
Managing Software Requirements

Dean Leffingwell
Don Widrig
Publisher: Addison Wesley
First Edition October 22, 1999
ISBN: 0-201-61593-2, 528 pages

Managing Software Requirements

Foreword
 The Rock Problem
 About This Book

Preface
 Context and Acknowledgments
 Requirements Lessons from Building Software for Others
 Lessons from Building High-Assurance Systems
 Lessons from the Requirements Management Business
 Experiences at Rational Software
 Summary

I: Introduction

1. The Requirements Problem
 The Goal
 A Look at the Data
 Root Causes of Project Success and Failure

2. Introduction to Requirements Management
 Definitions
 Application of Requirements Management Techniques
 The Road Map
 Summary

3. The Software Team
 Software Development as a Team Activity
 The Case Study
 Summary

II: Team Skill 1: Analyzing the Problem

4. The Five Steps in Problem Analysis
 Step 1: Gain Agreement on the Problem Definition

 Step 2: Understand the Root Causes—The Problem Behind the Problem
 Step 3: Identify the Stakeholders and the Users
 Step 4: Define the Solution System Boundary
 Step 5: Identify the Constraints to Be Imposed on the Solution
 Summary
 Looking Ahead

5. Business Modeling
 Purpose of Business Modeling
 Using Software Engineering Techniques for Business Modeling
 From the Business Models to the Systems Model
 When to Use Business Modeling
 Summary
 Looking Ahead

6. Systems Engineering of Software-Intensive Systems
 What Is Systems Engineering?
 Requirements Allocation in Systems Engineering
 The Case Study
 Team Skill 1 Summary

III: Team Skill 2: Understanding User Needs

7. The Challenge of Requirements Elicitation
 Barriers to Elicitation
 Techniques for Requirements Elicitation

8. The Features of a Product or System
 Stakeholder and User Needs
 Features

9. Interviewing
 The Interview Context
 Value-Added Context
 The Moment of Truth: The Interview
 Compiling the Need Data
 A Note on Questionnaires

10. Requirements Workshops
 Accelerating the Decision Process
 Preparing for the Workshop
 Role of the Facilitator
 Setting the Agenda
 Running the Workshop

11. Brainstorming and Idea Reduction
 Live Brainstorming
 Idea Reduction
 Web-Based Brainstorming
 The Case Study: The HOLIS 2000 Requirements Workshop

12. Storyboarding
 Types of Storyboards
 What Storyboards Do
 Tools and Techniques for Storyboarding
 Tips for Storyboarding
 Summary

13. Applying Use Cases
 Building the Use-Case Model
 Applying Use Cases to Requirements Elicitation
 Case Study: The Use Cases for HOLIS
 Summary

14. Role Playing
 How to Role Play
 Techniques Similar to Role Playing
 Summary

15. Prototyping
 Types of Prototypes
 Requirements Prototypes
 What to Prototype
 Building the Prototype
 Evaluating the Results
 Summary
 Team Skill 2 Summary

IV: Team Skill 3: Defining the System

16. Organizing Requirements Information
 Organizing Requirements of Complex Hardware and Software Systems
 Organizing Requirements for Product Families
 On "Future" Requirements
 Business and Marketing Requirements versus Product Requirements
 The Case Study
 Summary

17. The Vision Document
 Components of the Vision Document
 The "Delta Vision" Document

18. The Champion
 The Role of the Product Champion
 The Product Champion in a Software Product Environment
 The Product Champion in an IS/IT Shop
 Team Skill 3 Summary

V: Team Skill 4: Managing Scope

19. The Problem of Project Scope
 Components of Project Scope
 The Hard Question

20. Establishing Project Scope
 The Requirements Baseline
 Setting Priorities
 Assessing Effort
 Adding the Risk Element
 Reducing Scope
 The Case Study

21. Managing Your Customer
 Engaging Customers to Manage Their Project Scope

 Communicating the Result
 Negotiating with the Customer
 Managing the Baseline

22. Scope Management and Software Development Process Models
 The Waterfall Model
 The Spiral Model
 The Iterative Approach
 What to Do, What to Do …
 Team Skill 4 Summary

VI: Team Skill 5: Refining the System Definition

23. Software Requirements
 Definition of Software Requirements
 Relationship between Features and Software Requirements
 The Requirements Dilemma: What versus How
 More on Requirements versus Design
 A Further Characterization of Requirements
 Using Parent-Child Requirements to Increase Specificity
 Looking Ahead

24. Refining the Use Cases
 Questions to Ask
 Refining Use-Case Specifications
 The Case Study: Anatomy of a Simple Use Case
 Looking Ahead

25. A Modern Software Requirements Specification
 The Modern SRS Package
 Documenting Functional Requirements
 Looking Ahead

26. On Ambiguity and Specificity
 Finding the "Sweet Spot"
 Mary Had a Little Lamb
 Techniques for Disambiguation
 What to Do?

27. Quality Measures of Software Requirements
 Nine Quality Measures
 Quality Measures for the Use-Case Model
 Quality Measures of the Modern SRS Package

28. Technical Methods for Specifying Requirements
 Pseudocode
 Finite State Machines
 Decision Trees and Decision Tables
 Graphical Decision Trees
 Activity Diagrams
 Entity-Relationship Models
 Object-Oriented Modeling
 Data Flow Diagrams
 Maintenance of Specifications
 Case Study
 Team Skill 5 Summary

VII: Team Skill 6: Building the Right System

29. Building the Right System Right: Overview
 Continually Confirm that the Development Is on Track
 Confirm that the Development Results Are Correct
 Learn How to Cope with Change that Occurs during the Development Process
 Looking Ahead

30. From Requirements to Implementation
 Mapping Requirements to Design and Code
 Realizing Use Cases in the Design Model
 From Design to Implementation
 Summary
 Looking Ahead

31. Using Traceability to Support Verification
 The Role of Traceability in Requirements Verification
 Using Traceability Tools
 Proceeding without Traceability Tools
 Thinking about Verification and Traceability
 Looking Ahead

32. Validating the System
 Validation
 Case Study: Testing Use Cases
 Testing Discrete Requirements
 Testing Design Constraints
 Looking Ahead

33. Using ROI to Determine the V&V Effort
 Depth versus Coverage
 What to Verify and Validate
 Looking Ahead

34. Managing Change
 Why Do Requirements Change?
 "We Have Met the Enemy, and They Is Us"
 A Process for Managing Change
 Requirements Configuration Management
 Summary
 Team Skill 6 Summary

35. Getting Started
 Dedication
 What We've Learned So Far
 Your Prescription for Requirements Management
 Now, On to the Next Release!

A. HOLIS Artifacts
 Background of the Case Study
 Team Skill 1: Analyzing the Problem
 Team Skill 2: Understanding User Needs
 Team Skill 3: Defining the System
 Team Skill 4: Managing Scope
 Team Skill 5: Refining the System Definition
 Team Skill 6: Building the Right System

B. Vision Document Template
 Table of Contents

C. Modern SRS Package Template

D. Requirements Management in the SEI-CMM and within ISO 9000
 Requirements Management in SEI-CMM
 Requirements Management in ISO 9000

E. Requirements Management in the Rational Unified Process
 Structure of the Rational Unified Process
 Requirements Management in the Rational Unified Process
 Process Integration

Bibliography

Foreword

The Rock Problem

About This Book

The Rock Problem

One of my students summarized the issues discussed in this book as the "rock"
problem. She works as a software engineer in a research laboratory, and her
customers often give her project assignments that she describes as "Bring me a
rock." But when you deliver the rock, the customer looks at it for a moment and
says, "Yes, but, actually, what I really wanted was a small blue rock." The
delivery of a small blue rock elicits the further request for a spherical small blue
rock.

Ultimately, it may turn out that the customer was thinking all along of a small
blue marble—or maybe he wasn't sure what he wanted, but a small blue marble—
well, perhaps even a cat's eye small blue marble—would have sufficed. And he
probably changed his mind about his requirements between the delivery of the
first (large) rock and the third (small blue) rock.

At each subsequent meeting with the customer, it's common for the developer to
exclaim, "You want it to do what?" The developer is frustrated because she had
something entirely different in mind when she worked long and hard to produce a
rock with the prescribed characteristics; the customer is equally frustrated
because, even though he might find it difficult to articulate what he wants, he's
convinced that he's expressed it clearly. These developers just don't get it!

To complicate matters, in most real projects, more than two individuals are
involved. In addition to the customer and the developer—who may, of course,
have very different names and titles—there are likely to be marketing people,
testing and quality assurance people, product managers, general managers, and
a variety of "stakeholders" whose day-to-day operations will be affected by the
development of the new system.

All of these people can become frustrated by the problems of specifying an
acceptable "rock," particularly because there often isn't enough time in today's
competitive, fast-moving business world to scrap an expensive, 2-year "rock
project" and do it all over again. We've got to get it right the first time yet also
provide for the iterative process in which the customer ultimately discovers what
kind of rock he wants.

It's difficult enough to do this when we're dealing with tangible, physical artifacts
like a rock. Most business organizations and government agencies today are
"information-intensive," so even if they're nominally in the business of building
and selling rocks, there's a good chance that the rock contains an embedded
computer system. Even if it doesn't, there's a good chance that the business
needs elaborate systems to keep track of its e-commerce rock sales, its rock
customers, its rock competitors and suppliers, and all of the other information
that it needs to remain competitive in the rock business.

Software systems, by their nature, are intangible, abstract, complex and—in
theory, at least—infinitely changeable. So, if the customer begins articulating
vague requirements for a "rock system," he often does so on the assumption that
he can clarify, change, and fill in the details as time goes on. It would be
wonderful if the developers—and everyone else involved in the creation, testing,
deployment, and maintenance of the rock system—could accomplish this in zero
time, and at zero cost, but it doesn't work that way.

In fact, it often doesn't work at all: More than half of the software systems
projects taking place today are substantially over budget and behind schedule,
and as much as 25%–33% of the projects are canceled before completion, often
at a staggering cost.

Preventing these failures and providing a rational approach for building the
system the customer does want is the objective of this book. It's important to
realize, though, that this is not a book about programming, and it's not written
just for the software developer. This is a book about managing requirements for
complex software applications. As such, this book is written for every member of
the software team—analysts, developers, tester and QA personnel, project
management, documentation folks, and the like—as well as those members of the
external "customer" team—users and other stakeholders, marketing, and
management— everyone, really, who has the need and requirement to contribute
to the requirements solution.

You'll discover that it is crucial that the members of both teams, including the
nontechnical members of the external team, master the skills required to
successfully define and manage the requirements process for your new system—
for the simple reason that they are the ones who create the requirements in the
first place and who ultimately determine the success or failure of the system. The
stand-alone, hero programmer is an anachronism of the past: May he rest in
peace.

A simple metaphor: If you were a building contractor, you wouldn't need to be
convinced that a series of carefully orchestrated conversations with the
homeowner are necessary; otherwise, you might end up building a two-bedroom
house when your customer wanted a three-bedroom house. But it's equally
important that these "requirements" be discussed and negotiated with the
government authorities concerned with building codes and zoning regulations,
and you may need to check with the next-door neighbors before you decide to cut
down any trees on the property where the house will be built.

The building inspector and the next-door neighbors are among the stakeholders
who, along with the person who intends to pay for and inhabit the house, will
determine whether the finished house meets the full set of requirements. It's also
clear that many important stakeholders of your system, such as neighbors and
zoning officials, are not users (homeowners), and it seems equally obvious that
their perspectives on what makes a quality home system may vary widely.

Again, we're discussing software applications in this book, not houses or rocks.
The requirements of a house might be described, at least in part, with a set of
blueprints and engineering drawings; similarly, a software system can be
described with models and diagrams. But just as the blueprints for a house are
intended as a communication and negotiation mechanism between laypeople and
engineers—and lawyers and inspectors and nosy neighbors—so the technical
diagrams associated with a software system can also be created in such a way
that "ordinary" people can understand them.

Many of the crucially important requirements don't need any diagrams at all; the
prospective house buyer, for example, can write a requirement in ordinary
English that says, "My house must have three bedrooms, and it must have a
garage large enough to hold two cars and six bicycles." As you'll see in this book,
the majority of the crucial requirements for a software system can be written in
plain English.

Many of the team skills you will need to master in order to address this challenge
can also be described in terms of practical, common-sense advice. "Make sure
you talk to the building inspector," we might advise our novice house builder,
"before you dig the foundation for the house, not after you've poured the cement
and begun building the walls and the roof." In a software project, we will be
offering similar advice: "Make sure you ask the right questions, make sure that
you prioritize the requirements, and don't let the customer tell you that 100
percent of the requirements are critical, because you're not likely to have time to
finish them all before the deadline."

About This Book

In this book, Leffingwell and Widrig have taken a pragmatic approach to
describing the solution to the rock problem. They have organized the book into
seven parts. The introduction provides some of the context, definitions, and
background that you'll need to understand what follows.Chapter 1 reviews the
systems development "challenge." The data shows that some software project
failures are indeed caused by sloppy programming, but a number of recent
studies demonstrate rather convincingly that poor requirements management
may be the single largest cause of project failure. And though I've described the
basic concept of requirements management in a loose, informal fashion in this
foreword, the authors will define it more carefully inChapter 2, in order to lay the
groundwork for the chapters that follow.Chapter 3 provides a brief introduction to
some of the characteristics of modern software teams, so that they can relate the
team skills that will be developed to the team context, wherein the skills must be
applied.

Each of the next six major parts is intended to help you and your team
understand and master one of the six requisite team skills for effective
requirements management.

• To begin, of course, you will need a proper understanding of the problem
that's intended to be solved with a new software system. That is
addressed in Team Skill 1, Analyzing the Problem.

• Team Skill 2, Understanding User and Stakeholder Needs, is also crucial.
Those skills form the basis for Team Skill 2.

• Team Skill 3, Defining the System, describes the initial process of defining
a system to address those needs.

• Team Skill 4, Managing Scope, covers that absolutely crucial, and often
ignored, process of managing the scope of the project.

• Team Skill 5, Refining the System Definition, illustrates key techniques
that you will use in order to elaborate on the system to a level of detail
sufficient to drive design and implementation, so the entire extended team
knows exactly what kind of system you are building.

• Team Skill 6, Building the Right System, discusses the processes
associated with building a system that does fulfill the requirements. Team
Skill 6 also discusses techniques you can use to validate that the system
meets the requirements and, further, to help ensure that the system
doesn't do anything malevolent to its users or otherwise exhibit
unpleasant behaviors that are not defined by the requirements. And, since
requirements for any nontrivial application cannot be frozen in time, the
authors describe ways in which the team can actively manage change
without destroying the system that is being designed and built.

Finally, after a brief summary, the authors provide a prescription that you and
your team can use to manage requirements in your next project. They conclude
with this in a Chapter 35, Getting Started.

We hope that armed with these newly acquired team skills, you, too, will be able
to build the perfect marble. But it will never be easy; even with the best
techniques and processes, and even with automated tool support for all of this,
you'll still find that it's hard work. And it's still risky; even with these team skills,
some projects will fail because we're "pushing the envelope" in many
organizations, attempting to build ever more complex systems in ever less time.
But the skills defined in this book will go a long way toward reducing the risk and
thereby helping you achieve the success you deserve.

—Ed Yourdon

Preface

By Dean Leffingwell

Context and Acknowledgments

The knowledge delivered in this book represents the cumulative experience of a
number of individuals who have spent their careers defining, developing, and
delivering world-class software systems. This book is not an academic treatment
of requirements management. During the 1980s, Don Widrig and I were
executives in a small company producing software solutions for customers. When
we developed many of the requirements management practices described in this
book, our perspective was of those accountable for both the outcomes of the
software systems we developed and the results that had to be delivered to
shareholders. As the performance of the delivered software was critical to the
success of the business venture itself, we tended to discourage petty biases,
personal preferences, and experimentation with unproven techniques.

Over the past decade, the techniques have evolved and have been enhanced by
new experiences, extended with the help of additional expertise, in different
companies and in different circumstances. But all of the techniques presented are
"real-world" proven and have withstood the test of time. Perhaps even more
important, they have withstood the technological change that has occurred in the
industry during this period. Indeed, most of the principles in this book are
independent of changing trends in software technology. We can therefore at least
hope that the knowledge expressed herein can deliver some lasting value.

Requirements Lessons from Building Software for
Others

At first, I just hated computers. ("What? I stayed here all night and I have to
submit this batch job again because I left out a 'space'? Are you crazy? Let me in
that room….") My first "real computer" was a minicomputer, which, although
incredibly limited in performance by today's standards, was unique in that I could
touch it, program it, and make it do what I wanted. It was mine.

My early research applied the computer to analyze physiological signals from the
human body, primarily EKGs, and the dedicated computer was a wonderful tool
for this job. Out of this experience, I began to apply my programming skills and
experience with real time software systems to the needs of the industry.

Eventually, I incorporated RELA, Inc., and began a long, and perhaps unusually
difficult, career as CEO of a contract software development business. My coauthor,
Don Widrig, joined me at RELA in the early years as Vice President of Research
and Development. He had the primary accountability for the success of the many
systems that we developed.

Over the years, the company grew rapidly. Today, the company employs many
hundreds of people and has diversified beyond providing just software to
providing complete medical devices and systems that encompass software, as
well as mechanical, electronic, optical, and fluidics-handling subsystems. However,
at the heart of each and every machine, including the latest DNA fingerprinting
in-vitro diagnostic clinical laboratory, lies one or more computers, reliably and
routinely delivering their steady heartbeats through the rhythm of a real-time
multitasking system.

Initially, we would program anything for anybody, from antenna-positioning
software to such games as laser tag, automated guided vehicles for amusement
parks, educational products, welding robots, and automated machine controls.
We even developed a large distributed computer system that automatically
detected and counted the presence of commercials on television. (Our motto then
was "We make computers to watch commercials so you don't have to!") Perhaps
the only thing the software we developed had in common was that we developed
it for others—we were not domain experts in the field, and we couldn't cover our
own paychecks if we had to. We were completely dependent on the customer's
satisfaction as the final determination of outcome. In many ways, such an
environment was very conducive to effective requirements management. Here's
why:

• We knew little about the domain, so we were dependent on customers for
the requirements. There was little temptation to simply make them up; we
had to ask, and we had to learn how to ask the right questions the right
way, at the right time.

• Our customers often knew little about computers, so they were dependent
on us to translate their needs and wishes into technical requirements.

• The fact that money changed hands created a rigorous interface between
the developer and the customer.

• Quality was easy to measure: We either got paid or we didn't.

It was in this environment that we discovered the first of two fundamental
questions that face software developers on each and every project. This question
dominated our behavior for many years and remains today as perhaps the
toughest question to answer in any software project. And the Big Question is:

"So, exactly what is this software supposed to do?"

The principles and techniques presented in Team Skill 1, Analyzing the Problem;
Team Skill 2, Understanding User Needs, and Team Skill 3, Defining the System,
were developed over more than a decade as a means to discover the answer to
this question. Each of these techniques has proved its worth and has
demonstrated its effectiveness in many real-world projects. It was also during
this period that I first became aware of the work of Donald Gause and Jerry
Weinberg, especially their book Exploring Requirements: Quality Before Design"
(1989). Because their book heavily influenced our work, we have borrowed a few
key concepts from it for this book, both because the concepts work and because
we thought it only fair that you share the Gause and Weinberg experience.

Lessons from Building High-Assurance Systems

Over time, RELA began to specialize in the development of various types of
computer-based medical devices and systems: portable ventilators (breathing
machines), infusion pumps, pacemaker programmers, clinical diagnostic systems,
blood pumps, patient-monitoring equipment, and a plethora of other diagnostic
and therapeutic devices.

It was early during the ventilator development project that the ultimate
accountability for what we were doing really hit us: Whoa, if we screw this up,
somebody could die! Our primary concern was for the patient and for the family
of the patient who was tethered to the device, a device on which we were
executing some of the earliest, most time-critical, resource-limited software the
world had yet seen. (Imagine the challenge of alpha and beta testing. You go
first!)

Clearly, this high-stakes endeavor caused us to take software very seriously at a
fairly early time in the evolution of the embedded-systems industry. It became
clear very quickly that sustainable success would require a combination of

• A pragmatic process for defining and managing the requirements for the
software

• A solid methodology for the design and development of software
• The application of various proven, innovative, techniques for verifying and

validating that the software was safe and effective
• Extraordinary skills and commitment on the part of both the software

development and software quality assurance teams

I strongly believed at that time, and I am even more convinced today, that all of
those elements are required to deliver any reasonably reliable software system of
any significant scope. At RELA, Inc., this was to be the only way we could

possibly ensure each patient's safety, the very survival of our company, and the
economic futures of the employees and their families who depended on the
company.

Given our earlier success in the development and application of the various
techniques we used to answer Big Question 1, we now moved on to the second
fundamental question facing software development teams worldwide. Big
question 2 is

"How, exactly, will we know when the software does exactly that and nothing
else?"

The techniques we used to answer this question form the basis of Team Skill5,
Refining the System Definition, and Team Skill 6, Building the Right System.

So, you can be confident that the techniques presented in this book are road
hardened and well proven. Also, even if you are not in the business of developing
safety-critical systems, you can rest assured that what follows is useful, practical,
and cost-effective advice that you can use to develop software systems of the
highest quality.

Although the techniques that we borrowed, modified, developed, and applied at
RELA, Inc., to address the two big questions were highly effective, I must also
admit to one nagging uncertainty that kept me awake during the most serious
crunch times on these projects:

"Given the highly manual nature of the requirements process, how long would it
be before we made a single, but potentially dangerous, mistake?"

And there was also the matter of cost, as manual verification and validation were
expensive and error prone. During this period, the discipline of mechanical
engineering had advanced from a mechanical drawing arm to 3-D computer-aided
design systems. In the same period, our software advances were limited, for all
practical purposes, to having increased the level of abstraction in our
programming languages: a good thing, for certain, but defect rates, lines-of-code
productivity factors, and quality measures were relatively constant. Our
experiments with the CASE tools of that period were met with mixed results.
Frankly, as a software engineer and entrepreneur, I found the state of the art in
"software engineering" to be embarrassing.

Although it was obvious that automation would never eliminate the critical-
thinking skills required in software development, I did become convinced that
automating some of the manual, record-keeping, and change management
aspects of the process would free scarce resources to focus on higher value-
added activities. And, of course, we anticipated that development costs would be
lower while reliability would be increased!

Lessons from the Requirements Management Business

So, in 1993, REQUISITE, Inc., was born, and a number of us committed to a
course of action to develop and to market an innovative requirements
management tool: RequisitePro. As we were continuously helping customers
address their requirements management challenges during this time, much
additional material for this book was born. We owe much of this work to those

customers, and the customers at RELA, who essentially taught us everything we
know on the subject.

This portion of my career was heavily influenced by Dr. Alan Davis, who was
Editor in Chief of IEEE Software magazine and held the El Pomar Endowed Chair
of Software Engineering at the University of Colorado in Colorado Springs. Al
joined the company as a director and advisor early on and was instrumental in
influencing our technology and the business direction. He is well known for his
leadership in the field of requirements engineering. Al was also active in
consulting activities and had developed a number of techniques for helping
companies improve their requirements process. These techniques were merged
with some of the RELA-derived techniques and became the basis of a professional
training offering called Requirements College, the basis for parts of this book.

In addition, operating under the insufficiently popular business theory of "you can
never have too much professional help," we recruited renowned software author
and expert Ed Yourdon to join the board of the company. Ed was also highly
influential in guiding the course of the technology and business direction. Both Ed
and Al were earlier contributors to this work, and many of the words that appear
in this book are theirs. Indeed, we had intended to release the book jointly a few
years ago. But times change, and Ed and Al have graciously donated all of their
earlier work to us. However, you will often hear them speaking through these
words.

Experiences at Rational Software

Rational Software Corporation purchased Requisite, Inc., in 1997. At Rational, we
have gained significant additional experience in requirements management as it
applies to developing and releasing a full family of application development tools,
as well as continuing to help customers address their requirements problems.
Don continues to work with us and help refine the techniques. In addition, at
Rational, I have had the pleasure of working with software experts and authors
Grady Booch, Ivar Jacobson, James Rumbaugh, Walker Royce, and Philippe
Kruchten. Each of them contributed to my view of the requirements management
challenge, and Walker and Philippe were early reviewers of this work.

We also became exposed to the use case technique for requirements capture, and
to the notion of using use cases within the design model to provide a common
thread to drive architecture, implementation, and testing.

I am also a fan of Rational's promulgation of the iterative approach for software
development, of which I like to think that we were early practitioners at RELA, as
well as the Rational Unified Process, a full lifecycle software development process.

Rational helped me complete this work, and for that I am grateful. Also, Rational
graciously provided permission to use certain ideas, text, and diagrams.

Finally, we would also like to thank the reviewers and many others who
contributed to this work, including Al Davis, Ed Yourdon, Grady Booch, Philippe
Kruchten, Leslee Probasco, Ian Spence, Jean Bell, Walker Royce, Joe Marasco,
Elemer Magaziner, and the following A-W reviewers: Ag Marsonia, Granville Miller,
Frank Armour, Dr. Ralph R. Young (Director of Software Engineering, Litton PRC
Systems and Process Engineering), Professor David Rine (George Mason
University), and Dan Rawsthorn (ACCESS).

Summary

In a sense, few, if any, ideas in this book are original. Instead, it represents
harvesting the shared software development experiences of two decades, with a
focused, consistent, and measured emphasis on the requirements challenge. In
so doing, the work, we hope, assimilates the experiences and opinions of some of
the best minds in the industry on this unique and difficult software challenge. We
firmly believe that the result—these six requisite team skills for effective
requirements management—will help you deliver quality software systems on
time and on budget.

Part I: Introduction

• Chapter 1 The Requirements Problem
• Chapter 2 Introduction to Requirements Management
• Chapter 3 The Software Team

It Doesn't Seem Like It Should Be This Hard

Sit down with the customer. Figure out what the customer wants the system to
do. Use cool new software languages and tools that didn't even exist two years
ago. Craft the application, using the latest languages and tools. Simulate and
debug with efficiency and aplomb. Download the new client application remotely.
Sit back and wait for awards to come in. Take the entire holiday off. Watch for
that bonus check!

Reality Seems Entirely Different

However, for most of us, much of the time, reality seems entirely different. Our
lives are dominated by late nights, changing requirements, fickle customers,
serious software quality issues, technology that obsolesces before we deploy it for
the first time, significant project delays, and missed commitments. In the best
cases, our customers are thrilled and we are well rewarded. But even then, it
comes at a personal cost and we know we could have done better. In the worst
cases, we encounter conceled projects and complete frustration. Bring on the
next project! Goodness gracious, we love this business!

Background

Chapter 1 introduces the concept of requirements management and also
summarizes some of the ongoing challenges and problems associated with
software development and the causes of project successes and failures. The
chapter also provides a rationale for investing time and resources in doing a
better job of managing application requirements. If you're a veteran software
developer, a veteran project manager, or any other kind of software veteran with
lots of scars from complex projects gone awry, you may be tempted to skip this
discussion and turn directly to Chapter 2.

But if you are new to the industry or spend most of your time outside the
software development department of your company — if you're in the marketing
department, perhaps, and you're charged with defining a new software product or
if you're the quality assurance department chartered to acquire an ISO 9000
accreditation for the entire company, or if you're in a "user department" that

needs to have information systems developed to support its activities—you should
read Chapter 1, as well as the rest of the book!

You are most likely aware that systems development projects tend to be difficult,
expensive, risky, and prone to failure, but you may not know why this is a
common situation in most organizations. Indeed, if you think that no other
organization on Earth could be as screwed up as yours, you'll be relieved to
discover, from the statistics in Chapter 1, that almost every organization suffers
from the same kinds of problems. Knowing why these problems exist and where
they tend to be the most severe and expensive is a crucial first step for
improvement.

In Chapter 2, we introduce the concepts of requirements management that we'll
be discussing throughout the remainder of the book. Even if you think you know
what "requirement" means—and after all, who doesn't? — we urge you to read
this material, for it provides some definitions and foundation-level assumptions
that we depend on in subsequent chapters.

Effective requirements management can be accomplished only via an effective
software team.

Finally, in Chapter 3, we introduce the software team.

This not a book about teams, however, and the important topics of building high-
performance teams, motivating them, and even managing them within the
context of software development are outside the scope of this book. But this is a
book on managing software requirements, and to accomplish this challenge, we
will need the support of the entire software team. The reason is that, perhaps
more than with any other specific software development activity, requirements
management is a process that touches every team member, both inside the core
team and in the extended team of the customer and stakeholders. Indeed, it is a
premise of this book that in all but the most trivial projects, effective
requirements management can be applied only via an effective software team.
Further, to achieve success, every member of the team must participate in the
process, albeit in different ways, and each team member will need to be
knowledgeable about his or her role in requirements management.

Chapter 1. The Requirements Problem

Key Points

• The goal of software development is to develop quality
software—on time and on budget—that meets
customers real needs.

• project success depends on good requirements
management.

• Requirements errors are the most common type of
systems development error and the most costly to fix.

• A few key skills can significantly reduce requirements
errors and thus improve software quality.

The Goal

Thousands of software development teams worldwide are engaged
right now in developing widely different software applications in
widely different industries. But although we work in different
industries and speak and write in different languages, we all work
with the same technologies worldwide, we read the same
magazines, we went to the same schools, and fortunately, have the
same clear goal: to develop quality software—on time and on
budget—that meets customers' real needs.

Though our customers are quite different …

• For some of us, the customer is an external entity, purchase
order in hand, whom we must convince to disregard our
competitor's claims and to buy our shrink-wrapped software
product because it's easier to use, has more functionality, and
in the final analysis, is just better.

• For others of us, the customer is a company that has hired us
to develop its software, based on expectations that the
software develop will be of the highest quality achievable at
today's state of the art and will transform the company into a
more competitive, more profitable organization in their
marketplace.

• For perhaps most of us, the customer is sitting down the hall
or downstairs or across the country, waiting anxiously for that
new application to enter sales orders more efficiently or to use
e-commerce for selling the company's goods and services so
that the company we work for will ultimately be more
profitable and our jobs more rewarding and just more fun.

So, although our customers are varied, we can take some comfort
in the fact that the goal is the same.

A Look at the Data

In a nutshell: we software developers must admit to having a spotty
track record when it comes to building nontrivial software systems.
Of course, some systems work quite well, and amateurs and
veterans alike are often dazzled by what we've been able to
accomplish: the Internet, simpler user interfaces, hand-held
computing devices, smart appliances, real-time process control,
online interactive brokerage accounts, and the like. It's also true
that there's a wide spectrum of possibilities between perfection and
failure. For example, the word processor and the PC operating
system we used to write this book collectively caused about two
system crashes a day while we were writing this chapter, as well as

exhibited a number of other annoying quirks, idiosyncrasies, and
"gotchas." But overall, the word processor and the operating system
were "good enough" to support the task of writing this chapter, but
they certainly weren't examples of perfect software.

But in many cases, the results are far more serious. A study by The
Standish Group (1994) reported:

In the United States, we spend more than $250 billion each year on
IT application development of approximately 175,000 projects. The
average cost of a development project for a large company is
$2,322,000; for a medium company, it is $1,331,000, and for a
small company, it is $434,000….

The Standish Group research shows a staggering 31% of projects
will be canceled before they ever get completed. Further results
indicate 52.7% of projects will cost 189% of their original
estimates….

Based on this research, the Standish Group estimates that …
American companies and government agencies will spend $81
billion for canceled software projects. These same organizations will
pay an additional $59 billion for software projects that will be
completed but will exceed their original time estimates.[1]

[1] Used with permission.

It is generally wise to take any such data "with a grain of salt," but
it's fairly easy for any of us in the industry to relate to such data.
We all have our pet project that never went to market or an
information system "tar pit" that we built and are still suffering from.
So, when there's reasonable empirical evidence that we have a
problem and that evidence correlates with our own experience, it's
best to admit that we have a problem and to move on to problem
solving. After all, that's what we do best. Right? Right?????

Root Causes of Project Success and Failure

The first step in resolving any problem is to understand the root
causes. Fortunately, the Standish Group survey went beyond the
assessment phase and asked survey respondents to identify the
most significant factors that contributed to projects that were rated
"success," "challenged" (late and did not meet expectations), and
"impaired" (canceled), respectively.

It's here that we discover that the emphasis in this book on
requirements management is not frivolous or arbitrary; it's a
response to accumulating evidence that many of the most common,

most serious problems associated with software development are
related to requirements. The Standish Group (1994) study noted
the three most commonly cited factors that caused projects to be
"challenged":

• Lack of user input: 13 percent of all projects
• Incomplete requirements and specifications: 12 percent of

projects
• Changing requirements and specifications: 12 percent of all

projects

Thereafter, the data diverges rapidly. Of course, your project could
fail because of an unrealistic schedule or time frame (4 percent of
the projects cited this), or because of inadequate staffing and
resources (6 percent), or inadequate technology skills (7 percent),
or various other reasons. But to the extent that the Standish figures
are representative of the overall industry, it appears that at least a
third of development projects run into trouble for reasons that are
directly related to requirements gathering, requirements
documenting, and requirements management.

Although the majority of projects do seem to experience
schedule/budget overruns, if not outright cancellation, the Standish
Group found that some 9 percent of the projects in large companies
were delivered on time and on budget; 16 percent of the projects in
small companies enjoyed a similar success. And that leads to an
obvious question: What were the primary "success factors" for
those projects? According to the Standish study, the three most
important factors were

• User involvement: 16 percent of all successful projects
• Executive management support: 14 percent of all successful

projects
• Clear statement of requirements: 12 percent of all successful

projects

Other surveys have even more striking results. For example, the
European Software Process Improvement Training Initiative (ESPITI)
conducted a survey (1995) to identify the relative importance of
various types of software problems in industry. The results of this
large-scale survey, based on 3,800 responses, are indicated in
Figure 1-1

Figure 1-1 Largest software development problems by
category

The two largest problems, appearing in about half the responses,
were

1. Requirements specifications
2. Managing customer requirements.

Again, corroborating the Standish survey, coding issues were a
"nonproblem," relatively speaking.

It seems clear that requirements deserve their place as a leading
root cause of software problems. Let's take a look at the economic
factors associated with this particular root cause.

The Frequency of Requirements Errors

Both the Standish and the ESPITI studies provide qualitative data
indicating that respondents feel that requirements problems appear
to transcend other issues in terms of the risks and problems they
pose to the application development. But do requirements problems
affect theour delivered code?

Table 1-1 summarizes a 1994 study by Capers Jones [Jones 1994]
that provided data regarding the likely number of "potential" defects
in a development project and the typical "efficiency" with which a
development organization removes those defects through various
combinations of testing, inspections, and other strategies.

The Defect Potential column normalizes the defects such that each
category contributes to the total potential of 5:00, an arbitrary
normalization that does not imply anything about the absolute
number of defects. The column Delivered Defects, referring to what
the user sees, is normalized in the same way.

Requirements errors top the delivered defects and contribute
approximately one third of the total delivered defects to the defect
pile. Thus, this study provides yet another confirmation that
requirements errors are the most common category of systems
development errors.

Table 1-1. Defect Summary
Defect Origins Defect Potentials Removal Efficiency Delivered Defects
Requirements 1.00 77% 0.23
Design 1.25 85% 0.19
Coding 1.75 95% 0.09
Documentation 0.60 80% 0.12
Bad fixes 0.40 70% 0.12
Total 5.00 85% 0.75

The High Cost of Requirements Errors

If requirements errors can be fixed quickly, easily, and economically,
we still may not have a huge problem. But this last statistic delivers
the final blow. Just the opposite tends to be true. Studies performed
at companies including GTE, TRW, IBM and HP have measured and
assigned costs to errors occurring at various phases of the project
life-cycle. Boehn, Grady, and Davis (1988, 1989, and 1993)
summarized a number of these studies as Figure 1-2 illustrates.
Although these studies were run independently, they all reached
roughly the same conclusion: If a unit cost of one is assigned to the
effort required to detect and repair an error during the coding stage,
then the cost to detect and repair an error during the requirements
stage is between five to ten times less. Furthermore, the cost to
detect and repair an error during the maintenance stage is twenty
times more.

Figure 1-2 Relative cost to repair a defect at different
lifecycle phases

Altogether, the figure illustrates that as much as a 200:1 cost
savings results from finding errors in the requirements stage versus
finding errors in the maintenance stage of the software life-cycle.

While this may be the exaggerated case, it's easy to see that there
is a multiplicative factor at work. The reason is that many of these
errors are not detected until well after they have been made.

If you've read this section carefully, you may have noticed that we
muddled two issues together in Figure 1-2: the relative costs of
various categories of errors and the cost of fixing them at different
stages in the software life cycle. For example, the item
"requirements time" literally means all errors that were detected
and fixed during the period officially designated as "requirements
definition." But since it's unlikely that any technical design or
programming activities will have been carried out at this early
stage—ignoring, for the moment, the possibility of prototyping
activities that might be taking place—the mistakes that we detect
and fix at this stage are requirements errors.

But the errors that are discovered during the design phase of a
development project could be one of two categories: (1) errors that
occurred when the development staff created a technical design
from a correct set of requirements or (2) errors that should have
been detected as requirements errors somewhat earlier in the
process but that somehow "leaked" into the design phase of the
project. It's the latter category of errors that turn out to be
particularly expensive, for two reasons.

1. By the time the requirements-oriented error is discovered, the
development group will have invested time and effort in
building a design from those erroneous requirements. As a
result, the design will probably have to be thrown away or
reworked.

2. The true nature of the error may be disguised; everyone
assumes that they're looking for design errors during the
testing or inspection activities that take place during this
phase, and considerable time and effort may be wasted until
someone says, "Wait a minute! This isn't a design mistake
after all; we've got the wrong requirements."

Confirming the details of the requirements error means tracking
down the user who provided the requirements details in the first
place. But that person may not be readily available, may have
forgotten the requirements instruction to the development team or
the rationale for identifying the original requirements in the first
place, or just had a change of mind. Similarly, the development
team member who was involved in that stage of the project—often,
a person with the title of "business analyst" or "systems analyst"—
may have moved on to a different project or may suffer a similar
form of short-term amnesia. All of this involves a certain amount of
"spinning of wheels" and lost time.

These problems associated with "leakage" of defects from one life
cycle phase to the next are fairly obvious when you think about
them, but most organizations haven't investigated them very
carefully. One organization that has done so is Hughes Aircraft; a
study by Snyder 199x follows the leakage phenomenon for a large
collection of projects Hughes has conducted over the past 15 years.
The study indicates that 74 percent of the requirements-oriented
defects were discovered during the requirements-analysis phase of
the project—that is, the formal phase during which customers and
systems analysts are discussing, brainstorming, negotiating, and
documenting the project requirements. That's the ideal time and
place to discover such errors, and it's likely to be the most
inexpensive time and place. However the study also shows that 4
percent of the requirements defects "leak" into the preliminary or
high-level design phase of the project and that 7 percent leak
further into detailed design. The leakage continues throughout the
life cycle, and a total of 4 percent of the requirements errors aren't
found until the maintenance phase—that is, when the system has
been released to the customers and is presumably in full-scale
operation.

Thus, depending on when and where a defect is discovered in a
software application development project, we're likely to experience

the effect of 50–100 times cost. The reason is that in order to repair
the defect, we are likely to experience costs in some or all of the
following areas:

• Respecification.
• Redesign.
• Recoding.
• Retesting.
• Change orders—telling users and operators to replace a

defective version of the system with the corrected version.
• Corrective action—undoing whatever damage may have been

done by erroneous operation of the improperly specified
system, which could involve sending refund checks to angry
customers, rerunning computer jobs, and so on.

• Scrap—including code and design and test cases that were
carried out with the best of intentions but then had to be
thrown away when it was discovered that they were based on
incorrect requirements.

• Recall of defective versions of shrink-wrapped software and
associated manuals from users. But since software is now
embedded in products ranging from digital wristwatches to
microwave ovens to automobiles, the recall could include both
tangible products and the software embedded within them.

• Warranty costs.
• Product liability—if the customer sues for damages caused by

the defective software.
• Service costs for a company representative to visit a

customer's field location to reinstall the new software.
• Documentation.

Conclusion

In summary, this data demonstrates two things.

1. Requirements errors are likely to be the most common class
of error.

2. Requirements errors are likely to be the most expensive
errors to fix.

Given the frequency of requirements errors and the multiplicative
effect of the "cost to fix" factor, it's easy to predict that
requirements errors will contribute the majority—often 70 percent
or more—of the rework costs. And since re-work typically consumes
30–50% of a typical project budget (Boehm and Papaccio 1988b), it
follows that requirements errors can easily consume 25%–40% of
the total project budget!

Our own experiences support this data, and that is the primary
reason we wrote this book. If with a small investment in a few key
skills we can do a better job in this area, we can save significant
amounts of money, increase productivity, save precious time on the
project calendar, and ultimately deliver higher-quality results to the
customer, not to mention saving some of the wear and tear on the
software team.

Chapter 2. Introduction to Requirements
Management

Key Points

• A requirement is a capability that the system must
deliver.

• Requirements management is a process of
systematically eliciting, organizing, and documenting
requirements for a complex system.

• Our problem is to understand users' problems in their
culture and their language and to build systems that
meet their needs.

• A feature is a service that the system provides to fulfill
one or more stakeholder needs.

• A use case describes a sequence of actions, performed
by a system, that yields a result of value to a user.

Based on the data presented in Chapter 1, you can see why we're
interested in focusing on requirements management. But before we
can begin explaining the various techniques and strategies, we need
to provide some definitions and examples. We'll need to start by
defining what we mean by a requirement.

Definitions

What Is a Requirement?

Although many definitions of software requirements have been used
throughout the years, the one provided by requirements
engineering authors Dorfman and Thayer (1990) is quite workable:

• A software capability needed by the user to solve a problem
to achieve an objective

• A software capability that must be met or possessed by a
system or system component to satisfy a contract, standard,
specification, or other formally imposed documentation

This definition may appear to be a little vague, but we'll develop
these concepts further, so this definition will do quite well for now.

What Is Requirements Management?

Requirements define capabilities that the systems must deliver, and
conformance or lack of conformance to a set of requirements often
determines the success or failure of projects. It makes sense,
therefore, to find out what the requirements are, write them down,
organize them, and track them in the event that they change.
Stated another way, we'll define requirements management as

a systematic approach to eliciting, organizing, and documenting the
requirements of the system, and a process that establishes and
maintains agreement between the customer and the project team
on the changing requirements of the system.

• Anyone who has ever been involved with complex software
systems—whether from the perspective of a customer or a
developer—knows that a crucial skill is the ability to elicit the
requirements from users and stakeholders.

• Since hundreds, if not thousands, of requirements are likely to
be associated with a system, it's important to organize them.

• Since most of us can't keep more than a few dozen pieces of
information in our heads, documenting the requirements is
necessary to support effective communication among the
various stakeholders. The requirements have to be recorded
in an accessible medium: a document, model, database, or a
list on the whiteboard.

But what do these elements have to do with managing
requirements? Project size and complexity are major factors here:
nobody would bother talking about "managing" requirements in a
two-person project that had only 10 requirements to fulfill. But to
verify 1,000 requirements—a small purchased software product—or
300,000 requirements—a Boeing 777—it's obvious that we will be
faced with problems of organizing, prioritizing, controlling access to,
and providing resources for the various requirements.

• Which project team members are responsible for the wind
speed requirement (#278), and which ones are allowed to
modify it or delete it?

• If requirement #278 is modified, what other requirements will
be affected?

• How can we be sure that someone has written the code in a
software system to fulfill requirement #278, and which test

cases in the overall test suite are intended to verify that the
requirements have indeed been fulfilled?

That, along with some other, similar activities, is what requirements
management is all about.

This is not something new that we've invented on our own; it's one
of those "common sense" activities that most development
organizations claim to do in some fashion or other. But it's typically
informal and carried out inconsistently from one project to another,
and some of the key activities are likely to be overlooked or short-
changed because of the pressures and politics associated with many
development projects. So, requirements management could be
regarded as a set of organized, standardized, and systematic
processes and techniques for dealing with the requirements of a
significant, complex project.

We're certainly not the first to suggest the idea of organized,
formalized processes; two well-known efforts of this kind are the
Software Engineering Institute's Capability Maturity Model (SEI-
CMM) and the ISO 9000 quality management standards. We'll
discuss the SEI-CMM and ISO 9000 views on requirements
management in Appendix D.

Application of Requirements Management Techniques

Types of Software Applications

Earlier, we suggested that software applications can be categorized
as follows:

• Information systems and other applications developed for use
within a company. (Such as the payroll system that is being
used to calculate the take-home pay for our next paycheck.)
This category is the basis for the information
system/information technology industry, or IS/IT.

• Software we develop and sell as commercial products (such as
the word processor we are using to write this chapter).
Companies developing this type of software are often referred
to as independent software vendors, or ISVs.

• Software that runs on computers embedded in other devices,
machines, or complex systems (Such as those contained in
the airplane we are writing this in; the cell phones we just
used to call our spouses; the automobile we'll use to get to
our eventual destination). We'll call this type of software
embedded-systems applications, or embedded applications.

The nature of the applications we develop for these three different
types of systems is extremely diverse. They could consist of
5,000,000 lines of COBOL on a mainframe host environment
developed over a period of ten or more years by 50–100 individuals.
They could consist of 10,000 lines of Java on a Web client
application written in one year by a one- or two-person team. Or,
they could be 1,000,000 lines of extremely time-critical C code on a
complex real-time telephony system.

We'll maintain that the requirements management techniques
presented throughout this book can be applied to any of these types
of systems. Many of the techniques are independent of application
type; others may need to be tuned for the application-specific
context before being applied. To enhance your understanding, we'll
provide a mix of examples to illustrate the application of the various
techniques.

Systems Applications

Requirements management can also be applied to systems
development. Most of the techniques in this book will deliver value
in managing requirements of arbitrarily complex systems consisting
of mechanical subsystems, computer subsystems, and chemical
subsystems and their interrelated pieces and parts. Clearly, this is a
broad discipline, and we will have to show some discretion to be
able to deliver value to the average software team member. So,
we'll focus on a requirements management process and specific
techniques that can be applied most directly to significant software
applications of the IS/IT, ISV, or embedded-systems types.

The Road Map

Since we are embarking on a journey to develop quality software—
on time and on budget—that meets customers' real needs, it may
well be helpful to have a map of the territory. But this is a difficult
challenge in that the variety of people you encounter on this
particular journey, and the languages they speak, are quite diverse.
Many questions will arise.

• Is this a need or a requirement?
• Is this a nice-to-have or a must-have?
• Is this a statement of the problem or a statement of the

solution?
• Is this a goal of the system or a contractual requirement?
• Do we have to program in Java? Says who?
• Who is it that doesn't like the new system, and where was

that person when we visited here before?

In order to successfully navigate through the territory, we'll need to
understand where we are at any point in time, who these people are
that we meet, what language they are speaking, and what
information we need from them to successfully complete our
journey. Let's start in the "land of the problem."

The Problem Domain

Most successful requirements journeys begin with a trip to the land
of the problem. This problem domain is the home of real users and
other stakeholders, people whose needs must be addressed in order
for us to build the perfect system. This is the home of the people
who need the rock or a new sales order entry system or a
configuration management system good enough to blow the
competition away. In all probability, these people are not like us.
Their technical and economic backgrounds are different from ours,
they speak in funny acronyms, they go to different parties and drink
different beers, they don't wear T-shirts to work, and they have
motivations that seem strange and unfathomable. (What, you don't
like Star Trek?)

On rare occasions, they are just like us. They are programmers
looking for a new tool or system developers who have asked you to
develop a portion of the system. In these rare cases, this portion of
the journey might be easier, but it might also be more difficult.

But typically, this is not the case, and we are in the land of the alien
user. These users have business or technical problems that they
need our help to solve. So, it becomes our problem to understand
their problems, in their culture and their language and to build
systems that meet their needs. Since this territory can seem a little
foggy, we'll represent it as a cloud. This will be a constant reminder
to us to make sure that we are seeing all the issues in the problem
space clearly.

Within the problem domain, we use a set of team skills as our map
and compass to understand the problem to be solved. While we are
here, we need to gain an understanding of the problem and the
needs that must be filled to address this problem.

Stakeholder Needs

It is also our responsibility to understand the needs of users and
other stakeholders whose lives will be affected by our solution. As
we elicit those needs, we'll stack them in a little pile called
stakeholder needs, which we represent as a pyramid.

Moving Toward the Solution Domain

Fortunately, the journey through the problem domain is not
necessarily difficult, and the artifacts collected there are not many.
However, with even this little bit of data, we will be well provisioned
for the part of the journey that we have perhaps been better
prepared for: providing a solution to the problem at hand. In this
solution space, we focus on defining a solution to the user's problem;
this is the realm of computers, programming, operating systems,
networks, and processing nodes. Here, we can apply the skills we
have learned much more directly.

Features of the System

First, however, it will be helpful to state what we learned in the
problem domain and how we intend to deliver that via the solution.
This is not a very long list and consists of such items as

• "The car will have power windows."
• "Defect-trending charts will provide a visual means of

assessing progress."
• "Web-enabled entry of sales orders."
• "Automatic step-and-repeat weld cycle."

These are simple descriptions, in the user's language, that we will
use as labels to communicate with the user how our system
addresses the problem. These labels will become part of our
everyday language, and much energy will be spent in defining them,
debating them, and prioritizing them. We'll call these descriptions
"features" of the system to be built and will define a feature as

a service that the system provides to fulfill one or more stakeholder
needs.

Graphically, we'll represent features as a base for the previous
needs pyramid.

Software Requirements

Once we have established the feature set and have gained
agreement with the customer, we can move on to defining the more
specific requirements that we will need to impose on the solution. If
we build a system that conforms to those requirements, we can be
certain that the system we develop will deliver the features we
promised. In turn, since the features address one or more
stakeholder needs, we will have addressed those needs directly in
the solution.

These more specific requirements are the software requirements.
We'll represent them as a block within our pyramid in a similar
manner to the features. We also note that these appear pretty far
down on the pyramid, and this implies, correctly, that we have
much work to do before we get to that level of specificity later in
the book.

An Introduction to Use Cases

One final key construct will help us on our journey. This key
construct is the use case, which we'll use in a variety of ways
throughout the rest of the book. Most simply, a use case describes
a sequence of actions, performed by a system, that yields a result
of value to a user. In other words, a use case describes a series of
user/system interactions that helps the user accomplish something.
We'll represent the use case with a simple oval icon containing the
name of the use case. For example, if we were to describe a use
case whereby a user uses a computer to simply turn a light on or off,
we might call it simply "control light," and we'd put that term in the
oval.

Summary

Now let's take a look at the map we've built. In Figure 2-1, you can
see that we have made a subtle yet important transition in our
thinking in this process. We have moved from the problem domain,
represented by the cloud and the user needs we discovered, to a
definition of a system that will constitute the solution domain,
represented by the features of the system and the software
requirements that will drive its design and implementation.
Moreover, we have done so in a logical, stepwise fashion, making
sure to understand the problem and the user's needs before we
envision or define the solution. This road map, along with its
important distinctions, will continue to be important throughout this
book.

Figure 2-1 Overview of problem/solution domains

Chapter 3. The Software Team

"Computer programming is a human activity."

—(Weinberg 1971)

Key Points

• Requirements management touches every team
member, albeit in different ways.

• Effective requirements management can only be
accomplished by an effective software team.

• Six team skills are needed for requirements
management.

Individuals choose software development as their career domain for
a variety of reasons. Some read Popular Science and Popular
Mechanics at home, gravitated to the one programming course
available in high school, majored in engineering or computer
science in college, and thereby directed their lives down this specific
technical path. For others, it was serendipity; being at a place in
space and time when the need for software was apparent, we could
participate in meeting that need, and it gradually evolved into a full-
time commitment in the field.

In any case, it was the allure of technology that kept the flame
burning: We love the bits and bytes, the operating systems, the
databases, the development tools, the keyboard shortcuts, the
languages. Who else but software developers could have developed
the UNIX operating system? We are focused on technology, and

that is our driving motivation. Perhaps because of an innate genetic
tendency or perhaps because we skipped all the "softer" classes in
college—psychology, drama, or, even worse, English!—we are
generally focused less on the people side of our business and more
on the bits and bytes. We tend not to party well,[1] and some of us
have trouble relating to people outside of work, when there is no
common technology substrate on which to base a discussion.

[1] During a 1979 RELA open house, for example, one programmer remained at his desk throughout the party,
programming happily, even though his desk was in the middle of the party room. After finishing his work, he
simply got up, arranged his desk, and left the building without a word to anyone. What is unusual about this
behavior? In our industry? Nothing!

One result of this, which was further compounded by the simple
single-user nature of the tools we used and the more limited size of
the applications we developed, was the tendency toward software
development as an individual activity. The programmer defined,
designed, wrote, and, typically, tested his or her own work. Perhaps
testers were around to help with the heavy lifting at the end, but
the focus clearly was on individual activity. The programmer as hero
was the common paradigm.

Software Development as a Team Activity

"Software Development has become a team sport."

—(Booch 1998)

At some point, the game changed. Why? Watts Humphrey (1989)
observed that

the history of software development is one of increasing scale.
Initially, a few individuals could hand craft small programs; the
work soon grew beyond them. Teams of one or two dozen
individuals were then used, but success was mixed. While many
organizations have solved these small-system problems, the scale
of our work continues to grow. Today, large projects typically
require the coordinated work of many teams.

Humphrey goes on to observe that complexity continues to outpace
one's ability to solve these problems intuitively as they appear. For
example, we are involved in a requirements project that
simultaneously affects approximately 30 products in a broad
product family. The requirements that are being generated influence,
in real time, the software being written by more than 400
programmers at distributed locations. Making this project a success
requires intense coordination of a "team of teams" all working in a
common methodology to address the requirements challenge.

What's to be done? Clearly, we have to make the "team thing" work
and work well. As Boehm (1981) points out in the COCOMO cost
estimation model, the capability of the team has the greatest
impact on software production. Davis (1995b) supports this
conclusion in his discussion of team productivity: "optimizing the
productivity of all individuals does not necessarily result in
optimizing the productivity of the team" (p. 170). So, it seems
logical that we invest some of our resources in making software
teams more productive.

Requisite Team Skills for Effective Requirements
Management

This book is organized around the six team skills that are necessary
for a modern software team to address the requirements challenge.

• In Team Skill 1, Analyzing the Problem, we develop a set of
techniques the team can use to gain a proper understanding
of the problem that a new software system is intended to
solve.

• In Team Skill 2, Understanding User Needs, we introduce a
variety of techniques the team can use to elicit requirements
from the system users and stakeholders. No one set of
techniques will work in all situations; nor will it be necessary
for the team to master all of the techniques. But with a little
practice and some judicious picking and choosing, the team
will gain a much better ability to understand the real needs
that the system must address.

• In Team Skill 3, Defining the System, we describe the initial
process by which the team converts an understanding of the
problem and the user's needs to the initial definition of a
system that will address those needs.

• In Team Skill 4, Managing Scope, we arm the team with the
ability to do a better job of managing the scope of the project.
After all, no matter how well understood the needs are, the
team cannot do the impossible, and it will often be necessary
to negotiate an acceptable deliverable before success can be
achieved.

• In Team Skill 5, Refining the System Definition, we help the
team organize the requirements information. Further, we
introduce a set of techniques the team can use to elaborate
on the system definition, or refine it to a level suitable to
drive design and implementation, so that the entire extended
team knows exactly what kind of system it is building.

• Finally, in Team Skill 6, Building the Right System, we cover
some of the more technical aspects of design assurance,
verification, validation testing, and change management, and

we show how traceability can be used to help ensure a quality
outcome.

Team Members Have Different Skills

One of the most interesting things about teams is that individual
team members have different skills. After all, that's what makes a
team a team. Walker Royce (1998) points out that

balance and coverage are two of the most important aspects of an
excellent team…. A football team has a need for diverse skills, very
much like a software development team…. There has rarely been a
great football team that didn't have great coverage, offense,
defense, and special teams, coaching and personnel, first string and
reserve players, passing and running. Great teams need coverage
across key positions with strong individual players. But a team
loaded with superstars, all striving to set individual records and
competing to be the team leader, can be embarrassed by a
balanced team of solid players with a few leaders focused on the
team result of winning the game.

In the software team, we hope that some players have proven their
ability to work with the customers effectively, that others have
software programming abilities, and that others have testing
abilities. Still other team players will need design and architecture
abilities. Many more skills are required as well. We also expect that
the requisite team skills for requirements management will affect
various members of the teams in various ways. So, in a sense, we'll
hope to develop every team member's ability to help manage
requirements effectively. And we'll try to indicate, where we can,
which team members may be best suited to a particular and
necessary skill.

The Organization of Software Teams

Software development is exceedingly complex, and the domains in
which we apply our skills vary tremendously. It therefore seems
unlikely that one specific way to organize a software team will work
in all cases or is inherently more efficient than other approaches.
Nonetheless, certain common elements occur in many successful
teams. Therefore, we think it's important to establish a hypothetical
team construct. But rather than invent an ideal team, which would
be too easy and too academic, we decided to pattern our
hypothetical team on a real software development team.

The team we'll model is based on a real-world software team that
has proved effective in two major areas: (1) effective requirements

management and (2) delivering on time and on budget. (Of course,
we believe that this is an obvious cause-and-effect relationship!)
Yet we also admit that many other skills must be present in a team
that truly delivers the goods year in and year out. In our case study,
the team works for a company called Lumenations, Ltd., that is
developing a next-generation "home lighting automation system"
for high-end residential use.

The Case Study

We can meet another objective in this book if we can develop a case
study we can track from requirements start to requirements finish.
In this way, we will be able to not only apply the techniques that we
are about to discuss to our example but also provide example work
products, or artifacts, to further illustrate key points and to serve as
examples for your own projects. Appendix A of this book provides a
sample set of artifacts from the case study.

Background for the Case Study

Lumenations, Ltd., has been a worldwide supplier of commercial
lighting systems for use in professional theater and amateur stage
productions for more than 40 years. In 1999, its annual revenues
peaked at approximately $120 million, and sales are flattening.
Lumenations is a public company and the lack of growth in sales—
no, worse, the lack of any reasonable prospect for improving growth
in sales—is taking its toll on the company and its shareholders. The
last annual meeting was quite uncomfortable, as there was little
new to report about the company's prospects for growth. The stock
climbed briefly to $25 last spring on a spate of new orders but has
since crept back down to around $15.

The theater equipment industry as a whole is flat with little new
development. The industry is mature and already well consolidated.
Since Lumenations' stock is in the tank and its capitalization is only
modest, acquisition is not an option for the company.

What's needed is a new marketplace, not too remote from what the
company does best, but one in which there is substantial
opportunity for growth in revenue and profits. After a thorough
market research project and spending many dollars on marketing
consultants, the company has decided to enter a new market:
lighting automation for high-end residential systems. This market is
apparently growing at 25%–35% a year. Even better, the market is
immature, and none of the established players has a dominant
market position. Lumenations' strong worldwide distribution channel

will be a real asset in the marketplace, and the distributors are
hungry for new products. Looks like a great opportunity!

The HOLIS Software Development Team

The project we choose will be the development of HOLIS, our code
name for an innovative new HOme Lighting automation System to
be marketed by Lumenations. The HOLIS team is typical in its size
and scope. For the purposes of our case study, we've made it a
fairly small team, composed of only 15 team members, but it's
large enough to have all the necessary skills fairly well represented
by individuals with some degree of specialization in their roles. Also,
it's the structure of the team that's most important, and by adding
more developers and testers, the structure of the HOLIS team
proved to scale well to a size of 30–50 people and commensurately
larger software applications than HOLIS will require.

To address the new marketplace, Lumenations has set up a new
division, the Home Lighting Automation Division. Since the division
and technology are mostly new to Lumenations, the HOLIS team
has been assembled mostly from new hires, although a few team
members have been transferred from the commercial lighting
division.

Figure 3-1 is an organization chart of the development team and
the relationships among the team members. We'll revisit this team
periodically throughout the book and see how it applies its new
skills to the requirements challenge for HOLIS.

Figure 3-1 The HOLIS Software development team

Summary

It's difficult for anyone to argue rationally against the idea of
managing and documenting the requirements of a system in order
to ensure that we deliver what the customer really wanted.
However, as we have seen, the data demonstrate that, as an
industry, we often do a poor job of doing so. Lack of user input,
incomplete requirements and specifications, and changing
requirements and specifications are commonly cited problem causes
in projects that failed to meet their objectives. And we do know that
a significant number of software projects do fail to meet their
objectives.

A common attitude among developers and customers alike is that
"even if we're not really sure of the details of what we want, it's
better to get started with implementation now, because we're
behind schedule and in a hurry. We can pin down the requirements
later." But all too often, this well-intentioned approach degenerates
into a chaotic development effort, with no one quite sure what the
user really wanted or what the current system really does. With
today's powerful and easy-to-use prototyping tools, there's a
perception that if the developers can build a rough approximation of
the user's needs in a prototype, the user can point out the features
that need to be added, deleted, or modified. This can work, and it is
an important aspect of iterative development. But due in part to the
extremely high cost of fixing requirement errors, this process must
be within the context of an overall requirements management
strategy, or chaos results.

How do we know what the system is supposed to do? How do we
keep track of the current status of requirements? How do we
determine the impact of a change? It's because of issues like these
that requirements management has begun to emerge as both a
necessary and a practical software engineering discipline. We have
introduced an encompassing philosophy of requirements
management and have provided a set of definitions that support
these activities.

Since the history of software development—and the future for at
least as far as we can currently envision it—is one of increasing
complexity, we also understand that the software development
problem is one that must be addressed by well-structured and well-
trained software teams. In the requirements management discipline
in particular, every team member will eventually be involved in
helping manage the requirements for the project. These teams
must develop the requisite skills to understand the user needs, to
manage the scope of the application, and to build systems that
meet these user needs. The team must work, as a team, to address
the requirements management challenge.

In order to do so, the first step in the requirements management
process is to ensure that the developers understand the "problem"
the user is trying to solve. We'll cover that topic in the next three
chapters as Team Skill 1, Analyzing the Problem.

Part II: Team Skill 1: Analyzing the
Problem

• Chapter 4 The Five Steps in Problem Analysis
• Chapter 5 Business Modelingh
• Chapter 6 Systems Engineering of Software-Intensive

Systems

The last few years have seen an unprecedented increase in the
power of the tools and technologies that software developers use to
build today's enterprise applications. New languages have increased
the level of abstraction and improved the productivity with which we
can address and solve user problems. The application of object-
oriented methods has produced designs that are more robust and
extensible. Tools for version management, requirements
management, design and analysis, defect tracking, and automated
testing have helped software developers to manage the complexity
of thousands of requirements and hundreds of thousands of lines of
code.

As the productivity of the software development environment has
increased, it should now be easier than ever before to develop
systems that satisfy real business needs. However, as we have seen,
the data demonstrates that we remain challenged in our ability to
truly understand and to satisfy these needs. Perhaps there is a
simpler explanation for this difficulty that may represent the
"problem-behind-the problem." Development teams spend too little
time understanding the real business problems, the needs of the
users and other stakeholders, and the nature of the environment in
which their applications must thrive. Instead, we developers tend to
forge ahead, providing technological solutions based on an
inadequate understanding of the problem to be solved.

The resulting systems do not fit the needs of the users and
stakeholders as well as could have been reasonably expected. The
consequences of this mismatch are inadequate economic reward for
the customers and developers of the system, dissatisfied users, and
career challenges. It seems obvious, therefore, that an incremental
investment in an analysis of the problem will produce handsome
rewards downstream. The goal of this team skill is to provide
guidelines for problem analysis and to define specific goals for this
skill in application development.

In the following chapters, we will explore ways and means of
defining just exactly what the problem is. After all, if your team
can't define the problem, it's going to be difficult to figure out a
proper solution.

Chapter 4. The Five Steps in Problem
Analysis

Key Points

• Problem analysis is the process of understanding real-
world problems and user's needs and proposing
solutions to meet those needs.

• The goal of problem analysis is to gain a better
understanding, before development begins, of the
problem being solved.

• To identify the root cause, or the problem behind the
problem, ask the people directly involved.

• Identifying the actors on the system is a key step in
problem analysis.

This chapter focuses on ways in which the development team can
understand the real-world needs of the stakeholders and users of a
new system or application. As most systems are built to solve a
particular problem, we'll use problem analysis techniques to make
sure we understand what the problem is.

But we should also recognize that not every application is developed
to solve a problem; some are built to take advantage of
opportunities that the market presents, even when the existence of
a problem is not clear. For example, unique software applications,
such as SimCity and Myst, have proved their worth to those who
like computer games and mental challenges or who just enjoy
modeling and simulating or playing games on their computers. So,
although it's difficult to say what problem SimCity or Myst solved—
well, perhaps the problem of "not having enough fun things to do
with your computer" or the problem of "too much spare time on
one's hands"—it seems clear that the products provide real value to
a large number of users.

In a sense, problems and opportunities are just flip sides of the
same coin; your problem is my opportunity. It's a matter of
perspective. But since most systems do address some identifiable
problem, we can simplify the discussion and avoid the
problem/opportunity schizophrenia by focusing on the problem side

of the coin only. After all, we like to think of ourselves as problem
solvers.

We'll define problem analysis as

the process of understanding real-world problems and user needs
and proposing solutions to meet those needs.

In so doing, the problem domain must be analyzed and understood,
and a variety of solution domains must be explored. Usually, a
variety of solutions are possible, and our job is to find the solution
that is the optimum fit for the problem being solved.

In order to be able to do problem analysis, it would be helpful to
define what a problem is. According to Gause and Weinberg (1989),

a problem can be defined as the difference between things as
perceived and things as derived.

This seems like a sensible definition, one that at least should
eliminate the common problem of developers often thinking that the
real problem is that the user doesn't understand what the real
problem is! According to the definition, if the user perceives
something as a problem, it's a real problem, and it's worthy of
addressing.

Still, based on this definition, our colleague Elemer Magaziner notes
that there are a number of ways to address a problem. For example,
changing the user's desire or perception may be the most cost-
effective approach. Doing so may be a matter of setting and
managing expectations, providing workarounds or incremental
improvements to existing systems, providing alternative solutions
that do not require new system development, or providing
additional training. Practical experience shows many examples
where changing the perception of the difference has led to the
highest-quality, fastest, and cheapest solutions available! As
problem solvers, it is incumbent on us to explore these alternative
solutions before leaping into a new system solution.

However, when these alternative activities fail to sufficiently reduce
the gap in perception and desire, we are left with the largest and
most expensive challenge: to actively change the distance between
perception and reality. This we must accomplish by defining and
implementing new systems that narrow the difference between as
desired and as perceived.

As with any complex problem-solving exercise, we must start with
the goal in mind. The goal of problem analysis is to gain a better

understanding, before development begins, of the problem being
solved. The specific steps that must be taken in order to achieve the
goal are

1. Gain agreement on the problem definition.
2. Understand the root causes—the problem behind the problem.
3. Identify the stakeholders and the users.
4. Define the solution system boundary.
5. Identify the constraints to be imposed on the solution.

Let's work through each of these steps and see if we can develop
the team skills that we need to move on to solution providing!

Step 1: Gain Agreement on the Problem Definition

The first step is to gain agreement on the definition of the problem
to be solved. One of the simplest ways to gain this agreement is to
simply write the problem down and see whether everyone agrees.

As part of this process, it is often beneficial to understand some of
the benefits of a proposed solution, being careful to make certain
that the benefits are described in the terms provided by the
customers/users. Having the user describe the benefits provides
additional contextual background on the real problem. In seeing the
benefits from the customer's point of view, we also gain a better
understanding of the stakeholder's view of the problem itself.

The Problem Statement

You may find it helpful to write your problem down in a
standardized format (Table 4-1). Filling the table in for your
application is a simple yet powerful technique to ensure that all
stakeholders on your project are working toward the same goal.

Spending the time it takes to gain agreement on the problem being
solved may seem like a small and insignificant step, and in most
circumstances, it is. But sometimes, it is not. For example, one of
our clients, an equipment manufacturer, was engaged in a major
upgrade to its IS/IT system, which provided invoicing and financial
reporting between the company and its dealers. The theme for the
new program was to "improve dealer communications." As such, the
team had embarked on a significant new system development effort.

Table 4-1. Problem statement format
Element Description

The problem of Describe the problem.

affects Identify stakeholders affected by the problem.
the result of
which

Describe the impact of this problem on stakeholders and
business activity.

Benefits of Indicate the proposed solution and list a few key benefits.

An exercise in gaining agreement on the problem being solved was
enlightening. The development team–defined solution envisioned a
powerful new system that provided better financial reporting,
improved invoice and statement formats, online parts ordering, and
electronic mail. And oh, by the way, the team eventually hoped to
provide the capability for electronic funds transfer between the
company and the dealer.

During the problem statement exercise, company management had
the opportunity to provide input. Management's vision was
substantially different: The primary goal of the new system was to
provide electronic funds transfer that would improve the cash flow
of the company. After a raucous discussion, it became clear that the
first-order problem to be addressed by the new system was
electronic funds transfer; e-mail and other dealer communication
features were considered simply "nice to have." Needless to say,
there was a substantial reorientation of the objectives of the new
system, including a new problem definition that identified electronic
funds transfer as the problem being solved. This reorientation also
triggered the development of a different system architecture than
had been envisioned, complete with the security capability
consistent with the risks inherent in electronic banking.

Step 2: Understand the Root Causes—The Problem
Behind the Problem

Your team can use a variety of techniques to gain an understanding
of the real problem and its real causes. One such technique is "root
cause" analysis, which is a systematic way of uncovering the root,
or underlying, cause of an identified problem or a symptom of a
problem.

For example, consider a real-world example: a mail-order catalog
company, called GoodsAreUs, that manufactures and sells a variety
of inexpensive, miscellaneous items for home and personal use. As
the company addresses the problem of insufficient profitability, it
uses total quality management (TQM) techniques for problem
solving learned in their quality program. Based on this experience,
the company quickly focused on its cost of nonconformance, which
is the cost of all of the things that go wrong and produce waste,
scrap, and other excess costs. This cost includes rework, scrap,
customer dissatisfaction, employee turnover, and other factors that

are negative-value activities. As the company quantified its cost of
nonquality, it suspected that production waste, or "scrap," was one
of the largest contributors.

The next step in getting to the root cause, or the problem behind
the problem in scrap, is to determine what factors contribute to the
scrap problem. TQM teaches us the use of the fishbone diagram
(see Figure 4-1) to identify the problems behind the problem. In our
specific analysis, the company identified many sources that
contributed to scrap. Each source was listed as one of the "bones"
on the diagram.

Figure 4-1 Fishbone diagram of root causes

OK, so how do you determine the root causes? Well, it just depends.
In many cases, it's a simple matter of asking the people directly
involved what they think the root cause is. It's amazing how much
people do know about the problem behind the problem; it's just
that no one—by which we usually mean management—had taken
the time to ask them before. So, ask them and then ask them again.

If the problem is more serious and simply asking those affected
doesn't create a sense of comfort, it may be necessary to perform a
detailed investigation of each contributing problem and to quantify
its individual impact. This could vary from perhaps simple
brainstorming by participants who have knowledge of the space to a
small data collection project or, potentially, to a more rigorous and
scientific investigation. In any case, the goal is to quantify the likely
contribution of each root cause.

Addressing the Root Cause

Of course, the engineer in all of us would like to fix all of the root
causes on the "bones" of the diagram. This seems like the right

thing to do. But is it? Often, it is not; quality data routinely shows
that a number of root causes are simply not worth fixing, as the
cost of the fix exceeds the cost of the problem. How do you know
which ones to fix? Answer: You must determine the materiality, or
contribution, of each root cause. The results of this investigation
can be plotted as a Pareto chart, or simple histogram that visually
exposes the real culprits.

Back to our example: Let's suppose that the results of data
gathering produced the results shown in Figure 4-2. As you can see,
the team discovered that a single root cause—"inaccurate sales
orders"—produced half of all scrap. If, in turn, the existing sales
order system was found to be a poor example of legacy code,
complete with a user-vicious interface and nonexistent online error
handling, there may indeed be opportunity to cut scrap through
development of new software.

Figure 4-2 Pareto chart of root causes

At this point, and only at this point, is the team justified in
proposing a replacement for the existing sales order entry system.
Further, the cost justification for such a system can be quantified by
determining the estimated cost of development and the return on
this investment through a reduction in scrap.

Table 4-2. Sales order problem statement
Elements Description

The problem
of

inaccuracies in sales orders

affects sales order personnel, customers, manufacturing, shipping, and
customer service,

the result of
which

is increased scrap, excessive handling costs, customer dis-
satisfaction, and decreased profitability.

Benefits of a new system to address the problem include

• Increased accuracy of sales orders at point of entry

• Improved reporting of sales data to management
• And, ultimately, higher profitability

A further fishbone analysis could then be used to determine what
specific types of errors contribute to the inaccurate sales order
problem. This new, more detailed, data can then be used to define
the features of the software system to address those errors. For our
purposes, however, we can conclude our analysis by agreeing that a
replacement of the sales order system can be at least a partial
solution to the problem of too much scrap.

Once we have identified inaccurate sales orders as a root cause of a
problem worth solving, we can create a problem statement for the
sales order entry problem, as seen in Table 4-2.

Once written, the problem statement can be circulated to the
stakeholders for comment and feedback. When finalized, the
problem statement communicates the mission to all members of the
project team so that everyone is working toward the same objective.

Step 3: Identify the Stakeholders and the Users

Effectively solving any complex problem typically involves satisfying
the needs of a diverse group of stakeholders. Stakeholders will
typically have varying perspectives on the problem and various
needs that must be addressed by the solution. We'll define a
stakeholder as

anyone who could be materially affected by the implementation of a
new system or application.

Many stakeholders are users of the system, and their needs are
easy to focus on because they will be directly involved with system
definition and use. However, some stakeholders are only indirect
users of the system or are affected only by the business outcomes
that the system influences. These stakeholders tend to be found
elsewhere within the business, or in "the surrounds" of the
particular application environment. In yet other cases, these
stakeholders are even further removed from the application
environment. For example, they include the people and
organizations involved in the development of the system,
subcontractors, the customer's customer, outside agencies, such as
the U.S. Federal Aviation Administration (FAA) or the Food and Drug
Administration (FDA), or other agencies that interact with the
system or the development process. Each of these classes of
stakeholders may influence the requirements for the system or will
in some way be involved with the system outcome.

An understanding of who these stakeholders are and their particular
needs is an important factor in developing an effective solution.
Depending on the domain expertise of the development team,
identifying the stakeholders may be a trivial or nontrivial step in
problem analysis. Often, this simply involves interviewing decision
makers, potential users, and other interested parties. The following
questions can be helpful in this process:

• Who are the users of the system?
• Who is the customer (economic buyer) for the system?
• Who else will be affected by the outputs that the system

produces?
• Who will evaluate and bless the system when it is delivered

and deployed?
• Are there any other internal or external users of the system

whose needs must be addressed?
• Who will maintain the new system?
• Is there anyone else?

In our example of a replacement sales order system, the primary
and most obvious users were the sales order entry clerks. These
users are obviously stakeholders in that their productivity,
convenience, comfort, job performance, and job satisfaction are
affected by the system. What other stakeholders can we identify?

Table 4-3. Users and Stakeholders of New System
Users Other Stakeholders

Sales order entry clerks MIS director and development team
Sales order supervisor Chief financial officer
Production control Production manager
Billing clerk

Other stakeholders, such as the sales order entry supervisor, are
directly affected by the system but access the system through
different user interfaces and reports. Still other folks, such as the
chief financial officer of the company, are clearly stakeholders in
that the system can be expected to have an effect on the
productivity, quality, and profitability of the company. Lest we
forget, the MIS director and members of the application
development team are also stakeholders in that they will be
responsible for developing and maintaining the system. They will
have to live with the result, as will the users. Table 4-3 summarizes
the results of the stakeholder analysis and identifies the users and
stakeholders of the new sales order system.

Step 4: Define the Solution System Boundary

Once the problem statement is agreed to and the users and
stakeholders are identified, we can turn our attention to defining a
system that can be deployed to address the problem. In so doing,
we enter an important transition state wherein we have to keep two
things in mind: an understanding of the problem and the
considerations of a potential solution.

The next important step is to determine the boundaries of the
solution system. The system boundary defines the border between
the solution and the real world that surrounds the solution (Figure
4-3). In other words, the system boundary describes an envelope in
which the solution system is contained. Information, in the form of
inputs and outputs, is passed back and forth from the system to the
users living outside the system. All interactions with the system
occur via interfaces between the system and the external world.

Figure 4-3 The input/system/output relationship

In other words, if we are going to have to build it or modify it, it's
part of our solution and within the boundary; if not, it's external to
our system. Thus, we divide the world into two interesting classes
of things:

1. Our system
2. Things that interact with our system

Let's identify the "things that interact with our system" generically
as "actors on our system." After all, they do have a role to play in
making our system do its thing. We'll represent an actor with a
simple stick figure icon. We'll define an actor as

someone or something, outside the system, that interacts with the
system.

Once we have the notion of an actor in hand, we can illustrate a
system boundary as shown in Figure 4-4.

Figure 4-4 System boundary

In many cases, the boundaries of the system are obvious. For
example, a single-user, shrink-wrap personal contact manager that
runs on a stand-alone Windows 2000 platform has relatively well-
defined boundaries. There is only one user and one platform. The
interfaces between the user and the application consist of the
interface dialogs the user uses to access information in the system
and any output reports and communication paths that the system
uses to document or transmit that information.

In our order entry system example, which is to be integrated into
an existing legacy system, the boundaries are not so clear. The
analyst must determine whether data is shared with other
applications, whether the new application is to be distributed across
various hosts or clients, and who the users are. For example, are
the production people to have online access to sales orders? Is
there a quality control or audit function to be provided? Will the
system run on the mainframe or on a new client/server front end?
Are specialized management reports to be provided?

Although it seems fairly obvious, identifying the actors is a key
analytical step in problem analysis. How do we find these actors?
Here are some helpful questions to ask:

• Who will supply, use, or remove information from the system?
• Who will operate the system?
• Who will perform any system maintenance?
• Where will the system be used?
• Where does the system get its information?
• What other external systems will interact with the system?

With the answers to these questions in hand, the analyst can now
create a "system perspective," a block diagram that describes the
boundaries of the system, the users, and other interfaces. Figure 4-
5 provides a simplified system perspective for the new sales order
system.

Figure 4-5 System perspective

The dotted line illustrates the system boundary for the proposed
solution. The diagram shows that the bulk of the new application
will be deployed on the new sales order entry system but a portion
of the solution code must be developed and deployed on the
existing legacy system.

Step 5: Identify the Constraints to Be Imposed on the
Solution

Before launching a well-intended trillion-dollar effort to revolutionize
the state of the art in sales order entry, we must stop and consider
the constraints that will be imposed on the solution. We'll define a
constraint as

a restriction on the degree of freedom we have in providing a
solution.

Each constraint has the potential to severely restrict our ability to
deliver a solution as we envision it. Therefore, each constraint must
be carefully considered as part of the planning process, and many
may even cause us to reconsider the technological approach we
have initially envisioned.

A variety of sources of constraints must be considered. These
include schedule, return on investment, budget for labor and
equipment, environmental issues, operating systems, databases,
hosts and client systems, technical issues, political issues within the
organization, purchased software, company policies and procedures,
choices of tools and languages, personnel or other resource

constraints, and a host of other considerations. These constraints
may be given to us before we even begin ("No new hardware"), or
we may have to actively elicit them.

As an aid to elicitation, it would be helpful to know what kinds of
things we should be looking for. Table 4-4 lists potential sources of
system constraints. Asking the questions listed in the table should
elicit the majority of the constraints that will affect your solution. It
will probably also be helpful to identify the rationale for the
constraint, both to make sure that you understand the perspective
of the constraint and so that you can recognize when and if the
constraint might no longer apply to your solution. The less
constrained, the better.

Once identified, some of these constraints will become requirements
for the new system ("use the MRP system provided via our current
accounting system vendor"). Other constraints will affect resources,
implementation plans, and project plans. It is the problem solver's
responsibility to understand the potential sources of constraints for
each specific application environment and to determine the impact
of each constraint on the potential solution spaces.

Table 4-4. Potential system constraints
Source Sample Considerations

Economic • What financial or budgetary constraints are
applicable?

• Are there costs of goods sold or any product pricing
considerations?

• Are there any licensing issues?

Political • Are there internal or external political issues that
affect potential solutions?

• Interdepartmental problems or issues?

Technical • Are we restricted in our choice of technologies?
• Are we constrained to work within existing platforms

or technologies?
• Are we prohibited from any new technologies?
• Are we to use any purchased software packages?

System • Is the solution to be built on our existing systems?
• Must we maintain compatibility with existing

solutions?
• What operating systems and environments must be

supported?

Environmental • Are there environmental or regulatory constraints?
• Legal?
• Security requirements?

• What other standards might we be restricted by?

Schedule and
resources

• Is the schedule defined?
• Are we restricted to existing resources?
• Can we use outside labor?
• Can we expand resources? Temporary? Permanent?

Returning to our example, what constraints might be imposed on
the new sales order system? Table 4-5 summarizes the sources and
constraints that were imposed on the new system.

Table 4-5. Constraints, sources, and rationale for sales order entry system
Source Constraint Rationale

Operational An exact copy of sales order data
must remain on the legacy
database for up to one year.

The risk of data loss is too
great; we will need to run in
parallel for up to one year.

Systems and
OS

The applications footprint on the
server must be less than 20
megabytes.

We have limited server memory
available.

Equipment
budget

The system must be developed on
existing server and host; new
client hardware for users may be
provided.

Cost control and maintenance
of existing systems.

Personnel
budget

Fixed staffing resource; no
outsourcing.

Fixed operating costs as per the
current budget.

Technology
mandate

New OO methodology to be used. We believe that this technology
will increase productivity and
increase reliability of the
software.

Summary

With this step complete, we can be reasonably confident that we
have

• A good understanding of the problem to be solved and the
root causes for the problem

• Identified the stakeholders whose collective judgment will
ultimately determine the success or failure of our system

• A notion of where the boundaries of the solution are likely to
be found

• An understanding of the constraints and the degrees of
freedom we have to solve the problem.

Looking Ahead

With this background, we can now turn our attention to two more
specific problem-solving techniques that can be applied in certain
application domains. In Chapter 5, we'll look at business modeling a
technique we can apply in our IS/IT type of applications. In Chapter
6, we'll look at systems engineering for software-intensive systems,
which can be applied to applications in the embedded-system
domain.

As for the third domain, that of the ISVs (independent software
vendors), problem analysis techniques are typically focused on such
activities as

• Identifying market opportunities and market segments
• Identifying classes of potential users and their particular

needs
• Studying the demographics of the potential user base
• Understanding potential demand, pricing, and pricing

elasticity
• Understanding sales strategies and distribution channels

Clearly, these are interesting topics, but to help us manage the
scope of this book, we will not explore these specific issues further.
However, you can rest assured that the team skills we explore in
later chapters apply equally well to this class of application, as we
will illustrate.

Note

One of the most difficult things about writing this book was
attempting to present a variety of techniques to build the team
skills sets. No one technique works in all situations; no two
situations are the same.

In the prior chapters, we focused on a general philosophical
approach to problem analysis that appears to work in most systems
contexts. However, this problem of "selection of technique to apply"
becomes even more acute in the following chapters of the book,
wherein we define the technique for business modeling, a technique
for system engineering, and then go on to define a variety of
techniques in Team Skill 2, Understanding User Needs, where we
will present a wide variety of techniques that can be used to
understand the needs of stakeholders and users with respect to "a
system that you are about to build."

However, we think it's important to point out that the techniques
described in this book—from problem analysis to brainstorming—
can be used in many different parts of the software process, not
just in the part of the process where we have chosen to describe

them. For example, the team could use problem analysis to define a
sales order entry system problem or to resolve a technical problem
within its implementation. Similarly, the team could use
brainstorming to determine the potential root causes in a problem
analysis exercise or to determine potential new features for a
system as it's used in Chapter 5. We will make no attempt to
describe every circumstance under which a particular technique will
apply but will focus instead on having the team develop the skills so
that it can add these techniques to its bag of tricks—to be pulled
out and used at the appropriate point in the project.

Chapter 5. Business Modeling

Key Points

• Business modeling is a problem analysis technique
especially suitable for the IS/IT environment.

• The business model is used to help define systems and
their applications.

• A business use case model, consisting of actors and
use cases, is a model of the intended functions of the
business.

• A business object model describes the entities that
deliver the functionality to realize the business use
cases, and how these entities interact.

In the context of the information system/information technology (IS/IT)
environment, the first problem to be solved has an even broader context than we
described in Chapter 4. In this environment, business complexity abounds, and
one typically needs to understand some of this complexity before even
attempting to define a specific problem worth solving. This environment consists
not simply of a user or two and their interface to a computer but rather of
organizations, business units, departments, functions, wide area networks, the
corporate intranet and extranet, customers, users, human resources, material
requirement planning (MRP) systems, inventory, management systems, and more.

In addition, even when we are focused on a specific application to be
implemented, we must continually remind ourselves of the broader context in
which the application operates. Perhaps this can be accomplished successfully by
asking the right questions, but as with any technique, there's more that can be
done in a specific context than in the more generic case.

In the IS/IT context, it would be helpful to have a technique by which we could
determine the answers to the following questions:

• Why build a system at all?
• Where should it be located?
• How can we determine what functionality is optimum to locate on a

particular system?

• When should we use manual-processing steps or workarounds?
• When should we consider restructuring the organization itself in order to

solve the problem?

Fortunately, there is a technique that's ideally suited to addressing this particular
problem, and that technique is business modeling.

Purpose of Business Modeling

Within the context of this book, we can think of the terms "business" and
"business modeling" in the broadest possible context. For example, your business
may be the business of software development or manufacturing welding robots,
or you may wish to model a not-for-profit business or service organization or an
intradepartmental process or internal work flow.

In any case, the purpose of business modeling is twofold:

• To understand the structure and dynamics of the organization
• To ensure that customers, end users, and developers have a common

understanding of the organization

This approach gives the team a logical approach to defining where software
applications can improve the productivity of the business and to assist in
determining requirements for those applications.

Using Software Engineering Techniques for Business
Modeling

Of course, a variety of techniques can be applied to business modeling. However,
it's rather convenient that, as software developers, we have at our disposal a rich
set of tools and techniques that we already use to model our software. Indeed,
we already know how to model entities (objects and classes), relationships
(dependencies, associations, and so on), complex processes (sequences of
activities, state transitions, events, conditionality, and so on), and other
constructs that occur naturally in the context of designing our software
applications.

If we could apply these same techniques to business modeling, we would be
speaking the same language in both contexts. For example, a "thing," such as a
payroll withholding stub, described in the business domain might relate to a
"thing" that appears again in the software domain—payroll withholding record, for
example. If we can be fortunate enough to use the same techniques or very
similar techniques for both problem analysis and solution design, the two
activities can share these same work products.

Choosing the Right Technique

Historically, we have seen that modeling techniques that were developed and
matured in the software domain inspire new ways of visualizing an organization.
Since object-oriented visual modeling techniques have become common for new
software projects, using similar techniques in the business domain comes
naturally. This methodology has been well developed by Jacobson, Ericsson, and
Jacobson (1994) and others.

The 1980s and 1990s saw a rapid proliferation of both business modeling
techniques and software development methodologies. However, they were all
different! At the center of this activity were the various object-oriented (OO)
methods and notations developed by various software engineering experts and
methodologists.[1] Fortunately, these methodology "wars" are over, and the
industry has settled on an industry standard—the Unified Modeling Language, or
UML—for modeling software-intensive systems.

[1] Various OO methods included the Booch method, by Grady Booch from Rational Software; the Object
Modeling Technique by James Rumbaugh, then at GE; Responsibility-Driven Design, by Rebecca Wirfs-Brock
at Tektronix; Object Oriented Software Engineering, by Ivar Jacobson, then at Objectory in Sweden; the
Coad-Yourdon method, by Peter Coad and Ed Yourdon; and a half dozen more.

The Unified Modeling Language (UML)

In late 1997, a graphical language "for visualizing, specifying constructing, and
documenting the artifacts of a software intensive system" was adopted as an
industry standard (Booch, Jacobson, and Rumbaugh). The Unified Modeling
Language[2] provides a set of modeling elements, notations, relationships, and
rules for use that could be applied to a software development activity. However,
the UML can also be used to model other applications, such as system modeling
and business modeling. A tutorial on UML is outside the scope of this book. (For
this, refer to the three companion books on the UML: Booch, Rumbaugh, and
Jackson (1999), The United Modeling Language User Guide; Jacobson, Booch, and
Rumbaugh (1999), The Unified Software Development Process; and Rumbaugh,
Booch, and Jacobson (1998), The Unified Modeling Language Reference Manual.)
However, we will use some key concepts from the UML in this section and will
build on this foundation in succeeding sections of this book.

[2] UML v1.1 was adopted by the international Object Management Group (OMG) in 1997 after the original
creators at Rational Software (Booch, Jacobson, and Rumbaugh) built a broad-based industry consortium
and included concepts from other methods, as well as a public feedback and revision process.

Business Modeling Using UML Concepts

One of the goals of business models is to develop a model of the business that
can be used to drive application development. Two key modeling constructs that
can be used for this purpose are a business use-case model and a business object
model.

A business use-case model is a model of the intended functions of the business
and is used as an essential input to identify roles and deliverables in the
organization. As such, the business use-case model consists of the actors—users
and systems that interact with the business—and the use cases—sequences of
events by which the actors interact with the business elements to get their job
done. Together, the actors and the use cases describe who is involved in the
business activities and how these activities take place. Figure 5-1 shows the
business use-case model. Note that the oval icon used to represent the business
use-case has a slash, indicating a business-level use case rather than a system-
level use case.[3]

[3] The icon is one of many standard UML stereotypes. For further discussion of the modeling icons, see
Rational Software Corporation (1999).

Figure 5-1 Business use-case model

A business use-case model, then, consists of business actors and business use
cases, with the actors representing roles external to the business (for example,
employees and customers) and the business use cases representing processes.
Examples of a business use-case model might be

• "Deliver electronic pay stub to employee."
• "Meet with customer to negotiate contract terms."

Examples of business actors might include

1. "Customer"
2. "Employee"
3. "Software developer"

The business object model describes the entities—departments, paychecks,
systems—and how they interact to deliver the functionality necessary to realize
the business use cases. Figure 5-2 represents the business object model. The
actor-circle icon represents a worker who appears within the business process,
such as a payroll clerk or a system administrator. The slashed circle represents a
business entity or something that business workers produce, such as a paycheck
or a ball bearing or a source file.[4]

[4] Ibid.

Figure 5-2 Business object model

A business object model also includes business use-case realizations that show
how the business use cases are "performed" in terms of interacting business
workers and business entities. To reflect groups or departments in an
organization, business workers and business entities may be grouped into
organizational units.

Taken together, the two models provide a comprehensive overview of how the
business works and allow the development team to focus on the areas in which
systems can be provided that will improve the overall efficiency of the business.
The models also help the team to understand what changes will have to take
place within the business processes themselves in order for the new system to be
effectively implemented.

From the Business Models to the Systems Model

One advantage of this approach to business modeling is the clear and concise
way of showing dependencies between models of the business and models of the
system. This clarity improves the productivity of the software development
process and also helps ensure that the system being developed solves the real
business need. See Figure 5-3.

Figure 5-3 Business/system models

The translation between the two can briefly be summarized as follows.

• Business workers will become actors to the system we are developing.
• Behaviors described for business workers are things that can be

automated, so they help us find system use cases and define needed
functionality.

• Business entities are things we may want the system to help us maintain,
so they help us find entity classes in the analysis model of the system.

In performing the translation, business modeling facilitates the process of moving
from an understanding of the business and problems within the business to the
potential applications that may be implemented to deliver solutions to the
problems identified.

When to Use Business Modeling

Business modeling is not something that we recommend for every software
engineering effort. Business models add most value when the application
environment is complex and multidimensional, and when many people are
directly involved in using the system. For example, if you were building an
additional feature to an existing telecommunication switch, you would not
consider business modeling. On the other hand, if you were building the order
entry system for GoodsAreUs, we could have used business modeling to good
advantage to support problem analysis.

Summary

In this chapter, we discussed a specific problem analysis technique, business
modeling. In so doing, we defined

• Why you might need to model the business
• How, using the UML, we transpose techniques developed for software

engineering and use them for business modeling
• The primary artifacts of business modeling, the business use-case model,

and the business object model
• How you can define software applications and derive software

requirements from models of the business.

Looking Ahead

In the next chapter, we'll look at systems engineering of software systems,
another problem analysis technique, that will help give a shape to applications of
the embedded-systems type.

Chapter 6. Systems Engineering of
Software-Intensive Systems

Key Points

• Systems engineering is a problem analysis technique
especially suitable for embedded systems
development.

• System engineering helps us understand the
requirements imposed on software applications that
run within the solution system.

• Requirements flowdown is primarily a matter of
ensuring that all system requirements are filled by a
subsystem or a set of subsystems collaborating.

• Today, the system must often be optimized for
software costs rather than for hardware costs.

In Chapter 5, we looked at business modeling, a problem analysis technique for
IS/IT applications. Business modeling helps us to determine what application we
should build and where we should run that application, within the context of the
computing environment of the company and the departments, buildings, and

political and physical constructs of the company itself. In other words, this
analysis can help us to determine why and where an application should come into
existence. In so doing, of course, we make a subtle shift from the problem space
to an initial look at the solution space, wherein the functionality that resolves the
problem will exist on one or more applications that meet the user's ultimate need.

In the embedded-systems business, however, the problem domain and the
solution domain look entirely different. Instead of departments, people, and
processes, the domains consist of connectors and power supplies, racks of
equipment, electronic and electrical components, hydraulic and fluidic handling
devices, other software systems, mechanical and optics subsystems, and the like.
Here, business modeling cannot provide much value. Instead, we must look to a
different strategy to help us determine the why and where questions. Here, we
find ourselves in the realm of the systems engineer.

What Is Systems Engineering?

According to the International Council on Engineering Systems (INCOSE 1999):

Systems engineering is an interdisciplinary approach and means to enable the
realization of successful systems. It focuses on defining customer needs and
required functionality early in the development cycle, documenting requirements,
then proceeding with design synthesis and system validation while considering
the complete problem:

• Operations
• Performance
• Test
• Manufacturing
• Cost and Schedule
• Training and Support
• Disposal

Systems engineering integrates all the disciplines and specialty groups into a
team effort forming a structured development process that proceeds from
concept to production to operation. Systems Engineering considers both the
business and the technical needs of all customers with the goal of providing a
quality product that meets the needs of the user.

Phew. That's a long one. From this definition, however, it does appear that
systems engineering can be considered a problem analysis technique, albeit one
that we can't hope to fully cover in a book on software requirements
management! (For more on systems engineering, see Rechtin (1997).)

Within the scope of this book, however, systems engineering can help us
understand the needs of the problem space and the requirements that are to be
imposed on the solution. In this context, systems engineering helps us
understand the requirements that are going to be imposed on any software
applications that run within the solution system. In other words, we'll apply
systems engineering as a problem analysis technique to help us understand the
requirements for our software applications, whether they run on an embedded
microprocessor or a UNIX system within the context of a worldwide
telecommunications system.

Pragmatic Principles of Systems Engineering

If we choose to view systems engineering as a problem analysis technique, the
specific steps, or at least the basic principles of the discipline, should provide us
with the steps we need to apply to use systems engineering to analyze the
problem in our requirements context. The INCOSE Systems Engineering Practices
working group (INCOSE 1993) defined a basic set of eight systems engineering
principles.

• Know the problem, know the customer, and know the consumer.
• Use effectiveness criteria based on needs to make the system decisions.
• Establish and manage requirements.
• Identify and assess alternatives so as to converge on a solution.
• Verify and validate requirements and solution performance.
• Maintain the integrity of the system.
• Use an articulated and documented process.
• Manage against a plan.

This list identifies some pragmatic systems engineering principles. In point of fact,
however, a subset of the systems engineering discipline is based on another
process, the successive decomposition of complex systems into simpler ones.

The Composition and Decomposition of Complex
Systems

With this process, a complex problem, the system (Figure 6-1), is decomposed
into smaller problems—subsystems (Figure 6-2). Each subsystem can be
reasoned about, successfully designed and manufactured, and then integrated to
produce the solution system. The engineering disciplines that support the
approach to system decomposition are implied in the attributes of the preceding
definition, such as understanding the operational characteristics,
manufacturability, testability, and so on.

Figure 6-1

Figure 6-2 A system composed of two subsystems

This decomposition, or successive refinement, process proceeds until the systems
engineer achieves the right results, as provided by quantitative measures that are
specific to the specific systems engineering domain. In most cases, the
subsystems defined in the initial composition are themselves further decomposed
into subsubsystems, with the result appearing as in Figure 6-3.

Figure 6-3 A subsystem composed of two subsystems

In the most complex systems, this process continues until a large number of
subsystems are developed. (The F22 fighter aircraft, for example, is said to be
composed of 152 such subsystems.)

The systems engineer knows that the job is done and is "right" when

• Distribution and partitioning of functionality are optimized to achieve the
overall functionality of the system with minimal costs and maximum
flexibility.

• Each subsystem can be defined, designed, and built by a small, or at least
modest-sized, team.

• Each subsystem can be manufactured within the physical constraints and
technologies of the available manufacturing processes.

• Each subsystem can be reliably tested as a subsystem, subject to the
availability of suitable fixtures and harnesses that simulate the interfaces
to the other system.

• Appropriate deference is given to the physical domain—the size, weight,
location, and distribution of the subsystems—that has been optimized in
the overall system context.

Requirements Allocation in Systems Engineering

Assuming that the systems engineering has resulted in a good job of defining the
requirements for the system, the requirements management problem is still not
complete. For what of these subsystems? What requirements are to be imposed
on them? In some cases, the process is one of assigning a system-level
requirement to a subsystem ("subsystem B will execute the windspeed algorithm
and drive the heads-up display directly"). This requirements flowdown process is
primarily a matter of making sure that all system requirements are fulfilled by a
subsystem somewhere or by a set of subsystems collaborating together.

On Derived Requirements

Sometimes, we discover that we have created a whole new requirements class—
derived requirements—that must be imposed on the subsystem(s). Typically,
there are two subclasses of derived requirements.

1. Subsystem requirements are those that must be imposed on the
subsystems themselves but do not necessarily provide a direct benefit to
the end user ("Subsystem A must execute the algorithm that computes
the wind speed of the aircraft").

2. Interface requirements may arise when the subsystems need to
communicate with one another to accomplish an overall result. They will
need to share data or power or a useful computing algorithm. In these
cases, the creation of subsystems also further engenders the creation of
interfaces between subsystems (see Figure 6-4).

Figure 6-4 Interface between two subsystems

But are these derived requirements "true" requirements? Do we treat them the
same as other requirements? They don't seem to meet the definitions in

Chapter 2 (although they may well meet the definitions of design constraints that
we'll provide later in this book).

The important thing to recognize is that these requirements, although crucial to
the project success, are derived from the systems decomposition process. As
such, alternative decompositions would have created alternative derived
requirements, so these requirements are not first-class citizens in the sense that
they do not reflect requirements that came from our customer. However, from
the viewpoint of a subsystem supplier, they are first-class citizens because they
reflect requirements imposed by the customer (the system developer).

No magic answer exists. How we treat these requirements is based on the
development team's role in the project, the systems decomposition, and other
technological factors as well. So, the important thing to know is "how we got
here" and to treat the requirements appropriately to the case. The important
thing to recognize is that the specification of derived requirements will ultimately

affect the ability of the system to do its job, as well as the maintainability and
robustness of the system.

A Quiet Revolution

System engineering has traditionally been a discipline applied primarily to
physical systems, such as aircraft and airframes, brakes and brake pads, power
supplies and power consuming devices, and so on. However, during the last 20 or
so years, a quiet revolution has occurred in the systems engineering of complex
systems. Gradually, in transportation, telecommunication, industrial equipment,
medical equipment, scientific instruments, and many others industries, the
systems and devices have become smarter and smarter and smarter. To meet
this increasing demand for complexity and sophistication, more and more of the
delivered functionality has become allocated to software subsystems rather than
to hardware components. Software is softer after all, and many algorithms for
measuring, metering, assaying, and detecting are much easier, or at least much
cheaper in terms of parts cost, to implement in software than they are in
hardware. More important, they are much easier to change.

So, in industry after industry, the innate intelligence of the device has moved
from the hardware components, where they were previously implemented in a
combination of electrical and electronic systems, mechanical systems, and even
physical chemistry systems, to the software components, where they are
implemented in software or firmware on microprocessors or complete
minicomputer subsystems.

When Generations Collide: Graybeard Meets Young
Whippersnapper

For decades, systems engineers were some of the most senior project engineers
in the industry. Battle scarred and field tested, many of these senior systems
engineers were specialists in specific disciplines, such as mechanical and
electronic engineering, and many were some of the best generalists on the team.
They had witnessed the largest disasters and had experienced many triumphs.
Older and wiser now, they knew the specific application domain—radios, airplanes,
HVAC, robotics, materials-handling equipment—incredibly well and were also
aware of the differing technical, economic, and political facets of technology
implementation.

But suddenly, a new breed of individual invaded their turf. These newcomers—the
programmers, or on a good day, software engineers—were relatively
inexperienced in complex systems and didn't know weight and balance or global
systems optimization from their navel, but they could make a microprocessor sing
in assembly language. In addition, they seem to have been formed from a
different gene pool, or at least a different generation, which added the
complexities of culture and generation clash to the systems engineering process.
Many interesting situations developed.

For a while, the turf battle was even, and the systems engineers made the
ultimate calls for system partitioning and allocation of functionality. But in many
industries, software technology gradually took over, and systems engineering
became dominated, at least in part, by the need to engineer for flexible software
functionality within the system. There were a number of solid technical reasons
for this transition. Over time, a number of facts became obvious.

• Software, not hardware, will determine the ultimate functionality of the
system and the success of the system in the end user's hands and in the
marketplace.

• Software, not hardware, will consume the majority of the costs of research
and system development.

• Software, not hardware, will be on the critical path and will, therefore,
ultimately determine when the system goes to the marketplace.

• Software, not hardware, will absorb most of the changes that occur during
system development and will be evolved over the next few years to meet
the changing needs of the system.

And perhaps most surprisingly,

• The cost of software development and maintenance, taken in the
aggregate and amortized over the full life of the product, became material
to, or in some cases equal to or greater than, the contribution of hardware
costs of goods sold to that holy grail of systems manufacturers: total
manufacturing costs.

This last one was a killer, because it meant that you must consider optimizing the
system not for hardware or manufacturing costs but for development,
maintenance, evolution, and enhancement of the software contained in the
system. This changed the game significantly. For now, the systems engineering
must be performed with one eye on the computers to be used. Often, this meant

• Maximizing the system's ability to execute software by providing more
than adequate computing resources, even at the expense of cost of goods
sold, adding more microprocessors, RAM, ROM, mass storage, bandwidth,
or whatever resources the system requires to execute its software.

• Providing adequate communication interfaces between subsystems and
ensuring that the communications mechanism chosen (Ethernet, Firewire,
serial port, or single data line) is extensible, via the addition of software,
not hardware.

In turn, this change affected the requirements management challenge in two
ways.

• Each of these dimensions will create new requirements that the hardware
system must fulfill in order for a successful solution to be built.

• The bulk of the requirements problem moved to the software application.

Fortunately, at least for the latter, that is the subject of this book, and we hope to
prepare you well for this particular problem.

Avoiding the Stovepipe System Problem

This is all, or at least mostly, well and good. Dealing with systems of complexity
requires nontrivial approaches, and a system of subsystems is a means to this
end. Surely, the alternatives are worse, as we would end up with incredibly
complex systems that no one could possibly understand, with indeterminate
behavior, and design based on shared functionality, poor partitioning, and
threaded code in such a way as could never be unraveled. Systems engineering
seems like a good thing.

How does this affect requirements management? When the final tally is made, we
will discover that subsystem requirements are far more numerous than external
requirements, or those that affect the behavior of the system in the user's
environment. In the end, we will invest far more in prioritizing, managing, and
identifying the subsystem requirements than those that affect the end user. This
doesn't seem like a completely positive thing.

And what happens if we don't do a good job of systems engineering? The system
will become brittle and will resist change because the weight of the requirements
assets will "bind" us to the implementation. Our subsystem requirements have
taken control of our design flexibility, and a change in one will have a ripple effect
in other subsystems. These are the "stovepipe" systems of legend, and such
systems resist change. In their interfaces, the problems may be worse. If the
interfaces are not properly specified, the system will be fragile and will not be
able to evolve to meet changing needs without the wholesale replacement of
interfaces and entire subsystems that were based on them.

When Subsystems Are Subcontracts

A further complication often arises. Since subsystems are typically developed by
different teams—after all, that's one of the reasons we create subsystems—the
subsystem requirements and interfaces tend, in effect, to become contracts
between the teams. ("My subsystem delivers the results of the wind speed
computation in exactly this format….") Indeed, in some cases, the subsystem
may be developed by a subcontractor whose paystub has a different logo from
yours. In this case, our requirements challenge has left the system and technical
context and has instead become a political "football." ("Darn. The requirements
cannot be changed unless the contract is renegotiated.") Soon, the project can be
all "bound up in its shorts." A severe word of warning: Many large-scale system
efforts have met their death at the hands of this problem.

Making It Work Out Right

What should we do? Well, doing a good job of systems engineering is a primary
goal. As you participate in this activity for software-intensive systems, you may
want to consider the following recommendations

• Develop, understand, and maintain the high-level requirements and use
cases that span the subsystems and that describe the overall system
functionality. These use cases will provide context for how the system is
supposed to work and will make sure that you "don't miss the forest for
the trees." They will also help ensure that the systems architecture is
designed to support the most likely usage scenarios.

• Do the best possible job of partitioning and isolating functionality within
subsystems. Use object technology principles: encapsulation and
information hiding, interface by contract, messaging rather than data
sharing—in your systems engineering work.

• If possible, develop software as a whole, not as several individual pieces,
one for each physical subsystem. One of the characteristics of stovepipe
systems is that on both sides of the interface (well or badly defined), the
software needs to reconstruct the state of key elements (objects) that are
needed for making decisions on both sides; unlike hardware, the allocation
of requirements to both sides does not represent a clear partition.

• When coding the interfaces, use common code on both sides of the
interface. Otherwise, there will likely be subtle variations, often blamed on

"optimizations," that will make this synchronization of states very difficult.
Then, if the boundary between the two physical subsystems later
disappears—that is, systems engineering finds out that processors are
good enough to support both subsystems A and B—software engineers will
have a hard time "merging" the two bodies of software.

• Define interface specifications that can do more than would be necessary
to simply meet the known conditions. Invest in a little extra bandwidth, an
extra I/O port, or some IC real estate to provide room for expansion.

Finally, see whether you can find one of those graybeards to help you with your
systems engineering. They've been down this path before, and their experience
will serve you wisely. Besides, you might help close the generation gap in the
process!

A Story: On Partitioning Large-Scale
Software Systems into Subsystems
for Distributed Development Teams

In class one day, Rusty, an experienced software manager,
approached us and stated the following problem. We had the
following dialogue.

Rusty: We are building a large-scale application that runs on a single
host system. Our development resources consist of two separate
teams of 30 people each; one team lives on the east side of the
river in New York City, and the other lives on the west side. The
two teams have different managers and different competencies.
How can we divide the work and create a system that will run
when we are done?

Us: Well, Rusty, one way to think of this problem is as a systems
engineering problem. That is, figure out how you would partition
the system into two sensible subsystems. Call them East and
West, and allocate requirements to the subsystems as if they
were in separate physical systems. Define an interface, complete
with the definition of common classes and common services to
be used, that allows the two subsystems (applications) to
cooperate to accomplish the overall system functionality.

Rusty: But won't I have then created an arbitrary system that is not
driven by true architectural concerns?

Us: True enough, in the technical sense. But separating concerns
along project team logistical lines and specific competencies may
be just as important.

Rusty: But won't I also create artificial interfaces and a potential
stovepipe system?

Us: Yes, in a sense, but we'd recommend that you have the interface
code for both sides developed by only one team. Otherwise,
there will be a lot of redundant work done between the two
teams. In so doing, you will indeed create new requirements for
the system, including interfaces that would otherwise not have
been necessary, or at least not as formalized as you will now
make them. And yes, it's important to be aware of the stovepipe

problem and to do everything you can to minimize coupling
between systems and to minimize the political issues that are
likely to result.

The Case Study

So much for a brief introduction to systems engineering. Now let's try to apply
what we have learned to HOLIS, our home lighting automation system. At this
point, we haven't spent much time trying to understand the requirements for
HOLIS. We'll do that in later chapters of the book. So in a sense, systems
engineering is premature. On the other hand, we probably understand enough to
make some first-level system design decisions, based on our experience, and our
understanding of likely requirements. In any case, we haven't committed
anything to hardware or software yet, and we can revisit these decisions later on.
In the iterative process described later, we'll visit systems architecture and
system requirements interactively, so this is not a bad time to begin.

Preliminary User Needs

Let's assume that a few reasonably well-understood user needs have already
been defined for HOLIS.

• HOLIS will need to support "soft" key switches—individually programmable
key switches used to activate the lighting features in various rooms.

• Homeowners have requested that there be a means to program HOLIS
from a remote center so they can simply call in their needs and not be
bothered with "programming" HOLIS at all.

• Other prospective buyers have requested that HOLIS be programmable
from their home PCs and that they be provided with the ability to do all of
the installation, programming, and maintenance themselves.

• Still others have requested that the system provide a simple, push-button
control panel–type interface they can use to change HOLIS programming,
vacation settings, and so on, without having to use a PC.

• HOLIS needs to provide an emergency-contact system of some kind.

Problem Analysis

In analyzing the problem, the team first decided to develop three problem
statements, one of which seemed to state the obvious problem from the
company's perspective.

Problem Statement—For Lumenations
The problem
of

slowing growth in the company's core professional theater
marketplaces

affects the company, its employees, and its shareholders,
the result of
which

is unacceptable business performance and lack of substantive
opportunities for growth in revenue and profitability.

Benefits of new products and a potential new marketplace for the company's
products and services include

 • Revitalizing the company and its employees

 • Increased loyalty and retention of the company's

distributors

 • Higher revenue growth and profitability

 • Upturn in the company's stock price

The team also decided to see whether it could understand the "problem" from the
perspectives of a future customer (end user) and potential distributors/builders
(Lumenations' customers). Here's what the team came up with

Problem Statement for the Homeowner
The problem
of

the lack of product choices, limited functionality, and high cost of
existing home lighting automation systems

affects the homeowners of high-end residential systems,
the result of
which

is unacceptable performance of the purchased systems or, more
often than not, a decision "not to automate."

Benefits of the "right" lighting automation solution could include
 • Higher homeowner satisfaction and pride of ownership

 • Increased flexibility and usability of the residence

 • Improved safety, comfort, and convenience

Problem Statement for the Distributor
The problem
of

the lack of product choices, limited functionality, and high cost of
existing home lighting automation systems

affects the distributors and builders of high-end residential systems,
the result of
which

is few opportunities for marketplace differentiation and no new
opportunities for higher-margin products.

Benefits of the "right" lighting automation solution could include
 • Differentiation

 • Higher revenues and higher profitability

 • Increased market share

HOLIS: The System, Actors, and Stakeholders

Let's get back to our systems engineering project. From a systems perspective,
our first impression of the HOLIS system is simply that of a system inside the
homeowner's house. Figure 6-5 is a simple systems diagram showing HOLIS in
the context of the homeowner's home.

Figure 6-5 System context:HOLIS in its environment

Step 3 of problem analysis requires that we identify the stakeholder and users of
the system. Step 4 of problem analysis is to define the system boundary of the
solution system. Given the additional user need data we have just been given, we
can now improve our understanding of HOLIS's system context by identifying the
actors that will interact with HOLIS. Figure 6-6, shows the four actors:

Figure 6-6 HOLIS with actors

1. The homeowner who uses HOLIS to control the lighting
2. The various lights that HOLIS, in turn, controls
3. Lumenations Services, the manufacturer that has the ability to remotely

dial HOLIS and perform the remote programming
4. Emergency Receiver, an undefined actor who will likely receive emergency

messages

Of course, the team also discovers that a number of "nonactor" stakeholders,
both internal and external to the company, care about the requirements for
HOLIS, as Table 6-1 shows.

HOLIS Systems Engineering

Now that we understand the external actors for HOLIS, let's do some systems-
level thinking to consider how we might partition HOLIS into subsystems. This
process could well be driven by the following kinds of systems engineering
thinking

• It would be good if we could have common software within both the
controller device and the homeowner's PC; we'll pick a PC-based
implementation for both elements of the system.

• We're not yet certain what flexibility we are going to need in the remote
softkey switches, but it's clear that there will be many of them, that some
of them will be a fair distance from the main control unit, and that we'll
probably need some intelligent communication between those and the
control unit.

Table 6-1. Nonactor stakeholders for HOLIS
Item Name Comments

External
Distributors Lumenations' direct customer
Builders Lumenations' customer's customer: the general

contractor responsible to the homeowner for the end
result

Electrical contractors Responsible for installation and support
Internal
Development team Lumenation's team
Marketing/product
management

Will be presented by Cathy, product manager

Lumenations general
management

Funding and outcome accountability

With this minimalist thinking, we can come up with a new system perspective,
one in which HOLIS, the system, is composed of three subsystems: Control
Switch, the programmable remote switching device; Central Control Unit, the
central computer control system; and PC Programmer, the optional PC system
that some homeowners have requested. Now the block diagram appears as in
Figure 6-7.

Figure 6-7 HOLIS with subsystems and actors

Note that we seem to have identified a fifth actor—the homeowner again—but
who this time is using the PC to program HOLIS rather than to turn lights on and
off. This homeowner/programmer actor has different needs for the system in that
role and therefore is a separate actor to the system. We'll look again later to see
the various behaviors that this actor will expect of HOLIS.

The Subsystems of HOLIS

From a systems engineering and requirements perspective, the problem becomes
a little more complex. In addition to needing to understand the requirements for
HOLIS, the system, we'll now also need to understand the unique requirements
for each of HOLIS's three subsystems. We can use our actor paradigm again, at
the next level of system decomposition. In so doing, we come up with three new
block diagrams: Figures 6-8, 6-9, and 6-10.

Figure 6-8 Control switch subsystem with actors

Figure 6-9 PC Programmer subsystem with actors

Figure 6-10 Central Control Unit subsystem with actors

In Figure 6-8, when we look at the system perspective from the Control Switch
standpoint, we find yet another actor: Central Control Unit (CCU), another
subsystem. In other words, from a subsystem perspective, CCU is an actor on
Control Switch, and we'll need later to understand what kinds of requirements
and use cases CCU will impose on Control Switch. This set of requirements is
derived from our system decomposition.

In Figure 6-9, the systems perspective from the viewpoint of the homeowner's PC,
we don't seem to learn anything new, at least in terms of actors and subsystems,
as they've all been identified before. Figure 6-10, however, presents a slightly
richer view, and we see that CCU has more actors than anyone else. This seems
to make intuitive sense, as we have started thinking about CCU as the brains of
HOLIS, so it makes sense to think that it has the most stuff to do and the most
actors to do it for.

To complete the problem analysis, look at Table 6-2, which itemizes the
constraints that the team identified, discussed, and agreed to between the HOLIS
development team and Lumenations management.

Table 6-2. Constraints for HOLIS project

ID

Description Rationale

1 Version 1.0 would be released to
manufacturing by January 5, 2000.

The only product launch
opportunity this year.

2 The team would adopt UML modeling, OO-
based methodologies, and the Unified
Software Development Process.

We believe these technologies
will provide increased
productivity and more robust
systems.

3 The software for the Central Control Unit and
PC Programmer would be written in C++.
Assembly language would be used for the
Control Switch.

For consistency and
maintainability; also, the team
knows these languages.

4 A prototype system must be displayed at the
December Home Automation trade show.

To take distributors' orders for
Q1 FY 2000.

5 The microprocessor subsystem for the
Central Control Unit would be copied from the
professional division's advanced lighting
system project (ALSP).

An existing design and an
inventoried part.

6 The only Homeowner PC Programmer
configuration supported would be compatible
with Windows 98.

Scope management for release
1.0.

7 The team would be allowed to hire two new
full-time employees after a successful
inception phase, with whatever skill set was
determined to be necessary.

Maximum allowable budget
expansion.

8 The KCH5444 single-chip microprocessor
would be used in the control switch.

Already in use in the company.

9 Purchased software components were
permissible, so long as there was no
continuing royalty obligation to the company.

No long-term cost of goods sold
impact for software.

That's enough problem analysis and systems engineering on HOLIS for now. We'll
revisit the case study in subsequent chapters.

Team Skill 1 Summary

Team Skill 1, Analyzing the Problem, introduced a set of skills that your team can
apply to understand the problem to be solved before application development
begins. We introduced a simple, five-step problem analysis technique that can
help your team gain a better understanding of the problem to be solved.

1. Gain agreement on the problem definition.
2. Understand the root causes of the problem.
3. Identify the stakeholders and users whose collective judgment will

ultimately determine the success or failure of your system.
4. Determine where the boundaries of the solution are likely to be found.
5. Understand the constraints that will be imposed on your team and on the

solution.

Analyzing the problem in this systematic fashion will improve your team's ability
to address the challenge ahead— providing a solution to the problem to be solved.

We also noted the variety of techniques that can be used in problem analysis.
Specifically, we looked at business modeling, which works quite well in complex
information systems that support key business infrastructures. The team can use
business modeling both to understand the way in which the business evolves and
to define where within the system we can deploy applications most productively.
We also recognized that the business model we defined will have parallel
constructs in the software application, and we use this commonality to seed the
software design phases. We will also use the business use cases we discovered
again later to help define requirements for the application itself.

For the class of software applications that we classify as embedded systems, we
used the systems engineering process as a problem analysis technique to help us
decompose a complex system into subsystems. This process helps us to
understand where software applications should lie and what overall purpose they
serve. In so doing, we also learned that we complicate requirements matters
somewhat by defining new subsystems, for which we must in turn come to
understand the requirements to be imposed.

Part III: Team Skill 2: Understanding
User Needs

• Chapter 7 The Challenge of Requirements Elicitation
• Chapter 8 The Features of a Product or System
• Chapter 9 Interviewing
• Chapter 10 The Requirements Workshop
• Chapter 11 Brainstorming and Idea Reduction
• Chapter 12 Storyboarding
• Chapter 13 Applying Use Cases
• Chapter 14 Role Playing
• Chapter 15 Prototyping

The Standish Group survey cited "lack of user input" as the most common factor
in challenged projects. Although 13 percent of respondents picked that cause as
the primary root cause, an additional 12 percent of respondents picked
"incomplete requirements and specifications." From this data, it's apparent that,
for over one quarter of all challenged projects, a lack of understanding of the
users' (and most likely other stakeholders') real requirements was a serious
problem that interfered with the success of the project.

The most commonly cited factor on challenged projects was
"lack of user input." (Standish Group, 1994)

Unless we imagine that users worldwide are going to suddenly wake up one day
and start doing a better job of both understanding and communicating their
requirements, it's obvious that our development teams are going to have to take
the initiative. In other words, our teams need to develop the necessary skills to
elicit these requirements.

In Team Skill 1, we developed the skills that will help you understand the
problem being solved. In Team Skill 2, we describe a number of techniques the
development team can use to gather and to understand the real needs of
prospective users and other stakeholders. In so doing, we'll also start to gain an
understanding of the potential requirements for a system that we will develop to

address these needs. While we do this, we will be focusing primarily on
stakeholder needs, which live at the top of the requirements pyramid.

The techniques we look at range from simple, inexpensive, and straightforward
techniques, such as interviewing, to modestly expensive and quite technical
techniques, such as prototyping. Although no one technique is perfect in every
case, exposure to a variety of techniques will provide the team with a rich set of
skills to choose from. For each specific project, the team can then pick from the
available techniques and apply the experience and knowledge gained from the
elicitation effort on prior projects. In this way, the team will develop a set of skills
that are unique and well suited to their environment and that can actively
contribute to improved outcomes.

Chapter 7. The Challenge of
Requirements Elicitation

Key Points

• Requirement elicitation is complicated by three
endemic syndromes.

• The "Yes, But" syndrome stems from human nature
and the users' inability to experience the software as
they might a physical device.

• Searching for requirements is like searching for
"Undiscovered Ruins"; the more you find, the more you
know remain.

• The "User and the Developer" syndrome reflects the
profound differences between the two, making
communication difficult.

In the next few chapters, we will look at a variety of techniques for
eliciting requirements from the users and other stakeholders of the
system.[1] This process seems so straightforward. Sit down with the
future users of the system and other stakeholders and ask them
what they need the system to do.

[1] We use the term "user" generically in this context. The techniques apply to eliciting requirements from all
stakeholders, both users and non-users.

Why is this so difficult? Why do we need so many techniques?
Indeed, why do we need this team skill at all? In order to gain a
fuller appreciation of this particular problem, let's first take a look at
three syndromes that seem to complicate these matters immensely.

Barriers to Elicitation

The "Yes, But" Syndrome

One of the most frustrating, pervasive, and seemingly downright
sinister problems in all of application development is what we have
come to call the "Yes, But" syndrome, being our observation of the
users' reaction to every piece of software we have ever developed.
For whatever reason, we always observe two immediate, distinct,
and separate reactions when the users see the system
implementation for the first time:

• "Wow, this is so cool; we can really use this, what a neat job,
atta boy," and so on.

• "Yes, but, hmmmmm, now that I see it, what about this … ?
Wouldn't it be nice if … ? Whatever happened to … ?"

The roots of the "Yes, But" syndrome appear to lie deep in the
nature of software as an intangible intellectual process. To make
matters worse, our development teams typically compound the
problem by rarely providing anything earlier than production code
for the users to interact with and to evaluate.

The users' reaction is simply human nature and it occurs in various
other day-to-day circumstances. The users haven't seen your new
system or anything like it before; they didn't understand what you
meant when you described it earlier, and now that it's in front of
them—now, for the first time after months or years of waiting—they
have the opportunity to interact with the system. And guess what:
It's not exactly what they expected!

By analogy, let's compare this software process to the development
of mechanical devices whose technology and development process
predate software by a mere few hundred years or so. Mechanical
systems have a reasonably well-defined discipline of proof-of-
principle models, mockups, models, incremental prototyping, pilot
production devices, and so on, all of which have tangible aspects
and most of which look, feel, and act somewhat like the device
under development.

The users can see the early devices, touch them, reason about it,
and even interact with them well before detailed implementation is
complete. Indeed, specific technologies, such as stereo lithography,
wherein a rapid prototype is constructed overnight out of a vat of
goo, have been developed exclusively for the purpose of providing
early and immediate feedback on the conceptual definition of the
product. Yet in software, with its enormous complexity, we are
expected to get it right the first time!

As frustrating as it is, accepting the "Yes, But" syndrome as reality
may lead to real insights that will help team members mitigate this
syndrome in future projects

• The "Yes, But" syndrome is human nature and is an integral
part of application development.

• We can drastically reduce this syndrome by applying
techniques that get the "buts" out early. In so doing, we elicit
the "Yes, But" response early, and we then can begin to
invest the majority of our development efforts in software
that has already passed the "Yes, But" test.

The "Undiscovered Ruins" Syndrome

One of our friends was once a tour bus guide in the Four Corners
area, an area defined by the common borders of Colorado, New
Mexico, Utah, and Arizona. The tour bus route included the majestic
peaks of the La Plata mountain range and the sprawling ancient
Anasazi ruins of Mesa Verde and the surrounding area. Tourists'
questions are a constant source of amusement among the tour
guide crew and create a certain folk lore of the tour business. In
one summer season, our friend's favorite silliest-question-ever-
posed-by-a-stupid-tourist was, "So, ummm, how many
undiscovered ruins are there?"

In many ways, the search for requirements is like a search for
undiscovered ruins: The more that are found, the more you know
remain. You never really feel as though you have found them all,
and perhaps you never will. Indeed, software development teams
everywhere continually struggle to determine when they are done
with requirements elicitation, that is, when have they found all of
the requirements that are material or have found at least enough.

In order to help the team address this problem, we'll provide a
variety of techniques, both in the Team Skill 2 chapters and later
ones. Of course, as we described in Chapter 1, taking the time in
problem analysis to identify all of the stakeholders of the system is
of tremendous value, because many of these nonuser stakeholders
are often holders of otherwise undiscovered requirements. However,
as with finding all of the undiscovered ruins, we must acknowledge
that we are on a mission that can never be completed. But we also
understand that at some point, we will be able to say with
confidence, "We have discovered enough."

The "User and the Developer" Syndrome

Techniques for requirements elicitation are not new. Application
developers have strived for more than 40 years to do a better job.
What could possibly account for the fact that understanding user
needs remains one of our largest problems? Well, considering the
fact that few application developers have any training in any
elicitation techniques, it's perhaps not all that surprising.

Table 7-1. The user and the developer syndrome
Problem Solution

Users do not know what they want,
or they know what they want but
cannot articulate it.

Recognize and appreciate the user as
domain expert; try alternative
communication and elicita-tion techniques.

Users think they know what they
want until developers give them
what they said they wanted.

Provide alternative elicitation techniques
earlier: storyboarding, role playing,
throwaway proto-types, and so on.

Analysts think they understand user
problems better than users do.

Put the analyst in the user's place. Try role
play-ing for an hour or a day.

Everybody believes everybody else
is politically motivated.

Yes, its part of human nature, so let's get
on with the program.

The third syndrome arises from the communication gap between
the user and the developer. We call this syndrome the "User and
the Developer" syndrome. Users and developers are typically from
different worlds, speaking different languages and having different
backgrounds, motivations, and objectives.

Somehow, we must learn to communicate more effectively with
these "users from the other tribe." In an article on this subject,
Laura Scharer (1981) describes this syndrome and provides some
guidelines to help mitigate the problem. Combining her words with
our own experiences, Table 7-1 both summarizes the reasons for
this problem and suggests some solutions.

The hope is that with a better understanding of both the nature of
these problems and some approaches to mitigate them, developers
will be better prepared for the interesting work ahead.

Techniques for Requirements Elicitation

Gaining a better understanding of user needs moves us from the
domain of bits and bytes, where many developers are more
comfortable, into the domain of real people and real-world problems.
Just as a variety of techniques can be used for analyzing and
designing software solutions, a variety of techniques can be used to

understand user and stakeholder requirements. Some techniques
are suited to particular project teams and circumstances.

In Chapters 4, 5, and 6, we started down that path with problem
analysis, a set of questions we can ask about the constraints to be
imposed on the system, the business modeling technique we can
use for many applications, and the systems engineering technique
that we can apply to complex systems. In the following chapters,
we'll describe techniques that have proved effective in addressing
the three syndromes just discussed. Among the techniques we will
discuss are

• Interviewing and questionnaires
• Requirements workshops
• Brainstorming and idea reduction
• Storyboards
• Use cases
• Role playing
• Prototyping

The choice of a specific technique will vary, based on the type of
application, the skill and sophistication of the development team,
the skill and sophistication of the customer, the scale of the
problem, the criticality of the application, the technology used, and
the uniqueness of the application.

Chapter 8. The Features of a Product or
System

Key Points

• The development team needs to play a more active
role in eliciting the requirements for the system.

• Product or system features are high-level expressions
of desired system behavior.

• System features should be limited to 25–99, with fewer
than 50 preferred.

• Attributes provide additional information about a
feature.

Given some of the problems we've described in the earlier chapters,
it seems clear that the development team is rarely, if ever, handed
a perfect, or perhaps even reasonable, specification to use as the
basis for system development. In Chapter 7, we learned about the
reasons for this. One conclusion we can draw is that if we are not

going to be given better definitions, we are going to have to go out
and get them. In other words, in order to achieve success, the
development team is going to have to play a much more active role
in eliciting the requirements. As we'll discover, although we can
delegate the majority of this responsibility to a senior lead, analyst,
or product manager, in the end, the entire team will be involved at
one or more points in the process.

Stakeholder and User Needs

It seems obvious that the development team will build a better
system only if it understands the true needs of the stakeholder.
That information will give the team the information it needs to make
better decisions in the definition and implementation of the system.
This set of inputs, which we call stakeholder or user needs, or just
user needs, provides a crucial piece of the puzzle.

Often, these user needs will be vague and ambiguous. "I need
easier ways to understand the status of my inventory" or "I'd like to
see a big increase in the productivity of sales order entry," your
stakeholder might say. Yet, these statements set a most important
context for all of the activities that follow. Since they are so
important, we'll spend some significant time and energy trying to
understand them. We'll define a stakeholder need as

a reflection of the business, personal, or operational problem (or
opportunity) that must be addressed in order to justify
consideration, purchase, or use of a new system.

Features

Interestingly, when interviewed about their needs or requirements
for a new system, stakeholders typically describe neither of these
things, at least not in terms of the definitions we've provided thus
far. That is, stakeholders often tell you neither their real need—"If I
don't increase productivity in this department, I won't get my bonus
this year" or "I want to be able to slow this vehicle down as quickly
as possible without skidding"—nor the actual requirement for the
system—"I must reduce sales order entry transaction processing
time by 50 percent" or "The vehicle shall have a computer control
system for each wheel." Instead, they describe what seems to be an
abstraction somewhere between "I need a new GUI-based order
entry screen" and "I want a vehicle with ABS."

We call these high-level expressions of desired system behavior the
features of a product or system. These features are often not well
defined and may even be in conflict with one another. "I want

increased order processing rates" and "I want to provide a far more
user-friendly interface to help our new employees learn the
system"—but they are a representation of real needs nevertheless.

What is happening in this discussion? The stakeholder has already
translated the real need (productivity or safety) into a system
behavior that they have reason to believe will solve the real need
(see Figure 8-1). In so doing, the what ("I need") has subtly shifted
the to the how ("what I think the system should do to address this
need"). This is not a bad thing, as the user oftentimes has real
expertise in the domain and real insight into the value of the feature.
Also, because it is easy to discuss these features in natural
language and to document them and to communicate them to
others, they add tremendous richness to the requirements schema.

Figure 8-1 Needs and features are closely related

However, there is a caveat to this discussion, which is: If the team
leaves the discussion without an understanding of the need behind
the feature, then there is a real risk. If the feature does not solve
the real need for any reason, then the system may fail to meet the
user's objectives even though the implementation delivered the
feature that was asked for.

In any case, we find this high level of abstraction—these features—
to be very useful and a convenient way to describe the functionality
of a new system without getting bogged down in too much detail.
Indeed, we will drive most of our requirements activities from this
"feature" construct.

Earlier, we defined a feature as

a service the system provides to fulfill one or more stakeholder
needs.

With this definition, users' features can't be too far removed from
their needs, and we have a handy way to start to define the system.

Our focus in understanding user needs is on eliciting and organizing
the needs and features of the proposed system. Sometimes, we'll
get all needs and no features. Sometimes, we'll get all features and
no needs. Sometimes, we won't be able to tell them apart. But so
long as we are careful about the distinction in our own minds, we
should, all the time, be learning valuable information about what
the system must do.

Table 4-1. Features examples
Application Domain Example of a Feature

Elevator control system Manual control of doors during fire emergency.
Inventory control system Provide up-to-date status of all inventoried items.
Defect tracking system Provide trend data to assess product quality.
Payroll system Report deductions-to-date by category.
Home lighting automation
system (HOLIS)

Vacation settings for extended away periods.

Weapon control system Minimum of two independent confirmations of
attack authorization required.

Shrink-wrap application Windows 2000 compatibility.

Features are easily expressed in natural language and consist of a
short phrase; some examples are shown in Table 8-1. Rarely, if
ever, are features elaborated in more detail. Features are also very
helpful constructs for early product scope management and the
related negotiation and trade-off processes. The statement of
features does not entail a great deal of investment, and they are
easy to describe and list.

Managing Complexity by Picking the Level of
Abstraction

The number of features we permit ourselves to consider will
effectively pick the level of abstraction of the definition. To manage
the complexity of the systems we are envisioning, we recommend
that for any new system or for an increment to an existing system,
capabilities be abstracted to a high enough level so that a maximum
of only 25–99 features result, with fewer than 50 preferred.

In this way, a relatively small and manageable amount of
information provides a comprehensive and complete basis for

product definition, communication with the stakeholders, scope
management, and project management. With 25–99 features
suitably categorized and arranged, we should be able to describe
and to communicate the gestalt of the system, be it a space shuttle
("reentry and reuse") or a software tool ("automatic defect
trending"). In Team Skill 5, these features will be elaborated into
detailed requirements specific enough to allow for implementation.
We will call those software requirements to differentiate them from
the higher-level features. We'll deal with that need for additional
specificity later. For now, however, we'll keep our thinking at the
features level.

Once the set of possible features is enumerated, it will be time to
start making such decisions as "defer to a later release,"
"implement immediately," "reject entirely," or "investigate further."
This scoping process is best done at the level of features rather
than at the level of requirements, or you will be swamped in detail.
We'll cover scoping in Team Skill 4, Managing Scope.

Attributes of Product Features

In order to help us better manage this information, we introduce
the notion of feature attributes, or data elements that provide
additional information about the item. Attributes are used to relate
the feature or requirements data to other types of project
information. We can use attributes to track (name or unique
identifier, state, history data, allocated from, traced-to, and so on),
to prioritize (priority field), and to manage (status) the features
proposed for implementation. For example, the attribute priority
could be used to capture the results of the cumulative voting in a
brainstorming session; the attribute version number might be used
to record the specific software release in which we intend to
implement a specific feature.

By attaching various attributes to the features, you can better
manage the complexity of the information. Although there is no
limit to the types of attributes you might find useful, experience has
demonstrated that some common attributes for features apply to
most project circumstances (Table 8-2). In the remainder of this
book, we'll use these attributes to help us manage the complexity of
the feature and requirements data and to manage the relationships,
such as dependencies, among the various types of system
requirements.

So, let's move on to some team skills that will help us get the
information we need. We'll start with interviewing (Chapter 9).

Table 4-2. Attributes of features
Attribute Description

Status Tracks progress during definition of the project baseline and
subsequent development. Example: Proposed, Approved,
Incorporated status states.

Priority/Benefit All features are not created equal. Ranking by relative priority or
benefit to the end user opens a dialogue between stakeholders
and members of the development team. Used in managing scope
and determining priority. Example: Critical, Important, Useful
rankings.

Effort Estimating the number of team- or person-weeks, lines of code or
function points, or just general level of effort helps set
expectations of what can and cannot be accomplished in a given
time frame. Example: Low, Medium, High levels of effort.

Risk A measure of the probability that the feature will cause
undesirable events, such as cost over-runs, schedule delays, or
even cancellation. Example: High, Medium, Low risk level.

Stability A measure of the probability that the feature will change or that
the team's understanding of the feature will change. Used to help
establish development priorities and to determine those items for
which additional elicitation is the appropriate next action.

Target release Records the intended product version in which the feature will
first appear. When combined with the Status field, your team can
propose, record, and discuss various features without committing
them to development.

Assigned to In many projects, features will be assigned to "feature teams"
responsible for further elicita-tion, writing the software
requirements, and perhaps even implementation.

Reason Used to track the source of the requested feature. For example,
the reference might be to a page and line number of a product
specification or to a minute marker on a video of an important
customer interview.

Chapter 9. Interviewing

Key Points

• Interviewing is a simple and direct technique.
• Context-free questions can help achieve bias-free

interviews.
• Then, it may be appropriate to search for undiscovered

requirements by exploring solutions.
• Convergence on some common needs will initiate a

"requirements repository" for use during the project.
• A questionnaire is no substitute for an interview.

One of the most important and most straightforward requirements-
gathering techniques is the user interview, a simple, direct
technique that can be used in virtually every situation. This chapter
describes the interviewing process and provides a generic template
for conducting user and stakeholder interviews. However, the
interviewing process is not easy, and it forces us to get "up close
and personal" to the "User and the Developer" syndrome.

In addition, one of the key goals of interviewing is to make sure
that the biases and predispositions of the interviewer do not
interfere with a free exchange of information. This is a subtle and
pernicious problem. Sociology (oops, another class we missed!)
teaches us that it is impossible to relate to others without the world
filter that is the result of our own environment and cumulative
experiences.

In addition, as solution providers, we rarely find ourselves in a
situation in which we have no idea what types of potential solutions
would address the problem. Indeed, in most cases, we operate
within a repetitive domain or context in which certain elements of
the solution are obvious, or at least appear to be obvious. ("We
have solved this type of problem before, and we fully expect that
our experience will apply in this new case. After all, we are just
building houses, and hammers and nails work just fine.") Of course,
this is not all bad, because having context is part of what we get
paid for. Our point is that we shouldn't let our context interfere with
understanding the real problem to be solved.

The Interview Context

The Context-Free Question

So, how do we avoid prejudicing the user's response to our
questions? We do so by asking questions about the nature of the
user's problem without any context for a potential solution. To
address this problem, Gause and Weinberg (1989) introduced the
concept of the "context-free question." Examples of such questions
are

• Who is the user?
• Who is the customer?
• Are their needs different?
• Where else can a solution to this problem be found?

These questions force us to listen before attempting to invent or to
describe a potential solution. Listening gives us a better
understanding of the customer's problem and any problems behind

the problem. Such problems affect our customer's motivation or
behavior and must be addressed before we can deliver a successful
solution.

Context-free questions also parallel the questions salespeople are
taught to ask as part of a technique called "solutions selling." In
solutions selling, the salesperson uses a series of questions focused
on first gaining a real understanding of the customer's problem and
what solutions, if any, the customer already envisions. The intent of
these questions is to allow the salesperson to fully understand the
customer's real problem, so that effective solutions can be
suggested and weighed on their specific merits. This process
illustrates the value of the salesperson's wares as an element of a
complete solution to the customer's real problem.

Value-Added Context

In our search for undiscovered requirements, it may also be
appropriate to move the questions to a domain wherein solutions
are explored after the context-free questions have been asked and
answered. After all, most of us are not typically rewarded for simply
understanding the problem but rather for providing solutions
appropriate to the problems being solved. This addition of solution
context may give the user new insights and perhaps even a
different view of problem. And, of course, our users depend on us to
have context; otherwise, they would have to teach us everything
they know about the subject.

As an aid to building this skill within the development team, we
have combined these techniques into our "generic, almost context-
free interview," a structured interview that can be used to elicit user
or stakeholder requirements in most software application contexts.
The template for this interview is provided in Figure 9-1. The
interview consists of both context-free and non-context-free
sections. It also provides questions designed to make certain that
all aspects of requirements, including some of those "gotcha"
requirements for reliability, supportability, and so on, are
thoroughly explored.

Figure 9-1 The generic, almost context-free interview

The Moment of Truth: The Interview

With a little preparation and with the structured interview in one's
pocket, any member of the team can do an adequate job of
interviewing a user or customer. (But. it may be best to pick those
team members who are most "outgoing.") Here are some tips for a
successful interview.

• Prepare an appropriate context-free interview, and jot it down
in a notebook for reference during the interview. Review the
questions just prior to the interview.

• Before the interview, research the background of the
stakeholder and the company to be interviewed. Don't bore

the person being interviewed with questions you could have
answered in advance. On the other hand, it wouldn't hurt to
briefly verify the answers with the interviewee.

• Jot down answers in your notebook during the interview.
(Don't attempt to capture the data electronically at this time!)

• Refer to the template during the interview to make certain
that the right questions are being asked.

The interviewer should make sure that the script is not overly
constraining. Once rapport has been established, the interview is
likely to take on a life of its own. The customer may well launch into
a stream-of-consciousness dialogue, describing in gory detail the
horrors of the current situation. This is exactly the behavior you are
striving for. If this happens to you, do not cut it off prematurely
with another question; rather, write everything down as quickly as
you can, letting the user exhaust that particular stream of thought!
Ask follow-up questions about the information that has just been
provided. Then, after this thread has run to its logical end, get back
to other questions on the list.

After even a couple of such interviews, the developer/analyst will
have gained some knowledge of the problem domain and will have
an enhanced understanding of both the problem being solved and
the user's insights on the characteristics of a successful solution. In
addition, the developer can summarize the key user needs or
product features that were defined in the interview. These "user
needs" live near the top of our requirements pyramid and serve as
the driving force for all of the work that follows.

Compiling the Need Data

Your problem analysis will have identified the key stakeholders and
users you will need to interview to gain an understanding of the
stakeholder's needs. Typically, it does not take many interviews to
get a pretty solid feel for the issues.

The Analyst's Summary: 10 + 10 + 10 ? 30

The last section of the interview form, Analyst's Summary, is used
for recording the "three most important needs or problems"
uncovered in this interview. In many cases, after just a few
interviews, these highest-priority needs will start to be repeated.
This means that you may be starting to get convergence on some
common needs. This is to be expected, especially among those
users or stakeholders who share a common perspective. So, ten
interviews will often create only 10–15 different needs. This is the
start of your "requirements repository," a set of assets you will build

and use to good advantage over the course of your project. This
simple, inexpensive data, even by itself, will help you and your
team build a more solid foundation with which to initiate your
project.

The Case Study

The HOLIS team decided to have the marketing team (Eric and
Cathy) develop the questions for the interview but wanted everyone
on the team to experience the process and to have the opportunity
to meet customers face to face and thereby "see" the problem and
a potential solution from the customer's perspective. So, the team
divided up the customer and distributor list and had each team
member interview two people. The team used the Analyst's
Summary to summarize the needs that were provided and weeded
out the duplicates. After fifteen interviews, the team had identified
20-some needs to fill in the top of their requirements pyramid.

From the homeowner's perspective:

• Flexible and modifiable lighting control for entire house
• "Futureproof" ("As technology changes, I'd like compatibility

with new technologies that might emerge.")
• Attractive, unobtrusive, ergonomic
• Fully independent and programmable or (reconfigurable)

switches for each room in the house
• Additional security and peace of mind
• Intuitive operation ("I'd like to be able to explain it to my

'technophobic' mother.")
• A reasonable system cost, with low switch costs
• Easy and inexpensive to fix
• Flexible switch configurations (from one to seven "buttons"

per switch)
• Out of sight, out of mind
• 100% reliability
• Vacation security settings
• Ability to create scenes, such as special housewide lighting

settings for a party
• No increase in electrical or fire hazard in the home
• Ability, after a power failure, to restore the lights the way

they were
• Program it myself, using my own PC
• Dimmers wherever I want them
• Can program it myself, without using a PC
• Somebody else will program it for me
• If system fails, I still want to be able to turn some lights on
• Interfaces to my home security system

• Interfaces to other home automation (HVAC, audio/video, and
so on)

From the Distributor's Perspective:

• A competitive product offering
• Some strong product differentiation
• Easy to train my salespeople
• Can be demonstrated in my shop
• High gross margins

A Note on Questionnaires

We are often asked whether the team can substitute a
questionnaire for this interviewing process. In some cases, the need
expressed is perhaps a simple desire for efficiency ("I could do 100
questionnaires in the time it takes to do one interview.") In other
cases, the need itself may come under suspicion ("Do I really have
to talk to these people? Couldn't I just send them a letter?")

No matter what the motivation, the answer is no. There is no
substitute for the personal contact, rapport building, and free-form
interaction of the interview technique. We are confident that after
one or two interviews, your world view will have changed. Even
more important, the vision for the solution will have changed along
with it! Do the interview first. Do it for every new class of problem,
and do it for every new project.

However, when used appropriately, the questionnaire technique can
also play a legitimate role in gathering user needs. Although the
questionnaire technique is often used and appears scientific because
of the opportunity for statistical analysis of the quantitative results,
the technique is not a substitute for interviewing. When it comes to
requirements gathering, the questionnaire technique has some
fundamental problems.

• Relevant questions cannot be decided in advance.
• The assumptions behind the questions bias the answers.

Example: Did this class meet your expectations? Assumption: You had
expectations, so this is a meaningful question.

• It is difficult to explore new domains (What you really should
be asking about is …), and there is no interaction to explore
domains that need to be explored.

• Unclear responses from the user are difficult to follow up on.

Indeed, some have concluded that the questionnaire technique
suppresses almost everything good about requirements gathering,
and therefore, we generally do not recommend it for this purpose.

However, the questionnaire technique can be applied with good
effect as a corroborating technique after the initial interviewing and
analysis activity. For example, if the application has a large number
of existing or potential users and if the goal is to provide statistical
input about user or customer preferences among a limited set of
choices, a questionnaire can be used effectively to gather a
significant amount of focused data in a short period of time. In
short, the questionnaire technique, like all elicitation techniques, is
suited to a subset of the requirements challenges that an
organization may face.

Chapter 10. Requirements Workshops

Key Points

• The requirements workshop is perhaps the most
powerful technique for eliciting requirements.

• It gathers all key stakeholders together for a short but
intensely focused period.

• The use of an outside facilitator experienced in
requirements management can help ensure the
success of the workshop.

• Brainstorming is the most important part of the
workshop.

Accelerating the Decision Process

One of the prioritization schemes that we've used is blindingly
simple. Ask the stakeholder what one item they would pick if only
one feature could be implemented for the next release. Like the
thought of being hanged in a fortnight, this question focuses the
mind wonderfully on what really matters.

Applying this technique, if we were to give only one requirements
elicitation technique—one that we had to apply in every
circumstance, no matter the project context, no matter what the
time frame—we would pick the requirements workshop. The
requirements workshop may well be the most powerful technique in
this book and one of the few that, when mastered, can really help
change project outcomes, even when it's the only elicitation
technique applied.

The requirements workshop is designed to encourage consensus on
the requirements of the application and to gain rapid agreement on
a course of action, all in a very short time frame. With this
technique, key stakeholders of the project are gathered together for
a short, intensive period, typically no more than 1 or 2 days. The
workshop is facilitated by a team member or, better yet, by an
experienced outside facilitator and focuses on the creation or review
of the high-level features to be delivered by the new application.

A properly run requirements workshop has many benefits.

• It assists in building an effective team, committed to one
common purpose: the success of this project.

• All stakeholders get their say; no one is left out.
• It forges an agreement between the stakeholders and the

development team as to what the application must do.
• It can expose and resolve political issues that are interfering

with project success.
• The output, a preliminary system definition at the features

level, is available immediately.

Many organizations have had great success with the workshop
technique. Together, we have participated in hundreds of such
workshops, and rarely, if ever, has the workshop been unsuccessful
in meeting its desired goals. The workshop provides a unique
opportunity for stakeholders from various parts of the organization
to work together toward the common goal of project success.

In this chapter, you will learn how to plan and to execute a
successful requirements workshop. At the end of the chapter, we'll
apply the technique to our HOLIS case study.

Preparing for the Workshop

Proper preparation for the workshop is critical to success.

Selling the Concept

First, it may be necessary to sell the concept inside the organization
by communicating the benefits of the workshop approach to
prospective members of the team. This is typically not a difficult
process, but it's not unusual to encounter resistance: "Not another
meeting!"; "We can't possibly get all these critical people together
for one day," "You'll never get [name your favorite stakeholder] to
attend." Don't be discouraged; if you hold it, they will come.

Ensuring the Participation of the Right Stakeholders

Second, preparation also involves identifying stakeholders who can
contribute to the process and whose needs must be met in order to
ensure a successful outcome. These stakeholders will have already
been identified if the team executed the problem analysis steps, but
now is the time for one last review to make sure that all critical
stakeholders have been identified.

Logistics

Third, a conscientious approach to logistics is necessary and will pay
dividends in that a poorly organized workshop is unlikely to achieve
the desired result. Logistics involve everything from structuring the
proper invitation to travel arrangements to the lighting in the
workshop meeting room. A literal belief in Murphy's law—"Whatever
can go wrong will go wrong"—should be your guideline here. If you
approach logistics with a high degree of professionalism, it will be
obvious to the attendees that this is indeed an important event, and
they will act accordingly. You'll also have a more successful
workshop.

"Warm-Up Materials"

Fourth, send materials out in advance of the workshop to prepare
the attendees and also to increase productivity at the workshop
session. These materials set the attendees' frame of mind. We call
this "getting their mind right." One of the messages we need to
deliver is that this is not yet another meeting. This may be our one
chance to get it right.

We recommend that you provide two separate types of warm up
materials.

1. Project-specific information, which might include drafts of
requirements documents, bulleted lists of suggested features,
copies of interviews with prospective users, analyst's reports
on trends in the industry, letters from customers, bug reports
from the existing system, new management directives, new
marketing data, and so on. Although it's important not to bury
the prospective attendees in data, it's also important to make
sure that they have the right data.

2. Out-of-box thinking preparation. Part of "getting the mind
right" is encouraging attendees to think "out of the box."
"Forget for a minute what you know and what can't be done
due to politics." "Forget that we tried to get management
buy-in last time and failed." "Forget that we haven't yet

solidified our development process." "Simply bring your
insights on the features of this new project, and be prepared
to think 'out of the box.'" As workshop leader, you can assist
in this process by providing thought-provoking and
stimulating articles about the process of creativity, rules for
brainstorming, requirements management, managing scope,
and so on. In this atmosphere, creative solutions will more
likely result.

Tip

Do not send the data out too far in advance. You do not want the
attendees to read it and forget it, and you don't want the long
planning cycle to decrease their sense of urgency. Send the data
out anywhere from 2 days to 1 week in advance. In all likelihood,
the attendees will read on the plane or at the last minute, anyway.
That's OK; it will help them be in the right frame of mind for the
session.

To help you with your out-of-box thinking and to help set the
context for the workshop activity, we've provided a memo template
in Figure 10-1. Parenthetically, we'll also "read between the lines" a
little bit to provide insights on some of the challenges you may
already face in your project, and how the workshop is intended to
address them.

Figure 10-1 Sample memo for kickstarting a
requirements workshop

Role of the Facilitator

To ensure success, we recommend that the workshop be run by an
outsider who is also experienced in the unique challenges of the
requirements management process. However, if this is simply not
practical in your environment, the workshop could be facilitated by
a team member if and only if that person

• Has received some training in the process
• Has demonstrated solid consensus-building or team-building

skills
• Is personable and well respected by both the internal and

external team members
• Is strong enough to chair what could be a challenging meeting

However, if the workshop is to be facilitated by a team member,
that person must not contribute to the ideas and issues at the

meeting. Otherwise, the workshop is in grave danger of losing the
objectivity that is necessary to get at the real facts, and it may not
foster a trusting environment in which a consensus can emerge.

In any case, the facilitator has a pivotal role in making the
workshop a success. After all, you have all of the key stakeholders
gathered together, perhaps for the first and last time on the project,
and you cannot afford a misfire. Some of the responsibilities of the
facilitator are to

• Establish a professional and objective tone for the meeting.
• Start and stop the meeting on time.
• Establish and enforce the "rules" for the meeting.
• Introduce the goals and agenda for the meeting.
• Manage the meeting and keep the team "on track."
• Facilitate a process of decision and consensus making, but

avoid participating in the content.
• Manage any facilities and logistics issues to ensure that the

focus remains on the agenda.
• Make certain that all stakeholders participate and have their

input heard.
• Control disruptive or unproductive behavior.

Setting the Agenda

The agenda for the workshop will be based on the needs of the
particular project and the content that needs to be developed at the
workshop. No one agenda fits all. However, most structured
requirements workshops can follow a fairly standard format. Table
10-1 provides a typical agenda.

Table 10-1. Sample agenda for requirements workshop
Time Agenda Item Description

8:00–8:30 Introduction Agenda, facilities, and rules
8:30–
10:00

Context Project status, market needs,results of user
interviews, etc.

10:00–
12:00

Brainstorming Brainstorm features of application

12:00–
1:00

Lunch Working through lunch avoids loss of
momentum

1:00–2:00 Brainstorming Continues
2:00–3:00 Feature definition Write out 2- or 3-sentence definition for

features
3:00–4:00 Idea reduction and

prioritization
Prioritize features

4:00–5:00 Wrapup Summary and action items, address
"parking lot" items

Running the Workshop

Problems and Tricks of the Trade

You can see that the facilitator has a crucial role to play. To make
matters even more exciting, these workshops are often
characterized by a highly charged atmosphere. In other words,
there are reasons why it is difficult to get consensus on these
projects; nearly all of these reasons will be present at the workshop.

Indeed, the setting may even be politically charged, confrontational,
or both. This is yet another reason for having a facilitator; let the
facilitator take the heat and manage the meeting so as to not
exacerbate any problems—past, present, or future—among
stakeholders.

Many facilitators carry a "bag of tricks" with them to help manage
this highly charged atmosphere. At RELA, we evolved a set of highly
useful "workshop tickets." Although they seem pretty odd, and even
juvenile at first, you can trust us that they have proved their worth
in a variety of settings. The more difficult the workshop, the more
valuable they become! They also tend to spur "out-of-box" thinking.
What's more, they are fun and contribute to a positive tone for the
session. Figure 10-2 provides a sample set of workshop tickets. Feel
free to adapt them and use them, along with "instructions" for use.

Figure 10-2 Workshop tickets

Table 10-2 describes some of the problems that can occur in the
workshop setting and also provides suggestions on how you can use
the workshop tickets to address the problems. The facilitator must
also introduce these rules at the beginning of the meeting and,
ideally, reach a consensus that it's OK to use these silly tickets for
this one day.

Brainstorming and Idea Reduction

The most important part of the workshop is the brainstorming
process. This technique is ideally suited for the workshop setting,
and it fosters a creative and positive atmosphere and gets input
from all stakeholders. We'll cover brainstorming in the next chapter.

Production and Follow-Up

After the workshop, the facilitator distributes the minutes from the
meeting and records any other outputs. Then, the facilitator's job is
over, and responsibility for success is again in the hands of the
development team.

Table 10-2. Problems and solutions in the requirements workshop setting
Problem Solution

Time management:

• It's difficult to
get restarted
after breaks
and lunch.

• Key
stakeholders
may be late
returning.

Facilitator keeps a kitchen timer for the meeting and times
all breaks. Attendees who are late must contribute a late-
from-break ticket while they have them or pay $1 to
"charitable contributions" box.

Grandstanding,
domineering
positions

Facilitator enforces use of "5-Minute Position Statement" to
regulate input. Also creates a "parking lot" list for later
discussion of ideas that deserve discussion, but are not
relevant to the agenda item.

Lack of input from
stakeholders

Facilitator encourages attendees to use their "5-Minute-
Position Statements" and their "That's a Great Idea"
coupon. Make it clear that no one should leave the
workshops not having used the tickets or having received a
"That's a Great Idea" coupon from others.(Suggestion:
Make a simple reward for use of 5-minute ticket and receipt
of "That's a Great Idea" coupon).

Negative comments,
petty behaviors, and
turf wars

Use "Cheap Shot Tickets" until the participants don't have
any more; thereafter, have them make charitable
contributions to the box (group decides how much).

Flagging energy
after lunch

Light lunches, midafternoon snack breaks, rearrange room,
rearrange participants' seating, change lighting or
temperature. Do whatever you can do to keep things
moving.

Thereafter, the project leader has the responsibility to follow up on
any open action items that were recorded at the meeting and to
organize the information for distribution to the attendees. Often, the
output of the meeting will be a simple list of ideas or suggested
product features which can be turned over immediately to the
development team for further action. In some cases, additional
workshops with other stakeholders will be scheduled, or additional
elicitation efforts will be necessary to gain a better understanding of
the ideas fostered at the workshop. The creation of these ideas is
the crux of the entire workshop process. In the next chapter we'll
look more closely at this portion of the workshop process.

Chapter 11. Brainstorming and Idea
Reduction

Key Points

• Brainstorming involves both idea generation and idea
reduction.

• The most creative, innovative ideas often result from
combining multiple, seemingly unrelated ideas.

• Various voting techniques may be used to prioritize the
idea created.

• Although live brainstorming is preferred, Web-based
brainstorming may be a viable alternative in some
situations.

Whether you are in the workshop setting of Chapter 10 or whenever
you find yourself needing new ideas or creative solutions to
problems, brainstorming is a very useful technique. It's simple, easy
to do, and fun.

In the workshop setting, you probably already have a pretty good
idea of the features of the new product. After all, few projects start
out with a totally clean slate. However, in addition to reviewing the
suggested features for the product, the workshop provides the
opportunity to solicit new input and to mutate and combine these
new features with those already under consideration. This process
will also help us in our goal of "finding the undiscovered ruins" and
thereby making sure that we have completeness of our input and
that all stakeholder needs are addressed. Typically, a portion of the
workshop is devoted to brainstorming new ideas and features for
the application. Brainstorming is a collection of techniques that are
useful when stakeholders are collocated.

This elicitation technique has a number of primary benefits.

• It encourages participation by all parties present.
• It allows participants to "piggyback" on one another's ideas.
• A facilitator or scribe maintains a written trail of everything

discussed (so nothing is lost).
• It exhibits high bandwidth.
• Typically, it results in a broad set of possible solutions to

whatever problem is posed.
• It encourages out-of-the-box thinking, that is, without being

limited by normal constraints.

Brainstorming has two phases: idea generation and idea reduction.
The primary goal during idea generation is to delineate as many
ideas as possible; the goal is breadth of ideas, not necessarily depth.
The primary goal during idea reduction is to analyze all of the ideas
generated. Idea reduction includes pruning, organizing, ranking,
expanding, grouping, refining, and the like.

Live Brainstorming

Although brainstorming can be approached in many different ways,
the simple process we describe has proved effective in a variety of
settings. First, all of the significant stakeholders are gathered into
one room, and supplies are distributed. The supplies given to each
participant can be as simple as a stack of large sticky notes and a
thick black marker for writing on the notes. The sheets should be at
least 3" × 5" (7 cm × 12 cm) and no larger than 5" × 7" (12 cm ×
17 cm). Each participant should have at least 25 sheets for each
brainstorming session. Post-Its or index cards work well. If index
cards are used, push pins and a soft wall, such as a large cork
board, are also needed.

Then the rules of brainstorming are explained (see Figure 11-1),
and the objective of the session is clearly and concisely stated.

Figure 11-1 Rules for brainstorming

The facilitator also explains the objective of the process. Although it
may seem as though the objective that starts the process is rather
straightforward, it is not. The way it is stated has an effect on the
consequences of the session. For example, the following questions
are a few ways to state the objective.

• What features would you like to see in the product?
• What services would you like to see the product provide?
• What things would you like the product to keep track of?

(Note that the objective also helps you to decide when the session
is done. When the objectives are met and no one else has anything
to add, quit!)

After the objective of the process has been stated, the facilitator
asks participants to state their ideas aloud and to write them down,
one per sheet. Ideas are spoken out loud to enable others in the
room to piggyback on the ideas, that is, to think of related ideas
and to follow rule 4, to mutate and combine ideas. In this process,
however, the first rule—no criticism or debate—must be foremost in
people's minds. If this rule is not enforced, the process will be
squelched, and many bright folks who are sensitive to criticism will
not feel comfortable putting forth more ideas, a tragic loss.

Tip

In our experience, the most creative and innovative ideas—those
that truly revolutionized the product concept—were not the result of
any one person's ideas but instead resulted from combining multiple,
and seemingly unrelated, ideas from various stakeholders. Any
process that fosters this result is a powerful process indeed.

As they are generated, ideas are written down by the idea
generator on the supplied materials. This is important.

• To make sure that they are captured in that person's own
words

• To make sure that they are not lost
• To enable them to be posted for later piggybacking
• To prevent delays in the creative process that could be caused

by a single scribe trying to capture all ideas on a flip chart or
whiteboard in front of the room

As ideas are generated, the facilitator simply collects them and
posts them on a wall in the meeting room. Again, no criticism of
ideas can be tolerated. It is inappropriate to say, "That's a stupid
idea" or even "We already have that idea on the wall." The sole
purpose is to generate ideas. Even a mildly negative remark can
have the deleterious effect of suppressing further participation by
the "victim." However, remarks such as "Great idea!" are
appropriate and will often provide the award of a "That's a Great
Idea Ticket," which can encourage further participation by all
stakeholders. Idea generation should proceed until all parties feel
that it has reached a natural end.

It is common for lulls to occur during idea generation. These are not
times to stop the process. Lulls tend to correct themselves as soon
as the next idea is generated. Longer lulls might be cause for the
facilitator to re-ask the objective again or to ask similar questions.
Most idea-generation sessions last around an hour, but some last
2–3 hours. Under no condition should the facilitator end a session
that is going strong with a remark like "I know we're all doing great
with this process, but we need to move on." To the participants, this
remark says, "Your ideas are not as important as my schedule." The
number of ideas generated will be a function of how fertile the
subject being discussed is, but it is common to generate 100–200
ideas.

The process tends to have a natural end; at some point, the
stakeholders will simply run out of ideas. This is typified by longer
and longer gaps between idea submissions. At this point, the
facilitator brings an end to the session, and it may well be a great
time for a break.

Idea Reduction

When the idea-generation phase terminates, it is time to initiate
idea reduction. Several steps are involved.

Pruning

The first step is to "prune" those ideas that are not worthy of
further investment by the group. The facilitator starts by visiting
each idea briefly and asking for concurrence from the group that the
idea is basically valid. There is no reason for any participant to be
defensive or to claim authorship for any idea; any participant may
support or refute any idea.

Tip

The presence of ideas that can be easily pruned is an indicator of a
quality process. The absence of a fair number of wild and crazy
ideas indicates that the participants were not thinking far enough
"out of the box."

The facilitator simply asks the participants whether each idea is
worthy of further consideration and then simply removes an invalid
idea, but if there is any disagreement among the participants, the
idea stays on the list. If participants find two sheets with the same

idea, group them together on the wall. (This is usually preferable to
removing one; its author may feel insulted.)

Grouping Ideas

It may be helpful during this process to start grouping similar ideas.
Doing so is most effective when participants from the session
volunteer to go to the wall and do the grouping. Related ideas are
grouped together in regions of the walls. Name the groups of
related ideas. For example, the groups might be labeled

• New features
• Performance issues
• Enhancements to current features
• User interface and ease-of-use issues

Or, they may be specifically focused on capabilities of the system
and the way they support various types of users. For example, in
envisioning a new freight and delivery service, the features might
be grouped by

• Package routing and tracking
• Customer service
• Marketing and sales
• Web-based services
• Billing
• Transportation management

Idea generation can be reinitiated now for any one of these groups
if the participants feel that the grouping process has spurred
development of new ideas or that some area of key functionality
has been left out.

Feature Definition

At this point, it is important to take the time to write a short
description of what the idea meant to the person who submitted it.
This gives the contributor the opportunity to further describe the
feature and helps ensure that the participants have a common
understanding of the feature. This way, everyone understands what
was meant by the idea, thus avoiding a fundamentally flawed
prioritization process.

In this process, the facilitator walks through each idea that has not
been pruned and asks the submitter to provide a one-sentence
description.

Application
Context

Brainstormed
Feature Feature Definition

Home lighting
automation

"Automatic
lighting settings"

Homeowner can create preset time-based
schedules for certain lighting events to
happen, based on time of day.

Sales order
entry system

"fast" Fast enough response time to not interfere
with typical operations.

Defect tracking
system

"Automatic
notification"

All registered parties will be notified via e-mail
when something has changed.

A welding robot feature, such as "automatic reweld," may already
be sufficiently described, and no further work is required. However,
it is important to not bog down in this process; it should take no
longer than a few minutes per idea. You need capture only the
essence of the idea.

Prioritization

In some situations, the generation of ideas is the only goal, and the
process is complete. However, in most settings, including the
requirements workshop, it will be necessary to prioritize the ideas
that remain after pruning. After all, no development team can do
"everything that anybody can ever think of." Once the groupings
have stabilized and have been agreed to, it is time to move on to
the next step. Again, a variety of techniques can be used; we'll
describe two that we use routinely.

Cumulative Voting: The Hundred-Dollar Test. This simple test
is fun, fair, and easy to do. Each person is given $100 of "idea
money" to be spent on "purchasing ideas." (You may even wish to
add a kit of "idea bucks" to the workshop ticket inventory.) Each
participant is asked to write down on a sheet of paper how much of
this money to spend on each idea. Then, after the participants have
had a chance to vote, the facilitator tabulates the results and
provides an order ranking. It may also be helpful to do a quick
histogram of the result so participants can see the visual impact of
their decision.

This process is straightforward and usually works just great.
However, you should be aware of the following caveats. First, it will
work only once. You cannot use the same technique twice on the
project, because once the results are known, participants will bias
their input the next time around. For example, if you're a
participant and your favorite feature is first on the list but your
second-favorite feature didn't even get honorable mention, you may
put all of your money on the second feature. You're confident that
other voters will see to it that your favorite feature still makes the
cut.

Similarly, you may find it necessary to limit the amount anyone
spends on one feature. Otherwise, a tricky participant, knowing full
well that "other items" such as "Run faster" and "Easy to use" will
make the cut to the top of the list, might put all of their money on
"Runs on the Mac platform" and elevate it to a higher priority. On
the other hand, you may wish to allow a higher limit, so long as you
have the opportunity to understand where the really big votes came
from. They may represent high-priority needs from a limited
stakeholder community.

The "Critical, Important, Useful" Categorization A colleague
taught us another technique that has also been very effective,
especially with a small group of stakeholders or even just one
stakeholder, such as when you need your boss's opinion of your
priorities. In this technique, each participant is given a number of
votes equal to the number of ideas, but each vote must be
categorized "critical," "important," or "useful." The trick in this
technique is the rule that each stakeholder is given only one third of
the votes from each category; therefore, only one third of the ideas
can be considered critical.

• Critical means "indispensable," suggesting that a stakeholder
would not be able to use a system without this feature.
Without the feature, the system does not fulfill its primary
mission, its role and is therefore not worth releasing.

• Important means that there will be a significant loss of
customer utility or market share or revenue or new customer
segments served. If the important items don't get
implemented, some users would not like the product and
would not buy it.

• Useful means nice to have. The feature makes life easier,
makes the system more appealing, more fun, or delivers
higher utility.

Note

With this scheme, all ideas that survived the pruning process get at
least a "useful" vote, avoiding insult to those who submitted them.

In a larger group of participants, each item will have a mix of
categories, but this is not really a problem. The facilitator has one
more trick: Simply multiply "critical" votes times 9, "important" by 3,
and "useful" by 1 and add up the score! This will tend to spread the
results to heavily favor the "critical" votes, and thus every
stakeholder's "critical" need will bubble to the top of the list.

Web-Based Brainstorming

So far, we have discussed a process for brainstorming that works
very effectively when all stakeholders can be gathered together at
the same time, are relatively proactive and not overly shy, the
facilitator is experienced, and stakeholder politics is manageable.
Indeed, there is no substitute for the developers and outside
stakeholders spending this time together. Each will remember the
various hot buttons and issues addressed by the others, and
perspective and mutual respect are often byproducts of the process.
Therefore, the requirements workshop and live brainstorming are by
far our preferred approaches.

But sometimes, live brainstorming is not possible. In these
situations, an alternative is to use the Internet or an intranet to
facilitate the brainstorming process via the establishment of a
discussion group. This technique may be particularly suited for
developing advanced applications for which research is required or a
long-term view is critical, the concept is initially fuzzy, and a wide
variety and significant number of user and other stakeholders inputs
are involved.

With this technique, the project leader sponsors a list server or Web
page for recording and commenting on product features. The
recording of ideas and comments can be done either anonymously
or by crediting the author, based on the construct created by the
administrator. An advantage of this technique is its persistence;
ideas and comments can be circulated over a long period of time,
with full recording of all threads for each idea. Perhaps most
important, a unique advantage of this process is that ideas can
grow and mature with the passage of time.

The Case Study: The HOLIS 2000 Requirements
Workshop

Let's get back to our case study. While the interviewing process was
under way, the development team met with marketing and decided
to hold a requirements workshop for the HOLIS 2000 project.

Attendees

After thinking through the issues, the team decided not to bring in
an outside facilitator but instead to have Eric, director of marketing,
facilitate the workshop. The team also decided to have two
development team members participate in the workshop: Cathy,
the product manager, and Pete, the development manager. The
team felt that both Cathy and Pete would speak for the team, as

well as be able to contribute content, as they were both new
homeowners. Other team members would not participate but would
simply attend the workshop in order to observe the process, listen
to the customers, and see the results immediately.

The team also decided to include representation from the four
"classes" of customers and invited the following participants:

1. Distributors: John, CEO of the company's largest distributor,
and Raquel, the general manager of the company's exclusive
distributor in Europe

2. David, a local custom homebuilder with experience in
purchasing and installing competitive systems in the
marketplace

3. Betty, a local electrical contractor
4. Prospective homeowners, identified with the help of Betty,

who were in the process of building, or were considering
building a high-end residence.

The following list provides more detail on the participants.

Name Role Title Comments
Eric Facilitator Director of Marketing
Cathy Participant HOLIS 2000 Product

Manager
Project champion

Pete Participant Software Development
Manager

Development responsibility for
HOLIS 2000

Jennifer Participant Prospective homeowner
Elmer Participant Prospective homeowner
Gene Participant Prospective homeowner
John Participant CEO, Automation Equip Lumenations' largest

distributor
Raquel Participant GM, EuroControls Lumenations' European

distributor
Betty Participant President, Krystel

Electric
Local electrical contractor

David Participant President, Rosewind
Construction

Custom homebuilder

Various
members

Observer Development team All team members who were
available

The Workshop

Prior to the workshop, the team put together a warm-up package
consisting of

• A few recent magazines articles highlighting the trends in
home automation

• Copies of selective interviews that had been conducted
• A summarized list of the needs that had been identified to

date

Eric brushed up on his facilitation skills, and Cathy handled the
logistics for the workshop.

The Session

The session was held at a hotel near the airport and began promptly
at 8 A.M. Eric introduced the agenda for the day and the rules for
the workshop, including the workshop tickets. Figure 11-2 provides
a perspective on the workshop.

Figure 11-2 HOLIS 2000 requirements workshop
structure

In general, the workshop went very well, and all participants were
able to have their input heard. Eric did a fine job of facilitating, but
one awkward period occurred when Eric got into an argument with
Cathy about priorities for a couple of features. (The team decided
that for any future workshop, an outside facilitator would be
brought in.) Eric led a brainstorming session on potential features
for HOLIS, and the team used cumulative voting to decide on
relative priorities. The results are shown in Table 11-1.

Analysis of Results

The results of the process turned out as expected, except for two
significant items.

1. "Built-in security" appeared very high on the priority list. This
feature had been mentioned in previous interviews but had
not made it to the top of anyone's priority list. After a quick
offline review, Cathy noted that built-in security, such as the
ability to flash lights, an optional horn, and optional
emergency call-out system, was apparently not offered by
any competitive system. The distributors commented that
although they were surprised by this input, they felt that it
would be a competitive differentiation and agreed that this
should be a high-priority feature. Krys and David agreed.
Based on this conclusion, marketing decided to include this
functionality and to position it as a unique, competitive
differentiator in the marketplace. This became one of the
defining features for HOLIS.

2. In addition, feature 25, "Internationalized user interface" did
not get a lot of votes. (This seemed to make sense to the
team, because the U.S.-based homeowners could not have
cared less about how well the product sold in Europe!) The
distributor, however, stated flatly that if the product was not
internationalized at version 1.0, it would not be introduced in
Europe. The team noted this position and agreed to explore
the level of effort necessary to achieve internationalization in
the 1.0 release.[1]

[1] This issue demonstrates one of the problems with cumulative voting. Not all stakeholders are
created equal. Failure to achieve internationalization, which had not been on the "radar screens" of
the team prior to the workshop, would have been a strategic requirements misstep of significant
proportions.

Table 11-1. Features from HOLIS workshop, sorted by priority
ID Features Votes
23 Custom lighting scenes 121
16 Automatic timing settings for lights, etc. 107
4 Built-in security features, e.g., lights, alarms, and bells 105
6 100% reliability 90
8 Easy to program, non-PC control unit 88
1 Easy to program control stations 77
5 Vacation settings 77
13 Any light can be dimmed 74
9 Uses my own PC for programming 73
14 Entertain feature 66
20 Close garage doors 66
19 Automatically turn on closet lights when door opened 55
3 Interface to home security system 52
2 Easy to install 50
18 Turn on lights automatically when someone approaches a door 50
7 Instant lighting on/off 44

11 Can drive drapes, shades, pumps, and motors 44
15 Control lighting, etc., via phone 44
10 Interfaces to home automation system 43
22 Gradual mode: slowly increase/decrease illumination 34
26 Master control stations 31
12 Easily expanded when remodeling 25
25 Internationalized user interface 24
21 Interface to audio/video system 23
24 Restore after power fail 23
17 Controls HVAC 22
28 Voice activation 7
27 Web site–user presentation 4

Chapter 12. Storyboarding

Key Points

• The purpose of storyboarding is to elicit early "Yes,
But" reactions.

• Storyboards can be passive, active, or interactive.
• Storyboards identify the players, explain what happens

to them, and describe how it happens.
• Make the storyboard sketchy, easy to modify, and

unshippable.
• Storyboard early and often on every project with new

or innovative content.

Perhaps no elicitation technique has been subject to as many
interpretations as has "storyboarding." Nonetheless, most of these
interpretations agree that the purpose of storyboarding is to gain an
early reaction from the users on the concepts proposed for the
application. In so doing, storyboards offer one of the most effective
techniques for addressing the "Yes, But" syndrome. With
storyboarding, the user's reaction can be observed very early in the
lifecycle, well before concepts are committed to code and, in many
cases, even before detailed specifications are developed. Human
factors experts have told us for years that the power of storyboards
should not be underestimated. Indeed, the movie industry has used
the technique since the first flickers on the silver screen.

Effective storyboarding applies tools that are both inexpensive and
easy to work with. Storyboarding

• Is extremely inexpensive
• Is user friendly, informal, and interactive

• Provides an early review of the user interfaces of the system
• Is easy to create and easy to modify

Storyboards are also a powerful way to ease the "blank-page
syndrome." When the users do not know what they want, even a
poor storyboard is likely to elicit a response of "No, that's not what
we meant, it's more like the following," and the game is on.

Storyboards can be used to speed the conceptual development of
many different facets of an application. Storyboards can be used to
understand data visualization, to define and understand business
rules that will be implemented in a new business application, to
define algorithms and other mathematical constructs that are to be
executed inside an embedded system, or to demonstrate reports
and other hardcopy outputs for early review. Indeed, storyboards
can and should be used for virtually any type of application in which
gaining the user's reaction early will be a key success factor.

Types of Storyboards

Basically, a storyboard can be anything the team wants it to be, and
the team should feel free to use its imagination to think of ways to
storyboard a specific application. Storyboards can be categorized
into three types, depending on the mode of interaction with the
user: passive, active, or interactive.

• Passive storyboards tell a story to the user. They can consist
of sketches, pictures, screen shots, PowerPoint presentations,
or sample outputs. In a passive storyboard, the analyst plays
the role of the system and simply walks the user through the
storyboard, with a "When you do this, this happens"
explanation.

• Active storyboards try to make the user see "a movie that
hasn't been produced yet." Active storyboards are animated
or automated, perhaps by an automatically sequencing slide
presentation or an animation tool or even a movie. Active
storyboards provide an automated description of the way the
system behaves in a typical usage or operational scenario.

• Interactive storyboards let the user experience the system in
as realistic a manner as practical. They require participation
by the user in order to execute. Interactive storyboards can
be simulations or mock-ups or can be advanced to the point
of throwaway code. An advanced, interactive storyboard built
out of throwaway code can be very close to a throwaway
prototype (discussed in a later chapter).

As Figure 12-1 shows, these three storyboarding techniques offer a
continuum of possibilities ranging from sample outputs to live
interactive demos.

Figure 12-1 Storyboarding continuum

Indeed, the boundary between advanced storyboards and early
product prototypes is a fuzzy one.

The choice of storyboarding technique will vary, based on the
complexity of the system and the risk of the team's
misunderstanding of what the system needs to do. An
unprecedented and innovative system that has a soft and fuzzy
definition may even require multiple storyboards, moving from
passive to interactive as the team's understanding of the system
improves.

What Storyboards Do

Disney's Snow White and the Seven Dwarfs, the first animated
movie ever produced, used storyboards, and they are routinely used
as an integral part of the creative process in movies and cartoons.
Virtually all movies, animated features, and cartoons start out with
storyboards. They represent the raw creative input that is used to
develop the characters and the story line.

In software, storyboards are used most often to work through the
details of the human-to-machine interface. In this area, generally
one of high votality, each user is likely to have a different opinion of
how the interface should work. Storyboards for user-based systems
deal with the three essential elements of any activity:

1. Who the players are

2. What happens to them
3. How it happens

The who element defines the players, or the users of the system. In
a software system, as we discussed earlier, the "who" are such
players as users, other systems, or devices—the actors that interact
with the solution system we are constructing. For users, the
interaction is typically described via user input screens or data entry
forms, outputs such as data or reports, or other types of input and
output devices, such as buttons, switches, displays, and monitors.
For devices and systems, interaction will be performed via a
software or hardware interface, such as a communication protocol
or motor controller drive signal.

The what element represents the behavior of the users as they
interact with the system or, alternatively, the behavior of the
system as it interacts with the user. The how element represents
the states that the player or the system assumes during the
interaction.

For example, we did a storyboard for an automated-vehicle
amusement park ride.

• The who represented the guests who ride on the vehicle.
• The what represented the behavior of the vehicle as it

provided various events for the guests.
• The how provided further descriptions of how this interaction

happens—events, state transitions—and described both the
guest states (surprised, scared) and the vehicle states
(accelerating, braking, unloading).

Tools and Techniques for Storyboarding

The tools and techniques for storyboarding can be as varied as the
team members' and the system users' imaginations will allow.
Passive-storyboarding constructs have been made out of tools as
simple as paper and pencil or Post-It notes. More advanced passive
storyboards can be built with presentation managers such as
PowerPoint or Harvard Business Graphics. Passive and active user
interactive storyboards have been built with HyperCard, SuperCard,
and various packages that allow fast development of user screens
and output reports. Interactive storyboards can be built with a
variety of specialty software packages for interactive prototyping,
such as Dan Bricklin's Demo It. Tools such as Macromedia's Director
and Cinemation from Vividus Corp. can be used to create more
complex animations and simulations.

In a simpler example, at RELA, Inc., one team member also dabbled
in cartooning on the side. At the concept stage of a project, he
would simply sketch a half dozen or so simple cartoons that showed
the product in its typical use or various aspects of the product's
interface. This was a quick and inexpensive way to gain a reaction
from the potential users. Also, the cartoonlike nature of the output
avoided some of the potential of problems of storyboarding, as we'll
see later. Unfortunately, no other cartoonists were around when the
designer left the company, leaving us to find alternative
storyboarding techniques!

In our current efforts, which are focused mostly on ISV applications,
we get along quite nicely by using only PowerPoint or other
common desktop presentation managers, in combination with
sample screen shots built by the same tools used to build the GUIs
in the application. Interestingly, the greatest breakthrough in
storyboarding technique may well have been the simple addition of
the animation capability to PowerPoint. Suddenly, our ability to
express dynamics and interactivity increased by an order of
magnitude.

Tips for Storyboarding

Storyboarding is a powerful technique designed to gain early user
feedback, using inexpensive tools. As such, storyboards are
particularly effective at addressing the "Yes, But" syndrome. They
also help address the "Undiscovered Ruins" syndrome by eliciting
immediate user feedback as to what the system "doesn't appear to
do." But as with any technique, certain caveats apply. Here are
some tips to keep in mind as you practice your storyboarding
technique.

• Don't invest too much in a storyboard. Customers will be
intimidated from making changes if it looks like a real work
product or they think they might insult you, a particularly
difficult problem in some cultures. It's OK to keep the
storyboard clunky and sketchy, even crude. (See the
storyboarding story at the end of this chapter.)

• If you don't change anything, you don't learn
anything. Make the storyboard easy to modify. You should
be able to modify a storyboard in a few hours.

• Don't make the storyboard too good. If you do, the
customers will want to "ship it." (In one real-world project, we
suffered for years supporting an Excel/VB product that was
never intended to be more than a storyboard.) Keep the
storyboard sketchy; use tools and techniques that have no
danger of making it into the field, especially for storyboards

that are coded. (Hint: If the application is to be implemented
in Java, write the storyboard in VB.)

• Whenever possible, make the storyboard
interactive. The customer's experience of use will generate
more feedback and will elicit more new requirements than a
passive storyboard will.

Summary

In this chapter, we learned about a very simple and inexpensive
technique for requirements elicitation. In a sense, a storyboard is
anything you can build quickly and inexpensively that will elicit a
"Yes, But" reaction from the user.

We can say with confidence that there has never been a time when
we didn't learn a lot from a storyboard, and there has never been a
case in which we left the storyboarding exercise with exactly the
same understanding with which we entered it. So our advice to the
development team is to

• Storyboard early.
• Storyboard often.
• Storyboard on every project that has new or innovative

content.

By so doing, you will get the "Yes, Buts" out early, which in turn will
help you build systems that do a better job of meeting the user's
real needs. And perhaps you will do so more quickly and more
economically than you have ever done before!

A Storyboarding Story

(Some facts have been changed to protect the innocent and
the guilty in this very nearly true story.) This story occurred
during the development of a complex electromechanical
device for a hospital pharmacy. The customer was a Fortune
1,000 manufacturer; the vendor, our company, had been
hired to develop this new, complex electromechanical optical
and fluidics-handling system. The project was in trouble.

One day, the vendor's project manager's boss (we'll just call
him "author") received the following call from the customer's
upper management (a Senior VP, "Mr. Big," a powerful
individual whom we had never before had the pleasure of
meeting

Mr. Author, how goes our favorite project?

Big:
Author: Not particularly well.
Mr.
Big:

That's what I hear. Hey, no problem is so big it can't be solved.
Just bring your entire team out for a meeting. How's
Wednesday?

Author: (hastily scrapping every appointment for the entire team for
Wednesday) Wednesday is perfect.

Mr.
Big:

Great. Come on out and bring your entire team. Hey, don't
worry about the travel costs. We'll cover that. Heck, just buy
those tickets "one way."

Author. (gulp) Thanks, I think. We'll see you Wednesday.

On the appointed day, we entered a large conference room
with the customer's project team all seated at the far end.
The team had clearly been at the meeting for some time.
(Question: Why did the team feel the need to meet before
the real meeting started?) Author, this not being his first
such event, walked to the other end of the room and sat
down next to Mr. Big (theory being that it's going to be
difficult for Mr. Big to scream at him if he is sitting right next
to him; also, if he hits Author, there's the chance to win a
lawsuit and recover lost project profits!).

After a short discussion, Author noted that among many
significant problems troubling the project, the problem of
"lack of requirements convergence" is causing delays and
cost overruns. Mr. Big said, "Give me an example." Author
gave an excellent example. The customer team members
immediately started arguing among themselves, perhaps
demonstrating that this was indeed a problem. Subcontractor
breathed small sigh of relief. Mr. Big watched the team for a
moment and then said, "Very funny. Give me another
example." Author's team pulled out five color renderings,
each quite professionally done, of the proposed front panel
and made the case that "we presented all these design
options weeks ago, and we can't get convergence on a
design, and we are well into the necessary tooling lead
times." Mr. Big said, "This can't be so difficult. "Team, pick
one." The customer team members then fell out among
themselves again. The day passed in this fashion. There was
no convergence. There was little hope.

The next morning, Author was asked to meet for an early
breakfast with a project team member ("Team Member").
Team Member, also a seamstress, pulled out a pile of felt,
shearing scissors, and colored markers and said "I'd like to
facilitate the user interface portion of the meeting, using
these tools."

Author: "Don't be silly; no way that would work. It will look silly
and unprofessional."

Team
Member:

"I understand, but how effective were you yesterday?"

Author, being politically correct, did not speak the first word
that comes to mind. The second word was "OK."

The next day, the tone in the room was much different. The
customer's team was again there early but this time was
silent and morose rather than intemperate and excitable.
(Analysis: They now know they were as helpless as we were.
They had been planning to kill us but now knew that we are
all doomed.)

To start the meeting, Team Member put a 3' by 5' (1 × 2 m)
piece of felt on the wall, generating amusement but not
disinterest on the part of the customer.

Team Member put large felt cutouts for power switch and
various therapy-mode buttons on the front panel and said
"How would this design work?"

Customer looked at the wall, and said "It won't, but why
don't you move the emergency stop to the back?"

Team Member said: "Here, why don't you do it," and gave
the scissors to the customer.

The customer took the scissors, and Team Member retired to
the back of the room. Customer proceeded to do an
interactive design session with felt and scissors. One hour
later, customer looked at the wall, and said, "Good enough;
build it."

Let's see if we can discover the moral to this story with a
little reader Q&A.

Question: Why did the fuzzy felt work when the professional renderings
did not?

Answers: There are two reasons.

• Interactability: What could the customer do with
five drawings, of which it liked only a portion of each?

• Usability: How intimidating can it be to cut out a big
piece of felt?

The customer, who had the domain but not necessarily the

design, expertise, designed an adequate solution to its own
problem.

We took the felt home with us and stuck it on the wall as a
constant reminder of what we had learned. The user
interface, although probably less than optimum, never
changed again and was quite adequate for the intended
purpose. But no, the project was not a huge success for the
vendor, although the product did eventually go to market
and achieve success. As we said before, that was only one of
the problems on this particular project.

• Lesson 1: Understanding user needs is a soft and
fuzzy problem. Use soft and fuzzy tools—storyboards
and felt, if necessary—to address it.

• Lesson 2: Technology is difficult. Think twice before
you start a medical device outsourcing business.

Chapter 13. Applying Use Cases

Key Points

• Use cases, like storyboards, identify the who, what,
and how of system behavior.

• Use cases describe the interactions between a user and
a system, focusing on what the system "does" for the
user.

• The use-case model describes the totality of the
system's functional behavior.

In Chapter 12, we described storyboarding and discussed how you
can use storyboards to show the who, what, and how of system and
user behavior. Use cases are another technique for expressing that
behavior. We briefly introduced this technique in Chapters 2 and 5,
where we used it to help us model the behavior of a business.

In this chapter, we'll develop the use-case technique further,
describing how we can use it to understand the behavior of the
system we are going to develop, as opposed to understanding the
behavior of the business the system is going to operate within. In
other words, we'll use use cases as an elicitation technique to
understand the needed behavior of the application we are going to
develop to solve a user's problem. Use cases are such an important
technique for capturing and specifying system requirements that

we'll be developing them further in Team Skill 5, Refining the
System Definition, and Team Skill 6, Building the Right System.

The use-case technique is integral to the software methodology
Object-Oriented Software Engineering, as described in the book
Object-Oriented Software Engineering, A Use Case Driven Approach
(Jacobson et al. 1992). This method for the analysis and design of
complex systems is "use case driven," a way of describing a
system's behavior from the perspective of how the various users
interact with the system to accomplish their objectives. This user-
centric approach provides an opportunity to explore system
behaviors with early user involvement.

Also, as we mentioned earlier, use cases serve as the UML
representation for the requirements of a system. In addition to
capturing the requirements for the system, the use cases developed
in the elicitation process will be of even further value during the
analysis and design activities. Indeed, the use-case method is
powerful throughout the software lifecycle, as the use cases can
also play a significant role in the testing process. As later chapters
develop the use-case technique more fully, for now we need
understand only how we can apply use cases to capture the initial
requirements for the system.

We'll start with a slightly more formal definition than we provided
earlier.

A use case describes a sequence of actions a system performs that
yields a result of value to a particular actor.

In other words, use cases describe the interactions between a user
and a system, and they focus on what the system "does" for the
user. In addition, as the actions are described in a sequence, it's
easy to "follow the action" and to gain an understanding of what the
system does for the user. In the UML, the use case is represented
by a simple oval icon that contains the name of the use case.

In requirements elicitation, use cases can elicit and capture system
requirements. Each use case describes a series of events in which a
particular actor, such as "Jenny the Model," interacts with a system,
such as the "Ad Lib Modeling Agency Client Scheduling System," to
achieve a result of value to Jenny, such as downloading directions
to the next modeling assignment.

Building the Use-Case Model

The use-case model for a system consists of all of the actors of the
system and all of the various use cases by which the actors interact

with the system, thereby describing the totality of the functional
behavior of the system. The use-case model also shows
relationships among use cases, which furthers our understanding of
the system.

The first step in use-case modeling is to create a system diagram
that describes the system boundaries and identifies the actors of
the system. This nicely parallels steps 3 and 4 of the five steps in
problem analysis, wherein we identified the stakeholders of the
system and defined the system boundaries. We also know from
Chapters 4, 5, and 6 how to identify the actors that will interact
with the system.

For example, in a warehouse management system (Jacobson et al.
1992), the system boundary might appear as in Figure 13-1.

Figure 13-1 The initial warehouse system, with actors
identified

You can see that the system is used by a number of users, each of
whom interacts with the system to achieve a specific operational
objective.

Further analysis of the system determines that certain threads of
system behavior are necessary to support the user's needs. These
threads are the use cases, or the specific sequences by which the
users interact with the system to accomplish a specific objective.
Examples of use cases for this system could include

• Manual distribution of items within a warehouse
• Insertion of a new item in a warehouse
• Check items in a warehouse

Applying Use Cases to Requirements Elicitation

The notion of use cases can be described very simply to a
prospective user of a system. Use cases are written in the user's
natural language. They are easy to describe and to document. This
provides a simple, structured format around which the development
team and the user can work together to describe the behavior of an
existing system or to define the behavior of a new system. And, of
course, each individual user will naturally focus on the system
capabilities needed in order to do the job better. If, in addition,
behavior is fully explored with all potential users, the team has gone
a long way toward the objective of complete understanding of
desired system behavior. There should be few undiscovered
functionality ruins left at the end of the process.

Also, to the extent that the use-case method explores the user
interfaces directly, early feedback can be obtained on this important
and volatile aspect of system specification and design.

However, we must also understand that the users of the system
represent only one class of stakeholders, albeit an important class,
and that we may need to apply other elicitation techniques to
gather the requirements from other stakeholders, such as nonuser
customers, management, subcontractors, and so on. In addition,
use cases are not as helpful in identifying the nonfunctional aspects
of the system requirements, such as the requirements for usability,
reliability, performance, and the like. We'll rely on other techniques
to address these issues.

After all of the use cases, actors, and objects in the system have
been identified, the next step is to further refine the detailed
functional behavior of each use case. These use-case specifications
consist of textual and graphical descriptions of the use case, written
from the point of view of the user.

The use-case specifications can be thought of as a container that
describes a series of related events, which in turn can be used to
imply other requirements that will be developed further at a later
time. Thus, a use case specification might include the step "The
maintenance technician enters his or her first name (16 characters
maximum), last name, and so on."

As use cases define the user/system interaction, it may be an
appropriate time to define, at least in concept, the screens, displays,

front panels, and so on that the user interacts with. If a windowing
system is used to present the information, a high-level graphical
depiction of the data to be displayed may be appropriate; details of
formal graphical user interface (GUI) design, such as data
definitions, colors, and fonts) should be left to later phases. Figure
13-2 shows portions of an example use-case specification.

Figure 13-2 Use-case specification for manual
distribution between warehouses

Case Study: The Use Cases for HOLIS

Impressed by the power of use cases, the HOLIS development team
decided to use this technique to describe the high-level system
functionality of HOLIS. In order to do so, the team held a
brainstorming session to define the significant use cases to be
developed further in later activities. This "use-case model survey"
identified 20 use cases to be elaborated in later activities, some of
which are as follows.

Name Description Actor(s)
Create Custom
Lighting Scene

Resident creates a custom lighting
scene

Resident, Lights

Initiate
Emergency

Resident initiates emergency action Resident

Control Light Resident turns light(s) on or off or
sets desired dim effect

Resident, Lights

Program Switch Change or set the actions for a
particular button/switch

Homeowner/programmer

Remote
Programming

Lumenations service provider does
remote programming based on
request from resident

Lumenations Services

Go On Vacation Homeowner sets vacation setting for
extended away period

Homeowner/programmer

Set Timing
Sequence

Homeowner programs time-based
automated lighting sequence

Homeowner/programmer

Summary

Use cases provide a structured and reasonably formal notation for
capturing a very important subset of the requirements information:
how the system interacts with the user to deliver its functionality. In
many applications, this subset represents the majority of the
workload, so use cases can be applied to express the majority of
the requirements for the system. Each identified use cases defines
the needed behaviors of the system from the perspective of a
particular class of user. As such, the technique is very useful in
eliciting user needs and helps the development team represent
these needs in a manner that is readily understandable by the user.

Also, as the use cases can be used later in the design and the
testing processes, they provide a consistent representation and a
consistent thread through the requirements, analysis, design, and
testing activities. In this way, the technique builds early, reusable
project assets, which helps improve the overall efficiency of the
software development process. In addition, with the consistency of
representation and the support provided within the UML and various
application development tools, use cases can help in automating
many elements of the requirements management activity. For these
reasons, use cases are such an important notion that we will apply
them from this point forward as an integral part of the team's
requirements management activities.

Chapter 14. Role Playing

Key Points

• Role playing allows the development team to
experience the user's world from the user's
perspective.

• A scripted walkthrough may replace role playing in
some situations, with the script becoming a live
storyboard.

• Class-Responsibility-Collaboration (CRC) cards, often
used in object-oriented analysis, are a derivative of
role playing.

So far in Team Skill 2, we have discussed a variety of techniques to
understand the needs of the stakeholder with respect to a new
system we are building. We've talked one-on-one about It
(interviewing); we've discussed It in a group format (workshops);
we've presented our ideas about It (storyboard); and we've thought

about how actors interact with It (use cases). These are all good
things, and they add to the fabric of our understanding. But, we
must also admit, we haven't experienced It.

In this chapter, we discuss role playing, which allows the
development team to experience the user's world directly by playing
the role of the user. The concept behind role playing is quite simple:
Although it's true that observing and asking questions does aid
understanding, it is also naive to assume that, through observation
only, the developer/analyst can gain a true, in-depth understanding
of the problem being solved or, thereby, a clear understanding of
the requirements of a system that would address the problem.

This is one of the primary causes of the "Yes, But" problem. As
sociology teaches us, we all see the world though our unique
conceptual filters. Our life experiences and cultural biases are
impossible to separate from the observations we make. For example,
we can observe another culture partaking in a ritualistic ceremony
as often as we want, but it will likely be impossible for us to
understand what it means to them! What does this mean to our
search for requirements understanding?

• We must understand that many users cannot articulate the
procedures they follow or the needs that must be addressed.
It is often not their job to do so, and they have never been
asked to do so before. Also, it is more difficult than it looks!
For example, try to describe the procedure by which you tie
your shoe.

• Many users do not have the freedom to admit that they do
not follow prescribed procedures; therefore, what they tell
you may or may not be what they actually do.

• Individual users have patterns of work activity that are deeply
ingrained and apply workarounds or unique paths of
implementation that may mask real problems from the
observer.

• It is impossible for any developer to anticipate every question
that must be asked or for any user to know what questions
the developer should be asking.

To address these particular causes, the simple act of "role playing"
can be extremely effective. It is also cheap and usually quite quick.
An hour or a half-day will typically do the trick.

How to Role Play

In the simplest form of role playing, the developer, the analyst, and, potentially,
every member of the development team simply take the place of the user and
execute the customer's work activity. For, example, in the case of the sales order

entry problem in Team Skill 1, we became aware of the fact that inaccurate sales
orders were a leading cost of scrap and thereby created profitability problems.
When we look at the existing sales order process, we expect to find lots of
different steps and sources for error. There are at least two ways to get at the
root causes.

1. Use the fishbone technique that we described, together with user
interviews, and analyze sales orders that were known to have errors.
Quantify the errors by type, and address the most grievous contributors in
the design of a new system. This would provide a quantitative
understanding for the problem and probably be quite effective.

Still, it doesn't give you a qualitative "feel" for the problem, one that could,
perhaps, change both your perception and your solution strategy. In order
to get that, there may be a simpler and more efficient way to truly
understand the problem.

2. The developer/analyst can experience the problems and inaccuracies
inherent in the existing sales order entry system by simply sitting down
and entering a few sales orders. The experience gained in 1 hour will
forever change the team's understanding of the problem.

We can say from experience that the insights gained in role playing may even
stay with the developer for a lifetime. Our personal world view has been changed
by many such experiences, including the simple roles of "welding a complex part
the way the robot is supposed to," "mixing a pharmaceutical compound in a
laminar flow hood," "identifying a television commercial with only four
compressed screen shots and a compressed audio track," "using immature
requirements management tool software," and many others. We learned
something every time, and we developed a much greater empathy for the user
than we had before!

Techniques Similar to Role Playing

Of course, role playing doesn't work in every situation. In many cases, the user
role is minimal, and the problem to be solved is algorithmically, rather than
functionally, intense. And, in many cases, it simply isn't practical. We wouldn't be
the first to volunteer for the role of "patient" in an electrosurgery scenario or of
"nuclear power plant operator on the night shift" or "747 pilot." In these cases,
other techniques get us close to the user experience without having to "bleed" for
the part.

Scripted Walkthroughs

In the scripted walkthrough, each participant follows a script that defines a
specific role in the "play." The walkthrough will demonstrate any
misunderstandings in the roles, lack of information available to an actor or a
subsystem, or lack of a specific behavior needed for the actors to succeed in their
endeavor.

For example, we once built a scripted walkthrough that showed how students and
teachers would interact with an automated test-scoring device used in the
classroom. We used a prototype of the device and had team members and
customer representatives play the roles of students and teacher. The walkthrough
contained multiple scenes, such as "students scoring their own tests" and

"teacher scoring a large batch of tests during classroom time." The scripted
walkthrough was very useful way to get a feel for the classroom environment,
and the team learned a few new things in the process the experience. It was also
fun.

One of the advantages of the scripted walkthrough is that the script can be
modified and rerun as many times as necessary until the actors get it right. The
script can also be reused to educate new team members. It may be modified and
reused when the behavior of the system needs to be changed. In a sense, the
script becomes the live storyboard for the project.

CRC (Class-Responsibility-Collaboration) Cards

A derivative of role playing is often applied as part of an object-oriented analysis
effort. In this special case of a role play, each participant is given a set of index
cards describing the class, or object; the responsibilities, or behavior; and
collaborations, or who the object communicates with, of each entity being
modeled. These collaborations may simply represent entities from the problem
domain, such as users, push buttons, lights, and elevator cars, or objects that
live in the solution domain, such as HallButton Indicator Lights, MDI Window, and
ElevatorCar.

When an initiator actor starts a specific behavior, all participants follow the
behaviors defined on their cards. When the process breaks down due to a lack of
information or when one entity needs to talk to another and the collaboration is
not defined, the cards can be modified and the roles run again.

For example, in the HOLIS case study, there is a time when the team will need to
understand the interactions among the three subsystems in order to determine
how the system cooperates to achieve the overall objective and to understand
what derived requirements are created. One way to do this would be in a CRC-
like role play. A team member would take the role of a subsystem, or actor, and
then the team would walk through a use case, or scenario. Here's how one use
case might be played out:

John
(Control
Switch):

My homeowner just pressed a button that controls a light bank.
He's still depressing the switch. I sent Bob a message just as soon
as the switch was depressed, and I'm going to send Bob a message
every second that the switch is pressed.

Bob
(Central
Control
Unit):

When I received the first message, I changed the state of the
output from Off to On. When I receive the second message, it
becomes obvious that the homeowner is dimming a light bank, so
for each message received, I'm going to change the brightness by
10 percent. By the way, Bob, don't forget to tell me which button is
depressed.

Mike
(Light):

I'm hardwired to the dimmer output. I'm feeling dimmer as we
speak.

Note

In user needs elicitation, the CRC process is focused on external behaviors that
are apparent to the actors, but this technique can also be used for designing
object-oriented software systems. In this exercise, the focus is on understanding
the internal workings of the software, not on the interaction with the external

environment. However, even in this case, the technique will often cause the
discovery of wrong or missing requirements for the system.

You may have also noticed an interesting side effect: The players invariably find
out that there are weaknesses or deficiencies in the script, and correcting them
usually results in improved understanding of the system.

Summary

Role playing is an excellent technique, although we don't see it used very often or
not often enough. Why? The reasons are many. First, there is the discomfort
factor. It's not particularly ego reinforcing to botch a simple sales order while our
customer or a sales order entry person watches. Also, there's the soft and fuzzy
factor: Being forced to interact with real people instead of a keyboard gets us out
of our comfort zone—after all, we went to compiler theory classes while our peers
participated in drama!

However, there can be no doubt that, if we can just push ourselves that extra
little bit, role playing is one of the most useful and inexpensive techniques
available to assist in requirements discovery.

Chapter 15. Prototyping

Key Points

• Prototyping is especially effective in addressing the
"Yes, But" and "Undiscovered Ruins" syndromes.

• A software requirements prototype is a partial
implementation of a software system, built to help
developers, users, and customers better understand
system requirements.

• Prototype the "fuzzy" requirements: those that,
although known or implied, are poorly defined and
poorly understood.

Software prototypes, as early incarnations of a software system, demonstrate a
portion of the functionality of a new system. Given what we've discussed so far,
we expect that it's become obvious by now that prototyping can be very effective
at uncovering user needs. Users can touch, feel, and interact with a prototype
system in a way that none of the other techniques can provide. Indeed,
prototyping can be extremely effective at addressing both the "Yes, But"
syndrome ("That is not exactly what I meant)" and the "Undiscovered Ruins"
syndrome ("Now that I see it, I have another requirement to add").

Types of Prototypes

Prototypes can be categorized in many ways. For example, Davis (1995a)
categorizes prototypes as throwaway versus evolutionary versus operational,
vertical versus horizontal, user interface versus algorithmic, and so on. The type

of prototype you pick depends on the problem you are trying to solve by building
the prototype.

For example, if your project risk is based primarily on the feasibility of the
technology approach—it's simply never been done this way before and you are
uncertain whether the applicable technology can achieve the performance or
throughput goals—you may wish to develop an architectural prototype that
primarily demonstrates the feasibility of the technology to be used. An
architectural prototype can still be throwaway versus evolutionary. "Throwaway"
implies that the purpose of the effort is solely to establish feasibility, and you will
use whatever shortcuts, alternative technologies, simulations, or whatever to
achieve your goals. When you have done so, you simply throw away the result,
keeping only the knowledge learned in the exercise. "Evolutionary" implies that
you have implemented the prototype on the same architecture as you intend to
use in the final system, and you will be able to build the final system by evolving
the prototype.

If your primary project risk area is the user interface, by contrast, you will want
to develop a requirements prototype, using whatever technologies allow you to
prototype the user interface most quickly. Figure 15-1 shows a decision tree that
you can use to select the kind of prototype that makes the most sense for your
project.

Figure 15.1 Decision tree for prototype selection: (a)
requirements prototypes; (b) architectural prototypes

Requirements Prototypes

For purposes of requirements elicitation, we'll focus on the types of prototypes on
the upper branch of this tree. We'll define a software requirements prototype as

a partial implementation of a software system, built to help developers, users,
and customers better understand the requirements of the system.

For the purposes of requirements elicitation, we may often choose to build a
"throwaway, horizontal, user interface" prototype. "Horizontal" implies that we
will attempt to construct a wide range of the system's functionality; a vertical
prototype, by contrast, constructs just a few requirements but does so in a
quality manner. "User interface" implies that we will be constructing mostly the
system's interface to its users rather than implementing the logic and algorithms
that reside within the software or prototyping the interfaces to other devices or
systems. As an elicitation tool, such a prototype serves its role in a number of
ways.

• Built by the developer, it can be used to obtain customer confirmation that
the developer understands the requirements.

• Built by the developer, it can be used as a catalyst to encourage the
customer to think of yet more requirements.

• Built by the customer, it can help communicate requirements to the
developer.

In all three cases, the goal is to construct the prototype in a manner that
consumes the fewest resources. If it's too expensive to build, it might be more
cost effective to just build the real system!

Many software prototypes tend to be requirements prototypes and are used
primarily to capture aspects of the user interface of the system to be built. There
are probably two reasons for this.

1. The emergence of a plethora of inexpensive, widely available tools that
build user interfaces rapidly.

2. For user interaction–intensive systems, a prototyped user interface reveals
many other requirements as well, such as what functions are provided to
the user, when each function is available to the user, and what functions
are missing to the user.

However, we need to be certain that the availability of these tools doesn't
influence us to prototype the parts of the system that did not have the highest
risk to begin with.

What to Prototype

How do we know what portion of the system we need to prototype? In a typical
situation, our understanding of the user's needs will range from well understood
and easy to verbalize to totally unknown (Figure 15-2).

Figure 15.2 Continuum of understanding user needs

Well-understood requirements may be obvious from the context of the application
domain and the user's and team's experience with systems of that type. For
example, if we are simply extending an existing system, it's clear what most of
the new functionality needs to be. The well-known and well-understood
requirements need not be prototyped unless they are necessary to help the users
visualize the context of other user needs; building them will consume scarce

resources, but since they are already well understood, little will be learned from
seeing them.

The unknown requirements, however, are the "Undiscovered Ruins" that we are
going to wish we knew later. Unfortunately, we can't really prototype those either,
for if you could, they wouldn't be unknown! That leaves as the target for
prototyping the "fuzzy" part in the middle. These requirements may be known or
implied, but they are poorly defined and poorly understood.

Building the Prototype

The choice of technology used in building the prototype depends on further
decisions on the right of the decision tree in Figure 15-1. For example, the choice
for a throwaway GUI prototype is driven simply by whatever technology provides
the fastest, cheapest way to implement the sample GUIs.

If an evolutionary prototype is selected, you must choose the implementation
language and development environment that you will use in the production device.
You will also have to invest a significant effort in designing the software
architecture for the system, as well as apply whatever coding standards or other
software processes you will use to create the system. Otherwise, you will be
attempting to evolve a system that is fundamentally flawed in one or more of
these aspects. In that case, you may have created a throwaway prototype by
accident! Or worse, the quality of the deployed system will be forever
compromised by your well-intended requirements prototype.

Evaluating the Results

After the prototype is built, it should be exercised by its users in an environment
that simulates as closely as possible the production environment in which the
final system will be used. In this way, environmental and other external factors
that affect the requirements for the device will also be obvious. Also, it will be
important to have various types of users exercise the device, or the results may
be biased.

The result of the prototyping process should be twofold.

1. Fuzzy needs become better understood.
2. Exercising the prototype inevitably elicits a "Yes, But" response from the

user; therefore, previously unknown needs become known. Simply seeing
a set of behaviors helps users understand other requirements that must
be imposed on the system.

In any case, prototyping virtually always produces results. Therefore, you should
typically prototype any new and innovative application. The trick is making sure
that the return in requirements knowledge gained is worth the investment made.
That's why we often want to prototype—or at least implement our earliest
prototypes—in the quickest, cheapest techniques available. By limiting
investment, we maximize return on investment in requirements knowledge
gained.

Summary

Because software prototypes demonstrate a portion of the desired functionality of
a new system, they can be effective tools that help refine the real requirements
for the system. They are effective because users can interact with a prototype in
their environment, which is as close to the real world as you can get without
developing production software.

You should select your prototype technique based on the type of risk that is likely
to be present in your system. Requirements prototypes are supposed to be
inexpensive and easy to develop, and they can help you eliminate much of the
requirements risk in your project.

On the continuum of investment possibilities, you should invest as little as
possible in your prototype. The use of any of the prototyping techniques or,
better, using a combination of a few prototyping techniques, has been shown to
be extremely effective in helping project teams develop a much better
understanding of the real needs of a software system.

Team Skill 2 Summary

Three "syndromes" increase the challenge of understanding the real needs of
users and other stakeholders. The "Yes, But," "Undiscovered Ruins," and "User
and the Developer" syndromes are metaphors to help us better understand the
challenge ahead and provide a context for the elicitation techniques that we
developed for understanding user needs.

But since teams are rarely given effective requirements specifications for the
systems they are going to build, they have to go out and get the information they
need to be successful. The term "requirements elicitation" describes this process,
in which the team must play a more active role.

To help the team in this mission, a variety of techniques can be used to address
these problems and better understand the real needs of users and other
stakeholders:

• Interviewing and questionnaires
• Requirements workshop
• Brainstorming and idea reduction
• Storyboarding
• Use cases
• Role playing
• Prototyping

Although no one technique is perfect in every circumstance, each represents a
proactive means of pushing knowledge of user needs forward and thereby
converting "fuzzy" requirements to requirements that are "better known."
Although all of these techniques work in certain circumstances, our favorite is the
requirements workshop/brainstorming technique.

Part IV: Team Skill 3: Defining the
System

• Chapter 16 Organizing Requirements Information
• Chapter 17 The Vision Document

• Chapter 18 The Champion

In Team Skill 1, we developed the skills that focus the team on analyzing the
problem. In so doing, we came to fully understand the problem being solved
before we invested any serious effort on the solution. We were focused fully on
the problem domain.

In Team Skill 2, we described a set of techniques the team can use to understand
user needs. These user needs live at the top of our requirements pyramid,
representing the most critical information we must understand and driving
everything that follows.

The amount of information we must manage increases
rapidly as we move lower on the pyramid.

In Team Skill 3, we move from the problem space to the solution space, and we
focus on defining the system that we can build to address our stakeholders' needs.
As we move lower in the pyramid (see Figure 1), the amount of information
increases. For example, a significant number of system features may be required
to fulfill a single user need. We must also start to provide additional specificity to
further define system behavior; thus, the amount of information we must manage
increases.

Figure 1 Features in the requirements pyramid

In addition, the team must now also be concerned with a variety of other issues
that are unique to the solution space but that were of little concern in the
problem domain. For example, if we are developing a software product for sale to
the user, we must concern ourselves with packaging, installation, and licensing,
each of which may be unique to the solution we are providing. If we are
developing a system to address an in-house IS/IT need, we may need to concern
ourselves with the requirements for deployment and maintenance, which were of
little or no concern to a user not currently using such a system.

However, we must still remain at a fairly high level of abstraction, for if we sink
too far into detail too quickly, we will not be able to see "the forest for the trees."
In addition, it's important to pause for a second and to take the time to organize
the requirements information ahead before moving into the software
requirements section of the pyramid, in Team Skill 5, Refining the System
Definition. For now, we'll cover organizing requirements information (Chapter 16),
defining a vision (Chapter 17), and organizing our team to address the challenge
of managing the requirements for the system (Chapter 18).

Chapter 16. Organizing Requirements
Information

Key Points

• For nontrivial applications, requirements must be
captured and recorded in a document database, model,

or tool.
• Different types of projects require different

requirements organization techniques.
• Complex systems entail requirements specification for

each subsystem.

Requirements must be captured and documented. If you were the
sole developer for a system on which you will also be the sole user
and maintainer, you might consider designing and coding it
immediately after identifying your needs. However, few system
developments have such simplicity. More likely, developers and
users are mutually exclusive, and stakeholders, users, developers,
analysts, testers, architects, and other team members are involved.
All parties must reach agreement about what system is being built.

Realities of budgets and schedules make it unlikely that all user
needs are going to be satisfied in any particular release. Inevitable
communication problems inherent in a multiple-person effort
demand that a written document be produced to which all parties
can agree and refer.

Documents that define the product to be built are typically called a
requirements specification. The requirements specification for a
system or application describes the external behavior of that system.

Note

For simplicity and to reflect historical usage, we'll use the term
document generically in this section, but the requirements can be
contained in a document, database, use-case model, requirements
repository, or a combination of these elements. As we'll see in a
later chapter, a "software requirements package" can be used to
contain this information.

But requirements can rarely be defined in a single monolithic
document, for a number of reasons.

• The system may be very complex.
• The customers' needs are being documented prior to

documenting detailed requirements.
• The system may be a member of a family of related products.
• The system being constructed satisfies only a subset of all the

requirements identified.

• Marketing and business goals need to be separated from the
detailed product requirements.

In any of these cases, you will need to maintain multiple documents
and, of course, to consider a number of special cases.

• One "parent" document defines requirements for the overall
"system," including hardware, software, people, and
procedures, and another defines requirements for just the
software piece. Often, the former document is called a system
requirements specification, whereas the latter is called a
software requirements specification, or SRS for short.

• One document defines the features of the system in general
terms, and another defines requirements in more specific
terms. Often, the former document is called the Vision
document, whereas the latter is called a software
requirements specification.

• One document defines the full set of requirements for a family
of products, and another defines requirements for just one
specific application and for one specific release. The former
document is often called a product family requirements
document, or product family Vision document, whereas the
latter is called a software requirements specification for a
specific release of a specific application within the family.

• One document describes the overall business requirements
and business environment in which the product will reside,
and another defines the external behavior of the system being
built. Often, the former document is called the business
requirements document, or marketing requirements document,
whereas the latter is called a software requirements
specification.

The following sections describe what to do in each case. Any or all
of these cases can be combined; for example, one document could
contain the full set of requirements from which selected subsets are
used for specific releases, as well as all business requirements.

Organizing Requirements of Complex Hardware and
Software Systems

Although this book focuses primarily on software requirements, it's important to
recognize that they are only one subset of the requirements management process
in most system development efforts. As we described in Chapter 6, some systems
are sufficiently complex that the only reasonable way to visualize and to build
them is as a system of subsystems, which in turn are visualized as systems of
subsystems, and so on, as shown in Figure 16-1. In an extreme case, such as an
aircraft carrier, the system may be composed of hundreds of subsystems, each in
turn having hardware and software components.

Figure 16-1 A system of systems

In these cases, a system-level requirements specification is created that
describes the external behavior of the system, such as fuel capacity, rate of climb,
or altitude ceiling, without knowledge of or reference to any of its subsystems. As
we described in Chapter 6, once the requirements for the system are agreed on,
a systems engineering activity is performed. Systems engineering refines a
system into subsystems, describing the detailed interfaces among the subsystems,
and allocating each of the system-level requirements to one or more subsystems.
The resulting system architecture describes this partitioning and the interfaces
among the systems.

Next, a requirements specification is developed for each subsystem. These
specifications should describe the external behavior of the subsystem completely,
without reference to any of its subsystems. This process causes a new class of
requirements, derived requirements, to emerge. This type of requirement no
longer describes the external behavior of the system except in the aggregate but
instead describes the exterior behavior of the new subsystem. Thus, the process
of system design creates new requirements for the subsystems of which the
system is composed. In particular, the interfaces among these subsystems
become key requirements: essentially, a contract between one subsystem and
another, or a promise to perform as agreed to.

Once these requirements are agreed on, system design is performed again, if
necessary, by breaking down each of the subsystems into its subsystems and
developing requirements specifications for each. The result is a hierarchy of
specifications, as shown in Figure 16-2.

Figure 16-2 Hierarchy of specifications resulting from
system design

At every level, requirements from the previous level are allocated to the
appropriate lower-level specifications. For example, the fuel capacity requirement
is allocated to the fuel control subsystem and to the fuel storage subsystem, and
new requirements are discovered and defined as appropriate.

As seen in Figure 16-3, specifications that are themselves refined into additional
subsystem specifications are termed system requirements specifications, or
system-level requirements specifications. The lowest-level specifications, that is,
those that are not further decomposed, usually correspond to software-only or
hardware-only subsystems and are termed software requirements specifications
or hardware requirements specifications, respectively. Further, any of the
requirements specifications in Figure 16-3 may need to undergo an evolutionary
process as details become better understood.

Figure 16-3 Hierarchy of resulting specifications,
including software and hardware levels

Organizing Requirements for Product Families

Many industries build sets of closely related products that have much functionality
in common but with each containing some unique features. Such product families
might be inventory control systems, telephone answering machines, burglar
alarm systems, and so on.

For example, suppose that you are building a set of software products, each with
some shared functionality, but that may need to share data or otherwise
communicate with one another when in use. In such a case, you might consider
the following approach:

• Develop a product-family Vision document that describes the ways in
which the products are intended to work together and the other features
that could be shared.

• To better understand the shared-usage model, you might also develop a
set of use cases showing how the users will interact with various
applications running together.

• Develop a common software requirements specification that defines the
specific requirements for shared functionality, such as menu structures
and communication protocols.

• For each product in the family, develop a Vision document, software
requirements specification, and a use-case model that defines its specific
functionality.

The resultant organization is shown in Figure 16-4.

Figure 16-4 Requirements organization for a software
product family

The requirements specifications for the individual members may contain
references—links or "traced from"—to the product-family documents or may
reproduce all of the requirements from that document. The advantage of the
former approach is that changes to requirements belonging to all family members
can be made in just one place. However, you may need to use a requirements
tool to manage these dependencies, or it will be necessary to manually examine
each specific member requirements document each time the parent document is
changed.

On "Future" Requirements

Few development efforts have the luxury of either a stable set of requirements or
being able to build a system that satisfies all known requirements. During any
process of requirements elicitation, requirements will arise that are deemed
inappropriate for the next release of the product being constructed.

It may not be appropriate to include such requirements in the requirements
specifications; we cannot afford to create any confusion about what requirements
are and are not to be implemented. On the other hand, it's inappropriate to
discard them, because they represent value-added work products, and we will
want to harvest requirements from them for future releases. More important, the
system designers may well have designed the system differently had they know
that future requirements of a certain type might be likely. The best thing is to
record both types of requirements somewhere in the document but to clearly
identify those requirements that are planned for the current release.

Business and Marketing Requirements versus Product
Requirements

Planning for a new product does not occur in a technical world
devoid of business considerations. Trade-offs must be made among
market windows, target markets, product packaging, distribution
channels, functionality, marketing costs, resource availability,
margins, ability to amortize over large numbers of copies sold, and
so on.

These considerations should be documented, but they do not belong
in the requirements specifications. Some organizations use a
marketing requirements document (MRD) to facilitate
communication among management, marketing, and developers
and to assist in making intelligent business decisions, including the
all-important "go, no-go" decision. The MRD also provides
customers and developers with early verification of communication,
to foster understanding of the product in its most general terms,
and to establish the general scope of the product. The MRD should
answer the following questions:

• Who is the customer?
• Who is the user?
• What markets do we intend to sell to?
• How are these markets segmented?
• Are the requirements of the users in these segments different?
• What classes of users exist?
• What need does the product satisfy?
• What kind of product is it?
• What is the product's key benefits; why should someone buy

it?
• Who is the competition?

• What differentiates the product from the competition?
• In what environment will the system be used?
• What will the development cost be?
• At what price do you want to sell the product?
• How will the product be installed, distributed, and maintained?

The Case Study

In Chapter 6, we performed some systems engineering on HOLIS, our home
lighting automation system. At this point, we still don't know very much about
HOLIS, but we probably know enough to establish a first cut at the organization
for our requirements information. Figure 16-5 shows that the team is using the
following elements to describe the requirements for HOLIS:

Figure 16-5 Organization of HOLIS requirements
information

• The Vision document will contain the short-term and longer-term visions
for HOLIS, including basic system-level requirements and the features that
are being proposed.

• The system-level use-case model records the use cases by which the
various actors in the system interact with HOLIS.

• After some debate, the team decided to document the hardware
requirements—size, weight, power, packaging—for HOLIS's three
subsystems in a single hardware requirements specification.

• As each subsystem of HOLIS is quite software intensive, the team decided
to develop a software requirements specification for each of the three
subsystems, as well as a use-case model for how each subsystem
interacts with its various actors.

You'll have the opportunity to see these requirements artifacts develop further as
we advance the case study in later chapters. A sample of each is included in
Appendix A.

Summary

In this chapter, we examined a variety of requirements documents
for systems of differing complexity. However, in most cases,
requirements management eventually focuses on a single software
subsystem, shrink-wrapped software product, or stand-alone
application. This might be a software product, such as Microsoft
Excel, Rational ClearCase, being developed by an independent
software vendor, or the HOLIS lighting controls system.

In the next few chapters, we will "zoom in" on the process of
requirements definition for a single software application so that we
can demonstrate more clearly how the requirements management
process works.

Chapter 17. The Vision Document

Key Points

• The Vision document describes the application in
general terms, including descriptions of the target
market, the system users, and the application features.

• The Vision document defines, at a high level of
abstraction, both the problem and the solution.

• Virtually all software projects will benefit from having a
Vision document.

• The Delta Vision document focuses on what has
changed.

This chapter focuses on the Vision document. As our colleague Philippe Kruchten
recently said, "If I were permitted to develop only one document, model, or other
artifact in support of a software project, a short, well-crafted Vision document
would be my choice."

The Vision document combines into a single document some modest elements of
both a marketing requirements document and a product requirements document.
We want to develop this particular document further, for two reasons.

1. Every project needs a Vision document.
2. It will help us demonstrate the requirements process further, as some key

elements of this process will be recorded in this document.

The Vision document describes the application in general terms, including
descriptions of the target market, the users of the system, and the features of
the application. Over the years, we have found this document to be quite useful,
and it has evolved to become a standard best practice for us when defining a
software application.

Components of the Vision Document

The Vision document, perhaps the single most important document in a software
project, captures the needs of the user, the features of the system, and other
common requirements for the project. As such, the scope of the Vision document
extends over the top two levels of the requirements pyramid, thereby defining at
a high level of abstraction both the problem and the solution.

For a software product, the Vision document also serves as the basis for
discussion and agreement among the three primary internal stakeholder
communities of the project:

1. The marketing department, which serves as the proxy for the customer
and the user, and which will ultimately be held accountable for the success
of the product after release

2. The project team developing the application
3. The management team, which will be held responsible for the business

outcome of the endeavor

The Vision document is powerful because it represents the gestalt of the product
from all significant perspectives in a short, abstract, readable, and manageable
form. As such, the Vision document is the primary focus in the early phases of the
project, and any investment made in the process of gathering the information will
pay handsome returns in later phases.

Because virtually all software projects will benefit from having a Vision document,
we are going to describe it in some detail. Although our example is oriented
toward a software product, it should be a fairly straightforward matter to modify
it for your particular product context.

Figure 17-1 provides a briefly annotated outline of a sample Vision document.
This outline has been used, with customizations, in hundreds of software products
and a wide variety of software applications. A fully annotated version of this
document appears in Appendix B.

Figure 17-1 Template for a software product Vision
document

In summary, the Vision document is a concise description of everything you
consider to be most important about the product or application. The Vision
document is written at a level of detail, and in plain language, so as to be readily
reviewable and understandable by the primary stakeholders of the project.

The "Delta Vision" Document

The development and management of the Vision document can play a key role in
the success or failure of a software project, providing the locus of activity for the
many stakeholders, customers, users, product management, and marketing
management. Often, even the executive management of the company will be
involved in its development and review. Keeping the Vision document
understandable and manageable is an important team skill that will greatly
benefit the overall productivity of the project.

To assist in this process, it is helpful to keep the Vision document as short,
concise, and "to the point" as possible. This is not particularly difficult in the first
release of the document, as nearly every item in the outline will be new to the
project or at least must be restated in the context of this particular application.

However, in future releases, you may discover that it is counterproductive to
repeat features that have been incorporated in prior releases and other
information that has not changed in this particular project context, such as user
profiles and markets served. We therefore introduce the "Delta Vision" document,
which addresses these issues. Before we proceed however, let's look at the
progression of the Vision document in the lifecycle of a new project.

Vision Document for Release 1.0

In the case of a new product or application, probably every element of the Vision
document must be developed and elaborated. Otherwise, we would simply
remove that element from the outline of the document, and you wouldn't have
had to write about it! The Vision document must contain at least the following
(see Figure 17-2):

Figure 17-2 Vision document v1.0

• General and introductory information
• A description of the users of the system and markets served, features

intended for release in version 1.0
• Other requirements, such as regulatory and environmental
• Future features that have been elicited but that are not to be incorporated

in the 1.0 release

This document serves as the foundation for our 1.0 release and drives the more
detailed software requirements and use cases that will more fully elaborate the
system.

Vision Document for Version 2.0

As the project evolves, features become better defined; often, this means that
they will be more fully elaborated in the Vision document. Also, new features will
be discovered and added to the document. Thus, the document tends to grow, as
does its value to the team. As we approach version 2.0, we certainly want to
maintain this document that has served us so well. The logical next step in the
evolution of the project and this document is to "mine" the future features that
were included in v1.0 of the document but not implemented and to schedule
them for v2.0. In other words, we want to find and "promote" some future
features that will provide value in the 2.0 release. You may also wish to schedule
a further requirements workshop or other elicitation process to discover new

features that will be scheduled for 2.0 and some new future features that will
need to be recorded in the document. Some of these features will already be
obvious, based on customer feedback, others will come from the experience of
the team. In any case, record these newly discovered features in v2.0 of the
Vision document, either as scheduled for incorporation in 2.0 or as new future
features.

You will also probably discover that some of the features implemented in version
1.0 did not deliver the intended value, perhaps because the external environment
changed during the process and the feature was no longer needed or will be
replaced by a new feature or perhaps because the customers simply didn't need
the feature as they thought they would. In any case, you will likely discover that
you will need to remove some features in the next release. How do you record
these "anti-requirements"? Simply use the Vision document to record the fact
that the particular feature must be removed in the next release.

As the team works its way through the process, it will discover that the document
grows over time. That seems quite natural, as it is defining a system that is
growing as well. Unfortunately, you may also discover that the document
becomes more difficult to read and to understand over time. Why? Because it is
now much longer and contains much information that has not changed since the
previous release. For example, the product position statement and the target
users are likely to be unchanged, as are the 25–50 features implemented in v1.0
that live on in the Vision document in v2.0.

Therefore, we suggest the notion of the Delta Vision document. The delta Vision
document focuses on only two things: what has changed and any other
information that must be included for context purposes. This latter information is
included either as a reminder to the team of the vision for the project or because
new team members need the context for understanding.

The result is a Delta Vision document that now focuses primarily on what is new
and what is different about this release. This focus on only that which has
changed is a primary learning technique and is extremely beneficial in dealing
with complex systems of information. With this model, we now have the model
shown in Figure 17-3.

Figure 17-3 The Delta Vision document

• Version 1.0 is our comprehensive starting point, telling us everything we
need to know about our project.

• Version 2.0 defines that which is different in this release.
• Taken together, vision 1.0 plus delta vision 2.0 define the "whole product

definition. "

The two versions must be used together whenever the whole product definition is
necessary, as for regulatory or customer requirements, for example, and it is
obviously valuable for new members of the team. However, in this case, you will
read about features in v1.0 that do not appear in 2.0, as they were removed later,
and it is necessary to follow this audit trail whenever you need to resurrect the
whole definition.

If and when this becomes awkward, it is easy to remerge the contents of v1.0
and Delta 2.0 into a new Vision 2.0 document that represents a comprehensive
and complete project picture.

Of course, we needn't be strict about this definition or what each document
contains. In other circumstances, we have found it convenient to use the Delta
Vision only for the minor release updates—such as v1.1 and v1.2—and to start
with a clean slate and a revised "whole product" statement at each major
release—such as v2.0 or 3.0. In any case, application of the Delta Vision
document should help you manage the requirements process better by allowing
your team to focus on "what really matters" at each specific time.

The Delta Vision Document in a Legacy System
Environment

One of the trickiest problems in requirements management is applying
requirements management skills to the evolution of legacy IS/IT systems. Rarely,
if ever, are there complete and adequate requirements specifications for the
millions of lines of code and hundreds of person years of investment reflected in
these systems. Nor is it practical to stop and redocument the past. By the time
you have done so, the need may well be passed, and you may therefore fail in
your mission by writing historical requirements when you should have been
writing code!

So, if you're starting from scratch or with minimal documentation, you must
proceed on a best-efforts basis, using whatever resources you can find around
you—code, specifications, team members with a knowledge of history—to come
to an understanding of what the system does now. Our recommendation in this
case is to then apply the Delta Vision process and to define your features and use
cases around the changes you are going to make to the legacy system. By
following this process, you and your team can focus on what's new and what's
different in this next release, and your customer and your team will gain the
benefits of a well-managed requirements process. In addition, the requirements
record you create will provide a documentation trail for others to follow behind
you.

Chapter 18. The Champion

Key Points

• The product champion maintains the project vision.
• Every project needs an individual champion or a small

champion team to advocate for the product.
• In software product environments, the product

champion will often come from marketing.

In Chapter 1, we analyzed challenged projects and discovered a variety of root
causes, with requirements management being near the top of the list. In Chapter
17, we defined the Vision document as a seminal document in a complicated
software lifecycle; this document directly addresses the requirements challenge
and is the one document you can look to, at any time, to see what the product,
application, or system is and is not going to do. In total, the Vision document
represents the essence of the product and must be defended as if the success of
the project depends on it, for it does.

At some point, the question rightly becomes, "But who develops and maintains
this all-important document? Who manages customer expectations? Who
negotiates with the development team, the customer, the marketing department,
the project manager, and the company executives who have shown such a keen
interest in this project now that the deadline approaches?"

In virtually every successful project we've been involved in—from adventure ride
vehicles that put butterflies in the stomach of every guest to life-supporting
ventilators that sustain tens of thousands of lives without a single software
failure—there was a champion. We can look back at these projects and point to
one individual, and in the case of larger projects, a small team of a few folks, who
played a "bigger-than-life" role. The champions kept the vision of the product (or
system or application) in the front of their minds as if it was the single most
important thing in their lives. They ate, slept, and dreamed about the vision for
the project.

The Role of the Product Champion

The product champion may have a wide variety of titles: product manager,
project manager, marketing manager, engineering manager, IT manager, project
lead. But no matter the title, the job is the same. It's a big job. The champion
must

• Manage the elicitation process and become comfortable when enough
requirements are discovered

• Manage the conflicting inputs from all stakeholders
• Make the trade-offs necessary to find the set of features that delivers the

highest value to the greatest number of stakeholders
• Own the product vision
• Advocate for the product
• Negotiate with management, users, and developers
• Defend against feature creep
• Maintain a "healthy tension" between what the customer desires and what

the development team can deliver in the release time frame
• Be the representative of the official channel between the customer and the

development team
• Manage the expectations of customers, executive management, and the

internal marketing and engineering departments

• Communicate the features of the release to all stakeholders
• Review the software specifications to ensure that they conform to the true

vision represented by the features
• Manage the changing priorities and the addition and deletion of features

This is the only person to whom the Vision document can be really be entrusted,
and finding the right champion for this purpose is a key to project success or
failure.

The Product Champion in a Software Product
Environment

We once led a workshop for an online service provider confronting requirements
challenges. When we got to the part of the tutorial emphasizing the notion of the
product champion, the room got very quiet, and the mood changed noticeably.
We asked the 25 people present, including developers and senior engineering and
marketing managers, how these tough decisions were made in their environment.
After a few tense moments, it became clear that no one made these decisions.
After discussion among themselves, the best the group could describe was a
"group grope," with input waxing and waning like the tides. No one had
accountability for the tough decisions. No one decided when it was good enough.

Eventually, the team looked back at the senior marketing executive for answers,
perhaps because that individual had the most input in the process. He looked
around for a moment and then said: "You know what scares me the most about
this team? I can ask for any new feature to be added at any time in the process,
and no one ever says no. How can we ever expect to ship a product? "

It's probably clear from this vignette that the customer had not been able to ship
a product for some time. It's also true that history demonstrates that that was an
extremely painful "nonability" for that customer. The company had evolved from
a traditional IT background and had moved to providing online services over the
years. The notion of an application as a software product was new. The team
members had no precedents to guide them though the process.

Although there is no one right way to organize and assign a product champion,
perhaps we can look to our case study for a suggestion. After all, we did model it
on a true-life and effective project team.

In Figure 18-1, it is Cathy, the product manager, who takes on the role of product
champion. Note that, in this case, the product manager reports through
marketing rather than though the engineering organization. This is fairly typical
for software product companies since, in theory at least, product managers are
closest to the customer, who will ultimately determine the success or failure of
the project.

Figure 18.1 Case study: Software team organization

Perhaps more important, product managers report to the marketing management
because marketing management ultimately has responsibility for "The Number,"
that is, the revenue associated with the product release. This is as it should be;
marketing is ultimately accountable for sales and must be correspondingly
responsible for making the hard decisions; otherwise, accountability will be lost.

How do you sort out the roles and responsibilities in a mix of requirements,
technologies, customers, and developers? Imagine the following conversation, a
variant of which occurred recently in a new organization that was sorting out its
roles.

Product
Manager
(Champion):

It should have features A, B, and C, and you should build it
using technology X.

Development
Manager:

I think it should have feature D and not C, and we'll base it on
technology Y.

Product
Manager:

I say it has to have A, B, and C. After all, I'm accountable for
meeting the sales quota, and that's what I need to meet my
customers' needs. If you are willing to sign up for the number,
you can add feature D, so long as you still meet the schedule

Development
Manager:

hmmm (thinking through what it means to spend her time
helping their team meet the quota). I'm not sure that's a good
idea. We'll make it do A, B, and C. But do you want to be
responsible for whether it actually works or not?

Product
Manager:

(envisioning learning how to write code in the next 48 hours
rather than preparing for market launch) Ummm, no, I don't
think that's such a good idea. You can build it on whatever
technology is most appropriate.

Development
Manager:

Agreed. You decide on the features, and we'll pick the
technology; that seems like the best mix for our skills and
responsibilities.

Product
Manager:

It's a deal.

This seem like a simple scenario and just plain common sense, but it is amazing
how often, as in the case of the online services provider, that this responsibility is
not clear.

In some ways, the independent software vendor (ISV) environment is easy: The
customer is external, and we typically have a reasonably sophisticated marketing
organization that we can leverage to elicit the requirements and determining who
is accountable for balancing all of the conflicting needs. A customer whose needs
are not met is simply not a customer. Although that may not be a good thing, at
least they aren't hanging around to raise heck about it.

The Product Champion in an IS/IT Shop

Such is not the case in an IS/IT shop. There is no marketing department, your
customers all work with you, and they will certainly be hanging around after this
release to make their feelings known.

Where do we find our champion in such an environment? Perhaps we can again
learn from an example. In one shop, a new enterprise support system was being
developed to provide global 24-hour-a-day access to customer records for sales
support and license management. The problem analysis exercise identified the
following stakeholders: corporate marketing, telesales, licensing and support,
business unit marketing, business unit financial management, order fulfillment,
and collateral fulfillment. Each of these departments was quite vocal in its needs,
yet it was clear that not all needs could possibly be met. The question "Who owns
the Vision document" looked like a metaphor for the question "Who would like to
make a great CLM (career-limiting move) by attempting to manage this project?"

On analysis, it was clear that none of the leads in the development team had the
authority to make such hard decisions, and yet a champion must be assigned. In
this case, the team decided to name Tracy, the current project lead, as the
product champion and empowered her to elicit and to organize the requirements.
She owned the Vision document. She interviewed the users, established their
relative priorities, and collected the data into a feature-oriented format. But a
special steering committee, or project change control board (CCB), was also
immediately established for the project. The change control board consisted of
three senior executives, each with the responsibility in a functional area.

Initially, Tracy facilitated a decision-making process whereby the CCB established
the relative priorities for the initial release. Thereafter, the CCB, and only the CCB,
had the requisite authority to add or to delete features, with recommendations
coming from the product champion. In this way, there was only one champion,
Tracy, and the results of elicitation and the vision of the project lived in her head
and in the Vision document, but the responsibility for the hard decisions was
given to the CCB. The CCB would take the heat for the hard decisions. The
champion had "only" to see that the agreed-on features were properly elaborated
on and communicated to the development team.

Once Tracy was empowered to drive the process and with the CCB, including
members of upper management, backing her up and taking most of the heat, the
project was successful and was used as an organizational model for new projects.
Each new project used differing project champions. This provided an opportunity
for personal growth and development for these individuals. It became an
empowered role within the company. And, of course, we can't forget the CCB. For
each new project, the makeup of the CCB was established, based on the themes
of each new release and the organizations that would be most directly affected.

Although there is no prescription that you can follow to create a project champion,
it is extremely important for your team to identify one, to promote one, or to
empower the one who seems to already be leading the process. Then it is the
team's responsibility to assist that champion in every way possible in managing
the requirements of the applications. This will help ensure a successful outcome.
Besides, if you don't help make that person successful, he or she might ask you
to be the project champion on the next project.

Team Skill 3 Summary

In Team Skill 3, we moved from understanding the needs of the user to starting
to define the solution. In so doing, we took our first baby steps out of the
problem domain, the land of the user, and into the solution domain, wherein our
job is to define a system to solve the problem at hand.

We also learned that complex systems require comprehensive strategies for
managing requirements information, and we looked at a number of ways to
organize requirements information. We recognized that we really have a
hierarchy of information, starting with user needs, transitioning through features,
then into the more detailed software requirements as expressed in use cases or
traditional forms of expression. Also, we noted that the hierarchy reflects the
level of abstraction with which we view the problem space and the solution space.

We then zoomed in to look at the application definition process for a stand-alone
software application and invested some time in defining a Vision document for
such an application. We maintain that the Vision document, with modifications to
the particular context of a company's software applications, is a crucial document
and that every project should have one.

We also recognized that without a champion—someone to champion the
requirements for our application and to support the needs of the customer and
the development team—we would have no way to be certain that the hard
decisions are made. Requirements drift, delays, and suboptimum decisions forced
by project deadlines are likely to result. So we decided to appoint one, or anoint
one: someone to own the Vision document and the features it contains. In turn,
the champion and the team will empower a change control board to help with the
really tough decisions and to ensure that requirements changes are reasoned
about before being accepted.

With a requirements management organizational strategy in hand and a
champion at the helm, we are now better prepared for the work ahead. But first,
we must take a look at the problem of project scope, the subject of Team Skill 4.

Part V: Team Skill 4: Managing Scope

• Chapter 19 The Problem of Project Scope
• Chapter 20 Establishing Project Scope
• Chapter 21 Managing Your Customer
• Chapter 22 Scope Management and Software Development

Process Models

So far in this book, we have been introduced to the Team Skills of analyzing the
problem, understanding user needs, and defining the system. These three Team
Skills all focus on a primary root cause of software development problems: the

team's forging off into the solution space without having an adequate
understanding of the problem to be solved. Although team members will need to
practice these skills in order to develop them, doing so does not take great effort.
We strongly recommend spending a little more time in these early lifecycle
activities; the entire set of activities described so far should consume only a small
fraction of the project budget, perhaps only 5 percent or so of the total costs.
Although the issues are complex, only a few team members—analysts, project
manager, technical lead, product manager/project champion—need to be heavily
involved up to this point.

Hereafter, however, the game changes dramatically as the team size will be
increased significantly. Each of these additional team members must participate
in a coordinated team effort, and everyone must communicate effectively with
one another. In addition, the investment, or "burn rate," of the project increases
dramatically. We create documents for test plans, build design models and refine
requirements, elaborate the use cases, develop the code, and thereby create
momentum and a body of work that must be changed if the definition is not well
understood or if the external requirements environment changes.

The requirements pyramid, by its very shape—wider at the bottom—correctly
suggests that much more work is ahead of us. Team Skill 4 develops a strategy
for a most crucial activity: managing scope. According to the Standish Group
(1994) data, "53% of the projects will cost 189% of estimates." Data from our
own experience is even worse: Almost all software projects will be late by a factor
of 50%–100%. Assuming that the other root causes in software development will
not be solved overnight, it seems clear that our industry is either incompetent or
trying to do too much with too little resources, skills, and tools. We are trying to
stuff ten pounds of desired functionality into a five-pound bag. Although the
physics of software development are not clear, it should be obvious that this
element of our strategy is heading for trouble and that the quality of both our
work products and our reputation is about to suffer.

So, before we increase the team size, before we develop the more detailed
specifications, before we commit our technology ideas to designs, and before we
build the test scripts, we must pause and learn how to manage the scope of the
project. Part psychology, part technology, and part just good project
management, mastery of this Team Skill will dramatically improve the probability
of a successful project.

Chapter 19. The Problem of Project
Scope

Key Points

• Project scope is a combination of product functionality,
project resources, and the time available.

• Brooks's law states that adding labor to a late software
project makes it even later.

• If the effort required to implement the system features
is equal to the resources over the time available, the
project has an achievable scope.

• Over scoped projects are typical in industry.

• In many projects, in order to provide a reasonable
probability of success, it will be necessary to reduce
the scope by as much as a factor of two.

Components of Project Scope

As with any professional activity, meeting commitments in application
development involves making realistic assessments of project resources, time
lines, and objectives before the activity begins. For software development, these
factors combine to create the "scope" of the project. Project scope is a function of:

• The functionality that must be delivered to meet the user's needs
• The resources available to the project
• The time available in which to achieve the implementation

Figure 19-1 provides a perspective of the "box" we can use to represent project
scope.

Figure 19-1 Project scope

In Figure 19-1, the area of the box represents the achievable scope of the project.
Project scope derives from the following elements:

• Resources, consisting primarily of the labor from developers, testers, tech
writers, quality assurance personnel, and others.

As early as the 1970s, Fred Brooks (1975) had demonstrated that adding
resources to a software project in order to increase the work output is a
risky proposition at best. Indeed, Brooks' law states that adding labor to a
late software project makes it even later.

OK, if the time scale is long enough, work output can indeed go up, but it
will not go up proportionally to the resources added, and the overall
efficiency of the project thereby decreases. Adding resources may even
slow a project because the need for training and supporting the new
people decreases the productivity of those already on the project. As the
competitive marketplace forces us to shorten our time lines, adding
resources during a project becomes less and less practical. In addition, as
development budgets are stretched and real years become Internet years,
adding resources is simply not an option in many environments.

For the purpose of analyzing scope, let's assume that resources, on the y-
axis of Figure 19-1, are constant over the duration of the project.

• Time, perhaps here we have a "soft" boundary that is subject to change if
the available resources are inadequate to achieve the desired functionality.
For purposes of our scope analysis, time on the x-axis, is a fixed factor.

Certainly, history would demonstrate that delivering software late is
typically "par for the course." On the other hand, many applications have
hard, fixed deadlines. Examples include a new tax program to be delivered
in time for tax season, a new-product introduction timed for a trade show,
or a contractually fixed customer deadline. In addition, if as a profession
we want to ensure our credibility and to gain the confidence of our
customers, it is important that we not slip the schedule for a change.

The total functionality we can deliver is obviously limited to the available time
(fixed) and the available resources (also fixed) we have to apply, so the
achievable scope is the area of the box.

In this book, we have used the notion of "features" to represent the value-added
functionality we must deliver to the user. If the effort required to implement the
features required by the system is equal to the resources over the time we have
available, the scope of the project is achievable, and we have no problem. Barring
unforeseen circumstances, the software team will deliver on time without
sacrificing quality.

However, experience has shown that there is often a poor match between these
factors in the scope equation. Indeed, in requirements classes that we teach, we
always ask: "At the start of the project, what amount of scope are you typically
given by your management, customers, or stakeholders? " In response, only a
few trainees have ever answered "under 100 percent." The others have
responded with numbers that vary from 125 percent to 500 percent. The median
and the average for each session tend towards the same conclusion:
approximately 200 percent. This data correlates remarkably well with the
Standish Group finding stated earlier, namely, that more than half of all projects
will cost close to double their estimates. Perhaps we now understand why.

A Short Story on Project Scope

We once had a student who had recently moved into a new
role as product manager for a new software product. Her
background included many aspects of product development
and product marketing, but she had no direct experience in
software development. After hearing the responses to our
question about scope, she appeared incredulous. She looked
around the room and said, "Do you people really mean to tell
me that you routinely sign up for approximately two times
the amount of work that can reasonably be accomplished in
the available time period?[1] What kind of profession is this?
Are you people crazy?" The developers looked at one another
sheepishly and by consensus answered, "Yup."

[1] Many students have commented that it is management that signed up, often committing them before they
volunteered!

What happens when a project proceeds with a 200 percent initial scope?

• If the features of the application were completely independent, which is
unlikely, only half of them will be working when the deadline passes. The
product is limping but provides only half of the intended utility. And it's not
a holistic half. The features don't work together, and they don't produce
any useful aggregate functionality. A drastically reduced-scope application
is quickly patched together and shipped. Consequences include seriously
unhappy customers whose expectations have not been met, marketing
commitments that have been missed, and inaccurate manuals and
promotional materials that must be quickly reworked. The entire team is
frustrated and demotivated.

• At deadline time, only 50 percent of each feature works. Moreover, since
there are certainly interdependencies within those features, in this even
more typical case, nothing useful works when the deadline passes. The
deadline is missed badly. All commitments are missed; a new deadline is
scheduled, and a new death march often begins. In the worst case, the
entire team is fired, after working overtime for months on end; the final
"phase" of this first attempt at the project, the phase called "promotion of
the nonparticipants," is declared, and a new manager is added to the
project.

What happens to software quality during either of these outcomes? The code,
which is rushed to completion near the end, is poorly designed and bug-ridden;
testing is reduced to an absolute minimum or skipped entirely; and
documentation and help systems are eliminated. Customers take on both the
testing and the quality assurance functions. Soon, the customers react to our
extraordinary efforts as follows: "Although we were initially disappointed by how
late you were (or how little is working compared to our expectations), now we are
really unhappy because we just discovered that what you shipped us is junk."

The Hard Question

Clearly, in order for the project team to have any hope of success, scope must be
managed before and during the development effort. Given the typical scenario,
however, the task is daunting: For if we truly begin the development effort with
an expectation of 200 percent scope, it will be necessary to reduce the project
scope by as much as a factor of 2 in order to have any chance of success.

The team's dilemma in addressing this problem leads to perhaps the toughest
question faced by the team: How does one manage to reduce scope and keep the
customers happy? Well, all is not lost. We'll cover ways of dealing with this issue
in the next two chapters.

Chapter 20. Establishing Project Scope

Key Points

• The first step in establishing project scope is to
establish a high-level requirements baseline, an

itemized set of features intended to be delivered in a
specified version of the product.

• The second step is to establish the rough level of effort
required for each feature of the baseline.

• Next, estimate the risk for each feature, or the
probability that implementing it will cause an adverse
impact on the schedule and the budget.

• Using this data, the team establishes the baseline in
such a way as to ensure the delivery of those features
that are critical to project success.

The Requirements Baseline

The purpose of scope management is to establish a high-level requirements
baseline for the project. We'll define the baseline as

the itemized set of features, or requirements, intended to be delivered in a
specific version of the application.

See Figure 20-1 This baseline for the next release must be agreed to by both the
customer and the development team. In other words, the baseline must

Figure 20.1 Requirements baseline

• Be at least "acceptable" to the customer.
• Have a reasonable probability of success, in the team's view.

The first step in creating the baseline is to simply list the features that have been
defined for the application. Controlling the level of detail in this process is an
important key to success. In Team Skill 3, we suggested that any new system, no
matter how complex, can be described by a list of 25–99 features. With any more
than that, you are viewing the project at a level of detail that is too high to
communicate effectively with the customers and the development team. With
fewer than that, the level of detail may be too low to provide a sufficient
understanding of the application and the associated level of effort necessary for
implementation.

If we followed the requirements workshop process (Chapter 10) or any process
that creates a similar outcome, we will have at our disposal a list of 25–99

features. This list provides an itemized, high-level description of the capabilities
of a new or revised system. This features list is the primary project artifact we
will use to manage the scope of the project before significant investments are
made in requirements refinement, design, code, testing, or other project activities.

For example, let's consider a shrink-wrapped software product with a list of the
following eight features:

Feature 1: External relational data base support

Feature 2: Multiuser security

Feature 3: Ability to clone a project

Feature 4: Port to new operating system (OS) release

Feature 5: New project wizard

Feature 6: Import of external data by style

Feature 7: Implement tool tips

Feature 8: Integrate with version-manager subsystem

Setting Priorities

As we discussed in Team Skill 2, Understanding User Needs, establishing the
relative priorities for the feature set is integral to scope management. During
prioritization, it is important that the customers and users, product managers, or
other representatives—not the development team—set the priorities from your in-
house marketing department. Indeed, this initial prioritization should be done
without too much influence from the technical community; otherwise, the level of
difficulty in implementing the features will influence customer priorities, and the
result of the process will be compromised such that the application may not meet
the real customer needs. There will be adequate opportunity for technical input at
later phases of the prioritization process. In our project example, let's assume
that we vote on the priority of each feature, using a critical-important-useful scale;
the results of this exercise are shown in Table 20-1

Table 20.1. Prioritized features
Feature Priority

Feature 1: External relational database support Critical Critical

Feature 4: Port to new OS release Critical Critical

Feature 6: Import of external data by style Critical Critical

Feature 3: Ability to clone a project Important Imporatant

Feature 2: Multiuser security Important Important

Feature 5: New project wizard Important Important

Feature 7: Implement tool tips Useful Useful

Feature 8: Integrate with version-manager subsystem Useful Useful

Assessing Effort

Prioritization is only one piece of the scope puzzle. After all, if we could do all of
the work, the prioritization would be unnecessary. If we can't do all of the work,
we still haven't figured out how much we can do, and therefore, we do not yet
know where to draw the baseline for the project.

The next step is to establish the rough level of effort implied by each feature of
the proposed baseline. Doing so is tricky, as little useful information is available
yet on which to estimate the work; we have no detailed requirements or design
output on which to base an estimate. The best we can do is to determine a
"rough order of magnitude" of the level of effort for each feature.

Estimating effort at this early time is a learned Team Skill. The engineering team
will be naturally reluctant to provide estimates before feasibility and requirements
are fully understood, and yet the first cut at scope management must happen
before this next level of detail is known.

Let's assume that the product or project manager is the champion for our project
and has the following dialogue with the developers for the project:[1]

[1] The team may wish to use "team-weeks" or "team-months" as a gross estimate of the total impact of a
feature on the project. This rough heuristic serves as a substitute for a more detailed estimate and is
arguably better than the result of this dialogue. Then, using these totals and the total time available for the
project, the team can determine where to initially draw the baseline. If it is past the critical-features set, all
is well; if not, the project is out of scope, and a new, smaller project must be defined.

Product Manager: How difficult is this feature to do?
Development
Team:

We don't know. We don't have any reuirements or design
yet.

Product Manager: I respect that, but is it the easiest thing we've ever done?
Development
Team:

No.

Product Manager: OK, is it the most difficult feature on ths list?
Development
Team:

No.

Product Manager: On a scale of low-medium-high, we will give it a medium.
OK?

Development
Team:

OK. Medium it is.

Product Manager: OK, on to the next feature.

Why can we not allow for a process that creates detailed requirements and design
information for each feature so that we can create more meaningful estimates?
Isn't that the professional way to approach the problem? If the schedule provides
time for more detailed estimating at this time, by all means do it!

However, we believe that it is crucial to be able to make some quick decisions
about the scope of the activity without a more detailed estimate. Why? Because
to do otherwise invests resources in what will later be determined to be "wasted
inventory," including requirements specifications for features that will not be
implemented, design information for those features, test

Table 20.2. Features list with effort added
Feature Priority Effort

Feature 1: External relational database support Critical Medium

Feature 4: Port to new OS release Critical High

Feature 6: Import of external data by style Critical Low

Feature 3: Ability to clone a project Important High

Feature 2: Multiuser security Important Low

Feature 5: New project wizard Important Low

Feature 7: Implement tool tips Useful Low

Feature 8: Integrate with version-manager subsystem Useful High

scripts for requirements that will be scope-managed out of the project later, a
false determination of the critical path for the project, and so on. We cannot
afford to invest any resources in these scrap-producing activities, or we will fail to
optimize the resources invested. In other words, scope management will reduce
the number of features that will be developed in the initial release, and since
resources are extraordinarily scarce, we cannot afford any additional investment
in features that are not going to be implemented in the current baseline. Table
20-2 illustrates the addition of effort information to our feature list.

Adding the Risk Element

Another aspect of managing scope is estimating the "risk" associated with each
feature. In this context, we'll consider risk to be the probability that the
implementation of a feature will cause an adverse impact on the schedule and the
budget. Risk gives us a relative measure of the potential impact of including a
particular feature within the project baseline. A high-risk feature has the potential
to negatively impact the project, even if all other features can be accomplished
within the allotted time.

The development team establishes risk, based on any heuristic it is comfortable
with, using the same low-medium-high scale used to assess effort. Table 20-3
shows the revised features list for the example.

Table 20.3. Features list with risk added
Feature Priority Effort Risk

Feature 1: External relational database Critical Medium Low

Feature 4: Port to new OS release Critical High Medium

Feature 6: Import of external data by style Critical Low High

Feature 3: Ability to clone a project Important High Medium

Feature 2: Multiuser security Important Low High

Feature 5: New project wizard Important Low Low

Feature 7: Implement tool tips Useful Low High

Feature 8: Integrate with version-manager sub-
system

Useful High Low

Strategies for mitigating risk vary from project to project, and we won't cover
that topic here. For the purposes of scope management, it is adequate to simply

be aware of the risk associated with each feature so that intelligent decisions can
be made early in the project. For example, if a feature has a benefit of critical and
a risk of high, then an effective mitigation strategy is mandatory. If priority is
important and the feature hovers around the baseline, the item may be dropped
or simply developed "if time is available." There's no harm in the process, so long
as no commitment was made to include the item in the release. If the benefit of a
high risk item is only useful, consider skipping it entirely.

Reducing Scope

We have made substantial progress. We now have a prioritized features set with
associated relative effort and risk. Note that there is often little correlation
between priority and effort or with risk. Indeed, many critical items are low effort;
many items that are only useful are very difficult. This can help in the team's
prioritization of the features. For example, a feature that is critical, medium effort,
and low risk may be a candidate for immediate resourcing. Between these
extremes, we can find the "sweet spot," wherein we can apply our fixed resources
so as to maximize the benefit to the customer. Table 20-4 provides a few
guidelines for prioritizing the development of critical features based on these
attributes.

A Reasonable First Estimate

If the team uses even a rough, labor-based estimate, it can determine the
baseline by simply adding the labor estimates until the time limit has been met;
the team will have established the project baseline. Often, however, the team will
not have even this data available and yet must make a first cut at

Table 20.4. Scope prioritization techniques
Attributes Consider

Priority: Critical
Effort: High Risk: High

Alarm! Establish immediate risk-mitigation strategy;
resource immediately; focus on feasibility with
architecture

Priority: Critical
Effort: High Risk: Low

A likely critical resource-constrained item; resource
immediately

Priority: Critical
Effort: Low Risk: Low

Resource as a safety factor, or defer until later

project scope. In this case, we still do not know where to draw the baseline, but if
it is the team's gut feel that scope is greater than 100 percent, the list will likely
have to be cut.

The next step is the trickiest. If we assume, for example, that the features add up
to 200 percent scope, the baseline must be chopped in half or more. How do we
go about this process?

The first consideration is whether we can do only the critical items on the list. Ask
the project manager, "If all else fails, can we be certain of achieving at least the
critical items by the deadline?" After all, if we applied the prioritization scheme
well, only one third or so of the items on the list will be critical to the release.
Unless some of the critical features represent a highly disproportionate level of
effort, the answer should be yes, even if we have 200 percent scope. If the

answer is yes, and in our experience it is almost always yes, even at this first
early cut, we have the beginnings of a plan. If the answer is no, the project is
way out of scope (300%–400% or more), and a smaller-scope project must be
defined and the prioritization process repeated.

Since our estimating process was crude at best, we cannot say for sure how
many items beyond critical can be achieved. A further estimating effort, based on
more detailed requirements and appraisal of technical feasibility, can be used to
further refine the baseline. (Also, this is the time to do the detailed project plan
to validate the assumptions that have been made.)

In our experience, however, it is sufficient in many real-world projects to draw
the baseline at the critical requirements, perhaps including one or two important
items, leaving the development team to make further decisions about the
inclusion of important items, based on project progress. No, it isn't scientific. But
yes, it does work.

If expectations are properly set and managed, anything that can be accomplished
beyond the baseline will be a bonus. Table 20-5 applies this simple heuristic to
the baseline for our sample project.

Features below the baseline are now future features and will be considered in
later releases. Such features may be later promoted to a higher priority, based on
what is accomplished in the near-term release and on future customer input.

Of course, the features are not always independent. In many cases, one of the
features below the baseline is integral to one of the features above the baseline
or can be implemented more readily as a result of having accomplished another
feature. Or, perhaps the project team is good or lucky and gets ahead of schedule
(now a conceivable notion!) or finds a class library that makes a below-the-
baseline feature easy to implement. In these cases, the team should be
empowered to bring that feature into the baseline and include it in the release
and to reprioritize and to reset the baseline, subject to proper communication
processes, of course.

In this fashion, the team should be able to create a project plan, at least at the
first order of approximation. However, in all likelihood, many of the desired
features did not make the first cut, and there will be expectations to be managed,
both inside and outside the company. We'll cover that topic in the next chapter.
But first, look at the case study and see what the team came up with for the
HOLIS v1.0 release.

Table 20.5. Prioritized feature list
Feature Priority Effort

Feature 1: External relational database support Critical Medium

Feature 4: Port to new OS release Critical High

Feature 6: Import of external data by style Critical Low

Feature 3: Ability to clone a project Important Medium

Baseline (features above this line are committed features)

Feature 2: Multiuser security Important Low

Feature 5: New project wizard Important Low

Feature 7: Implement tool tips Useful Low

Feature 8: Integrate with version-manager subsystem Useful High

The Case Study

After holding the requirements workshop, the HOLIS team was chartered with the
responsibility of assessing the level of effort for each feature and coming up with
a first draft of the v1.0 baseline. Rigorous scope management had to be applied
because of the constraints on the team, including the "drop dead" date of having
a prototype available at the trade show in December and the (even tougher) date
of a release to manufacturing in January.[2] The team estimated the level of effort
for each feature via the high-medium-low heuristic and then added the risk
assessment for each feature. Table 20-6 shows the full features list, with these
attributes added.

[2] Although it was given manufacturing lead times, the team decided that they actually had until the end of
February for the final 1.0 software release. This was a crucial additional 6 weeks that the team was
convinced it would need for final modifications, based on feedback from the trade show.

For the next step, the team provided rough estimates for each feature and
developed a detailed project plan showing certain interdependencies and critical
milestones. Also, after negotiation with marketing, which, in turn did some
negotiating with Raquel (its international distributor), the team determined that,
at release 1.0, it was adequate to internationalize only the CCU user interface,
which reduced the scope of this feature immensely. The final internationalization
of the optional PC Programmer interface software could wait until v2.0. This
caused the team to change feature 25 from "internationalize user interface" to
"internationalize CCU interface" and to add a new feature, "internationalize PC
programmer," to the futures list.

Then, based on revised labor estimates, the team proposed the baseline as
shown in Table 20-7 This baseline proposal was sent all the way to the executive
team, where Emily, the VP, made the final decision. Before doing so, however,
she had the team walk her through the project plan so she could "see the
dependencies." (The team was suspicious that she really wanted to see whether it
had "done its homework" or if it was just "sandbagging" to get some slack in the
schedule.) In the end, the decision was yes, but Emily's caveat was, "We accept
this proposal for the 1.0 release of HOLIS, but you should be aware that the CEO,
Mark, told my boss, Jason, who told me that 'thou shall not fail to release the
product in January as you have committed.' " Emily commented further, "I'm not
sure"

Table 20-6. HOLIS 2000 features, sorted with effort and risk attributes added
ID Feature Votes Effort Risk
23 Create custom lighting scenes 121 Med Low
16 Automatic timing settings for lights, etc. 107 Low Low
4 Built in security features: lights, alarms, and bells 105 Low High

6 100% reliability 90 High High

8 Easy-to-program, non-PC control unit 88 High Med
1 Easy-to-program control stations 77 Med Med
5 Vacation settings 77 Low Med
13 Any light can be dimmed 74 Low Low
9 Uses my own PC for programming 73 High Med

14 Entertain feature 66 Low Low
20 Close garage doors 66 Low Low
19 Automatically turn on closet lights when door opened 55 Low High

3 Interface to home security system 52 High High

2 Easy to install 50 Med Med
18 Turn on lights automatically when someone approaches a

door
50 Med Med

7 Instant lighting on/off 44 High High

11 Can drive drapes, shades, pumps, and motors 44 Low Low
15 Control lighting, etc., via phone 44 High High

10 Interfaces to home automation system 43 High High

22 Gradual mode-slowly increase/decrease illumination 34 Med Low
26 Master control stations 31 High High

12 Easily expanded when remodeling 25 Med Med
25 Internationalized user interface 24 Med High

21 Interface to audio/video system 23 High High

24 Restore after power fail 23 N/A N/A
17 Controls HVAC 22 High High

28 Voice activation 7 High High

27 Web site-like user presentation 4 Med Low

"what he meant by that. I think he meant that if we fail, he's going to have me
committed, but I don't ever want to find out. Do you?"

Hearing Emily's words very clearly, the team members committed themselves to
the delivery date and proceeded with the next phase. The next milestone in the
project plan was to be an elaboration iteration, which would include a rapid
prototype of HOLIS that would be available for demonstration by August 1.

Table 20.7. V1.0 baseline for HOLIS
ID Feature Votes Effort Risk Marketing Comments
23 Create custom lighting scenes 121 Med Low As flexible as possible

16 Automatic timing settings for
lights, etc.

107 Low Low As flexible as possible

4 Built-in security features: lights,
alarms, and bells

105 Low High Marketing to do more
research

6 100% reliability 90 High High Get as close to 100% as
possible

8 Easy-to-program, non-PC control
unit

88 High Med Provide dedicated
controller

1 Easy-to-program control stations 77 Med Med As easy as feasible with
measured effort

5 Vacation settings 77 Low Med
13 Any light can be dimmed 74 Low Low
9 Uses my own PC for programming 73 High Med Only one configuration

supported in 1.0

25 Internationalized CCU user 24 Med Med Per agreement with

interface European distributor

14 Entertain feature 66 Low Low (Not applicable, included
in 23)

7 Instant lighting on/off 44 High High Make intelligent
investments

V1.0 Mandatory Baseline: Everything above the line must be included or we will
delay release.

20 Close garage doors 66 Low Low May be little impact on
software

2 Easy to install 50 Med Med Level of effort basis

11 Can drive drapes, shades, pumps,
and motors

44 Low Low May be little impact on
software

22 Gradual mode: slowly
increase/decrease illumination

34 Med Low Nice if we can get it

V1.0 Optional: Do as many of the preceding as you can (Cathy)

Future Features: Below this line, no current development

29 Internationalize PC
Programmer interface

N/A High Med Will become mandatory
for version 2.0

3 Interface to home security system 52 High High Can we at least provide a
hardware interface? (Eric)

19 Automatically turn on closet lights
when door opened

55 Low High

18 Turn on lights automatically when
someone approaches a door

50 Med Med

15 Control lighting, etc., via phone 44 High High
10 Interfaces to home automation

system
43 High High

26 Master control stations 31 High High
12 Easily expanded when remodeling 25 Med Med
25 Hand-held remote controls 24 Med High
21 Interface to audio/video system 23 High High
24 Restore after power fail 23 N/A N/A
17 Controls HVAC 22 High High
28 Voice activation 7 High High
27 Web site-like user presentation 4 Med Low

Chapter 21. Managing Your Customer

Key Points

• Managing your customers means engaging them in
managing their requirements and their project scope.

• Customers who are part of the process will own the
result.

• Getting the job done right means providing enough
functionality at the right time to meet the customer's
real need.

• Negotiating skills are an invaluable aid to the scope
management challenge.

Engaging Customers to Manage Their Project Scope

Reducing project scope to within shouting distance of available time and
resources has the potential to create an adversarial relationship between the
project team and its customers, whose needs we must meet. Let's be honest.
We've all been there. Fortunately, it does not have to be so. Instead, we can
actively engage our customers in managing their requirements and their project
scope to ensure both the quality and the timeliness of the software outcomes.

This conclusion is based on some important insights:

• It is in our customers' best financial interests to meet their external
commitments to their marketplaces. Therefore, delivering a high-quality
and, if necessary, scope-reduced application—on time and on budget—is
the highest overall benefit that the team can provide.

• The application, its key features, and the business needs it fulfills all
belong to the customers, not to the application development team. We
need customers' input to make the key decisions, and only the customers
can really determine how to manage scope and achieve a useful
deliverable. We are their humble technological servants. It is their project.

Communicating the Result

If the project scope must be reduced, make sure that the customer is a direct
participant. A customer who is part of the process will own the result. A customer
who is excluded from the process will be unhappy with the result and will
naturally tend to blame the developers for not trying hard enough.

Engaging the customer in this dialogue helps lay the problems of scope
management ever so gently on the customer's doorstep. And with the philosophy
we've described in the previous chapter, smart customers will make commitments
to their external marketplaces only for the critical items included in the baseline.
The embarrassment of missed schedules and missing features is avoided. Any
extra features accomplished beyond the baseline will be perceived positively as
exceeding expectations.

Sometimes, the discovery of the scope management problem occurs outside of
the customer engagement process; then, in all likelihood, some bad news is
about to be delivered. Delivering this message to our customers and/or
management is a delicate process requiring both negotiation skills and a total
commitment to the schedule and scope that results. After we deliver the bad
news, we cannot afford to fail to deliver on the new promise lest all credibility be
lost.

Negotiating with the Customer

Almost all business processes require negotiation. Consider negotiating with a
customer for a delivery date for ball bearings, negotiating price on a large order,

negotiating your annual increase with your manager, negotiating an achievable
quota for your sales team, or negotiating additional resources for your project.

On behalf of both your project and your customer's business objective, you may
need to negotiate the scope commitment for your team. The team should also
keep in mind that, in many cases, the customer may already have developed the
skills of negotiation and will naturally use them in their discussions with you and
your team. Therefore, if you are a team leader, project manager, or project
champion, you should develop these skills as well. Negotiation is a professional
business activity. It is not a particularly difficult process, and it can be done with
integrity, grace, and style. Take the opportunity to gain some training in this
process; your human resources department can probably help, or you may want
to take an external seminar. Failing that, you should at least familiarize yourself
with some of the rules of the game. For example, a good overview of the
negotiating process can be found in Fisher, Ury, and Patton's (1983) Getting to
Yes, which can be read in a few hours. They recommend a few helpful guidelines
for every negotiating session.

• Start high but not unreasonable.
• Separate the people from the problem.
• Focus on interests, not positions.
• Understand your walk-away position.
• Invent options for mutual gain.
• Apply objective criteria.

As you negotiate with your customer, your guiding principle in establishing the
baseline should be: Underpromise and overdeliver. Doing so ensures that the
inevitable vagaries of software development, unanticipated technological risks,
changing requirements, delays in availability of purchased components, a key
team member's unanticipated leave, and so on, can be accommodated within
your project schedule. If you should happen to run the one project in a thousand
free of these unfortunate circumstances, it's OK: at worst, you will embarrass
yourself by delivering early! Even that would provide at least some entertainment
value within your company!

Managing the Baseline

Successful development managers create margins for error in estimating effort
and allow for time to incorporate legitimate change during the development cycle.
These managers also resist feature creep, which author Jerry Weinberg (1995)
notes can increase scope by as much as 50%–100% after the start of a project.
Focusing the development effort on the customer's critical priorities can mitigate
even hostile political environments. With scope negotiated to an achievable level,
and with development focused almost exclusively on the customer's "must
haves," the team will establish credibility by meeting schedules with quality and,
occasionally, with utility that could not have been predicted in advance.

However, your customers, be they internal or external, naturally want as much
functionality as possible with each release of a software system. After all, it's the
functionality that delivers the added value they need to meet their business
objectives. Indeed, we must have a healthy respect for customers who are
demanding, for they are the ones who will ultimately be the most successful in
the marketplace. Demanding, competent customers are the only ones really
worth having.

Left unchecked, however, the demand for more and more functionality can
compromise the quality and the overall viability of the project. More becomes the
enemy of adequate. Better becomes the enemy of good enough.

If we were operating in a business sector where the physics are better defined,
where the industry had a few hundred years of experience in reliably delivering
the goods, things would be different. But we operate in the software world; the
physics are indeterminate, the processes are immature, and the technology
changes with every application. Let's first focus on learning how to get the job
done right: enough functionality at the right time to meet the customer's real
need. We can tune our process later to see if we can exceed expectations, but for
now, let's focus on just meeting them! In order to do so, we need to manage the
baseline.

Once established, the baseline provides the center of focus for many project
activities. The features baseline can be used to realistically assess progress.
Resources can be adjusted, based on progress relative to the baseline. The
features within the baseline can be refined into further detail suited for code
development. Requirements traceability can be applied from user needs to the
features in the baseline. Traceability can be further extended from features into
additional specifications and implementation.

Perhaps most important, the high-level baseline can be used as a part of an
effective change management process. Change is an integral part of every
application development activity. Managing change is so critical that we have
devoted Chapter 34 to this topic. For now, we'll look at how we can apply the
features baseline to this important aspect of software management.

Official Change

The features baseline provides an excellent mechanism for managing high-level
change. For example, when the customer requests a new system capability (an
official change) and that capability is not part of the features baseline, the impact
of the change must be assessed before including the new feature in the baseline.
If the project team has done a good job of defining the baseline to begin with, the
assumption must be that any change to the baseline must affect the resources,
the schedule, or the features set to be delivered in the release.

If the resources are fixed and the schedule cannot be changed, the project team
must engage the customer in a decision-making process that prioritizes the new
feature relative to the other features scheduled for the release. If the new feature
is critical, it must, by definition, be included in the release, and the customer and
the project team should jointly determine which features will be excluded from
the release or at least lowered in priority, with accompanying lower expectations.
If the feature is important but not critical, the project team can proceed with the
implementation of the feature on a best-efforts basis, allowing progress to dictate
whether the feature makes the release.

Unofficial Change

Paradoxically, the problem of customer-initiated change may be the easiest scope
management challenge to handle. It is externally focused, we can establish
certain safeguards, and the impact of change can be assessed and made clear to
this external stakeholder.

However, experience shows that another class of change threat is even more
subversive to the development process. In Chapter 34, we will discuss the hidden
dangers of change and gain additional ammunition with which to address the
scope management challenge.

Chapter 22. Scope Management and
Software Development Process Models

Key Points

• The team's development process defines who is doing
what, when, and how.

• In the waterfall model, software activities proceed
through a sequence of steps, with each step based on
the activities of the previous step.

• The spiral model begins with a series of risk-driven
prototypes, followed by a structured waterfall-like
process.

• The iterative approach, a hybrid of the waterfall and
spiral models, decouples the lifecycle phases from the
software activities that take place in each phase.

• No matter what model you use, you must develop at
least one early prototype to get customer feedback.

So far, we have not talked much about the overall software development process
and its relationship to the team's ability to achieve the results it desires. However,
effective requirements management cannot occur without the context of a
reasonably well-defined software process that defines the full set of activities that
your team must execute to deliver the final software product. Some software
processes are relatively formal, and some are informal, but always, a process is
at work, even though it may not be rigorous or documented.

Your team's software development process defines who (which member of the
team) is doing what (what activity is being performed, when (that activity is done
in relation to other activities), and how (the details and steps in the activity) in
order for your team to reach its goal. Software processes have a material effect
on your team's ability to develop software on time and on budget. In this chapter,
we look at some of the higher-level aspects of various types of software
processes, namely, the time-dependent phases and major types of activities in
those phases, and we then analyze how the various software processes affect the
scope management challenge.

The Waterfall Model

Boehm (1988a) points out that, as early as the 1950s, the software industry,
recognizing the cost of discovering software defects late in the cycle, adopted a
logical, stepwise process model, which progressed from a requirement phase to a
design phase to a coding phase, and so on. This was a major improvement over

the earlier, two phase "code and fix" model, whereby programmers first wrote the
code and then fixed it until it couldn't be fixed any more.

In the 1970s, Winston Royce (1970), working at TRW, defined what became
known as the "waterfall model" of software development. The waterfall model
improved on the strictly stepwise model by

• Recognizing the need for feedback loops between stages, thereby
acknowledging that design affects requirements, that coding the system
will cause the design to be revisited, and so on.

• Developing a prototype system in parallel with requirements analysis and
design activities

As shown in Figure 22-1, in the waterfall model, software activities proceed
logically through a sequence of steps. Each step bases its work on the activities of
the previous step. Design logically follows requirements, coding follows design,
and so on. The waterfall model has been widely followed over the past two
decades and has served successfully as a process model for a variety of medium-
to large-scale projects.

Figure 22.1 Waterfall model of software development

Note that as commonly applied, Figure 22-1 does not reference the prototyping
activity prescribed. This is an unfortunate mistake in history that we'll return to
shortly.

The waterfall model has been somewhat successful in reinforcing the role of
requirements as the necessary first step in software development, the basis for
design and coding activities. However, this strength became a source of difficulty,
as it tended to emphasize fully elaborated requirements and design documents as
a barrier to exit from each phase. Also, through perhaps its misapplication by
overzealous development teams, this model has come to represent a fixed, rigid
approach to development, wherein requirements are "frozen" for the life of the
project, change is anathema, and the process of development takes on a life of
its own. In this case, over time, the team may be completely disengaged from
the real world that the project was originally based on.

The waterfall model comes under additional pressure when it is aligned to the
scope management challenge (Figure 22-2). Specifically, if the waterfall model is
applied to a project that is initiated with 200 percent scope, the results can be
disastrous. At deadline time, nothing really works, unit test and system
integration are forced or abandoned, and significant investments have been made
in the specification, design, and coding of system features that are never
delivered. The result: nothing deliverable, chaos, poor quality, and software scrap.

Figure 22.2 Applying the waterfall model to a project
with 200% scope

Primarily for these reasons, the waterfall model has become less popular. One
unfortunate result has been the tendency to leap right into code, with an
inadequate understanding of the requirements for the system, which was one of
the main problems the waterfall model was trying to solve!

The Spiral Model

Barry Boehm's pivotal study (1988a) recommended a different framework for
guiding the software development process. His "spiral model" of software
development is a role model for those who believe that success follows a more
risk-driven and incremental development path (Figure 22-3).

Figure 22.3 The spiral model of development

In the spiral model, development is initially driven by a series of risk-driven
prototypes; then a structured waterfall-like process is used to produce the final
system. Of course, when misused, the spiral model can exhibit as many problems
as the misused waterfall model. Projects sometimes fall into a cut-and-try
approach, providing incremental deliverables that must be expanded and
maintained with the addition of bubble gum and baling wire, of what some refer
to as the process of creating instant legacy code, progress being measured by our
newfound ability to create nonmaintainable and nonunderstandable code two to
three times as fast as with earlier technology!

When you look at the spiral model more carefully, however, it provides a sensible
road map that helps address some of the requirements challenges noted in this
book. Specifically, the spiral model starts with requirements planning and concept
validation, followed by one or more prototypes to assist in early confirmation of
our understanding of the requirements for the system. The main advantage of
this process is the availability of multiple feedback opportunities with the users
and customers, which is intended to get the "Yes, Buts" out early. Opponents of
this rigorous approach note that in today's environment, the luxury of time
implied by full concept validation, two or three prototypes, and then a rigorous
waterfall methodology is simply not available.

Again, what happens in the spiral model when a project is initiated with 200
percent scope? Figure 22-4 illustrates the result. One might argue that the result
is not much better than a disastrous waterfall plan; others might note that at
least a prototype or two is operational and that one has customer feedback at the

deadline time. (Of course, a lot of this feedback will focus on the lack of
availability of any production-deployable software!)

Figure 22.4 Applying the spiral model to a project with
200% scope

The Iterative Approach

In the past decade, many teams have migrated to a new approach, one that
combines the best of waterfall and spiral models and is a hybrid of the two. This
new approach also incorporates some additional constructs from the advancing
discipline of software process engineering. The "iterative approach" that was
introduced in Kruchten (1995) has now been well described in a number of texts,
including Kruchten (1999) and Royce (1998). This approach has proved effective
in a wide variety of project types and can exhibit a number of advantages over
the waterfall and the spiral models of development.

In the traditional software development process models, time moves forward
through a series of sequential activities, with requirements preceding design,
design preceding implementation, and so on. This seems quite sensible. In the
iterative approach, the lifecycle phases are decoupled from the logical software
activities that occur in each phase, allowing us to revisit various activities, such
as requirements, design, and implementation, at various iterations of the project.
In addition, like the spiral model, each iteration is designed to mitigate whatever
risks are present in that stage of development activity.

Lifecycle Phases

The interactive approach consists of four lifecycle phases: inception, elaboration,
construction, and transition, corresponding to fairly natural "states" of the project
at these times. (See Figure 22-5.).

Figure 22.5 Lifecycle phases in the iterative approach

1. In the inception phase, the team is focused on understanding the business
case for the project, the scope of the project, and the feasibility of an
implementation. Problem analysis is performed, the Vision document is
created, and preliminary estimates of schedule and budget, as well as
project risk factors, are defined.

2. In the elaboration phase, the requirements for the system are refined, an
initial executable architecture is established, and an early feasibility
prototype is typically developed and demonstrated.

3. In the construction phase, the focus is on implementation. Most of the
coding is done in this phase, and the architecture and design are fully
developed.

4. Beta testing typically happens in this transition phase, and the users and
the maintainers of the system are trained on the application. The tested
baseline of the application is transitioned to the user community and
deployed for use.

Iterations

Within each phase, the project typically undergoes multiple iterations (Figure 22-
6). An iteration is a sequence of activities with an established plan and evaluation
criteria, resulting in an executable of some type. Each iteration builds on the
functionality of the prior iteration; thus, the project is developed in an "iterative
and incremental" fashion.

Figure 22.6 Phase iterations, resulting in viable releases

Iterations are selected according to a number of criteria. Early iterations should
be designed to evaluate the viability of the chosen architecture against some of
the most important and risk-laden use cases.

Workflows

In the iterative approach, the activities associated with the development of the
software are organized into a set of workflows. Each workflow consists of a
logically related set of activities, and each defines how the activities must be
sequenced to produce a viable work product, or "artifact." Although the number
and kind of workflows can vary, based on the company or project circumstances,
there are typically at least six workflows, as Figure 22-7 illustrates.

Figure 22.7 Workflows of the iterative approach

During each iteration, the team spends as much time as appropriate in each
workflow. Thus, an iteration can be regarded as a miniwaterfall through the
activities of requirements, analysis and design, and so on, but each miniwaterfall
is "tuned" to the specific needs of that iteration. The size of the "hump" in Figure
22-7 indicates the relative amount of effort invested in a workflow. For example,
in the elaboration phase, significant time is spent on "refining" the requirements
and in defining the architecture that will support the functionality. The activities
can be sequential (a true miniwaterfall) or may execute concurrently, as is
appropriate to the project.

From the requirements management perspective, the iterative approach has two
significant advantages

1. Getting the "Yes, Buts" out early. Each iteration produces an
executable release such that, very early in the project, the customers
have the opportunity to see the work product. And, of course, their
reaction will be "Yes, But," but at this early stage, only a minimal
investment has been made. With each successive iteration, the size of the
"Yes, But" should decrease, and you and your customer will eventually
converge on the right system.

2. Better scope management. If the first iteration is missed by 30
percent, that's an indicator that the project may be badly scoped, and
adjustments can be made. Even if scope is not well managed, multiple
executable iterations have been developed by the time the deadline is
reached, and the last may even be deployed. Even though it lacks some
functionality, the release will deliver value to the user, if the features have
been picked and prioritized carefully, allowing your customer to meet
objectives, at least in part, as you continue with further development
iterations. And, if the architecture is robust and addresses the key
technical issues, your team will have a solid platform on which to base the
additional functionality.

What to Do, What to Do …

One of the premises of this book is that getting the "Yes, Buts" out early is one of
the highest-leverage activities of the software process.

• How many times do you have to do it?
• Do the customer's demands change at each and every prototype?
• Are we doomed no matter what process we follow?

Answers: at least once, yes, and no. Yes, customers will ask for change every
time they see it. No, you are not doomed. The reason is that the amount of
change that occurs after a customer has the opportunity to see, touch, and
interact with the intended implementation is small compared to the customer's
response to the first tangible artifact of the process.

So, although we prefer the iterative model in our development projects, no
matter what software development process model you use, it is mandatory that
the development activity provide at least one robust evaluation prototype for
customer feedback before the majority of the design and coding activity is
performed. (Remember the prototype activity that Royce (1970) suggested in the
initial waterfall model?) By reducing the amount of change to a manageable level,
the developer succeeds by making incremental changes, typically in user
interfaces, reports, and other outputs, to a robust and high-quality design and
implementation. Thereafter, a rigorous process of finalizing design, coding, unit
tests, and system integration activities will provide a solid foundation for the
product while simultaneously greatly assisting the quality assurance and test
activities.

Team Skill 4 Summary

In Team Skill 4, Managing Scope, we learned that the problem of project scope is
endemic. Projects typically are initiated with approximately twice the amount of
functionality that the team can reasonably implement in a quality manner. This
shouldn't surprise us, as it is the nature of the beast: customers want more,
marketing wants more, and we want more, too. We just need to make sure that
we put ourselves on a diet sufficient to make sure that we can deliver something
on time.

We looked at various techniques for setting priorities, and we defined the notion
of the baseline—an agreed-to understanding of what the system will do—as a key
project work product—our touchstone and reference point for decisions and
assessment. We learned that if scope and the concomitant expectations exceed
reality, in all probability, some bad news is about to be delivered. We decided on
a philosophy of approach that engages our customer in the hard decisions. After
all, we are just the resources, not the decision makers; it's the customer's project.
So the question is, What exactly must be accomplished in the next release, given
the resources that are available to the project?

Even then, we expect to do some negotiating; all of life, and certainly all of
business, is a negotiation in a sense, and we shouldn't be surprised by this either.
We briefly mentioned a few negotiation skills and hinted that the team may need
to use these skills on occasion.

We cannot expect that this process will make the scope challenge go away, any
more than any other single process will solve the problems of the application
development world. However, the steps we have outlined can be expected to
have a material effect on the scope of the problem, allowing application

developers to focus on critical subsets and to incrementally deliver high-quality
systems that meet or exceed the expectations of the user. Further, engaging the
customer in helping solve the scope management problem increases commitment
on the part of both parties and fosters improved communication and trust
between the customer and application development teams. With a comprehensive
definition of the product (Vision document) in hand and scope managed to a
reasonable level, while it's too early to start bragging, we at least have the
opportunity to succeed in the next phases of the project.

Part VI: Team Skill 5: Refining the
System Definition

• Chapter 23 Software Requirements
• Chapter 24 Refining the Use Cases
• Chapter 25 A Modern Software Requirements Specification
• Chapter 26 On Ambiguity and Specificity
• Chapter 27 Quality Measures of Software Requirements
• Chapter 28 Technical Methods for Specifying Requirements

The previous Team Skills were focused on the processes of analyzing the problem,
eliciting user needs, and collecting, documenting, and managing the desired
product features. Once the product features have been specified, the next task is
to refine the specification to a level of detail suitable to drive the design, coding,
and testing processes. We have now arrived at the heart of the requirements
pyramid, the "specification level," as shown in Figure 1.

In Team Skill 5, we will examine an organized method for elaborating, organizing,
and communicating the software requirements. We will end Team Skill 5 with a
look at one of the more perplexing issues: how to state the requirements in a
clear, concise manner.

Regardless of the method you use to collect the requirements, it is crucial that
you adopt a philosophy that the collected requirements and only those
requirements will drive the project. If they are discovered to be insufficient or just
wrong, they must be quickly and officially changed so that the rule remains true.
In this way, the entire team has an unambiguous target, and its efforts can be
focused on discovering and implementing requirements, minimizing the time
spent "in the weeds." We will start by examining the nature of the requirements
themselves.

Figure 1 The requirements pyramid

Chapter 23. Software Requirements

Key Points

• A complete set of requirements can be determined by
defining the system inputs, outputs, functions,
attributes, and attributes of the system environment.

• Requirements should exclude project-related
information, such as schedules, project plans, budgets,

and tests, as well as design information.
• The requirements/design process is iterative;

requirements lead to the selection of certain design
options, which in turn may initiate new requirements.

• Design constraints are restrictions on the design of the
system, or the process by which a system is
developed.

In the prior Team Skills, the features that were defined for the
system were purposely left at a high level of abstraction so that:

• We can better understand the shape and the form of the
system by focusing on its features and how they fulfill user
needs.

• We can assess the system for completeness and consistency
and its fit within its environment.

• We can use this information to determine feasibility and to
manage the scope of the system before making significant
investments.

In addition, staying at a high level of abstraction kept us from
making overly constraining requirements decisions too early, that is,
before the people closest to the system implementation have their
opportunity to add their perspective and value to the system
definition. In Team Skill 5, Refining the System Definition, our
discussions transition to elaborating the system features in detail
sufficient to ensure that the design and coding activities result in a
system that fully conforms to the user needs. In so doing, we drive
to the next level of specificity and detail, and we create a richer,
deeper requirements model for the system to be built. Of course,
we also create more information to be managed, and we will have
to be better organized to handle this additional detail.

The level of specificity needed in this next step depends on a
number of factors, including the context of the application and the
skills of the development team. In high-assurance software systems
for medical equipment, aircraft avionics, or online trading, the level
of specificity is appropriately high. The refinement process may
include formal mechanisms for quality assurance, reviews,
inspections, modeling, and the like. In systems with less
catastrophic consequences of failure, the level of effort will be more
modest. In those cases, the work involved is simply to make certain
that the system definition is precise enough so as to be understood
by all parties and yet provide an efficient development environment
and a "high enough" probability of success. The focus is on
pragmatics and economics, doing just enough requirements

specification to make certain that the software developed is what
the user wanted.

Just as there is no one right programming language for every
application, there is no one right way to develop the more detailed
specifications. Different environments call for different techniques,
and the requirements managers and requirements writers will
probably need to develop a mix of skills suited to various
circumstances. We have applied a variety of techniques in a variety
of circumstances, from fairly rigorous requirements documents,
custom databases, or requirements repositories to use-case models
and more formal methods. However, the locus of the effort has
typically been on a natural-language specification, written clearly
enough to be understandable by all stakeholders, customers, users,
developers, and testers but specific enough ("Axis 4 shall have a
maximum traverse speed of 1 meter/second") to allow for
verification and demonstration of compliance. Before we begin to
collect the system requirements, we will first consider the nature of
the requirements you will need to discover and to define.

Definition of Software Requirements

InChapter 2, we started with this straightforward definition for a
requirement, which is one of the following.

• A software capability needed by the user to solve a problem
to achieve an objective

• A software capability that must be met or possessed by a
system or a system component to satisfy a contract, standard,
specification, or other formally imposed documentation

Software requirements are those things that the software does on
behalf of the user or device or another system. The first place to
look for software requirements is around the boundary of the
system for the things that go "into" and "out of" the system: the
system interactions with these users.

To do this, it's easiest to first think of the system as a black box and
to think about things that you would have to define to fully describe
what the black box does.

In addition to the inputs and outputs, you will also need to think
about certain other characteristics of the system, including its
performance and other types of complex behavior, as well as other
ways in which the system interacts with its environment (Figure 23-
1).

Figure 23-1 System elements

Using a similar approach, Davis (1999) determined that we need
five major classes of things to fully describe the system:

1. Inputs to the system—not only the content of the input but
also, as necessary, the details of input devices and the form,
look, and feel—protocol—of the input. As most developers are
well aware, this area can involve significant detail and may be
subject to volatility, especially for GUI, multimedia, or
Internet environments.

2. Outputs from the system— a description of the output devices,
such as voice-output or visual display, that must be supported,
as well as the protocol and formats of the information
generated by the system.

3. Functions of the system— the mapping of inputs to outputs,
and their various combinations.

4. Attributes of the system— such typical nonbehavioral
requirements as reliability, maintainability, availability, and
throughput, that the developers must taken into account.

5. Attributes of the system environment— such additional
nonbehavioral requirements as the ability of the system to
operate within certain operating constraints, loads, and
operating system compatibility.

We have worked with this categorization for a number of years and
have found that it works quite well, as it helps one think about the
requirements problem in a consistent and complete manner.

Accordingly, we can determine a complete set of software
requirements by defining

• Inputs to the system
• Outputs from the system
• Functions of the system
• Attributes of the system
• Attributes of the system environment

In addition, we'll be able to evaluate whether a "thing" is a software
requirement by testing it against this elaborated definition.

Relationship between Features and Software
Requirements

Earlier, we spent some time exploring the "features" of a system.
The features are simple descriptions of a desired and useful
behavior. We can now see that there is a mapping relationship
between features and software requirements. The Vision document
cites features in the user's language. The software requirements, in
turn, express those features in more detailed terms, using one or
more specific software requirements that must be fulfilled by the
developers in order to provide the features to the user. In other
words, features help us understand and communicate at a high
level of abstraction, but we probably can't describe the system and
write code from those descriptions. They are at too high a level of
abstraction for this purpose.

Software requirements, however, are specific. We can code from
them, and they should be specific enough to be "testable"; that is,
we should be able

Table 23-1. Requirements associated with particular Vision document
features

Vision document Software Requirements
Feature 63: The defect-tracking
system will provide trending
information to help the user assess
project status.

Trending information will be provided in a
histogram report showing time on the x-
axis and the number of defects found on
the y-axis.

SR63.2 The user can enter the trending
period in units of days, weeks, or months.

SR63.3 An example trend report is shown
in attached Figure 1.

to test a system to validate that it really does implement the
requirement. For example, suppose we are developing a defect-
tracking system for an assembly-line manufacturing organization or
for a software development organization. Table 23-1 shows the
relationship between one of the features identified in the Vision
document and an associated set of requirements. This mapping,
and the ability to trace between the various features and
requirements, will form the backbone of a very important
requirements management concept known as "traceability," a topic
we'll discuss later.

The Requirements Dilemma: What versus How

As we have seen, requirements tell the developers what their
system must do and must cover the issues of the system inputs,
outputs, functions, and attributes, along with attributes of the
system environment. But there's a lot of other information that the
requirements should not contain. In particular, they should avoid
stipulating any unnecessary design or implementation details,
information associated with project management; and they should
avoid information about how the system will be tested. In this way,
the requirements focus on the behavior of the system, and they are
volatile only to the extent that the behavior is volatile or subject to
change.

Exclude Project Information

Project-related information, such as schedules, configuration
management plans, verification and validation plans, budgets, and
staffing schedules, are sometimes bundled into the set of
requirements for the convenience of the project manager. In
general, this must be avoided, since changes in this information,
such as schedule changes, increase volatility and the tendency for
the "requirements" to be out of date. (When the requirements are
dated, they become less trustworthy and more likely to be ignored.)
In addition, the inevitable debates about such things should be well
separated from the discussion of what the system is supposed to do.
There are different stakeholders involved, and they serve different
purposes.

The budget could be construed as a requirement too; nevertheless,
this is another type of information that doesn't fit our definition and
therefore doesn't belong with the overall system or software
requirements. The budget may turn out to be an important piece of
information when the developers try to decide which
implementation strategies they'll choose, because some strategies
may be too expensive or may take too long to carry out.

Nevertheless, they are not requirements; in a similar fashion,
information describing how we'll know that the requirements have
actually been met—test procedures or acceptance procedures—also
don't meet the definition and therefore don't belong in the specs.

We usually find it convenient to "push the envelope" a little bit here.
In many cases, it is probably useful for the requirement writer to
give a "hint" as to a suitable test for the requirement. After all, the
requirement writer had a specific behavior in mind for the
requirement, and it's only reasonable to give as much help as
possible.

Exclude Design Information

The requirements should also not include information about the
system design or architecture. Otherwise, you may accidentally
have restricted your team from pursuing whatever design options
make the most sense for your application. ("Hey, we have to design
it that way; it's in the requirements.")

Whereas the elimination of project management and testing details
from the list of requirements is fairly straightforward, the
elimination of design/implementation details is usually much more
difficult and much more subtle. Suppose, for example, that the first
requirement in Table 23-1 had been worded like this: "SR63.1
Trending information will be provided in a histogram report written
in Visual Basic, showing major contributing causes on the x-axis
and the number of defects found on the y-axis" (see Figure 23-2).

Figure 23-2 Pareto diagram

Although the reference to Visual Basic appears to be a fairly blatant
violation of the guidelines we've recommended (because it doesn't
represent any input, output, function, or behavioral attribute), it's
useful to ask: "Who decided to impose the requirement that the
histogram be implemented in Visual Basic, and why was that
decision made?" Possible answers to that question might be:

• One of the technically oriented members of the group defining
the Vision document decided that Visual Basic should be
specified because it is the "best" solution for the problem.

• The user may have specified it. Knowing just enough about
technology to be dangerous, the user, worried that the
technical people may adopt another technology, one that's
more expensive or less readily available, knows that VB is
readily available and relatively cheap and wants that
technology to be used.

• A political decision within the development organization may
have mandated that all applications will be developed with
Visual Basic. In an effort to ensure compliance and to prevent
its policies from being ignored, management insists that
references to Visual Basic be inserted whenever possible into
requirements documents.

If a technical developer decides to insert a reference to Visual Basic
because of an arbitrary preference for the language, it obviously
has no legitimate place in the list of requirements. If the user
provided the requirement, things get a little stickier. If the customer
refuses to pay for a system unless it's written in Visual Basic, the
best course of action is to treat it like a requirement, although we
will place it in a special class, called design constraints, so that it is
separated from the normal requirements, which influence only the
external behavior. Nevertheless, it's an implementation constraint
that has been imposed on the development team. (By the way, if
you think that this example is unrealistic, consider the common
requirement imposed by the U.S. Defense Department on its
software contractors until the late 1990s to build systems using
Ada.)

Meanwhile, the discussion of Visual Basic in this example may have
obscured a more subtle and perhaps more important requirement
analysis: Why does the trending information have to be shown in a
histogram report? Why not a bar chart, a pie chart, or another
representation of the information? Furthermore, does the word
"report" imply a hard-copy printed document, or does it also imply
that the information can be displayed on a computer screen? Is it
necessary to capture the information so that it can be imported into
other programs or uploaded to the corporate extranet? The feature
described in the Vision document can almost certainly be fulfilled in
various ways, some of which have very definite implementation
consequences.

In many cases, the description of a problem from which a
requirement can be formulated is influenced by the user's
perception of the potential solutions that are available to solve the

problem. The same is true of the developers who participate with
the user to formulate the features that make up the Vision
document and the requirements. As the old adage reminds us, "If
your only tool is a hammer, all your problems look like a nail." But
we need to be vigilant about unnecessary and unconscious
implementation constraints creeping into the requirements, and we
need to remove such constraints whenever we can.

More on Requirements versus Design

So far, we have treated software requirements, design decisions,
and design constraints as if they were distinct entities that can be
clearly differentiated. That is, we have stated or implied that

• Requirements precede design.
• Users and customers, because they are closest to the need,

make requirements decisions.
• Technologists make design decisions because they are best

suited to pick, among the many design options, which option
is best suited to meet the need.

This is a good model, and it is the right starting point for a
requirements management philosophy. Davis (1993) calls this the
"what versus how" paradigm, where "what" represents the
requirements, or "what" the system is to do, and "how" represents
the design that is to be implemented to achieve this objective.

We've presented the story in this fashion for a reason. It is best to
understand requirements before design, and most design
constraints ("use XYZ class library for database access") are
important design decisions recorded in the requirements assets so
that we can ensure that we achieve them for a contractual or,
perhaps quite legitimate, technical reason.

If we couldn't make these classifications at all, the picture would be
very muddled, and we couldn't differentiate requirements from
design. Further, we would no longer know who is responsible for
what in the development process. Even worse, our customers would
dictate design, and our designers would dictate requirements.

But a subtle and yet serious complication underlies this discussion
and belies the simple paradigm we've presented. Returning to our
case study for example, if the team makes a design decision, such
as selection of a PC technology to run in the HOLIS CCU subsystem,
it's likely to have some external impact on the user. For example, a
prompt or log-on screen will show up somewhere in the user's world.
Better yet, we will probably want to take advantage of some user
input capabilities of the OS, and those class libraries will certainly

exhibit external behaviors to the user. (Note to the techies among
you: Yes, we could hide it, but that's beside the point.)

Given the definitions we've provided in this chapter, the question
becomes: Once the impact of a design decision causes external
behavior seen by the user, does that same decision, which now
clearly affects "input or output from the system," now become a
requirement? One could argue that the correct answer is "yes," or
"no," or even "it doesn't really matter," based on your individual
interpretation of the definitions and analysis we've provided so far.
But that makes light of a very important matter, as an
understanding of this issue is critical to an understanding of the
nature of the iterative process itself. Let's take a closer look.

Iterating Requirements and Design

In reality, the requirements versus design activities must be
iterative. Requirements discovery, definition, and design decisions
are circular. The process is a continual give and take, in that

Occasionally, discovery of a new technology may cause us to throw
out a host of assumptions about what the requirements were
supposed to be; we may have discovered an entirely new approach
that obviates the old strategy. ("Let's throw out the entire
client/data access/GUI module and substitute a browser-based
interface.") This is a prime, and legitimate, source of requirements
change.

This process is as it should be; to attempt to do otherwise would be
folly. On the other hand, there is grave danger in all of this, for if
we do not truly understand the customer's needs and the customer
is not engaged actively in the requirements process—and yes, in
some cases, even understanding our design-related activities— the
wrong decision might be made. When properly managed, this
"continual reconsideration of requirements and design" is a truly
fantastic process, as technology drives our continually improving
ability to meet our customer's real needs. That's the essence of

what effective and iterative requirements management is all about.
But when improperly managed, we continually "chase our
technology tail," and disaster results. We never said it would be
easy.

A Further Characterization of Requirements

The preceding discussions on requirements suggested that various
"kinds" of requirements exist. Specifically, we have found it useful
to think about three "types" of requirements, as shown in Figure
23-3:

Figure 23-3 Types of requirements

• Functional software requirements
• Nonfunctional software requirements
• Design constraints

Functional Software Requirements

As you might expect, functional requirements express how the
system behaves. These requirements are usually action oriented
("When the user does x, the system will do y.") Most products and
applications, conceived to do useful work, are rich with software
functional requirements. Software is used to implement the majority
of the functionality.

When you are defining functional requirements, you should seek a
good balance between being too specific in stating a requirement

and being too general or too ambiguous. For example, it is not
usually helpful to have a general functional requirement stated in
the form "When you push this button, the system turns on and
operates." On the other hand, a requirement statement that takes
up several pages of text is probably too specific, but it may be the
right thing to do in very special cases. We'll return to this matter in
Chapter 26.

We have found that most functional requirements can be stated in
simple declarative statements or in the use case form we'll describe
in the next chapter. Experience has shown us that a one- or two-
sentence statement of a requirement is usually the best way to
match a user need with a level of specificity that a developer can
deal with.

Nonfunctional Software Requirements

So far in this chapter, most of the examples for requirements have
involved behavioral, or functional, requirements of a system,
focusing on inputs, outputs, and processing details. The functional
requirements tell us how the system must behave when presented
with certain inputs or conditions.

But that's not enough to fully describe the requirements of a system.
We must also consider things that Grady (1992) called
"nonfunctional requirements:"

• Usability
• Reliability
• Performance
• Supportability

These requirements are used most typically to express some of the
"attributes of the system" or "attributes of the system environment"
elements of our elaborated definition. This convenient classification
helps us to understand more about the system we are to build. Let's
look at each in further detail.

Usability It's important to describe the ease with which the
system can be learned and operated by the intended users. Indeed,
we may have to identify various categories of users: beginners,
"normal" users, "power" users, illiterate users, users who are not
fluent in the native language of the "normal" users, and so on. If
you expect your customer to review and to participate in these
discussion—and you'd better—you should realize that whatever
requirements you write in this area will be written in a natural

language; you shouldn't expect to see a finite state machine
description of usability!

Since usability tends to be in the eye of the beholder, how do we
specify such a fuzzy set of requirements? Some suggestions follow.

• Specify the required training time for a user to become
marginally productive—able to accomplish simple tasks—and
operationally productive—able to accomplish the normal day-
to-day tasks. As noted, this may need to be further described
in terms of novice users, who may have never seen a
computer before, normal users, and power users.

• Specify measurable task times for typical tasks or
transactions that the end user will be carrying out. If we're
building a system for order entry, it's likely that the most
common tasks carried out by end users will be entering,
deleting, or modifying an order and checking on the status of
an order. Once the users have been trained how to perform
those tasks, how long should it take them to enter a typical
order? A minute? Five minutes? An hour? Of course, this could
be affected by performance issues in the technical
implementation (such as modem speed, network capacity,
RAM, and CPU power, that collectively determine the response
time provided by the system, but task-performance times are
also strongly affected by the usability of the system, and we
should be able to specify that separately.

• Compare the usability of the new system with other state-of-
the-art systems that the user community knows and likes.
Thus, the requirement might state, "The new system shall be
judged by 90 percent of the user community to be at least as
usable as the existing XYZ system." Remember, this kind of
requirement, like all other requirements, should be verifiable;
that is, we must describe the requirement in such a way that
the users can test and verify the usability against the criteria
we've established.

• Specify the existence and required features of online help
systems, wizards, tool tips, user manuals, and other forms of
documentation and assistance.

• Follow conventions and standards that have been developed
for the human-to-machine interface. Having a system work
"just like what I'm used to" can be accomplished by following
consistent standards from application to application. For
example, you can specify a requirement to conform to
common usability standards, such as IBM's CUA (Common
User Access) standards, or the Windows applications
standards published by Microsoft.

Examples of usability breakthroughs in the computer world include
the difference between command line interfaces, exemplified by
DOS (shudder!) and UNIX systems, versus the GUI interfaces,
exemplified by Macintosh and Windows systems. It is clear that the
GUI interfaces were instrumental in making computers easier to use
by the great masses of nontechnical users. Another example is the
Internet browser, which gave a "face" to the World Wide Web and
radically accelerated the adoption of the Internet for the average
user.

Several interesting attempts to strengthen the somewhat fuzzy
notion of usability have been made. Perhaps the most interesting
effort has resulted in the "User's Bill of Rights" (Karat 1998). A
recent version of the bill contains ten key points:

1. The user is always right. If there is a problem with the use of
the system, the system is the problem, not the user.

2. The user has the right to easily install and uninstall software
and hardware systems without negative consequences.

3. The user has a right to a system that performs exactly as
promised.

4. The user has a right to easy-to-use instructions (user guides,
online or contextual help, error messages) for understanding
and utilizing a system to achieve desired goals and recover
efficiently and gracefully from problem situations.

5. The user has a right to be in control of the system and to be
able to get the system to respond to a request for attention.

6. The user has the right to a system that provides clear,
understandable, and accurate information regarding the task
it is performing and the progress toward completion.

7. The user has a right to be clearly informed about all system
requirements for successfully using software or hardware.

8. The user has a right to know the limits of the system's
capabilities.

9. The user has a right to communicate with the technology
provider and receive a thoughtful and helpful response when
raising concerns.

10. The user should be the master of software and
hardware technology, not vice versa. Products should be
natural and intuitive to use.

Note that some of the topics covered in the Bill of Rights are
essentially un-measurable and are probably not good candidates for
requirements per se. On the other hand, it seems clear that the bill
should be useful to you as a starting point in developing questions
and defining requirements for the usability of the proposed product.

Reliability Of course, nobody likes bugs, defects, system failures,
or lost data, and in the absence of any reference to such
phenomena in the requirements, the user will naturally assume that
none will exist. But in today's computer-literate world, even the
most optimistic user is aware that things do go wrong. Thus, the
requirements should describe the degree to which the system must
behave in a user-acceptable fashion. This typically includes the
following issues:

• Availability. The system must be available for operational
use a specified percentage of the time. In the extreme case,
the requirement(s) might specify "nonstop" availability, that is,
24 hours a day, 365 days a year. It's more common to see a
stipulation of 99 percent availability or a stipulation of 99.9
percent availability between the hours of 8 a.m. and midnight.
Note that the requirement(s) must define what "availability"
means. Does 100 percent availability mean that all of the
users must be able to use all of the system's services all of
the time?

• Mean time between failures (MTBF). This is usually
specified in hours, but it also could be specified in days,
months, or years. Again, this requires precision: The
requirement(s) must carefully define what is meant by a
"failure."

• Mean time to repair (MTTR). How long is the system
allowed to be out of operation after it has failed? A range of
MTTR values may be appropriate; for example, the user might
stipulate that 90 percent of all system failures must be
repairable within 5 minutes and that 99.9 percent of all
failures must be repairable within 1 hour. Again, precision is
important: The requirement(s) must clarify whether "repair"
means that all of the users will once again be able to access
all of the services or whether a subset of full recovery is
acceptable.

• Accuracy. What precision is required in systems that
produce numerical outputs? Must the results in a financial
system, for example, be accurate to the nearest penny or to
the nearest dollar?

• Maximum bugs, or defect rate. This is usually expressed
in terms of bugs/KLOC (thousands of lines of code), or bugs
per function-point.

• Bugs per type. This is usually categorized in terms of minor,
significant, and critical bugs. Definitions are important here,
too: The requirement(s) must define what is meant by a
"critical" bug, such as complete loss of data or complete
inability to use certain parts of the functionality of the system.

In some cases, the requirements may specify some "predictor"
metrics for reliability. A typical example of this is the use of a
"complexity metric," such as the cyclomatic complexity metric,
which can be used to assess the complexity—and therefore the
potential "bugginess"—of a software program.

Performance Performance requirements usually cover such
categories as

• Response time for a transaction: average, maximum
• Throughput: transactions per second
• Capacity: the number of customers or transactions the system

can accommodate
• Degradation modes: what is the acceptable mode of operation

when the system has been degraded

If the new system has to share hardware resources with other
systems or applications, it may also be necessary to stipulate the
degree to which the implementation will make "civilized" use of
such scarce resources as the CPU, memory, channels, disk storage,
and network bandwidth.

Supportability Supportability is the ability of the software to be
easily modified to accommodate enhancements and repairs. For
some application domains, the likely nature of future enhancements
can be anticipated in advance, and a requirement could stipulate
the "response time" of the maintenance group for simple
enhancements, moderate enhancements, and complex
enhancements.

For example, suppose that we are building a new payroll system;
one of the many requirements of such a system is that it must
compute the government withholding taxes for each employee. The
user knows, of course, that the government changes the algorithm
for this calculation each year. This change involves two numbers:
instead of withholding X percent of an employee's gross salary up to
a maximum of $P, the new law requires the payroll system to
withhold Y percent up to a maximum of $Q. As a result, a
requirement might say, "Modifications to the system for a new set
of withholding tax rates shall be accomplished by the team within 1
day of notification by the tax regulatory authority."

But suppose that the tax authority also periodically introduced
"exceptions" to this algorithm: "For left-handed people with blue
eyes, the withholding tax rate shall be Z percent, up to a maximum
of $R." Modifications of this kind would be more difficult for the
software people to anticipate; although they might try to build their
system in as flexible a manner as possible, they would still argue

that the modification for left-handed employees falls into the
category of "medium-level" changes, for which the requirement
might stipulate a response time of 1 week.

But suppose that at the outset of the project, the manager of the
payroll department also said, "By the way, it's possible that we'll
expand our operation overseas, in which case, the withholding tax
algorithm would have to be adjusted to reflect the current laws in
France and Germany and maybe Hong Kong, too." Assuming that
such a "requirement" made any sense at all, it could probably be
stated only in terms of goals and intentions; it would be difficult to
measure and verify such a requirement.

What the requirement statement can do, in order to increase the
chances that the system will be supportable in the manner just
described, is stipulate the use of certain programming languages,
database management system (DBMS) environments, programming
tools, maintenance routines, programming styles and standards,
and so on. (In this case, these really become design constraints, as
we'll see.) Whether this does produce a system that can be
maintained more easily is a topic for debate and discussion, but at
least we can get closer to the goal.

Design Constraints

The third class of requirements, design constraints, typically impose
limitations on the design of the system or the processes we use to
build a system. For example,

• Usually, a requirement allows for more than one design option;
a design is a conscious choice among options. Whenever
possible, we want to leave that choice to the designers rather
than specifying it in the requirements, for they will be in the
best position to evaluate the technical and economic merits of
each option. Whenever we do not allow a choice to be made
("Use Oracle DBMS"), the design has been constrained, and a
degree of flexibility and development freedom has been lost.

• A requirement that is imposed on the process of building
software ("Program in VB," or use "XYZ class library") is a
design constraint.

As illustrated with the preceding Visual Basic example, there may
be many such sources and rationales, and the designers may have
to accept them whether they like them or not. But it's important to
distinguish them from more conventional requirements, for many of
the constraints may be arbitrary, political, or subject to rapid

technological change and might thus be subject to renegotiation at
a later point.

We'll define design constraints as

restrictions on the design of a system, or the process by which a
system is developed, that do not affect the external behavior of the
system but that must be fulfilled to meet technical, business, or
contractual obligations.

Design constraints can also be found in the developmental
infrastructure immediately surrounding the system to be developed.
These usually include

• Operating environments: "Write the software in Visual Basic."
• Compatibility with existing systems: "The application must run

on both our new and old platforms."
• Application standards: "Use the class library from Developer's

Library 99-724 on the corporate IT server."
• Corporate "best practices" and standards: "Compatibility with

the legacy data base must be maintained." "Use our C++
coding standards."

Another important source of design constraints is the body of
regulations and standards under which the project is being
developed. For example, the development of a medical product in
the United States is subject to a significant number of Food and
Drug Administration (FDA) standards and regulations, imposed on
not only the product but also the process by which the product is
developed and documented. Typical regulatory design constraints
might include regulations and standards from the following:

• Food and Drug Administration (FDA)
• Federal Communications Commission (FCC)
• Department of Defense (DOD)
• International Organization for Standardization (ISO) (No, this

is not an error. ISO is a short, language-independent form,
not an acronym.)

• Underwriters Laboratory (UL)

Typically, the body of regulation imposed by these types of design
constraints is far too lengthy to incorporate directly into your
requirements. In most cases, it is sufficient to include the design
constraints by reference into your package. Thus, your
requirements might appear in the form: "The software shall fail
safely per the provisions of TüV Software Standard, Sections 3.1-
3.4."

Incorporation by reference has its hazards, however. Where
necessary, you should be careful to incorporate specific and
relevant references instead of more general references. For
example, a single reference of the form "The product must conform
to ISO 601" effectively binds your product to all of the standards in
the entire document. As usual, you should strive for the "sweet
spot" between too much specificity and not enough.

Almost all projects will have some design constraints. Generally, the
best way to handle them is to follow these guidelines.

• Distinguish them from the other requirements. For example, if
you identified other software requirements with a tag, such as
"SR," you might consider using "DC" for design constraints.
You might be tempted to distinguish between true design
constraints and regulatory constraints, but we have found
that this distinction is seldom useful, and it can impose an
unacceptable maintenance burden.

• Include all design constraints in a special section of your
collected requirements package, or use a special attribute so
that they can be readily aggregated. That way, you can easily
find them and review them when the factors that influenced
them change.

• Identify the source of each design constraint. By doing so,
you can use the reference later to question or to revise the
requirement. "Oh, this came from Bill in marketing. Let's go
see if we can talk to him about this constraint." This would be
a good time to supply a specific bibliographic reference in the
case of regulatory standard references. That way, you can
find the standard more easily when you need to refer to it
later.

• Document the rationale for each design constraint. In effect,
write a sentence or two explaining why the design constraint
was placed in the project. This will help remind you later as to
what the motive was for the design constraint. In our
experience, almost all projects eventually ask, "Why did we
put this constraint in there?" By documenting the rationale,
you will be able to more effectively deal with the design
constraints in the later stages of the project when it
(inevitably) will become an issue.

Are Design Constraints True Requirements?

You could argue that design constraints are not true software
requirements because they do not represent one of the five system
elements in our elaborated definition. But when a design constraint
is elevated to the level of legitimate business, political, or technical

concern, it does meet our definition of a requirement as something
necessary to "satisfy a contract, standard, specification, or other
formally imposed documentation."

In those cases, it's easiest to treat the design constraint just like
any other requirement and to make certain that the system is
designed and developed in compliance with that design constraint.
However, we should always strive to have as few design constraints
as possible, since their existence may often restrict our options for
implementing the other requirements, those that directly fulfill a
user need.

A Cautionary Tale:

We were working with a Fortune 500 company well known in
the industry for its adherence to process and procedure.
Imagine our surprise when we found that the company was
totally paralyzed in its current requirements-collection
activities because the team could not agree on whether
certain requirements were functional requirements,
nonfunctional requirements, or design constraints. In effect,
the team's ability to move ahead with its project was stalled
on various semantic quibbles! We told the team that it didn't
matter, just move on with something!

The point is, the value of the classification is simply to spur
your thinking, to assist you on your search for "Undiscovered
ruins," and to help you think about these things in different
ways. But in a very real sense, the classification doesn't
matter, so long as you understand that the requirement is
something that you, or the system, will be measured against.
Moving ahead with some sort of organized effort is superior
to not moving ahead while preparing the perfect
requirements categorization plan.

Using Parent-Child Requirements to Increase
Specificity

We have found that many projects will benefit from the use of
parent-child requirements as a tool for augmenting certain basic
requirements. We view a parent-child requirement as an
amplification of the specificity expressed in a parent requirement.

Let's consider an example. This time, we'll use a hardware example
to illustrate the point. Suppose that you are developing an
electronic device intended to work off standard electrical power.
That is, the user is expected to plug the device into a wall outlet.

The question arises, "How shall we specify the power requirements
of the device?"

A perfectly natural response might be to include a product
requirement that says, "The device shall operate off standard North
American electrical power." But what does this mean? Your
engineers will immediately besiege you for details on voltages,
currents, frequencies, and so on. Of course, you could rewrite the
requirement to include all of the needed details, but you will
probably find that including all of the engineering details has
obscured the original intent of the requirement. After all, you just
want the device to work when it's plugged into a wall outlet!

In this case, you might wish to create some requirements to specify
voltage, current, frequency, and so on. These requirements should
be thought of as "children" of the parent requirement; indeed, we
will frequently refer to parent-child relationships in a hierarchical
requirement structure. Thus, you might find that specifying the
electrical power needs for the device will appear as follows:

Parent: The device shall operate off standard North American
power.

Child 1: The device shall operate in a voltage range of xxx–yyy
volts AC.

Child 2: The device shall require not more than xxx AC amperes
for correct operation.

Child 3: The device shall operate within specification over an input
power frequency range of xx–yy hertz.

Parent-child requirements give you a very flexible way to enhance
and to augment your specification while simultaneously controlling
the depth of detail presented. In our example, it becomes
straightforward to present the top-level specification in a way that is
easily understandable by the users. At the same time, the detailed
"child" specification can be easily inspected by the implementers to
make sure that they understand all of the implementation details.

You can extend this notion for cases that require further
amplification. For example, it is easy to imagine a case in which the
"child" requirement becomes the "parent" requirement to a further
level of detail. That is, you might wish to extend the hierarchy
further and to detail the product needs as follows:

Parent:

Child 1:

Grandchild 1:

Grandchild 2:

But we want to insert a note of caution here. Although we have
found the concept of parent-child requirement to be extremely
useful, you must guard against adding too many hierarchical levels
of detail, simply because you get bogged down in so many
microscopic details that you lose sight of the main user objective.
We have found that most projects work quite well with only one
sublevel of detail. On occasion, you might find it useful to move to
two sublevels of detail—the "child" and the "grandchild"—but rarely
is it useful to go below that level of detail.

Organizing Parent-Child Requirements

On balance, we have found that the best plan is to consider the
child requirements to be no different from the parent requirements,
and you should plan on including them in the main requirements
package.

Requirements readers can most easily relate the requirements back
to the parent requirement if the identification of child requirements
follows a logical pattern of identification based on the parent
requirement's identification. For example, suppose that software
requirement SR63.1 from Table 23-1 has one or more child
requirements. A natural identification scheme for the child
requirements would be to identify them as SR63.1.1, SR63.1.2,
SR63.1.3, and so on. A hierarchical view of Table 23-1 might then
appear as follows:

Feature 63

SR63.1

SR63.1.1

SR63.1.2

SR63.1.3

SR63.2

When managing a mixed software requirement/child requirement
environment, a helpful feature is the ability to expand/collapse the

total set of requirements so that you can view either the parents
alone or the parents with the children.

Looking Ahead

Now that we have examined the nature of requirements, we will
turn to techniques for capturing and organizing them. Our next
chapter will focus on a powerful technique to capture requirements.
Subsequent chapters will focus on the issue of organizing the
collection.

Chapter 24. Refining the Use Cases

Key Points

• To support the design and coding activities, the use
cases developed in the elicitation activities must be
more fully elaborated.

• Use cases are most appropriate when the system is
rich in functionality and must support differing types of
users.

• Use cases are not as effective when applied to systems
with few or no users and minimal interfaces, those with
mostly nonfunctional requirements, and design
constraints.

In Team Skills 1 and 2, we introduced use cases, another technique
for expressing requirements for a system. This technique has
achieved a degree of popularity and common use.

It can be argued that the use-case technique has certain inherent
advantages over the traditional approach to defining individual,
discrete (declarative) software requirements.

• Use cases are relatively easy to write.
• Use cases are written in the language of the user.
• Use cases provide related, cohesive threads of behavior, or

scenarios, that can be understood by both the user and the
developer.

• Because of the "thread of behavior" characteristic and the fact
that the UML includes certain specialized elements and
notations for use in modeling, use cases provide additional
added value by linking the requirements activities to design
and implementation. (We'll discuss this further in Chapter 30.)

• The graphical representation of use cases within the UML and
support by various modeling tools provide a visual means of
expressing the relationships among use cases, which can
improve understandability of a complex software system.

• A scenario described by a use case can be used almost
directly as a test script at validation time.

Questions to Ask

When Should I Use the Use-Case Methodology?

You should consider using them for capturing the majority of the
requirements for the system if either or both of the following
aspects apply to your application

• The system is functionally oriented, with both varied types of
users and functional behavior. Since use cases describe the
behavior of the system for each type of user, they are most
powerful when there are many types of system users and the
system needs to deliver different types of functionality for
each type of user.

• Your project team is implementing the system, using the UML
and object-oriented (OO) methods. Certain OO concepts, such
as inherited behavior among actors and use cases, abstract
actors, lend themselves well to the use-case method and
deliver additional utility to the analyst or modeler. The UML
notation for use cases also supports visual modeling of the
system and provides a modeling paradigm that supports the
representation of the needed behavior of the system (the use
case) and how that behavior is implemented within the
software (via use-case realizations).

When Are Use Cases Not the Best Choice?

However, use cases are not well suited for certain types of systems
and some types of requirements. Specifically, you may need to
augment or perhaps even abandon the use cases for systems with
the following characteristics.

Systems with Few or No Users and Minimal Interfaces Many
classes of systems are functionally rich but have few external
interfaces and few users and therefore do not lend themselves as
well to the use-case technique. Consider, for example, systems
designed primarily to perform scientific calculations or simulations,
embedded systems, process control systems, a virus-checking
system that runs without operator interaction, and software utilities
such as compilers and memory management programs. Again,

although you can apply use cases in these applications, and
although they will probably be useful in augmenting the traditional
approach, there may be easier ways to express the majority of the
requirements.

Systems Dominated Primarily by Nonfunctional
Requirements and Design Constraints As mentioned earlier,
use cases can be poor containers for nonfunctional requirements—
the attributes of the system and of the system environment, special
requirements, and design constraints we discussed earlier. In fact,
use cases have a "special requirements" pigeonhole for inserting
these types of requirements. This works well when you are applying
these types of requirements to one or a few use cases, but in
general, not all such requirements relate well to a specific use case.

Other, global nonfunctional requirements are generally not good
candidates for use-case capture: legal and regulatory compliance
requirements, operating environments, and software development
standards. (For example, at Rational, one specification is used
solely to define the requirements for globalization of software
products. These requirements consist almost entirely of constraints
that govern the design of the software so as to make translations
into other languages feasible and cost-effective. Use cases are
needed only to describe the limited patterns of usage implied, such
as a "French-speaking person using the German OS.")

The Redundancy Problem

Use cases can also lead to a significant redundancy of expression
that increases the size of the requirements documentation. The
reason is that many use cases are very similar yet distinct enough
to require separate expression. In addition, maintenance can then
be a challenge when the common behavior, expressed in many use
cases, must be changed. In this latter case, there are additional
use-case relationships, such as generalization, include-relationships,
and extends-relationships that you can use to reduce redundancy
(Booch 1999).

However, the use of these relationships adds complexity in its own
right, and there may be a point of diminishing returns if the
behavior can be readily expressed in other ways. And yes, some
relatively complex behaviors can be expressed more simply in
natural language (for example, "When the system is in the ready
state, and two officers each depress the launch button and hold it
for more than 1 second, the missile will launch"). Yes, you can
hammer the use cases into submission in these cases, but the goal
is to pick the best technique for the circumstances, one that

provides ease of expression and understandability, not to use them
because you think you have to. In most projects, you will probably
want to use a mix of use cases and traditional methods to create
the optimum approach.

Refining Use-Case Specifications

In this chapter, we'll build on what we learned in Chapters 2 and 13
and apply the use-case technique again to refine the system
specification. This is convenient, as the use cases derived in the
earlier activities can be revisited and elaborated on here. Depending
on the level of specificity achieved in the elicitation process, the use
cases developed earlier may be sufficiently detailed to drive design
and implementation. It's more likely, however, and it is
recommended, that an appropriately high level of abstraction in the
elicitation process was maintained so you don't become bogged
down in detail at that stage of the process. Also, you probably didn't
define all of the use cases that would be needed or detail the
exception conditions, state conditions, and other special conditions
that are of less interest to the user but that may materially affect
the design of the system. The time to add this additional level of
specificity is now.

Note

It is not the intention of this book to provide a full course on use
cases. If you are interested in becoming more fully versed in the
methodology and its supporting tool technologies, two good books
on the subject are Schneider and Winters (1998) and Jacobson
(1999). Nevertheless, we will review a few basic principles of the
use-case methodology.

To add specificity, we'll need to take a more rigorous approach to
the use-case technique so you can gain a better understanding of
some of the nuances. Let's look at the definition of use cases one
last time, focusing on what the UML has to say about them: "A use
case is a description of a set of actions, including variants, that a
system performs that yields an observable result of value to a
particular actor" (Booch 1999).

Whew! That looks like a bunch of lawyers wrote the definition![1] As
we've described earlier, the use-case methodology identifies two
elements that will be present in all use-case instances.

[1] It was actually a bunch of methodologists. Ivar Jacobson tells the following joke: Question: Do you know
what the difference is between a methodologist and a terrorist? Answer: You can negotiate with a terrorist.

1. Use case. The UML represents the use case with an oval.
Even though the use case is a textual description, the icon
serves as a shorthand aid that helps us model the system
visually and show interactions between use cases and other
modeling elements.

2. Actors. An actor is someone or something that interacts
with our system. There are only three types of actors: users
("Bill the technician"), devices ("the robot arm motor
controller"), and other systems ("the HOLIS CCU controller").
Actors are not part of the system being described but live
outside of the system boundary.

Let's look at some of the other key phrases in the UML definition: "A
use case is a description of a set of actions, including variants, that
a system performs that yields an observable result of value to a
particular actor."

• Variants. A use case describes a basic flow, or thread, as
well as variants, or alternative flows.

• A set of actions. The set of actions describes a function
performed or perhaps an algorithmic procedure that produces
a result; the set is invoked when the actor initiates the use
case by providing some input to the system. An action is
atomic; that is, it is performed either entirely or not at all. By
the way, the atomicity requirement is a strong determinant in
selecting the level of granularity of the use case. You should
examine the proposed use case, and if the action is not
atomic, then the level of granularity should be reduced to a
finer level of detail.

• System performs. This means that the system provides the
functionality described in the use case. It's what the system
does, based on the input it is given.

• An observable result of value. It is important to note that
the result of the use case must be "of value" to a user.
Therefore, "the resident pushes the light button" is not a valid
use case; (the system didn't do anything for the user.) But
"the resident pushes the light button and the system turns the
light on" is a meaningful use case and is more likely to
motivate the resident to interact with the system!

• A particular actor. The particular actor is the individual or
device (Linda the resident; the signal from the emergency
button) that initiates the action (toggle the light or activate
security alarm).

How Use Cases Evolve

In the early iterations of Team Skill 3, Defining the System, most of
the major use cases have been identified, but only a few—perhaps
those considered architecturally significant or particularly
descriptive of the system behavior—are well described. These use
cases might typically be done as an elaboration of the Vision
document, which describes how the features expressed are
intended to be used.

The refining process completes all use cases needed to define the
system. The test for "enough" use cases is that the complete
collection of use cases describes all possible ways in which the
system can be used, at a level of specificity suitable to drive design,
implementation, and testing.

It's worth pointing out that use case elaboration is not system
decomposition. That is, we don't start with a high-level use case
and decompose it into more and more use cases. Instead, we are
searching for more and more detailed actor's interactions with the
system. Thus, use-case elaboration is more closely aligned with
refining a series of actions rather than hierarchically dividing actions
into subactions. Your model will often have use cases that are so
simple that they do not need a detailed description of the flow of
events; a simple outline is quite enough. The criteria for making this
decision are that users don't disagree on what the use case means
and that designers and testers are comfortable with the level of
detail provided by the simple format.

The Scope of a Use Case

It is often difficult to decide whether a set of user system
interactions, or dialog, is one or several use cases. Consider the use
of a recycling machine: The customer inserts cans and bottles into
the recycling machine, presses a button, and received a printed
receipt that can be exchanged for money.

Is it one use case to insert a deposit item and another use case to
require the receipt? Or is it all one use case? Two actions occur, but
one without the other is of little value to the customer. Rather, it is
the complete dialog, with all of the insertions and getting the
receipt, that is of value and makes sense to the customer. Thus, the
complete dialog—from inserting the first deposit item, pressing the
button, and getting the receipt—is a complete instance of use, a use
case.

Additionally, you want to keep the two actions together, to be able
to review them at the same time, modify them together, test them
together, change them together when necessary, write user
documentation that describes them, and, in general, manage them
as a unit. This becomes particularly important in larger systems.

The Case Study: Anatomy of a Simple Use Case

Let's look at a step-by-step procedure for defining a use case. We'll
use a simple HOLIS example: a resident activating a light in a house,
using the HOLIS home automation lighting system.

Define the Actor(s)

We first need to decide and to define exactly who is to interact with
the use case. In many systems designed for users, we should first
look to identifying the humans who will use the system. In our use
case, the homeowner interacts with the system to control the light
in a room. So only one actor is discovered, the user (Resident)
pressing the switch.

Tip

As you work your way through the determination of actors in the
project, it will be helpful to maintain an "actor list" so that you can
readily refer to actors already defined and avoid accidentally
creating an actor again, using a different name.

Define the Use Case by Naming It

Each use case should have a name indicating what is achieved by
its interaction with the actor(s). The name may have to be several
words to be understood. No two use cases can have the same name.

You should consider the name carefully. It should be unique and
easily distinguishable among the use cases defined for the project.
Use-case names often begin with an action verb to indicate the
intent of the use case. We will name our use case Control Light.

Also, you may want to structure the name in a formal method so as
to group similar use cases into similarly named groupings. Or, you
may want to incorporate a "serial number" or other unique identifier
into the use-case name to facilitate managing a list of the use cases.
For example, a designer might specify the name of this use case as
"031 Control Light." But, although the spirit of this approach is

laudable, our experience has shown that proper use-case naming,
and perhaps application of tools that allow us to search, sort, and
analyze use cases, are usually adequate to the task.

Write a Brief Description

A brief description of the use case should reflect its role and
purpose. As you write the description, refer to the actors involved in
the use case and the glossary. If you need to, define new concepts.

This description is intended as an informal overview of the
functionality. A later section, Flow of Events, will be the spot where
you can write a detailed description of the full functionality. The
use-case description is intended to give a "quick look" and nothing
more. In our use case, we might describe the use case as follows:

Use Case Description for Control Light

This use case prescribes the way in which lights are turned on or off
or are dimmed by how long the user presses a light switch in
various manners.

Define a Flow of Events

The heart of the use case is the event flow, usually a textual
description of the operations by the actor and the system's various
responses. Therefore, the event flow describes what the system is
supposed to do, based on the actor's behavior. By the way, it is not
required that the flow be described textually. You can use UML
interaction diagrams for this purpose, and many of the formal
methods discussed in Chapter 28 might apply equally well to your
use-case documentation, so be sure and select an appropriate
technique. Remember, the goal is to convey understanding, and
there is no "one-size-fits-all" approach. However, in most cases,
you'll find that natural language works just fine.

The flow of events conveys the meat of the use case's purpose and
is intended for viewing by a variety of audiences:

• Customers, who approve the result and bless the functions
• Users, who are the intended target for the system's actions
• Use-case designers, who are interested in accurately

capturing the system's intended behavior
• Reviewers, who provide third-party perspective
• Designers, who dissect the use cases, looking for design

classes, objects, and so on
• Testers, who need to construct test cases

• Project manager, who needs to understand the entire project
• Technical writer, who needs to document the system's

functions in a user-friendly manner
• Marketing and sales people, who need to understand the

features of the product and explain its wonders to the outside
world

You're probably saying to yourself, "I almost never find situations in
which I can describe a simple flow of events that works every time.
Many times, I need a way to describe some alternative flows." Fear
not. The determination of a use-case flow allows for alternative
flows. But first, let's create a basic flow for our example.

Basic Flow for the Control Light Use Case Note that the
following flow of events does not specify how the system does any
of those things. It specifies only what happens.

Basic flow begins when Resident presses any button on the Control
Switch. If Resident removes pressure on the Control Switch within
the timer period, the system "toggles" the state of the light.

• If the light was on, the light is turned off, and there is
no illumination.

• If the light was off, the light is turned on to the last
remembered brightness level.

End of basic flow.

Alternative Flow of Events: In many cases, the use case may
have different flows, depending on conditions present. In some
cases, these flows deal with error conditions detected during
processing, or they may record optional ways of handling certain
conditions. For example, a use case that prints a receipt for a credit
card transaction may discover that the printer has run out of paper.
This special case would be described within the use case as an
alternative flow of events. When you record the alternative flows,
don't forget to document the conditions giving rise to the flows.
There is no set limit on alternative flows, so be sure and document
all alternative flows, including possible error conditions.

In our example, an alternative flow of events will occur when
Resident holds a button on the Control Switch down for more than 1
second. So, we need to add an alternative flow to the use case.

Alternative Flow of Events: Dimming

If Resident keeps pressure on the Control Switch for more than 1
second, the system initiates a dimming activity for the indicated
Control Switch button.

While Resident continues to press the Control Switch button,

1. The brightness of the controlled light is smoothly
increased to a systemwide maximum value at a rate of
10 percent a second.

2. When the maximum value is reached, the brightness of
the controlled light is smoothly decreased to a
systemwide minimum value at a rate of 10 percent a
second.

3. When the minimum value is reached, processing
continues at subflow step 1.

When Resident ceases to press the Control Switch button,

4. The system ceases to change the brightness of the light.

Identify Pre- and Postconditions

In some cases, you will need to identify preconditions that affect the
behavior of the system described in the use case and to describe
postconditions, such as system state or persistent data that is left
when the use case is complete. However, you need to use pre- and
postconditions only when necessary to clarify the behavior
expressed in the use case.

It is important to distinguish between events that start the use-case
flows and preconditions, which must be met before the use-case
flow can be initiated. For example, a precondition to the Control
Light use case is that the homeowner (Resident) has enabled a
specific bank of lights for the dimming action. Another precondition
is that the selected Control Switch (CS) button must be
preprogrammed to control a light bank. (Presumably, other use
cases describe how these preconditions are accomplished.) So we'll
need to state the preconditions.

Preconditions for Control Light Use Case

• The selected Control Switch button must be "Dim
Enabled."

• The selected Control Switch button must be
preprogrammed to control a light bank.

Similarly, you will often need to identify and include postconditions
in your documentation. Postconditions allow you to specify the exact

state that on use case exit must be true even if alternative paths
are taken.

In order for the brightness to come on to the proper level when
Resident uses the switch the next time, the system must remember
the previous brightness level that was set for a selected Control
Switch button after a dimming action has occurred. So, this is a
postcondition that we'll record in the use case.

Postconditions for Control Light Use Case

• On leaving this use case, the current brightness level for
the selected Control Switch button is remembered.

Now let's put it all together. Table 24-1 outlines what we have after
filling in all of the important pieces of our use case. (Although many
other pieces can be defined for a use case, they are not important
to our needs now.) This use case is documented in the narrative
style and may be found in the HOLIS artifacts in Appendix A.

Table 24-1. Defining a use case
Item Value

Use case name Control light
Brief description This use case prescribes the way in which lights are turned on

or off or are dimmed by the user's pressing a light switch in
various manners.

Flow of events Basic flow for the use case begins when Resident presses a
button on the Control Switch (CS). If Resident removes
pressure on the CS within the timer period, the system
"toggles" the state of the light. This means:

• If the light was on, the light is turned off, and there is no
illumination.

• If the light was off, the light is turned on to the last
known brightness level.

Alternative flow
of events

If Resident keeps pressure on the CS for more than 1 second,
the system initiates dimming for the indicated light. The
following actions occur while Resident continues to press the CS
button:

1. The brightness of the light is smoothly increased to a
systemwide maximum value at a rate of 10% a second.

2. When the maximum brightness is reached, the
brightness of the light is smoothly decreased to a
systemwide minimum value at a rate of 10% a second.

3. When the minimum value is reached, the use case's
sequences back to subflow step 1.

When Resident ceases to press the CS button:

4. The system ceases to change the brightness of the light.

Preconditions • The selected CS button must be "Dim Enabled."
• The selected CS button must be preprogrammed to

control a light bank.

Postconditions On leaving this use case, the brightness of the light is
remembered by the system.

Special
requirements

The systemwide minimum light level cannot be 0. It should be
an acceptably low value such that the controlled lights are
adequate for night use.

Looking Ahead

When all use cases have been discovered and elaborated at about
this level of detail, the refining process is complete for those
portions of the system that we decide to elaborate in use cases. In
the next chapter, we'll look at organizing the specifications.

Chapter 25. A Modern Software
Requirements Specification

Key Points

• The Modern SRS Package is a collection of artifacts
describing the complete external behavior of the
system. It creates a conceptual model of the system to
be built.

• The Vision document serves as input to the Modern
SRS Package. The former is a broad statement of user
needs, goals and objectives, target markets, and
system features; the latter focuses on the details of
implementing those features.

• The "right balance" of techniques is typically a mix of
use-case modeling and traditional requirements
specification.

Now that we have refined our understanding of the system, it's time
to develop a strategy to organize and document the requirements.
Although much of the effort involved in this process does center on
organizing the software requirements, documents, use cases, and
models that have been elicited and refined, the most important part
of this process is that the collection of these artifacts, in the whole,

represents a complete conceptual model of the system to be built.
After all, if we had already built it, we wouldn't be doing this part.

In short, for the first time, we have the pieces of a relatively
complete and conceptual framework with which we can reason
about the future system. Perhaps we can't touch it yet, though we
might have seen some storyboards and prototypes along the way,
but we can start to analyze it and to test our understanding of it
while it still lives only in the realm of paper and models. In a sense,
we have reached a major milestone: a conceptual model, or proxy,
for the system to be built.

The Modern SRS Package

Historically, the most popular technique for documenting
requirements was to use natural language and to simply write them
all down in an organized fashion. This technique was revised and
improved over the course of many projects, and eventually a
number of standards developed for these documents, including IEEE
(Institute of Electrical and Electronics Engineers) 830: Standard for
Software Requirements Specification (1994).

However, with today's tools and techniques, we prefer to think of
the software requirement specification, or SRS, as a logical
structure rather than a physical document. The elaboration of the
various requirements for the system is embodied in a package we
call the Modern Software Requirements Specification Package as
distinct from earlier forms, which will simply call the SRS. The
Modern SRS Package is related to the Vision document, which
serves as the input to the Modern SRS Package. But the two
artifacts serve different needs and are typically written by different
authors. At this stage in the project, the focus moves from the
broad statement of user needs, goals, and objectives, target
markets, and system features to the details of how these features
are going to be implemented in the solution. Figure 25-1 shows an
overview of the elements that make up the package.

Figure 25-1 Elements of the Modern SRS Package

What we need now is a package of information that describes the
complete external behavior of the system: a collection of artifacts
that says, specifically, "Here is what the system has to do to deliver
those features." That's the Modern SRS Package.

There is no strong reason to focus on the differences between the
tools used. After all, you are collecting requirements and should
focus on the efficient collection and organization of the
requirements, without regard to the tools at hand. Therefore, we
will assume that the collection of requirements constitutes a
package of information. Thus, Figure 25-1 shows not only the
elements of the package but their relationships.

The Modern SRS Package is not a frozen tome, produced to ensure
ISO 9000 compliance and then buried in a corner and ignored as
the project continues. Instead, it is an active, living package,
playing a number of crucial roles as the developers embark on their
implementation effort.

• It serves as a basis of communication among all parties:
among the developers themselves and between the
developers and the external groups, users, and other
stakeholders with whom they must communicate.

• Formally or informally, it represents an agreement among the
various parties: If it's not in the package, the developers

shouldn't be working on it. And if it is in the package, they are
accountable to deliver that functionality.

• It serves as the software manager's reference standard. The
manager is unlikely to have the time, energy, or skills to read
the code being generated by the developers and to compare
that directly to the Vision document; the manager must use
the package as the standard reference for discussions with
the project team.

• As noted earlier, it serves as input to the design and
implementation groups. Depending on how the project is
organized, the implementers may have been involved in the
earlier problem-solving and feature-definition activities that
ultimately produced the Vision document. But it's the Modern
SRS Package they need to focus on for deciding what their
code must do.

• It serves as input to the software testing and QA (quality
assurance) groups. These groups should also have been
involved in some of the earlier discussions, and it's obviously
helpful for them to have a good understanding of the vision
laid out in the Vision document. But their charter is to create
test cases and QA procedures to ensure that the developed
system does indeed fulfill the requirements laid out in the
Modern SRS Package, which also serves as the standard
reference for their planning and testing activities.

• It controls the evolution of the system throughout the
development phase of the project; as new features are added
or modified in the Vision document, they are elaborated within
the package.

Who Owns the SRS Package?

The question naturally arises, "Who is responsible for creating and
maintaining components within the Modern SRS Package?" Usually,
the developer team members themselves take on this task. The
development team has a significant stake in fully understanding the
package and all of its requirements and can appropriately influence
many system decisions by taking ownership. After all, who better to
write the software requirements than the people who will end up
being responsible for adherence to them? Often, the system analyst
will take on this task as a refinement of the Vision document; in
other cases, the testers will work hand in hand with the project
team and will take responsibility for the requirements.

Each approach has its pluses and minuses, and each project team
will decide for itself what the best strategy will be. In our
experience, if the package is taken seriously, it doesn't really
matter who writes it, although we have a slight preference for the

development lead or development team to take ownership. What
really matters is that there is a Modern SRS Package and that it is
the basis for the remaining development and testing activities.

Of course, the SRS authors don't write requirements in a vacuum.
We have found that reviews of this package are the most productive
step that can be taken to ensure that the developers, marketers,
users, and other stakeholders are all singing from the same music.
Remember, the Modern SRS Package is a living artifact and will
need updating as the project evolves and various user features
become better understood. It should never be the case that the
package is written once and then ignored.

Organizing the Modern SRS Package

The Modern SRS Package for a large system could be voluminous,
perhaps running to hundreds of pages (or more!) of text and use-
case diagrams, and it contains a great deal of detailed information
to which the developers must pay close attention. However, if the
package is properly written and well focused, its size is not a valid
argument against having one; it just speaks to the relative
complexity of the system you are about to build.

This raises the question of how the package should be organized.
For example, if a new developer is assigned to a project and told
that he will be working on the XYZ feature, where should he expect
to find the relevant details about XYZ? Or, suppose that the project
manager resigns midway through the project; how can the new
manager assigned get "up to speed" on the details that govern the
day-to-day development activities of the project team?

Of course, the package should be organized in a fashion that suits
the nature of the application and the organization; a package for
the development of a shrink-wrapped word processor in a Silicon
Valley software company probably won't look exactly the same as
one for an air traffic control system. We don't really care whether
an air traffic control expert can visit the Silicon Valley software firm
and figure out what its SRS really means; what we do care about is
that the developers and the users within a particular organization
can make sense of the SRS they've constructed, for it's a package
they'll have to live with throughout the development lifecycle and
on into the maintenance of the system after it's in production.

To the extent that an organization wants to qualify for higher levels
on the SEI-CMM scale or to achieve ISO 9000 certification, the
interest is more likely to be in standardizing the organization and
format of its package. Even without the influence of the CMM and

ISO, the examples we've mentioned illustrate the benefits: the
opportunity to "ramp up" more quickly when (not if) there is
turnover or when (not if) new people join the project team. It also
ensures that critical information doesn't fall through the cracks and
that everyone knows where to look for information.

Also, remember that the Modern SRS Package is not intended to be
read like a novel, from cover to cover; it's primarily a reference
item, and each developer will typically look at only the specific
information they need. Thus, it's useful to have an SRS
organizational format that's familiar and easy to "navigate" rather
than one with an unfamiliar format that forces people to read
sequentially until they find the information they need.

Of course, the package has to have some organizing concept. We
have found that the following organizational outline is a good match
to almost any type of project. This outline, along with commentary
that provides some of the details of the structure, is provided in
Appendix C.

Overview

Revision History

Table of Contents

1.0 Introduction

1.1 Purpose

1.2 Scope

1.3 References

1.4 Assumptions and Dependencies

2.0 Use-Case Model Survey

3.0 Actor Survey

4.0 Requirements

4.1 Functional Requirements

4.2 Nonfunctional Requirements

4.2.1 Usability

4.2.2 Reliability

4.2.3 Performance

4.2.4 Supportability

5.0 Online User Documentation and Help System
Requirements

6.0 Design Constraints

7.0 Purchased Components

8.0 Interfaces

8.1 User Interfaces

8.2 Hardware Interfaces

8.3 Software Interfaces

8.4 Communications Interfaces

9.0 Licensing Requirements

10.0 Legal, Copyright, and Other Notices

11.0 Applicable Standards

Index

Glossary

Appendix: Use-Case Specifications

Use-Case Revision History

Date Issue Description Author

Use-Case Name

Brief Description

Flow of Events

Basic Flow

Alternative Flows

First Alternative Flow

Second Alternative Flow

Special Requirements

First Special Requirement

Second Special Requirement

Preconditions

Precondition 1

Postconditions

Postcondition 1

Extension Points

Name of extension point

Other Use-Case Material

Documenting Functional Requirements

Let's review where we are.

• We've promoted the idea that the documentation of the
system's requirements should be contained in a package of
artifacts.

• These artifacts can consist of textual documents, tables and
charts, use cases, and many other things to help the
developers understand what the customer wants.

• We've outlined a template for the organization of the Modern
SRS Package. The template allows you to organize and to
categorize all sorts of elements, but the primary focus is on
textual elements, such as natural-language specifications of
some requirements and use case elements, which include the
graphical use-case model and textual representations of the
use cases.

The good news is that both traditional requirement specification
techniques and use-case techniques are well suited for the task of

gathering requirements, and each has been used exclusive of the
other technique in thousands of successful projects. But how can we
optimize our work? Which technique should we apply in each case?

When it comes to specifying functional requirements for the system,
we've found that combining use-case modeling and the traditional
requirements specification is the best approach. Consider the
"requirements balance" as shown in Figure 25-2.

Figure 25-2 The requirements balance

In this view, we note that there is a continuum of possibilities.
Some projects are characterized by a small, if any, amount of
specification that can be accomplished via the functional
representation power of the use-case technique. These projects
tend to be highly computational, internal, and algorithmic, such as
weather calculations or scientific systems. At the other end of the
functional spectrum are projects that are heavily focused on
satisfying user functional needs. These projects are typically
focused on doing a lot of things for the user. In addition, you may
need to handle many types of users, a real strength of the use-case
technique.

Also, we consider the skill set of the project team itself. Some
development teams have had little or no experience in use case and
OO methods. Other teams have mastered these techniques.

To use this "balance view," simply fill in the appropriate set of check
boxes for your project's characteristics and your team's skills and
predilections. The resultant "tilt," or balance, offers you a plan for
how to capture the requirements. To a first approximation, you

should create a requirements documentation plan that depends on
how the balance tilts.

In any case, the Modern SRS Package allows you to combine the
best qualities of both use-case modeling and traditional
requirements specification techniques. The challenge is to find the
right mix for your project and your team. We have found that all of
the following must be carefully considered:

• The organization's abilities
• The trend in software development processes and methods

within the organization
• Outside factors such as regulatory requirements and other

constraints
• The specific project context

Only then can a particular technique or mix of techniques be
selected. Given an understanding of these factors, your team will be
able to pick the right balance that works and to then migrate to a
more powerful combination where applicable.

Looking Ahead

The Modern SRS Package is a powerful tool for communicating the
needs of the project. However, those packages are not particularly
easy to write. Like everything else, writing good software
requirements specifications is a learned skill. In the next chapter,
we will explore some of the problems involved in writing a clear,
unambiguous set of specifications.

Chapter 26. On Ambiguity and
Specificity

Key Points

• The requirement "sweet spot" is the balance point of
the greatest amount of understandability and the least
amount of ambiguity.

• A learned skill, finding the sweet spot will depend on
the team members' abilities, the application context,
and the level of surety you must provide that your
system works as intended.

• If the risk of misunderstanding is unacceptable, more
formal requirements techniques may need to be
applied.

Finding the "Sweet Spot"

One of the most difficult challenge we face in the requirements process is making
the requirements detailed enough to be well understood without overconstraining
the system and predefining a whole host of things that may be better off left to
others downstream in the process. ("Do we really have to specify Pantone 287 as
the background color in our GUI spec? No? How do you like the color they came
up with last time?")

Time after time, our students pose the following question, which represents one
of their biggest concerns: "To what level of specificity must I state the
requirements in order to avoid any chance of being misunderstood?" Although
many students are hoping for a simple answer, unfortunately, there isn't one. As
if we were consultants about to sell the customer more services, the only answer
we can truthfully provide is, "It just depends." For example, as an exercise in
requirements writing, we often use the "light box" exercise shown in Figure 26-1.

Figure 26.1 Light box

The goal of the exercise is to write clear and simple requirements, using natural
language or the use-case technique to describe the behavior of this device. In the
exercise, the user is available for interview, so that the requirements writer can
refine the specification with clear user input. As an example of a reasonably good
effort in the natural language style, let's look at the following requirements
specification (Davis 1993).

After On pushed but before Off pushed, system is termed "powered on."

After Off pushed but before On pushed, system is termed "powered off," and no
lights shall be lit.

Since most recent On press, if Count has been pressed an odd number of times,
Odd shall be lit.

Since most recent On press, if Count has been pressed an even number of times,
Even shall be lit.

If either light burns out, the other light shall flash every 1 second.

This specification is fairly tight and would be quite adequate for most purposes.
More important, it reflects the way the device user intended that it work!

However, a programmer who has the task of writing a program to simulate this
behavior will discover at least one ambiguity in this exercise almost immediately:
What does it mean to flash the bulb every 1 second? Still seem obvious? Let's
take a look at the duty cycles in Figure 26-2.

Figure 26.2 Possible lamp duty cycles

If you were the programmer, would you pick duty cycle A or duty cycle B?
Although most pick duty cycle B, it becomes clear that the requirement is
ambiguous. Now, a requirements-sensitized programmer will recognize this
ambiguity and will attempt to resolve it by asking the customer, "Which duty
cycle should I use?" But if the programmer is not so savvy or does not recognize
the ambiguity or thinks, "I know what you meant because I know how this thing
should work," the behavior of the device when delivered may deviate perceptibly
from the customer's stated requirements. Your project may be at risk.

In most potential applications, it probably doesn't matter whether the bulb
flashes on for 1 second or 0.25 second. But if this were an electrosurgical device,
it would matter a lot. The power delivered to the electrode would be 100 percent
higher in duty cycle B than in A, with perhaps unfortunate results.

So, the answer to "What level of specificity must I provide?" is: "It depends on
the context of your application and how capable those doing the implementation
are of making the right decisions or of at least being certain to ask questions
where there is ambiguity."

In the case of the even and odd counting device, the specification as stated is
probably adequate. In the case of the electrosurgical device, more investment in
describing the requirement would be needed. A timing diagram would be needed,
and the spec would probably also have to define such issues as the rise time on
the upslope of the "on" current, the precision with which the "on" time must be
controlled (±x msec), and other factors; otherwise, the power delivered will not
be right, and the device will operate incorrectly. Figure 26-3 summarizes this
dilemma.

Figure 26.3 Ambiguity versus specificity

The goal is to find the "sweet spot," or the balance point wherein the investment
in requirements provides "just the right amount" of specificity and leaves just the
"right amount of ambiguity" for others to resolve further downstream.

As you move to the left from the sweet spot on the curve in Figure 26-3, you
lower both ambiguity and understandability. For example, if we provided timing
diagrams to an unsophisticated user, complete with timing tolerances indicated
and if we maintained that level of specificity throughout, the user may well not be
able to understand the spec at all or might even be unwilling to take the time to
read it. Worse, due to your apparent thoroughness, the user might trust you too
much and not take the time for a careful review. You are also at the risk of the
customer's being unable to see the forest for the trees ("I didn't want a light bulb;
I wanted you to turn on the emergency light at the end of the production line").

As you move to the right of the sweet spot, ambiguity goes up, but
understandability again goes down. For example, at the extreme limit, you might
simply say, "Build me an even/odd counting device," and no one could possibly
understand what you mean.

Finding the sweet spot is a learned skill. It will depend on the abilities of the team
members, the context of the application, and the level of surety that you must
provide so that your system "works as intended."

Mary Had a Little Lamb

Let's have a little fun with the issue of ambiguity and also see whether we can
find some more tips that will help us "disambiguate" whenever and wherever it's
necessary to do so. (If you are a fairly formal sort, without much use for the
"softer" side of this problem space, you may wish to move directly to Chapter 28,
Technical Methods.)

For the rest of us, let's have a little fun, courtesy of Gause and Weinberg (1989),
whose book leads us through a fun exercise that illustrates the ambiguity
problem and also provides some serious insights as to possible solutions.

Consider the familiar nursery rhyme: "Mary had a little lamb." Although it's
unlikely that anyone will build an information system based on this sentence, it's
nevertheless interesting to ask, What does it mean? In order to disambiguate, we

can perhaps use the keyword, or dictionary, technique. In this technique, we
focus on the keywords in the statement and look at the options, based on various
meanings for each. Here we'll focus on the words "had" and "lamb." "Had" is the
past tense of "have," so we'll have to use the definition of "have"; we can use
"lamb" directly. Here's what we find for "have":

have 1a: to hold in possession as property … 4a: to acquire or get possession of:
to obtain (as in "the best to be had") … 4c: ACCEPT; to have in marriage … 5a: to
be marked or characterized by (to have red hair) … 10a: to hold in a position of
disadvantage or certain defeat … 10b: TRICK, FOOL (been had by a partner or
friend) … 12: BEGET, BEAR (have a baby) … 13: to partake of (have dinner) …
14: BRIBE, SUBORN (can be had for a price)[1]

[1] Adapted from Webster's Seventh New Collegiate Dictionary (Springfield, MA: Merriam Co., 1967).

And here's what we have for "lamb":

lamb 1a: a young sheep esp. less than one year old or without permanent
teeth … 1b: the young of various other animals (e.g., smaller antelopes) … 2a: a
person as gentle or weak as a lamb … 2b: DEAR, PET … 2c: a person easily
cheated or deceived, esp. in trading securities … 3a: the flesh of lamb used as
food[2]

[2] Ibid.

Accordingly, we could interpret the phrase "Mary had a little lamb" to mean any
one of the following:

Lambic Interpretations
"Have" "Lamb" Interpretation
1a 1a Mary owned a little sheep under one year of age or without

permanent teeth.

4a 1a Mary acquired a little sheep under one year of age or without
permanent teeth.

5a 1a Mary is the person who owned a little sheep under one year of age
or without permanent teeth.

10a 1a Mary held a little lamb under one year of age or without
permanent teeth.

10b 1a Mary tricked a little sheep under one year or age or without
permanent teeth.

12 1b Mary gave birth to a young antelope.

12 2a Mary is (or was) the mother of a particular small, gentle person.

13 3a Mary ate a little of the flesh of lamb.

14 2c Mary bribed a small person trading in securities who was easily
cheated.

For people who grew up with this nursery rhyme and who read the rhyme to their
children each night, this discussion might sound preposterous: "How could any
reasonable person interpret such a familiar phrase in so many bizarre, outlandish
ways?" But such a complaint is neither fair nor realistic if we expect someone
from a different background, and perhaps even a different nationality and culture,
to attempt an interpretation based strictly on the dictionary definition of the two

keywords. If it can happen with nursery rhymes, surely it can happen with
complex software systems the likes of which have never yet been created.

Techniques for Disambiguation

One way of coping with ambiguity is to use not natural language but rather
"formal" requirements specification techniques, which we'll discuss in Chapter 28.
For obvious reasons, the user and the stakeholders outside the development
group typically prefer natural language, and even computer people manage to
carry on most of their day-to-day communication in natural language. But even
though both groups have some facility for communication in a natural language,
they do come from very different cultures; they have a different focus,
orientation, and set of assumptions.

Although it may be impossible to eliminate ambiguity entirely, we can attack it in
a variety of different ways. Gause and Weinberg (1989) provide some techniques
we can use when faced with this all-too-common situation.

• Memorization heuristic: Ask several individuals, both from the
development group and from the user/stakeholder group, to try recalling,
from memory, the customer's real requirement. Parts that are not clear
and cannot be easily remembered are likely to be the most ambiguous.
Focus on them and try to restate them with more clarity, so that they can
be remembered.

• Keyword technique: As illustrated with Mary's lamb, it often helps to
identify the key operational words in a statement and to list all of their
definitions, using an authoritative source that the various members of the
project environment will accept. Then mix and match to determine
different interpretations, as was done with Mary and her lamb. As a quick
test on this technique, you may also note that interpretation 1(a) and 1(a)
above, "Mary owned a little sheep under one year of age or without
permanent teeth," is probably closest to the meaning in the fairy tale.

• Emphasis technique: Read the requirement aloud and emphasize
individual words until as many different interpretations as possible have
been discovered. If only one of the interpretations is correct, restate the
requirement appropriately; if multiple interpretations are correct,
additional requirements may need to be generated accordingly. We'll
illustrate this point with another investigation of Mary and her lamb.

• Other techniques: If appropriate, try using pictures, graphics, or formal
methods to flush out the ambiguity and eliminate it.

Suppose that we saw the phrase "Mary had a little lamb" in our requirement set
and were trying to ensure that we understood what the user was really driving at.
Saying the sentence aloud and emphasizing individual words might help us elicit
any one of the following:

• Mary had a little lamb; if this is the case, perhaps the user is telling us
that it was Mary's lamb, not Richard's or anyone else's.

• Mary had a little lamb; perhaps she no longer has it. Perhaps it's the tense
of the statement that's significant.

• Mary had a little lamb; thus, the key point may be that Mary had only one
lamb, not an entire flock.

• Mary had a little lamb; indeed, it was one of the littlest lambs you ever
saw.

• Mary had a little lamb; the emphasis here reminds us that Mary didn't
have a pig, a cow, or even a grown-up sheep. But we might still be misled
into thinking she had a baby antelope.

What to Do?

No one technique will work in every circumstance. Achieving the right balance of
ambiguity and specificity will be a practiced skill that you will need to develop
within your organization and project context. The amount of specificity you need
to provide may even vary over time, based on the changing skills of those
downstream in the process and their understanding of the domain in which you
operate.

Here are our recommendations to find the "sweet spot" in your project context.

• Use natural language wherever possible.
• Use pictures and diagrams to further illustrate the intent.
• When in doubt, ask! When you're not in doubt, consider asking anyway.
• Augment your specifications with more formal methods when you cannot

afford to be misunderstood.

Train your people to recognize both the problem of ambiguity and the solutions
that can be applied.

Chapter 27. Quality Measures of
Software Requirements

Key Points

• Having a set of requirements is the primary quality
goal; in addition, those requirements must themselves
meet nine measures of quality.

• Checklists can be used to ensure the quality of
requirements, the use-case model, and use-case
specifications and actors.

• A high-quality Modern SRS Package has a good TOC, a
good index, a revision history, and a glossary.

Quality, like art, is tough to measure. "I know good art when I see it."
Nevertheless, we have to establish a way to measure and to improve the quality
of our specifications. Of course, one measure of the quality is whether we get a
good product at the end of the development project. But that's not very helpful,
because lots of other factors also contributed to the end result.

So, we will break down the "quality" measurement of the overall specification into
a series of major elements:

• The quality of each individual specification

• Technique-specific quality measures, such as assessing the quality of a
use-case specification, an actor specification, and so on

• The quality of the collected package containing all of the individual
specifications

Let's start by considering the quality of the individual specifications. Of course, to
measure anything, we need to have a way of conducting the measurements.

Nine Quality Measures

We've already suggested what constitutes "good" requirements: items that meet
the definition provided and those that avoid design and implementation details,
as well as software process or project management issues. But how can we
distinguish between a high-quality set of requirements and a low-quality set?
Taking our lead from the IEEE 830 standard, which identifies eight "quality
measures" for evaluating an SRS, we'll add one of our own and explore how they
can help us develop a quality set of requirements. A Modern SRS package is of
high quality if it is:

• Correct
• Unambiguous
• Complete
• Consistent
• Ranked for importance and stability
• Verifiable
• Modifiable
• Traceable
• Understandable

We added the ninth measure, understandability, because we strongly believe that
communication is an important key to a project's success.

Although having a high-quality set of requirements is second to having a set of
requirements, we'll discuss each of these nine elements in more detail because
they bring additional insights to the requirements process, as well as give us
insight into the nature of "good" requirements.

Correct Requirements

As Davis (1993) states and illustrates (see Figure 27-1), "An SRS [set of
requirements] is correct if and only if every requirement stated therein represents
something required of the system to be built."

Figure 27-1 Needs/requirements universe

If the universe of user needs is represented by the circle on the left and the
requirements by the circle on the right, the portion of correct requirements is
area B, the area of overlap.

Of course, by simply writing some information in a document, we can't guarantee
that it's correct; nor can any automated design tool provide a guarantee that it
will be so. If the user's true requirements in a payroll system are that all
employees should be given an automatic 5 percent salary increase and the
project team inadvertently creates a requirement stipulating a 10 percent salary
increase, it's certainly not correct. This form of correctness will be verified only by
review and acceptance by the user.

Of course, this is not a new and unfamiliar phenomenon; it's been an issue ever
since project teams first began developing software systems, as well as all other
kinds of engineering and development projects. But in a software project, what
often happens is the omission of information represented by area A and the
undesirable inclusion of information represented by area C. The information
represented by area C may be the design/implementation details that we warned
about earlier, but it may also consist of requirements that the user never asked
for. Sometimes, this information is introduced by enthusiastic marketing or
technical people who say, "We're sure the user will really love this feature once
they see it." (We will revisit the issue of spurious requirements in Team Skill 6.)

Unambiguous Requirements

A requirement is unambiguous if and only if it can be subject to only one
interpretation. (IEEE 830-1993, § 4.3.2, 1994). Although correctness is obviously
a key concern in any requirement, ambiguity often turns out to be a larger
problem. If a statement of requirements can be interpreted differently by
developers, users, and other stakeholders in the project, it's quite possible to
build a system that's completely different from what the user had in mind. This is,
of course, an insidious problem whenever requirements are written in natural
language, as well as because different cultures and groups within an organization
are so accustomed to their interpretation of a word or phrase that it never occurs
to them that others might interpret the word differently, a problem we discussed
in Chapter 26.

Completeness of the Requirements Set

A set of requirements is complete if and only if it describes all significant
requirements of concern to the user, including requirements associated with
functionality, performance, design constraints, attributes, or external interfaces
(IEEE 830-1993, §4.3.3, 1994). A complete set of requirements must also define
the required response of the software to all realizable classes of inputs—both
valid and invalid—in all realizable classes of situations. Further, it must provide
complete references and labels for all of the figures, tables, and diagrams within
the requirement set, as well as definitions of all terms and units of measure.

Ensuring Completeness Some aspects of completeness can be judged by any
competent reviewer who critically assesses the requirement set package to
ensure that the figures, labels, and diagrams have proper references and labels.
Also, some aspects of completeness can be assessed even by a developer with no
special understanding of the application. For example, if the requirement set says,
"The system shall accept a single numerical input from the user and return the
square root of that number, accurate to three decimal places," the obvious
question is, "What happens if the user tries to input a negative number?"

In fact, there's nothing illegal about attempting to compute the square root of a
negative number, as long as it's meaningful within the application domain to
return an imaginary number as the output from the system. But it does usually
require an understanding of the problem domain to differentiate between the
valid and invalid inputs; this is an especially common problem when specifying
the upper and lower limits of numerical input parameters, the length of character
strings, and so on. And because these details are often ignored in the
requirements, they're left for the developer to decide, either consciously or
unconsciously, and we end up with systems that refuse to accept a customer
name more than 25 characters long or that produce bizarre results when
erroneous inputs are entered by the user.

Reviewing the realizable classes of inputs to ensure that the complete
requirement set properly describes the system behavior for valid and invalid
inputs is something that every developer knows about, even though we still make
mistakes in writing such requirements. It's more common for users to overlook
this area and to express surprise and annoyance when it's brought up: "But why
would any reasonable person try to enter a negative number when the system
asks for age?" The veteran developer knows that it could happen because of a
simple typographical mistake or because the end user is deliberately trying to
"break" the system or for various other obscure reasons.

Completeness in Nonfunctional Requirements It's more common to
overlook aspects of performance and design constraints or assumptions about
external interfaces to other systems. Our advice is to create a simple checklist
that follows the guidelines we've provided in the areas of usability, reliability,
performance, and supportability and that also covers the right questions to ask in
the search for design constraints; that way, the developers and the users can at
least be sure that they've asked the appropriate questions while composing the
requirements. Again, the novice user might complain, "Well, of course I want the
system to have good performance; that's so obvious that I don't see why I need
to specify it." The veteran developer knows that it's usually important to specify
performance requirements in terms of maximum response time or average
response time or perhaps a statement that "90 percent of all transactions will
have a response time less than 3 seconds."

Completeness of Functional Requirements The issue of missing functionality
is more difficult; without a great deal of expertise in the application domain, it's
very difficult for the technical developers to know whether the set of
requirements has omitted an important area of functionality. After all, since all
the functionality is new, how do you know how much more there should be?

Sometimes, the functionality is so deeply ingrained and "obvious" that the user is
not even consciously aware of it. "Of course we run the payroll system on the day
before the normal payday if it falls on a holiday. We've always done that! How
else could you possibly have imagined that things would work?")

The use-case techniques should help you out here.

Completeness through Prototyping Storyboarding, requirements reviews,
and prototyping the system by using an iterative development approach will catch
many to most of these problems. The closer we get to real use, and the more
experience our users have with the system we will be deploying, the more likely
we are to see the problems with our definition.

However, even then, the development team must go one step further in its
analysis to ensure completeness by asking all of the "what-if" questions. These
questions should focus on boundary conditions, exceptions, and unusual events.

For example, the functionality sometimes involves situations that are so rare that
they've never occurred in the user's normal business experience, and no one
thinks to specify the requirements for that situation. The payroll system user, for
example, might complain that the required behavior of the system is "obvious" if
the normal payday falls on a holiday, but what if an official national holiday, state
holiday, and city holiday fall on three consecutive business days? "It's never
happened," the user might complain; perhaps so, but the developer may be able
to demonstrate that it could happen sometime within the next 5 years.

This kind of issue is not as far-fetched as it sounds. The commotion about the
year 2000 bug graphically illustrates the consequences of short-sighted decisions
based on "reasonable" expectations as to future events.[1]

[1] It's well known that decision makers made trade-off decisions that resulted in the Y2K commotion. Other
cases abound. For example, an early Gemini space mission incorporated flawed code, based on a conscious
decision to shortcut certain physical laws of motion in the interest of efficiency. This decision resulted in a
spacecraft landing that was several hundred miles off course.

Consistency in the Requirements Set

A requirement set is internally consistent if and only if no subset of individual
requirements described within it are in conflict with one another (IEEE 830-1993,
§4.3.4.1, 1994). The conflicts can take various forms and are visible at various
levels of detail; if the set has been written in a reasonably formal fashion and if it
is supported with appropriate automated tools, the conflicts can sometimes be
identified through a mechanical analysis. But it's likely that a manual review of
the set by developers and nondevelopers alike will be necessary to weed out all of
the potential conflicts.

Sometimes, the conflicts are blatant and obvious; one part of the requirements
might say, "When X occurs, carry out action P," whereas another part of the
requirements might say, "When X occurs, carry out action Q." Sometimes, it's
unclear whether the problem is a conflict or an instance of ambiguity; for

example, one part of the requirements in a payroll system might say, "All
employees who are 65 or older at the end of the calendar year shall receive a
bonus of $1,000," whereas another part of the requirements might say, "All
employees with 10 years or more of service at the end of the calendar year shall
receive a bonus of $500." What about employees who satisfy both conditions?

Although prototypes are often successful at spotting missing functionality and are
enormously useful for validating the user's requirements about input/output
details, it's unusual to see either the user or the testing/QA professionals exercise
the prototype thoroughly enough to uncover the more subtle conflict errors.
These have to be identified through careful manual review and analysis of the
complete set of requirements, supported by the skills of the development team
and whatever automated tools are appropriate.

Requirements Ranked for Importance and Stability

In a high-quality set, the developers and the customers and other stakeholders
have ranked the individual requirements by importance to the customer and in
terms of stability (IEEE 830-1993, §4.3.5, 1994). This ranking process is
particularly important for scope management. If resources are insufficient to
implement all of the requirements within the allotted schedule and budget, it's
extremely helpful to know which requirements are volatile and which
requirements the user deems critical.

Indeed, one can assign additional attributes to each requirement, just as we
recommended for requirements described in the Vision document: cost, risk,
difficulty, and other descriptors could be enormously useful. However, much of
this is likely to be based on an assessment of the implementation strategies. For
example, after looking at a requirement, a developer might say, "Hmmm, I think
it's going to be really tough to implement this requirement, and I'm not even sure
we know how to do it at all." Although that might be a valuable piece of
information for managing the scope and prioritizing decisions, it can usually be
done at the higher level of abstraction represented by the Vision document; for
reasons discussed earlier, such items typically should not be included in the
requirement set.

But the attributes of "importance" and "stability" are more likely to be associated
with the user's perception of the world. The user might say, "This requirement is
not very stable, because we're expecting a change next month in the government
regulations that affect this requirement. On the other hand, it's very important to
us because it affects our ability to operate in a competitive fashion." Even before
the development team begins developing strategies based on technology
opportunities, it would be helpful to have a ranking that shows, for example, two
columns of requirements:

Requirements Ranked by Importance Requirements Ranked by Stability
SR103 SR172
SR172 SR103
SR192 SR063
SR071 SR071
SR063 SR192

Given this information, and if all other factors were equal, a prudent software
development manager would be prepared to invest a proportionately higher

percentage of resources in SR103 and SR172; the manager would be more likely
to deemphasize SR071, since it has been judged relatively unimportant and
relatively volatile in nature.

Verifiable Requirement

A requirement is verifiable in the aggregate if and only if each of the component
requirements contained within it is verifiable. And the requirements can be
deemed verifiable if and only if there exists a finite, cost-effective process with
which a person or a machine can determine that the developed software system
does indeed meet the requirement (IEEE 830-1993, §4.3.6, 1994). Heavy stuff.
In short, we realize, as a practical matter, that it is necessary to define
requirements so that we can later test them and determine whether they were
achieved.

It's unlikely that we can provide a rigorous scientific proof of the verifiability of
each requirement, but that's not usually necessary. It's the responsibility of the
testing and quality assurance personnel to create the appropriate test cases and
test procedures to carry out the verification once the software has been
developed. Of course, they need reasonably well-defined and reasonably
unambiguous requirements in order to be able to do so. It's common to see a
review meeting in which everyone in the meeting turns to the testing specialist
and asks, "Are you confident that you can create a test script to verify that this
requirement has been met?"

The following are examples of requirements and typical reactions from the
developers and/or the testing professionals in terms of the likely verifiability:

• "The system shall support up to 1,000 simultaneous users." "Well, that
depends on what those users are capable of doing when they're logged in.
If the users have 'open-ended' capabilities and could, in theory, enter a
transaction that causes the application program to scan sequentially
through every record in the database, it will be very difficult to verify that
the system can handle a 1,000-user load; there's a tiny but nonzero
probability that all 1,000 users will decide to enter such a transaction at
the same time. But if the users are constrained in the kinds of transactions
they can enter, and if we can determine a typical, modestly resource-
expensive transaction they can enter, we can verify that the requirement
has been met to within a reasonable degree of certainty, although we'll
have to use our load-testing tool to simulate 1,000 active terminals."

• "The system shall respond to an arbitrary query in 500 milliseconds." "Well,
that depends on what we mean by 'arbitrary.' If the range of possible
queries is finite and if we can identify the most complex query, we can
verify the system's behavior."

• "The time display shall have a pleasing shape for the digits." "Don't even
bother with this one. Beauty is in the eye of the beholder."

• "The system shall be user friendly." "This is even worse than `pleasing
shape.' But without some very carefully defined terms and details, `user
friendly' is just an invitation for arguments."

• "The system shall export view data in comma-separated format." "Well, I'd
like to pin down the details; for example, what happens if the `view data'
is null? But in principle, yes, we can verify that the system does produce
the desired behavior in this area."

Verification and validation are important issues in developing high-quality
software. We will return to this topic again later, in Team Skill 6.

Modifiable Requirements Set

A requirement set is modifiable if and only if its structure and style are such that
any changes to the requirements can be made easily, completely, and
consistently, while retaining the existing structure and style of the set (IEEE 830-
1993, §4.3.7, 1994). This requires that the containing package have minimum
redundancy and that it be well organized, with a proper table of contents, index,
and cross-referencing capabilities. It may or may not imply that the package is
maintained and supported by an automated tool, although that usually becomes a
practical necessity in large systems, which may have thousands requirements.

Requirements will be modified, whether anyone likes it or not; the alternative is a
"frozen" requirements package, which is tantamount to a nonexistent package
and a commensurately failed project. But if the requirement (or the containing
package) is nonmodifiable, then it effectively becomes non-existent after a few
weeks or months, because the project team gradually abandons its effort to
change the requirements and keep them up to date.

Every software manager likes to think that his or her requirements set is
modifiable, and every tool vendor brags that one of its primary virtues is that its
product does promote modifiability. All of this sounds great, but the proof is in
the pudding: you have to do it in order to see whether it works. And you have to
do it on the same "scale" of size and complexity that you'll be encountering in the
project itself.

Traceable Requirements

A requirement is traceable if and only if the origin of each of its component
requirements is clear, and if there is a mechanism that makes it feasible to refer
to that requirement in future development efforts (IEEE 830-1993, §4.3.8, 1994).
As a practical matter, this usually means that the requirements are identified with
unique numbers or labels. Sometimes, it means that you may wish to use a
keyword, such as "shall," to articulate a requirement, to distinguish it from other
nonessential statements—comments, introductory statements, and so on—that
may also exist in the requirement set. With requirements tool automation, this
identification requirement can be handled automatically by the system.

Some components will need to be traced to other components within the same
project and possibly within the same package. For example, some components
will be dependent on other components; if one is changed, the other will be
affected. And some requirements statements may be further described by "sub"
or "child" requirements, for which traceability is an obvious concern. But in
addition, we need the ability to trace backward from the current stages to the
previous stages of definition or development, particularly the product Vision
document discussed in Team Skill 3. In Table 23-1, for example, we saw that
SR63.1, SR63.2, and SR63.3 could all be traced to Feature 63 in the product
requirements (Vision) document. That's obviously essential in case we need to
add or delete features; it's also essential if we run into trouble with the
requirements and need to go back to the user to renegotiate the budget or
schedule for the affected feature. We also need forward traceability from the
current requirement to all of its subordinate requirements, regardless of the
package containers—design documents, flowcharts, code, test cases, and so on—
spawned by the current container.

Traceability is a Big Deal. We have found that developers can use traceability in a
number of ways to better understand their project and to provide a higher degree
of assurance that all requirements are fulfilled by the implementation. For
example, we have used full traceability to connect all of the elements of a medical
project, including Vision document elements, SRS elements, testing elements,
coding elements, and the project review elements that occurred throughout the
life of the project. By having all of these elements interconnected, the project
developers were much better equipped to handle interactions among project
elements.

Traceability also allows the project team to handle "what-if" questions, such as
"What if we change this requirement right here? Does that interact with the
software development and, if so, which elements? Does that force us to revise
the test plans and, if so, which ones?"

In that same project, traceability was used to create the trace matrices that were
required by the FDA to ensure that the product complied with its own
requirements. Trace matrices are an invaluable way to "check off" the
development activities and to make sure you are doing everything needed for the
development (and not doing things that don't need doing). We will conduct a
major examination of traceability in Team Skill 6.

Understandable Requirements

Finally, a requirement set is understandable if both the user and the developer
communities are able to fully comprehend the individual requirements and the
aggregate functionality implied by the set. The documents described in earlier
chapters of this book tend to focus on general descriptions and features of the
system and are usually not as difficult to understand. But as we refine the system
definition, that is, produce detailed requirements, things become more specific
and more detailed, and there is a temptation to begin using more technical terms.
Thus, the people who write the requirements must understand the vocabulary,
the buzzwords, and the cultures of both audiences. In addition, it's important that
the users of the requirement set be able to understand the behavior of the
system in the whole. This can also be done by providing storyboards, scenarios,
or illustrative use cases that show how the system is intended to be used in its
operating environment.

Quality Measures for the Use-Case Model

Note

In this section of the chapter, we discuss a broad spectrum of use case matters.
Sometimes, the checklist item will refer to specific use case issues that were not
discussed in this book because they were not of major importance to the
requirements management points being made. If you wish to follow up on these
issues, please consult an appropriate use case reference. Two books you might
find useful are Booch (1999) and Jacobson, Booch, and Rumbaugh (1999).

• Have you found all of the use cases? Those you have found must be able
to perform all system behaviors; if not, some use cases are missing.

• Do the use cases meet all of the functional requirements? If you have
intentionally left any requirements to be dealt with in the object models,

such as nonfunctional requirements, you must mention this somewhere. If
a requirement of this type concerns a specific use case, state this in the
Special Requirements section of the use case.

• Does the use-case model contain any superfluous behavior; that is, does it
present more functions than were called for in the requirements?

• Does the model need all of the identified include-, extend-, and
generalization-relationships? If not, they might be redundant, and you
should probably remove them.

• Do the relationships in the model depend on one another? It is essential
that they do not, so you must check this point.

• Is the division of the model into use-case packages appropriate? Does the
packaging make the model more simple and intuitive to understand and to
maintain?

• By studying the use-case model, can you form a clear idea of the system's
functions and how they are related?

• Does the Introduction section of the use-case model contain all of the
necessary information?

• Does the Survey Description of the use-case model contain all of the
necessary information; for example, does it describe the most common
sequences of use cases?

Use-Case Specifications

• Is each concrete use case involved with at least one actor? If not,
something is wrong; a use case that does not interact with an actor is
superfluous, and you should remove it.

• Is each use case independent of the others? If two use cases are always
activated in the same sequence, you should probably merge them into one
use case.

• Do any use cases have very similar behaviors or flows of events? If so—
and if you wish their behavior to be similar in the future—you should
merge them into a single use case. This makes it easier to introduce future
changes. Note: You must involve the users if you decide to merge use
cases, because the users who interact with the new, merged use case will
probably be affected.

• Has part of the flow of events already been modeled as another use case?
If so, you can have the new use case use the old one.

• Is part of the flow of events already part of another use case? If so, you
should extract this subflow and have it be used by the use cases in
question. Note: You must involve the users if you decide to "reuse" the
subflow, because the users of the existing use case will probably be
affected.

• Should the flow of events of one use case be inserted into the flow of
events of another? If so, you model this with an extend-relationship to the
other use case. (We didn't discuss this, as it wasn't important to the
overall concepts of use cases.)

• Do the use cases have unique, intuitive, and explanatory names so that
they cannot be mixed up at a later stage? If not, you should change their
names.

• Do customers and users alike understand the names and descriptions of
the use cases? Each use-case name must describe the behavior the use
case supports.

• Does the use case meet all of the requirements that obviously govern its
performance? You may want to include any nonfunctional requirements to
be handled in other portions of your Modern SRS Package.

• Does the communication sequence between actor and use case conform to
the user's expectations?

• Is it clear how and when the use case's flow of events starts and ends?
• Behavior might exist that is activated only when a certain condition is not

met. Is there a description of what will happen if a given condition is not
met?

• Are any use cases overly complex? If you want your use-case model to be
easy to understand, you might have to split up complex use cases.

• Does a use case contain disparate flows of events? If so, it is best to
divide it into two or more separate use cases. A use case that contains
disparate flows of events will be very difficult to understand and to
maintain.

• Is the subflow in a use case modeled accurately?
• Is it clear who wishes to perform a use case? Is the purpose of the use

case also clear?
• Are the actor interactions and exchanged information clear?
• Does the brief description give a true picture of the use case?

Use-Case Actors

• Have you found all of the actors? That is, have you accounted for and
modeled all of the roles in the system's environment? Although you should
check this, you cannot be sure until you have found and described all of
the use cases.

• Is each actor involved with at least one use case? Remove any actors not
mentioned in the use case descriptions or without communicates-
associations with a use case. However, an actor mentioned in a use-case
description is likely to have a communicates-association with that
particular use case.

• Can you name at least two people who would be able to perform as a
particular actor? If not, check to see whether the role the actor models is
part of another role. If so, you should merge the actor with another actor.

• Do any actors play similar roles in relation to the system? If so, you should
merge them into a single actor. The communicates-associations and use-
case descriptions show how the actors and the system interrelate.

• Do two actors play the same role in relation to a use case? If so, you
should use actor-generalizations to model their shared behavior.

• Will a particular actor use the system in several completely different ways,
or does the actor have several completely different purposes for using the
use case? If so, you should probably have more than one actor.

• Do the actors have intuitive and descriptive names? Can both users and
customers understand the names? It is important that actor names
correspond to their roles. If not, change them.

Quality Measures of the Modern SRS Package

Over and above the individual quality measures, some other quality features are
specific to the containing package. We will now turn to the measures that help to
ensure that the package itself is of the highest understandability and quality.

One of the most frustrating things about documentation is finding something.
How many times have you said, "I know the fail-safe requirement is in here
somewhere," but you just can't find it? All too often, we assume that simply
getting the requirement captured is the entire game. It's not.

We have found that a Modern SRS Package not only organizes and captures the
requirements but also is easy to use. A great SRS contains the following simple
features.

A Good Table of Contents

An absolutely mandatory feature of a good SRS is a good table of contents (TOC).
We have found that a TOC provides more benefits than you might first imagine.
For example, the prospect of a good TOC nudges the author to use helpful
headings that will subsequently appear in the SRS TOC. Look at the TOC in this
book and note that the TOC heading themselves can "tell a story" and guide the
reader. In effect, the TOC is like a condensed version of the actual package.

With today's tools, there is no excuse for not having a TOC. Creation of TOCs is
easy and automatic and allows the author to select the level of detail and
formatting to be used in the TOC. We believe that TOCs that record the third- or
fourth-level headings are usually an appropriate level of detail for a Modern SRS
Package. Also, adequate use of white space to break the TOC into major elements
is always useful.

One frequently encountered problem is a TOC that has not been updated to
reflect the current package. You should ensure that part of the SRS publication
process always includes an update of the TOC to ensure the pagination markers
are correct. A TOC is rendered useless if it is not updated. This has the
unfortunate aspect of making the reader wonder about other things that may be
wrong with the SRS. It's difficult enough to do the project without such pointless
distractions.

Another problem that may arise is that TOCs are difficult to prepare if you need
to go outside the document being processed. For example, suppose that you are
preparing an SRS package containing several Word documents, several use-case
specifications prepared by another tool, and a few Excel charts tossed in. You are
not likely to find a good tool that can examine all of this input simultaneously and
prepare a good TOC. In such cases, you may want to consider a multivolume TOC
that uses the top level to indicate major groupings, such as Word documents,
use-case model files, and Excel spreadsheets. Then, you can use the individual
TOC tools to prepare file-oriented TOCs.

A Good Index

Indexes should be an important element of every SRS. Unlike TOCs, the creation
of an index is more difficult because the authors must identify key elements for
indexing. Of course, once they are identified, creation of the index is
straightforward.

Part of the indexing problem stems from the varying views that the project team
maintains. For example, the requirements for the medical device's fail-safe error
recovery may be viewed as a "fail-safe" element by some team members and as
an "error recovery" element by other members. If both views are valid,
requirements that deal with this element should be indexed under both terms.

Frankly, indexing is work, but it is usually required only one time for each
requirement added to the SRS. Once added, the index elements ride along with
the package and become a useful part of the understanding of the project.

You should use the indexing features to move beyond simple TOC-like access to
the package. That is, it serves no purpose to prepare an index whose only
elements already appear in the TOC. Instead, you should use the indexing
features to point the reader to concepts rather than to titles. As with TOCs, the
index should always be updated as part of the publication process to ensure a
consistent package.

A Revision History

It's very frustrating to discover that you have been looking at an older, obsolete
version of an SRS. Every SRS should include a revision history page that captures
the relevant changes to each version of the elements within the package. As a
minimum, the revision history page should include

• The revision number or code for each change to the published information
• The date of each revision to the published information
• A short summary of the revisions made to the published information
• The name of the person responsible for the changes to the published

information

You might also find it helpful to provide revision markers on each changed
element within the SRS. Typically, the use of revision bars in the margins is very
helpful when readers are trying to find changes.

Most modern documentation and requirements tools provide powerful revision
control and automated version history. Use them!

A note of caution: Do not install revision control too early. (See Chapter 34,
Managing Change.) Otherwise, while you are in the heat of battle over a set of
revisions, you may wash over a specific requirement several times before you
finally "get it right" prior to publication. There is no advantage in recording all of
the twists and turns; don't put the package under revision control until you reach
a reasonably stable point in your software development process. On the other
hand, don't wait too long, or you will be overrun by uncontrolled development!

A Glossary

As the nature of each application domain is unique and, typically, quite technical,
projects tend to develop a special language, or at least a shorthand, over time.
The shorthand typically includes mnemonics, such as "SRS": avoid wherever
possible, and eschew term usages that are meaningful only in the context of the
situation. A good SRS has a glossary of such terms to help all users understand
the language of the specific application domain. You should think in terms of
including and defining all project-specific terms, all acronyms, all abbreviations,
and any special phrases.

Chapter 28. Technical Methods for
Specifying Requirements

Key Points

• Technical methods for specifying requirements are
appropriate when the requirement description is too
complex for natural language or if you cannot afford to
have the specification misunderstood.

• Technical methods include pseudocode, finite state
machines, decision trees, activity diagrams, entity-
relationship models, object-oriented analysis, and
structured analysis.

Throughout this book, we have assumed that most requirements will be written in
the team's natural language, be it in the form of a traditional statement or via the
use-case method. We also suggest that requirements be augmented with
diagrams, tables, or charts or other techniques to help clarify the meaning of a
user requirement. But sometimes the ambiguity of natural language is simply not
tolerable, particularly when the requirements deal with life-and-death issues or
when the erroneous behavior of a system could have extreme financial or legal
consequences. If the description of the requirement is too complex for a natural
language and if you cannot afford to have the specification misunderstood, you
should consider writing that portion of the requirements with a "technical
methods" approach.

You can choose from a variety of technical specification methods:

• Pseudocode
• Finite state machines
• Decision trees
• Activity diagrams (flowcharts)
• Entity relationship models
• Object-oriented analysis
• Structured analysis

We won't attempt to teach you any of these techniques in detail, as each is
worthy of an entire book of its own. Here, we will simply provide some "overview"
training.

Technical methods should be used sparingly and consistently in a Modern SRS
Package, and common sense should guide the decision as to which formal
technique will be used. If you're building a nuclear reactor control system,
perhaps every aspect of the system is critical; in most systems, however, it's
unlikely that more than 10 percent of the requirements will require this degree of
formality.

If possible, only one of these technical methods should be used for all
requirements within the system. This will simplify the nontechnical reviewers'
task of reading and understanding the package elements. And if all of the
systems developed by an organization fall into one application domain, such as
telephone switching systems, perhaps the same technical method can be used for
all of the systems. But in most organizations, it's unrealistic to mandate a single
technique for all requirements in all systems; the requirements writers need to
pick the approach that best suits the situation.

Pseudocode

As the term implies, pseudocode is a "quasi" programming language, an attempt
to combine the informality of natural language with the strict syntax and control
structures of a programming language. In the extreme form, pseudocode consists
of combinations of

• Imperative sentences with a single verb and a single object
• A limited set, typically not more than 40–50, of "action-oriented" verbs

from which the sentences must be constructed
• Decisions represented with a formal IF-ELSE-ENDIF structure
• Iterative activities represented with DO-WHILE or FOR-NEXT structures

Figure 28-1 shows an example of a pseudocode specification of an algorithm for
calculating deferred service-revenue earned within a given month in a business
application. Note that the text of the pseudocode is indented, in an outline-style
format, in order to show "blocks" of logic. The combination of the syntax
restrictions and the format and the layout of the text greatly reduces the
ambiguity of what could otherwise be a very difficult and error-prone requirement.
(It certainly was before we wrote the pseudocode!) At the same time, it should be
possible for a nonprogramming person (Rhonda, our bookkeeper) to read and to
understand the requirement in the form shown in Figure 28-1. You don't have to
be a rocket scientist to understand pseudocode, and you don't have to know C++
or Java.

Figure 28-1 Pseudocode example

Finite State Machines

In some cases, it's convenient to regard the system or a discrete subset of the
system as a "hypothetical machine that can be in only one of a given number of
`states' at any specific time" (Davis 1993). In response to an input, such as data
entry from the user or an input from an external device, the machine changes its
state and then generates an output or carries out an action. Both the output and
the next state can be determined solely on the basis of understanding the current
state and the event that caused the transition. In that way, a system's behavior
can be said to be deterministic; we can mathematically determine every possible
state and, therefore, the outputs of the system, based on any set of inputs
provided.

Hardware designers have used finite state machines (FSMs) for decades, and a
vast body of literature describes the creation and analysis of such machines.
Indeed, the mathematical nature of the FSM notation lends itself to formal and
rigorous analysis, so that the problems of consistency, completeness, and
ambiguity described earlier in this Team Skill can be largely mitigated, using this
technique.

A popular notation for FSMs is the state-transition diagram shown in Figure 28-2.
In this notation, the boxes represent the state the device is in, and the arrows
represent actions that transition the device to alternative states. Figure 28-2
illustrates state transitions for the light box described in Chapter 26. In that
example, the natural-language expression "the light will flash every 1 second"
was somewhat ambiguous. The state-transition diagram in Figure 28-2 is not
ambiguous, as it illustrates that duty cycle B was indeed the right choice. If a
bulb burns out, the device alternates between attempting to light the even light
and attempting to light the odd light, each for a period of one second.

Figure 28-2 State transition diagram

Here's an interesting exercise to try. Consider using the FSM technique to restate
the HOLIS Control Light use case. You should immediately notice that the Dim
alternative flow in the use case lends itself nicely to the FSM style of
representation.

An even more precise form of representing a finite state machine is the state-
transition matrix, which is represented as a table, or matrix, that shows every
possible state the device can be in, the output of the system for each state, and
the effect of every possible stimulus or event on every possible state. This
ensures a higher degree of specificity because every state and the effect of every
possible event must be represented in the table. For example, Table 28-1 defines
the behavior of our light box in the form of a state-transition matrix.

With this technique, we can resolve additional ambiguities that may have been
present in our attempt to understand the behavior of the device.

• What happens if the user presses the on switch and the device is already
on? Answer: Nothing.

• What happens if the both bulbs are burned out? Answer: The device
powers itself off.

FSMs are very popular for certain categories of systems programming
applications, such as message-switching systems, operating systems, and
process control systems. FSMs also are an elegant way of describing the
interaction between an external human user and a system—consider, for example,
the interaction between a bank customer and an ATM machine when the
customer wants to withdraw money. However, FSMs can become unwieldy,
particularly if we need to represent the system's behavior as a function of several
inputs. In such cases, the required system behavior is typically a function of all
current conditions and stimuli rather than the current stimulus or a history of
stimuli.

Table 28-1. State-transition matrix for on/off counting device
 Event

State On press Off press Count press Bulb burns out Every second Output
Off Even lit — — — — Both off
Even lit — Off Odd lit LO/Even lit — Even lit
Odd lit — Off Even lit LO/Odd lit — Odd lit
Light out/Even lit — Off — Off LO/Odd lit Even lit
Light out/Odd lit — Off — Off LO/Even lit Odd lit

Decision Trees and Decision Tables

It's common to see a requirement that deals with a combination of inputs;
different combinations of those inputs lead to different behaviors or outputs.
Suppose, for example, that we have a system with five inputs—A, B, C, D, and
E—and we see a requirement that starts with a pseudocode-like statement: "If A
is true, then if B and C are also true, generate output X, unless E is true, in which
case the required output is Y." The combination of IF-THEN-ELSE clauses quickly
becomes tangled, especially as in this example, it involves nested IFs. Typically,
nontechnical users are not sure that they understand any of it, and nobody is
sure whether all of the possible combinations and permutations of A, B, C, D, and
E have been covered.

The solution, in this case, is to enumerate all of the combinations of inputs and to
describe each one explicitly in a table. In our example, if the only permissible
values of the inputs are "true" and "false," we have 25, or 32, combinations.
These can be represented in a table containing 5 rows—one for each input
variable—and 32 columns.

Graphical Decision Trees

Alternatively, a decision tree can be drawn to portray the information. We used
this pictorial technique in Chapter 15 when we had to understand what

kind of a prototype to build. Figure 28-3 shows a decision tree used to describe
the HOLIS emergency sequence.

Figure 28-3 Graphical decision tree

Activity Diagrams

Flowcharts and their new incarnation, the UML activity diagram, have the
advantage of reasonable familiarity: Even people with no computer-related
training or background know what a flowchart is. For example, a local newspaper
recently had a flowchart describing an algorithm by which the brain processes the
decisions involved in purchasing a SAAB convertible. For reasons that are pretty
clear, all paths through that particular flowchart ended up at the same activity:
"Buy the Saab." There must have been a logic error in there somewhere but we
couldn't find it. But we sure are enjoying the car!

Figure 28-4 shows a typical activity diagram in UML notation. Although the same
information could have been presented in pseudocode form, the UML notation
provides a visual representation that may be easier to understand.

Figure 28-4 Activity diagram

The problem with activity diagrams, as the technical computer community has
learned over the past 30 years, is that they are a nuisance to keep up to date. Of
course, it can be a nuisance to keep any visual representation of a requirement
up to date without automated tools; nobody wants to redraw a state-transition
diagram or a decision tree, either.

Entity-Relationship Models

If the requirements within a set involve a description of the structure and
relationships among data within the system, it's often convenient to represent
that information in an entity-relationship diagram (ERD). Figure 28-5 shows a
typical ERD.

Figure 28-5 Entity-relationship diagram

Note that the ERD provides a high-level "architectural" view of the data
represented by customers, invoices, packing lists, and so on; it would be further
augmented with appropriate details about the required information to describe a
customer. The ERD does correctly focus on the external behaviors of the system
and allows us to define such questions as "Can there be more than one billing
address per invoice?" Answer: no.

Although an ERD is a powerful modeling technique, it has the potential
disadvantage of being difficult for a nontechnical reader to understand. As you
can see in Figure 28-5, the lines connecting "customer" to "order" and "order" to
"invoice" are annotated with circles and "crows-feet" indicators. The obvious
question is: What does all of this mean? Attempting to answer such a question
within this book would be a major digression, which we have decided to avoid,
but avoiding the question in the review of a requirements set is likely to mean
that some users simply won't understand what's going on. The alternatives are to
send the appropriate users to a 2-day training course in ERD notation, which they
may or may not appreciate, or to use the notation as a "technical" form of
documentation within the development group.

Object-Oriented Modeling

If the requirements that must be refined involve a description of the structure
and relationships among entities within the system—for example, paycheck stubs,
employees, payroll clerks and the like—it may be beneficial to use object-oriented
models to more fully describe the behavior of a system. With the popularity of OO
and the rapid adoption of the UML, these diagrams are now starting to turn up in
specifications and, even more appropriately, in the implementation models used
to realize the functionality of the system.

There is some convenience to this in that the adoption of the UML standard will
provide everyone with a common understanding of what these representations
mean and will, therefore, reduce ambiguity by having everyone "speak the same
language," albeit a technical one.

In Figure 28-6, for example, the "object" known as "Person" would be described
in terms of the data-oriented "attributes" it contains, such as name and title, and

also in terms of the "services" it can provide, such as add a new person, delete a
person, and search for a particular instance of a person.

Figure 28-6 Object-oriented model

Data Flow Diagrams

Our discussion of requirements earlier in this chapter implied that we were
dealing with "atomic-level" requirements. Although this is what we find in a
typical document, it's often useful to provide a visual representation that shows
the structure and the organization of those atomic-level requirements and also
the input/output relationships between them. A popular notation for presenting
this kind of information is the data flow diagram (see Figure 28-7).

Figure 28-7 Data flow diagram

Data flow diagram (DFD) models run the same risk as ERD models, although it's
usually somewhat easier for a nontechnical reader to understand the meaning of
a DFD without any formal training. Indeed, some organizations have had great
success with DFDs as the basis for communication between nontechnical users
and technical developers; other organizations have found, though, that their
users balk at any such "technical" notation. If the DFD can be used, each of the
"bubbles" in Figure 28-7 can be further decomposed into lower-level DFDs; thus,
the requirements for bubble 5 ("purchase supplies") in Figure 28-7 could be
further elaborated with a lower-level diagram that shows the appropriate details.
This decomposition process continues until the bubbles are truly "atomic," at
which point the requirements associated with that bubble could be described with
the pseudocode, FSM, decision tree, or flowchart techniques discussed earlier. (In
fact, there is a larger danger in using DFDs in today's world; the OO folks will
think that you are a "functionally decomposing data modeler" and thereby
fossilized matter and will ignore everything further you have to say on any
subject.)

Maintenance of Specifications

From a requirements perspective, we use these technical methods only sparingly,
and then only to illustrate the behavior of the system. This reduces the
maintenance headache considerably. In addition, the newest generation of
software development tools is starting to provide meaningful support for
roundtrip engineering, that is, the ability to keep the code automatically
synchronized with the representation in the model. As these tools mature, we'll
have the opportunity to see requirements change as decisions that affect the
external behavior of the system are made during the coding process.

A common maintenance problem occurs when the code or the specifications are
revised and the related technical specifications are not revised in lockstep. Indeed,
one body of theory states that "the code is the specification." We are not
prepared to state that it is an absolute rule that the technical specifications must
be updated as the project evolves. However, many pitfalls lurk for those who
accidentally refer to outdated documentation. We've been guilty of this ourselves
during the writing of this book, when we have said that "we don't need to update
this drawing" and then later used an outdated version by accident.

With regard to the matter of updating, let common sense prevail. Update as
appropriate, based on the critical nature of the information. If it's not vital, you
might find it useful to not update it. One technique we have used is to stamp
outdated documents with an "Outdated" label when we have made a conscious
decision to let the documents lapse. That way, we at least know we are not
looking at the most recent information.

We view stale models as the lesser of two evils. Having a stale model is far better
than having no specification model at all!

Case Study

All of these techniques were considered by the HOLIS project team as they
prepared the HOLIS SRS Package. The first incarnation of the package is shown
in the HOLIS artifacts found in Appendix A.

Team Skill 5 Summary

In Team Skill 5, we learned that requirements are the key communication
technique to completely and concisely capture the user's needs in such a way that
the developer can build an application to meet those needs. In addition,
requirements need to have sufficient specificity so that we can tell when they
have been met. We needn't be alarmed by this. Often, it is our team—after all,
we are closest to the project—that can provide this specificity; this is one of our
opportunities to make sure that the right system gets defined.

Various ways of organizing and documenting these requirements exist; we
focused on what we called a Modern SRS Package, a logical construct that allows
us to document requirements in use cases, documents, database forms, or other
requirements repositories. Although we made some suggestions about how to
organize this package, we don't really care what form it takes, so long as it
contains the right things.

All development should flow from the requirements specified in the Modern SRS
Package, and all specifications in the package should be reflected in the
development activities. Since these are the governing elements, it follows that all
activities, such as regulatory constraints, should reflect the package and vice
versa. The Modern SRS Package is a living entity that should be reviewed and
updated throughout the lifetime of the project. The package should specify what
functions are to be accomplished, not how they are to be accomplished. The
Modern SRS Package should be used to specify functional requirements,
nonfunctional requirements, and design constraints.

We also provided a set of quality measures you can use to assess the quality of
your package and the various elements contained therein. Where necessary, the

requirements documentation may be supplemented by one or more formal, or
more structured, methods of specification.

The Modern SRS Package provides the detail you need to proceed to implement,
or build, the right system. We'll discuss this part of the project next, in Team Skill
6, Building the Right System.

Part VII: Team Skill 6: Building the Right
System

• Chapter 29 Building the Right System Right: Overview
• Chapter 30 From Requirements to Implementation
• Chapter 31 Using Traceability to Support Verification
• Chapter 32 Validating the System
• Chapter 33 Using ROI to Determine the V&V Effort
• Chapter 34 Managing Change

Team Skill 5 led us through some useful techniques for collecting, organizing, and
documenting the requirements for your development project. We also considered
various techniques for specifying the needs of the project, nothing that the single
most important success factor is to collect all of the requirements for the project
and to help the stakeholders understand and agree on the requirements.

In this Team Skill, we'll focus on moving from the definition of a solution system
to finally building a system that meets stakeholder needs. This next step is the
most difficult to date. To help you accomplish this, in the next few chapters we
will examine a method to move from the specifications (via use cases) to
designing and implementing the system.

Many projects quickly evolve into a flurry of development activities with lots of
favorable progress being made. However, at the end of the day, it turned out that
the mighty dust cloud of development obscured the fact that the client did not get
the system they wanted. In this Team Skill, we also want to look beyond the
development activities and ask, "How do you know you are building the right
system?"

Two strong determinants that help you answer that question are verification and
validation. We will look more closely at how these two techniques can be
integrated into your implementation activities so as to sharpen your development
focus onto those things that really matter to the project.

And of course, no development is immune to changes in the project as time
passes. Accordingly, this Team Skill will investigate the nature of change and will
discuss ways of embracing change and controlling it so that your project does not
run out of control.

Chapter 29. Building the Right System
Right: Overview

Key Points

• Building the right system right depends on continually
confirming that the development is on track and that
the results are correct, as well as being able to deal
with change during development.

• Verification is the process of ensuring that the
development activities continually conform to the
customer's needs.

• Validation demonstrates that the product conforms to
its requirements and gains customer acceptance of the
final result.

• Since change happens, plan for it, and know how to
manage it.

As we have stressed throughout this book, it is vital that everyone on the team
understands the project requirements. However, it's not practical to wait around
until absolutely everyone is totally with the program. That's why we have
described iterative development techniques that allow you to progressively refine
your understanding as you go along.

But even then, we have seen projects that have done a good job up to this point
but still ruin those efforts by diving into disorganized development activities. This
is yet another potential project failure mode: when the team does understand the
requirements but is still not able to build a system that meets those requirements.
In this chapter, we'll focus on a few more key concepts you can master to ensure
that you are building the right system right.

• Continually confirm that the development is on track.
• Confirm that the development results are correct.
• Learn how to deal with change during development.

Continually Confirm that the Development Is on Track

As the design and implementation evolve, the team must be able to continually
reassure itself that the project hasn't inadvertently "run off the rails." That is, the
team needs to be able to continually verify that the development results conform
to the customer's needs.

We'll use the term verification to describe an ongoing process that will help
ensure that every step of the development is correct, meets the needs of the next
activity, and is not superfluous to the needed activities. Unfortunately, there is a
lot of confusion in the industry as to just exactly what verification is. So, we'll
discuss this important and powerful concept in more detail.

Principles of Software Verification

The IEEE (1994) defines verification as

the process of evaluating a system or component to determine whether the
products of a given phase satisfy the conditions imposed at the start of that
phase (IEEE 1012–1986, §2, 1994).

That is, verification is largely an analysis-based activity that requires you to
confirm that each stage of the development—for example, a software
implementation of one or more requirements—conforms to the requirements
defined in the previous stage.

At a minimum, we will want to verify that

• The features we expressed really meet the needs
• The use cases and requirements we derive from the features truly support

the features
• The use cases are implemented in the design
• The design supports the functional and nonfunctional aspects of the

system's behavior
• The code really does conform to the design and the design objectives
• Our tests provide full coverage for the requirements and use cases that

have been developed.

So, how do we know what the whole project is? We need some kind of method to
make sure that we have verified everything that needs verifying—and no more
than that.

In order to do this, you'll need a verification plan, and you'll benefit from some
tools to help execute this plan. But most important, the team will need to
understand what verification is, and you'll need a commitment to the verification
activities. Verification is not just an activity handled by the project's QA team,
which may nonetheless be of great assistance during this process.

One method for continually checking up on your verification activities is
traceability. We've made passing mention of traceability in Team Skill 5, and
Chapter 31 will discuss how we can use traceability to help us organize our
verification activities.

Regardless of how we organize it, we must remember that the essence of
verification is to reassure ourselves that the step we are working on has the
proper antecedents and that it is performed in a consistent and reliable way.
Furthermore, we must verify that every activity that we decide to do is needed
and that no necessary steps are omitted.

We gain reassurance of these issues largely by effective software processes and
by analysis. For example, we can examine the requirements and reassure
ourselves that they correctly, completely, and concisely express the higher-level
user needs. We can examine the design to reassure ourselves that it is driven by
the requirements and use cases, that it is complete, and that it has no extra
elements. In some cases, the analysis boils down to inspections and reviews. In
other cases, we can use our models and tool automation to assist with checking
completeness, semantics, and so on. Remember, we are not trying to ensure that
things are working; we'll get to that later. Instead, we are focused on the issue of
making sure that we've done the things we need to do and that they follow a
logical development progression.

OK, so much for the digression. Now let's get back to discussing some
implications of verification.

The Cost of Verification

The dark side of the verification issue is that we can go "verification happy" and
spend time in verification activities that do not give us a satisfactory payback. So,
we need some way of computing an economic "return on investment" (ROI) for
our verification activities.

We will need to have an approach to help us make the right investments in
checking our activities. We don't want to overdo the checking, and we don't want
to skimp on crucial checking aspects. Chapter 33 considers an overview of the
techniques of risk assessment and hazard analysis and offers insights as to how
these techniques can be used to get the most out of your development dollars
during system review activities.

The team must be able to design and to implement a system that conforms to the
requirements. That is, the team must be able to verify that the implementation
plans conform to the project needs.

But the previous point begs a significant question: How do we get from
requirements to design to implementation? After all, you don't just hold the
requirements up to a computer and expect a design and implementation to occur!
In Chapter 30, we will examine ways in which you can move from requirements
to design, and we'll provide an overview of how you can use artifacts of the
requirements process to drive the design and implementation of your system.

Verification at All Levels

You can apply the verification throughout the lifecycle of the project; the
technique is not confined to any particular phase. You can and should verify
requirements elements, design elements, implementation elements, testing
elements, and any other elements that are deemed important to your project,
based on your ROI analysis. In general, you will be invoking some amount of
verification activity at every stage of the project. You will be invoking verification
to ensure the correctness of the

• User needs to product features
• Product features to requirements
• Requirements to architecture
• Architecture to design model
• Design model to implementation
• Implementation to test planning

(Note: We'll cover testing as part of validation.)

Again, we stress that verification is extremely important in the design stages of
the project because errors introduced in the design stage are extremely costly to
remove after implementation is under way.

The Reason for Verification

We recommend that all projects incorporate a verification process that begins at
project inception and continues throughout the life of the project. If you are
working on a project whose software development process is regulated, you will
likely be forced to do verification, whether you want to or not. If you are

developing high-assurance systems—safety-critical systems or those for which
the cost of failure is unacceptably high—you will have to do verification, or you
will be taking unacceptable risks or perhaps imposing unacceptable risks on
others. But every project of any reasonable scope will benefit by the right amount
of verification.

Confirm that the Development Results Are Correct

As important milestones, such as executable iterations, are reached, it will be
important to validate the functionality that has been developed—that it works
correctly and conforms to the requirements. After all, there is little point in
achieving a particular milestone if the pieces don't work the way they are
supposed to, although even then we learn something.

A very special milestone is the completion of the project. In an effective process,
the completion milestone is simply one more step in ensuring that the system is
designed and implemented in compliance with the customer's needs. In addition,
at the completion milestone, we must show that the system really works as it is
supposed to.

There's one final and very important checkpoint in the development process. The
product has to be demonstrated to work within the customer's environment, and
the customer has to like the product enough to accept the result. The bottom line
is that the customer must be happy when the project is over, or at least not too
unhappy!

Validating the development work has two important aspects: (1) to show that the
product conforms to its requirements and (2) to focus on customer acceptance of
the final result. Although, in theory, these would be the same thing, in practice,
the final acceptance testing will often demonstrate how well we've handled
requirements or user need "drift" from the earlier project activities. Chapter 32
will discuss system validation from both of these perspectives, as well as the
varying opinions as to what validation means.

Just as for verification, we also need a way to make sure that our validation, or
testing, time and resource investments are cost effective. Once again, an ROI
review may prove beneficial.

Learn How to Cope with Change that Occurs during
the Development Process

Finally, of course, we have to consider the impact of changing requirements.
Have you ever worked on a system that never changed its requirements from day
1?

We must plan for change and know how to manage it. Chapter 34 will discuss the
potentially devastating impact of uncontrolled change and will offer an organized
way to recognize change, estimate its impact, and incorporate changes in an
orderly manner.

Looking Ahead

Let's begin by considering the issue of how you can move from the requirements
for the project into designing and implementing a solution to the problem at hand.
That is the focus of the next chapter.

Chapter 30. From Requirements to
Implementation

Key Points

• Many requirements map well from design to
implementation code.

• Other requirements have little correlation to design and
implementation; the form of the requirement differs
from the form of the design and implementation: the
problem of orthogonality.

• Object orientation and use cases can help alleviate the
problem of orthogonality.

• Use cases drive design by allowing all stakeholders to
examine the proposed system implementation against
a backdrop of system uses and requirements.

• Good system design is not necessarily optimized to
make it easy to see how the requirements are
implemented within the implementation.

We have been building complex software systems for over 40 years. And yes, our
industry has struggled and had its share of failures, as well as an extraordinary
degree of success: online trading, word processing, desktop productivity, life-
saving medical equipment, and safe power plants, to name a few.

It's clear that we have somehow managed to move from the world of
requirements to the world of design and implementation. We have implemented
many complex systems that conform to their requirements. However, when it
comes to building complex systems that require a high degree of design
assurance, it's not always been a pretty, or at least a rigorously scientific, matter.
The reason is that requirements do not lend themselves to being readily exposed
for inspection within the implementation. Proving that the requirement is fulfilled
in the code is a nontrivial effort.

Mapping Requirements to Design and Code

Fortunately, for a significant percentage of our requirements, it is a relatively
easy matter to design the software so that it is fairly straightforward to follow our
requirements into design and then into code. This also means that we can test a
significant portion of our code, using a requirement-to-module test, as there will
be a reasonable degree of correlation between the statement of a requirement
and the code that implements it. For example, it's probably fairly straightforward
to find, inspect, and validate the code that fulfills the requirement "Support up to
an eight-digit floating-point input parameter," or "Indicate compilation progress
to the user," as we can see in Figure 30-1. Depending on the type of system we

are building, this approach may work for a substantial portion of our code, so the
requirements to design to implementation process is not so difficult in these cases.

Figure 30-1 Requirements to design to implementation

The Orthogonality Problem

However, when it comes to such requirements as "The system shall handle up to
100,000 trades an hour" or "The system shall allow editing, based on security set
up by the system administrator," things get a little trickier. In these cases, there
is little correlation between the requirement and the design and implementation;
they are orthogonal, or nearly so. In other words, the form of our requirements
and the form of our design and implementation are different. There is no one-to-
one mapping to make implementation and validation easier, for a number of
reasons.

• Requirements speak of real-world items, such as engines and paychecks,
but code speaks of stacks, queues, and computation algorithms. The two
are different languages.

• Certain requirements, such as performance requirements, have little to do
with the logical structure of code but lots to do with the process structure,
or how various pieces of code interact, how fast a particular piece of code
runs, how often we get interrupted while in module A, and so on. When
you can't physically map to the logical structure, there is no place to
"point" your requirement to within the implementation.

• Other functional requirements require that a number of system element's
interact to achieve the functionality. Looking at a part is not the same as
looking at the whole, and the implementation of the requirement is
distributed throughout the code.

• Perhaps most important, good system design is often not driven by
optimizing the ease with which we can prove that a requirement is met but
instead by many more important issues. We may be optimizing for scarce
resources, using an architectural pattern that has been proven in other
applications but that is not the exact paradigm of our current application,
reusing code, or applying purchased components that bring their own
overhead and functional behaviors, and so on.

For those of us who have been building high-assurance systems and/or have
been forced by political or contractual considerations into being able to
demonstrate on paper the direct correlation between requirements and code, we
managed to get by. But, we admit, the formulation consisted of one part real-
and-deadly-serious-requirements traceability mechanisms and one part pixie dust.

Object Orientation

In many ways, this problem of orthogonality—lack of direct relationship between
requirements reflecting the problem space and the code we implemented—was
substantially improved with the advent of OO technology. In applying OO, we
tended to build code entities that were a better match to the problem domain,
and we discovered that an improved degree of robustness resulted. This was due
not only to the OO principles of abstraction, information hiding, inheritance, and
so on, but also to the fact that the real-world entities simply changed less often
than the transactions and the data we used to model our system after. Therefore,
our code changed less often, too. (For example, people still get paychecks today,
just like they did 40 years ago, although the form of delivery—electronic versus
paper—has changed dramatically.)

With OO, we did start to find engine objects and paycheck objects in the code,
and we used this to good advantage to decrease the degree of orthogonality in
requirements verification. We could look at the requirements for "paycheck stub"
and see whether the implied operations and attributes were supported in the
design model.

However, we must be careful because a purposeful attempt to provide a one-to-
one mapping from requirements to code can lead to a very non-OO architecture,
one that is functionally organized. The basic principles of OO drive the designer to
describe a small number of mechanisms that satisfy the key requirements of the
system, resulting in a set of classes that collaborate and yield behavior that's
bigger than the sum of its parts. This "bigger behavior" is intended to provide a
more robust, more extensible design that can deliver the current and, ideally,
future requirements in the aggregate, but it is not a one-to-one mapping from
requirements. Therefore, even with OO, some degree of orthogonality with
requirements will always remain.

The Use Case as a Requirement

As we mentioned earlier, the "itemized" nature of the requirements can further
compound the problem of orthogonality. Each requirement by itself may not
present a huge problem, but it makes it difficult to look at system behavior in the
aggregate to see whether it does all the right things. Also, how could we examine
the system to determine whether requirement 3 (display progress bar)
immediately followed requirement 7 (during compilation, the algorithm is …)?

The use case, which provides a sequence of actions between the system and the
user instead of an itemized individual requirement, improves this problem
significantly. Now, the requirements themselves, in the form of the use cases, do
a better job of providing the behavior of the system in sequential fashion,
complete with alternatives and exceptions. Use cases simply "tell a better story"
about what the system is to do. And, as we will see, they also give us a head
start on the design, since use cases are handy constructs for collecting
requirements and starting the design process.

Managing the Transition

So, although we haven't solved the problem of orthogonality, we do have a
number of existing assets and a few new techniques that can help us deal with
the problem. If we can use these assets to increase the parallels between
requirements and code, it seems likely that we can logically use our
understanding of the requirements to more easily drive the design of the system.
In so doing, it should also be easier to translate between these dissimilar worlds,
to improve the design of the system, and to improve the overall quality of the
system that results. Before we do so, however, we need to make a small
digression into the world of modeling and software architecture.

Modeling Software Systems

Nontrivial software systems today are extraordinarily complex undertakings. It is
not uncommon to find systems and applications that are composed of millions of
lines of code. These systems or applications may, in turn, be embedded in other
systems that also have an extraordinary complexity in their own right, not to
mention the complex interactions that may occur between the systems. We take
it as a given that no one person or even group of persons can possibly
understand the details of each of these systems and their planned interactions.

In the face of this complexity and to keep our wits about us, a useful technique is
to abstract the system into a simplified model, removing the minutia of the
system in order to have a more understandable version. The purpose of modeling
is to simplify the details down to an understandable "essence" but to not
oversimplify to the point that the model does not adequately represent the real
system. In this way, we can think about the system without being buried in the
details.

Selection of the model is an important issue. We want the model to help us
understand the system in the proper way, but we don't want the model to
mislead us because of errors or abstractions in the model. You've undoubtedly
seen pictures of drawings and machines that helped the early philosophers,
astronomers, and mathematicians understand the workings of the solar system.
Many of these models, based on a geocentric view of the solar system with Earth
at the center of the universe, thus led to many blind alleys and incorrect theories.
Only when sun-centered, or heliocentric, models were proposed did a better
understanding of our solar system emerge.

Indeed, the heliocentric models of the universe opened up many new possibilities
and ideas regarding the universe at large (very large). Early scientists were able
to reason from the model and to propose refined mathematical theories relating
motion, gravity, and so on. But it's important to note that the model was not the
reality. In some cases, the mechanical views of the universe, as exemplified by
the model, did not exactly match the observed realities. For example, one of the
early confirmations of Einstein's relativity theory was observed in some previously
unexplained anomalies of the planet Mercury's orbit.

Models provide a powerful way to reason about a complex problem and to derive
useful insights. However, we must be aware that the model is not the reality. We
must continually check and assure ourselves that the model has not led us astray.

Many different aspects of a system can be modeled. If you are interested in
concurrency, you may model that. If you are interested in the system's logical

structure, you may model that. Also, these models need to interact in some way,
and that aspect too can be modeled. Each of these mechanisms contributes to
our understanding of the system in the aggregate, and taken together, they allow
us to consider the system architecture in the whole.

The Architecture of Software Systems According to Shaw and Garlan (1996),
software architecture involves the

"description of elements from which systems are built, interactions amongst those
elements, patterns that guide their composition, and constraints on those
patterns."

According to Kruchten (1998), we use architecture to help us

• Understand what the system does
• Understand how the system works
• Be able to think and work on pieces of the system
• Extend the system
• Reuse part(s) of the system to build another one

Architecture becomes the tool by which decisions are made about what and how
the system will be built. In many projects, we know at the start how we are going
to put the pieces together because we, or others, have developed such systems
before. The easy starting decisions are reflected in the "dominant architecture"
notion, which is just a fancy way of saying that "everyone knows how to build a
payroll system."

Dominant architecture helps us kickstart the decision process and minimizes risk
through the reuse of pieces of a successful solution. If you're going to build a
payroll system, it would be silly to start from scratch and invent the entire
concept of FICA, check writing, medical deductions, and so on. Start by looking at
models of existing systems, and use them to start your thinking.

But, different groups of stakeholders may need to consider your architectural
models and may want to view the proposed architecture from different
perspectives. The parallel to our "building a house" metaphor holds: If you were
building a house, you'd want to have views of the house that were suitable for the
framers, the roofers, the electricians, the plumbers, and so on. It's all the same
house, but our view of it may differ, depending on the need.

4+1 Views of Architecture There is usually a small set of common needs for
viewing the system architecture. The views that best illustrate these needs are
discussed by our colleague, Philippe Kruchten (1995), as the "4+1" view shown in
Figure 30-2. The figure identifies a number of stakeholders (programmers,
management, users) and positions them near the types of views that they would
normally need to consider.

Figure 30-2 The 4+1 architectural view

1. The logical view addresses the functionality of the system. This abstraction
of the design model represents the logical structure of the system in terms
of subsystems and classes, which in turn are the entities that deliver the
functionality to the user.

2. The implementation view describes the bits and pieces that are relevant to
the implementation of the system: source code, libraries, object classes,
and so on. This view represents the static view of these pieces, not how
they interact.

3. Process views, generally more useful to describe operations of the system,
are extremely important for systems that have parallel tasks, interfaces
with other systems, and other interactions that occur during execution.
Since many modern systems exhibit high degrees of parallelism and
multithreading, this view allows the reviewer to determine potential
problems, such as race conditions or deadlocks. You should also use the
process view to examine throughput issues and other performance issues
that the user specified in the nonfunctional requirements.

4. Because the project modules rarely exist in a vacuum, the deployment
view allocates the implementation elements to the supporting
infrastructure, such as operating systems and computing platforms. This
view is not especially concerned with what the interactions are but rather
with the fact that there are interactions and constraints where the two
systems meet.

Role of the Use-Case Model in Architecture

Finally, we return to our problem of orthogonality. Within the architecture, the
use-case view, as the holder of requirements, plays a special role in the
architectural model. This view presents key use cases of the use-case model and
thereby is used to drive design, and it also ties all of the various views of the
architecture together. We favor this view because it allows all stakeholders to
examine the proposed system implementation plans against a backdrop of actual
uses and requirements of the system. So, the use-case view, which represents
the functionality of the system, is the "tie that binds," that is, the one view that
binds the other views together.

For example, the HOLIS use case Initiate Emergency Sequence would impact the
design of the system in each of the four views as follows.

1. The logical view would describe the various classes and subsystems that
implemented the behaviors called for by the emergency sequence
functionality.

2. The process view would demonstrate how the multitasking capability of
HOLIS was always available to initiate an emergency sequence, even when
it was being programmed or was busy doing other tasks.

3. The deployment view would show that the functionality of HOLIS was
distributed across the three HOLIS nodes, or subsystems: Control Switch,
Central Control Unit, and Homeowner's PC.

4. The implementation view would describe the various code artifacts for
HOLIS, including source and executable files.

Realizing Use Cases in the Design Model

This notion of "use-case-driven design" is a key theme in the Unified Modeling
Language and the associated book Unified Software Development Process
(Jacobson, Booch, and Rumbaugh 1999). The technique we describe here is the
means by which the UML and the process help the design team transition from an
understanding of the requirements to the design and implementation of the
solution.

Further, the UML contains specific modeling constructs that support realizing the
use case in the implementation. Specifically, use cases are realized via
collaborations, which are societies of classes, interfaces, subsystems, or other
elements that cooperate to achieve some behavior. The UML stereotype, use-case
realization, is used for this purpose and is simply a special form of collaboration,
one that is used to show how the functionality of a specific use case is achieved in
the design model.

Collaborations, then, are key modeling constructs within our area of concern, for
it is within the collaborations that you see the systematic and aggregate
behavioral aspects of the system, or how the system achieves its overall goals.
These key constructs deliver some of the "bigger-than-the-sum-of-its-parts
behavior" through the activities of participating classes and other logical elements.
The graphical symbol for a collaboration is a simple dotted line ellipse with a
name inside, as shown in Figure 30-3. (The UML authors have commented that
the similarity to use case notation is intentional.)

Figure 30-3 Collaboration

Collaborations have another useful aspect. With collaborations, we can trace from
the use-case model into the design model as can be seen in Figure 30-4.

Figure 30-4 A use case collaboration in the design model

Structural and Behavioral Aspects of Collaborations

Collaborations have two aspects: a structural part that specifies the static
structure of the system—the classes, elements, interfaces, and subsystems on
which the implementation is structured—and a behavioral part that specifies the
dynamics of how the elements interact to accomplish the result. However, a
collaboration is not a physical thing; it is just a description of how cooperating
elements of the system work together. To know more about how the collaboration
is affected, you must look inside.

Inside the collaboration, the structural aspects can be represented by a class
diagram. Figure 30-5 shows a class diagram for the HOLIS Emergency Message
Sequence collaboration. For behavioral aspects, you might choose to model its
behavior, using an interaction diagram such as the one shown in Figure 30-6

Figure 30-5 Class diagram for HOLILS emergency
message sequences

Figure 30-6 Behavioral aspects of collaboration: "HOLIS
Emergency Message Sequence"

Using Collaborations to Realize Sets of Individual
Requirements

Although use cases show how requirements can drive design, it's also true that
we can model the implementation of any individual requirement, or any set of
requirements, as a collaboration (see Figure 30-7). Although the use case does
have some special properties, namely, the sequence of events, we can often
arrange our itemized requirements so as to accomplish the same objective. With
this slight extension, we have a meaningful way to use requirements, of all types,
to drive design and implementation.

Figure 30-7 Model of requirements implementation as a
collaboration

From Design to Implementation

By modeling the system this way, we can ensure that the significant use cases
and requirements of the system are properly realized in the design model. In turn,
this helps ensure that the software design conforms to the requirements, and we
have achieved a major step in the process of design verification.

The next step follows quite logically, although admittedly not easily. The classes
and the objects defined in the design model are implemented in terms of the
physical software components—source files, binaries, executables, and others—
that will be used to create the executable software. But even this mapping has its

complications. For example, the decisions that lead you to a certain
componentization of the logical models will often be driven by such requirements
as the need for resilience, performance requirements, constraints on the system's
deployed topology, and so on. The point is that every view of a system's
architecture is, or at least should be, influenced by the system's requirements.
But if we keep these factors in mind, we should be able to complete this process
of the transition requirements to design to implementation.

Summary

It would be nice if you could go directly from the requirements to the code.
Unfortunately, that's impractical. The best that modern practice can offer is a
series of constructs that will help you move closer to the direct translation goal.

One of these techniques, use-case realization, takes advantage of the unique
characteristics of the use case and the UML's modeling constructs to help drive
design. This has many advantages in shortening the path from requirements to
implementation.

Other modern practices have offered us the clarity of viewing our efforts in the
"4+1 view" architectural views construct, and we have found that this helps
provide a separation of concerns. This makes it easier for the various
stakeholders in the implementation process to develop and to assess the design
as it evolves.

Looking Ahead

We admit it. We've only skimmed the top layer of implementation. In reality, you
are well aware, as are we, that implementation is a huge topic in its own right.
Fortunately, this is not a book on implementing software systems, so we don't
have to get involved with that problem. For now, we'll leave the topic of
implementation and move on to the glue that binds the whole thing together,
verification and validation (V&V). In the next few chapters, we'll show a number
of approaches designed to minimize the undetected introduction of bugs into the
project and testing and validation techniques that will help ensure that the
system meets its overall objectives.

V&V plays an important role in the overall goal of developing quality software.
Specifically, verification activities keep us from falling into the trap of "testing
quality into the product." We have seen many projects fall short of expectations
due to the erroneous notion that "we will find all the bugs during testing." That's
just not possible. Finding and correcting bugs is vastly more expensive than
simply not introducing the bugs in the first place.

To put this into a V&V context, we will use the next two chapters to show that
traceability is a powerful approach to help you verify and minimize the
undetected introduction of bugs into the project. Validation is a different
technique to help ensure that the testing is on target to find the bugs that do find
their way into the system.

Chapter 31. Using Traceability to
Support Verification

Key Points

• Traceability is an effective technique which supports
the verification activity.

• Software requirements are traced from one or more
product features identified in the Vision document.

• Traceability tools enable you to inspect the traceability
relationships to ensure that no verification relationships
have been omitted and that no excess verification
relationships are present.

• Tools alone can't do the job; verification requires
thinking.

Verification is the ongoing process we recommend to ensure that each step of the
development is correct, meets the needs of the next step, and is not superfluous
to the needed activities. This chapter examines traceability techniques you can
use to support all stages of verification of the project, right from the start.

The Role of Traceability in Requirements Verification

A significant factor in quality software implementation is the ability to trace the
implementation through the stages of specification, architecture, design,
implementation, and testing. The ability to track relationships and to relate them
when change occurs forms a key thread throughout many modern high-assurance
software processes, particularly in life-critical medical products or business or
mission-critical activities. The reason is that historical safety data has shown that
the impact of change is often missed and that small changes to a system can
create significant safety and reliability problems.

For example, the latest U.S. Food and Drug Administration (FDA) guidance for
traceability in medical software development activities is contained in the FDA
Office of Device Evaluations (ODE) Guidance Document (1996b). In addition, the
Design Controls section of the new medical Current Good Manufacturing Practices
(CGMP) document (FDA 1996a), Subpart C of the CGMP, defines the obligations
of the system designers to be able to trace relationships between various work
products within the lifecycle of the product's development.

IEEE (1994) provides two working definitions of traceability:

• "The degree to which a relationship can be established between two or
more products of the development process, especially products having a
predecessor-successor or master-subordinate relationship to one another;
for example, the degree to which the requirements and design of a given
software component match." (IEEE 610.12-1990 §3)

• "The degree to which each element in a software development product
establishes its reason for existing; for example, the degree to which each
element in a bubble chart references the requirement it satisfies." (IEEE
610.12-1990 §3)

A key element of traceability is the "traceability relationship." We find it
convenient to define the relationship in terms of a simple "traced-to" and "traced-

from" model. For example, we can easily imagine that one or more software
requirements are created in the system in order to support a given feature
specified in the Vision document. Thus, we can say that a software requirement is
traced from one or more features (see Figure 31-1).

Figure 31-1 Traceability link from Vision document to
software requirement

Additional meaning can be placed on the relationship from the context of the
requirement types that are created. For example, a software requirement that is
traced to a test case would suggest that the software requirement is "tested by"
the test case that it is "traced to." An object description that is traced from a
software requirement would imply that the requirement is "implemented by" the
referenced object. Indeed, your project is likely to have one-to-many, many-to-
one, and many-to-many interrelationships among these project elements.

Building on what we've learned about the various means of expressing
requirements and the requirements organization we discussed in Chapter 25,
your project might be structured with the full set of relationships as shown in
Figure 31-2.

Figure 31-2 Project relationships

Implicit versus Explicit Traceability

In Figure 31-2, we observe that your project team explicitly adds the
relationships between the elements. That is, we define explicit traceability as the
development of relationships stemming from external considerations supplied by
your team. So, for example, the linkage, or relationship, between a product
feature and a use case that supports that feature is determined solely by the
team's deciding that such a relationship has meaning. There is no intrinsic
relationship between the elements; only external decisions can establish the
relationships.

On the other hand, the methodology and the structure of the model may provide
implicit traceability relationships. For example, Team Skill 5 discussed the notion
of parent-child requirements that exhibited a formal parent-child hierarchical
relationship. In the case of hierarchical requirements, there is an implicit
traceability between the parent requirements and the related child requirements.
This implicit relationship need not be explicitly stated as an explicit relationship;
indeed, it should not be stated explicitly, because of possible confusions that may
arise.

Other cases of implicit traceability may arise from the modeling paradigm used.
For example, the modeling tools used in the development process may
automatically provide other traceability relationships among the modeling
elements. If, for example, your modeling tool provides implicit links between use-
case modeling elements and the actors that interact with the use case, you have
a significant opportunity to exploit those implicit traceability relationships. You
can further extend the traceability into the implementation by tracing the use-
case collaborations that trace to the implementation objects.

In summary, we make little distinction between the two classes of traceability.
The only caution we offer is to make sure that you are aware of all of the forms of
traceability your modeling tools offer. If the tools do provide certain forms of
implicit traceability, use them. If the tools do not offer implicit traceability in
areas of interest to you, you will need to generate explicit traceability linkages as
required to support your development efforts.

Additional Traceability Options to Consider

Traceability can frequently help in understanding other parts of a project. We
have often added less traditional elements to a project and included them in the
traceability processes because they add value to our understanding of the project.

For example, you might find it useful to define a new element called an "issue"
and to keep all of your running, unresolved issues as part of your project
elements. By using traceability techniques, you can link your issues to the items
they are referring to. For example, if you have an unresolved issue about the
product's functionality, you can link that issue to the product features and the
software requirements related to that issue. By maintaining the "issue" links, you
have an easy way to go back into your project and find all of the elements related
to an issue you may have just resolved. Other nontraditional elements you may
want to incorporate into your project traceability processes include

• Assumptions and rationales
• Action items
• Requests for new/revised features
• Glossary and acronym terms
• Bibliographic references

The key point is that you can use traceability to help you understand the
relationships among "things" in your project. Let your imagination roam over the
possibilities and add "things" that will help your team understand the project
better. Feel free to trace all of useful relationships among "things." For example,
there may be unresolved issues with a particular definition of a glossary item. In
such cases, linking an issue with a glossary element (and, perhaps, other features)
may be a useful aid to reminding the team that unresolved matters still exist in
the project. A typical traceability structure might be augmented with additional
traceability items, as shown in Figure 31-3.

Figure 31-3 Augmented traceability relationships

A caution: Do not go overboard with this notion. We have found that adding
too many "things" to the traceability process becomes a maintenance burden. As
always, you should strive for a good balance between the value of the extra
elements you wish to trace and the cost of maintaining them.

Using Traceability Tools

Powerful software development tools offer a simple user-guided procedure to
"point and click" through the relationships that may exist between two elements
of the lifecycle. We have had extensive experience with the RequisitePro tool
offered by Rational Software and have chosen to use that tool for all of the tool
illustrations in this book. Your choice of tool may differ, but the end results should
be similar to our examples. (Refer to Appendix A for a more detailed view of the
HOLIS project artifacts that we will be using in the following examples.)

Using a tool offers you many ways to obtain additional insights into your project.
For example, after we have defined the relationships between the features and
the software requirements on our HOLIS project, we can display a matrix version
of those relationships, as shown in Figure 31-4.

Figure 31-4 Matrix version of traceability relationships

Interpreting the traceability matrix in Figure 31-4 is straightforward. For example,
consider the intersection of FEA1 ("Easy to program control …") and SR3 ("HOLIS
shall support up to ….") At the intersecting cell, the arrow indicates that a
relationship traces from FEA1 to SR3, meaning that SR3 in some way satisfies the
feature defined as FEA1.

After using a tool to establish all known relationships, an instructive requirements
management activity—strongly supported by not only governmental regulatory
guidance but also our own experiences—is to examine a traceability matrix for
two potential indications of error:

1. If inspection of a row fails to detect any traceability relationships (no
"arrows"), a possibility exists that no software requirement is yet defined
to respond to a feature required in the Vision document. This may be
acceptable if, for example, the feature is not software ("The case shall be
of nonbreakable plastic"). Nevertheless, empty rows are potential red flags
and should be checked carefully. Modern requirements management tools
should have a facility to automate this type of inspection.

2. If inspection of a column fails to detect any traceability relationships, a
possibility exists that a software requirement has been included for which
there is no known product feature that requires it. This may indicate a
misunderstanding of the role of the software requirement, or a weakness
in the original Vision document, or it may indicate dead code or code that
is not in support of the system requirement or a programmer's "Easter
Egg," in which case it should be weeded out immediately. (We will discuss
Easter Eggs in more detail in Chapter 34.) In any case, careful checking is
required.

Maintenance of Traceability Relationships

In addition to providing a set of tools to query the relationships you have
established, your development tool should provide a simple means to store the
queries and to recall them later. This feature allows you to revisit the
relationships at a later time, perhaps after changes have been made, and to
quickly requery the relationships to detect potential trouble spots. As you will see
in Chapter 34, this virtually guaranteed occurrence arises from the continual
project changes.

Simple and obvious application of such techniques will enable you to relate many
elements of your project. You should consider linking and relating

• Software requirements and use cases to test plans/test specs/test results
• User needs to product features
• Product features to software requirements and use cases
• Software requirements and use cases to implementation units such as

functions, modules, objects, and collaborations
• Implementation units to test plans/specs/results

After linking the various elements of the various documents, you should have a
relationship setup similar to that shown in Figure 31-5.

Figure 31-5 Document/element relationships

Your requirements management tool should also be able to display the full set of
traceability relationships within a project. Figure 31–6 shows such a "tree" view.
Note that the (partial) tree view allows you to view simultaneously all of the
currently established relationships in your project. You should use the tree view
to help you comprehend the overall relationships within your project. For example,
Figure 31-6 reveals that FEA5 ("Vacation settings") links to SR1, SR3, and UC1.

Figure 31-6 Abbreviated tree view

Once you have linked the elements, your tool should maintain those linkages. You
may then use the full power of the tool to examine relationships among the
project elements as you desire. You've probably already figured out that we can
use the traceability relationships to support our verification efforts.

Proceeding without Traceability Tools

Of course, you may not have a tool specifically constructed to support the types
of operations identified in the preceding section. Without such a tool, how should
you proceed?

In the pretool days, we used spreadsheets and databases to maintain the
traceability relationships. After all, many of the matrix relationships could be
easily handled with a simple spreadsheet. We used spreadsheets extensively
during the 1980s and early 1990s and found them to be a useful aid in managing
projects.

The problem with spreadsheets, however, was maintenance, especially in
extensive hierarchies of relationships. For instance, we found that changing a
single linkage could have far-flung impacts in the relationships at issue, as well as
other relationships in other parts of the hierarchy. Truth to tell, it was usually a
nightmare if extensive changes to the linkages had to be made.

Since it was so difficult to manually keep track of the changes and their "ripple
effects," we found that we either

• Fell into a pattern of resisting any discussions to change the relationships,
or

• Abandoned the matrices as the work became too overwhelming.

Of course, we always came to regret both of these behaviors, as they inevitably
led to subsequent problems in the project. Imagine our excitement when modern
tools began to arrive and to help in this activity!

The other alternative was to use a database. We used relational databases
extensively and found it fairly easy to construct them and to input the data.
Indeed, in the pretool days, we used such tools to run human-critical medical
device development projects. Relational databases worked pretty well. Even
though it was more difficult to expand the database application to include

tracking ripple effects from changes, it could be done. The problem, however,
was that we ended up spending disproportionate amounts of time improving the
tool's capability. Good for the ego but bad for the project resources who should
have been doing something else.

So, although you can use spreadsheets or databases to maintain the traceability
relationships, it won't be easy. If you have a small project, the pain and suffering
will be minimal, and it might be worth considering simpler alternatives. On the
other hand, we do not recommend tackling larger projects without the use of
specialized requirements management tools.

Omitted Verification Relationships

In this case, you are looking for cases in which the rows of the traceability matrix
show you that a particular feature is not linked to some software
requirements/use cases. For example, inspection of the matrix in Figure 31-7
shows that Product Feature 4 (FEA4) is not linked to any Software Requirement.
And, although we didn't show it, there are no links to any use case (UC) either.

Figure 31-7 Using traceability to detect missing
relationships

Upon detecting a "hole" in the relationships, you should review the original set of
product requirements and the related software requirements/use cases.

• You may find that a link was accidentally missed in establishing the
traceability. In such cases, simply adding a new link and recomputing the
trace matrix will solve the problem. This type of omission frequently
occurs in the early stages of a project.

• On the other hand, you might find that the development of the software
requirements simply failed to consider the needs of one of the required
product features. In this case, a project review may be necessary to
consider the addition of suitable requirements to respond to the product

feature. Or, the project review may determine that the omitted feature
should be moved to a "future" category or removed entirely.

In any event, the important facet of verification is to ensure that no linkages have
been left out and that all lower-level elements, such as the software
requirements/use cases, have been properly related to the higher-level product
requirements.

Excess Verification Relationships

Verification may also uncover the opposite issue. That is, inspection of the
columns of the trace matrix may reveal a column that is not linked to any row
elements. In Figure 31-8, for example, use case 3 (UC3) is not linked to any
product feature (FEA).

Figure 31-8 Omitted use case relationship

This type of situation indicates that you have created a use case (or requirement)
for which there was no related product feature. That is, the requirement appears
to be superfluous to the product features. As before, you should review the trace
relationships

• You may find that a link was accidentally missed in establishing the
traceability. In such cases, simply adding a new link and recomputing the
trace matrix will solve the problem.

• On the other hand, you might find that the determination of the product
features simply failed to consider the needs of one of the required
software requirements. This situation may occur if, for example, you have
certain design constraints that are required in the implementation but that
change the features of the product. Here, a project review may be
necessary to consider the feasibility and need for the requirements. You
might wish to remove the requirement(s) or place them on a "future" list.
Or, the project review may determine that the omitted feature should be

moved to a "future" category or added now. In our example, we have
reviewed the project and have determined that UC3 was a superfluous
specification that should not have been in the project.

This type of verification inspection focuses on ensuring that gratuitous elements
have not crept into the project. Experience has shown that such elements
typically increase the project scope and rarely contribute to the overall quality of
the result.

Thinking about Verification and Traceability

The problem with considering omitted/excess relationships is that it is very
mechanical. That is, it is all too tempting to say, "Well, we looked at all of the
rows and columns, and everything looks OK. So, we're verified. Let's move on."

The fallacy in this argument is that we have not considered whether or not we've
correctly and completely considered all of the links that should (and should not)
be established. We have found that deeper consideration of the initial traceability
linkages always leads to some revisions in the linkages. New linkages may be
added, and existing linkages may be revised or removed.

We urge you to consider the initial linkages as merely a starting point in
verification. Formal or informal reviews should be held after the initial linkages
have been established and the initial row/column inspections completed. After at
least one full-scale review is completed and changes posted, then you may
consider that verification for the current phase is valid.

Of course, change happens. Thus, you will need to treat all linkages as living
linkages that will be revised as the project matures and evolves. You should
consider verification reviews whenever it becomes apparent that future, current,
or past phases have had significant changes in the traceability linkages.
Retrospective reviews are frequently needed whenever new understandings of the
project cause old linkages and relationships to be reconsidered. The crucial point
is that verification requires thinking, and you should not fall into the trap of rote
mechanical processing.

Looking Ahead

Verification is an important technique your team can apply in the struggle to help
ensure that you are designing and implementing the right systems. To our
amazement, we continue to find many projects that don't use a verification
strategy to make sure that the project is heading in the right direction. Inevitably,
those projects "fall off the rails," and the team members don't even know it. Of
course, they eventually find it out but, by then, it is very late in the game, and
bad feelings and desperate measures ensue. Projects that undergo frequent
verification challenges are much less subject to such surprises.

But all the verification in the world will not guarantee that the final result works
as intended. So, we need to include another concept to help us ensure that the
right system is being built. That concept is called validation and is the subject of
our next chapter.

Chapter 32. Validating the System

Key Points

• Validation is the process of confirming that the
implemented system conforms to the requirements
established for it.

• Acceptance testing validates the system within the
customer's environment and usage scenarios.

• Quality can be achieved by testing not simply against
implementation but must include testing against
requirements and actual customer usage.

The IEEE (1994) defines validation as

"the process of evaluating a system or component during or at the end of the
development process to determine whether it satisfies specified requirements"
(IEEE 1012-1986, §2, 1994).

In other words, use validation to confirm that the implemented system conforms
to the requirements we've established.

But this definition doesn't go far enough. Although testing to the requirements is
certainly an important step, there is still a chance that the system we deliver may
not be what the customer wanted. We've seen projects on which much time and
effort were expended on making sure that the customer's needs were collected
and understood, followed by an implementation effort that prepared a system
shown (by validation tests) to correctly meet all of the collected requirements,
followed by delivering the final product to the customer, who balked and said that
the product was not what was wanted.

What went wrong? Simple. The project failed to move the nebulous "cloud" of the
user's problem into alignment with the proxy represented by the requirements.
However, this is of small comfort to the project team that has just made heroic
sacrifices to deliver the product. Performing acceptance tests at each iteration will
minimize this syndrome.

Validation

Acceptance Tests

Acceptance tests bring the customer into the final validation process in order to
gain assurance that "the product works the way the customer really needs it to."
In an outsourcing environment, acceptance testing may be developed and
executed as part of the contract provisions. In an IS/IT or ISV environment, the
value provided by acceptance tests is more typically accomplished by the
customer alpha or beta evaluation process.

Acceptance tests are typically based on a specific number of "scenarios" that the
user specifies and executes in the usage environment. Thus, the customer has
freedom to think "outside the box" and has license to construct interesting ways
to test the system in order to gain confidence that the system works as needed.
If we've done our job right, the acceptance test will be based on certain key use

cases that we've already defined and implemented. But the acceptance test
should also apply these use cases in interesting combinations and under the types
of system load and other environmental factors—interoperability with other
applications, OS dependencies, and so on—that are likely to be present in the
user's environment.

In an iterative development process, generations of acceptance tests should be
run at the various construction milestones, so the final acceptance test should not
bring any significant surprises to the development team. In a more waterfall-like
model, this is often not the case, and major surprises are routine. In any model,
it's never too late to discover at least a few "Undiscovered Ruins" that will still
need to be addressed. In Chapter 34, we'll talk about how to manage changes
that this may occasion.

Validation Testing

The primary activities in validation are testing activities. But what does a good
test plan look like? For one answer, the IEEE 829-1983, IEEE Standard for
Software Test Documentation (IEEE 1994) provides eight document templates
that offer guidance on the establishment of a test methodology, conducting tests,
reporting results, and resolving anomalies. Other guidelines (Rational 1999) have
somewhat different approaches, but most agree on a few key elements.

• Your development process must include planning for test activities. (In the
iterative model, most test planning is done in the elaboration phase.)

• Your development process must also provide time and resources to design
the tests. It helps to have an overall template designed so that each
individual test design can be largely a matter of plugging in the individual
test details.

• Your development must also provide time and resources to execute the
tests, both at the unit test level (as required) and at the overall system
level. The test documents form part of the implementation documentation.
Allowing for test documents, the implementation documentation tree
should appear as in Figure 32-1.

Figure 32-1 Implementation documentation

We recommend that you maintain an audit trail between the validation/testing
activities and the specifications for that implementation. This audit trail is
provided by traceability.

Validation Traceability

Validation traceability gives you confidence that two important goals have been
addressed.

1. Do we have enough tests to cover everything that needs testing?
2. Do we have any extra or gratuitous tests that serve no useful purpose?

Validation focuses on whether the product works as it is supposed to. We are no
longer inspecting the relationships of the various specification and design
elements but instead are considering the relationships between the tests (and
test results) and the system being tested. As in verification, the object is to
ensure that all relevant elements are tested for conformance to the requirements.

Requirements-Based Testing

But what is a "relevant element"? What do you test? One common approach is to
test the product against its implementation. That is, many projects approach
testing with a mind set that says, "Here is an implementation feature, say, the
database manager, so let's test it by banging away on the database manager
interfaces." Although this may be an appropriate test, it covers only half the job.

Quality can be achieved only by testing the system against its requirements. Yes,
it may be useful to perform unit tests against various project elements such as
the database manager, but we have found that unit tests rarely give you the
needed assurance that the entire system works as required. Indeed, many
complex projects are often found to pass all of the unit tests but to fail as a
system. Why? Because the units interact in more complex behaviors, and the
resulting system has not been adequately tested against the governing system
requirements.

Let's examine how we can use the techniques we developed for verification in the
execution of the system validation activities. We'll turn again to our case study.

Case Study: Testing Use Cases

Writing test cases, like collecting requirements, is both an art and a science.
Although we won't examine the matter too deeply, it is instructive to get at least
a top-level view of how the test cases can be derived from the functionality
expressed by the use cases and the requirements we collected to define the
system. For this example, we'll return to our case study and use the Control Light
use case that we developed in Team Skill 5.

Test Case 1 Description

Table 32–1 is a sample test case for the Control Light use case. Test Case 1, used
to test instances of the use case Control Light, is used only to test Control Switch
buttons that have been preassigned to a light bank that is dim-enabled.

Test Case 1 focuses on testing interactions with the system that closely mimic the
real-world flow of events that we spelled out in the Control Light use case. So,
the use case served as a template for how to test the system. This is one of the
major benefits of the use-case technique.

The unabbreviated version of this test case appears in Appendix A with the other
HOLIS artifacts. Test Case 2 in Appendix A is an example that tests an aggregate
set of discrete requirements rather than a single use case test. We'll visit Test
Case 2 and its relationship to the software requirements shortly. Both Test Case 1
and Test Case 2 are the subjects of the following traceability discussion.

Tracing Test Cases

Traceability techniques allow us to easily confirm that the test cases cover the
required functionality of the system. We simply need to construct a series of test
plans that we can link back to the original system requirements and use cases.

For example, suppose we had a traceability matrix that compared tests to the use
cases (see Figure 32–2). Just as in the verification activities, we can examine the
matrix to ensure proper coverage of the test cases versus the system
specifications. Similarly, we can compare use cases against test cases, as shown
in Figure 32–3.

Figure 32-2 Tests versus use cases

Figure 32-3 Use cases and test cases

Table 32-1. Test Case 1 (simplified)
Test
Case
ID Event Description Input 1 Input 2 Expected Result

Basic flow
2001 Resident presses

Control Switch
(CS).

Any
enabled
button

Light was on
before button
was pressed
(tested must
record level).

Light is turned off.

2002 Light was off
before button
was pressed.

Light is turned on to OnLevel.

2003 Resident
releases button
in less than 1
second.

Light on Stays off.

2005 Resident
releases button
in less than 1
second. (This

Light off Stays on at OnLevel.

ends path 1
through use
case.)

2006 Resident presses
button again and
releases it in less
than 1 second.

Same
enabled
button as
in 2003

Light off
before

Light is turned on to same
illumination level as in 2002.

 Resident presses
button again and
releases it in less
than 1 second.

 Light on
before

Light is turned off.

Alternative flow
2007 Button held

longer than 1
second.

Enabled
button

Light off
before

Light turned on. Brightness
increases 10% to maximum
level for each second held,
then decreases 10% for each
second held until minimum
reached, then increases again.
Cycles continuously while held.

2008 Resident
releases button.

 Brightness held at last reached
level.

Note: Run test case multiple times and with different lenghts of hold-button time
to verify that system is restoring OnLevel properly.

Testing Discrete Requirements

In the same way that we used traceability relationships to relate use cases to test
cases, we can use traceability to manage relationships between discrete, or
itemized requirements and to then associate them with test cases. Figure 32–4
shows a fragment of a test case specification traceability matrix. Note that Test
Case 2 ("TC2: Round-trip message") has appeared and is linked to the software
requirements of the HOLIS SRS package. Note also that we treat test cases no
differently from the other types of elements we have traced in our verification
and validation activities.

Figure 32-4 Test case fragment to traceability

So far, we have linked the test cases into the traceability matrices. Now it's time
to examine the linkages as we did it in the verification inspections.

Omitted Validation Relationships

Once again, you are looking for cases in which the rows of the traceability matrix
show you that a particular feature or requirement is not linked to a software test.
In Figure 32–5, for example, Use Case 2 (UC2) is not linked to any test case (TC).
(UC3 links are missing also, but our verification activities already decided that the
use case should never have been in there at all.)

Figure 32-5 Missing test case

Having detected this "hole" in the relationships, you should review the original set
of product requirements and the related test cases.

• If you find that a link was accidentally missed in establishing the
traceability, simply add a new link and recompute the trace matrix. This
type of omission frequently occurs in the early stages of establishing
validation traceability.

• If you find that the development of the software test cases simply failed to
test one of the required product features, you may need a project review
to consider the addition of suitable tests to respond to the product feature.
Unlike the similar case in verification activities, we do not recommend
marking the missing test case as a "future" activity. If there is an untested
feature, you may be assured that your customer will test it, often with
grievous consequences! Also, regulated developments, such as FDA
regulation of a medical product, will not accept the postponement of
necessary tests.

Validation traceability helps ensure that no linkages have been left out and that
all product tests have been properly related to the higher-level product
requirements. Of course, it also helps if the product passes the tests!

Excess Validation Relationships

As with verification, validation may also uncover the opposite issue. That is,
inspection of the columns of the trace matrix may reveal a column that is not
linked to any row elements. In Figure 32–5, for example, Test Case 3 (TC3) is not
linked to any use case. We also know from Figure 32–4 that it is not linked to any
software requirement. This type of situation indicates that you have created a

test for which there was no related product feature. That is, the test appears to
be superfluous to the product features. As before, you should review the trace
relationships.

• Perhaps a link was accidentally missed in establishing the traceability. If so,
simply add a new link and recompute the trace matrix. This type of
omission frequently occurs in the early stages of establishing validation
traceability.

• Or, you might find that the development of the product features simply
failed to consider the needs of one of the required software tests. This
case may occur if, for example, certain nonfunctional requirements for the
implementation in fact change the features of the product. In this case, a
project review may be necessary to consider the feasibility and need for
the requirements. As in verification, your team will need to resolve
whether the test is required at all and, if it is, what traceability linkages
are needed.

Testing Design Constraints

OK, so you know how to collect and manage the tests for the use cases and
requirements. The question then arises, "How do you test design constraints?"

In Team Skill 5, we discussed the fact that although design constraints are unique,
the easiest way to treat them is to simply consider them requirements. That is,
we trace their linkages in the same way, and we verify them in the same way.
Therefore, it is appropriate to include design constraints as part of the validation
effort. When it comes to testing, you should test design constraints just as you
would anything else. Many design constraints will yield to a simple test by
inspection. For example, a design constraint that requires the software to be
written in Visual Basic (VB) can be tested by simply looking at the source code.

Since many design constraints will yield to simple inspections, you should
consider having an abbreviated test procedure for such inspection matters. There
is no need to have a complicated form listing the calibrated equipment needed,
setup procedures, environmental setups, and so on. Instead, just have a simple
form saying that you have inspected the code or other artifact and found it to be
in conformance with the design constraint. Some sample approaches to testing
design constraints are shown in Table 32–2.

Table 32-2. Design constraint validation approaches
Design Constraint Validation Approach

"Write the software in VB 5.0" Inspect source code.
"The application must be
based on the architectural
patterns from the Fuji
Project."

Identify patterns in Fuji design models; compare
with current project design.

"Use the Developer's Library
99-724 class library from XYZ
Corporation."

Inspect ordering and receiving records, product
documentation supplied, and revision numbers;
inspect that libraries are properly loaded and
properly used.

Looking Ahead

Verification is an analytical process that works throughout the project to ensure
that you are doing the right things. Validation ensures that the system works as it
is supposed to, both in conforming to the customer's documented requirements
and in the actual usage scenario. Together, verification and validation help assure
the team that they are indeed "Building the Right System Right."

But, we've left something out. You might be wondering, "How do I decide on how
much V&V work to do?" Let's look at that question in the next chapter.

Chapter 33. Using ROI to Determine the
V&V Effort

Key Points

• Depth, the level of detail selected to verify a system
element, may range from examination (minimal) to
walkthrough and independent review to black-box
testing (simulation) to white-box testing (exercising
every line of code).

• Coverage refers to the extent to which system
elements are verified and validated.

• Selective V&V is viable as long as you know why you
are doing it and what the risks are.

• The key to using hazard analysis is to decide what
errors must be prevented and the scope of the V&V
activities needed to ensure that they do not occur.

As in all aspects of the development project, it costs money to initiate and
maintain the V&V activities. The question naturally arises, "How do we do
cost/benefit analyses to see whether this V&V stuff is really worth it?" This
chapter will help you plan your V&V activities, using some quasi-economic
concepts to answer the cost/benefit question. We'll plan our V&V activities on the
basis of the answers to two questions.

1. What are the social or economic consequences of a failure of our system?
2. How much V&V do we need to do to ensure that we do not experience

these consequences?

Of course, it's not very useful to find out after the project is completed that there
was way too much V&V that yielded results of minimal value to the project. It's
even more painful to find out that you didn't do enough checking. This is the sort
of problem that product recalls stem from. ("What? We have to recall the first
10,000 HOLIS switches that are already installed in peoples' homes?") Therefore,
we will use an analytic approach to guide us in selecting the proper amount of
V&V activities before we commit to them. Let's start by considering some "depth"
versus "coverage" issues.

Depth versus Coverage

V&V Depth

Depth refers to the level of detail that we select to verify or to evaluate a system
element. In general, the greater the depth, the more resources are consumed in
performing the activity. Thus, it is to your advantage to ensure that a proper
depth of inspection is selected for each element selected. And, no, you don't get
to say, "Let's just do a once-over-lightly." It is important to match the depth of
the review to the importance of the element.

Not all elements need to be inspected to the same depth of detail. For example,
minor elements on the periphery of the project may be adequately served by an
inspection, or simple system test, but critical elements at the heart of the project
may require extensive white-box testing.

In Chapter 26, On Ambiguity and Specificity, we said that the level of specificity
you pick will determine both the depth and the number of requirements you
define. Picking the right level of specificity (depth) will be a primary determinant
in your V&V depth of review. In addition to your requirements methods, you can
apply a variety of additional techniques to ensure that the requirements are
reviewed to the appropriate depth. Let's look at several strategies and relate
them to the depth of review they offer.

• Examination. We review the code or take some measurements. The
essence of examination is that a prescribed and minimally invasive look is
taken at the element under test. This is usually considered to be the
minimal depth of review of an element.

• Walkthrough. A peer group "walks the element through" its paces. In a
sense, this process is a structured inspection performed by a wider
audience, one that is searching for weaknesses, oversights, and so on, in
the code. This type of review provides more depth than a simple
examination.

• Independent reviews. This strategy, similar to the two preceding ones,
has an unrelated but knowledgeable group examine the element and
search for weaknesses. This type of review may provide additional insights
that were not in the "mind set" of the project group.

• Black-box test. Black-box testing treats the element as a module that
cannot be internally inspected. Thus, you can supply inputs to the box and
observe the box's outputs to ensure that the element is working to the
required standards. These tests are usually performed via instrumented
code or with system emulators and other tools to simulate and to record
the system operation.

• White-box test. White-box testing allows you to "open the box" and to
examine the internal workings of the element. Most modules of code have
way too many combinatorial pathways to test in a reasonable amount of
time, so some sort of reasonable test concept has to be applied to white-
box testing to keep it from becoming prohibitively time consuming. A
common white-box test compromise is to exercise every line of code but
not every possible combination of code pathways. This type of review
often requires significant project personnel and resources.

V&V Coverage

Coverage means the extent of coverage of the system elements we will consider
for our V&V efforts. As we described in the previous two chapters, you can apply
traceability techniques to a number of different elements as part of your V&V

activities. For example, you can trace requirements to test cases, features to use
cases, use cases to implementation, and so on. The amount of traceability that
you do, and the corresponding level of specificity in the requirements that you
provide, is a primary factor in your V&V coverage.

That is, we ask questions about which requirements—both textual and use
cases—need to be considered, which implementation units need consideration,
which test units need consideration, and so on. In addition, it may be necessary
to examine, verify, and validate software provided by others, such as purchased
components and the operating system the application runs on. In effect, this is
the "what should we do V&V on" issue. Fortunately, this question has some
reasonably straightforward answers.

What to Verify and Validate

The obvious question in creating the V&V plan is, What elements should be
verified and validated? You are trying to ensure a high-quality product, but you
are also trying to minimize the overall development cost of the project. There are
several ways to address this question.

Option 1: Verify and Validate Everything

In smaller projects that require a reasonable degree of delivered quality, you
might want to consider invoking your V&V processes on essentially everything in
the application This approach has the advantages of being simple and easy to
understand and treating the project elements uniformly. It also bypasses the step
of analyzing the project before it is started and making your best guesses as to
the cost elements for V&V.

If you adopt this policy, you will soon arrive at areas in which the team consensus
is, "We don't need to do V&V on this element, because it is too trivial to worry
about." This may be appropriate, but, of course, this attitude will usually become
more common as the budget runs out and the deadlines approach!

Selective V&V is often appropriate as long as you know why you are doing it and
what the risks are. It is a perfectly viable approach, provided that the omitted
elements are being omitted for good reasons, which do not include having run out
of time or money.

When elements are to be omitted from V&V, however, it is important to document
the rationale for doing so.

But a potential danger here is that you may, with the best of intentions, omit V&V
activities on a project element that eventually proves to be more significant than
you had originally imagined. Possible repercussions might include

• Embarrassment over an element's not conforming to the customer
specification (and subsequent unpaid rework on your part)

• Elements not working per the specification (and subsequent expensive
recalls from the field)

• The worst case: an unsafe product that can cause harm to its users

Thus, even in the informal case of selectively trimming your V&V activities, there
is some probability that a "gotcha" may be looming on the horizon.

But if it is impractical to V&V everything on a significant project and yet a high
degree of quality must be ensured, how do you decide which elements are
important to the V&V process and which elements are not important? That brings
us to option 2.

Option 2: Use a Hazard Analysis to Determine V&V
Necessities

One organized way to consider the impact of important elements in the project is
the hazard analysis and a related activity, risk assessment. Although we cannot
delve deeply into these disciplines in this book, we will provide a brief overview of
the concepts.

Regulatory agencies, such as the FDA, have shifted focus onto hazard analysis as
a key technique in the improvement of product quality. Indeed, contemporary
regulatory guidelines have devoted entire sections to the question of risk
assessment and hazard analysis. Wood and Ermes (1993a) provide a useful
definition of hazard analysis for a medical product:

Hazard Analysis is the detailed examination of a device from the user and patient
perspectives. Its purpose is to detect potential design flaws—possibilities of
failure that could cause harm—and to enable manufacturers to correct them
before a device is released for use.

Hazard analysis requires the designer to consider various classes and types of
errors that may occur in the product yet to be constructed. As each potential
hazard is documented and examined, the hazard analysis document allows the
designer to document the potential hazard and to then suggest design strategies
to alleviate each.

In subsequent stages of the product development lifecycle, the hazard analysis
will serve to record both the potential hazards and the risk-mitigation strategies
that have been defined to prevent the hazard from occurring. System validation
will later refer to this document to confirm that all anticipated hazards have been
completely addressed and resolved, and validation testing will be emphasized in
these areas to gain a further degree of assurance.

Of course, hazard analysis needn't apply solely to medical systems (or even other
systems, such as transportation and industrial equipment), in which human
safety is at risk. You should do a hazard analysis that targets whatever you
consider to be the greatest risks of failure in your system. For example, an online
trading system might focus hazard analysis on "ensuring that the bid quote
delivered is accurate" or "validating the number of shares entered by the user." A
telecommunications company might focus on the risk of "catastrophic software
failure of a switch."

In any case, a hazard analysis is used to decide what hazards you must prevent
in your system and the scope of the V&V activities necessary to ensure that you
prevent them. For those design issues are important to the overall safety, efficacy,
and success of the project, as documented in the hazard analysis, you should
provide a full set of V&V activities. For elements that are revealed to be of lesser
or inconsequential impact, you may consider omitting or reducing the V&V
activities, although comprehensive testing must still be done.

It's important to realize that the hazard analysis can be used to guide the
selection of the project elements that need verification. Independently of
verification, the hazard analysis can also guide the selection of tests and test
coverage for the validation activities. No rule states that verification must
faithfully track validation, so your team can feel free to use the hazard analysis
results to independently develop plans for verification as well as validation.

Hazard Analysis as Return on Investment (ROI)

Another way of looking at a hazard analysis and a risk assessment is to interpret
them as a standard cost/benefit analysis; use the hazard analysis results as input
to a standard return on investment (ROI) analysis.

Thus, you would develop estimates on the costs—in terms of time, resources, and
total dollars—for V&V activities on a particular element or segment of the project.
These costs could then be input into standard ROI economic models to get an
idea of the staged costs. Then, estimates could be made as to the potential
impact of negative consequences as previously identified in the hazard analysis
should a non-V&V element go wrong. After comparing the two analyses, you
could then make an informed judgment as to whether the V&V activities should
be performed and to what depth.

In many cases, the analysis will show that a clear-cut yes/no decision may be
overly simplistic. For example, it is far more typical for the analysis to show that
portions of the V&V for a segment may be very cost-effective and that other
portions may not be. In such cases, it is probably worth considering a modified
V&V strategy to optimize the return on the V&V investment.

We should be very clear that ROI calculations are on a different plane from safety
and efficacy analysis. For example, your hazard analysis may show that a human-
critical risk is at issue in a portion of the development and implementation of your
software. In such cases, it is simply unacceptable to ignore the human-safety
factors in lieu of a standard ROI calculation. You should always perform a full V&V
on those segments of the project that involve human-critical safety issues. In
other words, use ROI techniques if the only thing at issue is the financial costs of
your project. Use hazard analysis and risk assessment if safety and efficacy
issues are at stake. Use a combination of techniques, if appropriate.

Looking Ahead

Let's review where we are:

• We have established a way of looking at the requirements artifacts and
using them as the basis for the design and implementation of the system.

• We have applied verification techniques to ensure that every step of the
project is traced to the earlier steps.

• We described two validation processes—validation testing and acceptance
testing—that together help ensure that the implementation produces
workable systems.

• We have examined the techniques of risk assessment and hazard analysis
to help us decide where to spend our project resources in the most cost-
effective manner.

The only major issue left is the old bugaboo of change. We'll use the next chapter
to learn how to manage change and to handle it responsibly in our project
activities.

Chapter 34. Managing Change

Key Points

• A process to manage requirements can be useful only if
it recognizes and addresses the issue of change.

• Internal change factors include failing to ask the right
people the right questions at the right time and failing
to create a practical process to help manage changes
to requirements.

• In order to have a reasonable probability of success,
requirements leakage must be stopped or, at least,
reduced to a manageable level.

Why Do Requirements Change?

If it were possible to define a set of requirements for a system once and only
once, life would be much simpler, and there would be no need for this chapter.
We could simply create a perfect Vision document, software requirements
specification, and use-case model; freeze them for the duration of the
development effort; and then declare everything past that point to be the
responsibility of the maintenance team. Alas, things don't work that way; they
never did in the past, and even with a more systematic approach to requirements
management, they will not work that way in the future.

There are several reasons for the inevitability of changes to the requirements.
Some of these reasons are internal factors and may be under our control, but
many of them are external factors and are outside the control of the developers
and the users.

External Factors

External factors are those change agents over which the project team has no
control. No matter how we manage them, we must prepare ourselves technically,
emotionally, and managerially to be able to address these changes as part of the
"normal course of software development activity." Changes occur because:

• There was a change to the problem that we were attempting to solve with
the new system. Perhaps a change occurred in the economy, in
government regulations, or in the marketplace and consumer preferences.
Because of the fast pace of technology change, it is now more and more
likely that such changes will take place before we even finish solving the
original problem that the user described.

• The users changed their minds or their perceptions about what they
wanted the system to do. This, too, can occur for a number of reasons:
not only because users are fickle, particularly when specifying the details

of the human interface for their system, but also because their perceptions
are based on the marketplace, the economy, the state of government
regulations, and so on. Moreover, the identity of the users themselves
sometimes changes; for example, if the user who described the
requirements for the system leaves the customer's team, the replacement
is likely to be someone with an entirely different set of opinions and
perceptions.

• The external environment has changed, which creates new constraints
and/or new opportunities. One of the most obvious examples of
environmental change is the ongoing improvements in computer hardware
and software systems: If tomorrow's computers are 50 percent faster,
cheaper, and smaller and run more advanced applications than do today's
computers, they will likely trigger a change in the requirements for a
system. Back in the 1993–1994 time frame, hardly anyone anticipated the
Internet and the World Wide Web. The requirements for a wide range of
information systems—from word processors to customer information
systems to banking systems—are clearly quite different today from what
they were in the pre-Internet era.

• The new system comes into existence. One of the most insidious external
factors, and a prime factor in the "Yes, But" syndrome, is that the very
existence of a new system causes the requirements for the system itself to
change. As the organizational behavior evolves around the new system,
the old ways of doing things are no longer appropriate; the need for new
types of information emerge, and new requirements for the system
inevitably develop. Thus, the simple act of delivering a new system elicits
requirements for the new system!

As a practical matter, a process to manage requirements can be useful only if it
recognizes and addresses the issue of change. We can't prevent change, but we
can manage it.

Internal Factors

In addition to the external factors, a number of internal factors can contribute to
the problem of change.

• We failed to ask the right people the right questions at the right time
during the initial requirements-gathering effort. If our process does not
include all stakeholders or if we do not ask all the right questions of them,
we contribute to the change problem by simply not understanding the true
requirements for the system. In other words, there are far more
"Undiscovered Ruins" than necessary, and we are making significant
changes that could have been avoided had we developed a more
comprehensive understanding up front.

• We failed to create a practical process to help manage changes to the
requirements that would normally have happened on an incremental basis.
We may have attempted to "freeze" the requirements; thus, the "latent,"
necessary changes piled up until they created such pressure that they
inevitably exploded in the face of the developers and the users, causing
rework and stress. Or, perhaps, we created no change process at all,
thereby allowing, or even encouraging, people to change whatever they
wished whenever they wished. In this case, at some point, almost
everything is change, and you can no longer "see the forest for the trees."

Before we address these problems, however, let's look at a specific project and
see what other factors we can discover.

"We Have Met the Enemy, and They Is Us"

Weinberg (1995) notes that change can be insidious. In one project postmortem,
he compared the known requirements of the system at the end of the project to
those known at the beginning of the project. In so doing, he discovered a variety
of sources of requirements change. Some were "official," representing customer
requests made through the appropriate channels of communications, but many
were surprisingly "unofficial," or what Weinberg calls "requirements leakage":

• Enhancements mentioned by distributors who had been overheard by
programmers at a sales convention

• Direct customer requests to programmers
• Mistakes that had been made and shipped and had to be supported
• Hardware features that didn't get in or didn't work
• Knee-jerk change-of-scope reactions to competitors
• Functionality inserted by programmers with "careful consideration" of

what's good for the customer
• Programmers' "Easter Eggs"

Each of these sources may contribute only a small amount of change, but in
accumulation, unofficial sources contributed up to half of the total scope of one
project! In other words, half of the total work product of the system was invested
in requirements leakage, or requirements that entered the system without
visibility to the team members responsible for managing to schedule, budget, and
quality criteria.

How can a project manager accommodate change of this type and still meet the
schedule and quality criteria? It can't be done! In order to have a reasonable
probability of success, requirements leakage must be stopped or, at least,
reduced to manageable levels.

Programmers' Easter Eggs

Programmers' Easter Eggs are a particularly pathological form of requirements
leakage. An Easter Egg is a hidden behavior built into the system for debug
purposes, for the "fun of it," or, occasionally, for worse motives. In our
experience, Easter Eggs are extremely dangerous, and programmers must know
that to insert them is completely unacceptable and that doing so will subject the
offenders to dire consequences. Two painfully true cases follow.

1. A large military simulation system took a long time to execute, so the
programmers built in a background game of "Battleship" to amuse
themselves during the simulation. Unfortunately, they never took it
out; nor did its existence appear on any of the verification and
validation activities or reports. When it was discovered, the customer,
having lost confidence in the contractor, canceled the entire program:
a multimillion-dollar loss to the subcontractor and a serious detriment
to future business opportunities.

2. A junior programmer contributing to the development of a shrink-
wrapped software tool amused himself by building in derogatory error
messages in early stubs of error-recovery code. One such message
was accidentally left in and discovered by a customer in a formal
product training session. The software had to be repaired and
rereleased on an unplanned basis, causing the loss of critical team-
weeks to the company.

A Process for Managing Change

Clearly, given the fact that change is a natural part of the process and that
change will come from both external and internal sources, a process for managing
change is needed. Such a process puts the team in control so that it can
effectively discover change, perform impact analysis, and incorporate those
changes that are deemed to be both necessary and acceptable into the system in
a systematic manner. Building on Weinberg's recommendations, a process for
more effectively managing change must include the following steps.

1. Recognize that change is inevitable, and plan for it.
2. Baseline the requirements.
3. Establish a single channel to control change.
4. Use a change control system to capture changes.
5. Manage change hierarchically.

We'll look at each of these elements in more detail.

Step 1: Recognize that Change Is Inevitable, and
Plan for It

The first step is a simple one. The team must recognize that changing
requirements for the system is inevitable and even necessary. Some amount of
change will occur, and the team should develop an awareness of this issue and a
corresponding plan for managing change that should include some allowance for
change in the initial baseline.

As for the legitimacy of change, all (with the single exception of the Easter Egg),
can be considered legitimate in that they originate from a stakeholder who has
both a real need and the potential to add real value to the application.

For example, requests for changes from the development team are legitimate, as
that team knows more about the system than anyone else. Clearly, we hope and
expect that the developers will have a variety of suggestions on what the system
should do. Some of the "best" requirements come from the implementers who are
closest to the system; only they recognize what the system really can do. We
should encourage their input to the process, since the result will be a better
system for our users.

Step 2: Baseline the Requirements

Toward the end of the elaboration phase in the development cycle, the team
should baseline all known requirements for the system. The baselining process
may be as simple as putting version control on the pertinent artifacts—Vision
document, software requirements, and use-case models—and publishing the
baseline for the development team. The collection of itemized requirements in
these documents creates a baseline of information about the requirements and
anticipated use cases for the system.

This simple step gives the team the ability to distinguish between known, or
"old," requirements and new requirements, or those being added, deleted, or
modified and that can now be distinguished from the "baseline" of known
requirements. Once the baseline has been established, new requirements can be
more easily identified and managed. A request for a new requirement can be

compared against the existing baseline as to where it will fit in and whether it will
create a conflict with any other requirements; this is often something that users
overlook in their haste to respond to a change in their environment. And, if the
change is accepted, we can manage the evolution of that change from the vision
to the software requirements, from the software requirements to the appropriate
technical design documents and models, and then to the code and the test
procedures.

If this is done in an orderly, efficient, and responsive manner, the user
community is likely to be much more cooperative. In the past, users in many
organizations felt that they were being "stonewalled" by the technical
development community when they asked for a change; often, it was because the
team had a chaotic, inefficient process for making the changes or because it was
unable to describe the nature of that process to the users.

However, the fact that we can be responsive and efficient about making
requirements changes doesn't mean that we want to invite vast numbers of
frivolous changes. In the best of all worlds—from the perspectives of both the
users and the developers—life would be a lot simpler if we could create a single
set of stable, correct requirements. Even with a reasonably well-managed change
control process, there's a limit to the number of such changes that the developers
will be able to accommodate, especially during the design and implementation
stages of the project. It's typical, for example, to see requirements change at the
rate of 1%–4% a month during the course of development. However, when the
change rate exceeds 2 percent a month, the phenomenon of "requirements
churn" becomes a very serious risk to the customer's project.

Step 3: Establish a Single Channel to Control Change

Changes to a software system can be insidious. Although it should be obvious
that the existence of a new feature can cause significant impact to software
requirements, system architecture, test plans, and so on, all of us have also
experienced the case in which a "simple change" to code causes unanticipated
consequences, occasionally even catastrophic ones. In addition, one proposed
new feature might obviate, or make more difficult, an important future system
feature that is not even being implemented in this release. Also, there is that
thorny issue of the schedule and the budget for a project, the responsibility of the
management team. The customer's wish for a change cannot be assumed to
officially change the schedule and the budget, and a negotiation or budget-
reconciliation process must be initiated before a change can be approved.

Therefore, it is crucial that every change go through a single channel to
determine its impact on the system and to make the official decision as to
whether the change is going to be made in the system at all. In a small project,
this official channel can be the project champion or manager: the "owner" of the
Vision document and other requirements artifacts, someone who has an overall
understanding of the system requirements and design. Or, it can be someone else.

In larger systems or ones that affect a variety of stakeholders, this official
channel should consist of a few people (a Change Control Board, or CCB) who
share the responsibility and who, together, have the requisite authority and
technical competence to decide when a change request is officially approved. (We
briefly introduced this concept in Chapter 18.)

In any case, a change in the system should not be initiated until the change
control mechanism makes the change "official."

Step 4: Use a Change Control System to Capture
Changes

In a sense, it may be easiest to focus on the external, customer-requested
changes because they are most readily identified and will tend to naturally find
their way into the project via the project management or change control function.
However, during development, there will be a tremendous number and variety of
other types of potential changes to the system.

Indeed, many of the proposed changes that occur during the design, coding, and
testing of a system may appear be unrelated to requirements, involving
corrections to code- or design-level bugs. However, the impact must still be
assessed. And yes, as the deadline approaches, we must even make conscious
decisions about which bugs will be allowed to remain in the system—due to the
potential for the fix to destabilize the entire system and thereby jeopardize the
release date—and which ones will be removed. Also, many bugs may affect the
requirements, require interpolation between the requirements, or require
disambiguation of a known requirement.

In some cases, it won't even be obvious what kind of change is being requested.
This is particularly common when end users complain about problems after the
system has been developed or when the members of the "help desk" team pass
on their analysis of the user complaints to the technical developers. For example,
suppose the end user calls the help desk and complains, "I'm trying to enter a
new employee into my payroll system, but whenever I have an employee whose
first name is more than 16 characters, the program crashes." The fact that the
program crashes is presumably either a code-level bug or a design-level bug.
(Perhaps the operating system or the DBMS package was being invoked in an
illegal fashion.) But even if the program had produced a civilized error message
for such names, there may be a bug in the requirements; they may need to be
changed to allow employee names of up to 256 characters. In the extreme case,
this may even involve a "feature," because the marketing department may decide
that it can brag that its payroll system is the only one being marketed that will
now be able to handle 256-character employee names.

In any event, an analysis of the situation is required, along with a decision as to
where the change will be implemented in the hierarchy of documents that we've
discussed. Therefore, as Figure 34-1 illustrates, the team should implement a
formal method for capturing all requested changes to the system. This could be
accomplished through a change request and defect tracking system that provides
a centralized repository of such requests, web-based entry of items from any
physical location, automatic status tracking and trending, automatic notification
of affected parties, and a mechanism for promotion of change requests into the
requirements management system when appropriate. (We use the "firewall"
metaphor in Figure 34-1 to suggest that the process is controlled and attempts to
prevent uncontrolled wildfires of change from sweeping through the system.)

Figure 34-1 Change capture

The system should be used to capture all inputs and to transmit them to the
authority of the change control board (CCB) for resolution. The CCB plays a key
role in helping the project achieve success and should consist of no more than
three to five people who represent the key stakeholders for the project:
customers, marketing, and program management.

When considering whether to approve a change request, the CCB must consider
the following factors:

• The impact of the change on the cost and functionality of the system
• The impact of the change on customers and other external stakeholders

not well represented on the CCB: other project contractors, component
suppliers, and so on.

• The potential for the change to destabilize the system

When the decision is made, the CCB also has the responsibility to ensure that all
those affected by the change are notified, even if the decision is made not to
approve the change.

Once a change has been determined, the next step is to decide where to insert
the change. (For example, we need to determine whether to change a
requirement or to change a test being proposed.) Subsequent changes will ripple
through in the hierarchy, as shown in Figure 34-2.

Figure 34-2 Change request flow

Step 5: Manage Change Hierarchically

The fact that all of these people are interested in making changes to the
requirements is not intrinsically bad; aside from the Easter Egg phenomenon, we
could even imagine that all of these changes are beneficial. But the fact that the
changes might not be documented or analyzed is a problem, and if they're not
managed carefully, disaster can occur. A change to one requirement can have a
"ripple effect" in other related requirements, design, or other subsystems; further,
this fact may not be obvious to the marketing representative, who casually asks
the programmer to make a "quick and easy" change to the system.

But the problem is even worse, for without an explicit process, the changes
typically occur in a "bottom-up" fashion. That is, if the change is envisioned while
the code is being written for a new system, it's typically introduced directly into
the code itself. If the developers are extremely disciplined, they might then ask
themselves, "Hmmm, I wonder whether the changes we're making to the code
will cause any changes in the design. And do the design-level changes have an
impact on the requirements? And do the changes to the software requirements
have any impact on the Vision document?" (Meanwhile, nobody remembers to tell
any of this to the testing team, whose members thought that they were supposed
to be creating test plans for the original software requirements!)

In theory, it's possible to manage this "backward" ripple-effect phenomenon if all
of the respective documents are under the control of a sophisticated software
tools environment. But even if all the documents are kept synchronized, the kind
of bottom-up changes to the requirements that we've been discussing here are
still undesirable. To be blunt: A programmer doesn't have the authority to
introduce new features and requirements directly into the code on the user's
behalf, no matter how well intentioned. Similarly, the marketing representative
who makes a casual request of the programmer for such a change, while they're
both sipping a beer at the neighborhood brewpub, is not acting in an official
capacity. Every new feature/requirement has an impact on the cost, schedule,
reliability, and risk associated with the project.

In order to mitigate this ripple effect, changes to the requirements should be
carried out in the top-down hierarchical fashion shown in Figure 34-3. As
discussed earlier in this book, changes to a baseline Vision document can be
documented in a separate "Delta" document, which is normally a very small
subset of the original document. However, since the Vision document changes
may stipulate the deletion of features, we may need to regenerate a completely
new baselined set of software requirements, and that can lead to appropriate
changes in the design, the code, and the test plans.

Figure 34-3 Hierarchical ripple effect

If we have followed the processes in this book and have reasonable support from
our tool environment, the downward "ripple effect" will be highlighted by the
traceability mechanism we used in building our requirements pyramid. This allows
us to work downward through the pyramid, making further changes as necessary.
Each subsequent change, in turn, highlights additional "suspect links," or places
lower in the pyramid where additional analysis needs to occur.

Thus, change is a controlled "brushfire," and we can proceed logically through the
hierarchy. In addition, if we've done a good job of encapsulating the systems and
subsystems and have used a well-structured requirements strategy, changes
should be limited to the areas directly linked to the requirements that have
changed.

For example, Figure 34-4 shows a traceability report for HOLIS that resulted
when a change was made; two features, FEA3 and FEA5, indicate traceability
links that the automated tool has marked as suspect. These suspected impacts
resulted from proposed changes to the two features. You need to review SR3 and
SR4 for possible interactions as a result of the changes proposed by FEA3 and
FEA5. In turn, possible revisions to SR3 and SR4 may ripple down into the
implementation, and so on. We will explore this issue again later in this chapter.

Figure 34-4 Impact analysis by traceability link

Requirements Configuration Management

Some elements of the preceding change review and approval process are referred
to as "change control," "version control," or configuration management (CM) in
some organizations. Interestingly, most organizations have a reasonably rigorous
process for configuration management of the source code produced during the
implementation lifecycle phase of a project, but no corresponding process for the
project requirements. Even if the organization does have a formal process for
generating the Vision document and software requirements, it often ignores the
many requirements-oriented changes that creep into the project during the
coding phase.

However, in today's modern tool environments, it's a reasonably straightforward
matter to have all elements of the requirements hierarchy under configuration
management (see Figure 34-5).

Figure 34-5 Requirements configuration management
overview

The benefits of a CM-based requirements management process should be obvious
by now, but let's review them briefly. Such a process

• Prevents unauthorized and potentially destructive or frivolous changes to
the requirements

• Preserves the revisions to requirements documents
• Facilitates the retrieval and/or reconstruction of previous versions of

documents
• Supports a managed, organized baseline "release strategy" for

incremental improvements or updates to a system
• Prevents simultaneous update of documents or conflicting and

uncoordinated updates to different documents at the same time.

Tool-Based Support for Change Management

In this recap of previous sections, we offer a practical approach for change
management, assuming that you have a set of tools to support this effort. If you
choose to use your own manual techniques, portions of this section may not be
applicable, but the overall ideas are worth reviewing nonetheless.

Change management practices help you to understand and manage these
important project development aspects:

• If a single product feature is proposed for a change, what are the work
consequences of that change? In other words, change management helps
you determine the amount of rework that may be required. The amount of

work to effect a change may have significant impact on your project
resource planning and workload planning.

• If an element is proposed for a change, what are the other elements of the
system that may be impacted by the change? This topic is of key concern
both to your project planning and to your customer.

• Active projects inevitably take wrong turns. It is certain that your project
will arrive at a point at which you would like to be able to "roll back" a
requirement and to examine a previous revision of the requirement. In
addition, it would be helpful to remember how and why the requirement
was changed. In other words, an audit trail of each requirement is
valuable and may even be mandated by regulatory agencies as part of the
design process.

Elements Impacted by Change

After establishing the traceability relationships for your project, you should use
the traceability linkages as a tool for change management. In the case of HOLIS,
for example, suppose that we need to change the wording of FEA5 ("Vacation
settings") in Figure 34-6 to reflect a revised statement of the product feature.
Note the diagonal lines through the traceability arrows in the row for FEA5. These
lines, the "suspect links," are intended to warn you that changing the feature may
have an impact on SR1 and SR3 and that you should therefore review them.

Figure 34-6 Abbreviated traceability matrix after FEA5
was altered

As the project evolves, changes inevitably will be proposed for various aspects of
the project: the top-level Vision document, through specification, implementation,
and testing. Whenever a change occurs, you should use the suspect links to warn
you of possible relationships affected by the change. Your change management
activities usually will involve one of two steps.

1. If the change to the feature does not impact a requirement, you need only
clear the suspect link. Note that subsequent later changes to the feature
may again set the suspect link.

2. If the feature does impact a requirement, you may need to rework the
affected element. For example, the proposed change to the feature may
require a respecification of another requirement. After editing it, you will
discover that additional suspect links now warn you of the potential
interactions linked to changing it. Then, those interactions will need to be
examined for changes, and so on.

Change management capability must exist throughout multiple levels of
traceability relationships. That is, changing a feature entry in the Vision document
may impact several software requirements in the SRS and/or selected use cases,
which may, in turn, impact several implementation units, which may, in turn,
impact one or more test plans. You should also track the traceability linkages
bidirectionally. For example, changing a test plan specification may cause you to
look back to the implementation units for potential impact. In turn, changing an
implementation unit may require a reinspection of affected software requirements
and may even require a reinspection of the top-level features, which are
ultimately linked via the traceability relationships you established.

Audit Trail of Change History

You will also find it beneficial to maintain an audit trail of changes, especially
changes made to individual requirements. With tool support, you should be able
to manage each requirement separately, regardless of the document or model it's
in. Thus, changes you make to each requirement will be captured automatically
by your tool and can be recalled for later inspection and review.

The change history should capture the current statement of the requirement,
including the current values of all of the requirement's attributes. By capturing all
such parameters, you can use the history as a concise overview of the
requirement.

The change history also allows you to view a chronological history of all prior
changes to the requirement, including its attributes. The tool should automatically
capture all changes to the text of the requirement, as well as changes to the
values for the requirement's attributes.

Whenever the tool detects a change, the background for the change should be
automatically captured. In addition, the tool should include an automatic capture
of the change's author and the date and time of the change. Then, at any future
time, the chronology of the change and the change author can be viewed as part
of the history record.

The tool should also allow you to enter a change description to document the
change. Typically, you might enter a sentence or two to explain why the change
was made, make references to project memos regarding the change, and so on.
Documenting the change will provide a satisfactory rationale and cross reference
so that later inspection of the history can adequately recall the motivation for the
change. This will be a key element in any regulatory or project review of those
changes that affect the claims, efficacy, and safety of the device and its software.

Figure 34-7 shows a printout of a partial SRS requirement history (SR4.4). Note
that the change history is arranged in reverse chronological order and records

changes to both the text (change 1.0001 versus 1.0000) and the values of
selected attributes.

Figure 34-7 SR4.4 change history

Text changes can be very tiny, such as a change in punctuation, or, as in the case
of SR4.4, a major revision. Nevertheless, any change is a change and should be
logged appropriately by the change management tool.

Configuration Management and Change
Management

A change history should exist at three levels within your project.

1. At the finest level of detail, the change history records all changes to each
individual requirement within the project. This is the level of detail
exhibited in Figure 34-7.

2. At a middle level of detail, you should automatically maintain a similar
change history for each project document. Document-level history is
typically maintained by your source code control system or document
control system.

3. At the most general level of detail, you should automatically maintain a
similar change history for the entire project. Both the project and the
archives can be fully integrated into a configuration management system.

In other words, you need a set of tools providing a fully automatic,
comprehensive, and seamless integration to common applications that will assist
you in the configuration management tasks involved in running a large software
development project.

Summary

Although requirements will change during project development, change itself
need not destabilize the development process. With a comprehensive change
control process in place and with requirements artifacts placed under the control
of the development team's configuration management system, the team will be
well prepared for the key requirements challenge of managing change.

It is important to realize that managing change in a large project is usually too
big to handle by manual methods. Yes, you need a process to control the manner
in which change enters the project. However, we have found it to be a formidable
task to attempt to understand the ramifications of the change without tools that
help you find all of the affected elements of the project.

Team Skill 6 Summary

Team Skill 6, Building the Right System, completes the transition from
understanding the problem to implementing the solution system.

Designing and implementing the correct system is tough. One useful technique is
to use the requirements and the use cases to drive the implementation
architecture and design. We also learned about verification, an analytic approach
that constantly monitors the evolution of the project's features, requirements,
design, and implementation. Verification is supported by the use of traceability
techniques to relate parts of your project to one another.

Traceability techniques allow you to make certain that everything required for the
project is present and accounted for. Also, the same techniques allow you to
ferret out unnecessary or superfluous items that will only bog down your
development efforts in useless side roads. Although verification is an analytical
technique, it is important to remember that thinking is important. You can't
simply apply the verification techniques mechanically.

Validation is the other half of the V&V approach to ensuring that the system is
built correctly. Validation uses testing activities and traceability techniques to
ensure that the system conforms to its requirements. Acceptance testing is then
applied to ensure that the system works as intended in the customer's
environment and that it really does solve the customer's problem.

You may also need to apply hazard analysis and risk analysis to help you decide
which portions of your system need verification and validation and in what
amounts. Your investments in these activities should be controlled by your return
on investment (ROI) analysis.

Finally, a critical feature of building the right system is the matter of managing
change. Change is a way of life; we can plan for change and manage it. Managing

change helps us make sure that the system we built is the right system and,
moreover, that it continues to be the right system over time.

With the completion of Team Skill 6, we are ready to move to the last
chapter.Chapter 35 is intended to help you apply the skills you have learned and
to help you get off to a good start on your next project.

Dedication

Over the course of many years, we and others who have contributed to this book
have taught, and have been taught by, thousands of students interested in
requirements management. As you are aware, there is no one right way to
perform requirements management; no one single elicitation technique applies in
every circumstance; no one single process fits all teams. Projects have varying
degrees of scope and complexity. Application types vary tremendously and come
from many different industries.

Yes, requirements management is a very broad topic and also very deep. A
recurring theme from the classroom is that students feel the need to have a more
prescriptive process—a recipe, if you will—for applying what they learned in class.
"You've told us too much," our students might say. "Just give us a single generic
process that we can start with," they continue. "We know it's not that simple, but
we'll be happy to modify it as necessary for our project, but we need a more
prescriptive starting point, a step-by-step process so that we can better apply
what we learned. Just tell me how to get started!"

OK, you've got it. This chapter is dedicated to these students, and to those of you
who share their point of view and this common "user need."

What We've Learned So Far

Before we can kickstart your project requirements process, however, we need to
summarize what we've learned in the book.

Introduction

In the introductory chapters, we learned that our industry often does a poor job
of delivering quality applications on time and on budget. Some of the root causes
of this problem are also clear. Lack of user input, incomplete requirements and
specifications, and changing requirements and specifications are commonly cited
problems in projects that failed to meet their objectives.

Perhaps developers and customers alike have a common attitude that "even if
we're not really sure of the details of what we want, it's better to get started with
implementation now, because we're behind schedule and in a hurry. We can pin
down the requirements later." But all too often, this well-intentioned approach
degenerates into a chaotic development effort, with no one quite sure what the
user really wanted or what the current system really does.

How do we know what the system is supposed to do? How do we keep track of
the current status of requirements? How do we determine the impact of a change?
To address these issues, we recommend an encompassing philosophy of
requirements management, which we defined as

a systematic approach to eliciting, organizing, and documenting the requirements
of the system, as well as a process that establishes and maintains agreement
between the customer and the project team on the changing requirements of the
system.

Since the history of software development—and the future for at least as far as
we can envision it—is one of ever increasing complexity, we also understand that
the software development problem must be addressed by well-structured and
well-trained software teams. Every team member will eventually be involved in
helping manage the requirements for the project. These teams must develop the
requisite skills to understand the user needs, to manage the scope of the
application, and to build systems that meet these user needs. The team must
work as a team to address the requirements management challenge.

Team Skill 1: Analyzing the Problem

In Team Skill 1, we introduced a set of skills that your team can apply to
understand the problem to be solved before application development begins. We
introduced a simple, five-step problem analysis technique that can help your
team gain a better understanding of the problem to be solved.

1. Gain agreement on the problem definition.
2. Understand the root causes of the problem.
3. Identify the stakeholders and the users whose collective judgement will

ultimately determine the success or failure of your system.
4. Determine where the boundaries of the solution are likely to be found.
5. Understand the constraints that will be imposed on the team and on the

solution.

All in all, following this process will improve your team's ability to address the
challenge ahead, providing a solution to the problem to be solved.

We also noted that a variety of techniques can be used in problem analysis.
Specifically, we looked at business modeling, a specific problem analysis
technique that works quite well in complex information systems that support key
business infrastructures. The team can use business modeling to both understand
the way in which the business evolves and to define where within the system we
can deploy applications most productively. We also recognized that the business
model we defined will have parallel constructs in the software application, and we
use this commonality to seed the software design phases. We will also use the
business use cases we discovered again later to help define requirements for the
application itself.

For the embedded-system software applications, we used systems engineering as
a problem analysis technique to help us decompose a complex system into
subsystems. This process helps us to understand where software applications
should lie and what overall purpose they serve. In so doing, we also learned that
we complicate the requirements matter somewhat by defining new subsystems,
for which we must, in turn, come to understand the requirements to be imposed.

Team Skill 2: Understanding User Needs

We started Team Skill 2 by introducing three "syndromes" that increase the
challenge of understanding the real needs of users and other stakeholders. The
"Yes, But," the "Undiscovered Ruins'" and the "User and the Developer"

syndromes were used as metaphors to help us better understand the challenge
ahead and to provide a context for the elicitation techniques that we developed in
this Team Skill.

We also recognized that since we rarely have been given effective requirements
specifications for the systems we are going to build, in order to do a better job of
building these systems, we are going to have to go out and get the information
we need to be successful. Requirements elicitation is the term we used to
describe this process, and we concluded that the team must play a more active
role in this process.

To help the team on this mission, we then presented a variety of techniques for
addressing these problems and better understanding the real needs of users and
other stakeholders. These techniques were

• Interviewing and questionnaires
• The requirements workshop
• Brainstorming and idea reduction
• Storyboarding
• Use cases
• Role playing
• Prototyping

Although no one technique is perfect in every circumstance, each represents a
proactive means of pushing knowledge of user needs forward and thereby
converting "fuzzy" requirements to requirements that are "better known."
Although all of these techniques work in certain circumstances, we did admit to a
favorite: the requirements workshop/brainstorming technique.

Team Skill 3: Defining the System

In Team Skill 3, we moved from understanding the needs of the user to starting
to define the solution. In so doing, we took our first baby steps out of the
problem domain, the land of the user, and into the solution domain, wherein our
job is to define a system to solve the problem at hand.

We also learned that complex systems require comprehensive strategies for
managing requirements information, and we looked at a number of ways to
organize requirements information. We recognized that we really have a
hierarchy of information, starting with user needs, transitioning through features,
then into the more detailed software requirements as expressed in use cases or
traditional forms of expression. Also, we note that the hierarchy reflects the level
of abstraction with which we view the problem space and the solution space.

We then "zoomed in" to look at the application definition process for a stand-
alone software application and invested some time in defining a Vision document
for such an application. We maintain that the Vision document, with modifications
to the particular context of a company's software applications, is a crucial
document and that every project should have one.

We also recognized that without someone to champion the requirements for our
application and to support the needs of the customer and the development team,
we would have no way to be certain that the hard decisions are made.
Requirements drift, delays, and suboptimum decisions forced by project deadlines
are likely to result. So, we decided to appoint someone or to anoint someone to

own the Vision document and the features it contains. In turn, the champion and
the team will empower a change control board to help with the really tough
decisions and to ensure that requirements changes are reasoned about before
being accepted.

Team Skill 4: Managing Scope

In Team Skill 4, we learned that the problem of project scope is endemic. It is not
unusual that projects are initiated with twice the amount of functionality that the
team can reasonably implement in a quality manner. We shouldn't be surprised
by this, as it is the nature of the beast: Customers want more, marketing wants
more, and the team wants more. We just need to make sure that we can deliver
something on time.

In order to manage scope, we looked at various techniques for setting priorities,
and we defined the notion of the baseline, an agreed-to understanding of what
the system will do, as a key project work product. We learned that if scope and
the concomitant expectations exceed reality, in all probability, some bad news is
about to be delivered. We decided on a philosophy of approach that engages our
customer in the hard decisions. After all, we are just the resources, not the
decision makers; it's our customer's project. So, the question is, What, exactly,
must be accomplished in the next release, given the resources that are available
to the project?

Even then, we expect to do some negotiating. We briefly mentioned a few
negotiation skills and hinted that the team may need to use them on occasion.

We cannot expect that the process described so far will make the scope challenge
go away, any more than any other single process will solve the problems of the
application development world. However, the steps outlined can be expected to
have a material effect on the scope of the problem, allowing application
developers to focus on critical subsets and to incrementally deliver high-quality
systems that meet or exceed the expectations of the user. Further, engaging the
customer in helping solve the scope management problem increases commitment
on the part of both parties and fosters improved communication and trust
between the customer and application development teams.

With a comprehensive project definition, or Vision document, in hand and scope
managed to a reasonable level, we at least have the opportunity to succeed in the
next phases of the project.

Team Skill 5: Refining the System Definition

In Team Skill 5, we learned that requirements are the key communication
technique to capture the user's needs in such a way that the developer can
develop a system to meet those needs. In addition, requirements need to have
sufficient specificity so that we can tell when they have been met. We needn't be
alarmed by this, as it is often our team members—after all, we are closest to the
project—who can provide this specificity. This is one of our opportunities to make
sure that the right system gets defined.

These requirements can be organized and documented in a variety of ways. We
focused on what we called a Modern SRS Package, a logical construct that allows
us to document requirements in use cases, documents, database forms, or other
techniques. Although we made some suggestions on how to organize this

package, we don't really care what form it takes, so long as it contains the right
things.

All development should flow from the requirements specified in the Modern SRS
Package. Nothing should be developed outside this package, and all specifications
in the package should be reflected in the development activities. Since these are
the governing elements, it follows that all activities, such as regulatory
constraints, should reflect the package and vice versa. The Modern SRS Package
is a living package that should be reviewed and updated throughout the lifetime
of the project. The package should specify what functions are to be accomplished,
not how they are to be accomplished. The Modern SRS Package should be used to
specify functional requirements, nonfunctional requirements, and design
constraints.

We also provided a set of quality measures for assessing the quality of your
package and the various elements contained therein. Where necessary, the
requirements documentation may be supplemented by one or more formal, or
more structured, methods of specification. The Modern SRS Package provides the
detail you need to proceed to implement, or build, the right system.

Team Skill 6: Building the Right System

Designing and implementing the correct system is the biggest job of all. One
useful technique is to use the requirements and use cases to drive the
implementation architecture and design.

Verification is an analytic approach that allows you to constantly monitor the
evolution of the project's features, requirements, design, and implementation.
Verification is supported by the use of traceability techniques to relate parts of
your project to one another. By using traceability, you can verify that

• All project elements are accounted for, and
• All project elements have a purpose

Although verification is an analytical technique, it is important to remember that
thinking is important. You can't simply apply the verification techniques
mechanically.

Validation, the other half of the V&V approach to ensuring that the system is built
correctly, focuses on testing and uses traceability techniques to select system
components that will require testing. As in verification, we use the validation
techniques to ensure that

• All project elements are properly tested
• All tests have a useful purpose

You may also need to apply hazard analysis and risk analysis to help you decide
which portions of your system need verification and validation, and in what
amounts.

We also described how periodic acceptance testing could help keep our projects
on track.

Finally, building the right system also depends on managing change. We learned
that change is just part of life, that we must plan for change and develop a

process whereby we can manage it. Managing change helps us make sure that
the system we built is the right system and, moreover, that it continues to be the
right system over time.

Your Prescription for Requirements Management

With this little refresher course behind us, we can now proceed to
provide a prescription. However, if we are going to oversimplify the
prescription, as is necessary to manage our level of abstraction—
and to help us manage the scope of the prescription—we must first
make some simplifying assumptions. These will help us
communicate more clearly what type of system the prescription can
be applied to and also helps manage your expectations for what the
prescription can deliver as well.

Simplifying Assumptions

• The followers of the prescription have read and understood
the book and/or received some training reasonably consistent
with the methodology in this book.

• The application being described is a single, stand-alone
application, not a system of subsystems or a much larger-
scope project. Also, there are no contractual requirements for
documents in a specific format.

• The team size is small to moderate, perhaps 10–30 members.
• The software is being designed for use by others: an external

customer who is fairly readily available to the team.
• It's a new application, so the team can "start from scratch" in

building the project.
• The team will use modern software methods and they are

familiar with the basic concepts of use cases and iterative
development.

• The team has reasonable tool support, including requirements
management tools, modeling tools, and a change request
system and change management tools.

The Recipe
Step 1.

Understand the Problem Being Solved

a. Execute the five-step problem analysis process.
1. Gain agreement on the problem being solved.
2. Understand the root cause, if applicable to your

situation.
3. Identify the stakeholders and users, or actors, in

your system.

4. Define the system boundary.
5. Identify constraints imposed on the solution.

(Use Team Skill 1 as a guideline for your work.)

b. Circulate the problem statement to external
stakeholders and insist that you gain agreement on the
problem statement before moving forward.

Step 2.

Understand User Needs

a. Create a structured interview, using the generic
template from Team Skill 2, pertinent to your
application.

b. Interview 5–15 users/stakeholders identified in Step 1.
c. Summarize the interviews by aggregating the top 10–15

user needs, or use the "pithy quote approach"; that is,
document 10 or 15 particularly memorable stakeholders
quotes that reflect their needs in their own words.

d. Use the quotes or the restated needs to start your
requirements pyramid. Start requirements traceability
now.

e. Facilitate a requirements workshop for your project. Use
"out-of-box" and "in-box" warm-up papers (use "in-box"
data from item c).

1. Run a brainstorming session to identify/refine
features.

2. Perform idea reduction and feature prioritization.
3. Use the critical, important, and useful

classification.
f. Rerun the workshop once or twice a year to provide a

format for ongoing structured customer input.
g. Create storyboards for all innovative concepts. Present

them and show an appropriate set of use cases to your
users to make sure you get it right.

h. Try to make sure that your process yields at least one
user prototype system to evaluate, which the users can
test in their environment.

Step 3.

Define the System

a. Adopt the Vision document concept and create a
template to suit your project's needs.

b. Create a product position statement. Circulate it widely
and make sure that you have agreement. If you don't
have it, stop and get it. Make sure that your customer is
in agreement.

c. Enter all features identified in step 2 and through other
inputs, such as development, help desk, and marketing,
in the Vision document. Trace them back to user needs.
Use attributes of priority (critical, important, useful),
risk (H, M, L), effort (team-months), stability (H, M, L),
and Release (v1.0 and so on). Also define the general
requirements (licensing, documentation, legal and
regulatory, and so on) in the Vision document.

d. Develop illustrative use cases in the Vision document's
Appendix so the features in the Vision document can be
understood by all.

e. Make the Vision document be the living document for
your project. Publish it for easy access and review.
Make the owner of the document, by default, the official
channel for changing features. Use a Delta Vision
document going forward. Addict your company to
having a current Vision document at all times.

Step 4.

Continuously Manage Scope and Manage Change

a. Based on effort estimates from the team, determine the
baseline for each release in the Vision document, using
an attribute of "version number."

b. Get customer agreement on scope. Help the team make
the hard scope decisions and get the decisions behind
you.

c. Preach and teach iterative development. Communicate
and manage expectations everywhere.

d. Manage change by using the baseline. Use the Delta
Vision document to capture all new features that arise
through the normal course of events. Make sure that all
suggested features are recorded so that none are lost.
Empower a change control board to make the hard
decisions.

e. Install a change request management system to capture
all requests for change, and ensure that all requests go
through that system to the change control board.

Step 5.

Refine the System Definition

a. Mandate that there shall be, at all times, a software
requirements specification—using the Modern SRS
Package organizational structure—that defines the
complete set of functional and nonfunctional behaviors
of the product. Develop detailed use cases for core
functionality of the system.

b. Have the development team or test team adopt and
manage this workload. Assist them with training and
find them help if they need it. Use formal analysis
methods only where you cannot afford to be
misunderstood.

c. Trace requirements to and from use cases and features.
d. Also, make sure that you define all of the nonfunctional

requirements for your system. The template you use
should prompt you to make sure that you have asked
the right questions.

Step 6.

Build the Right System

a. Perform a hazard analysis (risk assessment) to
determine what things you can't afford to have go
wrong in the implementation. Develop a verification and
validation plan, based on these results.

b. Engage the test department in the requirements
management challenge now. Have testers involved in
test planning from the beginning. Have the test team
build test procedures and test cases that trace back to
the use cases, as well as functional and nonfunctional
requirements.

c. If you have an independent QA department, have it
assume a role in the monitoring and assessment of the
requirements process and the V&V plan.

d. Rely on the use cases and use-case realizations in the
design model to integrate design elements with the
requirements. Use inferred traceability through the use-
case realizations for impact assessment as change
occurs.

e. Provide periodic acceptance testing milestones to
validate your work and ensure your customer's
continuous involvement.

Step 7.

Manage the Requirements Process

a. The champion should personally maintain responsibility
for the Vision document, have weekly reviews with the
team to assess status, and set up default reports and
queries to assist this effort.

b. Monitor the software requirements specification process
to make sure that the vision is properly fulfilled in the
detailed requirements.

c. Engage QA to help monitor the requirements
maintenance, change management, and test processes.

d. Lead the change control review process (CCB) and make
certain that impact assessment is done before
significant changes are allowed into the system.

Step 8.

Congratulations! You've Shipped a Product!

Now, On to the Next Release!

Congratulations! You and your team have shipped a quality, albeit scope-
managed, first release of your new system. You did it with quality and even a
little style, and you got to spend the year-end holidays at home with your family.
And your customers are happy. OK, they are not ecstatic; many of them were
hoping for more. But they are still your customers, and they eagerly await the
next release.

a. Go back to (about) step 2(e)! and build the next iteration of your system.

By the way, don't forget to have some fun! Building great products and systems
is a blast! We love this business!

Appendix A. HOLIS Artifacts

Note

This case study, including the names of the company, the participants, and the
invented product, is entirely fictional.

Background of the Case Study

Lumenations, Ltd.

Lumenations, Ltd., has been a worldwide supplier of commercial lighting systems
for use in professional theater and amateur stage productions for more than 40
years. In 1999, its annual revenues peaked at approximately $120 million, and
sales are flattening. Lumenations is a public company, and the lack of growth in
sales—no, worse, the lack of any reasonable prospect for improving growth in
sales—is taking its toll on the company and its shareholders. The last annual
meeting was quite uncomfortable, as there was little new to report regarding the

company's prospects for growth. The stock climbed briefly to $25 last spring on a
spate of new orders but has since crept back down to around $15 a share.

The theater equipment industry as a whole is flat, and there is little new
development. The industry is mature and already well consolidated, and since
Lumenations' stock is in the tank and its capitalization is only modest, acquisition
is not an option for the company.

What's needed is a new marketplace, not too remote from what the company
does best, but one in which there is substantial opportunity for growth in revenue
and profits. After conducting a thorough market research project and spending
many dollars on marketing consultants, the company has decided to enter a new
market, that of lighting automation for high-end residential systems. This market
is apparently growing at 25%–35% a year. Even better, the market is immature,
and none of the established players has a dominant market position.
Lumenations' strong worldwide distribution channel will be a real asset in the
marketplace, and the distributors are hungry for new products. Looks like a great
opportunity.

The HOLIS Software Development Team

The project for the case study is the development of HOLIS, our code name for an
innovative new HOme LIghting automation System to be marketed by
Lumenations. The HOLIS team is typical in terms of its size and scope. For the
purposes of our case study, we've made it a fairly small team, only 15 team
members, but it's large enough that all of the necessary skills can be fairly
represented by individuals with some degree of specialization in their roles. Also,
it's the structure of the team that's most important, and by adding more
developers and testers, the structure of the HOLIS team scales well to a size of
30–50 people and commensurately larger software applications than HOLIS will
require.

To address the new marketplace, Lumenations has set up a new division, the
Home Lighting Automation Division. Since the division and the technology are
mostly new to Lumenations, the HOLIS team has been assembled mostly from
new hires, although a few team members have been transferred from the
Commercial Automation Division. Figure A-1 is an organization chart showing the
development team and the relationships among the team members.

Figure A-1 Lumenations software team organization

Team Skill 1: Analyzing the Problem

Lumenations Problem Statement

The team decided to develop three problem statements, one of which seemed to
state the obvious problem from the company's perspective.

For Lumenations
The problem
of

slowing growth in the company's core professional theater
marketplaces

Affects the company, its employees, and shareholders.
The result of
which

is unacceptable business performance and lack of substantive
opportunities for growth in revenue and profitability.

Benefits of new products and a potential new marketplace for the company's
products and services would include

 • Revitalizing the company and its employees

 • Increased loyalty and retention of the company's
distributors

 • Higher revenue growth and profitability

 • Upturn in the company' stock price

The team also decided to see whether it could understand the "problem" that the
existing solutions offered to the marketplace from the perspectives of both a
future customer (end user) and potential distributors/builders (Lumenations'
customers). Here's what the team came up with.

For the
Homeowner

The problem
of

the lack of product choices, limited functionality, and high cost of
existing home lighting automation systems

Affects the homeowners of high-end residential systems.
The result of
which

is unacceptable performance of the purchased systems or, more
often than not, a decision "not to automate."

Benefits of the "right" lighting automation solution could include
 • Higher homeowner satisfaction and pride of ownership

 • Increased flexibility and usability of the residence

 • Improved safety, comfort, and convenience

For the
Distributor

The problem
of

the lack of product choices, limited functionality, and high cost of
existing home lighting automation systems

Affects the distributors and builders of high-end residential systems.
The result of
which

is few opportunities for marketplace differentiation and no new
opportunities for higher-margin products.

Benefits of the "right" lighting automation solution could include
 • Differentiation

 • Higher revenues and higher profitability

 • Increased market share

System Block Diagram with Actors Identified

Figure A-2 identifies the actors in this case study. Figures A-3, A-4, and A-5 show
the subsystem block diagrams.

Figure A-2 Actors in the HOLIS case study

Actor Survey
Item Name Comments

Lights and other Output devices, lights and dimmer controls, others TBD
Homeowner/
programmer

Homeowner programs direct to CCU or through
programmer PC

Emergency Receiver Unknown; under investigation
Resident Homeowner using Control Switch to change lighting
Lumenations
Services

Lumenations employees supporting remote programming
and maintenance activities

Figure A-3 Control Switch block diagram, with actors

Figure A-4 Central Control Unit subsystem, with actors

Figure A-5 PC programmer subsystem, with actors

Stakeholder Survey

HOLIS has a number of nonactor stakeholders, both external and internal.

Item Name Comments
External
Distributors Lumenations' direct customer
Builders Lumenations' customer's customer: the general

contractor, responsible to the homeowner for the end
result

Electrical contractors Responsible for installation and support
Internal
Development team Lumenations' team
Marketing/product
management

Will be presented by Cathy, product manager

Lumenations general
management

Funding and outcome accountability

Constraints to Be Imposed on the Solution

Over a period of 45 days at the beginning of the product development effort, the
HOLIS development team and Lumenations management identified, discussed,
and agreed on the following constraints.

ID Description Rationale
1 A version 1.0 initial product release would be

released to manufacturing by January 5,
2000.

The only product launch
opportunity this year.

2 The team would adopt UML modeling, OO-
based methodologies, and the Unified
Software Development Process.

We believe these technologies
will provide increased
productivity and more robust
systems.

3 The software for the Central Control Unit and
PC programmer would be written in C++.
Assembly language would be used for the
Control Switch.

For consistency and
maintainability; also, the team
knows these languages.

4 A prototype system must be displayed at the
December Home Automation trade show.

To take distributors' orders for
Q1 FY 2000.

5 The microprocessor subsystem for the Central
Control Unit would be copied from the
Professional Division's advanced lighting
system project (ALSP).

An existing design and an
inventoried part.

6 The only homeowner PC programmer
configuration supported would be Windows 98
compatible.

Scope management for release
1.0.

7 The team would be allowed to hire two new
full-time employees after a successful
inception phase, with whatever skill set was
determined to be necessary.

Maximum allowable budget
expansion.

8 The KCH5444 single-chip microprocessor
would be used in the Control Switch.

Already in use in the company.

9 Purchased software components were
permissible, so long as there was no
continuing royalty obligation to the company.

No long-term cost-of-goods-
sold impact for software.

Team Skill 2: Understanding User Needs

Summary of User Needs as Collected from
Interviews

Three homeowners, two distributors, and one electrical contractor were
interviewed.

From the homeowner's perspective:

• Flexible and modifiable lighting control for entire house
• "Futureproof" ("As technology changes, I'd like compatibility with new

technologies that might emerge.")
• Attractive, unobtrusive, ergonomic

• Fully independent and programmable or (reconfigurable) switches for each
room in the house

• Additional security and peace of mind
• Intuitive operation ("I'd like to be able to explain it to my 'technophobic'

mother.")
• A reasonable system cost, with low switch costs
• Easy and inexpensive to fix
• Flexible switch configurations (from one to seven "buttons" per switch)
• Out of sight, out of mind
• 100% reliability
• Vacation security settings
• Ability to create scenes, such as special housewide lighting settings for a

party
• No increase in electrical or fire hazard in the home
• Ability, after a power failure, to restore the lights the way they were
• Program it myself, using my own PC
• Dimmers wherever I want them
• Can program it myself, without using a PC
• Somebody else will program it for me
• If system fails, I still want to be able to turn some lights on
• Interfaces to my home security system
• Interfaces to other home automation (HVAC, audio/video, and so on)

From the Distributor's Perspective:

• A competitive product offering
• Some strong product differentiation
• Easy to train my salespeople
• Can be demonstrated in my shop
• High gross margins

The Case Study: The HOLIS 2000 Requirements
Workshop

While the interviewing process was under way, the development team met with
marketing and decided to hold a requirements workshop for the HOLIS 2000
project. The following attendees were identified.

Name Role Title Comments
Eric Facilitator Director of Marketing
Cathy Participant HOLIS 2000 Product

Manager
Project champion

Pete Participant Software Development
Manager

Development responsibility for
HOLIS 2000

Jennifer Participant Prospective homeowner
Elmer Participant Prospective homeowner
Gene Participant Prospective homeowner
John Participant CEO Automation Equip Lumenations' largest

distributor
Raquel Participant GM, EuroControls Lumenations' European

distributor
Betty Participant President, Krystel

Electric
Local electrical contractor

David Participant President, Rosewind
Construction

Custom home builder

Various
members

Observer Development team All team members who were
available

The Workshop Prior to the workshop, the team put together a warm-up
package consisting of

• A few recent magazines articles highlighting the trends in home
automation

• Selective copies of the interviews that had been conducted
• A summarized list of the needs that had been identified to date

Eric brushed up on his facilitation skills, and Cathy handled the logistics for the
workshop.

The Session The session was held at a hotel near the airport, and began
promptly at 8 A.M. Figure A-6 provides a perspective on the workshop.

Eric introduced the agenda for the day and the workshop rules, including the
workshop tickets. In general, the workshop went very well, and all participants
were able to have their input heard. Eric did a fine job of facilitating, but one
awkward period occurred when Eric got into an argument with Cathy about
priorities for a couple of features. (The team decided that, if it had to do the
workshop over again, it would bring in an outside facilitator.) Eric led a
brainstorming session on potential features for HOLIS, and the team used
cumulative voting to decide on relative priorities. The results follow, sorted by
priority.

Figure A-6 HOLIS 2000 requirements workshop
structure

ID Features from Workshop, Sorted by priority Votes
23 Custom lighting scenes 121
16 Automatic timing settings for lights, etc. 107
4 Built-in security features—lights, alarms, and bells 105
6 100% reliability 90

8 Easy to program, non-PC control unit 88
1 Easy-to-program control stations 77
5 Vacation settings 77
13 Any light can be dimmed 74
9 Uses my own PC for programming 73
14 Entertain feature 66
20 Close garage doors 66
19 Automatically turn on closet lights when door opened 55
3 Interface to home security system 52
2 Easy to install 50
18 Turn on lights automatically when someone approaches a door 50
7 Instant lighting on/off 44
11 Can drive drapes, shades, pumps, and motors 44
15 Control lighting, etc., via phone 44
10 Interfaces to home automation system 43
22 Gradual mode: slowly increase/decrease illumination 34
26 Master control stations 31
12 Easily expanded when remodeling 25
25 Internationalized user interface 24
21 Interface to audio/video system 23
24 Restore after power fail 23
17 Controls HVAC 22
28 Voice activation 7
27 Web site–like user presentation 4

Analysis of Results The results of the process turned out as expected, except
for two significant items.

1. The feature "built-in security" appeared very high on the priority list. This
feature had been mentioned in passing in interviews but had not made it
to the top of anyone's priority list. After a quick offline review, Cathy noted
that built-in security—the ability to flash lights, optional horn, and optional
emergency call-out system—was apparently not offered by any
competitive system. The distributors commented that although they were
surprised by this input, they felt that it would be a competitive
differentiation and agreed that this should be a high-priority feature. Krys
and David agreed. Based on this conclusion, marketing decided to include
this functionality and to position it as a unique, competitive differentiator
in the marketplace. This became one of the defining features for HOLIS.

2. In addition, you should note feature 25, the need to have the software's
user interface fully "internationalized." Although the feature did not get a
lot of votes—this seemed to make sense to the team, because the U.S.-
based homeowners present could not have cared less about how well the
product sold in Europe!—Raquel stated flatly that if the product was not
internationalized at version 1.0, it would not be introduced in Europe. The
team noted this position and agreed to explore the level of effort
necessary to achieve internationalization in the 1.0 release.[1]

[1] This demonstrates one of the issues with cumulative voting. Not all stakeholders are created
equal. Failure to achieve internationalization, which had not been on the "radar screens" of the
team prior to the workshop, would have been a strategic requirements misstep.

HOLIS System-Level Use-Case Model Survey
Use Case Name Description Actor(s)

Create Custom
Lighting Scene

Resident creates a custom lighting
scene

Resident, Lights

Initiate
Emergency
Receiver

Resident initiates emergency action Resident

Control Light Resident turns light(s) on or off or
sets desired dim effect

Resident, Lights

Program Switch Change or set the actions for a
particular button/switch

Homeowner/programmer

Remote
Programming

Lumenations service provider does
remote programming based on
request from resident

Lumenations Services

On Vacation Homeowner sets vacation setting for
extended away period

Homeowner/programmer

Set Timing
Sequence

Homeowner programs time-based
automated lighting sequence

Homeowner/programmer

Note

The remainder of the use cases are deleted for brevity; a total of 20 system-level
use cases are defined for v1.0 release.

Team Skill 3: Defining the System

HOLIS Requirements Organization

Figure A-7 shows the HOLIS requirements organization.

Figure A-7 HOLIS requirements organization

HOLIS Vision Document

For brevity, we present an abbreviated form of the HOLIS Vision document here,
with some sections omitted. The full Vision document template, which you might
wish to adopt, is provided in Appendix B.

Lumenations, Ltd.

HOLIS 2000 Vision Document

© 1999 Lumenations, Ltd. 102872 Cambridge Ave. Marcy, NJ 12345

Revision History

Date Revision Description Author
1/21/99 1.0 Initial version Cathy Mole
2/11/99 1.1 Updated after requirements workshop Cathy Mole

Table of Contents

1 Introduction

1.1 Purpose of the Vision Document

This document provides the current vision for the HOLIS 2000-series home
lighting automation system.

1.2 Product Overview

1.3References

• HOLIS 2000 Control Unit Software Requirements Specification
• HOLIS 2000 Switch Software Requirements Specification
• HOLIS 2000 PC Programmer Software Requirements Specification
• Safety and Reliability Standards for Home Security Systems,

Overwriters Laboratory 345.22, 1999

2 User Description

2.1 User/Market Demographics

2.2 User Profiles

2.3 User Environment

2.4 Key User Needs

The following user needs were gathered by the marketing department in a series
of interviews conducted with prospective homeowners and distributors in fall
1998. These interviews are on file on the corporate intranet at
http://www.HOLIShomepage.com/marketing/HOLIS/interviews.

2.4.1From the Homeowner's Perspective

• Flexible and modifiable lighting control for entire house
• "Future-proof" ("As technology changes, I'd like

compatibility with new technologies that might emerge.")
• Attractive, unobtrusive, ergonomic
• Additional security and peace of mind
• Intuitive operation ("I'd like to be able to explain it to my

'technophobic' other.")
• A reasonable system cost, with low switch costs
• Easy and inexpensive to fix
• Out of sight, out of mind
• 100% reliability
• No increase of electrical or fire hazard in my home
• After power failure, able to restore the lights the way they

were
• Ability to easily modify switch functionality
• Program it myself, using my own PC
• Can program it myself without using a PC
• Somebody else to program it for me
• If system fails, I still want to be able to turn some lights on
• Interfaces to my home security system
• Interfaces to other home automation (HVAC, audio/video,

etc)

2.4.2 From the Distributor's Perspective

• A competitive product offering
• Some strong product differentiation
• Easy to train my salespeople

• Can be demoed in my shop
• High gross margins

2.5 Alternatives and Competition

3 Product Overview

3.1 Product Perspective

Text deleted for brevity.

3.2 HOLIS 2000 Product Position Statement

For homeowners building new, high-end homes
Who would like to enhance their residence and their convenience,

comfort, and safety
The HOLIS
2000

is a home lighting automation system

That brings unprecedented, state-of-the-art lighting automation
functionality, with ease of use and a reasonable price.

Unlike the Lightomation Systems series from Herb's Industrial Controls
Our
product

combines the very latest in home automation functionality with
built-in security features, and costs less to install and to
maintain.

3.3 Summary of Capabilities

3.4 Assumptions and Dependencies

3.5 Cost and Pricing

3.6 Licensing and Installation

4 Feature Attributes

4.1 Priority

Used a mandatory versus optional prioritization.

4.2 Status

4.3 Votes

The votes attribute carries the priorities that were established in the HOLIS 2000
requirements workshop.

4.4 Effort

Low, medium, and high as set by the development team.

4.5 Risk

Set by development team.

4.6 Stability

4.7 Target Release

4.8 Assigned to

4.9 Reason

5 Product Features

5.1 Mandatory Features for v1.0

• Fea23 Custom lighting scenes: The system gives the
homeowner the ability to create up to TBD custom lighting scenes.
Each scene provides a preset level of illumination for each lighting
bank throughout the residence. Scenes may be activated from
either the Control Switch or the Central Control Unit.

• Fea16 Automatic lighting settings: The homeowner can create
preset, time-based schedules for certain lighting events to happen.

• Fea4 Security sequence: The system has a built-in security
feature that provides a one-button, panic alarm emergency
sequence activation from any control switch in the house. The
security sequence sets the lights to a predetermined scene setting
and will also (optionally for each) flash the lights, activate an alarm
claxon, and make a dial-up call to a predetermined number and
deliver a voice-based preprogrammed message. The system also
closes a relay contact, which the homeowner can use to attach
devices of his or her choice.

• Fea6 Reliability: Our homeowners have repeatedly stressed that
the system be as close to 100 percent reliable as possible. This is a
particular concern with the security sequence.

(Remainder of features deleted for brevity.)

5.2 Optional Features

• Fea20 Garage door control: The system supports the "garage
door" as one of the controlled output devices. The software must
manage the control of the output accordingly and will need to
provide a garage door metaphor/icon and support for programming
the feature.

• Fea2 Smart Install: Ease of installation has been a key concern
of our distributor/customers and will be a key differentiator for us
with our channels organization. The software should support this
need by whatever means are determined to be reasonable and
viable. This could include online help for an installer's guide and
instruction manual, a troubleshooting guide, in-process status
assessment indication, automated fault detection, and so on.

(Note to Brooke: The engineering team should investigate this need and
get back to marketing with a list of ideas and rough cost parameters so we
can determine how far we can go on v1.0.)

(Remainder of optional features deleted for brevity.)

5.3 Future Features

Appendix A in the Vision document lists features that have been identified for
possible future versions of the system. Although we agree that no significant
investment is to be made in these in v1.0, we do ask that the marketing and
engineering teams review this list and, wherever possible, keep these needs in
mind as the design and development of the v1.0 system proceeds.

6 Exemplary cases

Text deleted for brevity.

7 Other Product Requirements

7.1 Applicable Standards

7.2 System Requirements

7.3 Licensing and Installation

7.4 Performance Requirements

8 Documentation Requirements

8.1 User Manual

8.2 Online Help

8.3 Installation Guides, Configuration, Read Me File

8.4 Labeling and Packaging

9 Glossary

Appendix A Future Features from Requirements Workshop

Appendix B Storyboard as Presented to Workshop Attendees

Appendix C Exemplary Use Cases

Team Skill 4: Managing Scope

After the requirements workshop, the team was chartered with the responsibility
to assess the level of effort for each feature and to come up with a first draft of
the v1.0 baseline. It was necessary to apply rigorous scope management because
of the constraints on the team, including the "drop dead" date of having a
prototype available at the trade show in December and the (even tougher) date
of a release to manufacturing in January.[2] The team used the high-medium-low
heuristic to estimate the level of effort for each feature and then added the risk
assessment for each feature. The team went on to perform the suggested scope
management activities, with the results shown in Tables A-1 and A-2.

[2] Although given manufacturing lead times, the team decided that it actually had until the end of February
for the final v1.0 software release. This was a crucial additional 6 weeks that the team was convinced it
would need for final modifications, based on feedback from the trade show.

Table A-1. HOLIS 2000 features, sorted by effort and risk attributes added
ID Feature Votes Effort Risk
23 Create custom lighting scenes 121 Med Low
16 Automatic timing settings for lights, etc. 107 Low Low
4 Built-in security features—lights, alarms, and bells 105 Low High

6 100% reliability 90 High High

8 Easy-to-program, non-PC control unit 88 High Med
1 Easy-to-program control stations 77 Med Med
5 Vacation settings 77 Low Med
13 Any light can be dimmed 74 Low Low
9 Uses my own PC for programming 73 High Med
14 Entertain feature 66 Low Low
20 Close garage doors 66 Low Low
19 Automatically turn on closet lights when door opened 55 Low High

3 Interface to home security system 52 High High

2 Easy to install 50 Med Med
18 Turn on lights automatically when someone approaches a

door
50 Med Med

7 Instant lighting on/off 44 High High

11 Can drive drapes, shades, pumps, and motors 44 Low Low
15 Control lighting, etc., via phone 44 High High

10 Interfaces to home automation system 43 High High

22 Gradual mode: slowly increase/decrease illumination 34 Med Low
26 Master control stations 31 High High

12 Easily expanded when remodeling 25 Med Med

25 Internationalized user interface 24 Med High

21 Interface to audio/video system 23 High High

24 Restore after power fail 23 N/A N/A
17 Controls HVAC 22 High High

28 Voice activation 7 High High

27 Web site–like user presentation 4 Med Low

Table A-2. V1.0 baseline for HOLIS
ID Feature Votes Effort Risk Marketing Comments
23 Create custom lighting scenes 121 Med Low As flexible as possible
16 Automatic timing settings for

lights, etc.
107 Low Low As flexible as possible

4 Built-in security features—lights,
alarms, and bells

105 Low High Marketing to do more
research

6 100% reliability 90 High High Get as close to 100% as
possible

8 Easy-to-program, non-PC control
unit

88 High Med Provide dedicated
controller

1 Easy-to-program control stations 77 Med Med As easy as feasible with
measure effort

5 Vacation settings 77 Low Med
13 Any light can be dimmed 74 Low Low
9 Uses my own PC for programming 73 High Med Only one configuration

supported in 1.0
25 Internationalized CCU user

interface
24 Med Med Per agreement with

European distributor
14 Entertain feature 66 Low Low (Not applicable, included

in 23)
7 Instant lighting on/off 44 High High Make intelligent

investments
V1.0 mandatory baseline: Everything above the line must be included, or we will

delay release.
20 Close garage doors 66 Low Low May be little impact on

software
2 Easy to install 50 Med Med Level of effort basis
11 Can drive drapes, shades, pumps,

and motors
44 Low Low May be little impact on

software
22 Gradual mode: slowly

increase/decrease illumination
34 Med Low Nice if we can get it

V1.0 optional: Do as many of these as you can (Cathy)
Future features (Below this line, no current development)

29 Internationalize PC
Programmer interface

N/A High Med Will become mandatory for
version 2.0

3 Interface to home security system 52 High High Can we at least provide a
hardware interface? (Eric)

19 Automatically turn on closet lights
when door opened

55 Low High

18 Turn on lights automatically when
someone approaches a door

50 Med Med

15 Control lighting, etc., via phone 44 High High
10 Interfaces to home automation

system
43 High High

26 Master control stations 31 High High
12 Easily expanded when remodeling 25 Med Med
25 Hand-held remote controls 24 Med High
21 Interface to audio/video system 23 High High
24 Restore after power fail 23 N/A N/A
17 Controls HVAC 22 High High
28 Voice activation 7 High High
27 Website-like user presentation 4 Med Low

Team Skill 5: Refining the System Definition

HOLIS Sample Use Case: Control Light

Revision History

Date Issue Description Author
14 April
1999

1.0 Initial creation of Control Light use case Don Widrig

15 April
1999

1.1 Added second precondition to clarify
operation

Jack Bigrig, QA
Lead

Brief Description This use case prescribes the way in which lights are turned
on or off or are dimmed by how the user presses a light switch.

Basic Flow Basic flow begins when the Resident presses any button on a
Control Switch. If the Resident removes pressure on the Control Switch within the
timer period, the system "toggles" the state of the light.

• If the light was On, the light is turned Off, and there is no illumination.
• If the light was Off, the light is turned On to the last remembered

brightness level.

End of Basic Flow

Alternative Flow of Events If the Resident keeps pressure on the Control
Switch for more than 1 second, the system initiates a dimming activity for the
indicated Control Switch button. While the Resident continues to press the Control
Switch button:

1. The brightness of the controlled light is smoothly increased to a
systemwide maximum value at a rate of 10 percent a second.

2. When the maximum value is reached, the brightness of the controlled light
is smoothly decreased to a systemwide minimum value at a rate of 10
percent a second.

3. When the minimum value is reached, processing continues at alternate
flow step 1.

When the Resident ceases to press the Control Switch button:

4. The system ceases to change the brightness of the light.

Preconditions for Control Light Use Case The selected CS button must be
"Dim Enabled." The selected CS button must be preprogrammed to control a light
bank.

Postconditions for Control Light Use Case On leaving this use case, the
current brightness level for the selected Control Switch button is remembered.

Extension Points None.

Figure A-8 Title page of the HOLIS Modern SRS Package

HOLIS Central Control Unit Software Requirements
Specification

For brevity, we present an abbreviated form of the HOLIS Modern SRS Package
here. Figure A-8 shows the title page. The full SRS template, which that you
might wish to adopt, is in Appendix C.

Revision History

Date Revision Description Author
4/11/99 1.0 Initial version John Altinboy
4/15/99 1.1 Converted to ReqPro Don Widrig
4/18/99 1.2 Revised to support Test Plans Don Widrig and Dean Leffingwell

Table of Contents

1 Introduction

1.1 Purpose

This is the software requirements specification for the v1.0 release of the HOLIS
2000 Central Control Unit subsystem.

1.2 Scope

1.3 References

• HOLIS 2000 Vision Document
• HOLIS 2000 System-Level Use-Case Model:

http://www.Lumenations.com/Engineering/HOLIS/Rose.mdl
• HOLIS 2000 Control Switch Software Requirements Specification
• HOLIS 2000 PC Programmer Software Requirements Specification

1.4 Assumptions and Dependencies

2 Use-Case Model Survey

The Central Control Unit for the home automation system participates in all
system-level use cases. In addition, as the central subsystem, CCU also
participates in a number of additional use cases that focus mostly on installation
and setup, monitoring, and communication with the Control Switch, PC
programmer. These subsystem use cases are as follows:

Name Description Actor(s)
System
Diagnostic

This use case is run on
command or whenever
activated manually.

Control Switch
Homeowner/programmer
Lumenations Services Emergency
Receiver Lights

Calibration Calibrates dimming
illumination levels

Homeowner/programmer Lights

Assign
Lighting
Banks

Assigns physical-to-
logical lighting bank
mapping.

Homeowner/programmer

Program
Switch

Change or set the
actions for a particular
button/switch

Homeowner/programmer

Note: The remainder of the use cases are deleted for brevity. A total of 11
use cases are defined for v1.0 release.

Figure A-9 CCU in system context

3 Product Context

The block diagram shown in Figure A–9 places the CCU into the overall system
context.

4 Actor Survey

The actors that interact with the CCU are as follows:

Actor Name Description
Homeowner/programmer Homeowner/programmer (also maintenance

technician) who interacts with the control panel
Lumenations Services Actor at the end of the phone line; supports

remote programming and diagnostics
Emergency Receiver Actor receiving the emergency message
Lights Lights and other control outputs, garage doors,

etc.
Control Switch Lighting switch control devices
PC programmer Attached and optional homeowner's PC

Note

The actor Resident does not interact with the CCU. Resident can interact only with
Control Switch, which in turn interacts with the CCU.

5 Requirements

5.1 Functional Requirements

• SR1 System clock. The system shall use and maintain a system
clock. Precision of this clock shall be as specified in the ALSP
requirements.

• SR1.1 Synchronizing the clock time. The homeowner shall
have the ability to set the clock, using the numeric keys and the
special function keys provided on the CCU operator panel. The GUI
for doing so should appear as in the screen shot.

• SR1.2 Synchronizing the month. The homeowner shall also
have the ability to set the month, using the numeric keys and the
special function keys provided on the CCU operator panel.

• SR2 OnLevel illumination parameter. Each controlled lighting
bank that is Dim Enabled shall have a data field. The lighting
output is controlled by the parameter OnLevel, which controls the
percent of illumination to the light. The nine possible OnLevel
settings are 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and
90%.

• SR3 Support for up to 255 event-time-schedules. SR3.1 The
allowable programming precision of an event-time-schedule shall
be 1 minute. SR3.2 HOLIS shall execute event-time-schedules with
an accuracy of 1 minute, ± 5 seconds as measured by the system
clock. SR3.3 Event-time-schedules can be programmed on either a
12-hour or 24-hour clock. The user shall enter the data in the
following format:

•
• SR3.3.1 Event number (1–256), Time of day
• (in 24-hour HH:MM format)
•

SR3.3.2 Then, for each lighting bank to be affected by the event, the user must
fill out the following data to complete the schedule:

Lighting Bank
ID

Action (on, off, or OnLevel) (entered as % of full on in 10% increments).
Examples follow.

73 On
34 Off
73 60%

SR3.3.3 When finished entering data, the user must press the End key to signify
that the schedule is complete.

• SR4 Message protocol from Control Switch. Each button
press on the control initiates a single 4-byte message to the CCU.
The message protocol is as follows

Address of sending device Message number Data Checksum

The data fields in the message are mapped as follows:

SR4.1 Address 0–254, the logical address of the specific control switch sending
the message

SR4.2 Message Number 0–255. Message numbers supported are

1. Normal key press
2. Emergency
3. Held down for the last 0.5 second

SR4.3 Data field, with each bit corresponding to a specific button on the key
switch.

SR4.4 Message Acknowledgment. In reply to the message from the Control
Switch, the CCU shall respond with the following message:

[55] [FF] Received data Checksum

where 55 (hex) is the dedicated address of the CCU, FF (hex) is the Acknowledge
Message code, Received data returns the data byte received from the CCU, and
Checksum is the calculated checksum for the returned message.

All remaining requirements are deleted for brevity.

5.2 Nonfunctional Requirements

5.2.1 Usability

5.2.2 Reliability

• Customers have requested that the HOLIS system operate
as close to 100 percent reliable as possible.

• SR5 The CCU must have no defects that can interfere with
normal operation of the homeowner's residence.

5.2.3 Performance

5.2.4 Supportability

6 Online User Documentation and Help System Requirements

7 Design Constraints

DC1 Control subsystem design is based on the controller module from the ALSP
product line. BIOS should not be modified unless absolutely necessary.

DC2 The use case and supporting infrastructure for the emergency sequence
must be validated to the highest reasonable commercial reliability standards.

8 Purchased Components

9 Interfaces

9.1 User Interfaces

9.2 Hardware Interfaces

9.3 Software Interfaces

9.4 Communications Interfaces

10 Licensing Requirements

There are no licensing requirements for the CCU.

11 Legal, Copyright, and Other Notices

• SR6 Include standard corporate copyright notice, corporate logo, and
HOLIS 2000 product logo for a minimum of 5 seconds during start-up
mode.

• SR7 In steady-state mode, when no programming is active, the display
shall show the HOLIS 2000 logo at all times.

12 Applicable Standards

SRS Index

SRS Glossary

SRS Appendix: CCU Subsystem Use-Case Specifications

Team Skill 6: Building the Right System

HOLIS 2000 Sample Test Case 01: Test Control Light

Revision History

Date Revision Description Author
14 April 1999 1.0 First draft Jack Bigrig
15 April 1999 1.1 Correction to increase/decrease rate Jean McBill

Description This test case, used to test instances of the use case Control Light,
is used only to test Dim-enabled Control Switch buttons that have been
preassigned to a light bank.

Test
Case
ID

Event Description Input 1 Input 2 Expected Result

Basic flow
2001 Resident presses

Control Switch
(CS).

Any
enabled
button

Light was on
before button
was pressed
(tester must
record level).

Light is turned off.

2002 Light was off
before button
was pressed.

Light is turned on to OnLevel.

2003 Resident
releases button
in less than 1

Light on Stays off.

second.
2005 Resident

releases button
in less than 1
second. (This
ends path 1
through use
case.)

Light off Stays on at OnLevel.

2006 Resident presses
button again and
releases it in less
than 1 second.

Same
enabled
button as
in 2003

Light off
before

Light is turned on to same
illumination level as in 2002.

 Resident presses
button again and
releases it in less
than 1 second.

 Light on
before

Light is turned off.

Alternative flow
2007 Button held

longer than 1
second.

Enabled
button

Light off
before

Light turned on. Brightness
increases 10% to maximum
level for each second held, then
decreases 10% for each second
held until minimum reached,
then increases again. Cycles
continuously while held.

2008 Resident
releases button.

 Brightness held at last reached
level.

Note: Run test case multiple times and with different lengths of hold-button time
to verify that system is restoring OnLevel properly.

HOLIS 2000 Sample Test Case 02: Test Round-Trip
Message Protocol

Revision History

Date Revision Description Author
14 April 1999 1.0 First draft Jean McBill

Description This test case tests the round-trip message protocol between the
CCU and CS, the control switch. In so doing, this test case tests the following
requirements from the CCU and Control Switch SRS:

CCU SRS Control Switch SRS
SR4, SR4.1, SR4.2, SR4.3, SR4.4 CSSR88, CSSR91–97, CSSR100–107
(Note to file: The table above can be deleted after the traceability matrix is
established. To minimize maintenance, the trace matrix is the only place we will
maintain these links.)

Events

Test
Case
ID

Event Description Input 1 Input
2

Expected result

5300 Press switch button 0 on
Control Switch 1 and
initiate message from CS
to CCU.

Button only CCU message-received
indicator is lit, and CS
message- received indicator
is lit.

5301 Examine received
message in diagnostic
line of CCU display.

 [01][01][01][5A]

5302 Examine sent message
in CCU display.

 [55][FF][01][F7]

5303 Press Control Switch
button 0–5
simultaneously and hold
for 3 seconds.

All buttons
depressed 3+
seconds

 CCU message-received
indicator is lit. Three
messages should be in the
message display buffer.

 Examine message
1.(Remainder of test
case deleted for brevity.)

 [01][01][3F][3C]

Appendix B. Vision Document Template

Fundamental to the success of a project is a Vision document that identifies and
organizes the high-level user needs and features of an application. This document
is updated as needed and is shared among team members and other involved
personnel. The document template below is intended to be used as a starting
point and may be customized according to your organization's needs.

Company Name

Project Name Vision Document

© 1999 Company Name

Revision History

Date Revision Description Author
06/23/99 1.0 Initial version Author name
mm/dd/yy

Table of Contents

1 Introduction

This section should provide an overview of the entire Vision document and should
contain the following subsections:

1.1 Purpose of the Vision Document

The purpose of this document is to collect, analyze, and define high-level user
needs and product features. Focus on capabilities needed by the target users and
why these needs exist. The specific requirements of how the application fulfills
these needs should be provided elsewhere in the software requirements
specifications and the use case specifications.

1.2 Product Overview

State the purpose of the application, its version, and new features for delivery.
This subsection should

• Identify the product or application to be created or enhanced
• Provide a general description of what the product will and, if

necessary, will not do
• Describe the application of the product, including its relevant

benefits, goals, and objectives

1.3 References

This subsection should

• Provide a list of all documents referenced elsewhere in the Vision
document

• Identify each document by title, report number (if applicable), date,
and publishing organization

• Specify the sources from which the references can be obtained
• This information may be provided by reference to an appendix or to

another document.

2 User Description

To effectively provide products and services that meet your customers' needs, it
is necessary to understand the challenges they confront when performing their
jobs. This section should profile the intended users of the application and the key
problems that limit the user's productivity. This section should not be used to
state specific requirements. Instead, provide the background and the justification
for why the requirements specified in Section 5 are needed.

2.1 User/Market Demographics

Summarize the key market demographics that motivate your product decisions.
Describe and position target-market segments. Estimate the market's size and
growth by using the number of potential users or the amount of money your
customers spend trying to meet needs that your product/enhancement would
fulfill. Review major industry trends and technologies. Answer these strategic
questions: What is your organization's reputation in these markets? What would
you like it to be? How does this product or service support your goals?

2.2 User Profiles

Describe each unique user of the system here. User types can be as divergent as
gurus and novices. For example, a guru might need a sophisticated, flexible tool
with cross-platform support, whereas a novice might need an easy-to-use and
user-friendly tool. A thorough profile should cover the following topics for each
type of user:

• Technical background and degree of sophistication
• Key responsibilities
• Deliverables the user produces and for whom
• Trends that make the user's job easier or more difficult
• Problems that interfere with success
• The target user's definition of success and how the user is

rewarded

2.3 User Environment

Detail the working environment of the target user. Here are some suggestions.

• How many people are involved in completing the task? Is this
changing?

• How long is a task cycle? How much time is spent in each activity?
Is this changing?

• Are there any unique environmental constraints: mobile, outdoors,
in-flight, and so on?

• Which systems platforms are in use today? Future platforms?
• What other applications are in use? Does your application need to

integrate with them?

2.4 Key User Needs

List the key problems or needs as perceived by the user. Clarify the following
issues for each problem.

• What are the reasons for this problem?
• How is it solved now?
• What solutions does the user envision?

It is important to understand the relative importance the user places on solving
each problem. Ranking and cumulative-voting techniques indicate problems that
must be solved versus issues they would like addressed.

2.5 Alternatives and Competition

Identify alternatives the user perceives as available. These can include buying a
competitor's product, building a homegrown solution, or simply maintaining the
status quo. List any known competitive choices that exist or that may become
available. Include the major strengths and weaknesses of each competitor as
perceived by the end user.

2.5.1 Competitor 1

3 Product Overview

This section provides a high-level view of the product capabilities, interfaces to
other applications, and systems configurations. This section usually consists of
three subsections, as follows:

3.1 Product Perspective

This subsection should put the product in perspective to other related products
and the user's environment. If the product is independent and totally self-

contained, state it here. If the product is a component of a larger system, this
subsection should relate how these systems interact and should identify the
relevant interfaces among the systems. One easy way to display the major
components of the larger system, interconnections, and external interfaces is via
a block diagram.

3.2 Product Position Statement

Provide an overall statement summarizing, at the highest level, the unique
position the product intends to fill in the marketplace. Moore (1991) calls this the
product position statement and recommends the following format:

For (target customer)
Who (statement of the need or opportunity)
The (product
name)

is a (product category)

That (statement of key benefit, that is, compelling reason to
buy)

Unlike (primary competitive alternative)
Our product (statement of primary differentiation)

A product position statement communicates the intent of the application and the
importance of the project to all concerned personnel.

3.3 Summary of Capabilities

Summarize the major benefits and features the product will provide. For example,
a Vision document for a customer support system may use this subsection to
address problem documentation, routing, and status reporting—without
mentioning the amount of detail each of these functions requires.

Organize the features so that the list is understandable to the customer or to
anyone else reading the document for the first time. A simple table listing the key
benefits and their supporting features might suffice.

Customer Support System

Customer Benefit Supporting Features
Benefit 1 Feature 1

3.4 Assumptions and Dependencies

List assumptions that, if changed, will alter the vision for the product. For
example, an assumption may state that a specific operating system will be
available for the hardware designated for the software product. If the operating
system is not available, the vision will need to change.

3.5 Cost and Pricing

For products sold to external customers and for many in-house applications, cost
and pricing issues can directly impact the application's definition and
implementation. In this section, record any cost and pricing constraints that are
relevant. For example, distribution costs (number of diskettes and CD-ROMs, CD
mastering) or other cost-of-goods-sold constraints (manuals, packaging) may be
material to the project's success or irrelevant, depending on the nature of the
application.

4 Feature Attributes

As with requirements, features have attributes that provide additional project
information that can be used to evaluate, track, prioritize, and manage the
product items proposed for implementation. This section provides suggested
attributes for use in your Vision document. This section need describe only the
attributes you've chosen and their meaning, so all parties can better understand
the context of each feature.

4.1 Status

Set after negotiation and review by the project management team. Status
information tracks progress during definition of the project baseline.

• Proposed: Used to describe features that are under discussion
but have not yet been reviewed and accepted by the
"official channel," such as a working group consisting
of representatives from the project team, product
management, and user or customer community

• Approved: Capabilities that are deemed useful and feasible and
have been approved by the official channel for
implementation

• Incorporated: Features incorporated into the product baseline at a
specific time

4.2 Priority

Product priorities (benefits) are set by marketing, the product manager, or the
business analyst. Ranking features by their relative priority to the end user opens
a dialogue with customers, analysts, and members of the development team.
Priorities are used in managing scope and determining development priority. One
possible prioritization scheme follows.

• Critical: Essential features. Failure to implement means that the
system will not meet customer needs. All critical
features must be implemented in the release, or the
schedule will slip.

• Important: Features important to the effectiveness and efficiency of
the system for most applications. The functionality
cannot be easily provided in another way. Lack of
inclusion of an important feature may affect customer
or user satisfaction or even revenue, but release will not
be delayed due to lack of any important feature.

• Useful: Features that are useful in less typical applications, will
be used less frequently, or for which reasonably
efficient workarounds can be achieved. No significant

revenue or customer satisfaction impact can be
expected if such an item is not included in a release.

4.3 Effort

Set by the development team and used in managing scope and determining
development priority. Because some features require more time and resources
than others, estimating the number of team or person-weeks, lines of code
required, or function points, for example, is the best way to gauge complexity
and to set expectations of what can and cannot be accomplished in a given time
frame.

4.4 Risk

Set by development team, based on the probability that the project will
experience undesirable events, such as cost overruns, schedule delays, or even
cancellation. Most project managers find categorizing risks as high, medium, and
low sufficient, although finer gradations are possible. Risk can often be assessed
indirectly by measuring the uncertainty (range) of the project team's schedule
estimate.

4.5 Stability

Set by the analyst and development team, based on the probability that the
feature will change or the team's understanding of the feature will change. This
information is used to help establish development priorities and to determine
those items for which additional elicitation is the appropriate next action.

4.6 Target Release

Records the intended product version in which the feature will first appear. This
field can be used to allocate features into a particular baseline release. When the
target release is combined with the status field, your team can propose, record,
and discuss various features of the release without committing them to
development. Only features whose status is set to Incorporated and whose target
release is defined will be implemented. When scope management occurs, the
target release version number can be increased so the item will remain in the
Vision document but will be scheduled for a later release.

4.7 Assigned To

In many projects, features will be assigned to "feature teams" responsible for
further elicitation, writing the software requirements, and implementation. This
simple list will help everyone on the project team better understand
responsibilities.

4.8 Reason

This text field is used to track the source of the requested feature. Features exist
for specific reasons. This field records an explanation or a reference to an
explanation. For example, the reference might be to a page and line number of a
product requirement specification, or to a minute marker on a video of an
important customer interview.

5 Product Features

This section documents the product features. Features provide the system
capabilities that are necessary to deliver benefits to the users. Each feature
provides a service that fulfills a user need. For example, a feature of a problem-
tracking system might be the ability to "provide trending reports." Trending
reports might in turn support a user need of "better understand the status of my
project."

Because the Vision document is reviewed by a wide variety of involved personnel
and serves as the basis of agreement, features should be expressed in the user's
natural language. Features descriptions should be short and pithy, typically one
or two sentences.

To effectively manage application complexity, we recommend that for any new
system or increment to an existing system, capabilities be abstracted to a high
enough level to result in 25–99 features. These features provide the fundamental
basis for product definition, scope management, and project management. Each
feature will be expanded in greater detail in the follow-on specifications.

Throughout this section, each feature should be perceivable by users, operators,
or other external systems.

5.1Feature #1

5.2Feature #2

6 Exemplary Use Cases

Describe a few exemplary use cases, perhaps those that are architecturally
significant or those that will most readily help the reader understand how the
system is intended to be used.

7 Other Product Requirements

7.1 Applicable Standards

List all standards the product must comply with, such as legal and regulatory
(FDA, FCC), communications standards (TCP/IP, ISDN), platform compliance
standards (Windows, UNIX), and quality and safety standards (UL, ISO, CMM).

7.2 System Requirements

Define any system requirements necessary to support the application. These may
include the supported host operating systems and network platforms,
configurations, memory, peripherals, and companion software.

7.3 Licensing and Installation

Licensing and installation issues can also directly impact the development effort.
For example, the need to support serializing, password security, or network
licensing will create additional system requirements that must be considered in
the development effort. Installation requirements may also affect coding or create
the need for separate installation software.

7.4 Performance Requirements

Performance issues can include such items as user load factors, bandwidth or
communication capacity, throughput, accuracy, reliability, or response times
under a variety of loading conditions.

8 Documentation Requirements

This section describes the documentation that must be developed to support
successful application deployment.

8.1 User Manual

Describe the purpose and contents of the user manual. Discuss its desired length,
level of detail, need for index and glossary, tutorial versus reference manual
strategy, and so on. Formatting and printing constraints should also be identified.

8.2 Online Help

Many applications provide an online help system to assist the user. The nature of
these systems is unique to application development, as they combine aspects of
programming, such as hyperlinks, with aspects of technical writing, such as
organization and presentation. Many people have found that the development of
an online help system is a project within a project that benefits from up-front
scope management and planning activity.

8.3 Installation Guides, Configuration, Read Me File

A document that includes installation instructions and configuration guidelines is
important to a full solution offering. Also, a Read Me file is typically included as a
standard component. The Read Me file may include a "What's New with This
Release" section and a discussion of compatibility issues with earlier releases.
Most users also appreciate documentation defining any known bugs and
workarounds in the Read Me file.

8.4 Labeling and Packaging

Today's state-of-the-art applications provide a consistent look and feel that
begins with product packaging and manifests itself through installation menus,
splash screens, help systems, GUI dialogs, and so on. This section defines the
needs and types of labeling to be incorporated into the code. Examples include
copyright and patent notices, corporate logos, standardized icons and other
graphic elements, and so on.

9 Glossary

The glossary defines all terms that are unique to the project. Include any
acronyms or abbreviations that may not be understood by users or other readers
of this document.

Appendix C. Modern SRS Package
Template

This template provides an outline for a Modern Software
Requirements Specification (SRS) Package applying both traditional

document-based techniques and use-case modeling. For large
systems, optional packaging is recommended at the feature (or
other appropriate subsystem grouping) level. For example, if
feature-level packaging is used, this specification will include or
reference all software requirements related to the implementation
of that feature. In some cases, a Modern SRS Package may be
specified as one or more documents, for which this outline serves as
an annotated template starting point. In other cases, the package is
a logical construct that may consist of only one physical document,
with references to other model- or tool-based physical
representations (UML models, use cases, requirements tool
repositories, or other) of the data described herein.

Company Name Division Name, if appropriate

Project Name Software Requirements Specification
Document Number, if appropriate

© 1999 Company Name

Revision History

Date Revision Description Author
mm/dd/yyyy 1.0 Initial version Author name

Table of Contents

1 Introduction

1.1 Purpose

Specify the purpose of this SRS. The SRS should fully describe the
external behavior of the application or subsystem identified, as well
as nonfunctional requirements, design constraints, and other factors
necessary to provide a complete, comprehensive description of the
software requirements.

1.2. Scope

This section provides a brief description of the software application
that the SRS applies to, the features or other subsystem grouping,
what use-case model(s) it is associated with, and anything else that
is affected or influenced by this document.

1.3 References

Provide a list of project-related references or applicable documents
that bear on this project.

1.4 Assumptions and Dependencies

This section describes any key technical feasibility, subsystem, or
component availability or other project-related assumptions on
which the viability of the software described by this SRS may be
based.

2 Use-Case Model Survey

This section provides an overview of the use-case model. The
survey is used by people interested in the behavior of the system,
such as the customer, users, architects, use case authors, designers,
use case designers, testers, managers, reviewers, and writers. This
section lists for each use case

• The use case name.
• A brief description explaining the use case's function and role

in the system.
• A list of actors for the use case. The aggregation of these

actors is further defined in the accompanying actor survey.
• Diagram of the use-case model. A diagram of the entire use-

case model is included here.

3 Actor Survey

All of the actors mentioned in the use-case model survey are
reported here. For each actor, you should list

• The actor's name
• A brief description of the actor

4 Requirements

4.1 Functional Requirements

This section describes the functional requirements of the system for
those requirements that are expressed in the natural-language style.
For many applications, this may constitute the bulk of the package,
and thought should be given to the organization of this section. This
section is typically organized by feature, but alternative
organization methods, by user or by subsystem, may also be
appropriate.

Where application development tools (requirements tools, modeling
tools, and so on) are used to capture the functionality, this section
of the document will refer to the availability of that data and will
indicate the location and name of the tool used to capture the data.

4.2 Nonfunctional Requirements

Most nonfunctional requirements are typically recorded in natural
language in this section of the specification. However, nonfunctional
requirements may also be included with a specific use case
specification.

4.2.1 Usability

This section should include all of those requirements that affect
usability. These often include:

• Specify the required training time for normal
users and power users to become productive at
particular operations.

• Specify measurable task times for typical tasks;
alternatively, base usability requirements of the
new system on other systems that the users know
and like.

• Specify requirements to conform to common
usability standards, such as IBM's CUA standards
or the GUI standards published by Microsoft for
Windows 98.

Refer to the User's Bill of Rights in Chapter 23 for additional
guidelines.

4.2.2 Reliability

Requirements for system reliability should be specified here.

• Availability: Specify percent of time available
(xx.xx%), hours of use, maintenance access,
degraded-mode operations, and so on.

• Mean time between failures (MTBF): This is
usually specified in hours but could also be
specified in terms of days, months, or years.

• Mean time to repair (MTTR): How long is the
system allowed to be out of operation after it has
failed?

• Accuracy: Specify precision (resolution) and
accuracy (by some known standard) that is
required in the system's output.

• Maximum bugs or defect rate: Usually expressed
in terms of bugs/KLOC (thousands of lines of code)
or bugs per function-point.

• Bugs or defect rate: Categorized in terms of minor,
significant, and critical bugs. The requirement(s)
must define what is meant by a "critical" bug
(such as complete loss of data or complete
inability to use certain parts of the functionality of
the system).

4.2.3 Performance

The performance characteristics of the system should be outlined in
this section. Include specific response times. Where applicable,
reference related use cases by name.

• Response time for a transaction (average,
maximum)

• Throughput (transactions per second)
• Capacity (the number of customers or

transactions the system can accommodate)
• Degradation modes (the acceptable mode of

operation when the system has been degraded)
• Resource utilization (memory, disk,

communications)

4.2.4 Supportability

This section indicates any requirements that will enhance the
supportability or maintainability of the system being built, including
coding standards, naming conventions, class libraries, maintenance
access, and maintenance utilities.

5 Online User Documentation and Help System Requirements

Describes the requirements, if any, for online user documentation,
help systems, help notices, and so on.

6 Design Constraints

This section should indicate any design constraints on the system
being built. Design constraints represent design decisions that have
been mandated and must be adhered to. Examples include software
languages, software process requirements, prescribed use of
developmental tools, architectural and design constraints,
purchased components, and class libraries.

7 Purchased Components

This section describes any purchased components to be used with
the system, any applicable licensing or usage restrictions, and any
associated compatibility/interoperability or interface standards.

8 Interfaces

This section defines the interfaces that must be supported by the
application. This section should contain adequate specificity,
protocols, ports, and logical addresses, and so on, so that the
software can be developed and verified against the interface
requirements.

8.1 User Interfaces

Describe the user interfaces that are to be implemented by the
software.

8.2 Hardware Interfaces

Define any hardware interfaces that are to be supported by the
software, including logical structure, physical addresses, and
expected behavior.

8.3 Software Interfaces

Describe software interfaces to other components of the software
system. These may be purchased components, components reused

from another application, or components being developed for
subsystems outside of the scope of this SRS but with which this
software application must interact.

8.4 Communications Interfaces

Describe any communications interfaces to other systems or devices,
such as local area networks or remote serial devices.

9 Licensing Requirements

Define any licensing enforcement requirements or other usage
restriction requirements that are to be exhibited by the software.

10 Legal, Copyright, and Other Notices

Describe any necessary legal disclaimers, warranties, copyright
notices, patent notice, wordmark, trademark, or logo compliance
issues for the software.

11 Applicable Standards

Describe by reference any standards (and the specific sections of
any such standards) that apply to the system being described. For
example, this could include legal, quality, and regulatory standards,
as well as industry standards for usability, interoperability,
internationalization, operating system compliance, and so on.

Index

The index is provided to assist the reader in locating key concepts
and topics that occur throughout the document.

Glossary

Describe any terms that are unique to this application context and
any definitions, acronyms, abbreviations, or other project or
company-specific shorthand that is necessary for an understanding
of this document and the application.

Appendixes

You should insert appendixes here as appropriate. Note that the
following template appendix is provided specifically to allow you to
record use cases. Feel free to insert as many appendixes as you
need.

Appendix: Use Case Specifications

This appendix contains references the elaborated use cases for the
system. The following template is provided as a starting point.

Revision History

Date Issue Description Author
dd/mmm/yy x.x Details Author name

Note that the revision history is provided for each use case included
in the appendixes. The current revision history block should be on
the first page of each use case appendix.

Table of Contents

Normally, a use case specification will not be long enough to
warrant a table of contents for the use case. But this element may
be required if the use case presents unusual problems in finding
portions of the specification.

Use Case Name

Brief Description

The role and purpose of the use case. A single paragraph should
suffice for this description.

Flow of Events

Basic Flow

This use case starts when the actor does something. An actor
always initiates use cases. The use case should describe what the
actor does and what the system does in response. The use case
should be phrased in the form of a dialogue between the actor and
the system.

The use case should describe what happens inside the system but
not how or why. If information is exchanged, be specific about what
is passed back and forth. For example, it is not very illuminating to
say that the actor enters customer information; it is better to say
that the actor enters the customer's name and address. A glossary
is often useful to keep the complexity of the use case manageable;
you may want to define customer information there, to keep the
use case from drowning in details.

Simple alternatives may be presented within the text of the use
case. If it takes only a few sentences to describe what happens
when there is an alternative, do it directly within the flow-of-events
section. If the alternative flows are more complex, use a separate
section. For example, an alternative flow describes how to describe
more complex alternatives.

A picture is sometimes worth a thousand words, although there is
no substitute for clean, clear prose. If doing so improves clarity, feel
free to include graphical depictions of user interfaces, process flows,
or other figures into the use case. If a technical method, such as an
activity diagram is useful to present a complex decision process, by
all means use it! Similarly for state-dependent behavior, a state-
transition diagram often clarifies the behavior of a system better
than do pages upon pages of text. Use the right presentation
medium for your problem, but be wary of using terminology,
notation, or figures that your audience may not understand.
Remember that your purpose is to clarify, not to obscure.

Alternative Flows

1. First alternative flow: More complex alternatives should
be described in a separate section, which is referred to in the
basic flow-of-events section. Think of the alternative flow
sections as alternative behavior; each alternative flow
represents alternative behavior (many times, because of
exceptions that occur in the main flow). They may be as long
as necessary to describe the events associated with the
alternative behavior. When an alternative flow ends, the
events of the main flow of events are resumed unless
otherwise stated.

Alternative flows may, in turn, be broken down into subsections.

2. Second alternative flow: There may be, and most likely
will be, a number of alternative flows in a use case. Keep each
alternative separate, to improve clarity. Using alternative
flows improves the readability of the use case, as well as
prevents use cases from being decomposed into hierarchies of
use cases. Keep in mind that use cases are just textual
descriptions and that their main purpose is to document the
behavior of a system in a clear, concise, and understandable
way.

Special Requirements

These are typically nonfunctional requirements that are specific to a
use case but are not easily or naturally specified in the text of the

use case's event flow. Examples of special requirements include
legal and regulatory requirements, application standards, and
quality attributes of the system to be built, including usability,
reliability, performance, or supportability requirements. Other
requirements, such as operating systems and environments,
compatibility requirements, and design constraints, should also be
captured in this section.

1. First special requirement

Preconditions

Precondition of a use case is the state of the system that must be
present prior to a use case being performed.

1. Precondition 1

Postconditions

Postcondition of a use case is a list of possible states the system
can be in immediately after a use case has finished.

1. Postcondition 1

Extension Points

Extension points of the use case.

1. Name of extension point

Definition of the location of the extension point in the flow of events.

Requirements Management in SEI-CMM

In November 1986, the Software Engineering Institute (SEI), at
Carnegie-Mellon University, began developing a process maturity
framework to help developers improve their software process. In
September 1987, the SEI released a brief description of the process
maturity framework, later amplified in Watts Humphrey's Managing
the Software Process (1989). By 1991, this framework had evolved
into what has become known as version 1.0 of the Capability
Maturity Model, or CMM. In 1993, version 1.1 of the CMM was
released (SEI 1993). Version 1.1 defines five levels of software
maturity for an organization and provides a framework for moving
from one level to the next, as illustrated in Figure D-1. The CMM
guides developers through activities designed to help an
organization improve its software process, with the goal of
achieving repeatability, controllability, and measurability.

Despite the ongoing debate and controversy about the advantages
and disadvantages of the CMM, an accumulating body of data shows
that adherence to the CMM and corresponding improvements in
software quality have significantly lowered the cost of application
development within many companies. By now, the CMM has been in
use by many organizations long enough so that meaningful and
positive return-on-investment statistics are appearing. These
payoffs should, ideally, provide results in productivity and
significant reduction in time to market. In an era of increasingly
competitive environments, any improvements to software
productivity cannot be ignored.

The CMM provides a framework for process improvement that
consists of "key process areas," or organizational activities that
have been found, through experience, to be influential in various
aspects of the development process and resultant software quality.
Table D-1 identifies the key process areas of each of the five levels
of the CMM. (The reason we're discussing all of this at length in this
book is that Table D-1 shows that the first key process area that
must be addressed to move from level 1 to level 2 is requirements
management.)

The CMM summarizes the process area of requirements
management as follows: The purpose of requirements management
is to establish a common understanding between the customer and
the software team of the customer's requirements.

Figure D-1 CMM maturity levels

This common understanding serves as the basis of agreement
between the customer and the development team and, as such, is
the central document that defines and controls the activity to follow.
Requirements are controlled to establish a baseline for software
engineering management use. Throughout the CMM, guidelines

specify that all activities, plans, schedules, and software work
products are to be developed and modified as necessary to be
consistent with the requirements allocated to software. In this
manner, the CMM moves the organization toward an integrated
view wherein technical requirements must be kept consistent with
project plans and activities. To support this process, software
requirements must be documented and reviewed by software
managers and affected groups, including representatives of the
customer and user community.

The software requirements specification serves as a central project
document, a defining element with relationships to other elements
of the project plan. The requirements include both technical (the
behavior of the application) and nontechnical (other project
requirements, including schedule, budget, and other) requirements.
In addition, acceptance criteria, which are the tests and measures
that will be used to validate that the software meets its
requirements, must be established and documented.

Table D-1. Levels of the CMM with key process areas
Level Key Process Areas

1. Initial: Ad hoc, even chaotic; success depends solely
on individual heroics and efforts.

Not applicable

2. Repeatable: Basic project manage-ment to track
application functionality and cost and schedule.

Requirements
management

Software project
planning

Software project
tracking and
oversight

Software subcontract
management

Software quality
assurance

Software
configuration
management

3. Defined: The process for management and engineering
is documented, stan-dardized, and integrated. All
projects use an approved, tailored version of the
process.

Organization process
focus

Organization process
definition

Training program

Integrated software
management

Software product
engineering

Intergroup
coordination

Peer reviews

4. Managed: Detailed measures of the software process
and software quality metrics are collected. Both process
and software products are understood and controlled.

Quantitative process
management

Software quality
management

5. Optimizing: Continuous process improvement is
enabled by use of met-rics and from piloting innovative
ideas and technologies.

Defect prevention

Technology change
management

Process change
management

In order to accomplish these objectives and to demonstrate
compliance with the CMM process area of requirements
management, adequate resources and funding must be provided for
managing requirements. Members of the software engineering
group and other affected groups should be trained to perform their
requirements-management activities. Training should cover
methods and standards, as well as training activities designed to
create an understanding on the part of the engineering team as to
the unique nature and problems of the application domain.

The CMM further specifies that requirements should be managed
and controlled and should serve as the basis for software plans,
work products, and activities. Changes to the requirements should
be reviewed and incorporated into the project plans, and the impact
of change must be assessed and negotiated with the affected
groups. In order to provide feedback on the results of these
activities and in order to verify compliance, the CMM provides
guidelines for measurements and analysis, as well as activities for
verifying implementation. Suggested measures include

• Status of each of the allocated requirements
• Change activity of the requirements, cumulative number of

changes
• Total number of changes that are open, proposed, approved,

and incorporated into the baseline

One of the most enlightened aspects of the CMM is its
understanding that requirements management is not simply a
"document-it-up-front-and-go" process of the sort often prescribed
in the waterfall methodologies of the 1970s. With the CMM,
requirements are living entities at the very center of the application
development process. Not surprisingly, the process of effective
requirements management appears at virtually all levels of the
process model and within many key process areas. As an
organization moves to level 3 on the CMM scale, the focus is on
managing software activities based on defined and documented
standard practices. Key process areas for level 3 include
organization process focus, organization process definition, training
program, integrated software management, software product
engineering, intergroup coordination, and peer reviews. The
software product engineering key practice is designed to cause an
organization to integrate all software engineering activities to
produce high-quality software products effectively and efficiently.
The software engineering key practice states that the "software
requirements are developed, maintained, documented, and verified
by systematically analyzing the requirements according to the
project's defined software process" (SEI 1993).

The analysis process is necessary to ensure that the requirements
make sense and are clearly stated, complete and unambiguous,
consistent with one another, and testable. Various analysis
techniques are suggested, including simulations, modeling, scenario
generation, and functional and object-oriented decomposition. The
results of this process will be a better understanding of the
requirements of the application, which are then reflected in revised
requirements documentation. In addition, the group responsible for
system and acceptance testing also analyzes the requirements to
ensure testability.

The resulting software requirements document is reviewed and
approved by the affected parties to make sure that the points of
view represented by these parties are included in the requirements.
Reviewers include customers and end users, project management,
and software test personnel. In order to manage change in a
controlled way, the CMM also calls for placing the software
requirements document under configuration management control.

Another important concept in the CMM is traceability. Under the
CMM, all worthwhile software work products are documented, and
the documentation must be maintained and readily available. The
software requirements, design, code, and test cases are traced to
the source from which they were derived and to the products of the
subsequent engineering activity. Requirements traceability provides

a means of analyzing impact before a change is made, as well as a
way to determine what components are affected when processing a
change. Traceability also provides the mechanism for determining
the adequacy of test coverage.

All approved changes are tracked to completion. The documentation
that traces the allocated requirements is also managed and
controlled. Measurements are made to determine the functionality
and the quality of the software products and to determine the
status of the software activity. Example measurements include

• Status of each allocated requirement throughout the lifecycle
• Change activity of the allocated requirements
• Allocated requirements summarized by category

Finally, the CMM recognizes that change is an integral part of
software activity in any development project. In place of frozen
specifications, we instead strive for a stable baseline of
requirements that are well elicited, documented, and placed into
systems that provide support for managing change. Specifically, the
CMM requires that

• As understanding of the software improves, changes to the
software work products and activities are proposed, analyzed,
and incorporated as appropriate. Where changes to the
requirements are needed, they are approved and incorporated
before any work products or activities are changed.

• The project determines the impact of change before the
change is made.

• Changes are negotiated and communicated to the affected
groups.

• All changes are tracked to completion.

In summary, the CMM provides a comprehensive view of the
activities that must be applied to improve software quality and to
increase productivity. Requirements management is an integral part
of this process, wherein requirements serve as living entities that
are at the center of development activity. Once elicited,
requirements are documented and managed with the same degree
of care that we provide to our code work products. This process
puts the team in control of its project and helps team members
manage both the project and its scope. Lastly, actively managing
changing requirements keeps the project under control and helps
ensure the reliable, repeatable production of high-quality software
products.

Although all of this provides an important "validation" of the
concept of requirements management, along with some high-level

advice for inserting requirements-oriented processes into the
development lifecycle, it doesn't tell us how to do requirements
management. The detailed activities of eliciting, organizing,
documenting, and managing requirements are the subject of this
book, and these activities have been influenced by the CMM
framework.

Requirements Management in ISO 9000

For the past decade or so, a number of organizations around the
world have been using a series of quality management standards
known as ISO 9000 to improve operating efficiency and productivity
and to reduce costs. ISO 9000 has been adopted by the European
Community as EN29000 and has become an important fact for
international trade; organizations wishing to do business in Europe,
for example, often have to demonstrate ISO 9000 certification. The
certification requires an on-site assessment by an ISO-approved
assessor; the companies that pass realize that they will be
reassessed periodically to maintain their certification.

ISO 9000 consists of five quality standards:

1. ISO 9000: Guidelines for selection and use
2. ISO 9001: Quality assurance guidelines for design,

development, production, installation, and servicing
3. ISO 9002: Quality assurance guidelines for those companies

involved primarily in manufacturing
4. ISO 9003: Quality assurance guidelines for those companies

involved primarily in distribution
5. ISO 9004: A guide for the application of various elements of a

quality management system

Within these documents, ISO 9000-3 provides guidelines for the
application of the ISO 9001 "design and development" standard for
the development, supply, and maintenance of software. Part 5.3 of
that document stipulates "In order to proceed with development,
the supplier should have a complete, unambiguous set of functional
requirements." The same document also stipulates that the
information thus provided to the supplier (which we've described as
the "developer" throughout this appendix) should include all
performance, safety, reliability, security, and privacy requirements
that collectively determine whether the delivered system is
acceptable.

Like the CMM, ISO 9000 standards have been the subject of
considerable debate, particularly in U.S. organizations that worry
about the possibility of the standards degenerating into a

bureaucratic demand for excessive documentation. Our purpose
here is not to endorse or attack ISO 9000; like all such "common
sense" concepts, it can be used or misused. But to the extent that
many organizations are adopting ISO 9000 because they think it's a
good idea or because it's a necessary prerequisite for doing
business in Europe and other parts of the world, it's interesting to
note the emphasis that the standard puts on requirements
management. For example, ISO 9000 emphasizes the need for
mutual cooperation between the customer and the developer for
software systems; specifically, it calls for

• Assignment of people from both groups to be responsible for
establishing requirements

• Establishment of methods and procedures for agreement and
approval of changes to the requirements

• Efforts to prevent misunderstandings of the requirements
• Establishment of procedures for recording and reviewing the

results of discussions about the requirements

Although it's easy to dismiss all of this as "obvious" and "common
sense," remember what happens during the assessment required to
achieve certification. An assessor will visit the organization and ask,
"Where are your methods and procedures for approving changes to
the requirements? Show them to me in writing. Let me visit some
project teams and make some spot-checks to ensure that the
procedures are actually being followed."

ISO 9000 also stipulates that the input to the development phase of
a project—the lifecycle activity in which technical design and
programming usually take place—should be defined and
documented. These "inputs" are, of course, requirements, and ISO
9000 states that the requirements should be defined so that their
achievement can be verified. ISO 9000 also calls for processes to
ensure that incomplete, ambiguous, or conflicting requirements will
be resolved in an orderly fashion. One of the important
consequences of this kind of emphasis on requirements at the
beginning of a development effort is that it helps ensure that, if the
technical design and development efforts are carried out in a
disciplined fashion, it will be possible to produce a system that
meets specifications, or requirements, rather than relying on frantic
testing and validation activities at the end of the lifecycle for
assurance of quality.

Like the SEI-CMM, ISO 9000 doesn't tell us how to do requirements
management. The fact that we have an official process that forces
us to choose an "official" user representative and an "official"
developer to discuss the requirements of a system obviously doesn't
guarantee that these two individuals will be capable of identifying

and documenting the correct requirements. But armed with the
procedures and techniques described in other chapters of this book,
we should be able to create a comprehensive requirements
management approach that will satisfy the most demanding of ISO
9000 assessors, as well as CMM assessors.

Appendix E. Requirements Management
in the Rational Unified Process

With Philippe Kruchten and Leslee Probasco

This book provides an overview of a requirements management
software best practice. The Team Skills described in the book, along
with the requirements prescription provided in Chapter 35, will help
your team start down the right path on your next project. However,
to better ensure success, some way is needed to reinforce and to
support the application of these best practices throughout the
course of development. This must be accomplished in a way that
integrates requirements management smoothly with other software
development activities, including design, implementation, test, and
deployment. Ideally, this information would be provided online, in
the team's desktop environment. Further, it would be prescriptive in
describing which team members performed which activities and
when they needed to produce the outputs of these activities for
other team members to use. This is the role of a software
development process. In this appendix, we will look at an example
of an industrial software development process, the Rational Unified
Process, and see how the skills we have presented map into it.

The Rational Unified Process, a software engineering process
developed and commercialized by the Rational Software Corporation
(1999), captures some of the best practices of the industry for
software development. It is use case driven and takes an iterative
approach to the software development life cycle. It embraces
object-oriented techniques, and many of its activities focus on the
development of models, all described using the UML. The Unified
Process is a descendant of Objectory (Jacobson, Christerson, and
Jonsson 1992) and of the Rational Approach. It has benefited over
the years from the contributions of many industry experts, including
the authors of this book and the teams from Requisite, Inc.; SQA,
Inc.; and many others.

As a product, the Rational Unified Process is a Web-enabled
guidebook that brings process guidance directly onto the desktop of
the software developers. It is composed of approximately 2,800
files presenting an HTML-based interactive desktop coach, which

can be tailored to suit the needs of a wide range of software
development organizations.

Although it uses slightly different terminology from that presented
in this book, the Rational Unified Process provides an effective
implementation of the requirements management best practices
offered in this book, in a form that can be readily applied by the
software development team.

Structure of the Rational Unified Process[1]

[1] This section is extracted from Philippe Kruchten, The Rational Unified Process—An Introduction (Reading,
MA: Addison Wesley Longman, 1999), pp. 35–48, and reproduced with permission from the publisher.

A process describes who is doing what, how, and when. The Rational Unified
Process is described using four key modeling elements:

• Workers, the "who"
• Activities, the "how"
• Artifacts, the "what"
• Workflows, the "when"

(See Figure E-1.) A worker defines the behavior and responsibilities of an
individual or a group of individuals working together as a team. The behavior is
expressed in terms of activities the worker performs, and each worker is
associated with a set of cohesive activities. The responsibilities of each worker are
expressed in relation to certain artifacts, or work products, that the worker
creates, modifies, or controls.

Figure E-1 Worker, activities, and artifact

Workflows allow the grouping of activities into meaningful sets that provide some
result for the development organization and show how various workers interact.
Beyond these four main concepts, the Rational Unified Process introduces specific
techniques in the form of guidelines mapped to activities, templates for major

artifacts, and tool mentors, that is, guidance on how to proceed using software
development tools.

Requirements Management in the Rational Unified
Process

The best practice of requirements management is captured in the Rational Unified
Process in the requirements workflow, one of nine core workflows described in the
process. This requirements workflow produces and updates the following artifacts
(see Figure E-2):

• Stakeholder requests, the collection of any type of requests, including
formal change requests, needs, or other input from any stakeholders,
during the life cycle of the project, that might affect the product
requirements

• The Vision document, which summarizes the overall vision of the system
under consideration: main characteristics, major features, key stakeholder
needs, and key services provided

• The use-case model, the organized set of use cases that constitute the
bulk of the requirements

• The supplementary specification, which captures any requirements that
cannot be tied directly to any specific use case, in particular, many of the
nonfunctional requirements and design constraints

The last two artifacts constitute collectively one form of what in this book we
have called the Modern Software Requirements Specification Package.

Other artifacts are also developed as a result of this workflow, including

• Requirements attributes, a repository of information containing
requirements-related information that is used to track requirements status
and to maintain traceability to other project elements

Figure E-2 Requirements workflow

• Use case storyboards, systematically derived from the essential use cases
involving human actors to model the user interface and to elaborate some
of the usability requirements

• User interface prototypes, developed to get feedback from the various
stakeholders

• A project's glossary, which captures and defines the terms used in the
project domain

Workers involved in this workflow include

• Stakeholder, customer, end user, or whoever within the development
organization represents the role of anyone providing input to the
requirements process (it is often the marketing manager who plays this
role in some companies)

• System analyst, who leads and coordinates requirements elicitation and
use-case modeling by outlining the system's functionality and delimiting
the system: for example, establishing what actors and use cases exist and
how they interact, along with nonfunctional requirements and design
constraints

• Use case specifier, who details the specification of a part of the system's
functionality by describing the requirements aspect of one or several use
cases

• User interface (UI) designer, who develops use case storyboards and UI
prototypes and involves other stakeholders in their evaluation

• Requirements reviewer (a role usually played by several team members),
who plans and conducts the formal review of the use-case model and
other requirements specified in the supplementary specifications

The description of the requirements workflow activities and steps is organized in
the Rational Unified Process into six smaller workflows (called workflow details)
which directly parallel the six team skills described in this book.

Analyze the Problem

As shown in Figure E-3, the purpose of this workflow detail is to

• Produce a Vision document for the project
• Agree on system features and goals

This workflow detail may be revisited several times during inception and early
elaboration. As requests from stakeholders are more clearly understood, both
business process solutions and technical solutions will evolve.

The primary activity in this workflow is to develop the Vision document, which
identifies the high-level user or customer view of the system to be built. In the
Vision document, initial requirements are expressed as key features the system
must possess in order to solve the most critical problems. The features should be
assigned attributes, such as rationale, relative value or priority, source of request,
and so on, so that dependencies can begin to be managed. As the vision develops,
the system analyst identifies users and system interfaces—the actors of the
system.

Understand Stakeholders' Needs

The purpose of this workflow detail is to elicit and to collect information from
stakeholders of the project (Figure E-4). The collected stakeholder requests can
be regarded as a "wish list" that will be used as primary input to defining the use-
case model, use cases, and supplementary specifications. Typically, this is
performed only during iterations in the inception and elaboration phases.

Figure E-3 Analyze the problem

The key activity is to elicit stakeholder requests. The primary outputs are
collection(s) of prioritized stakeholder requests, which enable refinement of the
Vision document, as well as a better understanding of the requirements attributes.
Also, during this workflow, you may start discussing the system in terms of its
use cases and actors. Another important output is an updated glossary of terms
to facilitate a common vocabulary among team members.

Define the System

The purpose of this workflow detail (see Figure E-5) is to

Figure E-4 Understand stakeholder needs

• Align the project team in its understanding of the system
• Perform a high-level analysis on the results of collecting stakeholder

requests
• More formally document the results in models and documents

Typically, this is performed only in iterations during the inception and elaboration
phases.

Problem analysis and understanding stakeholder needs create early iterations of
key system definitions, including the Vision document, a first outline to the use-
case model, and the requirements attributes. In defining the system, you will
focus on identifying actors and use cases more completely and adding
supplementary specifications.

Figure E-5 Define the system

Manage the Scope of the System

The purpose of this workflow detail (Figure E-6) is to

• Define input to the selection of requirements to be included in the current
iteration

• Define the set of features and use cases (or scenarios) that represent
some significant, central functionality

• Define which requirement attributes and traceabilities to maintain

Although project scope should be managed continuously, the better
understanding of system functionality obtained from identifying most actors, use
cases, and supplementary specifications will allow the system analyst to apply
priority, effort, cost, risk values, and so on, to requirements attributes more
accurately and will enable the architect to identify the architecturally significant
use cases. An input to managing scope not seen in other workflow details of the
requirements workflow is the iteration plan, developed in parallel by project and
development management. The iteration plan defines the number and frequency
of iterations planned for the release. The scope of the project defined in
managing scope will have a significant impact on the iteration plan, as the
highest-risk elements within scope will be planned for early iterations. Other
important outputs from managing scope include the initial iteration of the
software architecture document and a revised Vision document that reflects
system analyst's and key stakeholders' better understanding of system
functionality and project resources.

Figure E-6 Manage the scope of the system

Refine the System Definition

The purpose of this workflow detail (Figure E-7) is to further refine the
requirements in order to

• Describe the use case's flow of events in detail.
• Detail supplementary specifications
• Model and prototype the user interfaces

Figure E-7 Refine the system definition

Refining the system begins with use cases outlined, actors described at least
briefly, and a revised understanding of project scope reflected in reprioritized
features in the vision and believed to be achievable by fairly firm budgets and
dates. The output of this workflow is more in-depth understanding of system
functionality expressed in detailed use cases, revised and detailed supplementary
specifications, and user interface elements.

Manage Changing Requirements

The purpose of this workflow (Figure E-8) detail is to

• Structure the use-case model
• Set up appropriate requirements attributes and traceabilities
• Formally verify that the results of the requirements workflow conform to

the customer's view of the system

Changes to requirements naturally impact the models produced in the analysis
and design workflow, as well as the test model created as part of the test
workflow. Traceability relationships between requirements identified in the
manage dependency activity of this workflow and others are the key to
understanding these impacts.

Another important concept is the tracking of requirement history. By capturing
the nature and rationale of requirements changes, reviewers (in this case, the
role is played by anyone on the software project team whose work is affected by
the change) receive the information needed to respond to the change properly.

Process Integration

The Rational Unified Process defines flows of information, transformations,
guidelines, heuristics, and formal traceability links that tie these artifacts to other
software development activities and artifacts. For example, the requirements
artifact may be tied upstream in the process to a business model, constructed
also using object-oriented technology and business use cases, and downstream to
such artifacts as an analysis model or a design model, as well as to test cases and
user documentation (see Figure E-2).

Figure E-8 Manage changing requirements

Software engineering tools support many of the best practices presented in the
Rational Unified Process—from requirements management and visual modeling to
report generation, configuration management, and automated testing. Tool
mentors are also included, which provide detailed descriptions on how Rational's
software tools can be used to support particular steps and activities within the
process.

Bibliography

Boehm Barry W. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-
Hall, 1981.

———. "A Spiral Model of Software Development and Enhancement". IEEE
Computer 21, 15 (May 1988), pp. 61–72.

Boehm Barry W. Philip N. Papaccio. "Understanding and Controlling Software
Costs". IEEE Transactions on Software Engineering 14, 10 (October 1988), pp.
1462–1473.

Booch Grady James Rumbaugh Ivar Jacobson. The Unified Modeling Language
User Guide. Reading, MA: Addison Wesley Longman, 1999.

Brooks Frederick P. Jr. The Mythical Man Month: Essays on Software Engineering.
Reading, MA: Addison-Wesley, 1975.

Davis Alan M. Software Requirements: Objects, Functions, and States. Englewood
Cliffs, NJ: Prentice-Hall, 1993.

———. "Software Prototyping". In Advances in Computers, Vol. 40, pp. 39–62.
Chestnut Hill, MA: Academic Press, 1995.

———. 201 Principles of Software Development. New York: McGraw-Hill, 1995.

———. "Achieving Quality in Software Requirements". Software Quality
Professional 1, 3 (June 1999), pp. 37–44.

Dorfmann Merlin Richard H. Thayer. Standards, Guidelines, and Examples of
System and Software Requirements Engineering. Los Alamitos, CA: IEEE
Computer Society Press, 1990.

European Software Process Improvement Training Initiative. User Survey Report.
1995.

FDA. "Medical Devices; Current Good Manufacturing Practice (CGMP) Final Rule;
Quality System Regulation". Federal Register 61, 195 (7 October 1996), Subpart
C, pp. 52657–52658.

FDA/ODE. "ODE Guidance for the Content of Premarket Submission for Medical
Devices Containing Software". (Draft 1.3, 12 August 1996).

Fisher Roger William Ury Bruce Patton. Getting to Yes: Negotiating Agreement
without Giving In., 2nd ed. New York: Penguin Books, 1983.

Gause D. G. Weinberg Exploring Requirements: Quality Before Design. New York:
Dorset House Publishing, 1989.

Grady, R. Practical Software Metrics for Project Management and Process
Improvement. Englewood Cliffs, NJ: Prentice-Hall, 1992.

Humphrey, Watts S. Managing the Software Process. Reading, MA: Addison-
Wesley, 1989.

IEEE. IEEE Standards Collection, Software Engineering. IEEE Standards Collection,
Software Engineering. New York. NY: IEEE, 1994.

International Council on Systems Engineering (INCOSE). "An Identification of
Pragmatic Principles—Final Report". INCOSE WMA Chapter, 1993. Available at
http://www.incose.org/workgrps/practice.html.

———. 1999. Available at http://www.incose.org.

Jacobson Ivar Grady Booch James Rumbaugh. The Unified Software Development
Process. Reading, MA: Addison Wesley Longman, 1999.

Jacobson Ivar Magnus Christerson Patrik Jonsson Gunnar Övergaard. Object-
Oriented Software Engineering: A Use Case. Driven Approach. Harlow, Essex,
England: Addison Wesley Longman, 1992.

Jacobson Ivar Maria Ericsson Agneta Jacobson. The Object Advantage: Business
Process Reengineering with Object Technology. Wokingham, England: Addison-
Wesley, 1995.

Jones Capers. "Revitalizing Software Project Management". American
Programmer 6, 7 (June 1994), pp. 3–12.

Karat Claire-Marie. "Guaranteeing Rights for the User". Communications of the
ACM 41, 12 (December 1998), p. 29.

Kruchten Philippe. "The 4+1 View of Architecture". IEEE Software 12, 6
(November 1995), pp. 45–50.

———. The Rational Unified Process: An Introduction. Reading, MA: Addison
Wesley Longman, 1999.

Moore Geoffrey A. Crossing the Chasm: Marketing and Selling Technology
Products to Mainstream Customers. New York, NY: HarperCollins, 1991.

Rational Software Corporation. "Rational Unified Process V5.1". Cupertino, CA:
Rational Software Corporation, 1999.

Rechtin Eberhardt Mark W. Maier. The Art of Systems Architecting. Boca Raton,
FL: CRC Press, 1997.

Royce Walker. Software Project Management: A Unified Approach. Reading, MA:
Addison Wesley Longman, 1998.

Royce Winston W. "Managing the Development of Large Software Systems:
Concepts and Techniques". Proceedings of WESCON, August 1970. Also available
in ICSE9 Proceedings, IEEE-CS, 1987.

Rumbaugh James Ivar Jacobson Grady Booch. The Unified Modeling Language
Reference Manual. Reading, MA: Addison Wesley Longman, 1998.

Scharer Laura. "Pinpointing Requirements". In Software Requirements
Engineering. Los Alamitos, CA: IEEE Computer Society Press, 1990. (Article
reprinted from Datamation, 1981.)

Schneider Geri Jason P. Winters. Applying Use Cases: A Practical Guide. Reading,
MA: Addison Wesley Longman, 1998.

SEI. Capability Maturity Model for Software. Version 1.1, Document No. CMU/SEI-
93-TR-25, ESC-TR-93-178. Pittsburgh, PA: Carnegie-Mellon University Software
Engineering Institute, 1993.

Shaw Mary David Garlan. Software Architecture: Perspective on an Emerging
Discipline. Upper Saddle River, NJ: Prentice-Hall, 1996.

Snyder Terry Ken Shumate. "Kaizen Project Management". American Programmer
5, 10 (December 1992), pp. 12–22.

The Standish Group. "Charting the Seas of Information Technology—Chaos". The
Standish Group International, 1994.

Weinberg Gerald. The Psychology of Computer Programming. New York: Van
Nostrand Reinhold. 1971.

———. "Just Say No! Improving the Requirements Process". American
Programmer 8, 10 (October 1995), pp. 19–23.

Wood Bill J. Julia W. Ermes. "Applying Hazard Analysis to Medical Devices" (Part I)
Medical Device & Diagnostic Industry Magazine 15, 1 (January 1993), pp. 79–83.

———. "Applying Hazard Analysis to Medical Devices" (Part II). Medical Device &
Diagnostic Industry Magazine 15, 3 (March 1993), pp. 58–64.

