JAVA OPEN SOURCE LIBRARY

and lava"'

Developer’s Guide

Mark Matthews
Jim Cole
Joseph D. Gradecki

MySQL and Java
Developer’'s Guide

Mark Matthews
Jim Cole
Joseph D. Gradecki

WILEY
Wiley Publishing, Inc.

Publisher: Robert Ipsen Copyeditor: Elizabeth Welch
Editor: Robert M. Elliott Proofreader: Nancy Sixsmith
Managing Editor: Vincent Kunkemueller Compositor: Gina Rexrode
Book Producer: Ryan Publishing Group, Inc.

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances
where Wiley Publishing, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL
LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding
trademarks and registration.

This book is printed on acid-free paper.

Copyright © 2003 by Wiley Publishing, Inc. All rights reserved.
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470. Requests to the Publisher for
permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the
contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particu-
lar purpose. No warranty may be created or extended by sales representatives or written sales materials. The
advice and strategies contained herein may not be suitable for your situation. You should consult with a profes-
sional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or registered trademarks
of Wiley Publishing, Inc., in the United States and other countries, and may not be used without written permis-
sion. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data:
Matthews, Mark.

MySQL™ and Java™ developer’s guide / Mark Matthews.

p. cm.

ISBN 0-471-26923-9 (PAPER/WEBSITE)

1. SQL (Computer program language) 2. Java (Computer program
language) I. Title.

A76.3.567M38 2003

005.75’65—dc21

2002155887
Printed in the United States of America

109 87654321

Chapter 1

Chapter 2

Chapter 3

Acknowledgments Xi
About the Authors xiii
Introduction XV
An Overview of MySQL 1
Why Use an RDBMS? 2
Multiuser Access 2
Storage Transparency 2
Transactions 3
Searching, Modifying, and Analyzing Data 4
Ad Hoc Queries 5
Why Choose MySQL? 5
MySQL and JDBC 7
What’s Next 8
JDBC and Connector/) 9
What Is JDBC? 9
What about ODBC? 10
Modeling Database Applications with JDBC 11
JDBC Versions 13
JDBC Driver Types 13
SQL Standards 14
Examining the JDBC Interface 15
The java.sql Package 15
The javax.sql Package 18
Understanding Connector/J 21
JDBC Support within 3.0.1 22
Obtaining JDBC Drivers 24
What’s Next 24
Working with MySQL SQL 25
What Is a Database? 25
Database Models 27
Data Types 29
Designing a Database 29
Introducing MySQL SQL 32
Overview of MySQL 33
Creating Databases 34
Creating Tables 35
Inserts 39
Selects 40
SELECT Statement Extensions 42

iv |

Chapter 4

Chapter 5

Updates 47
Deletes 50
Using SHOW 51
More on Tables 53
Transactions b5
Functions/Operators 56
Joins 56
NULL 59
What'’s Next 59
Installing MySQL, Java, and Connector/) 61
Installing MySQL 61
Linux Installation 62
Windows Installation 63
All Other Installations 63
Installing Java 64
Testing the Java Installation 64
Installing Connector/J 65
Testing the Connector/J Installation 66
What'’s Next 66
Using JDBC with Java Applications and Applets 67
Hello World 67
Loading the Connector/J Driver 69
Using DriverManager to Connect to a Database 69
Executing Queries Through Statement Objects 75
Using the ResultSet Object 78
Determining the Cursor Position 79
Moving the Cursor 79
Getter Methods 80
Primitive Getters 82
Closing the Objects 85
Making It Real 85
Our Main Function 88
The init() Method 89
The buildGUI() Method 89
Executing a Query with No Results 91
Deleting Database Rows 97
Updating Database Rows 99
CREATE TABLE 101
DROP TABLE 101
Disconnecting from the Database 103
Advanced ResultSet Manipulation 104
One Step Forward 113
One Step Back 114
Fast-Forward to the End 114

Chapter 6

Chapter 7

v
Rewind to the Beginning 114
Goto Record 114
Freehand Query 115
Batches 115
Limiting Results 116
Database Warnings and Exceptions 117
What'’s Next 118
Achieving Advanced Connector/J Functionality with Servlets 119
Servlets 119
DataSource Connections 122
Execution Environment 123
Databases 123
PreparedStatements 124
Connecting to the Database 129
Determining the Submit Type 129
Displaying Data 130
Updating Data 132
Using Placeholders in a Loop 133
Using Placeholders in PreparedStatement 134
Using setObject/setBytes 136
Getting BLOBs 139
Joins 141
Updatable ResultSets 142
The Update Button Code 149
The Insert Button Code 150
Update Methods 152
Manipulating Date/Time Types 154
Methods for Retrieving a Value as a Date Type 155
Methods for Retrieving a Value as a Time Type 155
Methods for Retrieving a Value as a Timestamp Type 155
Handling BLOB and CLOB 156
Using Streams to Pull Data 158
Handling ENUM 159
Using Connector/J with JavaScript 161
What’s Next 163
MySQL Type Mapping 165
Character Column Types 166
CHAR 166
VARCHAR 167
TINYTEXT 167
TEXT 167
MEDIUMTEXT 167
LONGTEXT 168
TINYBLOB 168

vi |

Chapter 8

BLOB 168
MEDIUMBLOB 168
LONGBLOB 169
SET 169
ENUM 169
Using Character Types 169
Date and Time Column Types 171
DATE 172
TIME 172
DATETIME 172
YEAR 173
TIMESTAMP 173
Using Date and Time Types 173
Numeric Column Types 175
TINYINT 176
SMALLINT 176
MEDIUMINT 176
INT 177
BIGINT 177
FLOAT 177
DOUBLE 177
DECIMAL 178
Using Numeric Types 178
What'’s Next 180
Transactions and Table Locking with Connector/) 181
Understanding the Problem 181
MySQL's Transaction Table Types 182
The InnoDB Table Type 182
The BDB Table Type 184
Converting to Transactional from Nontransactional 184
Performing Transactions in MySQL 185
Using the autocommit Variable 185
Update Transactions 187
The SELECT/INSERT Transaction 190
Multiple Table Transactions 191
Foreign Key Integrity on Deletes 192
Ending a Transaction 192
Transaction Isolation 192
Dirty Reads 193
Phantom Reads 194
Nonrepeatable Reads 194
Table Locking 195
What’s Next 196

Chapter 9

Chapter 10

Chapter 11

Chapter 12

vii

Using Metadata 197
Using Database Metadata 197
Getting the Object 200
General Source Information 202
Feature Support 203
Data Source Limits 204
SQL Object Available 204
Transaction Support 204
The ResultSet Metadata 205
Getting Column Information 205
Other ResultSet Metadata 208
What’s Next 210
Connection Pooling with Connector/) 211
What Is a Connection Pool? 212
Pooling with DataSource 213
Pooling with the DriverManager 218
DDConnectionBroker 219
What'’s Next 221
EJBs with MySQL 223
Multi-tier Architecture 223
Using Beans 225
EJB Types 225
The EJB Environment 226
Application Server Configuration 229
The Role of the Servlet 230
Entity Beans 230
Session Beans 234
Using the Beans 236
Adding a Query 238
Bean-Managed Persistence 240
ejbCreate() 241
ejbLoad() 242
ejbStore() 243
ejbRemove() 243
ejbFindByPrimaryKey() 244
Setter/Getter Methods 245
What's Next 245
Building a General Interface for MySQL 247
Tasks 248
SQL Exceptions 252
MySQL Connections 253
The Task Delegate 255

LMj Contents

Chapter 13

Chapter 14

The Task Manager 255
Task Results 264
The Database Information Task 268
User Input for Tasks 270
The SQL Query Task 272
The Show Columns Task 275
The Insert Row Task 280
What'’s Next 286
Database Administration 287
Using the mysql Administration Application 287
Managing Users and Permissions 289
Changing Root 289
Adding Users 290
Limiting Resources 292
Configuring the Query Cache 293
Forcing a Cache 294
Understanding Log Files 294
Error Logs 295
General Logs 295
Binary Logs 296
Slow Query Logs 296
Maintaining Your Tables 296
Repairing Tables 297
Backing Up and Restoring Your Database 298
Restoring Data 301
InnoDB Table Types 302
DBD Table Types 302
What’s Next 303
Performance and Tuning 305
Connector/J 3.0 Performance 305
Database Tuning 308
Server Options 308
Using RAID 309
Optimizing Tables 309
The MySQL Query Optimizer 310
Table Indexes 312
JDBC Tuning 313
Minimizing Data Requests 313
Keeping Consistent Connections 314
Handling Statements 315
Batching 316
Using Transactions and Locking 316
Defining the Architecture 317
Getting Data 317
Conclusion 318

Appendix A

Appendix B

Appendix C

ix

MySQL Development and Test Environments 319
Test Architecture #1 319
Test Architecture #2 320
Servlet Architecture 321
The EJB Architecture 323
Databases and Tables 325
The accounts Database and Tables 325
The identification Database and Tables 326
Test Databases 327
Database Products 327
The Database Test 327
The JDBC API and Connector/J 329
The java.sql Package 330
Array 331
BatchUpdateException 332
Blob 332
CallableStatement 333
Clob 335
Connection 335
DataTruncation 337
DatabaseMetaData 337
Date 343
Driver 343
DriverManager 343
DriverPropertyInfo 344
ParameterMetaData 344
PreparedStatement 345
Ref 346
ResultSet 347
ResultSetMetaData 350
Savepoint 351
SQLData 351
SQLException 352
SQLInput 352
SQLOutput 353
SQLPermission 353
SQLWarning 354
Statement 354
Struct 355
Time 356
Timestamp 356
Types 357

.3l Contents

Appendix D

Appendix E

The javax.sql Package 358
ConnectionEvent 359
ConnectionEventListener 359
ConnectionPoolDataSource 359
DataSource 360
PooledConnection 360
RowSet 360
RowSetEvent 362
RowSetInternal 362
RowSetListener 363
RowSetMetaData 363
RowSetReader 363
RowSetWriter 364
XAConnection 364
XADataSource 364

MySQL Functions and Operators 367

Arithmetic Functions/Operators 369

Comparison Functions/Operators 372

Logical Operators 375

Control Functions 377

String Functions/Operators 379

Grouping Functions 384

Date and Time Functions 386

Other Functions 394

Connector/) Late-Breaking Additions 397

Failover Support 397

Windows Named Pipes 398

Batch Processing Error Continuation 398

Strict Updates 399

Profile SQL 399

SSL 399

Index 401

Dedication

To my wife Diane, for all her support in my "geeky" endeavors, and to our
new daughter Lauren.

I would also like to dedicate this work to Monty, David, and the rest of the
fine group of developers at MySQL AB. Without their contribution to the
software community and dedication to free software and open source ideals,
this book would not have been possible.

--Mark Matthews

I would like to dedicate this book to my parents. Their ever-present love and
encouragement have made so many things possible.

—Jim Cole

This book is dedicated to the trinity: God, Jesus Christ, and the Holy Spirit.
—Joseph D. Gradecki

Acknowledgments

I need to acknowledge the patience and support of my beautiful and loving wife
and our boys. Thank you for the opportunity to be your husband and father.
Tim, thank you for the opportunities. Jim, welcome to this new adventure and I
look forward to many more in the future. Thank you to Liz Welch for the excel-
lent review.

xi

Mark Matthews is the creator of Connector/J and its predecessor MM.MySQL,
the Java JDBC driver for MySQL. Last year, he joined MySQL AB to further
develop Java support in MySQL. Mark specializes in Java, MySQL, XML, and
DHTML solutions and has architected major Web applications projects, includ-
ing a GIS-based retail analytics package. Mark has also taught classes in both
Java and UML.

Jim Cole is a senior software engineer specializing in Internet and knowledge
management systems. He is an active developer working in Java, C++, Perl, and
PHP. He also serves as a system administrator for several Web-based projects,
where his duties include custom software development, database management,
and security maintenance.

Joseph D. Gradecki is a software engineer at Comprehensive Software Solu-
tions, where he works on their SABIL product, an enterprise-level securities
processing system. He has built numerous dynamic, enterprise applications
using Java, Aspectd, servlets, JSPs, Resin, MySQL, BroadVision, XML, and
more. He has also built P2P distributed computing systems in a variety of lan-
guages including Java/JXTA, C/C++, and Linda. He holds Bachelors and Mas-
ters degrees in Computer Science and is currently obtaining his PhD.

xiii

Introduction

how you were going to accomplish it? Many developers have experi-

enced this feeling when asked to interface their code with a database.
With a few exceptions, most developers were busy learning Lisp, linked lists,
and big-O notation during their formal education instead of learning the funda-
mentals of relationship database management systems. When the time comes
to interface their code with a database, they turn to a book like the one you are
holding.

Have you ever been assigned a project and realized that you had no idea

Your challenge might be to write a Web-based system using servlets and Enter-
prise JavaBeans (EJBs) to transfer shipping records from the home office in
Bend, Oregon, to a satellite shipper in New Jersey. Or perhaps your father just
opened his new medical office and you volunteered to create a scheduling sys-
tem over the weekend.

Whatever the situation, interfacing an application to a database is one of the
most fundamental tasks a developer is required to perform. This book is
designed for developers who either have a pressing task ahead of them or who
are curious about how to read database information into their application.

By combining MySQL, the number-one open source database available, with
Java, the most portable language ever developed, you can create an undis-
putable champion. So, sit back in your desk chair with a hot chocolate and get
ready to supercharge your coding.

xvi INTRODUCTION

What's in This Book

The primary goal of MySQL and Java Developer's Guide is to provide a com-
prehensive approach to writing code from a Java application to a MySQL data-
base using the industry standard: JDBC. As you will see later in this
Introduction, the chapter titles indicate what area of database connectivity and
manipulation they cover. The chapters are ordered to reflect the JDBC specifi-
cation, but we aren’t here to simply describe the specification.

We wrote all of the material in the book to highlight how MySQLs Connector/J
JDBC driver achieves the interfacing of MySQL with Java while maintaining the
spirit of the specification. With this in mind, we provide example code using all
major forms of Java development, including

m Applications
m Applets

m Servlets
m JSPs

m EJBs

As you work in Java and JDBC, you will see the true power of the specification.
You can write database access code in a Java application and move the code to
a servlet with little if any changes. In the case of EJBs and container-managed
persistence, we devoted a full chapter to dealing with database access without
the cumbersome details of SQL.

We designed the layout of the book to move you through the entire process of
writing Java code needed to access a back-end database. Developing the data-
base is one of the first things that you must accomplish in this process. While
we don’t delve deeply into the theory of database development, you learn how
to create databases in MySQL, administer those databases, and handle such
details as granting access permissions. From there, we take you into an exami-
nation of the MySQL Connector/J driver and how it accomplishes its goal of
portable database access. The remainder of the book steps you through Java
code that highlights how to accomplish database tasks such as the following:

m Querying and updating

m Handling ResultSets

m Using transactions

m Handling typing issues between JDBC and MySQL
m Working with metadata
|

Addressing efficiency issues

MySQL and Java Developer’s Guide xvii

Once you're familiar with these concepts, we present a complete application
that pulls it all together. Our application illustrates how you can create to a sim-
ple authorization service. Using a combination of JSP, servlets, and EJBs, the
service allows new users to create accounts, recall the account, and verify a
username/password combination. The system is designed to be interactive
using JSP pages, which are handled on the server using servlets. The JSPs can
be bypassed using the servlets directly. All of the critical information is kept on
the database for persistence and management needs.

After reading this book, you should know how to interface Java to MySQL and
be able to use the many examples for reference.

NOTE

All the code and examples in this book can be found on the the support Web site at
www.wiley.com/compbooks/matthews.

Who Should Read This Book

This book is written for Java developers who need to interface their code to a
back-end database. The book’s specifics deal with MySQL and Connector/J, but
this doesn’t limit the information because JDBC is designed to be portable
against many databases. If you aren’t using MySQL, you still find valuable infor-
mation.

You don’t need to know much about databases—we have included several
chapters that provide all of the basics necessary to create databases and make
sure they are operational. Keep in mind that we didn’t intend these chapters to
replace a good reference on MySQL, though.

We do expect that you are an experienced Java developer who is comfortable
with the language. This book explains a combination of Java delivery methods,
including applications, applets, beans, and EJBs; you may want to begin with
what you know best and expand from there.

The Technology Used

In this book, we use the latest Java Developments Kits (JDK) available from
Sun at the time of writing. The JDKs we used include J2SE 1.4.0 and J2EE 1.3.1.
The Java examples are used in a mixed environment, including Windows
2000/XP, Linux Mandrake, and Linux Slackware. For the most part, we devel-
oped the examples using simple text editors and compiled them using the Java
command-line compiler. However, all the examples should work just fine in an
IDE such as JBuilder.

xviii INTRODUCTION

Two different versions of MySQL are used throughout this book: 4.0.4 and
3.23.52. JDBC connectivity is handled using MySQLs Connector/J driver, and
we cover both versions 2.0.14 and development 3.0.1.

Book Organization

The first four chapters of this book provide an overview of databases, JDBC,
and installation of the tools you will be using. The remainder of the book is an
in-depth guide to building database applications with MySQL, Connector/J,
JDBC, and Java.

Chapter 1: An Overview of MySQL

MySQL is one of the most popular open source database systems available
today, and it is used as the back-end data storage device for many personal
and corporate Web sites. Java is the most portable language in use today and
continues to be improved with each new release. In this chapter, we provide
a brief overview of each product and begin the discussion of how to interface
the two and thus allow Java applications to have access to a vast array of
information.

Chapter 2: JDBC and Connector/)

As shown in Chapter 1, JDBC facilitates the interface between Java and
MySQL. The JDBC specification defines the interfaces and classes necessary
for any Java application, applet, servlet, and so forth to make calls to an under-
lying database. Because the JDBC specification isn’t specific to any one data-
base system, manufacturers create JDBC drivers for their specific database. In
this chapter, we discuss the history of JDBC, how it started, and its progress
into a version 3.0 specification. We examine in depth the MySQL JDBC driver
called Connector/J, and look at its history as the MM.MySQL JDBC driver as
well as its future.

Chapter 3: Working with MySQL SQL

Before we delve into the concepts surrounding the interface between Java
and MySQL, this chapter provides a basic overview of databases and SQL.
Topics include basic concepts behind databases, simple database design,
database normalization, and data manipulation.

Chapter 4: Installing MySQL, Java, and Connector/)

MySQL and Java Developer’s Guide xix

All of the coding examples in this book are built using MySQL as the primary
database, Java as our coding language, and Connector/J, MySQLs JDBC dri-
ver. Although the installation of these components isn’t overly difficult, this
chapter provides comprehensive instructions for obtaining all of the neces-
sary components and performing a step-by-step installation. We also provide
simple examples for testing the installation.

Chapter 5: Using JDBC with Java Applications and
Applets

This chapter is the first in a series on the use of Java to access a MySQL data-
base using JDBC. Some of the basic functionality discussed includes loading
the JDBC driver, connecting to a local or remote database, building JDBC
statements in preparation for queries, executing queries against the MySQL
database, working with ResultSets, and accessing MySQL-specific functional-
ity through JDBC.

Chapter 6: Achieving Advanced Connector/J Functionality
with Servlets

At this point, you've learned the basics, and it’s time to expand into the more
advanced topics. This chapter is designed to expand your understanding of
SQL, MySQL, and JDBC. The topics include updatable ResultSets, Prepared-
Statements, date/time types, BLOBs and CLOBs, and joins.

Chapter 7: MySQL Type Mapping

One of the fundamental issues associated with databases and programming
language is determining the correct mapping from one to the other. While
programming languages have a large variety of types, including simple ones
like integer, they also allow more complex ones, like classes. Databases, on
the other hand, are limited in their choices for the types of data that can be
stored. In the middle of this situation is the JDBC driver. This chapter dis-
cusses the types available on the MySQL database, how JDBC interprets
those types, and the resulting Java type produced by the mapping.

Chapter 8: Transactions and Table Locking with Connector/)

In a simple world, information is stored in a single table of a database. When
you have to update information or insert a new row, you can use a single
query. However, most modern databases store information across several dif-
ferent tables to increase the normalization of the tables. In this situation,
when you have to update information or insert new rows, you must write two

XX INTRODUCTION

queries instead of one. This chapter looks at inserting multiple pieces of infor-
mation into multiple tables, what problems can arise, and how transactions can
be used to solve these problems.

Chapter 9: Using Metadata

After a query is performed against a MySQL database, the information is
returned in a ResultSet object. This object includes all of the rows and columns
specific to the query performed. In many cases, additional information is
needed about the data, including the name of the columns in the result, the pre-
cision of the data in a float column, the maximum length of a column, and
maybe even information about the server from which the data was returned. In
this chapter, we discuss pulling metadata about both the database and a Result-
Set that contains information from a query.

Chapter 10: Connection Pooling with Connector/)

In many cases, a JDBC driver requires between 4 and 10 different communica-
tions with a database application before a connection can be established and
returned to the requesting application. If an application is constantly creating
connections, doing its business, and then closing the connection, the applica-
tion suffers in its potential performance. To overcome the connection perfor-
mance problem, you can use a connection pool. This chapter provides a
comprehensive introduction to connection pools, presents valuable statistics
for creating database connections, and demonstrates how to use the connec-
tion pooling mechanisms within JDBC.

Chapter 11: EJBs with MySQL

Enterprise JavaBeans (EJBs) provide the framework for building applications
that can handle the rigors of enterprise-level applications. In addition, EJBs can
be distributed across a network or a farm of servers. In this chapter, we cover
the basic EJB programming model, using DataSources and JNDI, and building
session beans to access MySQL. We also discuss container-managed persis-
tence and bean-managed entity beans.

Chapter 12: Building a General Interface for MySQL

All of the chapters to this point have featured relatively simple examples using
Java applications, applets, servlets, and JSP to illustrate the finer points of
accessing a MySQL database using Java and Connector/J. This chapter pulls it

MySQL and Java Developer’s Guide xxi

all together using a Certificate Authority application. Using JSP, servlets, and
EJB, the application shows how to create new accounts, request certificates,
and enable the verification of certificates. All of the information, including
the binary certificate, is stored in a MySQL database with multiple tables.

Chapter 13: Database
Administration

Once you have a good knowledge of the MySQL database system as well as
the fundamentals described in the previous chapters for accessing the data
from Java, you must learn some database administration basics. In this chap-
ter, we examine many of the functions within MySQL that benefit administra-
tors, such as granting/revoking permissions, providing security within the
server, and recovering from disasters.

Chapter 14: Performance and Tuning

Once the application is written and the information is safely sitting in a data-
base, the users get the final say on whether or not the application meets their
performance requirements. If the application isn’t running at an appropriate
level, you have a couple of options. First, you can profile the Java code to
determine where the application is spending the most time and then rework
the code associated with the problem areas. Second, you can tune the MySQL
server and create indexes for the database tables. In this chapter, we provide
the necessary information on performing these two options.

Appendix A: MySQL Development and Test Environments

We developed and tested all of the code in this book on several different test
architectures in order to provide a representative reference. This appendix
briefly describes those environments and lists the installed software. In addi-
tion, we offer some notes for reproducing the configuration.

Appendix B: Databases and Tables

In this appendix, we list all databases and tables used in the examples
throughout this book.

Appendix C: The JDBC API and Connector/)

This appendix is a comprehensive review of the entire JDBC API, with anno-
tations for Connector/J. Code snippets are provided to show at a quick glance
how to use the various interfaces, classes, and methods.

xxii INTRODUCTION

Appendix D: MySQL Functions and Operators

The list of MySQL functions and operators in this appendix will help you deter-
mine when the database should handle computations versus the application.
Each function and operator is described, and an example of its use is given.

Appendix E: Connector/) Late-Breaking Additions

The most current, up-to-date additions to Connector/J as it moves from gamma
to production version.

An Overview of MySQL

n this chapter, we explain why you might choose to use a database system
with your software. We also provide an overview of the MySQL database
server and the Connector/J JDBC driver.

For many years, large corporations have enjoyed the ability to deploy relational
database management systems (RDBMSs) across their enterprise. Companies
have used these systems to collect vast amounts of data that serve as the “fuel”
for numerous applications that create useful business information.

Until recently, RDBMS technology has been out of reach for small businesses
and individuals. Widely used RDBMS systems such as Oracle and DB2 require
complex, expensive hardware. License fees for these systems are in the tens to
hundreds of thousands of dollars for each installation. Businesses must also
hire and retain staff with specialized skill sets to maintain and develop these
systems. Smaller enterprises have relied on systems like Microsoft Access and
FoxPro to maintain their corporate data.

Early on, during the explosive growth of the Internet, open source database
systems like mSQL, Postgres (now PostgreSQL), and MySQL became available
for use. Over a relatively short amount of time, the developers of these systems
have provided a large subset of the functionality provided by the expensive
commercial database systems. These open source database systems also run
on less-expensive commodity hardware, and have proven in many cases to be
easier to develop for and maintain than their commercial counterparts.

2

Finally, smaller businesses and individuals have access to the same powerful
level of software tools that large corporations have had access to for over a
decade.

Why Use an RDBMS?

Almost every piece of software that has been developed needs to persist or
store data. Once data has been persisted, it is natural to assume that this data
needs to be retrieved, changed, searched, and analyzed.

You have many options for data persistence in your software, from rolling your
own code, to creating libraries that access flat files, to using full-blown RDBMS
systems. Factors to consider when choosing a persistence strategy include
whether you need multiuser access, how you will manage storage require-
ments, whether you need transactional integrity, and whether the users of your
software need ad hoc query capability. RDBMSs offer all of this functionality.

Multiuser Access

Many programs use flat files to store data. Flat files are simple to create and
change. The files can be used by many tools, especially if they are in comma- or
tab-delimited formats. A large selection of built-in and third-party libraries is
available for dealing with flat files in Java. The java.util.Properties class
included with the Java Development Kit is one example.

Flat file systems can quickly become untenable when multiple users require
simultaneous access to the data. To prevent corrupting the data in your file, you
must lock the file during changes, and perhaps even during reads. While a file is
locked, it cannot be accessed by other users. When the file becomes larger and
the number of users increases, this leads to a large bottleneck because the file
remains locked most of the time—your users are forced to wait until they can
have exclusive access to the data.

RDBMSs avoid this situation by employing a number of locking strategies at
varying granularities. Rather than using a single lock, the database system can
lock an individual table, an individual page (a unit of storage in the database,
usually covering more than one row), or an individual row. This increases
throughput when multiple users are attempting to access your data, which is a
common requirement in Web-based or enterprise-wide applications.

Storage Transparency

If you use flat files in your software, you are also responsible for managing their
storage on disk. You have to figure out where and how to store the data, and

3

every time the location or layout of the files changes, you are required to
change your software. Once the datasets your software is storing become
numerous or large, the storage management process becomes cumbersome.

Using a database system gives you “storage transparency.” Your software does
not care where and how the data is stored. The data can even be stored on some
other computer and accessed via networking protocols.

Transactions

When you have more than one user accessing and changing your data, you want
to make these changes transactional. Transactions group operations on your
data into units of work that meet the ACID test. The ACID test concept is best
illustrated with a commonly used example from the banking industry.

Jack and Jill share a joint checking account with a balance of $1000. They

are both performing various operations, such as deposits, withdrawals, and

transfers, on the account. Let’s see how the four aspects of the ACID test come
into play:

m Atomicity: All changes made during a transaction are made successfully,
or in the case of failure, none are made. If any operation fails during the
transaction, then the entire transaction is rolled back, leaving your data in
the state it was before the transaction was started. For example, suppose
Jack is making a transfer of $500 from his checking account to a savings
account. Sometime between the withdrawal of the $500 from the checking
account and the deposit of $500 to the savings account, the software run-
ning the banking system crashes. Jack’s $500 has disappeared! With atom-
icity, either the entire transfer would have happened, or none of it would
have happened, leaving Jack a much happier customer than he is now.

m Consistency: All operations transform the database from one consistent
state to another consistent state. Consistency is defined by how the data-
base schema is designed and whether integrity constraints such as foreign
keys are used. The database management system is responsible for ensur-
ing that transactions do not violate the database schema or integrity con-
straints. For example, the bank’s database developers have declared in the
database schema that the balance of an account cannot be empty, or “null.”
If any transaction attempts to set the balance to an empty value, the trans-
action will be aborted and any changes rolled back.

m JIsolation: A transaction’s changes are not made visible to other transac-
tions until they are committed under the atomicity rule described earlier.
This is best demonstrated by what happens when month-end reports are
generated. Let’s say that Jack is performing the transfer transaction out-
lined in the atomicity example, and at the same time you are generating his

4

monthly statement. Without isolation, the monthly statement might show
the withdrawal from the checking account but not the deposit into the sav-
ings account. This discrepancy would make it impossible for Jack or the
bank to balance their books.

m Durability: Once completed, a transaction’s changes are never lost
through system or hardware crashes. If Jill has paid for $50 worth of gro-
ceries with her debit card at the grocery store and the transaction suc-
ceeds, even if the database software crashes immediately after the
transaction competes, it won’t forget that her checking account balance is
$50 lower.

Until recently, MySQL did not comply with all components of the ACID test.
However, with the new BDB and InnoDB table types (supported in MySQL 3.23
and MySQL 4.0), MySQL can now pass the ACID test.

Not all software requires the robustness (or the associated overhead) of trans-
action semantics. MySQL is one of the only databases that enable you to decide
what level of robustness you need on a table-by-table basis. This becomes
important when you are trying to maximize performance, especially when
much of the data is read-only (such as in a product catalog).

Searching, Modifying, and Analyzing Data

Any time you store a significant amount of data with your software, your users
want to search, modify, and analyze the data you have stored. If you are using
flat files, you most likely have to develop this functionality yourself.

As your data stored in flat files takes up more and more space, it takes longer
and longer to search. A common solution to this problem is to create an index
for your data. Indexes are basically shortcuts to finding a particular piece of
data, usually using some sort of key. If you need to develop indexing function-
ality yourself, you have to learn about data structures, such as hashes and B-
trees, and how to store these indexes alongside your data. In addition, you must
learn how to implement the index in your software. If you use an RDBMS, you
can tell the database system what data you think people will search on, and it
does all of the fancy indexing for you.

Users of your software also want to retrieve, modify, and analyze the data you
have stored. They expect that your system knows how to compute such values
as sums, averages, minimums, and maximums to be used for updating related
data or analyzing existing data. They expect that your software will be able to
sort the data or group the data by similar attributes. All of this functionality
requires you to implement numerous functions and algorithms. If you use an
RDMBS, all of these features are built in.

Why Choose MySQL?

Ad Hoc Queries

It is likely that your software will need to retrieve stored data using arbitrary
parameters, otherwise known as ad hoc queries. This becomes difficult with
flat files because they are not self-describing, and every file layout is different.
You also need to consider how you are going to read the data for these queries
from your persistent storage mechanism.

Many RDBMSs use SQL (Structured Query Language) for manipulating data.
SQL is a declarative language in that you declare what data you want, not the
procedure for how to get it. SQL is also an accepted and widely used standard,
so a large set of tools are available (JDBC and Enterprise Java Beans, among
them) to help you work with it.

After outlining all of the benefits of an RDBMS, I hope you are ready to consider
using one for your software projects. The next question to ask is “Why choose
MySQL?”

Why Choose MySQL?

As was the case with many other open source projects, MySQL was first cre-
ated by someone who needed a better tool to get a specific job done. Monty
Widenius and David Axmark started out with another open source project
(MSQL), but found that it lacked some features that they needed. They decided
to develop their own database system that met their specific requirements.
They started building MySQL by using some low-level database storage code
they had already developed for other projects and layered a multithreaded
server, SQL parser, and client-server protocol on top. They also structured the
API for MySQL to appear very similar to MSQL in order to make it easier for
developers to port their MSQL-based software to MySQL.

MySQL was eventually released in source-code form, under a proprietary license.
Eventually, this license was changed to the GNU General Public License (GPL),
which in most cases allows the software to be used without license cost. How-
ever, in certain situations you must purchase a commercial license. The exact
terms of the license are available in the documentation that ships with MySQL or
on the Web at www.mysql.com. Commercial support is also available for those
who need it from MySQL-AB, the company that was created by Monty and David
to support the continued development of the MySQL software.

The requirements that Monty and David originally had for MySQL were that it
be as fast as possible, while still being stable, simple to use, and able to meet the
needs of the majority of database developers. Even today, feature requests for
future MySQL development are weighed carefully against these original

requirements, and are implemented only when and if the original requirements
can be met as much as possible.

Over the years, MySQL has evolved into an RDBMS that has the following core
features:

Portability: MySQL runs on almost every flavor of Unix, as well as Win-
dows and MacOS X. You can obtain binaries or source code for the MySQL
server as well as the tools that access it. More ports of the software
become available every day. It is almost a given that MySQL will run on
whatever operating system you have available.

Speed: Using techniques such as efficient indexing mechanisms, in-
memory temporary tables, and highly optimized join algorithms, MySQL
executes most queries much faster than most other database systems.
Scalability: Because of its modularity and its flexibility in configuration,
MySQL can run in systems varying in size from embedded systems to large
multiprocessor Unix servers hosting databases with tens of millions of
records. This scalability also allows you to run a copy of MySQL on a
developer-class machine, and later use the same database system on a
larger machine in production. Because it is multithreaded, MySQL effi-
ciently utilizes resources for multiple users, compared to other database
servers that start full-fledged processes for each user. It is not uncommon
to hear of MySQL installations supporting thousands of concurrent users.

Flexibility: MySQL lets you choose the table types you need to meet your
software’s requirements, ranging from in-memory heap tables, fast on-disk
MyISAM tables, merge tables that group together other sets of tables to
form larger “virtual” tables, and transaction-safe tables such as InnoDB.
MySQL is also very tunable and includes many parameters that can be
changed to increase performance for a given solution. However, MySQL
comes with sensible defaults for these parameters, and many users never
have to tune MySQL to reach a performance they are happy with.

Ease of use: MySQL is easy to install and administer. While other data-
base systems require special knowledge and training, not to mention spe-
cial operating system configurations, MySQL can be installed in less than
10 minutes if you've done it before. Even if you are a newcomer, you
should be able to install MySQL in under an hour. Once it’s installed,
MySQL requires little maintenance and administration other than adding or
changing user permissions and creating or removing databases.
Fine-grained security model: You can restrict users’ rights from an entire
database down to the column level based on login name, password, and the
hostname that users are connecting from. This allows you to create secure
systems by partitioning responsibilities and capabilities of different users
and applications to prevent unauthorized modification or retrieval of data.

7

m Access from other languages/systems: There are libraries and APIs for
connecting to MySQL from Java (the focus of this book), C/C++, Perl, PHP,
ODBC (Microsoft Windows applications), TCL, Eiffel, and Lisp. Because of
this, a whole set of tools has appeared surrounding the use of MySQL from
these languages and systems.

As you can see, MySQL is a flexible and capable RDBMS that has a rich feature
set, performs well on the majority of queries, and has a large support base for
access from many different languages. This book focuses on using MySQL with
JDBC, which is what we talk about next.

MySQL and JDBC

Many developers choose to implement software using Sun’s Java technology
because of the support Java has for standard Internet concepts such as Web
sites, e-mail, and networking. This is the very reason I started to investigate
using Java with MySQL in 1994.

Sun created a standardized interface to databases from Java called Java Data-
base Connectivity (JDBC). Early in 1994, I was interested in connecting a Java
application I was about to develop with the then-new MySQL database system
using JDBC.

At the time, a rudimentary JDBC driver developed by GWE Technologies
existed for MySQL. However, it was missing many features that I required for
my project. Because many of the features that I needed would have been diffi-
cult to implement in the original MySQL driver, I decided to see if I could imple-
ment one myself, more as a tutorial than anything else.

After a few weeks of work, I had something that met most of my needs. Through
correspondence with other Java developers on the MySQL mailing list, I found
that others had a need for a JDBC driver to use with MySQL, and that they
required many of the features I had just implemented. Not knowing what would
happen, I wrote about the driver I had developed and allowed people to use it.
From that small project, the JDBC driver known as MM.MySQL was born.

Over the years, through many hundreds of e-mails from users around the world,
chronicling bugs and interoperability issues with development tools and appli-
cation servers, MM.MySQL was fixed and tuned and eventually stabilized to
become a successful open source project with a life all of its own. Downloaded
by developers from around the world on average close to a thousand times a
day, it is one of the most popular JDBC drivers, commercial or open source.

8 An Overview of MySQL

Monty and David of MySQL AB eventually became aware of the size of the Java
developer community wanting to use MySQL, and extended an offer for me to
join their team. In June 2002, I did just that, and MM.MySQL became the official
JDBC driver for MySQL. It was subsequently renamed Connector/J.

What's Next

Now you understand the need for using a database in many of the applications
written today. In this chapter, we explained why MySQL is a logical choice.
Using the Connector/J JDBC driver, all sorts of Java applications can access a
database and its data. In the next chapter, we provide a comprehensive
overview of the JDBC specification and how it has been implemented in the
Connector/J driver.

JDBC and Connector/)

opment of both Web sites and applications. One of the most popular data-
bases is MySQL. Of course, a language is also needed, and our choice for
this book is Java. By itself, Java doesn’t have any way of directly accessing a
database. To allow us to achieve the necessary interface between Java and a
database, the developers at Sun created a specification called JDBC. In this
chapter, we take a comprehensive look at the following:
m The history of JDBC
m JDBC driver types
m Standards and how they affect JDBC
m The JDBC class

m MySQLs Connector/J driver

In the previous chapter, we discussed how a database can aid in the devel-

What Is JDBC?

In this section, we provide a brief overview of what JDBC is and how it came
about. Although many believe that JDBC is an acronym for Java Database Con-
nectivity, the JDBC documentation itself states that JDBC isn’t an acronym but
actually a trademarked name (you can find more information about JDBC at
Sun’s Web site: http://java.sun.com/products/jdbc/).

With that said, JDBC is simply an application programming interface (API)
for manipulating a database. The manipulation includes everything from

LM J0BC and Connector/y

connecting to the database, to executing SQL statements, to returning results.
JDBC is middleware, or an intermediary between the Java language and a data-
base. Fundamentally, JDBC is a specification that provides a complete set of
interfaces that allows for portable access to an underlying database. The issue
of portability is one of the key aspects of JDBC. Can you imagine using a lan-
guage like Java—which provides the absolute best mechanism for writing an
application once and executing it on a large number of platforms—and then
having to change the code when your organization switches from Microsoft
SQL Server to MySQL? That wouldn’t be a very portable language in the area of
database manipulation.

Fortunately, JDBC provides the standard API, and individual database vendors
produce the drivers necessary to perform the actual interface between your
Java application and the database. This means that Oracle, MySQL, Microsoft,
and many other database vendors have taken the time to write all of the code
behind the scenes. Since all of the vendors are writing to a common API, you
can be relatively certain that the idea of write once, execute often and any-
where is still intact. Because most of the vendor JDBC drivers are also written
in Java (more on this in the next section), the drivers can be used on different
platforms as well. Not only can you change the platform on which your appli-
cation runs or where the database itself resides, but you can also change the
platform where the database executes. In the case of MySQL, the database sys-
tem executes on most flavors of Unix and Linux, Windows, and the Macintosh
platforms.

As you know, Java can be used to write different types of executables, such as
m Applications

m Applets

m Servlets

m Java ServerPages (JSPs)

m Enterprise JavaBeans (EJBs)

All of these different executables are able to use a JDBC driver to access a data-
base and take advantage of the stored data. Throughout this book, we use a
combination of these applications to illustrate using the MySQL JDBC driver to
extract data from a database. For the most part, we use the term Java applica-
tion to refer to any of the executable types we've listed, with the possible
exception of EJBs.

What about ODBC?

One of the reasons developers thought JDBC stood for Java Database
Connectivity relates to the acronym ODBC (used by Microsoft). ODBC, or Open

What Is JDBC? 11

Database Connectivity, is an API developed by Microsoft to allow access to
databases. The API and subsequent interface code allow access to a wide range
of databases on many platforms using a variety of languages. This all sounds
wonderful for a middleware product. Surely we could use ODBC as an interface
between Java and MySQL. Why don’t we?

The answer isn’t as simple as not wanting to use a Microsoft product in
our development. It is possible to use ODBC from Java using a product
called the JDBC-ODBC Bridge, supplied by Sun. This bridge takes Java com-
mands based on the JDBC API and sends them to an installed ODBC driver,
which subsequently accesses the database. Any results work through the soft-
ware in reverse. The bridge was supplied with Java 1.2 and 2.0 as a stopgap for
developers who needed quick access to a database from their Java code. At the
time, the JDBC specification wasn’t mature; there weren’t many vendor drivers
available that used JDBC, but many were available for ODBC. Now that all
major database vendors have pure Java solutions, use of the bridge isn't
encouraged.

There are drawbacks to using ODBC in the process of accessing a database
through Java. The primary drawback is that the code that implements ODBC is
based on the C language and uses a large number of generic pointers. A number
of problems occur with interfacing Java to C code, not to mention performance
issues. It is much better to have a Java solution to database interfacing in order
to provide a seamless solution.

Modeling Database Applications with JDBC

Before we start to look at the specifics of JDBC, let’s take a moment and con-
sider how it is used to interface a Java application with MySQL. Figure 2.1
shows a simple two-tier deployment model.

Client
Java Applet
Java Application

JDBC

Server
MySQL Database

Figure 2.1 A two-tier deployment model.

12 JDBC and Connector/J)

In the two-tier deployment model, commonly called client/server, the client
application communicates directly to the database through a JDBC driver. The
JDBC API supports both two-tier and three-tier models for database access.
The model supports the database being on the same machine as the client appli-
cation or on a remote machine, with all communication being handled by
JDBC. While the two-tier model is effective and has been in use for many years,
there are problems with it, including a lack of security for updates occurring on
the database, performance issues, and a lack of scalability.

Modern systems use a three-tier deployment model, as shown in Figure 2.2.

Client
Java Applet
Java Application
Java JSP

I

Business
Servlet
Other business app

JDBC

Server
MySQL Database

Figure 2.2 A three-tier deployment model.

As shown in the three-tier model, the client doesn’t have direct access to the
database. Instead, the client sends all its requests to a middle, or business, tier.
This tier is responsible for implementing all business rules relating to the appli-
cation and the data that is received from both the client and the database. Using
a third tier has many advantages, the least of which is the ability of the business
tier to handle security issues with the client application. The business tier is
able to determine what a client is allowed to request and to filter data as needed
when it is returned from the database.

Within the Java arena, three-tier models are commonly created using a JSP page
communicated to the client via a Web browser. The JSP triggers a servlet on the
business, or middle, tier, where rules and logic are applied to the client’s
request. The middle tier servlet contacts the database, or third, tier either
directly or through EJBs.

JDBC Versions

JDBC Versions

13

Throughout the history of JDBC, Sun has introduced several different versions,
beginning with version 1.0 in January of 1997. This initial specification defined
the interfaces necessary to create an instance of the driver in a Java applica-
tion, building SQL statements to execute against the underlying database,
return results through a ResultSet object, and obtain various pieces of metadata
about the database as well as the ResultSet.

Next, the 2.0/2.1 specification was released; this broke the original 1.0 specifi-
cation into two parts. The Core API for 2.0 didn’t add much to the original 1.0
specification but instead concentrated on performance and SQL 99 data types.
The added functionality included programmatic SQL statements, scrollable
ResultSets, streams, and other small updates. The second part of the 2.0/2.1
specification is called the JDBC 2.0 Optional Package. This package includes
interfaces for data source interfaces, connection pooling, distributed transac-
tions, and RowSets.

Recently, version 3.0 of the JDBC specification was released. Supported in the
1.4.x version of Java, the new specification includes many enhancements to
ResultSets, data types, connection pools, and basic SQL statements. New func-
tionality includes savepoint support (for checkpointing within transactions)
and support for ParameterMetaData. You can find a complete discussion of the
3.0 specification at http://java.sun.com/products/jdbc/download.html#core-
spec30.

In the section “JDBC Support within 3.0.1” later in this chapter, we provide a
complete overview of MySQL Connector/J’s support of the functionality found
in the specification. Appendix C, “JDBC API and Connector/J” also contains
a detailed review of the complete specification and Connector/J support.

JDBC Driver Types

This section discusses the basic programming model of the JDBC driver itself.
There are four different ways a JDBC driver can be created by vendors to sup-
port their database:

m Type 1: JDBC-ODBC Bridge

m Type 2: Native-API partly Java

m Type 3: JDBC-Net pure Java

m Type 4: Native-protocol pure Java

14 JDBC and Connector/)

In a Type 1 driver, a JDBC bridge is used to access ODBC drivers installed on
each client machine. (This is the JDBC-ODBC Bridge we discussed earlier.)
From the standpoint of Java, this is merely a stopgap solution until a Java-based
JDBC driver can be obtained.

In a Type 2 driver, JDBC API calls are converted and supplied to a vendor-
specific driver. Used in the same manner as the JDBC-ODBC Bridge, the
vendor-specific driver must be installed on each client machine. These drivers
suffer the same problems found in a bridge situation.

In a Type 3 driver, a pure Java-based driver translates API calls into a DBMS-
independent network protocol, which is further translated by a server to a
vendor-specific protocol.

In a Type 4 driver, a pure Java-based driver translates API calls directly into the
protocol needed by a vendor’s database. This is the highest performance driver
available for the database and is usually provided by the vendor itself. MySQLs
Connector/J driver is a Type 4 driver.

SQL Standards

The standardization of access to a database has been a hot topic in recent years.
The standard is called Structured Query Language, or SQL. Although the idea of
a standard is appealing, not all database vendors follow the standard, and some
cannot because of the feature set of the database itself. SQL92 used to be the
defining specification for SQL, but recently a new standard called SQL99 has
been adopted. The JDBC version 3.0 specification is designed to support SQL99.

When working with different database systems through JDBC, you can be rela-
tively sure that basic functionality like SELECT, INSERT, UPDATE, and
DELETE will work without much change. Beyond the basics, though, getting
SQL working from one database to another requires some effort on your part.

By far the most important issue facing standardization is data typing. As you
have probably already experienced in your development history, data types
between C, C++, Java, PHP, and others can be quite different, especially in the
area of data and time. Combine these differences with the various data types
that can be stored in a database and you have the makings of a problem. In
Chapter 7, “MySQL Type Mapping,” we cover the JDBC data types and how they
are represented in MySQL and subsequently with a Java application.

Another issue facing standardization is the use of quotes within SQL state-
ments. JDBC attempts to handle this by using escaping and by requiring ven-
dors to implement the escaping as appropriate for their databases.

Examining the JDBC Interface 15

A developer can also work with standardization by using metadata supplied
from the database. Many times, a database will return information in the form
of metadata, indicating whether it supports specific features.

Examining the JDBC Interface

Now that we know what JDBC is, where it came from, and its place in a typical
system, let’s turn our attention to the interfaces used to create the driver. Figure
2.3 shows how all of the core interfaces in the specification are designed to
work together.

ResultSet ResultSet ResultSet

Callable

Statement Statement Statement

it
ol

I Prepared

Connection

DriverManager

Connector/J

Figure 2.3 The Core JDBC API structure.

As we mentioned earlier, the specification is broken up into two different pack-
ages: the Core API and the Optional API. The Core API is implemented in the
java.sql package. In this section, we look at the interfaces available in the spec-
ification (although we don’t indicate here whether Connector/J supports the
functionality—that can be found in Appendix C).

The java.sql Package

You can find this information both in Appendix C and in the section “Under-
standing Connector/J” later in this chapter. The interfaces specifically defined

LMY JoBC and Connector/y

in version 3.0 of the specification are shown in italics. The full Javadoc can be
found at http://java.sun.com/j2se/1.4/docs/api/java/sql/package-summary.html.

java.sql.Array: The Array interface is a mapping between the Java lan-
guage and the SQL ARRAY type. The interface includes methods for bring-
ing an ARRAY value to a client as a Java array or in a ResultSet.

Jjava.sql.BatchUpdateException: The BatchUpdateException is thrown
when a batch update operation has failed. The exception includes all of the
successful update commands that executed before the failure.

java.sql.Blob: The Blob Java interface is a mapping to the SQL BLOB
value.

java.sql.CallableStatement: The CallableStatement interface is used to
execute stored procedures if supported on the database. Parameters are
allowed with the interface as well as escape syntax.

java.sql.Clob: Clob is a mapping from the Java programming language to
the SQL CLOB type. A CLOB is a Character Large Object.

java.sql.Connection: The Connection interface provides a method for cre-
ating a connection to a specific database. All SQL is executed in the context
of a Connection object.

Java.sql.DataTruncation: The DataTruncaction exception is thrown
when data will be truncated. On a write, the exception is an error, but on a
read, the exception is a warning.

java.sql.DatabaseMetaData: The DatabaseMetaData interface is designed
to provide information about the remote database that a connection has
been made to previously. The information available to the DatabaseMeta-
Data object will be different based on the database vendor and the informa-
tion it wants to provide.

Jjava.sql.Date: The Date class is a wrapper for JDBC to use as a map to the
SQL DATE value. The value of Date is the number of milliseconds since Jan-
uary 1, 1970, 00:00:00:000 GMT.

A thin wrapper around a millisecond value that allows JDBC to identify this
as an SQL DATE value. A milliseconds value represents the number of mil-
liseconds that have passed since January 1, 1970, 00:00:00.000 GMT.

java.sql.Driver: The Driver interface is implemented by all vendor drivers
so that they can be loaded by a static class called DriverManager. The Dri-
ver object will automatically create an instance of itself and register with
DriverManager.

Java.sql.DriverManager: The DriverManager class is used to manage all
Driver objects.

Examining the JDBC Interface 17

Jjava.sql.DriverPropertylInfo: The DriverPropertylnfo class provides
information for advanced developers who need to set specific properties for
loading a Driver object.

java.sql.ParameterMetaData: The ParameterMetaData interface provides
information about the parameters in a PreparedStatement object.

java.sql.PreparedStatement: The PreparedStatement interface provides
an object for executing precompiled SQL statements against the connected
database.

java.sql.Ref: The Ref interface is a mapping between Java and an SQL REF
value. A REF value is a reference to an SQL structured type value.

java.sql.ResultSet: A ResultSet interface is designed to represent a Result-
Set produced from a query of the database. An internal cursor points to the
current row of data, and it can be pointed before and after the data. Meth-
ods are used to move the cursor to different rows in the ResultSet. By
default, the ResultSet isn't updatable, but can be made both scrollable and
updatable.

java.sql.ResultSetMetaData: The ResultSetMetaData interface is used to
return specific information about the data within a ResultSet object. The
information could include the number of columns, column names, float col-
umn precision, and total column size, among other data.

java.sql.Savepoint: The Savepoint interface is used along with transac-
tions to provide rollback points. This allows for the completion of large
transactions even when an error occurs.

java.sql.SQLData: The SQLData interface is used to map the SQL user-
defined type to the Java language.

Jjava.sql.SQLException: The SQLException exception will be thrown
when an error occurs during an attempt to access a database or when the
database itself returns an error.

java.sql.SQLInput: The SQLInput interface is used by the developer of a
JDBC driver to stream values from the database results. The interface isn’t
designed to be instantiated by the application developer.

java.sql.SQLOutput: The SQLOutput interface is used by the developer of
a JDBC driver to stream data to the database. The interface isn’t designed to
be instantiated by the application developer.

java.sql.SQLPermission: The SQLPermission interface is designed to
allow the driver to determine its permission when an applet calls the Driver-
Manager.setLogWriter or setLogStream methods.

Java.sql.SQLWarning: The SQLWarning interface is used to return any
database access warnings from the database. Warnings are available in the
Connection, Statement, and ResultSet objects.

18 JDBC and Connector/J)

java.sql.Statement: The Statement interface is probably one of the most
important interfaces in the JDBC specification. All SQL statements are exe-
cuted through a Statement object. Each Statement object returns single
ResultSet objects.

java.sql.Struct: The Struct interface is a mapping from a SQL structured
type to the Java language.

Jjava.sql.Time: The Time class is a wrapper around java.util. Date to sup-
port the mapping from SQL TIME to Java.

Jjava.sql. Timestamp: The Timestamp class is a wrapper around
java.util. Date to support the mapping from SQL TIMESTAMP to Java.

Jjava.sql.Types: The Types class is an internal class used to identify
generic SQL types or JDBC types.

The classes and interfaces within the Core API are linked together, as shown in
Figure 2.4. There is a natural progression from a Connection object to a Result-
Set. The path from one to the other occurs using a Statement, PreparedState-
ment, or CallableStatement; and the Statement class is a parent to both of the
others. All of the Statement classes will eventually execute SQL to produce a
ResultSet.

Connection

createStatement

Statement
Prepared Statement
Callable Statement

executeQuery

ResultSet

Figure 2.4 JDBC Core API class/interface links.

DataTypes

The javax.sql Package

The Optional API within the JDBC specification is implemented within the
javax.sql package. The classes and interfaces are as follows:

Examining the JDBC Interface 19

javax.sql.ConnectionEvent: The ConnectionEvent class is used to signal
a closed pooled connection and an error.

javax.sql.ConnectionEventListener: The ConnectionEventListener
interface is used by applications that want to be notified when a Pooled-
Connection object generates an event.

javax.sql.ConnectionPoolDataSource: The ConnectionPoolDataSource
is a factor for PooledConnection objects. The object implementing the
interface can be registered using Java Naming and Directory Interface
(JNDD).

javax.sql.DataSource: The DataSource is a factory for connections. The
object implementing the interface can be registered using JNDI.

javax.sql.PooledConnection: The PooledConnection interface provides a
connection to the database, but is part of a larger pool. The application
developer doesn’t use the interface directly.

javax.sql.RowSet: The RowSet is a JavaBeans component that is created
and configured at design time and executed at runtime. The RowSet can be
configured to connect to a JDBC source and to read data.

javax.sql.RowSetEvent: The RowSetEvent is created when a single row
in a RowSet is changed, the internal cursor moves to a different location, or
the entire RowSet has changed.

javax.sql.RowSetInternal: The RowSetInternal interface is implemented
to allow the RowSetReader and RowSetWriter objects access to the inter-
nals of a RowSet.

javax.sql.RowSetListener: The RowSetListener interface is implemented
by a component that wants to be notified when an event occurs in a RowSet
object. The component calls the addRowSetListener() method of the
RowSet in which it is interested.

javax.sql.RowSetMetaData: The RowSetMetaData interface provides
information about a RowSet. The information centers around the columns
returned from a result.

javax.sql.RowSetReader: The RowSetReader interface is used by a
RowSet to obtain results from the database.

javax.sql.RowSetWriter: The RowSetWriter interface is used to write
changed data back to the database.

javax.sql.XAConnection: The XAConnection interface allows a connec-
tion to handle distributed transactions.

20 JDBC and Connector/J)

javax.sql.XADataSource: The XADataSource interface is an internal fac-
tory for DataSource connections using JNDI.

The classes and interfaces within the Optional API are linked together, as
shown in Figures 2.5, 2.6, 2.7, and 2.8, which are referenced within the version
3.0 specification.

Figure 2.5 shows the relationship between the DataSource and Connection
classes. The DataSource doesn’t act on its own, but instead must obtain a con-
nection to the database through the Connection class.

javax.sql.DataSource

Instantiates a

java.sgl.Connection I

Figure 2.5 DataSource/Connection classes.

Figure 2.6 shows how a PooledConnection class will also use the Connection
class to obtain a link to the database. Note the ConnectionEventListener asso-
ciated with PooledConnection. Any events created by PooledConnection will
be sent to those objects that register with the ConnectionEventListener.

ConnectionPoolDataSource I

getConnection

/ javax.sql.PooledConnection ConnectionEventListener I

throws

Instantiates 1+
ConnectionEvent I
javax.sql.Connection I

Figure 2.6 PooledConnection/Connection classes.

Understanding Connector/J 21

Figure 2.7 shows how the RowSet classes are constructed from the base Result
and ResultSetMetaData classes.

ResultSet I

creates

RowsetEvent Rowset RowsetListener
RowsetMetaData

Rowsetinternal

RowsetReader I RowsetWriter I

Figure 2.7 RowsSet classes.

Understanding Connector/J

Up to this point, our discussion has centered on the general JDBC specification
and its related interfaces and classes. In this section, we turn our attention to
MySQLUSs JDBC driver, Connector/J. At the time of this writing, there are two
versions of the driver: 2.0.14 and 3.0.1. The drivers can be found at
www.mysql.com/downloads/api-jdbc-stable.html and www.mysql.com/down-
loads/api-jdbc-dev.html, respectively.

The Connector/J driver started as MM.MySQL (written by Mark Matthews) and
has been the primary JDBC driver for MySQL. During 2002, Mark joined the
MySQL team and subsequently updated the driver and renamed it to Connec-
tor/J. The 2.0.14 version is basically the last MM.MySQL version made available
on the mmmysql.sourceforge.net Web site. The 3.0.1 version contains numer-
ous changes to the original code. These features will be discussed shortly.

Connector/J is designed specifically for MySQL and attempts to adhere to the
JDBC API as much as possible. However, in order for a driver to adhere to the
full JDBC specification, the underlying database must support all of the fea-
tures supported in the latest 3.0 version. For MySQL and Connector/J, strict
adherence is impossible because MySQL currently doesn’t support stored pro-
cedures, savepoints, references, and various other small pieces of functionality.
These differences with the specification are noted in Appendix C. For the
remainder of this book, we use the latest 3.0 version of Connector/J.

22 JDBC and Connector/J)

JDBC Support within 3.0.1

As we mentioned earlier, the Connector/J JDBC driver is able to support only
those features of the specification that the underlying MySQL database
supports. Instead of explaining what s supported from the specification, we
document here what currently is not supported. From a class standpoint, the
following classes have some functionality not supported:

= Blob

m Clob

Connection
PreparedStatement
ResultSet
UpdatableResultSet
CallableStatement

Next we list each of the major interfaces with the individual methods not sup-
ported in the current version. As the MySQL database begins to support the
underlying functionality needed for each of the classes and methods, the list
will get shorter. For example, stored procedures are planned for a future
release of the database and thus the CallableResultSet interface could then be
implemented.

Blob
Blob.setBinaryStream()
Blob.setBytes()
Blob.truncate()

Clob
setAsciiStream()
setCharacterStream()
setString()

truncate()

Connection
Connection.setSavePoint()
Connection.setTypeMap()
Connection.getTypeMap()

Understanding Connector/J 23

Connection.prepareCall()
Connection.releaseSavepoint()

Connection.rollback()

PreparedStatement
PreparedStatement.setArray()
PreparedStatement.setBlob()
PreparedStatement.getMetaData()
PreparedStatement.setRef()
PreparedStatement.getParameterMetaData()

ResultSet
ResultSet.getArray()
ResultSet.getObject()
ResultSet.getRef(int)
ResultSet.getRef(String)
ResultSet.rowDeleted()
ResultSet.rowInserted()
ResultSet.rowUpdated()
ResultSet.updateArray(,)
ResultSet.updateClob()
ResultSet.updateRef()

UpdatableResultSet
rowDeleted()
rowlInserted()
rowUpdated()
updateBlob()

CallableStatement
All methods
The Connector/J driver does support the use of very large package sizes when

used against MySQL 4.0 or later. This means that applications will have quicker
and easier access to large data within Blob and Clob columns.

24

Obtaining JDBC Drivers

JDBC and Connector/)J

While our book concentrates on MySQLs JDBC Connector/J driver, numerous
drivers are available for all types of databases. One of the most comprehensive
collections can be found on Sun’s site at http:/industry.java.sun.com/prod-

ucts/jdbc/drivers.

Figure 2.8 shows that there are currently 165 drivers available and growing.

a IDBC(T™) Technology - Drivers - Microsoft Internet Explorer

| Fle Edt Wiew Favorites Took Hep |-
| ek » = - @ [A A Qoearch CilFavortss Pristory By D0 - H B3 || @imtiink e v Qon
! ‘:Mess 11?_1 hittp: ffindustry. java. sun.comjpeoducts dbedrivars. j o En
| |Urks &]Customize Lrks &]Free Hotmall &]Windows @] Free AOL &:Unlmited Internst &8]ReslOne Player] Windows Medis |
FaQ There are currently 175 drvers in this database. 'J
Leaming Center
Download Please note: This database relies on information received from the vendors. Sun
Related Technologies Microsystems does not test these drivers for compatibility.
Atticles and Case Studies
h;:t‘:i::lilggzg'l"llon Browse All |
JDRC™ APT version: |Any~|
Show only certified divers
Certificd for J2EEm: [~ 100
I I2EE 12
Lieninets C 10207 30 4 mateh|ol =] ofmy selactions
4th Dimension (40 RDBMS) 3
ADABAS
ALLBASE SCL
Supported DEME(s): |BASIS
i © Birdstep ROM Server
CAIDMS =l
Mchlu" “I of my selsctions
Required features: I” DataSeurce I Conn Pochng T Dist Trans. I RowSets
Feturn hew many
I]D
results per pags:
Search | Reset
4| |
€ [[8 mokemet Z)

Figure 2.8 The Sun JDBC driver search screen.

What's Next

In this chapter, we provided a comprehensive overview of the JDBC specifica-
tion and interfaces associated with the spec. We also explored the MySQL Con-
nector/J driver and its support of the specification. In the next chapter, we look

at installing all the tools we need for the remainder of the book.

Working with MySQL SQL

system, this section of the chapter will be a review for you. Our goal is to

present the very basics of database systems, tables, design, queries, and
other topics of importance to developers who want to start using a database
with their application code. It should be noted that we have space to cover only
the basics and not all of the details associated with a database system. We
present more advanced topics throughout the book as we discuss JDBC and
MySQL. For those who already know this information, skip to the section called
“Introduction to MySQL SQL,” where we cover some of the MySQL specifics.

If you've used the MySQL database system or any other relational database

What Is a Database?

As we discussed in the opening paragraphs, the most efficient way to store
large amounts of data is a database system. The term database is generally used
as a common identifier of the entire system that constitutes this particular type
of storage system. However, a database is actually part of the database man-
agement system. A database management system (DBMS) is the term given to
the entire application that supports a database and includes all server and
client components.

In a typical setup, a large machine with plenty of disk space is allocated as
a database server. The DBMS is installed on the machine, and a server applica-
tion executed to handle requests to store and retrieve information. In addition,
a database administrator uses the DBMS to administer the server and keep the
database stored on the server in order.

25

26 Working with MySQL SQL

The database administrator, who can also be the developer, creates databases by
using the DBMS to hold specific data. For instance, an application might include
general data such as accounts, addresses, and other forms of basic information. In
addition to the account information, the application scans documents into the
database from a scanner. This binary data has a much greater space need than the
account information, so it is given a separate database. By separating the data into
different databases, the DBMS generally allows them to be assigned different disk
drive locations. The image data might be stored on a large array of disks, while the
account information is stored on smaller disks but configured as a redundant
array of independent disks (RAID). Figure 3.1 shows how this might look.

Server running MySQL
Raid Level 1 MySQL Database
Large image data Account Information

Figure 3.1 A multiple-database system.

Once the databases for the application have been laid out, tables are introduced
to each of the databases. While all of the data could be thrown together into the
database, it is usually better to group the data into logical bunches. In an
account database, you might have a table for account numbers and some iden-
tifying information. Another table in the account database could contain
address information. Figure 3.2 shows an example.

MySQL Account Database

acc_account table acc_address table

Figure 3.2 Tables within the database.

What Is a Database? 27

Each of the tables is further broken down into columns where individual pieces
of information are stored. The address table has columns for information such
as city, state, and zip. As data is put into the table, it is organized as a series of
rows, with each row containing specific information in the various columns, as
shown in Figure 3.3.

MySQL Account Database

acc_account table acc_address table
ID fname Iname ID acc_ID State
0 Joe Smith 0O 0 CO
1 Jane Doe 1 1 AZ
2 James Shaw 2 2 IL

Figure 3.3 Database rows/columns.

So in a nutshell, that is the definition of a database. In the remainder of this sec-
tion, we examine these concepts in more detail.

Database Models

All databases model data in different ways. A database model is just a descrip-
tion of a container and how data is stored and retrieved from that container.
Over the years, a few different models have been developed. Consider the
following data that needs to be stored in a database:

Name Username City

John Smith smith Denver

John Smith jsmith Denver

James Doe doej Chicago

James Smith jsmith Atlanta
The Hierarchy Model

The hierarchy model attempts to organize the data in a parent-child relation-
ship where there is always some root data. Our sample data is modeled as
shown in Figure 3.4.

The data is contained within the hierarchy, but getting to it could be a problem
since the data is found at different levels.

The Network Model

In the network model, the parent-child relationship is expanded so that chil-
dren can have multiple parents and a logical layer is applied to the data. Figure
3.5 shows how our sample data is modeled.

28 Working with MySQL SQL

John Smith Denver I

Figure 3.4 The hierarchy model.

name I city

Figure 3.5 The network model.

Ly

i

g

The Relational Model

In the late 1960s, the relational model was developed. A relational database uses
tables with rows and columns. The power of the relational model becomes clear
when multiple tables are linked using a relationship. Figure 3.6 shows how our
sample data might be put in separate tables and linked using the username.

username name

smith John Smith
jsmith John Smith
doej James Doe

username city
smith Denver
jsmith Denver
doej Chicago

Figure 3.6 The relational model.

The Object Model

In the past few years, the object model has emerged. In this model, a database
is created to hold the objects found in a common programming language like

What Is a Database? 29

Java. Instead of the data being broken up, the entire object is stored. Figure 3.7
shows how our sample data might look in an object model-based database.

Account table

smith
John Smith
Denver

doej
James Doe
Chicago

Figure 3.7 The object model.

For the remainder of this book, we assume the use of a relational database man-
agement system. MySQL just happens to be such a system.

Data Types

As we mentioned earlier, a database has tables consisting of columns. The
columns aren’t just names like city, state, and zip, but are created based on
a data type such as string, integer, or float. Some of the more common data or
column types available are

m int—Represents an integer
m char—Represents a string of a specific length
m varchar—Represents a string of varied length

= blob—Represents a large binary piece of data

When you use a type to define a column, the database expects that kind of data
when you place information into the table.

Designing a Database

Now let’s spend some time on the subject of database design. We know that
MySQL and many other databases are relational in nature and that we need
to build databases, tables, and columns. However, if we neglect to give some
initial thought to the layout or design of these components, the performance
and integrity of the database server and the data itself will be suspect. Before
diving into this subject, note that very large college textbooks have been writ-
ten on the subject of database design. This section is just a small glance at the
subject.

30 Working with MySQL SQL

To illustrate simple design considerations, let’s attempt to build the tables
within a database to hold data for a simple telephone directory. The data we
want to store includes the following:

Name

City

State

Telephone number

First Normal Form

If we were to place our data into a table, we might come up with the following:

Name City State Telephone

John Doe Chicago IL 217-333-3333

Of course, we immediately realize that John Doe has more than just one tele-
phone number, so we expand the table to handle more numbers:

Name City State Telephonel Telephone2 Telephone3
John Doe Chicago IL 217-333-3333 800-333-3333
Jani Smith Atlanta GA 403-222-2223

In our new table, we've added another entry. However, Jani Smith has only one
telephone number, so we leave the columns Telephone2 and Telephone3 empty.
Unfortunately, our friend Bill Simpson is one of those characters with a home
telephone, a business telephone, a cell phone, a pager, and a phone just for mes-
sages. Since our table handles only three telephone numbers, we need to add two
more columns just for Bill. Most people we add into the table won’t have more
than three telephone numbers, so the vast majority of Telephone4 and
Telephoneb columns will be empty. Of course, just when we limit the table to five
telephone numbers, Bill will get a summer cabin with a telephone in it as well. We
cannot continue to add columns just to accommodate Bill's communication
needs, especially when all of the added telephone columns will generally be
empty.

To solve this problem of multiple columns in the database, we apply rules asso-
ciated with the First Normal Form. The First Normal Form is the first in a
series of optimizations that should be applied to a database to produce a highly
efficient system. The rules in First Normal Form are:

m Columns with similar content must be eliminated.
m A table must be created for each group of associated data.

m Each data record must be identifiable by means of a primary key.

What Is a Database? 31

It isn’t necessary to apply all of these rules to achieve First Normal Form, but they
should be attempted nevertheless. For our database, the first and third rules can
be applied. Rule two isn’t valid for our data because all of the pieces of data are
associated with each other. Rule number 1 is the one that will make the most
difference in the database. Here’s our data after we've applied rules 1 and 3:

ID Name City State Telephone

101 John Doe Chicago IL 217-333-3333

102 John Doe Chicago IL 800-333-3333

103 Jani Smith Atlanta GA 403-222-2223
We won'’t include Bill in the example to keep it small. Notice how John Doe’s
information is being duplicated so we can handle additional telephone num-
bers. If John Doe gets another telephone number, we just add a new record to
the table with duplicate name, city, and state values. The third rule doesn’t
really help with our telephone number problem, but in order for our table to be
in First Normal Form, it needs to be applied.
Second Normal Form
Of course, all of this data duplication simply cannot be a good thing because it
is clearly wasting space in the database. We can get some help with the dupli-
cated data using Second Normal Form and its associated rules:
m [f the contents of columns repeat, the table needs to be divided into

multiple tables.
m Multiple tables from rule 1 need to be linked by foreign keys or their
derivative.

Since we have repeating data in the sample table, we apply rules 1 and 2 to
create a second table just for the city, state, and telephone information. For
example, the following table might be called the name table:

1D Name

101 John Doe

102 Jani Smith
The telephone table would look like this:

ID telephone_id city state telephone

201 101 Chicago IL 217-333-3333

202 101 Chicago IL 800-333-3333

203 102 Atlanta GA 403-222-2223

32 Working with MySQL SQL

We now have two tables for all of our sample data. The first table, called name,
holds just the name of our contact as well as an ID for each name in the table.
There won’t be any duplicate names in this table. The second table, called tele-
phone, holds all of the contact information for each name in the name table.

Of particular important in the telephone table is the use of the telephone_id col-
umn. This column is considered a foreign key and links the name table to the
telephone table. The ID column in the name table is copied to each of the tele-
phone table rows as appropriate. If we need to find each of the telephone num-
bers for John Doe, we look up the ID in the row associated with John Doe. This
ID is used as a reference value in the name_id columns of each row in the tele-
phone table. Those rows that have the same ID value are returned. The tele-
phone number value can be pulled from each row and displayed.

Third Normal Form

The last “normal form” we consider is called Third Formal Form and it is the
goal for most database designers. There is a single rule in this form:

m Columns that are not directly related to the primary key must be elimi-
nated (that is, transplanted into a table of their own).

In the table called telephone we created earlier, we have to examine the use of
the telephone_id column and the data within the table itself. The Third Normal
Form rule tells us that the city and state columns shouldn’t be part of the tele-
phone table because that data doesn’t relate to the primary key of the table.
This calls for a new table to hold the city and state information. For example,
we might create a table called address to hold this information:

ID address_id city state
301 101 Chicago IL
302 102 Atlanta GA

We've provided a brief introduction to database design and the use of Normal
Forms to achieve a good design. There is, of course, much more to consider
when designing databases, and we recommend you consult a good database
theory book for additional information.

Introducing MySQL SQL

The majority of this chapter concentrates on the specifics of the MySQL data-
base and its representation of SQL. In this section, we examine the basics you

Introducing MySQL SQL 33

need to build databases and tables, populate the databases with data, and
retrieve the data.

Overview of MySQL

MySQL is a DBMS designed as open source software. It is a relationship DBMS
because it supports the idea of building multiple tables and linking those tables
using columns within the tables. The application is considered open source
because you can download the binaries of the system or the source code.

The MySQL system is entry-level SQL92 compliant, and the developers are
constantly striving to expand their support of SQLI2—as well as SQLI9—while
maintaining speed and efficiency. Some of the featured highlights include the
following:

Speed and efficiency—MySQL is written in C/C++ using the latest compil-
ers on the various support platforms. The code is multithreaded and takes
advantage of kernel threads for extreme efficiency on systems with multiple
CPUs. All of the code is highly optimized and makes us of B-trees, in-
memory hash tables, and class libraries.

Column types—These include signed/unsigned integers 1, 2, 3, 4, and 8
bytes long; FLOAT, DOUBLE; CHAR; VARCHAR,; TEXT; BLOB; DATE;
TIME; DATETIME; TIMESTAMP; YEAR; SET, and ENUM types. We demon-
strate many of these column types throughout the book in code examples.
A full-featured command set—All of the standard SQL commands, such
as SELECT, INSET, DELETE, as well as JOINSs, are supported. Support
includes the SHOW command for obtaining information about the system.
Aliases on table and columns are supported per SQL92.

Functions—A wide range of functions are available, including AVG(),
SUM(), MAX(), and many others.

Security—A full privilege and password system gives the database unparal-
leled security.

Scalability—You can build databases with tens of thousands of tables.
Row counts can be in the millions and even billions. Indexes are supported
up to 32 per table.

Character sets—MySQL supports many different characters sets and can
output errors messages in appropriate languages.

Tools—A full complement of client tools is available for administrative and
other uses.

With that small introduction, let’s dive into the fundamentals of using MySQL to
build storage systems for our Java applications.

34 Working with MySQL SQL

Creating Databases

As you learned earlier, a database is just a container for components called
tables. A DBMS can have as many databases as needed for a given application.
For the most part, you create a database when your application needs a place
to store data. In most cases, you need a single database with numerous tables
to hold the data. The MySQL server already has its own database, called mysql.
We want to create a new one instead of using the mysql database because we
plan to use ours for a different purpose.

In order to manipulate a MySQL system, you can use a client tool called mysql.
This client tool can be found in the /bin directory of an installation. You execute
the tool by entering mysql at a command prompt or terminal window. The
client tool contacts the local MySQL installation and returns a prompt as shown
here:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 139 to server version: 4.0.1l-alpha

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

Using the mysql client tool, you can determine what databases are currently
defined in the local MySQL system. This is accomplished with the following
command:

mysgl> show databases;

mysql |
files |

test |

|
|
| products |
|
| users |

5 rows in set (0.00 sec)

In the test database we used, there are currently five databases being managed
by MySQL. Two of the tables, mysql and test, are created by the MySQL system
when it is first installed. The other three have been added by users of the sys-
tem. In our example, we want to create a new database called accounts that will
hold numerous tables all related to accounts needed by some application. In the
most basic form, the database is created with the following command:

mysqgl> create database accounts;
Query OK, 1 row affected (0.00 sec)

Introducing MySQL SQL 35

The accounts database is now available on the MySQL system. Note that on a
Windows platform, the database name isn’t case-sensitive, but it is on Unix.
After a database is created, it will need to be used specifically. To use a data-
base, you execute the USE command:

mysgl> use accounts;
Database changed

The USE command moves the focus of all commands entered into the client
tool to the specified database. We now have a database, and it is the focus of
our client tool. The next step is to add tables where we can store data.

Creating Tables

The table is where all of the data is stored in a particular database. Because we
are working with a relational database system, the data is stored in rows and
columns. Our goal in creating a table is to determine what will be stored in each
table column. Once this information has been established, we can decide on the
column types and potential sizes.

You can create a MySQL table based on a number of table types:
BDB—A table that supports transactions; includes crash recovery.
HEAP—A memory-based table that uses a hashed index.
ISAM—An original but deprecated MySQL table.

InnoDB—A table that supports transactions, row-level locking, foreign key
constraints, and multiversioning.

MERGE—A group of MyISAM tables used as one. Allows tables to be
stored in different locations.

MYISAM—A default nontransactional table type for MySQL.

Each table type has a specific characteristic that determines whether it is
appropriate for your application. Note that MySQL allows you to alter the table
type after you've created a table—even if you've populated it with data. A large
number of options are available, among them the maximum number of rows,
the physical location of the table, and the use of a password for the table. How-
ever, the most important options are the column type definitions.

First, you need to lay out the data to be stored in the table. In our example, we
want to create a table that will hold the username and password for an account
in our application. Associated with each username and account is an account
ID. The account ID will be used to access specific data within other tables by
creating a relationship with the ID. Each of these pieces of data will have a spe-
cific data type. The data types available in MySQL are as follows:

36 Working with MySQL SQL

TINYINT—An 8-bit integer represented as one byte.

SMALLINT—A 16-bit integer represented as 2 bytes.

MEDIUMINT—A 24-bit integer represented as 3 bytes.

INT, INTEGER—A 32-bit integer represented as 4 bytes.

BIGINT—A 64-bit integer represented as 8 bytes.

FLOAT—A floating-point number; 8-digit precision represented as 4 bytes.

DOUBLE—A floating-point number; 16-digit precision represented as 8
bytes.

DECIMAL(p, s)—A fixed-point number, saved as a character string;
an arbitrary number of digits represented as 1 byte per digit + 2 bytes
overhead.

DATE—The date in the form 2001-12-31, in the range 1000-01-01 to
9999-12-31, represented as 3 bytes.

TIME—The time in the form 23:59:59, represented as 3 bytes.
DATETIME—A combination of DATE and TIME in the form 2002-10-05
23:59:59, represented as 8 bytes.

YEAR—The year (1900-2155), represented as 1 byte.

TIMESTAMP—The date and time in the form 20011231325959 for times
between 1970 and 2038, represented as 4 bytes.

CHAR(n)—A character string with a specified length; a maximum of 255
characters represented as n bytes.

VARCHAR(n)—A character string with variable length; a maximum of n
characters (n < 256), represented as 1 byte per character or (actual length)
+ 1.

TINYTEXT—A character string with variable length; a maximum of 255
characters, represented as n + 1 bytes.

TEXT—A character string with variable length; a maximum of 216 - 1 char-
acters represented as n + 2 bytes.

MEDIUMTEXT—A character string with variable length; a maximum of
224 - 1 characters, represented as n + 3 bytes.

LONGTEXT—A character string with variable length, maximum of 232 - 1
characters, represented as n + 4 bytes.

TINYBLOB—Binary data with variable length; a maximum of 255 bytes.
BLOB—Binary data with variable length; a maximum of 216 - 1 bytes.
MEDIUMBLOB—Binary data with variable length; a maximum of 224 - 1
bytes.

LONGBLOB—Binary data with variable length; a maximum of 232 - 1
bytes.

Introducing MySQL SQL 37

ENUM—Selects one from at most 65,5635 character strings, represented as 1
or 2 bytes.

SET—Combines at most 255 character strings, represented as 1-8.

TINYINT 8-bit integer represented as 1 byte
SMALLINT 16-bit integer represented as 2 bytes
MEDIUMINT 24-bit integer represented as 3 bytes
INT, INTEGER 32-bit integer represented as 4 bytes
BIGINT 64-bit integer represented as 8 bytes

FLOAT floating-point number, 8-place precision represented as 4
bytes

DOUBLE floating-point number, 1l6-place precision represented as
8 bytes

DECIMAL (p, s) fixed-point number, saved as a character string;

arbitrary number of digits represented as one byte per digit +

2 bytes overhead

DATE date in the form '2001-12-31', range 1000-01-01

to 9999-12-31 represented as 3 bytes

TIME time in the form '23:59:59' represented as 3 bytes
DATETIME combination of DATE and TIME in the form
'2002-10-05 23:59:59' represented as 8 bytes

YEAR year 1900-2155 represented as 1 byte

TIMESTAMP date and time in the form 20011231325959 for
times between 1970 and 2038 represented as 4 bytes

CHAR (n) character string with specified length, maximum

255 characters represented as n bytes

VARCHAR (n) character string with variable length, maximum n
characters (n < 256) represented as one

byte per character (actual length) + 1

TINYTEXT character string with variable length, maximum
255 characters represented as n + lbytes

TEXT character string with variable length, maximum

216 - 1 characters represented as n + 2bytes

MEDIUMTEXT character string with variable length, maximum
224 - 1 characters represented as n + 3bytes

LONGTEXT character string with variable length, maximum
232 - 1 characters represented as n + 4bytes

TINYBLOB binary data, variable length, max 255 bytes

BLOB binary data, variable length, max 216 - 1 bytes
MEDIUMBLOB binary data, variable length,max 224 - 1 bytes
LONGBLOB binary data, variable length,max 232 - 1 bytes

ENUM select one from at most 65,535 character strings
represented as 1 or 2 bytes

SET combine atmost 255 character strings represented as 1-8
bytes

38

Working with MySQL SQL

We have to pick one of these data types for each of the pieces of data. Clearly,
the username and password will be some number of characters. The question is
whether we should use the CHAR or VARCHAR data type to represent the
characters. The CHAR data type should be used if the character string will be a
specific length and never change. In the case of a username and password, this
is not the case. The user will be allowed to pick his or her username and pass-
word. This means we should use the VARCHAR data type for our character
strings.

Next, we need to determine the total number of characters that will be allowed
in each of the strings. A value of 64 is more than likely enough.

Finally, our attention turns to the account ID. Should the account ID be saved as
an integer whole number or as a character string? If there is ever a chance the
account ID will include alpha characters, then the ID should be a character string.
With an integer, there are a few different types that can be used based on the
potential size of the ID. For our example, let’s use an INT data type for the field.

Another characteristic that we want to place on the account ID is a primary key.
A primary key basically states that the value in this column will be unique and
thus can be used to uniquely identify any specific row in the table.

Once we have identified all of the fields and assigned each a type, we can cre-
ate the table. To create a nontransactional table, use this command:

mysgl> create table acc (

acc_id int primary key,

username varchar (64),

password varchar (64),

ts timestamp) ;

Query OK, 0 rows affected (0.00 sec)

To create a table that will handle transactions, use this command:

mysgl> create table acc (

acc_id int primary key,

username varchar (64),

password varchar (64),

ts timestamp) type=bdb;

Query OK, 0 rows affected (0.01 sec)

We can see all of the tables in our database with the following command:

mysqgl> show tables;

1 row in set (0.00 sec)

Introducing MySQL SQL 39

The SHOW TABLES command lists all of the available tables within a given
database. To verify that the table was created successfully and to view the var-

ious columns, execute the following command:
mysgl> describe acc;

R R e E et R R e R +
| Field | Type | NULL | Key | Default | Extra |
R e R e TR et R R e et +
| acc_id | int(11) | | PRI | O | |
| username | varchar(64) | YES | | NULL |

| password | varchar(64) | YES | | NULL |

| ts | timestamp(14) | YES | | NULL | |
R R D e T et D e Homm-- o +

4 rows in set (0.00 sec)

You can view the columns and their definitions within a table by issuing the
DESCRIBE <table> command. If you discover a problem with any definition,
you can use the ALTER TABLE command. For our example, we are able to ver-
ify that the information was created successfully.

Inserts

With our database and table defined, we need to populate it with sample data.
Here’s the data that we would like to get into the table:

acc_id username password
1034033 jsmith smithy
1034055 jdoe doey
1034067 jthompson james2
1034089 sstanford stanford
1034123 blewis lewis
1034154 ysheets sheets

We can place the data in the database table by using the INSERT command. The
format of the MySQL INSERT command is:

INSERT INTO <table> VALUES (<columnValues>, <columnValue>, €)

We have to issue three INSERT commands to get all of the information into the
database. Here’s the output from one INSERT:

mysgl> INSERT INTO acc VALUES (1034033, 'jsmith', 'smithy', now());
Query OK, 1 row affected (0.00 sec)

Two more INSERT commands and all of our sample data is in the table. MySQL
also includes a command called LOAD DATA, which populates a database table
from a properly formatted text file.

40 Working with MySQL SQL

Let’s examine the INSERT command a little more closely. First consider the
order of the data. The order must match the columns defined in the table as
shown by the DESCRIBE command. The second important factor is the use of
single quotes to indicate a value is a string and should be treated as such by
MySQL. If you didn’t want to insert a password into a row, you could use a
NULL value. For example:

mysgl> INSERT INTO acc VALUES (1034034, 'jime', NULL, now());
Query OK, 1 row affected (0.00 sec)

In this example, the NULL value is placed directly into the database in place of
a string value.

Selects

Once you've inserted your data into a database, you can extract that data to
make business decisions. You pull data from the database by using the SELECT
command, which has the following format:

SELECT <columns>
FROM <databaseTable>
WHERE <conditions for datas

The SELECT command has three different components at its core. The first is
the <columns> element, which tells the database the columns where values
should be returned. The element can be * (representing all columns) or a list of
columns separated by commas. The second component is the <databaseTable>
element, which represents the exact table from which the data should come.
The third component is the <conditions for data> element, which represents
under what conditions the data should be pulled from the database.

First, we pull data using the simplest SELECT:

mysqgl> select * from acc;

to-mmmm - tommmmm - - tommmmm - Fommm oo +
| acc_id | username | password | ts

PSS DoSS e il L Lt e i L e L L L Lt b +
1034033	jsmith	smithy	20021014112438
1034055	jdoe	doey	20021014112501
1034067	jthompson	james2	20021014113403
1034089	sstanford	stanford	20021014113407
1034123	blewis	lewis	20021014112252
1034154	ysheets	sheets	20021014113416
1034034	jime	NULL	20021014112415

| 1034546 | jjmyers | NULL | 20021014113422 |
tommmmm- - tommmmm oo R i Fomm oo +
8 rows in set (0.00 sec)

Introducing MySQL SQL 1

This SELECT command tells the database to pull all columns, using the * char-
acter, from the acc table. The database responds with a “table” using a heading
with the column names found in the database used when we first defined the
table. Next, all of the data from the table is placed in the output “table” and dis-
played accordingly.

Now we can limit the columns of data with our SELECT:

mysgl> SELECT acc_id, username FROM acc;
+o-- - +o-mmm - +
username |

——————————— +

|

+
1034033	jsmith
1034055	jdoe
1034067	jthompson
1034089	sstanford
1034123	blewis
1034154	ysheets
1034034	jime
1034546	jjmyers

+

8 rows in set (0.00 sec)

In this example, we have specifically listed the columns we wish to pull data
from and at the same time requested all of the data. The system will output the
data in the familiar table format. The same query will be used, but a condition
is placed on the data we wish to pull.

mysgl> SELECT acc_id, username FROM acc WHERE username = 'jime';

1 row in set (0.00 sec)

The same query is used here, but a WHERE clause limits the data to be pulled
based on the actual value found in the username field. The condition with the
SELECT query can hold logical operators to further refine the selection criteria.
For example:

mysqgl> SELECT * FROM acc WHERE password IS NULL

AND username = 'jime';

FECEEEEEEE e S L L L C LSRR +
| acc_id | username | password | ts

e e L L e L L e L +
| 1034034 | jime | NULL | 20021014112415
Fommmmm- - e e e it +

1 row in set (0.00 sec)

42 Working with MySQL SQL

In this query, the system selects all of the rows in the acc table where a value is
NULL, and the username value is jime.

SELECT Statement Extensions

Up to this point, we have been showing simple SELECT commands both with
and without conditions. The SELECT command has a whole list of extensions
that can be used to further filter and manipulate the data received from the
database. MySQLs SELECT includes the following extensions:

SELECT [STRAIGHT JOIN]
[SQL_SMALL RESULT] [SQL_BIG_RESULT] [SQL BUFFER_RESULT]
[SQL_CACHE | SQL _NO CACHE] [SQL_CALC_FOUND_ ROWS]
[HIGH _PRIORITY]
[DISTINCT | DISTINCTROW | ALL]
select_expression, ...
[INTO {OUTFILE | DUMPFILE} 'file name' export options]
[FROM table references
[WHERE where_definition]
[GROUP BY {unsigned integer | col name | formula} [ASC |
DESC],
[HAVING where definition]
[ORDER BY {unsigned_integer | col_name | formula} [ASC |
760 0d
[LIMIT [offset,] rows]
[PROCEDURE procedure_name]
[FOR UPDATE | LOCK IN SHARE MODE]]

DESC]

Let’s look at a few of the additions to the SELECT command.

Order By

When we pulled data from the database table in the query examples earlier,
MySQL returned the data in the same order it was placed in the table. For the
most part, this works just fine because we just want to get the data out of the
database. At other times, it might be important that the data be ordered in some
specific fashion. For example, suppose you want to sort the data in ascending
order (the default) based on the username:

mysqgl> SELECT * FROM acc ORDER BY username;

e e e e S e L EEE LI +
| acc_id | username | password | ts

S S Lt G L e e e E l il +
| 1034123 | blewis | lewis | 20021014112252 |
| 1034055 | jdoe | doey | 20021014112501 |
| 1034034 | jime | NULL | 20021014112415

1034546	jjmyers	NULL	20021014113422
1034033	jsmith	smithy	20021014112438
1034067	jthompson	james2	20021014113403
1034089	sstanford	stanford	20021014113407
1034154	ysheets	sheets	20021014113416
e e el e L EEEE ekt e e E L +

8 rows in set (0.00 sec)

Introducing MySQL SQL 43

As you can see in the output from the query, the data is displayed in alphabeti-
cal order based on the username. You can also sort based on a numeric column:

mysgl> SELECT * FROM acc ORDER BY acc_id;

e S L e LG e L +
| acc_id | username | password | ts

S il e i L R el e b bl +
| 1034033 | jsmith | smithy | 20021014112438 |
| 1034034 | jime | NULL | 20021014112415

1034055	jdoe	doey	20021014112501
1034067	jthompson	james2	20021014113403
1034089	sstanford	stanford	20021014113407
1034123	blewis	lewis	20021014112252
1034154	ysheets	sheets	20021014113416
1034546	jjmyers	NULL	20021014113422
e G e S e e +

8 rows in set (0.00 sec)

Now the records are ordered based on the acc_id, which is an integer. The
ORDER BY clause can also be used with the WHERE clause. For example:

mysgl> SELECT * FROM acc WHERE ts < now() ORDER BY ts;

e G e S e e +
| acc_id | username | password | ts

to-mmmm - tommmmm - - tommmmm - Fommm oo +
| 1034123 | blewis | lewis | 20021014112252 |
| 1034034 | jime | NULL | 20021014112415

1034033	jsmith	smithy	20021014112438
1034055	jdoe	doey	20021014112501
1034067	jthompson	james2	20021014113403
1034089	sstanford	stanford	20021014113407
1034154	ysheets	sheets	20021014113416
1034546	jjmyers	NULL	20021014113422
S el S i Lt S L e e e il bl +

8 rows in set (0.00 sec)

As you might have noticed, the default ordering used by ORDER BY is ascend-
ing order. You can change this by adding the string desc to the end of the clause.
For example:

mysgl> SELECT username, ts FROM acc WHERE ts < now() ORDER BY

ts desc;

e e e e T +
| username | ts |
e L e L +
jjmyers	20021014113422
ysheets	20021014113416
sstanford	20021014113407
jthompson	20021014113403
jdoe	20021014112501
jsmith	20021014112438
jime	20021014112415

44

Working with MySQL SQL

| blewis | 20021014112252 |
B B e +
8 rows in set (0.00 sec)

This query returns the username and timestamp for all rows in the table in
descending order, thus displaying the accounts most recently entered.

Changing Column Names

If you look back at the previous query, you can see that the output table head-
ing displays the string values for the columns in the table as entered when the
table was first created. When we obtain the results of a query both in the client
tool and programmatically, the same column names are used. We have the
option of changing the displayed values. For example:

mysqgl> SELECT acc_id '"Account ID', username 'Username',
ts 'Timestamp’
FROM acc
WHERE ts < now()
ORDER BY ts desc;

L S Lt e e +
| Account ID | Username | Timestamp |
e Lt e e S e e e S LS +
1034546	jjmyers	20021014113422
1034154	ysheets	20021014113416
1034089	sstanford	20021014113407
1034067	jthompson	20021014113403
1034055	jdoe	20021014112501
1034033	jsmith	20021014112438
1034034	jime	20021014112415
1034123	blewis	20021014112252
S S e e Lt e e e e il +

8 rows in set (0.00 sec)

In this sample query, the three columns pulled from the table aren’t displayed
with their table names of acc_id, username, and ts, but new names are listed in
the query. Although the column name change doesn’t have anything to do with
the data itself, it does provide a better presentation to the user.

Like

Another common problem with queries against a database is trying to find the
exact row you are interested in using. For example, suppose you know
that there is an account in the database table acc with a username ending
with smith, but you don’t know exactly what the full string is. If you attempt to
query just using smith, you might find rows with usernames of smith but
nothing else.

Introducing MySQL SQL 45

Fortunately, SQL has a SELECT clause called LIKE that lets you basically
search the database for a substring within a column. The LIKE clause requires
you to insert a wildcard character, %, into the string you are trying to locate. For
example:

mysgl> SELECT acc_id 'Account ID', username

FROM acc

WHERE username
LIKE '%$smith

B e R T +
| Account ID | username |
R e Hmmmmmmmoo - +
| 1034033 | jsmith |
Hmmmmmmmme oo Hmmmm oo +

1 row in set (0.00 sec)

In this query, we've asked for the account ID and username of all users with a
username that begins with any string and ends with smith. The wildcard can be
used in multiple places throughout the string. Let’s say you need to find all user-
names containing stan. Use the following query:

mysgl> SELECT acc_id 'Account ID', username

FROM acc

WHERE username

LIKE '$stan%';

tmmm e tomm - +

| Account ID | username |

e e GRS e R +

| 1034089 | sstanford |

e Lt e +

1 row in set (0.00 sec)

To achieve your intended outcome, place the % wildcard at both the beginning
and end of the stan string. Note that the more wildcard-matching the database
system needs to do, the longer the system will take to return the result.

Group By

One of the things you should notice from the ORDER BY clause is it cannot be
used to sort by multiple columns. MySQL includes another clause, called
GROUP BY, that can be used to group together common values within multiple
columns. For example, suppose you want to group on both the account number
and username. The query is as follows:

SELECT * FROM acc GROUP BY acc_id, username;

MySQL has extended GROUP BY to allow the use of the ASC and DESC
descriptors for sorting in a particular order. For example:

SELECT * FROM acc GROUP BY acc_id DESC, username ASC;

46

Working with MySQL SQL

Most dialects of GROUP BY require that the fields used in the clause be part of
the SELECT itself. MySQL allows columns to be in the SELECT that aren’t part
of the GROUP BY.

Limit
In all the queries so far, all of the rows in the result are returned. There are
times when you might want only a single row or a small set when there are

many possible result rows. In such cases, you can limit the row count by using
the LIMIT clause. For example:

mysgl> SELECT * FROM acc LIMIT 3;

e e e L e e L EEEEE L +
| acc_id | username | password | ts

to----m- - to-mmmm - to-mmmm - tommmm oo +
| 1034033 | jsmith | smithy | 20021014165845 |
| 1034034 | jime | NULL | 20021014165845

| 1034067 | jthompson | james2 | 20021014165845 |
e e e L e e L EEEEE L +

3 rows in set (0.00 sec)

In this query example, the first three rows of the result are returned. We can
execute the query again and pull another three rows, but instead of starting at
the first row in the result, we use an offset value to get the next three rows. For
example:

mysqgl> SELECT * FROM acc LIMIT 3,3;

PSS oo S e i Lt e L R +
| acc_id | username | password | ts

e e e L e e L EEEEE L +
1034089	sstanford	stanford	20021014165845
1034123	blewis	lewis	20021014165845
1034154	ysheets	sheets	20021014165845
PSS oo S e i Lt e L R +
3 rows in set (0.00 sec)

In this query, the code offsets to the fourth row and displays three of the results.
If there aren’t enough rows remaining in the result set, the system returns as
many as it can.

Dump to File

Not all applications are able to use the output from a SQL query, but they are
able to handle input in the form of a text file. The SELECT command in MySQL
includes a clause called INTO [OUTFILE | DUMPFILE] that allows the result of
a query to be placed in a file. As listed, there are two options for the INTO
clause: OUTFILE and DUMPFILE. The OUTFILE option is used to dump all
rows returned in a query. For example:

Introducing MySQL SQL a7

mysgl> SELECT * FROM acc INTO OUTFILE 'test.outfile';
Query OK, 8 rows affected (0.00 sec)

This query results in a text file with all of the rows, as shown here:

1034033 jsmith smithy 20021014165845
1034034 jime \N 20021014165845
1034067 Jjthompson james2 20021014165845
1034089 sstanford stanford 20021014165845
1034123 Dblewis lewis 20021014165845
1034154 ysheets sheets 20021014165845
1034546 jjmyers \N 20021014165845
1034055 jdoe doey 20021014165908

Notice that the NULL values are converted to \N and line terminations are pro-
vided. If you need the data sorted, you can add the appropriate clauses to the
query. MySQL also includes the clause INTO DUMPFILE, which basically
dumps a single row into a file without any sort of special processing. The
DUMPFILE is typically used to output a BLOB to a file. Our sample database
doesn’t include a BLOB, but the query might look like the following:

SELECT pic_blob FROM images INTO DUMPFILE 'world.jpg'

WHERE pic_name = 'World';

Counting

If you consider the various SELECT queries we've created in this section, you
will note that they all output some number of result rows. What if we want a
query that counts the total number of rows in a result? The total count can be
returned using the count(*) option. For example:

mysgl> SELECT count (*) FROM acc;

R T +
| count (*) |
R R +
| 8 |
mmmm oo +

1 row in set (0.00 sec)

Here we execute a SELECT to return the total number of rows in the acc table.
Notice that the count value is returned as a column in the result. The column
heading value can be changed, as we explained earlier in this section.

Updates

The first major SQL statement we covered was INSERT, which you use to place
data into your database. This was followed by the SELECT statement, which
you use to pull the data from your database. What do you do if you want to
change the data within a row? You have two options. The first is to just make
the change. You can do this with the UPDATE command:

48

Working with MySQL SQL

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name

SET col_namel=exprl [, col_name2=expr2, ...]
[WHERE where_ definition]

[LIMIT #]

If you have a user who changes his or her password, you can use the UPDATE
command to make the change in the database. Consider the following SELECT,
UPDATE, SELECT combination:

mysgl> SELECT * FROM acc WHERE username='jime';

to------ - to-mmmm - R i tommmm oo +
| acc_id | username | password | ts

e e e e aale e L el e +
| 1034034 | jime | NULL | 20021014165845 |
e e e e el e L B +

1 row in set (0.00 sec)
mysgl> UPDATE acc SET password='ime' WHERE username='jime';
Query OK, 1 rows affected (0.00 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysgl> SELECT * FROM acc WHERE username='jime';

T S LE s e e LT +
| acc_id | username | password | ts

B e Fo-mmmmm oo e et +
| 1034034 | jime | ime | 20021014204947 |
dommm- - e e e T e +

1 row in set (0.00 sec)

In this combination of SQL commands, we display the row where the username
is jime. The password is shown to be NULL. We use the UPDATE command to
change the password to ime. Notice that the UPDATE command instructs a
specific table to be updated; then the column that needs to be changed is indi-
cated by SET. If we have to change numerous columns, we can use multiple
SETs and separate them by commas. Finally, we can use a condition to limit the
rows changed. The last SELECT command shows that the row was updated
correctly.

The second way to update a database is to never change a row in the database
but instead to inactivate one row and insert a new one. In order to do this type
of update, you must include two timestamp fields in each row. The first is called
an active timestamp, and the second is just the timestamp. The most active
row in the database for a particular key has a timestamp of 0. The active time-
stamp will be the time when the row was inserted. Once the row is inserted, the
active timestamp of the current row is copied to the timestamp (ts field) of the
inactive row.

Introducing MySQL SQL 49

To support this type of update, we've changed the table acc a bit. The new table
definition looks like this:

mysqgl> describe acc;

R R D e T et R R et +
| Field | Type | NULL | Key | Default | Extra |
B e R e R R R R +
acc_id	int(11)		PRI	O	
username	varchar(64)		PRI		
password	varchar (64)	YES		NULL	
ts	timestamp(14)	YES	PRI	NULL	
act_ts	timestamp(14)	YES		NULL	
B e R e R R R R +

5 rows in set (0.00 sec)

As you can see, we've added an act_ts column defined as a timestamp; defined the
username, acc_id, and ts not to be NULL; and defined the primary key as a combi-
nation of acc_id, username, and ts. To show the process of doing the update, con-
sider the row with an acc_id of 1034055. When the initial row was placed in the
database, the ts column was set to 0, and the act_ts was set to the actual time the
row was inserted. Here’s the output of a SELECT showing the row:

mysgl> SELECT * FROM acc WHERE acc_id = '1034055';

S R e R e R EEEEEE TR T e --+
| acc_id |username| password | ts | act_ts

+----- —mm-- - e et e e +
|1034055 | jdoe | ime | 00000000000000 |20021014212444 |
e e e Hommmmmmmmm—oo - R T +

1 row in set (0.00 sec)

Next, we need to insert a new row into the database. In order for the database
to remain consistent, we need to relate the old row to the new row using a time-
stamp. The timestamp needs to be the same, so the first step is to obtain the
current time and place it in a temporary variable. We accomplish this by using
a SET command and local system variable. For example:

mysgl> set @time=now() ;
Query OK, 0 rows affected (0.03 sec)

The @time variable now holds a timestamp, and it can be used to insert the new
row and change the old row. First, the old row is updated and the ts column is
set to the current time:

mysgl> UPDATE acc SET ts=@time WHERE acc_id = 1034055;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

Here’s the query to show the new ts value in the old row:

50 Working with MySQL SQL

mysgl> SELECT * FROM acc WHERE acc_id = '1034055';

e e e e e L L L e e L +
|acc_id |username| password | ts | act _ts
e e e L L e L e L L +
|1034055 | jdoe | ime | 20021014212553 | 20021014212444 |
t--mmm - t--mmm - tmmm - Fmm e Fmm - +

1 row in set (0.01 sec)

Now we can insert the new row:
mysgl> INSERT INTO acc VALUES (1034055, 'jdoe', 'newpass', 0, @time);
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

A final SELECT will show both of the rows and how they relate through the
act_ts column of the new row and the ts of the old row:

mysgl> SELECT * FROM acc WHERE acc_id = '1034055';

|1034055| jdoe | newpass | 00000000000000 | 20021014212553 |
|1034055| jdoe | ime | 20021014212553 | 20021014212444 |

2 rows in set (0.01 sec)

We can always know the active row by including ts=0 in our queries.

Deletes

When data is no longer needed in a database, you can use the DELETE com-
mand to remove a row. However, if you want to maintain the history of the rows
in the database, you should instead make the row inactive.

First, let’s show the removal of a row. The query looks like this:

DELETE FROM acc WHERE acc_id = '1034154';

The query will select the appropriate row based on the WHERE clause. Another
use of the DELETE command is:

DELETE FROM acc;

This query doesn’t include a WHERE clause and thus will remove all rows from
the specified database table. To maintain the history of the rows in the data-
base, you shouldn’t use the DELETE command because the row will be perma-
nently removed. In that case, the best way to “delete” the row is to make the
row inactive by setting the ts of the row to a timestamp other than 0. In most
cases, you want to update the current row to a current timestamp value so that
the row has a record of when it was made inactive.

Introducing MySQL SQL

Using SHOW

MySQL includes a command called SHOW, which allows a developer or admin-
istrator to see details about databases, tables, and the database system itself. In
this section, we look at the various SHOW commands and explain what infor-
mation they provide. Note that in some of the commands an optional LIKE can
be used to filter the information provided by the command. The % wildcard is
used just like as you do in the SELECT command use of LIKE. We cover the
most popular SHOW commands here and save some of them for Chapter 13,
“Database Administration.”

SHOW DATABASES

The SHOW DATABASES command shows all of the databases available on the
current database server. You use the LIKE command to limit the output. For
example:

mysgl> show databases;

accounts |
ca |

mysqgl |
test |

4 rows in set (0.03 sec)

SHOW TABLES

The SHOW TABLES command displays all of the tables within a particular data-
base. The full format of the command is:

SHOW [OPEN] TABLES [FROM databaseName] [LIKE wildcardString]

Notice that there are a number of optional components to the command. The
[OPEN] option will show only those databases that are currently being
accessed by a client. If SHOW TABLES is executed, it requires that a database
currently be active by executing the USE <database> command. You can use
the FROM databaseName option to query the tables available in any database
on the system. For example:

mysqgl> SHOW TABLES FROM mysqgl;

R R e e T +
| Tables in mysql |
R R e e TR +
| columns priv |
| db |
| func |
| host |
| tables priv |
| user |
Fommmm o —m——— - +

6 rows in set (0.03 sec)

52

Working with MySQL SQL

SHOW COLUMNS

Once you create a table, you can obtain information about its columns, how
they are defined, and primary key information by using SHOW COLUMNS. The
full format of the command is

SHOW [FULL] COLUMNS
FROM <table> [FROM <database>] [LIKE <wildcards]

If you use the basic format, SHOW COLUMNS FROM <table>, you see the
following:

mysgl> show columns from acc;

B R R R R to------ +
| Field | Type | NULL | Key | Default | Extra |
dom—mm—m- - R e T R R R R +
acc_id	int(11)		PRI	©
username	varchar (64)	YES		NULL
password	varchar(64)	YES		NULL
ts	timestamp(14)	YES		NULL
tommmmmm- - R e R R R R +

4 rows in set (0.00 sec)

MySQL provides a shortcut to the basic format by using the DESCRIBE
<tablename> command. The command assumes you have USEd a database. By
using the [FULL] option, you display the privileges the current logged-on user
has with the table columns as well.

SHOW STATUS

You can obtain a great deal more information about a table by using the SHOW
STATUS command. The format of the command is

SHOW TABLE STATUS [FROM <database>] [LIKE <wildcards]

For example:

mysgl> show table status;

This command works on all tables from the current database or from a speci-
fied database. If you want to limit the tables the command accesses, use the
LIKE option.

SHOW PROCESSLIST

The last command we cover in our introduction section is SHOW
PROCESSLIST. This command is useful for determining access to the database
server—both current access and access in the recent past. The format of the
command is

SHOW [FULL] PROCESSLIST

Introducing MySQL SQL 53

Using the basic command produces the following:

mysgl> show processlist;

R e et R et BT D e T T +
| Id|User |Host | db | Command | Time | State|Info

B e +o---- - e e il +
|1 |joeg|localhost |NULL |Sleep |8900] | NULL |
|4 |ODBC|localhost|accounts|Query |0 | NULL|showprocesslist |
e T e et R et T D e E T +

2 rows in set (0.00 sec)

As you can see, the command tells you a user’s name, the host the user is con-
necting from, what database the user is using, and even the command the user
is executing.

More on Tables

Let’s examine the natural progression of database creation and manipulation.
First, you design the database and tables; next you add them to the server, pop-
ulate the tables with data, and finally retrieve and manipulate the data. Now,
what happens when you have to change a table?

In this section, we look at the various commands available in MySQL for chang-
ing the definition of a table. Specifically, we consider renaming a table, altering
the columns and their definitions, placing tables, and deleting tables. As you'll
see, for the first three tasks you use the ALTER TABLE command.

Renaming

You rename a table by using the ALTER TABLE command. For example:

mysqgl> ALTER TABLE acc RENAME account;
Query OK, 0 rows affected (0.03 sec)
mysqgl> show tables;

1 row in set (0.00 sec)

Here you use the command to rename the acc table to the accounts table. You
can use the SHOW TABLES command to verify that the table name was accu-
rately changed.

Altering Column Definitions

One of the primary uses for the ALTER TABLE command is changing the
schema of a table. The change could be adding a new column, changing the

54

Working with MySQL SQL

column name, increasing the field size of a particular column, or
dropping/adding primary keys. First, let’'s add a new column to our acc table:
mysgl> ALTER TABLE account ADD access int;

Query OK, 8 rows affected (0.11 sec)
Records: 8 Duplicates: 0 Warnings: 0

This query adds a new column called access to the account table and uses a col-
umn type of int. The ADD clause of ALTER TABLE has a few options. The full
definition is

ALTER TABLE <tablename>

ADD [COLUMN] <column specificss> [FIRST|AFTER <columnName>]

By using FIRST or AFTER, you ensure that the new column is specifically
placed within the table definition. The default placement is at the end of the
current table definition. What if you wanted to change a column’s data type?
For example:

mysgl> ALTER TABLE account CHANGE access access varchar (15);

Query OK, 8 rows affected (0.11 sec)
Records: 8 Duplicates: 0 Warnings: 0

This query changes the access column to a varchar(15). Notice how the column
name had to be used twice. The CHANGE clause doesn’t know if you are chang-
ing the name of the column, the type, or both, so it requires that you specify the
column name. MySQL includes a clause called MODIFY that assumes the name
isn’t going to change:

mysgl> ALTER TABLE account MODIFY access varchar (15);

Query OK, 8 rows affected (0.11 sec)
Records: 8 Duplicates: 0 Warnings: 0

If you want to remove a primary key currently defined on a table, use the fol-
lowing query:
mysgl> ALTER TABLE account DROP PRIMARY KEY;

Query OK, 8 rows affected (0.11 sec)
Records: 8 Duplicates: 0 Warnings: 0

A new primary key can be added with the following query:

mysgl> ALTER TABLE account ADD primary key(acc_id);
Query OK, 8 rows affected (0.11 sec)
Records: 8 Duplicates: 0 Warnings: 0

Placing Tables on Specific Drives

When you are building a large database system, you probably want to disperse
the actual tables across disk drives. This is possible using the DATA DIREC-
TORY clause of the ALTER TABLE command. For example:

ALTER TABLE account DATA DIRECTORY="/usr/local/databases/account"

Introducing MySQL SQL 55

Note that the DATA DIRECTORY option in the ALTER TABLE as well as in the
CREATE TABLE command is available only on MyISAM tables underMySQL 4.0.

Deleting Tables

If you are absolutely sure that you want to get rid of a table permanently, use
the command DROP TABLE <tableName>. Here is a simple example of using
DROP TABLE:

mysgl> create table test (id int);
Query OK, 0 rows affected (0.05 sec)

mysgl> insert into test values(1);
Query OK, 1 row affected (0.02 sec)

mysgl> drop table test;
Query OK, 0 rows affected (0.03 sec)

Notice that the table will be dropped without any reservation by the database
server. It is vital that you type in the table name accurately because once a table
has been dropped, it is no longer available.

Transactions

One of the most powerful aspects of MySQL is its ability to use transactions. A
transaction is an atomic action that must either succeed or fail. This means
that in a transaction consisting of three different queries—a SELECT, an
INSERT, and an UPDATE—if any of these operations fail, the other commands
must be rolled back to their original state.

The current MySQL system includes two different table types that allow for
transactions: InnoDB and BDB. In order for a database table to use transac-
tions, the table must be created using a TYPE clause or the table must be
altered with an ALTER TABLE command also using the TYPE clause.

Once you create a table to handle transactions, you must inform the MySQL
system that you want to use transactions. You can accomplish this by using the
autocommit database server variable. By default, this variable is set to a value
of 1, meaning that the database server will automatically commit the query
once it executes. To start a transaction, the autocommit variable must be set to
0. For example:

mysgl> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)

Now you have the ability to execute SQL statements that will be either com-
mitted to the database or rolled back. Start with either the BEGIN or BEGIN
WORK statement:

56 Working with MySQL SQL
mysgl> begin;
Query OK, 0 rows affected (0.00 sec)
Now execute your SQL. Once you have finished, use the command COMMIT or
ROLLBACK, depending on your circumstances.
Functions/Operators
In several places throughout this chapter, we have used a MySQL function in a
query. A function is code written by MySQL that aids in the query being used.
For example, suppose you want to determine the largest account ID in the acc
table. To do this, use the max() function:
mysgl> SELECT max(acc_id) FROM account;
e LG E L +
| max(acc_id) |
e +
| 1034546 |
e e E Lt +
1 row in set (0.00 sec)
In this query, the maximum value in the acc_id column is returned from the
database. MySQL includes a large number of functions—too many to list in this
chapter. Refer to the MySQL documentation for a listing of all available func-
tions and examples.
Joins
One of the harder concepts to grasp in the world of databases is the join. Let’s
begin our discussion by throwing another table into our current database. Right
now we have a database called acc that has the following fields:
acc_id int
username varchar
password varchar
ts timestamp
act_ts timestamp

This table doesn’t hold much information about the actual owner of the account
ID. We need to add another table called acc_add that will hold address infor-
mation for the account owner. Here’s the table definition:

mysgl> create table acc_add (
add_id int not NULL,

acc_id int,

name varchar (64),

addressl varchar (64),

Introducing MySQL SQL 57

address2 varchar (64),

address3 varchar (64),

city varchar(64),

state varchar(64),

zip varchar(10),

ts timestamp not NULL,

act_ts timestamp,

primary key(add_id, ts));

Query OK, 0 rows affected (0.00 sec)

Let’s now add some data to the table for the account ID 1034055. Notice that the
acc_add table requires the acc_id of the account whose address is being added
to the table. This column value links the acc table with the acc_add table. The
full data added to the table can be found on the code download available at
www.wiley.com/compbooks/matthews. In this example, we've added two rows:

mysgl> insert into acc_add

values (30004, 1034055, 'John Doe', '4565 Some St',
'Suite 4', NULL, 'Chicago', 'IL', '21734', 0, now());
Query OK, 1 row affected (0.00 sec)

mysgl> insert into acc_add values(

30003, 1034055, 'John Doe', '123 Any St',6 NULL,
NULL, 'Atlanta', 'GA', '38394', 0, now());

Query OK, 1 row affected (0.00 sec)

Now we want to get data from both tables at the same time. For example:

mysgl> SELECT acc.acc_id, name
FROM acc, acc_add

WHERE acc.acc_id = acc_add.acc_id and acc.ts = 0;
S S e +
| acc_id | name |
i e ceeesssas +

| 1034055 | John Doe |
| 1034055 | John Doe |
e e e el +
2 rows in set (0.00 sec)

In this query, we asked for the values of acc_id (from the acc table) and name
(from the acc_add table), but only when the acc_id in both of the tables match
and the ts field in the acc table is 0. The result is two rows. Let’s look a little
more closely at what is occurring in this SQL. First, we are asking for data from
two tables at the same time, as seen in the FROM acc, acc_add clause. From
those two tables, we want two pieces of data: the acc_id and name. Notice how
the acc_id has a table name preceding it. This had to be done in order to tell the
database server which table we want the acc_id to be pulled from because it
can be found in both of them.

Now we want to see data from the tables only when the acc_id is identical
between the two tables. At this time, the only data in the acc_add table has an

Working with MySQL SQL

acc_id of 1034055. The database server will analyze the WHERE clause and
look for all of the acc_id values in the table acc that also appear in the acc_add
table. If you look back in our examples, you can see that there are two 1034055
values in the acc table. One of them is an active row, and one is an inactive row.
Both of these rows will be matched against the two rows in acc_add for a result
set having four rows. However, we also included a Logical AND in our WHERE
clause to return only those rows where acc_id is equal in both tables and the ts
field in acc is 0. This logical AND limits the total row output to two rows.

What we have accomplished in this example is a basic join. We have joined two
tables by requesting that information be pulled from multiple tables and a con-
dition placed on the values from the tables. Technically this is called an
equi-join.

Using a Join

When developers talk about a join, they typically use the term join without any
identifiers. Developers are really referring to a cross-join, a full join, or an
inner join. The idea is that all of the rows in one table are crossed with all of
the rows in another table. Currently, our acc table has nine rows, and the
acc_add table has two rows. If we were to execute a query like the one that fol-
lows, we would get a result with 18 rows and all of the columns from both
tables. Since this would create a massive table, we won’t reproduce it here.

MySQL allows the use of the inner join identified to let the reader of a SQL
statement know there is a join occurring. Consider the SQL we used earlier
with the acc and acc_add tables. To properly write this SQL using a join, we
would have

mysgl> SELECT acc.acc_id, name
FROM acc
inner join acc_add
on acc.acc_id = acc_add.acc_id where acc.ts = 0;

| 1034055 | John Doe |
| 1034055 | John Doe |
S il e L +

2 rows in set (0.00 sec)

This SQL has several aspects. The first is the use of the inner join clause. The
SQL says we want to pull data FROM one table and join that table with another
one called acc_add. The INNER JOIN causes a full join to occur with both
tables. After the join, there is an ON clause. The ON clause is used exclusively
with the join. This clause tells the system what criteria to use when relating the

two tables. Finally, our query uses a WHERE clause to further limit the results
from the query. In most cases, all of the conditions to use when relating the
tables should appear in the ON clause, and final criteria should appear in the
WHERE clause.

Outer Left/Right Join

Another common join is called the left join. In a left join, the first table listed in
the query returns all of its rows even if a match doesn’t occur within the ON
clause. The right join does just the opposite and returns all rows in the table
listed with the join.

One of the most interesting features of SQL is the notion that NULL is not 0 as
in most programming languages. The value NULL stands on its own in SQL and
for this reason, a special equality statement is needed to check whether a field
contains a NULL value. The statement is IS NULL and IS NOT NULL. We can
create SQL that will pull rows if a column’s value is NULL. For example:

mysgl> SELECT acc_id, password FROM acc WHERE password IS NULL;

B tommmmmm oo +
| acc_id | password |
e R +
| 1034067 | NULL |
fo-------- fo------- - +

1 row in set (0.00 sec)

mysgl> SELECT acc_id, password FROM acc WHERE password = NULL;
Empty set (0.00 sec)

In the first SQL query, we are telling the database server to return all rows
where the password field value is NULL. There is one such row in the table, and
it is displayed. The second SQL query does nearly the same thing, but instead it
tries to match the password value equal to NULL—no results are found.

What's Next

So where is MySQL going? Well, the current plan is to introduce new function-
ality under the 4.0 version in separate segments. Expect to see increments like
4.0.1, 4.0.2, and so forth. Several large additions are planned for 4.1, including
subselects and stored procedures.

This chapter has attempted to provide a brief but comprehensive introduction
to MySQL SQL for those who aren’t familiar with it. For more comprehensive

Working with MySQL SQL

information on MySQL SQL, please refer to the extensive documentation avail-
able on www.mysql.com. In the next chapter, we take a complete look at the
installation of MySQL, Java, and Connector/J to build a development system to
be used throughout the remainder of this book.

Installing MySQL, Java, and
Connector/J

MySQL, Java, and Connector/J to build applications and sites that provide

your users with a bounty of information. In this chapter, we explain how to
install MySQL, Java, and Connector/J on your system. We cover both Linux and
Windows, and for the most part, we show the basic installation that works on
99 percent of the environments out there. If these instructions don’t work, you
will need to turn to the product documentation.

If you've made it this far, you are ready to begin the process of integrating

Installing MySQL

You can find the MySQL database system at http:/www.mysql.com under the
downloads section of the site. Several different downloads are available, as
shown in Figure 4.1.

On the right-hand side of the MySQL Web page, you can see two major sections:
Production and Development. The Production line of products has been thor-
oughly tested both within and outside MySQL. An organization can comfortably
use the Production products in such an environment and be assured of stability
and reliability. The Development line of products has been tested within MySQL
with MySQLs own baseline tests but the products aren’t at the level of produc-
tion readiness. As you can see, the 4.0.x line of MySQL is currently in the Devel-
opment stage and isn’t recommended yet for production use.

62 Installing MySQL, Java, and Connector/J

a MySQL: The World's Most Popular Dpen Source Database - Microsolt Tnternet Exploner
| Fis Ede view Favorkes Tools Heb -
| ook« = - @D A Bseoch SFovoriies Fhisory (B S0 HF O || @i » Qonor
| Address [&] hup: (v nysd.com =] @6
|Unks &customie Unks &]Free Hotmal @] Windows &1Fres 40L& Unimited Internst &1 Realone Player &) Windows Media
3 The World's Mast Popelar Operr Source Orline shop | Sike map | Search a
W Database My30L.com: ol
MyScl Company Products Supnoet & Consuiting Traring & Certification Dowrloads Documentation

tab. .ruer "(.:ont.rol Center CornectorfODBc . COHnecior;;J . . More M\rSQL prod..xc.t.s:
About | Manud | By About | Buy About | Manud | Buy Shout | Buy ConnectorfCes
Procuction; 3.23.543 Beta: A7 Production; 2.50.39 Production; 2.0.14 MySOLGUL
Gamma: 4.0.7 Gamma: 1.51.05 Beta: 3.0.3
<l | rl_l
&100re ’_ l_lﬂ Internet i

Figure 4.1 The available MySQL downloads.

Looking at the Production MySQL servers, you have two possibilities: MySQL
and MySQL-Max. The MySQL download is a basic MySQL server without trans-
action support table types compiled into the binary. The MySQL-Max download
includes support for the BDB table type in some platforms and the InnoDB
table type in all platforms. Depending on which Production system you decided
to download, you have the option of pulling the version for Windows, Linux,
Solaris, and a host of other platforms.

If you are downloading for Windows, you automatically get both the standard
MySQL distribution as well as MySQL-Max. If you are downloading the Linux ver-
sion, MySQL recommends using the RPM file for a clean installation. Note that you
will have to download a number of Linux files. You should download the server
and client programs files to have an operational development system. After you
click on the correct platform version, the installation instructions change.

Linux Installation

For the Linux version of MySQL, you have two different files on your system.
One has a name like MySQL-3.23/MySQL-3.23.52-1.i386.rpm, and the other has a
name like MySQL-3.23/MySQL-client-3.23.52-1.i386.rpm. Since these are RPM
files, they should install without much error on most recent Linux installations.
The steps are

1. Install the server: type rpm -i MySQL-VERSION.i386.rpm.

2. Install the client tools: type rpm -t MySQL-client-VERSION.i386.rpm.

The installation process places all of the code in /var/lib/mysql. In addition, the
process makes entries in rc.d/ to automatically start MySQL when the machine
boots.

Installing MySQL 63

Windows Installation

The MySQL distribution for Windows comes as a zip file and will need to be
uncompressed before it can be used. Use WinZip or another tool of your choice
to perform the decompression. Once you do, follow these instructions to install
the server on a NT/2000/XP box:

1. Log on as the administrator user.
2. Stop the current MySQL if you're performing an upgrade.
a. Open a command prompt.

b. If MySQL is running as a service, type net stop <mysql> where
<mysql> is the name of the MySQL server service name (normally
the value is mysql).

c. If MySQL is running as an application, change to the /bin directory of
the MySQL installation and type mysqladmin —u root shutdown.

3. If you are changing from the basic MySQL server to the Max version, you
need to remove the service.

4. Locate the setup.exe file of the new installation from the uncompressed
files.

5. After MySQL is installed, copy one of the configuration files in the installa-
tion directory to the root directory, c:/. If you are using the Max version of
MySQL, configure the appropriate InnoDB or BDB options in the configu-
ration file.

6. If you want to install the server as a service, type the command
-mysqld-max-nt- --install (or --install-manual if you don’t want
Windows to automatically start the service when the machine boots).

If you are installing MySQL on Windows 95, 98, or ME, the server cannot be
used as a service and thus you will need to start and stop the server manually.
Use the mysqgladmin.exe application in the /bin directory to start MySQL.

All Other Installations

It is beyond the scope of this book to provide installation instructions
for every platform that MySQL supports. If you need to install MySQL
on another platform, download the appropriate distribution and refer to
http://www.mysql.com/documentation/mysql/bychapter/manual_Installing.html
#Installing for complete instructions.

Testing the MySQL Installation

To determine that MySQL has been installed and is executing correctly, browse
to the /bin directory of MySQL and execute the file mysql. You should see infor-
mation like that shown in Figure 4.2.

64

o clear the huffer.

Figure 4.2 Testing MySQL.

Installing Java

Once the MySQL database server is installed, it’s time to install Java. You can
find the Java software development kit (SDK) at http:/java.sun.com/
j2se/l.4.1/download.html. When you get to this page, you see downloads for
numerous platforms and options for either the Java Runtime Environment
(JRE) or SDK. Be sure to grab the SDK so you will be able to write code with
Java. For Windows, you will find an EXE file to download. When the file has fin-
ished downloading, double-click on it to launch the installation wizard. Just a
few clicks through the wizard is all it takes to install Java on Windows. When
the Java installation wizard has finished installing Java, add the path to the /bin
directory of the installation to the system PATH environment variable. That
way, you will have access to the Java tools from a Windows command prompt.

For Linux, you will find both an RPM and a self-extracting BIN file. If you down-
load the RPM file, it will initially include a BIN extension, which you need to
remove. Install the RPM with the rpm-I command. If you download the BIN self-
extracting file, you need to change the file to have execution permissions with
the chmod a+x command. Once permissions are set correctly, just execute the
file to install Java.

Full instructions for installing the Windows, Linux, and other environments can
be found at http://java.sun.com/j2se/1.4.1/install.html if you run into problems.

Testing the Java Installation

Once Java has been installed, you should test the installation. To do this, create
a file called hello.java and add the following code:

public class hello {
public static void main(String[] args) ({
System.out.println("Hello World - It Works");
1
1

Installing Connector/J 65

Compile the code with the command

javac hello.java

If you get an error saying the javac command cannot be found, then you will
need to check the path to the /bin directory; this means that the system is
unable to find the Java compiler in the /bin directory. If things work out cor-
rectly, execute the Java with

java Hello

You should see the text “Hello World—It Works” on your screen. If you don’t
see this text, check Sun’s instructions to correct the installation.

Installing Connector/)

If you refer to Figure 4.1, you see that both the Production and Development
areas have downloads available for Connector/J. Clicking on either of the links
brings you to the respective page for that particular version of the code. In both
cases, two files are available for download: a zip and a tar.gz.

Most of the code in the remainder of this book executes under the Production
version of the code, but better performance and many small JDBC support
changes are available in the Development 3.0 version. Our test machines used
the 3.0 version of Connector/J.

If you download the zip version of the code, we assume you are installing
on a Windows box and that the tar/gz version for Linux or another Unix
flavor. In either case, you need to uncompress the file to expose both
the source code for the driver as well as a JAR file called (in 3.0) mysql-
connector-java-3.0.1-beta-bin.jar. This file contains all of the necessary class
files for the driver.

There are a few ways to install the driver. The first is to copy the /com and /org
files into another directory listed in your classpath. Another option is to add the
full path to the JAR file to your CLASSPATH variable. Finally, you can just copy
the JAR file to the $JAVA_ HOME/jre/lib/ext directory.

On a Windows platform (if you installed SDK1.4.1), the directory is found at
/program files/java/j2rel.4.1/lib/ext. Just copy the JAR file to that directory, and
the library will be available for applications that execute within the Java Virtual
Machine.

On a Linux platform using SDK 1.4.1, the directory where you want to place the
JAR file is /usr/java/j2sdk1.4.0/jre/lib/ext.

66

Testing the Connector/J Installation

Once you've installed both Java and the Connector/J driver, create a test file
called test.java and enter the following code into the file:
public class test ({

public static void main(String[] args)
try {
Class.forName ("com.mysqgl.jdbc.Driver") .newInstance () ;
System.out.println("Good to go");
} catch (Exception E)
System.out.println ("JDBC Driver error") ;

}
}
}

Save and exit the test file and compile it with this command:

javac test.java
Now execute the code with this command:

java test
If the Java Virtual Machine was able to find your Connector/J JAR file, you will
see the text “Good to go” on the console; otherwise, you will see “JDBC Driver
Error”. If you get an error, check that the JAR file is in the correct directory

and/or check the CLASSPATH variable to be sure the full path to the JAR file
has been included. Figure 4.3 shows all of these steps.

mmand Prompt

C:wdatasbookswmysgl and javassof twareschapter4>javac test.java E

C:wdatasbookswnysgl and javassoftwareschapterd>java Test
Good to go

C:ndatasbookswnysgl and javassoftwareschapterd>

Figure 4.3 Testing the Connector/J driver.

What's Next

Once you have installed all of the applications shown in this chapter, you are
ready to start writing all sorts of Java applications that can access a MySQL
database. In the next chapter, we begin looking at how to write applications and
applets to access MySQL. We explore some of the basic functionality provided
in the JDBC specification and implemented in Connector/J.

Using JDBC with Java Applications
and Applets

start writing Java code that will allow access to a MySQL database using

the Connector/J JDBC driver. In the remaining chapters of this book, it
is our goal to exercise as much of the functionality found in the driver as possi-
ble. This chapter covers the basics of instantiating the driver, connecting to the
database from Java, executing queries, and handling results. From a Java per-
spective, we look at doing all of these tasks from both applications and applets
utilizing various GUI components to deal with the information transfer from the
user to the database and from the database to the user.

Now that we have a development environment put together, it’s time to

Hello World

For the sake of tradition, the first application we build is Hello World. The code
in Listing 5.1 creates a Java application and pulls information from a MySQL
database.

package mysqgl;
import java.sqgl.*;

public class Hello {
Connection connection;

Listing 5.1 Hello World. (continues)

67

68 Using JDBC with Java Applications and Applets

private void displaySQLErrors (SQLException e) {

System.out.println ("SQLException: " + e.getMessage()) ;
System.out.println ("SQLState: " + e.getSQLState()) ;
System.out.println("VendorError: " + e.getErrorCode()) ;

public Hello() {

try {
Class.forName ("com.mysqgl.jdbc.Driver") .newInstance () ;

}

catch (SQLException e)
System.err.println("Unable to find and load driver");
System.exit (1) ;

public void connectToDB () {
try {
connection = DriverManager.getConnection (
"jdbc:mysqgl://localhost/accounts?user=&password=") ;

1
catch (SQLException e) {
displaySQLErrors (e) ;

public void executeSQL() {

try {
Statement statement = connection.createStatement () ;

ResultSet rs = statement.executeQuery (
"SELECT * FROM acc_acc") ;

while (rs.next())
System.out.println(rs.getString(1)) ;

rs.close() ;
statement.close () ;
connection.close() ;

1
catch (SQLException e) {
displaySQLErrors (e) ;

public static void main(String[] args)

Listing 5.1 Hello World. (continues)

Hello World 69

}

Hello hello = new Hello();

hello.connectToDB () ;
hello.executeSQL() ;

Listing 5.1 Hello World. (continued)

Since this is our first code for connecting Java to MySQL through Connector/J,
we want to spend a fair amount of time going through it. First, note that this is
a traditional Java application that instantiates an object and calls a few meth-
ods. When the Hello object is instantiated, the constructor is called to handle
any initialization that needs to take place.

Loading the Connector/J Driver

In the constructor, we have placed code that attempts to locate and instantiate
our Connector/J JDBC driver. The process begins with the Class.forName
method. This method is designed to dynamically load a Java class at runtime.
The Java Virtual Machine (JVM) uses the current system classpath (as well as
any additional paths defined when the JVM was executed) to find the class
passed to the method as a parameter. In our case, the system attempts to find
the Driver class found in the com.mysql.jdbc package. In Chapter 4, we placed
the Connector/J JAR file in the classpath of the JVM so it could be found. Once
it finds the file, the code executes the newInstance() method to instantiate a
new object from the Driver class. During the instantiation, the Driver will regis-
ter itself with a static class called DriverManager, which is responsible for man-
aging all JDBC drivers installed on the current system.

If the JVM is unable to locate the driver, it outputs a message to the console and
exits the application. Note that the DriverManager is designed to handle multi-
ple JDBC driver objects just as long as they register with the class. This means
that you can write a Java application that connects with more than one type of
database system through JDBC. Note that simply loading the JDBC driver for a
database doesn'’t result in any type of connection with the database.

Using DriverManager to Connect to a
Database

Once our application object has been created and initialized, the code attempts
to build a connection to the database. This is an important step, and therefore
we’ll spend some time discussing the connection code. If you look in the

70 Using JDBC with Java Applications and Applets

connectToDB() method in our Hello object, you see that the connection from
Java to the database is performed in a single line of code:

connection = DriverManager.getConnection (
"jdbc:mysqgl://localhost/accounts?user=&password=") ;

As you can see, the DriverManager is the catalyst used to create the connection
to the database. This is consistent with its job of managing all JDBC drivers.
When the getConnection() method is called, the DriverManager needs to decide
what JDBC driver to use to connect to the database. Figure 5.1 shows how the
DriverManager determines the proper JDBC driver to use with a given connec-
tion request.

MySQL

DriverManager

o Connector/J
Application Oracle
SQLServer

Oracle

SQLServer

i

Figure 5.1 Determining the proper driver.

Let’s begin our discussion of obtaining a connection to the database by exam-
ining the API for the DriverManager.

DriverManager API

DriverManager is a static class that exposes methods for handling connections
to a database as well as administrative methods for JDBC drivers. The follow-
ing methods are those we might be interested in using:

Connection getConnection(String URL)—The DriverManager uses a reg-
istered driver in an attempt to build a connection to a specified database.

Connection getConnection(String URL, Properties props)—The
DriverManager uses a registered driver in an attempt to build a connection
to the specified database using the properties provided in the Properties
object.

Connection getConnection(String URL, String username, String
password)—The DriverManager uses a registered driver in an attempt to
build a connection to the specified database using the provided username
and password.

Hello World 71

Driver getDriver(String URL)—The method returns a registered driver
that will potentially be used to connect to a database with the provided URL.

Enumeration getDrivers()—The method returns all of the currently
registered drivers.

int getLoginTimeout()—The method returns the maximum time in
seconds that the current DriverManager will wait for a connection to a
database.

void setLoginTimeout(int secs)—The method sets the maximum time in
seconds that the current DriverManager will wait for a connection to the
database.

These methods can be characterized into three groups: driver management,
timeout management, and connection management.

Driver Management Methods

Once a driver (or set of drivers) has been registered with a DriverManager, you
usually don’t have to do anything further with the driver. However, a few methods
are available for obtaining and removing drivers from the DriverManager if you
need to. A current list of registered drivers can be obtained using code like this:

Enumeration e = DriverManager.getDrivers() ;
while (e.hasMoreElements()) {
Driver d = (Driver)e.nextElement () ;
System.out.println("Driver Major Version = " +
d.getMajorVersion()) ;

}

Once a reference to a driver has been obtained, the deRegisterDriver() method
can be used to remove the driver. In almost all cases, you won’t need to use any
of this information unless you want to remove from the application all JDBC
access to a particular database.

Timeout Management Methods

When connecting to a database—whether local or remote to the Java applica-
tion—the application doesn’t know if the database system itself is currently
online. There can be situations where a database is down for maintenance or
the machine has crashed. A Java application has the option of setting a timeout
value for the maximum time that the DriverManager will wait as it attempts to
create a connection. The default timeout is 30 seconds before the driver throws
a java.net.ConnectException exception. For situations where the database is
on a remote machine, the timeout might need to be extended. The following
code shows an example of setting a timeout of 90 seconds:

DriverManager.setLoginTimeout (90) ;

72

Using JDBC with Java Applications and Applets

The setLoginTimeout() method accepts a single integer value representing the
maximum timeout in seconds for a connection attempt. If you need to obtain
the current timeout setting, use the getLoginTimeout() method. If you use this
method without setting the timeout, a value of 0 will be returned, indicating that
the system default timeout of 30 seconds should be used.

Connection Management Methods

The meat of the DriverManager object is found in the connection methods. A
method called getConnection() is overloaded three times to provide numerous
ways of supplying arguments to the DriverManager. The signatures for the
methods are as follows:

Connection getConnection(String URL) ;
Connection getConnection(String URL, Properties info);
Connection getConnection(String URL, String user, String password) ;

In all three methods, the primary connection information is found in the first
parameter of type URL (which we discuss in the next section). The first over-
loaded method assumes that all of the information for the connection will be
passed in the URL. The second method gets connection options from the Prop-
erties parameter. The third method obtains connection information from the
URL, but pulls the username and password for the database connection from
the method parameters.

Using URL Options in Connector/J

In all of the getConnection() methods, the URL parameter is responsible for
providing the DriverManager with information about the type and location of
the database with which a connection should be established. From a standards
perspective, a URL (Uniform Resource Locator) provides a common way of
locating resources found on the Internet. More than likely, you use HTTP URLs
every day. A lot of information is transferred in URLSs, and that information can
be used for Web pages as well as database locations. The general format of a
URL is

<protocols>:<subprotocols:<subname>

In a URL for a Web page, the protocol is HTTP and there is no subprotocol or
subname. In the JDBC world, the protocol is defined as jdbc. The <subproto-
col> is typically the name of the driver this particular connection URL needs to
use, and the <subname> is a string representing connection information, such
as the source of the database. The Connector/J driver requires that the <sub-
protocol> be defined as mysql. So our URL looks like this:

jdbc:mysql : <subname>

Hello World 73

The <subname> is a little more complex because it consists of up to three dif-
ferent components. The general format of the <subname> is

//<host>[:<port>] [/<databaseName>]

Notice the use of the double slashes just as with an HTTP URL. The <host>
component is the domain name or IP address of the server hosting the MySQL
database application. The <host> can be followed by a colon and a port number
where the database application accepts connections. The default port in
MySQL is 3306; the Connector/J driver will also default to port 3306 if one is not
found in the <subname>. Finally, the database the driver should begin using
when a connection is first made can be added to the <subname>. Here are a
few examples:

jdbc:mysgl://localhost

jdbc:mysqgl://localhost/accounts

jdbc:mysql://192.156.44.3/db_dev

jdbc:mysqgl://database.company.com/prod
jdbc:mysqgl://database.company.com:4533 /prod

In each of the sample URLSs, the JDBC driver will be able to determine which
host currently is running a MySQL database application, what port to commu-
nicate through to the database system, and the initial database.

In addition to specifying the initial database that the application should use for
the current connection, the Connector/J driver allows properties to be
appended to the driver string. For example, we can specify the username and
password to be used with the connection:

jdbc:mysqgl://192.156.44.3/db_dev?user=newuser&password=newpassword

The properties are appended to the driver string using the ? and & delimiters.
The first property must use the ? delimiter, and all others must use &. Connec-
tor/J includes quite a few properties that can be specified on the connection
string, as shown in Table 5.1.

Table 5.1 Connection Properties

NAME DESCRIPTION DEFAULT
user The username for the connection. None
password The password for the user. None
autoReconnect Set to true if the connection

should automatically be reconnected. false
maxReconnects If autoReconnect=true, represents the 3

total reconnect attempts.

initialTimeout If autoReconnect=true, represents 2

the time to wait (in seconds)
between reconnect attempts.

74 Using JDBC with Java Applications and Applets

Table 5.1 Connection Properties (continued)
NAME DESCRIPTION DEFAULT
maxRows Limits the total number of rows
to be returned by a query. 0 (maximum)
useUnicode If true, the server will use Unicode true
when returning strings; otherwise,
the server attempts to use the
character set that is being used
on the server.
characterEncoding If useUnicode=true, specifies the None
encoding to be used.
relaxAutoCommit If relaxAutoCommit=true, then the false
server allows transaction calls even
if the server doesn't support transactions.
capitalizeTypeNames If set to true, type names will be false
capitalized in DatabaseMetaData results.
profileSql If set to true, queries and timings will false
be dumped to STDERR.
socketTimeout If > 0 in milliseconds, the driver will 0
drop the connection when the timeout
expires and return the SQLState
error of 08S01.
StrictFloatingPoint If set to true, the driver will compensate false

for floating float rounding errors in the server.

As you can see, there is quite a bit of information that can be conveyed to the
Driver and used for queries to the database.

Using Properties with the Connection

One of the getConnection() methods exposed by the DriverManager allows the
use of a Properties object to pass information to the DriverManager. All of the
connection parameters shown in Table 5.1 can be placed in a Java Properties
object. For example:

Properties prop = new Properties() ;
prop.setProperty ("user", "newuser") ;
prop.setProperty ("password", "newpass");
myConnection = getConnection (

"jdbc:mysqgl://localhost/accounts", prop);

In this code, a Properties object is instantiated and assigned to the prop vari-
able. Using the setProperty() method, the user and password properties are set

Hello World 75

to values appropriate for the connection. After all of the properties are set, the
object is used in a call to create a connection to the database.

Handling Errors

When dealing with connections to external sources, you must know how to
handle errors that might occur. Both the JDBC driver and MySQL provide
numerous types of errors. As you will see throughout our example program,
try/catch blocks are provided to capture SQLException exceptions that are
thrown by the Connector/J driver. When a SQLException exception is thrown,
a call is made to the displaySQLErrors() method defined as a private method
within our object. That method is shown here:

private void displaySQLErrors (SQLException e) {

System.out.println("SQLException: " + e.getMessage());
System.out.println("SQLState: " + e.getSQLState());
System.out .println("VendorError: " + e.getErrorCode()) ;

}

Like Connector/J, JDBC drivers implement three different specification-
defined pieces of error information. These are the exception itself, the SQL-
State, and a vendor error code. Our method outputs the values of these three
components if an error occurs when we're trying to accomplish some JDBC
task. For example, if we define a host address for our MySQL database system
that doesn't exist, the following is displayed on the console:

Unable to connect to host
08501
0

In a production system, we probably want to log the error to an error file and
attempt to recover from the error. This might include attempting to connect to
another database.

Executing Queries Through Statement Objects

At this point in our code, we have pulled the Connector/J JDBC driver into our
application and created a connection to the database. The example code in List-
ing 5.1 makes a call to an object method called executeSQL(), where the work
to pull results from the database occurs. Within this method, the code builds a
SQL statement object, executes the SQL, and displays the results.

Building a Statement Object

The first step in getting data from the MySQL database is to build a Statement
object. The Statement object is designed to be an intermediary between the
database connection and the results found from executing some SQL. When a

76

Using JDBC with Java Applications and Applets

Statement object executes a query, it returns a ResultSet object. The default
configuration for the Statement object is to return a single ResultSet. If the
application needs to work with two different results at the same time, multiple
Statement objects will need to be instantiated. As you can see from the API doc-
umentation in Appendix B “Databases and Tables”, the Statement object has
quite a few methods associated with it. Throughout this chapter, we cover most
of those methods and how they relate to the MySQL database.

The Statement object to be used in our example code is created from the Con-
nection object using the method createStatement(), as shown here:

Statement statement = connection.createStatement () ;

When calling the createStatement() object, you must enclose it within a
try/catch block and capture any SQLException exceptions. The Connection
object contains three different variations of the createStatement() method:

m Statement createStatement()—Instantiates a Statement object to be
used for sending queries to the database server.

m Statement createStatement(int resultSetType, int resultSet
Concurrency)—Instantiates a Statement object to be used for sending
queries to the database server using the provided type and concurrency.

m Statement createStatement(int resultSetType, int resultSetCon-
currency, int resultSetHoldabilitiy)—Instantiates a Statement object to
be used for sending queries to the database server using the provided type,
concurrency, and holdability.

Three parameters are set for ResultSets when a Statement object is created.
These are listed below, and we cover them in more detail when we discuss
ResultSet objects:

m ResultSetType—The default is TYPE_SCROLL_INSENSITIVE; the possible
values are
TYPE_FORWARD_ONLY—The ResultSet cursor moves forward.

TYPE_SCROLL_INSENSITIVE—The cursor may scroll in any direc-
tion and is not sensitive to changes.

TYPE_SCROLL_SENSITIVE—The cursor may scroll in any direction
and is sensitive to changes.

m ResultSetConcurrency—This parameter determines whether the ResultSet
may be updated in place and the updates automatically applied to the data-
base. The default is CONCUR_READ_ONLY; it is the only option supported
by Connector/J.

Hello World 77

m ResultSetHoldability—This parameter is not implemented in Connector/J’s
implementation of createStatement().

When you're using the createStatement() methods, you include the parameters
when you're creating a ResultSet or use the defaults as appropriate. In most
cases, you use createStatement() without any parameters.

Executing SQL

Now that we have a Statement object, it’s time to execute the SQL statements
designed to return results for use in our application. The Statement object
includes several types of query methods, as shown in Appendix B. In this sec-
tion, we cover the method executeQuery(), which is designed to execute SQL
that will return a result. This means the method expects to execute a SELECT

query.

In our example code, the following line sets off the process of retrieving results
from the database:

ResultSet rs = statement.executeQuery ("SELECT * FROM acc_acc");

There are a few things you should note about this code. The first is that the SQL
query statement is provided to the executeQuery() method as a String. The
object passes the query to the database, which in turn executes it. Connector/J
doesn’t, and shouldn’t, make any type of determination on the validity of the
SQL being passed by the application. If the database is unable to execute the
SQL, a SQLException exception will be thrown. If the command is successful,
the executeQuery() method returns a ResultSet object containing the rows
from the database.

Ultimately, three outcomes can occur when the executeQuery() method exe-
cutes. The first is an exception. An exception can occur for many reasons,
among them are the following:

m The connection is no longer valid to the database server.
m The SQL has a syntax error in it.

m The currently logged-in user doesn’t have permission to the database table
used in the SQL.

You need to wrap your executeQuery() in a try/catch block, but it will be a
design issue as to which errors you attempt to recover from and which allow
the application to fail. There are some database operation errors that you
recover from by changing the nature of the operation—you might be able to
connect to a secondary database, or limit the results. Other errors may be cata-
strophic, like being unable to update the database. The second outcome is a
ResultSet with results in it. This is the most favorable outcome. The third

78 Using JDBC with Java Applications and Applets

outcome also produces a ResultSet, but instead the set is empty, which indi-
cates that the query didn’t produce any rows from the database.

Displaying Results

The example code takes the ResultSet produced by the execution of our query
string and displays the first column of each row. As you see in the next section,
the ResultSet object includes a host of methods for manipulating the rows and
columns it currently stores.

Using the ResultSet Object

The ResultSet object is the primary storage mechanism for the rows returned
from a query on the MySQL database. It is imperative that you have a full under-
standing of how the object works and how you get our data out of it. Concep-
tually, the ResultSet object looks like an adjustable two-dimensional array, as
you can see in Figure 5.2.

. acc_id username password
Internal pointer
1034033 jimmy hispassw
1034035 jdoe does

Figure 5.2 The ResultSet object.

As shown in Figure 5.2, the ResultSet object consists of rows containing data
based on the information returned from the database query. The columns of the
object are the fields from the database as specified in the query. If the query
uses a * in the SELECT, then all of the columns from the database will be rep-
resented in the ResultSet. If only a few of the columns are listed in the SELECT,
then only those columns will appear in the set.

The ResultSet uses an internal cursor to keep track of what row data should be
returned when the application requests data. The default behavior for a Result-
Set is to maintain read-only data and allow the internal cursor to move forward
through the rows. If the data needs to be used a second time, the cursor will
need to be moved to the beginning. When a ResultSet object is first instantiated
and filled, the internal cursor is set to a position just before the first row.

A large number of getter methods are available for retrieving data from the
ResultSet object. These methods pull data from a specific row/column cell and
attempt to convert the data to a Java data type as defined by the getter method.
See Chapter 7, “MySQL Type Mapping,” for a full discussion on mapping
between MySQL, Connector/J, and Java.

Using the ResultSet Object

Determining the Cursor Position

79

As we mentioned earlier, when a ResultSet is first instantiated, the internal cur-
sor is positioned just before the first row in the set. You have four methods for
monitoring where the cursor is in the set. To determine if it is sitting before the
first row, use the method isBeforeFirst(); for example:

ResultSet rs = statement.executeQuery ("SELECT * FROM acc_acc") ;
boolean whereIsIt = rs.isBeforeFirst ()

The isBeforeFirst() method returns a value of true if the internal cursor is sit-
ting before the first row. In our code example, the value returned will be true.
The complement to this method is isAfterLast(). When the cursor has been
moved beyond all of the rows in the set, the isAfterLast() method returns a
value of true.

We can also tell whether the internal cursor has been moved to either the first
or the last row of the object. The isFirst() method will return true if the cursor
is sitting at the first row, and isLast() returns true if the cursor is sitting on the
last row.

Finally, you can use the getRow() method to return the current row number
from the ResultSet. If you execute the getRow() method just after getting the
ResultSet from the executeQuery() method, the value returned will be 0. Thus,
the first actual data row in a ResultSet has a value of 1. This is something to
remember when using the methods in the next section to move around the
object.

Moving the Cursor

Once you know where the cursor is currently pointing within the set, you can
move it anywhere you like. First, let’s look at two methods that allow you to
move to a specific location within the ResultSet. The first method is based on
counting from an absolute position from either the beginning or the end of the
TOWS:

boolean absolute(int rows)

The absolute() method moves the internal cursor to a specific row in the
ResultSet. Thus, the method called rs.absolute(2) moves to the second row in
the object. If a value is entered that is outside the bounds of the row count in
the ResultSet, a SQLException exception will be thrown. To the method, a pos-
itive value indicates that it should count from the beginning of the rows; a neg-
ative value indicates that it should count from the end of the rows.

The second method counts based on the current cursor position:

boolean relative (int rows)

80 Using JDBC with Java Applications and Applets

With the relative() method, the system moves the cursor using the current row
as a pivot point. A positive parameter moves the internal cursor X number of
rows from the current position. A negative parameter moves the internal cursor
X number of rows back from the current position. If a value of 0 is passed to the
method, the cursor will not move.

As you might have guessed, using the method absolute(1) will move the cursor
to the first row and the method absolute(-1) will move the cursor to the last
row. Two methods for doing the same thing are first() and last(). These methods
will move the cursor to the first and last rows in the ResultSet, respectively.

It’s even possible to move the cursor before the first row as well as after the last
row. The beforeFirst() method moves the internal cursor to row 0, which is just
before the first row. The method afterLast() moves the cursor to a position just
after the last row.

In most cases, though, you probably want to move through the ResultSet one
row at a time. Just as we did in our example code in Listing 5.1, the next()
method moves the cursor one row ahead at a time. Since the internal cursor
starts before the first row, the next() method should be called before any
processor starts on the ResultSet. Note that a default ResultSet is a forward-
only data type; therefore, only the next() method should be valid. However,
Connector/J has implemented the previous() method to work on any ResultSet
object. In fact, there is even a prev() method defined in Connector/J for moving
the cursor backward.

In the cases of first(), last(), next(), and previous(), the methods all return a
Boolean value indicating whether the command was successful. For first() and
last(), the methods return false only when the ResultSet object is empty and
therefore no first or last row exists. The methods next(), previous(), and Con-
nector/J’s prev() return false when there are no longer any valid rows left in the
ResultSet. For example, next() returns true until the internal cursor points to
the position after the last row.

As you might have noticed, there is no method for determining the size of the
ResultSet. We must rely on the Boolean values returned by the methods that
move the internal cursor. There is a way to get the total size of a result from the
database using a query, but it’s a little more complex than the current topics we
are discussing. We tackle that one in the next chapter.

Getter Methods

Once the cursor has been set on a particular row, the contents of each column
can be obtained. In our example code, we pull the first column—the column
starting at 1—using the code

System.out.println(rs.getString (1)) ;

Using the ResultSet Object 81

This code tells the ResultSet to return (as a String) the value located in the first
column of the row the internal cursor is currently pointing to. Clearly, the cur-
sor must be pointing to a valid row; otherwise, the getter method will throw a
SQLException exception.

Looking at the ResultSet API, you will notice that there are quite a large number
of methods for obtaining values from the set. Each method is designed to pull a
specific type, such as integer or string. As an example, consider the getString()
methods:

String getString(int columnIndex) ;
String getString(String columnName) ;

Both of these methods pull a value from MySQL as a String. Even if the value in
MySQL is an integer, the integer will be coaxed into the String type. However,
what we really want to consider are the parameters to the method. Notice how
one of them is passing an integer and the other is a String. Let’s look at an exam-
ple of how the getters will work based on a real database. One of our sample
databases is called accounts, and it contains a table named acc_acc. This table
is defined as:

acc_id - int

username - varchar

acc _id - int

use;name - varchar

password - varchar

ts - timestamp

act_ts - timestamp

Using the getString() methods, we can pull the value contained in the username
column in two different ways. First, we pull the values using some example
SQL:

ResultSet rs = statement.executeQuery ("SELECT * FROM acc_acc");

Now we know that the variable rs is a ResultSet and that its internal pointer is
set at a position before the first row. To start pulling the data from the set, we
need to move the internal pointer to the next row:

rs.next () ;

With the internal pointer at the first row in the object, we can output the values
in the username column by using the getString() method. Two different meth-
ods are available, as shown here:

System.out.println(rs.getString (1)) ;
System.out.println(rs.getString("username")) ;

In the first output statement, the column number is used to let the ResultSet
object know which column the value should be pulled from. In the second

82 Using JDBC with Java Applications and Applets

output statement, we use the name of the column as defined in the query. There
is hidden meaning in that last sentence. In the query we used—SELECT *
FROM acc_acc—we asked for all of the columns from data in the acc_acc table
without any row restrictions. The * pulls all of the columns as well as the col-
umn names defined in the table. What this means to the ResultSet is that the val-
ues can be pulled using the names as declared in the table. Consider the
following code:

ResultSet rs = statement.executeQuery (
"SELECT acc_id, username FROM acc_acc");
rs.next () ;
System.out.println(rs.getString("username")) ;
System.out.println(rs.getString("password")) ;

The first output line pulls the username value from the ResultSet. We can again
use the name of the column as defined in the table since we've asked the data-
base to return both the acc_id and username from the table. The second output
line will produce a SQLException exception because no password column is
defined in the ResultSet. Finally, consider this code:

ResultSet rs = statement.executeQuery (

"SELECT acc_id, username "User" FROM acc_acc");
rs.next () ;
System.out.println(rs.getString("User")) ;
System.out.println(rs.getString("username")) ;

The first output line attempts to pull a column called User from the ResultSet.
It will be successful because our SELECT pulled the username column from the
table but renamed it as User (which is the column name used in the ResultSet).
The second output line in this code example produces a SQLException
exception.

Primitive Getters

Connector/J includes getter methods for all of the primitive types defined
within a MySQL table. In this section, we present examples for using each of the
methods.

Boolean

If you are interested in retrieving a column'’s value as a Java Boolean value, two
methods are available:

Boolean getBoolean (int columnIndex)
Boolean getBoolean (String columnName) ;

As we've discussed, the task of the getter method is to pull the value from a table
column and attempt to convert it to the intended Java type. For the getBoolean()

Using the ResultSet Object 83

methods, the outcome is a Boolean value. Consider a table defined as

mysgl> describe bool;

oS sSas L oSS =SS oSS SS L e el +
| Field | Type | Null | Key | Default | Extra |
e e L e e aialale PeESSSos +
id	int(11)	YES		NULL	
a	tinyint(1)	YES		NULL	
b	int(11)	YES		NULL	
¢	varchar(4)	YES		NULL	

| a | varchar(5) | YES | | NULL | |
t--mm--- tmmm e +------ +----- tmmmm - t--mm--- +

5 rows in set (0.00 sec)

Now see what happens if we put the following data into the table:

mysgl> select * from bool;

4ommm - 4ommm o 4ommm - 4omm - 4omm o +
| ia | a | b | e la
4mmm o 4mmm - 4mmm - 4mmm - 4mmm - +
| 1 1 0 | true | £

Hommmo - Hommo - Hom-m- - Hommm- - Hommm- - +

1 row in set (0.00 sec)
The data can be pulled with the following Java code:

ResultSet rs = statement.executeQuery (
"SELECT * FROM bool") ;

while (rs.next())
System.out.println(rs.getString("a") + " " +

rs.getBoolean("a")) ;
System.out.println(rs.getString("b") + " " +

rs.getBoolean ("b")) ;
System.out.println(rs.getString("c") + " " + r

rs.getBoolean("c")) ;
System.out.println(rs.getString("d") + " " +
rs.getBoolean ("d")) ;

1
Can you guess the output? Here it is:

1 true

0 false
true true
f false

As you can see, the values within the columns are properly translated into
Boolean values.

Byte
If the information in your database needs to be obtained as a raw byte or series
of bytes, then the following four methods will be helpful to you:

84

Using JDBC with Java Applications and Applets

Byte getByte (int columnIndex) ;

Byte getByte (String columnName) ;
byte[] getBytes (int columnIndex) ;
byte[] getBytes (String columnName) ;

In most cases, these methods will not throw an exception because nearly all
values in a MySQL column can be returned as bytes.

Double

If the value in a MySQL column is a double or a value that can be converted to
a double, then you can use the following two methods to pull that value:

double getDouble (int columnIndex) ;
double getDouble (String columnName) ;

If the value in the MySQL column cannot be converted to a double, a SQLEx-
ception exception will be thrown with an error value of S1009.

Float

Real or floating-point values can be returned from the MySQL database using
these methods:

float getFloat (int columnIndex) ;
float getFloat (String columnName) ;

If the value in the MySQL column cannot be converted to a float, a SQLExcep-
tion exception will be thrown with an error value of S1009. If the strictFloat-
ingPoint property supplied to the Connection object has a value of true, then
Connector/J attempts to compensate the returned value for rounding errors
that might have occurred in the server.

Int

The MySQL server can handle integer values, and you can use the following two
methods to pull their associated value from the database:

int getInt (int columnIndex) ;
int getInt (String columnName) ;

If the strictFloatingPoint property has been set to true in the Connection object,
the Connector/J driver attempts to handle rounding errors in the integer values
stored on the database. Values that cannot be converted to an integer will throw
the SQLException exception.

Long

Longs can be pulled from the database using these methods:

long getLong (int columnIndex) ;
long getLong (String columnName) ;

. MakingitReal QT

The Connector/J code attempts to build a long by reading the value from the
database as a double and applying a downcast to a long. If the value cannot be
converted to a long, the exception SQLException will be thrown.

Short

Since the MySQL database can store shorts, we need to be able to get them out
as well. The methods for doing this are

short getShort (int columnIndex) ;
short getShort (String columnName) ;

The short values will be obtained using a downcast from a double. The SQLEx-
ception exception will be thrown if the value returned cannot be converted to a
short.

Closing the Objects

In our example code, we have created many different objects, including Result-
Set, Statement, and Connection objects. When we have finished with each of
the pieces, they should be closed so that the JVM as well as the Connector/J dri-
ver knows that the memory the objects are occupying can be given back to the
system.

It is important that we close the objects in the reverse order in which they were
opened. This means the ResultSet objects should have their close() method
called before we call the Connection object’s close(). There will be times when
closing the objects in the wrong order can produce a SQLException exception.

With this in mind, a closed connection from Connector/J to the MySQL data-
base server can cause a SQLException to be thrown if any of the methods (such
as createStatement()) can be called against it. The Connection object includes
a method called isClosed(), which returns a value of true if the current Con-
nection object has lost its link to the database server. In these cases, the Con-
nection object needs to be reconnected with the database server before any
additional work can occur on the object.

Making It Real

Well, you may not have found our first example very exciting, so let’s expand
things a little and make them more useful and powerful, as well as add some
graphics. Next we create a GUI that will allow us to see all of the account num-
bers in our database table, select one, and then display the information associ-
ated with the account number on the same GUI. Later in the chapter, we expand

86 Using JDBC with Java Applications and Applets

the GUI to insert, delete, and update the database information through the GUIL
First, we have our initial code, shown in Listing 5.2.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.sqgl.*;
import java.util.*;

public class Accounts extends JFrame {

private JButton getAccountButton;
private JList accountNumberList;
private Connection connection;
private JTextField accountIDText,
usernameText,
passwordText,
tsText,
activeTSText;

public Accounts() {
try {
Class.forName ("com.mysqgl.jdbc.Driver") .newInstance () ;
} catch (Exception e) {
System.err.println("Unable to find and load driver");
System.exit (1) ;

private void buildGUI ()
Container ¢ = getContentPane () ;
c.setLayout (new FlowLayout ()) ;

//Do Account List
Vector v = new Vector () ;
try {
Statement statement = connection.createStatement () ;
ResultSet rs = statement.executeQuery ("SELECT acc_id FROM
acc_acc") ;

while (rs.next ()) {
v.addElement (rs.getString("acc_id")) ;
}
rs.close() ;
} catch (SQLException e) { }
accountNumberList = new JList (v) ;

Listing 5.2 Our GUI application. (continues)

Making It Real 87

accountNumberList.setVisibleRowCount (2) ;
JScrollPane accountNumberListScrollPane =
new JScrollPane (accountNumberList) ;

//Do Get Account Button
getAccountButton = new JButton ("Get Account") ;
getAccountButton.addActionListener (

new ActionListener () {
public void actionPerformed (ActionEvent e) {
try {
Statement statement = connection.createStatement () ;

ResultSet rs = statement.executeQuery (
"SELECT * FROM acc_acc WHERE aCC_id ="
+ accountNumberList.getSelectedvalue()) ;

if (rs.next()) {
accountIDText .setText (rs.getString("acc_id")) ;

7

usernameText .setText (rs.getString ("username")) ;
passwordText .setText (rs.getString ("password"))
tsText.setText (rs.getString("ts")) ;
activeTSText .setText (rs.getString("act_ts")) ;

}

} catch(SQLException ee) {}

1
)

JPanel first = new JPanel();
first.add (accountNumberListScrollPane) ;
first.add (getAccountButton) ;

accountIDText = new JTextField(15) ;
usernameText = new JTextField(15) ;
passwordText = new JTextField(15) ;
tsText = new JTextField(15) ;

activeTSText = new JTextField(15) ;

JPanel second = new JPanel () ;
second.setLayout (new GridLayout (5,1)) ;
second.add (account IDText) ;

second.add (usernameText) ;

second.add (passwordText) ;

second.add (tsText) ;

second.add (activeTSText) ;

c.add (first) ;

c.add (second) ;
setSize (200,200) ;

Listing 5.2 Our GUI application. (continues)

88 Using JDBC with Java Applications and Applets

show () ;

public void connectToDB () {

try {

connection = DriverManager.getConnection (
"jdbc:mysqgl://localhost/accounts") ;

} catch (SQLException e) {
System.out .println("Unable to connect to database");
System.exit (1) ;

}

}

private void displaySQLErrors (SQLException e) {

System.out .println ("SQLException: " + e.getMessage()) ;
System.out.println ("SQLState: " + e.getSQLState()) ;
System.out.println("VendorError: " + e.getErrorCode()) ;
}
private void init () {
connectToDB () ;

}

public static void main(String[] args) ({
Accounts accounts = new Accounts() ;

accounts.addWindowListener (
new WindowAdapter () {
public void windowClosing (WindowEvent e) {
System.exit (0) ;
1

1
)

accounts.init () ;
accounts.buildGUI () ;

Listing 5.2 Our GUI application. (continued)

The code in Listing 5.2 is designed to illustrate using MySQL and a Java GUI
application. Figure 5.3 shows what the GUI looks like when it is first executed.
We've broken down the code into a series of methods, which we discuss next.

Our Main Function

Just as in any Java application, our main function instantiates an object of our
class type. Notice that our class extends JFrame because we need to provide a
GUI with the application. When the object’s constructor is called, the Connec-

. MakingItReal QT

tor/J driver will be located and pulled into the application. Once the object has
been created, a windowClosing event is attached to exit the application when
the user clicks the window’s close button. Two methods are called on the
object. The first is init(), which builds a connection to the database, and the sec-
ond is buildGUI(), which handles the construction of the GUI presentation.

& e
1034055
1034033

[

Get Account

Figure 5.3 Our GUI when first executed.

The init() Method

The init() method is quite simple: It creates a Connection object and attempts
to communicate with the MySQL database server. If a connection is successful,
an object variable is instantiated to hold the Connection. A try/catch block is
used to grab any errors in the connection attempt and to exit the application
appropriately.

The buildGUI() Method

The vast majority of the work for the application occurs in the buildGUI()
method. In Figure 5.3 you see that we have several GUI components to build
and place on the GUI frame. The most important is the list in the upper-left cor-
ner, which holds all of the account numbers from our acc_acc table on the
MySQL database. A user will click one of these account numbers and click on
the Get Account button to pull all of the information for the one account and
display it in the text boxes on the screen. Our goal in this discussion isn’t to pro-
vide details on the use of Java GUI components but to describe how those com-
ponents interact with Connector/J to pull information from the database.

Building a JList with Account Numbers

Our GUI will contain a JList component, a JButton, and five JTextFields. First,
we create the JList with all of the account numbers currently in the acc_acc
database table. A JList requires a Model; to populate it we've chosen to use a
vector. In the buildGUI() method, the code begins by instantiating a new Vector
object. A try/catch block is entered, and SQL code executes a SELECT of just
the acc_id column from the acc_acc table. Next, a loop is used to pull each of

Using JDBC with Java Applications and Applets

the acc_id numbers from the ResultSet as a String object. The String is added to
the vector. The loop pulls each of the account numbers and places them in the
vector. Notice that the catch doesn’t do anything with a potential error. This will
be fixed in our next iteration of the code.

Once the vector has been populated, the JList component is created using the
vector. After the JList is created, the code puts a scroll pane around it so that
the user will be able to have scrollbars available to see all of the account num-
bers in the list.

The Get Account Button

After the JList component, the buildGUI() method creates the GUI's only but-
ton, called Get Account. The user will click this button after clicking on an
appropriate account number. The code begins by instantiating the button and
labeling it, and then moves to the action associated with it. In our code exam-
ple, we build the event processing code right into the button itself instead of
having the application implement the ActionListener interface.

When the user clicks on the Get Account button, its ActionListener() will fire.
We want the code to pick up the account number currently selected on the JList
control and use the value to pull all of the account information from the MySQL
database and place that information in the five JTextField controls.

To accomplish this, a try/catch block is coded with the database control within it.
A Statement object is instantiated from the Connection object, and the execute-
Query() method is called. The parameter to the executeQuery() method is the
SQL string that we want executed against the MySQL database. The full string is

ResultSet rs = statement.executeQuery (
"SELECT * FROM acc_acc WHERE acc_id = "
+ accountNumberList.getSelectedValue()) ;

As you can see from the string, we have a SELECT statement that will pull all
columns from the database where the acc_id is equal to the current selected
value on the JList control. If the query isn’t successful, the catch block is called,
but there is no error-handling at the moment. If the SQL was successful and
there is a result in the ResultSet object, each of the JTextField controls are pop-
ulated by pulling the database data as String objects using the getString() getter
methods.

Creating Text Fields with Account Information

Once the account list and Get Account button have been created, they are
added to a panel, which is added to the application frame. After that step, our
code creates five JTextField controls to hold the five column values from a row
in the acc_acc table. These controls are added to a second panel, which is also
added to the application frame.

Executing a Query with No Results

Once all of the controls have been created and attached to the application, the
frame is sized and displayed to the user. At this point, the user can select an
account number on the JList control and click on the Get Account button to dis-
play the information on the GUI. Figure 5.4 shows an example of what the out-

put will look like when this is performed.

[_x

1034055
1034033

e
=
-

o | (1034055
Get Account -
—————————— jdoe

Newpass
0000000000000
200301061 63740

Figure 5.4 Displaying a full record.

Executing a Query with No Results

Up to now, we have been concentrating on pulling information from the data-
base using a SELECT command. Connector/J, SQL, and MySQL also allow
information to be inserted and updated as needed. The operations of insert,
delete, and update are considered no-result queries because they don'’t return a
ResultSet object after being executed. For this reason, we don’t use the exe-
cuteQuery() method but instead use a method called executeUpdate(). The sig-

nature for the method is

int executeUpdate (String SQL) ;

The method accepts a single String parameter, which represents the query to be

executed. The query shouldn’t cause the database server to return a ResultSet,

so no SELECTs are allowed. As you can see, the method will return an integer
value after the query is performed. This integer represents the total number of

rows affected by the query.

The question arises, though, about the actual query statements that do not

return a ResultSet. There are quite a few; let’s look at the following ones:
m insert—Puts a new row into the database table.

delete—Removes a row from the database table.

update—Updates an existing row in the table.

drop table—Removes a complete table from the database.

create table—Builds a new table.

alter table—Changes aspects of the table.

92 Using JDBC with Java Applications and Applets

Let’s start with the insert query statement. As we already know, the insert com-
mand will allow a new row to be put into a database table. We want to expand
our GUI program to allow the user to place an account number, username, and
password in the appropriate text boxes and click a button to add the informa-
tion to the table. Listing 5.3 shows the new code. In addition to the insert but-
ton, we have expanded the code to put SQL errors into a JTextArea.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.sqgl.*;
import java.util.*;

public class Accounts extends JFrame {

private JButton getAccountButton,
insertAccountButton;
private JList accountNumberList;
private Connection connection;
private JTextField accountIDText,
usernameText,
passwordText,
tsText,
activeTSText;
private JTextArea errorText;

public Accounts() ({
try {
Class.forName ("com.mysqgl.jdbc.Driver") .newInstance () ;
} catch (Exception e) {
System.err.println("Unable to find and load driver");
System.exit (1) ;

private void loadAccounts() {
Vector v = new Vector() ;
try {
Statement statement = connection.createStatement () ;
ResultSet rs = statement.executeQuery (
"SELECT acc_id FROM acc_acc") ;

while (rs.next ()) {
v.addElement (rs.getString("acc_id")) ;

}

Listing 5.3 Our application for inserting a new row. (continues)

Executing a Query with No Results 93

rs.close() ;
} catch (SQLException e) ({
displaySQLErrors (e) ;

}

accountNumberList.setListData (v) ;

private void buildGUI () {
Container ¢ = getContentPane () ;
c.setLayout (new FlowLayout ()) ;
accountNumberList = new JList () ;
loadAccounts () ;
accountNumberList.setVisibleRowCount (2) ;
JScrollPane accountNumberListScrollPane =

new JScrollPane (accountNumberList) ;

//Do Get Account Button
getAccountButton = new JButton ("Get Account") ;
getAccountButton.addActionListener (

new ActionListener ()
public void actionPerformed (ActionEvent e) {
try {
Statement statement = connection.createStatement () ;

ResultSet rs = statement.executeQuery (
"SELECT * FROM acc_acc WHERE acc_id = "
+ accountNumberList.getSelectedvalue()) ;

if (rs.next()) {
accountIDText .setText (rs.getString("acc_id")) ;

7

usernameText .setText (rs.getString ("username")) ;
passwordText .setText (rs.getString ("password"))
tsText.setText (rs.getString("ts")) ;
activeTSText .setText (rs.getString("act_ts")) ;
}
} catch (SQLException selectException) {
displaySQLErrors (selectException) ;

1
)

//Do Insert Account Button
insertAccountButton = new JButton ("Insert Account") ;
insertAccountButton.addActionListener (

new ActionListener ()
public void actionPerformed (ActionEvent e) {
try {
Statement statement = connection.createStatement () ;

Listing 5.3 Our application for inserting a new row. (continues)

94 Using JDBC with Java Applications and Applets

int i = statement.executeUpdate ("INSERT INTO acc_acc VALUES (" +

accountIDText.getText () + ", " +

"t 4 usernameText.getText () + "', " +
nrmo 4+ passwordText.getText () + "', " +
IIOII 4E "I n +

"now ()) ") ;

errorText.append ("Inserted " + i + " rows successfully");
accountNumberList .removeAll () ;
loadAccounts () ;
} catch(SQLException insertException) {
displaySQLErrors (insertException) ;

}
Iy

JPanel first = new JPanel (new GridLayout (3,1));
first.add (accountNumberListScrollPane) ;
first.add (getAccountButton) ;

first.add (insertAccountButton) ;

accountIDText = new JTextField(15) ;
usernameText = new JTextField (15) ;
passwordText = new JTextField(15) ;
tsText = new JTextField(15) ;
activeTSText = new JTextField(15) ;
errorText = new JTextArea (5, 15);
errorText.setEditable (false) ;

JPanel second = new JPanel () ;
second.setLayout (new GridLayout (6,1)) ;
second.add (accountIDText) ;

second.add (usernameText) ;

(
second.add (passwordText) ;
second.add (tsText) ;

(

second.add (activeTSText) ;

JPanel third = new JPanel () ;
third.add (new JScrollPane (errorText)) ;

c.add (first) ;
c.add (second) ;
c.add (third) ;
setSize (500,500) ;
show () ;

Listing 5.3 Our application for inserting a new row. (continues)

Executing a Query with No Results 95

public void connectToDB () {
try {
connection = DriverManager.getConnection (
"jdbc:mysqgl://192.168.1.25/accounts
?user=spider&password=spider") ;
} catch (SQLException connectException) {
System.out.println("unable to connect to db") ;
System.exit (1) ;

private void displaySQLErrors (SQLException e) {

errorText.append ("SQLException: " + e.getMessage() + "\n");
errorText.append ("SQLState: " 4+ e.getSQLState() + "\n");
errorText .append ("VendorError: " + e.getErrorCode() + "\n");
}
private void init () {
connectToDB () ;

public static void main(String[] args) ({
Accounts accounts = new Accounts() ;

accounts.addWindowListener (
new WindowAdapter () ({
public void windowClosing (WindowEvent e) {

System.exit (0) ;

1
) 5

accounts.init () ;
accounts.buildGUI () ;

Listing 5.3 Our application for inserting a new row. (continued)

Figure 5.5 shows how our GUI should look when it is finished. There are a few
differences between the code in Listing 5.2 and that in Listing 5.3. Let’s take a
look.

96 Using JDBC with Java Applications and Applets

1ol x|

1034055
1034033

-
=
-

1034997
newgLy
hispassword

Get Account

Insert Account

Figure 5.5 Inserting a new row.

The Insert Account Button

By far the largest change between the two applications is the addition of an
Insert Account button. First, notice that the format of the button code looks a
great deal like that used for the Get Account button. The primary difference is
the database code placed in the ActionListener().

The code for inserting a new row into the database requires that the actual val-
ues be pulled from each of the top three JTextFields defined to hold the account
number, username, and password. The code will first enter a try/catch block
and obtain a Statement object. Next, the executeUpdate() method is called
using a query string like

INSERT INTO acc_acc VALUES (account number, username, password, 0, now)

The account number, username, and password are pulled from the appropriate
JTextFields using the getText() method. The return value from the execution of
the executeUpdate() method is saved and appended to a JTextArea control for
error messages. A value of 1 indicates that the insert was successful.

With the new record in the database, the account number JList is out-of-date
because it doesn’t contain the new account number just inserted. This is where
anew method called loadAccounts() comes into play. Once the total number of
inserts to the database is put into the JTextArea, a call is made to the
removeAll() method of the account number JList control. This wipes out all of
the current account numbers. Next, a call is made to loadAccounts(), which
queries the database for all current account numbers, places them in a vector,
and updates the account number JList control with all of the new accounts. We
could have chosen to simply insert the new account number into the account
number list, but there might have been updates to the table that didn’t come
through the GUI. By doing the query again, we pick up all new accounts.
Clearly, this is a design decision. If this GUI application is the only way new
accounts will be put into the database, then we could just add the account num-
ber to the JList and not run another query of the database.

Executing a Query with No Results 97

As Figure 5.6 shows, a new record was added to the database with an account
number of 1034997. The new account number now appears in the list because

of the re-query.

1034055
1034033

-
=
-

N e

1034997

Get Account
newgLy

hispassword
insert Account|

Inserted 1 rows successfully

Figure 5.6 Our insert was successful.

Error Notification

As we briefly mentioned in the previous section, this new version of the GUI
code includes a JTextArea designed to hold error or notification information
for the application. Figure 5.7 shows an example of how error information
might look like when placed in the text area. While any of the code can put text
into the text area using the append() method, all of the try/catch blocks will call
the displaySQLErrors() method to append the SQLException message, SQL-

State, and error code information:

private void displaySQLErrors (SQLException e) {

errorText.append ("SQLException: " + e.getMessage() + "\n");
errorText.append ("SQLState: " + e.getSQLState() + "\n");
errorText.append ("VendorError: " + e.getErrorCode() + "\n");
Il
1034033 =
=
1034055
1034997
Get Account

nEwEUY

1 hispassword
Insert Account

SGLException: Invalid argur
SGLState: 51009 e
endorError; 1062

Figure 5.7 Error processing.

Deleting Database Rows

Another task that can be accomplished using the updateQuery() method is
removing rows from the database. We can add the code in Listing 5.4 to the code
in Listing 5.3 to produce an application that can delete rows in the database.

98 Using JDBC with Java Applications and Applets

//Do Delete Account Button
deleteAccountButton = new JButton ("Delete Account") ;
deleteAccountButton.addActionListener (
new ActionListener () {
public void actionPerformed (ActionEvent e) {
try {
Statement statement = connection.createStatement () ;
int 1 = statement.executeUpdate (
"DELETE FROM acc_acc WHERE acc_id = "
+ accountNumberList.getSelectedValue()) ;
errorText.append("Deleted " + i + "
rows successfully");
accountNumberList .removeAll () ;
loadAccounts () ;
} catch(SQLException insertException) {
displaySQLErrors (insertException) ;

Listing 5.4 Our Delete Account button code.

The code for the Delete Account button is similar to the code for the Get
Account and Insert Account buttons. Most of the work is performed in the
ActionListener(). To delete an account, the user selects a value from the
account number list control and clicks on the Delete Account button. When this
occurs, the ActionListener() is activated. The first step is to create a Statement
object and call the executeUpdate() with the query to be executed. The query
looks like this:

DELETE FROM acc_acc WHERE acc_id = " +
accountNumberList.getSelectedValue ()

This query tells the database server to find the row or rows where the acc_id
column has a value selected from the account number list. The executeUp-
date() method executes the query and returns the total number of rows deleted
from the database. Figure 5.8 shows the output produced when a row is deleted
from the database. In addition to displaying the output, the code refreshes the
account number list from the database so that the deleted account number is no
longer shown. When the code in Listing 5.4 is added to the application, the first
JPanel’s GridLayout needs to be changed to 4,1 and the deleteAccountButton
needs to be added to the panel. Here’s the replacement code:

JPanel first = new JPanel (new GridLayout (4,1));
first.add (accountNumberListScrollPane) ;
first.add (getAccountButton) ;

Executing a Query with No Results 99

first.add (insertAccountButton) ;
first.add (deleteAccountButton) ;

[JRT=TEY
1034055 =
1034067
1034897
SEHRLL newUy Deleted 1 rows successiully
hispassword
Insert Account
noo0ooooooooao
20030106164517
Delete Account

Figure 5.8 We've deleted a row from the database.

Updating Database Rows

The last functionality that we want to add to our GUI application is the update.
Once data has been put into the database, it isn’t much use if it cannot be pulled
from the database or updated to reflect changes in the record. Listing 5.5 con-
tains the code for our update button; add it to the code in Listing 5.3.

//Do Update Account Button
updateAccountButton = new JButton ("Update Account") ;
updateAccountButton.addActionListener (

new ActionListener ()
public void actionPerformed (ActionEvent e)
try {
Statement statement = connection.createStatement () ;
int 1 = statement.executeUpdate ("UPDATE acc_acc " +
"SET username='" + usernameText.getText () + "', "
+ "password='" + passwordText.getText () + "', "

+ "act ts = now() "
+ "WHERE acc_id = "
+ accountNumberList.getSelectedvalue()) ;
errorText .append ("Updated " + i
+ " rows successfully");
accountNumberList.removeAll () ;
loadAccounts () ;
} catch(SQLException insertException) {
displaySQLErrors (insertException) ;

1
iy

Listing 5.5 The code for updating a record.

100 Using JDBC with Java Applications and Applets

As you can see in Listing 5.5, the code for the Delete Account button is similar
to the code for the other buttons. The real change is in the ActionListener().
The UPDATE query is a bit more complex from the standpoint of building the
actual query. Just as with the other buttons, the user clicks on an account num-
ber and clicks on the Get Account button to display the current record. Once
the current data has been displayed, the user can change the username and
password text. Although the user could change the account number, time-
stamp, and active timestamp, the code won’t pull the data for use in the
UPDATE statement.

The actual UPDATE statement is built as follows:

UPDATE acc_acc " +

"SET username='" + usernameText.getText () + "', "

+ "password='" + passwordText.getText () + "', "

+ "act_ts = now() "

+ "WHERE acc_id = "

+ accountNumberList.getSelectedValue()) ;
There are a few things to note in the update. First, the username and password
are updated based on the values in the appropriate JtextFields. The new values
are pulled with the getText() methods. The active timestamp is updated using
the MySQL now() function. Finally, we cannot have the code update just any
row in the database table. We need to make sure that the update occurs on the
record selected by the user. We ensure this by limiting the UPDATE with a
WHERE condition on the query. Figure 5.9 shows the original value when the
Get Account button is clicked; Figure 5.10 shows the updated record as well as
the text indicating that the update was successful.

=loix|
1034055
1034067

-
=
-

1034067

janed
janepassward
00ooooooooooon
200301061639149

Get Account

Insert Account

Delete Account

Update Account

Figure 5.9 Getting the current account.

Executing a Query with No Results 101

& =lof %]
1034055
1034067

[

1034067
janed Updated 1 rows successiully

Get Account

jane
0000000000000
200301061639189

Insert Account

Delete Account

Update Account

Figure 5.10 Replacing the password text.

CREATE TABLE

If you need to programmatically build a new table for your database, you'll
want to use the executeUpdate() method for the simple reason that a ResultSet
isn’t returned from the execution of the query. An example of using the method
to create a new table is

Statement statement = connection.createStatement () ;

int 1 = statement.executeUpdate (

"CREATE TABLE acc_new(new_id int, news varchar (64),
count int, primary key(new_id)");

As usual, the code will create a Statement object to execute the query. If the
query is successful in creating a new table, the value of i will be 1. If i isn’t 1,
then more than likely a SQLException exception was thrown, which means the
code will need to handle the exception.

DROP TABLE

Another query action that can be performed using the executeUpdate() method
is dropping a table. As we've seen, the data within a table can be removed using
the DELETE command. In fact, all the data can be removed using the following
command:

DELETE * FROM acc_acc;
This command removes all of the data in the specified table. However, the table
that once held the removed data still exists in the database. To remove a table

entirely from a database, you need to drop the table. The format of the com-
mand is

DROP TABLE <tablename>

102 Using JDBC with Java Applications and Applets

Listing 5.6 shows an applet that will obtain all of the tables for the accounts
database, display them in a list, and allow a selected table to be removed.

import java.awt.*;
import javax.swing.*;
import java.sqgl.*;
import java.awt.event.*;
import java.util.*;

public class Drop extends JApplet implements ActionListener(

private Connection connection;
private JList tableList;
private JButton dropButton;

public void init () {

Connection connection;

try {
Class.forName ("com.mysqgl.jdbc.Driver") .newInstance () ;
connection = DriverManager.getConnection (

"jdbc:mysqgl://192.168.1.25/accounts?user=spider&password=spider") ;

} catch (Exception connectException) {

connectException.printStackTrace () ; }

Container ¢ = getContentPane () ;

tableList = new JList () ;

loadTables () ;

c.add (new JScrollPane (tableList), BorderLayout.NORTH) ;

dropButton = new JButton ("Drop Table") ;
dropButton.addActionListener (this) ;
c.add (dropButton, BorderLayout.SOUTH) ;

public void actionPerformed (ActionEvent e) {
try {
Statement statement = connection.createStatement () ;
ResultSet rs = statement.executeQuery ("DROP TABLE "
+ tableList.getSelectedvalue()) ;
} catch (SQLException actionException) {}

private void loadTables () {
Vector v = new Vector() ;
try {

Statement statement = connection.createStatement () ;
ResultSet rs = statement.executeQuery ("SHOW TABLES") ;

Listing 5.6 An applet for dropping tables. (continues)

Executing a Query with No Results 103

}

}

while (rs.next ()) {
v.addElement (rs.getString (1)) ;
1
rs.close();
} catch (SQLException e) {}
tableList.setListData (v) ;

Listing 5.6 An applet for dropping tables. (continued)

As Figure 5.11 shows, the applet displays all of the tables in the current data-
base in a list and allows the user to select one of them. Once the user selects a
table, the user can click on the Drop Table button to remove the table from the
database entirely. Listing 5.6 illustrates how an applet can be used to
connect with a MySQL database and obtain information. Most of the code looks
just like what we used in the Java applications earlier in the chapter. An applet
doesn’t have a constructor but instead calls the init() method when it first gets
loaded.

One of the pitfalls of using an applet is the need for the Connector/J driver to be
installed and included in the classpath for the applet downloaded to the client.
Once the driver has been pulled into the JVM where the applet is executing, the
SHOW TABLES command is used to return a ResultSet to the applet. Each of
the values in the ResultSet are pulled and placed in a JList control.

Once the JList is filled with the tables in the current database, a Drop Table but-
ton is placed on the applet GUI as well. Notice that the applet class implements
the ActionListener interface. There is an actionPerformed() method in the
applet class for handling the click of the Drop Table button.

When the button is clicked, the currently selected table is obtained and added
to a DROP TABLE command, which is subsequently sent to the database server.

Disconnecting from the Database

Although not entirely necessary, it is a good idea to disconnect your application
from the database in order to allow MySQL to release a resource it is currently
using for its connection to your application.

When closing the database, ensure that all of the components currently using a
connection are closed first. This means that all ResultSet objects need to be
closed, then all Statement objects, and finally, you can close the connection to
the database with its close() method.

104 Using JDBC with Java Applications and Applets

,data‘booksmysql a = IEIIlI
J File Edit View Favorites 22
J‘-Backv-’ @.ﬁ| 2
J ‘ POPUP flocken ¥ (DYON/OFF
J Address |@ & 'gdataﬁ,books'l,myst @GD
J Links] Customize Links 22
E
acc_acc
acc_add
junk
| Drop Table |
=
E] App ,_ ,_ = My Computer >

Figure 5.11 Our drop table applet.

Advanced ResultSet Manipulation

One of the most important capabilities we can give our users is the power to
move through the data in a database. Users might not know what data they
need, or perhaps they don’t remember the exact account number. The code in
Listing 5.7 adds quite a bit of ResultSet navigation to our original application, as
well as the ability to go to a specific record and execute a freehand query.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.sql.*;
import java.util.*;

public class Accounts extends JFrame {
private JButton getAccountButton,
insertAccountButton,

deleteAccountButton,
updateAccountButton,

Listing 5.7 Our navigatable ResultSet. (continues)

Advanced ResultSet Manipulation 105

nextButton,
previousButton,
lastButton,
firstButton,
gotoButton,
freeQueryButton;
private JList accountNumberList;
private JTextField accountIDText,
usernameText,
passwordText,
tsText,
activeTSText,
gotoText,
freeQueryText;
private JTextArea errorText;

private Connection connection;
private Statement statement;
private ResultSet rs;

public Accounts () {
try {
Class.forName ("com.mysqgl.jdbc.Driver") .newInstance () ;
} catch (Exception e) {
System.err.println("Unable to find and load driver") ;
System.exit (1) ;

private void loadAccounts () {
Vector v = new Vector() ;
try {

rs = statement.executeQuery ("SELECT * FROM acc_acc") ;

while (rs.next ()) {
v.addElement (rs.getString("acc_id")) ;

}
} catch (SQLException e) ({
displaySQLErrors (e) ;

}

accountNumberList.setListData (v) ;

private void buildGUI () {
Container ¢ = getContentPane () ;
c.setLayout (new FlowLayout ()) ;

Listing 5.7 Our navigatable ResultSet. (continues)

106 Using JDBC with Java Applications and Applets

accountNumberList = new JList () ;
loadAccounts () ;
accountNumberList.setVisibleRowCount (2) ;
JScrollPane accountNumberListScrollPane =
new JScrollPane (accountNumberList) ;

gotoText = new JTextField(3);
freeQueryText = new JTextField(40) ;

//Do Get Account Button
getAccountButton = new JButton("Get Account") ;
getAccountButton.addActionListener (
new ActionListener()
public void actionPerformed (ActionEvent e) {

try {
rs.first () ;
while (rs.next())

if (rs.getString("acc_id") .equals (
accountNumberList.getSelectedValue()))
break;
}
if (!rs.isAfterLast()) {
accountIDText .setText (rs.getString("acc_id")) ;
usernameText .setText (rs.getString ("username")) ;
passwordText .setText (rs.getString ("password"))
tsText.setText (rs.getString("ts")) ;
activeTSText.setText (rs.getString("act_ts"));
}
} catch(SQLException selectException) {
displaySQLErrors (selectException) ;

7

1
) 5

//Do Insert Account Button
insertAccountButton = new JButton ("Insert Account") ;
insertAccountButton.addActionListener (
new ActionListener ()
public void actionPerformed (ActionEvent e)

try {
Statement statement = connection.createStatement () ;
int i = statement.executeUpdate ("INSERT INTO acc_acc
VALUES (" + accountIDText.getText () + ", " +
mrm 4+ usernameText.getText () + "', " +
"t 4 passwordText.getText () + "', " +
"o" + ", " + "now())");

Listing 5.7 Our navigatable ResultSet. (continues)

Advanced ResultSet Manipulation

errorText.append ("Inserted " + 1
+ " rows successfully");
accountNumberList .removeAll () ;
loadAccounts () ;
} catch(SQLException insertException) {
displaySQLErrors (insertException) ;

1
) 5

//Do Delete Account Button
deleteAccountButton = new JButton("Delete Account") ;
deleteAccountButton.addActionListener (
new ActionListener ()
public void actionPerformed (ActionEvent e)

try {
Statement statement = connection.createStatement () ;
int i = statement.executeUpdate (
"DELETE FROM acc_acc WHERE acc_id = " +

accountNumberList.getSelectedvValue()) ;
errorText.append ("Deleted " + 1
+ " rows successfully");
accountNumberList.removeAll () ;
loadAccounts () ;
} catch (SQLException insertException) {
displaySQLErrors (insertException) ;

1
) 5

//Do Update Account Button

updateAccountButton = new JButton ("Update Account") ;

updateAccountButton.addActionListener (

new ActionListener () {
public void actionPerformed (ActionEvent e) {
try {

Statement statement = connection.createStatement () ;
int i = statement.executeUpdate ("UPDATE acc_acc " +

"SET username='" + usernameText.getText () + "',6 "
+ "password='" + passwordText.getText() + "', "
+ "act_ts = now() " + "WHERE acc_id = "

+ accountNumberList.getSelectedValue()) ;
errorText .append ("Updated " + 1

+ " rows successfully");
accountNumberList .removeAll () ;

Listing 5.7 Our navigatable ResultSet. (continues)

107

108 Using JDBC with Java Applications and Applets

loadAccounts () ;
} catch (SQLException insertException) {
displaySQLErrors (insertException) ;

1
) 5

//Do Next Button
nextButton = new JButton(">") ;
nextButton.addActionListener (

new ActionListener () {
public void actionPerformed (ActionEvent e) {
try {
if (!rs.isLast()) ({
rs.next () ;

accountIDText .setText (rs.getString("acc_id")) ;
usernameText .setText (rs.getString ("username")) ;
passwordText .setText (rs.getString ("password"))
tsText.setText (rs.getString("ts")) ;

activeTSText.setText (rs.getString("act_ts")) ;

7

}

} catch(SQLException insertException) {
displaySQLErrors (insertException) ;

1
) 5

//Do Next Button

previousButton = new JButton("<");

previousButton.addActionListener (

new ActionListener ()
public void actionPerformed (ActionEvent e)
try {
if (!rs.isFirst()) {

rs.previous () ;
accountIDText .setText (rs.getString("acc_id")) ;
usernameText .setText (rs.getString ("username")) ;
passwordText .setText (rs.getString ("password"))
tsText.setText (rs.getString("ts")) ;
activeTSText .setText (rs.getString("act ts"));

7

}

} catch (SQLException insertException) {
displaySQLErrors (insertException) ;

Listing 5.7 Our navigatable ResultSet. (continues)

Advanced ResultSet Manipulation 109

//Do last Button
lastButton = new JButton(">|");
lastButton.addActionListener (

new ActionListener () {
public void actionPerformed (ActionEvent e) {
try {
rs.last () ;

accountIDText .setText (rs.getString("acc_id")) ;
usernameText .setText (rs.getString ("username")) ;
passwordText .setText (rs.getString ("password"))
tsText.setText (rs.getString("ts")) ;
activeTSText .setText (rs.getString("act ts"));

} catch (SQLException insertException) {
displaySQLErrors (insertException) ;

7

//Do first Button
firstButton = new JButton("|<");
firstButton.addActionListener (

new ActionListener () ({
public void actionPerformed (ActionEvent e) {
try {
rs.first () ;

accountIDText .setText (rs.getString("acc_id")) ;
usernameText .setText (rs.getString ("username")) ;
)

7

passwordText .setText (rs.getString ("password")
tsText.setText (rs.getString("ts")) ;
activeTSText .setText (rs.getString("act_ts")) ;
} catch(SQLException insertException) {
displaySQLErrors (insertException) ;

1
) 5

//Do gotoButton

gotoButton = new JButton ("Goto") ;

gotoButton.addActionListener (
new ActionListener ()

Listing 5.7 Our navigatable ResultSet. (continues)

110 Using JDBC with Java Applications and Applets

public void actionPerformed (ActionEvent e) {
try {
rs.absolute (Integer.parselnt (gotoText.getText ())) ;
accountIDText .setText (rs.getString("acc_id")) ;
usernameText .setText (rs.getString ("username")) ;
)

passwordText .setText (rs.getString ("password")) ;
tsText.setText (rs.getString("ts")) ;
activeTSText.setText (rs.getString("act_ts")) ;

} catch (SQLException insertException) {

displaySQLErrors (insertException) ;

1
) 5

//Do freeQueryButton
freeQueryButton = new JButton ("Execute Query") ;
freeQueryButton.addActionListener (
new ActionListener ()
public void actionPerformed (ActionEvent e) {
try {
if (freeQueryText.getText () .toUpperCase () .
indexOf ("SELECT") >= 0) {
rs = statement.executeQuery (
freeQueryText.getText ()) ;
if (rs.next()) {
accountIDText .setText (rs.getString("acc_id")) ;
usernameText .setText (rs.getString ("username")) ;
passwordText .setText (rs.getString ("password"))

7

(
tsText.setText (rs.getString("ts")) ;
activeTSText.setText (rs.getString("act _ts"));

}

} else {
int i1 = statement.executeUpdate (

freeQueryText.getText ()) ;

errorText.append ("Rows affected = " + 1i);
loadAccounts () ;

}

} catch (SQLException insertException) {
displaySQLErrors (insertException) ;

JPanel first = new JPanel (new GridLayout (5,1)) ;

Listing 5.7 Our navigatable ResultSet. (continues)

Advanced ResultSet Manipulation

first.add (accountNumberListScrollPane) ;
first.add (getAccountButton) ;

first.add (insertAccountButton) ;
first.add (deleteAccountButton) ;
first.add (updateAccountButton) ;

accountIDText = new JTextField(15) ;
usernameText = new JTextField (15) ;
passwordText = new JTextField(15) ;
tsText = new JTextField(15) ;
activeTSText = new JTextField(15) ;
errorText = new JTextArea (5, 15);
errorText.setEditable (false) ;

JPanel second = new JPanel () ;
second.setLayout (new GridLayout (6,1)) ;
second.add (account IDText) ;

second.add (usernameText) ;

second.add (passwordText) ;
tsText) ;

second.add (activeTSText) ;

(
(
second.add (
(
JPanel third = new JPanel () ;

third.add (new JScrollPane (errorText)) ;

JPanel fourth = new JPanel () ;
fourth.add (firstButton) ;
fourth.add (previousButton) ;
fourth.add (nextButton) ;
fourth.add (lastButton) ;
fourth.add (gotoText) ;
fourth.add (gotoButton) ;

JPanel fifth = new JPanel () ;
fifth.add (freeQueryText) ;

.add (first) ;

.add (second) ;

.add (third) ;

.add (fourth) ;

.add (fifth) ;

.add (freeQueryButton) ;
setSize (500,500) ;
show () ;

Q0 Qa0

Listing 5.7 Our navigatable ResultSet. (continues)

112 Using JDBC with Java Applications and Applets

public void connectToDB () {

try {

connection = DriverManager.getConnection (
"jdbc:mysqgl://localhost/accounts") ;

statement = connection.createStatement () ;
statement .setMaxRows (5) ;
statement.setFetchSize (2) ;

} catch (SQLException connectException) {
System.out .println (connectException.getMessage()) ;
System.out.println (connectException.getSQLState()) ;
System.out.println (connectException.getErrorCode()) ;

System.exit (1) ;

private void displaySQLErrors (SQLException e) {

errorText .append ("SQLException: " + e.getMessage() + "\n");
errorText .append ("SQLState: " + e.getSQLState() + "\n");
errorText.append ("VendorError: " + e.getErrorCode ()
a u\nu) ;
1
private void init () {
connectToDB() ;

public static void main(Stringl[] args) ({
Accounts accounts = new Accounts() ;

accounts.addWindowListener (
new WindowAdapter () {
public void windowClosing (WindowEvent e) {
System.exit (0) ;

1
)

accounts.init () ;
accounts.buildGUI () ;

Listing 5.7 Our navigatable ResultSet. (continued)

Advanced ResultSet Manipulation 113

Figure 5.12 shows an example of the new GUI for our application. At the bot-
tom of the GUI are four buttons for moving through records in the ResultSet
and displaying the appropriate text in the text fields. There is also a text
field/Goto button combination for entering an absolute row value and allowing
the user to click the Goto button and display the absolute row. Finally, there is
a text field for a freehand query and a related button to execute the query in the
line. Errors will be displayed in the error text area.

~loi |

1034055
1034033

-
|
-

1034033

dogj

password
0ooo0oooooooon
20030106163900

Get Account

Insert Account

Delete Account

Update Accourt

L < JL= J[=t | 1] eoto |
select® from acc_accwhere acc_id="1034033"

Execute Queny

Figure 5.12 The new GUI for our application.

In order to implement this GUI, we changed the loadAccounts() method so that
a global Statement and ResultSet object is created. When the loadAccounts()
method is called, instead of just pulling the account number from the database
we pull all of the fields. That way, we have access to the entire result within the
application. By keeping the ResultSet local to the object, we ensure that all of
the buttons will have access to it.

All of the buttons and text fields are created and added to the GUI using two
additional panels. We explain the code for each button next.

One Step Forward

When the user clicks on the forward button on the GUI, the system executes the
following code:

if (!rs.isLast()) {
rs.next () ;
accountIDText.setText (rs.getString("acc_id"));

114 Using JDBC with Java Applications and Applets

usernameText .setText (rs.getString ("username")) ;
passwordText .setText (rs.getString ("password")) ;
tsText.setText (rs.getString("ts")) ;
activeTSText.setText (rs.getString("act_ts"));

}

At this point, loadAccount() is called. This method obtains the next row in the
ResultSet and displays it in the text fields—we hope without any errors occur-
ring. To obtain the next row in the set, the next() method is called to move the
internal pointer forward. However, we don’t want to do this if the internal
pointer is currently sitting on the last row of the set. That is the reason we have
the if('rs.isLast()) condition in the code. We can move the internal pointer for-
ward as long as we aren’t on the last row. After the internal pointer is moved
forward, the information in the current row is displayed.

One Step Back

The back button should move the internal pointer to the previous row in the
ResultSet and display the current information. Instead of using isLast(), the
code uses a condition like if (lisFirst()) to make sure that the pointer isn't sit-
ting on the first row.

Fast-Forward to the End

If we want to move the end of the rows, we click on the > button. There isn’t
any checking involved here—just a call to rs.last() and code that displays the
values in the row. In a production system, though, we would need to check
whether the ResultSet object was empty.

Rewind to the Beginning

We can easily move to the beginning of the ResultSet by clicking on the I< but-
ton. The code will execute a rs.first() method and display the current row val-
ues.

Goto Record

We might also want to provide our users with the ability to jump to a specific
record. This is done with the absolute() method associated with the ResultSet
object. When the user clicks on the Goto button, the code pulls the current text
in the text field next to the button. The String value from the text field is con-
verted to an integer and used in the rs.absolute() method call. If an error
doesn’t occur, the values in the current row are displayed. All sorts of error

115

detection must take place in the code for this type of functionality so that the
user enters a proper value.

Freehand Query

Finally, we've added a large JTextField control that allows the user to type in a
freehand query statement and execute it by clicking on the Execute Query but-
ton. The current code is actually somewhat smart in that will try to determine
whether the query is a SELECT command or some other type. If the command
is a SELECT, the String in the JTextField is used in an executeQuery() method
call and a ResultSet object is returned. Otherwise, an executeUpdate() method
call is made and the total number of rows affected is displayed in the error text
area.

Obviously, giving a user this kind of power could backfire. Users could execute
the DROP TABLE acc_acc command and wipe out all of the account number
records. Or they could build new tables and all sorts of other “bad” things.

Batches

A new feature in the JDBC specification is the use of batches. The idea is to pro-
vide a mechanism where a large number of updates can be performed in a
group with the hopes of better performance from the driver and database
server. The Statement class offers the following methods that support batches:

m 0id clearBatch()—Clears the current batch queue.
m void addBatch(String SQL)—Adds the SQL string to the batch queue.

m int[] executeBatch()—Executes the batch queue.

Batching works by creating a Statement object and adding SQL to the batch
queue. In most cases, the batched queries will be inserts and updates. For
example:

Statement statement = connection.createStatement () ;
statement .addBatch ("UPDATE acc_acc SET acc_id = 10394443
where acc_id = 1034034");

statement .addBatch ("UPDATE acc_acc SET password = 'password'");
statement .addBatch ("INSERT INTO acc_acc VALUES (1034009,
'newuser', 'password', 0, now()");

Once all of the updates have been batched together, they can be executed with
a single statement:

int [] results = statement.executeBatch()

116 Using JDBC with Java Applications and Applets

The Connector/J driver will execute each of the updates in the batch regardless
of whether or not the previous update was successful. One of the keys to the
batch update is the integer array returned as a result. If all of the updates are
successful, the array will include the count of affected rows for each of the
updates in the same order they were added to the batch queue.

If the row value in the result array is 0 or greater, then the update was success-
fully executed. However, a value of 0 probably means the update didn’t do any-
thing to the database. A value of SUCCESS_NO_INFO means that the update
was successfully executed but that the server was unable to determine the
total number of rows affected. A value of EXECUTE_FAILED means that the
MySQL server rejected the query or that the query failed during execution.

In addition to the result array, the executeBatch() method will throw the
BatchUpdateException exception if any of the queries fail. The exception
won’t be thrown, though, until all of the batched queries have had a chance
to execute. Once the batch has been executed, it is a good idea to call state-
ment.clearBatch() before adding more updates to the queue.

Limiting Results

The Statement object contains several methods for controlling the total number of
results to be returned from a query against the database. Two of the methods are

setMaxRows ()
setFetchSize ()

The setMaxRows() method will specify the total number of rows that can be
returned from a single query against a database. The default value is 0, meaning
the driver should return as many rows as possible based on the supplied query.
If you don’t want the driver to return all of the possible rows at once, you might
use the setFetchSize() method to limit the number of rows the driver will pull
at a time. However, Connector/J doesn’t support the use of the setFetchSize()
method, nor does it support pulling subsets of data from the database. Connec-
tor/J will always retrieve all possible rows from the MySQL database when a
query is executed. This behavior is based on the mechanism of the MySQL data-
base server itself and isn’t limited by the driver.

The idea behind the fetch size is to allow an application to execute a query
against the database and process smaller subsets of data at a time. If there are
2 million rows in a result, the application might want to process only 1000 at a
time. The driver would theoretically pull the first 1000 rows and when the appli-
cation tried to access row 1001, the driver would automatically go back to the
database for the additional rows.

Database Warnings and Exceptions 117

When this feature of the specification comes up, the first question is usually
“Why would you be returning a 2 million row result in the first place?” At this
point, two options can be floated as alternatives. The first is to use the LIMIT
clause available in the SELECT command. Not only can you limit the number of
rows returned, but you can also specify an offset so you get rows 1 through
1000, then 1001 through 2000, and so on. The MySQL database server can opti-
mize the use of the LIMIT clause for better performance.

The second option is to build a small class that will keep track of the LIMIT
clause for you and just return ResultSets in the new ranges when a method like
getNextSet() is called.

Database Warnings and Exceptions

In all of the code we have created up to this point, we have included try/catch
blocks to handle any SQLException exceptions that are thrown by Connector/J
in response to a database error. When an exception is thrown, the developer
knows that a major error has occurred on the database, a connection, or a
resultset. Additional information can be gathered from the database and Connec-
tor/J components known as warnings. A warning is an error but is not substan-
tial enough to trigger an exception. An example would be the loss of precision
when pulling a value that is a MySQL type and converting it to a Java type.

Warnings are provided by the Connection, ResultSet, and Statement objects but
aren’t “thrown” automatically. The warnings are kept in a queue, and the queue
is cleared using this method:

void clearWarnings ()

If your application wants to keep track of or deal with all exceptions and warn-
ings, the clearWarnings() method should be used before any work is done with
any of the three object types mentioned previously. After the operation
occurs—such as ResultSet rs = statement.executeQuery();—the getWarnings()
method is called on the Statement object to see if any warnings were pro-
duced when the executeQuery() method was executed. The format of the
getWarnings() method is as follows:

public SQLWarning getWarnings ()

A return value of null indicates there are no more warnings. Once a SQLWarn-
ing method has been obtained, the following methods can be used to display its
contents. Notice that the methods are the same ones used in a SQLException.
The reason is the SQLWarning is a derived class from SQLException.

String getMessage () ;

String getSQLState() ;
int getErrorCode () ;

118 Using JDBC with Java Applications and Applets

Since SQLWarnings are chained together, use the following code to get the next
warning in the chain:

SQLWarning warning = statement.getWarnings() ;
SQLWarning nextWarning = warning.getNextWarning() ;

What's Next

In this chapter, we covered the basic Connector/J functionality. We showed you
how to use the various Connector/J methods from both Java applications and
applets. In the next chapter, we expand our Connector/J coverage to the more
complex functionality, such as using PreparedStatements, manipulating
time/date data types, and creating updatable ResultSets.

Achieving Advanced Connector/J
Functionality with Servlets

applications to access data from a database. Users of these applications typ-

ically access the program from their desktop. If you are designing a Web-
based application with Java, either you are developing an Enterprise JavaBeans
(EJB) system (which we discuss in Chapter 11, “EJBs with MySQL”), or you are
using a servlet or a Java ServerPage (JSP). In this chapter, we explore how to
access the database from both a servlet and a JSP page. To demonstrate how to
use a servlet, we develop an application for including fingerprint images into
the account application from the previous chapter. We also create a servlet and

In the previous chapter, we looked at using Connector/J, MySQL, and Java

associated HTML for viewing the images from the Web.

Servlets

Building servlets is one of the most powerful uses of Java in the Internet arena.
Servlets are basically server-side components that can be executed by browsing
to them, calling them in an HTML form, or including them in a JSP page. Since
the components execute on the server and are written in Java, they make great
candidates for database access. Listing 6.1 shows a generic servlet that has the
ability to access a MySQL database using the Connector/J driver. Unlike with an
applet, we are able to produce HTML for clients without requiring them to have

the driver on their local machine.

120 Achieving Advanced Connector/J Functionality with Servlets

import java.io.*;

import java.sqgl.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class JDBCServlet extends HttpServlet {

public void doGet (HttpServletRequest inRequest,
HttpServletResponse outResponse)
throws ServletException, IOException {

PrintWriter out = null;
Connection connection = null;
Statement statement;
ResultSet rs;

outResponse.setContentType ("text/html") ;
out = outResponse.getWriter() ;

try {
Class.forName ("com.mysqgl.jdbc.Driver") ;

connection = DriverManager.getConnection (
"jdbc:mysgl://localhost/acc_id") ;
statement = connection.createStatement () ;

rs = statement.executeQuery (
"SELECT acc_id FROM acc_acc") ;

out.println(

"<HTML><HEAD><TITLE>Account Numbers</TITLE></HEAD>") ;
out.println ("<BODY>") ;
out.println ("") ;

while (rs.next()) {
out.println("" + rs.getString("acc_ id"));

}

out.println ("") ;
Out.println("</BODY></HTML>");

rs.close () ;
statement.close() ;
connection.close() ;

}

catch (ClassNotFoundException e)

Listing 6.1 Our basic servlet/JDBC code. (continues)

- serviets BN}

}

}

out.println("Driver Error"); }
catch (SQLException e) {
out.println ("SQLException: " + e.getMessage()) ;

}

public void doPost (HttpServletRequest inRequest,

}

HttpServletResponse outResponse)
throws ServletException, IOException {
doGet (inRequest, outResponse) ;

Listing 6.1 Our basic servlet/JDBC code. (continued)

When building servlets, you have to follow a specific format defined in the Java
specification. The servlet class will extend HTTPServlet and more than likely
will have two methods, called doGet() and doPost(). These methods handle the
GET and POST HTTP message types. It is common practice to implement the
doGet() method and have doPost() call doGet() so they will be handling the
same data.

The servlet code within doGet() begins by setting the response type to
text/html, which lets the client browser know that the information passed from
the servlet should be rendered using an HTML processor. The servlet could
return a different type of format if needed.

Next we enter a try/catch block and start the process of connecting to the data-
base and obtaining data to return to the user. Since a servlet is a Java process,
we need Connector/J loaded so that we have the driver necessary for accessing
MySQL. The servlet uses the Class.forName() method to load the driver (just as
all of the applications did in the previous chapter). Notice however, that the
NewlInstance() method isn’t called on the driver once it’s loaded. The servlet
performs this operation itself.

After the driver is loaded, all of the code to obtain information from the data-
base is the same as we saw in the previous chapter. A Connection object is
instantiated from the DriverManager, a Statement object is created from the
Connection object, and finally, a ResultSet object is built when the execute-
Query() method is executed against the Statement object. When this process
completes, a loop is used to move through the ResultSet and builds an HTML
document for passing to the client browser. Lastly, all of the pieces in the
process are closed and the HTML is passed to the browser.

122 Achieving Advanced Connector/J Functionality with Servlets

The code used to obtain database results within the servlet is exactly the same as the
code used in a Java application or applet. Therefore, you'll find it easy to build Java
and MySQL applications.

DataSource Connections

When using Java servlets and eventually beans, you have an alternative way of
obtaining information about the connection to the MySQL database. The alter-
native is to use a DataSource and Java Naming and Directory Interface (JNDI).
JNDI provides a way to set specific physical database information on the appli-
cation server instead of placing the information directly in the application. The
application in Listing 6.1 obtains a connection to the database server with this
code:

Class.forName ("com.mysqgl.jdbc.Driver™") ;

connection = DriverManager.getConnection (
"jdbc:mysqgl://localhost/acc_id") ;

statement = connection.createStatement () ;

As you can see, the application is very specific about the database to be
accessed. With JNDI, we place information about the database connection into
the application server’s configuration file. For example:

<resource-ref>
<res-ref-name>jdbc/AccountsDB</res-ref-name>
<res-type>javax.sqgl.DataSource</res-type>
<init-param driver-name="com.mysqgl.jdbc.Driver"/>
<init-param url="jdbc:mysqgl://192.168.1.25/accounts"/>
<init-param user="gspider"/>
<init-param password="spider"/>
<init-param max-connections="20"/>
<init-param max-idle-time="30"/>

</resource-ref>

This information begins with the name of the resource, jdbc/AccountsDB; the
class to use when the resource is needed, DataSource; the driver name; the URL
for locating the database; and then some information about the parameters to
be passed to the driver when it is instantiated. To obtain this connection infor-
mation from an application, replace the previous connection statements with
the following:

Context ctx = new InitialContext () ;

DataSource ds = (DataSource)ctx.lookup ("java:comp/env/jdbc/AccountsDB") ;
connection = ds.getConnection() ;

123

This code begins by getting the configuration context surrounding this applica-
tion. Next, the resource reference name is looked up in the context. Finally, a
connection is instantiated from the DataSource object returned from the con-
text lookup. At this point, all the code to obtain Statement objects and execute
queries is the same.

Execution Environment

So how do you actually execute the servlet code? You will need to have an
application server available on which you will put the servlet source code.
Numerous servers are available, including Resin, Tomcat, and BOSS, among
others. In this chapter, we execute all of the examples using the Resin applica-
tion server.

Databases

This chapter goes beyond the basics of using Connector/J with MySQL. There-
fore, we need to add another database and table to our growing database sys-
tem. We assume that you have created the databases in the previous chapter.
Our new database is called identification, and you build it with this command:

create database identification;

The schema for a table called thumbnail is as follows:
thumb_id - int—A unique record indicator for the table.
acc_id - int—A foreign key for the acc_acc table.
pic — blob—Represents the binary data for a fingerprint.
sysobject — blob—A serialized Java object for a fingerprint.
ts — timestamp—The timestamp value; 0 indicates current.

acc_ts — timestamp—The last update time.

Build the table with this command:

create table thumbnail (

thumb id int not null,

acc_id int not null,

pic blob,

sysobject blob,

ts timestamp,

act_ts timestamp,

primary key(thumb id, acc_id, ts));

You can download the sample database code from the book’s Web site at
http://wiley.com/gradecki/mysqljava.

124 Achieving Advanced Connector/J Functionality with Servlets

PreparedStatements

As you know from reading the chapter introduction, one of the applications we
want to build is a servlet/HTML combination that will allow a remote user to
obtain information from the database for each of the accounts in our database.
Our code should display all of the account information from the acc_acc table
as well as from the acc_add table. Eventually, we plan to tie in the new thumb-
nail table we just created. In order to use the new application, users will need
to use a browser and browse to an initial HTML page, where they will be
prompted to enter an account number and click on a submit button. Then, a
servlet will be contacted and used to obtain results from the database and will
return the results to the client browser. Figure 6.1 shows what we are talking
about. After looking at Figure 6.1, scan through the code in Listings 6.2 and 6.3
to see an example of what the code looks like.

Application Server
Resin

Client
browser

Web server
seeaccounts.html

App server
Thumbnail.java

Figure 6.1 Our servlet/HTML.

<HTML>

<BODY >

<TITLE>See Account Information</TITLE>

Enter account number to view:

<form
action="http://localhost:8080/ca/SeeAccount"
method="post">
<input name="account"s>
<input type="submit" name="submit" value="submit">

</form>

</BODY>

</HTML>

Listing 6.2 Our example HTML.

PreparedStatements

import java.io.*;

import java.sqgl.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class SeeAccount extends HttpServlet ({

public void doGet (HttpServletRequest inRequest,
HttpServletResponse outResponse)
throws ServletException, IOException {

PrintWriter out = null;

Connection connection = null;
PreparedStatement statement = null;
ResultSet rs,

rs2;
try {
outResponse.setContentType ("text/html") ;
out = outResponse.getWriter() ;

Class.forName ("com.mysqgl.jdbc.Driver") ;
connection = DriverManager.getConnection (
"jdbc:mysqgl://localhost/accounts") ;

if (connection != null) {
if (inRequest.getParameter ("submit") .equals ("submit")) {
statement = connection.prepareStatement (
"SELECT * FROM acc_acc " +
"LEFT JOIN acc_add " +
"on acc_acc.acc_id = acc_add.acc_id " +
"WHERE acc_acc.acc_id = ? AND acc_acc.ts = 0");
if (statement != null) {
statement.setInt (1, Integer.parselnt (
inRequest .getParameter ("account"))) ;
rs = statement.executeQuery() ;

if (!rs.next()) {
out.println ("<HTML>No Account Found for # " +
inRequest .getParameter ("account") + "</HTML>") ;
} else {
out.println ("<HTML><HEAD><TITLE>Thumbnail
Identification Record</TITLE></HEAD>") ;
out.println ("<BODY>") ;
out.println ("Account Information:
") ;
out.println("<table>") ;
out.println ("<form method='UpdateAccount'

Listing 6.3 Our servlet example for PreparedStatements. (continues)

125

126 Achieving Advanced Connector/J Functionality with Servlets

method="'post'>") ;
out.println ("<tr><td>") ;
out.println ("Account: <input name='acc_ id'

value='" + rs.getString("acc_acc.acc_id") +
"' S
") ;

out.println("Name: <input name='username'
value='" + rs.getString("acc acc.username") +
"1 >
") ;

out.println ("Addressl: <input name='addressl'
value='" + rs.getString("acc add.addressl") +
"1 5
") ;

out.println ("Address2: <input name='address2'
value='" + rs.getString("acc_add.address2") +
"' S
") ;

out.println ("Address3: <input name='address3'
value='" + rs.getString("acc_add.address3") +
"' S>
") ;

out.println("City: <input name='city' value='" +

rs.getString("acc add.city") + "'>
");
out.println ("State: <input name='state' value='"
+ rs.getString("acc_add.state") + "'>
");
out.println("Zip: <input name='zip' value='" +
rs.getString("acc_add.zip") + "'>
");
out.println("<input type='submit' value='update'
name="'submit'>") ;
out.println ("</form>") ;
out.println("</td>") ;
out.println ("<td>thumbnail") ;
out.println("</td></tr>") ;
out.println("</table>") ;
out.println ("</BODY></HTML>") ;
1
} else {
out.println ("<HTML>Statement is NULL</HTML>") ;
1
} else {
//do update
statement = connection.prepareStatement (
"UPDATE accounts.acc_acc SET username = °?
WHERE accounts.acc_acc.acc_id = ?");
statement.setString(1l, inRequest.getParameter (
"username")) ;
statement.setInt (2, Integer.parselnt (
inRequest.getParameter ("acc_id"))) ;
int i = statement.executeUpdate () ;

statement = connection.prepareStatement ("UPDATE
accounts.acc_add SET addressl=?, address2=?, " +

Listing 6.3 Our servlet example for PreparedStatements. (continues)

PreparedStatements

"address3=?, city=?, state=?, zip=? WHERE
accounts.acc_add.acc_id = ?");

statement.setString(1l, inRequest.getParameter (
"addressl")) ;

statement.setString (2, inRequest.getParameter (
"address2")) ;

statement.setString (3, inRequest.getParameter (
"address3")) ;

statement.setString (4, inRequest.getParameter (

"city"));

statement.setString (5, inRequest.getParameter (
"state")) ;

statement.setString (6, inRequest.getParameter (
"zip")) ;

statement.setInt (7, Integer.parselnt (
inRequest .getParameter ("acc_id"))) ;

int j = statement.executeUpdate () ;

out.println ("<HTML>") ;

out.println("Update to acc _acc = " + 1 + "
");
out.println("Update to acc_add = " + j + "
");
out.println ("</HTML>") ;

}

} else {
out .println ("<HTML>Connection is NULL</HTML>") ;

}

catch (ClassNotFoundException e) ({
out.println("Driver Error");

}

catch (SQLException e) {
out.println ("<HTML>") ;
out.println ("SQLException: " + e.getMessage()) ;
out.println ("</HTML>") ;

1

catch (Exception e) ({
e.printStackTrace() ;

}

public void doPost (HttpServletRequest inRequest,
HttpServletResponse outResponse)
throws ServletException, IOException {
doGet (inRequest, outResponse) ;

Listing 6.3 Our servlet example for PreparedStatements. (continued)

127

128 Achieving Advanced Connector/J Functionality with Servlets

Our example code in Listing 6.2 shows the HTML that the client browser will ini-
tially connect with to see an account. The result of the HTML on the client browser
is shown in Figure 6.2. When the user puts an account number in the form input
line and clicks on the submit button, the servlet in Listing 6.3 is activated and the
information shown in Figure 6.3 is returned to the user. In addition to allowing the
user to see the information in the database, the code lets the user change the infor-
mation. After putting in new information using the edit lines displayed in Figure
6.3, the user clicks on the update button. The same servlet in Listing 6.3 is called,
and the different code is executed to update both the acc_acc and acc_add tables.
Figure 6.4 shows the output when the tables are successfully updated.

=0l x|

File Edit ‘iew Favorites Tools Help |

|
J $mBack -~ = - &) o | i) search °’|J ng". v (JON/OF
|
|

Address |@ ihdata\booksimysgl and javalsoftware\chapter 6seeaccounts. html j @GD
Links] Customize Links 48] Free Hotmail &7 Windaws 22

[~ |

Enter account number to view:

[1034055

<
|@ Daone l_ l_ |@. [y Compuker &

Figure 6.2 Our initial HTML Web page.

3 Thumbnail Identification Record - Microsoft Internet Explores ;Igllll
J File Edit Wiew Favorites Tools Help

J = Back » = - @ Zat | iQh5earch »|J 'Em:u w (JON/OFF
JAddress I@ http:/flocalhost: 8080/ calcriginalSee Account j G0
J Links & Customize Links & Free Hotmal &]Windows & Free ACL & Unlimited Internet >

-

Account Information:

Account: |1 034055
Matne: deDE

Address1: |4565 Some St

Address2: ISUitE 4

Address3: |null

City [Chicaga

State: |||-

T —
update |

|@ Done l_ l_ Local intranet

Figure 6.3 Information is returned from our database.

thurnbnail

RIE !

PreparedStatements 129

2 http:/ /localhost:8080/ca,/Origit See. =181
J File Edit ‘iew Favorites Tools Help |
| Bak - ”|J @ Earrbiink . ~ Dronioi
| Address |@] http:/flocalhost a080/caforiginal ¥ | @*Go
J Links &) Custamize Links & Free Hatmai >
Update to acc_acc=1 =
Update to acc_add=2
[~

&1 Done l_’_ E Local inkranet 7

Figure 6.4 The update was successful.

Connecting to the Database

Look at Figures 6.3 and 6.4 carefully, and you will notice that we need to get
information from both the acc_acc and acc_add tables in order to present the
necessary information on the return HTML page. Fortunately, both of those
tables are defined within the accounts database on our MySQL server. So we
will be connecting to the server and changing or USEing the accounts database.
The full connection code is found in two statements:

Class.forName ("com.mysqgl.jdbc.Driver") ;

connection = DriverManager.getConnection (
"jdbc:mysqgl://localhost/accounts") ;

Determining the Submit Type

After the connection to the database is made, we need to determine what the
user wants our servlet to be doing. As we mentioned previously, the servlet will
be able to display the information from a specific account as well as update the
information changed by the user. If users want to see account information, they
click on the submit button when the HTML from Listing 6.2 is displayed. Look-
ing back at that HTML, you see the following tag:

<input type="submit" name="submit" value="submit"s>
This tag will display the submit button, name it submit, and provide a value of

submit when it is clicked. Now let’s skip ahead in our servlet code and pull out
the following code:

out.println("<input type='submit' value='update' name='submit's>");
The servlet displays all of the account information within a form that allows the
user to change the information. At the bottom of the form is a submit button,

but this button displays a value of update when it is clicked. Our servlet can use
this information to determine what it is supposed to be doing.

The following line of code makes the determination:

if (inRequest.getParameter ("submit") .equals ("submit")) {

130 Achieving Advanced Connector/J Functionality with Servlets

After a connection to the database is made and the connection is valid, the
servlet executes this line of code. The parameter called submit relates to either
button displayed to the user: the first submit button for getting the account
information or the submit button for updating the information. The value of the
submit parameter is compared to the text “submit”. If a match is made, the code
after the IF statement is executed; otherwise, the code after an ELSE is
executed.

Displaying Data

The code just after the IF statement displayed in the previous section handles
all of the tasks necessary to display the account information to the user. The
code begins by creating a new type of statement called a PreparedStatement.
As you might have guessed, when we access the MySQL database for the
account information, we are going to limit the data returned using the account
number entered by the user. We need a WHERE clause like this:

WHERE acc_id = 1034055 and ts = 0

This WHERE clause will cause the database server to return information for
records only in which the acc_id is 1034055 and the ts field is 0. In the previous
chapter, we built this WHERE clause using code like this:

"WHERE acc_id = " + <somevariable> + " and ts = 0"

While this works, there will be cases later in this chapter where we want to
insert binary data into the query for updating. SQL, Connector/J, and MySQL all
support a Statement object called PreparedStatement. This statement gives us
the ability to use placeholders within the query and replace them with actual
values using statements that place the data into the query in the proper format.
For example, our WHERE clause could be written as follows:

"WHERE acc_id = ? and ts = 0"

The ? character is the placeholder and is counted as placeholder number 1.
Before showing you how to use the PreparedStatement, let’s create an object of
its type first. The code in our servlet is

statement = connection.prepareStatement (
"SELECT *
FROM acc_acc
LEFT JOIN acc_add
on acc_acc.acc_id = acc_add.acc_id
WHERE acc_acc.acc_id = ? AND acc_acc.ts = 0");

Notice that there is a join in this code; we ignore that fact until the “Joins” sec-
tion later in this chapter. A PreparedStatement is created using the Connection
object and a call to the method prepareStatement(String). Unlike with the

PreparedStatements 131

Statement object, we place our query into the call to prepareStatement using
the ? placeholder in all of the places we need to fill with data at a later point.
The query can contain any number of placeholders, and they are counted with
the leftmost placeholder having a value of 1.

Once the PreparedStatement has been allocated, it’s time to fill in the accounts
number. We accomplish this with the following code:

statement.setInt (1,
Integer.parselnt (inRequest.getParameter ("account"))) ;

The JDBC specification defines a large set of set<type> methods against a Pre-
paredStatement object to fill all of the placeholders. In the statement above, the
method fills the first placeholder with the integer value associated with the
account parameter returned from the <form> HTML found in Listing 6.2. Using
the placeholders means that we needn’t concern ourselves with creating a large
query string using smaller strings. In addition, we don’t need to worry about for-
matting the actual value being passed to the database server.

Once all of the parameters have been filled, the query is executed with the code

rs = statement.executeQuery() ;

Once the query returns the ResultSet, we need to build the HTML that will be
passed back to the client browser as a result of its initial request. Earlier in the
servlet code, a call was made to obtain a PrintWriter object:

out = outResponse.getWriter() ;

The PrintWriter object is directly associated with the Response object passed
back to the client browser. Anything that we write in the PrintWriter object will
be passed back to the browser. Since we have already told the system that the
response will be HTML, we need to put HTML tags into the object.

The first code we encounter after the ResultSet is obtained from our query is a
check to ensure that there are results from the query. The code looks like this:

if (!lrs.next())
out.println ("<HTML>No Account Found for # " +
inRequest.getParameter ("account") + "</HTML>") ;
} else {

Because we need to move to the next row in the ResultSet, we check the return
value of a call to rs.next(). If the command is successful, then we know there
was at least one result in the set (we don’t handle multiple rows in this example
code). Otherwise, the account wasn't in the database, so we return a small
HTML page to the client to let them know the account wasn’t found.

If the account was found, we start the process of building the HTML page found
in Figure 6.3. The HTML page consists of a little text and a <FORM> with the

132 Achieving Advanced Connector/J Functionality with Servlets

account information. Refer to Listing 6.3 for all of the HTML passed to the client
to build the page. All of the values returned from the ResultSet are obtained
with the familiar rs.getString() method and used to build the various tags nec-
essary for the client. Once the HTML is created, the page is automatically
returned to the client’s browser by the servlet. Once the page is displayed, the
user can review the information and possibly change it.

Updating Data

If the user finds information that is wrong for the displayed account, he or she
can make changes right in the Web form returned from the servlet. As Figure 6.3
shows, users can click on the update button when they have finished making
necessary changes. When the button is clicked, the action associated with the
form is triggered and our servlet is called again. This time, the condition that
determines which button was clicked evaluates to false and the ELSE code
executes.

The real power of PreparedStatement objects is found within the code that
updates the database. When you're updating the database, your first step is to
build the UPDATE query using a PreparedStatement. In our code there are two
updates: one to the acc_acc table and another to the acc_add table. The code to
update acc_acc is as follows:

statement = connection.prepareStatement (
"UPDATE acc_acc

SET username = ?

WHERE acc_acc.acc_id = ?");

statement.setString(1l, inRequest.getParameter ("username")) ;
statement.setInt (2, Integer.parselnt (
inRequest.getParameter ("acc_id")));

int i = statement.executeUpdate() ;

The code starts with building the actual PreparedStatement object and putting
the necessary placeholders into the query. As you can see, the UPDATE to
acc_acc includes two placeholders. The first is the username, and the second is
the account number we are updating. The setString(int, String) method pulls
the username value from the <form> parameter called username and replaces
the first placeholder with that value. The method replaces the second place-
holder with the account number passed from the form as well. Then, a call is
made to executeUpdate(). Our code records the return value from executeUp-
date() in a variable for display to the client browser.

PreparedStatements 133

Notice that our code calls executeQuery() when the PreparedStatement is using a
SELECT; executeUpdate() is called when the PreparedStatement is using INSERT,
UPDATE, or DELETE—just like when you're using a Statement object.

Here’s the code for updating acc_add:

statement = connection.prepareStatement (

"UPDATE acc_add

SET addressl=?, address2=?, address3=?,

city=?, state=?, zip=? WHERE acc_add.acc_id = ?");
statement.setString (1, inRequest.getParameter ("addressl")) ;
"address2")) ;
"address3")) ;

, inRequest.getParameter ("city")) ;

statement.setString

statement.setString (3, inRequest.getParameter

(
(
(
(

1 (
2, inRequest.getParameter (
3 (

statement.setString (4 (

statement.setString (5, inRequest.getParameter ("state"));
statement.setString (6, inRequest.getParameter ("zip")) ;
statement.setInt (7, Integer.parselnt (inRequest.getParameter ("acc_id")));

int j = statement.executeUpdate () ;

As you can see, this code is quite complex. It contains a total of seven place-
holders. (See how much easier it is to include placeholders and to replace them
accordingly compared with building a large string with "" and +.) We use set-
String() and setInt() methods to replace each of the values in the query with the
actual values pulled from the <form> parameters.

Finally, the query is executed and the update count returned. Both of the update
counts are displayed to users, letting them know the appropriate tables have
been updated. Here’s the code that accomplishes this:

out.println ("<HTML>") ;

out.println("Update to acc_acc = " + 1 + "
");

out.println("Update to acc_add = " + j + "
");
(

out.println("</HTML>") ;

Using Placeholders in a Loop

Another benefit of using placeholders and a PreparedStatement object is the abil-
ity to perform a large number of updates through a loop. For example, let’s
assume we have an array filled with the account numbers for a particular update.
Not all of the account numbers are represented in the array, so we cannot per-
form a mass update. Instead, we can use a loop and a PreparedStatement:

int updateCount = 0;
statement = connection.prepareStatement (

134 Achieving Advanced Connector/J Functionality with Servlets

"UPDATE acc_acc
SET password='null'
WHERE ts = 0 and acc_id = ?");

for (int i=0;i<accounts.length;i++) {
statement.setInt (accounts[i]) ;
updateCount += statement.executeUpdate() ;

}

This code contains a PreparedStatement with an UPDATE statement that sets
the password field to null. The UPDATE query uses a placeholder for the
account number in the WHERE clause. If we have just three accounts to
update, we wouldn’t need a loop or even a PreparedStatement. However, if our
account array holds 15,000 accounts, we have the perfect solution. Our code
loops through all of the accounts in the array, places them in the statement, and
executes it. When we are all done with the code, the updateCount variable
should be the same as accounts.length.

Using Placeholders in
PreparedStatement

The JDBC specification defines setter functions for replacing a placeholder in a
PreparedStatement. It defines functions for all of the data types stored in data-
base fields. The following is a list of those methods. (We note when a method is
not implemented by Connector/J.)

void setArray(int i, java.sql.Array anArray)—Not implemented; sets an
Array parameter.

void setBlob(int i, java.sql.Blob aBlob)—Sets a BLOB parameter.

void setCharacterStream(int parameterIndex, java.io.Reader
reader, int length)—If the database type is a LONGVARCHAR and Data is
Unicode, the amount of data will be very large, and using setCharacter-
Stream() allows it to be stored properly.

void setClob(int i, java.sql.Clob aClob)—Sets a CLOB parameter.

void setDate(int parameterIndex, java.sql.Date ADate, java.util.
Calendar Cal)—Sets a parameter to a java.sql.Date value.

void setNull(int parameterIndex, int sqlType, java.lang.String
Arg)—Sets a parameter to SQL NULL.

void setRef(int i, java.sql.Ref aRef)—Not implemented; sets a REF
parameter.

void setTime(int parameterIndex, java.sql.Time aTime, java.util.Cal-
endar Cal)—Sets a parameter to a java.sql.Time value.

PreparedStatements 135

void setAsciiStream(int parameterIndex, java.io.InputStream
aStream, int length)—If the database type is a LONGVARCHAR and the
data is ASCII, the amount of data will be very large, and using setCharacter-
Stream() allows it to be stored properly.

void setBigDecimal(int parameterIndex, java.math.BigDecimal
aBD)—Sets a parameter to a java.lang.BigDecimal.

void setBinaryStream(int parameterIndex, java.io.InputStream X,
int length)—If the database type is a LONGVARBINARY, the amount of
data will be very large, and using setBinaryStream() allows it to be stored
properly.

void setBoolean(int parameterIndex, boolean aBoolean)—Sets a
parameter to a Java Boolean value.

void setByte(int parameterIndex, byte aByte)—Sets a parameter to a
Java byte value.

void setBytes(int parameterIndex, byte[] aByteArray)—Sets a param-
eter to a Java array of bytes.

void setDate(int parameterIndex, java.sql.Date aDate)—Sets a
parameter to a java.sql.Date.

void setDouble(int parameterIndex, double aDouble)—Sets a param-
eter to a Java double value.

void setFloat(int parameterIndex, float aFloat)—Sets a parameter to
a Java float value.

void setInt(int parameterIndex, int anInt)—Sets a parameter to a Java
int value.

void setLong(int parameterIndex, long aL.ong)—Sets a parameter to a
Java long value.

void setNull(int parameterIndex, int sqlType)—Sets a parameter to
SQL NULL.

void setObject(int parameterIndex, java.lang.Object anObject, int
targetSqlType, int scale)—Sets the value of a parameter using an object.

void setObject(int parameterIndex, java.lang.Object anObject, int
targetSqlType)—Sets the value of a parameter using an object.

void setObject(int parameterIndex, java.lang.Object anObject)—
Sets the value of a parameter using an object.

void setShort(int parameterIndex, short aShort)—Sets a parameter to
a Java short value.

void setString(int parameterIndex, java.lang.String aString)