTTexpressions allow som simple string operations, as in
the following command:

if {$x == "New York"} {

}
In this example the expression evaluator compares the value of variabilee string
“New York " using string comparison; the body of tifie will be executed if they are
identical. In order to specify a string operand you must either enclose it in quotes or braces
or use variable or command substitution. It is important that the expression in the above
example is enclosed in braces so that the expression evaluator substitutes thexyd@ue of
the braces are left out then thgwment taf will be a string like

Los Angeles == "New York"

The expression parser will not be able to patses® (it isn’t a numberit doesnt make
sense as a function name, and it the’interpreted as a string because it idalimited)
S0 a syntax error will occur

If a string is enclosed in quotes then the expression evaluator performs command,
variable, and backslash substitution on the characters between the quotes. If a string is
enclosed in braces then no substitutions are performed. Braces nest for strings in expres-
sions in the same way that they nest for words of a command.

The only operators that allow string operands<are, <=, >=, ==, and !=. For all
other operators the operands must be numeric. For operatorstfikestrings are com-
pared lexicographically using the systestrcmp library function; the sorting order
may vary from system to system.

Types and conversions

Tcl evaluates expressions numerically whenever possible. String operations are only per-
formed for the relational operators and only if one or both of the operandstdoaka’
sense as a numbafost operators permit either integer or real operands but, adetv as
<< and&, allow only integers.

If the operands for an operator havdatint types thencl automatically converts
one of them to the type of the othiéione operand is an integer and the other is a real then
the integer operand is converted to real. If one operand is a hon-numeric string and the
other is an integer or real then the integer or real operand is converted to a string. The

DRAFT (8/12/93): Distribution Restricted

50

Expressions

result of an operation always has the same type as the operands except for relational oper-
ators like<, which always produce 0/1 integer resultsu¢an use the math function

double to explicitly promote an integer to a real, and andround to convert a real

value back to integer by truncation or rounding.

5.7 Precision
During expression evaluatiortiirepresents integers internally with the C tige ,
which provides at least 32 bits of precision on most machines. Real numbers are repre-
sented with with the C typgouble , which is usually represented with 64-bit values
(about 15 decimal digits of precision) using the IEEE Floating Point Standard.

Numbers are kept in internal form throughout the evaluation of an expression and are
only converted back to strings when necessargh as wheexpr returns its result. Inte-
gers are converted to signed decimal strings without any loss of precision. When a real
value is converted to a string only six significant digits are retained by default:

expr1.11111111 +1.11111111
0 2.22222
If you would like more significant digits to be retained when real values are converted to
strings you can set thel_precision global variable with the desired number of sig-
nificant digits:
set tcl_precision 12
expr1.11111111 +1.11111111
0 2.22222222
Thetcl_precision variable is used not just for tkepr command but anywhere
that a El application converts a real number to a sting.
Note: If you seticl_precision to 17 on a machine that uses IEEE floating point, you will

guarantee that string conversions do not lose information: if anesgn esult is
converted to a string and then later used in a difiéiexpession, the internal form after
conversion back ém the string will be identical to the internal form befoepnverting to
the string.

DRAFT (8/12/93): Distribution Restricted

Chapter 6
Lists

6.1

Lists are used incl to deal with collections of things, such as all the users in a group or all
the files in a directory or all the options for a widget. Lists allow you to collect together

any number of values in one place, pass around the collection as a singlamediiayer

get the component values back again. A list is an ordered collectienoéntavhere

each element can have any string value, such as a nuar@sors hame, the name of a
window, or a word of a @ command. Lists are represented as strings with a particular
structure; this means that you can store lists in variables, type them to commands, and nest
them as elements of other lists.

This chapter describes the structure of lists and presents a dozen basic commands for
manipulating lists. The commands perform operations like creating lists, inserting and
extracting elements, and searching for particular elementsgbé=6l1 for a summary).

There are othercl commands besides those described in this chapter that take lists as
armguments or return them as results; these other commands will be described in later chap-
ters.

Basic list structure and the lindex command

In its simplest form a list is a string containing any number of elements separated by
spaces or tabs. For example, the string

John Anne Mary Jim

51

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

52

Lists

concat list “AAist .7
Joins multiple lists into a single list (each element of dath becomes an
element of the result list) and returns the new list.

join list PoinString ?
Concatenates list elements together ydthString as separator and
returns the result.

lappend varName value “value ..?
Appends eackialue to variablevarName as a list element and returns t
new value of the variable. Creates the variable if it doesr®ady exist.

lindex list index
Returns théndex 'th element frondist

linsert list index value “alue ..?
Returns a new list formed by inserting all of adue amguments as list
elements beformdex 'th element ofist

list value alue .7
Returns a list whose elements arevhklie amguments.

llength list
Returns the number of elementdigt

Irange list first last
Returns a list consisting of elemefisst throughlast of list . If
last isend then it selects all elements up to the end of the list.

Ireplace list first last value value .2
Returns a new list formed by replacing elemémtst throughlast of
list with zero or more new elements, each formed fromvahes argu-
ment.

Isearch ?exact ? ?-glob ? ?-regexp ?list pattern
Returns the index of the first elementigh that matchepattern or-1
if none. The optional switch selects a pattern-matching technique (defa
-glob).

Isort ?-ascii ? ?integer ? ?-real ? ?-command command?\
?-increasing ? ?-decreasing ?list
Returns a new list formed by sorting the elementsbf . The switches
determine the comparison function and sorted order (defasiti
-increasing).

split string ?splitChars ?
Returns a list formed by splittiregring at instances afplitChars and
turning the characters between these instances into list elements.

Table 6.1. A summary of the list-related commands @l. T

DRAFT (8/12/93): Distribution Restricted

6.2 Creating lists: concat, list, and llength 53

is a list with four elements. There can be any number of elements in a list, and each ele-
ment can be an arbitrary string. In the simple form above, elements cannot contain spaces,
but there is additional list syntax that allows spaces within elements (see below).
Thelindex command extracts an element from a list:
lindex {John Anne Mary Jim} 1
O Anne
Lindex takes two ajuments, a list and an index, and returns the selected element of the
list. An index of0 corresponds to the first element of the listorresponds to the second
element, and so on. If the index is outside the range of the list then an empty string is
returned.
When a list is entered in @lfcommand the list is usually enclosed in braces, as in
the above example. The braces are not part of the list; they are needed on the command
line to pass the entire list to the command as a single word. When lists are stored in vari-
ables or printed out, there are no braces around them:
set x {John Anne Mary Jim}
0 John Anne Mary Jim
Curly braces and backslashes within list elements are handled by the list commands in
the same way that thellcommand parser treats them in words. This means that you can
enclose a list element in braces if it contains spaces, and you can use backslash substitu-
tion to get special characters such as braces into list elements. Braces are often used to nest
lists within lists, as in the following example:
lindex{ab{cde}f}2
O cde
In this case element 2 of the list is itself a list with three elements. There is no limit on how
deeply lists may be nested.

6.2 Creating lists: concat, list, and llength

Tcl provides two commands that combine strings together to producedistat and
list . Each of these commands accepts an arbitrary numbegushants, and each pro-
duces a list as a result. Howeutey difer in the way they combine theiguments. The
concat command takes one or more lists ggiarents and joins all of the elements of
the agument lists together into a singlegarlist:
concat{abc}{de}f{ghi}

O abcdefghi
Concat expects its guments to have proper list structure; if thguanents are not well-
formed lists then the result may not be a well-formed list eithéact, all thatoncat
does is to concatenate itgament strings into one & string with space characters
between the guments. The samefe€t asconcat can be achieved using double-quotes:

DRAFT (8/12/93): Distribution Restricted

54

Lists

6.3

setx{ab c}
sety{d e}
set z [concat $x $y]

0 abcde
setz "$x $y"
0O abcde
Thelist command joins its guments together so that eacuament becomes a
distinct element of the resulting list:
list{abc}{de}f{ghi}
O {abc}{de}f{ghi}
In this case, the result list contains only four elementsli$he command will always
produce a list with proper structure, regardless of the structure afitmeants (it adds
braces or backslashes as needed), anlihttex command can always be used to
extract the original elements of a list created Visth . The aguments tdist need not
themselves be well-formed lists.
Thellength command returns the number of elements in a list:
llength {{abc}{de}f{ghi}}
0o 4
llength a
o1
llength {}
o o
As you can see from the examples, a simple string #ikés*a proper list with one ele-
ment and an empty string is a proper list with zero elements.

Modifying lists: linsert, Ireplace, Irange, and lappend

Thelinsert command forms a new list by adding one or more elements to an existing
list:
setx{ab{cd}e}
O ab{cd}e
linsert $x 2 X Y Z
0 abXYZzZ{cd}e
linsert $x 0 {X Y} Z
O {XY}Zab{cd}e
Linsert takes three or moregurments. The first is a list, the second is the index of an
element within that list, and the third and additiongLiarents are new elements to insert
into the list. The return value frolimsert is a list formed by inserting the new ele-
ments just before the element indicated by the index. If the index is zero then the new ele-

DRAFT (8/12/93): Distribution Restricted

6.3 Modifying lists: linsert, Ireplace, Irange, and lappend 55

ments go at the beginning of the list; if it is one then the new elements go after the first
element in the old list; and so on. If the index is greater than or equal to the number of ele-
ments in the original list then the new elements are inserted at the end of the list.
Thelreplace command deletes elements from a list and optionally adds new ele-
ments in their place. It takes three or moguerents. The first gument is a list and the
second and third guments give the indices of the first and last elements to be deleted. If
only three aguments are specified then the result is a new list produced by deleting the
given range of elements from the original list:
Ireplace {ab{cd}e}33
0 ab{cd}
If additional aguments are specified ki@place as in the example belowhen they
are inserted into the list in place of the elements that were deleted.
Ireplace{ab{cd}e}12{WX}Y Z
O a{wWXx}Yyze
Thelrange command extracts a range of elements from a list. It takeguasants
a list and two indices and it returns a new list consisting of the range of elements that lie
between the two indices (inclusive):
setx{ab{cd}e}
O ab{cd}e
Irange $x 1 3
O b{cd}e
Irange $x 0 1
0 ab
Thelappend command provides anfigient way to append new elements to a list
stored in a variable. It takes ag@ments the name of a variable and any number of addi-
tional aguments. Each of the additionafjaments is appended to the variablelue as a
new list element andppend returns the variable’new value:
setx {a b {c d} e}
0 ab{cd}e
lappend x XX {YY ZZ}
O ab{cd}eXX{YY ZZ}
set X
O ab{cd}e XX{YY zz}
Lappend is similar toappend except that it enforces proper list structure. As with
append, it isit’strictly necessaryror example, the command
lappend x $a $b $c
could be written instead as

set x "$x [list $a $b $c]"

DRAFT (8/12/93): Distribution Restricted

56

Lists

However as withappend , lappend is implemented in a way that avoids string copies.
For lage lists this can make a bigfeifence in performance.

6.4 Searching lists: Isearch
Thelsearch command searches a list for an element with a particular value. It takes
two aguments, the first of which is a list and second of which is a pattern:
set x {John Anne Mary Jim}
Isearch $x Mary
g 2
Isearch $x Phil
o -1
Lsearch returns the index of the first element in the list that matches the pattelrnif or
there was no matching element.
One of three dférent pattern matching techniques can be selected by specifying one
of the switchesexact ,-glob , and-regexp before the list glument:
Isearch -glob $x A*
0o 1
The-glob switch causes matching to occur with the rules osthierg match com-
mand described in Section 10.1-r&gexp switch causes matching to occur with regu-
lar expression rules as described in Section 10.2;exaatt insists on an exact match
only. If no switch is specified theglob is assumed by default.
6.5 Sorting lists: Isort

Thelsort command takes a list agament and returns a new list with the same ele-
ments, but sorted in increasing lexicographic order:
Isort {John Anne Mary Jim}
O Anne Jim John Mary
You can precede the list with any of several switches to control the sort. For example,
- decreasing specifies that the result should have theg#at” element first and
-integer specifies that the elements should be treated as integers and sorted according
to integer value:
Isort -decreasing {John Anne Mary Jim}
0 Mary John Jim Anne
Isort {10 1 2}
0 1102

DRAFT (8/12/93): Distribution Restricted

6.6 Converting between strings and lists: split and join 57

Isort -integer {10 1 2}
0o 1210

You can use the&eommand option to specify your own sorting function (see the reference
documentation for details).

6.6 Converting between strings and lists: split and join

Thesplit command breaks up a string into component pieces so that you can process
the pieces independently creates a list whose elements are the pieces, so that you can
use any of the list commands to process the pieces. For example, suppose a variable con-
tains a UNIX file name with components separated by slashes, and you want to convert it
to a list with one element for each component;

set x a/b/c

set y /usr/include/sys/types.h
split $x /

O abc
split Sy /
O {} usrinclude sys types.h
The first agument tesplit is the string to be split up and the secomuiarent contains
one or moresplit charactersSplit locates all instances of any of the split characters in
the string. It then creates a list whose elements consist of the substrings between the split
characters. The ends of the string are also treated as split characters. If there are consecu-
tive split characters or if the string starts or ends with a split character as in the second
example, then empty elements are generated in the result list. The split characters them-
selves are discarded. Several split characters can be specified, as in the following example:
split xbaybz ab
O x{}yz
If an empty string is specified for the split characters then each character of the string is
made into a separate list element:
split{a b c} {}
O a{}b{}c
Thejoin command is approximately the inversespfit . It concatenates list ele-
ments together with a given separator string between them:
join{ {} usrinclude sys types.h }
O /usrf/include/sys/types.h
set x {24 112 5}
expr [join $x +]
0 141

DRAFT (8/12/93): Distribution Restricted

58

Lists

6.7

Join takes two gguments: a list and a separator string. It extracts all of the elements from
the list and concatenates them together with the separator string between each pair of ele-
ments. The separator string can contain any number of characters, including zero. In the
first example above a file name is generated by joining the list elementg With the
second example alTexpression is generated by joining the list elements with “

One of the most common uses $éptit andjoin is for dealing with file names as
shown above. Another common use is for splitting up text into lines by using newline as
the split character

Lists and commands

There is a very important relationship between lists and commandk #ny proper list
is also a well-formedd command. If a list is evaluated asa Fcript then it will consist
of a single command whose words are the list elements. In other wordg, plaeser will
perform no substitutions whatsoever: it will simply extract the list elements with each ele-
ment becoming one word of the command. This property is very important because it
allows you to generatecTcommands that are guaranteed to parse in a particular fashion
even if some of the commamsdivords contain special characters like spac&s or

For example, suppose you are creating a button widget in Tk, and when the user
clicks on the widget you would like to reset a variable to a particular vabuemight cre-
ate such a widget with a command like this:

button .b -text "Reset" -command {set x 0}
The Tl script “set x 0 " will be evaluated whenever the user clicks on the button. Now
suppose that the value to be stored in the variable is not constant, but instead is computed
just before théutton command and must be taken from a varighityalue . Fur-
thermore, suppose thaitValue could contain any string whatsoevéou might
rewrite the command as
button .b -text "Reset" -command {set x $initValue}

The script set x $initValue " will be evaluated when the user clicks on the button.
However this will use the value ohitValue at the time the user clicks on the button,
which may not be the same as the value when the button was created. For example, the
same variable might be used to create several buttons, each widrentlihtended reset
value.

To solve this problem you must generatebcbmmand that contains thalueof the
initValue variable, not its name, and use this as part ofdhimand option for the
button command. Unfortunatelya simple approach like

button .b -text "Reset" -command "set x $initValue"

will not work in general. If the value d@fitValue is something simple liké7 then
this will work fine: the resulting command will beét x 47 ", which will produce the
desired result. Howevewhat ifinitValue contains New York "? In this case the

DRAFT (8/12/93): Distribution Restricted

6.7 Lists and commands 59

resulting command will beset x New York ", which has four wordsset will gener-
ate an error because there are too magynaents. Even worse, whainitValue con-
tains special characters lik™or “["? These characters could cause unwanted
substitutions to occur when the command is evaluated.
The only solution that is guaranteed to work for any valtuiritfalue is to use

list commands to generate the command, as in the following example:

button .b -text "Reset" -command [list set x $initValue]
The result of théist command is adl command whose first word will Iset , whose
second word will be, and whose third word will be the valueiotValue . The com-
mand will always produce the desired result: whatever value is staretVmlue at
the timebutton is invoked will be stored iR when the widget is invoked. For example,
suppose that the valueioftValue is “New York ”. The command generated by
list will be “set x {New York} ", which will parse and execute correctny of
the Tcl special characters will also be handled correctliidby :

set initValue {Earnings: $1410.13}

list set x $initValue

O setx {Earnings: $1410.13}
set initValue "{ \\"
list set x $initValue
O setx\{\\

DRAFT (8/12/93): Distribution Restricted

60

Lists

DRAFT (8/12/93): Distribution Restricted

Chapter 7
Control Flow

7.1

This chapter describes thel Eommands for controlling the flow of execution in a script.
Tcl's control flow commands are similar to the control flow statements in the C program-
ming language ancsh , includingif , while , for ,foreach ,switch , andeval .

Table 7.1 summarizes these commands.

The if command

Theif command evaluates an expression, tests its result, and conditionally executes a
script based on the result. For example, consider the following command, which sets vari-
ablex to zero if it was previously negative:

if {$x < 0} {
setx 0
}

In this caséf receives two guments. The first is an expression and the secondcis a T
script. The expression can have any of the forms for expressions described in Chapter 5.
Theif command evaluates the expression and tests the result; if it is non-zefo then
evaluates thecT script. If the value is zero thén returns without taking any further
action.

If commands can also include one or nelseif clauses with additional tests
and scripts, plus a finalse clause with a script to evaluate if no test succeeds:

61

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

62

Control Flow

break
Terminates the innermost nested looping command.

continue
Terminates the current iteration of the innermost looping command and
goes on to the next iteration of that command.

eval arg ?argarg ..?

Concatenates all of tregg 's with separator spaces, then evaluates the
result as adl script and returns its result.

for init test reinit body
Executesnit as a Tl script. Then evaluatésst as an expression. If it
evaluates to non-zero then execlttedy as a Tl script, executereinit
as a Tl script, and re-evaluatésst as an expression. Repeats uetit
evaluates to zero. Returns an empty string.

foreach varName list body
For each element &ift , in order set variableyarName to that value
and executbody as a Tl script. Returns an empty striigst must be a
valid Tcl list.

if testl “2hen ?bodyl “?elseif test2 2hen ?body2 elseif 2N
2else ? ?bodyn ?
Evaluategest as an expression. If its value is non-zero then executes
bodyl as a Tl script and returns its value . Otherwise evalu@Est2 as
an expression; if its value is non-zero then exedutdg?2 as a script and
returns its value. If no test succeeds then exeboidg as a €l script
and returns its result.

source fileName
Reads the file whose namd ileName and evaluates its contents asch T
script. Returns the result of the script.

switch ?options ? string pattern body ?pattern body 2

switch ?options ? string { pattern body ?pattern body .7}
Matchesstring against eacpattern in order until a match is found,
then executes thHeody corresponding to the matchipgttern . If the
lastpattern isdefault then it matches anything. Returns the result
thebody executed, or an empty string if no pattern matobpsions
may be any ofexact ,-glob ,-regexp ,or-- .

while test body
Evaluategest as an expression. If its value is non-zero then executes
body as a Tl script and re-evaluatésst . Repeats unttiest evaluates

to zero. Returns an empty string.

Table 7.1. A summary of the @ commands for controlling the flow of execution.

DRAFT (8/12/93): Distribution Restricted

7.2 Looping commands: while, for, and foreach 63

7.2

if {$x < 0} {
} elseif.{$x ==0}{
} elseif'{$x ==1}{
} else“{.

}

This command will execute one of the four scripts indicated by “...” depending on the
value ofx. The result of the command will be the result of whichever script is executed. If
anif command has nelse clause and none of its tests succeeds then it returns an
empty string.

The agumentelse is an optional “noise word”. It is also legal to halkren noise
words after any of the expressions to test. 8leeif ~ words are not optional: they are
needed to distinguistiseif clauses fronelse clauses.

Remember that the expressions and scripté faand other control flow commands
are parsed using the same approach asgaitraants to all @ commands. It is almost
always a good idea to enclose the expressions and scripts in braces so that substitutions are
deferred until the the command is executed. Furthermore, each open brace must be on the
same line as the preceding word or else the newline will be treated as a command separa-
tor. The following script is parsed as two commands, which probabhtiendesired
result:

if {$x < 0}
{

setx 0

Looping commands: while, for , and foreach

Tcl provides three commands for loopimghile , for , andforeach . While andfor
are similar to the corresponding C statementsfargdich is similar to the correspond-
ing feature of thesh shell. Each of these commands executes a nested script over and
over again; they diér in the kinds of setup they do before each iteration and in the ways
they decide to terminate the loop.

Thewhile command takes twoguments: an expression anda gcript. It evalu-
ates the expression and if the result is non-zero then it executes sked. This process
repeats over and over until the expression evaluates to zero, at which pwini¢he
command terminates and returns an empty string. For example, the script below copies a
list from variableb to variablea, reversing the order of the elements along the way:

DRAFT (8/12/93): Distribution Restricted

Control Flow

sethb ™
set i [expr [llength $a] -1]
while {$i >= 0} {
lappend b [lindex $a $i]
incri-1
}

Thefor command is similar tavhile except that it provides more explicit loop
control. The program to reverse the elements of a list can be rewritterfarsiras fol-
lows:

setb ™
for {set i [expr [llength $a]-1]} {$i >= 0} {incr i -1} {
lappend b [lindex $a $i]

The first agument tdfor is an initialization script, the second is an expression that deter-
mines when to terminate the loop, the third is a reinitialization script, which is evaluated
after each execution of the loop body before evaluating the test again, and the faurth ar
ment is a script that forms the body of the Idem. executes its first gument (the ini-
tialization script) as acl command, then evaluates the expression. If the expression
evaluates to non-zero, théar executes the body followed by the reinitialization script
and re-evaluates the expression. It repeats this sequence over and over again until the
expression evaluates to zero. If the expression evaluates to zero on the first test then nei-
ther the body script nor the reinitialization script is ever executed wlike |, for
returns an empty string as result.

For andwhile are equivalent in that anything you can write using one command
you can also write using the other command. Howdeer has the advantage of placing
all of the loop control information in one place where it is easy to gpeadlly the initial-
ization, test, and re-initializationguments are used to select a set of elements to operate
on (integer indices in the above example) and the body of the loop carries out the opera-
tions on the chosen elements. This clean separation between element selection and action
makesfor loops easier to understand and debug. Of course, there are some situations
where a clean separation between selection and action is not possible, and in these cases a
while loop may make more sense.

Theforeach command iterates over all of the elements of a list. For example, the
following script provides yet another implementation of list reversal:

setb™;

foreach i $a {
set b [linsert $b 0 $i]
}

Foreach takes three guments. The first is the name of a variable, the second is a list,
and the third is adl script that forms the body of the lodforeach will execute the

body script once for each element of the list, in orflefore executing the body in each
iteration,foreach sets the variable to hold the next element of the list. Thus if vadable
has the valuefirst second third " in the above example, the body will be exe-

DRAFT (8/12/93): Distribution Restricted

7.3 Loop control: break and continue 65

cuted three times. In the first iteratiomvill have the valué irst , in the second iteration
it will have the valuesecond , and in the third iteration it will have the valiird . At

the end of the loop, b will have the valukitd second f irst "andi will have the
value ‘third . As with the other looping commandereach always returns an empty
string.

7.3 Loop control: break and continue

Tcl provides two commands that can be used to abort part or all of a looping command:
break andcontinue . These commands have the same behavior as the corresponding
statements in C. Neither takes anguaments. Théreak command causes the innermost
enclosing looping command to terminate immediatety example, suppose that in the
list reversal example above it is desired to stop as soon as an element ggiakto
found in the source list. In other words, the result list should consist of a reversal of only
those source elements up to (but not includingX element. This can be accomplished
with break as follows:
setb™;
foreach i $a {
if {$i =="ZZZ"} break
set b [linsert $b 0 $i
}

Thecontinue command causes only the current iteration of the innermost loop to
be terminated; the loop continues with its next iteration. In the casgleilef , this means
skipping out of the body and re-evaluating the expression that determines when the loop
terminates; iffor loops, the re-initialization script is executed before re-evaluating the
termination condition. For example, the following program is another variant of the list
reversal example, whe®ZZ elements are simply skipped without copying them to the
result list:

setb"™;

foreach i $a {
if {$i == "ZZZ"} continue
set b [linsert $b 0 $i]

7.4 The switch command

Theswitch command tests a value against a number of patterns and executes one of
several Tl scripts depending on which pattern matched. The sdewt afswitch can
be achieved with aii command that has lots efseif clauses, butwitch provides
a more compact encodingclB switch command has two forms; here is an example of
the first form:

DRAFT (8/12/93): Distribution Restricted

66

Control Flow

switch $x {a {incr t1} b {incr t2} c {incr t3}}

The first agument taswitch is the value to be tested (the contents of varialiethe
example). The secondgamment is a list containing one or more pairs of elements. The first
argument in each pair is a pattern to compare against the value, and the second is a script
to execute if the pattern matches. Biagtch command steps through these pairs in
ordetr comparing the pattern against the value. As soon as it finds a match it executes the
corresponding script and returns the value of that script as its value. If no pattern matches
then no script is executed asdtitch returns an empty string. This particular command
increments variablel if x has the value &2 if x has the valub, t3 if x has the value
¢, and does nothing otherwise.

The second form spreads the patterns and scripts out into sepguatersts rather
than combining them all into one list;

switch $x a {incr t1} b {incr t2} c {incr t3}
This form has the advantage that you can invoke substitutions on the pajteneats

more easilybut most people prefer the first form because you can easily spread the pat-
terns and scripts across multiple lines like this:

switch $x {
a {incr t1}
b {incr t2}
c {incr t3}
}

The outer braces keep the newlines from being treated as command sepaittdhe W
second form you would have to use backslash-newlines like this:

switch $x \
a {incr t1}\
b {incr t2} \
c {incr t3}\
}

Theswitch command supports three forms of pattern matching.can precede
the value to test with a switch that selects the form you wexdct selects exact com-
parison,-glob selects pattern matching as in stieng match command (see Sec-
tion 10.1 for details) andegexp selects regulagxpression matching as described in
Section 10.2. The default-iglob

If the last pattern in awitch command islefault then it matches any value. Its
script will thus be executed if no other patterns match. For example, the script below will
examine a list and produce three counters. Thetfirstcounts the number of elements in
the list that contain aa. The secondp , counts the number of elements that are unsigned
decimal integers. The thirt8 , counts all of the other elements:

DRAFT (8/12/93): Distribution Restricted

7.5 Eval

67

7.5

settl 0
sett2 0
sett30
foreach i $x {
switch -regexp $i in {

a {incr t1}
N0-9]*$ {incr t2}
default {incr t3}

}
}

If a script in aswitch command is+" thenswitch uses the script for the next
pattern instead. This makes it easy to have several patterns that all execute the same script,
as in the following example:

switch $x {
a -
b -
c {incr t1}
d {incr t2}
}

This script increments variabi if X isa, b, orc and it increment® if x isd.

Eval

Eval is a general-purpose building block for creating and executihgcTipts. It accepts

any number of guments, concatenates them together with separator spaces, and then exe-
cutes the result as &lBcript. One use afval is for generating commands, saving them

in variables, and then later evaluating the variableglaschipts. For example, the script

set cmd "set a 0"

eval $cmd
clears variable to 0 when theeval command is invoked.

Perhaps the most important usedwal is to force another level of parsing. The T
parser performs only level of parsing and substitution when parsing a command; the
results of one substitution are not reparsed for other substitutions. Hotheverare
occasionally times when another level of parsing is desirablesvaatd provides the
mechanism to achieve this. For example, suppose that a vardablecontains a list of
variables and that you wish to unset each of these variables. One solution is to use the fol-
lowing script:

foreach i $vars {
unset $i
}

DRAFT (8/12/93): Distribution Restricted

68

Control Flow

Note:

7.6

This script will work just fine, but thenset command takes any number of@aments
so it should be possible to unset all of the variables with a single command. Unfortunately
the following script will not work:

unset $vars
The problem with this script is that all of the variable names are passeskip as a sin-
gle agument, rather than using a separaggiiaaent for each name. The solution is to use
eval , as with the following command:

eval unset $vars
Eval generates a string consisting ahset " followed by the list of variable names
and then passes the string t fbr evaluation. The string gets re-parsed so each variable
name ends up in a éifent agument taunset .
This appoach works even if some of the variable names contain spaces or special
characters such aB. As described in Section 6.7, the only safe way to geneatlate T
commands is using list operations suchlists andconcat . The commandéval
unset $vars " is identical to the commandéval [concat unset $vars] " in

either case the script evaluatedéyal is a poper list whose first element isriset ”
and whose other elementsdhe elements ofrs .

Executing from files: source

Thesource command is similar to the command by the same name asthahell: it
reads a file and executes the contents of the file elssaript. It takes a singlegument
that contains the name of the file. For example, the command
source init.tcl
will execute the contents of the filat.tcl . The return value froraource will be
the value returned when the file contents are executed, which is the return value from the
last command in the file. In additicsgurce allows thereturn command to be used in
the file’s script to terminate the processing of the file. See Section 8.1 for more informa-
tion onreturn

DRAFT (8/12/93): Distribution Restricted

Chapter 8
Procedures

8.1

A Tcl procedure is a command that is implemented witbl acript rather than C code.

You can define new procedures at any time witlptbe command described in this
chapterProcedures make it easy for you to package up solutions to problems so that they
can be re-used easigrocedures also provide a simple way for you to prototype new fea-
tures in an application: once you've tested the procedures, you can reimplement them in C
for higher performance; the C implementations will appear just like the original proce-
dures so none of the scripts that invoke them will have to change.

Tcl provides special commands for dealing with variable scopes. Among other things,
these commands allow you to pasguanents by reference instead of by value and to
implement new @l control structures as procedureablt 8.1 summarizes theltom-
mands related to procedures.

Procedure basics: proc and return

Procedures are created with grec command, as in the following example:

proc plus {a b} {expr $a+$b}
The first agument tgproc is the name of the procedure to be cregikas, in this case.
The second gument is a list of names ofgarments to the procedura @ndb in the
example). The third gument tgproc is a Tl script that forms the body of the new pro-
cedureProc creates a new command and arranges that whenever the command is
invoked the procedurgbody will be evaluated. In this case the new command will have
the nameplus ; wheneveplus is invoked it must receive twogurments. While the

69

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

70

Procedures

global namel ?Zname2 ...?
Binds variable namasamel, name2, etc. to global variables. References
to these names will refer to global variables instead of local variables fg
the duration of the current procedure. Returns an empty string.

proc name argList body
Defines a procedure whose namedme, replacing any existing comman
by that nameArgList is a list with one element for each of the
procedures aguments, antody contains a @l script that is the
procedures body Returns an empty string.

return ?options ? dalue ?
Returns from the innermost nested procedusmarce command with
value as the result of the proceduvalue defaults to an empty string.
Additional options may be used to trigger an exceptional return (see
Section 9.4).

uplevel ?Jevel ?arg 7argarg ..?
Concatenates all of thaafg s with spaces as separators, then executes t|
resulting El script in the variable context of stack lelealel . Level
consists of a number or a number preceded, land defaults tel .
Returns the result of the script.

upvar “?evel ?otherVarl myVarl ?otherVar2 myVar2 22
Binds the local variable nanmeyVarl to the variable at stack levieel
whose name istherVarl . For the duration of the current procedure,
variable references myVarl will be directed tmtherVarl instead.
Additional bindings may be specified wittherVar2 andmyVar2, etc.
Level has the same syntax and meaning agg@vel and defaults te
1. Returns an empty string.

Table 8.1. A summary of the @ commands related to procedures and variable scoping.

body ofplus is executing the variablesandb will contain the values of theguments.

The return value from thelus command is the value returned by the last command in

plus ’'s body Here are some correct and incorrect invocationsusf :

plus 3 4
o7

plus 3 -1
o 2

plus 1

O no value given for parameter "b" to "plus”

If you wish for a procedure to return early without executing its entire script, you can
invoke thereturn command: it causes the enclosing procedure to return immediately

DRAFT (8/12/93): Distribution Restricted

8.2 Local and global variables 71

8.2

and the agument tareturn will be the result of the procedure. Here is an implementa-
tion of factorial that use®turn

proc fac x {
if {$x <= 1}{
return 1

}
expr $x * [fac [expr $x-1]]

fac 4
o 24
fac O
o1
If the agument tdfac is less than or equal to one tHan invokesreturn to return
immediately Otherwise it executes tlexpr command. Thexpr command is the last
one in the procedurgbody so its result is returned as the result of the procedure.

Local and global variables

When the body of acT procedure is evaluated it uses detént set of variables from its

caller These variables are callexdtal variables since they are only accessible within the
procedure and are deleted when the procedure retuariabMs referenced outside any
procedure are calleglobal variables|t is possible to have a local variable with the same
name as a global variable or a local variable in another active procedure, but these will be
different variables: changes to one will ndeef any of the others. If a procedure is

invoked recursively then each recursive invocation will have a distinct set of local vari-
ables.

The aguments to a procedure are just local variables whose values are set from the
words of the command that invoked the procedure. When execution begins in a procedure,
the only local variables with values are those correspondingtionants. Other local
variables are created automatically when they are set.

A procedure can reference global variables withgtbbal command. For exam-
ple, the following command makes the global variaklesdy accessible inside a proce-
dure:

global x y
Theglobal command treats each of itgaments as the name of a global variable and
sets up bindings so that references to those names within the procedure will be directed to
global variables instead of local on€dobal can be invoked at any time during a proce-
dure; once it has been invoked, the bindings will remainfacefintil the procedure
returns.

DRAFT (8/12/93): Distribution Restricted

Procedures

Note: Tcl does not mvide a form of variable equivalent to “static” variables in C, whichk ar
limited in scope to a given @edue but have values that persist ass calls to the
procedue. In Tl you must use global variables for purposes like tlisavbid name
conflicts with other such variables you should include the name ofdbedue or the
name of its enclosing package in the variable name, for example
“Hypertext_numLinks ”

8.3 Defaults and variable numbers of arguments

In the examples so fahe second gument tgproc (which describes the @uments to
the procedure) has taken a simple form consisting of the names ajuthgeats. Three
additional features are available for specifyinguanents. First, the gument list may be
specified as an empty string. In this case the procedure takezunteats. For example,
the following command defines a procedure that prints out two global variables:
proc printVars {} {
global a b
puts "ais $a, b is $b"
}

The second additional feature is that defaults may be specified for some or all of the
arguments. The gument list is actually a list of lists, with each sublist corresponding to a
single agument. If a sublist has only a single element (which has been the case up until
now) that element is the name of thguament. If a sublist has twogaments, the first is
the aguments name and the second is a default value for it. For example, here is a proce-
dure that increments a given value by a given amount, with the amount defaulting to 1:

proc inc {value {increment 1}} {
expr $value+$increment
}

The first element in thegument listyvalue , specifies a name with no default value. The
second element specifies aganent with namencrement and a default value df.
This means thdahc can be invoked with either one or twgaments:
inc 42 3
0 45
inc 42
0 43
If a default isnt specified for an gument in thggroc command then thatgument must
be supplied whenever the procedure is invoked. The defauffechants, if anymust be
the last aguments for the procedure: if a particulaglanent is defaulted then all theyar
ments after it must also be defaulted.
The third special feature ingarment lists is support for variable numbers gliar
ments. If the last gument in the gument list is the special valaegs , then the proce-
dure may be called with varying numbers afianents. Aguments beforargs in the

DRAFT (8/12/93): Distribution Restricted

8.4 Call by reference: upvar 73

8.4

argument list are handled as before, but any number of additignathants may be spec-
ified. The procedure’local variablargs will be set to a list whose elements are all of
the extra ayjuments. If there are no extrgaments thelargs will be set to an empty
string. For example, the following procedure takes any numbeguof@nts and returns
their sum:
proc sum args {
setsO

foreach i $args {
incr s $i
}

return $s

];um 12345
0o 15
sum
o o
If a procedures agument list contains additionalgaments beforargs then they may
be defaulted as described above. Of course, if this happens there will be nogextra ar
ments sargs will be set to an empty string. No default value may be specified for
args : the empty string is its default.

Call by reference: upvar

Theupvar command provides a general mechanism for accessing variables outside the
context of a procedure. It can be used to access either global variables or local variables in

some other active procedure. Most often it is used to implement call-by-refergace ar
ment passing. Here is a simple examplamfar in a procedure that prints out the con-
tents of an array:
proc parray name {
upvar $name a
foreach el [Isort [array names a]] {
puts "$el = $a($el)"
}
}

set info(age) 37
set info(position) "Vice President”
parray info
0 age=37
position = "Vice President"
Whenparray is invoked it is given the name of an array amarent. Thaipvar com-

mand then makes this array accessible through a local variable in the procedure. The first

argument taupvar is the name of a variable accessible to the procedcaéier This

DRAFT (8/12/93): Distribution Restricted

74

Procedures

Note:

8.5

may be either a global variable, as in the example, or a local variable in a calling proce-
dure. The secondgument is the name of a local varialilgvar arranges things so that
accesses to local varialdewill actually refer to the variable in the caller whose name is
given by variablmame. In the example this means that wipamray reads elements of
a itis actually reading elements of tiléo global variable. Iparray were to writea it
would modifyinfo . Parray uses thedrray names " command to retrieve a list of
all the elements in the arragorts them witlsort , then prints out each the elements in
order
In the example it appears as if the outpueisirned as the pcedue’s result; in fact it is
printed directly to standat output and theesult of the pscedue is an empty string.

The first variable name in apvar command normally refers to the context of the
current procedure’caller However it is also possible to access variables from any level
on the call stack, including global level. For example,

upvar #0 other x
makes global variablether accessible via local variab¥e(the#0 amgument specifies
thatother should be interpreted as a global variable, regardless of how many nested pro-
cedure calls are active), and

upvar -2 other x
makes variablether in the caller of the caller of the current procedure accessible as
local variablex (-2 specifies that the contextather is 2 levels up the call stack). See
the reference documentation for more information on specifying a leupl/ar .

Creating new control structures: uplevel

Theuplevel command is a cross betwesral andupvar . It evaluates its gu-

ment(s) as a script, just lilval , but the script is evaluated in the variable context of a
different stack level, likapvar . With uplevel you can define new control structures as
Tcl procedures. For example, here is a new control flow command datled

proc do {varName f irst last body} {
upvar $varName v
for {set v $f irst} {$v <= $last} {incr v} {

uplevel $body

}
}

The first agument tado is the name of a variablBo sets that variable to consecutive
integer values in the range between its second and tgudhants, and executes the
fourth agument as adl command once for each setting. Given this definitiothogfthe
following script creates a list of squares of the first five integers:

DRAFT (8/12/93): Distribution Restricted

8.5 Creating new control structures: uplevel 75

Note:

seta {}
doil5¢{
lappend a [expr $i*$i]

seta

0 1491625
Thedo procedure usagpvar to access the loop variableif the example) as local vari-
ablev. Then it uses thier command to increment the loop variable through the desired
range. For each value it invokeglevel to execute the loop body in the variable con-
text of the caller; this causes references to variabbesdi in the body of the loop to
refer to variables io’s caller If eval were used instead aplevel thena andi
would be treated as local variablesim, which would not produce the desirefkef.
This implementation afo does not handle exceptional conditionsperly. For example,
if the body of the loop containgeturn command it will only cause tli® procedue to
return, which is ma like the behavior direak . If areturn occurs in the body of a
built-in contol-flow command likéor or while then it causes the pcedue that

invoked the command teturn. In Chapter 9 you will see how to implement this behavior
for do.

As withupvar , uplevel takes an optional initial gument that specifies an
explicit stack level. See the reference documentation for details.

DRAFT (8/12/93): Distribution Restricted

76

Procedures

DRAFT (8/12/93): Distribution Restricted

Chapter 9
Errorsand Exceptions

9.1

As you have seen in previous chapters, there are many things that can result in errors in
Tcl commands. Errors can occur because a command tegist, or because it doesn’
receive the right number ofgarments, or because thgaments have the wrong form, or
because some other problem occurs in executing the command, such as an error in a sys-
tem call for file I/O. In most cases errors represent severe problems that make it impossi-
ble for the application to complete the script it is processicls rror facilities are
intended to make it easy for the application to unwind the work in progress and display an
error message to the user that indicates what went wrong. Presumably the user will fix the
problem and retry the operation.

Errors are just one example of a more general phenomenoneaksationsExcep-
tions are events that cause scripts to be aborted; they incluate#ke, continue , and
return commands as well as errors! @llows exceptions to be “caught” by scripts so
that only part of the work in progress is unwound. After catching an exception the script
can ignore it or take steps to recover from it. If the scripttcanbver then it can reissue
the exception. dble 9.1 summarizes theltommands related to exceptions.

What happens after an error?

When a €l error occurs the current command is aborted. If that command is part of a
larger script then the script is also aborted. If the error occurs while executthgrade-

dure, then the procedure is aborted, along with the procedure that called it, and so on until
all the active procedures have aborted. After@lbCtivity has been unwound in this way
control eventually returns to C code in the application, along with an indication that an

77

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

78

Errors and Exceptions

catch command ?varName?
Evaluatesommandas a €l script and returns an integer code that
identifies the completion status of the commandaiName is specified
then it gives the name of a variable, which will be modified to hold the
return value or error message generateddoymand

error message 7nfo ? ?code ?
Generates an error withessage as the error messageirifo is
specified and is not an empty string then it is used to initialize the
errorinfo variable. Ifcode is specified then it is stored in the
errorCode variable.

return -code code ?-errorinfo info ? ?-errorcode code ? ?string ?
Causes the current procedure to return an exceptional con@itda.
specifies the condition and mustdie, error , return , break ,
continue , or an integerThe-errorinfo option may be used to
specify a starting value for tlegrorinfo variable, anderrorcode
may be used to specify a value for éreorCode variable.String
gives the return value or error message associated with the return; it
defaults to an empty string.

Table 9.1. A summary of the @ commands related to exceptions.

error occurred and a message describing the érieup to the application to decide how
to handle this situation, but most interactive applications will display the error message for
the user and continue processing user input. In a batch-oriented application where the user
cant see the error message and adjust future actions accoydireg@pplication might
print the error message into a log and abort.
For example, consider the following script, which is intended to sum the elements of a

list:

set list {44 16 123 98 57}

set sum O

foreach el $list {
set sum [expr $sum+$element]
}

0 can't read "element": no such variable

This script is incorrect because there is no varial@ment : the variable namele-

ment in theexpr command should have beeln to match the loop variable for the

foreach command. When the script is executed an error will occuclgsises the

expr command: € will attempt to substitute the value of variablement but will not

be able to find a variable by that name, so it will signal an.&rhis error indication will

be returned to thioereach command, which had invoked thel Tnterpreter to evaluate

the loop bodyWhenforeach sees that an error has occurred, it will abort its loop and
return the same error indication as its own result. This in turn will cause the overall script

DRAFT (8/12/93): Distribution Restricted

9.2 Generating errors from Tcl scripts 79

9.2

to be aborted. The error messagari't read "element": no such vari-
able " will be returned along with the errcaind will probably be displayed for the user
In many cases the error message will provide enough information for you to pinpoint
where and why the error occurred so you can avoid the problem in the future. Hafvever
the error occurred in a deeply nested set of procedure calls the message alone may not pro-
vide enough information to figure out where the error occurmtielp pinpoint the loca-
tion of the errorTcl creates a stack trace as it unwinds the commands that were in
progress, and it stores the stack trace in the global vagablénfo . The stack trace
describes each of the nested calls to ttienterpreter For example, after the above error
errorinfo will have the following value:
can't read "element": no such variable
while executing
"expr $sum+$element”
invoked from within
"set sum [expr $sum+$element]..."
("foreach" body line 2)
invoked from within
"foreach el $list {
set sum [expr $sum+$element]
p

Tcl provides one other piece of information after errors, in the global variable
errorCode . ErrorCode has a format that is easy to process withsripts; it is most
commonly used indl scripts that attempt to recover from errors usingctiech com-
mand described belowheerrorCode variable consists of a list with one or more ele-
ments. The first element identifies a general class of errors and the remaining elements
provide more information in a class-dependent fashion. For example, if the first element of
errorCode is POSIX then it means that an error occurred in a POSIX system call.
ErrorCode will contain two additional elements giving the POSIX name for the,error
such aENOENTand a human-readable message describing the $emthe reference
documentation for a complete description of all the foemsrCode can take, or refer
to the descriptions of individual commands thaeseirCode |, such as those in Chapter
11 and Chapter 12.

TheerrorCode variable is a late-comer telTand is only filled in by a few com-
mands, mostly dealing with file access and child processes. If a command generates an
error without settingrrorCode then Tl fills it in with the valueNONE

Generating errors from T cl scripts

Most Tcl errors are generated by the C code that implementsltiimdrpreter and the
built-in commands. Howeveit is also possible to generate an error by executing the
error Tcl command as in the following example:

DRAFT (8/12/93): Distribution Restricted

80

Errors and Exceptions

9.3

if {($x < O} || ($x > 100)} {
error "x is out of range ($x)"
}

Theerror command generates an error and usesgtmaent as the error message.

As a matter of programming style, you should only usetrer command in situ-
ations where the correct action is to abort the script being executed. If you think that an
error is likely to be recovered from without aborting the entire script, then it is probably
better to use the normal return value mechanism to indicate success or failure (e.g. return
one value from a command if it succeeded and another if it failed, or set variables to indi-
cate success or failure). Although it is possible to recover from errors (you'll see how in
Section 9.3 below) the recovery mechanism is more complicated than the normal return
value mechanism. Thussdtbest to generate errors only in situations where youtwsu*
ally want to recover

Trapping errors with catch

Errors generally cause all activel Eommands to be aborted, but there are some situations
where it is useful to continue executing a script after an error has occurred. For example,
suppose that you want to unset variabléit exists, but it may not exist at the time of the
unset command. If you invokanset on a variable that doegrm@xist then it generates

an error:

unset x
0 can'tunset "x": no such variable
You can use theatch command to ignore the error in this situation:

catch {unset x}
o1

The agument tacatch is a Tl script, whichcatch evaluates. If the script completes
normally thercatch returns 0. If an error occurs in the script toatch traps the error
(so that theeatch command itself is not aborted by the error) and returns 1 to indicate
that an error occurred. The example above ignores any ertamséh sox is unset if it
existed and the script has ndeet if x didn’t previously exist.

Thecatch command can also take a secorgliarent. If the ggument is provided
then it is the name of a variable atadch modifies the variable to hold either the scspt’
return value (if it returns normally) or the error message (if the script generates an error):

catch {unset x} msg
O 1
set msg
0 can't unset "x": no such variable

DRAFT (8/12/93): Distribution Restricted

9.4 Exceptions in general 81

9.4

In this case thanset command generates an erronsgy is set to contain the error mes-
sage. If variable had existed themnset would have returned successfubp the return
value fromcatch would have beefl andmsg would have contained the return value
from theunset command, which is an empty string. This longer forroad€h is use-

ful if you need access to the return value when the script completes succdssfalyo
useful if you need to do something with the error message after arsenioas logging it
to a file.

Exceptions in general

Note:

Errors are not the only things irlfthat cause work in progress to be aborted. Errors are
just one example of a set of events caligdeptions . In addition to errors there are
three other kinds of exceptions inl,Twhich are generated by theeak , continue
andreturn commands. All exceptions cause active scripts to be aborted in the same
way, except for two dierences. First, therrorinfo anderrorCode variables are

only set during error exceptions. Second, the exceptions other than errors are almost
always caught by an enclosing command, whereas errors usually unwind all the work in
progress. For examplbreak andcontinue commands are normally invoked inside a
looping command such &reach ;foreach will catch break and continue exceptions
and terminate the loop or skip to the next iteration. Simjlegtyurn is normally only
invoked inside a procedure or a file beguyirce 'd. Both the procedure implementation
and thesource command catch return exceptions.

If abreak orcontinue command is invoked outside any loop then active scripts
unwind until the outermost script for agmedue is ieached or all scripts in pgress have

been unwound. At this pointITurns the beak or continue exception into an@&rwith an
appropriate message.

All exceptions are accompanied by a string value. In the case of artlegrsiring is
the error message. In the caseeatfirn , the string is the return value for the procedure
or script. In the case treak andcontinue the string is always empty
Thecatch command actually catches all exceptions, not just errors. The return
value fromcatch indicates what kind of exception occurred and the variable specified in
catch ’'s second gument is set to hold the string associated with the exceptiongske T
9.2). For example:
catch {return "all done"} string
g 2
set string
0 all done
Whereagatch provides a general mechanism for catching exception of all types,
return provides a general mechanism for generating exceptions of all types. If its first
argument consists of the keywortbde , as in

DRAFT (8/12/93): Distribution Restricted

82

Errors and Exceptions

Return value .
from catch Description Caught by
0 Normal return. String gives return | Not applicable
value.
1 Error. String gives message describ-Catch
ing the problem.
2 Thereturn command was Catch , source , procedures
invoked. String gives return value
for procedure osource com-
mand.
3 Thebreak command was invoked] Catch , for , foreach ,while ,
String is empty procedures
4 Thecontinue command was Catch , for ,foreach ,while |,
invoked. String is empty procedures
anything else | Defined by user or application. Catch

Table 9.2. A summary of €l exceptions. The first column indicates the value returnezgtoi

in each instance. The second column describes when the exception occurs and the meanit
string associated with the exception. The last column lists the commands that catch except
that type (“procedures” means that the exception is caught tiypacEedure when its entire boc
has been aborted). The top row refers to normal returns where there is no exception.

return -code return 42

then its second gument is the name of an exceptiogtirn in this case) and the third
argument is the string associated with the exception. The enclosing procedure will return
immediately but instead of a normal return it will return with the exception described by
thereturn command aguments. In the example above the procedure will generate a
return exception, which will then cause the calling procedure to return as well.

In Section 8.5 you saw how a new looping comm@mdaould be implemented as a
Tcl procedure usingpvar anduplevel . Howeverthe example in Section 8.5 did not
properly handle exceptions within the loop bddgre is a new implementationdd that
usescatch andreturn to deal with exceptions properly:

DRAFT (8/12/93): Distribution Restricted

9.4 Exceptions in general 83

proc do {varName f irst last body} {

global errorinfo errorCode

upvar $varName v

for {set v $f irst} {$v <= $last} {incr v} {

switch [catch {uplevel $body} string] {
1 {return -code error -errorinfo $errorinfo \
-errorCode $errorcode $string}

2 {return -code return $string}
3 return

}
}

This new implemenation evaluates the loop body insict@ command and then
checks to see how the body terminates. If no exception occurs (return value 0 from
catch) or if the exception is a continue (return value 4) thenfust goes on to the next
iteration. If an error or return occurs (return value 1 or 2 ftatoh) thendo uses the
return command to reflect the exception upward to the céddlarbreak exception
occurs (return value 3 fromatch) thendo returns to its caller normallgnding the
loop.

Whendo reflects an error upwards it uses t@eorinfo option toreturn to
make sure that a proper stack trace is available after theléthat option were omitted
then a fresh stack trace would be generated startinglwitherror return; the stack trace
would not indicate where ibody the error occurred. The context witliady is avail-
able in theerrorinfo variable at the timeatch returns, and theerrorinfo
option causes this value to be used as the initial contents of the stack trac®when
returns an erroAs additional unwinding occurs more information gets added to the initial
value, so that the final stack trace includes both the context Wwithin and the context
of the call todo. The-errorcode option serves a similar purpose for #reorCode
variable, retaining therrorCode value from the original error as teerorCode
value wherdo propagates the ertdMithout the-errorcode option theerrorCode
variable will always end up with the valbd®NE

DRAFT (8/12/93): Distribution Restricted

84

Errors and Exceptions

DRAFT (8/12/93): Distribution Restricted

Chapter 10
String Manipulation

10.1

This chapter describegIs facilities for manipulating strings. The string manipulation
commands provide pattern matching in twdetént forms, one that mimics the rules used

by shells for file name expansion and another that uses regular expressions as gatterns. T
also has commands for formatted input and output in a style similar to the C procedures
scanf andprintf . Finally, there are several utility commands with functions such as
computing the length of a string, extracting characters from a string, and case conversion.
Tables10.1 and 10.2 summarize tloe commands for string processing.

Glob-style pattern matching

The simplest of @I's two forms of pattern matching is called “glob” style. It is named

after the mechanism used in tteh shell for file name expansion, which is called “glob-
bing”. Glob-style matching is easier to learn and use than the regular expressions
described in the next two sections, but it only works well for simple cases. For more com-
plex pattern matching you will probably need to use regular expressions.

The commandtring match implements glob-style pattern matching. For exam-
ple, the following script extracts all of the elements of a list that begin With™
set new {}

foreach el $list {
if [string match Tcl* $el] {
lappend new $el

85

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

86

String Manipulation

format formatString value value 2
Returns a result equal tormatString except that thealue
arguments have been substituted in plac¥séquences in
formatString

regexp ?indices ? ?nocase ? ?-- ?exp string ?matchVar ?\
?subVar subVar .2
Determines whether the regular expressi®m matches part or all of
string and returnd if it does,0 if it doesnt. If there is a match,
information about matching range(s) is placed in the variables named &
matchVar and thesubVar ’s, if they are specified.

regsub ?-all ? ?-nocase ? ?-- ? exp string subSpec varName
Matchesexp againsstring as forregexp and returnd if there is a
match,0 if there is none. Also copietring to the variable named by
varName, making substitutions for the matching portion(s) as specified
subSpec .

scan string format varName varName varName ...?
Parses fields frorstring as specified bformat and places the values
that matct/bsequences into variables named byviiidame arguments.

string compare string1 string2
Returns-1 , 0, orl if stringl is lexicographically less than, equal to, ¢
greater thamstring2

string f irst stringl string2
Returns the index istring2 of the first character in the leftmost
substring that exactly matches the charactesgrimgl , or-1 if there is
no such match.

string index string charlndex
Returns theharindex ’'th character oftring , or an empty string if
there is no such characté&he first character istring has index 0.

string last stringl string2
Returns the index istring2 of the first character in the rightmost
substring oktring2 that exactly matchestringl . If there is no
matching substring ther is returned.

string length string
Returns the number of charactersiring
string match pattern string

Returnsl if pattern matchestring using glob-style matching rules
(*,?,]1 ,and\) andO if it doesnt.

string range string f irst last
Returns the substring efring that lies between the indices given by
first andlast , inclusive. An index 00 refers to the first character in
the string, andast may beend to refer to the last character of the string

Table 10.1. A summary of the @ commands for string manipulation (continued &bl€ 10.2).

DRAFT (8/12/93): Distribution Restricted

10.1 Glob-style pattern matching 87

string tolower string
Returns a value identical string except that all upper case characters
have been converted to lower case.

string toupper string
Returns a value identical string except that all lower case characters
have been converted to upper case.

string trim string ?chars ?
Returns a value identical string except that any leading or trailing
characters that appeardhars are removedChars defaults to the white
space characters (space, tab, newline, and carriage return).

string trimleft string ?chars ?

Same astring trim except that only leading characters are remove
string trimright string chars ?

Same astring trim except that only trailing characters are removeg

Table 10.2. A summary of the @ commands for string manipulation, cont’d.

Thestring command is actually about a dozen string-manipulation commands rolled
into one. If the first gument ismatch then the command performs glob-style pattern
matching and there must be two additionguanents, a pattern and a string. The com-
mand returnd if the pattern matches the strifigif it doesnt. For the pattern to match
the string, each character of the pattern must be the same as the corresponding character of
the string, except that a few pattern characters are interpreted spEciatixample, &
in the pattern matches a substring of any lengthTsld “” matches any string whose first
three characters ar@¢l ". Here is a list of all the special characters supported in glob-
style matching:

* Matches any sequence of zero or more characters.

? Matches any single character

[chars] Matches any single characterdhars . If chars contains a
sequence of the forar- b then any character betwearandb,
inclusive, will match.

\ X Matches the single characterThis provides a way to avoid special
interpretation for any of the charact&®§]\ in the pattern.

Many simple things can be done easily with glob-style patterns. For example,
“*[ch] " matches all strings that end with either * or “.h ”. However many interest-
ing forms of pattern matching cannot be expressed at all with glob-style patterns. For
example, there is no way to use a glob-style pattern to test whether a string consists
entirely of digits: the patterr{0-9] ” tests for a single digit, but there is no way to spec-
ify that there may be more than one digit.

DRAFT (8/12/93): Distribution Restricted

88

String Manipulation

10.2

Character(s) Meaning
Matches any single character
A Matches the null string at the start of the input string.
$ Matches the null string at the end of the input string.
\ X Matches the charactgr
[chars] Matches any single character fratmars . If the first character of

chars is” then it matches any single character not in the remai
der ofchars . A sequence of the forax b in chars is treated as
shorthand for all of the ASCII characters betwaemndb, inclu-
sive. If the first character thars (possibly following &) is]
then it is treated literally (as partcfars instead of a termina-
tor). If a- appears first or last thars then it is treated literally

(regexp) Matches anything that matches the regular expressgaxp .
Used for grouping and for identifying pieces of the matching syt
string.
* Matches a sequence of 0 or more matches of the preceding ato
+ Matches a sequence of 1 or more matches of the preceding ato
? Matches either a null string or a match of the preceding atom.

regexpl | regexp2 Matches anything that matches eithegexpl orregexp2 .

Table 10.3. The special characters permitted in regular expression patterns.

Pattern matching with regular expressions

Tcl's second form of pattern matching uses regular expressions like thosecipreghe
program. Regular expressions are more complex than glob-style patterns but more power-
ful. Tcl's regular expressions are based on Henry Spemudslicly available implemen-
tation, and parts of the description below are copied from Spsmtmrumentation.

A regular expression pattern can have several layers of structure. The basic building
blocks are calledtoms and the simplest form of regular expression consists of one or
more atoms. For a regular expression to match an input string, there must be a substring of
the input where each of the regular expressiatoms (or other components, as you'll see
below) matches the corresponding part of the substring. In most cases atoms are single
characters, each of which matches itself. Thus the regular exprabsionatches any
string containingbc , such asbcdef orxabcy .

A number of characters have special meanings in regular expressions; they are sum-
marized in @ble 10.3. The characteérsaand$ are atoms that match the beginning and end
of the input string respectively; thabc matches any string that starts wathc , abc$
matches any string that endsaioc , and*abc$ matchesibc and nothing else. The atom

DRAFT (8/12/93): Distribution Restricted

10.2 Pattern matching with regular expressions 89

Note:

. " matches any single charactand the atorh x, wherex is any single character
matches. For example, the regular expressio$ “” matches any string that contains a
dollar-sign, as long as the doHaign isnt the first character

Besides the atoms already described, there are two other forms for atoms in regular
expressions. The first form consists of any regular expression enclosed in parentheses,
such as(a.b) ". Parentheses are used for grouping. They allow operators sti¢h be
applied to entire regular expressions as well as atoms. They are also used to identify pieces
of the matching substring for special processing. Both of these uses are described in more
detail below

The final form for an atom isrange which is a collection of characters between
square brackets. A range matches any single character that is one of the ones between the
brackets. Furthermore, if there is a sequence of thedefiramong the characters, then
all of the ASCII characters betwearandb are treated as acceptable. Thus the regular
expressiofj0-9a-fA-F] matches any string that contains a hexadecimal digit. If the
character after thie is a* then the sense of the range is reversed: it only matches charac-
tersnot among those specified between“thand the .

The three operatots +, and? may follow an atom to specify repetition. If an atom is
followed by* then it matches a sequence of zero or more matches of that atom. If an atom
is followed by+ then it matches a sequence of one or more matches of the atom. If an
atom is followed by? then it matches either an empty string or a match of the atom. For

example, *(0x)?[0-9a-fA-F]+$ " matches strings that are proper hexadecimal
numbers, i.e. those consisting of an optidhafollowed by one or more hexadecimal
digits.

Finally, regular expressions may be joined together with tbperator The resulting
regular expression matches anything that matches either of the regular expresssions that
surround the . For example, the following pattern matches any string that is either a
hexadecimal number or a decimal number:

~((0x)?[0-9a-fA-F]+|[0-9]+)$
Note that the information between parentheses may be any regular expression, including
additional regular expressions in parentheses, so it is possible to build up quite complex
structures.

Theregexp command invokes regular expression matching. In its simplest form it
takes two aguments: the regular expression pattern and an input string. It rétardsto
indicate whether or not the pattern matched the input string:

regexp {"[0-9]+$} 510
o1

regexp {"[0-9]+$} -510
g o

The pattern must be enclosed in braces so that the char&cfersind] are passed
through to theegexp command instead of triggering variable and command

DRAFT (8/12/93): Distribution Restricted

String Manipulation

substitution. In almost always a good idea to enclegglar expession patterns in
braces.

If regexp is invoked with additional guments after the input string then each addi-
tional agument is treated as the name of a variable. The first variable is filled in with the
substring that matched the entire regular expression. The second variable is filled in with
the portion of the substring that matched the leftmost parenthesized subexpression within
the pattern; the third variable is filled in with the match for the next parenthesized subex-
pression, and so on. If there are more variable nhames than parenthesized subexpressions
then the extra variables are set to empty strings. For example, after executing the com-
mand

regexp {([0-9]+) *([a-z]+)} "Walk 10 km" a b c
variablea will have the value20 km ", b will have the valud 0, andc will have the
valuekm. This ability to extract portions of the matching substring all®gexp to be
used for parsing.

It is also possible to specify two extra switchesegexp before the regular expres-
sion agument. A-nocase switch specifies that alphabetic atoms should match either
uppercase or lowecase letters. For example:

regexp {[a-z]} A
o o
regexp -nocase {[a-z]} A
01
The-indices switch specifies that the additional variables should not be filled in with
the values of matching substrings. Instead, each should be filled in with a list giving the
first and last indices of the substrisgange within the input string. After the command
regexp -indices {([0-9]+) *([a-z]+)} "Walk 10 km" \
abc
variablea will have the value5 9 ", b will have the value5 6 ", andc will have the
value ‘89 ".

10.3 Using regular expressions for substitutions

Regular expressions can also be used to perform substitutions usiegsie com-
mand. Consider the following example:
regsub there "They live there lives" their x

o1
The first agument taegsub is a regular expression pattern and the secandrant is
an input string, just as foegexp . And, likeregexp , regsub returnsl if the pattern
matches the string), if it doesnt. Howeverregsub does more than just check for a
match: it creates a new string by substituting a replacement value for the matching sub-

DRAFT (8/12/93): Distribution Restricted

10.4 Generating strings with format 91

Note:

10.4

string. The replacement value is contained in the thgjdraent taregsub , and the new
string is stored in the variable named by the fingliarent taregsub . Thus, after the
above command completeswill have the valueThey live their lives ", If the
pattern had not matched the string tBemould have been returned axdvould have the
value ‘They live there lives "

Two special switches may appear gpuanents taegsub before the regular expres-
sion. The first isnocase , which causes case féifences between the pattern and the
string to be ignored just as foegexp . The second possible switch-&él . Normally
regsub makes only a single substitution, for the first match found in the input string.
However if -all is specified theregsub continues searching for additional matches
and makes substitutions for all of the matches found. For example, after the command

regsub -all a ababa zz x
x will have the valugzbzzbzz . If -all had been omitted thenwould have been set
to zzbaba .

In the examples above the replacement string is a simple literal value. Hovineer
replacement string contains &“or “\0 ” then the ‘& or “\0 " is replaced in the substitu-
tion with the substring that matched the regular expression. If a sequence of the form
appears in the replacement string, whrere a decimal numbethen the substring that
matched tha-th parenthesized subexpression is substituted instead\ofi tir@r exam-
ple, the command

regsub -all a|b axaab && x
doubles all of th@’s andb’s in the input string. In this case it settb aaxaaaabb . Or,
the command

regsub -all (a+)(ba*) aabaabxab {z\2} x
replaces sequencesat with a single if they precede b but dont also follow ab. In
this case is set tazbaabxzb . Backslashes may be used in the replacement string to
allow “&”, “\0 ", “\ n”, or backslash characters to be substituted verbatim without any
special interpretation.

It's usually a good idea to enclose compigpacement strings in braces as in the
example above; otherwise thel Parser will pocess backslash sequences and the
replacement stringaceived byegsub may not contain backslashes that aeeded.

Generating strings with format

Tcl'sformat command provides facilities like those of #pintf ~ procedure from
the ANSI C library For example, consider the following command:

format "The square root of 10 is %.3f" [expr sqrt(10)]
O The square root of 10 is 3.162

DRAFT (8/12/93): Distribution Restricted

92

String Manipulation

The first agument tdformat is a format string, which may contain any number of con-
version specifiers such a%:3f ". For each conversion specifi@rmat generates a
replacement string by reformatting the nexfuement according to the conversion speci-
fier. The result of théormat command consists of the format string with each conver-
sion specifier replaced by the corresponding replacement string. In the above example
“%.3f " specifies that the nextgument is to be formatted as a real number with three
digits after the decimal pointormat supports almost all of the conversion specifiers
defined for ANSI Gsprintf , such as%d for a decimal integer‘%x for a hexadeci-
mal integerand ‘%€ for real numbers in mantissa-exponent form.

Theformat command plays a less significant role ah thanprintf ~ and
sprintf play in C. Many of the uses pfintf ~ andsprintf are simply for conver-
sion from binary to string format or for string substitution. Binary-to-string conversion
isn't needed in dl because values are already stored as strings, and substitution is already
available through thecT parserFor example, the command

set msg [format "%s is %d years old" $name $age]
can be written more simply as

set msg "$name is $age years old"
The%dconversion specifier in tfermat command could be written just as welPas
with %dformat converts the value of age to a binary intetfeen converts the integer
back to a string again.

Format is typically used in @l to reformat a value to improve its appearance, or to
convert from one representation to another (e.g. from decimal to hexadecimal). As an
example of reformatting, here is a that script prints the first ten poweis aftable:

puts "Number Exponential"
for {seti 1} {i <= 10} {incr i} {

puts [format "%4d %12.3f" $i [expr exp($i)]]
}

This script generates the following output on standard output:

Number Exponential
1 2.718
2 7.389
3 20.085
4 54.598
5 148.413
6 403.429
7 1096.630
8 2980.960
9 8103.080

10 22026.500

The conversion specifieft4d causes the integers in the first column of the table to be
printed right-justifed in a field four digits wide, so that they line up under their column
headerThe conversion specifie$s12.3f ” causes each of the real values to be printed

DRAFT (8/12/93): Distribution Restricted

10.5 Parsing strings with scan 93

10.5

right-justified in a field 12 digits wide, so that the values line up; it also sets the precision
at 3 digits to the right of the decimal point.

The second main use flmrmat , changing the reprensentation of a value, is illus-
trated by the script belgwvhich prints a table showing the ASCII characters that corre-
spond to particular integer values:

puts "Integer ASCII"
for {set i 95} {$i <= 101} {incr i} {
puts [format "%4d %c" $i $i]
}
This script generates the following output on standard output:
Integer ASCII
95 _
96
97 a
98 b
99 c
100 d
101 e

The value of is used twice in the format command, once Widhdand once witl§oc
The%cspecifier takes an integegament and generates a replacement string consisting
of the ASCII character whose represented by the integer

Parsing strings with scan

Thescan command provides almost exactly the same facilities assttamf procedure

from the ANSI C libraryScan is roughly the inverse dbrmat . It starts with a format-

ted string, parses the string under the control of a format string, extracts fields correspond-
ing to%conversion specifiers in the format string, and places the extracted valgés in T
variables. For example, after the following command is executed vasiatilehave the
valuel6 and variablé will have the valug4.2 :

scan "16 units, 24.2% margin" "%d units, %f" a b
o 2

The first agument tescan is the string to parse, the second is a format string that controls
the parsing, and any additionayjaments are names of variables to fill in with converted
values. The return value of 2 indicates that two conversions were completed successfully

Scan operates by scanning the string and the format togé&theh character in the
format must match the corresponding character in the string, except for blanks and tabs,
which are ignored, arftbcharacters. When%is encountered in the format, it indicates
the start of a conversion specifiscan converts the next input characters according to
the conversion specifier and stores the result in the variable given by thegoexéair to

DRAFT (8/12/93): Distribution Restricted

94

String Manipulation

scan . White space in the string is skipped except in the case of a few conversion specifi-
ers such a%c
One common use for scan is for simple string parsing, as in the example above.
Another common use is for converting ASCII characters to their integer values, which is
done with thec specifier The procedure below uses this feature to return the character
that follows a given character in lexicographic ordering:
proc next c {
scan $c %c i
format %c [expr $i+1]

}

next a
O b
next 9
o o
Thescan command converts the value of thargument from an ASCII character to the
integer used to represent that charadien the integer is incremented and converted back
to an ASCII character again with tft@mat command.

10.6 Extracting characters: string index and string range
The remaining string manipulation commands are all implemented as options of the
string command. For examplstring index extracts a character from a string:
string index "Sample string" 3
U p
The agument afteindex is a string and the lastcarment gives the index of the desired
character in the string. An index @fselects the first character
Thestring range command is similar tetring index except that it takes
two indices and returns all the characters from the first index to the second, inclusive:
string range "Sample string" 3 7
O ples
The second index may have the vatnel to select all the characters up to the end of the
string:
string range "Sample string" 3 end
O ple string
10.7 Searching and comparison

The commandtring f irst takes two additional stringguments as in the following
example:

DRAFT (8/12/93): Distribution Restricted

10.8 Length, case conversion, and trimming 95

10.8

string f irst th "There is the tub where | bathed today"
o 3
It searches the second string to see if there is a substring that is identical to the first string.
If so then it returns the index of the first character in the leftmost matching substring; if not
then it returnsl . The commanadtring last is similar except it returns the starting
index of the rightmost matching substring:
string last th "There is the tub where | bathed today"
o 21
The commandtring compare takes two additional guments and compares
them in their entiretyit returns0 if the strings are identicall if the first string sorts
before the second, addif the first string is after the second in sorting order:
string compare Michigan Minnesota
o -1
string compare Michigan Michigan
o o

Length, case conversion, and trimming

Thestring length command counts the number of characters in a string and returns
that number:

string length "sample string"

0o 13
Thestring toupper command converts all lowease characters in a string to
upper case, and ttstring tolower command converts all uppease characters in

its agument to lowercase:
string toupper "Watch out!"
0 WATCH OUT!
string tolower "15 Charing Cross Road"
0 15 charing cross road
Thestring command provides three options for trimmitign , trimleft , and
trimright . Each option takes two additionajaments: a string to trim and an optional
set of trim characters. Tharing trim command removes all instances of the trim
characters from both the beginning and end of garaent string, returning the trimmed
string as result:
string trim aaxxxbab abc
0 xxx
Thetrimleft andtrimright options work in the same way except that they only
remove the trim characters from the beginning or end of the string, respedthetyim

DRAFT (8/12/93): Distribution Restricted

96

String Manipulation

commands are most commonly used to remove excess white space; if no trim characters
are specified then they default to the white space characters (space, tab, newline, and car-
riage return).

DRAFT (8/12/93): Distribution Restricted

Chapter 11
Accessing Files

Note:

11.1

This chapter describe€ls commands for dealing with files. The commands allow you to
read and write files sequentially or in a random-access fashion. They also allow you to
retrieve information kept by the system about files, such as the time of last access. Lastly
they can be used to manipulate file names; for example, you can remove the extension
from a file name or find the names of all files that match a particular patterral$ee T

11.1 for a summary of the file-related commands.

The commands described in this chapter anly available on systems that support the
kernel calls defined in the POSIX stariasuch as most UNIX workstations. If yoa ar

using El on another system, such as a Macintosh or a PC, then the file commands may not
be pesent and thermay be other commands thabyide similar functionality for your
system.

File names

File names are specified tolTising the normal UNIX syntax. For example, the file name
xlylz refers to a file namezlthat is located in a directory namgdwhich in turn is
located in a directory named which must be in the current working directorhe file
name/top refers to a fildop in the root directoryYou can also use tilde notation to
specify a file name relative to a particular isé&ome directoryFor example, the name
~ouster/mbox refers to a file namedbox in the home directory of useuster , and
~/mbox refers to a file namembox in the home directory of the user running tice T
script. These conventions (and the availability of tilde notation in particular) apply to all
Tcl commands that take file names agiarents.

97

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

Accessing Files

cd 2dirName ?
Changes the current working directorydidName , or to the home
directory (as given by tHdOMEenvironment variable) dirName isn't
given. Returns an empty string.

close ?ileld ?
Closes the file given byileld . Returns an empty string.

eof fileld

Returnsl if an end-of-file condition has occurredfoifeld , O otherwise.
file option name 7argarg ...?

Performs one of several operations on the filename givearbg or on

the file that it refers to, depending option . See &ble 1.3 for details.
flush fileld

Writes out any bdéred output that has been generated fiedd
Returns an empty string.

gets fileld arName?
Reads the next line frofnleld and discards its terminating newline. If
varName is specified, places the line in that variable and returns a cou
characters in the line (el for end of file). IfvarName isn't specified,
returns line as result (or an empty string for end of file).

glob ?-nocomplain ? ?-- ?pattern Ppattern .7
Returns a list of the names of all files that match any gfattern
arguments (special charactéts*, [] , {}, and\). If -nocomplain
isn’t specified then an error occurs if the return list would be empty

open name 7access ?
Opens filename in the mode given bgccess . Access may be, r+, w,
wH+, a, ora+ or a list of flags such &DONLYit defaults tar . Returns a
file identifier for use in other commands liggets andclose . If the first
character ohameis “| " then a command pipeline is invoked instead of
opening a file (see Section 12.2 for more information).

puts ?-nonewline ? ileld ? string
Writesstring tofileld , appending a newline character unless
- nonewline is specifiedFileld defaults testdout . Returns an
empty string.

pwd
Returns the full path name of the current working directory

Table 11.1. A summary of the @ commands for manipulating files (continued able 1..2).

DRAFT (8/12/93): Distribution Restricted

11.2 Basic file 1/0 99

11.2

read ?-nonewline ?f ileld
Reads and returns all of the bytes remaininfgleld . If -nonewline
is specified then the final newline, if amydropped.

read fileld numBytes
Reads and returns the neximBytes bytes fronf ileld (or up to the
end of the file, if fewer thanumBytes bytes are left).

seek fileld offset “?origin ?
Positionf ileld so that the next access startefiget bytes from
origin . Origin may bestart , current , orend, and defaults to
start . Returns an empty string.

tell fileld

Returns the current access positionffibeld

Table 11.2. A summary of the @ commands for manipulating files, cont'd.

Basic file 1/0

The Tcl commands for file 1/0 are similar to the procedures in the C standard I/O,library
both in their names and in their behavidere is a script callemyrep that illustrates
most of the basic features of file I/O:
#1/usr/local/bin/tclsh
if {$argc = 2} {
error "Usage: tgrep pattern f ileName"

}
set f [open [lindex $argv 1] r]
set pat [lindex $argv 0]
while {[gets $f line] >= 0} {
if [regexp $pat $line] {
puts stdout $line
}

close $f

This script behaves much like the UNgXep program: you can invoke it from your shell
with two aguments, a regular expression pattern and a file name, and it will print out all of
the lines in the file that match the pattern.

Whentclsh processes evaluates the script it makes the commandgunmaemts
available as a list in variabégyv , with the length of that list in variabsegc . After
making sure that it received enougbwanents, the script invokes thpen command on
the file to search, which is the seconglement Open takes two agjuments, the name of a
file and an access mode. The access mode provides information such as whether you'll be

DRAFT (8/12/93): Distribution Restricted

100

Accessing Files

Note:

reading the file or writing it, and whether you want to append to the file or access it from
the beginning. The access mode may have one of the following values:
r Open for reading onlyl'he file must already exist. This is the default if
the access mode isrspecified.
r+ Open for reading and writing; the file must already exist.

W Open for writing only Truncate the file if it already exists, otherwise
create a new empty file.

w+ Open for reading and writingrdncate the file if it already exists, oth-
erwise create a new empty file.

a Open for writing only and set the initial access position to the end of the
file. If the file doesrt’exist then create a new empty file.

a+ Open the file for reading and writing and set the initial access position
to the end of the file. If the file doeseXist then create a new empty
file.

The access mode may also be specified as a list of POSIX flagOBBRLYCREATand
TRUNCSee the reference documentation for more information about these flags.

Theopen command returns a string suchfde3 that identifies the open file. This
file identifieris used when invoking other commands to manipulate the open file, such as
gets , puts , andclose . Normally you will save the file identifier in a variable when
you open a file and then use that variable to refer to the opendileshéuld not expect
the identifiers returned lgpen to have any particular format.

Three file identifiers have well-defined names and are always available to you, even if
you havert explicitly opened any files. These atdin , stdout , andstderr ;they
refer to the standard input, output, and error channels for the process in which the T
script is executing.

After opening the file to search, ttggep script reads the file one line at a time with
thegets commandGets normally takes two guments: a file identifier and the name of
a variable. It reads the next line from the open file, discards the terminating newline char-
acter stores the line in the named variable, and returns a count of the number of characters
stored into the variable. If the end of the file is reached before reading any characters then
gets stores an empty string in the variable and retttns
Tcl also povides a second form géts wheee the line iseturned as theasult of the
command, and a commarehd for non-line-oriented input.

For each line in the file thgrep script matches the line against the pattern and
prints it usingputs if it matches. Theputs command takes two@uments, which are a
file identifier and a string to prirfPuts adds a newline character to the string and outputs
the line on the given file. The script usédout as the file identifier so the line is printed
on standard output.

Whentgrep reaches the end of the fiets will return-1 , which ends thavhile
loop. The script then closes the file with th@se command; this releases the resources
associated with the open file. In most systems there is a limit on how many files may be
open at one time in an application, so it is important to close files as soon as you are fin-

DRAFT (8/12/93): Distribution Restricted

11.3 Output buffering 101

11.3

ished reading or writing them. In this example the close is unnecesisagythe file will
be closed automatically when the application exits.

Output buffering

11.4

Theputs command uses the efing scheme of the C standard I/O librdrizis means

that information passed puts may not appear immediately in thegetrfile. In many

cases (particularly if the file isma terminal device) output will be saved in the applica-
tion’s memory until a lare amount of data has accumulated for the file, at which point all
of the data will be written out in a single operation. If you need for data to appear in a file
immediately then you should invoke theish command:

f lush $f

Thef lush command takes a file identifier as itguanent and forces any lheifed output
data for that file to be written to the fillush doesnt return until the data has been writ-
ten. Bufered data is also flushed when a file is closed.

Random access to files

File 1/0 is sequential by default: eagbts orread command returns the next bytes
after the previougets orread command, and eagluts command writes its data
immediately following the data written by the previgugs command. Howeveyou
can use theeek , tell , andeof commands to access files non-sequentially

Each open file has atcess positiorwhich is the location in the file where the next
read or write will occulWhen a file is opened the access position is set to the beginning or
end of the file, depending on the access mode you specifipena After each read or
write operation the access position increments by the number of bytes transferred. The
seek command may be used to change the current access position. In its simplest form
seek takes two gguments, which are a file identifier and an integesedfwithin the file.
For example, the command

seek $f 2000

changes the access position for the file so that the next read or write will start at byte num-
ber 2000 in the file.

Seek can also take a thirdgument that specifies an origin for thésef. The third
argument must be eithstart , current , orend. Start produces the samefeft as
if the agument is omitted: the fsiet is measured relative to the start of the @larrent
means that the fsfet is measured relative to the leurrent access position, agtl
means that the fsfet is measured relative to the end of the file. For example, the following
command sets the access position to 100 bytes before the end of the file:

seek $f -100 end

DRAFT (8/12/93): Distribution Restricted

102

Accessing Files

Note:

11.5

If the origin iscurrent orend then the dset may be either positive or negative; for
start the ofset must be positive.
It is possible to seek past the @nt end of the file, in which case the file may contain a

hole. Check the documentation for your operating system far immrmation on what
this means.

Thetell command returns the current access position for a particular file identifier:
tell $f
0 186
This allows you to record a position and return to that position later on.

Theeof command takes a file identifier agament and returr® or 1 to indicate
whether the most recegeéts orread command for the file attempted to read past the
end of the file:

eof $f
o o

The current working directory

11.6

Tcl provides two commands that help to manage the current working dirgmtahand

cd. Pwdtakes no agyjuments and returns the full path name of the current working direc-
tory. Cd takes a single gument and changes the current working directory to the value of
that agument. Ifcd is invoked with no ayjuments then it changes the current working
directory to the home directory of the user running ttlesdript €d uses the value of the
HOMEenvironment variable as the path name of the home directory).

Manipulating file names: glob and file

Tcl has two commands for manipulating filemesas opposed to file contenggdob and
file .Theglob command takes one or more patterns ggraents and returns a list of
all the file names that match the pattern(s):
glob *.c *.h
0 main.c hash.c hash.h
Glob uses the matching rules of thiging match command (see Section 10.1). In
the above examplglob returns the names of all files in the current directory that end in
.c or.h .Glob also allows patterns to contain comma-separated lists of alternatives
between braces, as in the following example:
glob {{src,backup}/*.[ch]}
O src/main.c src/hash.c src/hash.h backup/hash.c

DRAFT (8/12/93): Distribution Restricted

11.6 Manipulating file names: glob and file 103

Note:

Glob treats this pattern as if it were actually multiple patterns, one containing each of the
strings, as in the following example:

glob {src/*.[ch]} {backup/*.[ch]}
The extra braces aund the patterns in these examples @@eded to keep the brackets

inside the patternsdm triggering command substitution. Theg amoved by thecT
parser in the usual fashion befoinvoking the commandqaedue forglob .

If aglob pattern ends in a slash then it only matches the names of directories. For
example, the command
glob */
will return a list of all the subdirectories of the current directory
If the list of file names to be returned dgipb is empty then it normally generates an
error. However if the first agument taglob , before any patterns,isocomplain then
glob will not generate an error if its result is an empty list.
The second command for manipulaing file naméslés . File is a general-pur-
pose command with many options that can be used both to manipulate file names and also
to retrieve information about files. Seables 1.3 and 1.4 for a summary of the options
tofile . This section discusses the name-related options and Sekffodekcribes the
other options.The commands in this section operate purely on file names. They make no
system calls and do not check to see if the names actually correspond to files.
File dirname returns the name of the directory containing a particular file:
f ile dirname /a/bl/c
O J/a/b
f ile dirname main.c
o .
File extension returns the extension for a file name (all the characters starting
with the last in the name), or an empty string if the name contains no extension:
f ile extension src/main.c
0 .c
File rootname returns everything in a file name except the extension:
f ile rootname src/main.c
0 src/main
f ile rootname foo
0 foo
Lastly, f ile tail returns the last element in a filgdath name (i.e. the name of the
file within its directory):
f ile tail /a/b/c
0 c
f ile tail foo
0 foo

DRAFT (8/12/93): Distribution Restricted

104

Accessing Files

f ile atime name
Returns a decimal string giving the time at whichriédene was last
accessed, measured in seconds from 12:00 A.M. on January 1, 1970.

f ile dirname name
Returns all of the charactersriame up to but not including the lakt
characterReturns if name contains no slashes,if the last slash in
name s its first character

f ile executable name
Returnsl if name is executable by the current udgiotherwise.

f ile exists name
Returnsl if name exists and the current user has search privilege for th
directories leading to if) otherwise.

f ile extension name
Returns all of the charactersriame after and including the last dot.
Returns an empty string if there is no doh&me or no dot after the last
slash inname.

f ile isdirectory name
Returnsl if name is a directoryO otherwise.

file isf ile name
Returnsl if name is an ordinary fileQ otherwise.

file Istat name arrayName
Invokes thdstat system call omame and sets elements of
arrayName to hold information returned Hgtat . This option is
identical to thestat option unles®ame refers to a symbolic link, in
which case this command returns information about the link instead of
file it points to.

f ile mtime name
Returns a decimal string giving the time at whichrfédene was last
modified, measured in seconds from 12:00 A.M. on January 1, 1970.

f ile owned name
Returnsl if name is owned by the current us€rotherwise.

f ile readable name
Returnsl if name is readable by the current us@rotherwise.

f ile readlink name
Returns the value of the symbolic link givenriame (the name of the file
it points to).

Table 11.3. A summary of the options for tiéle command (continued inable 11..4).

DRAFT (8/12/93): Distribution Restricted

11.7 File information commands 105

11.7

f ile rootname name
Returns all of the charactersriame up to but not including the last
characterReturnsname if it doesnt contain any dots or if it doesn’
contain any dots after the last slash.

f ile size name
Returns a decimal string giving the size of fitene in bytes.

f ile stat name arrayName
Invokesstat system call omame and sets elements afrayName to
hold information returned bstat . The following elements are set, each
as a decimal stringitime , ctime , dev, gid , ino , mode, mtime ,
nlink , size , anduid .

f ile tail name
Returns all of the charactersriame after the last characterReturns
name if it contains no slashes.

file type name
Returns a string giving the type of filame. The return value will be one
of file ,directory ,characterSpecial , blockSpecial ,fifo ,

link , orsocket .

f ile writable name

Returnsl if name is writable by the current us€ otherwise.

Table 11.4. A summary of the options for tiéle command, cont'd.

File information commands

In addition to the options already discussed in Sectlog dbove, théile command
provides many other options that can be used to retrieve information about files. Each of
these options exceptat andlstat has the form
file option name

whereoption specifies the information desired, suclesists orreadable or
size , andname is the name of the fileable 1.3 summarizes all of the options for the
file command.

Theexists ,isf ile ,isdirectory , andtype options return information about
the nature of a file=ile exists returnsl if there exists a file by the given name &nd
if there is no such file or the current user dodsave search permission for the directories
leading to it.File isf ile returnsl if the file is an ordinary disk file arillif it is
something else, such as a directory or deviceHile.isdirectory returnsl if the
file is a directory an@ otherwiseFile type returns a string such &fle , direc-
tory , orsocket that identifies the file type.

DRAFT (8/12/93): Distribution Restricted

106

Accessing Files

Thereadable ,writable , andexecutable options retur® or1 to indicate
whether the current user is permitted to carry out the indicated action on the file. The
owned option returnd. if the current user is the fikbwner and otherwise.

Thesize option returns a decimal string giving the size of the file in bifiéss.
mtime returns the time when the file was last modified. The time value is returned in the
standard POSIX form for times, namely an integer that counts the number of seconds
since 12:00 A.M. on January 1, 1970. Htiene option is similar tantime except that
it returns the time when the file was last accessed.

Thestat option provides a simple way to get many pieces of information about a
file at one time. This can be significantly faster than invokifey many times to get the
pieces of information individuallyile stat also provides additional information that
isn't accessible with any other file options. It takes two additiogainaents, which are
the name of a file and the name of a variable, as in the following example:

f ile stat main.c info

In this case the name of the filemgain.c and the variable nameiifo . The variable

will be treated as an array and the following elements will be set, each as a decimal string:
atime Time of last access.
ctime Time of last status change.

dev Identifier for device containing file.
gid Identifier for the file3 group.
ino Serial number for the file within its device.

mode Mode bits for file.
mtime Time of last modification.

nlink Number of links to file.
size Size of file, in bytes.
uid Identifier for the user that owns the file.

Theatime , mtime , andsize elements have the same values as produced by the corre-
spondingf ile options discussed above. For more information on the other elements,
refer to your system documentation for that system call; each of the elements is
taken directly from the corresponding field of the structure returnsthby.

Thelstat andreadlink options are useful when dealing with symbolic links,
and they can only be used on systems that support symbolicHilekistat is iden-
tical tof ile stat for ordinary files, but when it is applied to a symbolic link it returns
information about the symbolic link itself, wherdake stat will return information
about the file the link points tEile readlink returns the contents of a symbolic link,
i.e. the name of the file that it refers to; it may only be used on symbolic links. For all of
the otheff ile commands, if the name refers to a symbolic link then the command oper-
ates on the tget of the link, not the link itself.

DRAFT (8/12/93): Distribution Restricted

11.8 Errors in system calls 107

11.8 Errors in system calls

Most of the commands described in this chapter invoke calls on the operating system, and
in many cases the system calls can return errors. This can happen, for example, if you
invokeopen orf ile stat on a file that doesnéxist, or if an 1/O error occurs in read-
ing a file. The € commands detect these system call errors and in most caset the T
commands will return errors themselves. The error message will identify the error that
occurred:
open bogus
O couldn’t open "bogus": no such f ile or directory
When an error occurs in a system call dlso sets therrorCode variable to pro-
vide more precise informationo¥ may find this information useful as part of error recov-
ery so that, for example, you can determine exactly why the the filetvaasgessible
(Was there no such file?a#/it protected to prevent access? ...). If a system call error has
occurred therrrorCode will consist of a list with three elements:

set errorCode

O POSIX ENOENT {no such f ile or directory}
The first element is alway¥OSIX to indicate that the error occurred in a POSIX system
call. The second element is théi@&l name for the erroENOENTn the above exam-
ple). Refer to your system documentation or to the includerfif®.h for a complete
list of the error names for your system. These names adhere to the POSIX standard as
much as possible. The third element is the error message that corresponds to the error
This string usually appears in the error message returned byl tt@nimand. @l uses the
standard list of error messages provided by your system, if there is one, and adheres to the
POSIX standard as much as possible.

DRAFT (8/12/93): Distribution Restricted

108 Accessing Files

DRAFT (8/12/93): Distribution Restricted

Chapter 12
Processes

12.1

Tcl provides several commands for dealing with processescan create new processes
with theexec command, or you can create new processesopigh and then use file

I/O commands to communicate with thenouYtan access process identifiers with the
pid command. ¥u can read and write environment variables usingitievariable and
you can terminate the current process withettie command. Like the file commands in
Chapter 1, these commands are only available on systems that support POSIX kernel
calls. Table 12.1 summarizes the commands related to process management.

Invoking subprocesses with exec

Theexec command creates one or more subprocesses and waits until they complete
before returning. For example,

exec rm main.o
executesm as a subprocess, passes it tigeii@entmain.o , and returns aftem com-
pletes. The guments t@xec are similar to what you would type as a command line to a
shell program such &h orcsh . The first agument teexec is the name of a program to
execute and each additionajament forms one gument to that subprocess.

To execute a subprocessec looks for an executable file with a name equal to
exec ’s first agument. If the name containg ar starts with~ thenexec checks the sin-
gle file indicated by the name. Otherwiseec checks each of the directories in B&TH
environment variable to see if the command name refers to an executable file in that direc-
tory. Exec uses the first executable that it finds.

109

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

110 Processes

exec ?-keepnewline ? ?- ?arg “7arg ..?
Executes command pipeline specifiedaby 's using one or more
subprocesses and returns the pipdliséandard output or an empty string
output is redirected (the trailing newline, if aisydropped unless
keepnewline s specified). I/O redirection may be specified witk<,
and> and several other forms and pipes may be specified wiftihe last
arg is & then the pipeline is executed in background and the return val
a list of its process ids.

exit ?code ?
Terminates process, returningde to parent as exit statuSode must be
an integerCode defaults to 0.

open | command ?access ?
Treatscommandas a list with the same structure aguanents texec
and creates subprocess(es) to execute command(s). Dependougss ,
creates pipes for writing input to pipeline and reading output from it.

pid ileld ?
If fileld is omitted, returns the process identifier for the current proce
Otherwise returns a list of all the process ids in the pipeline associated
fileld (which must have been opened using |).

Table 12.1. A summary of € commands for manipulating processes.

Exec collects all of the information written to standard output by the subprocess and
returns that information as its result, as in the following example:

exec echo wc tcl.h
g 618 2641 21825 tclh

If the last character of output is a newline teerc removes the newline. This behavior
may seem strange but it malkesc consistent with othercl commands,which dot’
normally terminate the last line of the result; you can retain the newline by specifying
- keepnewline as the first gument toexec .

Exec supports I/O redirection in a fashion similar to the UNIX shells. For example, if
one of the aguments texec is “>foo ” (or if there is a >” argument followed by a
“foo " argument), then output from the process is placed ifidde instead of returning
to Tcl asexec 's result. In this casexec 's result will be an empty strinfxec also sup-
ports several other forms of output redirection, suckra® append to a filez& to redi-
rect both standard output and standard gami2> to redirect standard error
independently from standard output.

Standard input may be redirected using either <<. The< form causes input to be
taken from a file. In the< form the following agument is not a file name, but rather an

DRAFT (8/12/93): Distribution Restricted

12.1 Invoking subprocesses with exec 111

Note:

immediate value to be passed to the subprocess as its standard input. The following com-
mand uses< to write data to a file:
exec cat << "test data" > foo

The string test input " is passed t@at as its standard inputat copies the string
to its standard ouput, which has been redirected tfwfile If no input redirection is spec-
ified then the subprocess inherits the standard input channel frorol tygplication.

You can also invoke a pipeline of processes instead of a single proceqs, @sirig
the following example:

exec grep #include tclint.h | wc

O 8 25 212
Thegrep program extracts all the lines containing the stritig¢lude " from the file
tclint.h . These lines are then piped to Wheprogram, which computes the number of

lines, words, and characters in tirep output and prints this information on its standard
output. Thewnc output is returned as the resulteokec .

If the last agument tcexec is & then the subprocess(es) will be executed in back-
ground.Exec will return immediatelywithout waiting for the subprocesses to complete.

Its return value will be a list containing the process identifiers for all of the processes in
the pipeline; standard output from the subprocesses will go to the standard output of T
application unless redirected. No errors will be reported for abnormal exits or standard
error output, and standard error for the subprocesses will be directed to the standard error
channel of the dl application.

If a subprocess is suspended or exits abnormally (i.e., it is killed or returns a non-zero
exit status), or if it generates output on its standard error channel and standard error was
not redirected, theaxec returns an erroifhe error message will consist of the output
generated by the last subprocess (unless it was redirected)witowed by an error
message for each process that exited abnornfalligwed by the information generated
on standard error by the processes, if ampddition,exec will set theerrorCode
variable to hold information about the last process that terminated abnoifreaily (see
the reference documentation for details).

Many UNIX pograms ae caeless about the exit status that theturn. If you invoke
such a pogram withexec and it accidentallyeturns a non-zerstatus then thexec

command will generate a false errTo prevent these eors from aborting your scripts,
invokeexec inside acatch command.

Althoughexec 's features are similar to those of the UNIX shells there is one impor-
tant diferenceexec does not perform any file name expansion. For example, suppose
you invoke the following command with the goal of removingalffiles in the current
directory:

exec rm *.o
O rm: *.0 nonexistent

DRAFT (8/12/93): Distribution Restricted

112

Processes

12.2

Rmreceives *.0 " as its agument and exits with an error when it cannot find a file by this
name. If you want file name expansion to occur you can uggabe command to get it,
but not in the obvious wajror example, the following command will not work:

exec rm [glob *.0]

O rm: a.o b.o nonexistent

This fails because the list of file names tjlab returns is passed tm as a single gu-
ment. If, for example, there exist two files,a.0 andb.o , then rms agument will be
“a.0 b.o "; since there is no file by that namma will return an errarThe solution to
this problem is the one described in Section 7.5euaé to reparse thglob output so
that it gets divided into multiple words. For example, the following command will do the
trick:

eval exec rm [glob *.0]
In this caseeval concatenates itsguments to produce the string

exec rma.o b.o
which it then evaluates as al Bcript. The namegs.o andb.o are passed ton as sepa-
rate aguments and the files are deleted as expected.

I/0 to and from a command pipeline

Note:

You can also create subprocesses usinggbha command; once you've done this you
can then use commands ligets andputs to interact with the pipeline. Here are two
simple examples:

set f1 [open {|tbl | ditroff -ms} w]

set f2 [open |prog r+}
If the first character of the “file name” passedpen is the pipe symbdl then the agu-
ment isnt really a file name at all. Instead, it specifies a command pipeline. The remainder
of the agument after th¢ is treated as a list whose elements have exactly the same mean-
ing as the guments to thexec commandOpen will create a pipeline of subprocesses
just as forexec and it will return an identifier that you can use to transfer data to and from
the pipeline. In the first example the pipeline is opened for writing, so a pipe is used for
standard input to thibl process and you can invogats to write data on that pipe; the
output fromtbl goes tdditroff , and the output frorditroff goes to the standard
output of the €l application. The second example opens a pipeline for both reading and
writing so separate pipes are createdofog 's standard input and standard output. Com-
mands likeputs can be used to write datagmog and commands likgets can be
used to read the output frgonog .
When writing data to a pipeline, domdrget that output is buffed: it probably will not

actually be sent to the childgress until you invoke tlidush command to fae the
buffered data to be written.

DRAFT (8/12/93): Distribution Restricted

12.3 Process ids 113

12.3

When you close a file identifier that corresponds to a command pipelimépdbe
command flushes any befed output to the pipeline, closes the pipes leading to and from
the pipeline, if anyand waits for all of the processes in the pipeline to exit. If any of the
processes exit abnormally thelose returns an error in the same wayeasc .

Process ids

12.4

Tcl provides three ways that you can access process identifiers. First, if you invoke a pipe-
line in background usingxec thenexec returns a list containing the process identifiers
for all of the subprocesses in the pipelineu¥an use these identifers, for example, if you
wish to kill the processes. Second, you can invok@ithecommand with no guments
and it will return the process identifier for the current process. Third, you can ipidoke
with a file identifier as gument, as in the following example:

set f [open {| tbl | ditroff -ms} w]

pid $f

0 7189 7190

If there is a pipeline corresponding to the open file, as in the example, thpd them-
mand will return a list of identifiers for the processes in the pipeline.

Environment variables

12.5

Environment variables can be read and written using the stardlaarigble mechanism.
The array variablenv contains all of the environment variables as elements, with the
name of the element anv corresponding to the name of the environment variable. If you
modify theenv array the changes will be reflected in the processvironment variables
and the new values will also be passed to any child process creatededtlor open .

Terminating the T cl process with exit

If you invoke theexit command then it will terminate the process in which the com-
mand was executelixit takes an optional integergament. If this agument is pro-
vided then it is used as the exit status to return to the parent pdedicates a normal
exit and non-zero values correspond to abnormal exits; values oth@rahda are rare.
If no agument is given texit then it exits with a status 6f Sinceexit terminates the
process, it doeshhave any return value.

DRAFT (8/12/93): Distribution Restricted

114 Processes

DRAFT (8/12/93): Distribution Restricted

Chapter 13
Managing Tcl Internals

13.1

This chapter describes a collection of commands that allow you to query and manipulate
the internal state of theclinterpreterFor example, you can use these commands to see if
a variable exists, to find out what entries are defined in an sonapnitor all accesses to

a variable, to rename or delete a command, or to handle references to undefined com-
mands. @bles 13.1 and 13.2 summarize the commands.

Querying the elements of an array

Thearray command provides information about the elements currently defined for an
array variable. It provides this information in severdiedént ways, depending on the first
argument passed to it. The commaarday size returns a decimal string indicating
how many elements are defined for a given array variable and the coramand
names returns a list whose entries are the names of the elements of a given array variable:
set currency(France) franc
set "currency(Great Britain)" pound

set currency(Germany) mark
array size currency

o 3
array names currency
O {Great Britain} France Germany
For each of these commands the fingliarent must be the name of an array variable. The
list returned byarray names does not have any particular order

115

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

116 Managing Tcl Internals

array anymore name searchld
Returnsl if there are any more elements to process in seaaichld
of arrayname, O if all elements have already been returned.
array donesearch name searchid
Terminates searctearchld of arrayname and discard any state
associated with the search. Returns an empty string.
array names name
Returns a list containing the names of all the elements of rarag.
array nextelement name searchld
Returns the name of the next element in seseanchld of arrayname,
or an empty string if all elements have already been returned in this se

array size name
Returns a decimal string giving the number of elements in aenae.
array startsearch name
Initializes a search through all of the elements of ameaye. Returns a
search identifier that may be passedrtay nextelement , array

anymore , orarray donesearch.

auto_mkindex dir pattern
Scans all of the files in diretodir whose names matgattern (using
the glob-style rules daftring match) and generates a fitelindex
indir that allows the files to be auto-loaded.

info option “?argarg ..?
Returns information about the state of tlekifiterpreter See &ble 13.3.

rename old new
Renames commarald tonew, or delete®ld if new is an empty string.
Returns an empty string.

time script 2count ?
Executescript count times and returns a string giving the average
elapsed time per executicdbount defaults to 1.

Table 13.1. A summary of commands for manipulating’$ internal state (continued imfdle
13.2).

Thearray names command can be used in conjunction vidireach to iterate
through the elements of an arr&pr example, the code below deletes all elements of an
array with values that a@or empty:

foreach i [array names a] {

if {($a($i) =="") || ($a($i) == 0))}{
unset a($i)

DRAFT (8/12/93): Distribution Restricted

13.2 The info command 117

trace variable name ops command
Establishes a trace on variabkme such thatommandis invoked
whenever one of the operations giveropg is performd omame. Ops
must consist of one or more of the charaaterg oru. Returns an empty
string.

trace vdelete name ops command
If there exists a trace for variablame that has the operations and
command given bgps andcommand removes that trace so that its
command will not be executed anymore. Returns an empty string.

trace vinfo name
Returns a list with one element for each trace currently set on variable
name. Each element is a sub-list with two elements, which aregheand
commandassociated with that trace.

unknown cmd ?arg arg ...?
This command is invoked by thelTnterpreter whenever an unknown
command name is encounter€aindwill be the unknown command name
and thearg ’s will be the fully-substituted guments to the command. The
result returned bynknown will be returned as the result of the unknown
command.

Table 13.2. Commands for manipulatingcITs internal state, cont'd.

Note: Thearray command also prvides a second way to selrthiough the elements of an
array, using thestartsearch , anymore, nextelement , anddonesearch
options. This apmrach is moe general than thioreach appoach given above, and in
some cases it is moefficient, but it is merverbose than thfereach appmoach and
isnt needed very often. See tleéerence documentation for details.

13.2 The info command
Theinfo command provides information about the state of the interpletas more
than a dozen options, which are summarizedhinlés 13.3 and 13.4.

13.2.1 Information about variables

Several of thénfo options provide information about variablego exists returns
a0 or1 value indicating whether or not there exists a variable with a given name:
setx 24
info exists x
o1

DRAFT (8/12/93): Distribution Restricted

118

Managing Tcl Internals

info args procName

Returns a list whose elements are the names ofghenants to procedure
procName, in order

info body procName

Returns the body of procedyseocName .

info cmdcount

Returns a count of the total number of FTommands that have been
executed in this interpreter

info commands ?7pattern ?

Returns a list of all the commands defined for this interprieduding
built-in commands, application-defined commands, and procedures. If
pattern is specified then only the command names matqattgrn

are returnedsfring match ’srules are used for matching).

info default

procName argName varName

Checks to see if gumentargName to procedur@rocName has a default
value. If so, stores the default value in varialsleName and returnd..
Otherwise, return® without modifyingvarName.

info exists

varName
Returnsl if there exists a variable namearName in the current context,
0 if no such variable is currently accessible.

info globals

Ppattern ?

Returns a list of all the global variables currently defineglatfern is
specified, then only the global variable names matqgbatigrn are
returned §tring match ~ ’s rules are used for matching).

info level

Pnumber ?
If number isn’t specified, returns a number giving the current stack leve
(O corresponds to top-level, to the first level of procedure call, and so
on). Ifnumber is specified, returns a list whose elements are the name
arguments for the procedure call at lemamber.

info library

Returns the full path name of the library directory in which standard T
scripts are stored.

info locals

Ppattern ?
Returns a list of all the local variables defined for the current procedure
an empty string if no procedure is activepdfitern is specified then
only the local variable names matchipattern are returnedstring
match s rules are used for matching).

Table 13.3. A summary of the options for tliefo command (continued ireble 13.4).

DRAFT (8/12/93): Distribution Restricted

13.2 The info command 119

info procs Ppattern ?
Returns a list of the names of all procedures currently definpdttéfrn
is specified then only the procedure names matgiattgrn are
returned §tring match ’s rules are used for matching).

info script
If a script file is currently being evaluated then this command returns th
name of that file. Otherwise it returns an empty string.

info tclversion
Returns the version number for the ihterpreter in the form
major .minor , wheremajor andminor are each decimal integers.
Increments iminor correspond to bug fixes, new features, and
backwards-compatible chang®&&ajor increments only when
incompatible changes occur

info vars Ppattern ?
Returns a list of all the names of all variables that are currently accessi
If pattern is specified then only the variable names matcpattern
are returnedsfring match ’s rules are used for matching).

Table 13.4. A summary of the options for tliefo command, cont'd.

unset x
info exists x

o o

The optionsrars , globals , andlocals return lists of variable names that meet
certain criterialnfo vars returns the names of all variables accessible at the current
level of procedure calinfo globals returns the names of all global variables, regard-
less of whether or not they are accessible;iafadlocals returns the names of local
variables, including gluments to the current procedure, if d@myt not global variables. In
each of these commands an additional patteumaent may be supplied. If the pattern is
supplied then only variable names matching that pattern (using the reteiagf
match) will be returned.

For example, suppose that global varialgleball andglobal2 have been
defined and that the following procedure is being executed:

proc test {argl arg2} {
global globall

set locall 1
set local2 2

}

Then the following commands might be executed in the procedure:

DRAFT (8/12/93): Distribution Restricted

120 Managing Tcl Internals

info vars
O globall argl arg2 local2 locall
info globals
O global2 globall
info locals
O argl arg2 local2 locall
info vars *al*
O globall local2 locall

13.2.2 Information about procedures

Another group ofnfo options provides information about procedures. The command
info procs returns a list of all thecT procedures that are currently defined. Lifke
vars , it takes an optional patterrgament that restricts the names returned to those that
match a given patterinfo body ,infoargs , andinfo default return informa-
tion about the definition of a procedure:

proc maybePrint {a b {c 24}} {

if {$a < $h}{
puts stdout “c is $c"
}

}
info body maybePrint

if {$a < $b} {
puts stdout “c is $c"

}

info args maybePrint
O abc
info default maybePrint a x
g o
info default maybePrint ¢ x
01
set x
o 24
Info body returns the procedusebody exactly as it was specified to pnec com-
mand.Info args returns a list of the proceduseagument names, in the same order
they were specified foroc . Info default returns information about angaiments
default value. It takes threegaiments: the name of a procedure, the name ofgamant
to that procedure, and the name of a variable. If the givemreeant has no default value
(e.g.a in the above exampldpfo default returns0. If the agument has a default

DRAFT (8/12/93): Distribution Restricted

13.2 The info command 121

13.2.3

value € in the above example) thérfo default returnsl and sets the variable to
hold the default value for theqament.

As an example of how you might use the commands from the previous paragraph,
here is a @ procedure that writes allscript file. The script will containcT code in the
form of proc commands that recreate all of the procedures in the intergreeefile can
then besource ’d in some other interpreter to duplicate the procedure state of the origi-
nal interpreterThe procedure takes a singlganent, which is the name of the file to
write:

proc printProcs f ile {
set f [open $f ile w]
foreach proc [info procs] {
set argList {}
foreach arg [info args $proc] {
if [info default $proc $arg default] {
lappend argList [list $arg $default]
}else {
lappend argList $arg
}

}
puts $f [list proc $proc $argList \
[info body $proc]]

close $f
}
Info provides one other option related to procedunds:level . If info
level is invoked with no additional gnments then it returns the current procedure invo-
cation level0 if no procedure is currently active,if the current procedure was called
from top-level, and so on. iififo level is given an additional gument, the grument
indicates a procedure level ainfo level returns a list whose elements are the name
and actual guments for the procedure at that level. For example, the following procedure
prints out the current call stack, showing the name aquh@ents for each active proce-
dure:
proc printStack {} {
set level [info level]

for {set i 1} {$i < $level} {incr i} {
puts "Level $i: [info level $i]"
}

Information about commands

Info commands is similar toinfo procs except that it returns information about all
existing commands, not just procedures. If invoked with garaents, it returns a list of
the names of all commands; if ag@ament is provided, then it is a pattern in the sense of
string match and only command names matching that pattern will be returned.

DRAFT (8/12/93): Distribution Restricted

122

Managing Tcl Internals

13.2.4

13.3

The commandhfo cmdcount returns a decimal string indicating how many com-
mands have been executed in thikifiterpreterIt may be useful during peformance tun-
ing to see how manycTcommands are being executed to carry out various functions.

The commandhfo script indicates whether or not a script file is currently being
processed. If so then the command returns the name of the innermost nested script file that
is active. If there is no active script file thafo script returns an empty string. This
command is used for relatively obscure purposes such as disallowing command abbrevia-
tions in script files.

Tclversion and library

Info tclversion returns the version number for the hterpreter in the form
major . minor . Each ofmajor andminor is a decimal string. If a new release of T
contains only backwards-compatible changes such as bug fixes and new features, then its
minor version number increments and the major version number stays the same. If a new
release contains changes that are not backwards-compatible, so that esgistanigpfE or
C code that invokescT's library procedures will have to be modified, then the major ver-
sion number increments and the minor version number resets to O.

The commandhfo library returns the full path name of thel Tibrary direc-
tory. This directory is used to hold standard scripts usedhguch as a default definition
for theunknown procedure described in Section 13.6 below

Timing command execution

Thetime command is used to measure the performancelaciipts. It takes two gu-
ments, a script and a repetition count:

time {set a xyz} 10000

O 92 microseconds per iteration
Time will execute the given script the number of times given by the repetition count,
divide the total elapsed time by the repetition count, and print out a message like the above
one giving the average number of microseconds per iteration. The reason for the repetition
count is that the clock resolution on most workstations is many milliseconds. Thus any-
thing that takes less than tens or hundreds of milliseconds cannot be timed acdurately
make accurate timing measurements, | suggest experimenting with the repetition count
until the total time for th&me command is a few seconds.

DRAFT (8/12/93): Distribution Restricted

13.4 Tracing operations on variables 123

13.4

Tracing operations on variables

Thetrace command allows you to monitor the usage of one or mareafiables. Such
monitoring is calledracing. If a trace has been established on a variable thehcam-
mand will be invoked whenever the variable is read or written or urrseed can be used
for a variety of purposes:

* monitoring the variable'usage (e.g. by printing a message for each read or write oper-
ation)

* propagating changes in the variable to other parts of the system (e.g. to ensure that a
particular widget always displays the picture of a person named in a given variable)

* restricting usage of the variable by rejecting certain operations (e.g. generate an error
on any attempt to change the variablglue to anything other than a decimal string) or
by overriding certain operations (e.g. recreate the variable whenever it is unset).

Here is a simple example that causes a message to be printed when either of two vari-
ables is modified:
trace variable color w pvar
trace variable a(length) w pvar
proc pvar {name element op} {
if {$element 1= "} {
set name ${name}($element)
}

upvar $name x
puts "Variable $name set to $x"

}
The firsttrace command arranges for procedpkar to be invoked whenever variable
color is written:variable specifies that a variable trace is being createldr
gives the name of the variablespecifies a set of operations to trace (any combination of
r for readw for write, andu for unset), and the lastgarment is a command to invoke.
The second trace command sets up a trace for eléamgih of arraya.

Whenevercolor ora(length) is modified, Tl will invoke pvar with three
additional aguments, which are the varialdeiame, the variabkeelement name (if it is
an array element, or an empty string otherwise), andgament indicating what opera-
tion was actually invoked (for readw for write, oru for unset). For example, if the com-
mand ‘set color purple ”is executed, @ will evaluate the command
“pvar color {} purple ”because of the trace. I§&t a(length) 108" is
invoked, the trace commangvar a length w’ will be evaluated.

Thepvar procedure does three things. First, if the traced variable is an array element
thenpvar generates a complete name for the variable by combining the array name and
the element name. Second, the procedureuses to make the variable'value acces-
sible inside the procedure as local variahl&inally, it prints out the variable’'name and
value on standard output. For the two accesses in the previous paragraph the following
messages will be printed:

DRAFT (8/12/93): Distribution Restricted

124

Managing Tcl Internals

Note:

Variable color set to purple
Variable a(length) set to 108

The example above set traces on individual variablesalgb possible to set a trace

on an entire arrayas with the command

trace variable a w pvar
wherea is the name of an array variable. In this qass will be invoked whenever any
element ofa is modified.

Write traces are invoked after the variablealue has been modified but before
returning the new value as the result of the write. The trace command can write a new
value into the variable to override the value specified in the original write, and this value
will be returned as the result of the traced write operation. Read traces are invoked just
before the variable’result is read. The trace command can modify the variableetd af
the result returned by the read operatiaacihg is temporarily disabled for a variable
during the execution of read and write trace commands. This means that a trace command
can access the variable without causing traces to be invoked recursively

If a read or write trace returns an error of any sort then the traced operation is aborted.
This can be used to implement read-only variables, for example. Here is a script that
forces a variable to have a positive integer value and rejects any attempts to set the vari-
able to a non-integer value:

trace variable size w forcelnt
proc forcelnt {name element op} {
upvar $name x ${name}_old x_old
if regexp {"[0-9]*$} $x] {
set x $x_old
error "value must be a postive integer”

set x_old $x
}
By the time the trace command is invoked the variable has already been modified, so if
forcelnt wants to reject a write it must restore the old value of the variabko This
it keeps a shadow variable with afsuf _old ” to hold the previous value of the variable.
If an illegal value is stored into the varialfiercelnt restores the variable to its old
value and generates an error:
set size 47
0 47
set size red
0 can't set "size": value must be a postive integer
set size
0o 47

Theforcelnt procedue only works for simple variables, but it could be extended to
handle array elements as well.

DRAFT (8/12/93): Distribution Restricted

13.5 Renaming and deleting commands 125

135

It is legal to set a trace on a non-existent variable; the variable will continue to appear
to be unset even though the trace exists. For example, you can set a read trace on an array
and then use it to create new array elements automatically the first time they are read.
Unsetting a variable will remove the variable and any traces associated with the variable,
then invoke any unset traces for the variable. It is legal, and not unusual, for an unset trace
to immediately re-establish itself on the same variable so that it can monitor the variable if
it should be re-created in the future.

To delete a trace, invokeace vdelete with the same guments passed to
trace variable . For example, the trace createdcofor above can be deleted with
the following command:

trace vdelete color w pvar
If the aguments tdrace vdelete dont match the information for any existing trace
exactly then the command has nfeef.

The commandrace vinfo returns information about the traces currently set for a
variable. It is invoked with an gmment consisting of a variable name, as in the following
example:

trace vinfo color
O {wpvar}

The return value frortrace vinfo is a list, each of whose elements describes one

trace on the variable. Each element is itself a list with two elements, which give the opera-
tions traced and the command for the trace. The traces appear in the result list in the order
they will be invoked. If the variable specifieditace vinfo is an element of an array

then only traces on that element will be returned; traces on the array as a whole will not be
returned.

Renaming and deleting commands

Therename command can be used to change the command structure of an application. It
takes two aguments:

rename old new

Renamedoes just what its name implies: it renames the command that used to have the
nameold so that it now has the namew. Newmust not already exist as a command
whenrename is invoked.

Renamecan also be used to delete a command by invoking it with an empty string as
thenew name. For example, the following script disables file /0O from an application by
deleting the relevant commands:

foreach cmd {open close read gets puts} {
rename $cmd {}
}

DRAFT (8/12/93): Distribution Restricted

126

Managing Tcl Internals

13.6

Any Tcl command may be renamed or deleted, including the built-in commands as
well as procedures and commands defined by an application. Renaming or deleting a built-
in command is probably a bad idea in general, since it will break scripts that depend on the
command, but in some situations it can be useful. For exampkxithecommand as
defined by €l just exits the process immediately (see Section 12.5). If an application
wants to have a chance to clean up its internal state before exiting, then it can create a
“wrapper” arouncexit by redefining it:

rename exit exit.old

proc exit status {
application-specific cleanup

exit.old $status
}
In this example thexit command is renamed &xit.old and a nevexit proce-
dure is defined, which performs the cleanup required by the application and then calls the
renamed command to exit the process. This allows existing scripts thetitalto be
used without change while still giving the application an opportunity to clean up its state.

Unknown commands

The Tel interpreter provides a special mechanism for dealing with unknown commands. If
the interpreter discovers that the command name specifiecirarmmand doeshéxist,
then it checks for the existence of a command namk&down . If there is such a com-
mand then the interpreter invok@sknown instead of the original command, passing the
name and guments for the non-existent commandit&nown . For example, suppose
that you type the following commands:

set x 24

createDatabase library $x
If there is no command namerkateDatabase then the following command is
invoked:

unknown createDatabase library 24
Notice that substitutions are performed on tlgaarents to the original command before
unknown is invoked. Each gument taunknown will consist of one fully-substituted
word from the original command.

Theunknown procedure can do anything it likes to carry out the actions of the com-
mand, and whatever it returns will be returned as the result of the original command. For
example, the procedure below checks to see if the command name is an unambiguous
abbreviation for an existing command; if so, it invokes the corresponding command:

DRAFT (8/12/93): Distribution Restricted

13.6 Unknown commands 127

proc unknown {name args} {
set cmds [info commands $name*]
if {[llength $cmds] != 1} {
error "unknown command \"$name\""

uplevel $cmds $args
}
Note that when the command is re-invoked with an expanded name, it must be invoked
usinguplevel so that the command executes in the same variable context as the original
command.
The Tel script library includes a default versionwfknown that peforms the follow-
ing functions, in order:

1. If the command is a procedure that is defined in a library file, source the file to define
the procedure, then re-invoke the command. This is callesdloading it is described
in the next section.

2. If there exists a program with the name of the command, usxéiee command to
invoke the program. This feature is callto-execFor example, you can typés“”
as a command anahknown will invoke “execls " to list the contents of the current
directory If the command doedrspecify redirection then auto-exec will arrange for
the command standard input, standard output, and standard error to be redirected to
the corresponding channels of the dpplication. This is di€rent than the normal
behavior ofexec but it allows interactive programs suchnagre andvi to be
invoked directly from a dl application.

3. If the command name has one of several special forms sutth ‘ath&n compute a
new command using history substitution and invoke it. For example, the if the com-
mand is ¥ " then the previous command is re-invoked. See Chapter 14 for more infor-
mation on history substitution.

4. If the command name is a unique abbreviation for an existing command, then the
abbreviated command name is expanded and the command is re-invoked.

The last three actions are intended as conveniences for interactive use, and they only occur
if the command was invoked interactive¥pu should not depend on these features when
writing scripts. For example, you should not try to use auto-exec in scripts: always use the
exec command explicitly

If you dont like the default behavior of thenknown procedure then you can write
your own version or modify the library version to provide additional functions. If you
don't want any special actions to be taken for unknown commands you can just delete the
unknown procedure, in which case errors will occur whenever unknown commands are
invoked.

DRAFT (8/12/93): Distribution Restricted

128

Managing Tcl Internals

13.7 Auto-loading

One of the most useful functions performed byuhknown procedure iswuto-loading
Auto-loading allows you to write collections oflprocedures and place them in script
files in library directories. au can then use these procedures in yoliafiplications
without having to explicithsource the files that define themoW simply invoke the
procedures. The first time that you invoke a library procedure ittvegist, sacunknown
will be called.Unknown will find the file that defines the procedure, source the file to
define the procedure, and then re-invoke the original command. The next time the proce-
dure is invoked it will exist so the auto-loading mechanism wmatriggered.

Auto-loading provides two benefits. First, it makes it easy to build gp ldraries
of useful procedures and use theméhstripts. You need not know exactly which files to
source to define which procedures, since the auto-loader takes care of that for you. The
second benefit of auto-loading isi@ency. Without auto-loading an appliation must
source all of its script files when it starts up. Auto-loading allows an application to start
up without loading any script files at all; the files will be loaded later when their proce-
dures are needed, and some files may never be loaded at all. Thus auto-loading reduces
startup time and saves memory

Using the auto-loader is straightforward and involves three steps. First, create a
library as a set of script files in a single directdigrmally these files have names that end
in“.tcl ", for exampledb.tcl orstretch.tcl . Each file can contain any number of
procedure definitions. | recommend keeping the files relatively small, with just a few
related procedures in each file. In order for the auto-loader to handle the files ptheerly
proc command for each procedure definition must be at the left edge of a line, and it
must be followed immediately by white space and the proceduaene on the same line.
Other than this the format of the script files doesrdtter as long as they are valid T
scripts.

The second step is to build an index for the auto-loddedo this, start up acT
application such aglsh and invoke thauto_mkindex command as in the follow-
ing example:

auto_mkindex . *.tcl

Auto_mkindex isn't a built-in command but rather a proceduredtistscript library
Its first agument is a directory name and the secogdraent is a glob-style pattern that
selects one or more script files in the directdito_mkindex scans all of the files
whose names match the pattern and builds an index that indicates which procedures are
defined in which files. It stores the index in a file caitdithdex in the directorylf you
modify the files to add or delete procedures then you should regenerate the index.

The third step is to set the variablgto_path in the applications that wish to use
the library Theauto_path variable contains a list of directory names. When the auto-
loader is invoked it searches the directoriealito_path in order looking in their
tclindex files for the desired procedure. If the same procedure is defined in several

DRAFT (8/12/93): Distribution Restricted

13.7 Auto-loading 129

libraries then the auto-loader will use the one from the earliest directangdnpath
Typically auto_path will be set as part of an applicatierstartup script. For example,
if an application uses a library in directduogr/local/tcl/lib/shapes then it
might include the following command in its startup script:
set auto_path \

[linsert $auto_path 0 /usr/local/tcl/lib/shapes]
This will add/usr/local/tcl/lib/shapes to the beginning of the path, retaining
all the existing directories in the path such as those fordhen@ Tk script libraries but
giving higher priority to procedures definedusr/local/tcl/lib/shapes .
Once a directory has been properly indexed and addaddopath , all of its proce-
dures become available through auto-loading.

DRAFT (8/12/93): Distribution Restricted

130 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

Chapter 14
History

141

This chapter describe£ITs history mechanism. In applications where you type com-
mands interactivelythe history mechanism keeps track of recent commands and makes it
easy for you to re-execute them without having to completely re-type tleentav also

create new commands that are slight variations on old commands without having to com-
pletely retype the old commands, for example to fix typoks history mechanism pro-

vides many of the features availablecgh , but not with the same syntax in all cases.
History is implemented by th@story command, which is summarized iable 14.1 .

Only a few of the most commonly used history features are described in this chapter; see
the reference documentation for more complete information.

The history list

Each command that you type interactively is entered ihistary list Each entry in the
history list is called aevent it contains the text of a command plus a serial number iden-
tifying the command. The command text consists of exactly the characters you typed,
before the Tl parser peforms substitutions fr[] , etc. The serial number starts out at
for the first command you type and is incremented for each successive command.
Suppose you type the following sequence of commands to an interadtpyedram:

setx 24

sety [expr $x*2.6]

Incr X
At this point the history list will contain three eventsuYtan examine the contents of the
history list by invokinghistory ~ with no aguments:

131

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

132

History

history
Returns a string giving the event number and command for each event
the history list.

history keep count

Changes the size of the history list so thatcthent most recent events
will be retained. The initial size of the list is 20 events.

history nextid
Returns the number of the next event that will be recorded in the histor

history redo Pevent ?
Re-executes the command recordecef@nt and returns its result.

history substitute old new 7?event ?
Retrieve the command recorded évent , replace any occurrences of
old bynew in it, execute the resulting command, and returns its result.
Bothold andnew are simple strings. The substitution uses simple equa
checks: no wild cards or regular expression features are supported.

Table 14.1. A summary of some of the options for thistory = command. Several options ha
been omitted; see the reference documentation for details.

history
O 1setx?24

2 set y [expr $x*2.6]

3incr x

4 history
The value returned Ryistory is a human-readable string describing wsati the his-
tory list, which also includes thestory command. The result bifstory is intended
for printing out, not for processing irtliscripts; if you want to write scripts that process
the history list, you'll probably find it more convenient to use ofligtory options
described later in the reference documentation, sublstsy event

The history list has a fixed size, which is initially 20. If more commands than that

have been typed then only the most recent commands will be retained. The size of the his-
tory list can be changed with thestory keep command:

history keep 100

This command changes the size of the history list so that in the future the 100 most recent
commands will be retained.

DRAFT (8/12/93): Distribution Restricted

14.2 Specifying events 133

14.2 Specifying events
Several of the options of théstory command require you to select an event from the
history list; the symbatvent is used for such guments in &ble 14.1. Events are spec-
ified as strings with one of the following forms:

Positive number: Selects the event with that serial number

Negative number: Selects an event relative to the current evéntefers to
the last command? refers to the one before that, and so
on.

Anything else: Selects the most recent event that matches the string. The
string matches an event either if it is the same as the first
characters of the eveattommand, or if it matches the
events command using the matching rulesstsing
match .

Suppose that you had just typed the three commands from page 131 above. The command
“incr x"can be referred to as evefit or3 orinc ,and ‘set y [expr $x*2.6] "
can be referred to as evefit or 2 or*2* . If an event specifier is omitted then it defaults
to-1.

14.3 Re-executing commands from the history list

Theredo andsubstitute options tohistory will replay commands from the his-
tory list. History redo retrieves a command and re-executes it just as if you had
retyped the entire command. For example, after typing the three commands from page
131, the command
history redo
replays the most recent command, whicimes X ; it will increment the value of vari-
ablex and return its new valu@g). If an additional ayument is provided fdnistory
redo , it selects an event as described in Section 14.2; for example,
history redo 1
o 24
replays the first commanslet x 24
Thehistory substitute command is similar thistory redo except that
it modifies the old command before replaying it. It is most commonly used to correct typo-
graphical errors:
set x "200 illimeters"
O 200 illimeters
history substitute ill mill -1
O 200 millimeters

DRAFT (8/12/93): Distribution Restricted

134

History

History substitute takes three guments: an old string, a new string, and an event
specifier (the event specifier can be defaulted, in which case it defadlts toretrieves

the command indicated by the event specifier and replaces all instances of the old string in
that command with the new string. The replacement is done using simple textual compari-
son with no wild-cards or pattern matching. Then the resulting command is executed and
its result is returned.

14.4 Shortcuts implemented by unknown
Thehistory redo andhistory substitute commands are quite bulky; in the
examples above it took more keystrokes to typénibtery commands than to retype
the commands being replayed. Fortunately there are several shortcuts that allow the same
functions to be implemented with fewer keystrokes:
I Replays the last command: same laistory redo .
I event Replays the command given byent ; same as
“history redo event .
~old “new Replay the last command, substituting new for old; same as
“history substitute old new".
All of these shortcuts are implemented by dh&nown procedure described in Section
13.6.Unknown detects commands that have the forms described above and invokes the
correspondindnistory commands to carry them out.
Note: If your system doegnise the default version ohknown provided by @l then these
shortcuts may not be available.
14.5 Current event number: history nextid

The commandhistory nextid returns the number of the next event to be entered into
the history list:
history nextid

o 3
It is most commonly used for generating prompts that contain the event niviabgr
interactive applications allow you to specify @ 3cript to generate the prompt; in these
applications you can includehsstory nextid command in the script so that your
prompt includes the event number of the command you are about to type.

DRAFT (8/12/93): Distribution Restricted

Chapter 14

Chapter 15

Chapter 16

141
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

151
15.2
15.3

154
155
15.6
15.7
15.8
15.9
15.10

16.1
16.2
16.3
16.4

An Introduction to Tk 133

Widgets and windows 134

Screens, decorations, and toplevel window86
Applications and processed 37

Scripts and events138

Wish: a windowing shell 138

Widget creation commands139

Geometry managers140

Widget commands 141

Commands for interconnectionl42

Tour Of The Tk Widgets 145

Frames and toplevels145
Labels, buttons, checkbuttons, and radiobuttoh46

Menus and menubuttons148

15.3.1 Pull-down menus 150

15.3.2 Pop-up menus 150

15.3.3 Cascaded menus 150

15.3.4 Keyboard traversal and accelerators 151

Listboxes 151
Entries 152
Scrollbars 153
Text 154
Canvases 155
Scales 157
Messages 157

Configuration Options 159
How options are set159

Colors 161

Screen distances163

Reliefs 164

DRAFT (3/11/93): Distribution Restricted

Chapter 17

Chapter 18

Chapter 19

16.5
16.6
16.7
16.8
16.9
16.10
16.11
16.12
16.13

171
17.2
17.3
17.4
175
17.6
17.7

18.1
18.2
18.3
18.4

191
19.2

Fonts 164

Bitmaps 166

Cursors 166

Anchors 167

Script options and scrolling 169
Variables 171

Time intervals 171

The configure widget commandL71

The option databasel73

16.13.1Patterns 173

16.13.2RESOURCE_MANAGER property and .Xdefaults file 175
16.13.3Priorities 175

16.13.4The option command 176

Geometry Managers: The Placet79
An overview of geometry management79
Controlling positions with the placer182
Controlling the size of a slavel85

Selecting the master windowl85

Border modes 186

More on the place commandL86

Controlling the size of the masted 87

The Packer 189

Packer basics 189

Packer configuration options193
Hierarchical packing 196

Other options to the pack command97

Bindings 199

An overview of the bind command199
Event patterns 201

DRAFT (3/11/93): Distribution Restricted

Chapter 20

Chapter 21

Chapter 22

19.3
194
19.5
19.6
19.7
19.8

20.1
20.2
20.3

21.1
21.2
213
21.4
215

22.1
22.2
22.3
22.4
22.5
22.6
22.7
22.8
229

Sequences of event203
Conflict resolution 203
Substitutions in scripts 204
When are events processed205
Background errors: tkerror205
Other uses of bindings206

The Selection 207

Selections, retrievals, and gats 207
Locating and clearing the selectioi209
Supplying the selection withcTscripts 210

The Input Focus 213

Focus model: explicit vs. implicit 213
Setting the input focus 214

Clearing the focus 215

The default focus 215

Keyboard accelerators216

Window Managers 217

Window sizes 219

Gridded windows 220

Window positions 222

Window states 222

Decorations 223

Window manager protocols223

Special handling: transients, groups, and override-redirg2¢
Session managemen25

A warning about window manager225

DRAFT (3/11/93): Distribution Restricted

Chapter 23 The Send Command227
23.1 Basics 227
23.2 Hypertools 228
23.3 Application names 229
23.4 Security issues 229

Chapter 24 Modal Interactions 231
24.1 Grabs 231
24.2 Keyboard handling during grabs233
24.3 Waiting: the tkwait command 233

Chapter 25 Odds and Ends 237
25.1 Destroying windows 237
25.2 Time delays 238
25.3 The update command239
25.4 Information about windows 240
25.5 The tk command: color model240
25.6 Variables managed by Tk241

Chapter 26 Examples 243

26.1 A procedure that generates dialog box@43
26.2 A remote-control application 247

DRAFT (3/11/93): Distribution Restricted

Part Il

Writing Scripts for Tk

132

DRAFT (3/11/93): Distribution Restricted

Chapter 14
An Intr oduction to Tk

Note:

Tk is a toolkit that allows you to create graphical user interfaces for thevkitiow sys-
tem by writing Tl scripts. Like €l, Tk is a C library package that can be included in C
applications. Tk extends the built-iclicommand set described in Part | with several
dozen additional commands that you can use to create user interface elementsdzalled
gets arrange them into interesting layouts on the screen gsimgetry managerand
connect them with each otherith the enclosing application, and with other applications.
This part of the book describes $Kcl commands.

In addition to its €| commands, Tk also provides a collection of C library functions
that can be invoked from C code in a Tk-based application. The library functions allow
you to implement new widgets and geometry managers in C. They are discussed in Part IV
of the book.

This chapter introduces the basic structures used for creating user interfaces with Tk,
including the hierarchical arrangements of widgets that make up interfaces and the main
groups of €l commands provided by Tk. Later chapters will go over the individual facili-
ties in more detail.

I've taken the liberty of describing things in the way | expect them to be when the book is
finally published, so the descriptions in this draft do not alwaysspand to the cuent
version of Tk (3.2). The following disprancies exist between this draft and Tk 3.2: (a) the
pack command syntax as describedehir diffeent than what exists in 3.2, although it
provides almost exactly the same set of feastuib) Tk 3.2 doedréontain all of the built-

in bitmaps listed her(c)groove andridge reliefs ae not supported in Tk 3.2, and (d)
embedded widgetsanot yet supported in text widgets. As new versions ofeTk ar
released the disepancies should gradually disappear

133

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

134 An Introduction to Tk

Press Me

@
(©

Sample text]

(b)

Figure 14.1.Examples of widgets in Tk: (a) a button widget displays a text string and invok
given Tl command when a mouse button is clicked over it; (b) an entry widget displays a o
text string and allows the text to be edited with the mouse and keyboard; (c) a scrollbar wid
displays a slider and two arrows, which can be manipulated with the mouse to adjust the vi
some other widget.

14.1 Widgets and windows

The basic user interface elements in Tk are callddets Examples of widgets are labels,
buttons, pull-down menus, scrollbars, and text entries (see Figure 14dggts\are
grouped intalasseswhere all of the widgets in a class have a similar appearance on the
screen and similar behavior when manipulated with the mouse and keyboard. For exam-
ple, widgets in the button class display a text string or bitmap as shown in Figure 14.1(a).
Different buttons may display their strings or bitmaps ifedéht ways (e.g. in diérent
fonts and colors), but each one displays a single string or bitmap. Each button also has a
Tcl script associated with it, which is invoked whenever mouse button 1 is pressed with
the mouse cursor over the widget.fBiént button widgets may havefdifent commands
associated with them but each one has an associated command. When you create a widget
you select its class and provide additional class-spegifions such as a string or bitmap
to display or a command to invoke.

Tk’s built-in widget classes implement the MBYflook-and-feel standard specified
by the Open Software Foundation. The Motif standard determines the three-dimensional
look that you'll see in the Tk widgets and many aspects of their behavior

Each widget is implemented using one window in the X window system, and the
terms “window” and “widget” are used interchangeably in this bodkg@ls may be
nested in hierarchical arrangements with widgets containing other widgets that contain
still other widgets. The result is a tree-like structure such as the one shown in Figure 14.2.
Each widget can contain any number of children and the widget tree can have any depth.
The widgets with behavior that is meaningful to the user are usually at the leaves of the
widget tree; the highdevel widgets are usually just containers faganmizing and arrang-
ing the leaf widgets.

DRAFT (3/11/93): Distribution Restricted

14.1 Widgets and windows 135

Hle - ﬂelpl
Hawaii N
Idaho
inois
Indiana J Jlistbox .menu .scroll
lowra
Kansas
Kentucky
Louisiana
Maine .menu.f ile .menu.help
Maryland Fi
(@) (b)
EIE\ /[/ﬂelp
Havraii . ~
Idaho
linois
Indiana J
lowa ‘__,,,,,// \
Kansas
Kentucky
Louisiana
Maine
Maryland Fi
(©

Figure 14.2.Widgets are arranged hierarchicallycollection of widgets is shown in (a) as it
appears on the screen, and the hierarchical structure of the collection is shown in (b). An e
view of the screen is shown in (c) to clarify the widget structure. The topmost widget in the
hierarchy (“.”) contains three children: a menu bar across the top, a scrollbar along the right
and a listbox filling the remaindéfrhe menu bar contains two children of its owRjla menu
button on the left and Help menu button on the right. Each widget has a name that reflect:
position in the hierarchyuch asmenu.help for theHelp menu button.

DRAFT (3/11/93): Distribution Restricted

136

An Introduction to Tk

14.2

Each widget/window has a textual name that is used to refer todt @@fimands.
Window names are similar to the hierarchical path names used to name files in Unix,
except that *” is used as the separator character insteati”ofThe name “.” refers to the
topmost window in the hierarchyhich is called thenain windowThe namea.b.c
refers to a windowe that is a child of windowa.b , which in turn is a child of , which
is a child of the main windaw

Screens, decorations, and toplevel windows

Tk creates the main window of an application as a child of the root window of a particular
screen. This causes the main window to appear on that sceegwiidow manager will

then create a decorative frame around the main winatbieh usually displays a title and
provides controls that you can use to move and resize the wiAdgwen window man-

ager will decorate all applications in the same,voay diferent window managers may

use diferent styles of decoration. Figure 14.2 showed a main window without any win-
dow manager decoration; other figures will show decorations as providedrowiivan-

dow manager (e.g. see Figure 14.3).

X clips each window to the area of its parent: it will not display any part of a window
that lies outside the area of its parent. The descendants of the main window are called
internal windowdo reflect the fact that they appear inside the area of the main window
However applications often need to create widgets that ard temside the main win-
dow. For example, it might be useful to position a dialog box in the center of the screen
regardless of the position of the main wingdowan application might wish to post several
panels that the user can move around on the screen indeperfe@nsiyuations like this
Tk provides a third kind of window called@p-level windowA top-level window
appears like an internal window in the applicatonidget hierarchy (e.g. it might have a
name like.a.b) but its X window is created as a child of the screemot rather than its
parent in the Tk widget hierarchjhe window manager will treat top-level windows just
like main windows, so the user will be able to move and resize and iconify each top-level
window separately from the main window and other top-level windoasIdvel win-
dows are typically used for panels and dialog boxes. See Figure 14.3 for an example.

It is not necessary for all of the widgets of an application to appear on the same screen
or even the same displaihen you create a top-level widget you can specify a screen for
it. The screen defaults to the screen of the widgpttent in the Tk hierarchiyut you can
specify any screen whose X server will accept a connection from the application. For
example, its possible to create a Tk application that broadcasts an announcement to a
number of wokstations by opening a top-level window on each of their screens.

Once a widget is created on a particular screen, it cannot be moved to another screen.
This is a limitation imposed by the X window system. Howgeyeu can achieve the same
effect as moving the widget by deleting it and recreating it orfer€ift screen.

DRAFT (3/11/93): Distribution Restricted

14.3 Applications and processes

137

| | | |
= States |- —| Deletion Dialog | - |
File Hel
= = i! Are you sure that you
Hawaii really want to delete
Idaho "Kansas” from the
llinois database?
Indiana J
o7 = Yes Ho | =
Kansas
Kentucky L .
Louisiana
Maine
"| Maryland]
I 1 "f
@)
listbox .menu .scroll .dig
.menu.f ile .menu.help .dlg.msg .dlg.yes .dlg.no
(b)

Figure 14.3.Top-level widgets appear in the Tk widget hierarchy just like internal widgets,
they are positioned on the screen independently from their parents in the hidraticisyexample
the dialog boxdlg is a top-level windowFigure (a) shows how the windows appear on the s
(with decorations provided by timewnwindow manager) and Figure (b) showsshkidget
hierarchy for the application.

14.3

Applications and processes

In Tk the termapplicationrefers to a single widget hierarchy (one main window and any
number of internal and top-level windows descended from it), a siobietérpreter

associated with the widget hierarcpjus all the commands provided by that interpreter

Each application is usually a separate process, but Tk also allows a single process to man-
age several applications, each with its own widget hierarchy @nté@rpreter Tk does

DRAFT (3/11/93): Distribution Restricted

138

An Introduction to Tk

14.4

not provide any particular support for multi-threading (using a collection of processes to
manage a single application); it is conceivable that Tk could be used in a multi-threaded
environment but it would not be trivial and | know of no working examples.

Scripts and events

14.5

Tk applications are controlled by two kinds af $cripts: annitialization scriptandevent
handlers The initialization script is executed when the application starts up. It creates the
applications user interface, loads the applicatodata structures, and performs any other
initialization needed by the application. Once initialization is complete the application
enters arevent loopto wait for user interactions. Whenever an interesting event occurs,
such as the user invoking a menu entry or moving the mouséseript is invoked to
process that event. These scripts are called event handlers; they can invoke application-
specific TI commands (e.g. enter an item into a database), modify the user interface (e.g.
post a dialog box), or do many other things. Some event handlers are created by the initial-
ization script, but event handlers can also be created and modified by other event handlers.
Most of the Tl code for a Tk application is in the event handlers and the procedures
that they invoke. Complex applications may contain hundreds of event handlers, and the
handlers may create other panels and dialogs that have additional event handlers. Tk appli-
cations are thuevent-drivenThere is no well-defined flow of control within the applica-
tion’s scripts, since there is no clear task for the application to carry out. The application
presents a user interface with many features and the user decides what to do next. All the
application does is to respond to the events corresponding to theact@&ms. The event
handlers implement the responses; they tend to be short scripts, and they are mostly inde-
pendent of each other

Wish: a windowing shell

While you're reading this book you may find it useful to experiment with a program called
wish (for “windowing shell”).Wish is the simplest possible Tk application. The ordly T
commands it contains are thel Built-ins and the additional commands provided by Tk. If
you invokewish with no aguments then it creates a main window and acts like a shell,
reading El commands from its standard input and executing them. For example, try typ-
ing the following commands twish :

button .b -text "Hello, world!" -command "destroy ."

pack .b
This creates the application shown in Figure 14.4, consisting of a single button that dis-
plays the textHello, world ". It also creates one event handler: if the user clicks
mouse button 1 over the widget then Tk will invoke the commadadtfoy . ", which

DRAFT (3/11/93): Distribution Restricted

14.6 Widget creation commands 139

S |

1 washl - |]
—! Hello, wurld!l

Figure 14.4.A simple Tk application created by typing commandwith .

14.6

destroys the applicatiammain window and all its descendants and thereby caisies
to exit. Wish responds to events for the applicatsfowindows as well as to commands
typed on its standard input.

You can also useish to invoke scripts that have been saved in files. For example,
you could create a file namaédllo that contains the above two commands. Then you
could start upvish and type

source hello
to process the file. Qyou could invokevish with the following shell command:

wish -f hello
In this casavish will not read commands from standard input. Instead, it will execute the
script contained in the fileello and then enter an event loop where it responds only to
events from the applicationivindows.

Wish scripts can also be invoked using the same mechanismubat! for shell
scripts in UNIX. D do this, enter the following comment as the first linkedio

#!/usr/local/bin/wish -f
Then mark the script file as executableuan now invokéello directly from the
shell like any other executable program:

hello
This will runwish and cause it to process the script file just as if you'd tyyésh*f
hello ”

See thavish reference documentation for details on other features provided by
wish , such as command-linegaments fowish scripts. Ifwish isn't installed ir/
usr/local/bin on your system then you'll need to use &edént comment in your
script files that reflects the locationwih .

Widget creation commands

Tk provides four main groups otlfcommands; they create widgets, arrange widgets on
the screen, communicate with existing widgets, and interconnect widgets within and

DRAFT (3/11/93): Distribution Restricted

140

An Introduction to Tk

14.7

between applications. This section and the three following sections introduce the groups
of commands to give you a general feel forsTi€atures. All of the commands are dis-
cussed in more detail in later chapters.

To create a widget, you invoke a command named after the veiadgetsbutton
for button widgetsscrollbar ~ for scrollbar widgets, and so on.. For example, the fol-
lowing command creates a button that displays the Bness me " in red:

button .b -text "Press me" -foreground red

All of the widget creation commands have a form similar to this. The comsaatie is
the same as the name of the class of the new widget. Thedirstent is a name for the
new widget in the widget hierarchp in this case. This widget must not already exist but
its parent must exist. The command will create the widget and its corresponding X win-
dow.

The widget name is followed by any number of pairs gliarents, where the first
argument of each pair specifies the name ajrEliguration optiorfor the widget (e.g.
-text or-foreground) and the secondgument specifies a value for that option (e.g.
“Pressme " or red). Each widget class supports deliént set of configuration options
but many options, such e@®reground , are used in the same way byfeliént classes.
You need not specify a value for every option supported by a widget; defaults will be cho-
sen for the options you ddrspecify For example, buttons support about twentfedént
options but only two were specified in the example above. Chapter 16 discusses configura-
tion options in more detail.

Geometry managers

Widgets dort determine their own sizes and locations on the screen. This function is car-
ried out bygeometry manager&ach geometry manager implements a particular style of
layout. Given a collection of widgets to manage and some controlling information about
how to arrange them, a geometry manager assigns a size and location to each widget. For
example, you might tell a geometry manager to arrange a set of widgets in a vertical col-
umn. It would then position the widgets so that they are adjacent btibgeriap. If one
widget should suddenly need more space (e.g. its font is changedgerata) it will
notify the geometry manager and the geometry manager will move other widgets down to
preserve the proper column structure.

The second main group of Tk commands consists of those for communicating with
geometry managers. Tk currently contains four geometry managerglatkeis a sim-
ple fixed-placement geometry managéu give it instructions like “place window at
location (10,100) in its parent and make it 2 cm wide and 1 cm high.” The placer is simple
to understand but limited in applicability because it ddemsider interactions between
widgets. Chapter 17 describes the placer in detail.

DRAFT (3/11/93): Distribution Restricted

14.8 Widget commands 141

button .top -text "Top button" — T
pack .top |/ wish | |)
button .bottom -text "Bottom button” Top l1““‘3"|
pack .bottom | Bottom huttnn|‘
—_—]

(@) (b)

Figure 14.5.The scriptin (a) creates two button widgets and arranges them in a vertical cc
with the first widget above the second. The applicagiappearance on the screen is shown in

14.8

The second geometry manager is calledotieker It is constraint-based and allows
you to implement arrangements like the column example from above. It is more complex
than the placer but much more powerful and hence more widely used. The packer is the
subject of Chapter 18.

Two other geometry managers are implemented as part of the canvas and text wid-
gets. The canvas geometry manager allows you to mix widgets with structured graphics,
and the text geometry manager mixes widgets with text. See the reference documentation
for canvas and text widgets for descriptions of these geometry managers.

When you invoke a widget creation command bkigton the new widget will not
immediately appear on the screen. It will only be displayed after you have asked a geome-
try manager to manage it. If you want to experiment with widgets before reading the full
discussion of geometry managers, you can make a widget appear by involiagkhe
command with the widget’name as gument. For example, the following script creates a
button widget and displays it on the screen:

button .b -text "Hello, world!"

pack .b
This will size the main window so that it is justgarenough to hold the button and it will
arrange the button so that it fills the space of the main windlgau create other widgets
and pack them in a similar fashion, the packer will arrange them in a column inside the
main window making the main window just g enough to accommodate them all. See
Figure 14.5 for an example.

Widget commands

Whenever a new widget is created Tk also creates a dem@rimand whose name is the
same as the widgsthame. This command is called/@get commandand the set of all
widget commands (one for each widget in the application) constitutes the third major

DRAFT (3/11/93): Distribution Restricted

142

An Introduction to Tk

14.9

group of Tks commands. Thus after the abtw#ton command was executed above, a
widget command whose namelis appeared in the applicatisrinterpreterThis com-
mand will exist as long as the widget exists; if the widget is deleted then the command will
be deleted too.
Widget commands are used to communicate with existing widgets. Here are some

commands that could be invoked afterbitton command from Section 14.6:

.b conf igure -foreground blue

b f lash

.b invoke
The first command changes the color of the budttext to blue, the second command
causes the button to flash brietiynd the third command invokes the button just as if the
user had clicked mouse button 1 on it. In widget commands the command name is the
name of the widget and the firsgament specifies an operation to invoke on the widget,
such agonf igure . Some widget commands, likenf igure , take additional gu-
ments; the nature of thesggaments depends on the specific command.

The set of widget commands supported by a given widget is determined by its class.

All widgets in the same class support the same set of commandsférnendiflasses have
different command sets. Some common commands are supported by multiple classes. For
example, every widget class support®af igure widget command, which can be used
to query and change any of the configuration options associated with the widget.

Commands for interconnection

The fourth group of Tk commands is used for interconnection. These commands are used
to make widgets work togethéo make them work cooperatively with the objects defined
in the application, and to allow t&fent applications sharing the same display to work
together in interesting ways.

Some of the interconnection commands are implemented as event handlers. For
example, each button hasc@mmand option that specifies allscript to invoke when-
ever mouse button 1 is clicked over the widget. This option was used in Section 14.5 to
terminate the application. Scrollbars provide another example of interconnection via event
handlers. Each scrollbar is used to control the view in some other widget: when you click
in the scrollbar or drag its slidehe view in the associated widget should change. This
connection between widgets is implemented by specifying edmmand for the scroll-
bar to invoke whenever the slider is dragged. The command invokes a widget command
for the asscociated widget to change its vievaddition to event handlers that are defined
by widgets, you can create custom event handlers usidggnitie command described in
Chapter 19.

Tk supports five other forms of interconnection in addition to event handlers: the
selection, the input focus, the window manatgfegsend command, and grabs. The

DRAFT (3/11/93): Distribution Restricted

14.9 Commands for interconnection 143

selection is a distinguished piece of information on the screen, such as a range of text or a
graphic. The X window system provides a protocol for applications to claim ownership of
the selection and retrieve the contents of the selection from whichever application owns it.
Chapter 20 discusses the selection in more detail and descrissgl€kt command,

which is used to manipulate it.

At any given time, keystrokes typed for an application are directed to a particular
widget, regardless of the mouse cutsdocation. This widget is referred to as tbeus
widgetor input focus Chapter 21 describes tfecus command, which is used to move
the focus among the widgets of an application.

Chapter 22 describes Badvmcommand, which is used for communicating with the
window managefThe window manager acts as a geometry manager for main windows
and top-level windows, and tlencommand can be used to make specific geometry
requests from the window managsuch as “dort’let the user make this window smaller
than 20 pixels across.” In additionmcan be used to specify a title to appear in the win-
dow’s decorative bordgea title and/or icon to display when the window is iconified, and
many other things.

Chapter 23 describes tkend command, which provides a general-purpose means
of communication between applicationsitéend , you can issue an arbitrargltom-
mand to any Tk application on the display; the command will be transmitted togée tar
application, executed there, and the result will be returned to the original application.
Send allows one application to control another application in intimate and powerful
ways. For example, a debugger can send commands to an editor to highlight the current
line of execution, or a spreadsheet can send commands to a database application to
retrieve new values for cells in the spreadsheet, or a mail reader can send commands to a
video application to play a video clip identifying the sender of a message.

The last form of interconnection gsabs which are described in Chapter 24. A grab
restricts keyboard and mouse events so that they are only processed in a subtree of the
widget hierarchy; windows outside the grab subtree become lifeless until the grab is
released. Grabs are used to disable parts of an application and force the user to deal imme-
diately with a high-priority window such as a dialog box.

DRAFT (3/11/93): Distribution Restricted

144 An Introduction to Tk

DRAFT (3/11/93): Distribution Restricted

Chapter 15
Tour Of The Tk Widgets

15.1

This chapter introduces the fifteen widget classes that are currently implemented by Tk.
The descriptions are not intended to explain every feature of every class; for that you
should refer to the reference documentation for the individual widget classes. In fact, no
specific Tk commands will be mentioned in this chagikrs chapter gives an overview

of the behavior of the widgets as seen by users and the features provided by the widgets to
interface designers. The purpose of this chapter is to provide you with general information
about the capabilities of T&kwidgets so that it will be easier to understand the specific
commands described in later chapters.

The widget behavior described in this chapter is not hard-coded into the widgets.
Instead, Tk contains a startup script that generates default behaviors for the widgets using
the binding mechanism described in Chapter 19. The descriptions in this chapter corre-
spond to the default behaviors, and most widgets in most applications will use the default
behaviors. Howeveit is possible to extend or override the defaults, so some Tk applica-
tions may contain widgets that behavdetiéntly than described here.

If you have access to thdsh program and the Tk demonstration scripts (both of
which are included in the Tk distributions) then you can experiment with real widgets as
you read through the chaptéo do this, execute theidget demonstration script and
use the menus to bring up various examples.

Frames and toplevels

Frames and toplevels are the simplest widgets. They have almost no interesting properties.
A frame appears as a rectangular region with a color and possibly a border that gives the

145

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

146 Tour Of The Tk Widgets

@ (b) (©

Figure 15.1.Frame and toplevel widgets have no visual characteristics except for a color &
optional three-dimensional border that can give the widget one of several appearances, su
raised as in (a), flat as in (b), or sunken as in (c).

frame a raised or sunken appearance as shown in Figure 15.1. Frames serve two purposes.
First, they can be used to generate decorations such as a block of color or a raised or
sunken border around a group of widgets. Second, they serve as containers for grouping
other widgets; most of the non-leaf widgets in the widget hierarchy are frames, and you'll
see in Chapter 18 that frames are particularly important for building up nested layouts

with geometry managers. When used in this,raynes are often invisible to the user

Frames do not normally respond to mouse or keyboard actions.

Toplevel widgets are identical to frames except that, as the name implies, they are
top-level widgets whereas frames (and almost all other widgets) are internal widgets. This
means that a toplevel widget can be positioned anywhere on its screen, independent of its
parent in the widget hierarchgnd it need not even appear on the same screen as its par-
ent. Toplevels are typically used as the outermost containers for panels and dialog boxes.
When you create a toplevel you can specify a screen for it to be displayed on.

15.2 Labels, buttons, checkbuttons, and radiobuttons

Labels, buttons, checkbuttons, and radiobuttons make up a family of widget classes with
similar characteristics. Each member of the family builds on the behavior of earlier mem-
bers. Labels are the simplest member of the farfiligy are similar to frames except that
each one can display a text string or a bitmap (see Figure 15.2). Like frames, labels do not
normally respond to the mouse or keyboard; they simply provide decoration in the form of
a text string or bitmap.

Buttons are similar to labels except that they also respond to the mouse. When the
mouse cursor moves over a button, the button lights up. This indicates that pressing a
mouse button will cause something to happen. It is a general property of Tk widgets that
they light up if the mouse cursor passes over them when they are prepared to respond to

DRAFT (3/11/93): Distribution Restricted

15.2 Labels, buttons, checkbuttons, and radiobuttons 147

w’@s W Bold # Times

I Italic ‘Helvetica
Enter name here: Open File UndeHined Courier
(a) (b) (c) (d)

Figure 15.2.Members of the label/button family of widgetsvdlabels are shown in (a); the tc
one displays a bitmap and the bottom one displays a text string. Figure (b) shows a button
Three checkbuttons appear in (c); any combination of the checkbuttons may be selected al
group of three radiobuttons appears in (d); only one of the radiobuttons may be selected at
time. Although a bitmap only appears in (a), any of the classes can display a bitmap as wel
string.

button presses. A button or other widget lit up in this way it is said aothex Buttons
become inactive again when the mouse cursor leaves them.

If mouse button 1 is pressed when a button is active then the buafipgarance
changes to make it look sunken, as if a real button had been pressed. When the mouse but-
ton is released, the widgedriginal appearance is restored. Furthermore, when the mouse
button is released allscript associated with the button is automatically executed. The
script is a configuration option for the button.

Checkbuttons allow users to make binary choices such as enabling or disabling under-
lining or grid-alignment. They are similar to regular buttons except for two things. First,
whenever mouse button 1 is clicked over a checkbuttahafiable toggles between two
values, one representing an “on” state and the other representing’ atdtef The name
of the variable and the values corresponding to the “on” affitistaftes are configuration
options for the widget. Second, the checkbutton displays a small rectasgjalztorto
the left of its text or bitmap. If the variable has the “on” value then the selector is displayed
in a bright color and the button is said tose¢éected|f the variable has the “Bfvalue
then the selector box appears empch checkbutton monitors the value of its associated
variable and if the variabkeVvalue changes (e.g. because &éta command) the check-
button updates the selector display

The last member of the label/button family is the radiobutton class. Radiobuttons are
typically arranged in groups and used to select one from among several mutually-exclu-
sive choices, such as one of several colors or one of several styles of dashed lines.
Radiobuttons are named after the radio selector buttons on older cars, where pressing the
button for one station caused all the other buttons to be released. When mouse button 1 is

DRAFT (3/11/93): Distribution Restricted

148

Tour Of The Tk Widgets

15.3

clicked over a radiobutton, the widget sets the variable to the “on” value associated with
that radiobutton. All of the radiobuttons in a group will share the same variable but each
will have a diferent “on” value. A radiobutton displays a diamond-shaped selector to the
left of its text or bitmap and lights up the selector when the widget is selected. Each
radiobutton monitors its variable so if some other radiobutton resets the variable to select
itself the previously-selected widget can turhitsf selector diamond. If you change the
value of the variable using thelBet command then all of the associated radiobuttons
will redisplay their selectors to match the new value of the variable.

The members of the label/button family also have two additional features. First, you
can specify that the string to be displayed in the widget should be taken fidmaai-T
able. The widget will monitor the variable and update its display to reflect the current con-
tents of the variable. Second, you cégablethe widget. While a widget is disabled it is
displayed in dimmer colors, it doesattivate when the mouse cursor passes over it, and it
doesnt respond to button presses.

Menus and menubuttons

Tk's menu widget provides a general-purpose facility for implementing pull-down menus,
pop-up menus, cascading menus, and many other things. A menu is a top-level widget that
contains a collection antriesarranged in a column (see Figure 15.3(a)). Menu entries

are not distinct widgets but they behave much like the members of the label/button family
described in Section 15.2 above. The following types of entries may be used in menus:

Command: similar to a button widget. Displays a textual string or bitmap and invokes
a Tcl script when mouse button 1 is released over it.

Checkbutton: similar to a checkbutton widget. Displays a string or bitmap and toggles
a variable between “on” and ‘ffvalues when button 1 is released over the eitso
displays a square selector indicating whether the variable is currently in its “on” or
“of f” state.

Radiobutton: similar to a radiobutton widget. Displays a string or bitmap and sets a
variable to an “on” value associated with the enry when button 1 is released over it.
Also displays a diamond-shaped selector indicating whether or not the variable has the
value for this entry

Cascade similar to a menubutton widget. Posts a cascaded sub-menu when the mouse
passes over it. See below for more details.

Separator. Displays a horizontal line for decoration. Does not respond to the mouse.
Unlike most other widgets, menus do not normally appear on the screen. They spend
most of their time in an invisible state call@gpostedWhen a user wants to invoke a
menu entryhe or sheosst the menu, which makes it appear on the screen. Then the user
moves the mouse over the desired entry and releases button 1 to invoke th@neetry

DRAFT (3/11/93): Distribution Restricted

15.3 Menus and menubuttons 149

[Bold : File Edit View Iext| Graphics Help
: ::31;9“_ [Bold
nderfine o Italic
& Times M UndeHine
2 .
Helv!atlca & Times
< Courier .
- Helvetica
Insert Bullet < Courier
Margins and Tabs... Insert Bullet
Margins and Tabs...

(a) (b)
Hip Left/Right File Edit| View Text Graphics Help
gllpt;'tl;pfﬂuttnm Undo . Cirl+ 2
u— Redo Ctri+R
:!g" :;hgc_t;'" Delete Ctri+%
nnibEe Copy CtrisC
Line Color =x -
. i Group
Line Width ==> | 0.25 point
Line Style == [0.5 point {ngroup
v M P Select Al
Arrovwhead == |1 point =
Fll Pattem =» | Z points Bring to Front
4 points Move To Back
6 points
& points
(© (d)

Figure 15.3.Examples of menus. Figure (a) shows a single menu with three checkbutton €
three radiobutton entries, and two command entries. The groups of entries are separated by
entries. Figure (b) shows the menu being used in pull-down fashion with a menu bar and st
menubutton widgets. Figure (c) shows a cascaded series of menus; cascade entries in the
(leftmost) menu display => at their right edges, and.the Width entry is currently active.
Figure (d) contains a menu that supports keyboard traversal and shortcuts. The underlined «
in the menubuttons and menu entries can be used to invoke them from the keyboard, and 1
sequences at the right sides of some of the menu entries (<Tith-Xs) can be used to invoke t
same functions as menu entries without even posting the menu.

the menu has been invoked it is usually unposted until it is needed again. Menus are
posted or unposted by invoking their widget commands, which gives the interface

DRAFT (3/11/93): Distribution Restricted

150

Tour Of The Tk Widgets

15.3.1

15.3.2

15.3.3

designer a lot of flexibility in deciding when to post and unpost them. The subsections
below describe four of the most common approaches.

Pull-down menus

Menus are most commonly used ipwdl-downstyle. In this style the application displays
amenu bamear the top of its main windov menu bar is a frame widget that contains
several menubutton widgets as shown in Figure 15.3(b). Menubuttons are similar to but-
ton widgets except that instead of executiobsEripts when they are invoked they post

menu widgets. When a user presses mouse button 1 over a menubutton it posts its associ-
ated menu underneath the menubutton widget. Then the user can slide the mouse down
over the menu with the button still down and release the mouse button over the desired
entry When the button is released the menu entry is invoked and the menu is unposted.
The user can release the mouse button outside the menu to unpost it without invoking any
entry,

If the user releases the mouse button over the menubutton then the menu stays posted
and the user will not be able to do anything else with the application until the menu is
unposted either by clicking on one of its entries (which invokes that entry and unposts the
menu) or clicking outside of the menu (which unposts the menu without invoking any
entry). Situations like this where a user must respond to a particular part of an application
and cannot do anything with the rest of the application until responding aremalied
user interface elements. Menus and dialog boxes are examples of modal interface ele-
ments. Modal interface elements are implemented using the grab mechanism described in
Chapter 24.

Pop-up menus

The second common style of menu usage is cptbpdupmenus. In this approach, press-

ing one of the mouse buttons in a particular widget causes a menu to post next to the
mouse cursor and the user can slide the mouse over the desired entry and release it there to
invoke the entry and unpost the menu. As with pull-down menus, releasing the mouse but-
ton outside the menu causes it to unpost without invoking any of its entries.

Cascaded menus

The third commonly used approach to posting menus is cakxhded menu€ascaded

menus are implemented using cascade menu entries in other menus, such as pull-down
and pop-up menus. Each cascade menu entry is similar to a menubutton in that it is associ-
ated with a menu widget. When the mouse cursor passes over the cascaite associ-

ated menu is posted just to the right of the cascade astspown in Figure 15.3(c). The

user can then slide the mouse to the right onto the cascaded menu and select an entry in the
cascaded menu. Menus can be cascaded to any depth.

DRAFT (3/11/93): Distribution Restricted

15.4 Listboxes 151

15.3.4

15.4

Keyboard traversal and accelerators

Pull-down menus can also be posted from the keyboard using a techniquediiearl
traversal One of the letters in each menubutton is underlined to indicate that it is the tra-
versal character for that menubutton. If that letter is typed while holdingjtthé&ey
down then the menubuttanenu will be posted. Once a menu has been posted the arrow
keys can be used to move among the menus and their entries. The left and right arrow keys
move left or right among the menubuttons, unposting the menu for the previous menubut-
ton and posting the menu for the new one. The up and down keys move among the entries
in a menu, activating the next higher or lower enfheReturn key can be used to
invoke the active menu entriyr addition, the labels in menu entries are typically drawn
with one character underlined; if this character is typed when the menu is posted then the
entry is invoked immediately

Lastly, in many cases it is possible to invoke the function of a menu entry without
even posting the menu by typikgyboad shortcutsif there is a shortcut for a menu entry
then the keystroke for the shortcut will be displayed at the right side of the menu entry
(e.g.Ctrl+X is displayed in th®elete menu entry in Figure 15.3(d)). This key combi-
nation may be typed in the application to invoke the same function as the menu entry (e.g.
typex while holding theControl key down to invoke thBelete operation without
going through the menu).

Listboxes

A listbox is a widget that allows the user to select one or more possibilities from a range of
alternatives, such as a file name from those in the current directory or a color from a data-
base of defined colors. A listbox contains one or more entries, each of which displays a
one-line string as shown in Figure 15.4. The widget commands for listboxes allow entries
to be created, destroyed, and queried.

If there are more entries than there are lines in the ligtlvairdow then only a few of
them are displayed at a time; the user can control which portion is displayed by using a
separate scrollbar widget associated with the listbox (see Section 15.6). The view in a list-
box can also be controlled by pressing mouse button 2 in the widget and dragging up or
down. This is calledcanning it has the déct of dragging the listbox contents past the
window at high speed. Most Tk widgets that support scrollbars also support scanning. If
the strings in the listbox are too long to fit in the window then the listbox can also be
scrolled and scanned in the horizontal direction.

Typically listboxes are configured so that the user can select an entry by clicking on it
with mouse button 1. In some cases the user can also select a range of entries by pressing
and dragging with button 1. Selected entries appear ifieaatit color and usually have a
raised 3-D d&ct. Once the desired entries have been selected, the user will typically use
those entries by invoking another widget, such as a button widget or menurentry

DRAFT (3/11/93): Distribution Restricted

152

Tour Of The Tk Widgets

Mew York
Horth Carolina
Horth Dakota
Ohio
Oklahoma
Oregon
Pennsylvania
Rhode Island
South Carolina
South Dakota

Figure 15.4.An example of a listbox widget displaying the names of all the states in the U.
Only a few of the entries are visible in the window at one time Offie entry is selected.

[sampfle text

Figure 15.5.An example of an entry widget. The vertical bar is the insertion cursor ,which
identifies the point at which new text will be inserted.

15.5

example, the user might select one or more file names from a listbox and then click on a
button widget to delete the selected files; thecbmmand associated with the button wid-
get can read out the strings from the selected listbox entrgealsé’ common for listboxes

to support double-clicking, which both selects an entry and invokes some operation on it.
For example, in a file-open dialog box, double-clicking on a file name might cause that
file to be opened by the application.

Entries

An entry is a widget that allows the user to type in and edit a one-line text string. For
example, if a document is being saved to disk for the first time then the user will have to
provide a file name to use. The user might type the file name in an entry widget, then click
on a button widget whosecllfcommand retrieves the file name from the entry and saves
the document in that file. Figure 15.5 shows an example of an entry widget.

To enter text into an entry the user clicks mouse button 1 in the €hisymakes a
blinking vertical bar appeacalled thansertion cursorThe user can then type characters

DRAFT (3/11/93): Distribution Restricted

15.6 Scrollbars 153

Figure 15.6.A horizontal scrollbar widget. The rectangular slider indicates how much of the
document in an associated widget is visible in its window (in this case the rightmost 20% is
The user can adjust the view in the associated widget by dragging the slider with mouse bt
by clicking on the arrows or the slider region.

and they will be inserted into the entry at the point of the insertion clits@insertion

cursor can be moved by clicking anywhere in the entgxt. Ext in an entry can be

selected by pressing and dragging with mouse button 1, and it can be edited with a variety
of keyboard actions; see the reference documentation for details.

If the text for an entry is too long to fit in its window then only a portion of it is dis-
played and the view can be adjusted using an associated scrollbar widget or by scanning
with mouse button 2. Entries can be disabled so that no insertion cursor will appear and
the text in the entry cannot be modified. The text in an entry can be associatedakith a T
variable so that changes to the variable are reflected in the entry and changes made in the
entry are reflected in the variable.

15.6 Scrollbars

Scrollbar widgets are used to control what is displayed in other widgets. Each scrollbar is
associated with some other widget such as a listbox or. @hiyscrollbar is typically dis-
played next to the other widget and when the user clicks and drags on the scrollbar the
view in the associated widget will change. A scrollbar appears as shown in Figure 15.6
with an arrow at each end and a slider in the middle. The size and position of the slider
correspond to the portion of the associated widgkitument that is currently visible in
its window For example, if the slider covers the rightmost 20% of the region between the
two arrows as in Figure 15.6 it means that the rightmost 20% of the document is visible in
the window Scrollbars can be oriented either vertically or horizontally

Users can adjust the view by clicking mouse button 1 on the arrows, which moves the
view a small amount in the direction of the arrowby clicking in the empty space on
either side of the slidewhich moves the view by one screenful in that direction. The view
can also be changed by pressing on the slider and dragging it.

A scrollbar interacts with its associated widget usialgs€ripts. One of a scrollbar
configuration options is acTscript to invoke to change the view; typically this script
invokes the widget command for the associated widget. When the user manipulates the

DRAFT (3/11/93): Distribution Restricted

154

Tour Of The Tk Widgets

framePtr—>tkwin:

display: Dzet2d8

dispPtr: Dxe8324
screentlum: 1]

visual: DxeTabs

depth: 1

window: 12583011
childList: 00

parentPtr: DxehlZe

nextPtr: Dxeaelc

mainPtr: Dxe23ac

pathtame : 0z125had ", top"
nameUid: 0x12835c "top"
classUid: 0x128d54 "Toplewel"
changes: f= =0, v =0, width = 1, height = 1,

border_width = 0, sibling = 0, stack_mode = O}

Figure 15.7.An example of a text widget. This widget displays the contents of a structure as
a symbolic debuggefags are used to display field names in bold and to underline the name
structure.

15.7

scrollbar the scrollbar invokes the script, including additional information about the new
view that the user requested. The associated widget changes its view and then invokes
another Tl script (one of its configuration options) that tells the scrollbar exactly what
information is now displayed in the windpso the scrollbar can display the slider cor-
rectly. The scrollbar doesnupdate its slider until told to do so by the associated widget;
this makes it possible for the associated widget to reject or modify tHe tesguest (e.g.

to prevent the user from scrolling past the ends of the information in the widget).

Text

A text widget is similar to an entry except that it allows the text to span more than one line
(see Figure 15.7 for an examplegxTwidgets are optimized to handlegaramounts of
text, such as files containing thousands of lines. As with entries, the user can click mouse
button 1 to set the insertion cursor and then type new information into a text. Information
in a text widget can be selected with the mouse just as for entries, and a number of mouse
and keyboard actions are defined to assist in editing (see the reference documentation for
details). Ext widgets support scrolling and scanning, and they can be disabled to tempo-
rarily prevent edits.

In addition to the basic features described above, text widgets support three kinds of
annotationson the text: marks, tags and embedded widgets. A mark associates a name

DRAFT (3/11/93): Distribution Restricted

15.8 Canvases 155

Note:

15.8

with a particular position in the text (the gap between two adjacent characters). Marks are
used to keep track of interesting locations in the text as characters are added and deleted.

A tagis a string that is associated with ranges of characters in a text widget. Each tag
may be associated with any humber of ranges of characters in the text, and the ranges of
different tags may overlapa@s are dferent from marks in that they are associated with
particular characters, so they disappear when the characters are delgteateTused for
two purposes in texts: formatting and binding.

Each tag may contain formatting information such as background and foreground col-
ors, font, and stippling and underlining information. If a character has been tagged then
the formatting information in the tag overrides the default formatting information for the
widget as a whole. This makes it possible to display text with multiple fonts and colors. In
addition, the formatting information for a tag can be changed at any time. For example,
you can apply a tag to all instances of a particular word in the text, then modify the tag’
formatting information to make the words blink on anid of

The second use of tags is findings A binding specifies acT script to be invoked
when certain events occur; each tag may have one or more bindings associated with it. For
example, you can arrange for a script to be invoked whenever the mouse cursor passes
over text with a particular tag, or whenever a mouse button is clicked over a particular
item (see Chapter 19 for more information on bindings). This can be used to produce
hypertext efects such as displaying a figure whenever the user clicks on the name of the
figure in a text widget.

The third form of annotation in texts consists of embedded widgets. It is possible to
embed other widgets in a text so that the other widgets are displayed at particular positions
in the text. For example, you can arrange for a button widget to appear in a text widget as
another way of getting hypertext-like capabilities, or you can embed canvas widgets to
include figures inside texts, and so on.

Embedded widgets @not supported in Tk version 3.2.

Text annotations allow you to configure a given text widget in a variety of interesting
ways, so dilerent text widgets may have veryfdilent behavior-or example, a file editor
might use a text widget to display an entire file in a single font with no special formatting
or bindings. In contrast, a debugger might use a text widget to display a structure as shown
in Figure 15.7, where the names of the strucsuields are formatted diérently than their
values and bindings are set up so that the user can click on fields to open new windows on
the structures pointed to by the fields.

Canvases

A canvas is a widget that displays a drawing surface and any number of graphical and tex-
tualitems The items can include rectangles, ellipses, arcs, lines, curves, polygons, cur-
vagons, editable text, bitmaps, and embedded widgets. See Figure 15.8 for examples.

DRAFT (3/11/93): Distribution Restricted

156

Tour Of The Tk Widgets

0 1 2 3 4 5 6 7
||I|||I|||I|||I|||I|||I|||I|||I||E|
FY FY

il il

€Y
I [
ZID
— -
[i]
10
-width 2 \
-arrowshape {8 10 3}
(b)

Figure 15.8.Canvas widget examples. Figure (a) shows a ruler with a tab well to the right.
user can create new tab stops by pressing mouse button 1 in the tab well and dragging out
stop. Four existing tab stops appear underneath the ruler; they can be repositioned by drag
with the mouse. Figure (b) shows an editor for arrowhead shapes. The user can edit the ar
shape and line width by dragging the three small squares attached to the oversiz&thamges t
this shape are reflected in the normal-size arrows on the right side of the canvas, in the din
displayed next to the oversize ary@md in the configuration option strings in the bottom left cc

Items can be created and deleted at any time, and their display attributes (such as line
width and color) can also be modified dynamicdtiyms can be moved and scaled but
rotations are not currently supported.

Canvases also provide a tagging mechanism similar to the tags in text widgets. Each
item may have any number of textual tags associated withgs Jerve two purposes in
canvases. First, they make it easy to operate on groups of items all at once; for example, in
a single command you can move or delete or recolor all items with a given tag. Second,
tags can have bindings associated with them just as in texts. This allows you to achieve

DRAFT (3/11/93): Distribution Restricted

15.9 Scales 157

Signal Strength

I [
i}
1] 20 40 B0 Lill} 100

Figure 15.9.A scale widget. The scatevalue can be adjusted by dragging the slider with the
mouse.

hypegraphic efects such as invoking some operation whenever a mouse button is clicked
over an item, or allowing some items to be dragged with the mouse.

As with texts, the features provided by canvases are flexible enough to achieve many
different efects, so dfierent canvases may appear and behave vdeyetitly Canvases
can be used to provide non-interactive graphical displays, such as pie-charts or figures, or
they can be used to create new kinds of editors and interactive widgets.

15.9 Scales

A scale is a widget that displays a numerical value and allows the user to edit the value
(see Figure 15.9). A scale widget appears as a linear scale with optional numerical labels
and a slider that shows the current value. The user can adjust the value by clicking mouse
button 1 in the scale or by dragging the slider with mouse button 1. Each scale can be con-
figured with a Tl script to invoke whenever its value changes; the script can propagate the
new value to other parts of the application. For example, three scales might be used to edit
the hue, saturation, and intensity values for a color; as the user modifies the scale values,
the new values can be used to update the color for an item in a canvas so that the item is
always displayed in the color selected by the scales.

15.10 Messages

A message widget displays a multi-line string of text like the one shown in Figure 15.10.
Messages are less powerful than texts (e.g. they dibmv their text to be selected or
edited, they don’provide annotations, they domsupport scrolling, and they daiandle

large amounts of text f€iently), but they are simpler to create and configure. Messages
are typically used for simple things like multi-line messages in dialog boxes.

DRAFT (3/11/93): Distribution Restricted

158 Tour Of The Tk Widgets

You have made changes to
this document since the last
time it was saved. Isit OK to
discard the changes?

Figure 15.10.A message widget displays a string, breaking it into multiple lines if necessat
Messages provide little other functionality (e.g. no edit capability).

DRAFT (3/11/93): Distribution Restricted

Chapter 16
Configuration Options

16.1

Most of the state of a widget exists as a sepofiguration optiongor the widget. For
example, the colors and font and text for a button widget are configuration options, as is
the Tcl script to invoke when the user clicks on the button. Each configuration option has a
name (e.gsrelief) and a value (e.gaised). Widgets typically have 15-30 configu-
ration options. For widgets such as texts and canvases that have complex internal struc-
tures, the configuration options dbptovide complete access to the internal structures;
special widget commands exist for this purpose. Howatate that is shared among all

the objects in the internal structures (such as a default font for text widgets) is still repre-
sented as configuration options.

This chapter describes Bkinechanisms for dealing with configuration options. Sec-
tion 16.1 gives an overview of how the values of options are set. Sections 16.2-16.1
describe some of the common configuration options that are used in the Tk widget set.
Finally, Sections 16.12 and 16.13 explain tbef igure widget command and the
option database in more detaiable 16.1 summarizes the commands for manipulating
configuration options. For a complete list of the options available for a given class, see the
reference documentation for the command that creates widgets of that class beig. the
ton command)

How options are set

Configuration options may be specified in four ways. First, you can specify configura-
tion options in the command that creates a widget. For example, the command

159

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

Configuration Options

cl ass wi ndow ?opti onName val ue optionNane val ue ...?

Create a new widget with claskass and path namei ndow;, and set
options for the new widget as givendgt i onNare-val ue pairs.

Unspecified options are filled in using the option database or widget defaults.
Returnsm ndow as result.

wi ndow conf ig

wi ndowconf ig optionNane

wi ndowconf ig optionNane val ue

Returns a list whose elements are sublists describing all of the options ffor
wi ndow Each sublist describes one option in the form described below

Returns a list describing optiapt i onNare for wi ndow. The list will

normally contain five valuespt i onNarme, the options name in the option
database, its class, its default value, and its current value. If the option fis a
synonym for another option, then the list contains two values: the option
name and the database name for the synonym.

Set the value for optioopt i onName of wi ndowto value.

option add pattern value ?priority?

option clear

option get wi ndow name cl ass

option readf ile fileNane ?priority?

Add a new option to the option database as specifigébyer n and
val ue. Pri ority must be either a number betwd&eand100 or a sym-
bolic name (see the reference documentation for details on symbolic names).

Remove all entries from the option database.

If the option database contains a pattern that matdhedow, nane, and
cl ass, return the value for the highest priority matching pattern. Otherwise
return an empty string.

Readf i | eName, which must have the standard format fox@efaults
file, and add all the options specified in that file to the option database at pri-
ority levelpriority. T

Table 16.1.The commands for manipulating widget configuration options.

button .help -text Help -foreground red

creates a new button widget and specifiestthé and-foreground options for it.
Every widget creation command has this form, where the command name is the name of
the widget class, the firstqamment is the name of the new widget in the Tk widget hierar-
chy, and additional guments (if any) are name-value pairs specifying options.

The second way to specify configuration options is througbptien databasdf no
value is given for a configuration option on the command line that creates a widget, then
Tk checks the option database to see if a value has been specified for the option. The
option database is similar to the resource database in other X toolkits. It allows users to
specify values for options in tHRESOURCE_MANAGHR®perty on the root window or

DRAFT (3/11/93): Distribution Restricted

16.2 Colors 161

in a.Xdefaults file. Entries in the database can contain wildcard characters so that, for
example, a single entry in the option database can set the background color for all buttons
to blue. See Section 16.13 for more information on the option database.

The third way that configuration options are specified is through default values for
each widget class. Class defaults are used for options thatsgredified in the widget
creation command and aredefined in the option database. The class defaults are
intended to produce a reasonabfedfso that you dohheed to specify most options
either on the command line or in the option database. The class defaults are compiled into
the Tk library so you cahthange them without recompiling Tk, but you can always over-
ride them with values in the option database.

The final way to specify configuration options for a widget is withots igure
widget command. Every widget class suppoutsr igure widget command. For
example, the following command changes the text in the button widget created above and
also specifies acT script to invoke when the user clicks on the widget:

.help conf igure -text Quit -command exit

Theconf igure widget command allows you to change the configuration options for a
widget at any time and it also allows you to query the current state of the configuration
options (see Section 16.12 for details on this).

16.2 Colors

Although each widget class defines its own set of configuration options, the options tend
to be used in a consistent fashion byedént classes. This section and the ones that follow
provide an overview of the most common options. These options have the same names
and legal values in many thfent widget classes.

The most common options are those for specifying colors. Every widget class sup-
ports a-background option, which determines the background color of the widget and
is also used to compute the light and dark shadows if there is a 3D border drawn around
the widget. Nearly every widget class also suppostsraground option, which is
used when displaying text and graphics in the widgsilelr'16.2 lists all of the common
color options.

Color values may be specified either symbolically or numericalgymbolic color
value is a name such ahite orred or SeaGreen2 . The valid color names are
defined in a file namedib.txt in your X library directoryCommon names such as
black andwhite andred should be defined in every X environment, but names like
SeaGreen2 might not be available everywhere. Color names are not case-sensitive:
black is the same aBlack orbLaCk.

Colors can also be specified numerically in terms of their red, green, and blue compo-
nents. Four forms are available, in which the components are specified with 4-bit, 8-bit,
12-bit, or 16-bit vales:

DRAFT (3/11/93): Distribution Restricted

162

Configuration

Options

Name on
Command Line

Usage

ton

-background Background areas of widgets.

-foreground Text and graphics.

-activebackground Background color when widget is active (mouse
cursor is over widget and pressing a mouse but
will invoke some action).

-activeforeground Foreground color when widget is active.

-selectbackground

Background color for areas occupied by selecte
information within widget.

-selectforeground

Foreground color for selected text and graphics|

-insertbackground

Color for insertion cursor

-disabledforeground

2d.

Foreground color when widget has been disablé

Table 16.2.Commonly-used color options. The left column gives the name of the option as
specified in widget creation commands andf igure widget commands. The right column
describes how the option is used.

#RGB
#RRGGBB

#RRRGGGBBB

#RRRRGGGGBBBB

EachR, G orB in the above examples represents one hexadecimal digit of red, green, or
blue intensityrespectivelyThe first character of the specification must be #, and the same
number of digits must be provided for each component. If fewer than 16 bits are given for
the color components, they represent the most significant bits of the values. For example,
#3a7 is equivalent t¢3000a0007000 . A value of all ones represents “full on” for that
color, and a value of zero representd."ofhus#000 is black,#f00 is red#ff0 is yel-

low, and#fff is white.

If you specify a color other than black or white for a monochrome digplay Tk
will use black or white instead, depending on the overall intensity of the color you
requested. Furthermore, if you are using a color display and all of the entries in its color
map are in use (e.g. because you're displaying a complex image on the screen) then Tk
will treat the display as if it were monochrome.

DRAFT (3/11/93): Distribution Restricted

16.3 Screen distances

163

Name on
Command Line

Usage

-borderwidth

Width of 3D border drawn around widget.

-activeborderwidth

Width of 3D border drawn around active elemer
within widget.

-selectborderwidth

Width of 3D border drawn around selected text.

—

of

-insertwidth Total width of insertion cursor including its borde
if any.

-insertborderwidth Width of 3D border for insertion cursor

-padx Additional space to leave on left and right sides
information displayed in widget.

-pady Additional space to leave above and below infor

mation displayed in widget.

Table 16.3.Common options for specifying distances. The left column gives the name of tf
option as specified in widget creation commandscand igure widget commands. The right
column describes how the option is used.

16.3

Screen distances

Several options are used to specify distances on the screen. The most common of these
, which determines the width of the 3D border drawn around a

options is-borderwidth
widget. Every widget class supports therderwidth

other common distance options.

Ultimately, each distance option must reduce to a distance in screen pixels. However
Tk allows distances to be specified either in pixels or in absolute units that are independent
of the screen resolution. A distance is specified as an integer or floating-point value fol-
lowed optionally by a single character giving the units. If no unit specifier is given then the
units are pixels. Otherwise the unit specifier must be one of the following characters:

'03_'0

centimeters

inches

millimeters

printer's points (1/72 inch)

DRAFT (3/11/93): Distribution Restricted

option. Table 16.3 lists several

164

Configuration Options

raised f lat sunken ridge groove

Figure 16.1.The three-dimensionalfetts produced by ddrent values for theelief option.

16.4

For example, a distance specifie®dc will be rounded to the number of pixels that
most closely approximates 2.2 centimeters; this may béeaatif number of pixels on
different screens.

Reliefs

16.5

Every widget class supports an option namretief , which determines the three-
dimensional appearance of the widget. The option must have one of theraileds ,
flat ,sunken ,ridge , orgroove . Figure 16.1 illustrates thefe€t produced by each
value. Tk draws widget borders with combinations of light and dark shadows to produce
the diferent efects. For example, if a widgsttelief israised then Tk draws the top
and left borders in a lighter color than the widgé&tckground and it drawns the lower
and right borders in a darker col@his makes the widget appear to protrude from the
screen.

The width of a widge$ 3D border is determined by #sorderwidth option. If
the border width is 0 then the widget will appear flat regardless-oéliis f option.

Fonts

The-font option is used to specify a font for widgets that display text, such as buttons,
listboxes, entries, and texts. Tk uses standard X font names, which are illustrated in Figure
16.2 The name of a font consists of twelve fields separated by hyphens. The fields have the
following meanings:

foundry The type foundry that supplied the font data.
family Identifies a group of fonts with a similar typeface design.

DRAFT (3/11/93): Distribution Restricted

16.5 Fonts 165

family slant pixels X-res spacing char set

foundry weight set width points y-res | width

ooy ERE

-adobe- times -bold- r-normal- -18- 180-75- 75-p- 99-is08859-1

Figure 16.2.The fields of an X font name.

weight Typographic weight of font, such asdium, normal , or
bold .

slant Posture of font, such asfor roman or upright, for italic, or
o for oblique.

set width Proportionate width of font, such aermal orcon-
densed ornarrow .

pixels Size of font in pixels.

points Size of font in tenths of points, assuming screen has x-res and
y-res specified for font.

X-res Horizontal resolution of screen for which font was designed,
in dots per inch.
y-res Vertical resolution of screen for which font was designed, in

dots per inch.

spacing Escapement class of font, suchn@®r monospace (fixed-
width) orp for proportional (variable-width).

width Average width of characters in font, in tenths of pixels.

char set Character set that identifies the encoding of characters in the
font.

When-font values you can useand? wildcards:? matches any single character in a

font name, and matches any group of characters. For example, the font name
-times-medium-r-normal---100-*

requests a 10-poiniflies Roman font in a medium (normal) weight and normal width. It

specifies “dort’ care” for the foundrythe pixel size, and all fields after the point size. If

multiple fonts match this pattern then the X server will pick one of them. | recommend

specifying the point size for fonts but not the pixel size, so that characters will be the same

size regardless of the display resolution.

DRAFT (3/11/93): Distribution Restricted

166

Configuration Options

error gray25 gray50 hourglass

L
1 3 %
info guesthead guestion warning

Figure 16.3.Bitmaps defined internally by Tk.

16.6

Bitmaps

16.7

Many widgets, such as labels and menubuttons, can disiplagps A bitmap is an image
with two colors, foreground and background. Bitmaps are specified usinbithep
option, whose values may have two forms. If the first character of the vailkan the
remainder of the value is the name of a file containing a bitmap in the standavdri{dp
file format. Such files are generated bylitemap program, among others. Thus

“- bitmap @face.bit " specifies a bitmap contained in the fiee.bit

If the first character of the value isi@then the value must be the name of a bitmap
defined internallyTk defines several internal bitmaps itself (see Figure 16.3) and individ-
ual applications may define additional ones.

The-bitmap option only determines the pattern of And 05 that make up the bit-
map. The foreground and background colors used to display the bitmap are determined by
other options (typicallyforeground and-background). This means that the same
bitmap can appear in €frent colors at diérent places in an application, or the colors of a
given bitmap may be changed by modifying the options that determine them.

Cursors

Every widget class in Tk supportsaursor option, which determines the image to dis-
play in the mouse cursor when it is over that widget. If¢hhesor option isnt speci-

fied or if its value is an empty string then the widget will use its pareatsorOtherwise
the value of thecursor option must be a propeciist with one of the following

forms:

name f gCol or bgCol or
nane fgCol or

DRAFT (3/11/93): Distribution Restricted

16.8 Anchors 167

16.8

name
@ourceFil e maskFi |l e fgCol or bgCol or
@ourceFil e fgCol or
In the first three formsane refers to one of the cursors in the standard X cursor font. Y
can find a complete list of all the legal names in the X includeditgorfont.h . The
names in that file all start witkC , such asXC_arrow or XC_hand2; when using one
of these names in-aursor option, omit theXC_, e.g.arrow orhand2 . Most of the
Xlib reference manuals also include a table showing the names and images of all the cur-
sors in the X cursor font; for example, see Appendix B ¥indow System: The Com-
plete Refeznce to Xlib, X Ratocol, ICCM, and XLFDby Scheifler and Gettys, Second
Edition. If nane is followed by two additional list elements as in the following widget
command:

fconf ig-cursor {arrow red white}

then the second and third elements give the foreground and background colors to use for
the cursor; as with all color values, they may have any of the forms described in Section
16.2. If only one color value is supplied then it gives the foreground color for the cursor;
the background will be transparent. If no color values are given then black will be used for
the foreground and white for the background.

If the first character in theursor value is@then the image(s) for the cursor are
taken from files in bitmap format rather than the X cursor font. If two file names and two
colors are specified for the value, as in the following widget command:

fconf ig-cursor {@cursors/bits cursors/mask red white}
then the first file is a bitmap that contains the cussoaittern (I represent foreground
and 05 background) and the second file is a mask bitmap. The cursor will be transparent
everywhere that the mask bitmap has a 0 value; it will display the foreground or back-
ground wherever the mask is 1. If only one file name and one color are specified then the
cursor will have a transparent background.

Anchors

An anchor positiorindicates how to attach one object to anotRer example, if the win-
dow for a button widget is Iger than needed for the widgetéxt, a anchor option
may be specified to indicate where the text should be positioned in the wiuoidvor
positions are also used for other purposes, such as telling a canvas widget where to posi-
tion a bitmap relative to a point or telling the packer geometry manager where to position
a window in its frame.

Anchor positions are specified using one of the following points of the compass:

n Center of objecs top side.
ne Top right corner of object.

DRAFT (3/11/93): Distribution Restricted

168 Configuration Options

e Center of objecs right side.
se Lower right corner of object.
S Center of objec$ bottom side.
sw Lower left corner of object.

w Center of objecs left side.

nw Top left corner of object.

center Center of object.

The anchor position specifigse point on the object by which it is to be attagladif a
push-pin were stuck through the object at that point and then used to pin the object some-
place. For example, if@nchor option ofwis specified for a button, it means that the
button’s text or bitmap is to be attached by the center of its left side, and that point will be
positioned over the corresponding point in the windblusw means that the text or bit-

map will be centered vertically and aligned with the left edge of the wirgombitmap

items in canvas widgets, th@nchor option indicates where the bitmap should be posi-
tioned relative to a point associated with the item; in this @aseans that the center of

the bitmaps left side should be positioned over the point, so that the bitmap actually lies to
the east of the point. Figure 16.4 illustrates these uses of anchor positions.

Button Text

Button Text

@) (b)

(c) (d)

Figure 16.4.Examples of anchor positions used for button widgets and for bitmap items wi
canvases. Figure (a) shows a button widget with text anctpeed! (b) shows the same widget
with an anchor position afe. Figure(c) shows a canvas containing a bitmap with an anchor
position ofw relative to its point (the point appears as a cross, even though it waggear in
an actual canvas). Figure (d) shows the same bitmap item with an anchor peint of

DRAFT (3/11/93): Distribution Restricted

16.9 Script options and scrolling 169

16.9 Script options and scrolling

Script options are used in many places in Tk widgets. The most common usage is for wid-
gets like buttons and menus that are supposed to take action when invoked by the user
This is handled by specifying @lscript as a configuration option for the widget. For
example, button widgets supporc@mmand option, which should contain &lTscript.

When the user invokes the widget by clicking over it with the mouse button, the widget
causes the script to be executed. SimiJadch entry in a menu widget has a script associ-
ated with it, which is executed when the user invokes the menu entry

Script options are also used for communicating between widggically, one wid-
get will be configured witlpart of a Tcl command (e.g. the name of another widgedd-
get command and the firsgaiment to that command). At appropriate times, the widget
will invoke the command. Before invoking the command the widget will augment it with
additional information that is relevant to the specific invocation. The best example of this
is the communication between scrollbars and other widgets, which is described in the rest
of this section.

When a scrollbar is associated with another widget and used to change ith&iew
communication between the scrollbar and the associated widget is controlled by two
options, one for the associated widget and one for the scrdiiasrmal usage, each of
these options invokes a widget command for the other widget.

The associated widget must inform the scrollbar about what it is currently displaying,
so that the scrollbar can display the slider in the correct positiotio This, the scrollbar
provides a widget command of the following form:

wi ndowset totalUnits windowUnits first |ast

W ndowis the name of the scrollbar widget (i.e. the name of the widget command for the
scrollbar).Tot al Uni t s indicates the total size of the information being displayed in the
associated widget in the dimension being scrolled, such as the number of lines in a listbox
or the number of characters in a text elffyndowlni t s indicates how much of the
information can be displayed in the widget at one time given the current size of its win-
dow, andf i r st andl ast give the indices of the top and bottom elements currently vis-
ible in the widge® window (for horizontal scrollbafd r st andl ast refer to the
leftmost and rightmost visible elements).
The associated widget invokes the scrolbset command whenever information

of interest to the scrollbar changes in the widgetdd this, scrollable widgets provide a
- xScrollCommand option if they support horizontal scrolling and a
- yScrollCommand option if they support vertical scrolling. For example, a listbox
might be created with a vertical scrollbar using the following commands:

listbox .I -yscrollcommand {.vscroll set}

scrollbar .vscroll -orient vertical

pack .| -side left

pack .vscroll -side right

DRAFT (3/11/93): Distribution Restricted

170

Configuration Options

The value of theyscrollicommand option is a € command prefix. When the view in

the listbox changes (e.g. because elements were deleted), the listbox takes the value of the
- yscrollcommand option (“.vscroll set " in this case) and appends four integer
values corresponding the ttealUnits , windowUnits , first ,andlast amu-

ments described above. This will producechkcbmmand such as

.vscroll set 100 20 38 57

Then the listbox invokes the command, which causes the scrollbar to redraw its slider to
reflect the new viewf horizontal scrolling is desired for the listbox as well, an additional
scrollbar could be created anexacrollcommand option could be specified for the
listbox.

A similar form of communication is used by the scrollbar to notify the associated wid-
get when the user manipulates the scrollbar to request a nevEgelwscrollbar provides
a- commandoption, which specifies aclfcommand prefix for communicating new views

to the associated widget. It can be set forxvheroll widget above using the follow-
ing command:
.vscroll conf ig -command {.| yview}

Then when the user clicks in the scrollbar to change the view the scrollbar takes the
- commandoption and appends the index of the element that should now appear at the top
of the window The result is a command like the following:

1 yview 39

The scrollbar widget then invokes this command. Listboxes and other widgets that support

scrolling provide gview widget command with exactly the above syntax that causes the

widget to adjust its viewAfter adjusting its viewthe listbox uses itg/scrollcom-

mand option to notify the scrollbar of the new view so the scrollbar can redraw its slider
This scheme has the advantage that neither widget needs any built-in information

about the other; both the name of the other widget and the widget command to invoke are

provided with options that can be configured by the application desigriact, the com-

mand options need not even correspond to widget commands. For example, a single

scrollbar could be made to control two widgets simultaneously by usiclgpaotedure

name as itscommand option:

.vscroll conf ig -command scrollProc
proc scrollProc index {

I yview $index

12 yview $index
}

Then the commands invoked by the scrollbar will look like
scrollProc 39

andscrollProc will invoke yview widget commands in each of the two associated
widgets.

DRAFT (3/11/93): Distribution Restricted

16.10 Variables 171

16.10

Variables

16.11

Another common form for options is variable names. These options are used to associate
one or more @l global variables with a widget so that the widget can set the variable
under certain conditions or monitor its value and react to changes in the variable.

For example, many of the widgets that display text, such as labels and buttons and
messages and entries, suppoteatvariable option. The value of the option is the
name of a global variable that contains the text to display in the widget. The widget moni-
tors the value of the variable and updates the display whenever the variable changes value.
In addition, for widgets like entries that can modify their text, the widget updates the vari-
able to track changes made by the user

Checkbuttons and radiobuttons also suppeviasable option, which contains
the name of a global variable. For checkbuttons there are two additional options
(- onvalue and-offvalue) that specify values to store in the variable when the
checkbutton is “on” and “6f’ As the user clicks on the checkbutton with the mouse, it
updates the variable to reflect the checkbuststite. The checkbutton also monitors the
value of the variable and changes its drgtdte if the variable'value is changed exter-
nally. Each checkbutton typically has its own variable.

With radiobuttons a group of widgets shares the same variable but each radiobutton
has a distinct value that it stores into the variable-{thleie option). When the user
clicks on a radiobutton it sets the variable to its value and selects itself. The radiobutton
monitors the variable so that it can deselect itself when some other radiobutton stores a
different value into the variable. If the variablgalue is changed externally then all of the
radiobuttons associated with the variable update their selected/deselected state to reflect
the variables new value.

Time intervals

16.12

Several widget classes provide options that specify time intervals, such as the blink rate
for the insertion cursor or the rate at which mouse buttons should auto-rejdatl 6.4
summarizes the most commonly used options for specifying intervais.ifitervals are
always specified as integer numbers of milliseconds: an intert@0ofmeans 100ms,

1000 means one second, and so on.

The configure widget command

Every widget class supportsanf igure widget command. This command comes in
three forms, which can be used both to change the values of options and also to retrieve
information about the widget'options. Seeable 16.1 for a summary of these forms.

DRAFT (3/11/93): Distribution Restricted

172 Configuration Options

Name on

. Usage
Command Line 9

-insertoffTime How long to leave insertion cursor turnedl iaf
each blink cycle. Zero means cursor doeblifk.

-insertOnTime How long to leave insertion cursor turned on in
each blink cycle.

-repeatDelay How long to wait before auto-repeating a button|or
keystroke.

-repeatinterval Once auto-repeat starts, how long to wait from ane

auto-repeat to the next.

Table 16.4.Commonly-used time interval options. The left column gives the name of the op
specified in widget creation commands andf igure widget commands. The right column
describes how the option is used.

If conf igure is given two additional guments then it changes the value of an
option as in the following example:

.button conf igure -text Quit

If the conf igure widget command is given just one extrguanent then it returns
information about the named option. The return value is normally a list with five elements:
.button conf igure -text
-text text Text { } Quit
The first element of the list is the name of the option as you'd specify itdrcariimand
line when creating or configuring a widget. The second and third elements are a hame and
class to use for looking up the option in the option database (see Section 16.13 below).
The fourth element is the default value provided by the widget class (a single space char-
acter in the above example), and the fifth element is the current value of the option.
Some widget options are just synonyms for other options (e.ghdheption for but-
tons is the same as tHeackground option). Configuration information for a synonym
is returned as a list with two elements consisting of the optmmhmand-line name and
the option database name of its synonym:

.button conf igure -bg
-bg background
If the conf igure widget command is invoked with no additionajamnents then it

returns information about all of the widgetptions as a list of lists with one sub-list for
each option:

DRAFT (3/11/93): Distribution Restricted

16.13 The option database 173

16.13

.button conf igure

{-activebackground activeBackground Foreground Black

Black} {-activeforeground activeForeground Background
White White} {-anchor anchor Anchor center center}

{- background background Background White White} {-bd
borderWidth} {-bg background} {-bitmap bitmap Bitmap {}
{1} {-borderwidth borderWidth BorderWidth 2 2} {-command
command Command {} {}} {-cursor cursor Cursor {} {}}

{- disabledforeground disabledForeground
DisabledForeground {} {}} {-fg foreground} {-font font
Font -Adobe-Helvetica-Bold-R-Normal-*-120-* -Adobe-
Helvetica-Bold-R-Normal-*-120-*} {-foreground
foreground Foreground Black Black} {-height height
Height 0 0} {-padx padX Pad 1 1} {-pady padY Pad 1 1}
{- relief relief Relief raised raised} {-state state

State normal normal} {-text text Text { } Quit}

{- textvariable textVariable Variable {} {}} {-width

width Width 0 0}

The option database

16.13.1

The option database supplies values for configuration options thatsgreaified explic-

itly by the application designerhe option database is consulted when widgets are cre-
ated: for each option not specified on the command line, the widget queries the option
database and uses the value found there, iflitiere is no value in the option database
then the widget supplies a default valualués in the option database are usually pro-
vided by the user to personalize applications, e.g. by using consisteglyftants. Tk
supports th&RESOURCE_MANAGRRperty andXdefaults file in the same way as
other X toolkits like Xt.

Patterns

The option database contains any number of entries, where each entry consists of two
strings: goatternand avalue The pattern determines whether the entry applies to a given
option for a given widget, and the value is a string to use for options that match the pat-
tern.

In its simplest form, a pattern consists of an application name, a window name, and an
option name, all separated by dots. For example, here are two options in this form:

wish.a.b.foreground
wish.background

DRAFT (3/11/93): Distribution Restricted

174

Configuration Options

The first pattern applies to thereground option in the windowa.b in the applica-

tion wish , and the second pattern applies tolthekground option in the main win-

dow forwish . Each of these patterns applies to only a single option for a single widget.
Patterns may also contain classes or wildcards, which allow them to match many dif-

ferent options or widgets. Any of the window names in the pattern may be replaced by a

class, in which case the pattern matches any widget that is an instance of that class. For

example, the pattern below applies to all childreraothat are buttons:

wish.a.Button.foreground

Application and option names may also be replaced with classes. The class for an applica-
tion is the class of its main window; names and classes for applications are discussed in
more detail in Chapter 22. Individual options also have classes. For example, the class for
theforeground option isForeground . Several other options, suchadive-
Background andinsertBackground , also have the clag®oregound , so the fol-
lowing pattern applies to any of these options for any button widget that is a childrof
wish :

wish.a.Button.Foreground

Lastly, patterns may containwildcard characters. A matches any number of win-
dow names or classes, as in the following examples:

*Foreground

wish*Button.foreground
The first pattern applies to any option in any widget of any application as long as the
option’s class is-oreground . The second pattern applies to theeground option
of any button widget in thevish application. Thé wildcard may only be used for win-
dow or application names; it cannot be used for the option name (it womlaké much
sense to specify the same value for all options of a widget).

This syntax for patterns is the same as that supported by the standard X resource data-
base mechanisms in the 223 and X1R4 releases. TH2wildcard, which was added in
the X11R5 release, is not yet supported bysTéption database.

In order to support the above matching rules, each option has three names:

1. the name that can be typed on a command line, which always starts vétideénas no
uppercase letters, as Hactiveborderwidth ;

2. the name of the option in the database, which is typically the same as the command-line
name except that it contains n@and uses capital letters to mark internal word bound-
aries, as iractiveBorderWidth ;

3. the class of the option, which always starts with a capital letter and may contain addi-
tional capital letters to mark internal boundaries, &adrderWidth

When you query an option with tisenf igure widget command all three of these

names are returned.dtimportant to remember that in Tk clasakgaysstart with an ini-

tial capital letterand any name starting with an initial capital letter is assumed to be a

class.

DRAFT (3/11/93): Distribution Restricted

16.13 The option database 175

16.13.2

16.13.3

RESOURCE_MANAGER property and .Xdefaults file

When a Tk application starts up, Tk automatically initializes the option database. If there
is aRESOURCE_MANAGHRperty on the root windgwhen the database is initialized
from it. Otherwise Tk checks the usehome directory for &Xdefaults file and uses
it if it exists. The initialization information has the same form whether it comes from the
RESOURCE_MANAGHRperty or theXdefaults file. The syntax described below is
the same as that supported by other toolkits such as Xt.

Each line of the initialization data specifies one entry in the resource database in a
form like the following:

*Foreground: blue

The line consists of a patterfi-preground in the example) followed by a colon fol-
lowed by whitespace and then a value to associate with that pattexn ih the exam-
ple). If the value is too long to fit on one line then it can be placed on multiple lines with
each line but the last ending in a backslash-newline sequence:

*Gizmo.text: This is a very long initial \

value to use for the text option in all \

"Gizmo" widgets.
The backslashes and newlines will not be part of the value.

Blank lines are ignored, as are lines whose first non-blank charagter lis

Priorities

It is possible for several patterns in the option database to match a particular option. When
this happens Tk uses a two-part priority scheme to determine which pattern appties. Tk’
mechanism for resolving conflicts isfeifent than the standard mechanism supported by
the Tk toolkit, but I think it simpler and easier to work with.

For the most part the priority of an option in the database is determined by the order in
which it was entered into the database: newer options take priority over older ones. When
specifying options (e.g. by typing them into yoXidefaults file) you should specify
the more general options first, with more specific overrides following Fdeexample, if
you want button widgets to have a background col&isffuel and all other widgets to
have white backgrounds, then put the following lines in ygdefault s file:

*background: white

*Button.background: Bisquel
The*background pattern will match any option that thButton.background
pattern matches, but thButton.background pattern has higher priority since it was
specified last. If the order of the patterns had been reversed then all widgets (including
buttons) would have white backgrounds andBigtton.background pattern would
have no dkct.

In some cases it may not be possible to specify general patterns before specific ones

(e.g. you might add a more general pattern to the option database after it has already been

DRAFT (3/11/93): Distribution Restricted

176

Configuration Options

16.13.4

initialized with a number of specific patterns from RESOURCE_MANAGHRperty).

To accommodate these situations, each entry also has an integer priority level between 0
and 100, inclusive. An entry with a higher priority level takes precedence over entries with
lower priority levels, regardless of the order in which they were inserted into the option
database. Priority levels are not used very often in Tk; for complete details on how they
work, please refer to the reference documentation.

TK’s priority scheme is dérent that the scheme used by other X toolkits such as Xt.
Xt gives higher priority to the most specific pattern, edp.foregroun d is more
specific tharfforeground so it receives higher priority regardless of the order in which
the patterns appedn most cases this wdrbe a problem: specify options for Xt applica-
tions using the Xt rules, and for Tk applications using the Tk rules. In cases where you
want to specify options that apply both to Tk applications and Xt applications, use the Xt
rules but also make sure that the patterns consideredpigbety by Xt also appear later
in your.Xdefaults file. In general, you shouldmeed to specify very many options to
Tk applications (if you do, it suggests that the applications helveah designed well), so
the issue of pattern priority shoulticome up often.

It's important to remember that the option database is only queried for options not
specified explicitly in the widget creation command. This means that the user will not be
able to override any option that was specified on the command line. If you want to specify
a value for an option but allow the user to override that value through the
RESOURCE_MANAGEHRperty you should specify the value for the option using the
option command described below

The option command

Theoption command allows you to manipulate the option database while an application
is running. The commarmption add will create a new entry in the database. It takes
two or three gyuments. The first two gmments are the pattern and value for the new
entry and the third gument, if specified, is a priority level for the new erfiigr example,

option add *Button.background Bisquel
adds an entry that sets the background color for all button widggiscoel .
The command
option clear

will remove all entries from the option database. dp#on readf ile command
will read a file in the format described above forRESOURCE_MANAGRRperty and
make entries in the option database for each line. For example, the following script dis-
cards any existing options (including those loaded automatically from the
RESOURCE_MANAGHRperty) and reloads the database fronnfd@Options :

option clear

option readf ile newOptions

DRAFT (3/11/93): Distribution Restricted

16.13 The option database 177

Theoption readf ile command can also be given a priority level as an exgia ar
ment after the file name.

To query whether there is an entry in the option database that applies to a particular
option, use theption get command:

option get .a.b background Background

This command takes threggaments, which are the path name of a widgeb(), the
database name for an optidra¢kground) and the class for that option
(Background). The command will search the option database to see if any entries match
the given windowoption, and class. If so, the value of the highest-priority matching
option is returned. If no entry matches then an empty string is returned.

DRAFT (3/11/93): Distribution Restricted

178 Configuration Options

DRAFT (3/11/93): Distribution Restricted

Chapter 17
Geometry Managers: The Placer

17.1

Geometry managers are the entities that determine the dimensions and locations of wid-
gets. Tk is similar to other Xltoolkits in that it doeshallow individual widgets to deter-
mine their own geometnA widget will not even appear on the screen unless it is
managed by a geometry managéis separation of geometry management from internal
widget behavior allows multiple geometry managers to exist simultaneously and it allows
any widget to be used with any geometry mandfesidgets selected their own geometry
then this flexibility would be lost: every existing widget would have to be modified to
introduce a new style of layout.

This chapter describes the overall structure for geometry management and then pre-
sents the placewhich is Tks simplest geometry manager . The placer manages windows
independently without considering other related windows, so ttusny flexible in the
layouts it produces. Because of this, the placer tends to be used only in special situations.
Chapter 18 describes a more powerful geometry manager called the paekeacker
lays out groups of windows togetheonsidering the needs of each of the windows when
laying out the group. This produces more flexible layouts but also makes the packer harder
to understand.

An overview of geometry management

A geometry managés job is to arrange one or malavewindows relative to aaster
window. For example, it might arrange three slaves in a row from left to right across the
area of the masteor it might arrange two slaves so that they split the space of the master
with one slave occupying the top half and the other occupying the bottom hizfebif

179

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

180

Geometry Managers: The Placer

Requested size Parameters from Geometry of
from slave application designer master

Geometry
Manager

Size and location Requested size
of slave for master

Figure 17.1.A geometry manager receives three kinds of inputs: a requested size for eact
(which usually reflects the information to be displayed in the slave), commands from the apj
designer (such as “arrange these three windows in a row”), and the actual geometry of the
window The geometry manager then assigns a size and location to each slave. It may alsc
requested size for the master windevkhich can be used by a higHevel geometry manager to
manager the master

geometry managers embodyféient styles of layout. The master is often the parent of the
slave but there are times whers itonvenient to use other windows as masters (you'll see
examples of this later).

A geometry manager receives three sorts of information for its use in computing a
layout (see Figure 17.1). First, each slave widget requests a particular width and height.
These are usually the minimum dimensions needed by the widget to display its informa-
tion. For example, a button widget requests a size jug Emough to display its text or
bitmap along with the border specified for the widget. Although geometry managets aren’
obliged to satisfy the requests made by their slave widgets, they usually do.

The second kind of input for a geometry manager comes from the application
designer and is used to control the layout algorithm. The nature of this information varies
from geometry manager to geometry manalpesome cases the information is very spe-
cific. For example, with the placer an application designer can specify the precise location
and dimensions for a given slave; all the placer does is to apply the given geomety to the
slave windowIn other cases the information is more abstract. For example, with the
packer an application designer can name three slaves and request that they be arranged in
a row from left to right within the master; the packer will then check the requested sizes of
the slaves and position them so that they abut in awitveach slave given just as much
space as it needs.

The third kind of information used by geometry managers is the geometry of the mas-
ter window For example, the geometry manager might position a slave at the lower left

DRAFT (3/11/93): Distribution Restricted

17.1 An overview of geometry management 181

corner of its masteor it might divide the space of the master among one or more slaves,
or it might refuse to display a slave altogether if it dad#invithin the area of its master

Once it has received all of the above information, the geometry manager executes a
layout algorithm to determine the dimensions and position of each of its slaves. If the size
of a widget isrt what it requested then the widget must make do in the best way it can.
Geometry managers usually try to give widgets the space they requested, but they may
produce better layouts by giving widgets extra space in some situations. If thiere isn’
enough space in a master for all of its slaves, then some of the slaves may get less space
than they asked fom extreme cases the geometry manager may choose not to display
some slaves at all.

The controlling information for geometry management may change while an applica-
tion runs. For example, a button might be reconfigured withferelift font or bitmap, in
which case it will change its requested dimensionsth@rgeometry manager might be
told to use a di€rent approach (e.g., arrange a collection of windows from top to bottom
instead of left to right) or some of the slave windows might be deleted, or the user might
interactively resize the master winddwhen any of these things happens the geometry
manager recomputes the layout.

Some geometry managers (e.g. the packer) will set the requested size for the master
window. For example, the packer computes how much space is needed in the master to
accommodate all of its slaves in the fashion requested by the application déstgear
sets the requested size for the master to these dimensions, overriding any request made by
the master widget itself. This approach allows for hierarchical geometry management,
where each master is itself the slave of another higlret masterSize requests pass up
through the hierarchy from each slave to its mastsulting ultimately in a size request
for a top-level windowwhich is passed to the window managéren actual geometry
information passes down through the hierayebith the geometry manager at each level
accepting the geometry of a master and using it to compute the geometry of one or more
slaves. As a result, the entire hierarchy sizes itself to just meet the needs of the lowest-
level slaves (the master windows “shrink-wrap” around their slaves).

Each widget can be managed by at most one geometry manager at a time, although it
is possible to switch geometry managers during the life of a slave. A widget can act as
master to any number of slaves, and it is even possible feratif geometry managers to
control diferent groups of slaves associated with the same mAsigrgle geometry
manager can simultaneously managéediint groups of slaves associated witlfiedént
masters.

Only internal windows may be slaves for geometry management. The techniques
described here do not apply to top-level or main windows. These windows are managed
by the window manager for the display; see Chapter 22 for information on how to control
their geometry

DRAFT (3/11/93): Distribution Restricted

182 Geometry Managers: The Placer
place wi ndow option val ue ?option val ue ..?
Same aplace conf igure command described below
place conf igure w ndow option value ?option value ..?
Arranges for the placer to manage the geometw adow Theopt i on
andval ue aguments determine the dimensions and position ofdow.
place dependents wi ndow
Returns a list whose elements are the slave windows managed by the placer
for whichwi ndow s the master
place forget wi ndow
Causes the placer to stop managingdow and unmap it from the screen
Has no dect if wi ndowisn’t currently managed by the placer
place info wi ndow
Returns a list giving the current configuratiombhdow The list consists
of opt i on-val ue pairs in exactly the same form as might be specified|to
theplace conf igure command. Returns an empty stringiifndow
isn’t currently managed by the placer
Table 17.1.A summary of theplace command.
17.2 Controlling positions with the placer

The placer is a simple geometry manager that implements fixed placements. The applica-
tion designer specifies the position and size of each slave relative to its arabtie
placer simply implements the requested placement. The placer treats each slave indepen-
dently so changes in the placement of one slave haveeat eh any other slave.

Theplace command is used to communicate with the placer; abke 7.1 for a
summary of its features. In its simplest form itguements consist of a window name and
one or more configuration options specified as name-value pairs:

place .x -x 0 -y O

This command positions window so that its uppeleft corner appears at the upjeft
corner of its mastewhich defaults to its parent. The placer supports about a dozen config-
uration options in all; @ble 17.2 summarizes the options and Figure 17.2 shows some
examples of using the placer

The placer determines the position of a slave window in two steps. First, it uses the
-X,-y,-relx ,and-rely optionsto choose an anchor point, then it positions the slave
relative to that anchor point using tteaechor option. The anchor point is specified rel-
ative to the upper left corner of the master windéwhe-x and-y options are used then
the position is given with absolute distances in any of the forms described in Section 16.3.
Ifthe-relx and-rely options are used then the position is specified as a fraction of the
size of the master; for examplerélx .75 " specifies that the anchor point should lie

DRAFT (3/11/93): Distribution Restricted

17.2 Controlling positions with the placer 183

-x di stance
Specifies the horizontal distance of the slaegichor point from the left
edge of its master

-y di stance
Specifies the vertical distance of the slavaichor point from the top edge
of its master

-relx fraction
Specifies the horizontal position of the slavanchor point in a relative fash-
ion as a floating-point numbéf f r act i on is0.0 it refers to the master
left edge, and..0 refers to the right edgEr act i on need not lie betweer;
0.0 and 1.0.

-rely fraction
Specifies the vertical position of the slavahchor point in a relative fashiop
as a floating-point numhdf f r act i on is0.0 it refers to the mastertop
edge, Snd.o refers to the bottom eddeér act i on need not lie between
0.0 and 1.0.

-anchor anchor
Specifies which point on the slave window is to be positioned over the
anchor point.

-width di st ance
Specifies the width of the slave.

-height di st ance
Specifies the height of the slave.

-relwidth fraction
Specifies the slavewidth as a fraction of the width of its master

-relheight fraction
Specifies the slaveheight as a fraction of the height of its master

-in - wi ndow
Specifies the master window for the slave. Must be the slpaeént or a
descendant of the parent.

-bordermode node
Specifies how the mastetborders are to be used in placing the slsvde
must banside , outside , orignore

Table 17.2.A summary of the configuration options supported by the placer

DRAFT (3/11/93): Distribution Restricted

184 Geometry Managers: The Placer

place .x-x0-y 0 place .x -relx 0.5 -y 1c\
-anchor n

(a) (b)

place .x -relx 0.5 -rely 0.5\ place .x -relx O -rely 0.5\
-anchor center -height 3c relwidth 0.5 -relheight 0.5
(c) (d)

Figure 17.2.Examples of using the placer to manage a winditagh figure showsace
command and the layout that results. Thgdawindow is the master and the smaller shaded
window is.x , the slave being managed. In (a) and (b) the slave is given the size it requeste
the height of the slave is specified in fh@ce command, and in (d) both the width and height
the slave are specified in thece command.

three-fourths of the way from the left edge of the master to its right edge. These forms can
be mixed for a given slave, as in Figure 17.2(b).

The-anchor option indicates which point on the slave window should be posi-
tioned over the anchor point. It can have any of the anchor names described in Section
16.8. For example, an anchor positiors gdositions the slave so that the center of its bot-
tom edge lies over the anchor point.

It is possible to position a slave outside the area of its mémtexample by giving a
negative-x option or arely option greater than 1.0. Howey#&rclips each window to
the dimensions of its parent, so the portions of the slave that lie outside its parent will not

DRAFT (3/11/93): Distribution Restricted

17.3 Controlling the size of a slave 185

17.3

appear on the screen. In the normal case where the parent is the master it probably isn’
very useful to position the slave outside its mastewever if the master is a sibling or
nephew of the slave then the slave can be positioned outside its master and still be visible
on the screen. See Section 17.4 for information on changing the master window

Controlling the size of a slave

17.4

By default, a slave window managed by the placer is given the size it requests. However
the-width , -height ,-relwidth , and-relheight options may be used to over-

ride either or both of the slagefequested dimensions. Thedth and-height

options specify the dimensions in absolute terms;@ahdidth and-relheight

specify the dimensions as a fraction of the size of the m&steexample, the following
command sets the width of to 50 pixels and the height to half the height of its master:

place .x -width 50 -relheight 0.5

Selecting the master window

Note:

In most cases the master window for a given slave will be its parent in the window hierar-
chy. If no master is specified, the placer uses the parent by default. Hpives/eome-

times useful to use a €#frent window as the master for a slave. For example, it might be
useful to attach one window to a sibling so that whenever the sibling is moved the window
will follow . This can be accomplished using tlme configuration option. For example,

the following command arranges far always to be displayed with its upgeft corner
“glued” to the upper right corner of :

place .x -in .y -relx 1.0 -rely O

In this example,x won't actually be “in”.y ;.y will be .x 's master anck will be dis-
played outsidey but adjacent to it.

The master for a slave must be either theptof the slave or a descendant of thespar
The eason for thisestriction has to do with Xclipping rules. Each window is clipped to
the boundaries of its pant; no portion of a child that lies outside of its gatrwill be
displayed. Tls restriction on master windows gurantees that the slave will be visible and
unclipped if its master is visible and unclipped. Suppose thaegection wee not
enforced, so that window.y could havea as its masteiSuppose also tha and x

do not overlap at all. If you asked the placer to positiop at the center ofa , the
placer would setx.y’ s position asequested, but this would caugey to be outside
the aea of.x so X would not display it, even though is fully visible. This behavior
would be confusing to application designers soeltricts mastership to keep ibifn
occurring. The estriction applies to all of Tk'geometry managers.

DRAFT (3/11/93): Distribution Restricted

186

Geometry Managers: The Placer

17.5

Border modes

17.6

The last configuration option for the placefisrdermode ; it determines how the mas-

ters borders are used in placing the slave, and it must have one of thensatlees,

outside , orignore . A border mode oifhside s typically used when placing the

slave inside the masteand it is the default. In this case, the placer considers the area of
the master to be its innermost area, inside any borders. The anchor point is specified rela-
tive to the uppeteft corner of this area, and thelx ,-rely ,-relwidth , and

- relheight options use the dimensions of this inner area.

A border mode obutside s typically used when paositioning the slave outside the
area of its mastemn this case the placer considers the area of the master to be its outer-
most area including all borders.

The final border modégnore , causes the placer to completely ignore any borders
and use the mastsrofiicial X area. This area includes the 3D borders drawn by widgets,
which are drawn inside a windosvX area, but excludes any external borders. The
ignore option is provided for completeness but probablyt igery useful.

More on the place command

So far theplace command has been discussed in its simplest form, where itsdist ar
ment is the name of a slave window to man&jgce also has several other forms,
where the first gument selects a particular command optilace conf igure has
the same ééct as the short form thatbeen used so fdfor example, the following two
commands have the saméeef:

place .x -x 0 -y O

place conf igure .x-x0-y O
Place conf igure (or place without a specific option) can be invoked at any time to
change the configuration of a slave windovhen invoked on a window already managed
by the placerunspecified options retain their previous values.

The commangblace dependents returns a list of all the slave windows man-

aged by the placer for a given master window:

place dependents .
X.Y.Z

Place info returns information about the current configuration of a slave window
managed by the placer:

place info .x
-x 0 -y 0 -anchor nw

DRAFT (3/11/93): Distribution Restricted

17.7 Controlling the size of the master 187

17.7

The return value is a list containing name-value pairs in exactly the same form that you
would specify them tplace conf igure . It can be used to record the placement of a
window so that it can be restored later

Lastly, place forget causes the placer to stop managing a given slave window:

place forget .x

As a side déct, it unmaps the window so that it no longer appears on the seiaea.
forget is useful if you decide that a window should be managed bjeaetif geometry
manager: you can tell the placer togferrit, then ask a dérent geometry manager to take
over. You dont need to invokelace forget before deleting a widget: the placer (like
all geometry managers) automaticallygets about widgets when they are deleted.

Controlling the size of the master

Although it is possible for a geometry manager to set the requested size for the master
windows it manages, the placer does not do this. It simply uses whatever size is provided
for a given mastewithout attempting to influence that size at all. Thus you'll need to use
some other mechanism to specify the méstare (e.g. if the master is a frame widget

you can request particular dimensions with-thiglth and-height configuration

options).

DRAFT (3/11/93): Distribution Restricted

188 Geometry Managers: The Placer

DRAFT (3/11/93): Distribution Restricted

Chapter 18
The Packer

The packer is the second geometry manager provided by Tk. Although it is slightly more
complicated than the placer described in Chapter 17, it is more powerful because it
arranges groups of slaves togetia&king into account the needs of one slave when choos-
ing the geometry for the othersitWthe packer it is easy to achievéeefs such as
“arrange the following three windows in a row” or “put the menu bar across the top of the
window, then the scrollbar across the right side, then fill the remaining space with a text
widget.” Because of this, the packer is much more commonly used than thegiddie
placer tends to be used only for special purposespdtie command, summarized in
Table 18.1, is used to communicate with the packer

Note: Thepack command syntax described in this chapter is what will eventually exist in a
future release of Tk. No existinglease supports this syntax. The eutrTk elease
provides essentially all of the feagsrdescribed in this chapter but with a clumsier syntax.

The only diffeence in featwgs has to do with padding. Pleaséar to the manual entry for
thepack command beferwriting any scripts that use it.

18.1 Packer basics

The packer maintains a list of all the slaves for a given master wirdtiad thepacking

list. The packer arranges the slaves by processing the packing list inpaickéng one

slave in each step. At the time a particular slave is processed, part of the area of the master
window has already been allocated to earlier slaves on the list, leaving a rectangular unal-
located area left for this and all remaining slaves, as shown in Figure 18.1(a). The slave is

positioned in three steps: allocate a frame, stretch the slave, and position it in the frame.

189

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

190 The Packer

pack wi ndow i ndow ...? option val ue ?option val ue ...?
Same agpack conf igure command described below

pack conf igure wi ndow M ndow ...? option val ue ?option value ..?
Arrange for the packer to manage the geometry ofitlielows . The
opt i on andval ue aguments provide information that determines the
dimensions and position of the ndows.

pack forget wi ndow
Causes the packer to stop managingdow and unmap it from the screer).
Has no dect if wi ndowisn’t currently managed by the packeturns an
empty string.

pack info Wi ndow
Returns a list giving the current configuratiombhdow The list consists
of opt i on-val ue pairs in exactly the same form as might be specified|to
thepack conf igure command. Returns an empty stringiindowisn’t
currently managed by the packer

pack slaves wi ndow
Returns a list of the slaves on windewacking list, in order

Table 18.1.A summary of thgpack command.

In the first step a rectangular region calldthaneis allocated from the available
space. This is done by “slicing”fad piece along one side of the available space. For
example, in Figure 18.1(b) the frame has been sliced from the right side of the available
space. The packer allows you to control the width of the frame (if it is on the left or right)
or the height of the frame (if it is on the top or bottom) and which side to slice it from. By
default, the controllable dimension of the frame is taken from the wisdeguested size
in that dimension.

In the second step the packer chooses the dimensions of the slave. By default the
slave will get the size it requested, but you can specify instead that it should be stretched in
one or both dimensions to fill the space of the frame. If the sleegliested size is tmr
than the frame then it is reduced to fit the size of the frame. In Figure 18.1(c) the slave has
been stretched horizontally but not vertically

The third step is to position the slave inside its frame. If the slave is smaller than the
frame then you can specify an anchor position for the slave sugls asrcenter . In
Figure 18.1(c) the slave has been positioned in the center of the frame, which is the
default.

Once the slave has been positioned, a smaller rectangular region is left for the next
slave to use, as shown in Figure 18.1(d). If a slave dogsmall of the space in its frame,
as in Figure 18.1, the leftover space is unused; ittmnused for later slaves. Thus each
step in the packing starts with a rectangular region of available space and ends up with a
smaller rectangular region.

DRAFT (3/11/93): Distribution Restricted

18.1 Packer basics 191

Master Slave
Available Erame for
Space Slave
@ (b)
Available
Space for
Next Slave
(©) (d)

Figure 18.1.The steps taken to pack a single slave. Figure (a) shows the situation before p
slave. Part of the mastsrarea has already been allocated for previous slaves, and a rectang
region is left for the remaining slaves. The current slave is shown in its requested size. The
allocates a frame for the slave along one side of the available space, as shown in (b). The p
stretch the slave to partially or completely fill the frame, then it positions the slave over the f
in (c). This leaves a smaller rectangular region for the next slave to use, as shown in (d).

Thepack command is used to communicate with the padkéts simplest form, a
pack command takes one or more window names@g@ents, followed by one or more
pairs of additional guments that indicate how to manage the windows. For example, con-
sider the following command:

pack .ok .cancel .help -side left

This command asks the packer to manag@e, .cancel , and.help as slaves and to
pack them in that ordefhe master for the slaves defaults to their parent. Tsidé
left " option indicates that the frame for each slave should be allocated on the left side of
the available space. By default, the frame for each slave is allocated just wide enough for
the slaves requested width, and the slave is centered in its frame without any stretching.
The result is that the slaves will be arranged in a row from left to right across the master
as shown in Figure 18.2 (b).

DRAFT (3/11/93): Distribution Restricted

192 The Packer

.0k .cancel .help

 J B B

= wash]l = Wash R
.—?I Wish j
ﬂl&mcellﬂl __ﬂ Cancel|ﬂ|
@) (b) ©

Figure 18.2.A simple example of packing. Figure (a) shows a master window and the reqt
sizes for three slaves. Figure (b) shows the arrangement that is produced by the cqraoiand
.ok .cancel .help -side left " if the mastels size is fixed. In most cases, howetlee
master will resize so that it just meets the needs of its slaves, producing the result in (c).

The result in Figure 18.2(b) assumes that the master window is fixed in size. How-
ever this isnt usually the case. As part of its layout computation the packer computes the
minimum dimensions the master would need so that all of its slaves just barely fit, and it
sets the requested size of the master to those dimensions. In most cases the geometry man-
ager for the master will set the ma&esize from those dimensions, so that the master
“shrink wraps” around the slaves. For example, top-level windows resize themsleves to
their requested dimensions unless other directions have been given withabmand
described in Chapter 22. Thus the result fronptiek command above is more likely to
be as shown in Figure 18.2(c)wYcan choose between the scenarios in Figure 18.2(b)
and Figure 18.2(c) with the way you manage the niasgeometry

Figure 18.3 shows another simple packer example, which uses the following script to
arrange three windows:

pack .label -side top -f ill x

pack .scrollbar -side right -f illy

pack .listbox
The three windows are configuredfditntly so a separapack command is used for
each one. The order of thack commands determines the order of the windows in the
packing list. Themenubar widget is packed first, and it occupies the top part of the
master windowThe “f ill x " option specifies that the window should be stretched
horizontally so that it fills its frame. The scrollbar widget is packed next, in a similar fash-
ion except that it is arranged against the right side of the window and stretched vertically
The widgetlistbox is packed last. No options need to be specifieditbox : it
gets all the remaining space regardless of which side it is packed against.

DRAFT (3/11/93): Distribution Restricted

18.2 Packer configuration options 193
. label .scrollbar
! ! List of States:
- Wish S| Listof states:| _AJ
Hawrali | I
Idaho = Wish ||
linois List of States:
Indiana, Hawradi N
lowa Idaho
Kansas inois
Kentucky Indiana J
Louisiana lowa
Maine Kansas
Maryland Kentucky
Louisiana
f Maine
listbox Maryland
1 1 | 1
(@) (b)

pack .label -

pack .scrollbar -side right -f

illy

Figure 18.3.Another packer example. Figure (a) shows a master windpan@ the requested
sizes for three slaves. Figure (b) shows the result of packing the slaves with the script
side top -f ill x

pack .listbox
under the assumption that the master window resizes to just meet the needs of its slaves.

18.2

Packer configuration options

The examples in the previous section illustrated a few of the configuration options pro-
vided by the packer;able 18.2 contains a complete listing. The options fall into three
groups: those that determine the location and size of asfaamie; those that determine
the size and position of the slave within its frame; and those that select a master for the
slave and determine the sla@osition in the masterpacking list.

The location of a slave’frame is determined by th&ide option as already dis-
cussed. For slaves packed on the top or bottom, the width of the frame is always the width
of the available space left in the masTdre height of the frame is usually the requested
height of the slave; howevyehe optionspadx , -ipadx ,-pady , and-ipady cause
the packer to pretend that the slawequested size is tgar than what the slave specified.
Slaves packed on the left and right sides are handled in an analogous fashion.

DRAFT (3/11/93): Distribution Restricted

194

The Packer

-after

w ndow
Usewi ndow's master as the master for the slave and insert the slave info the
packing list just afteni ndow

-anchor position

If the frame is lager than the slavefinal size, this option determines whefe
in the frame the slave will be positioned.

-before wi ndow

Usewi ndow's master as the master for the slave and insert the slave info the
packing list just beforai ndow

-expand bool ean

If bool ean is a true value then the slaséfame will be grown to absorb
any extra space left over in the master

-fll

style
Specifies whether (and how) to grow the slave if its framegderddhan the
slaves requested siz&t yl e must be eithenone, x, y, orboth .

-in

wi ndow
Usewi ndowas the master for slawd ndow must be the slaveparent or a
descendant of the slaggarent. If no master is specified then it defaults to
the slaves parent.

-ipadx di stance

Di st ance specifies internal padding for the slave, which is extra horizontal
space to allow inside the slave on each side, in addition to what the slaye
requests.

-ipady di stance

Di st ance specifies internal padding for the slave, which is extra vertical
space to allow inside the slave on each side, in addition to what the slave
requests.

-padx di stance

Di st ance specifies external padding for the slave, which is extra horiZon-
tal space to allow outside the slave but inside its frame on each side.

-pady di stance

Di st ance specifies external padding for the slave, which is extra vertical
space to allow outside the slave but inside its frame on each side.

-side

si de
Si de specifies which side of the master the slave should be packed against.
Must betop , bottom , left , orright

Table 18.2.A summary of the configuration options supported by the packer

DRAFT (3/11/93): Distribution Restricted

18.2 Packer configuration options 195

—| Wish R

oK | Cancel | Help |

pack .ok .cancel .help -side left -ipadx 3m -ipady 2m -expand 1

Figure 18.4.An example of the padding arelxpand options. When thpack command in the
figure is applied to the windows shown in Figure 18.2(a), the resulting layout is as shown ir
figure, assuming that the massesize is fixed. Internal padding causes each wirglsizé to be
increased beyond what it requested, anddkpand option causes the extra space in the mas
be distributed among the slaves’ frames.

The-expand option allows a frame to absorb leftover space in the méfstiee
master ends up with more space than its slaves need (e.g. because the user has interac-
tively stretched a top-level window), and if texpand option has been set to true for
one of the slaves, then that sla&ame will be expanded to use up all the extra horizontal
or vertical space (for left/right and top/bottom slaves, respectively). If multiple slaves
have theexpand option set, then the extra space is divided evenly among them. See
Figure 18.4 for an example that usespand and the padding options.

The size and location of a slave within its frame are determined bfy the and
- anchor options in conjunction with the padding options. Thdél option can select
no filling, filling in a single direction, or filling in both directions. If internal padding has
been specified for a slavaépadx or-ipady) then the slave will be stretched by the
amount of the internal padding even if no filling has been requested in that dimension. If
external padding has been specified for a slgpaek or-pady), then the packer will
leave the specified amount of space between the window and the edge of the frame even if
filling is requested.

If the final size of the slave is smaller than the frame, theratte@hor option con-
trols where to place the slave in the frame. This option may have any of the values
described in Section 16.8, suchnasto indicate that the northwest (uppeft) corner of
the slave should be positioned at the northwest corner of the frame. If external padding has
been specified witlpadx or-pady , thennw really refers to a point inset from the cor-
ner of the frame by the pad amounts.

The third group of optionsin , -before , and-after , controls the master for a
slave and the position of the slave in the packing list. By default the master for a slave is
its parent and the order of slaves in the packing list is determined by the order of their
pack commands. Howevgthe- in option may be used to specify afeient masterAs

DRAFT (3/11/93): Distribution Restricted

196 The Packer
| |
= wish | -]

pack .left -side left -padx 3m -pady 3m .
pack .right -side right -padx 3m -pady 3m plnoints
pack .pts8 .pts10 .pts12 .pts18 .pts24 \ #10 points [~ Bold

-in .left -side top -anchor w 12 points W Halic
pack .bold .italic .underline \]]

-in .right -side top -anchor w 18 points W Underline

-4 24 points -
@) (b)

Figure 18.5.Hierarchical packing. The pack commands in (a) produce the layout shown in
Two invisible frame widgetsleft — and.right , are used to achieve the columfeef.

18.3

with the placerthe master must be either the slaygrent or a descendant of the slawve’
parent (see page 185 for an explanation of this restriction). Béfere and-after

options allow you to control the order in which slaves are packed. When one of these
options is used, the master for the slave is automatically set to the master for the window
named in the option.

Hierarchical packing

The packer is often used in hierarchical arrangements where slave windows are also mas-
ters for other slaves. Figure 18.5 shows an example of hierarchical packing. The resulting
layout has a column of radio buttons on the left and a column of check buttons on the
right, with each group of buttons centered vertically in its colurarachieve this ééct
two extra frame widgetsleft and.right , are packed side by side in the main win-
dow, then the buttons are packed inside them. The packer sets the requested sizes for
Jleft and.right to provide enough space for the buttons, then uses this information
to set the requested size for the main windbwe main windows geometry will be set to
the requested size, then the packer will arralefie and.right inside the it, and
finally it will arrange the buttons insidieft and.right

Figure 18.5 also illustrates why it is sometimes useful for a wirklma'ster to be
different from its parent. It would have been possible to create the button windows as chil-
dren of.left and.right (e.g..left.pts8 instead ofpts8) but it is better to cre-
ate them as children ofand then pack them insideft ~ and.right .The windows
Jdeft and.right serve no purpose in the application except to help in geometry man-
agement. They are not even visible on the screen. If the buttons were children of their
geometry masters then changes to the geometry management (such as adding more levels
in the packing hierarchy) might require the button windows to be renamed and would

DRAFT (3/11/93): Distribution Restricted

18.4 Other options to the pack command 197

18.4

break any code that used the old names (such as entries inXidefaults files). Itis

better to give windows names that reflect their logical purpose in the application, build
separate frame hierarchies where needed for geometry management, and then pack the
functional windows into the frames.

Other options to the pack command

So far thepack command has been discussed in its most common form, where the first
argument is the name of a slave window and the otlgemaents specify configuration
options. Bble 18.1 shows several other forms forghek command, where the first
argument selects a particular command optRatk conf igure has the samefett as

the short form that’ been used up until now: the remaininguanents specify windows

and configuration options. plack conf igure (or the short form with no command
option) is applied to a window that is already managed by the p#io&erthe slave’con-
figuration is modified; configuration options not specified inpdaek command retain

their old values.

The commangback slaves returns a list of all of the slaves managed by the
packer for a given master windowhe order of the slaves in the list reflects their order in
the packing list:

pack slaves .left

Pack info returns all of the configuration options for a given slave:
pack info .pts8
-in .left -side top -anchor w
The return value is a list consisting of names and values for configuration options in
exactly the form you would specify thempack conf igure . This command can be
used to save the state of a slave so that it can be restored later
Lastly, pack forget causes the packer to stop managing one or more slaves and
forget all of its configuration state for them. It also unmaps the windows so that they no
longer appear on the screen. This command can be used to transfer control of a window
from one geometry manager to anottoersimply to remove a window from the screen for
a while. If a fogotten window is itself a master for other slaves, the information about
those slaves is retained but the slaves waadisplayed on the screen until the master
window becomes managed again.

DRAFT (3/11/93): Distribution Restricted

198 The Packer

DRAFT (3/11/93): Distribution Restricted

Chapter 19
Bindings

19.1

You have already seen that Scripts can be associated with certain widgets such as but-
tons or menus so that the scripts are invoked whenever certain eventsodewas click-
ing a mouse button over a button widget. These mechanisms are provided as specific
features of specific widget classes. Tk also contains a general-phipdisg mechanism
that can be used to create additional event handlers for widgets. A binding “birads” a T
script to an X event or sequence of X events in one or more windows; the script will be
invoked automatically by Tk whenever the given event sequence occurs in any of the win-
dows. You can create new bindings to extend the basic functions of a widget (e.g. with
keyboard accelerators for common actions), or you can override or modify the default
behaviors of widgets, since they are implemented with bindings.

This chapter assumes that you already know at least the basics about X event types,
keysyms, modifiers, and the fields in event structures. More information on these topics
can be found in any of several books that describe the Xlib programming interface.

An overview of the bind command

Thebind command is used to create, modduery and remove bindingsable
19.1 summarizes its syntax. This section illustrates the basic featinies afand later
sections go over the features in more detail.

Bindings are created with commands like the one below:

bind .entry <Control-d> {.entry delete insert}

199

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

200

Bindings

bind

bind

bind

bind

wi ndowSpec sequence scri pt
Arranges foiscri pt to be executed each time the event sequence given by
sequence occurs in the window(s) given oy ndowSpec. If a binding
already exists fomM ndowSpec andsequence then it is replaced. If
scri pt is an empty string then the binding fdrndowSpec and
sequence is removed, if there is one.

wi ndowSpec sequence + scri pt
If there is already a binding far ndowSpec andsequence then appends|
scri pt to the script for the current binding; otherwise creates a new bjnd-
ing.

wi ndowSpec sequence
If there is a binding foni ndowSpec andsequence then returns its
script. Otherwise returns an empty string.

wi ndowSpec
Returns a list whose entries are all of the sequences for wihimbowSpec
has bindings.

tkerror message

Invoked by Tk when it encounters el €rror in an event handler such as a
binding.Message is the error message returned lay. Any result returned
by tkerror is ignored.

Table 19.1.A summary of thdind andtkerror commands.

Note:

The first agument to the command specifies the path name of the window that the binding
applies to. It can also be a widget class name, in which case the binding applies to all wid-
gets of that class (such bindings are cadleds bindingy or it can ball , in which case
the binding applies to all widgets. The secorgliarent specifies a sequence of one or
more X events. In this example the sequence specifies a single event, which is a key-press
of thed character while th€ontrol key is down. The third gument may be anycl
script. The script in the example invokestry ’s widget command to delete the charac-
ter just after the insertion cursor

After the command completes, the script will be invoked whenever Control-d is typed
in .entry . The binding can trigger any number of times. It remainsfaciefintil
.entry is deleted or the binding is explicitly removed by involimgd with an empty
script:

bind .entry <Control-d> {}

A binding for a keystike will only trigger if the input focus is set to the window for the
binding. See Chapter 21 for neoinformation on the input focus.

Thebind command can also be used to retrieve information about binditogysd If
is invoked with an event sequence but no script then it returns the script for the given
event sequence:

bind .entry <Control-d>

DRAFT (3/11/93): Distribution Restricted

19.2 Event patterns 201

19.2

.entry delete insert
If bind is invoked with a single gument then it returns a list of all the bound event
sequences for that window or class:

bind .entry

<Control-Key-d>

bind Button

<ButtonRelease-1> <Button-1> <Any-Leave> <Any-Enter>

The first example returned the bound sequencesiitny , and the second example
returned information about all of the class bindings for button widgets.

Event patterns

Event sequences are constructed out of basic units eatbed patternsvhich Tk
matches against the stream of X events received by the application. An event sequence can
contain any number of patterns, but in practice most sequences only contain a single pat-
tern.
The simplest form for an event pattern consists of a printing character saicin @s
This form of pattern matches a key-press event for that character as long as there are no
modifier keys pressed. For example,
bind .entry a {.entry insert insert a}
arranges for the characteto be inserted inte@entry at the point of the insertion cursor
whenever it is typed.
The second form for an event pattern is longer but more flexible. It consists of one or
more fields between angle brackets, with the following syntax:
<nmodi fier-nodifier-..- nodifier-type-detail >
White space may be used instead of dashes to separate the various fields, and most of the
fields are optional. Thiypefield identifies the particular X event type, such as
KeyPress orEnter (see B&ble 19.2 for a list of all the available types). For example,
the command
bind .x <Enter> {puts Hello!'}
causesHMello! " to be printed on standard output whenever the mouse cursor moves into
widget.x .
For key and button events, the event type may be followedibtaé field that speci-
fies a particular button or kelyor buttons, the detail is the number of the button (1-5). For
keys, the detail is an KeysymA keysym is a textual name that describes a particular key
on the keyboard, such BackSpace or Escape orcomma The keysym for alphanu-
meric ASCII characters such as “a” or “A” or “2” is just the character itself. Refer to your
X documentation for a complete list of keysyms.

DRAFT (3/11/93): Distribution Restricted

202 Bindings
Button, ButtonPress Expose Leave
ButtonRelease FocusIn Map
Circulate FocusOut Property
CirculateRequest Gravity Reparent
Colormap Keymap ResizeRequest
Configure Key, KeyPress Unmap
Conf igureRequest KeyRelease Visibility
Destroy MapRequest
Enter Motion
Table 19.2.Names for event types. Some event types have multiple namedée . gnd
KeyPress .

If no detail field is provided, as kKeyPress> , then the pattern matches any event
of the given type. If a detail field is provided, asikeyPress-Escape> |, then the pat-
tern only matches events for the specific key or button. If a detail is specified then you can
omit the event typesEscape> is equivalent tacKeyPress-Escape>

Note: The patterr<1> is equivalent taxButton-1> |, not<KeyPress-1>

The event type may be preceded by any numberodlifiers each of which must be
one of the values inable 19.3. Most of the modifiers are X modifier names, su€Cloas
trol or Shift . If one or more of these modifiers are specified then the pattern only
matches events that occur when the specified modifiers are present. For example, the pat-
tern<Meta-Control-d > requires that both the Meta and Control keys be held down
whend is typed, an&B1-Button-2> requires that button 1 already be down when but-
ton 2 is pressed. If no modifiers are specified then none must be pr&sitress- a>
will not match an event if the Control key is down.

If the Any modifier is specified, it means that the state of unspecified modifiers should
be ignored. For exampleAny-a> will match a press of the “a” key even if button 1 is
down or the Meta key is pressedny-B1-Motion> will match any mouse motion
event as long as button 1 is pressed; other modifiers are ignored.

The last two modifierdDouble andTriple , are used primarily for specifying dou-
ble and triple mouse clicks. They match a sequence of two or three events, each of which
matches the remainder of the pattern. For exarmpleuble-1> matches a double-click
of mouse button 1 with no modifiers down, atfehy-Triple-2> matches any triple
click of button 2 regardless of modifiers. Fddauble or Triple pattern to match, all
of the events must occur close together in time and without substantial mouse motion
between them.

DRAFT (3/11/93): Distribution Restricted

19.3 Sequences of events 203

Control Button4, B4 Mod1, M2, Alt
Shift Button5, B5 Mod3, M3
Lock Any Mod4, M4
Buttonl, B1 Double Mod5, M5

Button2, B2 Triple
Button3, B3 Mod1, M1, Meta, M

Table 19.3.Modifier names for event patterns. Multiple names are available for some modi
for exampleMod1, M1, Meta, andMare all synonyms for the same modifier

19.3 Sequences of events

An event sequence consists of one or more event patterns optionally separated by white
space. For example, the sequerEscape>a contains two patterns. It triggers when the
a key is pressed immediately after thecape key.

A sequence need not necessarily match consecutive events. For example, the
sequence&Escape>a will match an event sequence consisting of a key-press on
Escape, a release dEscape , and then a press af the release dEscape will be
ignored in determining the match. Tk ignores conflicting events in the input event stream
unless they are of typgéeyPress orButtonPress . Thus if some other key is pressed
between th&scape and thea then the sequence womatch. These same rules apply to
double events such a®ouble-1>

19.4 Conflict resolution

At most one binding will trigger for any given X event. If several bindings match the event
then the most specific binding is chosen and only its script is invoked. For example, sup-
pose there are bindings foButton-1> and<Double-Button-1> and button 1 is
clicked three times. The first button-press event will match onlyBugton-1> bind-
ing, but the second and third presses will match both bindings. Since
<Double- Button-1> is more specific thagButton-1> , its script is executed on
the second and third presses. Similaslyscape>a is more specific thaxa>, <Con-
trol-d> is more specific tharAny-d> or<d>, and<d> is more specific thanKey-
Press> .

There may also be a conflict among bindings witfedéht window specifications.
For example, there might be a binding for a specific wingdws another binding for its
class, plus another fatl . When this occurs, any window-specific binding receives pref-
erence over any class binding and any class binding receives preference @ler any

DRAFT (3/11/93): Distribution Restricted

204

Bindings

Note:

19.5

binding. For example, if there is aAny-KeyPress> binding for a window and a
<Return> binding for its class, pressing the return key will trigger the window-specific
binding, not the class binding.

The default behaviors for widgetseagstablished with class bindingeated by Tk during
initialization. You can modify the behavior of an individual widget ating window-
specific bindings that override the class bindings. Howereerhave to be caful in
doing this that you donhaccidentally override merbehavior than you intended. For
example, if you specify atAny-KeyPress> binding for a widget, it will override a
<Return> binding for the class, even though #tReturn> binding appears to be
mote specific. The solution is to duplicate #ieturn> class binding for the widget.

Substitutions in scripts

Note:

If the script for a binding contaifécharacters then it is not executed diredtigtead, a

new script is generated by replacing e#@haracter and the one that follows it with
information about the X event. The character followingléiselects a specific substitution

to make. About 30 diérent substitutions are defined; see the reference documentation for
complete details. The following substitutions are the most commonly used ones:

%X Substitute the x-coordinate from the event.

%y Substitute the y-coordinate from the event.

%W Substitute the path name of the event window

%A Substitute the 8-bit ISO character value that corresponds to a

KeyPress orKeyRelease event, or an empty string if the
event is for a key like Shift that doeshave an ISO equiva-
lent.

%% Substitute the charactés

For example, the following bindings implement a simple mouse tracker:

bind all <Enter> {puts "Entering %W"}
bind all <Leave> {puts "Leaving %W"}
bind all <Motion> {puts "Mouse at (%Xx,%y)"}

When Tk makes % substitutions @aits the script as an dinary string without any
special poperties. The normal quoting rules fal Tommands & not considexd, sd%
sequences will be substituted even if embedded in bracesoaded by backslashes. The
only way to pevent éosubstitution is to double tRécharacter The easiest way to avoid
problems with complex scripts and % substitutions is to keep the binding simple, for
example by putting the script in aggedue and having the binding invoke the@pedue
with arguments aated via % substitution.

DRAFT (3/11/93): Distribution Restricted

19.6 When are events processed? 205

19.6

When are events processed?

Note:

19.7

Tk only processes events at a few well-defined times. After a Tk application completes its
initialization it enters aevent loopo wait for X events and other events such as timer and
file events. When an event occurs the event loop executesaCamd€ to respond to that
event. Once the response has completed, control returns to the event loop to wait for the
next interesting event. Almost all events are processed from the top-level event loop. New
events will not be considered while responding to the current event, so there is no danger
of one binding triggering in the middle of the script for another binding. This approach
applies to all event handlers, including those for bindings, those for the script options
associated with widgets, and others yet to be discussed, such as window manager protocol
handlers.

A few special commands suchtiwait andupdate reinvoke the event loop
recursively so bindings may trigger during the execution of these commaadshéuld
only invoke these commands at times when it is safe for bindings to ti@mamands
that invoke the event loop are specially noted in their reference documentation; all other
commands complete immediately without re-entering the event loop.
Event handlers @& always invoked at global level (as if the commauulével #0 ”
were used), even if the event loop was invokaa fitkwait or update command

inside a pocedue. This means that global variablegalways accessible in event
handlers without invoking thglobal command.

Background errors: tkerror

It is possible for adl error to occur while executing the script for a binding. These errors
are calledbackgound erors; when one occurs, the default action is for Tk to print the
associated error message on standard output. Havtieiggorobably isr’very useful in

most cases. It is usually better to display the error message in a message window or dialog
box on the screen where the user can see ittkBneor command permits each appli-
cation to handle background errors in the best way for that application. When a back-
ground error occurs, Tk invokéserror with a single agument consisting of the error
message. Thikerror command is not defined by Tk; presumably each application will
define its owrtkerror ~ procedure to report errors in a way that makes sense for that
application. Iftkerror returns normally then Tk will assume it has dealt with the error
and it wont do anything else itself. tkerror returns an error (e.g. because there is no
tkerror command defined) then Tk falls back on the default approach of printing the
message on standard output.

Thetkerror procedure is invoked not just for errors in bindings, but for all other
errors that are returned to Tk at times when it has no-one else to return the errors to. For
example, menus and buttons ¢kéirror if an error is returned by the script for a menu
entry or button; scrollbars cdkerror if a Tcl error occurs while communicating with

DRAFT (3/11/93): Distribution Restricted

206

Bindings

19.8

the associated widget; and the window-manager interfacetlcaitsr if an error is
returned by the script associated with a window manager protocol.

Other uses of bindings

The binding mechanism described in this chapter applies to widgets. Hogienikzr
mechanisms are available internally within some widgets. For example, canvas widgets
allow bindings to be associated with graphical items such as rectangles or polygons, and
text widgets allow bindings to be associated with ranges of characters. These bindings are
created using the same syntax for event sequencéésutbtitutions, but they are cre-

ated with the widget command for the widget and refer to the widigét'rnal objects

instead of windows. For example, the following command arranges for a message to be
printed whenever mouse button 1 is clicked over item 2 in a canvas

.c bind 2 <ButtonPress-1> {puts Hello!}

DRAFT (3/11/93): Distribution Restricted

Chapter 20
The Selection

20.1

Theselectionis a mechanism for passing information between widgets and applications.
The user first selects one or more objects in a widget, for example by dragging the mouse
across a range of text or clicking on a graphical object. Once a selection has been made,
the user can invoke commands in other widgets that cause them to retrieve information
about the selection, such as the characters in the selected range or the name of the file con-
taining the selection. The widget containing the selection and the widget requesting it can
be in the same or ddrent applications. The selection is most commonly used to copy
information from one place to anothbut it can be used for other purposes as well, such
as setting a breakpoint at a selected line or opening a new window on a selected file.

X defines a standard mechanism for supplying and retrieving the selection and Tk
provides access to this mechanism withsblection = command. @ble 20.1 summa-
rizes theselection =~ command. The rest of this chapter describes its features in more
detail. For complete information on the X selection protocol, refer to the@fitaet
Communications Convention Manual (ICCCM).

Selections, retrievals, and targets

X's selection mechanism allows for multiple selections to exist at once, with names like
“primary selection”, “secondary selection”, and so on. HowelMeisupports only the pri-
mary selection; Tk applications cannot retrieve or supply selections other than the primary
one and the term “selection” always refers to the primary selection in this book. At most
one widget has a primary selection at any given time on a given digyii@y a user

selects information in one widget, any selected information in any other widget is auto-

207

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

208

The Selection

selection clear

w ndow

selection get 2t arget ?

selection handle wi ndow scri pt ?target? 7 ormat?

selection own Wi ndow? ?script?

If there is a selection anywhere wnndow's display deselect it so that no
window owns the selection anymore.

Retrieve the value of the primary selection usiagget as the form in
which to retrieve it, and return the selectiwnalue as resullar get
defaults toSTRING

Creates a handler for selection requests sucls thdtpt will be executed
whenever the primary selection is owneddbyndow and someone attempt
to retrieve it in the form given byar get . Tar get defaults toSTRING
For mat specifies a representation for transmitting the selection to the
requester; it defaults 8TRING. Whenscr i pt is invoked, two additional
numbers are appended to it, consisting of the startfegt@nd maximum
number of bytes to retriev8er i pt should return the requested range of
the selection; if it returns an error then the selection retrieval will be rejected.

W

Claims ownership of the selection f@grndow; if some other window previ
ously owned the selection, deselects the old selectisorlif pt is speci-
fied then it will be executed whew ndowis deselected. If neithef ndow
norscri pt is specified, then the command returns the path name of the
window that currently owns the selection, or an empty string if no windoy in
this application owns the selection.

Table 20.1.A summary of theselection =~ command.

matically deselected. It is possible for multiple disjoint objects to be selected simulta-
neously within a widget (e.g. threefdifent items in a listbox or severalfdifent

polygons in a drawing window), but usually the selection consists of a single object or a
range of adjacent objects.

When you retrieve information about the selection, you can ask for any of several dif-
ferent kinds of information. The d&rent kinds of information are referred to as retrieval
targets The most common tget iSSTRING In this case the contents of the selection are
returned as a string. For example, if text is selected then a retrieval gétSARING
will return the contents of the selected text; if graphics are selected then a retrieval with
target STRINGwill return some string representation for the selected graphics. If the
selection is retrieved with getFILE_ NAMEthen the return value will be the name of
the file associated with the selection. IG&LINE is used then the return value will be
the number of the selected line within its file. There are maggtsawith well-defined
meanings; refer to the X ICCCM for more information.

The commandelection get retrieves the selection. Thedgat may be specified
explicitly or it may be left unspecified, in which case it defaulSTRING. For example,
the following commands might be invoked when the selection consists of a few words on
one line of a file containing the text of Shakesps&emeo and Juliet

DRAFT (3/11/93): Distribution Restricted

20.2 Locating and clearing the selection 209

20.2

selection get

star-crossed lovers
selection get FILE_ NAME
romeoJuliet

selection get LINE

6

These commands could be issued in any Tk application on the display containing the
selection; they need not be issued in the application containing the selection.

Not every widget supports every possible selectiayetaFor example, if the infor-
mation in a widget ist'associated with a file then tRLE_NAME tamet will not be
supported. If you try to retrieve the selection with an unsupportget tdwen an error will
be returned. Fortunatelgvery widget is supposed to support retrievals withetarAR-

GETS such retrievals return a list of all thegat forms supported by the current selection
owner You can use the result of&ARGETSetrieval to pick the most convenient avail-
able taget. For example, the following procedure retrieves the selection as Postscript as
possible, otherwise as an unformatted string:

proc getSelection {} {
set targets [selection get TARGETS]
if {[Isearch $targets POSTSCRIPT] >= 0} {
return [selection get POSTSCRIPT]

}
selection get STRING

Locating and clearing the selection

Tk provides two mechanisms for retrieving information about who owns the selection.
The commandelection own (with no additional ajuments) will check to see if the
selection is owned by a widget in the invoking application. If so it will return the path
name of that widget; if there is no selection or it is owned by some other application then
selection own will return an empty string.

The second way to locate the selection is with the retriexgatskPPLICATION
andWINDOW_NAMIEhese tagets are both implemented by Tk and are automatically
available whenever the selection is in a Tk application. The command

selection get APPLICATION

returns the name of the Tk application that owns the selection (in a form suitable for use
with thesend command, for example) and

selection get WINDOW_NAME

DRAFT (3/11/93): Distribution Restricted

210

The Selection

20.3

returns the path name of the window that owns the selection. These commands will work
only if the owning application is based on Tk. If the application that owns the selection
isn't based on Tk then it probably does not supporAPBLICATION andWIN-
DOW_NAM&mets and theelection get command will return an errofhese com-
mands will also return errors if there is no selection.

The command

selection clear
will clear out any selection on the display of the invoking application. It works regardless
of whether the selection is in the invoking application or some other application on the
same displayThe following script will clear out the selection only if it is in the invoking
application:

if {[selection own] !=""} {
selection clear
}

Supplying the selection with T cl scripts

The sections above described gfacilities for retrieving the selection; this section
describes how to supply the selection. The standard widgets like entries and texts already
contain C code that supplies the selection, so you dsnally have to worry about it
when writing Tl scripts. Howeverit is possible to write dl scripts that implement new
targets or that provide the complete supply-side protocol, and this section describes how to
do it. This feature of Tk is seldom used so you may wish to skip over this material until
you need it.
The protocol for supplying the selection has three parts:

1. A widget must claim ownership of the selection. This deselects any previous selection

and typically redisplays the selected material in a highlighted fashion.

2. The selection owner must respond to retrieval requests by other widgets and applica-
tions.

3. The owner may request that it be notified when it is deseleciddeW typically

respond to deselection by eliminating the highlights on the display
The paragraphs below describe two scenarios. The first scenario just adds getaw gar
widget that already has selection support, so it only deals with the second part of the pro-
tocol. The second scenario implements complete selection support for a group of widgets
that didnt previously have any; it deals with all three parts of the protocol.

Suppose that you wish to add a newgeéarto those supported for a particular widget.

For example, text widgets contain built-in support forSA&ING tamget but they don’
automatically support thelLE_NAME taget. You could add support féfILE_ NAME
retrievals with the following script:

DRAFT (3/11/93): Distribution Restricted

20.3 Supplying the selection with Tcl scripts 211

selection handle .t getFile FILE_NAME
proc getFile {offset maxBytes} {
global f ileName
set last [expr $offset+$maxBytes-1]

string range $f ileName $offset $last
}
This code assumes that the text widget is nameand that the name of its associated file
is stored in a global variable namfeiteName . Theselection handle command

tells Tk to invokegetFile whenevert owns the selection and someone attempts to
retrieve it with tagetFILE_ NAME When such a retrieval occurs, Tk takes the specified
command getFile in this case) appends two additional numeriogliarents, and
invokes the resulting string as el Tommand. In this example a command like

getFile 0 4000

will result. The additional guments identify a sub-range of the selection by its first byte

and maximum length, and the command must return this portion of the selection. If the
requested range extends beyond the end of the selection, then the command should return
everything from the given starting point up to the end of the selection. Tk takes care of
returning the information to the application that requested it. In most cases the entire
selection will be retrieved in one invocation of the command, but for veyy tmlections

Tk will make several separate invocations so that it can transmit the selection back to the
requester in manageable pieces.

The above example simply added a newetto a widget that already provided some
built-in selection support. If selection support is being added to a widget that has no built-
in support at all, then additionatlicode is needed to claim ownership of the selection and
to respond to deselections. For example, suppose that there is a group of three radio but-
tons nameda , .b , and.c and that the buttons have already been configured with their
-variable and-value options to store information about the selected button in a glo-
bal variable namestate . Now suppose that you want to tie the radio buttons to the
selection, so that (a) whenever a button becomes selected it claims the X selection, (b)
selection retrievals return the contentstate , and (c) when some other widget claims
the selection away from the buttons tlstate is cleared and all the buttons become
deselected. The following code implements these features:

selection handle .a getValue STRING
proc getValue {offset maxBytes} {
global state
set last [expr $offset+$maxBytes-1]
string range $state $offset $last
}
foreach w {.a .b .c} {
$w conf ig -command {selection own .a selGone}

proc selGone {} {

DRAFT (3/11/93): Distribution Restricted

212 The Selection

global state
set state {}
}
Theselection handle command and thgetValue procedure are similar to the

previous example: they respondIDRING selection requests faa by returning the
contents of thetate variable. Thdoreach loop specifies acommand option for
each of the widgets. This causes $b&ection own command to be invoked when-
ever the user clicks on any of the radio buttons, anddleetion own command
claims ownership of the selection for widgeet (.a will own the selection regardless of
which radio button gets selected and it will retstate in response to selection
requests). Theelection own command also specifies that procediei&sone

should be invoked whenever the selection is claimed away by some other Balget.
Gone setsstate to an empty string. All of the radio buttons mongtate for
changes, so when it gets cleared the radio buttons will all deselect themselves.

DRAFT (3/11/93): Distribution Restricted

Chapter 21
The Input Focus

21.1

At any given time one window of an application is designated d@sghéefocus window

or focus windowor short. All keystrokes received by the application are directed to the
focus window and they are processed according to its event bindings. This chapter
describes Tlefocus command, which is used to control the input focasld 21.1
summarizes the syntax of theeus command. The focus window only determines what
happens once a keystroke event arrives at a particular application; it does not determine
which of the applications on the display receives keystrokes. The selection of a focus
application is made by the window manager

Focus model: explicit vs. implicit

There are two possible ways of handling the input focus, which are knowniaplice
andexplicit models. In the implicit model the focus follows the mouse: keystrokes are
directed to the window under the mouse pointer and the focus window changes implicitly
when the mouse moves from one window to anothahe explicit model the focus win-

dow is set explicitly and doegdrehange until it is explicitly reset; mouse motions do not
change the focus.

Tk implements the explicit focus model, for several reasons. First, the explicit model
allows you to move the mouse cursor out of the way when you're typing in a window;
with the implicit model you'd have to keep the mouse in the window you're typing to.
Second, and more important, the explicit model allows an application to change the focus
window without the user moving the mouse. For example, when an application pops up a
dialog box that requires type-in (e.g. one that prompts for a file name) it can set the input

213

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

214

The Input Focus

focus

focus w ndow

focus default Wi ndow?

focus none

Returns the path name of the applicasdocus windowor an empty string
if there is no focus window

Sets the applicatios’focus window taM ndow .

If Wi ndowis specified then it becomes the default focus winedvich will

receive the input focus whenever the focus window is deleted. In this case

the command returns an empty stringrilhdow s specified asone, then

there will be no default focus windo¥ wi ndow is omitted then the com-

(rjne}ndlreturns the current default focus windomnone if there is no
efault.

Clears the focus windaw

Table 21.1.A summary of thdocus command.

21.2

focus to the appropriate window in the dialog without you having to move the mouse, and
it can move the focus back to its original window when you're finished with the dialog
box. This allows you to keep your hands on the keyboard. Simieilsn you're typing
in a form the application can move the input focus to the next entry in the form each time
you type a tab, so that you can keep your hands on the keyboard and worKicientlef
Lastly, if you want an implicit focus model then you can always achieve it with event
bindings that change the focus each time the mouse cursor enters a new window

Tk applications dont’'need to worry about the input focus very often because the
default bindings for text-oriented widgets already take care of the most common situa-
tions. For example, when you click button 1 over an entry or text widget, the widget will
automatically make itself the focus windofs application designgyou only need to set
the focus in cases like those in the previous paragraph where you want to move the focus
among the windows of your application to reflect the flow of work.

Setting the input focus

To set the input focus, invoke thecus command with a widget name agament:

focus .dialog.entry
From this point on, all keystrokes received by the application will be directed to
.dialog.entry and the previous focus window will no longer receive keystrokes. The
new focus window will display some sort of highlight, such as a blinking insertion cursor
to indicate that it has the focus and the previous focus window will stop displaying its
highlight.

DRAFT (3/11/93): Distribution Restricted

21.3 Clearing the focus 215

21.3

Here is a script that implements tabbing among four entries in a form:
set tabList {.form.el .form.e2 .form.e3 .form.e4}

foreach w $tabList {
bind $w <Tab> {tab $tabList}

}
proc tab list {
set i [Isearch $list [focus]]
incr i
if {$i >= [llength $list]} {
setiO

focus [lindex $list $i]

}
This script assumes that the four entry windows have already been created. It uses the
variabletabList to describe the order of traversal among the entries and arranges for
the proceduréab to be invoked whenever a tab is typed in any of the enfrids.
invokesfocus with no aguments to determine which window has the focus, finds where
this window is in the list that gives the order of tabbing, and then sets the input focus to the
next window in the list. The procedus could be used for many &hfent forms just by
passing it a dierentlist argument for each form. The order of focussing can also be
changed at any time by changing the value ofdbeist variable.

Clearing the focus

21.4

The commandocus none clears the input focus for the application. Once this com-
mand has been executed, keystrokes for the application will be discarded.

The default focus

When the focus window is deleted, Tk automatically sets the input focus for the applica-
tion to a window called thdefault focus windowl'he default focus window is initially
none, which means that there will be no focus window after the focus window is deleted
and keystrokes will be discarded until the focus window is set again.

Thefocus default command can be used to specify a default focus window and
to query the current default:

focus default
none

focus default .entry
focus default

DRAFT (3/11/93): Distribution Restricted

216 The Input Focus
.entry
Once this script has been completedtry will receive the input focus whenever the
input focus window is deleted.
21.5 Keyboard accelerators

Applications with keyboard accelerators (e.g. they allow you to@gerol+s to save

the file orControl+q to quit the application) require special attention to bindings and

the input focus. First, the accelerator bindings must be present in every window where you
want them to applyFor example, suppose that an editor has a main text window plus sev-
eral entry windows for searching and replacemeon. Will create bindings for accelera-

tors likeControl+gq in the main text windowbut you will probably want most or all of

the bindings to apply in the auxiliary windows also, so you'll have to define the accelera-
tor bindings in each of these windows too.

In addition, an application with keyboard accelerators should never let the focus
becomenone, since that will prevent any of the accelerators from being processed. If no
other focus window is available, | suggest setting the focus to the main window of the
application; of course, you'll have to define accelerator bindings garthat they are
available in this mode. In addition, | recommend setting the default focus windowrto
some other suitable window so that the focug isst when dialog boxes and other win-
dows are deleted.

DRAFT (3/11/93): Distribution Restricted

Chapter 22
Window Managers

For each display running the Xilldow System there is a special process calledthe
dow managerThe window manager is separate from the X display server and from the
application processes using the displye main function of the window manager is to
control the arrangement of all the top-level windows on each screen. In this respect it is
similar to the geometry managers described in Chapters 17 and 18 except that instead of
managing the internal windows within an application it manages the top-level windows of
all applications. The window manager allows each application to request particular loca-
tions and sizes for its top-level windows, which can be overridden interactively by users.
Window managers also serve several other purposes besides geometry management: they
add decorative frames around top-level windows; they allow windows to be iconified and
deiconified; and they notify applications of certain events, such as user requests to destroy
the window

X allows for the existence of many féifent window managers that implemenfefif
ent styles of layout, provide @&fent kinds of decoration and icon management, and so
on. Only a single window manager runs for a display at any given time, and the user gets
to choose which one. In order to allow any application to work smoothly with any window
managerX defines a protocol for the interactions between applications and window man-
agers. The protocol is defined as part of the 18temt Communication Conventions
Manual (ICCCM). Vith Tk you use thevmcommand to communicate with the window
manager; Tk implements thencommand using the ICCCM protocols so that any Tk-
based application should work with any window man@ables 22.1 and 22.2 summarize
thewmcommand.

217

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

218

Window Managers

wm aspect wi ndow ?Thin yThin xFat yFat?
Set or queryv ndow's aspect ratio. If an aspect ratio is specified, it con-
strains interactive resizes so thaindow's width/height will be at least as
great axThi n/yThi n and no greater thatFat /yFat .

wm client wi ndow ?nane?
Set or query th&VM_CLIENT_MACHINRroperty fomi ndow;, which
gives the name of the machine on whidmdow's application is running.

wm command wi ndow val ue?
Set or query th&VM_COMMARNDperty fosi ndow;, which should contain
the command line used to initiate ndow's application.

wm deiconify wi ndow
Arrange for window to be displayed in normal fashion.

wm focusmodel w ndow ?nodel ?
Set or query the focus model forndow . Model must beactive or
passi ve.

wm geometry wi ndow val ue?
Set or query the requested geometry for windéat ue must have the form
=wi dt hxhei ght x y (any of=, wi dt hxhei ght,or x y can be
omitted).

wm group wi ndow ? eader ?
Set or query the window group theitndow belongs toLeader must be
the name of a top-level windgar an empty string to remowe ndow from
its current group.

wm iconbitmap wi ndow ?bi t map?
Set or query the bitmap fai ndow's icon.

wm iconify wi ndow
Arrange fowi ndowto be displayed in iconic form.

wm iconmask w ndow ?bi t map?
Set or query the mask bitmap f@grndow's icon.

wm iconname window ?string ?
Set or query the string to be displayedMmdow's icon.

wm iconposition wi ndow X y?
Set or query the hints about where on the screen to displagow's icon.

wm iconwindow w ndow 2 con?
Set or query the window to use as iconondow | con must be the path
name of a top-level windaw

wm maxsize w ndow M dt h hei ght ?
Set or query the maximum permissible dimensionsifardow during inter-
active resize operations.

wm minsize wi ndow 2 dt h hei ght ?
Set or query the minimum permissible dimensionsMardow during inter-
active resize operations.

Table 22.1.A summary of thevmcommand. In all of these commandsndow must be the name
of a top-level windowMany of the commands, suchws1 aspect orwm group , are used to
set and query various parameters related to window management. For these commands, i
parameters are specified as null strings then the parameters are removed coamplefetlye

parameters are omitted then the command returns the current settings for the parameters.

DRAFT (3/11/93): Distribution Restricted

22.1 Window sizes 219

wm overrideredirect wi ndow ?bool ean?
Set or query the override-redirect flag ¥@mdow

wm positionfrom wi ndow whonf?
Set or query the source of the position specificationifordow Whommust
beprogram oruser .

wm protocol ~ wi ndow ?protocol ? ?script?
Arrange forscri pt to be executed whenever the window manager sends a
message tai ndow with the giverpr ot ocol . Pr ot ocol must be the
name of an atom for a window manager protocol, such as
WM_DELETE_WINDQWM_SAVE_YOURSELId&FWM_TAKE_FOCUB
scri pt is an empty string then the current handler for protocol is deletgd. If
scri pt is omitted then the current script forot ocol is returned (or an
empty string if there is no handler for ot ocol). If bothpr ot ocol and
scri pt are omitted then the command returns a list of all protocols wit
handlers defined foxi ndow

wm sizefrom wi ndow whonf
Set or query the source of the size specificatiomifordow. Whommust be
program oruser .

wm state wi ndow
Returns the current statewif ndow. normal , iconic , orwithdrawn

wm title wi ndow ?string?
Set or query the title string to display in the decorative bordevi fodow

wm transient w ndow ?mast er?
Set or query the transient statussohdow Mast er must be the name of a
top-level window on whose behalf ndowis working as a transient.

wm withdraw w ndow
Arrange forwi ndow not to appear on the screen at all, either in normal or
iconic form.

=2

22.1 Window sizes

If a Tk application doestuse thevmcommand, Tk will communicate with the window
manager automatically on the applicat®héhalf so that its top-level windows appear on
the screen. By default each top-level window will appear in its “natural” size, which is the
size it requested using the normal Tk mechanisms for geometry management. Tk will for-
ward the requested size on to the window manager and most window managers will honor
the request. If the requested size of a top-level window should change then Tk will for-
ward the new size on to the window manager and the window manager will resize the win-
dow to correspond to the latest request. By default the user will not be able to resize
windows interactively: window sizes will be determined solely by their requested sizes as
computed internally

If you want to allow interactive resizing then you must invoke at least one whthe
minsize andwm maxsize commands, which specify a range of acceptable sizes. For
example the commands

DRAFT (3/11/93): Distribution Restricted

220

Window Managers

22.2

wm minsize .x 100 50

wm maxsize .x 400 150
will allow.x to be resized but constrain it to be 100 to 400 pixels wide and 50 to 150 pix-
els high. If the command

wm minsize .x 11

is invoked then there will &fctively be no lower limit on the size of . If you set a min-
imum size without a maximum size (or vice versa) then the other limit will be uncon-
strained. ¥u can disable interactive resizing again by clearing all of the size bounds:

wm minsize .x {} {}
wm maxsize .x {} {}
In addition to constraining the dimensions of a window you can also constrain its
aspect ratio (width divided by height) using the aspect command. For example,

wmaspect . x1341

will tell the window manager not to let the user resize the window to an aspect ratio less
than 1/3 (window three times as tall as it is wide) or greater than 4 (four times as wide as it
is tall).

If the user interactively resizes a top-level window then the wirglowernally
requested size will be ignored from that point on. Regardless of how the internal needs of
the window change, its size will remain as set by the Assimilar efect occurs if you
invoke thewm geometry command, as in the following example:

wm geometry .x 300x200

This command forces to be 300 pixels wide and 200 pixels high just as if the user had
resized the window interactivelyhe internally requested size far will be ignored once
the command has completed, and the size specifiedwnttgeometry command over-
rides any size that the user might have specified interactively (but the user can resize the
window again to override the size in tlven geometry command). The only ddrence
between thevm geometry command and an interactive resize is wratgeometry is
not subject to the constraints specifiedlyg minsize , wm maxsize , andwm
aspect .

If you would like to restore a window to its natural size you can inwokegeome-
try with an empty geometry string:

wm geometry .x {}

This causes Tk to fget any size specified by the user ombyg geometry , so the win-
dow will return to the size it requested internally

Gridded windows

In some cases it doesmake sense to resize a window to arbitrary pixel sizes. For exam-
ple, consider the application in Figure 22.1. When the user resizes the top-level window

DRAFT (3/11/93): Distribution Restricted

22.2 Gridded windows 221

] |
—| Berkeley Introduction - |]
File Help |
“i Berkeley Introduction . I_Il Berkeley 1s internationally A
noted for its academic
File He_lpl excellence. Its faculty
— - includes 8 Nobel laureates,
Berkeley is internationally noted for N 104 members of the Wational
its academic excellence. Its faculty J acadeny of Sciences, 61
includes 8 Nobel lawreates, 104 members menbers of the National
of the National Academy of Sciences, 61 acadeny of Engineering, and
members of the National academy of nore Guggenhein Fellows and
Engineering, and more Guggenhelim Fellows Presidential Young
and Presidential Young Investigators Investigators than there are -
than there are at any other vniversity at any other university in the
in the country. In a recent national country. In a recent national
survey, Berkeley was ranked the hest survey, Berkeley was ranked
owerall gradvuate institution in the | the hest overall graduate
United States, with 30 of its 32 A institution in the United
L 1 States, with 30 of its 32
graduate departments ranked
(@) | within the top 10.)
A
] |
(b)

Figure 22.1.An example of gridded geometry management. If the user interactively resi:
window from the dimensions in (a) to those in (b), the window manager will rotittteof
dimensions so that the text widget holds an even number of characters in each dimensio
figure shows decorative borders as provided byrwewindow manager

the text widget changes size in response. Ideally the text widget should always contain an
even number of characters in each dimension, and sizes that result in partial characters
should be rounded fof

Gridded geometry management accomplishes tfeéstefVhen gridding is enabled
for a top-level window its dimensions will be constrained to lie on an imaginary grid. The
geometry of the grid is determined by one of the widgets contained in the top-level win-
dow (e.g. the text widget in Figure 22.1) so that the widget always holds an integral num-
ber of its internal objects. Usually the widget that controls the gridding is a text-oriented
widget such as an entry or listbox or text.

To enable gridding, set thesetgrid option to 1 in the controlling widget. The fol-
lowing code was used in the example in Figure 22.1, where the text widget is

tconf igure -setgrid 1

This command has severafegits. First, it automatically makes the main window resiz-
able, even if nevm minsize orwm maxsize command has been invoked. Second, it
constrains the size of the main window so thawill always hold an even number of
characters in its font. Third, it changes the meaning of dimensions used in Tk. These
dimensions now represent grid units rather than pixels. For example, the command

DRAFT (3/11/93): Distribution Restricted

222

Window Managers

Note:

22.3

wm geometry . 50x30

will set the size of the main window so thiat is 50 characters wide and 30 lines high,

and dimensions in the@m minsize andwm maxsize commands will also be grid

units. Many window managers display the dimensions of a window on the screen while it
is being resized; these dimensions will given in grid units too.

In order for gridding to work coectly you must have configuarthe internal geometry
management of the application so that the adlitig window stetches and shrinks in

response to changes in the size of the top-level window , e.g. by packing it with the
- expand option settd and-f ill toboth .

Window positions

22.4

Controlling the position of a top-level window is simpler than controlling its size. Users
can always move windows interactiveiynd an application can also move its own win-
dows using thevm geometry command. For example, the command

wm geometry .x +100+200

will position.x so that its uppeleft corner is at pixel (100,200) on the displdither of
the+ characters is replaced with ahen the coordinates are measured from the right and
bottom sides of the displalfor example,

wm geometry .x -0-0
positions.x at the lowetright corner of the display

Window states

At any given time each top-level window is in one of three states. hotineal or de-ico-
nified state the window appears on the screen. lictrgfiedstate the window does not
appear on the screen, but a small icon is displayed instead vithbdeawnstate neither
the window nor its icon appears on the screen and the window is ignored completely by
the window manager

New top-level windows start biin the normal state.o0 can use the facilities of your
window manager to iconify a window interactivedy you can invoke them iconify
command within the window’application, for example

wm iconify .x

If you invokewm iconify immediately before the window first appears on the screen,
then it will start of in the iconic state. The commanan deiconify causes a window
to revert to normal state again.

The commandvm withdraw places a window in the withdrawn state. If invoked
immediately before a window has appeared on the screen, then the window will tart of
withdrawn. The most common use for this command is to prevent the main window of an

DRAFT (3/11/93): Distribution Restricted

22.5 Decorations 223

22.5

application from ever appearing on the screen (in some applications the main window
serves no purpose: the application presents a collection of windows any of which can be
deleted independently from the others; if one of these windows were the main window
deleting it would delete all the other windows too). Once a window has been withdrawn, it
can be returned to the screen with eithier deiconify ~ orwm iconify

Thewm state command returns the current state for a window:

wm iconify .X
wm state .x

iconic

Decorations

Note:

22.6

When a window appears on the screen in the normal state, the window manager will usu-
ally add a decorative frame around the winddhe frame typically displays a title for the
window and contains interactive controls for resizing the winaoewing it, and so on.

For example, the window in Figure 22.1 was decorated bymérawindow manager

Thewm title command allows you to set the title thatisplayed a window’'dec-
orative frame. For example, the command

wm title . "Berkeley Introduction”
was used to set the title for the window in Figure 22.1.

Thewmcommand provides several options for controlling what is displayed when a
window is iconified. First, you can use thven iconname command to specify a title to
display in the icon. Second, some window managers allow you to specify a bitmap to be
displayed in the icon. Them iconbitmap command allows you to set this bitmap, and
wm iconmask allows you to create non-rectangular icons by specifying that certain bits
of the icon are transparent. Third, some window managers allow you to use one window
as the icon for anothemym iconwindow will set up such an arrangement if your win-
dow manager supports it. Finalijyou can specify a position on the screen for the icon
with thewm iconposition command.

Almost all window managers supp@nn iconname andwm iconposition but
fewer supportvm iconbitmap and almost no window managers suppant

iconwindow very well. Dort’assume that these feaggrwork until you've tried them
with your own window manager

Window manager protocols

There are times when the window manager needs to inform an application that an impor-
tant event has occurred or is about to occur so that the application can do something to
deal with the event. In X terminologihese events are calleéhdow manager mtocols

DRAFT (3/11/93): Distribution Restricted

224

Window Managers

22.7

The window manager passes an identifier for the event to the application and the applica-
tion can do what it likes in response (including nothing). The two most useful protocols
areWM_DELETE_WINDGWIWM_SAVE_YOURSELFhe window manager invokes
theWM_DELETE_WIND@dtocol when it wants the application to destroy the window
(e.g. because the user asked the window manager to kill the window). The
WM_SAVE_YOURSEDFotocol is invoked when the X server is about to be shut down or
the window is about to be lost for some other reason. It gives the application a chance to
save its state on disk before its X connection disappears. For information about other pro-
tocols, refer to ICCCM documentation.

Thewm protocol command arranges for a script to be invoked whenever a partic-
ular protocol is triggered. For example, the command

wm protocol . WM_DELETE_WINDOW {
puts stdout "I don’t wish to die"
}

will arrange for a message to be printed on standard output whenever the window manager
asks the application to kill its main windolm this case, the window will not actually be
destroyed. If you doh’specify a handler foVM_DELETE_WINDQNén Tk will destroy

the window automatically¥M_DELETE_WINDQ&\the only protocol where Tk takes

default action on your behalf; for other protocols, W& _SAVE_YOURSELi6thing

will happen unless you specify an explicit handler

Special handling: transients, groups, and override-redirect

The window manager protocols allow you to request three kinds of special treatment for
windows. First, you can mark a top-level windowtrassientwith a command like the
following:

wm transient .X .

This indicates to the window manager thatis a short-lived windowsuch as a dialog

box, working on behalf of the applicatisnhain windowThe last agument tovm

transient (“. "in the example) is referred to as timasterfor the transient window

The window manager may treat transient windowiedihtly e.g. by providing less deco-
ration or by iconifying and deiconifying them whenever their master is iconified or deico-
nified.

In situations where a group of long-lived windows works together you can usmthe
group command to tell the window manager about the group. The following script tells
the window manager that the windowspl ,.top2 ,.top3 , and.top4 are working
together as a group, artdpl is the groupeader

foreach i {.top2 .top3 .top4} {
wm group $i .topl
}

DRAFT (3/11/93): Distribution Restricted

22.8 Session management 225

22.8

The window manager can then treat the group as a unit, and it may give special treatment
to the leaderor example, when the group leader is iconified, all the other windows in the
group might be removed from the display without displaying icons for them: the’keader
icon would represent the whole group. When the léadeon is deiconfied again, all the
windows in the group might return to the display also. The exact treatment of groups is up
to the window managgeand diferent window managers may handle therfed#ntly The

leader for a group need not actually appear on the screen (e.g. it could be withdrawn).

In some extreme cases it is important for a top-level window to be completely ignored
by the window manager: no decorations, no interactive manipulation of the window via
the window manageno iconifying, and so on. The best example of such a window is a
pop-up menu. In these cases, the windows should be markedrasie-edirectusing a
command like the following:

wm overrideredirect .popup
This command must be invoked before the window has actually appeared on the screen.

Session management

22.9

Thewmcommand provides two options for communicating with session managers:
client andwm command These commands pass information to the session manager
about the application running in the window; they are typically used by the session man-
ager to display information to the user and to save the state of the session so that it can be
recreated in the futur®/m client identifies the machine on which the application is
running, andvm commandidentifies the shell command used to invoke the application.
For example,

wm client . sprite.berkeley.edu

wm application . {browse /usr/local/bin}
indicates that the application is running on the macéymite.berkeley.edu and
was invoked with the shell commanirbwse /usr/local/bin

A warning about window managers

Although the desired behavior of window managers is supposedly described in the X
ICCCM document, the ICCCM is not always clear and no window manager that | am
aware of implements everything exactly as described in the ICCCM. For example, the
mwnwindow manager doedralways deal properly with changes in the minimum and
maximum sizes for windows after they've appeared on the screen, aadhtiigindow

manager treats the aspect ratio backwards; neither window manager positions windows on
the screen in exactly the places they request. Tk tries to compensate for some of the defi-
ciencies of window managers (e.g. it checks to see where the window manager puts a win-

DRAFT (3/11/93): Distribution Restricted

226

Window Managers

dow and if its the wrong place then Tk repositions it again to compensate for the window
manage’s error), but it cam’compensate for all the problems.

One of the main sources of trouble isSBynamic nature, which allows you to
change anything anytime. Almost all applications (except those based on Tk) set all the
information about a window before it appears on the screen and they never change it after
that. Because of this, window manager code to handle dynamic chang¢béasn’
debugged very well. & can avoid problems by setting as much of the information as
possible before the window first appears on the screen and avoiding changes.

DRAFT (3/11/93): Distribution Restricted

Chapter 23
The Send Command

23.1

The selection mechanism described in Chapter 20 provides a simple way for one applica-
tion to retrieve data from another application. This chapter describssrtiecommand,

which provides a more powerful form of communication between applicatidtis. W

send, any Tk application can invoke arbitrargl Bcripts in any other Tk application on

the display; these commands can not only retrieve information but also take actions that
modify the state of the tget application. dble 23.1 summarizegend and a few other
commands that are useful in conjunction with it.

Basics

To usesend, all you have to do is give the name of an application ardl scfiipt to exe-
cute in the application. For example, consider the following command:

send tgdb {break tkButton.c 200}

The first agument tosend is the name of the tget application (see Section 23.3 below
for more on application nhames) and the secogdraent is a @l script to execute in that
application. Tk locates the named application (an imaginarpased version of thgdb
debugger in this case), forwards the script to that application, and arranges for the script to
be executed in the applicatigrinterpreterin this example the script sets a breakpoint at a
particular line in a particular file. The result or error generated by the script is passed back
to the originating application and returned byskad command.

Send is synchronous: it doegréomplete until the script has been executed in the
remote application and the result has been returned. While waiting for the remote applica-

227

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

228 The Send Command

send appName arg ?arg ..?
Concatenates all ther g’s with spaces as separators, then executes the
resulting script in the interpreter of the application givemajpyNane. The
result of that execution is returned as the result af¢éhnd command.

winfo interps
Returns a list whose elements are the names of all the applications available
on the display containing the applicat®main window

winfo name .
Returns the name of the current application, suitable for tsnth com-
mands issued by other applications.

Table 23.1.A summary ofsend and related commands.

tion to respondsend will defer the processing of X events, so the application will not
respond to its user interface during this time. Onced¢he command completes and the
application returns to normal event processing, any deferred events will be processed. A
sending applicatiowill respond teend requests from other applications while waiting

for its ownsend to complete. This means, for example, that thgetansf thesend can

send a command back to the initiator while processing the script, if that is useful.

23.2 Hypertools

| hope thasend will enable a new kind of small re-usable application that Irgader-

tools Many of todays windowing applications are monoliths that bundle seveifalrdift
packages into a single program. For example, debuggers often contain editors to display
the source files being debugged, and spreadsheets often contain charting packages or com-
munication packages or even databases. Unfortunatell of these packages can only be

used from within the monolithic program that contains it.

With send each of these packages can be built as a separate stand-alone program.
Related programs can communicate by sending commands to eaclrotleample, a
debugger can send a command to an editor to highlight the current line of execution, or a
spreadsheet can send a script to a charting package to chart a dataset derived from the
spreadsheet, or a mail reader can send a command to a multi-media application to play a
video clip associated with the mail.itWthis approach it should be possible to re-use
existing programs in many unforeseen ways. For example, once a Tk-based audio-video
application becomes available, any existing Tk application can become a multi-media
application just by extending with scripts that send commands to the audio-video applica-
tion. The term “hypertools” reflects this ability to connect applications together in interest-
ing ways and to re-use them in ways not foreseen by their original designers.

DRAFT (3/11/93): Distribution Restricted

23.3 Application names 229

23.3

When designing Tk applications, | encourage you to focus on doing one or a few
things well; dort try to bundle everything in one program. Instead, providereifit func-
tions in diferent hypertools that can be controlled séend and re-used independently

Application names

23.4

In order to send to an application you have to know its name. Each application on the dis-
play has a unigue name, which it can choose in any way it pleases as long as it is unique.
In many cases the application name is just the name of the program that created the appli-
cation. For examplayish will use the application nameish by default; orif it is run-

ning under the control of a script file then it will use the name of the script file as its
application name. In programs like editors that are typically associated with a disk file, the
application name typically has two parts: the name of the application and the name of the
file or object on which it is operating. For example, if an editor named displaying a

file namedk.h , then the applicatioa’name is likely to bertix tk.h ”

If an application requests a name that is already in use then Tk adds an extra number
to the end of the new name to keep it from conflicting with the existing name. For exam-
ple, if you start upvish twice on the same display the first instance will have the name
wish and the second instance will have the nawistf #2 ". Similarly, if you open a
second editor window on the same file it will end up with a name fiketk.h #2 "

Tk provides two commands that return information about the names of applications.
First, the command

winfo name .
wish #2

will return the name of the invoking application (this command is admittedly obscure;
implement tk appname " before the book is published!!). Second, the command

winfo interps

wish {wish #2} {mx tk.h}
will return a list whose elements are the names of all the applications defined on the dis-
play.

Security issues

Thesend command is potentially a major security loophole. Any application that uses
your display carsend scripts to any Tk application on that displagd the scripts can

use the full power ofdl to read and write your files or invoke subprocesses with the
authority of your account. Ultimately this security problem must be solved in the X dis-
play serversince even applications that donse Tk can be tricked into abusing your

DRAFT (3/11/93): Distribution Restricted

230

The Send Command

account by sticiently sophisticated applications on the same displayever without
Tk it is relatively dificult to create invasive applications; with Tk aehd it is trivial.

You can protect yourself fairly well if you employ a key-based protection scheme for
your display likexauth instead of a host-based scheme ¥kest . Unfortunately
many people use thénost program for protection: it specifies a set of machine names to
the server and any process running on any of those machines can establish connections
with the serverAnyone with an account on any of the listed machines can connect to your
server send to your Tk applications, and misuse your account.

If you currently usexhost for protection, you should learn aboauth and switch
to it as soon as possibkauth generates an obscure authorization string and tells the
server not to allow an application to use the display unless it can produce the gping. T
cally the string is stored in a file that can only be read by a particulasoghbis restricts
use of the display to the one udérou want to allow other users to access your display
then you can give them a copy of your authorization file, or you can change the protection
on your authorization file so that it is group-readable. Of course, you should be aware that
in doing so you are ffctively giving these other users full use of your account.

DRAFT (3/11/93): Distribution Restricted

Chapter 24
Modal Interactions

24.1

Usually the user of a Tk application has complete flexibility to determine what to do next.
The application dérs a variety of panels and controls and the user selects between them.
However there are times whendtuseful to restrict the userrange of choices or force the
user to do things in a certain order; these are caltethl interactionsThe best example
of a modal interaction is a dialog box: the application is carrying out some function
requested by the user (e.g. writing information to a file) when it discovers that it needs
additional input from the user (e.g. the name of the file to write). It displays a dialog box
and forces the user to respond to the dialog box (e.g. type in a file name). Once the user
responds, the application completes the operation and returns to its normal mode of opera-
tion where the user can do anything he or she pleases.

Tk provides two mechanisms for use in modal interactions. Firgjratre command
allows you to temporarily restrict the user so that he or she can only interact with certain
of the applicatiors windows (e.g. only the dialog box). Second,tkveit command
allows you to suspend the evaluation of a script (e.g. saving a file) until a particular event
has occurred (e.g. the user responded to the dialog box), and then continue the script once
this has happened. These commands are summarizedlenZ@.1.

Grabs

Mouse events such as button presses and mouse motion are normally delivered to the win-
dow under the mouse cursbtowever it is possible for a window to claim ownership of

the mouse so that mouse events are only delivered to that window and its descendants in
the Tk window hierarchyThis is called grab. When the mouse is over one of the win-

231

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

232

Modal Interactions

grab 7?-global ? wi ndow

grab current i ndow?

grab release wi ndow

grabset ?-global ? w ndow

grab status wi ndow

Same agrab set command described below

Returns the name of the current grab windowsandow's display or an
empty string if there is no grab for that displiyv ndowis omitted,
returns a list of all windows grabbed by this application for all displays.
Releases the grab @m ndow if there is one.

Sets a grab oni ndow, releasing any previous grabwinndow's display If
- global s specified then the grab is global; otherwise it is local.

Returnsnone if no grab is currently set o ndow, local if a local grab
is set, andgjlobal if a global grab is set.

tkwait variable var Nane
tkwait visibility wi ndow

tkwait window w ndow

Waits until variablesrar Namre changes value, then returns.

Waits until the visibility state ofi ndow changes, then returns.

Waits untilwvi ndow s destroyed, then returns.

Table 24.1.A summary of thgrab andtkwait commands.

dows in the grab sub-tree, mouse events are delivered and processed just as if no grab
were in efect. When the mouse is outside the grab sub-tree, button presses and releases
and mouse motion events are delivered to the grab window instead of the window under
the mouse, and window entry and exit events are discarded. Thus a grab prevents the user
from interacting with windows outside the grab sub-tree.

Thegrab command sets and releases grabs. For example, if you've created a dialog
box nameddlg and you want to restrict interactions.tily and its subwindows, you
can invoke the command

grab set .dlg
Once the user has responded to the dialog box you can release the grab with the command
grab release .dlg

If the dialog box is destroyed after the user has responded to it thes tiereed to
invokegrab release : Tk releases the grab automatically when the grab window is
destroyed.

Tk provides two forms of grab, local and global. A local grédécts only the grab-
bing application: if the user moves the mouse into some other application on the display
then he or she can interact with the other application as usuakhbuld normally use
local grabs, and they are the default inghsb set command. A global grab takes over

DRAFT (3/11/93): Distribution Restricted

24.2 Keyboard handling during grabs 233

Note:

24.2

the entire display so that you cannot interact with any application except the one that set
the grab. ® request a global grab, specify tgpbal switch tograb set as in the
following command:

grab set -global .dlg
Global grabs are rarely needed and they are tricky to use (if yget torrelease the grab
your display will become unusable). One place where they are used is for pull-down
menus.
X will not let you set a global grab on a window unless it is visible. Section 24.3 describes

how to use th&kwait visibility command to wait for a window to become visible.
Local grabs ae not subject to the visibilitgstriction.

The most common way to use grabs is to set a grab on a top-level window so that only
a single panel or dialog box is active during the grab. How#\ismossible for the grab
sub-tree to contain additional top-level windows; when this happens then all of the panels
or dialogs corresponding to those top-level windows will be active during the grab.

Keyboard handling during grabs

24.3

Local grabs have nofeft on the way the keyboard is handled: keystrokes received any-
where in the application will be forwarded to the focus window as usual. Most likely you
will set the focus to a window in the grab sub-tree when you set the girsdowsg out-

side the grab sub-tree careceive any mouse events so they are unlikely to claim the
focus away from the grab sub-tree. Thus the grab is likely to havef¢eadfrestricting

the keyboard focus to the grab sub-tree; howspoer are free to move the focus anywhere
you wish. If you move the mouse to another application then the focus will move to that
other application just as if there had been no grab.

During global grabs Tk also sets a grab on the keyboard so that keyboard events go to
the grabbing application even if the mouse is over some other application. This means that
you cannot use the keyboard to interact with any other application. Once keyboard events
arrive at the grabbing application they are forwarded to the focus window in the usual
fashion.

Waiting: the tkwait command

The second aspect of a modal interaction is waitigigically you will want to suspend a
script during a modal interaction, then resume it when the interaction is complete. For
example, if you display a file selection dialog during a file write operation, you will prob-
ably want to wait for the user to respond to the dialog, then complete the file write using
the name supplied in the dialog interaction. v@ren you start up an application you

might wish to display an introductory panel that describes the application and keep this

DRAFT (3/11/93): Distribution Restricted

234

Modal Interactions

panel visible while the application initializes itself; before goirfgmtio the main initial-
ization you’ll want to be sure that the panel is on the screertkilaét command can
be used to wait in situations like these.
Tkwait has three forms, each of which waits for fedént event to occuthe first

form is used to wait for a window to be destroyed, as in the following command:

tkwait window .dlg
This command will not return untitllg has been destroyedolY might invoke this com-
mand after creating a dialog box and setting a grab on it; the commartd-etom until
after the user has interacted with the dialog in a way that causes it to be destroyed. While
tkwait is waiting the application responds to events so the user can interact with the
applications windows. In the dialog box example you should have set up bindings that
destroy the dialog once the usaresponse is complete (e.g. the user clicks o®Kisut-
ton). The bindings for the dialog box might also save additional information in variables
(such as the name of a file, or an identifier for the button that was pressed). This informa-
tion can be used ontlewait returns.

The script below creates a panel with two buttons lab&leandCancel , waits for

the user to click on one of the buttons, and then deletes the panel:

toplevel .panel

button .panel.ok -text OK -command {

set label OK
destroy .panel

}

button .panel.cancel -text Cancel -command {
set label Cancel
destroy .panel

}

pack .panel.ok -side left

pack .panel.cancel -side right

grab set .panel

tkwait window panel
When thetkwait command returns the varialiéel will contain the label of the but-
ton that was clicked upon.

The second form fakwait waits for the visibility state of a window to change. For

example, the command

tkwait visibility .intro
will not return until the visibility state afntro has changed.ypically this command is
invoked just after a new window has been created, in which case itreturh until the
window has become visible on the screkkwait visibility can be used to wait
for a window to become visible before setting a global grab on it, or to make sure that an
introductory panel is on the screen before invoking a lengthy initialization script. Like all
forms oftkwait , tkwait visibility will respond to events while waiting.

DRAFT (3/11/93): Distribution Restricted

24.3 Waiting: the tkwait command 235

The third form ottkwait provides a general mechanism for implementing other
forms of waiting. In this form, the command doésaturn until a given variable has been
modified. For example, the command

tkwait variable x

will not return until variablex has been modified. This form tfvait is typically used

in conjunction with event bindings that modify the variable. For example, the following
procedure use&kwait variable to implement something analogoudhkwait

window except that you can specify more than one window and it will return as soon as
any of the named windows has been deleted (it returns the name of the window that was

deleted):

proc waitWindows args {
global dead
foreach w $args {

bind $w <Destroy> "set dead $w"

}
tkwait variable dead
return $dead

}

DRAFT (3/11/93): Distribution Restricted

236 Modal Interactions

DRAFT (3/11/93): Distribution Restricted

Chapter 25
Odds and Ends

25.1

This chapter describes five additional Tk commaddstroy , which deletes widgets;

after , which delays execution or schedules a script for executionlgidate , which

forces operations that are normally delayed, such as screen updates, to be done immedi-
ately;winfo , which provides a variety of information about windows, such as their
dimensions and children; atid , which provides access to various internals of the Tk
toolkit. Table 25.1 summarizes these commands. This chapter also describes several glo-
bal variables that are read or written by Tk and may be useful to Tk applications.

Destroying windows

Thedestroy command is used to delete windows. It takes any number of window
names as guments, for example:

destroy .dlg1 .dig2
This command will destroyllgl and.dlg2 , including all of their widget state and the
widget commands named after the windows. It also recursively destroys all of their chil-
dren. The commandiéstroy . " will destroy all of the windows in the application;
when this happens most Tk applications (eigh) will exit.

237

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

238

Odds and Ends

after

after

nms
Delays forms milliseconds.

ns arg 7arg arg ..?
Concatenates all tte g values (with spaces as separators) and arranges for
the resulting script to be executed aftermilliseconds have elapsed.
Returns without waiting for the script to be executed.

destroy w ndow 2w ndow wi ndow ...?

Deletes each of theindow s, plus all of the windows descended from them.
The corresponding widget commands (and all widget state) are also deleted.

tk col

ormodel wi ndow val ue?
Sets the color model fo ndow's screen to value, which must be either
color ormonochrome. If val ue isn't specified, returns the current colg
model forwi ndow's screen.

=

update “Zdletasks ?

Brings display up to date and processes all pending eveiaietdisks
is specified then no events are processed except those in the idle task gueue
(delayed updates).

winfo

option ?arg arg ..?
Returns various pieces of information about windows, depending on
opt i on agument. See reference documentation for details.

Table 25.1.A summary of the commands discussed in this chapter

25.2

Time delays

Theafter command allows you to incorporate timing into your Tk applications. It has
two forms. If you invokefter — with a single agument, then the gument specifies a
delay in milliseconds, and the command delays for that number of milliseconds before
returning. For example,

after 500
will delay for 500 milliseconds before returning. If you specify additiorgi@ents, as in
the command

after 5000 {puts "Time’s up!"}
then the after command returns immediately without any delayever it concatenates
all of the additional luments (with spaces between them) and arranges for the resulting
script to be evaluated after the specified déelég script will be evaluated at global level
as an event hand|gust like the scripts for bindings. In the example above, a message will
be printed on standard output after five seconds. The script beloafteses to build a
general-purpose blinking utility:

DRAFT (3/11/93): Distribution Restricted

25.3 The update command 239

25.3

proc blink {w option valuel value2 interval} {
$w conf ig $option $valuel
after $interval [list blink $w $option \
$value2 $valuel $interval]

}
blink .b -bg red black 500

Theblink procedure takes fiveg@rments, which are the name of a widget, the name of

an option for that widget, two values for that option, and a blink interval in milliseconds.
The procedure arranges for the option to switch back and forth between the two values at
the given blink interval. It does this by immediately setting the option to the first value and
then arranging for itself to be invoked again at the end of the next interval with the two
option values reversed, so that option is set to the other value. The procedure reschedules
itself each time it is called, so it executes periodically fordlark runs “in back-

ground”: it always returns immediatethen gets reinvoked by Ektimer code after the

next interval expires.

The update command

Tk normally delays operations such as screen updates until the application is idle. For
example, if you invoke a widget command to change the text in a button, the button will
not redisplay itself immediatelinstead, it will schedule the redisplay to be done later and
return immediatelyWhen the application becomes idle (i.e. the current event handler has
completed, plus all events have been processed, so that the application has nothing to do
but wait for the next event) then it carries out all the delayed operations. Tk delays redis-
plays because it saves work in situations where a script changes the same window several
different times: with delayed redisplay the window only gets redrawn once at the end. Tk
also delays many other operations, such as geometry recalculations and window creation.
For the most part the delays are invisible. Tk rarely does very much work at a time, so
it becomes idle again very quickly and updates the screen before the user can perceive any
delay However there are times when the delays are inconvenient. For example, if a script
is going to execute for a long time then you may wish to bring the screen up to date at cer-
tain times during the execution of the script. Tipdate command allows you to do this.
If you invoke the command

update idletasks

then all of the delayed operations like redisplays will be carried out immediately; the com-
mand will not return until they have finished.
The following procedure usepdate to flash a widget synchronously:

proc f lash {w option valuel value2 interval count} {
for {set i 0} {$i < $count} {incr i} {
$w conf ig $option $valuel

DRAFT (3/11/93): Distribution Restricted

240 Odds and Ends

update idletasks

after $interval

$w conf ig $option $value2

update idletasks

after $interval

}
}

This procedure is similar folink except that it runs in foreground instead of back-
ground: it flashes the option a given number of times and daeturn until the flashing
is complete. Tk never becomes idle during the execution of this proceduraupdaite
commands are needed to force the widget to be redisplaydmbuitheupdate com-
mands no changes would appear on the screen until the script completed, at which point
the widgets option would change t@mlue2 .

If you invokeupdate without theidletasks amgument, then all pending events
will be processed too.0d might do this in the middle of a long calculation to allow the
application to respond to user interactions (e.g. the user might invoke a “cancel” button to
abort the calculation).

25.4 Information about windows
Thewinfo command provides information about windows. It has more than #¢edfif
forms for retrieving diierent kinds of information. For example,
winfo exists .x
returns & or 1 value to indicate whether there exists a window
winfo children .menu
returns a list whose elements are all of the childremefiu,
winfo screenmmbheight .dialog
returns the height oflialog 's screen in millimeters, and
winfo class .x
returns the class of widget (e.g.button ,text , etc.). Refer to the Tk reference docu-
mentation for details on all of the options providedatigfo .
25.5 The tk command: color models

Thetk command provides access to various aspects sfiffi€rnal state. At present only
one aspect is accessible: tudor model At any given time, Tk treats each screen as being
either a color or monochrome screen; this is the s@eefor model. When creating wid-
gets, Tk will use dferent defaults for configuration options depending on the color model

DRAFT (3/11/93): Distribution Restricted

25.6 Variables managed by Tk 241

25.6

of the screen. If you specify a color other than black or white for a screen whose color
model is monochrome, then Tk will round the color to either black or white.

By default Tk picks a color model for a screen based on the number of bits per pixel
for that screen: if the screen has only a few bits per pixel (currently four or fewer) then Tk
uses a monochrome color model; if the screen has many bits per pixel then Tk treats the
screen as colol¥ou can invoke th&k command to change Ttolor model from the
default. For example, the following command sets the color model for the main wéndow’
screen to monochrome:

tk colormodel . monochrome

If the color model for a screen is color and Tk finds itself unable to allocate a color for
a window on that screen (e.g. because the colormap is full) then Tk generates an error that
is processed using the standekelror mechanism described in Section 19.7. Tk then
changes the color model to monochrome and retries the allocation so the application can
continue in monochrome mode. If the application finds a way to free up more colors, it can
reset the color model back to color again.

Variables managed by Tk

Several global variables are significant to Tk, either because it sets them or because it
reads them and adjusts its behavior accordinvgly may find the following variables use-
ful:

tk_version Set by Tk to its current version numbldas a form like
3.2, where 3 is the major version number and 2 is a minor
version numberChanges in the major version number
imply incompatible changes in Tk.

tk_library Set by Tk to hold the path name of the directory containing
a library of standard Tk scripts and demonstrations. This
variable is set from th€K_LIBRARY environment vari-
able, if it exists, or from a compiled-in default otherwise.

tk_strictMotif If set to 1 by the application, then Tk goes out of its way to
observe strict Motif compliance. Otherwise Tk deviates
slightly from Motif (e.g. by highlighting active elements
when the mouse cursor passes over them).

In addition to these variables, which may be useful to the application, Tk also uses the

associative arratk_priv to store information for its private use. Applications should
not use or modify any of the valuestkn priv

DRAFT (3/11/93): Distribution Restricted

242 Odds and Ends

DRAFT (3/11/93): Distribution Restricted

Chapter 26
Examples

26.1

This chapter presents two relatively complete examples that illustrate many of the features
of Tk. The first example is a procedure that generates dialog boxes, waits for the user to
respond, and returns the useiesponse. The second example is an application that allows
you to “remote-control” any other Tk application on the display: it connects itself to that
application so that you can type commands to the other application and see the results.

A procedure that generates dialog boxes

The first example is acTprocedure namedialog that creates dialog boxes like those
shown in Figure 26.1. Each dialog contains a text message at the top plus an optional bit-
map to the left of the text. At the bottom of the dialog box is a row of any humber of but-
tons. One of the buttons may be specified as the default button, in which case it is
displayed in a sunken fran@ialog creates a dialog box of this form, then waits for the
user to respond by clicking on a button. Once the user has respdiadiegl, destroys
the dialog box and returns the index of the button that was invoked. If the user types a
return and a default button was specified, then the index of the default button is returned.
Dialog sets a grab so that the user must respond to the dialog box before interacting with
the application in any other way

Figures 26.2 and 26.3 show the Tode fordialog . It takes six or more guments.
The first agumentw, gives the name to use for the diatogp-level windowThe second
argumenttitle , gives a title for the window manager to display in the dialdgcora-
tive frame. The third gumenttext , gives a message to display on the right side of the
dialog. The fourth grumentbitmap , gives the name of a bitmap to display on the left

243

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

244 Examples

_ ' File Modified [E

File "tcl.h” has been modified
since the last time it was saved.
Do you want to save it before
exiting the application?

i Save File | Discard Changes | Return To Editor | |

dialog .d {File Modif ied} {File "tkInt.h" has been modif ied since the last \
time it was saved. Do you want to save it before exiting the application?} \
warning 0 {Save File} {Discard Changes} {Return To Editor}

E]

| |
—| Mot Responding [-]

The file server isn’t responding
right now; TI'll keep trying.

_ o _

dialog .d {Not Responding} {The f ile server isn’t responding right
now; I'll keep trying.} {} -1 OK

Figure 26.1.Two examples of dialog boxes created bydladog procedure. Underneath eact
dialog box is the command that created it.

side of the dialog; if it is specified as an empty string then no bitmap is displayed.The fifth
argumentdefault , gives the index of a default button, or -1 if there is to be no default
button. The sixth and additionalgaiments contain the strings to display in the buttons.
The code fodialog divides into five major parts, each headed by a comment. The
first part of the procedure creates the diadgp-level windowlt sets up information for
the window managesuch as the title for the windoesMframe and the text to display in the
dialog’s icon. Then it creates two frames, one for the bitmap and message at the top of the
dialog, and the other for the row of buttons at the bottom.
The second part afialog creates a message widget to hold the dialtext string
and a label widget to hold its bitmap, if afiyie widgets are arranged on the right and left
sides of the top frame, respectiyalging the packer

DRAFT (3/11/93): Distribution Restricted

26.1 A procedure that generates dialog boxes 245

proc dialog {w title text bitmap default args} {
global button

1. Create the top-level window and divide it into top
and bottom parts.

toplevel $w -class Dialog

wm title $w $title

wm iconname $w Dialog

frame $w.top -relief raised -bd 1

pack $w.top -side top -f ill both
frame $w.bot -relief raised -bd 1
pack $w.bot -side bottom -f ill both

2. Fill the top part with the bitmap and message.

message $w.top.msg -width 3i -text $text \
-font -Adobe-Times-Medium-R-Normal-*-180-*
pack $w.top.msg -side right -expand 1 -f ill both \
-padx 5m -pady 5m
if {$bitmap ="} {
label $w.top.bitmap -bitmap $bitmap
pack $w.top.bitmap -side left -padx 5m -pady 5m
}

3. Create a row of buttons at the bottom of the dialog.

setiO
foreach but $args {
button $w.bot.button$i -text $but -command \
"set button $i"
if {$i == $default} {
frame $w.bot.default -relief sunken -bd 1
pack $w.bot.default -side left -expand 1\
-padx 5m -pady 2m
pack $w.bot.button$i -in $w.bot.default -side left

-padx 3m -pady 3m -ipadx 2m -ipady 1m
}else {
pack $w.bot.button$i -side left -expand 1\
-padx 5m -pady 5m -ipadx 2m -ipady 1m
}

incri

Figure 26.2.A Tcl procedure that generates dialog boxes with a text message, optional bitn
any number of buttons. Continued in Figure 26.3.

DRAFT (3/11/93): Distribution Restricted

246

Examples

4. Set up a binding for <Return>, if there’s a default,
set a grab, and claim the focus too.

if {$default > 0} {
bind $w <Return> "$w.bot.button$default lash; \
set button $default”

set oldFocus [focus]
grab $w
focus $w

5. Wait for the user to respond, then restore the focus
and return the index of the selected button.

tkwait variable button
destroy $w

focus $oldFocus
return $button

Figure 26.3.Procedure to generate dialog boxes, cont'd.

Note:

The third part of the procedure creates the row of buttons. 8igse was used as
the name of the lastgument tadialog , the procedure can take any number gtiar
ments greater than or equal to fiaegs will be a list whose elements are all the addi-
tional aguments aftedefault . For each of thesegumentsdialog creates a button
that displays the gument value as its text. The default button, if, @packed in a spe-
cial sunken ring%w.bot.default). The buttons are packed with Hexpand option
so that they spread themselves evenly across the width of the dialog box; if there is only a
single button then it will be centered. Each button is configured so that when the user
clicks on it the global variableutton will be set to the index of that button.

It's important that the value of theommand option is specified in quotes, not curly
braces, so tha$i (the buttors index) is substituted into the command immedidfehe
value wee surounded by braces, then the valu&obfwouldnt be substituted until the
command is actually executed; this would use the value of global variahde the
variablei from thedialog procedue.

The fourth part oflialog sets up a binding so that typing a return to the dialog box
will flash the default button and set thgtton variable just as if the button had been
invoked. It also sets the input focus to the dialog box and sets a local grab on the dialog
box to give it control over both the keyboard and the mouse.

The last part of the procedure waits for the user to interact with the dialog. It does this
by waiting for thebutton variable to change value, which will happen when the user

DRAFT (3/11/93): Distribution Restricted

26.2 A remote-control application 247

= Tk Remote Controlier e

widget: set x

can’'t read "x": no such variable
widget: winfo children .

JMEg . men

rolodex: winfo children .

.menu L buttons | frame

rolodex: |

=l

Figure 26.4.Thermt application allows users to type interactively to any Tk application on
display It contains a menu for selecting an application plus a text widget for typing commar
displaying results. In this example the user has issued commands to flereatipplications:
first thermt application itself, then an application namédget , and finally one named
rolodex (the prompt on each command line indicates the name of the application that ex:
the command).

clicks on a button in the dialog box or types a return. Whetkth&it command

returns, théoutton variable contains the index of the selected bufbémlog then
destroys the dialog box (which also releases its grab), restores the input focus to its old
window, and returns.

26.2 A remote-control application

The second example is an application caltetl, which allows you to typecl commands
interactively to any Tk application on the displ&igure 26.4 shows whamnt looks like
on the screen. It contains a menu that can be used to select an application plus a text wid-
get and scrollba’t any given timemt is “connected” to one application; lines that you
type in the text widget are forwarded to the current application aeimd) and the results
are displayed in the text widg&mt displays the name of the current application in the
prompt at the beginning of each command lireu ¥an change the current application by
selecting an entry in the menu, in which case the prompt will change to display the new
applications name. ¥u can also type commands to the application itself by selecting
rmt as the current application. Whent starts up it connects to itself.

The script that createmt is shown in Figures 26.5-26.9. The script is designed to be
placed into a file and executed direclife first line of the script,

DRAFT (3/11/93): Distribution Restricted

248 Examples

#l/usr/local/bin/wish -f

1. Create basic application structure: menu bar on top of
text widget, scrollbar on right.

frame .menu -relief raised -bd 2

pack .menu -side top -f ill x
scrollbar .s -relief f lat -command ".t yview"
pack .s -side right -f illy

text .t -relief raised -bd 2 -yscrollcommand ".s set" \
-setgrid true
.t tag conf igure bold -font *-Courier-Bold-R-Normal-*-120-*
pack .t -side left -f ill both -expand 1
wm title . "Tk Remote Controller"
wm iconname . "Tk Remote"
wm minsize . 11

2. Create menu button and menus.

menubutton .menu.f ile -text "File" -underline 0 -menu
.menu.f ile.m
menu .menu.f ile.m
.menu.f ile.m add cascade -label "Select Application" \
-underline O -accelerator => -menu .menu.f ile.m.apps
.menu.f ile.m add command -label "Quit" -underline 0 \
-command "destroy ."
menu .menu.f ile.m.apps -postcommand f illAppsMenu
pack .menu.f ile -side left
tk_menuBar .menu .menu.f ile
proc f illAppsMenu {} {
catch {.menu.f ile.m.apps delete 0 last}
foreach i [Isort [winfo interps]] {
.menu.f ile.m.apps add command -label $i\
-command [list newApp $i]

Figure 26.5.A script that generatemt , an application for remotely controlloing other Tk
applications. This figure contains basic window set-up code. The script continues in Figure:
26.9

#!/usr/local/bin/wish -f

is similar to the first line of a shell script: if you invoke the script file directly from a shell
then the operating system will invokésh instead, passing it twoguments:f and the
name of the script filaVish will then execute the contents of the file axbstript.

DRAFT (3/11/93): Distribution Restricted

26.2 A remote-control application 249

3. Create bindings for text widget to allow commands to

be entered and information to be selected. New characters
can only be added at the end of the text (can't ever move

insertion point).

bind .t <1>{
set tk_priv(selectMode) char
.t mark set anchor @%x,%y
if {[lindex [%W conf ig -state] 4] == "normal"} {focus %W}

bind .t <Double-1> {
set tk_priv(selectMode) word
tk_textSelectTo .t @%x,%y

bind .t <Triple-1> {
set tk_priv(selectMode) line
tk_textSelectTo .t @%X,%y

bind .t <Return> {.t insert insert \n; invoke}
bind .t <BackSpace> backspace
bind .t <Control-h> backspace
bind .t <Delete> backspace
bind .t <Control-v> {
.tinsert insert [selection get]
.t yview -pickplace insert
if [string match *.0 [.t index insert]] {
invoke
}

Figure 26.6.Bindings for themt application. These are modified versions of the default Tk
bindings, so they use existing Tk facilities such as the vatiabyeiv =~ and the procedure
tk_textSelectTo

Thermt script contains about 100 lines afl Tode in all, which divide into seven
major parts. It makes extensive use of the facilities of text widgets, including marks and
tags; you may wish to review the reference documentation for texts as you read through
the code formt .

The first part of themt script sets up the overall window structure, consisting of a
menu bara text widget, and a scrollbdtralso passes information to the window manager
such as titles to appear in the windswecorative frame and icon. The command*
minsize . 11 ” enables interactive resizing by the user as described in Section 22.1.
Since the text widget has been packed withé¢xpand option set to 1, it will receive
any extra space; since it is last in the packing pideill also shrink if the user resizes

DRAFT (3/11/93): Distribution Restricted

250

Examples

4. Procedure to backspace over one character, as long as
the character isn't part of the prompt.

proc backspace {} {
if {{.t index promptEnd] !=[.t index {insert - 1 char}]}

.t delete {insert - 1 char} insert
.t yview -pickplace insert

Figure 26.7.Procedure that implements backspacingriatr .

Note:

the application to a smaller size than it initially requested.-3¢étgrid ~ option for the
text widget enables gridding as described in Section 22.2: interactive resizing will always
leave the text widget with dimensions that are an integral number of characters.

The command

.ttag conf igure bold -font \
-Courier-Bold-R-Normal--120-*

creates dgagnamedbold for the text widget and associates a bold font with that tag. The
script will apply this tag to the characters in the prompts so that they appear in boldface,
whereas the commands and results appear in a normal font.

The second part of the script fills in the menu with two entries. The top entry displays
a cascaded submenu with the names of all applications, and the bottom entry is a com-
mand entry that causemt to exit (it executes the scripiéstroy . ", which destroys
all of the applicatiors windows; whenvish discovers that it no longer has any windows
left then it exits). The cascaded submenu is namedu.f ile.m.apps ;its
- postcommand option causes the scrigtitAppsMenu " to be executed each time
the submenu is posted on the scrédiAppsMenu is a Tl procedure defined at the
bottom of Figure 26.5; it deletes any existing entries in the submenu, extracts the names of
all applications on the display withwinfo interps ", and creates one entry in the
menu for each application name. When one of these entries is invoked by thieeuser-
cedurenewApp will be invoked with the applicatios’hame as gument.
The command[tist newApp $i] " creates a @l list with two elements. As
described in Section XXX, when a list is executed as a command each element of the list
becomes one woifor the command. Thus this form guarantees that newApp will be

invoked with a single gument consisting of the value$of at the time the menu entry is
created, even Bi contains spaces or other special characters.

The third part of themt script, shown in Figure 26.6, creates event bindings for the
text widget. Tk defines several default bindings for texts, which handle mouse clicks,

DRAFT (3/11/93): Distribution Restricted

26.2 A remote-control application 251

5. Procedure that's invoked when return is typed: if

there’s not yet a complete command (e.g. braces are open)
then do nothing. Otherwise, execute command (locally or
remotely), output the result or error message, and issue

a new prompt.

proc invoke {} {
global app
set cmd [.t get {promptEnd + 1 char} insert]
if [info complete $cmd] {
if {$app == [winfo name .1} {
catch [list uplevel #0 $cmd] msg
}else {
catch [list send $app $cmd] msg

}
if {$msg ="} {

.tinsert insert $msg\n
}

prompt
}
.t yview -pickplace insert

}

proc prompt {} {
global app
.tinsert insert "$app: "
.t mark set promptEnd {insert - 1 char}
.t tag add bold {insert linestart} promptEnd

Figure 26.8.Procedures that execute commands and output prompistfor

character insertion, and common editing keystrokes such as backspace. Haate'ger

text widget has special behavior that is inconsistent with the default bindings, so the code
in Figure 26.6 overrides many of the defaultsu™ont need to understand the details of

the bindings; they have been copied from the defaults & Stiirtup script and modified

so that (a) the user camhove the insertion cursor (it always has to be at the end of the
text), (b) the procedufgackspace is invoked instead of Tk’normal text backspace
procedure, and (c) the procedimeoke is called whenever the user types a return or
copies in text that ends with a newline.

The fourth part of themt script is a procedure callé&éckspace . It implements
backspacing in a way that disallows backspacing over the prompt (see Figure 26.7).
Backspace checks to see if the character just before the insertion cursor is the last char-
acter of the most recent prompt. If not, then it deletes the character; if so, then it does noth-

DRAFT (3/11/93): Distribution Restricted

252

Examples

6. Procedure to select a new application. Also changes
the prompt on the current command line to ref lect the new
name.

proc newApp appName {
global app
set app $appName
.t delete {promptEnd linestart} promptEnd
.tinsert promptEnd "$appName:"
.t tag add bold {promptEnd linestart} promptEnd

}

7. Miscellaneous initialization.

set app [winfo name .]
prompt
focus .t

Figure 26.9.Code to select a new application for rmt, plus miscellaneous initialization code

ing, so that the prompt never gets erasedkelep track of the most recent promiptt
sets anarknamedoromptEnd at the position of the last character in the most recent
prompt (see thprompt procedure below for the code that getsmptEnd).

The fifth part of themt script handles command invocation; it consists of two proce-
dures,invoke andprompt (see Figure 26.8). Thevoke procedure is called when-
ever a newline character has been added to the text widget, either because the user typed a
return or because the selection was copied into the widget and it ended with a newline.
Invoke extracts the command from the text widget (everything from the end of the prompt
to the current insertion point) and then invokde complete to make sure that the
command is complete. If the command contains unmatched braces or unmatched quotes
theninvoke returns without executing the command so the user can enter the rest of the
command; after each return is typgadoke will check again, and once the command is
complete it will be invoked. The command is invoked by executing it locally or sending it
to the appropriate application. If the command returns a non-empty string (either as a nor-
mal reult or as an error message) then the string is added to the end of the text widget.
Finally, invoke outputs a new prompt and scrolls the view in the text to keep the inser-
tion cursor visible.

Theprompt procedure is responsible for outputting prompts. It just adds characters
to the text widget, sets tipgomptEnd mark to the last character in the prompt, and then
applies thébold tag to all the characters in the prompt so that they'll appear in a bold
font.

DRAFT (3/11/93): Distribution Restricted

26.2 A remote-control application 253

The sixth part of themt script consists of theewApp procedure in Figure 26.9.
NewAppis invoked to change the current application. It sets the global vasiable
which identifies the current application, then overwrites the most recent prompt to display

the new applicatios’name.
The last part ofmt consists of miscellaneous initialization (see Figure 26.9). It con-

nects the application to itself initiaJlgutputs the initial prompt, and sets the input focus to
the text window

DRAFT (3/11/93): Distribution Restricted

254 Examples

DRAFT (3/11/93): Distribution Restricted

Chapter 27

Chapter 28

Chapter 29

Chapter 30

Chapter 31

27.1
27.2
27.3
27.4
27.5

28.1
28.2
28.3
28.4

20.1
29.2
29.3
29.4
29.5
29.6

30.1
30.2
30.3

31.1
31.2
31.3

Philosophy 257

C vs. Tl: primitives 257

Object names 259

Commands: action-oriented vs. object-orient&60
Application prefixes 261

Representing information262

Interpreters and Script Evaluatior263
Interpreters 263

A simple Tcl application 263

Other evaluation procedure66

Deleting interpreters 266

Creating New Tcl Commands269
Command procedures269

Registering commands271

The result protocol 272

Procedures for managing the resut73
ClientData and deletion callback®75

Deleting commands 278

Parsing 279
Numbers and boolean279
Expression evaluation282
Manipulating lists 283

Exceptions 285
Completion codes. 285
Augmenting the stack trace in errorinf@88
Setting errorCode 290

DRAFT (4/16/93): Distribution Restricted

Chapter 32

Chapter 33

Chapter 34

Chapter 35

32.1
32.2
32.3
32.4
32.5
32.6
32.7
32.8
32.9
32.10
32.1

33.1
33.2
33.3
33.4
33.5
33.6
33.7

34.1
34.2
34.3

35.1
35.2

Accessing Tcl Variables 291
Naming variables 291

Setting variable values293

Reading variables 295

Unsetting variables 296

Setting and unsetting variable trace296
Trace callbacks 297

Whole-array traces 299

Multiple traces 299

Unset callbacks 299

Non-existent variables 300

Querying trace information 300

Hash Tables 301

Keys and values 303

Creating and deleting hash table303
Creating entries 304

Finding existing entries 305
Searching 306

Deleting entries 307

Statistics 307

String Utilities 309
Dynamic strings 309
Command completeness312
String matching 313

POSIX Utilities 315

Tilde expansion 315
Generating messages817

DRAFT (4/16/93): Distribution Restricted

35.3 Creating subprocesses818
35.4 Background processes319

DRAFT (4/16/93): Distribution Restricted

DRAFT (4/16/93): Distribution Restricted

Part |11:

Writing Tcl Applications
In C

256

DRAFT (4/16/93): Distribution Restricted

Chapter 27
Philosophy

Note:

27.1

This part of the book describes how to write C applications based.dgifice the @l
interpreter is implemented as a C library package, it can be linked into any C or C++ pro-
gram. The enclosing application invokes procedures in¢hébfary to create interpret-

ers, evaluated scripts, and extend the built-in command set with new application-
specific commands.cTalso provides a number of utility procedures for use in implement-
ing new commands; these procedures can be used to acteagdbles, parse gu-

ments, manipulatecT lists, evaluate dl expressions, and so on. This chapter discusses
several high-level issues to consider when designirgy application, such as what new

Tcl commands to implement, how to name objects, and what form to use for command
results. The following chapters present the specific C interfaces provided ky the T
library.

The interfaces described in Part Illeathose that will be available irclT7.0, which had

not been eleased at the timex this draft wagpaed. Thus ther may some diffences
between what yolead hee and what you can do with your cemt version of dl. Thee

are almost no diffemces in functionality; the diffences mostly have to do with the
interfaces. Be serto consult your manual entries when you actually write C code.

C vs. Tcl: primitives

In order to make acT application as flexible and powerful as possible, you shogkt or
nize its C code as a set of neal tommands that provide a clean sepitive opera-
tions You need not implement every imaginable feature in C, since new features can
always be implemented later ad $cripts. The purpose of the C code is to provide basic

257

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

258

Philosophy

operations that make it easy to implement a wide variety of useful scripts. If your C code
lumps several functions together into a single command then it b@possible to write

scripts that use the functions separately and your application leméry flexible or
extensible. Instead, each command should provide a single function, and you should com-
bine them together withcT scripts. Yu'll probably find that many of your applicatisn’
essential features are implemented as scripts.

Given a choice between implementing a particular piece of functionalityds a T
script or as C code, s'generally better to implement it as a script. Scripts are usually eas-
ier to write, they can be modified dynamicaliyd you can debug them more quickly
because you donhave to recompile after each bug fix. Howetegre are three reasons
why it is sometimes better to implement a new function in C. First, you may need to
access low-level machine facilities that at@tcessible indl scripts. For example, the
Tcl built-in commands dohprovide access to network sockets, so if you want to use the
network you'll have to write C code to do it. Second, you may be concerned dbout ef
ciency For example, if you need to carry out intensive numerical calculations, or if you
need to operate on g arrays of data, you'll be able to do it morficefntly in C than in
Tcl. The third reason for implementing in C is complexityou are manipulating com-
plex data structures, or if you're writing adaramount of code, the task will probably be
more manageable in C than ial.TTcl provides very little structure; this makes it easy to
connect diferent things together but hard to managgdaromplex scripts. C provides
more structure, which is cumbersome when you're implementing small things but indis-
pensable when you're implementing big complicated things.

As an example, consider a program to manipulate weather reports. Suppose that infor-
mation about current weather is available for gdarumber of measurement stations from
one or more network sites using a well-defined network protocol, and you want to write a
Tcl application to manipulate this data. Users of your application might wish to answer
questions like:

* What is the complete weather situation at station X?
* What is the current temperature at station X?
* Which station in the country has the highest current temperature?

¢ At which stations is it currently raining?
You'll need to write some C code for this application in order to retrieve weather reports
over the network. What form should these new commands take?

One approach is to implement each of the above functions in C as a seglarate-T
mand. For example, you might provide a command that retrieves the weather report from
a station, formats it into prose, and prints it on standard output. Unfortunately this com-
mand can only be used for one purpose; you'd have to provide a second command for sit-
uations where you want to retrieve a report without printing it out (e.g. to find all the
station where it is raining).

Instead, I'd suggest providing just two commands in @tha_stations com-
mand that returns a list of all the stations for which weather reports are available, and a

DRAFT (4/16/93): Distribution Restricted

27.2 Object names 259

27.2

wthr_report ~ command that returns a complete weather report for a particular station.
These commands ddnmplement any of the above features diredilyt they make it

easy to implement all of the features. For exampikalfeady has puts command that

can be used to print information on standard output, so the first feature (printing a weather
report for a station) can be implemented with a script thatwdiis report |, formats

the report, and prints it withuts . The second feature (printing just the temperature) can
be implemented by extracing the temperature from the resuthofreport and then
printing it alone. The third and fourth features (finding the hottest station and finding all
stations where it is raining) can be implemented with scripts that irwtbikereport

for each station and extract and print relevant information. Many other features could also
be implemented, such as printing a sorted list of the ten stations with the highest tempera-
tures.

The preceding paragraph suggests that ldexasl commands are better than higher
level ones. Howeveif you make the commands too low level thehstripts will
become unnecessarily complicated and you may lose opportunitieidienefmplemen-
tation. For example, instead of providing a single command that retrieves a weather report,
you might provide separatellcommands for each step of the protocol that retrieves a
report: one command to connect to a seree command to select a particular station,
one command to request a report for the selected station, and so on. Although this results
in more primitive commands, it is probably a mistake. The extra commandgdmride
any additional functionality and they make it more tedious to wadkesdripts. Further-
more, suppose that network communication delays are high, so that it takes a long time to
get a response from a weather seriat the server allows you to request reports for sev-
eral stations at once and get them all back in about the same time as a single report. In this
situation you might want an even higher level interface, perhagiscarimand that takes
any number of stations aggaments and retrieves reports for all of them at once. This
would allow the C code to amortize the communication delays across several report
retrievals and it might permit a much moréaént implementation of operations such as
finding the station with the highest temperature.

To summarize, you should pick commands that are primitive enough so that all of the
applications key functions are available individually througth dommands. On the other
hand, you should pick commands that are high-level enough to hide unimportant details
and capitalize on opportunities fofiefent implementation.

Object names

The easiest way to think about your C code is in ternabjefcts The C code in acrl
application typically implements a few new kinds of objects, which are manipulated by
the applicatiors new Tl commands. In the C code of your application you'll probably
refer to the objects using pointers to the C structures that represent the objects, but you
cant use pointers ind scripts. Strings of some sort will have to be used in ¢hecFipts,

DRAFT (4/16/93): Distribution Restricted

260

Philosophy

27.3

and the C code that implements your commands will have to translate from those strings
to internal pointers. For example, the objects in the weather application are weather sta-
tions; thewthr_stations command returns a list of station names, and the
wthr_report ~ command takes a station name as goraent.

A simple but dangerous way to name objects is to use their internal addresses. For
example, in the weather application you could name each station with a hexadecimal
string giving the internal address of the C structure for that station: the command that
returns a list of stations would return a list of hexadecimal strings, and the command to
retrieve a weather report would take one of these hexadecimal strings@meat. When
the C code receives one of these strings, it could produce a pointer by converting the string
to a binary numbet dont recommend using this approach in practice because it is hard to
verify that a hexadecimal string refers to a valid object. If a user specifies a bad address it
might cause the C code to make wild memory accesses, which could cause the application
to crash. In addition, hexadecimal strings daohvey any meaningful information to the
user

Instead, | recommend using names that can be verified and that convey meaningful
information. One simple approach is to keep a hash table in your C code that maps from a
string name to the internal pointer for the object; a name is only valid if it appears in the
hash table. ThecT library implements flexible hash tables to make it easy for you to use
this approach (see Chapter 33). If you use a hash table then you can use any strings what-
soever for names, so you might as well pick ones that convey information. For example,
Tk uses hierarchical path names likeenu.help for windows in order to indicate the
window’s position in the window hierarchycl uses names likeile3 orfile4 for
open files; these names dboonvey a lot of information, but they at least include the let-
ters ‘file " to suggest that they're used for file access, and the number is the POSIX file
descriptor number for the open file. For the weather application I'd recommend using sta-
tion names such as the city where the station is locatei tiiy U.S. Wather Service has
well-defined names for its stations then I'd suggest using those names.

Commands: action-oriented vs. object-oriented

There are two approaches you can use when defining commands in your application,
which | callaction-orientedandobject-orientedIn the action-oriented approach there is
one command for each action that can be taken on an object, and the command takes an
object name as angqument. The weather application is action-orientedwtie re-
port command corresponds to an action (retrieve weather report) and it takes a weather
station name as angument. Tl's file commands are also action-oriented: there are sepa-
rate commands for opening files, reading, writing, closing, etc.

In the object-oriented approach there is one command for each object, and the name
of the command is the name of the object. When the command is invoked itgirst ar
ment specifies the operation to perform on the objecs. Wkigets work this way: if there

DRAFT (4/16/93): Distribution Restricted

27.4 Application prefixes 261

Note:

27.4

is a button widgetb then there is also a command naniedyou can invoke
“.b flash ”to flash the widget or.b invoke " to invoke its action.

The action-oriented approach is best when there are a great many objects or the
objects are unpredictable or short-lived. For example, it wouhdake sense to imple-
ment string operations using an object-oriented approach because there would have to be
one command for each string, and in practideapplications have lge numbers of
strings that are created and deleted on a command-by-command basis. The weather appli-
cation uses the action-oriented approach because there are only a few actions and and
potentially a lage number of stations. In addition, the application probably doesed to
keep around state for each station all the time; it just uses the station name to look up
weather information when requested.

The object-oriented approach works well when the number of objedtfoismjreat
(e.g. a few tens or hundreds) and the objects are well-defined and exist for at least moder-
ate amounts of time. T&'widgets fit this description. The object-oriented approach has
the advantage that it doespbllute the command name space with lots of commands for
individual actions. For example in the action-oriented approach the command “delete”
might be defined for one kind of object, thereby preventing its use for any other kind of
object. In the object-oriented approach you only have to make sure that your object names
don't conflict with existing commands or other object names. For example, Tk claims all
command names starting with “.” for its widget commands. The object-oriented approach
also makes it possible for tifent objects to implement the same action ifediht ways.
For example, ift is a text widget and is a listbox widget in Tk, theommands
“t yview0O "and"“lyview 0 " are implemented in very dérent ways even
though they produce the same logicéteff (adjust the view to make the topmost line vis-
ible at the top of the window).
Although Tis file commands arimplemented using the action-oriented aajgh, in

retrospect | wish that | had used the object-oriented fashion, since open files fit the object-
oriented model nicely

Application prefixes

If you use the action-oriented approach, | strongly recommend that you add a unique pre-
fix to each of your command names. For example, | used the pagffix “ ” for the

weather commands. This guarantees that your commandsasofiict with other com-

mands as long as your prefix is unique, and it makes it possiblede digrent applica-

tions together without name conflicts. | also recommend using prefixes fmo€edures

that you define and for global variables, again so that multiple packages can be used
together

DRAFT (4/16/93): Distribution Restricted

262

Philosophy

27.5 Representing information

The information passed into and out of yoak @dmmands should be formatted for
easy processing byclTscripts, not necessarily for maximum human readabHity exam-
ple, the command that retrieves a weather report showuédnin English prose describing
the weatherinstead, it should return the information in a structured form that makes it
easy to extract the ddrent components under the control othsEript. You might return
the report as a list consisting of pairs of elements, where the first element of each pair is a
keyword and the second element is a value associated with that keyword, such as:

temp 53 hi 68 lo 37 precip .02 sky part

This indicates that the current temperature at the station is 53 degrees, the high and low for
the last 24 hours were 68 and 37 degrees, .02 inches of rain has fallen in the last 24 hours,
and the sky is partly cloud®r, the command might store the report in an associative
array where each keyword is used as the name of an array element and the corresponding
value is stored in that element. Either of these approaches would make it easy to extract
components of the reportod can always reformat the information to make it more read-
able just before displaying it to the user

Although machine readability is more important than human readapdiiyneed not
gratuitously sacrifice readabilitiFor example, the above list could have been encoded as

18537689375.02174

wherel8 is a keyword for current temperatuvefor 24-hour high, and so on. This is
unnecessarily confusing and will not make your scripts any mficeeaf, since €l han-
dles strings at least adiefently as numbers.

DRAFT (4/16/93): Distribution Restricted

Chapter 28
|nterpretersand Script Evaluation

28.1

This chapter describes how to create and delete interpreters and how to use them to evalu-
ate Tl scripts. Bble 28.1 summarizes the library procedures that are discussed in the
chapter

Interpreters

28.2

The central data structure manipulated by ttidifirary is a C structure of typecl_In-

terp . I'll refer to these structures (or pointers to themneerpreters Almost all of the

Tcl library procedures take a pointer td@_Interp structure as angument. An
interpreter embodies the execution state afladript, including commands implemented
in C, Tcl procedures, variables, and an execution stack that reflects partially-evaluated
commands andcT procedures. MostcT applications use only a single interpreter but it is
possible for a single process to manage several independent interpreters.

A simple T cl application

The program below illustrates how to create and use an interprétea simple but com-
plete Tl application that evaluates alBcript stored in a file and prints the result or error
message, if any

#include <stdio.h>
#include <tcl.h>

263

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

264

Interpreters and Script Evaluation

Tcl_Interp *Tcl_Createlnterp(void)

Create a new interpreter and return a token for it.
Tcl_Deletelnterp(Tcl_Interp *interp

Delete an interpreter

int Tcl_Eval(Tcl_Interp *interp, char *script)
Evaluatescript ininterp and return its completion code. The result pr
error string will be irinterp->result

int Tcl_EvalFile(Tcl_Interp *interp, char *f ileName)
Evaluate the contents of fileleName ininterp and return its comple-
tion code. The result or error string will beirmerp->result

int Tcl_GlobalEval(Tcl_Interp *interp, char *script)

Evaluatescript ininterp at global level and return its completion code.
The result or error string will be interp->result

int Tcl_VarEval(Tcl_Interp *interp, char *string, char *string,

... (char *) NULL)

Concatenate all of thetring arguments into a single string, evaluate the
resulting script innterp , and return its completion code. The result or
error string will be irinterp->result

int Tcl_RecordAndEval(Tcl_Interp *interp, char *script, int
flags)
Recordsscript ~ as an event imterp ’s history list and evaluates it if
eval isnon-zeroTCL_NO_EVALmeans dor’evaluate the script). Returns

a completion code such &EL_OKand leaves result or error message in
interp- >result

Table 28.1. Tcl library procedures for creating and deleting interpreters and for evalueting

main(int argc, char *argv[]) {
Tcl_Interp *interp;

int code;
if (argc 1= 2) {
fprintf(stderr, "Wrong # arguments: *);
fprintf("should be \"%s f ileName\"\n",
argv[0]);
exit(1);
}

interp = Tcl_Createlnterp();

code = Tcl_EvalFile(interp, argv[1]);

if (*interp->result !=0) {
printf("%s\n", interp->result);

}
if (code = TCL_OK) {

DRAFT (4/16/93): Distribution Restricted

28.2 A simple Tcl application 265

exit(1);
}
exit(0);

If Tcl has been installed properly at your site you can copy the C code into a file named
simple.c and compile it with the following shell command:

cc simple.c -ltcl -Im

Once you've compiled the program you can evaluate a scripgdilecl by typing
the following command to your shell:

a.out test.tcl

The code fosimple.c starts out witl#finclude statements fostdio.h and
tcl.h . You'll need to includécl.h in every file that usescTstructures or procedures,
since it defines structures liRel_Interp and declares thecTlibrary procedures.

After checking to be sure that a file name was specified on the command line, the pro-
gram invoked cl_Createlnterp to create a new interpretdihe new interpreter will
contain all of the built-in commands described in Part | butchprbcedures or variables.

It will have an empty execution stadkcl_Createlnterp returns a pointer to the
Tcl_Interp structure for the interpretewhich is used as a token for the interpreter
when calling other dl procedures. Most of the fields of thel_Interp structure are
hidden so that they cannot be accessed outsidettibrary. The only accessible fields

are those that describe the result of the last script evaluation; they’ll be discussed later

Nextsimple.c callsTcl_EvalFile with the interpreter and the name of the
script file as ayjumentsTcl_EvalFile reads the file and evaluates its contents at a T
script, just as if you had invoked thel Source command with the file name as agwar
ment. WhenTcl_EvalFile returns the execution stack for the interpreter will once
again be empty

Tcl_EvalFile returns two pieces of information: an integempletion codand
a string. The completion code is returned as the result of the procedure. It will be either
TCL_OK which means that the script completed normalliyf CL_ ERRORwhich means
that an error of some sort occurred (e.g. the script file cddddnead or the script aborted
with an error). The second piece of information returne@dbyEvalFile is a string, a
pointer to which is returned interp->result . If the completion code iCL_OK
theninterp->result points to the script’ result; if the completion codeT€L_ER-
RORtheninterp->result points to a message describing the error

Note: The esult string belongs tacll It may or may not be dynamically allocateduan ead
it and copy it, but you should not modify it and you should not save pointersclamayl
overwrite the string oreallocate its memory during the next calllid_EvalFile or

any of the other rcedues that evaluate scripts. Chapter 29 discussesathdtrstring in
mote detail.

DRAFT (4/16/93): Distribution Restricted

266 Interpreters and Script Evaluation

If the result string is non-empty theimple.c prints it, regardless of whether it is
an error message or a normal result. Then the program exits. It follows the UNIX style of
exiting with a status of 1 if an error occurred and O if it completed successfully

When the script file is evaluated only the built-g fommands are available: no Tk
commands will be available in this application and no application-specific commands
have been defined.

28.3 Other evaluation procedures

Tcl provides three other procedures besiti#sEvalFile for evaluating scripts. Each
of these procedures takes an interpreter as its fistreant and each returns a completion
code and string, just likEcl_EvalFile . Tcl Eval is similar toTcl_EvalFile
except that its secondgument is a @l script rather than a file name:

code = Tcl_Eval(interp, "set a 44");
Tcl_VarEval takes a variable number of stringgaments terminated withNMULL
argument. It concatenates the strings and evaluates the resultlaapt. For example,
the statement below has the sanieatfas the one above:

code = Tcl_VarEval(interp, "set a ", "44",

(char *) NULL);
Tcl_GlobalEval is similar toTcl_Eval except that it evaluates the script at global
variable context (as if the execution stack were empty) even when procedures are active. It
is used in special cases such asugiievel command and Tk event bindings.
If you want a script to be recorded on thet Aistory list, callTcl_RecordAndE-

val instead offcl_Eval

char *script;

int code;

code = Tcl_RecordAndEval(interp, script, 0);
Tcl_RecordAndEval s identical tofcl_Eval except that it records the script as a
new entry on the history list before invoking itl ®nly records the scripts passed to
Tcl_RecordAndEval , so you can select which ones to recosghidally you'll record
only commands that were typed interactivalige last ayument torcl_RecordAndE-
val is normallyO; if you specifyTCL_NO_EVAlinstead, thend will record the script
without actually evaluating it.

28.4 Deleting interpreters

The procedurdcl_Deletelnterp may be called to destroy an interpreter and all its
associated state. It is invoked with an interpreter gsnaent:

DRAFT (4/16/93): Distribution Restricted

28.4 Deleting interpreters 267

Tcl_Deletelnterp(interp);

OnceTcl_Deletelnterp returns you should never use the interpreter again. In appli-
cations likesimple.c , which use a single interpreter throughout their lifetime, there’
no need to delete the interpreter

DRAFT (4/16/93): Distribution Restricted

268 Interpreters and Script Evaluation

DRAFT (4/16/93): Distribution Restricted

Chapter 29
Creating New Tcl Commands

29.1

Each Tl command is represented bg@mmand pcedue written in C. When the com-

mand is invoked during script evaluatiom) Talls its command procedure to carry out the
command. This chapter provides basic information on how to write command procedures,
how to register command procedures in an interpreter , and how to manage the interpret-
er's result string. dble 29.1 summarizes thelTibrary procedures that are discussed in

the chapter

Command procedures

The interface to a command procedure is defined by¢h€mdProc procedure proto-
type:
typedef int Tcl_CmdProc(ClientData clientData,

Tcl_Interp *interp, int argc,

char *argv[]);
Each command procedure takes foguanents. The firstlientData , will be dis-
cussed in Section 29.5 belovhe secondnterp , is the interpreter in which the com-
mand was invoked. The third and fourtlyamnents have the same meaning asthe
andargv arguments to a C main prograargc specifies the total number of words in
the Tcl command andrgv is an array of pointers to the values of the wordkpiio-
cesses all the special characters suchasl[] before invoking command procedures,
so the values iargc reflect any substitutions that were specified for the command. The
command name is includedangc andargv , andargv[argc]is NULL A command

269

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

270 Creating New Tcl Commands

Tcl_CreateCommand(Tcl_Interp *interp, char *cmdName,
Tcl_CmdProc *cmdProc, ClientData clientData,
Tcl_CmdDeleteProc *deleteProc)
Defines a new commandiimerp with namecmdName When the com-
mand is invokegmdProc will be called; if the command is ever deleted
thendeleteProc will be called.
int Tcl_DeleteCommand(Tcl_Interp *interp, char *cmdName)
If cmdNameis a command or procedureiimierp then deletes it and
returns 0. Otherwise returns -1.

Tcl_SetResult(Tcl_Interp *interp, char *string,Tcl_FreeProc
*freeProc)
Arrange forstring (or a copy of it) to become the result fioterp
FreeProc identifies a procedure to call to eventually free the result, orfi
may beTCL_STATIC, TCL_DYNAMICor TCL_VOLATILE.
Tcl_AppendResult(Tcl_Interp *interp, char *string,
char *string, ... (char *) NULL)
Appends each of th&iring arguments to the result stringiimerp
Tcl_AppendElement(Tcl_Interp *interp, char *string)
Formatsstring as a Tl list element and appends it to the result string in
interp , with a preceding separator space if needed.
Tcl_ResetResult(Tcl_Interp *interp)
Resetdnterp s result to the default empty state, freeing up any dynarT

=

cally-allocated memory associated with it.

Table 29.1. Tcl library procedures for creating and deleting commands and for manipulating

procedure returns two values just likel_Eval andTcl_EvalFile . It returns an
integer completion code as its result (§GL_OKor TCL_ERRORand it leaves a result
string or error message iimerp->result

Here is the command procedure for a new command cadlédat compares its two
arguments for equality:

int EQCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
if (argc 1= 3) {
interp->result = "wrong # args";
return TCL_ERROR;

}

if (strcmp(argv[1], argv[2]) == 0) {
interp->result = "1";

}else {
interp->result = "0";

}

DRAFT (4/16/93): Distribution Restricted

29.2 Registering commands 271

29.2

return TCL_OK;

}
EgCmdchecks to see that was called with exactly tvguiarents (three words, including
the command name), and if not it stores an error messagerp->result and

returnsTCL_ERROROtherwise it compares its twaggaiment strings and stores a string in
interp- >result to indicate whether or not they were equal; then it refli@ls OK
to indicate that the command completed normally

Registering commands

In order for a command procedure to be invokeddyybu must register it by calling
Tcl_CreateCommand . For exampleEgCmdcould be registered with the following
statement:

Tcl_CreateCommand(interp, "eq"”, EQCmd,
(ClientData *) NULL,
(Tcl_CmdDeleteProc *) NULL);
The first agument toTcl_CreateCommand identifies the interpreter in which the com-
mand will be used. The secondament specifies the name for the command and the third
argument specifies its command procedure. The fourth and fiftimants are discussed
in Section 29.5 below; they can be specifietld& L for simple commands like this one.
Tcl_CreateCommand will create a new command fotterp namedeq; if there
already existed a command by that name then it is deleted. Wheaeisenvoked in
interp Tcl will call EQCmdto carry out its function.
After the above call tdcl_CreateCommand , eq can be used in scripts just like

any other command:

eq abc def

0

eqlil

1

set w .dlg

set w2 .dlg.ok

eq $w.ok $w2

1

When processing scriptsclicarries out all of the command-line substitutions before call-
ing the command procedure, so witrCmdis called for the las’tq command above
bothargv[l] andargv[2] are “dilg.ok .

Tcl_CreateCommand is usually called by applications during initialization to reg-
ister application-specific commands. Howewvew commands can also be created at any
time while an application is running. For example,dhl@c command creates a new

DRAFT (4/16/93): Distribution Restricted

272

Creating New Tcl Commands

29.3

command for eachcl procedure that is defined, and Tk creates a widget command for
each new widget. In Section 29.5 you'll see an example where the command procedure for
one command creates a new command.

Commands created Ayl _CreateCommand are indistinguishable fromcT's
built-in commands. Each built-in command has a command procedure with the same form
as EqCmd, and you can redefine a built-in command by caltih@reateCommand
with the name of the command and a new command procedure.

The result protocol

TheEgCmdprocedure returns a result by settinggrp- >result to point to one of
several static strings. Howeyéhne result string can also be managed in several other
ways. Tl defines a protocol for setting and using the result, which allows for dynamically-
allocated results and provides a small static area to avoid memory-allocation overheads in
simple cases.

The full definition of theTcl_Interp structure, as visible outside thel Tibrary, is
as follows:

typedef struct Tcl_Interp {

char *result;

Tcl_FreeProc *freeProc;

int errorLine;

} Tcl_Interp;
The first fieldresult , points to the interpreter current result. The second field,
freeProc , is used when freeing dynamically-allocated results; it will be discussed
below The third fielderrorLine , is related to error handling and is described in Sec-
tion XXX.
When Tl invokes a command procedure thsult andfreeProc fields always
have well-defined valuemterp->result points to a small character array that is
part of the interpreter structure and the array has been initialized to hold an empty string
(the first character of the array is zellajerp->freeProc is always zero. This state
is referred to as thiaitialized statefor the result. Not only is this the state of the result
when command procedures are invoked, but mahiibFary procedures also expect the
interpreters result to be in the initialized state when they are invoked. If a command pro-
cedure wishes to return an empty string as its result, it simply returns without modifying
interp- >result orinterp->freeProc
There are three ways that a command procedure can specify a non-empty result. First,

it can modifyinterp->result to point to a static string as EgCmd A string can be
considered to be static as long as its value will not change before thehestimand
procedure is invoked. For example, Tk stores the name of each widget in a dynamically-
allocated record associated with the widget, and it returns widget names by setting
interp->result to the name string in the widget record. This string is dynamically

DRAFT (4/16/93): Distribution Restricted

29.4 Procedures for managing the result 273

29.4

allocated, but widgets are deleted lkty Jommands so the string is guaranteed not to be
recycled before the nextlfcommand executes. If a string is stored in automatic storage
associated with a procedure it cannot be treated as static, since its value will change as
soon as some other procedure re-uses the stack space.

The second way to set a result is to use the pre-allocated spac@&ah theerp
structure. In its initialized stateterp->result points to this space. If a command
procedure wishes to return a small result it can copy it to the location pointed to by
interp- >result . For example, the procedure below implements a command
numwords that returns a decimal string giving a count of itgiarents:

int NumwordsCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
sprintf(interp->result, "%d", argc);
return TCL_OK;
}
The size of the pre-allocated space is guaranteed to be at least 200 bytes; you can retrieve
the exact size with the symbbCL_RESULT_SIZE defined bytcl.h . It's generally
safe to use this area for printing a few numbers and/or short strings, mdtisége to
copy strings of unbounded length to the pre-allocated space.

The third way to set a result is to allocate memory with a storage allocator such as
malloc , store the result string there, andis&trp->result to the address of the
memory In order to ensure that the memory is eventually freed, you must also set
interp->freeProc to the address of a procedure thatchn call to free the memgory
such adree . In this case the dynamically-allocated memory becomes the property of
Tcl. Once El has finished using the result it will free it by invoking the procedure speci-
fied byinterp->freeProc . This procedure must match the following procedure pro-
totype:

typedef void Tcl_FreeProc(char *blockPtr);

The procedure will be invoked with a singlg@ment containing the address that you
stored ininterp->result . In most cases you'll usealloc for dynamic allocation
and thus sdnterp->freeProc tofree , but the mechanism is general enough to
support other storage allocators too.

Procedures for managing the result

Tcl provides several library procedures for manipulating the result. These procedures
all obey the protocol described in the previous section, and you may find them more con-
venient than settingpterp->result andinterp->freeProc directly The first
procedure igcl_SetResult , which simply implements the protocol described above.
For exampleEqCmdcould have replaced the statement

interp->result = "wrong # args";

DRAFT (4/16/93): Distribution Restricted

274

Creating New Tcl Commands

with a call toTcl_SetResult as follows:
Tcl_SetResult(interp, "wrong # args", TCL_STATIC);

The first agument tolcl_SetResult is an interpreteiThe second gument is a string
to use as result, and the thirgq@ment gives additional information about the string.
TCL_STATIC means that the string is static,180_SetResult just stores its address
into interp->result . A value ofTCL_VOLATILE for the third agument means that
the string is about to change (e.gs #tored in the procedusestack frame) so a copy must
be made for the resulicl_SetResult will copy the string into the pre-allocated space
if it fits, otherwise it will allocate new memory to use for the result and copy the string
there (settingnterp->freeProc appropriately). If the third gument iSTCL_DY-
NAMICit means that the string was allocated wiithlloc and is now the property of
Tcl: Tcl_SetResult will setinterp- >freeProc tofree as described above.
Finally, the third agument may be the address of a procedure suitable for use in
interp- >freeProc ; in this case the string is dynamically-allocated acidvill even-
tually call the specified procedure to free it.

Tcl_AppendResult makes it easy to build up results in pieces. It takes any num-
ber of strings as guments and appends them to the interpietesult in orderAs the
result grows in lengtficl_AppendResult allocates new memory for itcl_Ap-
pendResult may be called repeatedly to build up long results incremeragaityit does
this eficiently even if the result becomes venygi(e.g. it allocates extra memory so that
it doesnt have to copy the existing result into aylawrarea on each call). Here is an imple-
mentation of theoncat command that usdxl_AppendResult

int ConcatCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
int i;
if (argc == 1) {
return TCL_OK;

}I'cI_AppendResuIt(interp, argv[1], (char *) NULL);
for (i=2;i<argc; i++) {
Tcl_AppendResult(interp, " ", argv]i],
(char *) NULL);
leturn TCL_OK;
}
TheNULLamgument in each call tbcl_AppendResult marks the end of the strings to
append. Since the result is initially emgtye first call toTcl_AppendResult just sets
the result taargv[l] ; each additional call appends one moguarent preceded by a
separator space.
Tcl_AppendElement is similar toTcl_AppendResult except that it only

adds one string to the result at a time and it appends it as a list element instead of a raw

DRAFT (4/16/93): Distribution Restricted

29.5 ClientData and deletion callbacks 275

29.5

string. It's useful for creating lists. For example, here is a simple implementation of the
list command:

int ListCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char **argv) {
inti;
for (i=1;i<argc; i++) {
Tcl_AppendElement(interp, argv[i]);

return TCL_OK;

}
Each call torcl_AppendElement adds one gument to the result. Thegament is
converted to a proper list element before appending it to the result (e.g. it is enclosed in
braces if it contains space characters). AppendElement also adds a separator
space if its needed before the new element (no space is added if the result is currently
empty or if its characters arg “*, which means that the new element will be the first ele-
ment of a sub-list). For example ListCmd is invoked with four agjuments, fist ",

“abc”, “xy ", and ‘}”, it produces the following result:

abc {x y} \}
Like Tcl_AppendResult |, Tcl_AppendElement grows the result space if needed
and does it in a way that isfiefent even for lage results and repeated calls.

If you set the result for an interpreter and then decide that you want to discard it (e.g.
because an error has occurred and you want to replace the current result with an error mes-
sage), you should call the procediid ResetResult . It will invoke
interp- >freeProc if needed and then restore the interprstezsult to its initialized
state. Yu can then store a new value in the result in any of the usual wayse¥d not
call Tcl_ResetResult if you're going to usdcl_SetResult to store the new
result, sincdcl_SetResult takes care of freeing any existing result.

ClientData and deletion callbacks

The fourth and fifth gruments tdrcl_CreateCommand , clientData and
deleteProc , were not discussed in Section 29.2 but they are useful when commands
are associated with objects. TdlientData amument is used to pass a one-word value
to a command procedureclBaves thelientData value that is passed T@l_Cre-
ateCommand and uses it as the firsigaiment to the command procedure. The type
ClientData is laige enough to hold either an integer or a pointer value. It is usually the
address of a C data structure for the command to manipulate.

Tcl and Tk useallback poceduesin many places. A callback is a procedure whose
address is passed to a library procedure and saved in a data structurat katee signif-
icant time, the address is used to invoke the procedure (“call it back”). A command proce-

DRAFT (4/16/93): Distribution Restricted

276

Creating New Tcl Commands

dure is an example of a callback! @ssociates the procedure address witti adimmand

name and calls the procedure whenever the command is invoked. When a callback is spec-
ified in Tcl or Tk aClientData argument is usually provided along with the procedure
address and thelientData value is passed to the callback as its firgtiarent.

ThedeleteProc amgument toTcl_CreateCommand specifies a deletion call-
back. If its value ist’NULLthen it is the address of a procedure fdrtd invoke when
the command is deleted. The procedure must match the following prototype:

typedef void Tcl_CmdDeleteProc(ClientData clientData);
The deletion callback takes a singlguanent, which is the ClientData value specified
when the command was created. Deletion callbacks are used for purposes such as freeing
the object associated with a command.

Figure 29.1 shows hoelientData anddeleteProc can be used to implement
counter objects. The application containing this code must reGigterterCmd as a Tl
command using the following call:

Tcl_CreateCommand(interp, "counter”, CounterCmd,

(ClientData) NULL, (Tcl_CmdDeleteProc) NULL);

New counters can then be created by invokingthmter Tcl command; each invoca-
tion creates a new object and returns a name for that object:

counter

ctr0

counter

ctrl
CounterCmd is the command procedure fayunter . It allocates a structure for the
new counter and initializes its value to zero. Then it creates a name for the counter using
the static variabléed , arranges for that name to be returned as the comsnaasilt, and
incrementsd so that the next new counter will get &atiént name.

This example uses the object-oriented style described in Section 27.3, where there is
one command for each counter object. As part of creating a new cGaoteierCmd
creates a newcl command named after the counteuses the address of @eunter
structure as th€lientData for the command and specifiésleteCounter as the
deletion callback for the new command.

Counters can be manipulated by invoking the commands named after them. Each
counter supports two options to its commaget: , which returns the current value of the
counter andnext , which increments the countewvalue. OncetrO andctrl were
created above, the following:lfcommands could be invoked:

ctrO next; ctrO next; ctrO get
2

ctrl get

0

DRAFT (4/16/93): Distribution Restricted

29.5 ClientData and deletion callbacks 277

typedef struct {
int value;
} Counter;

int CounterCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
Counter *counterPtr;
static intid = 0;
if (argc 1= 1) {
interp->result = "wrong # args";
return TCL_ERROR;

counterPtr = (Counter *) malloc(sizeof(Counter));

counterPtr->value = 0;

sprintf(interp->result, "ctr%d", id);

id++;

Tcl_CreateCommand(interp, interp->result, ObjectCmd,
(ClientData) counterPtr, DeleteCounter);

return TCL_OK;

}

int ObjectCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
CounterPtr *counterPtr = (Counter *) clientData;
if (argc 1= 2) {
interp->result = "wrong # args";
return TCL_ERROR;

}
if (strcemp(argv[1], "get") == 0) {
sprintf(interp->result, "%d", counterPtr->value);
} else if (strcmp(argv[1], "next") == 0) {
counterPtr->value++;
}else {
Tcl_AppendResult(interp, "bad counter command \"",
argv[1], "\": should be get or next",
(char *) NULL);
return TCL_ERROR;

}
return TCL_OK;
}

void DeleteCounter(ClientData clientData) {
free((char *) clientData);
}

Figure 29.1. An implementation of counter objects.

DRAFT (4/16/93): Distribution Restricted

278

Creating New Tcl Commands

Note:

29.6

ctrO clear
bad counter command "clear": should be get or next

The procedur®bjectCmd implements the dl commands for all existing counters. It is
passed a dérentClientData agument for each countexhich it casts back to a value
of typeCounter * . ObjectCmd then checkargv[l] to see which command option
was invoked. If it waget then it returns the countsrvalue as a decimal string; if it was
next then it increments the counteralue and leavesterp->result untouched
so that the result is an empty string. If an unknown command was invoked then
ObjectCmd callsTcl_AppendResult to create a useful error message.
It is not safe to @ate the elwr message with a statement like

sprintf(interp->result, "bad counter command \"%s\"; "

"should be get or next", argv[1]);

This is unsafe becausegv[1l] has unknown length. It could be so long g@intf
overflows the space allocated in the intetpr and corrupts memory .

Tcl_AppendResult is safe because it checks the lengths of garaents and
allocates as much space as needed for¢halt.

To destroy a counter you can delete tbcbmmand, for example:

rename ctrO {}

As part of deleting the command|Twill invoke DeleteProc , which frees up the mem-
ory associated with the counter

This object-oriented implementation of counter objects is similar ®iffiplementa-
tion of widgets: there is oneclfcommand to create new instances of each counter or wid-
get, and oned command for each existing counter or widget. A single command
procedure implements all of the counter or widget commands for a particular type of
object, receiving a ClientDatagument that identifies a specific counter or widget. A dif-
ferent mechanism is used to delete Tk widgets than for counters above, but in both cases
the command corresponding to the object is deleted at the same time as the object.

Deleting commands

Tcl commands can be removed from an interpreter by calthdeleteCommand
For example, the statement below will deletedin@ command in the same way as the
rename command above:

Tcl_DeleteCommand(interp, "ctr0");
If the command has a deletion callback then it will be invoked before the command is
removed. Any command may be deleted, including built-in commands, application-spe-
cific commands, andcT procedures.

DRAFT (4/16/93): Distribution Restricted

Chapter 30
Parsing

30.1

This chapter describeglibrary procedures for parsing and evaluating strings in various
forms such as integers, expressions and lists. These procedures are typically used by com-
mand procedures to process the wordscbEdmmands. Seeable 30.1 for a summary of

the procedures.

Numbers and booleans

Tcl provides three procedures for parsing numbers and boolean viadugsetint
Tcl_GetDouble , andTcl_GetBoolean . Each of these procedures takes thrga-ar
ments: an interpretea string, and a pointer to a place to store the value of the string. Each
of the procedures returi€CL_OKor TCL_ERROROo indicate whether the string was
parsed successfullifor example, the command procedure below Tisessetint to
implement assum command:

int SumCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
int num1, num2;
if (argc = 3) {
interp->result = "wrong # args";
return TCL_ERROR,;

}

if (Tcl_GetlInt(interp, argv[1], &nhum1l) = TCL_OK) {
return TCL_ERROR;

}

279

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

280 Parsing

int Tcl_GetlInt(Tcl_Interp *interp, char *string, int *intPtr)
Parsestring as an integestores value &intPtr , and returns
TCL_OK If an error occurs while parsing, retuSL_ERRORnd stores
an error message interp->result .

int TcI_GetDoubIengcI_lnte)rp *interp, char *string, double *dou-

ePtr

Same aJcl_Getint except parsestring as a floating-point value and
stores value adoublePtr .

int Tcl_GetBoolean(Tcl_Interp *interp, char *string, int *intPtr)
Same aJcl_Getint except parsestring as a boolean and stores 0/1
value atintPtr . See &ble 30.2 for legal values fetring

int Tcl_ExprString(Tcl_Interp *interp, char *string)
Evaluatestring as an expression, stores value as string in
interp- >result , and return§CL_OK If an error occurs during evalua-
tion, returnsSTCL_ERRORNd stores an error messageierp-
>result .

int Tcl_ExprLong(Tcl_Interp *interp, char *string, long *longPtr)
Same agcl_ExprString except stores value as a long integer at
*longPtr . An error occurs if the value cafve converted to an integer

int Tcl_ExprDouble(Tcl_Interp *interp, char *string,

double *doublePtr)

Same agcl_ExprString except stores value as double-precision float-
ing-point value atdoublePtr . An error occurs if the value cafse con-
verted to a floating-point number

int Tcl_ExprBoolean(Tcl_Interp *interp, char *string, int
*intPtr)
Same agcl_ExprString except stores value as 0/1 integer at
*intPtr . An error occurs if the value cafve converted to a boolean
value.

int Tcl_SplitList(Tcl_Interp *interp, char *list, int *argcPtr,
char ***argvPtr)
Parsedist as a Tl list and creates an array of strings whose values are the
elements of list. Stores count of number of list elemeriargtPtr and
pointer to array atargvPtr . ReturnsTCL_OK If an error occurs while
parsinglist , returnsTCL_ERRORnd stores an error message in
interp- >result . Space for string array is dynamically allocated; caller
must eventually pasargvPtr tofree .
char *Tcl_Merge(int argc, char **argv)
Inverse ofTcl_SplitList . Returns pointer tocT list whose elements ar¢
the members adrgv . Result is dynamically-allocated; caller must event
ally pass it tdree .

if (Tcl_GetInt(interp, argv[2], &num?2) != TCL_OK) {
return TCL_ERROR;

sprintf(interp->result, "%d", num1+num2);

DRAFT (4/16/93): Distribution Restricted

30.1 Numbers and booleans 281

return TCL_OK;

}
SumCmaexpects each of the commasntivo aguments to be an integétrcalls
Tcl_Getint to convert them from strings to integers, then it sums the values and con-
verts the result back to a decimal stringniterp->result . Tcl_Getint accepts
strings in decimal (e.g492"), hexadecimal (e.g.0x1ae ") or octal (e.g. 017"), and
allows them to be signed and preceded by white space. If the string is in one of these for-
mats theTcl_Getint returnsTCL_OKand stores the value of the string in the location
pointed to by its last gument. If the string cahbe parsed correctly thértl_Getint
stores an error messagdnterp->result and return§CL_ERRORSumCmdhen
returnsTCL_ERRORROo its caller withinterp->result still pointing to the error mes-
sage fronTcl_Getint

Here are some examples of invoking slien command in @l scripts:

sum 2 3

S

sum 011 0x14

29

sum 3 6z

expected integer but got "6z"

Tcl_GetDouble is similar toTcl_Getint except that it expects the string to
consist of a floating-point number such &2 " or “3.0e-6 " or “7". It stores the dou-
ble-precision value of the number at the location given by its Igirent or returns an
error in the same way 3sl_Getint . Tcl_GetBoolean s similar except that it con-
verts the string to a 0 or 1 integer value, which it stores at the location given by its last

argument. Any of the true values listed iable 30.2 converts to 1 and any of the false val-
ues converts to 0.

True \alues| False \alues
1 0
true false
on off
yes no

Table 30.2. Legal values for boolean strings parsedibly GetBoolean . Any of the values
may be abbreviated or capitalized.

DRAFT (4/16/93): Distribution Restricted

282

Parsing

30.2

Many other Tl and Tk library procedures are similarfidl_Getint in the way
they use ainterp amgument for error reporting. These procedures all expect the inter-
pretets result to be in its initialized state when they are called. If they complete success-
fully then they usually leave the result in that state; if an error occurs then they put an error
message in the result. The procedures’ return values indicate whether they succeeded, usu-
ally as aTCL_OKor TCL_ERRORompletion code but sometimes in other forms such as
aNULLstring pointerWhen an error occurs, all the caller needs to do is to return a failure
itself, leaving the error message in the interptetersult.

Expression evaluation

Tcl provides four library procedures that evaluate expressions of the form described in
Chapter XXX:Tcl_ExprString , Tcl_ExprLong , Tcl_ExprDouble , and
Tcl_ExprBoolean . These procedures are similar except that they return the result of
the expression in diérent forms as indicated by their names. Here is a slightly simplified
implementation of thexpr command, which usé&l_ExprString

int ExprCmd(ClientData clientData, Tclinterp *interp,
int argc, char *argv([]) {
if (argc 1= 2) {
interp->result = "wrong # args";
return TCL_ERROR,;

return Tcl_ExprString(interp, argv[1]);
}

All ExprCmd does is to check itsgument count and then cai€l_ExprString
Tcl_ExprString evaluates its secondgaiment as ad expression and returns the
value as a string imterp->result . Like Tcl_GetInt it returnsTCL_OKif it
evaluated the expression successfully; if an error occurs it leaves an error message in
interp->result and return§CL_ERROR

Tcl_ExprLong , Tcl_ExprDouble , andTcl_ExprBoolean are similar to
Tcl_ExprString except that they return the expresssasult as a long integetou-
ble-precision floating-point numbear 0/1 integerrespectivelyEach of the procedures
takes an additional gmment that points to a place to store the result. For these procedures
the result must be convertible to the requested type. For examplbgif Is passed to
Tcl_ExprLong then it will return an error becausat ” has no integer value. If the
string “40” is passed td@cl_ExprBoolean it will succeed and store 1 in the value
word (any non-zero integer is considered to be true).

DRAFT (4/16/93): Distribution Restricted

30.3 Manipulating lists 283

30.3 Manipulating lists

Tcl provides several procedures for manipulating lists, of which the most useful are

Tcl_SplitList andTcl_Merge . Given a string in the form of aclTlist,

Tcl_SplitList extracts the elements and returns them as an array of string pointers.
For example, here is an implementation cfdlindex command that uses

Tcl_SplitList

int LindexCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
int index, listArgc;
char **listArgv;
if (argc = 3) {
interp->result = "wrong # args";
return TCL_ERROR;

}
if (Tcl_Getlnt(interp, argv[2], &index) != TCL_OK) {
return TCL_ERROR;

}
if (Tcl_SplitList(interp, argv[1], &listArgc,
&listArgv) 1= TCL_OK) {
return TCL_ERROR,;

}
if ((index >= 0) && (index < listArgc)) {
Tcl_SetResult(interp, listArgv[index],
TCL_VOLATILE);

llree((char *) listArgv);
return TCL_OK;
}
LindexCmd checks its ajument count, call$cl_Getint to converiargv[2] (the
index) into an integethen callsTcl_SplitList to parse the lisfTcl_SplitList
returns a count of the number of elements in the lisgtiorgc . It also creates an array
of pointers to the values of the elements and stores a pointer to that déist@ygv . If
Tcl_SplitList encounters an error in parsing the list (e.g. unmatched braces) then it
returnsTCL_ERRORnd leaves an error messagtarp- >result ; otherwise it
returnsTCL_OK
Tcl_SplitList callsmalloc to allocate space for the array of pointers and for

the string values of the elements; the caller must free up this space by jstz5igg
tofree . The space for both pointers and strings is allocated in a single block of memory
so only a single call tiree is needed.indexCmd callsTcl_SetResult to copy the
desired element into the interpréteresult. It specifieSCL_VOLATILE to indicate that
the string value is about to be destroyed (its memory will be fréet)SetResult
will make a copy of théstArgv[index] forinterp ’s result. If the specified index

DRAFT (4/16/93): Distribution Restricted

284

Parsing

is outside the range of elements in the list thedexCmd leavesnterp->result
in its initialized state, which returns an empty string.

Tcl_Merge is the inverse ofcl_SplitList . Givenargc andargv informa-
tion describing the elements of a list, it returmaaloc 'ed string containing the list.
Tcl_Merge always succeeds so it dogsmeed afinterp agument for error reporting.
Heres another implementation of thet command, which usé&l_Merge :

int ListCmd2(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv([]) {
interp->result = Tcl_Merge(argc-1, argv+1);
interp->freeProc = (Tcl_FreeProc *) free;
return TCL_OK;
}
ListCmd2 takes the result fromficl_Merge and stores it in the interpreteresult.
Since the list string is dynamically allocatedtCmd2 setsinterp->freeProc to
free so that Tl will call free to release the storage for the list when it is no longer
needed.

DRAFT (4/16/93): Distribution Restricted

Chapter 31
EXxceptions

31.1

Many Tcl commands, such #s andwhile , have aguments that arecT scripts. The
command procedures for these commands infakeEval recursively to evaluate the
scripts. IfTcl_Eval returns a completion code other thHa@L_OKthen arexceptions

said to have occurred. Exceptions incldgdd. ERRORwhich was described in Chapter

31, plus several others that have not been mentioned before. This chapter introduces the
full set of exceptions and describes how to unwind nested evaluations and leave useful
information in theerrorinfo anderrorCode variables. Seeable 31.1 for a sum-

mary of procedures related to exception handling.

Completion codes.

Table 31.2 lists the full set otTcompletion codes that may be returned by command pro-
cedures. If a command procedure returns anything otheiltbanOKthen Tl aborts the
evaluation of the script containing the command and returns the same completion code as
the result offcl_Eval (or Tcl_EvalFile , etc). TCL_OKandTCL_ERRORave
already been discussed; they are used for normal returns and errors, respébtvely
completion code$CL_BREAKor TCL_CONTINUEoccur ifbreak orcontinue com-
mands are invoked by a script; in both of these cases the intepretait will be an
empty string. Th@ CL_RETURNompletion code occursiigéturn is invoked; in this
case the interpreterresult will be the intended result of the enclosing procedure.

As an example of how to generat€@._BREAKcompletion code, here is the com-
mand procedure for tHeeak command:

285

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

286 Exceptions

Tcl_AddErrorinfo(Tcl_Interp *interp, char *message)
Addsmessage to stack trace being formedtime errorinfo variable.
Tcl_SetErrorCode(Tcl_Interp *interp, char *f ield, char *f ield,
... (char *) NULL)
Creates a list whose elements areftiedd amguments, and sets the
errorCode variable to the contents of the list.

Table 31.1. A summary of €l library procedures for settiregrorinfo anderrorCode

Completion Code Meaning
TCL_OK Command completed normally
TCL_ERROR Unrecoverable error occurred.
TCL_BREAK Break command was invoked.
TCL_CONTINUE Continue command was invoked.
TCL_RETURN Return command was invoked.

Table 31.2. Completion codes that may be returned by command procedures and procedu
evaluate scripts, such @sl_Eval

int BreakCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv([]) {
if (argc 1= 2) {
interp->result = "wrong # args";
return TCL_ERROR,;

ieturn TCL_BREAK;
}

TCL_BREAKTCL_CONTINUEandTCL_RETURNMre used to unwind nested
script evaluations back to an enclosing looping command or procedure invocation. Under
most circumstances, any procedure that receives a completion code otfAeZith@K
from Tcl_Eval should immediately return that same completion code to its caller with-
out modifying the interpret&s result. Howeveml few commands process some of the spe-
cial completion codes without returning them upward. For example, here is an
implementation of thevhile command:

DRAFT (4/16/93): Distribution Restricted

31.1 Completion codes. 287

int WhileCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argvl[]) {
int bool;
int code;
if (argc '=3) {
interp->result = "wrong # args";
return TCL_ERROR;

}
while (1) {
Tcl_ResetResult(interp);
if (Tcl_ExprBoolean(interp, argv[1], &bool)
I=TCL_OK) {
return TCL_ERROR;

}
if (bool == 0) {
return TCL_OK;

}

code = Tcl_Eval(interp, argv[2]);

if (code == TCL_CONTINUE) {
continue;

} else if (code == TCL_BREAK) {
return TCL_OK;

} else if (code '= TCL_OK) {
return code;

}

}
}

After checking its agument countWhileCmd enters a loop where each iteration evalu-
ates the commanrslfirst agument as an expression and its secogdnaent as a script. If
an error occurs while evaluating the expression WhaiteCmd returns the erroif the
expression evaluates successfully but its value is 0, then the command terminates with a
normal return. Otherwise it evaluates the scrigtiarent. If the completion code is
TCL_CONTINUEBhenWhileCmd goes on to the next loop iteration. If the code is
TCL_BREAKthenWhileCmd ends the execution of the command and retti€ls OK
to its callerIf Tcl_Eval returns any other completion code besitiés_OKthenWhi-
leCmd simply reflects that code upwards. This causes the proper unwinding to occur on
TCL_ERROPRYITCL_RETURNodes, and it will also unwind if any new completion
codes are added in the future.

If an exceptional return unwinds all the way through the outermost script being evalu-
ated then @ checks the completion code to be sure it is eifiéir OKor TCL_ERROR
If not then Tl turns the return into an error with an appropriate error message. Further-
more, if aTCL_BREAKor TCL_CONTINUEexception unwinds all the way out of a pro-
cedure thendl also turns it into an erroFor example:

DRAFT (4/16/93): Distribution Restricted

288

Exceptions

31.2

break
invoked "break" outside of a loop

proc badbreak {} {break}
badbreak

invoked "break" outside of a loop

Thus applications need not worry about completion codes othef @lerOKand
TCL_ERRORvhen they evaluate scripts from the outermost level.

Augmenting the stack trace in errorinfo

When an error occursclfmodifies theerrorinfo global variable to hold a stack trace
of the commands that were being evaluated at the time of theledwes this by calling
the procedurdcl_AddErrorinfo , Which has the following prototype:

void Tcl_AddErrorinfo(Tcl_Interp *interp,

char *message)
The first call toTcl_AddErrorinfo after an error setrrorinfo to the error mes-
sage stored imterp- >result and then appenasessage . Each subsubsequent call
for the same error appencgi®ssage toerrorinfo 's current value. Whenever a com-
mand procedure returiCL_ERRORcl_Eval callsTcl_AddErrorinfo to log
information about the command that was being executed. If there are nested calls to
Tcl_Eval then each one adds information about its command as it unwinds, so that a
stack trace forms iarrorinfo

Command procedures can chll_AddErrorinfo themselves to provide addi-
tional information about the context of the erfbhis is particularly useful for command
procedures tha invoKecl_Eval recursively For example, consider the followingl T
procedure, which is a buggy attempt to find the length of the longest element in a list:
proc longest list {
set i [llength $list]
while {$i >= 0} {
set length [string length [lindex $list $i]]
if {$length > $max} {
set max $length
}

incri

return $max
}

This procedure is buggy because it never initializes the varizdoteso an error will
occur when thd command attempts to read it. If the procedure is invoked with the com-

DRAFT (4/16/93): Distribution Restricted

31.2 Augmenting the stack trace in errorinfo 289

mand ‘longest {a 12345 xyz} ", then the following stack trace will be stored in
errorinfo after the error:

can’t read "max": no such variable
while executing
"if {$length > $max} {
set max $length

("while" body line 3)
invoked from within
“while {$i >= 0} {
set length [string length [lindex $list $i]]
if {$length > $max} {
set max $length
}

incr i

3

(procedure "longest” line 3)

invoked from within

“longest {a 12345 xyz}"

All of the information is provided bycl_Eval except for the two lines with comments
in parentheses. The first of these lines was generated by the command procedure for
while , and the second was generated by thedde that evaluates procedure bodies. If
you used the implementationwhile on page 287 instead of the built-iol implemen-
tation then the first parenthesized message would be missing. The C code below is a
replacement for the lastse clause inWhileCmd ; it usesTcl_AppendResult to
add the parenthetical remark.

} else if (code != TCL_OK) {
if (code == TCL_ERROR) {
char msg[50];
sprintf(msg, "\n (\"while\" body line %d)",
interp->errorLine);
Tcl_AddErrorinfo(interp, msg);
}

return code;

}

TheerrorLine field ofinterp is set byTcl Eval whenever a command procedure
returns an error; it gives the line number of the command that produced thevighiar

the script being executed. A line number of 1 corresponds to the first line, which is the line
containing the open brace in this examplejtheeommand that generated the error is on
line 3.

DRAFT (4/16/93): Distribution Restricted

290

Exceptions

Note:

31.3

For simple €l commands you shouldmeed to invok&cl_AddErrorinfo : the
information provided byrcl_Eval will be suficient. Howeverif you write code that
callsTcl_Eval then | recommend callingcl_AddErrorinfo whenever
Tcl_Eval returns an erroto provide information about whicl_Eval was invoked
and also to include the line number of the error
You must callTcl_AddErrorinfo rather than trying to set therrorinfo variable

directly, becausdcl_AddErrorinfo contains special code to detect the first call after
an error and clear out the old contentsearforinfo

Setting errorCode

Note:

The last piece of information set after an error isstherCode variable, which pro-
vides information about the error in a form thagasy to process witlellscripts. Its
intended for use in situations where a script is likely to catch the determine exactly
what went wrong, and attempt to recover from it if possible. If a command procedure
returns an error tocT without settingerrorCode then Tl sets it tdNONEIf a command
procedure wishes to provide informatioremorCode then it should invok&@cl_Se-
tErrorCode before returning CL_ERROR

Tcl_SetErrorCode takes as guments an interpreter and any number of string
arguments ending with a null pointét forms the strings into a list and stores the list as
the value okrrorCode . For example, suppose that you have written several commands
to implement gizmo objects, and that there are several errors that could occur in com-
mands that manipulate the objects, such as an attempt to use a non-existent object. If one
of your command procedures detects a non-existent objectiemayht seerrorCode
as follows:

Tcl_SetErrorCode(interp, "GIZMQO", "EXIST",
"no object by that name", (char *) NULL);

This will leave the valueGIZMO EXIST {no object by that name} ”in
errorCode . GIZMOidentifies a general class of errors (those associated with gizmo
objects) EXIST is the symbolic name for the particular error that occurred, and the last
element of the list is a human-readable error messagecan store whatever you want in
errorCode as long as the first list element do¢swnflict with other values already in
use, but the overall idea is to provide symbolic information that can easily be processed by
a Tcl script. For example, a script that accesses gizmos might catch errors and if the error
is a hon-existent gizmo it might automatically create a new gizmo.
It's important to calllcl_SetErrorCode rather than settingrrorCode directly
with Tcl_SetVar . This is becausécl_SetErrrorCode also sets other information

in the interpeter so thaerrorCode isnt later set to its default value; if you set
errorCode directly, then €l will override your value with the default valDEONE

DRAFT (4/16/93): Distribution Restricted

Chapter 32
Accessing Tcl Variables

This chapter describes how you can accebsdriables from C codecTprovides library
procedures to set variables, read their values, and unset them. It also provides a tracing
mechanism that you can use to monitor and restrict variable accesses3Z.1 summa-
rizes the library procedures that are discussed in the chapter

32.1 Naming variables

The procedures related to variables come in pairs suttli éSetvVar andTcl_Set-

Var2 . The two procedures in each paiffelifonly in the way they name alvariable. In

the first procedure of each pauch aJcl_SetVar |, the variable is named with a single

string agumentyvarName . This form is typically used when a variable name has been

specified as angnment to a @ command. The string can name a scalar variable ¢.g. “

or “f ieldName ", or it can name an element of an armyg. ‘a(42) " or

“area(South America) ”. No substitutions or modifications are performed on the

name. For example, iarName is “a($i) " Tcl will not use the value of variableas

the element name within array it will use the string $i " literally as the element name.
The second procedure of each pair has a name endiagy m§.Tcl_SetVar2 .In

these procedures the variable name is separated intogumemtsnamel andname2.

If the variable is a scalar th@eamel is the name of the variable andme2 is NULL If

the variable is an array element timremmel is the name of the array andme2 is the

name of the element within the arrais form of procedure is less commonly used but it

is slightly faster than the first form (procedures liked_SetVar are implemented by

calling procedures lik&cl_Setvar2).

291

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

292

Accessing Tcl Variables

char *Tcl_SetVar(Tcl_Interp *interp, char *varName,

char *Tcl_SetVar2(Tcl_Interp *interp, char *namel, char *name2,

char *Tcl_GetVar(Tcl_Interp *interp, char *varName,

char *Tcl_GetVar2(Tcl_Interp *interp, char *namel, char *name2,

int Tcl_UnsetVar(Tcl_Interp *interp, char *varName,

int Tcl_UnsetVar2(Tcl_Interp *interp, char *namel, char *name2,

char *newValue, int f lags)

char *newValue, int f lags)
Sets the value of the variablertewValue , creating the variable if it didn’
already exist. Returns the new value of the variabMUirL in case of error

intf lags)

intf lags)
Returns the current value of the variablelNoH_L in case of error

intf lags)

intf lags)
Removes the variable fromterp and return§CL_OK If the variable
doesnt exist or has an active trace then it t&e removed and
TCL_ERRORS returned.

int Tcl_TraceVar(Tcl_Interp *interp, char *varName,

int Tcl_TraceVar2(Tcl_Interp *interp, char *namel, char *name2,

Tcl_UntraceVar(Tcl_Interp *interp, char *varName,

Tcl_UntraceVar2(Tcl_Interp *interp, char *namel, char *name2,

ClientData Tcl_VarTracelnfo(Tcl_Interp *interp, char *varName,

ClientData Tcl_VarTracelnfo2(Tcl_Interp *interp, char *namel,

intf lags, Tcl_VarTraceProc *proc, ClientData clientData)

intf lags, Tcl_VarTraceProc *proc, ClientData clientData)
Arrange forproc to be invoked whenever one of the operations specified by
flags is performed on the variable. RetuiifSL_OKor TCL_ERROR

intf lags, Tcl_VarTraceProc *proc, ClientData clientData)

intf lags, Tcl_VarTraceProc *proc, ClientData clientData)
Removes the trace on the variable that matphas , clientData , and
flags , if there is one.

intf lags, Tcl_VarTraceProc *proc, ClientData prevClientData)

char *name2, int f lags, Tcl_VarTraceProc *proc,

ClientData prevclientData)
If prevClientData is NULL, returns the ClientData associated with th
first trace on the variable that matclémsgs andproc (only the
TCL_GLOBAL_ONLVYit of f lags is used); otherwise returns t@é-
entData for the next trace matchiridags andproc after the one whose
ClientData isprevClientData . ReturndNULLIf there are no (more)
matching traces.

¢

Table 32.1. Tcl library procedures for manipulating variables. The procedures come in pairs
procedure the variable is named with a single string (which may specify either a scalar or a
element) and in the other procedure the variable is named with separate array and elemen
(namel andname2, respectively). Ihame2 is NULL then the variable must be a scalar

DRAFT (4/16/93): Distribution Restricted

32.2 Setting variable values 293

Flag Name Meaning

TCL_GLOBAL_ONLY Reference global variable, regardless o
current execution context.

TCL_LEAVE_ERR_MSG| If operation fails, leave error message in
interp->result

TCL_APPEND_MLUE Append new value to existing value
instead of overwriting.

TCL_LIST_ELEMENT Convert new value to a list element befare
setting or appending.

]

Table 32.2. Values that may be OR’ed together in the flagaments tarcl_SetVar and
Tcl_SetVar2 . Other procedures use a subset of these flags.

32.2 Setting variable values

Tcl_SetvVar andTcl _SetVar2 are used to set the value of a variable. For example,
Tcl_SetVar(interp, "a", "44", 0);
will set the value of variable ininterp to the string 44”. If there does not yet exist a
variable namead then a new one will be created. The variable is set in the current execu-
tion context: if a Tl procedure is currently being executed, the variable will be a local one
for that procedure; if no procedure is currently being executed then the variable will be a
global variable. If the operation completed successfully then the return value from
Tcl_SetVar is a pointer to the variabkehew value as stored in the variable table (this
value is static enough to be used as an interpsatesult). If an error occurred, such as
specifying the name of an array without also specifying an element namalUhéris
returned.

The last agument toTcl_SetVar orTcl_SetVar2 consists of an OR’ed combi-
nation of flag bits. a@ble 32.2 lists the symbolic values for the flags. Ift6é_GLOBA-
L_ONLYflag is specified then the operation always applies to a global variable, even if a
Tcl procedure is currently being execut€é@L_LEAVE_ERR_MSEontrols how errors
are reported. Normallyicl_SetVar andTcl_SetVar2 just returnNULLIf an error
occurs. Howeveiif TCL_LEAVE_ERR_MS@8Bas been specified then the procedures will
also store an error message in the intergeetesult. This last form is useful when the
procedure is invoked from a command procedure that plans to abort if the variable access
fails.

The flagTCL_APPEND_VALUIeans that the new value should be appended to the
variables current value instead of replacing itl implements the append operation in a

DRAFT (4/16/93): Distribution Restricted

294

Accessing Tcl Variables

way that is relatively étient, even in the face of repeated appends to the same variable. If
the variable doesthyet exist theMCL_APPEND_VALUBas no dect.

The last flagTCL_LIST_ELEMENT means that the new value should be converted
to a proper list element (e.g. by enclosing in braces if necessary) before setting or append-
ing. If bothTCL_LIST_ELEMENTandTCL_APPEND_VALUEre specified then a sepa-
rator space is also added before the new elemertt ifégded.

Here is an implementation of tlkeppend command that uséxl_SetVar

int LappendCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
inti;
char *newValue;
if (argc < 3) {
interp->result = "wrong # args";
return TCL_ERROR;

for (i=2;i<argc; i++) {
newValue = Tcl_SetVar(interp, argv[1], argv]i],
TCL_LIST_ELEMENT|TCL_APPEND_VALUE
|TCL_LEAVE_ERR_MSG);
if (newValue == NULL) {
return TCL_ERROR,;
}
}

interp->result = newValue;
return TCL_OK;
}

It simply callsTcl_SetVar once for each gument and let$cl_SetVar do all the
work of converting the gument to a list value and appending it to the variable. If an error
occurs therfcl_SetVar leaves an error messagaériterp->result andLap-
pendCmdreturns the message back @b. Tf the command completes successfully then it
returns the variabls’final value as its result. For example, suppose the follovaingpim-
mand is invoked:

set a 44
lappend a x {b ¢}

44x{bc}
WhenLappendCmd is invokedargc will be 4.Argv[2] will be “x” andargv[3]
will be “b ¢ ” (the braces are removed by the parser) LappendCmd makes two calls
to Tcl_SetVar ; during the first call no conversion is necessary to produce a proper list
element, but during the second ¢&dl_SetVar adds braces back arourtal¢' " before
appending it the variable.

DRAFT (4/16/93): Distribution Restricted

32.3 Reading variables 295

32.3 Reading variables

The procedure$cl_GetvVar andTcl GetVar2 may be used to retrieve variable val-
ues. For example,

char *value;

value = Tcl_GetVar(interp, "a", 0);
will store invalue a pointer to the current value of variabldf the variable doest’
exist or some other error occurs thdLL is returnedTcl_GetVar andTcl_Get-
Var2 support thefCL_GLOBAL_ONL¥YNdTCL_LEAVE_ERR_MS#@ags in the same
way asTcl_SetVar . The following command procedure ude$ Getvar and
Tcl_SetVar to implement théncr command:

int IncrCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argvl[]) {
int value, inc;
char *string;
if ((argc = 2) && (argc = 3)) {
interp->result = "wrong # args";
return TCL_ERROR;

}
if (argc == 2) {
inc =1,
} else if (Tcl_GetlInt(interp, argv[2], &inc)
I= TCL_OK) {
return TCL_ERROR,;

string = Tcl_GetVar(interp, argv[1],
TCL_LEAVE_ERR_MSG);
if (string == NULL) {
return TCL_ERROR,;

}
if (Tcl_GetlInt(interp, string, &value) = TCL_OK) {
return TCL_ERROR,;

sprintf(interp->result, "%d", value + inc);
if (Tcl_SetVar(interp, argv[1], interp->result,
TCL_LEAVE_ERR_MSG) == NULL) {
return TCL_ERROR,;

}
return TCL_OK;
}

IncrCmd does very little work itself. It just calls library procedures and aborts if errors
occur The first call toTcl_Getint converts the increment from text to binary

DRAFT (4/16/93): Distribution Restricted

296

Accessing Tcl Variables

324

Tcl_GetVar retrieves the original value of the variable, and another catiltdGet-
Int converts that value to binatpcrCmd then adds the increment to the variable’
value and callsprintf to convert the result back to teXtl_SetVar stores this
value in the variable, andcrCmd then returns the new value as its result.

Unsetting variables

32.5

To remove a variable, cdllcl_UnsetVar orTcl_UnsetVar2 . For example,
Tcl_UnsetVar2(interp, "population”, "Michigan”, 0);
will remove the elemeritlichigan from the arraypopulation . This statement has
the same ééct as the @ command
unset population(Michigan)
Tcl_UnsetVar andTcl_UnsetVar2 returnTCL_OKIif the variable was successfully
removed and CL_ERRORf the variable didrt’exist or couldrt' be removed for some
other reasonTCL_GLOBAL_ONL¥YNdTCL_LEAVE_ERR_MS@ay be specified as
flags to these procedures. If an array hame is given without an element name then the
entire array is removed.

Setting and unsetting variable traces

Variable traces allow you to specify a C procedure to be invoked whenever a variable is
read, written, or unsetrdces can be used for many purposes. For example, in Tk you can
configure a button widget so that it displays the value of a variable and updates itself auto-
matically when the variable is modified. This feature is implemented with variable traces.
You can also use traces for debugging, to create read-only variables, and for many other
purposes.

The procedure$cl_TraceVar andTcl_TraceVar2 create variable traces, as in
the following example:

Tcl_TraceVar(interp, "x", TCL_TRACE_WRITES, WriteProc,
(ClientData) NULL);

This creates a write trace on variaklen interp : WriteProc will be invoked when-
everx is modified. The third gument toTcl_TraceVar is an OR’ed combination of
flag bits that select the operations to trdc@t._TRACE_READ®r reads,
TCL_TRACE_WRITESor writes, andfCL_TRACE_UNSET®r unsets. In addition,
the flagTCL_GLOBAL_ONLYnay be specified to force the variable name to be inter-
preted as globallcl_TraceVar andTcl_TraceVar2 normally returnTCL_OK if
an error occurs then they leave an error messageenp->result and return
TCL_ERROR

DRAFT (4/16/93): Distribution Restricted

32.6 Trace callbacks 297

32.6

The library procedurescl_UntraceVar andTcl_UntraceVar2 remove vari-
able traces. For example, the following call will remove the trace set above:
Tcl_UntraceVar(interp, "x", TCL_TRACE_WRITES,
WriteProc, (ClientData) NULL);

Tcl_UntraceVar finds the specified variable, looks for a trace that matches the flags,
trace procedure, and ClientData specified by geraents, and removes the trace if it
exists. If no matching trace exists thieel_UntraceVar does nothingTcl_Un-

traceVar andTcl_UntraceVar2 accept the same flag bitsed_TraceVar

Trace callbacks

Trace callback procedures such/dsteProc in the previous section must match the
following prototype:
typedef char *Tcl_VarTraceProc(ClientData clientData,
Tcl_Interp *interp, char *namel, char *name2,
intf lags);

TheclientData andinterp amguments will be the same as the correspondigg-ar
ments passed fbcl_TraceVar orTcl_TraceVar2 .ClientData typically points
to a structure containing information needed by the trace callNackelandname2
give the name of the variable in the same form as therants tolcl_SetVar2
Flags consists of an OR’ed combination of bits. Ongd6L._TRACE_READS
TCL_TRACE_WRITESorTCL_TRACE_UNSETS set to indicate which operation trig-
gered the trace, anidCL_GLOBAL_ONLYs set if the variable is a global variable that
isn't accessible from the current execution context; the trace callback must pass this flag
back into procedures liKecl_GetVar2 if it wishes to access the variable. The bits
TCL_TRACE_DESTROYEMITCL _INTERP_DESTROYE#Hre set in special circum-
stances described below

For read traces, the callback is invoked just befateGetVar orTcl_GetVar2
returns the variabls'value to whomever requested it; if the callback modifies the value of
the variable then the modified value will be returned. For write traces the callback is
invoked after the variablevalue has been changed. The callback can modify the variable
to override the change, and this modified value will be returned as the result of
Tcl_SetVar orTcl_SetVar2 . For unset traces the callback is invoked after the vari-
able has been unset, so the callback cannot access the variable. Unset callbacks can occur
when a variable is explicitly unset, when a procedure returns (thereby deleting all of its
local variables) or when an interpreter is destroyed (thereby deleting all of the variables in
the interpreter).

A trace callback procedure can invokd _GetVar2 andTcl_SetvVar2 to read
and write the value of the traced variable. All traces on the variable are temporarily dis-
abled while the callback executes so call$d¢b Getvar2 andTcl_Setvar2 will

DRAFT (4/16/93): Distribution Restricted

298

Accessing Tcl Variables

not trigger additional trace callbacks. As mentioned above, unset tracésramaied
until after the variable has been deleted, so attempts to read the variable during unset call-
backs will fail. Howeverit is possible for an unset callback procedure to write the vari-
able, in which case a new variable will be created.
The code below sets a write trace that prints out the new value of variadth time
it is modified:
Tcl_TraceVar(interp, "x", TCL_TRACE_WRITES, Print,
(ClientData) NULL);

char *Print(ClientData clientData,

Tcl_Interp *interp, char *namel, char *name2,
intf lags) {

char *value;

value = Tcl_GetVar2(interp, namel, name2,

flags & TCL_GLOBAL_ONLY);

if (value != NULL) {

printf("new value is %s\n", value);

return NULL;
}

PrintProc must pass thECL_GLOBAL_ONLYit of itsf lags amgument on to
Tcl_GetVar2 in order to make sure that the variable can be accessed properly
Tcl_GetVar2 should never return an errdaut PrintProc checks for one anyway
and doesrt’'try to print the variablg'value if an error occurs.

Trace callbacks normally retuNULL values; a noWNULL value signals an errdn
this case the return value must be a pointer to a static string containing an error message.
The traced access will abort and the error message will be returned to whomever initiated
that access. For example, if the access was invokeddty aommand of-substitution
then a Tl error will result; if the access was invoked Vid GetVar , Tcl_GetVar
will return NULL and also leave the error messagmtearp->result if the
TCL_LEAVE_ERR_MS@ag was specified.

The code below uses a trace to make variallad-only with valud 92 :

Tcl_TraceVar(interp, "x", TCL_TRACE_WRITES, Reject,
(ClientData) "192";
char *Reject(ClientData clientData, Tcl_Interp *interp,
char *namel, char *name2, int f lags) {
char *correct = (char *) ClientData;
Tcl_SetVar2(interp, namel, name2, correct,
flags & TCL_GLOBAL_ONLY);
return "variable is read-only";
h
Reject is a trace callback thatinvoked wheneverx is written. It returns an error mes-
sage to abort the write access. Sindws already been modified bef®eject is

DRAFT (4/16/93): Distribution Restricted

32.7 Whole-array traces 299

invoked,Reject must undo the write by restoring the variableorrect value. The cor-
rect value is passed to the trace callback usingiéstData amgument. This imple-

mentation allows the same procedure to be used as the write callback for rfexapntdif
read-only variables; a didrent correct value can be passe®éject for each variable.

32.7 Whole-array traces

You can create a trace on an entire array by specifying an array nacheliaceVar

or Tcl_TracevVar2 without an element name. This creates a whole-array trace: the call-
back procedure will be invoked whenever any of the specified operations is invoked on
any element of the arralf the entire array is unset then the callback will be invoked just
once, withnamel containing the array name andme2 NULL

32.8 Multiple traces

Multiple traces can exist for the same variable. When this happens, each of the relevant
callbacks is invoked on each variable access. The callbacks are invoked in order from
most-recently-created to oldest. If there are both whole-array traces and individual ele-
ment traces, then the whole-array callbacks are invoked before element callbacks. If an
error is returned by one of the callbacks then no subsequent callbacks are invoked.

32.9 Unset callbacks

Unset callbacks are @&rent from read and write callbacks in several ways. First of all,
unset callbacks cannot return an error condition; they must always succeed. Second, two
extra flags are defined for unset callbadkst. TRACE_DELETERnd
TCL_INTERP_DESTROYEDWNhen a variable is unset all of its traces are deleted; unset
traces on the variable will still be invoked, but they will be passe@i@he TRACE DE-
LETEDflag to indicate that the trace has now been deleted antllveoinvvoked anymore.

If an array element is unset and there is a whole-array unset trace for the slemayt’

then the unset trace is not deleted and the callback will be invoked without the
TCL_TRACE_DELETELRlag set.

If the TCL_INTERP_DESTROYERBag is set during an unset callback it means that
the interpreter containing the variable has been destroyed. In this case the callback must be
careful not to use the interpreter at all, since the interpsettate is in the process of
being deleted. All that the callback should do is to clean up its own internal data struc-
tures.

DRAFT (4/16/93): Distribution Restricted

300 Accessing Tcl Variables

32.10 Non-existent variables

It is legal to set a trace on a variable that does not yet exist. The variable will continue to
appear not to exist (e.g. attempts to read it will fail), but the saediback will be

invoked during operations on the variable. For example, you can set a read trace on an

undefined variable and then, on the first access to the variable, assign it a default value.

32.11 Querying trace information

The procedurescl_VarTracelnfo andTcl_VarTracelnfo2 can be used to find
out if a particular kind of trace has been set on a variable and if so to retrieve its Client-
Data value. For example, consider the following code:

ClientData clientData;

clientData = Tcl_VarTracelnfo(interp, "x", 0, Reject,
(ClientData) NULL);

Tcl_VarTracelnfo will see if there is a trace on varialdléhat haRReject as its
trace callback. If so, it will return the ClientData value associated with the first (most
recently created) such trace; if not it will retiNbLL Given the code in Section 32.6
above, this call will tell whether is read-only; if so, it will return the variabdefead-only
value. If there are multiple traces on a variable with the same callback, you can step
through them all in order by making multiple callsTid_VarTracelnfo , asin the
following code:

ClientData clientData;

clientData = NULL;
while (1) {
clientData = Tcl_VarTracelnfo(interp, "x", 0,
Reject, clientData);
if (clientData == NULL) {
break;
}

... process trace ...
}
In each call tarcl_VarTracelnfo after the first, the previous ClientData value is
passed in as the laspament.Tcl_VarTracelnfo finds the trace with this value, then
returns the ClientData for the next trace. When it reaches the last trace it Kefiluins

DRAFT (4/16/93): Distribution Restricted

Chapter 33
Hash Tables

A hash tables a collection oEntries where each entry consists dfeyand avalue No

two entries have the same k&jven a keya hash table can very quickly locate its entry

and hence the associated valug.cbntains a general-purpose hash table package that it
uses in several places internafpr example, all of the commands in an interpreter are
stored in a hash table where the key for each entry is a command name and the value is a
pointer to information about the command. All of the global variables are stored in another
hash table where the key for each entry is the name of a variable and the value is a pointer
to information about the variable.

Tcl exports its hash table facilities through a set of library procedures so that applica-
tions can use them too (seable 33.1 for a summary). The most common use for hash
tables is to associate names with objects. In order for an application to implement a new
kind of object it must give the objects textual names for useliocommands. When a
command procedure receives an object name agamant it must locate the C data
structure for the objectypically there will be one hash table for each type of object,
where the key for an entry is an object name and the value is a pointer to the C data struc-
ture that represents the object. When a command procedure needs to find an object it looks
up its name in the hash table. If there is no entry for the name then the command procedure
returns an error

For the examples in this chapter I'll use a hypothetical application that implements
objects called “gizmos”. Each gizmo is represented internally with a structure declared
like this:

typedef struct Gizmo {
... fields of gizmo object ...
} Gizmo;

301

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

302 Hash Tables

Tcl_InitHashTable(Tcl_HashTable *tablePtr, int keyType)
Creates a new hash table and stores information about the table at
*tablePtr . KeyType is eitherTCL_STRING_KEYS
TCL_ONE_WORD_KEY& an integer greater than 1.
Tcl_DeleteHashTable(Tcl_HashTable *tablePtr)
Deletes all the entries in the hash table and frees up related storage.

Tcl_HashEntry *Tcl_CreateHashEntry(Tcl_HashTable *tablePtr,

char *key,
int *newPtr)

Returns a pointer to the entrytablePtr ~ whose key i%ey, creating a
new entry if neededNewPtr is setto 1 if a new entry was created or O ff
the entry already existed.

Tcl_HashEntry *Tcl_FindHashEntry(Tcl_HashTable *tablePtr, char
*key)
Returns a pointer to the entrytablePtr ~ whose key ikey, or NULL if
no such entry exists.

Tcl_DeleteHashEntry(Tcl_HashEntry *entryPtr)
Deletes an entry from its hash table.

ClientData Tcl_GetHashValue(Tcl_HashEntry *entryPtr)

Returns the value associated with a hash table.entry
Tcl_SetHashValue(Tcl_HashEntry *entryPtr, ClientData value)

Sets the value associated with a hash table.entry
char *Tcl_GetHashKey(Tcl_HashEntry *entryPtr)

Returns the key associated with a hash table.entry

Tcl_HashEntry *Tcl_FirstHashEntry(Tcl_HashTable *tablePtr,
Tcl_HashSearch *searchPtr)

Starts a search through all the elements of a hash table. Stores information
about the search &earchPtr and returns the hash talsldirst entry or
NULLIf it has no entries.

Tcl_HashEntry *Tcl_NextHashEntry(Tcl_HashSearch *searchPtr)
Returns the next entry in the search identifiedégrchPtr or NULLIf all
entries in the table have been returned.

char *Tcl_HashStats(Tcl_HashTable *tablePtr)
Returns a string giving usage statisticstédnlePtr . The string is dynam-
ically allocated and must be freed by the caller

The application uses names likfizZzmo42 " to refer to gizmos in @ commands, where
each gizmo has a é#frent number at the end of its name. The application follows the
action-oriented approach described in Section 27.3 by providing a collectichomiii-
mands to manipulate the objects, sucg@asate to create a new gizmgdelete to
delete an existing gizmgsearch to find gizmos with certain characteristics, and so on.

DRAFT (4/16/93): Distribution Restricted

33.1 Keys and values 303

33.1

Keys and values

33.2

Tcl hash tables support threefdient kinds of keys. All of the entries in a single hash
table must use the same kind of Keyt diferent tables may use fiifent kinds. The most
common form of key is a string. In this case each keyNiBlL-terminated string of arbi-
trary length, such agfzmol18 ” or “Waste not want not ". Different entries in a
table may have keys of éfent length. The gizmo implementation uses strings as keys.
The second form of key is a one-word value. In this case each key may be any value
that fits in a single word, such as an inte@sre-word keys are passed int dsing val-
ues of type €har * " so the keys are limited to the size of a character pointer
The last form of key is an arraly this case each key is an array of integeriafC
type). All keys in the table must be the same size.
The values for hash table entries are items of Gl@ntData , which are lage
enough to hold either an integer or a poinitemost applications, such as the gizmo
example, hash table values are pointers to records for objects. These pointers are cast into
ClientData items when storing them in hash table entries, and they are cast back from
ClientData to object pointers when retrieved from the hash table.

Creating and deleting hash tables

Each hash table is represented by a C structure offgipelashTable . Space for this
structure is allocated by the client, not lmy}; Typically these structures are global vari-
ables or elements of other structures. When calling hash table procedures you pass in a
pointer to alcl_HashTable structure as a token for the hash tabtmu ¥hould never
use or modify any of the fields off&l_HashTable directly Use the €l library proce-
dures and macros for this.

Here is how a hash table might be created for the gizmo application:

Tcl_HashTable gizmoTable;

Tcl_InitHashTable(&gizmoTable, TCL_STRING_KEYS);

The first agument toTcl_InitHashTable is aTcl_HashTable pointer and the
second ggument is an integer that specifies the sort of keys that will be used for the table.
TCL_STRING_KEYSmeans that strings will be used in the table;
TCL_ONE_WORD_VALUEBecifies one-word keys; and an integer value greater than
one means that keys are arrays with the given number ®frirgach array
Tcl_InitHashTable ignores the current contents of the table it is passed and re-ini-
tializes the structure to refer to an empty hash table with keys as specified.
Tcl_DeleteHashTable removes all the entries from a hash table and frees up
any memory that was allocated for the table (except space foclthgashTable

DRAFT (4/16/93): Distribution Restricted

304 Hash Tables

structure itself, which is the property of the client). For example, the following statement
could be used to delete the hash table initialized above:

Tcl_DeleteHashTable(&gizmoTable);

33.3 Creating entries

The procedurd&cl_CreateHashEntry creates an entry with a given key and
Tcl_SetHashValue sets the value associated with the erfior example, the code
below might be used to implement @eate command, which makes a new gizmo
object:
int GereateCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
static intid = 1;
int new;
Tcl_HashEntry *entryPtr;
Gizmo *gizmoPtr;
... check agc, etc ...
do {
sprintf(interp->result, "gizmo%.d", id);
id++;
entryPtr = Tcl_CreateHashEntry(&gizmoTable,
interp->result, &new);
} while ('new);
gizmoPtr = (Gizmo *) malloc(sizeof(Gizmo));
Tcl_SetHashValue(entryPtr, gizmoPtr);
... initialize *gizmoPtretc ...
return TCL_OK;
}
This code creates a name for the object by concatenafimgd ” with the value of the
static variablad . It stores the name interp->result so that the commarsliesult
will be the name of the new objeGcreateCmd then increment&l so that each new
object will have a unique namgcl_CreateHashEntry is called to create a new
entry with a key equal to the objextiame; it returns a token for the entdypder normal
conditions there will not already exist an entry with the given ikeyhich case
Tcl_CreateHashEntry setsnew to 1 to indicate that it created a new erittgwever
it is possible foifcl_CreateHashEntry to be called with a key that already exists in
the table. IfGecreateCmd this can only happen if a very ¢@r number of objects are cre-
ated, so thatl wraps around to zero again. If this happens TrenCreateHashEn-
try sets new to QcreateCmd will try again with the next lgerid until it eventually
finds a name that isnalready in use.

DRAFT (4/16/93): Distribution Restricted

33.4 Finding existing entries 305

Note:

33.4

After creating the hash table ent¢greateCmd allocates memory for the objext’
record and invoke$cl_SetHashValue to store the record address as the value of the
hash table entryfcl_SetHashValue s actually a macro, not a procedure; its first
argument is a token for a hash table entry and its secgadant, the new value for the
entry, can be anything that fits in the space GliantData value. After setting the
value of the hash table entBcreateCmd initializes the new object’record.

Tcl's hash tablesastructue themselves as you add entries. A tabletwse’ much
memory for the hash buckets when it has only a small number of entries, but it will

increase the size of the bucket array as the number of entrieages:; di's hash tables
should operate efficiently even with venglinumbers of entries.

Finding existing entries

The proceduré&cl_FindHashEntry locates an existing entry in a hash table. It is sim-
ilar to Tcl_CreateHashEntry except that it wort’create a new entry if the key
doesnt already exist in the hash tablel_FindHashEntry is typically used to find
an object given its name. For example, the gizmo implementation might contain a utility
procedure calleGetGizmo , which is something lik&cl_Getint except that it trans-
lates its string @ument to &izmo pointer instead of an integer:
Gizmo *GetGizmo(Tcl_Interp *interp, char *string) {
Tcl_HashEntry *entryPtr;
entryPtr = Tcl_FindHashEntry(&gizmoTable, string);
if (entryPtr == NULL) {
Tcl_AppendResult(interp, "no gizmo named \",
string, "\", (char *) NULL);
return TCL_ERROR,

return (Gizmo *) Tcl_GetHashValue(entryPtr);
}
GetGizmo looks up a gizmo name in the gizmo hash table. If the name exisGehen
Gizmo extracts the value from the entry using the macloGetHashValue , con-
verts it to aGizmo pointer and returns it. If the name dodsaxist thenGetGizmo
stores an error messaganterp->result and returnéNULL
GetGizmo can be invoked from any command procedure that needs to look up a
gizmo object. For example, suppose there is a comgiavist that performs a “twist”
operation on gizmos, and that it takes a gizmo name as its dissh@nt. The command
might be implemented like this:
int GtwistCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
Gizmo *gizmoPtr;
... check agc, etc ...

DRAFT (4/16/93): Distribution Restricted

306 Hash Tables

gizmoPtr = GetGizmo(interp, argv[1]);
if (gizmoPtr == NULL) {

return TCL_ERROR,;
}

... perform twist operation ...

33.5 Searching

Tcl provides two procedures that you can use to search through all of the entries in a hash
table.Tcl_FirstHashEntry starts a search and returns the first eamgTcl_N-
extHashEntry returns successive entries until the search is complete. For example,
suppose that there iggearch command that searches through all existing gizmos and
returns a list of the names of the gizmos that meet a certain set of criteria. This command
might be implemented as follows:

int GsearchCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
Tcl_HashEntry *entryPtr;
Tcl_HashSearch search;
Gizmo *gizmoPtr;
... process aguments to choose seércriteria ...
for (entryPtr = Tcl_FirstHashEntry(&gizmoTable,
&search); entryPtr 1= NULL;
entryPtr = Tcl_NextHashEntry(&search)) {
gizmoPtr = (Gizmo *) Tcl_GetHashValue(entryPtr);
if (...object satisfies sed criteria..) {
Tcl_AppendElement(interp,
Tcl_GetHashKey(entryPtr));

}
}
return TCL_OK;
}
A structure of typdcl_HashSearch is used to keep track of the search.
Tcl_FirstHashEntry initializes this structure antcl_NextHashEntry uses the

information in the structure to step through successive entries in the tabpeskible to
have multiple searches underway simultaneously on the same hash table by uéng a dif
entTcl_HashSearch structure for each searcfcl_FirstHashEntry returns a

token for the first entry in the table (dULL if the table is empty) anticl_NextHash-

Entry returns pointers to successive entries, eventually retuNiitid when the end of

the table is reached. For each ef@searchCmd extracts the value from the entcpn-

verts it to aGizmo pointer and sees if that object meets the criteria specified in the com-
mands aguments. If so, the@GsearchCmd uses thdcl_GetHashKey macro to get

DRAFT (4/16/93): Distribution Restricted

33.6 Deleting entries 307

the name of the object (i.e. the erdgrigey) and invoke$cl_AppendElement to
append the name to the interpr&teesult as a list element.

Note: Itis not safe to modify the strucéuof a hash table during a seér. If you ceate or delete
entries then you should terminate any sbas in pogress.

33.6 Deleting entries

The procedurd&cl_DeleteHashEntry will delete an entry from a hash table. For
example, the following procedure uSed DeleteHashEntry to implement gyde-
lete command, which takes any humber @futanents and deletes the gizmo objects they

name:
int GdeleteCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
Tcl_HashEntry *entryPtr;
Gizmo *gizmoPtr;
inti;
for (i=1;i<argc;i++){
entryPtr = Tcl_FindHashEntry(&gizmoTable,
argv[i]);
if (entryPtr == NULL) {
continue;
gizmoPtr = (Gizmo *) Tcl_HashGetValue(entryPtr);
Tcl_DeleteHashEntry(entryPtr);
... Clean up *gizmoPtr...
free((char *) gizmoPtr);
}
return TCL_OK;
}

GdeleteCmd checks each of itsguments to see if it is the name of a gizmo object. If

not, then the gument is ignored. OtherwisgdeleteCmd extracts a gizmo pointer from

the hash table entry and then calt$_DeleteHashEntry to remove the entry from

the hash table. Then it performs internal cleanup on the gizmo object if needed and frees
the objects record.

33.7 Statistics

The procedur&cl_HashStats returns a string containing various statistics about the
structure of a hash table. For example, it might be used to implergstata command
for gizmos:

DRAFT (4/16/93): Distribution Restricted

308 Hash Tables

int GstatCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
if (argc 1=1) {
interp->result = "wrong # args";
return TCL_ERROR,;

interp->result = Tcl_HashStats(&gizmoTable);
interp->freeProc = free;
return TCL_OK;

}

The string returned bycl_HashStats is dynamically allocated and must be passed to
free;GstatCmd uses this string as the commanisult, and then sets
interp- >freeProc so that Tl will free the string.

The string returned bycl_HashStats contains information like the following:

1416 entries in table, 1024 buckets
number of buckets with 0 entries: 60
number of buckets with 1 entries: 591
number of buckets with 2 entries: 302
number of buckets with 3 entries: 67
number of buckets with 4 entries:
number of buckets with 5 entries:
number of buckets with 6 entries:
number of buckets with 7 entries:
number of buckets with 8 entries:
number of buckets with 9 entries:
number of buckets with more than 10 entries: 0
average search distance for entry: 1.4

You can use this information to see hoficedntly the entries are stored in the hash table.

For example, the last line indicates the average number of entrieslthalt iave to

check during hash table lookups, assuming that all entries are accessed with equal proba-
bility.

Oooocowu

DRAFT (4/16/93): Distribution Restricted

Chapter 34
String Utilities

This chapter describe<ITs library procedures for manipulating strings, including a
dynamic string mechanism that allows you to build up arbitrarily long strings, a procedure
for testing whether a command is complete, and a procedure for doing simple string
matching. Bble 34.1 summarizes these procedures.

Note: None of the dynamic string facilitieseaavailable in versions otTearlier than 7.0.

34.1 Dynamic strings

A dynamic strings a string that can be appended to without bound. As you append infor-
mation to a dynamic stringclfautomatically grows the memory area allocated for it. If
the string is short thencTavoids dynamic memory allocation altogether by using a small
static bufer to hold the string.d provides five procedures for manipulating dynamic
strings:
Tcl_DStringlnit creates a new empty string;
Tcl_DStringAppend adds characters to a dynamic string;
Tcl_DStringAppendElement adds a new list element to a dynamic string;

Tcl_DStringFree releases any storage allocated for a dynamic string and reinitial-
izes the string;

andTcl_DStringResult moves the value of a dynamic string to the result string
for an interpreter and reinitializes the dynamic string.

309

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

310

String Utilities

Tcl_DStringlnit(Tcl_DString *dsPtr)
Initializes*dsPtr to an empty string (previous content$adéPtr are
discarded without cleanup).
char *Tcl_DStringAppend(Tcl_DString *dsPtr, char *string, int
length)
Appenddength bytes fromstring todsPtr ’'s value and returns new
value ofdsPtr . If length is less than zero, appends alstfng up to
terminatingNULL character
char *Tcl_DStringAppendElement(Tcl_DString *dsPtr, char *string)
Convertsstring to proper list element and appendsi$@tr 's value
(with separator space if needed). Returns new valdeRif .
Tcl_DStringFree(Tcl_DString *dsPtr)
Frees up any memory allocated f=Ptr and reinitializegdsPtr to an

empty string.
Tcl_DStringResult(Tcl_Interp *interp, Tcl_DString *dsPtr)
Moves the value adsPtr tointerp->result and reinitializeslsP-

tr ’'s value to an empty string.

int Tcl_CommandComplete(char *cmd)
Returnsl if cmd holds one or more complete commartild,the last com-
mand incmd is incomplete due to open braces etc.

int Tcl_StringMatch(char *string, char *pattern)
Returnsl if string matchegattern using glob-style rules for pattern
matching,0 otherwise.

The code below uses all of these procedures to implenmapaommand, which

takes a list and generates a new list by applying some operation to each element of the
original list. Map takes two aguments: a list and aclfcommand. For each element in the
list, it executes the given command with the list element appended as an addigional ar
ment. It takes the results of all the commands and generates a new list out of them, and
then returns this list as its result. Here are some exmples of how you might osgthe
command:

proc inc x {expr $x+1}

map {4 18 16 19 -7} inc

5191720-6

proc addz x {return "$x z"}
map {a b {a b c}} addz

{az}{bz}{abcz}

Here is the command procedure that implemerag:

int MapCmd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv([]) {

DRAFT (4/16/93): Distribution Restricted

34.1 Dynamic strings 311

Tcl_DString command, newList;

int listArgc, i, result;

char **listArgv;

if (argc '=3) {
interp->result = "wrong # args";
return TCL_ERROR,;

}
if (Tcl_SplitList(interp, argv[1], &listArgc,
&listArgv) 1= TCL_OK) {
return TCL_ERROR,;

}
Tcl_DStringlInit(&newList);
Tcl_DStringlnit(&command);
for (i = 0; i < listArgc; i++) {
Tcl_DStringAppend(&command, argv[2], -1);
Tcl_DStringAppendElement(&command,
listArgv[i]);
result = Tcl_Eval(interp, command.string);
Tcl_DStringFree(&command);
if (result I= TCL_OK) {
Tcl_DStringFree(&newlList);
free((char *) listArgv);
return result;

}
Tcl_DStringAppendElement(&newlList,
interp->result);

Tcl_DsStringResult(interp, &newlList);

free((char *) listArgv);

return TCL_OK;

}
MapCmduses two dynamic strings. One holds the result list and the other holds the com-
mand to execute in each step. The first dynamic string is needed because the length of the
command is unpredictable, and the second one is needed to store the result list as it builds
up (this information cab’be placed immediately interp->result because the
interpretets result will be overwritten by the command te&valuated to process the next
list element). Each dynamic string is represented by a structure ofdlydg@String
The structure holds information about the string such as a pointer to its current value, a
small array to use for small strings, and a length. The only field that you should ever
access is thetring field, which is a pointer to the current valuel doesnt allocate
Tcl_DString structures; i up to you to allocate the structure (e.g. as a local variable)
and pass its address to the dynamic string library procedures.
After checking its ayjument count, extracting all of the elements from the initial list,

and initializing its dynamic stringdjapCmdenters a loop to process the elements of the

DRAFT (4/16/93): Distribution Restricted

312

String Utilities

34.2

list. For each element it first creates the command to execute for that element. It does this
by callingTcl_DStringAppend to append the part of the command provided in
argv[2] , then it callsTcl_DStringAppendElement to append the list element as
an additional ayjument. These procedures are similar in that both add new information to
the dynamic string. HoweveFcl_DStringAppend adds the information as raw text
whereaslcl_DStringAppendElement converts its string gument to a proper list
element and adds that list element to the dynamic string (with a separator space, if
needed). I8 important to us&cl_DStringAppendElement for the list element so
that it becomes a single word of thed §ommand being formed. Ticl_DStringAp-
pend were used instead and the element ware € " as in the example on page 310,
then the command passedit_Eval would be ‘addzabc ", which would result
in an error (too many guments to thaddz procedure). Wheilicl_DStringAppen-
dElement is used the command iaddz {a b c} ", which parses correctly
OnceMapCmdhas created the command to execute for an element, it invokes
Tcl_Eval to evaluate the command. Thel_DStringFree call frees up any mem-
ory that was allocated for the command string and resets the dynamic string to an empty
value for use in the next command. If the command returned an errdvidp&md
returns that same error; otherwise it ugels DStringAppendElement to add the
result of the command to the result list as a new list element.
MapCmdcalls Tcl_DStringResult after all of the list elements have been pro-
cessed. This transfers the value of the string to the intergredsult in an dtient way
(e.g. if the dynamic string uses dynamically allocated memoryTbeStringRe-
sult just copies a pointer to the resuliriterp->result rather than allocating new
memory and copying the string).
Before returningMapCmdmust be sure to free up any memory allocated for the
dynamic strings. It turns out that this has already been domel bpStringFree for
commandand byTcl_DStringResult for newList

Command completeness

When an application is reading commands typed interactivslymportant to wait until a
complete command has been entered before evaluating it. For example, suppose an appli-
cation is reading commands from standard input and the user types the following three
lines:

foreachi{12345}{
puts "$i*$i is [expr $i*$i]"
}

If the application reads each line separately and passekcit téval , a “missing

close-brace " error will be generated by the first line. Instead, the application should
collect input until all the commands read are complete (e.g. there are no unmatched braces

DRAFT (4/16/93): Distribution Restricted

34.3 String matching 313

or quotes) then execute all of the input as a single script. The prodetiuB®mmand-
Complete makes this possible. It takes a string gsiarent and returns 1 if the string
contains syntactically complete commands, O if the last commangéticomplete.

The C procedure below uses dynamic stringsfahdCommandComplete to read
and evaluate a command typed on standard input. It collects input until all the commands
read are complete, then it evaluates the command(s) and returns the completion code from
the evaluation. It usékcl_RecordAndEval to evaluate the command so that the com-
mand is recorded on the history list.

int DoOneCmd(Tcl_Interp *interp) {
char line[200];
Tcl_DString cmd;
int result;
Tcl_DStringlnit(&cmd);
while (1) {
if (fgets(line, 200, stdin) == NULL) {
break;

}

Tcl_DStringAppend(&cmd, line, -1);

if (Tcl_CommandComplete(cmd.string)) {
break;

}

result = Tcl_RecordAndEval(interp, cmd.string, 0);
Tcl_DsStringFree(&cmd);
return result;
}
In the example of the previous pageOneCmdwill collect all three lines before evaluat-
ing them. If an end-of-file occufgets will return NULL andDoOneCmdwill evaluate
the command even if it isncomplete yet.

34.3 String matching

The procedurd&cl_StringMatch provides the same functionality as tis¢ring

match ” Tcl command. Given a string and a pattern, it retdriighe string matches the
pattern using glob-style matching abatherwise. For example, here is a command pro-
cedure that usécl_StringMatch to implementsearch . It returns the index of the
first element in a list that matches a patternloif no element matches:

int LsearchCmd(ClientData clientData,
Tcl_Interp *interp, int argc, char *argv[]) {
int listArgc, i, result;
char **listArgv;
if (argc '=3) {

DRAFT (4/16/93): Distribution Restricted

314

String Utilities

interp->result = "wrong # args";
return TCL_ERROR;

}
if (Tcl_SplitList(interp, argv[1], &listArgc,
&listArgv) = TCL_OK) {
return TCL_ERROR,;

result = -1;
for (i = 0; i < listArgc; i++) {
if (Tcl_StringMatch(listArgvli], argv[2])) {
result = i;
break;

}

sprintf(interp->result, "%d", result);
free((char *) listArgv);
return TCL_OK;

DRAFT (4/16/93): Distribution Restricted

Chapter 35
POSI X Utilities

35.1

This chapter describes several utilities that you may find useful if you use POSIX system
calls in your C code. The procedures can be used to expanatation in file names, to
generate messages for POSIX errors and signals, and to manage sub-procesable See T
35.1 for a summary of the procedure.

Tilde expansion

Tcl and Tk allow you to use notation when specifying file names, and if you write new
commands that manipulate files then you should support tildes also. For example, the
command

open ~ouster/.login
opens the file nametbgin in the home directory of useuster , and

open ~/.login
opens a file nametbgin in the home directory of the current user (as given by the
HOMEenvironment variable). Unfortunateljides are not supported by the POSIX sys-
tem calls that actually open files. For example, in thedpeh command above the name
actually presented to tlopen system call must be something like

/users/ouster/.login

where~ouster has been replaced bhe home directory fasuster . Tcl_TildeS-
ubst is the procedure that carries out this substitution. It is used internallyt bpd Tk

315

Copyright © 1993 Addison-®&ley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not der warranties in regard to this draft.

316 POSIX Utilities

char *Tcl_TildeSubst(Tcl_Interp *interp, char *name,
Tcl_DString *resultPtr)

If name starts with~, returns a new name with theand following charac-
ters replaced with the corresponding home directory namanié doesnt
start with~, returnsname. UsestresultPtr if needed to hold new name
(caller need not initializ&resultPtr , but must free it by callingicl_D-
StringFree). If an error occurs, returddULL and leaves an error mes-
sage innterp- >result.

char *Tcl_PosixError(Tcl_Interp *interp)
Sets theerrorCode variable ininterp based on the current value of
errno , and returns a string identifying the error

char *Tcl_Errnold(void)
Returns a symbolic name corresponding to the current vaérenof , such
asENOENT

char *Tcl_Signalld(int sig)
Returns the symbolic name feig , such aSIGINT .

char *Tcl_SignalMsg(int sig)
Returns a human-readable message describing signal

int Tcl_CreatePipeline(Tcl_Interp *interp, int argc, char

*argv(],

int **pidPtr, int *inPipePtr, int *outPipePtr, int *errFi-
lePtr)
Creates a process pipeline, returns a count of the number of processes cre-
ated, and stores &idPtr the address ofmalloc -ed array of process
identifiers. If an error occurs, retursis and leaves an error message in
interp->result . InPipePtr , outPipePtr , anderrFilePtr are
used to control default I/O redirection (see text for details).

Tcl_DetachPids(int numPids, int *pidPtr)
Passes responsibility foumPids at*pidPtr to Tcl: Tcl will allow them
to run in backround and reap them in some future caitkdReapDe-
tachedProcs

Tcl_ReapDetachedProcs(void)
Checks to see if any detached processes have exited; if so, cleans up their
state.

to process file names before using them in system calls, and you may find it useful if you
write C code that deals with POSIX files.
For example, the implementation of thhgen command contains code something
like the following:
int fd;
Tcl_DString buffer;
char *fullName;

DRAFT (4/16/93): Distribution Restricted

35.2 Generating messages 317

35.2

fullName = Tcl_TildeSubst(interp, argv[1], &buffer);
if (fullName == NULL) {
return TCL_ERROR,;

}
fd = open(fullName, ...);
Tcl_DStringFree(fullName);

Tcl_TildeSubst takes as guments an interpretea file name that may start with a
tilde, and a dynamic string. It returns a new file name, which is either the original name (if
it didn’t start with~), a new tilde-expanded name NIJLL if an error occurred; in the last
case an error message is left in the interpgetesult.

If Tcl_TildeSubst has to generate a new name, it uses the dynamic string given
by its final agument to store the name. Wheel_TildeSubst is called the dynamic
string should either be uninitialized or empkgl_TildeSubst initializes it and then
uses it for the new name if needed. Once the caller has finished using the new file name it
must invokeTcl_DStringFree to release any memory that was allocated for the
dynamic string.

Generating messages

When an error or signal occurs in the C code aflapplication, the application should
report the error or signal back to tha Jcript that triggered it, usually as & €rror To do
this, information about the error or signal must be converted from the binary form used in
C to a string form for use incTscripts. €l provides four procedures to do this:
Tcl_PosixError , Tcl_Erronld , Tcl_Signalld , andTcl_SignalMsg

Tcl_PosixError provides a simple “all in one” mechanism for reporting errors in
system callsTcl_PosixError examines the C variab&rno to determine what
kind of error occurred, then it callel_SetErrorCode to set theerrorCode vari-
able appropriately and it returns a human-readable string suitable for use in an error mes-
sage. For example, consider the following fragment of code, which might be part of a
command procedure;

FILE *f;

f = fopen("prolog.ps", "r");
if (f == NULL) {
char *msg = Tcl_PosixError(interp);
Tcl_AppendResult(interp,
“"couldn’t open prolog.ps: ", msg,
(char *) NULL);
return TCL_ERROR,;

DRAFT (4/16/93): Distribution Restricted

318

POSIX Utilities

35.3

If the file doesrt’ exist or isnt readable then an error will occur wHepen invokes a
system call to open the file. An integer code will be stored ierttm® variable to iden-
tify the error andopen will return a null pointerThe above code detects such errors and
invokesTcl_PosixError . If the file didnt exist thenTcl_PosixError will set
errorCode to

POSIX ENOENT {no such f ile or directory}

and return the stringid such f ile or directory ". The code above incorporates
Tcl_PosixError 's return value into its own error message, which it stores in
interp->result . In the case of an non-existent file, the code above will return
“couldn’t open prolog.ps: no such f ile or directory " as its error
message.

Tcl_Errmold takes no gjuments and returns thdiofal POSIX name for the error
indicated byerrno . The names are the symbolic ones defined in the header file
errno.h . For example, ierrno 's value iENOENThenTcl_Errnold will return
the string ENOENT. The return value froriicl_Errnold is the same as the value that
Tcl_PosixError will store in the second elementaforCode

Tcl_Signalld andTcl_SignalMsg each take a POSIX signal number agiar
ment, and each returns a string describing the sigoklSignalld returns the dicial
POSIX name for the signal as definedgignal.h , andTcl_SignalMsg returns a
human-readable message describing the signal. For example,

Tcl_Signalld(SIGILL)
returns the stringSIGILL ", and
Tcl_SignalMsg(SIGILL)
returns fllegal instruction

Creating subprocesses

Tcl_CreatePipeline is the procedure that does most of the work of creating
subprocesses faxec andopen. It creates one or more subprocesses in a pipeline con-
figuration. It has the following guments and result:

int Tcl_CreatePipeline(Tcl_Interp *interp, int argc,

char *argv[], int **pidPtr, int *inPipePtr,

int *outPipePtr, int *errFilePtr)
Theargc andargv amguments describe the commands for the subprocesses in the same
form they would be specified &xec . Each string irargv becomes one word of one
command, except for special strings like ‘and “| ” that are used for 1/O redirection and
separators between commanfd. CreatePipeline normally returns a count of the
number of subprocesses created, and it stofeidttr a pointer to an array containing
the process identifiers for the new processes. The array is dynamically allocated and must

DRAFT (4/16/93): Distribution Restricted

35.4 Background processes 319

35.4

be freed by the caller by passing iftee . If an error occurred while spawning the sub-
processes (e.grgc andargv specified that output should be redirected to a file but the

file couldnt be opened) thefcl_CreatePipeline returns-1 and leaves an error
message iimterp- >result
The last three guments tdrcl_CreatePipeline are used to control I/O to and

from the pipeline irgv andargc dont specify I/O redirection. If thesequments are
NULL then the first process in the pipeline will takes its standard input from the standard
input of the parent, the last process will write its standard output to the standard output of
the parent, and all of the processes will use the pargtiandard error channel for their
error message. IPipePtr is notNULL then it points to an integefcl_Cre-
atePipeline will create a pipe, connect its output to the standard input of the first sub-
process, and store a writable file descriptor for its inptinRipePtr . If
outPipePtr is notNULL then standard output goes to a pipe and a read descriptor for
the pipe is stored &butPipePtr . If errFilePtr is notNULL thenTcl_Cre-
atePipeline creates a temporary file and connects the standard error files for all of the
subprocesses to that file; a readable descriptor for the file will be stéerd-at
lePtr . Tcl_CreatePipeline removes the file before it returns, so the file will only
exist as long as it is open.

If argv specifies input or output redirection then this overrides the requests made in
the aguments tal'cl_CreatePipeline . For example, iirgv redirects standard
input then no pipe is created for standard inputiRipePtr is notNULLthen-1 is
stored atinPipePtr to indicate that standard input was redirectedrdf/ redirects
standard output then no pipe is created for dutPipePtr is notNULLthen-1 is
stored atoutPipePtr . If argv redirects some or all of the standard error output and
errFilePtr is notNULL, the file will still be created and a descriptor will be returned,
even though i§ possible that no messages will actually appear in the file.

Background processes

Tcl_DetachPids andTcl_ReapDetachedProcs are used to keep track of
processes executing in the background. If an application creates a subprocess and aban-
dons it (i.e. the parent never invokes a system call to wait for the child to exit), then the
child executes in background and when it exits it becomes a “zombie”. It remains a zom-
bie until its parent dicially waits for it or until the parent exits. Zombie processes occupy
space in the systemprocess table, so if you create enough of them you will overflow the
process table and make it impossible for anyone to create more procedssep this
from happening, you must invoke a system call suchagpid , which will return the
exit status of the zombie process. Once the status has been returned the zombie relin-
quishes its slot in the process table.

In order to prevent zombies from overflowing the process table you should pass the
process identifiers for background processé@xtoDetachPids

DRAFT (4/16/93): Distribution Restricted

320

POSIX Utilities

Tcl_DetachPids(int numPids, int *pidPtr)

ThepidPtr amgument points to an array of process identifiersramdPids gives the
size of the arrayEach of these processes now becomes the property arid the caller
should not refer to them agaircl Will assume responsibility for waiting for the processes
after they exit.

In order for El to clean up background processes you may need fbataReap-
DetachedProcs from time to timeTcl ReapDetachedProcs invokes the
waitpid kernel call on each detached process so that its state can be cleaned up if it has
exited. If some of the detached processes are still executingi¢hdteapDetached-
Procs doesnt actually wait for them to exit; it only cleans up the processes that have
already exited. dl automatically invoke3cl_ReapDetachedProcs each time
Tcl_CreatePipeline is invoked, so under normal circumstances you tever
need to invoke it. Howevelf you create processes without callifig) _CreatePipe-
line (e.g. by invoking théork system call) and subsequently pass the processes to
Tcl_DetachPids , then you should also invoResl ReapDetachedProcs from
time to time. For example, a good place to Tall ReapDetachedProcs s in the
code that creates new subprocesses.

DRAFT (4/16/93): Distribution Restricted

Chapter 36 Introduction 323

36.1 What’s in a widget? 324

36.2 Widgets are event-driven325
36.3 Tkvs. Xlib 325

36.4 Square: an example widgeB26
36.5 Design for re-usability 328

Chapter 37 Creating Windows 329
37.1 Tk_Window structures 329
37.2 Creating Tk_Vihdows 329
37.3 Setting a windowvs class 331
37.4 Deleting windows 332
37.5 Basic operations on Tk_Wdows 332
37.6 Create procedures333
37.7 Delayed window creation 336

Chapter 38 Configuring Widgets 337

38.1 Tk_ConfigureVidget 337

38.1.1 Tk_ConfigSpec tables 339

38.1.2 Invoking Tk_ConfigureWidget 341

38.1.3 Errors 342

38.1.4 Reconfiguring 342

38.1.5 Tk_Configurelnfo 342

38.1.6 Tk_FreeOptions 343

38.1.7 Other uses for configuration tables 343
38.2 Resource caches343

38.2.1 Graphics contexts 344
38.2.2 Other resources 345

38.3 Tk_Uids 346

38.4 Other translators 346

38.5 Changing window attributes347

38.6 The square configure procedurd48

38.7 The square widget command proceduz9

DRAFT (7/10/93): Distribution Restricted

Chapter 39 Events 353
39.1 Xevents 353
39.2 File events 357
39.3 Timer events 359
39.4 Idle callbacks 360
39.5 Generic event handlers361
39.6 Invoking the event dispatcher362

Chapter 40 Displaying Widgets 365
40.1 Delayed redisplay 365
40.2 Double-bufering with pixmaps 367
40.3 Drawing procedures 367

Chapter 41 Destroying Widgets 371
41.1 Basics 371
41.2 Delayed cleanup 372

Chapter 42 Managing the Selection377
42.1 Selection handlers 377
42.2 Claiming the selection 380
42.3 Retrieving the selection381

Chapter 43 Geometry Management383
43.1 Requesting a size for a widge883
43.2 Internal borders 385
43.3 Grids 386
43.4 Geometry managers387
43.5 Claiming ownership 388
43.6 Retrieving geometry information388
43.7 Mapping and setting geometry389

DRAFT (7/10/93): Distribution Restricted

Part |V

Tk’ s C Interfaces

322

DRAFT (7/10/93): Distribution Restricted

Chapter 36
Intr oduction

Like Tcl, Tk is a C library package that is linked with applications, and it provides a col-
lection of library procedures that you can invoke from C code in the enclosing application.
Although you can do many interesting things with Tk without writing any C code, just by
writing Tcl scripts fomi sh, you'll probably find that most Ilge GUI applications require
some C code too. The most common reason for usirgT kiterfaces is to build new
kinds of widgets. For example, if you write a Tk-based spreadsheet you'll probably need
to implement a new widget to display the contents of the spreadsheet; if you write a chart-
ing package you'll probably build one or two new widgets to display charts and graphs in
various forms; and so on. Some of these widgets could probably be implemented with
existing Tk widgets such as canvases or texts, but for big jobs a new widget tailored to the
needs of your application can probably do the job more simply &oigetly than any of
Tk’s general-purpose widgets/pically you'll build one or two new widget classes to dis-
play your applicatiors new objects, then combine your custom widgets with Biilt-in
widgets to create the full user interface of the application.

The main focus of this part of the book is on building new widgets. Most sf Tk’
library procedures exist for this purpose, and most of the text in this part of the book is ori-
ented towards widget builders. Howewayu can also use Tlibrary procedures to build
new geometry managers; this is described in Chapter 4go@®@may simply need to pro-
vide access to some window system feature thatsspported by the existinglfcom-
mands, such as the ability to set the border width of a top-level wihd@amy event, the
new features you implement should appearchedmmands so that you can use them in
scripts. Both the philosophical issues and the library procedures discussed in Part Il apply
to this part of the book also.

323

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

324

Introduction

36.1 What's in a widget?

All widget classes have the same basic structure, consisting of a widget record and six C
procedures that implement the widgdtok and feel. More complex widgets may have
additional data structures and procedures besides theses, but all widgets have at least these
basic components.

A widget ecod is the C data structure that represents the state of a widget. It
includes all of the widget'configuration options plus anything else the widget needs for
its own internal use. For example, the widget record for a label widget contains tre label’
text or bitmap, its background and foreground colors, its relief, and so on. Each instance of
a widget has its own widget record, but all widgets of the same class have widget records
with the same structure. One of the first things you will do when designing a new widget
class is to design the widget record for that class.

Of the widgets six core procedures, two ared Tommand procedures. The first of
these is called thereate pocedue; it implements the @ command that creates widgets
of this class. The commarsdhame is the same as the class name, and the command
should have the standard syntax described in Section XXX for creating widgets. The com-
mand procedure initializes a new widget record, creates the window for the widget, and
creates the widget command for the widget. It is described in more detail in Chapters 37
and 38.

The second command procedure iswidget command pcedug; it implements the
widget commands for all widgets of this class. When the widget command is invoked its
cl i ent Dat a agument points to the widget record for a particular widget; this allows
the same C procedure to implement the widget commands for mérgifwidgets (the
counter objects described in Section XXX used a similar approach).

The third core procedure for a widget class isdtsfigue pocedue. Given one or
more options in string form, such addackgr ound r ed”, it parses the options and
fills in the widget record with corresponding internal representations suctX&@shar
structure. The configure procedure is invoked by the create procedure and the widget com-
mand procedure to handle configuration options specified on their command lines. Chap-
ter 38 describes the facilities provided by Tk to make configure procedures easy to write.

The fourth core procedure is theent pocedue. It is invoked by Tks event dis-
patcher and typically handles exposures (part of the window needs to be redrawn), win-
dow size changes, focus changes, and the destruction of the wirlutmevent procedure
does not normally deal with user interactions such as mouse motions and key presses;
these are usually handled with class bindings created with thé command as
described in Chapter XXX. Chapter 39 describes the Tk event dispancheding its
facilities for managing X events plus additional features for timers, event-driven file I/O,
and idle callbacks

The fifth core procedure is tliisplay pocedue. It is invoked to redraw part or all of
the widget on the screen. Redisplays can be triggered by many things, including window
exposures, changes in configuration options, and changes in the input focus. Chapter 40

DRAFT (7/10/93): Distribution Restricted

36.2 Widgets are event-driven 325

36.2

Widget

Tk

Xlib

Figure 36.1.Tk hides many of the Xlib interfaces from widgets, but widgets still invoke Xlib
directly for a few purposes such as drawing on the screen.

discusses several issues related to redisplaph as deferred redisplalpuble-bufiering
with pixmaps, and Tk support for drawing 3-D fefcts.

The last of a widget’core procedures is ilestoy procedue. This procedure is
called when the widget is destroyed and is responsible for freeing up all of the resources
allocated for the widget such as the memory for the widget record and X resources such as
colors and pixmaps. \dget destruction is tricky because the widget could be in use at the
time it is destroyed; Chapter 41 describes how deferred destruction is used to avoid poten-
tial problems.

Widgets are event-driven

36.3

Part 1l described how theclTscripts for Tk applications are event-driven, in that they con-

sist mostly of short responses to user interactions and other events. The C code that imple-
ments widgets is also event-driven. Each of the core procedures described in the previous
section responds to events of some sort. The create, widget command, and configure pro-
cedures all respond ta@llcommands. The event procedure responds to X events, and the
display and destroy procedures respond to things that occur either in Xcbsamipts.

Tk vs. Xlib

Xlib is the C library package that provides the lowest level of access to thirdow

System. Tk is implemented using Xlib but it hides most of the Xlib procedures from the C
code in widgets, as shown in Figure 36.1. For example, Xlib provides a pro&re

at eW ndowto create a hew windows, but you should not use it; instead kcallr e-

at eW ndowFr onPat h or one of the other procedures provided by Tk for this purpose.
Tk's procedures call the Xlib procedures but also do additional things such as associating
a textual name with the windo®imilarly, you shouldrt' normally call Xlib procedures

like XAl | ocCol or to allocate colors and other resources; call the corresponding Tk pro-

DRAFT (7/10/93): Distribution Restricted

326 Introduction

cedures likeTk _Get Col or instead. In the case of colors, Tk calls Xlib to allocate the
color, but it also remembers the colors that are allocated; if you use the same color in
many diferent places, Tk will only communicate with the X server once.

However Tk does not totally hide Xlib from you. When widgets redisplay themselves
they make direct calls to Xlib procedures suc@sawLi ne andXDr awSt ri ng. Fur-
thermore, many of the structures manipulated by Tk are the same as the structures pro-
vided by Xlib, such as graphics contexts and window attributes. Thus you'll need to know
quite a bit about Xlib in order to write new widgets with Tk. This book assumes that you
are familiar with the following concepts from Xlib:

* Window attributes such dmckgr ound_pi xel , which are stored iKSet W ndo-
WAt t ri but es structures.

¢ Resources related to graphics, such as pixmaps, colors, graphics contexts, and fonts.
* Procedures for redisplaying, suchX¥ awlLi ne andXDr awSt r i ng.
* Event types and théEvent structure.

You'll probably find it useful to keep a book on Xlib nearby when reading this book and to
refer to the Xlib documentation for specifics about the Xlib structures and procedures. If
you havert used Xlib before I'd suggest waiting to read about Xlib until you need the
information. That way you can focus on just the information you need and avoid learning
about the parts of Xlib that are hidden by Tk.

Besides Xlib, you shouldhheed to know anything about any other X toolkit or
library. For example, Tk is completely independent from the Xt toolkit so you dead
to know anything about Xt. For that mattiéryou’re using Tk yowcant use Xt: their wid-
gets are incompatible and cabé mixed together

36.4 Square: an example widget

I'll use a simple widget called “square” for examples throughout PaftH¥ square wid-

get displays a colored square on a background as shown in Figure 36.2. The widget sup-
ports several configuration options, such as colors for the background and for the square, a
relief for the widget, and a border width used for both the widget and the square. It also
provides three widget commandsnf i gur e, which is used in the standard way to

query and change optionspsi t i on, which sets the position of the squareppeileft

corner relative to the uppéft corner of the windoypandsi ze, which sets the squase’

size. Figure 36.2 illustrates th@si t i on andsi ze commands.

Given these simple commands many other features can be writtelhsasfts. For
example, the following script arranges for the square to center itself over the mouse cursor
on Button-1 presses and to track the mouse as long as Button-1 is held down. It assumes
that the square widget is nameds”.

DRAFT (7/10/93): Distribution Restricted

36.4 Square: an example widget 327

| | | |
—| Square widget example | - | | —| Square widget example | - | |

square .s .S position 100 75
pack .s
wmtitle .s "Square w dget exanple"

(@) (b)

| |
—| Square widget example | - | |

.S size 40

(©

Figure 36.2.A sequence of scripts and the displays that they produce. Figure (a) creates a
widget, Figure (b) invokes th@osi t i on widget command to move the square within its widg
and Figure (c) changes the size of the square.

proc center {x y} {
set a [.s size]

.S position [expr $x-(%$a/2)] [expr $y-(%a/2)]

bind .s <1> {center % %}
bind .s <Bl-Mtion> {center % %}

Note: For this particular widget it would mbably make mersense to use configuration options

instead of th@posi t i on andsi ze commands; | made them widget commands just to
illustrate how to write widget commands.

DRAFT (7/10/93): Distribution Restricted

328

Introduction

36.5

The implementation of the square widget requires about 320 lines of C code exclud-

ing comments, or about 750 lines in a copiously-commented version. The square widget
doesnt use all of the features of Tk but it illustrates the basic things you must do to create
a new widget. For examples of more complex widgets you can look at the source code for
some of Tk widgets; they have the same basic structure as the square widget and they
use the same library procedures that you'll read about in the chapters that follow

Design for re-usability

When building a new widget, try to make it as flexible and general-purpose as possible. If
you do this then it may be possible for you or someone else to use your widget in new
ways that you didn’foresee when you created it. Here are a few specific things to think
about:

1.

Store all the information about the widget in its widget record. If you use static or glo-
bal variables to hold widget state then it may not be possible to have more than one
instance of the widget in any given application. Even if youtdamvision using more
than one instance per application, datd anything to rule this out.

. Make sure that all of the primitive operations on your widget are available through its

widget command. Dohhard-wire the widge$’ behavior in C. Instead, define the
behavior as a set of class bindings usingoihed command. This will make it easy to
change the widget’behaviar

. Provide escapes teIT Think about interesting ways that you can emhb#d¢dmmands

in your widget and invoke them in response to various events. For example, the actions
for button widgets and menu items are stored asd aoimmands that are evaluated

when the widgets are invoked, and canvases and texts allow you to assdaata-T
mands with their internal objects in order to give them behaviors.

. Organize the code for your widget in one or a few files that can easily be linked into

other applications besides the one you're writing.

DRAFT (7/10/93): Distribution Restricted

Chapter 37
Creating Windows

This chapter presents Bkbasic library procedures for creating windows. It describes the
Tk_W ndowtype, which is used as a token for windows, then introduces the Tk proce-
dures for creating and deleting windows. Tk provides several macros for retrieving infor-
mation about windows, which are introduced next. Then the chapter discusses what
should be in the create procedure for a widget, using the square widget as an example. The
chapter closes with a discussion of delayed window creation.ehde 37.1 for a sum-

mary of the procedures discussed in the chapter

37.1 Tk_Window structures

Tk uses a token of typek_ W ndowto represent each windoWvhen you create a new
window Tk returns &k_W ndowtoken, and you must pass this token back to Tk when
invoking procedures to manipulate the windéwr'k_W ndow s actually a pointer to a
record containing information about the wind®wch as its name and current size, but Tk
hides the contents of this structure and you may not read or write its fields dirbetly
only way you can manipulateéf& _W ndowis to invoke procedures and macros provided
by Tk.

37.2 Creating Tk_W indows

Tk applications typically use two procedures for creating winddwsCr eat eMai n-
W ndowandTk_Cr eat eW ndowFr onPat h. Tk_Cr eat eMai nW ndow creates a

329

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

330

Creating Windows

Tk_W ndow Tk_Cr eat eMai nW ndow(Tcl _I nterp *interp,
char *screenNane, char *appNane)

Creates a new application and returns a token for the applisatiair win-
dow Scr eenNane gives the screen on which to create the main windo
NULL then Tk picks default), areppNare gives a base name for the appg
cation. If an error occurs, returNSLL and stores an error message in
interp->result.

Tk_W ndow Tk_Cr eat eW ndowFr onPat h(Tcl _Interp *interp,

Tk_W ndow tkwi n, char *pat hNane, char *screenNane)

Creates a new window trkwi n’s application whose path namepast h-
Nane. If scr eenName is NULL the new window will be an internal win-
dow; otherwise it will be a top-level window sier eenNane. Returns a
token for the new windowf an error occurs, returfdJLL and stores an
error message innt er p- >resul t.

Tk_Set O ass(Tk_W ndow t kwi n, char *cl ass)
Setst kwi n’s class tel ass.

Tk_Dest r oyW ndow(TkKW ndow t kwi n)
Destroyt kwi n and all of its descendants in the window hierarchy

Tk_W ndow Tk_NameToW ndow(Tcl _Interp *interp, char *pathNane,
Tk_W ndow t kwi n)
Returns the token for the window whose path narpaithNane in the
same application askwi n. If no such name exists then retuNid.L and
stores an error message int er p- >resul t.

Tk_MakeW ndowExi st (TkW ndow t kwi n)
Force the creation of the X window fokwi n, if it didn’t already exist.

Table 37.1.A summary of basic procedures for window creation and deletion.

new application; i8 usually invoked in the main program of an application. Before invok-
ing Tk_Cr eat eMai nW ndow you should create acllinterpreter to use for the applica-
tion. Tk_Cr eat eMai nW ndowtakes three guments, consisting of the interpreter plus
two strings:

Tk_W ndow Tk_Cr eat eMai nW ndow(Tcl _I nterp *interp,

char *screenNanme, char *appNane)

Thescr eenNane agument gives the name of the screen on which to create the main
window. It can have any form acceptable to your X seiver example, on most UNIX-
like systems tini x: 0" selects the default screen of display 0 on the local machine, or
“gi nger. cs. berkel ey. edu: 0. 0” selects screen 0 of display 0 on the machine
whose network address igi“nger . cs. ber kel ey. edu”. Scr eenNane may be
specified adlULL, in which case Tk picks a default serv@n UNIX-like systems the
default server is normally determined by BPIESPLAY environment variable.

DRAFT (7/10/93): Distribution Restricted

37.3 Setting a window's class 331

The last agument toTk_Cr eat eMai nW ndowis a name to use for the application,
such as ¢l ock” for a clock program orrfx f 0o. c¢” for an editor namedx editing a
file named o0o0. c. This is the name that other applications will use to send commands to
the new application. Each application must have a unique naapgMane is already in
use by some other application then Tk adds fixdie “ #2” to make the name unique.
Thus the actual name of the application may be somethingdikeck #3" or “nx
foo. c #4”. You can find out the actual name for the application usingkh&lane
macro or by invoking thecl command Wi nf o nane .".

Tk_Cr eat eMai nW ndowcreates the applicatianimain windowregisters its name
so that other applications can send commands to it, and adds alf @onkmands to the
interpreter It returns théfk_W ndowtoken for the main windowf an error occurs (e.g.
scr eenNane doesnt exist or the X server refused to accept a connection) then
Tk _Cr eat eMai nW ndow returnsNULL and leaves an error message in
interp->result.

Tk _Cr eat eW ndowFr onPat h adds a new window to an existing applicatiors. It’
the procedure that'usually called when creating new widgets and it has the following
prototype:

Tk_W ndow Tk_Cr eat eW ndowFr onPat h(Tcl _Interp *interp,

Tk_W ndow tkwi n, char *pathNane, char *screenNane);

Thet kwi n agument is a token for an existing window; its only purpose is to identify the
application in which to create the new wind®at hNane gives the full name for the
new window such as .“a. b. ¢”. There must not already exist a window by this name,
but its parent (for example, &. b”) must exist. Ifscr eenNane is NULL then the new
window is an internal window; otherwise the new window will be a top-level window on
the indicated screeitk Cr eat eW ndowfr onPat h returns a token for the new win-
dow unless an error occurs, in which case it rethtiid. and leaves an error message in
interp->result.

Tk also provides a third window-creation procedure calledCr eat eW ndow.

This procedure is similar fok_Cr eat eW ndowfr onPat h except that the new win-
dow’s name is specified a bit fifently See the reference documentation for details.

37.3 Setting a window’ s class

The procedur@k_Set Cl ass assigns a particular class name to a windew example,
Tk_Set Cd ass(tkwi n, "Foo");

sets the class of windoinkwi n to “Foo”. Class names are used by Tk for several pur-

poses such as finding options in the option database and event bindinganYuse any

string whatsoever as a class name when you invkk&et C ass, but you should make

sure the first letter is capitalized: Tk assumes in several places that uncapitalized names

are window names and capitalized names are classes.

DRAFT (7/10/93): Distribution Restricted

332 Creating Windows

37.4 Deleting windows

The procedurdk_Dest r oyW ndowtakes ark_W ndow as agument and deletes the
window: It also deletes all of the windosvthildren recursivelyDeleting the main win-

dow of an application will delete all of the windows in the application and usually causes
the application to exit.

37.5 Basic operations on Tk_W indows

Given a textual path name for a winda_ NaneToW ndow may be used to find the
Tk _W ndowtoken for the window:
Tk_W ndow Tk_NaneToW ndow Tcl _Interp *interp, char *pathNane,
Tk_W ndow t kwi n);

Pat hNane is the name of the desired windasuch as “a. b. ¢”, andt kwi n is a token
for any window in the application of interest (it isnsed except to select a specific appli-
cation). NormallyTk_NameToW ndow returns a token for the given windobut if no
such window exists it returddJLL and leaves an error messagelim er p- >resul t.

Tk maintains several pieces of information about 8&chN ndowand it provides a
set of macros that you can use to access the informationaBkee3¥.2 for a summary of
all the macros. Each macro takeBka W ndow as an agument and returns the corre-
sponding piece of information for the windokor example if kwi n is aTk_W ndow
then

Tk_W dt h(t kwi n)

returns an integer value giving the current widthlo#i n in pixels. Here are a few of the

more commonly used macros:

* Tk_W dt h andTk_Hei ght return the windovg dimensions; this information is used
during redisplay for purposes such as centering text.

* Tk_W ndow d returns the X identifier for the window; it is needed when invoking
Xlib procedures during redisplay

* Tk_Di spl ay returns a pointer to Xlie'Di spl ay structure corresponding to the
window; it is also needed when invoking Xlib procedures.

Some of the macros, likKEk_| nt er nal Bor der W dt h andTk_ReqW dt h, are only
used by geometry managers (see Chapter 43) and others Jkchvasual are rarely
used by anyone.

DRAFT (7/10/93): Distribution Restricted

37.6 Create procedures

333

Macro Name

Result pe

Meaning

Tk_Attributes

XSet WndowAt t ri but es
*

Window attributes such as border pixe
and cursar

Tk_Changes XW ndowChanges * Window position, size, stacking order

Tk_d ass Tk _Uud Name of windows class.

Tk_Col or map Col or map Colormap for window

Tk_Dept h i nt Bits per pixel.

Tk_Di spl ay Di spl ay X display for window

Tk_Hei ght i nt Current height of window in pixels.

Tk_I nternal BorderWdth | int Width of internal border in pixels.

Tk_I| siMapped i nt 1 if window mapped, 0 otherwise.

Tk_| sTopLevel i nt 1 if top-level, O if internal.

Tk_Name Tk_Ui d Name within parent. For main windpw
returns application name.

Tk_Par ent Tk_W ndow Parent, oNULL for main window

Tk_Pat hNane char * Full path name of window

Tk_RegqW dt h i nt Requested width in pixels.

Tk_ReqHei ght i nt Requested height in pixels.

Tk_Screen Screen * X Screen for window

Tk_Scr eenNunber i nt Index of windows screen.

Tk_Vi sual Vi sual * Information about windowg visual char-
acteristics.

Tk_Wdth i nt Current width of window in pixels.

Tk_W ndowi d W ndow X identifier for window

Tk_X i nt X-coordinate within parent window

Tk_Y i nt Y-coordinate within parent window

Table 37.2.Macros defined by Tk for retrieving window state. Each macro takks & ndowas
amgument and returns a result whose type is given in the second column. All of these macro
(they simply return fields from T&'internal structures and doréquire any interactions with the

server).

37.6 Create procedures

The create procedure for a widget must do five things: create aknew ndow; create

and initialize a widget record; set up event handlers; create a widget command for the wid-
get; and process configuration options for the widget. The create procedure should be the

command procedure for @lfcommand named after the widgetlass, and itsl i ent -

DRAFT (7/10/93): Distribution Restricted

334

Creating Windows

Dat a agument should be thE<_W ndowtoken for the main window of the application
(this is needed in order to create a ridw W ndow in the application).

Figure 37.1 shows the code fagquar eCnd, which is the create procedure for square
widgets. After checking its gument countSquar eCrd creates a new window for the
widget and invoke3k_Set Cl ass to assign it a class oBfjuar e”. The middle part of
Squar eCnd allocates a widget record for the new widget and initializes it. The widget
record for squares has the following definition:

typedef struct {
Tk_W ndow t kwi n;
Di spl ay *di spl ay;
Tcl _Interp *interp;
int x, vy;
int size;
i nt border Wdt h;

Tk_3DBor der bgBor der;
Tk_3DBor der f gBorder;

int relief;

CC gc;

i nt updat ePendi ng;
} Square;

The first field of the record is tie&k_W ndow for the widget. The next fieldi spl ay,
identifies the X display for the widget Gtheeded during cleanup after the widget is
deleted)] nt er p holds a pointer to the interpreter for the application.X bhedy fields
give the position of the uppéeft corner of the square relative to the uplgércorner of
the window and thesi ze field specifies the squasesize in pixels. The last six fields are
used for displaying the widget; they’ll be discussed in Chapters 38 and 40.

After initializing the new widget recorBiquar eCnd callsTk_Cr e-
at eEvent Handl er ; this arranges fdéquar eEvent Pr oc to be called whenever the
widget needs to be redrawn or when various other events sactiras deleting its win-
dow or changing its size; events will be discussed in more detail in Chapter 39. Next
Squar eCnd callsTcl _Cr eat eConmrand to create the widget command for the wid-
get. The widges name is the name of the commasagiyar eW dget Cnd is the com-
mand procedure, and a pointer to the widget record slthent Dat a for the command
(using a pointer to the widget recordcds ent Dat a allows a single C procedure to
implement the widget commands for all square widgggsiar eW dget Conmand will
receive a dierentcl i ent Dat a agument depending on which widget command was
invoked). Therbquar eCd callsConf i gur eSquar e to process any configuration
options specified asguments to the command; Chapter 38 describes how the configura-
tion options are handled. If an error occurs in processing the configuration options then
Squar eCnd destroys the window and returns an er@herwise it returns success with
the widgets path name as result.

DRAFT (7/10/93): Distribution Restricted

37.6 Create procedures 335

int SquareCnd(ClientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
Tk_W ndow mai n = (Tk_W ndow) clientDat a;
Square *squarePtr;
Tk_W ndow t kwi n;

if (argc < 2) {
Tcl _AppendResul t (interp, "wong # args: should be \"",
argv[0], " pathName ?options?\"", (char *) NULL);
return TCL_ERROR,
}

tkwin = Tk_Creat eW ndowFr onPat h(i nterp, main, argv[1],
(char *) NULL);
if (tkwin == NULL) {
return TCL_ERROR,

}
Tk_Set C ass(t kwi n, "Square");

squarePtr = (Square *) nall oc(sizeof (Square));
squarePtr->tkwin = tkw n;

squarePtr->di splay = Tk_Di spl ay(tkw n);
squarePtr->interp = interp;
squarePtr->x = 0;

squarePtr->y = 0;

squarePtr->size = 20;

squar ePt r- >bgBorder = NULL;

squar ePtr->f gBorder = NULL;

squar ePtr->gc = None;

squar ePt r - >updat ePendi ng = O;

Tk_Cr eat eEvent Handl er (t kwi n,
Exposur eMask]| St ruct ureNot i f yMask, SquareEvent Proc,
(dientData) squarePtr);
Tcl _Creat eCommand(i nterp, Tk_Pat hName(tkwi n),
Squar eW dget Cnd, (ClientData squarePtr),
(Tcl _CndDel eteProc *) NULL);
i f (ConfigureSquare(interp, squarePtr, argc-2, argv+2, 0)
I= TCL_CK) {
Tk_DestroyW ndow(squar ePtr->t kwi n);
return TCL_ERROR
}
interp->result = Tk_Pat hNane(tkw n);
return TCL_OK;

Figure 37.1.The create procedure for square widgets. This procedure is the command pro
for thesquar e command.

DRAFT (7/10/93): Distribution Restricted

336

Creating Windows

37.7 Delayed window creation

Tk _Cr eat eMai nW ndowandTk _Cr eat eW ndowFr onPat h create the Tk data
structures for a windovbut they do not communicate with the X server to create an actual
X window. If you create &k _W ndow and immediately fetch its X window identifier
usingTk_W ndowl d, the result will béNone. Tk doesrt normally create the X window
for aTk_W ndow until the window is mapped, which is normally done by a geometry
manager (see Chapter 43). The reason for delaying window creation is performance.
When aTk_W ndowi s initially created, all of its attributes are set to default values.
Many of these attributes will be modified almost immediately when the widget configures
itself. It's more dicient to delay the window'creation until all of its attributes have been
set, rather than first creating the window and then asking the X server to modify the
attributes later

Delayed window creation is normally invisible to widgets, since the only time a wid-
get needs to know the X identifier for a window is when it invokes Xlib procedures to dis-
play it. This doesm’happen until after the window has been mapped, so the X window
will have been created by then. If for some reason you should need the X window identi-
fier before aTk_W ndow has been mapped, you can invdke MakeW ndowExi st :

voi d Tk_MakeW ndowExi st (t kwi n);

This forces the X window fdarkwi n to be created immediately if it hasbeen created
yet. OnceTk _MakeW ndowExi st returns,Tk_W ndowl d can be used to retrieve the
W ndowtoken for it.

DRAFT (7/10/93): Distribution Restricted

Chapter 38
Configuring Widgets

38.1

The phrase “configuring a widget” refers to all of the setup that must be done prior to actu-
ally drawing the widges$ contents on the screen. A widget is configured initially as part of
creating it, and it may be reconfigured by invoking its widget command. One ofgéstlar
components of configuring a widget is processing configuration options such as
“-borderw dt h 1ni. For each option the textual value must be translated to an inter-
nal form suitable for use in the widget. For example, distances specified in floating-point
millimeters must be translated to integer pixel values and font names must be mapped to
correspondingKFont St r uct structures. Configuring a widget also includes other tasks
such as preparing X graphics contexts to use when drawing the widget and setting
attributes of the widget'window such as its background calor

This chapter describes the Tk library procedures for configuring widgets, and it pre-
sents the square widgetonfigure procedure and widget command procedure. Chapter 40
will show how to draw a widget once configuration is complete.

Tk_ConfigureW idget

Tk provides three library procedurd¥_Conf i gur eW dget , Tk_Conf i gur e-

I nf o, andTk_Fr eeOpt i ons, that do most of the work of processing configuration
options (seedble 38.1). ® use these procedures you first createrdiguration tablehat
describes all of the configuration options supported by your new widget class. When creat-
ing a new widget, you pass this tabléelto Confi gur eW dget along withar gc/

ar gv information describing the configuration options (i.e. all tlyeigents in the cre-

ation command after the widget namejuMalso pass in a pointer to the widget record for

337

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

338

Configuring Widgets

int Tk_ConfigureWdget(Tcl_Interp *interp, Tk_W ndow tkw n,
Tk_Confi gSpec *specs, int argc, char *argv[], char *w dgRec,
int flags)

Processes a set offaments from adl commanddr gc andar gv) using a
table of allowable configuration optiorspecs) and sets the appropriate
fiels of a widget recordy dgRec). Tkwi n is the widge® window Nor-
mally returnsTCL_OXK; if an error occurs, retur®CL_ERROR and leaves
an error message imt er p- >r esul t . Flags is normally 0 oFK_CON-
FI G_ARGV_ONLY (see reference documentation for other possibilities).

int Tk_Configurelnfo(Tcl_Interp *interp, TKk_Wndow tkw n,

Tk_Confi gSpec *specs, char *w dgRec, char * argvNane, fl ags)
Finds the configuration option gpecs whose command-line name is
ar gvNane, locates the value of that optionvindgRec, and generates in
i nterp->result alist describing that configuration option. If
ar gvNane isNULL, generates a list of lists describing all of the options
specs. Normally returnd’CL_OK; if an error occurs, returfi®CL_ERROR
and leaves an error message iirt er p- >r esul t. Fl ags is normally O
(see the reference documentation for other possibilities).

Tk_FreeOpti ons(Tk_Confi gSpec *specs, char *w dgRec,
Di splay *display, int flags)
Frees up any resourceswindgRec that are used bypecs. Di spl ay
must be the widget'displayFl ags is normally O but can be used to sele
particular entries ispecs (see reference documentation for details).

int Tk_Ofset(type, field)
This is a macro that returns thédsef of a field namefli el d within a struc-
ture whose type isype. Used when creating configuration tables.

Table 38.1.A summary ofTk_Conf i gur eW dget and related procedures and macros.

the widgetTk_Confi gur eW dget processes each option specifiediigv according

to the information in the configuration table, converting string values to appropriate inter-
nal forms, allocating resources such as fonts and colors if negesshstoring the results

into the widget record. For options that ateaxplicitly specified irar gv, Tk_Conf i g-

ur eW dget checks the option database to see if a value is specified there. For options
that still havert been sefTk_Conf i gur eW dget uses default values specified in the
table.

When theconf i gur e widget command is invoked to change options, you call
Tk_Conf i gur eW dget again with thear gc/ar gv information describing the new
option valuesTk_Conf i gur eW dget will process the guments according to the
table and modify the information in the widget record accordiMylyen theconf i g-
ur e widget command is invoked to read out the current settings of options, you call
Tk_Conf i gur el nf o. It generates acl result describing one or all of the widget’

DRAFT (7/10/93): Distribution Restricted

38.1 Tk_ConfigureWidget 339

38.1.1

options in exactly the right form, so all you have to do is return this result from the widget
command procedure.

Finally, when a widget is deleted you invokel _Fr eeOpti ons. Tcl _Fr eeOp-
t i ons scans through the table to find options for which resources have been allocated,
such as fonts and colors. For each such option it uses the information in the widget record
to free up the resource.

Tk_ConfigSpec tables

Most of the work in processing options is in creating the configuration table. The table is
an array of records, each with the following structure:
typedef struct {

int type;

char *ar gvNane;

char *dbNane;

char *dbd ass;

char *def Val ue;

int offset;

i nt specFl ags;

Tk_Cust onOption *custonPtr;

} Tk_Confi gSpec;
Thet ype field specifies the internal form into which the optsostring value should be
converted. For exampl&K_CONFI G_|I NT means the optios'value should be converted
to an integer an@iK_CONFI G_COLOR means that the optiavalue should be converted
to a pointer to aXCol or structure. FOTK_CONFI G_I NT the option$ value must have
the syntax of a decimal, hexadecimal, or octal integer anBkioCONFI G_COLOR the
option’s value must have one of the forms for colors described in Section XXX. For
TK_CONFI G_COLOR Tk will allocate anXCol or structure, which must later be freed
(e.g. by callingTk_Fr eeQpt i ons). More than 20 dferent option types are defined by
Tk; see the reference documentation for details on each of the supported types.
Ar gvNane is the optiors name as specified on command lines, e.g.
“- background” or “- f ont . ThedbNane anddbCl ass fields give the optios’
name and class in the option database.d&ié/al ue field gives a default value to use
for the option if it isnt specified on the command line and theretiawalue for it in the
option databaséNULL means there is no default for the option.
Theof f set field tells where in the widget record to store the converted value of the

option. It is specified as a byte displacement from the beginning of the reoarshauld
use theTk O f set macro to generate values for this field. For example,

Tk_Of fset (Square, relief)
produces an appropriatefsdt for ther el i ef field of a record whose type $gjuar e.
ThespecFl ags field contains an OR-ed combination of flag bits that provide addi-
tional control over the handling of the option. A few of the flags will be discussed below;
see the reference documentation for a complete listing. Fittalyust onPt r field pro-

DRAFT (7/10/93): Distribution Restricted

340 Configuring Widgets

vides additional information for application-defined options.dtily used when the type
is TK_CONFI G_CUSTOMand should b&IULL in other cases. See the reference documen-
tation for details on defining custom option types.

Here is the option table for square widgets:

Tk_Confi gSpec configSpecs[] = {
{ TK_CONFI G_BORDER, "-background", "background",
" Background",
"#cdb79e", Tk_Of fset(Square, bgBorder),
TK_CONFI G_COLOR_ONLY, (Tk_CustonmOption *) NULL},
{ TK_CONFI G_BORDER, "-background", "background",
"Background", "white", Tk_Offset(Square, bgBorder),
TK_CONFI G MONO ONLY, (Tk_CustonOption *) NULL},
{ TK_CONFI G_SYNONYM "-bd", "borderWdth", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustomOption *) NULL},
{ TK_CONFI G_SYNONYM "-bg", "background", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustonDption *) NULL},
{TK_CONFI G_PI XELS, "-borderw dth", "borderWdth",
"BorderWdth", "1nf', Tk_Ofset(Square, borderWdth),
0, (Tk_CustonOption *) NULL},
TK_CONFI G_SYNONYM "-fg", "foreground", (char *) NULL,
(char *) NULL, 0, 0, (Tk_CustomOption *) NULL},
{TK_CONFI G_BORDER, "-foreground", "foreground",
"Foreground", "#b03060", Tk_Offset(Square, fgBorder),
TK_CONFI G_COLOR_ONLY, (Tk_CustonOption *) NULL},
{TK_CONFI G_BORDER, "-foreground", "foreground",
"Foreground", "black", Tk_Offset(Square, fgBorder),
TK_CONFI G_ MONO ONLY, (Tk_CustonOption *) NULL},
{TK_CONFI G_ RELIEF, "-relief", "relief", "Relief",
"rai sed", Tk _Ofset(Square, relief), O,
(Tk_CustomOption *) NULL},
{TK_CONFI G END, (char *) NULL, (char *) NULL, ,
(char *) NULL, (char *) NULL, 0, O,
(Tk_CustomOption *) NULL}
b
This table illustrates three additional feature$lof Conf i gSpecs structures. First,
there are two entries each for theackgr ound and- f or egr ound options. The first
entry for each option has th& CONFI G_COLOR_ONLY flag set, which causes Tk to
use that option if the display is a color display and to ignore it if the display is mono-
chrome. The second entry specifiesThe CONFI G_MONO_ONLY flag so it is only used
for monochrome displays. This feature allowdetént default values to be specified for
color and mono displays (the current color model for the window determines whether the
it considered to be color or monochrome; see Section XXX). Second, the efins
bg, and- f g have typelK_CONFI G_SYNONYM This means that each of these options is
a synonym for some other option; ttheNane field identifies the other option and the
other fields are ignored. For example, if thbd option is specified with the above table,

Tk will actually use the table entry for thé&or der wi dt h option. Third, the last entry

DRAFT (7/10/93): Distribution Restricted

38.1 Tk_ConfigureWidget 341

38.1.2

Note:

in the table must have ty[&_ CONFI G_END; Tk depends on this to locate the end of the
table.

Invoking Tk_ConfigureW idget

Suppose thatk _Conf i gur eW dget is invoked as follows:

Tcl _Interp *interp;
Tk_W ndow t kwi n;

char *argv[] = {"-relief", "sunken", "-bg", "blue"};
Square *squarePtr;
i nt code;

code = Tk_Confi gureWdget (i nterp, tkw n, configSpecs,
4, argv, (char *) squarePtr, 0);

A call much like this will occur if a square widget is created with #ledmmand

square .s -relief sunken -bg bl ue

The-rel i ef option will be processed according to tyi€¢ CONFI G_RELI EF, which
dictates that the optiosivalue must be a valid relief, such aai‘sed” or “sunken”. In
this case the value specifiecsisnken; Tk_Conf i gur eW dget converts this string
value to the integer valueK_RELI EF_SUNKEN and stores that value in
squar ePtr->relief. The-bg option will be processed according to tenf i g-
Specs entry for- backgr ound, which has typdK_CONFI G_BORDER. This type
requires that the optiomvalue be a valid color name; Tk creates a data structure suitable
for drawing graphics in that color trkwi n, and it computes additional colors for draw-
ing light and dark shadows to produce 3-dimensiordatts. All of this information is
stored in the new structure and a token for that structure is storedbigBbeder field
of squar ePt r. In Chapter 40 you'll see how this token is used to draw the widget.

Since the bor der wi dt h and- f or egr ound options weren’specified irar gv,
Tk_Conf i gur eW dget looks them up in the option database using the information for
those options imonf i gSpecs. If it finds values in the option database then it will use
them in the same way as if they had been suppliad gv.

If an option isnt specified in the option database thi&n Conf i gur eW dget uses
the default value specified in its table enkgr example, for bor der wi dt h it will use
the default valueXni. Since the option has tygek CONFI G_PI XELS, this string must
specify a screen distance in one of the forms described in Section XAKXspecifies a
distance of one millimeter; Tk converts this to the corresponding number of pixels and
stores the result as an integesguar ePt r - >bor der W dt h. If the default value for
an option isNULL thenTk_Confi gur eW dget does nothing at all if there is no value
in eitherar gv or the option database; the value in the widget record will retain whatever
value it had wheifk_Conf i gur eW dget is invoked.

If an entry in the configuration table has no default value then you must initialize the
corresponding field of the widgeataod befoe invokingTk _Conf i gur eW dget . If

DRAFT (7/10/93): Distribution Restricted

342

Configuring Widgets

38.1.3

38.14

38.1.5

there is a default value then you need not initialize the field in the widgadrsince
Tk_Conf i gur eW dget will always stoe a poper value thes.

Errors

Tk_Conf i gur eW dget normally returnd CL_OK. If an error occurs then it returns
TCL_ERROR and leaves an error messagetin er p- >r esul t . The most common

form of error is a value that doesmake sense for the option type, suchasc” for the

- bd option.Tk_Conf i gur eW dget returns as soon as it encounters an gwhich

means that some of the fields of the widget record may not have been set yet; these fields
will be left in an initialized state (such BBLL for pointers0 for integersNone for X
resources, etc.).

Reconfiguring

Tk_Confi gur eW dget gets invoked not only when a widget is created but also during
theconf i gur e widget command. When reconfiguring you probably wesaint to con-
sider the option database or default valuest'lfwant to process only the options that are
specified explicitly irar gv, leaving all the unspecified options with their previous values.
To accomplish this, speciffkK CONFI G_ARGV_ONLY as the last gument toTk _Con-
figureWw dget:
code = Tk_ConfigureWdget (i nterp, tkw n, configSpecs,
argc, argv, (char *) squarePtr,
TK_CONFI G_ARGV_ONLY) ;

Tk_Configurelnfo

If aconfi gur e widget command is invoked with a singlg@ament, or with no gu-
ments, then it returns configuration information. For examples i a square widget
then

.s configure -background
should return a list of information about thieackgr ound option and

.s configure
should return a list of lists describing all the options, as described in Section XXX.
Tk_Conf i gur el nf o does all the work of generating this information in the proper for-
mat. For the square widget it might be invoked as follows:

code = Tk_Configurelnfo(interp, tkw n, configSpecs,

(char *) squarePtr, argv[2], 0);

Ar gv[2] specifies the name of a particular option (eltgackgr ound in the first
example above). If information is to be returned about all options, as in the second exam-
ple above, theNULL should be specified as the option nafke.Conf i gur el nf o sets
i nt erp->resul t to hold the proper value and retui@._ OK. If an error occurs

DRAFT (7/10/93): Distribution Restricted

38.2 Resource caches 343

38.1.6

38.1.7

38.2

(because a bad option name was specified, for example)kh&onf i gur el nf o
stores an error messags int er p- >r esul t and return§CL_ERRCR. In either case,
the widget command procedure can leiaméer p- >r esul t as itis and returoode as
its completion code.

Tk_FreeOptions

The library procedur&k_Fr eeOpt i ons is usually invoked after a widget is deleted in
order to clean up its widget record. For some option types, sudh &ONFI G_BOR-
DER, Tk_Conf i gur eW dget allocates resources which must eventually be freed.
Tk_FreeOpt i ons takes care of this:

voi d Tk_FreeOpti ons(Tk_Confi gSpec *specs, char *wi dgRec,

Di spl ay *display, int flags);

Specs andwi dgRec should be the same as in calls to Tk_Configudejt.Di spl ay
identifies the X display containing the widgetg(itteeded for freeing certain options) and
f I ags should normally be 0 (see the reference documentation for other possibilities).
Tk_FreeOpt i ons will scanspecs looking for entries such 838_CONFI G_BORDER
whose resources must be freed. For each such entry it checks the widget record to be sure
a resource is actually allocated (for example, if the value of a string resoltdiel ist
means that no memory is allocated). If there is a resource allocatetktheneeOp-
t i ons passes the value from the widget record to an appropriate procedure to free up the
resource and resets the value in the widget record to a state dildH ae indicate that it
has been freed.

Other uses for configuration tables

Configuration tables can be used for other things besides widgets. They are suitable for
any situation where textual information must be converted to an internal form and stored
in fields of a structure, particularly if the information is specified in the same form as for
widget options, e.qg.

-background blue -width 1m
Tk uses configuration tables internally for configuring menu entries, for configuring can-
vas items, and for configuring display attributes of tags in text widgets.

Resource caches

The X window system provides a number ofatiént resources for applications to use.
Windows are one example of a resource; other examples are graphics contexts, fonts, pix-
maps, colors, and cursors. An application must allocate resources before using them and
free them when they’re no longer needed. X was designed to make resource allocation and

DRAFT (7/10/93): Distribution Restricted

344

Configuring Widgets

38.2.1

deallocation as cheap as possible, but it is still expensive in many situations because it
requires communication with the X server (for example, font allocation requires commu-
nication with the server to make sure the font exists). If an application uses the same
resource in several drent places (e.g. the same font in manfediint windows) it is
wasteful to allocate separate resources for each use: this wastes time communicating with
the server and it wastes space in the X server to keep track of the copies of the resource.
Tk provides a collection afsouce cache order to reduce the costs of resource
management. When your application needs a particular resource you staalldiib to
allocate it; call the corresponding Tk procedure instead. Tk keeps track of all the resources
used by the application and allows them to be shared. If you use the same font in many dif-
ferent widgets, Tk will call X to allocate a font for the first widget, but it will re-use this
font for all the other widgets. When the resource is no longer needed anywhere in the
application (e.g. all the widgets using the font have been destroyed) then Tk will invoke
the Xlib procedure to free up the resource. This approach saves time as well as memory in
the X server
If you allocate a resource through Tk you must treat it as read-only since it may be
shared. For example, if you allocate a graphics contextTkitiGet GC you must not
change the background color of the graphics context, since this wiadtthé other uses
of the graphics context. If you need to modify a resource after creating it then you should
not use Tks resource caches; call Xlib directly to allocate the resource so that you can
have a private copy
Most of the resources for a widget are allocated automaticallk bgonf i gur e-
W dget , andTk_Confi gur eW dget uses the Tk resource caches. The following sub-
sections describe how to use the Tk resource caches divgtiigut going through
Tk_Confi gur eW dget .

Graphics contexts

Graphics contexts are the resource that you are most likely to allocate direethyare
needed whenever you draw information on the screeflan@onf i gur eW dget
does not provide facilities for allocating them. Thus most widgets will need to allocate a
few graphics contexts in their configure procedures. The procékufget GCallocates a
graphics context and is similar to the Xlib procedx@e eat e GC:

GC Tk_Get GC(Tk_W ndow t kwi n, unsi gned | ong val ueMask,

XGCVal ues *val uePtr)

Thet kwi n agument specifies the window in which the graphics context will be used.
Val ueMask andVal uePt r specify the fields of the graphics contesdl ueMask is
an OR-ed combination of bits such@@aFor egr ound or GCFont that indicate which
fields ofval uePt r are significantval uePt r specifies values of the selected fields.
Tk _Get GCreturns the X resource identifier for a graphics context that matehese-
Mask andval uePt r. The graphics context will have default values for all of the unspec-
ified fields.

DRAFT (7/10/93): Distribution Restricted

38.2 Resource caches 345

38.2.2

When you're finished with a graphics context you must free it by calling
Tk_FreeGC:
Tk_FreeGC(Di spl ay *di splay, GC gc)
Thedi spl ay amgument indicates the display for which the graphics context was allo-
cated and thgc amgument identifies the graphics context (must have been the return
value from some previous call T&_Get GC). There must be exactly one call to
Tk_Fr eeGCfor each call td’k_Get GC.

Other resources

Although resources other than graphics contexts are normally allocated and deallocated
automatically byTk_Conf i gur eW dget andTk_Fr eeQpt i ons, you can also allo-

cate them explicitly using Tk library procedures. For each resource there are three proce-
dures. The first procedure (suchT&s Get Col or) takes a textual description of the

resource in the same way it might be specified as a configuration option and returns a suit-
able resource or an errdthe second procedure (suchrs Fr eeCol or) takes a

resource allocated by the first procedure and frees it. The third procedure takes a resource
and returns the textual description that was used to allocate it. The following resources are
supported in this way:

Bitmaps: the proceduresk _Cet Bi t map, Tk_Fr eeBi t map, andTk_Namef -
Bi t map managei xmap resources with depth oneotY can also invok&k_De-
fi neBi t map to create new internally-defined bitmaps, akd Si zeOf Bi t map
returns the dimensions of a bitmap.

Colors : the proceduresk Get Col or, Tk_Fr eeCol or, andTk_NanmeCr Col or
manageXCol or structures. Wu can also invok&k Get Col or ByVal ue to specify
a color with integer intensities rather than a string.

Cursors: the proceduresk _CGet Cur sor, Tk_Fr eeCur sor, and
Tk_NameOf Cur sor manageCur sor resources. du can also invokék _Get Cur -
sor Fr onDat a to define a cursor based on binary data in the application.

Fonts: the procedure$k _Get Font St ruct , Tk_NameOf Font St ruct , and
Tk _FreeFont St ruct manageXFont St ruct structures.

3-D borders: the procedure$sk_Get 3DBor der, Tk_Fr ee3DBor der, and
Tk_NameOf 3DBor der managel'k _3DBor der resources, which are used to draw
objects with beveled edges that produce 3{Bcts. Associated with these procedures
are other procedures suchlds Dr aw3DRect angl e that draw objects on the screen
(see Section 40.3). In addition you can invidke 3DBor der Col or to retrieve the
XCol or structure for the border base color

DRAFT (7/10/93): Distribution Restricted

346 Configuring Widgets

38.3 Tk_Uids

When invoking procedures likEk_Get Col or you pass in a textual description of the
resource to allocate, such aetl” for a color However this textual description is not a
normal C string but ratherumique identifierwhich is represented with the typke_Ui d:
typedef char *Tk_Ui d;
A Tk_Ui d is like an atom in Lisp. It is actually a pointer to a character gustlike a
normal C string, and 8 _Ui d can be used anywhere that a string can be used. However
Tk_Ui d’s have the property that any tWk_ Ui d’s with the same string value also have
the same pointer value:afandb areTk_Ui d’s and
(strcnp(a, b) == 0)
then
(a == b)
Tk usesTk_Ui d’s to specify resources because they permit fast comparisons for equality
If you useTk_Confi gur eW dget to allocate resources then you widmave to
worry aboufTk Ui d’s (Tk automatically translates strings from the configuration table
into Tk_Ui d’s). But if you call procedures likek_Get Col or directly then you'll need
to useTk_Get Ui d to turn strings into unique identifiers:
Tk_Uid Tk_Get Ui d(char *string)
Given a string gyument,Tk_Get Ui d returns the correspondifidgc_ Ui d. It just keeps a
hash table of all unique identifiers that have been used so far and returns a pointer to the
key stored in the hash table.

Note: If you pass strings dictly to pocedues likeTk _Get Col or without converting them to
unique identifiers then you will get ueglictable esults. One common symptom is that the
application uses the samesouce over and over even though you think you've specified
different values for each useypically what happens is that the same string buffer was

used to star all of the diffeent values. Tk just compes the string addss rather than its
contents, so the values appear to Tk to be the same.

38.4 Other translators

Tk provides several other library procedures that translate from strings in various forms to
internal representations. These procedures are similar to the resource managers in Section
38.2 except that the internal forms are not resources that require freeing, so typically there
is just a “get” procedure and a “name of” procedure with no “free” procedure. Below is a
quick summary of the availabile translators (see the reference documentation for details):

Anchors: Tk_Get Anchor andTk_NaneCOf Anchor translate between strings con-
taining an anchor positions such aght er ” or “ne” and integers with values
defined by symbols such aK_ANCHOR CENTER or TK_ANCHOR _NE.

DRAFT (7/10/93): Distribution Restricted

38.5 Changing window attributes 347

Cap styles Tk_Get CapSt yl e andTk_NanmeOF CapSt yl e translate betwen

strings containing X cap styleshit t ”, “pr oj ect i ng”, or “r ound”) and integers
with values defined by the X symbd&apBut t , CapPr oj ect i ng, andCapRound.

Join styles Tk_Joi nSt yl e andTk_NarmeCf Joi nSt yl e translate between strings

containing X join styles @fevel ”, “m t er ", or “r ound”) and integers with values
defined by the X symbolkoi nBevel ,Joi nM t er, andJoi nRound.

Justify styles Tk_Get Justi fy andTk_NaneCf Justi f y translate between
strings containing styles of justificatiod ¢ft”, “ri ght”, “center”, or“fill")
and integers with values defined by the symB&sJUSTI FY_LEFT, TK_JUSTI -

FY_RI GHT, TK_JUSTI FY_CENTER, andTK_JUSTI FY_FI LL.
Reliefs Tk_Get Rel i ef andTk_NameO Rel i ef translate between strings con-

taining relief names (“ai sed”, “sunken”, “f | at ”, “gr oove”, or “ri dge”) and
integers with values defined by the symbids RELI EF_RAI SED, TK_RELI EF_-

SUNKEN, etc.

Screen distancesTk_Get Pi xel s andTk_Get Scr eenMMprocess strings that con-
tain screen distances in any of the forms described in Section XXX, suth&s' “or
“2". Tk_Cet Pi xel s returns an integer result in pixel units, dd Get Scr eenMM
returns a real result whose units are millimeters.

Window names Tk__NanmeToW ndowtranslates from a string containing a window
path name such asdl g. qui t ” to the Tk_W ndowtoken for the corresponding
window.

X atoms. Tk_I nt er nAt omandTk _CGet At onNan® translate between strings con-
taining the names of X atoms (e.g. “RESOURCE_MANAGER”) ant ¥mtokens.
Tk keeps a cache of atom names to avoid communication with the X server

38.5 Changing window attributes

Tk provides a collection of procedures for modifying a windoattributes (e.g. back-
ground color or cursor) and configuration (e.g. position or size). These procedures are
summarized in dble 38.2. The procedures have the samgenaents as the Xlib proce-
dures with corresponding names. They perform the same functions as the Xlib procedures
except that they also retain a local copy of the new information so that it can be returned
by the macros described in Section 37.5. For exarmgleResi zeW ndowis similar to
the Xlib procedureXResi zeW ndow in that it modifies the dimensions of a window
However it also remembers the new dimensions so they can be accessed with the
Tk_W dt h andTk_Hei ght macros.

Only a few of the procedures imfle 38.2, such ak_Set W ndowBackgr ound,
are normally invoked by widgets.i#gets should definitelgot invoke procedures like

DRAFT (7/10/93): Distribution Restricted

348 Configuring Widgets

Tk_ChangeW ndowAt t ri but es(Tk_W ndow t kwi n, unsi gned int val ue-
Mask,
XSet WndowAttributes *attsPtr)

Tk_Conf i gur eW ndow(Tk_W ndow t kwi n, unsigned int val ueMask,
XW ndowChanges *val uePtr)

Tk_Def i neCur sor (Tk_W ndow t kwi n, Cursor cursor)

Tk_MoveW ndow(Tk_W ndow tkwi n, int x, int y)

Tk_MoveResi zeW ndow(Tk_W ndow tkwin, int x, int vy,
unsigned int wi dth, unsigned int height)

Tk_Resi zeW ndow Tk_W ndow t kwi n, unsgi ned int wi dth,
unsi gned int height)

Tk_Set W ndowBackgr ound(Tk_W ndow t kwi n, unsi gned | ong pi xel)

Tk_Set W ndowBackgr oundPi xmap(Tk_W ndow t kwi n, Pi xmap pi xmap)

Tk_Set W ndowBor der (Tk_W ndow t kwi n, unsi gned | ong pi xel)

Tk_Set W ndowBor der Pi xmap(Tk_W ndow t kwi n, Pi xmap pi xmap)

Tk_Set W ndowBor der W dt h(TK_W ndow t kwi n, int w dth)

Tk_Set W ndowCol or map(Tk_W ndow t kwi n, Col or map col or nap)

Tk_Undefi neCur sor (Tk_W ndow t kwi n)

Table 38.2.Tk procedures for modifying attributes and window configuration information.
Tk_ChangeW ndowAt t ri but es andTk_Conf i gur eW ndowallow any or all of the
attributes or configuration to be set at oncal ueMask selects which values should be set); tl
other procedures set selected fields individually

Tk_MoveW ndowor Tk_Resi zeW ndow. only geometry managers should change the
size or location of a windaw

38.6 The square configure procedure

Figure 38.1 contains the code for the square wisigetfigure procedure. lés gv amgu-
ment contains pairs of strings that specify configuration options.Most of the work is done
by Tk_Conf i gur eW dget . OnceTk_Conf i gur eW dget returnsConfi gur -

DRAFT (7/10/93): Distribution Restricted

38.7 The square widget command procedure 349

38.7

int ConfigureSquare(Tcl_Interp *interp, Square *squarePtr,
int argc, char *argv[], int flags) {
if (Tk_ConfigureWdget(interp, squarePtr->tkw n, configSpecs,
argc, argv, (char *) squarebPtr, flags) != TCL_OK) {
return TCL_ERROR

Tk_Set W ndowBackgr ound(squar ePt r - >t kwi n,
Tk_3DBor der Col or (squar ePtr - >bgBor der)) ;

if (squarePtr->gc == None) {

XGCVal ues gcVal ues;

gcVal ues. functi on = GXcopy;

gcVal ues. graphi cs_exposures = Fal se;

squarePtr->gc = Tk_Get GC(squarePtr->t kw n,

GCFunct i on| GCG aphi csExposures, &gcVal ues);

}
Tk_CGeonet ryRequest (squar ePtr->t kwi n, 200, 150);
Tk_Set | nt er nal Bor der (squar ePtr->t kwi n,
squar ePt r - >bor der W dt h) ;
i f (!squarePtr->updatePendi ng) {
Tk_DowWhenl dl e(Di spl aySquare, (ClientData) squarePtr);
squar ePt r - >updat ePendi ng = 1,

}
return TCL_OK;

Figure 38.1.The configure procedure for square widgets. It is invoked by the creation proc
and by the widget command procedure to set and modify configuration options.

eSquar e extracts the color associated with theackgr ound option and calls

Tk _Set W ndowBackgr ound to use it as the background color for the widgetin-

dow. Then it allocates a graphics context that will be used during redisplay to copy bits
from an of-screen pixmap into the window (unless some previous call to the procedure
has already allocated the graphics context). Mextf i gur eSquar e callsTk_Geom

et ryRequest andTk_Set | nt er nal Bor der W dt h to provide information to its
geometry manager (this will be discussed in Chapter 43). Fiitalyanges for the wid-
get to be redisplayed; this will be discussed in Chapter 40.

The square widget command procedure

Figures 38.2 and 38.3 contain the C codeStpuar eW dget Cormand, which
implements widget commands for square widgets. The main portion of the procedure con-
sists of a series off statements that compaegv[1] successively toc'onfi gure”,

“posi tion”, and “si ze”, which are the three widget commands defined for squares. If

DRAFT (7/10/93): Distribution Restricted

350 Configuring Widgets

int SquareWdgetCnd(CientData clientData, Tcl_Interp *interp,
int argc, char *argv[]) {
Square *squarePtr = (Square *) clientData;
int result = TCL_CK;

if (argc < 2) {
Tcl _AppendResul t (interp, "wong # args: should be \"",
argv[0], " option ?arg arg ...?2\"",
(char *) NULL);
return TCL_ERROR,

}

Tk_Preserve((CientData) squarePtr);
if (strcnp(argv[1l], "configure") == 0) {
if (argc == 2)
result = Tk_Configurelnfo(interp, squarePtr->tkw n,
(char *) squarePtr, (char *) NULL, 0);
} elseif (argc == 3) {
result = Tk_Configurelnfo(interp, squarePtr->tkw n,
(char *) squarePtr, argv[2], 0);
} else {
result = ConfigureSquare(interp, squarePtr,
argc-2, argv+2, TK_CONFI G_ARGV_QONLY);

}
} else if (strcnp(argv[1l], "position") == 0) {
if ((argc '=2) & & (argc !'=4)) {
Tcl _AppendResul t (i nterp,"wong # args: should be \"",
argv[0], " position ?x y?2\"", (char *) NULL);
goto error;

if (argc ==
if ((Tk_GetPixels(interp, squarePtr->tkw n,
argv[2], &squarePtr->x) != TCL_CK) ||
(Tk_Get Pi xel s(interp, squarePtr->tkw n,
argv[3], &squarebPtr->y) = TCL_OK)) {
goto error;

}
Keepl nW ndow(squarePtr);
}
sprintf(interp->result, "% %", squarePtr->x,

squarePtr->y);
} else if (strcnp(argv[1l], "size") == 0) {

Figure 38.2.The widget command procedure for square widgets. Continued in Figure 38.3

DRAFT (7/10/93): Distribution Restricted

38.7 The square widget command procedure 351

if ((argc '=2) & & (argc !'= 3)) {
Tcl _AppendResul t (i nterp, "wong # args: should be \"",
argv[0], " size ?amount?\"", (char *) NULL);
goto error;

}
i f (.argc. == 3) {

int i;
if (Tk_GetPixels(interp, squarePtr->tkwi n, argv[2],
&) = TCL_OK) {
goto error;

}
if ((i <=0) || (i >100)) {
Tcl _AppendResul t (i nterp, "bad size \"", argv[2],
"\"", (char *) NULL);
goto error;
}
squarePtr->size = i;
Keepl nW ndow(squarePtr);

sprintf(interp->result, "%l", squarePtr->size);
} else {
Tcl _AppendResul t (i nterp, "bad option \"", argv[1],
"\": nust be configure, position, or size",
(char *) NULL);
goto error;

i f (!squarePtr->updat ePendi ng) {
Tk_Dowhenl dl e(Di spl aySquare, (CientData) squarePtr);
squar ePt r - >updat ePendi ng = 1;

}
Tk_Rel ease((CientData) squarePtr);
return result;

error:
Tk_Rel ease((ClientData) squarePtr);
return TCL_ERROR;

Figure 38.3.The widget command procedure for square widgets, continued from Figure 3i

ar gv[1] matches one of these strings then the corresponding code is executed; other-
wise an error is generated.

Theconf i gur e widget command is handled in one three ways, depending on how
many additional uments it receives. If at most one additiongUuarent is provided then
Squar eW dget Cnd callsTk_Conf i gur el nf o to create descriptive information for
one or all of the widgeg’'configuration options. If two or more additionajuanents are

DRAFT (7/10/93): Distribution Restricted

352 Configuring Widgets

voi d Keepl nW ndow Square *squarePtr) {
int i, bd;
bd = 0O;
if (squarePtr->relief !'= TK RELI EF_FLAT) {
bd = squarePtr->border Wdt h;

}
i = (Tk_Wdth(squarePtr->tkw n) - bd)
- (squarePtr->x + squarePtr->size);
if (i <0) {
squarePtr->x += i;

}
i = (Tk_Hei ght (squarePtr->tkwi n) - bd)
- (squarePtr->y + squarePtr->size);
if (i <0) {
squarePtr->y += i;
}

if (squarePtr->x < bd) {
squarePtr->x = bd;

if (squarePtr->y < bd) {
squarePtr->y = bd;
}

Figure 38.4.TheKeepl nW ndow procedure adjusts the location of the square to make sure
is visible in the widge$ window

provided therSquar eW dget Crd passes the additionalgaments tcConf i gur -
eSquar e for processingSquar eW dget Cnd specifies the

TK_CONFI G_ARGV_ONLY flag, whichConf i gur eSquar e passes on tok_Con-
fi gureW dget so that options not specified explicitly &ygv are left as-is.

Theposi ti on andsi ze widget commands change the geometry of the square dis-
played in the widget, and they have similar implementations. If new values for the geome-
try are specified then each command cBlisGet Pi xel s to convert the gument(s) to
pixel distances. Thei ze widget command also checks to make sure that the new size is
within a particular range of values. Then both commands inkekel nW ndow;, which
adjusts the position of the square if necessary to ensure that it is fully visible in the wid-
get’s window (see Figure 38.4). Finglthe commands print the current values into
i nterp->result to return them as result.

Squar eW dget Cd invokes the procedurd&_Pr eser ve andTk_Rel ease as
a way of preventing the widget record from being destroyed while the widget command is
executing. Chapter 41 will discuss these procedures in more detail. The square widget is
so simple that the calls arémctually needed, but virtually all real widgets do need them
so | put them irSquar eW dget Cnd too.

DRAFT (7/10/93): Distribution Restricted

Chapter 39
Events

39.1

This chapter describes BKibrary procedures for event handling. The code you'll write
for event handling divides into three parts. The first part consists of code that creates event
handlers: it informs Tk that certain callback procedures should be invoked when particular
events occufThe second part consists of the callbacks themselves. The third part consists
of top-level code that invokes the Tk event dispatcher to process events.

Tk supports three kinds of events: X events, file events (e.g. a particular file has just
become readable), and timer events. Tk also allows you to @tkatallbacks which
cause procedures to be invoked when Tk runs out of other things to do; idle callbacks are
used to defer redisplays and other computations until all pending events have been pro-
cessed. Tls procedures for event handling are summarizealieT39.1.

If you are not already familiar with X events, | recommend reading about them in
your favorite Xlib documentation before reading this chapter

X events

The X window server generates a number dediint events to report interesting things
that occur in the window system, such as mouse presses or changes in as\simiow’
Chapter XXX showed how you can use §ti nd command to write event handlers as
Tcl scripts. This section describes how to write event handlers ipp@ally you'll only
use C handlers for four kinds of X events:

Expose: these events notify the widget that part or all of its window needs to be redis-
played.

353

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

354

Events

voi d Tk_Creat eEvent Handl er (Tk_W ndow t kwi n, unsi gned | ong nask,
Tk_EventProc *proc, CientData clientData)
Arranges fopr oc to be invoked whenever any of the events selected b
mask occurs fort kwi n.
voi d Tk_Del et eEvent Handl er (Tk_W ndow t kwi n, unsi gned | ong nask,
Tk_EventProc *proc, CientData clientData)
Deletes the event handler that matamesk, pr oc, andcl i ent Dat a, if
such a handler exists.

void Tk_CreateFil eHandler(int fd, int mask, Tk_FileProc *proc,
ClientData clientData)
Arranges foipr oc to be invoked whenver one of the conditions indicated
mask occurs for the file whose descriptor numbérds
voi d Tk_Del et eFi |l eHandl er (i nt fd)
Deletes the file handler féd, if one exists.

Tk_Ti mer Token Tk_CreateTi nerHandl er(int mlliseconds,
Tk_TimerProc *proc, ClientData clientData)
Arranges fopr oc to be invoked aftam | | i seconds have elapsed.
Returns a token that can be used to cancel the callback.
voi d Tk_Del et eTi nmer Handl er (Tk_Ti ner Token t oken)
Cancels the timer callback indicatedthyken, if it hasnt yet triggered.

voi d Tk_DoWienl dl e(Tk_I dl eProc *proc, CientData clientData)
Arranges fopr oc to be invoked when Tk has nothing else to do.

voi d Tk_Cancel I dl eCal | (Tk_l dl eProc *proc, CientData clientData)
Deletes any existing idle callbacks fatl ePr oc andcl i ent Dat a.

voi d Tk_Creat eGeneri cHandl er (Tk_Generi cProc *proc,
ClientData clientData)
Arranges forpr oc to be invoked whenever any X event is received by tf
process.
voi d Tk_Del et eGeneri cHandl er (Tk_Generi cProc *proc,
ClientData clientData)
Deletes the generic handler givengnyoc andcl i ent Dat a, if such a
handler exists.

voi d Tk_Mai nLoop(voi d)
Processes events until there are no more windows left in this process.
int Tk_DoOneEvent (i nt flags)
Processes a single event of any sort and then reRirags is normally 0
but may be used to restrict the events that will be processed or to retur
immediately if there are no pending events.

Table 39.1.A summary of the Tk library procedures for event handling.

DRAFT (7/10/93): Distribution Restricted

39.1 X events 355

Conf i gureNot i fy: these events occur when the wind®aize or position changes
so that it can adjust its layout accordingly (e.g. centered text may have to be reposi-
tioned).

Focusl n andFocusCQut : these events notify the widget that it has gotten or lost the
input focus, so it can turn on orfdf insertion cursor

Dest royNot i fy: these events notify the widget that its window has been destroyed,
so it should free up the widget record and any associated resources.

The responses to these events are all relatively obvious and it is unlikely that a user or
application developer would want to deal with the events so it makes sense to hard-code
the responses in C. For most other events, such as key presses and mouse adi@ns, it’
ter to define the handlers iglwith thebi nd command. As a widget writer you can cre-
ate class bindings to give the widget its default behatkhien users can modify the class
bindings or augment them with additional widget-specific bindings. By usiresTuch

as possible you'll make your widgets more flexible.

The procedur@k_Cr eat eEvent Handl er is used by widgets to register interest

in X events:

voi d Tk_Creat eEvent Handl er (Tk_W ndow t kwi n, unsi gned | ong

mask,

Tk_EventProc *proc, ClientData clientData);

Thet kwi n agument identifies a particular window amask is an OR’ed combination
of bits likeKeyPr essMask andSt r uct ur eNot i f yMask that select the events of
interest (refer to Xlib documentation for details on the mask values that are available).
When one of the requested events occurs kovi n Tk will invoke pr oc to handle the
event.Pr oc must match the following prototype:

typedef void Tk_EventProc(CientData clientData, XEvent

*eventPtr);
Its first agument will be the same as tbiki ent Dat a value that was passed to
Tk_Cr eat eEvent Handl er and the secondgument will be a pointer to a structure
containing information about the event (see your Xlib documentation for details on the
contents of aiXEvent structure). There can exist any number of event handlers for a
given window and mask but there can be only one event handler with a pattioilar,
mask, pr oc, andcl i ent Dat a. If a particular event matches thkewi n andnask for
more than one handler then all of the matching handlers are invoked, in the order in which
they were created.

For example, the C code for the square widget dealsBxjplos e, Conf i gur eNo-
tify,andDestroyNotify events. ® process these events, the following code is
present in the create procedure for squares (see Figure 37.1 on page 335):

Tk_Cr eat eEvent Handl er (squar ePt r - >t kwi n,

Exposur eMask| St ruct ureNot i f yMask,
Squar eEvent Proc, (CientData) squarePtr);

DRAFT (7/10/93): Distribution Restricted

356 Events

voi d SquareEventProc(C ientData clientData, XEvent *eventPtr) {
Square *squarePtr = (Square *) clientData;
if (eventPtr->type == Expose) {
if ((eventPtr->xexpose.count == 0)
&& !squar ePtr - >updat ePendi ng) {
Tk_DoWhenl dl e(Di spl aySquare, (CientData) squarePtr);
squar ePtr - >updat ePendi ng = 1;

}
} else if (eventPtr->type == ConfigureNotify) {
Keepl nW ndow squar ePtr);
i f (!squarePtr->updat ePendi ng) {
Tk_DoWhenl dl e(Di spl aySquare, (CientData) squarePtr);
squar ePtr - >updat ePendi ng = 1;

}
} else if (eventPtr->type == DestroyNotify) ({
Tcl _Del et eConmand(squar ePtr->i nt erp,
Tk_Pat hNanme(squar ePtr->t kwi n));

squarePtr->tkwin = NULL;

if (squarePtr->flags & REDRAW PENDI NG ({
Tk_Cancel 1 dl eCal | (Di spl aySquar e,

(dientData) squarePtr);

Tk_Eventual | yFree((d ientData) squarePtr, DestroySquare);

Figure 39.1.The event procedure for square widgets.

TheExposur eMask bit select&Expose events andt r uct ur eNot i f yMask selects
bothConf i gureNot i fy andDest r oyNot i fy events, plus several other types of
events. The address of the widgetcord is used as tliki ent Dat a for the callback,
so it will be passed t8quar eEvent Pr oc as its first ggument.

Figure 39.1 contains the code fguar eEvent Pr oc, the event procedure for
square widgets. Whenever an event occurs that maisipess ur eMask or St r uc-
tureNot i f yMask Tk will invoke Squar eEvent Pr oc. Squar eEvent Pr oc casts
itscl i ent Dat a agument back into &quar e * pointer then checks to see what kind
of event occurred. FdExpose eventsSquar eEvent Pr oc arranges for the widget to
be redisplayed. Faonf i gur eNot i f y eventsSquar eEvent Pr oc callsKeepl n-

W ndowto make sure that the square is still visible in the window (see Figure 38.4 on
page 352), theBquar eEvent Pr oc arranges for the widget to be redrawn. For

Dest royNot i fy eventsSquar eEvent Pr oc starts the process of destroying the wid-
get and freeing its widget record; this process will be discussed in more detail in Chapter
41.

DRAFT (7/10/93): Distribution Restricted

39.2 File events 357

39.2

If you should need to cancel an existing X event handler you can ifkokeel e-
t eEvent Handl er with the same guments that you passeditk_Cr e-
at eEvent Handl er when you created the handler:
voi d Tk_Del et eEvent Handl er (Tk_W ndow t kwi n, unsi gned | ong
mask,
Tk_EventProc *proc, ClientData clientData);
This deletes the handler correspondingkai n, mask, pr oc, andcl i ent Dat a so
that its callback will not be invoked anymore. If no such handler exists then the procedure
does nothing. Tk automatically deletes all of the event handlers for a window when the
window is destroyed, so most widgets never need tdkalDel et eEvent Handl er.

File events

Event-driven programs like Tk applications should not block for long periods of time

while executing any one operation, since this prevents other events from being serviced.
For example, suppose that a Tk application attempts to read from its standard input at a
time when no input is available. The application will block until input appears. During this
time the process will be suspended by the operating system so it cannot service X events.
This means, for example, that the application will not be able to respond to mouse actions
nor will it be able to redraw itself. Such behavior is likely to be annoying to thesirsss

he or she expects to be able to interact with the application at any time.

File handlersprovide an event-driven mechanism for reading and writing files that
may have long I/O delays. The procedike Cr eat eFi | eHandl er creates a new file
handler:

void Tk_CreateFil eHandl er(int fd, int mask, Tk_FileProc *proc,
ClientData clientData);
Thef d agument gives the number of a POSIX file descriptor (e.g. 0 for standard input, 1
for standard output, and so oWhsk indicates whepr oc should be invoked. It is an
OR’ed combination of the following bits:

TK_READABLE means that Tk should involke oc whenever there is data waiting to
be read orf d;

TK_VWRI TABLE means that Tk should invoke oc whenevef d is capable of accept-
ing more output data;

TK_EXCEPTI ON means that Tk should invoke oc whenever an exceptional condi-
tion is present fof d.

The callback procedure for file handlers must match the following prototype:

typedef void Tk_FileProc(CientData clientData,
i nt mask);

DRAFT (7/10/93): Distribution Restricted

358

Events

Note:

Thecl i ent Dat a agument will be the same as thki ent Dat a agument to

Tk_Creat eFi | eHandl er andnmask will contain a combination of the bits
TK_READABLE, TK_WRI TABLE, andTK_EXCEPTI ONto indicate the state of the file at
the time of the callback. There can exist only one file handler for a given file at a time; if
you callTk_Cr eat eFi | eHandl er at a time when there exists a handlerffdrthen

the new handler replaces the old one.

You can temporarily disable a file handler by setting its mask tolDcan eset the mask
later when you want teerenable the handler

To delete a file handlecall Tk_Del et eFi | eHandl er with the samé d amgu-
ment that was used to create the handler:

voi d Tk_Del et eFi | eHandl er(int fd);
This removes the handler fbd so that its callback will not be invoked again.

With file handlers you can do event-driven file I/0. Rather than opening a file, reading
it from start to finish, and then closing the file, you open the file, create a file handler for it,
and then return. When the file is readable the callback will be invoked. It issues exactly
one read request for the file, processes the data returned by the read, and then returns.
When the file becomes readable again (perhaps immediately) then the callback will be
invoked again. Eventuallyhen the entire file has been read, the file will become readable
and the read call will return an end-of-file condition. At this point the file can be closed
and the file handler deleted.ittWthis approach, your application will still be able to
respond to X events even if there are long delays in reading the file.

For examplewi sh uses a file handler to read commands from its standard input. The
main program fowi sh creates a file handler for standard input (file descriptor 0) with the
following statement:

Tk_Cr eat eFi | eHandl er (0, TK_READABLE, StdinProc, (O ientData)
NULL) ;
Tcl _DStri ngl ni t (&onmand) ;

In addition to creating the callback, this code initializes a dynamic string that will be used
to buffer lines of input until a completecfcommand is ready for evaluation. Then the
main program enters the event loop as will be described in Section 39.6. When data
becomes available on standard inutli nPr oc will be invoked. Its code is as follows:
void StdinProc(CientData clientData, int mask) {

int count, code;

char input[1000];

count = read(0, input, 1000);

if (count <= 0) {

... handle erors and end of file...
}

Tcl _DSt ri ngAppend(&onmmrand, input, count);

if (Tcl _CrdConpl ete(Tcl _DStringVal ue(&onmmand)) {
code = Tcl _Eval (interp,

DRAFT (7/10/93): Distribution Restricted

39.3 Timer events 359

Note:

Note:

39.3

Tcl _DStringVval ue(&onmmand)) ;
Tcl _DStri ngFree(& onmand) ;

}
After reading from standard input and checking for errors and end-@tfiti,nPr oc
adds the new data to the dynamic stsrgirrent contents. Then it checks to see if the
dynamic string contains a complete Tommand (it wort, for example, if a line such as
“foreach i $x {"“has been entered but the body of tlwe each loop hasrt yet
been typed). If the command is complete tBedi nPr oc evaluates the command and
clears the dynamic string for the next command.
It is usually best to use non-blocking I/O with file handlers, just to be absolutelthaiir
I/O operations dot’block. B request non-blocking 1/0, specify the flagNONBLOCK to
thef cnt | POSIX system call. If you use file handlers for writing to files with long output
delays, such as pipes and network sockesgstential that you use use non-blocking I/O;

otherwise if you supply too much data imra t e system call the output buffers will fill
and the pocess will be put to sleep.

For ordinary disk files it ish’necessary to use the event-driven apph described in this
section, sincegading and writing these files iy incurs noticeable delays. File handlers
are useful primarily for files like terminals, pipes, and network connections, which can
block for indefinite periods of time.

Timer events

Timer events trigger callbacks after particular time intervals. For example, widgets use
timer events to display blinking insertion cursors. When the cursor is first displayed in a
widget (e.g. because it just got the input focus) the widget creates a timer callback that will
trigger in a few tenths of a second. When the timer callback is invoked it turns the cursor
off if it was on, or on if it was &f and then reschedules itself by creating a new timer call-
back that will trigger after a few tenths of a second more. This process repeats indefinitely
so that the cursor blinks on and.&Vhen the widget wishes to stop displaying the cursor
altogether (e.g. because it has lost the input focus) it cancels the callback and turns the cur-
sor of.
The procedur&k_Cr eat eTi mer Handl er creates a timer callback:
Tk_Ti mer Token Tk_CreateTi merHandl er (int mlliseconds,
Tk_TimerProc *proc, ClientData clientData);

Them | | i seconds agument specifies how many milliseconds should elapse before
the callback is invoked’k _Cr eat eTi ner Handl er returns immediatejyand its
return value is a token that can be used to cancel the callback. After the given interval has
elapsed Tk will invoker oc. Pr oc must match the following prototype:

void Tk_TimerProc(C ientData clientData);

DRAFT (7/10/93): Distribution Restricted

360 Events

Its agument will be the same as thki ent Dat a agument passed fik_Cr e-
at eTi nmer Handl er. Pr oc is only called once, then Tk deletes the callback automati-
cally. If you wantpr oc to be called over and over at regular intervals givemc should
reschedule itself by callingk_Cr eat eTi nmer Handl er each time it is invoked.

Note: Thee is no guarantee thair oc will be invoked at exactly the specified time. If the
application is busy mrcessing other events when the specified time occurpttizen

wont be invoked until the next time the application invokes the event dispatsher
described in Section 39.6.

Tk _Del et eTi mer Handl er cancels a timer callback:
voi d Tk_Del et eTi mer Handl er (Tk_Ti mer Token t oken);

It takes a single gument, which is a token returned by a previous calktoCr e-

at eTi mer Handl er, and deletes the callback so that it will never be invoked. It is safe
to invokeTk Del et eTi nmer Handl er even if the callback has already been invoked;
in this case the procedure has reet

39.4 Idle callbacks

The procedurd@k_DoWhenl dl e creates aidle callback

voi d Tk_DoWhenl dl e(Tk_I dl eProc *proc, CientData clientData);
This arranges fgor oc to be invoked the next time the application becomes idle. The
application is idle when TE'main event-processing procedurke, DoOneEvent , is
called and no X events, file events, or timer events are.rBadyally when this occurs
Tk _DoOneEvent will suspend the process until an event occurs. Howé\here exist
idle callbacks then all of them are invoked. Idle callbacks are also invoked when the
updat e Tcl command is invoked. Ther oc for an idle callback must match the follow-
ing prototype:

typedef void Tk_ldleProc(CientData clientData);
It returns no result and takes a singiguanent, which will be the same as thd ent -
Dat a agument passed ttk_DoWhenl dl e.

Tk_Cancel 1 dl eCal | deletes an idle callback so that it widme invoked after all:

voi d Tk_Cancel I dl eCal | (Tk_Idl eProc *proc, dientData

clientData);
Tk_Cancel | dl eCal | deletes all of the idle callbacks that match ePr oc and
cl i ent Dat a (there can be more than one). If there are no matching idle callbacks then
the procedure has ndfegt.

Idle callbacks are used to implement the delayed operations described in Section
XXX. The most common use of idle callbacks in widgets is for redisfilas/generally a
bad idea to redisplay a widget immediately when its state is modified, since this can result
in multiple redisplays. For example, suppose the following setlafommands is
invoked to change the colaize, and location of a square widgst

DRAFT (7/10/93): Distribution Restricted

39.5 Generic event handlers 361

39.5

.s configure -foreground purple

.S size 2c

.s position 1.2c 3.1c
Each of these commands modifies the widget in a way that requires it to be redisplayed,
but it would be a bad idea for each command to redraw the widget. This would result in
three redisplays, which are unnecessary and can cause the widget to flash as it steps
through a series of changes. It is much better to wait until all of the commands have been
executed and then redisplay the widget once. Idle callbacks provide a way of knowing
when all of the changes have been made: theytwerihvoked until all available events
have been fully processed.

For example, the square widget uses idle callbacks for redisplaying itself. Whenever

it notices that it needs to be redrawn it invokes the following code:

i f (!squarePtr->updatePendi ng) {

Tk_DoWhenl dl e(Di spl aySquare, (CientData) squarePtr);
squar ePt r - >updat ePendi ng = 1,

}
This arranges fobi spl aySquar e to be invoked as an idle handler to redraw the wid-
get. Theupdat ePendi ng field of the widget record keeps track of whetbespl ay-
Squar e has already been scheduled, so that it will only be scheduled once. When
Di spl aySquar e is finally invoked it resetspdat ePendi ng to zero.

Generic event handlers

The X event handlers described in Section 39.1 only trigger when particular events occur
for a particular window managed by Tk. Generic event handlers provide access to events
that arert associated with a particular windosuch advappi ngNot i f y events, and to
events for windows not managed by Tk (such as those in other applications). Generic
event handlers are rarely needed and should be used sparingly
To create a generic event handtall Tk_Cr eat eGeneri cHandl er:
voi d Tk_Creat eGeneri cHandl er (Tk_Generi cProc *proc,
ClientData clientData);
This will arrange fopr oc to be invoked whenever any X event is received by the appli-
cation.Pr oc must match the following prototype:
typedef int Tk_GenericProc(CientData clientData,
XEvent *eventPtr);
Itscl i ent Dat a agument will be the same as ttki ent Dat a passed tdk_Cr e-
at eGeneri cHandl er andevent Pt r will be a pointer to the X event. Generic han-
dlers are invoked before normal event handlers, and if there are multiple generic handlers
then they are called in the order in which they were created. Each generic handler returns
an integer result. If the result is non-zero it indicates that the handler has completely pro-

DRAFT (7/10/93): Distribution Restricted

362

Events

Note:

39.6

cessed the event and no further handlers, either generic or normal, should be invoked for
the event.
The procedur@k_Del et eGeneri cHandl er deletes generic handlers:
Tk_Del et eGeneri cHandl er (Tk_Generi cProc *proc,
ClientData clientData);
Any generic handlers that matphoc andcl i ent Dat a are removed, so thpt oc
will not be invoked anymore.
Tk_Cr eat eGeneri cHandl er does nothing to ensaithat the deséd events ar
actually sent to the application. For example, if an application wishesstmnd to events
for a window in some other application then it must invéBel ect | nput to notify the
X server that it wants teeceive the events. Once the events arrive, Tk will dispatch them

to the generic handleHoweveran application should never invoX8el ect | nput for
a window managed by Tk, since this will intezfaiith Tk event management.

Invoking the event dispatcher

The preceding sections described the first two parts of event management: creating event
handlers and writing callback procedures. The final part of event management is to invoke
the Tk event dispatchaewhich waits for events to occur and invokes the appropriate call-
backs. If you dort’invoke the dispatcher then no events will be processed and no call-
backs will be invoked.

Tk provides two procedures for event dispatchifig: Mai nLoop and
Tk _DoOneEvent . Most applications only usgk_Mai nLoop. It takes no agjuments
and returns no result and it is typically invoked once, in the main program after initializa-
tion. Tk_Mai nLoop calls the Tk event dispatcher repeatedly to process events. When all
available events have been processed it suspends the process until more evearsdoccur
it repeats this over and ovétrreturns only when evefik_W ndow created by the pro-
cess has been deleted (e.g. after ttesst r oy . ” command has been executed). A typi-
cal main program for a Tk application will createch imterpreter call
Tk_Cr eat eMai nW ndowto create a Tk application plus its main wind@earform
other application-specific initialization (such as evaluatingladript to create the appli-
cation’s interface), and then cdlk_Mai nLoop. WhenTk _Mai nLoop returns the main
program exits. Thus Tk provides top-level control over the applicatex@cution and all
of the applicatiors useful work is carried out by event handlers invoked kiavai n-
Loop.

The second procedure for event dispatchintkisDoOneEvent , which provides a
lower level interface to the event dispatcher:

int Tk_DoOneEvent (i nt flags)

Thef | ags agument is normally 0 (pequivalently TK_ALL_EVENTS). In this case
Tk_DoOneEvent processes a single event and then returns 1. If no events are pending

DRAFT (7/10/93): Distribution Restricted

39.6 Invoking the event dispatcher 363

thenTk_DoOneEvent suspends the process until an event arrives, processes that event,
and then returns 1.
For exampleTk _Mai nLoop is implemented usingk_DoOneEvent :
voi d Tk_Mai nLoop(void) {
whi l e (tk_Numvai nW ndows > 0) {
Tk_DoOneEvent (0);
}

}

The variablg k_Numvai nW ndows is maintained by Tk to count the total number of
main windows (i.e. applications) managed by this proddssiMai nLoop just calls
Tk_DoOneEvent over and over until all the main windows have been deleted.

Tk_DoOneEvent is also used by commands such keai t that want to process
events while waiting for something to happen. For examplettkedi t wi ndow”
command processes events until a given window has been deleted, then it returns. Here is
the C code that implements this command:

i nt done;

Tk_Creat eEvent Handl er (t kwi n, StructureNotifyMask,
Wi t W ndowPr oc,
(dientData) &done);
done = 0;
while (!done) {
Tk_DoOneEvent (0) ;
}

The variabld kwi n identifies the window whose deletion is awaited. The code creates an
event handler that will be invoked when the window is deleted, then invokes
Tk_DoOneEvent over and over until theone flag is set to indicate thatkwi n has
been deleted. The callback for the event handler is as follows:
voi d Wai t WndowProc(C ientData clientData, XEvent *eventPtr) {
int *donePtr = (int *) clientData;
if (eventPtr->type == DestroyNotify) {
*donePtr = 1;
}

}
Thecl i ent Dat a agument is a pointer to the flag variabMi t W ndowPr oc checks
to make sure the event i¥ast r oyNot i fy event 6t ruct ur eNot i f yMask also
selects several other kinds of events, sudboa i gur eNot i fy) and if so it sets the
flag variable to one.

Thef | ags agument toTk_DoOneEvent can be used to restrict the kinds of
events it will considelf it contains any of the bifEK_X EVENTS, TK_FI LE_EVENTS,
TK_TI MER_EVENTS, or TK_| DLE_EVENTS, then only the events indicated by the
specified bits will be considered. Furthermoré,lifigs includes the biTK_DONT_-
WAI T, or if no X, file, or timer events are requested, fhiknDoOneEvent won't sus-

DRAFT (7/10/93): Distribution Restricted

364

Events

pend the process; if no event is ready to be processed then it will return immediately with
a 0 result to indicate that it had nothing to do. For exampleptgdt e i dl et asks”
command is implemented with the following code, which use¥khé DLE EVENTS
flag:
whil e (Tk_DoOneEvent (TK_| DLE_EVENTS) != 0) {
/* enpty | oop body */
}

DRAFT (7/10/93): Distribution Restricted

Chapter 40
Displaying Widgets

40.1

Tk provides relatively little support for actually drawing things on the screen. For the most
part you just use Xlib functions liké€Dr awlLi ne andXDr awSt r i ng. The only proce-

dures provided by Tk are those summarizedaipld 40.1, which create three-dimensional
effects by drawing light and dark shadows around objects (they will be discussed more in
Section 40.3). This chapter consists mostly of a discussion of techniques for delaying
redisplays and for using pixmaps to doubleféaufedisplays. These techniques reduce
redisplay overheads and help produce smooth vistggitefwith mimimum flashing.

Delayed redisplay

The idea of delayed redisplay was already introduced in Section 39.4. Rather than redraw-
ing the widget every time its state is modified, you shouldrus@oWhenl dl e to
schedule the widget'display procedure for execution latwhen the application has fin-
ished processing all available events. This allows any other pending changes to the widget
to be completed beforestredrawn.

Delayed redisplay requires you to keep track of what to redramsimple widgets
such as the square widget or buttons or labels or entries, | recommend the simple approach
of redrawing the entire widget whenever you redraw any part of it. This eliminates the
need to remember which parts to redraw and it will have fine performance for widgets like
the ones mentioned above.

For lager and more complex widgets like texts or canvases fitgsactical to redraw
the whole widget after each change. This can take a substantial amount of time and cause
annoying delays, particularly for operations like dragging where redisplays happen many

365

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

366 Displaying Widgets

voi d Tk_Fil | 3DRect angl e(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBorder border, int x, int y, int width, int height,
int borderWdth, int relief)
Fills the area ofir awabl e given byx, y, wi dt h, andhei ght with the
background color frorbor der, then draws a 3-D bordbor der W dt h
pixels wide around (but just inside) the rectanBtd.i ef specifies the 3-D
appearance of the border
voi d Tk_Draw3DRect angl e(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBorder border, int x, int y, int width, int height,
int borderWdth, int relief)
Same agk_Fi | | 3DRect angl e except only draws the border

voi d Tk_Fi | | 3DPol ygon(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBor der border, XPoint *pointPtr, int nunPoints,
int borderWdth, int |eftRelief)
Fills the area of a polygon gir awabl e with the background color from
bor der. The polygon is specified poi nt Pt r andnunPoi nt s and
need not be closed. Also draws a 3-D border around the poBgoder -
W dt h specifies the width of the bordeneasured in pixels to the left of th
polygons trajectory (if negative then the border is drawn on the right).
Lef t Rel i ef specifies the 3-D appearance of the border T&gREL| E-
F_RAI SED means the left side of the trajectory appears higher than the
right).
voi d Tk_Fi |l | 3DPol ygon(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBor der border, XPoint *pointPtr, int nunPoints,
int borderWdth, int |eftRelief)
Same agk_Fi | | 3DPol ygon, except only draws the border without fill
ing the interior of the polygon.

Table 40.1.A summary of Tks procedures for drawing 3-Dfefts.

times per second. For these widgets you should keep information in the widget record
about which parts of the widget need to be redrawn. The display procedure can then use
this information to redraw only thefa€ted parts.

| recommend recording what to redraw in the simplest (coarsest) way that gives ade-
quate performance. Keeping redisplay information on a very fine grain is likely to add
complexity to your widgets and probably wbimprove performance noticeably over a
coarser mechanism. For example, the Tk text widget does not record what to redraw on a
charactetby-character basis; instead, it keeps track of which lines on the screen need to be
redrawn. The minimum amount that is ever redrawn is one whole line. Most redisplays
only involve one or two lines, and todayvorkstations are fast enough to redraw hun-
dreds of lines per second, so the widget can keep up with the user even if redraws are
occurring dozens of times a second (such as when the user is dragging one end of the
selection). Tks canvases optimize redisplay by keeping a rectangular bounding box that
includes all of the modified objects. If two small objects at opposite corners of the window
are modified simultaneously then the redisplay area will include the entire windbw

DRAFT (7/10/93): Distribution Restricted

40.2 Double-buffering with pixmaps 367

this doesrt' happen very often. In more common cases, such as dragging a single small
object, the bounding box approach requires only a small fraction of the widoe to
be redrawn.

40.2 Double-buffering with pixmaps

If you want to achieve smooth dragging and other vistietefthen you should not draw
graphics directly onto the screen, because this tends to cause annoying flashes. The reason
for the flashes is that widgets usually redisplay themselves by first clearing an area to its
background color and then drawing the foreground objects. While you're redrawing the
widget the monitor is continuously refreshing itself from display men®oynetimes the
widget will be refreshed on the screen after it has been cleared but before the objects have
been redrawn. For this one screen refresh the widget will appear to be empty; by the time
of the next refresh you'll have redrawn all the objects so they’ll appear again. The result is
that the objects in the widget will appear to flaghtben on. This flashing is particularly
noticeable during dynamic actions such as dragging or animation where redisplays happen
frequently
To avoid flashing it best to use a technique caltkaible-bufferingwhere you redis-

play in two phases using arf-streen pixmap. The display procedure for the square wid-
get, shown in Figure 40.1, uses this approach. It X@lisat ePi xnap to allocate a
pixmap the size of the windowhen it callsSTk_Fi | | 3DRect angl e twice to redraw the
widget in the pixmap. Once the widget has been drawn in the pixmap, the contents are
copied to the screen by calliXgopy Ar ea. With this approach the screen makes a
smooth transition from the widgstprevious state to its new states #till possible for the
screen to refresh itself during the copy from pixmap to screen but each pixel will be drawn
in either its correct old value or its correct new value.

Note: If you compile the squamwidget intonr sh you can use the dragging scripbfin Section
36.4 to compar double-buffering with drawing dictly on the seen. ® make a version
of the squag widget that draws dictly on the saen, just delete the calls to
XCr eat ePi xmap, XCopyAr ea, andXFr eePi xmap in Di spl aySquar e and
replace theomarguments td’k_Fi | | 3DRect angl e with TkW ndowl d(t kwi n) .

Or, you can use the version of the sguaidget that comes with the Tk distribution; it has
a-dbl option that you can use to turn double-buffering on and off dynamically

40.3 Drawing procedures

Tk provides only four procedures for actually drawing graphics on the screen, which are
summarized in dble 40.1. These procedures make it easy to produce the three-dimen-
sional efects required for Motif widgets, where light and dark shadows are drawn around
objects to make them look raised or sunken.

DRAFT (7/10/93): Distribution Restricted

368 Displaying Widgets

voi d DisplaySquare(ClientData clientData) {
Square *squarePtr = (Square *) clientData;
Tk_W ndow tkwi n = squarePtr->tkw n;
Pi xmap pm
squar ePt r - >updat ePendi ng = O;
if (!Tk_lIsvapped(tkw n)) {
return;
}

pm = XCreat ePi xmap(Tk_Di spl ay(tkwi n), Tk_W ndow d(t kwi n),
Tk_Wdth(tkw n), Tk_Hei ght (tkw n), Tk_Depth(tkw n));
TKk_Fi || 3DRect angl e(Tk_Di spl ay(tkwi n), pm squarePtr->bgBorder
0, 0, Tk_Wdth(tkw n), Tk_Hei ght(tkw n),

squar ePtr->borderWdth, squarePtr->relief);

Tk_Fi | | 3DRect angl e(Tk_Di spl ay(tkwi n), pm squarePtr->fgBorder,
squarePtr->x, squarePtr->y, squarePtr->size, squarePtr-

>si ze,

squar ePtr->border Wdth, squarePtr->relief);

XCopyAr ea(Tk_Di spl ay(tkwi n), pm Tk_W ndow d(t kwi n),
squarePtr->copyGC, 0, 0, Tk_Wdth(tkw n), Tk_Hei ght(tkw n),
0, 0);

XFreePi xmap(Tk_Di spl ay(tkwi n), pm;

Figure 40.1.The display procedure for square widgets. It first clears

squar ePt r - >updat ePendi ng to indicate that there is no longer an idle callback for

Di spl aySquar e scheduled, then it makes sure that the window is mapped (if not thes ti®
need to redisplay). It then redraws the widget in &saken pixmap and copies the pixmap on
the screen when done.

Before using any of the procedures able 40.1 you must allocatéf&_3DBor der
object. ATk _3DBor der records three colors (a base color for “flat” background sur-
faces and lighter and darker colors for shadows) plus X graphics contexts for displaying
objects using those colors. Chapter 38 described how to alldcag8bBor der s, for
example by using a configuration table entry of fjlie CONFI G_BORDER or by calling
Tk_Get 3DBor der.

Once you've createdBk_3DBor der you can callTk_Fi | | 3DRect angl e to
draw rectangular shapes with any of the standard reliefs:

voi d Tk_Fi |l 3DRect angl e(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBorder border, int x, int y,int width, int
hei ght ,
int borderWdth, int relief);
Thedi spl ay anddr awabl e aguments specify the pixmap or window where the rect-
angle will be drawnDi spl ay is usually specified a&k_Di spl ay(t kwi n) where
t kwi n is the window being redrawbr awabl e is usually the dfscreen pixmap being
used for displaybut it can also b&k_W ndowl d(t kwi n) . Bor der specifies the col-

DRAFT (7/10/93): Distribution Restricted

40.3 Drawing procedures 369

border Wdth (150, 70)
(120, 80) v
[]
70
< > (100, 150) A (200, 150)
100 bor der W dt h
Tk_Fi | | 3DRect angl e(di spl ay, static XPoint points[] =
dr awabl e, {{200, 150},
border, 120, 80, 100, 70, {150, 70}, {100, 150}};
bor der W dt h, Tk_Fi | | 3DPol ygon(di spl ay,
TK_RELI EF_RAI SED) ; dravabl e,
(a) (b)

Figure 40.2. Figure (a) shows a call tk_Fi | | 3DRect angl e and the graphic that is
produced; the border is drawn entirely inside the rectangular area. Figure (b) shows a call t
Tk_Fi | | 3DPol ygon and the resulting graphic. The relie_RELI EF_RAI SED specifies that
the left side of the path should appear higher than the right, and that the border should be ¢
entirely on the left side of the pathbibr der W dt h is positive.

ors to be used for drawing the rectanifley, wi dt h, hei ght , andbor der W dt h
specify the geometry of the rectangle and its bomlkin pixel units (see Figure 40.2).
Lastly, r el i ef specifies the desired 3Dfedt, such a3 K_RELI EF_RAI SED or
TK_RELI EF_RI DGE. Tk_Fi | | 3DRect angl e first fills the entire area of the rectangle
with the “flat” color frombor der then it draws light and dark shadoler der W dt h
pixels wide around the edge of the rectangle to producefte specified by el i ef .
Tk_Fi | | 3DPol ygon is similar toTk_Fi | | 3DRect angl e except that it draws a
polygon instead of a rectangle:
voi d Tk_Fi || 3DPol ygon(Di spl ay *di spl ay, Drawabl e drawabl e,
Tk_3DBor der border, XPoint *pointPtr, int nunPoints,
int borderWdth, int leftRelief);
Di spl ay, dr awabl e, andbor der all have the same meaning asTar Fi | | 3-
DRect angl e. Poi nt Pt r andnunPoi nt s define the polygos’shape (see your Xlib
documentation for information aboXPoi nt structures) antor der W dt h gives the
width of the borderall in pixel unitsLef t Rel i ef defines the relief of the left side of
the polygons trajectory relative to its right side. For examplé gf t Rel i ef is speci-
fied asTK_RELI EF_RAI SED then the left side of the trajectory will appear higher than

DRAFT (7/10/93): Distribution Restricted

370

Displaying Widgets

the right side. If ef t Rel i ef isTK_RELI EF_RI DCGE or TK_REL| EF_GROOVE then
the border will be centered on the polygommajectory; otherwise it will be drawn on the
left side of the polygos'trajectory ifbor der W dt h is positive and on the right side if
bor der W dt h is negative. See Figure 40.2 for an example.

The proceduresk _Dr aw3DRect angl e andTk_Dr aw3DPol ygon are similar to
Tk_Fi || 3DRect angl e andTk_Fi | | 3DPol ygon except that they only draw the
border without filling the interior of the rectangle or polygon.

DRAFT (7/10/93): Distribution Restricted

Chapter 41
Destroying Widgets

41.1

This chapter describes how widgets should clean themselves up when they are destroyed.
For the most part widget destruction is fairly straightforwardjitst a matter of freeing

all of the resources associated with the widget. Howdéwvere is one complicating factor

which is that a widget might be in use at the time it is destroyed. This leads to a two-phase
approach to destruction where some of the cleanup may have to be delayed until the wid-
getis no longer in use. Tprocedures for window destruction, most of which have to do
with delayed cleanup, are summarized abl€ 41.1.

Basics

Widgets can be destroyed in thredeatiént ways. First, théest r oy Tcl command can
be invoked; it destroys one or more widgets and all of their descendants in the window
hierarchy Second, C code in the application can invbke Dest r oyW ndow; which
has the samefett as thelest r oy command:

voi d Tk_DestroyW ndow Tk_W ndow t kwi n);
Tk_Dest r oyW ndowis not invoked very often but it is used, for example, to destroy a
new widget immediately if an error is encountered while configuring it (see Figure 37.1 on
page 373). The last way for a widget to be destroyed is for someone to delete its X window
directly. This does not occur very often, and is not generally a good idea, but in some cases
it may make sense for a top-level window to be deleted externally (by the window man-
ager for example).

371

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

372

Destroying Widgets

41.2

voi d Tk_Dest r oyW ndow(TK_W ndow t kwi n)
Destroyst kwi n and all of its descendants in the widget hierarchy

void Tk_Preserve(CdientData clientData)
Makes sure thatl i ent Dat a will not be freed until a matching call to
Tk_Rel ease has been made.

voi d Tk_Rel ease(C i entData clientData)
Cancels a previousk_Pr eser ve call forcl i ent Dat a. May cause
cl i ent Dat a to be freed.

voi d Tk_Eventual |l yFree(ClientData clientData Tk_FreeProc
*freeProc)
Invokesf r eePr oc to free upcl i ent Dat a unlessTk_Pr eser ve has
been called for it; in this case eePr oc won't be invoked until each
Tk_Pr eser ve call has been cancelled with a calfto_Rel ease.

Table 41.1.A summary of the Tk library procedures for destroying widgets and delaying ok
cleanup.

A widget should handle all of these forms of window destruction in the same way
using a handler fobest r oyNot i f y events. Tk makes sure thabast r oyNot i fy

event is generated for each window that is destroyed and tdfresnup itsTk_W ndow

structure until after the handlers for the event have been invoked. When a widget receives

aDest royNoti fy event it typically does four things to clean itself up:

1. It deletes the widget command for the widget by calling _Del et eCommand.

2. It cancels any idle callbacks and timer handlers for the widget, such as the idle callback
to redisplay the widget.

3. It frees any resources allocated for the widget. Most of this can be done by calling
Tk_FreeOpt i ons, but widgets usually have a few resources such as graphics con-
texts that are not directly associated with configuration options.

4. 1t frees the widget record.

For square widgets the first two of these actions are carried out in the event procedure, and
the third and fourth actions are carried out in a separate procedure called

Dest r oySquar e. Dest r oySquar e is thedestoy piocedue for square widgets; it is
invoked indirectly from the event procedure using the mechanism discussed in Section
41.2 belowlts code is shown in Figure 41.1.

Delayed cleanup

The most delicate aspect of widget destruction is that the widget could be in use at the
time it is destroyed; special precautions must be taken to delay most of the widget cleanup

DRAFT (7/10/93): Distribution Restricted

41.2 Delayed cleanup 373

voi d DestroySquare(CientData clientData) {
Square *squarePtr = (Square *) clientData;
Tk_FreeOpti ons(confi gSpecs, (char *) squarePtr,
squar ePtr->di splay, 0);
if (squarePtr->gc != None) {
Tk_FreeGC(squar ePtr->di spl ay, squarePtr->gc);

free((char *) squarePtr);

Figure 41.1.The destroy procedure for square widgets.

until the widget is no longer in use. For example, suppose that a dialoglbgxcontains
a button that is created with the following command:
button .dlg.quit -text Qit -comuand "destroy .dlg"
The purpose of this button is to destroy the dialog box. Now suppose that the user clicks

on the button with the mouse. The binding<@ut t onRel ease- 1> invokes the but-
ton'si nvoke widget command:

.dlg.quit invoke
Thei nvoke widget command evaluates the buttorc omand option as a @l script,
which destroys the dialog and all its descendants, including the button itself. When the
button is destroyedBest r oyNot i f y event is generated, which causes the bigton’
event procedure to be invoked to clean up the destroyed widget. Unfortunately it is not
safe for the event procedure to free the bustendget record because thevoke wid-
get command is still pending on the call stack: when the event procedure returns, control
will eventually return back to the widget command procedure, which may need to refer-
ence the widget record. If the event procedure frees the widget record then the widget
command procedure will make wild references into menidnys in this situation it is
important to wait until the widget command procedure completes before freeing the wid-
get record.

However a button widget might also be deleted at a time when therea isvak e
widget command pending (e.g. the user might click on some other button, which destroys
the entire application). In this case the cleanup must be done by the event procedure since
there wont be any other opportunity for the widget to clean itself up. In other cases there
could be several nested procedures each of which is using the widget record, scogwon’
safe to clean up the widget record until the last of these procedures finishes.

In order to handle all of these cases cleanly Tk provides a mechanism for keeping
track of whether an object is in use and delaying its cleanup until it is no longer being
used.Tk_Pr eser ve is invoked to indicate that an object is in use and should not be
freed:

void Tk_Preserve(CientData clientData);

DRAFT (7/10/93): Distribution Restricted

374

Destroying Widgets

Thecl i ent Dat a agument is a token for an object that might potentially be freed; typi-
cally it is the address of a widget record. For each caktd’r eser ve there must even-
tually be a call td’k_Rel ease:

voi d Tk_Rel ease(ClientData clientData);

Thecl i ent Dat a agument should be the same as the correspondingnant to
Tk _Preserve. Each call toTk_Rel ease cancels a call tdk_Pr eser ve for the
object; once all calls tok_Pr eser ve have been cancelled it is safe to free the object.
WhenTk_Pr eser ve andTk_Rel ease are being used to manage an object you
should callTk_Event ual | yFr ee to free the object:
void Tk_Eventual | yFree(Cd ientData clientDat a,
Tk_FreeProc *freeProc);
Cl i ent Dat a must be the same as ttlei ent Dat a agument used in calls to
Tk_Preserve andTk_Rel ease, andf r eePr oc is a procedure that actually frees the
object.Fr eePr oc must match the following prototype:

typedef void Tk_FreeProc(CientData clientData);

Itscl i ent Dat a agument will be the same as tbki ent Dat a agument to
Tk_Event ual | yFr ee. If the object hashbeen protected with calls Tk _Pr e-
serve thenTk_Event ual | yFr ee will invoke f r eePr oc immediately If Tk_Pr e-
ser ve has been called for the object tHareePr oc won'’t be invoked immediately;
instead it will be invoked later whark_Rel ease is called. IfTk_Pr eser ve has been
called multiple times thehr eePr oc won't be invoked until each of the calls to
Tk_Preser ve has been cancelled by a separate calktoRel ease.

| recommend that you use these procedures in the same way as in the square widget.
Place a call tdk_Pr eser ve at the beginning of the widget command procedure and a
call toTk_Rel ease at the end of the widget command procedure, and be sure that you
don't accidentally return from the widget command procedure without cdlkndre-
| ease, since this would prevent the widget from ever being freed. Then divide the wid-
get cleanup code into two parts. Put the code to delete the widget command, idle
callbacks, and timer handlers directly into the event procedure; this code can be executed
immediately without dangeand it prevents any new invocations of widget code. Put all
the code to cleanup the widget record into a separate delete procedure like
Dest roySquar e, and callTk_Event ual | yFr ee from the event procedure with the
delete procedure as its eePr oc agument.

This approach is a bit conservative big gimple and safe. For example, most wid-
gets have only one or two widget commands that could cause the widget to be destroyed,
such as the nvoke widget command for buttonso¥ could move the calls ftk_Pr e-
serve andTk_Rel ease so that they only occur around code that might destroy the
widget, such as&cl _d obal Eval call. This will save a bit of overhead by eliminating
calls toTk_Pr eser ve andTk_Rel ease where they're not needed. However
Tk_Preserve andTk_Rel ease are fast enough that this optimization wsdve
much time and it means you’ll constantly have to be on the lookout to add more calls to

DRAFT (7/10/93): Distribution Restricted

41.2 Delayed cleanup 375

Note:

Tk_Preserve andTk_Rel ease if you modify the widget command procedure. If you
place the calls the beginning and end of the procedure you can make any modifications
you wish to the procedure without having to worry about issues of widget cleanup. In fact,
the square widget doesmieed calls tdk_Pr eser ve andTk_Rel ease at all, but |
put them in anyway so that | wariave to remember to add them later if | modify the
widget command procedure.

For most widgets the only place you'll need call3o Pr eser ve andTk_Re-
| ease is in the widget command procedure. Howeifgrou invoke procedures like
Tcl _Eval anywhere else in the widgetode then you'll need additioriBk_Pr e-
serve andTk_Rel ease calls there too. For example, widgets like canvases and texts
implement their own event binding mechanisms in C code; these widgets must invoke
Tk_Pr eserve andTk_Rel ease around the calls to event handlers.

The problem of freeing objects while they’re in use occurs in many contexts in Tk
applications. For example,stpossible for the- conmand option for a button to change
the buttons - command option. This could cause the memory for the old value of the
option to be freed while &'still being evaluated by thellinterpreterTo eliminate this
problem the button widget evaluates a copy of the script rather than the original. In general
whenever you make a call whose behaviortisompletely predictable, such as a call to
Tcl _Eval and its cousins, you should think about all the objects that are in use at the
time of the call and take steps to protect them. In some simple cases making local copies
may be the simplest solution, as with treonmand option; in more complex cases I'd
suggest usingk_Pr eser ve andTk_Rel ease; they can be used for objects of any
sort, not just widget records.
Tk_Preserve andTk_Rel ease implement a form of short-termafeence counts.
They ae implemented under the assumption that objeet®aly in use for short periods
of time such as the duration of a particulanpedue call, so that ther are only a few
protected objects at any given timeuXhould not use them for long-terefeence

counts whes thee might be hunéds or thousands of objects that amotected at a given
time, since they will be very slow in these cases.

DRAFT (7/10/93): Distribution Restricted

376 Destroying Widgets

DRAFT (7/10/93): Distribution Restricted

Chapter 42
Managing the Selection

42.1

This chapter describes how to manipulate the X selection from C code. The low-level pro-
tocols for claiming the selection and transmitting it between applications are defined by
X’'s InterClient Communications Convention Manual (ICCCM) and are very compli-
cated. Fortunately Tk takes care of all the low-level details for you and provides three sim-
pler operations that you can perform on the selection:

* Create aselection handlemwhich is a callback procedure that can supply the selection
when it is owned in a particular window and retrieved with a particulgettar

¢ Claim ownership of the selection for a particular window
* Retrieve the selection from its current owner in a particulgetdorm.

Each of these three operations can be performed either wsisgripts or by writing C

code. Chapter XXX described how to manipulate the selection wiitbcfipts and much

of that information applies here as well, such as the usegets$an specify diérent ways

to retrieve the selectioncilscripts usually just retrieve the selection; claiming ownership
and supplying the selection are rarely done franIh contrast, is common to create
selection handlers and claim ownership of the selection from C code but rare to retrieve
the selection. Seeable 42.1 for a summary of the Tk library procedures related to the
selection.

Selection handlers

Each widget that supports the selection, such as an entry or text, must provide one or more
selection handlerto supply the selection on demand when the widget owns it. Each han-

377

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

378

Managing the Selection

Tk_Cr eat eSel Handl er (Tk_W ndow t kwi n, Atomtarget,
Tk_Sel ectionProc *proc, dientData clientData, Atom fornmat)

Arranges foipr oc to be invoked whenever the selection is owned by
t kwi n and is retrieved in the form given bgr get . For mat specifies the
form in which Tk should transmit the selection to the requesiat is usu-
ally XA_STRI NG

Tk_Del et eSel Handl er (Tk_W ndow t kwi n, Atomtarget)
Removes the handler fokwi n andt ar get , if one exists.

Tk_OanSel ecti on(Tk_W ndow t kwi n, Tk_Lost Sel Proc *proc,
ClientData clientData)
Claims ownership of the selection fokwi n and notifies the previous
ownet if any that it has lost the selectidPr. oc will be invoked later when
t kwi n loses the selection.
Tk_Cl ear Sel ecti on(Tk_W ndow t kwi n)
Cancels any existing selection for the display containkg n.

int Tk_GetSel ection(Tcl _Interp *interp, Tk_Wndow tkw n,
Atomtarget, Tk_GetSel Proc *proc, ClientData clientData)
Retrieves the selection fokwi n’s display in the format specified bgr -
get and passes it for oc in one or more pieces. ReturiGL_OK or
TCL_ERRORand leaves an error messageri er p- >r esul t if an error
occurs.

Table 42.1.A summary of Tks procedures for managing the selection.

dler returns the selection in a particulag&rform. The procedurgk_Cr eat e-
Sel Handl er creates a new selection handler:
voi d Tk_Creat eSel Handl er (Tk_W ndow t kwi n, Atom target,
Tk_Sel ectionProc *proc, dientData clientData,
Atom format);
Tkwi n is the window from which the selection will be provided; the handler will only be
asked to supply the selection when the selection is owne#wiyn. Tar get specifies
the taget form in which the handler can supply the selection; the handler will only be
invoked when the selection is retrieved with thagé&Pr oc is the address of the handler
callback, anatl i ent Dat a is a one-word value to passpooc. For mat tells Tk how
to transmit the selection to the requestor and is UsMAINSTRI NG (see the reference
documentation for other possibilities).
The callback procedure for a selection handler must match the following prototype:
typedef int Tk_Sel ectionProc(CientData clientData,
int offset, char *buffer, int nmaxBytes);
Thecl i ent Dat a agument will be the same as thkei ent Dat a agument passed to
Tk_Cr eat eSel Handl er ; it is usually the address of a widget recéhdoc should
place a null-terminated stringlatif f er containing up taraxByt es of the selection

DRAFT (7/10/93): Distribution Restricted

42.1 Selection handlers 379

starting at bytef f set within the selection. The procedure should return a count of the
number of non-null bytes copied, which musthieexByt es unless there are fewer than
maxByt es left in the selection. If the widget no longer has a selection (because, for
example, the user deleted the selected range of characters) the selection handler should
return -1.

Usually the entire selection will be retrieved in a single requdsetofill be 0 and
maxByt es will be lage enough to accommodate the entire selection. Hoywesrgr
large selections will be retrieved in transfers of a few thousand bytes each. Tk will invoke
the callback several times using successively higher valuds afet to retrieve succes-
sive portions of the selection. If the callback returns a value lesadixdyt es it means
that the entire remainder of the selection has been returned. If its return vedwe is
Byt es it means that there may be additional information in the selection so Tk will call it
again to retrieve the next portionotYcan assume thatixByt es will always be at least
a few thousand.

For example, Tls entry widgets have a widget record of t{m r y with three
fields that are used to manage the selection:

st ri ng points to a null-terminated string containing the text in the entry;

sel ect Fi r st is the index irst r i ng of the first selected byte (or -1 if nothing is
selected);

sel ect Last is the index of the last selected byte.

An entry will supply the selection in only onegat form STRI NG) so it only has a single
selection handleiThe create procedure for entries contains a statement like the following
to create the selection handiehereent r yPt r is a pointer to the widget record for the
new widget:

Tk_Creat eSel Handl er (entryPtr->tkwi n, XA STRI NG

EntryFet chSel ection, (ClientData) entryPtr,
XA_STRI NG ;

The callback for the selection handler is defined as follows:

int EntryFetchSelection(CientData clientData, int offset,
char *buffer, int maxBytes) {
Entry *entryPtr = (Entry *) clientData,;

int count;

if (entryPtr->selectFirst < 0) {
return -1;

}

count = entryPtr->selectlLast + 1 - entryPtr->sel ect First
- offset;

if (count > maxBytes) {
count = maxBytes;

}

if (count <= 0) {
count = O;

} else {

DRAFT (7/10/93): Distribution Restricted

380

Managing the Selection

42.2

strncpy(buffer, entryPtr->string
+ entryPtr->selectFirst + offset, count);

buffer[count] = O;
return count;

}

If a widget wishes to supply the selection in sever&bidiht taget forms it should
create a selection handler for eaclyearWhen the selection is retrieved, Tk will invoke
the handler for the tget specified by the retriever

Tk automatically provides handlers for the followingts:

APPLI| CATI ON: returns the name of the application, which can be usedrtd com-
mands to the application containing the selection.

MULTI PLE: used to retrieve the selection in multiplegetrforms simultaneously
Refer to ICCCM documenation for details.

TARGETS: returns a list of all the tgets supported by the current selection owner
(including all the tagets supported by Tk).

Tl MESTAMP: returns the time at which the selection was claimed by its current.owner
W NDOW_NANME: returns the path name of the window that owns the selection.
A widget can override any of these default handlers by creating a handler of its own.

Claiming the selection

The previous section showed how a widget can supply the selection to a rettever
ever before a widget will be asked to supply the selection it must first claim ownership of
the selection. This usually happens during widget commands that select something in the
widget, such as theel ect widget command for entries and listboxes.claim owner-
ship of the selection a widget should d&dtl OwmnSel ect i on:

voi d Tk_OmSel ecti on(Tk_W ndow tkwi n, Tk_Lost Sel Proc *proc,

(AdientData) clientbData);

Tk_OmSel ect i on will communicate with the X server to claim the selection for
t kwi n; as part of this process the previous owner of the selection will be notified so that
it can deselect itselftkwi n will remain the selection owner until either some other win-
dow claims ownershig,kwi n is destroyed, ofk_Cl ear Sel ecti on is called. When
t kwi n loses the selection Tk will involke oc so that the widget can deselect itself and
display itself accordinglyPr oc must match the following prototype:

typedef void Tk_Lost Sel Proc(CientData clientData);

Thecl i ent Dat a agument will be the same as thki ent Dat a agument to
Tk_OmnSel ecti on; it is usually a pointer to the widget'ecord.

DRAFT (7/10/93): Distribution Restricted

42.3 Retrieving the selection 381

Note:

42.3

Pr oc will only be called if some other window claims the selection or if
Tk_Cl ear Sel ecti on is invoked. It will not be called if the owning widget is
destoyed.

If a widget claims the selection and then eliminates its selection (for example, the
selected text is deleted) the widget has three options. First, it can continue to service the
selection and return O from its selection handlers; anyone who retrieves the selection will
receive an empty string. Second, the widget can continue to service the selection and
return -1 from its selection handlers; this will return an error (“no selection”) to anyone
who attempts to retrieve it. Third, the widget can Thll Cl ear Sel ecti on:

voi d Tk_d ear Sel ecti on(Tk_W ndow t kwi n) ;
Thet kwi n agument identifies a displayk will claim the selection away from whatever
window owned it (either in this application or any other applicationlosi n’s display)
and leave the selection unclaimed, so that all attempts to retrieve it will result in errors.
This approach will have the saméeet returning -1 from the selection handlers except
that the selection handlers will never be invoked at all.

Retrieving the selection

If an application wishes to retrieve the selection, for example to insert the selected text
into an entryit usually does so with the&l ecti on get” Tcl command. This section
describes how to retrieve the selection at C level, but this facility is rarely needed. The
only situation where | recommend writing C code to retrieve the selection is in cases
where the selection may be verygarand a @l script may be noticeably sloWhis might
occur in a text widget, for example, where a user might select a whole file in one window
and then copy it into another windolivthe selection has hundreds of thousands of bytes
then a C implementation of the retrieval will be noticeably faster thahimplementa-
tion.
To retrieve the selection from C code, invoke the procetkiréet Sel ect i on:
typedef int Tk_GetSel ection(Tcl_Interp *interp,
Tk_W ndow tkwi n, Atom target, Tk_GetSel Proc *proc,
ClientData clientData);
Thei nt er p agument is used for error reportirikwi n specifies the window on whose
behalf the selection is being retrieved (it selects a display to use for retrievdlgrand
get specifies the tget form for the retrievallk _Get Sel ect i on doesnt return the
selection directly to its calleinstead, it invokepr oc and passes it the selection. This
makes retrieval a bit more complicated but it allows Tk téebufata more &tiently.
Large selections will be retrieved in several pieces, with one gafldéa for each piece.
Tk _GCet Sel ecti on normally returnd CL_ CK to indicate that the selection was suc-
cessfully retrieved. If an error occurs then it retr@s_ ERROR and leaves an error mes-
sage in nterp->result.
Pr oc must match the following prototype:

DRAFT (7/10/93): Distribution Restricted

382 Managing the Selection

typedef int Tk _GetSel Proc(CientData clientData,
Tcl _Interp *interp, char *portion);
Thecl i ent Dat a andi nt er p aguments will be the same as the correspondigg-ar
ments toTk_Get Sel ecti on. Por ti on points to a null-terminated ASCII string con-
taining part or all of the selection. For small selections a single call will be mpdeto
with the entire contents of the selection. Fogdaselections two or more calls will be
made with successive portions of the selecwrac should returiCL_OK if it success-
fully processes the current portion of the selection. If it encounters an error then it should
returnTCL_ERROR and leave an error message it er p- >r esul t ; the selection
retrieval will be aborted and this same error will be returndktdGet Sel ecti on’s
caller
For example, here is code that retrieves the selectiorgiet tarmSTRI NG and
prints it on standard output:

i'f.(Tk_GetSeI ection(interp, tkwn,
Tk_InternAtom(tkwin, "STRING'), PrintSel,
(AdientData) stdout) != TCL_OK) ({

}

int PrintSel (ClientData clientData, Tcl _Interp *interp,
char *portion) {
FILE *f = (FILE *) clientData;
fputs(portion, f);
return TCL_OK;
}
The call toTk_GCet Sel ect i on could be made, for example, in the widget command
procedure for a widget, wherd&wi n is theTk_W ndow for the widget and nt er p is
the interpreter in which the widget command is being processea| Trent Dat a argu-
ment is used to pas$=& LE pointer toPr i nt Sel . The output could be written to a dif-
ferent file by specifying a dérentcl i ent Dat a value.

DRAFT (7/10/93): Distribution Restricted

Chapter 43
Geometry Management

43.1

Tk provides two groups of library procedures for geometry management. The first group
of procedures implements a communication protocol between slave windows and their
geometry managers. Each widget calls Tk to provide geometry information such as the
widget’s preferred size and whether or not it has an internal grid. Tk then notifies the rele-
vant geometry manageso that the widget does not have to know which geometry man-
ager is responsible for it. Each geometry manager calls Tk to identify the slave windows it
will manage, so that Tk will know who to notify when geometry information changes for
the slaves. The second group of procedures is used by geometry managers to place slave
windows. It includes facilities for mapping and unmapping windows and for setting their
sizes and locations. All of these procedures are summarizedblie 43.1.

Requesting a size for a widget

Each widget is responsible for informing Tk of its geometry needs; Tk will make sure that
this information is forwarded to any relevant geometry managers. There are three pieces
of information that the slave can provide: requested size, internal pandegrid. The
first piece of information is provided by calliigg_ Geonet r yRequest :

voi d Tk_GeonetryRequest (Tk_W ndow tkwi n, int w dth, height);
This indicates that the ideal dimensionstfemi n arewi dt h andhei ght , both speci-
fied in pixels. Each widget should c@lk_Geon®et r yRequest once when it is created
and again whenever its preferred size changes (such as when its font changes); normally
the calls torTk_Geonet r yRequest are made by the widgsttonfigure procedure. In

383

Copyright © 1993 Addison-¥éley Publishing Companinc.

All rights reserved. Duplication of this draft is permitted by individuals for personal useAogly

other form of duplication or reproduction requires prior written permission of the author or pub-
lisher This statement must be easily visible on the first page of any reproduced copies. The publisher
does not d&r warranties in regard to this dratft.

384 Geometry Management

Tk_GeonetryRequest (Tk_W ndow tkwin, int width, int height)
Informs the geometry manager for tkwin that the preferred dimensions
t kwi n arewi dt h andhei ght .

Tk_Set I nt er nal Bor der (Tk_W ndow t kwi n, int wi dth)
Informs any relevant geometry managers thati n has an internal borde
wi dt h pixels wide and that slave windows should not be placed in this
der region.

Tk_Set Gri d(Tk_W ndow tkwin, int reqWdth, int reqHei ght,

int widthlnc, int heightlnc)

Turns on gridded geometry management fon n’s top-level window and
specifies the grid geometrihe dimensions requested By _Geone-
t ryRequest correspond to grid dimensionsrafqW dt h and
r eqHei ght , andwi dt hl nc andhei ght I nc specify the dimensions of
single grid cell.

Tk_ManageGeonetry(Tk_W ndow t kwi n, Tk_GeonetryProc *proc,
ClientData clientData)
Arranges fompr oc to be invoked whenev@ik_CGeonet r yRequest is
invoked fort kwi n. Used by geometry managers to claim ownership of
slave window

i nt Tk_ReqHei ght (Tk_W ndow t kwi n)
Returns the height specified in the most recent calktdGeonet r yRe-
quest fort kwi n (this is a macro, not a procedure).

int Tk_ReqW dt h(Tk_W ndow t kwi n)
Returns the width specified in the most recent calktoGeonet r yRe-
quest fort kwi n (this is a macro, not a procedure).

int Tk_I nternal Border W dt h(Tk_W ndow t kwi n)
Returns the border width specified in the most recent cak td nt er -
nal Bor der W dt h fort kwi n (this is a macro, not a procedure).

Tk_MapW ndow(Tk_W ndow t