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Preface

The increasing availability of data in the current information society has led to
the need for valid tools for its modelling and analysis. Data mining and applied
statistical methods are the appropriate tools to extract knowledge from such data.
Data mining can be defined as the process of selection, exploration and modelling
of large databases in order to discover models and patterns that are unknown a
priori. It differs from applied statistics mainly in terms of its scope; whereas
applied statistics concerns the application of statistical methods to the data at
hand, data mining is a whole process of data extraction and analysis aimed at
the production of decision rules for specified business goals. In other words, data
mining is a business intelligence process.

Although data mining is a very important and growing topic, there is insuf-
ficient coverage of it in the literature, especially from a statistical viewpoint.
Most of the available books on data mining are either too technical and com-
puter science oriented or too applied and marketing driven. This book aims to
establish a bridge between data mining methods and applications in the fields of
business and industry by adopting a coherent and rigorous approach to statistical
modelling.

Not only does it describe the methods employed in data mining, typically com-
ing from the fields of machine learning and statistics, but it describes them in
relation to the business goals that have to be achieved, hence the word ‘applied’
in the title. The second part of the book is a set of case studies that compare the
methods of the first part in terms of their performance and usability. The first part
gives a broad coverage of all methods currently used for data mining and puts
them into a functional framework. Methods are classified as being essentially
computational (e.g. association rules, decision trees and neural networks) or sta-
tistical (e.g. regression models, generalised linear models and graphical models).
Furthermore, each method is classified in terms of the business intelligence goals
it can achieve, such as discovery of local patterns, classification and prediction.

The book is primarily aimed at advanced undergraduate and graduate students
of business management, computer science and statistics. The case studies give
guidance to professionals working in industry on projects involving large volumes
of data, such as in customer relationship management, web analysis, risk man-
agement and, more broadly, marketing and finance. No unnecessary formalisms
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and mathematical tools are introduced. Those who wish to know more should
consult the bibliography; specific pointers are given at the end of Chapters 2 to 6.

The book is the result of a learning process that began in 1989, when I
was a graduate student of statistics at the University of Minnesota. Since then
my research activity has always been focused on the interplay between computa-
tional and multivariate statistics. In 1998 I began building a group of data mining
statisticians and it has evolved into a data mining laboratory at the University
of Pavia. There I have had many opportunities to interact and learn from indus-
try experts and my own students working on data mining projects and doing
internships within the industry. Although it is not possible to name them all, I
thank them and hope they recognise their contribution in the book. A special
mention goes to the University of Pavia, in particular to the Faculty of Business
and Economics, where I have been working since 1993. It is a very stimulating
and open environment to do research and teaching.

I acknowledge Wiley for having proposed and encouraged this effort, in par-
ticular the statistics and mathematics editor and assistant editor, Sian Jones and
Rob Calver. I also thank Greg Ridgeway, who revised the final manuscript and
suggested several improvements. Finally, the most important acknowledgement
goes to my wife, Angela, who has constantly encouraged the development of my
research in this field. The book is dedicated to her and to my son Tommaso, born
on 24 May 2002, when I was revising the manuscript.

I hope people will enjoy reading the book and eventually use it in their work.
I will be very pleased to receive comments at giudici@unipv.it. I will consider
any suggestions for a subsequent edition.

Paolo Giudici
Pavia, 28 January 2003



CHAPTER 1

Introduction

Nowadays each individual and organisation – business, family or institution –
can access a large quantity of data and information about itself and its environ-
ment. This data has the potential to predict the evolution of interesting variables
or trends in the outside environment, but so far that potential has not been fully
exploited. This is particularly true in the business field, the subject of this book.
There are two main problems. Information is scattered within different archive
systems that are not connected with one another, producing an inefficient organ-
isation of the data. There is a lack of awareness about statistical tools and their
potential for information elaboration. This interferes with the production of effi-
cient and relevant data synthesis.

Two developments could help to overcome these problems. First, software and
hardware continually, offer more power at lower cost, allowing organisations to
collect and organise data in structures that give easier access and transfer. Second,
methodological research, particularly in the field of computing and statistics, has
recently led to the development of flexible and scalable procedures that can be
used to analyse large data stores. These two developments have meant that data
mining is rapidly spreading through many businesses as an important intelligence
tool for backing up decisions.

This chapter introduces the ideas behind data mining. It defines data mining
and compares it with related topics in statistics and computer science. It describes
the process of data mining and gives a brief introduction to data mining software.
The last part of the chapter outlines the organisation of the book and suggests
some further reading.

1.1 What is data mining?

To understand the term ‘data mining’ it is useful to look at the literal translation
of the word: to mine in English means to extract. The verb usually refers to min-
ing operations that extract from the Earth her hidden, precious resources. The
association of this word with data suggests an in-depth search to find additional
information which previously went unnoticed in the mass of data available. From
the viewpoint of scientific research, data mining is a relatively new discipline that
has developed mainly from studies carried out in other disciplines such as com-
puting, marketing, and statistics. Many of the methodologies used in data mining

Applied Data Mining. Paolo Giudici
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2 APPLIED DATA MINING

come from two branches of research, one developed in the machine learning
community and the other developed in the statistical community, particularly in
multivariate and computational statistics.

Machine learning is connected to computer science and artificial intelligence
and is concerned with finding relations and regularities in data that can be trans-
lated into general truths. The aim of machine learning is the reproduction of the
data-generating process, allowing analysts to generalise from the observed data to
new, unobserved cases. Rosenblatt (1962) introduced the first machine learning
model, called the perceptron. Following on from this, neural networks devel-
oped in the second half of the 1980s. During the same period, some researchers
perfected the theory of decision trees used mainly for dealing with problems of
classification. Statistics has always been about creating models for analysing data,
and now there is the possibility of using computers to do it. From the second half
of the 1980s, given the increasing importance of computational methods as the
basis for statistical analysis, there was also a parallel development of statistical
methods to analyse real multivariate applications. In the 1990s statisticians began
showing interest in machine learning methods as well, which led to important
developments in methodology.

Towards the end of the 1980s machine learning methods started to be used
beyond the fields of computing and artificial intelligence. In particular, they were
used in database marketing applications where the available databases were used
for elaborate and specific marketing campaigns. The term knowledge discovery
in databases (KDD) was coined to describe all those methods that aimed to
find relations and regularity among the observed data. Gradually the term KDD
was expanded to describe the whole process of extrapolating information from a
database, from the identification of the initial business aims to the application of
the decision rules. The term ‘data mining’ was used to describe the component
of the KDD process where the learning algorithms were applied to the data.

This terminology was first formally put forward by Usama Fayaad at the
First International Conference on Knowledge Discovery and Data Mining, held
in Montreal in 1995 and still considered one of the main conferences on this
topic. It was used to refer to a set of integrated analytical techniques divided into
several phases with the aim of extrapolating previously unknown knowledge from
massive sets of observed data that do not appear to have any obvious regularity
or important relationships. As the term ‘data mining’ slowly established itself, it
became a synonym for the whole process of extrapolating knowledge. This is the
meaning we shall use in this text. The previous definition omits one important
aspect – the ultimate aim of data mining. In data mining the aim is to obtain
results that can be measured in terms of their relevance for the owner of the
database – business advantage. Here is a more complete definition of data mining:

Data mining is the process of selection, exploration, and modelling of large quan-
tities of data to discover regularities or relations that are at first unknown with the
aim of obtaining clear and useful results for the owner of the database.

In a business context the utility of the result becomes a business result in
itself. Therefore what distinguishes data mining from statistical analysis is not
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so much the amount of data we analyse or the methods we use but that we
integrate what we know about the database, the means of analysis and the business
knowledge. To apply a data mining methodology means following an integrated
methodological process that involves translating the business needs into a problem
which has to be analysed, retrieving the database needed to carry out the analysis,
and applying a statistical technique implemented in a computer algorithm with the
final aim of achieving important results useful for taking a strategic decision. The
strategic decision will itself create new measurement needs and consequently new
business needs, setting off what has been called ‘the virtuous circle of knowledge’
induced by data mining (Berry and Linoff, 1997).

Data mining is not just about the use of a computer algorithm or a statistical
technique; it is a process of business intelligence that can be used together with
what is provided by information technology to support company decisions.

1.1.1 Data mining and computing

The emergence of data mining is closely connected to developments in computer
technology, particularly the evolution and organisation of databases, which have
recently made great leaps forward. I am now going to clarify a few terms.

Query and reporting tools are simple and very quick to use; they help us
explore business data at various levels. Query tools retrieve the information and
reporting tools present it clearly. They allow the results of analyses to be transmit-
ted across a client-server network, intranet or even on the internet. The networks
allow sharing, so that the data can be analysed by the most suitable platform.
This makes it possible to exploit the analytical potential of remote servers and
receive an analysis report on local PCs. A client-server network must be flexible
enough to satisfy all types of remote requests, from a simple reordering of data
to ad hoc queries using Structured Query Language (SQL) for extracting and
summarising data in the database.

Data retrieval, like data mining, extracts interesting data and information from
archives and databases. The difference is that, unlike data mining, the criteria for
extracting information are decided beforehand so they are exogenous from the
extraction itself. A classic example is a request from the marketing department of
a company to retrieve all the personal details of clients who have bought product
A and product B at least once in that order. This request may be based on the
idea that there is some connection between having bought A and B together at
least once but without any empirical evidence. The names obtained from this
exploration could then be the targets of the next publicity campaign. In this way
the success percentage (i.e. the customers who will actually buy the products
advertised compared to the total customers contacted) will definitely be much
higher than otherwise. Once again, without a preliminary statistical analysis of
the data, it is difficult to predict the success percentage and it is impossible to
establish whether having better information about the customers’ characteristics
would give improved results with a smaller campaign effort.

Data mining is different from data retrieval because it looks for relations and
associations between phenomena that are not known beforehand. It also allows
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the effectiveness of a decision to be judged on the data, which allows a rational
evaluation to be made, and on the objective data available. Do not confuse data
mining with methods used to create multidimensional reporting tools, e.g. online
analytical processing (OLAP). OLAP is usually a graphical instrument used to
highlight relations between the variables available following the logic of a two-
dimensional report. Unlike OLAP, data mining brings together all the variables
available and combines them in different ways. It also means we can go beyond
the visual representation of the summaries in OLAP applications, creating useful
models for the business world. Data mining is not just about analysing data; it
is a much more complex process where data analysis is just one of the aspects.

OLAP is an important tool for business intelligence. The query and reporting
tools describe what a database contains (in the widest sense this includes the
data warehouse), but OLAP is used to explain why certain relations exist. The
user makes his own hypotheses about the possible relations between the variables
and he looks for confirmation of his opinion by observing the data. Suppose he
wants to find out why some debts are not paid back; first he might suppose
that people with a low income and lots of debts are high-risk categories. So he
can check his hypothesis, OLAP gives him a graphical representation (called a
multidimensional hypercube) of the empirical relation between the income, debt
and insolvency variables. An analysis of the graph can confirm his hypothesis.

Therefore OLAP also allows the user to extract information that is useful for
business databases. Unlike data mining, the research hypotheses are suggested by
the user and are not uncovered from the data. Furthermore, the extrapolation is a
purely computerised procedure; no use is made of modelling tools or summaries
provided by the statistical methodology. OLAP can provide useful information
for databases with a small number of variables, but problems arise when there are
tens or hundreds of variables. Then it becomes increasingly difficult and time-
consuming to find a good hypothesis and analyse the database with OLAP tools
to confirm or deny it.

OLAP is not a substitute for data mining; the two techniques are comple-
mentary and used together they can create useful synergies. OLAP can be used
in the preprocessing stages of data mining. This makes understanding the data
easier, because it becomes possible to focus on the most important data, identi-
fying special cases or looking for principal interrelations. The final data mining
results, expressed using specific summary variables, can be easily represented in
an OLAP hypercube.

We can summarise what we have said so far in a simple sequence that shows
the evolution of business intelligence tools used to extrapolate knowledge from
a database:

QUERY AND REPORTING −−−→ DATA RETRIEVAL −−−→ OLAP

−−−→ DATA MINING

Query and reporting has the lowest information capacity and data mining has the
highest information capacity. Query and reporting is easiest to implement and data
mining is hardest to implement. This suggests a trade-off between information
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capacity and ease of implementation. The choice of tool must also consider the
specific needs of the business and the characteristics of the company’s information
system. Lack of information is one of the greatest obstacles to achieving efficient
data mining. Very often a database is created for reasons that have nothing to do
with data mining, so the important information may be missing. Incorrect data is
another problem.

The creation of a data warehouse can eliminate many of these problems.
Efficient organisation of the data in a data warehouse coupled with efficient and
scalable data mining allows the data to be used correctly and efficiently to support
company decisions.

1.1.2 Data mining and statistics

Statistics has always been about creating methods to analyse data. The main
difference between statistical methods and machine learning methods is that sta-
tistical methods are usually developed in relation to the data being analysed but
also according to a conceptual reference paradigm. Although this has made the
statistical methods coherent and rigorous, it has also limited their ability to adapt
quickly to the new methodologies arising from new information technology and
new machine learning applications. Statisticians have recently shown an interest
in data mining and this could help its development.

For a long time statisticians saw data mining as a synonymous with ‘data
fishing’, ‘data dredging’ or ‘data snooping’. In all these cases data mining had
negative connotations. This idea came about because of two main criticisms.
First, there is not just one theoretical reference model but several models in
competition with each other; these models are chosen depending on the data
being examined. The criticism of this procedure is that it is always possible to
find a model, however complex, which will adapt well to the data. Second, the
great amount of data available may lead to non-existent relations being found
among the data.

Although these criticisms are worth considering, we shall see that the modern
methods of data mining pay great attention to the possibility of generalising
results. This means that when choosing a model, the predictive performance is
considered and the more complex models are penalised. It is difficult to ignore
the fact that many important findings are not known beforehand and cannot be
used in developing a research hypothesis. This happens in particular when there
are large databases.

This last aspect is one of the characteristics that distinguishes data mining
from statistical analysis. Whereas statistical analysis traditionally concerns itself
with analysing primary data that has been collected to check specific research
hypotheses, data mining can also concern itself with secondary data collected for
other reasons. This is the norm, for example, when analysing company data that
comes from a data warehouse. Furthermore, statistical data can be experimental
data (perhaps the result of an experiment which randomly allocates all the statis-
tical units to different kinds of treatment), but in data mining the data is typically
observational data.



6 APPLIED DATA MINING

Berry and Linoff (1997) distinguish two analytical approaches to data min-
ing. They differentiate top-down analysis (confirmative) and bottom-up analysis
(explorative). Top-down analysis aims to confirm or reject hypotheses and tries to
widen our knowledge of a partially understood phenomenon; it achieves this prin-
cipally by using the traditional statistical methods. Bottom-up analysis is where
the user looks for useful information previously unnoticed, searching through the
data and looking for ways of connecting it to create hypotheses. The bottom-up
approach is typical of data mining. In reality the two approaches are complemen-
tary. In fact, the information obtained from a bottom-up analysis, which identifies
important relations and tendencies, cannot explain why these discoveries are use-
ful and to what extent they are valid. The confirmative tools of top-down analysis
can be used to confirm the discoveries and evaluate the quality of decisions based
on those discoveries.

There are at least three other aspects that distinguish statistical data analysis
from data mining. First, data mining analyses great masses of data. This implies
new considerations for statistical analysis. For many applications it is impossible
to analyse or even access the whole database for reasons of computer efficiency.
Therefore it becomes necessary to have a sample of the data from the database
being examined. This sampling must take account of the data mining aims, so it
cannot be performed using traditional statistical theory. Second many databases
do not lead to the classic forms of statistical data organisation, for example,
data that comes from the internet. This creates a need for appropriate analytical
methods from outside the field of statistics. Third, data mining results must be of
some consequence. This means that constant attention must be given to business
results achieved with the data analysis models.

In conclusion there are reasons for believing that data mining is nothing new
from a statistical viewpoint. But there are also reasons to support the idea that,
because of their nature, statistical methods should be able to study and formalise
the methods used in data mining. This means that on one hand we need to look
at the problems posed by data mining from a viewpoint of statistics and utility,
while on the other hand we need to develop a conceptual paradigm that allows
the statisticians to lead the data mining methods back to a scheme of general and
coherent analysis.

1.2 The data mining process

Data mining is a series of activities from defining objectives to evaluating results.
Here are its seven phases:

A. Definition of the objectives for analysis
B. Selection, organisation and pretreatment of the data
C. Exploratory analysis of the data and subsequent transformation
D. Specification of the statistical methods to be used in the analysis phase
E. Analysis of the data based on the chosen methods
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F. Evaluation and comparison of the methods used and the choice of the final
model for analysis

G. Interpretation of the chosen model and its subsequent use in decision
processes

Definition of the objectives
Definition of the objectives involves defining the aims of the analysis. It is not
always easy to define the phenomenon we want to analyse. In fact, the company
objectives that we are aiming for are usually clear, but the underlying problems
can be difficult to translate into detailed objectives that need to be analysed.
A clear statement of the problem and the objectives to be achieved are the
prerequisites for setting up the analysis correctly. This is certainly one of the most
difficult parts of the process since what is established at this stage determines
how the subsequent method is organised. Therefore the objectives must be clear
and there must be no room for doubts or uncertainties.

Organisation of the data
Once the objectives of the analysis have been identified, it is necessary to select
the data for the analysis. First of all it is necessary to identify the data sources.
Usually data is taken from internal sources that are cheaper and more reliable.
This data also has the advantage of being the result of experiences and procedures
of the company itself. The ideal data source is the company data warehouse, a
storeroom of historical data that is no longer subject to changes and from which
it is easy to extract topic databases, or data marts, of interest. If there is no
data warehouse then the data marts must be created by overlapping the different
sources of company data.

In general, the creation of data marts to be analysed provides the fundamental
input for the subsequent data analysis. It leads to a representation of the data,
usually in a tabular form known as a data matrix, that is based on the analytical
needs and the previously established aims. Once a data matrix is available it is
often necessary to carry out a preliminary cleaning of the data. In other words, a
quality control is carried out on the available data, known as data cleansing. It is a
formal process used to highlight any variables that exist but which are not suitable
for analysis. It is also an important check on the contents of the variables and
the possible presence of missing, or incorrect data. If any essential information is
missing, it will then be necessary to review the phase that highlights the source.

Finally, it is often useful to set up an analysis on a subset or sample of the
available data. This is because the quality of the information collected from the
complete analysis across the whole available data mart is not always better than
the information obtained from an investigation of the samples. In fact, in data
mining the analysed databases are often very large, so using a sample of the data
reduces the analysis time. Working with samples allows us to check the model’s
validity against the rest of the data, giving an important diagnostic tool. It also
reduces the risk that the statistical method might adapt to irregularities and lose
its ability to generalise and forecast.
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Exploratory analysis of the data
Exploratory analysis of the data involves a preliminary exploratory analysis of
the data, very similar to OLAP techniques. An initial evaluation of the data’s
importance can lead to a transformation of the original variables to better under-
stand the phenomenon or it can lead to statistical methods based on satisfying
specific initial hypotheses. Exploratory analysis can highlight any anomalous
data – items that are different from the rest. These items data will not neces-
sarily be eliminated because they might contain information that is important to
achieve the objectives of the analysis. I think that an exploratory analysis of the
data is essential because it allows the analyst to predict which statistical methods
might be most appropriate in the next phase of the analysis. This choice must
obviously bear in mind the quality of the data obtained from the previous phase.
The exploratory analysis might also suggest the need for new extraction of data
because the data collected is considered insufficient to achieve the set aims. The
main exploratory methods for data mining will be discussed in Chapter 3.

Specification of statistical methods
There are various statistical methods that can be used and there are also many
algorithms, so it is important to have a classification of the existing methods.
The choice of method depends on the problem being studied or the type of data
available. The data mining process is guided by the applications. For this reason
the methods used can be classified according to the aim of the analysis. Then we
can distinguish three main classes:

• Descriptive methods: aim to describe groups of data more briefly; they are
also called symmetrical, unsupervised or indirect methods. Observations may
be classified into groups not known beforehand (cluster analysis, Kohonen
maps); variables may be connected among themselves according to links
unknown beforehand (association methods, log-linear models, graphical mod-
els). In this way all the variables available are treated at the same level and
there are no hypotheses of causality. Chapters 4 and 5 give examples of
these methods.

• Predictive methods: aim to describe one or more of the variables in relation
to all the others; they are also called asymmetrical, supervised or direct meth-
ods. This is done by looking for rules of classification or prediction based on
the data. These rules help us to predict or classify the future result of one or
more response or target variables in relation to what happens to the explana-
tory or input variables. The main methods of this type are those developed
in the field of machine learning such as the neural networks (multilayer per-
ceptrons) and decision trees but also classic statistical models such as linear
and logistic regression models. Chapters 4 and 5 both illustrate examples of
these methods.

• Local methods: aim to identify particular characteristics related to subset
interests of the database; descriptive methods and predictive methods are
global rather than local. Examples of local methods are association rules for
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analysing transactional data, which we shall look at in Chapter 4, and the iden-
tification of anomalous observations (outliers), also discussed in Chapter 4.

I think this classification is exhaustive, especially from a functional viewpoint.
Further distinctions are discussed in the literature. Each method can be used on
its own or as one stage in a multistage analysis.

Data analysis
Once the statistical methods have been specified, they must be translated into
appropriate algorithms for computing calculations that help us synthesise the
results we need from the available database. The wide range of specialised and
non-specialised software for data mining means that for most standard applica-
tions it is not necessary to develop ad hoc algorithms; the algorithms that come
with the software should be sufficient. Nevertheless, those managing the data
mining process should have a sound knowledge of the different methods as well
as the software solutions, so they can adapt the process to the specific needs of
the company and interpret the results correctly when taking decisions.

Evaluation of statistical methods
To produce a final decision it is necessary to choose the best model of data
analysis from the statistical methods available. Therefore the choice of the model
and the final decision rule are based on a comparison of the results obtained with
the different methods. This is an important diagnostic check on the validity of
the specific statistical methods that are then applied to the available data. It is
possible that none of the methods used permits the set of aims to be achieved
satisfactorily. Then it will be necessary to go back and specify a new method
that is more appropriate for the analysis.

When evaluating the performance of a specific method, as well as diagnostic
measures of a statistical type, other things must be considered such as time
constraints, resource constraints, data quality and data availability. In data mining
it is rarely a good idea to use just one statistical method to analyse the data.
Different methods have the potential to highlight different aspects, aspects which
might otherwise have been ignored.

To choose the best final model it is necessary to apply and compare various
techniques quickly and simply, to compare the results produced and then give a
business evaluation of the different rules created.

Implementation of the methods
Data mining is not just an analysis of the data, it is also the integration of
the results into the decision process of the company. Business knowledge, the
extraction of rules and their participation in the decision process allow us to
move from the analytical phase to the production of a decision engine. Once
the model has been chosen and tested with a data set, the classification rule
can be applied to the whole reference population. For example we will be able
to distinguish beforehand which customers will be more profitable or we can



10 APPLIED DATA MINING

calibrate differentiated commercial policies for different target consumer groups,
thereby increasing the profits of the company.

Having seen the benefits we can get from data mining, it is crucial to imple-
ment the process correctly to exploit its full potential. The inclusion of the data
mining process in the company organisation must be done gradually, setting out
realistic aims and looking at the results along the way. The final aim is for data
mining to be fully integrated with the other activities that are used to back up
company decisions.

This process of integration can be divided into four phases:

• Strategic phase: in this first phase we study the business procedure being
used in order to identify where data mining could give most benefits. The
results at the end of this phase are the definition of the business objectives
for a pilot data mining project and the definition of criteria to evaluate the
project itself.

• Training phase: this phase allows us to evaluate the data mining activity
more carefully. A pilot project is set up and the results are assessed using
the objectives and the criteria established in the previous phase. The choice
of the pilot project is a fundamental aspect. It must be simple and easy to
use but important enough to create interest. If the pilot project is positive,
there are two possible results: the preliminary evaluation of the utility of
the different data mining techniques and the definition of a prototype data
mining system.

• Creation phase: if the positive evaluation of the pilot project results in imple-
menting a complete data mining system, it will then be necessary to establish
a detailed plan to reorganise the business procedure to include the data min-
ing activity. More specifically, it will be necessary to reorganise the business
database with the possible creation of a data warehouse; to develop the pre-
vious data mining prototype until we have an initial operational version; and
to allocate personnel and time to follow the project.

• Migration phase: at this stage all we need to do is prepare the organi-
sation appropriately so the data mining process can be successfully inte-
grated. This means teaching likely users the potential of the new system
and increasing their trust in the benefits it will bring. This means constantly
evaluating (and communicating) the efficient results obtained from the data
mining process.

For data mining to be considered a valid process within a company, it needs to
involve at least three different people with strong communication and interactive
skills:

– Business experts, to set the objectives and interpret the results of data mining
– Information technology experts, who know about the data and technolo-

gies needed
– Experts in statistical methods for the data analysis phase
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1.3 Software for data mining

A data mining project requires adequate software to perform the analysis. Most
software systems only implement specific techniques; they can be seen as spe-
cialised software systems for statistical data analysis. But because the aim of
data mining is to look for relations that are previously unknown and to compare
the available methods of analysis, I do not think these specialised systems are
suitable.

Valid data mining software should create an integrated data mining system that
allows the use and comparison of different techniques; it should also integrate
with complex database management software. Few such systems exist. Most of
the available options are listed on the website www.kdnuggets.com/.

This book makes many references to the SAS software, so here is a brief
description of the integrated SAS data mining software called Enterprise Miner
(SAS Institute, 2001). Most of the processing presented in the case studies is
carried out using this system as well as other SAS software models.

To plan, implement and successfully set up a data mining project it is nec-
essary to have an integrated software solution that includes all the phases of
the analytical process. These go from sampling the data, through the analytical
and modelling phases, and up to the publication of the resulting business infor-
mation. Furthermore, the ideal solution should be user-friendly, intuitive and
flexible enough to allow the user with little experience in statistics to understand
and use it.

The SAS Enterprise Miner software is a solution of this kind. It comes from
SAS’s long experience in the production of software tools for data analysis, and
since it appeared on the market in 1998 it has become worldwide leader in this
field. It brings together the system of statistical analysis and SAS reporting with
a graphical user interface (GUI) that is easy to use and can be understood by
company analysts and statistics experts.

The GUI elements can be used to implement the data mining methods devel-
oped by the SAS Institute, the SEMMA method. This method sets out some basic
data mining elements without imposing a rigid and predetermined route for the
project. It provides a logical process that allows business analysts and statistics
experts to achieve the aims of the data mining projects by choosing the elements
of the GUI they need. The visual representation of this structure is a process flow
diagram (PFD) that graphically illustrates the steps taken to complete a single
data mining project.

The SEMMA method defined by the SAS Institute is a general reference
structure that can be used to organise the phases of the data mining project.
Schematically the SEMMA method set out by the SAS consists of a series of
‘steps’ that must be followed to complete the data analysis, steps which are
perfectly integrated with SAS Enterprise Miner. SEMMA is an acronym that
stands for ‘sample, explore, modify, model and assess:

• Sample: this extracts a part of the data that is large enough to contain impor-
tant information and small enough to be analysed quickly.
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• Explore: the data is examined to find beforehand any relations and abnormal-
ities and to understand which data could be of interest.

• Modify and model: these phases seek the important variables and the models
that provide information contained in the data.

• Assess: this assesses the utility and the reliability of the information discov-
ered by the data mining process. The rules from the models are applied to
the real environment of the analysis.

1.4 Organisation of the book

This book is divided into two complementary parts. The first part describes
the methodology and systematically treats data mining as a process of database
analysis that tries to produce results which can be immediately used for decision
making. The second part contains some case studies that illustrate data mining
in real business applications. Figure 1.1 shows this organisation. Phases B, C, D

A. Aims of the analysis (case studies)

B. Organisation of the data (Chapter 2)

C. Exploratory data analysis (Chapter 3)

D. Statistical model specification (Chapters 4 and 5)

E. Data analysis (case studies) 

F. Model evaluation and comparison
(Chapter 6)

G. Interpretation of the results
(case studies)

Figure 1.1 Organisation of the book.



INTRODUCTION 13

and F receive one chapter each in the first part of the book; phases A, E and G
will be discussed in depth in the second part of the book. Let us now look in
greater detail at the two parts.

1.4.1 Chapters 2 to 6: methodology

The first part of the book illustrates the main methodologies. Chapter 2 illustrates
the main aspects related to the organisation of the data. It looks at the creation of
a ready-to-analyse database, starting from examples of available structures – the
data warehouse, the data webhouse, and the data mart – which can be easily
transformed for statistical analysis. It introduces the important distinction between
types of data, which can be quantitative and qualitative, nominal and ordinal,
discrete and continuous. Data types are particularly important when specifying a
model for analysis. The data matrix, which is the base structure of the statistical
analysis, is discussed. Further on we look at some transformations of the matrix.
Finally, other more complex data organisation structures are briefly discussed.

Chapter 3 sets out the most important aspects of exploratory data analysis. It
explains concepts and illustrates them with examples. It begins with univariate
analysis and moves on to multivariate analysis. Two important topics are reducing
the size of the data and analysing qualitative data.

Chapters 4 and 5 describe the main methods used in data mining. We have
used the ‘historical’ distinction between methods that do not require a proba-
bilistic formulation (computational methods), many of which have emerged from
machine learning, and methods that require a probabilistic formulation (statistical
models), which developed in the field of statistics.

The main computational methods illustrated in Chapter 4 are cluster analysis,
decision trees and neural networks, both supervised and unsupervised. Finally,
‘local’ methods of data mining are introduced, and we will be looking at the
most important of these, association and sequence rules. The methods illustrated
in Chapter 5 follow the temporal evolution of multivariate statistical methods:
from models of linear regression to generalised linear models that contain models
of logistic and log-linear regression to reach graphical models.

Chapter 6 discusses comparison and evaluation of the different models for
data mining. It introduces the concept of discrepancy between statistical methods
then goes on to discuss the most important evaluation criteria and the choice
between the different models: statistical tests, criteria based on scoring functions,
Bayesian criteria, computational criteria and criteria based on loss functions.

1.4.2 Chapters 7 to 12: business cases

There are many applications for data mining. We shall discuss six of the most
frequent applications in the business field, from the most traditional (customer rela-
tionship management) to the most recent and innovative (web clickstream analysis).

Chapter 7 looks at market basket analysis. It examines statistical methods
for analysing sales figures in order to understand which products were bought
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together. This type of information makes it possible to increase sales of prod-
ucts by improving the customer offering and promoting sales of other products
associated with that offering.

Chapter 8 looks at web clickstream analysis. It shows how information on the
order in which the pages of a website are visited can be used to predict the visiting
behaviour of the site. The data analysed corresponds to an e-commerce site
and therefore it becomes possible to establish which pages influence electronic
shopping of particular products.

Chapter 9 looks at web profiling. Here we analyse data referring to the pages
visited in a website, leading to a classification of those who visited the site
based on their behaviour profile. With this information it is possible to get a
behavioural segmentation of the users that can later be used when making mar-
keting decisions.

Chapter 10 looks at customer relationship management. Some statistical meth-
ods are used to identify groups of homogeneous customers in terms of buying
behaviour and socio-demographic characteristics. Identification of the different
types of customer makes it possible to draw up a personalised marketing cam-
paign, to assess its effects and to look at how the offer can be changed.

Chapter 11 looks at credit scoring. Credit scoring is an example of the scoring
procedure that in general gives a score to each statistical unit (customer, debtor,
business, etc.) In particular, the aim of credit scoring is to associate each debtor
with a numeric value that represents their credit worth. In this way it is possible
to decide whether or not to give someone credit based on their score.

Chapter 12 looks at prediction of TV shares. Some statistical linear models as
well as others based on neural networks are presented to predict TV audiences in
prime time on Italian TV. A company that sells advertising space can carry out
an analysis of the audience to decide which advertisements to broadcast during
certain programmes and at what time.

1.5 Further reading

Since data mining is a recent discipline and is still undergoing great changes
there are many sources of further reading. As well as the large number of tech-
nical reports about the commercial software available, there are several articles
available in specialised scientific journals as well as numerous thematic volumes.
But there are still few complete texts on the topic. The bibliography lists relevant
English-language books on data mining. Part of the material in this book is an
elaboration from a book in Italian by myself (Giudici, 2001b). Here are the texts
that have been most useful in writing this book.

For the methodology

• Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques,
Morgan Kaufmann, 2001
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• David J. Hand, Heikki Mannila and Padhraic Smyth, Principles of Data Min-
ing, MIT Press, 2001

• Trevor Hastie, Robert Tibshirani and Jerome Friedman, The Elements of
Statistical Learning: Data Mining, Inference and Prediction. Springer-Verlag,
2001

For the applications

• Olivia Par Rudd, Data Mining Cookbook, John Wiley & Sons, 2001
• Michael Berry and Gordon Lindoff, Data Mining Techniques for Marketing,

Sales and Customer Support, John Wiley & Sons, 2000
• Michael Berry and Gordon Lindoff, Mastering Data Mining, John Wiley &

Sons, 1997

One specialised scientific journal worth mentioning is Knowledge Discovery and
Data Mining; it is the most important review for the whole sector. For introduc-
tions and synthesis on data mining see the papers by Fayyad et al. (1996), Hand
et al. (2000) and Giudici, Heckerman and Whittaker (2001).

The internet is another important source of information. There are many sites
dedicated to specific applications of data mining. This can make research using
search engines quite slow. These two websites have a good number of links:

• www.kdnuggets.com/
• www.dmreview.com/

There are many conferences on data mining that are often an important source
of information and a way to keep up to date with the latest developments. Infor-
mation about conferences can be found on the internet using search engines.





PART I

Methodology





CHAPTER 2

Organisation of the data

Data analysis requires that the data is organised into an ordered database, but I do
not explain how to create a database in this text. The way data is analysed depends
greatly on how the data is organised within the database. In our information
society there is an abundance of data and a growing need for an efficient way of
analysing it. However, an efficient analysis presupposes a valid organisation of
the data.

It has become strategic for all medium and large companies to have a unified
information system called a data warehouse; this integrates, for example, the
accounting data with data arising from the production process, the contacts with
the suppliers (supply chain management), and the sales trends and the contacts
with the customers (customer relationship management). This makes it possible
to get precious information for business management. Another example is the
increasing diffusion of electronic trade and commerce and, consequently, the
abundance of data about websites visited along with any payment transactions. In
this case it is essential for the service supplier, through the internet, to understand
who the customers are in order to plan offers. This can be done if the transactions
(which correspond to clicks on the web) are transferred to an ordered database,
usually called a webhouse, that can later be analysed.

Furthermore, since the information that can be extracted from a data mining
process (data analysis) depends on how the data is organised, it is very important
to involve the data analyst when setting up the database. Frequently, though, the
analyst finds himself with a database that has already been prepared. It is then
his job to understand how it has been set up and how best it can be used to
meet the needs of the customer. When faced with poorly set up databases it is a
good idea to ask for them to be reviewed rather than trying laboriously to extract
information that might be of little use.

This chapter looks at how database structure affects data analysis, how a
database can be transformed for statistical analysis, and how data can be classified
and put into a so-called data matrix. It considers how sometimes it may be a
good idea to transform a data matrix in terms of binary variables, frequency
distributions, or in other ways. Finally, it looks at examples of more complex
data structures.

Applied Data Mining. Paolo Giudici
 2003 John Wiley & Sons, Ltd ISBNs: 0-470-84679-8 (Paper); 0-470-84678-X (Cloth)
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2.1 From the data warehouse to the data marts

The creation of a valid database is the first and most important operation that
must be carried out in order to obtain useful information from the data mining
process. This is often the most expensive part of the process in terms of the
resources that have to be allocated and the time needed for implementation and
development. Although I cover it only briefly, this is an important topic and I
advise you to consult other texts for more information, e.g. Berry and Linoff
(1997), Han and Kamber (2001) and Hand, Mannila and Smyth (2001). I shall
now describe examples of three database structures for data mining analysis: the
data warehouse, the data webhouse and the data mart. The first two are complex
data structures, but the data mart is a simpler database that usually derives from
other data structures (e.g. from operational and transactional databases, but also
from the data warehouse) that are ready to be analysed.

2.1.1 The data warehouse

According to Immon (1996), a data warehouse is ‘an integrated collection of
data about a collection of subjects (units), which is not volatile in time and can
support decisions taken by the management’.

From this definition, the first characteristic of a data warehouse is the orienta-
tion to the subjects. This means that data in a data warehouse should be divided
according to subjects rather than by business. For example, in the case of an insur-
ance company the data put into the data warehouse should probably be divided
into Customer, Policy and Insurance Premium rather than into Civil Responsi-
bility, Life and Accident. The second characteristic is data integration, and it is
certainly the most important. The data warehouse must be able to integrate itself
perfectly with the multitude of standards used by the different applications from
which data is collected. For example, various operational business applications
could codify the sex of the customer in different ways and the data warehouse
must be able to recognise these standards unequivocally before going on to store
the information.

Third, a data warehouse can vary in time since the temporal length of a data
warehouse usually oscillates between 5 and 10 years; during this period the data
collected is no more than a sophisticated series of instant photos taken at specific
moments in time. At the same time, the data warehouse is not volatile because
data is added rather than updated. In other words, the set of photos will not
change each time the data is updated but it will simply be integrated with a new
photo. Finally, a data warehouse must produce information that is relevant for
management decisions.

This means a data warehouse is like a container of all the data needed to
carry out business intelligence operations. It is the main difference between a
data warehouse and other business databases. Trying to use the data contained in
the operational databases to carry out relevant statistical analysis for the business
(related to various management decisions) is almost impossible. On the other
hand, a data warehouse is built with this specific aim in mind.
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There are two ways to approach the creation of a data warehouse. The first
is based on the creation of a single centralised archive that collects all the com-
pany information and integrates it with information coming from outside. The
second approach brings together different thematic databases, called data marts,
that are not initially connected among themselves, but which can evolve to create
a perfectly interconnected structure. The first approach allows the system admin-
istrators to constantly control the quality of the data introduced. But it requires
careful programming to allow for future expansion to receive new data and to con-
nect to other databases. The second approach is initially easier to implement and is
therefore the most popular solution at the moment. Problems arise when the vari-
ous data marts are connected among each other, as it becomes necessary to make
a real effort to define, clean and transform the data to obtain a sufficiently uniform
level. That is until it becomes a data warehouse in the real sense of the word.

In a system that aims to preserve and distribute data, it is also necessary
to include information about the organisation of the data itself. This data is
called metadata and it can be used to increase the security levels inside the data
warehouse. Although it may be desirable to allow vast access to information,
some specific data marts and some details might require limited access. Metadata
is also essential for management, organisation and the exploitation of the various
activities. For an analyst it may be very useful to know how the profit variable
was calculated, whether the sales areas were divided differently before a certain
date, and how a multiperiod event was split in time. The metadata therefore helps
to increase the value of the information present in the data warehouse because it
becomes more reliable.

Another important component of a data warehouse system is a collection of
data marts. A data mart is a thematic database, usually represented in a very
simple form, that is specialised according to specific objectives (e.g. marketing
purposes).

To summarise, a valid data warehouse structure should have the following
components: (a) a centralised archive that becomes the storehouse of the data;
(b) a metadata structure that describes what is available in the data warehouse
and where it is; (c) a series of specific and thematic data marts that are easily
accessible and which can be converted into statistical structures such as data
matrices (Section 2.3). These components should make the data warehouse eas-
ily accessible for business intelligence needs, ranging from data querying and
reporting to OLAP and data mining.

2.1.2 The data webhouse

The data warehouse developed rapidly during the 1990s, when it was very
successful and accumulated widespread use. The advent of the web with its rev-
olutionary impact has forced the data warehouse to adapt to new requirements.
In this new era the data warehouse becomes a web data warehouse or, more
simply, data webhouse. The web offers an immense source of data about people
who use their browser to interact on websites. Despite the fact that most of the
data related to the flow of users is very coarse and very simple, it gives detailed
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information about how internet users surf the net. This huge and undisciplined
source can be transferred to the data webhouse, where it can be put together with
more conventional sources of data that previously formed the data warehouse.

Another change concerns the way in which the data warehouse can be accessed.
It is now possible to exploit all the interfaces of the business data warehouse that
already exist through the web just by using the browser. With this it is possible
to carry out various operations, from simple data entry to ad hoc queries through
the web. In this way the data warehouse becomes completely distributed. Speed
is a fundamental requirement in the design of a webhouse. However, in the data
warehouse environment some requests need a long time before they will be sat-
isfied. Slow time processing is intolerable in an environment based on the web.
A webhouse must be quickly reachable at any moment and any interruption,
however brief, must be avoided.

2.1.3 Data marts

A data mart is a thematic database that was originally oriented towards the marketing
field. Indeed, its name is a contraction of marketing database. In this sense it can
be considered a business archive that contains all the information connected to new
and/or potential customers. In other words, it refers to a database that is completely
oriented to managing customer relations. As we shall see, the analysis of customer
relationship management data is probably the main field where data mining can
be applied. In general, it is possible to extract from a data warehouse as many
data marts as there are aims we want to achieve in a business intelligence analysis.
However, a data mart can be created, although with some difficulty, even when
there is no integrated warehouse system. The creation of thematic data structures
like data marts represents the first and fundamental move towards an informative
environment for the data mining activity. There is a case study in Chapter 10.

2.2 Classification of the data

Suppose we have a data mart at our disposal, which has been extracted from
the databases available according to the aims of the analysis. From a statistical
viewpoint, a data mart should be organised according to two principles: the statis-
tical units, the elements in the reference population that are considered important
for the aims of the analysis (e.g. the supply companies, the customers, the peo-
ple who visit the site) and the statistical variables, the important characteristics,
measured for each statistical unit (e.g. the amounts customers buy, the payment
methods they use, the socio-demographic profile of each customer).

The statistical units can refer to the whole reference population (e.g. all the
customers of the company) or they can be a sample selected to represent the whole
population. There is a large body of work on the statistical theory of sampling and
sampling strategies; for further information see Barnett (1975). If we consider an
adequately representative sample rather than a whole population, there are several
advantages. It might be expensive to collect complete information about the entire
population and the analysis of great masses of data could waste a lot of time in
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analysing and interpreting the results (think about the enormous databases of
daily telephone calls available to mobile phone companies).

The statistical variables are the main source of information to work on in order
to extract conclusions about the observed units and eventually to extend these
conclusions to a wider population. It is good to have a large number of variables
to achieve these aims, but there are two main limits to having an excessively
large number. First of all, for efficient and stable analyses the variables should
not duplicate information. For example, the presence of the customers’ annual
income makes monthly income superfluous. Furthermore, for each statistical unit
the data should be correct for all the variables considered. This is difficult when
there are many variables, because some data can go missing; missing data causes
problems for the analysis.

Once the units and the interest variables in the statistical analysis of the data
have been established, each observation is related to a statistical unit, and a
distinct value (level) for each variable is assigned. This process is known as
classification. In general it leads to two different types of variable: qualitative and
quantitative. Qualitative variables are typically expressed as an adjectival phrase,
so they are classified into levels, sometimes known as categories. Some examples
of qualitative variables are sex, postal code and brand preference. Qualitative
data is nominal if it appears in different categories but in no particular order;
qualitative data is ordinal if the different categories have an order that is either
explicit or implicit.

The measurement at a nominal level allows us to establish a relation of equality
or inequality between the different levels (=, �=) . Examples of nominal measure-
ments are the eye colour of a person and the legal status of a company. Ordinal
measurements allow us to establish an order relation between the different cate-
gories but they do not allow any significant numeric assertion (or metric) on the
difference between the categories. More precisely, we can affirm which category
is bigger or better but we cannot say by how much (=, >, <). Examples of ordinal
measurements are the computing skills of a person and the credit rate of a company.

Quantitative variables are linked to intrinsically numerical quantities, such as
age and income. It is possible to establish connections and numerical relations
among their levels. They can be divided into discrete quantitative variables when
they have a finite number of levels, and continuous quantitative variables if
the levels cannot be counted. A discrete quantitative variable is the number of
telephone calls received in a day; a continuous quantitative variable is the annual
revenues of a company.

Very often the ordinal level of a qualitative variable is marked with a number.
This does not transform the qualitative variable into a quantitative variable, so it is
not possible to establish connections and relations between the levels themselves.

2.3 The data matrix

Once the data and the variables have been classified into the four main types
(qualitative nominal, qualitative ordinal, quantitative discrete and quantitative
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continuous), the database must be transformed into a structure that is ready
for statistical analysis. In the case of thematic databases this structure can be
described by a data matrix. The data matrix is a table that is usually two-
dimensional, where the rows represent the n statistical units considered and the
columns represent the p statistical variables considered. Therefore the generic
element (i,j ) of the matrix (i = 1, . . . , n and j = 1, . . . , p) is a classification of
the data related to the statistical unit i according to the level of the j th variable,
as in Table 2.1.

The data matrix is the point where data mining starts. In some cases, such as
a joint analysis of quantitative variables, it acts as the input of the analysis phase.
Other cases require pre-analysis phases (preprocessing or data transformation).
This leads to tables derived from data matrices. For example, in the joint analysis
of qualitative variables, since it is impossible to carry out a quantitative analysis
directly on the data matrix, it is a good idea to transform the data matrix into a
contingency table. This is a table with as many dimensions as there are qualitative
variables considered. Each dimension is indexed by the level observed by the
corresponding variable. Within each cell in the table we put the joint frequency
of the corresponding crossover of the levels. We shall discuss this in more detail
in the context of representing the statistical variables in frequency distributions.

Table 2.2 is a real example of a data matrix. Lack of space means we can
only see some of the 1000 lines included in the table and only some of the 21
columns. Chapter 11 will describe and analyse this table.

Table 2.1 The data matrix.

1 . . . j . . . p

1 X1,1 X1,j X1,p

...

i Xi,1 Xi,j Xi,p

...

n Xn,1 Xn,j Xn,p

Table 2.2 Example of a data matrix.

Y X1 X2 . . . X3 . . . X20

N 1 1 1 18 . . . 1049 . . . 1
.
..

N 34 1 4 24 . . . 1376 . . . 1
.
..

N 1000 0 1 30 . . . 6350 . . . 1
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Table 2.3 Example of
binarisation.

Y X1 X2 X3

1 1 1 0 0
2 3 0 0 1
3 1 1 0 0
4 2 0 1 0
5 3 0 0 1
6 1 1 0 0

2.3.1 Binarisation of the data matrix

If the variables in the data matrix are all quantitative, including some continuous
ones, it is easier and simpler to treat the matrix as input without any pre-analysis.
But if the variables are all qualitative or discrete quantitative, it is necessary to
transform the data matrix into a contingency table (with more than one dimen-
sion). This is not necessarily a good idea if p is large. If the variables in the
data matrix belong to both types, it is best to transform the variables into the
minority type, bringing them to the level of the others. For example, if most of
the variables are qualitative and there are some quantitative variables, some of
which are continuous, contingency tables will be used, preceded by the discreti-
sation of the continuous variables into interval classes. This results in a loss of
information.

If most of the variables are quantitative, the best solution is to make the
qualitative variables metric. This is called binarisation. Consider a binary variable
set to 0 in the presence of a certain level and 1 if this level is absent. We can
define a distance for this variable, so it can be seen as a quantitative variable. In
the binarisation approach, each qualitative variable is transformed into as many
binary variables as there are levels of the same type. For example, if a qualitative
variable X has r levels, then r binary variables will be created as follows: for
the generic level i, the corresponding binary variable will be set to 1 when X

is equal to i, otherwise it will be set to 0. Table 2.3 shows a qualitative variable
with three levels (indicated by Y ) transformed into the three binary variables
X1, X2, X3.

2.4 Frequency distributions

Often it seems natural to summarise statistical variables by the co-occurrence
of their levels. A summary of this type is called a frequency distribution. In
all procedures of this kind, the summary makes it easier to analyse and present
the results, but it also leads to a loss of information. In the case of qualitative
variables, the summary is justified by the need to carry out quantitative analysis
on the data. In other situations, such as with quantitative variables, the summary
is essentially to simplify the analysis and presentation of results.
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2.4.1 Univariate distributions

First we will concentrate on univariate analysis, the analysis of a single vari-
able. This simplifies presentation of results but it also simplifies the analytical
method. It is easier to extract information from a database by beginning with
univariate analysis and then moving on to multivariate analysis. Determining the
univariate distribution frequency from the data matrix is often the first step in a
univariate exploratory analysis. To create a frequency distribution for a variable
it is necessary to know the number of times each level appears in the data. This
number is called the absolute frequency. The levels and their frequencies give
the frequency distribution.

The observations related to the variable being examined can be indicated as
follows: x1, x2, . . . , xN , omitting the index related to the variable itself. The dis-
tinct values between the N observations (levels) are indicated as x∗

1 , x∗
2 , . . . , x∗

k

(k ≤ N ). The frequency distribution is shown as in Table 2.4 where ni indi-
cates the number of times level x∗

i appears (its absolute frequency). Note that∑k
i=1 ni = N , where N is the number of classified units. Table 2.5 shows an

example of a frequency distribution for a binary qualitative variable that will be
analysed in Chapter 10.

It can be seen from Table 2.5 that the data at hand is fairly balanced between
the two levels.

To make reading and interpretation easier, frequency distribution is usually
presented with relative frequencies. The relative frequency of the level x∗

i , indi-
cated by pi , is defined by the relationship between the absolute frequency ni and
the total number of observations: pi = ni/N . Note that we have

∑k
i=1 pi = 1.

Table 2.4 Univariate frequency
distribution.

Levels Absolute frequencies

x∗
1 n1

x∗
2 n2

...
...

x∗
k nk

Table 2.5 Example of a frequency
distribution.

Levels Absolute frequencies

0 1445

1 1006
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Table 2.6 Univariate relative
frequency distribution.

Levels Relative frequencies

x∗
1 p1

x∗
2 p2

...
...

x∗
k pk

Table 2.7 Example of a univariate
relative frequency distribution.

Modalities Relative frequencies

0 0.59

1 0.41

The results are shown in Table 2.6. For the frequency distribution in Table 2.5
we obtain the relative frequencies in Table 2.7.

2.4.2 Multivariate distributions

Now we shall see how it is possible to create multivariate frequency distributions
for the joint examination of more than one variable. We will look particularly at
qualitative or discrete quantitative variables. For continuous quantitative multi-
variate variables, it is better to work directly with the data matrix. Multivariate
frequency distributions are represented by a contingency table. For clarity, we
will mainly consider the case where two variables are examined at a time. This
creates a bivariate distribution having a contingency table with two dimensions.

Let X and Y be the two variables collected for N statistical units, which take
on h levels for X, x∗

1 , . . . , x∗
h , and k levels for Y , y∗

1 , . . . , y∗
k . The result of the joint

classification of the variables into a contingency table can be summarised by the
pairs {(x∗

i , y∗
j ), nxy (x

∗
i , y∗

j )} where nxy(x
∗
i , y∗

j ) indicates the number of statistical
units, among the N considered, where the level pair (x∗

i , y∗
j ) is observed. The

value indicated by nxy(x
∗
i , y∗

j ) is called the absolute joint frequency which refers
to the (x∗

i , y∗
j ) pair. For simplicity we will often refer to nxy (x

∗
i , y∗

j ) with the
symbol nij .

Note that since N = ∑
i

∑
j nxy(x

∗
i , y∗

j ) is equal to the total number of clas-
sified units, we can get relative joint frequencies from the equation

pxy(xi, yj ) = nxy(x
∗
i , y∗

j )

N
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Table 2.8 A two-way contingency table.

X\Y y∗
1 y∗

2 . . . y∗
j . . . y∗

k

x∗
1 nxy (x

∗
1 , y∗

1 ) nxy (x
∗
1 , y∗

2 ) . . . nxy (x
∗
1 , y∗

j ) . . . nxy (x
∗
1 , y∗

k ) nx(x
∗
1 )

x∗
2 nxy (x

∗
2 , y∗

1 ) nxy (x
∗
2 , y∗

2 ) . . . nxy (x
∗
2 , y∗

j ) . . . nxy (x
∗
2 , y∗

k ) nx(x
∗
2 )

...
...

...
...

...
...

...
...

x∗
i nxy (x

∗
i , y∗

1 ) nxy (x
∗
i , y∗

2 ) . . . nxy (x
∗
i , y∗

j ) . . . nxy (x
∗
i , y∗

k ) nx(x
∗
i )

...
...

...
...

...
...

...
...

x∗
h nxy (x

∗
h, y∗

1 ) nxy (x
∗
h, y∗

2 ) . . . nxy (x
∗
h, y∗

j ) . . . nxy (x
∗
h, y∗

k ) nx(x
∗
h)

ny(y
∗
1 ) ny(y

∗
2 ) . . . ny(y

∗
j ) . . . ny(y

∗
k ) N

To classify the observations into a contingency table, we could mark the level of
the variable X in the rows and the levels of the variable Y in the columns. In the
table we will therefore include the joint frequencies, as shown in Table 2.8. Note
that from the joint frequencies it is easy to get the marginal univariate frequencies
of X and Y using the following equations:

nX(x∗
i ) =

∑

j

nxy(x
∗
i , y∗

j )

nY (y∗
j ) =

∑

i

nxy(x
∗
i , y∗

j )

Table 2.8 reports absolute frequencies. It can also be expressed in terms of relative
frequencies. This will lead to two analogous equations that determine marginal
relative univariate frequencies.

From a joint frequency distribution it is also possible to determine h frequency
distributions of the variable Y , conditioned on the h levels of X. Each of these,
indicated by (Y |X = x∗

i ), shows the distribution frequency of Y only for the
observations where X = xi . For example, the frequency with which we observe
Y = y∗

1 conditional on X = x∗
i can be obtained from the ratio

pY |X(y∗
1 |x∗

i ) = pxy(x
∗
i , y∗

1 )

pX(x∗
i )

where pxy indicates the distribution of the joint frequency of X and Y and pX

the distribution of the marginal frequency (unidimensional) of X. Similarly, we
can get k frequency distributions of the X conditioned on the k levels of Y .

Statistical software makes it easy to create and analyse contingency tables.
Consider a 2 × 2 table where X is the binary variable Npurchases (number of
purchases) and Y = South (referring to the geographic area where the customer
comes from); we will look at this in more detail in Chapter 10. The output
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Table 2.9 Example of a two-way
contingency table: NPURCHASES (rows)
by SOUTH (columns).

0, 1, Total

*****************************

0 , 1102 , 343 , 1445
, 44.96 , 13.99 , 58.96
, 76.26 , 23.74 ,
, 57.40 , 64.60 ,

*****************************

1 , 818 , 188 , 1006
, 33.37 , 7.67 , 41.04
, 81.31 , 18.69 ,
, 42.60 , 35.40 ,

*****************************

Total 1920 531 2451
78.34 21.66 100.00

in Table 2.9 shows the following four pieces of information, for each of the
four possible levels for X and Y : (a) absolute frequency of the pair; (b) relative
frequency of the pair; (c) conditional frequency of X = x, conditionally on the
Y row; (d) conditional frequency of Y = y, conditionally on the X column.

2.5 Transformation of the data

The transformation of the data matrix into univariate and multivariate frequency
distributions is not the only possible transformation. Other transformations can
also be very important to simplify the statistical analysis and/or the interpretation
of results. For example when the p variables of the data matrix are expressed
in different measurement units, it is a good idea to put all the variables into the
same measurement unit so that the different measurement scales do not affect
the results. This can be done using a linear transformation that standardises the
variables, taking away the average of each one and dividing it by the square root
of its variance. This produces a variable with a zero average and a unit variance.
There are other particularly interesting data transformations, such as the non-
linear Box–Cox transformation. The reader can find more on this in other books,
such as Han and Kamber (2001).

The transformation of data is also a way of solving problems with data quality,
perhaps because items are missing or because there are anomalous values, known
as outliers. There are two main ways to deal with missing data: (a) remove it,
(b) substitute it using the remaining data. Identifying anomalous values is often
a motivation for data mining in the first place. The discovery of anomalous
values requires a formal statistical analysis; an anomalous value can seldom
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be eliminated as its existence often provides important information about the
descriptive or predictive model connected to the data under examination. For
example, in the analysis of fraud detections, perhaps related to telephone calls or
credit cards, the aim is to identify suspicious behaviour. Han and Kamber (2001)
provide more information on data quality and its problems.

2.6 Other data structures

Some data mining applications may require a thematic database not expressible
in terms of the data matrix we have considered up to now. For example, there
are often other aspects to be considered such as the time and space in which
the data is collected. Often in this kind of application the data is aggregated or
divided (e.g. into periods or regions); for more on this topic see Diggle, Liang
and Zeger (1994).

The most important case refers to longitudinal data, for example, the surveys
in n companies of the p budget variables in q successive years, or surveys of
socio-economic indicators for the regions in a periodic (e.g. decennial) census.
In this case there will be a three-way matrix which could be described by three
dimensions, concerning n statistical units, p statistical variables and q times.
Another important case is data related to different geographic areas. Here too there
is a three-way matrix with space as the third dimension, for example, the sales
of a company in different regions or the satellite surveys of the environmental
characteristics of different regions. In both these cases, data mining should be
accompanied by specific methods from time series analysis (Chatfield, 1996) or
from spatial data analysis (Cressie, 1991).

Developments in the information society have meant that data is now wider-
ranging and increasingly complex; it is not structured and that makes it difficult to
represent in the form of data matrices (even in extended forms as in the previous
cases). Three important examples are text data, web data and multimedia data.
Text databases consist of a mass of text documents usually connected by logical
relations. Web data is contained in log files that describe what each visitor to a
website does during his interaction with the site. Multimedia data can be made
up of texts, images, sounds and other forms of audio-visual information that are
typically downloaded from the internet and that describe an interaction with the
website more complex than the previous example. This type of data analysis
creates a more complex situation. The first difficulty concerns the organisation
of the data; that is an important and very modern topic of research (e.g. Han
and Kamber, 2001). There are still very few statistical applications for analysing
this data. Chapter 8 tries to provide a statistical contribution to the analysis of
these important problems; it shows how an appropriate analysis of the web data
contained in the log file can give us important data mining results about access
to websites.

Another important type of complex data structure arises from the integration of
different databases. In the modern applications of data mining it is often necessary
to combine data that comes from different sources of data; one example is the
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integration of official statistics from the European Statistics Office, Eurostat. Up
to now this data fusion problem has been discussed mainly from a computational
viewpoint (Han and Kamber, 2001).

Some data is now observable in continuous time rather than discrete time.
In this case the observations for each variable on each unit are more like a
function than a point value. Important examples include monitoring the presence
of polluting atmospheric agents over time and surveys on the quotation of various
financial shares. These are examples of continuous time stochastic processes
(Hoel, Port and Stone, 1972).

2.7 Further reading

This chapter introduced the organisation and structure of databases for data min-
ing. The most important idea is that the planning and creation of the database
cannot be ignored. They are crucial to obtaining results that can be used in the
subsequent phases of the analysis. I see data mining as part of a complete process
of design, collection and data analysis with the aim of obtaining useful results
for companies in the sphere of business intelligence. Database creation and data
analysis are closely connected.

The chapter started with a description of the various ways we can structure
databases, with particular reference to the data warehouse, the data webhouse
and the data mart. For more details on these topic, Han and Kamber (2001) take
a computational viewpoint and Berry and Linoff (1997, 2000) take a business-
oriented viewpoint.

The fundamental themes from descriptive statistics are measurement scales
and data classification. This leads to an important taxonomy of the statistical
variables that is the basis of my operational distinction of data mining methods.
Next comes the data matrix. The data matrix is a very important tool in data
mining that allows us to define the objectives of the subsequent analysis according
to the formal language of statistics. For an introduction to these concepts see for
instance Hand et al. (2001).

The chapter introduced some operations on the data matrix. These operations
may be essential or they may be just a good idea. Examples are binarisation, the
calculation of frequency distributions, variable transformations, and the treatment
of anomalous or missing data. Hand et al. (2001) take a statistical viewpoint and
Han and Kamber (2001) take a computational viewpoint. Finally, we briefly
touched on the description of complex data structures; for more details consult
the previous two books.





CHAPTER 3

Exploratory data analysis

In a quality statistical data analysis the initial step has to be exploratory. This is
particularly true of applied data mining, which essentially consists of searching
for relationships in the data at hand, not known a priori. Exploratory data anal-
ysis has to take the available information organised as explained in Chapter 2,
then analyse it, to summarise the whole data set. This is usually carried out
through potentially computationally intensive graphical representations and sta-
tistical summary measures, relevant for the aims of the analysis.

Exploratory data analysis could seem equivalent to data mining itself, but
there are two main differences. From the statistical viewpoint, exploratory data
analysis essentially uses descriptive statistical techniques, whereas data mining
can use descriptive and inferential methods; inferential methods are based on
probabilistic techniques. There is a considerable difference between the purpose
of data mining and exploratory analysis. The prevailing purpose of an exploratory
analysis is to describe the structure and the relationships present in the data, for
eventual use in a statistical model. The purpose of a data mining analysis is
the direct production of decision rules based on the structures and models that
describe the data. This implies, for example, a considerable difference in the use
of concurrent techniques. An exploratory analysis is often composed of several
exploratory techniques, each one capturing different and potentially noteworthy
aspects of the data. In data mining, the various techniques are evaluated and
compared in order to choose one that could subsequently be implemented as a
decision rule. Coppi (2002) discusses the differences between exploratory data
analysis and data mining.

This chapter takes an operational approach to exploratory data analysis. It
begins with univariate exploratory analysis – examining the variables one at a
time. Even though the observed data is multidimensional and we will eventually
need to consider the interrelationships between the variables, we can gain a
lot of insight from examining each variable on its own. Next comes bivariate
analysis. At this stage, the treatment of bivariate and multivariate analysis will
use quantitative variables exclusively.

This is followed by multivariate exploratory analysis of qualitative data. In
particular, we will compare some of the numerous summary measures in the
statistical literature. It is difficult to analyse data with many dimensions, so the

Applied Data Mining. Paolo Giudici
 2003 John Wiley & Sons, Ltd ISBNs: 0-470-84679-8 (Paper); 0-470-84678-X (Cloth)



34 APPLIED DATA MINING

final section looks at principal component analysis (PCA), a popular method for
reducing dimensionality.

3.1 Univariate exploratory analysis

Analysis of the individual variables is an important step in preliminary data
analysis. It can gather important information for later multivariate analysis
and modelling. The main instruments of exploratory univariate analysis are
univariate graphical displays and a series of summary indexes. Graphical displays
differ according to the type of data. Bar charts and pie diagrams are commonly
used to represent qualitative nominal data. The horizontal axis, or x-axis, of
the bar chart indicates the variable’s categories, and the vertical axis, or y-axis,
indicates the absolute or relative frequencies of a given level of the variable. The
order of the variables along the horizontal axis generally has no significance. Pie
diagrams divide the pie into wedges where each wedge’s area is proportional to
the relative frequency of the variable level it represents. Frequency diagrams are
typically used to represent ordinal qualitative and discrete quantitative variables.
They are simply bar charts where the order in which the variables are inserted
on the horizontal axis must correspond to the numeric order of the levels.

To obtain a frequency distribution for continuous quantitative variables, first
reclassify or discretise the variables into class intervals. Begin by establishing the
width of each interval. Unless there are special reasons for doing otherwise, the
convention is to adopt intervals with constant width or intervals with different
widths but with the same frequency (equifrequent). This may lead to some loss
of information, since it is assumed that the variable distributes in a uniform
way within each class. However, reclassification makes it possible to obtain a
summary that can reveal interesting patterns. The graphical representation of
the continuous variables, reclassified into class intervals, is obtained through a
histogram. To construct a histogram, the chosen intervals are positioned along the
x-axis. A rectangle with area equal to the (relative) frequency of the same class is
then built on every interval. The height of these rectangles represent the frequency
density, indicated through an analytic function f (x), called the density function.
In exploratory data analysis the density function assumes a constant value over
each interval, corresponding to the height of the bar in the histogram. The density
function can also be used to specify a continuous probability model; in this case
f (x) will be a continuous function.

The second part of the text has numerous graphical representations similar to
those describe here. Using quantitative variables, Figure 3.1 shows an example of
a frequency distribution and a histogram. They show, respectively, the distribution
of the variables ‘number of components of a family in a region’ and ‘net returns,
in thousands of C–– , of a set of enterprises’.

So far we have seen how it is possible to graphically represent a univariate
distribution. However, sometimes we need to further summarise all of the obser-
vations. Therefore it is useful to construct statistical indexes that are well suited
to summarising the important aspects of the observations under consideration.
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Figure 3.1 (a) A frequency diagram and (b) a histogram.

We now examine the main unidimensional or univariate statistical indexes; they
can be categorised as indexes of location, variability, heterogeneity, concentra-
tion, asymmetry and kurtosis. The exposition is brief and elementary; refer to the
relevant textbooks for detailed methods.

3.1.1 Measures of location

The most commonly used measure of location is the mean, computable only for
quantitative variables. Given a set x1, x2, . . . , xN of N observations, the arith-
metic mean (the mean for short) is given by

x = x1 + x2 + · · · + xN

N
=

∑ xi

N

In calculating the arithmetic mean, the very large observations can counterbalance
and even overpower the smallest ones. Since all observations are used in the
calculation, any value or set of values can considerably affect the computed mean
value. In financial data, where extreme outliers are common, this ‘overpowering’
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happens often and robust alternatives to the mean are probably preferable as
measures of location.

The previous expression of the arithmetic mean is to be calculated on the data
matrix. When univariate data is classified in terms of a frequency distribution,
the arithmetic mean can also be calculated directly on the frequency distribution,
leading to the same result, indeed saving computer time. When calculated on the
frequency distribution, the arithmetic mean can be expressed as

x =
∑

x∗
i pi

This is known as the weighted arithmetic mean, where the x∗
i indicate the distinct

levels that the variable can take and pi is the relative frequency of each of
those levels.

The arithmetic mean has some important properties:

• The sum of the deviations from the mean is zero:
∑

(xi − x) = 0.
• The arithmetic mean is the constant that minimises the sum of the squares

of the deviations of each observation from the constant itself: mina

∑
(xi −

a)2 = x.

• The arithmetic mean is a linear operator:
1

N

∑
(a + bxi) = a + bx.

A second simple index of position is the modal value or mode. The mode
is a measure of location computable for all kinds of variables, including the
qualitative nominal ones. For qualitative or discrete quantitative characters, the
mode is the level associated with the greatest frequency. To estimate the mode
of a continuous variable, we generally discretise the data intervals as we did for
the histogram and compute the mode as the interval with the maximum density
(corresponding to the maximum height of the histogram). To obtain a unique
mode, the convention is to use the middle value of the mode’s interval.

A third important measure of position is the median. In an ordered sequence of
data the median is the value for which half the observations are greater and half
are less. It divides the frequency distribution into two parts with equal area. The
median is computable for quantitative variables and ordinal qualitative variables.
Given N observations in non-decreasing order, the median is obtained as follows:

• If N is odd, the median is the observation which occupies the position (N +
1)/2.

• If N is even, the median is the mean of the observations that occupy positions
N /2 and N/2 + 1.

The median remains unchanged if the smallest and largest observations are sub-
stituted with any other value that is still lower (or greater) than the median. For
this reason, unlike the mean, anomalous or extreme values do not influence the
median assessment of the distribution’s location.
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As a generalisation of the median, one can consider the values that subdivide
the frequency distribution into parts having predetermined frequencies or per-
centages. Such values are called quantiles or percentiles. Of particular interest
are the quartiles; these correspond to the values which divide the distribution
into four equal parts. More precisely, the quartiles q1, q2, q3, the first, second
and third quartile, are such that the overall relative frequency with which we
observe values less than q1 is 0.25, less than q2 is 0.5 and less than q3 is 0.75.
Note that q2 coincides with the median.

3.1.2 Measures of variability

It is usually interesting to study the dispersion or variability of a distribution. A
simple indicator of variability is the difference between the maximum observed
value and the minimum observed value of a certain variable, known as the range.
Another index is constructed by taking the difference between the third quartile
and the first quartile, the interquartile range (IQR). The range is highly sensitive
to extreme observations, but the IQR is a robust measure of spread for the same
reason the median is a robust measure of location. Range and IQR are not used
very often. The measure of variability most commonly used for quantitative data
is the variance. Given a set x1, x2, . . . , xN of N quantitative observations of a
variable X, and indicating with x their arithmetic mean, the variance is defined by

σ 2(X) = 1

N

∑
(xi − x)2

the average squared deviation from the mean. When calculated on a sample
rather then the whole population it is also denoted by s2; then using N − 1 in
the denominator instead of N makes s2 an unbiased estimate of the population
variance (Section 5.1). When all the observations have the same value then the
variance is zero. Unlike the mean, the variance is not a linear operator. It holds
that Var(a + bX) = b2 Var(X).

The variance squares the units in which X is measured. That is, if X measures
a distance in metres, the variance will be in square metres. In practice it is
more convenient to preserve the original units for the measure of spread; that is
why the square root of the variance, known as the standard deviation, is often
reported. Furthermore, to facilitate comparisons between different distributions,
the coefficient of variation (CV) is often used. CV equals the standard deviation
divided by the absolute value of the arithmetic mean of the distribution (CV is
defined only when the mean is non-zero); it is a unitless measure of spread.

3.1.3 Measures of heterogeneity

The measures in the previous section cannot be computed for qualitative data,
but we can still measure dispersion by using the heterogeneity of the observed
distribution. Consider the general representation of the frequency distribution of
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Table 3.1 Frequency distribution for a
qualitative variable.

Modality Relative frequencies

x∗
1 p1

x∗
2 p2

...
...

x∗
k pk

a qualitative variable with k levels (Table 3.1). In practice it is possible to have
two extreme situations between which the observed distribution will lie:

• Null heterogeneity is when all the observations have X equal to the same
level; that is, pi = 1 for a certain i and pi = 0 for the other k–1 levels.

• Maximum heterogeneity is when the observations are uniformly distributed
among the k levels; that is, pi = 1/k for all i = 1, . . . , k.

A heterogeneity index will have to attain its minimum in the first situation and
its maximum in the second one. We now introduce two indexes that satisfy
such conditions.

The Gini index of heterogeneity is defined by

G = 1 −
k∑

i=1

p2
i

It can be easily verified that the Gini index is equal to 0 in the case of perfect
homogeneity and equal to 1–1/k in the case of maximum heterogeneity. To
obtain a ‘normalised’ index, which takes values in the interval [0,1], the Gini
index can be rescaled by its maximum value, giving the following relative index
of heterogeneity:

G′ = G

(k − 1)/k

The second index of heterogeneity is the entropy, defined by

E = −
k∑

i=1

pi log pi

This index equals 0 in the case of perfect homogeneity and log k in the case of
maximum heterogeneity. To obtain a ‘normalised’ index, which assumes values
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in the interval [0,1], we can rescale E by its maximum value, obtaining the
following relative index of heterogeneity:

E′ = E

log k

3.1.4 Measures of concentration

Concentration is very much related to heterogeneity. In fact, a frequency distri-
bution is said to be maximally concentrated when it has null heterogeneity and
minimally concentrated when it has maximal heterogeneity. It is interesting to
examine intermediate situations, where the two concepts find a different interpre-
tation. In particular, the concept of concentration applies to variables measuring
transferable goods (quantitative and ordinal qualitative). The classical example
is the distribution of a fixed amount of income among N individuals; we shall
use this as a running example.

Consider N non-negative quantities measuring a transferable characteristic
placed in non-decreasing order:

0 ≤ x1 ≤ · · · ≤ xN

The aim is to understand the concentration of the characteristic among the N

quantities, corresponding to different observations. Let Nx = ∑
xi , the total

available amount, where x is the arithmetic mean. Two extreme situations
can arise:

• x1 = x2 = · · · = xN = x, corresponding to minimum concentration (equal
income for the running example).

• x1 = x2 = · · · = xN−1 = 0, xN = Nx, corresponding to maximum concentra-
tion (only one unit gets all income).

In general, we want to evaluate the degree of concentration, which usually
lies between these two extremes. To do this, we are going to build a measure of
the concentration. Define

Fi = i

N
for i = 1, . . . , N

Qi = x1 + x2 + · · · + xi

Nx
=

i∑
j=1

xj

Nx
, for i = 1, . . . , N

For each i, Fi is the cumulative percentage of considered units, up to the ith
unit and Qi is the cumulative percentage of the characteristic that belongs to the
same first i units. It can be shown that:

0 ≤ Fi ≤ 1; 0 ≤ Qi ≤ 1

Qi ≤ Fi

FN = QN = 1
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Let F0 = Q0 = 0 and consider the N + 1 pairs of coordinates (0,0),
(F1, Q1), . . . , (FN−1,QN−1), (1,1). If we plot these points in the plane and
join them with line segments, we obtain a piecewise linear curve called the
concentration curve.

To illustrate the concept, Table 3.2 contains the ordered income of seven indi-
viduals and the calculations needed to obtain the concentration curve. Figure 3.2
shows the concentration curve obtained from the data. It also includes the 45◦

line corresponding to minimal concentration. Notice how the observed situation
departs from the line of minimal concentration, and from the case of maximum
concentration, described by a curve almost coinciding with the x-axis, at least
until the (N − 1)th point.

Table 3.2 Construction of the
concentration curve.

Income Fi Qi

0 0

11 1/7 11/256

15 2/7 26/256

20 3/7 46/256

30 4/7 76/256

50 5/7 126/256

60 6/7 186/256

70 1 1

0

0.2

0.4

0.6

0.8

1

Fi

Q
i

Figure 3.2 Representation of the concentration curve.
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A summary index of concentration is the Gini concentration index, based on
the differences Fi − Qi . There are three points to note:

• For minimum concentration, Fi − Qi = 0, i = 1, 2, . . . , N .
• For maximum concentration, Fi − Qi = Fi, i = 1, 2, . . . , N − 1 and FN −

QN = 0.
• In general, 0 < Fi − Qi < Fi , i = 1, 2, . . . , N − 1, with the differences

increasing as maximum concentration is approached.

The concentration index is defined by the ratio between the quantity
∑N−1

i=1

(Fi − Qi) and its maximum value, equal to
∑N−1

i=1 Fi . The complete expression
of the index is therefore

R =

N−1∑
i=1

(Fi − Qi)

N−1∑
i=1

Fi

The Gini concentration coefficient, R, equals 0 for minimum concentration and
1 for maximum concentration. For the data in Table 3.2 it turns out that R is
equal to 0.387, indicating a moderate level of concentration.

3.1.5 Measures of asymmetry

To obtain an indication of the asymmetry of a distribution it may be sufficient
to compare the mean and the median. If these measures are almost the same,
the data tends to be distributed in a symmetric way. If the mean exceeds the
median, the data can be described as skewed to the right (positive asymmetry);
if the median exceeds the mean, the data can be described as skewed to the
left (negative asymmetry). Graphs of the data using bar charts or histograms are
useful for investigating the form of the data distribution. For example, Figure 3.3
shows histograms for a right-skewed distribution, a symmetric distribution and a
left-skewed distribution.

A further graphical tool is the boxplot. The boxplot bases uses the median
(Me), the first and third quartile (Q1 and Q3) and the interquartile range (IQR).
Figure 3.4 shows an example. Here the first quartile and the third quartile have
been marked with Q1 and Q3, and the lower and upper limits of the figure, T1
and T2, are defined as follows:

T1 = max(minimum value observed, Q1– 1.5 × IQR)

T2 = min(maximum value observed, Q3 + 1.5 × IQR)
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(a) (c)(b)

Figure 3.3 Histograms describing symmetric and asymmetric distributions: (a) mean >

median, (b) mean = median, (c) mean < median.

*   *

MeQ1 Q3

T1 T2

outliers

Figure 3.4 A boxplot.

The boxplot permits us to identify the asymmetry of the considered distribution.
If the distribution were symmetric, the median would be equidistant from Q1
and Q3; otherwise the distribution is skewed. For example, when the distance
between Q3 and the median is greater than the distance between Q1 and the
median, the distribution is skewed to the right. The boxplot also indicates the
presence of anomalous observations, or outliers. Observations smaller than T1 or
greater than T2 can be seen as outliers, at least on an exploratory basis. Figure 3.4
indicates that the median is closer to the first quartile than the third quartile, so the
distribution seems skewed to the right. Moreover, some anomalous observations
are present at the right tail of the distribution.

Let us construct a summary statistical index that can measure a distribution’s
degree of asymmetry. The proposed index is based on calculating

µ3 =
∑

(xi − x)3

N

known as the third central moment of the distribution. The asymmetry index is
then defined by

γ = µ3

σ 3

where σ is the standard deviation. From its definition, the asymmetry index is
calculable only for quantitative variables. It can assume every real value (i.e. it
is not normalised). Here are three particular cases:
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• If the distribution is symmetric, γ = 0.
• If the distribution is left asymmetric, γ < 0.
• If the distribution is right asymmetric, γ > 0.

3.1.6 Measures of kurtosis

Continuous data can be represented using a histogram. The form of the histogram
gives information about the data. It is also possible to approximate, or even to
interpolate, a histogram with a density function of a continuous type. In particular,
when the histogram has a very large number of classes and each class is relatively
narrow, the histogram can be approximated using a normal or Gaussian density
function, which has the shape of a bell (Figure 3.5).

In Figure 3.5 the x-axis represents the observed values and the y-axis repre-
sents the values corresponding to the density function. The normal distribution
is an important theoretical model frequently used in inferential statistical anal-
ysis (Section 5.1). Therefore it is reasonable to construct a statistical index that
measures the ‘distance’ of the observed distribution from the theoretical situation
corresponding to perfect normality. The index of kurtosis is a simple index that
allows us to check whether the examined data follows a normal distribution:

β = µ4

µ2
2

where µ4 =
∑

(xi − x)4

N
and µ2 =

∑
(xi − x)2

N

This index is calculable only for quantitative variables and it can assume every
real positive value. Here are three particular cases:

• If the variable is perfectly normal, β = 3.

−4 −2 0 2 4

0

0.1

0.2

0.3

0.4

x

Figure 3.5 Normal approximation to the histogram.
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• If β < 3 the distribution is called hyponormal (thinner with respect to the
normal distribution having the same variance, so there is a lower frequency
for values very distant from the mean).

• If β > 3 the distribution is called hypernormal (fatter with respect to the
normal distribution, so there is a greater frequency for values very distant
from the mean).

There are other graphical tools useful for checking whether the examined data
can be approximated using a normal distribution. The most common one is the
so-called ‘quantile-quantile’ plot, often abbreviated to qq-plot. This is a graph
in which the observed quantiles from the observed data are compared with the
theoretical quantiles that would be obtained if the data came from a true normal
distribution. The graph is a set of points on a plane. The closer they come to the
45◦ line passing through the origin, the more closely the observed data matches
data from a true normal distribution. Consider the qq-plots in Figure 3.6 they
demonstrate some typical situations that occur in actual data analysis.

With most popular statistical software it is easy to obtain the indexes men-
tioned in this section, plus others too. Table 3.3 shows an example of a typical

Theoretical Theoretical

Observed Observed
(a) (b)

(c) (d)

Theoretical Theoretical

Observed Observed

Figure 3.6 Examples of qq-plots: (a) hyponormal distribution, (b) hypernormal distri-
bution, (c) left asymmetric distribution, (d) right asymmetric distribution.



EXPLORATORY DATA ANALYSIS 45

Table 3.3 Example of software output for univariate analysis: the variable is the extra
return of an investment fund.

Moments Quantiles

N 120 Sum Wgts 120 100%Max 2029 99% 1454
Mean 150.2833 Sum 18034 75%Q3 427 95% 861
Std Dev 483.864 Variance 234124.3 50%Med 174.5 90% 643.5
Skewness 0.298983 Kurtosis 2.044782 25%Q1 -141 10% -445.5
CV 321.9678 Range 3360 0%Min -1331 5% -658.5
Q3-Q1 568 Mode 186 1% -924

Extremes
Lowest Obs Highest Obs
-1331( 71) 1131( 31)
-924( 54) 1216( 103)
-843( 19) 1271( 67)
-820( 21) 1454( 81)
-754( 50) 2029( 30)

Missing Value .
Count 140
% Count/Nobs 53.85

software output for this purpose, obtained from PROC UNIVARIATE of SAS.
Besides the main measures of location, it gives the quantiles as well as the min-
imum and the maximum observed values. The kurtosis index calculated by SAS
actually corresponds to β − 3.

3.2 Bivariate exploratory analysis

The relationship between two variables can be graphically represented using a
scatterplot. Figure 3.7 shows the relationship between the observed values in two
performance indicators, return on investment (ROI) and return on equity (ROE),
for a set of business enterprises in the computer sector. There is a noticeable
increasing trend in the relationship between the two variables. Both variables in
Figure 3.7 are quantitative and continuous, but a scatterplot can be drawn for all
kinds of variables.

A real data set usually contains more than two variables, but it is still possible
to extract interesting information from the analysis of every possible bivariate
scatterplot between all pairs of the variables. We can create a scatterplot matrix
in which every element corresponds to the scatterplot of the two corresponding
variables indicated by the row and the column. Figure 3.8 is an example of a
scatterplot matrix for real data on the weekly returns of an investment fund
made up of international shares and a series of worldwide financial indexes. The
period of observation for all the variables starts on 4 October 1994 and ends on
4 October 1999, for a total of 262 working days. Notice that the variable REND
shows an increasing relationship with all financial indexes and, in particular, with
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Figure 3.7 Example of a scatterplot diagram.

Figure 3.8 Example of a scatterplot matrix.

the EURO, WORLD and NORDAM indexes. The squares containing the variable
names also contain the minimum and maximum value observed for that variable.

It is useful to develop bivariate statistical indexes that further summarise the
frequency distribution, improving the interpretation of data, even though we may
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lose some information about the distribution. In the bivariate case, and more
generally in the multivariate case, these indexes permit us to summarise the
distribution of each data variable, but also to learn about the relationship between
the variables (corresponding to the columns of the data matrix). The rest of this
section focuses on quantitative variables, for which summary indexes are more
easily formulated, typically by working directly with the data matrix. Section 3.4
explains how to develop summary indexes that describe the relationship between
qualitative variables.

Concordance is the tendency of observing high (low) values of a variable
together with high (low) values of the other. Discordance is the tendency of
observing low (high) values of a variable together with high (low) values of
the other. For measuring concordance, the most common summary measure is
the covariance, defined as

Cov(X, Y ) = 1

N

N∑
i=1

[xi − µ(X)][yi − µ(Y )]

where µ(X) is the mean of variable X and µ(Y ) is the mean of variable Y .
The covariance takes positive values if the variables are concordant and negative
values if they are discordant. With reference to the scatterplot representation,
setting the point (µ(X), µ(Y )) as the origin, Cov(X, Y ) tends to be positive
when most of the observations are in the upper right-hand and lower left-hand
quadrants. Conversely, it tends to be negative when most of the observations are
in the lower right-hand and upper left-hand quadrants.

Notice that the covariance is directly calculable from the data matrix. In fact,
since there is a covariance for each pair of variables, this calculation gives rise to
a new data matrix, called the variance–covariance matrix. In this matrix the rows
and columns correspond to the available variables. The main diagonal contains
the variances and the cells outside the main diagonal contain the covariances
between each pair of variables. Since Cov(Xj, Xi) = Cov(Xi, Xj ), the resulting
matrix will be symmetric (Table 3.4).

Table 3.4 The variance–covariance matrix.

X1 . . . Xj . . . Xh

X1 Var(X1) . . . Cov(X1, Xj ) . . . Cov(X1, Xh)

...
...

...
...

...
...

Xj Cov(Xj ,X1) . . . Var(Xj ) . . . . . .

...
...

...
...

...
...

Xh Cov(Xh,X1) . . . . . . . . . Var(Xh)
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The covariance is an absolute index; that is, it can identify the presence of a
relationship between two quantities but it says little about the degree of this rela-
tionship. In other words, to use the covariance as an exploratory index, it need to
be normalised, making it a relative index. The maximum value that Cov(X, Y )
can assume is σxσy , the product of the two standard deviations of the vari-
ables. The minimum value that Cov(X, Y ) can assume is – σxσy . Furthermore,
Cov(X, Y ) assumes its maximum value when the observed data points lie on a
line with positive slope; it assumes its minimum value when the observed data
points lie on a line with negative slope. In light of this, we define the (linear)
correlation coefficient between two variables X and Y as

r(X, Y ) = Cov(X, Y )

σ (X)σ(Y )

The correlation coefficient r(X, Y ) has the following properties:

• r(X, Y ) takes the value 1 when all the points corresponding to the joint
observations are positioned on a line with positive slope, and it takes the
value – 1 when all the points are positioned on a line with negative slope.
That is why r is known as the linear correlation coefficient.

• When r(X, Y ) = 0 the two variables are not linked by any type of linear
relationship; that is, X and Y are uncorrelated.

• In general, −1 ≤ r(X, Y ) ≤ 1.

As for the covariance, it is possible to calculate all pairwise correlations directly
from the data matrix, thus obtaining a correlation matrix. The structure of such
a matrix is shown in Table 3.5. For the variables plotted in Figure 3.7 the cor-
relation matrix is as in Table 3.6. Table 3.6 takes the ‘visual’ conclusions of
Figure 3.7 and makes them stronger and more precise. In fact, the variable REND
is strongly positively correlated with EURO, WORLD and NORDAM. In general,
there are many variables exhibiting strong correlation.

Interpreting the magnitude of the linear correlation coefficient is not partic-
ularly easy. It is not clear how to distinguish the ‘high’ values from the ‘low’

Table 3.5 The correlation matrix.

X1 . . . Xj . . . Xh

X1 1 . . . Cor(X1, Xj ) . . . Cor(X1, Xh)

...
...

...
...

...
...

Xj Cor(Xj ,X1) . . . 1 . . . . . .

...
...

...
...

...
...

Xh Cor(Xh,X1) . . . . . . . . . 1
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Table 3.6 Example of a correlation matrix.

values of the coefficient, in absolute terms, so that we can distinguish the impor-
tant correlations from the irrelevant. Section 5.3 considers a model-based solution
to this problem when examining statistical hypothesis testing in the context of
the normal linear model. But to do that we need to assume the pair of variables
have a bivariate Gaussian distribution.

From an exploratory viewpoint, it would be convenient to have a threshold
rule to inform us when there is substantial information in the data to reject the
hypothesis that the correlation coefficient is zero. Assuming the observed sample
comes from a bivariate normal distribution (Section 5.3), we can use a rule of the
following type: Reject the hypothesis that the correlation coefficient is null when

∣∣∣∣∣
r(X, Y )√

1 − r2(X, Y )

√
n − 2

∣∣∣∣∣ > tα/2

where tα/2 is the (1 − α/2) percentile of a Student’s t distribution with n − 2
degrees of freedom, corresponding to the number of observations minus 2 (Sec-
tion 5.1). For example, for a large sample and a significance level of α = 5%
(which sets the probability of incorrectly rejecting a null correlation), the thresh-
old is t0.025 = 1.96. The previous inequality asserts that we should conclude that
the correlation between two variables is ‘significantly’ different from zero when
the left-hand side is greater than tα/2. For example, applying the previous rule
to Table 3.6, with tα/2 = 1.96, it turns out that all the observed correlations are
significantly different from zero.

3.3 Multivariate exploratory analysis of quantitative data

Matrix notation allows us to express multivariate measures more compactly.
We assume that the data matrix is entirely composed of quantitative variables;
Section 3.4 deals with qualitative variables. Let X be a data matrix with n rows
and p columns. The main summary measures can be expressed directly in terms
of matrix operations on X. For example, the arithmetic mean of the variables,
described by a p-dimensional vector X, can be obtained directly from the data
matrix as

X = 1

n
1X
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where 1 indicates a (row) vector of length n with all the elements equal to 1. As
we have seen in Section 2.5, it is often a good idea to standardise the variables
in X. To achieve this aim, we first need to subtract the mean from each variable.
The matrix containing the deviations from each variable’s mean is

X̃ = X − 1

n
JX

where J is an n × n matrix with all the elements equal to 1.
Consider now the variance–covariance matrix, denoted by S. S is a p × p

square matrix containing the variance of each variable on the main diagonal. The
off-diagonal elements contain the p(p − 1)/2 covariances between all the pairs
of the p considered variables. In matrix notation we can write

S = 1

n
X̃′X̃

where X̃′ represents the transpose of X̃. The (i, j ) element of the matrix is

Si,j = 1

n

n∑
�=1

(x�i − xi)(x�j − xj )

S is symmetric and positive definite, meaning that for any non-zero vector x,
x′Sx > 0.

It can be appropriate, for example in a comparisons between different
databases, to summarise the whole variance–covariance matrix with a real
number that expresses the ‘overall variability’ of the system. This can be done
usually through two alternative measures. The trace, denoted by tr, is the sum of
the elements on the main diagonal of S, the variances of the variables:

tr(S) =
p∑

s=1

σ 2
s

It can be shown that the trace of S is equal to the sum of the eigenvalues of the
matrix itself:

tr(S) =
p∑

s=1

λs

A second measure of overall variability is defined by the determinant of S and
is often called the Wilks generalised variance:

W = |S |
We have seen how to transform the variance–covariance matrix to the correla-

tion matrix so that we can interpret the relationships more easily. The correlation
matrix, R, is computable as

R = 1

n
Z′Z
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where Z = X̃F is a matrix containing the standardised variables (Section 2.5)
and F is a p × p matrix that has diagonal elements equal to the reciprocal of the
standard deviations of the variables:

F = [diag(s11,. . .,spp)]−1

Although the correlation matrix is very informative on the presence of statisti-
cal (linear) relationships between the considered variables, in reality it calculates
them marginally for every pair of variables, without including the influence of
the remaining variables.

To filter out spurious effects induced by other variables, a useful tool is the par-
tial correlation. The partial correlation measures the linear relationship between
two variables with the others held fixed. Let rij |REST be the partial correlation
observed between the variables Xi and Xj , given all the remaining variables,
and let K = R−1, the inverse of the correlation matrix. To calculate the partial
correlation, it can be shown that

rij |REST = −kij

[kii kjj ]1/2

where kii , kjj and kij are the elements at positions (i, i), (j, j) and (i, j) in matrix
K. The importance of reasoning in terms of partial correlations is particularly
evident in databases characterised by strong collinearities between the variables.
For example, in an analysis developed on the correlation structure between daily
performances of 12 sector indexes of the American stock market in the period
4/1/1999 to 29/2/2000, I have computed the marginal correlations between the
NASDAQ100 index and the COMPUTER and BIOTECH sector indexes, obtain-
ing 0.99 and 0.94 respectively. However, the corresponding partial correlations
are smaller, 0.45 and 0.13 respectively. This occurs because there is strong cor-
relation among all the considered indexes, therefore the marginal correlations
tend also to reflect the spurious correlation between two variables induced by
the others. The BIOTECH index has a smaller weight than the COMPUTER
index in the NASDAQ100 index, in particular, as the partial correlation for the
BIOTECH index is much lower.

3.4 Multivariate exploratory analysis of qualitative data

So far we have used covariance and correlation as our main measures of statistical
relationships between quantitative variables. With ordinal qualitative variables,
it is possible to extend the notion of covariance and correlation to the ranks of
the observations. The correlation between the variable ranks is known as the
Spearman correlation coefficient. Table 3.7 shows how to express the ranks of
two ordinal qualitative variables that describe the quality and the menu of four
different restaurants. The Spearman correlation of the data in Table 3.7 is zero,
therefore the ranks of the two variables are not correlated.
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Table 3.7 Ranking of ordinal variables.

Variable A Variable B Ranks of variable A Ranks of variable B

High Simple 3 1

Medium Intermediate 2 2

Medium Elaborated 2 3

Low Simple 1 1

More generally, transforming the levels of the ordinal qualitative variables
into the corresponding ranks allows most of the analysis applicable to quanti-
tative data to be extended to the ordinal qualitative case. This can also include
principal component analysis (Section 3.5). However, if the data matrix contains
qualitative data at the nominal level (not binary, otherwise they could be con-
sidered quantitative, as in Section 2.3), the notion of covariance and correlation
cannot be used. The rest of this section considers summary measures for the
intensity of the relationships between qualitative variables of any kind. These
measures are known as association indexes. These indexes can sometimes be
applied to discrete quantitative variables, but with a loss of explanatory power.

In the examination of qualitative variables, a fundamental part is played by
the frequencies for the levels of the variables. Therefore we begin with the
contingency table introduced in Section 2.4. Unlike Section 2.4, qualitative data
are often available directly in the form of a contingency table, without need-
ing to access the original data matrix. To emphasise this difference, we now
introduce a slightly different notation which we shall use throughout. Given a
qualitative character X which assumes the levels X1, . . . , XI , collected in a pop-
ulation (or sample) of n units, the absolute frequency of level Xi (i = 1, . . . , I )
is the number of times the variable X is observed having value Xi . Denote
this absolute frequency by ni . Table 3.8 presents a theoretical two-way con-
tingency table to introduce the notation used in this Section. In Table 3.8 nij

Table 3.8 Theoretical two-way contingency table.

Y

X Y1 . . . Yj . . . YJ Total

X1 n11 . . . n1j . . . n1J n1+
...

...
...

...
...

Xi ni1 . . . nij . . . niJ ni+
...

...
...

...
...

XI nI1 . . . nIj . . . nIJ nI+

Total n+1 . . . n+j . . . n+J n
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indicates the frequency associated with the pair of levels (Xi, Yj ), i = 1, 2, . . . , I ;
j = 1, 2, . . . , J , of the variables X and Y . The nij are also called cell frequencies.

• ni+ = ∑J
j=1 nij is the marginal frequency of the ith row of the table; it

represents the total number of observations which assume the ith level of X

(i = 1, 2, . . . , I ).
• n+j = ∑I

i=1 nij is the marginal frequency of the j th column of the table;
it denotes the total number of observations which assume the j th level of
Y (j = 1, 2, . . . , J ).

For the frequencies in the table, we can write the following marginalisation
relationship:

I∑
i=1

ni+ =
J∑

j=1

n+j =
I∑

i=1

J∑
j=1

nij = n

From an n × p data matrix, it is possible to construct p(p − 1)/2 two-way con-
tingency tables, corresponding to all possible qualitative variable pairs. However,
it is usually reasonable to limit ourselves to obtaining only those that correspond
to interesting ‘intersections’ between the variables, those for which the joint dis-
tribution may be important and a useful complement to the univariate frequency
distribution.

3.4.1 Independence and association

To develop descriptive indexes of the relationship between qualitative variables,
we need the concept of statistical independence. Two variables, X and Y , are
said to be independent, with reference to n observations, if they adhere to the
following conditions:

ni1

n+1
= · · · = niJ

n+J

= ni+
n

∀i = 1, 2, . . . , I

or, equivalently,

n1j

n1+
= · · · = nIj

nI+
= n+j

n
∀j = 1, 2, . . . , J

If this occurs it means that, with reference to the first equation, the (bivariate)
analysis of the variables does not give any additional information about X beyond
the univariate analysis of the variable X itself, and similarly for Y in the second
equation. It will be said in this case that Y and X are statistically independent.
From the definition, notice that statistical independence is a symmetric concept
in the two variables; in other words, if X is independent of Y, then Y is indepen-
dent of X. The previous conditions can be equivalently, and more conveniently,
expressed as a function of the marginal frequencies ni+ and n+j . Then X and Y
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are independent if

nij = ni+n+j

n
∀i = 1, 2, . . . , I ; ∀j = 1, 2, . . . , J

In terms of relative frequencies, this is equivalent to

pXY (xi, yj ) = pX(xi)pY (yj )

for every i and for every j . When working with real data, the statistical indepen-
dence condition is almost never satisfied exactly. Consequently, observed data
will often show some degree of interdependence between the variables.

The statistical independence notion applies to qualitative and quantitative vari-
ables. A measure of interdependence operates differently for qualitative variables
than for quantitative variables. For quantitative variables, it is possible to calculate
summary measures (called correlation measures) that work both on the levels and
the frequencies. For qualitative variables, the summary measures (called associ-
ation measures) can use only the frequencies, because the levels are not metric.

For quantitative variables, an important relationship holds between statistical
independence and the absence of correlation. If two variables, X and Y , are
statistically independent, then cov(X,Y) = 0 and r(X, Y ) = 0. The converse is
not necessarily true, in the sense that two variables can be such that r(x, y) = 0,
even though they are not independent. In other words, the absence of correlation
does not imply statistical independence. An exception occurs when the variables
X and Y are jointly distributed according to a normal multivariate distribution
(Section 5.1). Then the two concepts are equivalent. The greater difficulty of
using association measures compared with correlation measures lies in the fact
that there are so many indexes available in the statistical literature. Here we
examine three different classes: distance measures, dependency measures and
model-based measures.

3.4.2 Distance measures

Independence between two variables, X and Y , holds when

nij = ni+n+j

n
∀i = 1, 2, . . . , I ; ∀j = 1, 2, . . . , J

for all joint frequencies of the contingency table. A first approach to the summary
of an association can therefore be based on calculating a ‘global’ measure of
disagreement between the frequencies actually observed (nij ) and those expected
in the hypothesis of independence between the two variables (ni+n+j /n). The
original statistic proposed by Karl Pearson is the most widely used measure for
verifying the hypothesis of independence between X and Y . In the general case,
it is defined by

X2 =
I∑

i=1

J∑
j=1

(nij − n∗
ij )

n∗
ij

2
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where
n∗

ij = ni+n+j

n
i = 1, 2, . . . , I ; j = 1, 2, . . . , J

Note that X2 = 0 if the variables X and Y are independent. In that case the
factors in the numerator are all zero. The statistic X2 can be written in the
equivalent form

X2 = n


 I∑

i=1

J∑
j=1

n2
ij

ni+n+j

− 1




which emphasises the dependence of the statistic on the number of observations,
n. This reveals a serious inconvenience – the value of X2 is an increasing function
of the sample size n.

To overcome such inconvenience, some alternative measures have been pro-
posed, all functions of the previous statistic. Here is one of them:

φ2 = X2

n
=

I∑
i=1

J∑
j=1

n2
ij

ni+n+j

− 1

This index is usually called the mean contingency, and the square root of φ2

is called the phi coefficient. For 2 × 2 contingency tables, representing binary
variables, φ2 is normalised as it takes values between 0 and 1, and it can be
shown that

φ2 = Cov2(X, Y )

Var(X)Var(Y )

Therefore in the case of 2 × 2 tables, φ2 is equivalent to the squared linear corre-
lation coefficient. For contingency tables bigger than 2 × 2, φ2 is not normalised.
To obtain a normalised index, useful for comparison, use a different modification
of X2 called the Cramer index. Following an approach quite common in descrip-
tive statistic, the Cramer index is obtained by dividing the φ2 statistic by the
maximum value it can assume, for the structure of the given contingency table.
Since such maximum is the minimum between the values I − 1 and J − 1, with
I and J respectively the number of rows and columns of the contingency table,
the Cramer index is equal to

V 2 = X2

n min[(I − 1), (J − 1)]

It can be shown that 0 ≤ V 2 ≤ 1 for any I × J contingency table, and V 2 = 0 if
and only if X and Y are independent. On the other hand, V 2 = 1 for maximum
dependency between the two variables. Then three situations can be distinguished,
referring without loss of generality to Table 3.8:

a) There is maximum dependency of Y on X when in every row of the table
there is only one non-zero frequency. This happens if to each level of X
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there, corresponds one and only one level of Y . This condition occurs when
V 2 = 1 and I ≥ J .

b) There is maximum dependency of X on Y if in every column of the table
there is only one non-null frequency. This means that to each level of Y

there corresponds one and only one level of X. This condition occurs when
V 2 = 1 and J ≥ I .

c) If the two previous conditions are simultaneously satisfied, i.e. if I = J

when V 2 = 1, the two variables are maximally interdependent.

We have referred to the case of two-way contingency tables, involving two vari-
ables, with an arbitrary number of levels. However, the measures presented here
can easily be applied to multiway tables, extending the number of summands in
the definition of X2 to account for all table cells.

The association indexes based on the Pearson statistic X2 measure the dis-
tance of the relationship between X and Y from the situation of independence.
They refer to a generic notion of association, in the sense that they measure
exclusively the distance from the independence situation, without giving infor-
mation on the nature of that distance. On the other hand, these indexes are rather
general, as they can be applied in the same fashion to all kinds of contingency
table. Furthermore, as we shall see in Section 5.4, the statistic X2 has an asymp-
totic probabilistic (theoretical) distribution, so it can also be used to assess an
inferential threshold to evaluate inductively whether the examined variables are
significantly dependent. Table 3.9 shows an example of calculating two X2-based
measures. Several more applications are given in the second half of the book.

3.4.3 Dependency measures

The association measures seen so far are all functions of the X2 statistics, so they
are hardly interpretable in most real applications. This important aspect has been
underlined by Goodman and Kruskal (1979), who have proposed an alternative

Table 3.9 Comparison of association measures.

Variable X2 V2 UY |X
Sales variation 235.0549 0.2096 0.0759
Real estates 116.7520 0.1477 0.0514
Age of company 107.1921 0.1415 0.0420
Region of activity 99.8815 0.1366 0.0376
Number of employees 68.3589 0.1130 0.0335
Sector of activity 41.3668 0.0879 0.0187
Sales 23.3355 0.0660 0.0122
Revenues 21.8297 0.0639 0.0123

Age of owner 6.9214 0.0360 0.0032
Legal nature 4.7813 0.0299 0.0034
Leadership persistence 4.742 0.0298 0.0021
Type of activity 0.5013 −0.0097 0.0002
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approach to measuring the association in a contingency table. The set-up followed
by Goodman and Kruskal is based on defining indexes for the specific context
under investigation. In other words, the indexes are characterised by an operational
meaning that defines the nature of the dependency between the available variables.

Suppose that, in a two-way contingency table, Y is the ‘dependent’ variable
and X is the ‘explanatory’ variable. It may be interesting to evaluate if, for a
generic observation, knowledge of the X level is able to reduce uncertainty about
the corresponding category of Y . The degree of uncertainty in the level of a qual-
itative character is usually expressed using a heterogeneity index (Section 3.1).

Let δ(Y ) indicate a heterogeneity measure for the marginal distribution of Y ,
indicated by the vector of marginal relative frequencies, {f+1, f+2, . . . , f+J }.
Similarly, let δ(Y |i) be the same measure calculated on the conditional
distribution of Y to the ith row of the variable X of the contingency
table,{f1|i , f2|i , . . . , fJ |i} see Section 2.4. An association index based on the
‘proportional reduction in the heterogeneity’, or error proportional reduction
index (EPR), can then be calculated as follows (Agresti, 1990):

EPR = δ(Y ) − M[δ(Y |X)]

δ(Y )

where M[δ(Y |X)] indicates the mean heterogeneity calculated with respect to
the distribution of X, namely

M[δ(Y |X)] =
∑

i

fi+δ(Y |i)

where
fi+ = ni+/n (i = 1, 2, . . . , I )

This index measures the proportion of heterogeneity of Y (calculated through δ)
that can be ‘explained’ by the relationship with X. Remarkably, its structure is
analogous to that of the squared linear correlation coefficient (Section 4.3.3). By
choosing δ appropriately, different association measures can be obtained. Usually
the choice is between the Gini index and the entropy index. Using the Gini index
in the EPR expression, we obtain the so-called concentration coefficient, τY |X:

τY |X =
∑∑

f 2
ij /fi+ −

∑
f 2

+j

1 −
∑

j

f 2
+j

Using the entropy index in the ERP expression, we obtain the so-called uncer-
tainty coefficient, UY |X:

UY |X = −

∑
i

∑
j

fij log(fij /fi+ · f+j )

∑
j

f+j log f+j
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In the case of null frequencies it is conventional to set log 0 = 0. Both τY |X and
UY |X take values in the interval [0,1]. In particular, we can show that

τY |X = UY |X if and only if the variables are independent

τY |X = UY |X = 1 if and only if Y has maximum dependence on X

The indexes have a simple operational interpretation regarding specific aspects
of the dependence link between the variables. In particular, both τY |X and UY |X
represent alternative quantifications of the reduction of the Y heterogeneity that
can be explained through the dependence of Y on X. From this viewpoint they
are rather specific in comparison to the distance measures of association. On the
other hand, they are less general than the distance measures. Their application
requires us to identify a causal link from one variable (explanatory) to the other
(dependent), whereas the X2-based indexes are asymmetric. Furthermore, they
cannot easily be extended to contingency tables with more than two ways, for
obtaining an inferential threshold.

Table 3.9 is an actual comparison between the distance measures and the
uncertainty coefficient UY |X. It is based on data collected for a credit-scoring
problem (Chapter 11). The objective of the analysis is to explore which of the
explanatory variables described in the table (all qualitative or discrete quantita-
tive) are most associated with the binary response variable. The response variable
describes whether or not each of the 7134 business enterprises examined is credit-
worthy. Note that the distance measures (X2 and Cramer’s V 2) are more variable
and seem generally to indicate a higher degree of association. This is due to the
more generic type of associations that they detect. The uncertainty coefficient is
more informative. For instance, it can be said that the variable ‘sales variation’
reduces the degree of uncertainty on the reliability by 7.6%. On the other hand,
X2 can be easily compared to the inferential threshold that can be associated with
it. For instance, with a given level of significance, only the first eight variables
are significantly associated with creditworthiness.

3.4.4 Model-based measures

We can examine those association measures that do not depend on the marginal
distributions of the variables. None of the previous measures satisfy this require-
ment. We now consider a class of easily interpretable indexes that do not depend
on the marginal distributions. These measures are based on probabilistic models
and therefore allow an inferential treatment (Sections 5.4 and 5.5). For ease of
notation, we shall assume a probabilistic model in which cell relative frequen-
cies are replaced by cell probabilities. The cell probabilities can be interpreted as
relative frequencies when the sample size tends to infinity, therefore they have
the same properties as the relative frequencies.

Consider a 2 × 2 contingency table, relative to the variables X and Y , respec-
tively associated with the rows (X = 0,1) and columns (Y = 0,1) of the table. Let
π11, π00, π10 and π01 indicate the probabilities that one observation is classified
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in one of the four cells of the table. The odds ratio is a measure of association
that constitutes a fundamental parameter in the statistical models for the analy-
sis of qualitative data. Let π1|1 and π0|1 indicate the conditional probabilities of
having a 1 (a success) and a 0 (a failure) in row 1; let π1|0 and π0|0 be, the same
probabilities for row 0. The odds of success for row 1 are defined by

odds1 = π1|1
π0|1

= P(Y = 1|X = 1)

P (Y = 0|X = 1)

The odds of success for row 0 are defined by

odds0 = π1|0
π0|0

= P(Y = 1|X = 0)

P (Y = 0|X = 0)

The odds are always a non-negative quantity, with a value greater than 1 when
a success (level 1) is more probable than a failure (level 0), that is when
P(Y = 1|X = 1) > P (Y = 0|X = 1). For example, if the odds equal 4, this
means that a success is four times more probable than a failure. In other words, it
is expected to observe four successes for every failure. Instead odds = 1/4 = 0.25
means that a failure is four times more probable than a success; it is therefore
expected to observe a success for every four failures.

The ratio between the two previous odds is the odds ratio:

θ = odds1

odds0
= π1|1/π0|1

π1|0/π0|0

From the definition of the odds, and using the definition of joint probability, it
can easily be shown that:

θ = π11π00

π10π01

This expression shows that the odds ratio is a cross product ratio, the product
of probabilities on the main diagonal to the product of the probabilities on the
secondary diagonal of a contingency table. In the actual computation of the odds
ratio, the probabilities will be replaced with the observed frequencies, leading to
the following expression:

θij = n11n00

n10n01

Here are three properties of the odds ratio:

• The odds ratio can be equal to any non-negative number; that is, it can take
values in the interval [0, +∞).

• When X and Y are independent π1|1 = π1|0, so that odds1 = odds0 and θ = 1.
On the other hand, depending on whether the odds ratio is greater or less than
1, it is possible to evaluate the sign of the association:
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– For θ > 1 there is a positive association, since the odds of success are
greater in row 1 than in row 0.

– For 0 < θ < 1 there is a negative association, since the odds of success
are greater in row 0 that in row 1.

• When the order of the rows or the order of the columns is reversed, the new
value of θ is the reciprocal of the original value. The odds ratio does not
change value when the orientation of the table is reversed so that the rows
become columns and the columns become rows. This means that the odds
ratio deals with the variables in a symmetrical way, so it is not necessary to
identify a variable as dependent and the other as explanatory.

The odds ratio can be used as an exploratory tool aimed at building a probabilistic
model, similar to the linear correlation coefficient. In particular, we can construct
a decision rule that allows us to establish whether a certain observed value of
the odds ratio indicates a significant association between the corresponding vari-
ables. In that sense it is possible to derive a confidence interval, as done for the
correlation coefficient. The interval says that an association is significant when

| log θij | > zα/2

√√√√∑
ij

1√
nij

where zα/2 is the (1 − α/2) percentile of a standard normal distribution. For
instance, when α = 5% then zα/2 = 1.96. The confidence interval used in this
case is only approximate; the accuracy of the approximation improves with the
sample size.

Table 3.10 shows data on whether different visitors see the group pages cat-
alog (C) and windows (W), from the database described in Chapter 8. From
Table 3.10 we have that

odds1 = P(C = 1|W = 1)

P (C = 0|W = 1)
= 0.1796

0.1295
= 1.387

odds0 = P(C = 1|W = 0)

P (C = 0|W = 0)
= 0.2738

0.4171
= 0.656

Therefore, when W is visited (W = 1) it is more likely that C also is visited
(C = 1). When W is not visited (W = 0) then, C is not visited much (C = 0).

Table 3.10 Observed contingency
table between catalog and windows
pages.

W W = 0 W = 1

C = 0 0.4171 0.1295

C = 1 0.2738 0.1796
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The odds ratio turns out to be θ = 2.114, reflecting a positive (and significant)
association between the two variables.

So far we have defined the odds ratio for 2 × 2 contingency tables. But the
odds ratios can be calculated in the same fashion for larger contingency tables.
The odds ratio for I × J tables can be defined with reference to each of the

(
I

2

)
= I (I − 2)/2

pairs of rows in combination with each of the

(
J

2

)
= J (J − 2)/2

pairs of columns. There are

(
I

2

)(
J

2

)
odds ratios of this type. Evidently, the

number of odds ratios becomes enormous, and it is wise to choose parsimonious
representations. It may be useful to employ graphical representations of the odds
ratio. For example, wanting to investigate the dependence of a dichotomous
response variable from an explanatory variable with J levels, it can be effective to
graphically represent the J odds ratios that are obtained by crossing the response
variable with J binary variables describing the presence or absence of each level
of the explanatory variable.

3.5 Reduction of dimensionality

Multivariate analysis can often be made easier by reducing the dimensionality
of the problem, expressed by the number of variables present. For example, it is
impossible to visualise graphs for a dimension greater than 3. The technique that
is typically used is the linear operation known as principal component transfor-
mation. This technique can be used only for quantitative variables and, possibly
for binary variables. But in practice it is often also applied to labelled qualita-
tive data for exploratory purposes. The method is an important starting point for
studying all dimensionality reduction techniques.

The idea is to transform p statistical variables (usually correlated) in terms
of k < p uncorrelated linear combinations, organised according to the explained
variability. Consider a matrix of data X with n rows and p columns. The starting
point of the analysis is the variance–covariance matrix, S = 1

n
X̃′X̃ (Section 3.3).

To simplify the notation, in the rest of this section it will be assumed that the
observations are already expressed as deviations from the mean and therefore
X = X̃.

Whenever the variables are expressed according to different measurement
scales, it is best to standardise all the variables before calculating S. Alternatively,
it is sufficient to substitute S with the correlation matrix R, since R = 1

n
Z′Z. In

any case, it is assumed that both S and R are of full rank; this implies that none
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of the considered variables is a perfect linear function of the others (or a lin-
ear combination of them). The computational algorithm for principal components
can be described in an iterative way.

Definition. The first principal component of the data matrix X is a vector
described by the following linear combination of the variables:




Y11
...

Yn1


 = a11




x11
...

xn1


 + a21




x12
...

xn2


 + · · · + ap1




x1p

...

xnp




that is, in matrix terms

Y1 =
p∑

j=1

aj1Xj = Xa1

Furthermore, in the previous expression, the vector of the coefficients (also
called weights) a1 = (a11, a21, . . . , ap1)

′ is chosen to maximise the variance of
the variable Y1. To obtain a unique solution it is required that the weights
are normalised, constraining the sum of their squares to be 1. Therefore, the
first principal component is determined by the vector of weights a1 such that
max Var(Y1) = max(a1, Sa1), under the constraint a ′

1a1 = 1, which normalises
the vector.

The solution of the previous problem is obtained using Lagrange multipliers.
It can be shown that, in order to maximise the variance of Y1, the weights can
be chosen to be the eigenvector corresponding to the largest eigenvalue of the
variance–covariance matrix S. The details can be found in a text such as Mardia,
Kent and Bibby (1979).

Definition. The second principal component of the data matrix X is the linear
combination




Y12
...

Yn2


 = a12




X11
...

Xn1


 + a22




X12
...

Xn2


 + · · · + ap2




X1p

...

Xnp




that is, in matrix terms

Y2 =
p∑

j=1

aj2Xj = Xa2

where the vector of the coefficients a2 = (a12, a22, . . . , ap2)
′ is chosen in such

a way that max Var(Y2) = max(a ′
2Sa2), under the constraints (a ′

2a2) = 1 and
a ′

2a1 = 0. Note the second constraint, which requires a1, and a2 to be orthogonal.
This means the first and second components will be uncorrelated. The expression
for the second principal component can be obtained using Lagrange multipliers,
and a2 is the eigenvector (normalised and orthogonal to a1) corresponding to the
second largest eigenvalue of S.
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This process can be used recursively for the definition of the kth compo-
nent, with k less than the number of variables p. In general, the vth principal
component, for v = 1, . . . , k is the linear combination

Yv =
p∑

j=1

ajvXj = Xav

in which the vector of the coefficients av is the eigenvector of S corresponding
to the vth largest eigenvalue. This eigenvector is normalised and orthogonal to
all the previous eigenvectors.

3.5.1 Interpretation of the principal components

The main difficulty with principal components is their interpretation. This is
because each principal component is a linear combination of all the available
variables, hence they do not have a clear measurement scale. To facilitate their
interpretation, we will now introduce the concepts of absolute and relative impor-
tance of the principal components. To solve the maximisation problem that leads
to the principal components, it can be shown that Sav = λvav . Therefore the
variance of the vth principal component corresponds the vth eigenvalue of the
data matrix:

Var(Yv) = Var(Xav) = a ′
vSav = λv

And the covariance between the principal components satisfies

Cov(Yi , Yj ) = Cov(Xai , Xaj ) = a ′
iSaj = a

′
iλj aj = 0

because ai and aj are assumed to be orthogonal. This implies that the principal
components are uncorrelated.

The variance–covariance matrix between them is thus expressed by the fol-
lowing diagonal matrix:

Var(Y ) =



λ1 0
. . .

0 λk




Consequently, the following ratio expresses the proportion of variability that
is ‘maintained’ in the transformation from the original p variables to k < p

principal components:

tr(Var Y )

tr(Var X)
=

k∑
i=1

λi/

p∑
i=1

λi

This equation expresses a cumulative measure of the quota of variability (and
therefore of the statistical information) ‘reproduced’ by the first k components,
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with respect to the overall variability present in the original data matrix, as
measured by the trace of the variance–covariance matrix. Therefore it can be
used as a measure of absolute importance of the chosen k principal components,
in terms of ‘quantity of information’ maintained by passing from p variables to
k components.

We now examine the relative importance of each principal component (with
respect to the single original variables). To achieve this we first obtain the general
expression of the linear correlation between a principal component and an original
variable. It holds that

Cov(Yj ,X) = Cov(Xaj , X) = Saj = λj aj

and therefore Cov(Yj ,Xi) = λjaij . Furthermore, writing s2
i for Var(Xi) and

recalling that Var(Yv) = λv , we have that

Corr(Yj ,Xi) =
√

λjaji

si

Notice that the algebraic sign and the value of the coefficient aij , also called the
loading, determine the sign and the strength of the correlation between the j th
principal component and the ith original variable. It also follows that the portion
of variability of an original variable, say Xi , explained by k principal components
can be described by the following expression:

k∑
j=1

Corr2(Yj ,Xi) = (λ1a
2
1i + · · · + λka

2
ki)/s

2
i

which describes the quota of variability (information) of each explanatory vari-
able that is maintained in passing from the original variables to the principal
components. This permits us to interpret each principal component by referring
it mainly to the variables with which it is strongly correlated (in absolute value).
Here are three concluding remarks on principal component analysis:

• The method of principal components permits us to reduce the complexity of
a data matrix, in terms of number of variables, passing from a data matrix
Xn·p to a matrix with a lower number of columns, according to the transfor-
mation Yn·k = Xn·pAp·k , where Ap·k is the matrix that is obtained by stacking
columnwise the eigenvectors corresponding to the principal components. The
resulting transformed observations are usually called principal component
scores and ‘reproduce’ the data matrix in a space of a lower dimension.

• The principal components can be calculated by extracting the eigenvalues
and the corresponding eigenvectors from the correlation matrix R instead of
from the variance–covariance matrix S. The principal components obtained
from R are not the same as those obtained from S. In order to choose which
matrix to start from, in general use R when the variables are expressed in
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different measurement scales. Note also that, using R, the interpretation of
the importance of components is simpler. In fact, since tr(R) = p, the degree
of absolute importance of k components is given by

tr(Var Y )

tr(Var X)
= 1

p

k∑
i=1

λi

and the degree of relative importance of a principal component, with respect
to a variable, is

Corr(Yj , Xi) = √
λiaji

• How many principal components should we choose? That is, how many
columns are needed in the transformed matrix of scores? This is a criti-
cal point, for which there are different empirical criteria. For example, it is
possible to proceed until the absolute degree of importance of the considered
components passes a certain threshold thought to be reasonable, such as 50%.
Or if R has been used, it is possible to choose all the principal components
with corresponding eigenvalues greater than 1; because the overall variance
is equal to p, the average variance should be at least equal to 1. A useful
graphical instrument is the so-called ‘scree plot’, which plots on the x-axis the
index of the component (1, 2, 3, . . ., k), and on the y-axis, the corresponding
eigenvalue. An empirical rule suggests choosing the number of components
to be the value corresponding to the point where there is a significant ‘fall’
in the y-axis.

As alternatives to the empirical criteria presented, there are inferential types that
require the assumption of a specific probabilistic model; for more details see
Mardia, Kent and Bibby (1979).

3.5.2 Application of the principal components

We now apply the method of principal components to the data in Figure 3.8.
More precisely, the objective of the analysis is to determine a compound index,
a function of the five available financial indexes EURO, NORDAM, JAPAN,
PACIFIC and COMIT, that can eventually substitute the aggregate WORLD
index as a predictor of the considered investment fund return. Therefore the
starting data matrix contains 262 rows and 5 columns.

In Section 3.2 we looked at the scatterplot matrix and the correlation matrix
for this data. We need both matrices before we can apply the method of principal
components. In fact, the methodology will typically be efficient only in presence
of a certain degree of correlation (collinearity) between the variables; otherwise
the principal components will eventually reproduce the original variables. Indeed,
in the limiting case where the original variables are mutually uncorrelated, the
principal components will coincide with them. In this example there is high
collinearity between the variables, and this justifies using the method.

Having determined that the method is appropriate, we need to choose the
number of components. Table 3.11 shows part of the output from SAS Proc
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Table 3.11 Absolute importance of the principal components.

Table 3.12 Relative importance of the principal components.

Princomp used on the available data matrix. The contribution of the first prin-
cipal component is around 59%, the contribution of the first two components
together is around 75%, and so on. Therefore there is a big gap in passing from
one to two components. It seems reasonable to choose only one principal com-
ponent, even though this leads to a loss of around 40% of the overall variability.
This decision is further enforced by the objective of the analysis – to obtain one
composite index of the financial markets, to be used as a financial benchmark.
To interpret the chosen component, we look at the relative importance of the
components (Table 3.12).

The table reports the weight coefficients (loadings) relative to each of the five
principal components that can be extracted from the data matrix, corresponding
to the eigenvector of the variance–covariance matrix. Secondly, it presents the
correlation coefficient of each component with the original variable, which rep-
resents the degree of relative importance of each component. It turns out that
the first principal component is linked to all indexes and particularly with the
EURO index.

3.6 Further reading

Exploratory data analysis has developed as an autonomous field of statistics, in
parallel with the development of computing resources. It is possible to date the
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initial developments in the field to the publication of texts by Benzecri (1973)
and Tukey (1977).

Univariate exploratory analysis is often fundamental to understanding what
might be discovered during a data mining analysis. It often reveals problems
with data quality, such as missing items and anomalous values. But most real
problems are multivariate. Given the difficulty of visualising multidimensional
graphical representations, many analyses concentrate on bivariate exploratory
analysis, and on how the relationships found in a bivariate analysis can modify
themselves, conditioning the analysis on the other variables. We looked at how to
calculate the partial correlation for quantitative variables. Similar calculations can
be performed on qualitative variables, for example, comparing the marginal odds
ratios with those calculated conditionally on the levels of the remaining variables.
This leads to a phenomenon known as Simpson’s paradox (e.g. Agresti, 1990), for
which a certain observed marginal association can completely change direction
when conditioning the odds ratio on the level of additional variables.

We focused on some important matrix representations that allow simpler nota-
tion and easier analysis when implemented using a computer program. Searle
(1982) covers matrix calculations in statistics. Multidimensional exploratory data
analysis is a developing field of statistics, incorporating developments in com-
puter science. Substantial advances may well come from this research in the near
future. For a review of some of these developments, particularly multidimensional
graphics, consult Hand, Mannila and Smyth (2001).

We introduced multidimensional analysis of qualitative data, trying to system-
atise the argument from an applied viewpoint. This too is a developing field and
the existence of so many indexes suggests that the arguments have yet to be
consolidated. We put the available indexes into three principal classes: distance
measures, dependence measures and model-based indexes. Distance measures
are applicable to any contingency tables, for dimension and number of levels,
but the results they produce are only moderately informative. Dependence mea-
sures give precise information on the type of dependence among the variables
being examined, but they are hardly applicable to contingency table of dimension
greater than 2. Model-based indexes are a possible compromise. They are suffi-
ciently broad and they offer a good amount of information. An extra advantage is
that they relate to the most important statistical models for analysing qualitative
data: logistic and log-linear regression models (Chapter 5). For an introduction
to descriptive analysis of qualitative data, consult Agresti (1990).

An alternative approach to multidimensional visualisation of the data is reduc-
tion to spaces of lower dimension. The loss of information and the difficulty of
interpreting the reduced information may be compensated by greater usability of
the results. The classical technique is principal component analysis. We looked
at how it works, but for greater detail on the formal aspects consult Mardia, Kent
and Bibby (1979). The method of principal components is used for more than
exploratory data analysis; it underpins an important modelling technique known
as (confirmatory) factor analysis, widely adopted in the social sciences. Assuming
a probabilistic model, usually Gaussian, it decomposes the variance–covariance
matrix into two parts: one part is common to all the variables and corresponds to
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the presence of underlying latent variables (variables that are unobserved or not
measurable) and the other part is specific to each variable. In this framework,
the chosen principal components identify the latent variables and are interpreted
accordingly. Rotation of the components (latent factors) is a way of modifying
the weight coefficients to improve their interpretability. For further details on
factor analysis consult Bollen (1989).

Principal component analysis is probably the simplest way to accomplish data
reduction as it is based on linear transformations. Essentially, the obtained scores
transform the original data into linear projections on the reduced space, minimis-
ing the Euclidean distance between the coordinates in the original space and the
transformed data. Other types of transformation include wavelet methods, based
on Fourier transforms, as well as the methods of projection pursuit, which look for
the best directions of projection on a reduced space. Both techniques are covered
in Hand, Mannila and Smyth (2001) and Hastie, Tibshirani and Friedman (2001).
There are also methodologies for reducing the dimensionality of qualitative data.
For every row of a contingency table with two dimensions, correspondence anal-
ysis produces a graphical row profile, corresponding to the conditional frequency
distribution of the row. It produces a similar profile for every column. Dimen-
sionality reduction is then performed by projecting these profiles in a space
of lower dimension that reproduces the most likely of the original dispersion,
which is related to the X2 statistic. Correspondence analysis can also be applied
to contingency tables of arbitrary dimension (represented using the Burt matrix).
Greenacre (1983) provides an introduction to correspondence analysis.



CHAPTER 4

Computational data mining

This chapter and the next will examine the main data mining methodologies.
This chapter contains methodologies which do not necessarily require formula-
tion in terms of a probabilistic model. In fact, many of these methodologies were
invented and developed in the field of computer science rather than in statis-
tics. Recently, however, statisticians have also made use of these methodologies
because of their proven usefulness in solving data mining problems.

The methodologies in Chapter 5 adopt a probabilistic model that describes the
generating mechanism of the observed data. The introduction of such a framework
allows more subtle information to be extracted from the data; on the other hand,
it requires more sophisticated background knowledge. Most of the methodologies
that will be presented in this group were invented and developed within the field
of statistics. However, they have been taken up by computer scientists working
with data mining, thanks to their greater accuracy.

Because of their main origin in computer science, the methods presented in
this chapter will be called ‘computational methods for data mining’, and those
in the following chapter will be called ‘statistical models for data mining’. The
distinction is not rigid; the methodologies discussed in this chapter are also sta-
tistical in nature since they deal with the analysis of statistical data. Often they
are accompanied by the formulation of a probabilistic model. Some of them,
like linear regression and logistic regression, were actually invented and devel-
oped in statistics. Likewise, the methodologies discussed in the next chapter
are often closely related to computational aspects in the sense that the same
properties of the methods can sometimes be verified only with the help of com-
putational analysis.

Broadly speaking, both computer scientists and statisticians have been work-
ing on data mining methodologies but emphasising different aspects: computer
scientists have been more concerned with algorithmic aspects and computational
efficiency of the procedure, whereas statisticians have studied mathematical foun-
dations and statistical properties. We will be more concerned with the second
aspects, and on the applications of the methods. By dividing the methodolo-
gies into two chapters, I have introduced data mining ideas in two stages: an
introductory stage (this chapter) and a more advanced stage (next chapter).

Applied Data Mining. Paolo Giudici
 2003 John Wiley & Sons, Ltd ISBNs: 0-470-84679-8 (Paper); 0-470-84678-X (Cloth)
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Section 4.1 deals with the important concepts of proximity and distance
between statistical observations, concepts that are basic to many of the method-
ologies developed in the chapter. Section 4.2 deals with clustering methods,
aimed at classifying observations into homogeneous groups. Clustering is prob-
ably the most well-known descriptive data mining method. In the section we
will examine non-probabilistic clustering methods, leaving probabilistic clus-
tering ideas to Section 5.2. Linear regression is the most important prediction
method for continuous variables; Section 4.3 examines it from a non-probabilistic
viewpoint. Probabilistic aspects will be considered when dealing with the linear
model in Section 5.3. Logistic regression is the main prediction method for qual-
itative variables; Section 4.4 examines it from a non-probabilistic viewpoint.
Section 5.4 will deal with the full probabilistic logistic regression model.

Another important predictive methodology is represented by tree models,
described in Section 4.5, which can be used for regression and clustering pur-
poses. There is a fundamental difference between cluster analysis, on one hand,
and logistic regression and tree models, on the other hand. In logistic regression
and tree models, the clustering is supervised – it is measured against a refer-
ence variable (target or response) whose levels are known. In cluster analysis
the clustering is unsupervised – there are no reference variables. The cluster-
ing analysis determines the nature and the number of groups and allocates the
observations within them. Section 4.6 deals with neural networks. It examines
two main types of network: the multilayer perceptron, which can be used for
predictive purposes, in a supervised manner; and the Kohonen networks (also
known as self-organising maps), which are clustering methods useful for unsuper-
vised learning. Section 4.7 deals with another important predictive methodology,
based on the rather flexible class of nearest-neighbour methods, sometimes called
memory-based reasoning models. Section 4.8 deals with the two most important
local data mining methods: association and sequence rules, which are concerned
with relationships between variables, and retrieval by content, which is con-
cerned with relationships between observations. Finally, Section 4.9 contains
a brief overview of recent computational methods and gives some pointers to
the literature.

4.1 Measures of distance

Often in this chapter, we will discuss the methods suitable for classifying and
grouping observations in homogeneous groups. In other words, we will consider
the relationships between the rows of the data matrix which correspond to obser-
vations. In order to compare observations, we need to introduce the idea of a
distance measure, or proximity, among them. The indexes of proximity between
pairs of observations furnish indispensable preliminary information for identify-
ing homogeneous groups. More precisely, an index of proximity between any
two observations xi and xj can be defined as a function of the corresponding
row vectors in the data matrix:

IP ij = f (x
′
i , x

′
j ) i, j = 1, 2, . . . , n
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We will use an example from Chapter 8 as a running example in this chapter.
We have n = 22 527 visitors to a website and p = 35 dichotomous variables
that define the behaviour of each visitor. In this case a proximity index will be a
function of two 35-dimensional row vectors. Knowledge of the proximity indexes
for every pair of visitors allows us to individualize those among them that are
more similar, or at least the less different ones, with the purpose of constituting
some groups as the most possible homogeneous among them.

When the considered variables are quantitative, the proximity indexes are typi-
cally known as distances. If the variables are qualitative, the distance between the
observations can be measured by indexes of similarity. If the data are contained
in a contingency table, the chi-squared distance can also be employed. There
are also indexes of proximity that can be used on a mixture of qualitative and
quantitative variables. We will examine the Euclidean distance for quantitative
variables and some indexes of similarity for qualitative variables.

4.1.1 Euclidean distance

Consider a data matrix containing only quantitative (or binary) variables. If x and
y are rows from the data matrix then a function d(x, y) is said to be a distance
between two observations if it satisfies the following properties:

• Non-negativity: d(x, y) ≥ 0 for all x and y

• Identity: d(x, y) = 0 ⇔ x = y for all x and y

• Symmetry: d(x, y) = d(y, x) for all x and y

• Triangle inequality: d(x, y) ≤ d(x, z) + d(y, z) for all x, y and z

To achieve a grouping of all observations, the distance is usually considered
between all observations present in the data matrix. All such distances can be
represented in a matrix of distances. A distance matrix can be represented in the
following way:

� =




0 . . . d1i . . . d1n

...
. . .

...
...

di1 . . . 0 . . . din

...
...

. . .
...

dn1 . . . dni . . . 0




where the generic element dij is a measure of distance between the row vectors xi

and xj . The Euclidean distance is the most used distance measure. It is defined,
for any two units indexed by i and j , as the square root of the difference between
the corresponding vectors, in the p-dimensional Euclidean space:

2dij = d(xi, xj ) =
[

p∑
s=1

(xis − xjs)
2

]1/2
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The Euclidean distance can be strongly influenced by a single large difference
in one dimension of the values, because the square will greatly magnify that
difference. Dimensions having different scales (e.g. some values measured in
centimetres, others measured in metres) are often the source of these overstated
differences. To overcome this limitation, the Euclidean distance is often calcu-
lated not on the original variables, but on useful transformations of them. The
commonest choice is to standardise the variables (Section 2.5). After standard-
isation, every transformed variable contributes to the distance calculation with
equal weight. When the variables are standardised, they have a zero mean and
unit variance; furthermore, it can be shown that, for i, j = 1, . . . , p,

2d
2
ij = 2(1 − rij )

rij = 1 − d2
ij /2

where rij indicates the correlation coefficient between the observations xi and
xj . The previous relationships shows that the Euclidean distance between two
observations is a function of the correlation coefficient between them.

4.1.2 Similarity measures

Given a finite set of observations ui ∈ U , a function S(ui, uj ) = Sij from U × U

to R is called an index of similarity if it satisfies the following properties:

• Non-negativity: Sij ≥ 0, ∀ui, uj ∈ U

• Normalisation: Sii = 1, ∀ui ∈ U

• Symmetry: Sij = Sji , ∀uii, uj ∈ U

Unlike distances, the indexes of similarity can be applied to all kinds of variables,
including qualitative variables. They are defined with reference to the observation
indexes, rather than to the corresponding row vectors, and they assume values
in the closed interval [0, 1], rather than on any non-negative value, facilitating
interpretation. The complement of an index of similarity is called an index of
dissimilarity and represents a class of indexes of proximity wider than that of
the distances. In fact, as a distance, a dissimilarity index satisfies the properties
of non-negativity and symmetry. However, the property of normalisation is not
equivalent to the property of identity of the distances. And, finally, dissimilarities
do not have to satisfy the triangle inequality.

Indexes of similarity can be calculated, in principle, for quantitative variables.
But they would be of limited use, since they would distinguish only whether two
observations had, for the different variables, observed values equal or different,
without saying anything about the size of the difference. From an operational
viewpoint, the principal indexes of similarity make reference to data matrices
containing binary variables. More general cases, with variables having more than
two levels, can be brought into this framework through binarisation (Section 2.3).

Consider data regarding n visitors to a website, which has P pages. Corre-
spondingly, there are P binary variables, which assume the value 1 if the specific
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Table 4.1 Classification of the visited webpages.

Visitor B

Visitor A

0

PA = 4

CA = 21

25

1

CP = 2

AP = 1

3

Total

6

22

P = 28

1

0

page has been visited, or else the value 0. To demonstrate the application of
similarity indexes, we now analyse only data concerning the behaviour of the
first two visitors (2 of the n observations) to the website described in Chapter 8,
among the P = 28 webpages they can visit. Table 4.1 summarises the behaviour
of the two visitors, treating each page as a binary variable.

Note that, of the 28 considered pages (P = 28), 2 have been visited by both
visitors. In other words, 2 represents the absolute frequency of contemporary
occurrences (CP , for co-presence, or positive matches) for the two observations.
In the lower right corner of the table there is a frequency of 21, equal to the
number of pages that are visited neither by A nor by B. This frequency corre-
sponds to contemporary absences in the two observations (CA, for co-absences
or negative matches). Finally, the frequencies of 4 and 1 indicate the number of
pages that only one of the two navigators visits (PA indicates presence-absence
and AP absence-presence, where the first letter refers to visitor A and the second
to visitor B).

The latter two frequencies denote the differential aspects between the two
visitors and therefore must be treated in the same way, being symmetrical.
The co-presence is aimed at determining the similarity between the two vis-
itors, a fundamental condition because they could belong to the same group.
The co-absence is less important, perhaps negligibly important for determining
the similarities between the two units. In fact, the indexes of similarity devel-
oped in the statistical literature differ in how they treat the co-absence, as we
now describe.

Similarity index of Russel and Rao

Sij = CP

p

This index is a function of the co-presences and is equal to the ratio between the
number of co-presences and the total number of considered binary variables, P .
From Table 4.1 we have

Sij = 2

28
≈ 0.07
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Similarity index of Jaccard

Sij = CP

CP + PA + AP

This index is the ratio between the number of co-presences and the total number
of variables, excluding those that manifest co-absences. Note that this index is
indefinite when the two visitors, or more generally the two observations, manifest
only co-absences (CA = P ). In our example we have

Sij = 2

7
≈ 0.286

Similarity index of Sokal and Michener

Sij = CP + CA

P

This represents the ratio between the number of co-presences or co-absences and
the total number of variables. In our example we have

Sij = 23

28
≈ 0.82

For the index of Sokal and Michener (also called the simple matching coefficient)
it is simple to demonstrate that its complement to one (a dissimilarity index)
corresponds to the average of the squared Euclidean distance between the two
vectors of binary variables associated with the observations:

1 − Sij = 1

P
(2d

2
ij )

This relationship shows that the complement to one of the index of Sokal and
Michener is a distance. In fact, it is one of the most used indexes of similarity. It
is also known as the coefficient of ‘simple matching’ and the ‘binary distance’;
calling it the binary distance is a slight abuse of terminology. Chapter 12 contains
a real application of the index of Sokal and Michener.

4.1.3 Multidimensional scaling

We have seen how to calculate proximities between observations, on the basis of
a given data matrix, or a table derived from it. Sometimes only the proximities
between observations are available, for instance in terms of a distance matrix,
and it is desired to reconstruct the values of the observations. In other cases
the proximities are calculated using a dissimilarity measure and it is desired to
reproduce them in terms of a Euclidean distance, to obtain a representation of
the observations in a two-dimensional plane. Multidimensional scaling methods
are aimed at representing observations whose observed values are unknown (or
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not expressed numerically) in a low-dimensional Euclidean space (usually in
R

2). The representation is achieved by preserving the original distances as far as
possible.

Section 3.5 explained how to use the method of principal components on a
quantitative data matrix in a Euclidean space. It turns the data matrix into a
lower-dimensional Euclidean projection by minimising the Euclidean distance
between the original observations and the projected ones. Similarly, multidimen-
sional scaling methods look for low-dimensional Euclidean representations of the
observations, representations which minimise an appropriate distance between
the original distances and the new Euclidean distances. Multidimensional scaling
methods differ in how such distance is defined. The most common choice is the
stress function, defined by √√√√ n∑

i=1

n∑
j=1

(δij − dij )2

where δij are the original distances (or dissimilarities) between each pair of
observations, and dij are the corresponding distances between the reproduced
coordinates.

Metric multidimensional scaling methods look for k real-valued n-dimensional
vectors, each representing one coordinate measurement of the n observations,
such that the n × n distance matrix between the observations, expressed by dij ,
minimises the squared stress function. Typically k = 2, so the results of the pro-
cedure can be conveniently represented in a scatterplot. The illustrated solution is
also known as least squares scaling. A variant of least squares scaling is Sammon
mapping, which minimises √√√√ n∑

i=1

n∑
j=1

(δij − dij )
2

δij

thereby preserving smaller distances.
When the proximities between objects are expressed by a Euclidean distance,

it can be shown that the solution of the previous problem corresponds to the prin-
cipal component scores that would be obtained if the data matrix were available.

It is possible to define non-metric multidimensional scaling methods, where
the preserved relationship between the original and the reproduced distances
is not necessarily Euclidean. Chapter 12 contains some applications of mul-
tidimensional scaling methods. For further information see Mardia, Kent and
Bibby (1979).

4.2 Cluster analysis

This section is about cluster analysis and methodologies for grouping a given set
of observations. Cluster analysis is the most well-known descriptive data mining
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method. Given a data matrix composed of n observations (rows) and p variables
(columns), the objective of cluster analysis is to cluster the observations into
groups that are internally homogeneous (internal cohesion) and heterogeneous
from group to group (external separation). Note that the constitution of homoge-
neous groups of observations can be interpreted as a reduction of the dimension
of the space R

n, but not in the same way as in principal component analysis
(Section 3.5). In fact, in a cluster analysis, the n observations are grouped into
g subsets (with g < n), whereas in principal component analysis the p statistical
variables are transformed into k new variables (with k < p). There are several
ways to perform a cluster analysis. It is therefore important to have a clear
understanding of how the analysis will proceed. Here are some important points
to consider.

Choice of variables to be used
The choice of the variables to be used for clustering has to consider all the relevant
aspects to achieve the stated objectives. Remember that using variables of little
importance will inevitably worsen the results. This is a crucial problem since it
will strongly condition the final result. In general, clustering can be considered
satisfactory when it does not show an excessive sensitivity to small changes
in the set of used variables. Before doing a cluster analysis, it is prudent to
conduct accurate exploratory investigations that are able to suggest possible final
configurations for the clustering. To help with visualisation and interpretation of
the results, it is often appropriate to reduce the dimensionality of the data matrix,
perhaps through the method of principal components.

During the exploratory phase, pay particular attention to anomalous obser-
vations that might negatively affect the analysis. Some data mining textbooks
(e.g. Han and Kamber, 2001) link the methods of cluster analysis with those
that search for outliers. Although there are similarities, I still maintain that one
should choose cluster analysis to classify data into groups and outlier detection
to search for anomalous observations.

Method of group formation
We can distinguish hierarchical and non-hierarchical methods. Hierarchical meth-
ods allow us to get a succession of groupings (called partitions or clusters) with a
number of groups from n to 1, starting from the simplest, where all observations
are separated, to the situation where all observations belong to a unique group.
Non-hierarchical methods allow us to gather the n units directly into a number
of previously defined groups.

Type of proximity index
According to the nature of the available variables, it is necessary to define a
measure of proximity among the observations, to be used for calculating dis-
tances between them. If the data is predominantly quantitative, use the Euclidean
distance; if the data is predominantly qualitative, use an index of similarity; if
the data is available in a contingency table format, use the chi-squared distance
between the levels. As shown in Section 4.1, most measures of proximity can
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be interpreted as distances, so we will make exclusive reference to this concept.
Remember the importance of standardising the variables so that all carry the
same weight in the final results.

Besides establishing a measure of proximity between observations, for
hierarchical clustering methods we need to establish how to calculate the distances
between groups. It is usually appropriate to use the same type of distance as the
distance between observations. It remains to establish which units (or synthesis
of them) to use as ‘representative’ of the group. This depends on the method of
hierarchical clustering.

Choice of evaluation criteria
Evaluating the results of the obtained grouping means verifying that the groups
are consistent with the primary objective of the cluster analysis and that they
therefore satisfy the conditions of internal cohesion and external separation.
Choosing the right number of groups is fundamentally important. There is a
trade-off between obtaining homogeneous groups, which typically increases the
number of groups, and the need to get a parsimonious representation, which
reduces the number of groups. We will return to this point.

4.2.1 Hierarchical methods

Hierarchical methods of clustering allow us to get a family of partitions, each
associated with the subsequent levels of grouping among the observations, cal-
culated on the basis of the available data. The different families of partitions can
be represented graphically through a tree-like structure called a tree of hierar-
chical clustering or a dendrogram. This structure associates to every step of the
hierarchical procedure, corresponding to a fixed number of groups g, one and
only one clustering of the observations in the g groups.

A hierarchical clustering tree can be represented as in Figure 4.1, where for
simplicity we suppose there are only five observations available, numbered from 1
to 5. The branches of the tree describe subsequent clusterings of the observations.
At the root of the tree, all the observations are contained in only one class. The
branches of the tree indicate divisions of the observations into clusters. The
five terminal nodes indicate the situation where each observation belongs to a
separate group.

Agglomerative clustering is where the groups are formed from the branches
to the root (left to right in Figure 4.1). Divise clustering is where the groups

1

2 Root

Branches 3

4

5

Figure 4.1 Structure of the dendrogram.
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Table 4.2 Partitions corresponding to the
dendrogram in Figure 4.1.

Number of clusters Clusters

5 (1) (2) (3) (4) (5)

4 (1,2) (3) (4) (5)

3 (1,2) (3,4) (5)

2 (1,2) (3,4,5)

1 (1,2,3,4,5)

are formed from the root to the branches. Statistical software packages usually
report the whole dendrogram, from the root to a number of terminal branches
equal to the number of observations. It then remains to choose the optimal num-
ber of groups. This will identify the result of the cluster analysis, since in a
dendrogram the choice of the number of groups g identifies a unique partition of
the observations.

For example, the partitions of the five observations described by the dendro-
gram in Figure 4.1 can be represented as in Table 4.2.

Table 4.2 shows that the partitions described by a dendrogram are nested. This
means that, in the hierarchical methods, the elements that are united (or divided)
at a certain step will remain united (separated) until the end of the clustering
process. Supposing we consider an agglomerative method that proceeds from 5
groups to 1 group, then units 1 and 2 are united at the second step and remain
in the same group until the end of the procedure. Nesting reduces the number of
partitions to compare, making the procedure computationally more efficient, but
the disadvantage is not being able ‘to correct’ errors of clustering committed in
the preceding steps. Here is an outline for an agglomerative clustering algorithm:

1. Initialization: given n statistical observations to classify, every element rep-
resents a group (put another way, the procedure starts with n clusters). The
clusters will be identified with a number that goes from 1 to n.

2. Selection: the two ‘nearest’ clusters are selected, in terms of the distance
initially fixed, for example in terms of the Euclidean distance.

3. Updating: the number of clusters is updated (to n − 1) through the union,
in a unique cluster, of the two groups selected in step 2. The matrix of the
distances is updated, taking the two rows (and two columns) of distances
between the two clusters and replacing them with only one row (and one
column) of distances, ‘representative’ of the new group. Different clustering
methods define this representation in different ways.

4. Repetition: steps 2 and 3 are performed n − 1 times.
5. End: the procedure stops when all the elements are incorporated in a unique

cluster.

We will now look at some of the different clustering methods mentioned in step 3.
They will be introduced with reference to two groups, C1 and C2. Some methods
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require only the distance matrix and some require the distance matrix plus the
original data matrix. These examples require only the distance matrix:

• Single linkage: the distance between two groups is defined as the minimum of
the n1n2 distances between each observation of group C1 and each observation
of group C2:

d(C1, C2) = min(drs ) with r ∈ C1, s ∈ C2

• Complete linkage: the distance between two groups is defined as the maxi-
mum of the n1n2 distances between each observation of a group and each
observation of the other group:

d(C1, C2) = max(drs ) with r ∈ C1, s ∈ C2

• Average linkage: the distance between two groups is defined as the arithmetic
average of the n1n2 distances between each of the observations of a group
and each of the observations of the other group:

d(C1, C2) = 1

n1n2

n1∑
r=1

n2∑
s=1

drs with r ∈ C1, s ∈ C2

Two methods that require the data matrix as well as the distance matrix are the
method of the centroid and Ward’s method.

Method of the centroid
The distance between two groups C1 and C2, having nl and n2 observations
respectively, is defined as the distance between the respective centroids (usually
the means), x1 and x2:

d(C1, C2) = d(x1, x2)

To calculate the centroid of a group of observations we need the original data,
and we can obtain that from the data matrix. It will be necessary to replace
the distances with respect to the centroids of the two previous clusters by the
distances with respect to the centroid of the new cluster. The centroid of the new
cluster can be obtained from

x1n1 + x2n2

n1 + n2

Note the similarity between this method and the average linkage method: the
average linkage method considers the average of the distances between the obser-
vations of each of the two groups, whereas the centroid method calculates the
centroid of each group then measures the distance between the centroids.
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Ward’s method
In choosing the groups to be joined, Ward’s method minimises an objective
function using the principle that clustering aims to create groups which have
maximum internal cohesion and maximum external separation.

The total deviance (T ) of the p variables, corresponding to n times the trace
of the variance–covariance matrix, can be divided in two parts: the deviance
within the groups (W ) and the deviance between the groups (B), so T = W + B.
This is analogous to dividing the variance into two parts for linear regression
(Section 4.3). In that case B is the variance explained by the regression and
W is the residual variance, the variance not explained by the regression. In
formal terms, given a partition into g groups then the total deviance (T ) of the
p variables corresponds to the sum of the deviances of the single variables, with
respect to the overall mean xs , defined by

T =
p∑

s=1

n∑
i=1

(xis − xs)
2

The deviance within the groups (W ) is given by the sum of the deviances of
each group:

W =
g∑

k=1

Wk

where Wk represents the deviance of the p variables in the kth group (number
nk and centroid xk = [x1k, . . . , xpk ]′), described by the following expression:

Wk =
p∑

s=1

nk∑
i=1

(xis − xsk)
2

The deviance between the groups, (B) is given by the sum (calculated on all
the variables) of the weighted deviances of the group means with respect to the
corresponding general averages:

B =
p∑

s=1

g∑
k=1

nk(xsk − xs)
2

Using Ward’s method, groups are joined so that the increase in W is smaller and
the increase in B is larger. This achieves the greatest possible internal cohesion
and external separation. Notice that it does not require preliminary calculation of
the distance matrix. Ward’s method can be interpreted as a variant of the centroid
method, which does require the distance matrix.

How do we choose which method to apply?
In practice there is not a method that can give the most qualified result with
every type of data. Experiment with the different alternatives and compare them
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in terms of the chosen criteria. We shall see some criteria in Section 4.2.2 and
more generally in Chapter 6.

Divise clustering algorithms
The algorithms used for divisive clustering are very similar to those used for
tree models (Section 4.5). In general, they are less used in routine applications,
as they tend to be more computationally intensive. However, although naive
implementation of divisive methods requires n2 distance calculations on the first
iteration, subsequent divisions are on much smaller cluster sizes. Also, efficient
implementations do not compute all pairwise distances but only those that are
reasonable candidates for being the closest together.

4.2.2 Evaluation of hierarchical methods

A hierarchical algorithm produces a family of partitions of the n initial statistical
units, or better still, a succession of n clusterings of the observations, with the
number of groups decreasing from n to 1. To verify that the partitions achieve
the primary objective of the cluster analysis – internal cohesion and external
separation – the goodness of the obtained partition should be measured at every
step of the hierarchical procedure.

A first intuitive criterion for goodness of the clustering is the distance between
the joined groups at every step; the process can be stopped when the distance
increases abruptly. A criterion used more frequently is based on the decomposi-
tion of the total deviance of the p variables, as in Ward’s method. The idea is
to have a low deviance within the groups (W ) and a high deviance between the
groups (B). For a partition of g groups here is a synthetic index that expresses
this criterion:

R2 = 1 − W

T
= B

T

Since T = W + B, the index R2 ∈ [0, 1]; if the value of R2 approaches 1, it
means that the corresponding partition is optimal, since the observations belong-
ing to the same group are very similar (low W ) and the groups are well sepa-
rated (high B). Correspondingly, the goodness of the clustering decreases as R2

approaches 0.
Note that R2 = 0 when there is only one group and R2 = 1 when there are as

many groups as observations. As the number of groups increases, the homogene-
ity within the groups increases (as each group contains fewer observations), and
so does R2. But this leads to a loss in the parsimony of the clustering. Therefore
the maximisation of R2 cannot be considered the only criterion for defining the
optimal number of groups. Ultimately it would lead to a clustering (for which
R2 = 1) of n groups, each having one unit.

A common measure to accompany R2 is the pseudo-F criterion. Let c be a
certain level of the procedure, corresponding to a number of groups equal to c,
and let n be the number of observations available. The pseudo-F criterion is
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defined as follows:

Fc = B/(c − 1)

W/(n − c)

Generally Fc decreases with c since the deviance between groups should
decrease and the deviance within groups should increase. If there is an abrupt
fall, it means that very different groups are united among them. The advantage
of the pseudo-F criterion is that, in analogy with what happens in the context
of the normal linear model (Section 5.3), it is possible to show how to build a
decision rule that allows us to establish whether to accept the fusion among the
groups (null hypothesis) or to stop the procedure, choosing the less parsimonious
representation (alternative hypothesis). This decision rule is specified by a con-
fidence interval based on the F distribution, with (c − 1) and (n − c) degrees of
freedom. But in applying the decision rule, we assume that the observations fol-
low a normal distribution, reducing the advantages of a model-free formulation,
such as that adopted here.

An alternative to R2 is the root mean square standard deviation (RMSSTD).
This only considers the part of the deviance in the additional groups formed at
each step of the hierarchical clustering. Considering the hth step (h = 2, . . . , n −
1) of the procedure, RMSSTD is defined by the following expression:

RMSSTD =
√

Wh

p(nh − 1)

where Wh is the deviance in the group constituted at step h of the procedure, nh

is its numerosity and p is the number of available variables. A strong increase
of RMSSTD from one step to the next shows that the two groups being united
are strongly heterogeneous and therefore it would be appropriate to stop the
procedure at the earlier step.

Another index that, similar to RMSSTD, measures the ‘additional’ contribution
of the hth step of the procedure is the so-called ‘semipartial’ R2 (SPRSQ). It is
defined by

SPRSQ = Wh − Wr − Ws

T

where h is the new group, obtained at step h as a fusion of groups r and s. T is
the total deviance of the observations, while Wh, Wr and Ws are the deviance of
the observations in the groups h, r and s, respectively. Put another way, SPRSQ
measures the increase of the within-group deviance W obtained by joining groups
r and s. An abrupt increase of SPSRQ indicates that heterogeneous groups are
being united and therefore it is appropriate to stop at the previous step.

I believe that choosing one index from the ‘global’ indexes R2 and pseudo-
F and one index from the ‘local’ indexes RMSSTD and SPRSQ allows us to
evaluate adequately the degree of homogeneity of the obtained groups in every
step of a hierarchical clustering and therefore to choose the best partition.
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Table 4.3 Output of a cluster analysis.

Table 4.3 gives an example of cluster analysis, obtained with Ward’s method,
in which the indexes R2 and SPRSQ are indeed able to give an indication about
the number of partitions to choose. A number of clusters (NCL) equal to 3 is
more than satisfactory, as indicated by the row third from last, in which clusters
4 and 5 are united. In fact, the further step to unite groups 7 and 3 leads to a
relevant reduction of R2 and to an abrupt increase of SPRSQ. On the other hand,
choosing NCL equal to 4 does not give noticeable improvements in R2. Note
that the cluster joined at NCL = 3 contains 1215 observations (FREQ).

To summarise, there is no unequivocal criterion for evaluating the methods of
cluster analysis but a whole range of criteria. Their application should strike a
balance between simplicity and information content.

4.2.3 Non-hierarchical methods

The non-hierarchical methods of clustering allow us to obtain one partition of the
n observations in g groups (g < n), with g defined a priori. Unlike what happens
with hierarchical methods, the procedure gives as output only one partition that
satisfies determined optimality criteria, such as the attainment of the grouping
that allows us to get the maximum internal cohesion for the specified number of
groups. For any given value of g, according to which it is intended to classify the
n observations, a non-hierarchical algorithm classifies each of the observations
only on the basis of the selected criterion, usually stated by means of an objective
function. In general, a non-hierarchical clustering can be summarised by the
following algorithm:

1. Choose the number of groups g and choose an initial clustering of the n

statistical units in that number of groups.
2. Evaluate the ‘transfer’ of each observation from the initial group to another

group. The purpose is to maximise the internal cohesion of the groups. The
variation in the objective function determined by the transfer is calculated
and, if relevant, the transfer becomes permanent.

3. Repeat step 2 until a stopping rule is satisfied.
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Non-hierarchical algorithms are generally much faster than hierarchical ones,
because they employ an interactive structure calculation, which does not require
us to determine the distance matrix. The construction of non-hierarchical algo-
rithms tends to make them more stable with respect to data variability. Further-
more non-hierarchical algorithms are suitable for large data sets where hierar-
chical algorithms would be too slow. Nevertheless, there can be many possible
ways of dividing n observations into g non-overlapping groups, especially for
real data, and it is impossible to obtain and compare all these combinations.
This can make it difficult to do a global maximisation of the objective func-
tion, and non-hierarchical algorithms may produce constrained solutions, often
corresponding to local maxima of the objective function.

In a non-hierarchical clustering we need to begin by defining the number of
the groups. This is usually done by conducting the analysis with different values
of g (and different algorithm initialisations) and determining the best solution by
comparing appropriate indexes for the goodness of the clustering (such as R2 or
the pseudo-F index).

The most used method of non-hierarchical clustering is the k-means method,
where k indicates the number of groups established a priori (g in this section).
The k-means algorithm performs a clustering of the n starting elements, in
g distinct groups (with g previously fixed), according to the following opera-
tional flow:

1. Initialisation: having determined the number of groups, g points, called
seeds, are defined in the p-dimensional space. The seeds constitute the
centroids (measures of position, usually means) of the clusters in the ini-
tial partition. There should be sufficient distance between them to improve
the properties of convergence of the algorithm. For example, to space the
centroids adequately in R

p, the SAS software uses the procedure Fast-
clust to perform a preliminary analysis of the data; it selects g observations
(seeds) whose reciprocal distance is greater than a predefined threshold, and
greater than the distance between them and the observations. Once the seeds
are defined, an initial partition of the observations is built, allocating each
observation to the group whose centroid is closer.

2. Transfer evaluation: the distance of each observation from the centroids of
the g groups is calculated. The distance between an observations and the
centroid of the group to which it has been assigned has to be a minimum;
if it is not a minimum, the observations will be moved to the cluster whose
centroid is closest. The centroids of the old group and the new group are
then recalculated.

3. Repetition: We repeat step 2 until we reach a suitable stabilisation of
the groups.

To calculate the distance between the observations and the centroids of the groups,
the k-means algorithm employs the Euclidean distance: at the t th iteration, the dis-
tance between the ith observation and the centroid of group l (with i = 1, 2, . . . , n
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and l = 1, 2, . . . , g) will be equal to

d(xi, x
(t)
l ) =

√√√√ p∑
s=1

(xis − x
(t)

sl )2

where x
(t)
l = [x(t)

1l , . . . , x
(t)

pl ]′ is the centroid of group l calculated at the t th iter-
ation. This shows that the k-means method searches for the partition of the n

observations in g groups (with g fixed in advance) that satisfies a criterion of
internal cohesion based on the minimisation of the within-group deviance W ,
therefore the goodness of the obtained partition can be evaluated by calculating
the index R2 of the pseudo-F statistic. A disadvantage of the k-means method is
the possibility of obtaining distorted results when there are outliers in the data.
Then the non-anomalous units will tend to be classified into very few groups,
but the outliers will tend to be put in very small groups on their own. This can
create so-called ‘elephant clusters’ – clusters too big and containing most of the
observations. Chapter 9 looks at an application of the k-means clustering method.

4.3 Linear regression

In Chapter 3, dealing with correlation and association between statistical vari-
ables, the variables were treated in a symmetric way. We now consider the
common situation where we wish to deal with the variables in a non-symmetric
way, to derive a predictive model for one (or more) response variables, on the
basis of one (or more) of the others. This section focuses on quantitative response
variables and the next section focuses on qualitative response variables. Chapter 1
introduced the distinction between descriptive, predictive and local data mining
methods. Linear regression is a predictive data mining method.

We will initially suppose that only two variables are available. Later we will
consider the multivariate case.

4.3.1 Bivariate linear regression

In many applications it is interesting to evaluate whether one variable, called
the dependent variable or the response, can be caused, explained and therefore
predicted as a function of another, called the independent variable, the explana-
tory variable, the covariate or the feature. We will use Y for the dependent (or
response) variable and X for the independent (or explanatory) variable. The sim-
plest statistical model that can describe Y as a function of X is linear regression.
The linear regression model specifies a noisy linear relationship between vari-
ables Y and X, and for each paired observation (xi , yi) this can be expressed by
the so-called regression function:

yi = a + bx i + ei (i = 1, 2, . . . , n)
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where a is the intercept of the regression function, b is the slope coefficient of the
regression function, also called the regression coefficient, and ei is the random
error of the regression function, relative to the ith observation.

Note that the regression function has two main parts: the regression line and
the error term. The regression line can be built empirically, starting from the
matrix of available data. The error term describes how well the regression line
approximates the observed response variable. From an exploratory view point,
determination of the regression line can be described as a problem of fitting
a straight line to the observed dispersion diagram. The regression line is the
linear function

ŷi = a + bx i (i = 1, 2, . . . , n)

where ŷi indicates the fitted ith value of the dependent variable, calculated on the
basis of the ith value of the explanatory variable xi . Having defined the regression
line, it follows that the error term ei in the expression of the regression function
represents, for each observation yi , the residual, namely the difference between
the observed response values yi , and the corresponding values fitted with the
regression line, ŷi :

ei = yi − ŷi

Each residual can be interpreted as the part of the corresponding value that is
not explained by the linear relationship with the explanatory variable. What we
have just described can be represented graphically as in Figure 4.2. To obtain the
analytic expression of the regression line it is sufficient to calculate the parameters
a and b on the basis of the available data. The method of least squares is often
used for this. It chooses the straight line that minimises the sum of the squares

0 X

yi

xi

ei

yi

yi

Y ›

Figure 4.2 Representation of the regression line.
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of the errors of the fit (SSE), defined by

SSE =
n∑

i=1

e2
i =

n∑
i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − a − bx i )
2

To find the minimum of SSE we need to take the first partial derivatives of the
SSE function with respect to a and b then equate them to zero. Since the sum
of the squares of the errors is a quadratic function, if an extremal point exists
then it is a minimum. Therefore the parameters of the regression line are found
by solving the following system of equations, called normal equations:

∂
∑

(yi − a − bx i )
2

∂a
= −2

∑
i

(yi − a − bx i ) = 0

∂
∑

(yi − a − bx i )
2

∂b
= −2

∑
i

xi(yi − a − bx i ) = 0

From the first equation we obtain

a =
∑ yi

n
− b

∑ xi

n
= µY − bµX

Substituting it into the second equation and simplifying, we obtain

b =
(∑

xiyi/n − ∑
yi

∑
xi/n2∑

x2
i /n − (

∑
xi/n)2

)
= Cov(X, Y )

Var(X)
= r(X, Y )

σY

σX

where µY and µX are the means, σY and σX the standard deviations of the
variables Y and X, and r(X, Y ) is the correlation coefficient between X and Y .

Regression is a simple and powerful predictive tool. To use it in real situations,
it is only necessary to calculate the parameters of the regression line, according
to the previous formulae, on the basis of the available data. Then a value for Y is
predicted simply by substituting a value for X into the equation of the regression
line. The predictive ability of the regression line is a function of the goodness of
fit of the regression line, which is very seldom perfect.

If the variables were both standardised, with zero mean and unit variance,
then a = 0 and b = r(X, Y ). Then yi = r(X, Y ) xi and the regression line of X,
as a function of Y , is simply obtained by inverting the linear relation between
Y and X. Even though not generally true, this particular case shows the link
between a symmetric analysis of the relationships between variables (described
by the linear correlation coefficient) and an asymmetric analysis (described by
the regression coefficient b).

Here is a simple regression model for the real data introduced in Section 3.2,
on the weekly returns of an investment fund. The considered period goes from
4th October 1994 to 4th October 1999. The objective of the analysis is to study
the dependence of the returns on the weekly variations of a stock market index
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Figure 4.3 Example of a regression line fit.

typically used as benchmark (predictor) of the returns themselves; the index is
named MSCI WORLD.

Figure 4.3 shows the behaviour of a simple regression model for this data,
along with the scatterplot matrix. The intercept parameter a has been set to zero
before adapting the model. This was done to obtain a fitted model that would be
the closest possible to the theoretical financial model known as the capital asset
pricing model (CAPM). The slope parameter of the regression line in Figure 4.3
is calculated on the basis of the data, according to the formula presented earlier,
from which it turns out that b = 0.8331. Therefore the regression line can be
analytically described by the following equation:

REND = 0.8331 WORLD

where REND is the response variable and WORLD is the explanatory variable.
The main utility of this model is in prediction; for example, on the basis of the
fitted model, we can forecast that if the WORLD index increases by 10% in a
week, the fund returns will increase by 8.331%.

4.3.2 Properties of the residuals

We will now look at some important properties of the regression residuals that will
permit us to draw some operational conclusions for the diagnostic phase of the
model. We will also see an important geometric interpretation of the regression
line, an interpretation we can use in the multivariate case. From the first normal
equation we have that

n∑
i=1

ei =
n∑

i=1

(yi − ŷi ) = 0

which shows that the sum of the residuals is null. If in the regression line we set
b = 0, the arithmetic mean is obtained as a particular linear fit of the dispersion
diagram. Such a fit predicts Y with a constant function, ignoring the information
provided by X. This property of the regression line coincides, in this particular
case, to one of the properties of the arithmetic mean.
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From the second normal equation we have that

n∑
i=1

eixi =
n∑

i=1

(yi − ŷi)xi = 0

This shows that the residuals are uncorrelated with the explanatory variable. It
can also be shown that

n∑
i=1

eiŷi =
∑

ei(a + bx i ) = a
∑

ei + b
∑

eixi = 0

and therefore the residuals are uncorrelated with the fitted Y values.
To investigate the goodness of fit of the regression line, these properties of

the residuals suggest that we plot the residuals against the explanatory variable
and that we plot the residuals against the fitted values. Both should show a null
correlation in mean, and it is interesting to see whether this null correlation is
uniform for all the considered observations or whether it arises from compensa-
tion of underfit (i.e. the fitted values are smaller than the observed values) and
overfit (i.e. the fitted values are greater than the observed values). Compensation
of underfit or overfit reduces the validity of the fit. Figure 4.3 shows a uniform
distribution of the residuals. There is a slight difference in behaviour between
the central part of the regression line, where the variability of the residuals is
much larger than in the remaining part. But this difference does not undermine
the excellent fit of the regression line to the data.

The following geometric interpretation is developed for the bivariate case but it
can also be extended to the multivariate case. The columns of the data matrix are
vectors of dimension n. Therefore they can be thought of as belonging to a linear
space. If the variables are quantitative, this space will be the Euclidean space R

n.
In the bivariate case under examination in R

n there will be the vectors y, x and
also µ = (1, . . . , 1)′, the column vector needed to obtain the arithmetic means
of Y and of X. In geometric terms, the regression line is a linear combination of
two vectors, ŷ = aµ + bx , determinated by two parameters a and b. Therefore it
identifies a linear subspace (hyperplane) of R

n of dimension 2. In general, if we
consider k explanatory variables, we obtain a linear subspace of dimension k + 1.

To determine a and b we apply the method of least squares. In geometric terms,
we determine a vector in R

n that minimises the Euclidean distance between the
observed vector y in the space R

n and the estimated vector ŷ belonging to the
subspace of dimension k = 2 in R

n. The square of this distance is given by

d2(y, ŷ) =
∑

(yi − ŷi )
2

The least squares method minimises the above distance by setting ŷ equal to the
projection of the vector y on the subspace of dimension 2. The properties of the
residuals help us to comprehend the meaning of this projection. The projection
ŷ is orthogonal to the vector of the residuals e (third property). The residuals
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are orthogonal to x (second property) and to µ (first property). We can therefore
conclude that the least squares method defines a right-angled triangle, having y
as the hypotenuse and ŷ and e as the other two sides.

A least squares principle also forms the basis of principal component anal-
ysis (Section 3.5); the difference is that in linear regression the distance to be
minimised is measured with respect to the response variable only, whereas in
principal component analysis it is measured in terms of all variables. We expand
on these ideas in the next section, on goodness of fit, but first let us see how to
interpret the arithmetic mean in geometric terms. The arithmetic mean is definable
as the constant quantity, a, that minimises the expression

d2(y, a) =
∑

(yi − a)2

which represents the distance between y in R
n and a constant, a, belonging to

the subspace of the real numbers of dimension 1 in R
n. Therefore the arithmetic

mean is also a solution of the least squares method – it is the projection ŷ of the
vector of the observations y in the subspace R.

4.3.3 Goodness of fit

The regression line represents a linear fit of the dispersion diagram and therefore
involves a degree of approximation. We want to measure the accuracy of that
approximation. An important judgement criterion is based on a decomposition
of the variance of the dependent variable. Recall that the variance is a mea-
sure of variability, and variability in statistics means ‘information’. By applying
Pythagoras’ theorem to the right-angled triangle in Section 4.3.2, we obtain∑

(yi − y)2 =
∑

(ŷi − y)2 +
∑

(yi − ŷi )
2

This identity establishes that the total sum of squares (SST), on the left, equals
the sum of squares explained by the regression (SSR) plus the sum of squares of
the errors (SSE). It can also be written like this:

SST = SSR + SSE

These three quantities are called deviances; if we divide them by the number of
observations n, and indicate statistical variables using the corresponding capital
letters, we obtain

Var(Y ) = Var(Ŷ ) + Var(E)

We have decomposed the variance of the response variable into two components:
the variance ‘explained’ by the regression line, and the ‘residual’ variance. This
leads to our main index for goodness of fit of the regression line; it is the index
of determination R2, defined by

R2 = Var(Ŷ )

Var(Y )
= 1 − Var(E)

Var(Y )
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The coefficient R2 is equivalent to the square of the linear correlation coefficient,
so it takes values between 0 and 1. It is equal to 0 when the regression line is
constant (Y = y, i.e. b = 0); it is equal to 1 when the fit is perfect (the residuals
are all null). In general, a high value of R2 indicates that the dependent variable
Y can be well predicted by a linear function of X. The R2 coefficient of cluster
analysis can be derived in exactly the same way by substituting the group means
for the fitted line. From the definition of R2, notice that Var(E) = Var(Y )(1 −
R2). This relationship shows how the error in predicting Y reduces from Var(Y ),
when the predictor is Y = y, to Var(E), when the predictor is ŷi = a + bx i .
Notice that the linear predictor is at least as good as the mean predictor and its
superiority increases with R2 = r2(X, Y ).

Figure 4.3 has R2 equal to 0.81. This indicates a good fit of the regression
line to the data. For the time being, we cannot establish a threshold value for R2,
above which we can say that the regression is valid, and vice versa. We can do
this if we assume a normal linear model, as in Section 5.3.

R2 is only a summary index. Sometimes it is appropriate to augment it with
diagnostic graphical measures, which permit us to understand where the regres-
sion line approximates the observed data well and where the approximation is
poorer. Most of these tools plot the residuals and see what they look like. If the
linear regression model is valid, the Y points should be distributed around the
fitted line in a random way, without showing obvious trends.

It may be a good starting point to examine the plot of the residuals against
the fitted values of the response variable. If the plot indicates a difficult fit, look
at the plot of the residuals with respect to the explanatory variable and try to
see where the explanatory variable is above or below the fit. Figure 4.4 is a
diagnostic plot of the residuals (R REND) against the fitted values (P REND)
for the financial data in Figure 4.3. The diagnostic confirms a good fit of the
regression line. Determination of the regression line can be strongly influenced
by the presence of anomalous values, or outliers. This is because the calculation
of the parameters is fundamentally based on determining mean measures, so it is
sensitive to the presence of extreme values. Before fitting a regression model, it is
wise to conduct accurate exploratory analysis to identify anomalous observations.
Plotting the residuals against the fitted values can support the univariate analysis
of Section 3.1 in locating such outliers.

4.3.4 Multiple linear regression

We now consider a more general (and realistic) situation, in which there is more
than one explanatory variable. Suppose that all variables contained in the data
matrix are explanatory, except for the variable chosen as response variable. Let
k be the number of such explanatory variables. The multiple linear regression is
defined by the following relationship, for i = 1, 2, . . . , n:

yi = a + b1xi1 + b2xi2 + · · · + bkxik + ei
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Figure 4.4 Diagnostic of a regression model.

or, equivalently, in more compact matrix terms:

Y = Xb + E

where, for all the n considered observations, Y is a column vector with n

rows containing the values of the response variable; X is a matrix with n

rows and k + 1 columns containing for each column the values of the explana-
tory variables for the n observations, plus a column (to refer to the intercept)
containing n values equal to 1; b is a vector with k + 1 rows containing all
the model parameters to be estimated on the basis of the data: the intercept
and the k slope coefficients relative to each explanatory variable. Finally E
is a column vector of length n containing the error terms. In the bivariate
case the regression model was represented by a line, now it corresponds to a
(k + 1)-dimensional plane, called the regression plane. This plane is defined by
the equation

ŷi = a + b1xi1 + b2xi2 + · · · + bkxik

To determine the fitted plane it is necessary to estimate the vector of the
parameters (a, b1, . . . , bk) on the basis of the available data. Using the least
squares optimality criterion, as before, the b parameters will be obtained by
minimising the square of the Euclidean distance:

d2(y, ŷ) =
n∑

i=1

(yi − ŷi)
2

We can obtain a solution in a similar way to bivariate regression; in matrix terms
it is given by Ŷ = Xβ where

β(X′X)−1X′Y
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Therefore the optimal fitted plane is defined by

Ŷ = X(X′X)−1X′Y = HY

In geometric terms this establishes that the optimal plane is obtained as the pro-
jection of the observed vector y ∈ R

n on to the (k + 1)-dimensional hyperplane.
Here the projection operator is the matrix H; in bivariate regression with a = 0
the projection operator is b. In fact, for k = 1 the two parameters in β coincide
with parameters a and b in the bivariate case. The properties of the residuals we
obtained for the bivariate case can be extended to the multivariate case.

We now apply multiple regression to the investment fund data we have been
investigating. We assume a multifactorial model, in conformity with the theory
of the arbitrage pricing theory (APT) model. Instead of considering the WORLD
index as a unique explanatory variable, we use five indexes relative to spe-
cific geographic areas – JAPAN, PACIFIC, EURO, NORDAM, COMIT – as the
explanatory variables of the fund return (REND). Table 4.4 summarises the out-
come. Notice that the indexes EURO and NORDAM have the strongest effect
on the fund return, giving estimated values for the slope regression coefficients
that are noticeably greater than the other indexes. For goodness of fit we can still
use the variance decomposition identity we obtained for bivariate regression:

Var(Y ) = Var(Ŷ ) + Var(E)

with Ŷ now indicating the regression plane fit. This permits us to define the
coefficient of multiple determination as a summary index for the plane’s good-
ness of fit:

R2 = Var(Ŷ )

Var(Y )
= 1 − Var(E)

Var(Y )

The terminology reflects the fact that the plane’s goodness of fit depends on the
joint effect of the explanatory variables on the response variable. In bivariate
regression R2 is simply the square of the linear correlation coefficient of the

Table 4.4 Least squares estimates from a
multiple regression model.

Variable Parameter estimate

INTERCEPT −0.0077

COMIT −0.0145

JAPAN 0.0716

PACIFIC 0.0814

EURO 0.3530

NORDAM 0.3535
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response variable with the single explanatory variable; in multivariate regression
the relationship is not so straightforward, due to the presence of more than one
explanatory variable. An important aim of multivariate regression is to under-
stand not only the absolute contribution of the fitted plane to explaining the
variability of Y , as expressed by R2, but also to determine the partial contribu-
tion of each explanatory variable. We now examine in greater detail the variance
decomposition identity. It can be demonstrated that

Var(Y ) =
k∑

j=1

bj Cov(Xj , Y ) + Var(E)

But in general

bj �= Cov(Xj , Y )

Var(Xi)

If the previous equation were true we would obtain

Var(Y ) =
k∑

j=1

Var(Y ) r2(Xj , Y ) + Var(E)

Therefore
Var(Ŷ ) = Var(Ŷ1) + Var(Ŷ2) + · · · + Var(Ŷk)

so that

R2 =
k∑

j=1

r2
Y,Xj

The variance of Y explained by the fitting plane would be equal to the sum of
the variance of Y explained by each of the fitting lines, built separately for each
of the explanatory variables.

However, this situation occurs only when the explanatory variables are uncor-
related. For example, if the explanatory variables are principal components,
obtained using the method in Section 3.5. In general it can be shown that the
overall contribution of the fitted plane depends on the single contributions through
the following recursive relationship:

R2 =
k∑

j=1

r2
Y,Xj |Xi<j

(1 − R2
Y,X1,...,Xj−1

)

where R2
Y,X1,...,Xj−1

indicates the coefficient of multiple correlation between Y

and the fitted plane determined by the explanatory variables X1, . . . , Xj−1 and
rY,Xj |Xi<j

indicates the coefficient of partial correlation between Y and Xj , con-
ditional on the ‘previous’ variables X1, . . . , Xj−1. To clarify how this works in
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practice, consider the case of two explanatory variables (k = 2). Fitting first X1

and then X2, we get

R2 = r2
Y,X1

+ r2
Y,X2|X1

(1 − R2
Y,X1

)

The term in parentheses takes the amount of variance not explained by the regres-
sion (of Y on X1) and reduces it by a fraction equal to the square of the partial
correlation coefficient between itself and the response variable, conditional on
the variable X1 already being present.

To summarise, a single explanatory variable, say Xj , makes an additive con-
tribution to the fitting plane, therefore R2 increases as the number of variables
increases. However, the increase is not necessarily equal to r2

Y,Xj
. This occurs

only in the uncorrelated case. In general, it can be smaller or greater according
to the degree of correlation of the response variable with those already present,
and of the latter with Xj .

When the explanatory variables are correlated, the coefficient of regression
estimated for a certain variable can change its sign and magnitude according to
the order with which the explanatory variables are inserted in the fitted plane.
This can be easily verified with a real application and it emphasises the impor-
tance of ordering the explanatory variables. Software packages order the variables
according to their predictive capacity, obtained from an exploratory analysis.
They might order the variables according to the absolute value of the linear
correlation coefficient r(X, Y ).

Note the importance of the partial correlation coefficient in explaining an
extra variable’s contribution to the fitted plane. Consider a fitted plane with k

explanatory variables. Suppose we want to add a (k + 1)th explanatory variable.
The contribution of this variable will be the increase in the variance explained
by the plane, from Var(Ŷk) to Var(Ŷk+1). This contribution can be measured by
the difference

Var(Ŷk+1) − Var(Ŷk).

The square of the coefficient of partial correlation relates this additional contri-
bution to the variance not explained by the fitted plane Ŷk:

r2
Y,Xk+1|X1,...,Xk

= Var(Ŷk+1) − Var(Ŷk)

Var(Y ) − Var(Ŷk)

In our financial example the model with the five explanatory variables has a
coefficient of multiple determination equal to 0.8191. Among the five considered
explanatory variables, the COMIT variable has a coefficient of partial correlation
with the response variable, given all the other explanatory variables, equal to
about 0.0003. This suggests the possible elimination of the COMIT variable,
as it appears substantially irrelevant after having inserted the other explanatory
variables. In fact, the coefficient of multiple determination relative to the fit of a
model that explains the return as a function of the other four explanatory variables
is equal to 0.8189, only slightly inferior to 0.8191.
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4.4 Logistic regression

Section 4.3 considered a predictive model for a quantitative response variable;
this section considers a predictive model for a qualitative response variable.
A qualitative response problem can often be decomposed into binary response
problems (e.g. Agresti, 1990). The building block of most qualitative response
models is the logistic regression model, one of the most important predictive
data mining methods. Let yi (i = 1, 2, . . . , n) be the observed values of a binary
response variable, which can take only the values 0 or 1. The level 1 usu-
ally represents the occurrence of an event of interest, often called a ‘success’.
A logistic regression model is defined in terms of fitted values to be inter-
preted as probabilities (Section 5.1) that the event occurs in different subpop-
ulations:

πi = P(Yi = 1), for i = 1, 2, . . . , n

More precisely, a logistic regression model specifies that an appropriate function
of the fitted probability of the event is a linear function of the observed values
of the available explanatory variables. Here is an example:

log

[
πi

1 − πi

]
= a + b1xi1 + b2xi2 + · · · + bkxik

The left-hand side defines the logit function of the fitted probability, logit(πi),
as the logarithm of the odds for the event, namely the natural logarithm of
the ratio between the probability of occurrence (success) and the probability of
non-occurrence (failure):

logit(πi) = log

[
πi

1 − πi

]

Once πi is calculated, on the basis of the data, a fitted value for each binary
observation ŷi can be obtained, introducing a threshold value of πi above which
ŷi = 1 and below which ŷi = 0. The resulting fit will seldom be perfect, so there
will be a fitting error that will have to be kept as low as possible. Unlike linear
regression, the observed response values cannot be decomposed additively as the
sum of a fitted value and an error term.

The choice of the logit function to describe the function that links πi to the
linear combination of the explanatory variables, is motivated by the fact that
with this choice the probability tends towards 0 and 1 gradually. And these
limits are never exceeded, guaranteeing that πi is a valid probability. A linear
regression model would be inappropriate to predict a binary response variable,
simply because a linear function is unlimited, so the model could predict values
for the response variable outside the interval [0,1], which would be meaningless.
But other types of link are possible, as will be seen in Section 5.4.
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4.4.1 Interpretation of logistic regression

The logit function implies that the dependence of πi on the explanatory variables
is described by a sigmoid or S-shaped curve. By inverting the definition of the
logit function, we obtain

πi = exp(a + b1xi1 + b2xi2 + · · · + bkxik )

1 + exp(a + b1xi1 + b2xi2 + · · · + bkxik )

This relationship corresponds to the function known as a ‘logistic curve’, often
employed for diffusion problems, including the launch of a new product or the
diffusion of a reserved piece of information. These applications often concern
the simple case of only one explanatory variable, corresponding to a bivariate
logistic regression model:

πi = ea+b1xi1

1 + ea+b1xi1

Here the value of the success probability varies according to the observed values
of the unique explanatory variable. This simplified case is useful to visualise the
behaviour of the logistic curve, and to make two more remarks about interpreta-
tion. Figure 4.5 shows the graph of the logistic function that links the probability
of success πi to the possible values of the explanatory variable xi , corresponding
to two different signs of the coefficient β. We have assumed the more general
setting, in which the explanatory variable is continuous and therefore the success
probability can be indicated as π(x). For discrete or qualitative explanatory vari-
ables the results will be a particular case of what I am about to describe. Notice
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Figure 4.5 The logistic function.
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that the parameter β determines the rate of growth or increase of the curve; the
sign of β indicates whether the curve increases or decreases and the magnitude
of β determines the rate of that increase or decrease:

• When β > 0 then (x) increases as x increases.
• When β < 0 then π(x) decreases as x increases.

Furthermore, for β → 0 the curve tends to become a horizontal straight line. In
particular, when β = 0, Y is independent of X.

Although the probability of success is a logistic function and therefore not
linear in the explanatory variables, the logarithm of the odds is a linear function
of the explanatory variables:

log

(
π(x)

1 − π(x)

)
= α + βx

Positive log-odds favour Y = 1 whereas negative log-odds favour Y = 0. The
log-odds expression establishes that the logit increases by β units for a unit
increase in x. It could be used during the exploratory phase to evaluate the linear-
ity of the observed logit. A good linear fit of the explanatory variable with respect
to the observed logit will encourage us to apply the logistic regression model.
The concept of odds was introduced in Section 3.4. For the logistic regression
model, the odds of success can be expressed by

π(x)

1 − π(x)
= eα+βx = eα(eβ)x

This exponential relationship offers a useful interpretation of the parameter β: a
unit increase in x multiplies the odds by a factor eβ . In other words, the odds at
level x + 1 equal the odds at level x multiplied by eβ . When β = 0 we obtain
eβ = 1, therefore the odds do not depend on X.

What about the fitting algorithm, the properties of the residuals, and goodness
of fit indexes? These concepts can be introduced by interpreting logistic regres-
sion as a linear regression model for appropriate transformation of the variables.
They are examined as part of the broader field of generalised linear models
(Section 5.4), which should make them easier to understand. I have waited until
Section 5.4 to give a real application of the model.

4.4.2 Discriminant analysis

Linear regression and logistic regression models are essentially scoring mod-
els – they assign a numerical score to each value to be predicted. These scores
can be used to estimate the probability that the response variable assumes a
predetermined set of values or levels (e.g. all positive values if the response
is continuous or a level if it is binary). Scores can then be used to classify
the observations into disjoint classes. This is particularly useful for classifying



COMPUTATIONAL DATA MINING 99

new observations not already present in the database. This objective is more
natural for logistic regression models, where predicted scores can be converted
in binary values, thus classifying observations in two classes: those predicted
to be 0 and those predicted to be 1. To do this, we need a threshold or cut-off
rule. This type of predictive classification rule is studied by the classical the-
ory of discriminant analysis. We will consider the simple and common case in
which each observation is to be classified using a binary response: it is either
in class 0 or in class 1. The more general case is similar, but more complex
to illustrate.

The choice between the two classes is usually based on a probabilistic criterion:
choose the class with the highest probability of occurrence, on the basis of the
observed data. This rationale, which is optimal when equal misclassification costs
are assumed (Section 5.1), leads to an odds-based rule that allows us to assign
an observation to class 1 (rather than class 0) when the odds in favour of class
1 are greater than 1, and vice versa. Logistic regression can be expressed as a
linear function of log-odds, therefore a discriminant rule can be expressed in
linear terms, by assigning the ith observations to class 1 if

a + b1xi1 + b2xi2 + · · · + bkxik > 0

With a single predictor variable, the rule simplifies to

a + bx i > 0

This rule is known as the logistic discriminant rule; it can be extended to quali-
tative response variables with more than two classes.

An alternative to logistic regression is linear discriminant analysis, also known
as Fisher’s rule. It is based on the assumption that, for each given class of
the response variable, the explanatory variables are distributed as a multivariate
normal distribution (Section 5.1) with a common variance–covariance matrix.
Then it is also possible to obtain a rule in linear terms. For a single predictor,
the rule assigns observation i to class 1 if

log
n1

n0
− (x1 − x0)

2

2s2
+ xi(x1 − x0)

s2
> 0

where n1 and n0 are the number of observations in classes 1 and 0; x1 and x0

are the observed means of the predictor X in the two classes, 1 and 0; s2 is
the variance of X for all the observations. Both Fisher’s rule and the logistic
discriminant rule can be expressed in linear terms, but the logistic rule is simpler
to apply and interpret and it does not require any probabilistic assumptions.
Fisher’s rule is more explicit than the logistic discriminant rule. By assuming
a normal distribution, we can add more information to the rule, such as an
assessment of its sampling variability. We shall return to discriminant analysis
in Section 5.1.
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4.5 Tree models

While linear and logistic regression methods produce a score and then possibly a
classification according to a discriminant rule, tree models begin by producing a
classification of observations into groups and then obtain a score for each group.
Tree models are usually divided into regression trees, when the response variable
is continuous, and classification trees, when the response variable is quantitative
discrete or qualitative (categorical, for short). However, as most concepts apply
equally well to both, here we do not distinguish between them, unless otherwise
specified. Tree models can be defined as a recursive procedure, through which
a set of n statistical units are progressively divided into groups, according to
a division rule that aims to maximise a homogeneity or purity measure of the
response variable in each of the obtained groups. At each step of the procedure,
a division rule is specified by the choice of an explanatory variable to split and
the choice of a splitting rule for such variable, which establishes how to partition
the observations.

The main result of a tree model is a final partition of the observations. To
achieve this it is necessary to specify stopping criteria for the division process.
Suppose that a final partition has been reached, consisting of g groups (g < n).
Then for any given observation response variable observation yi , a regression
tree produces a fitted value ŷi that is equal to the mean response value of the
group to which the observation i belongs. Let m be such a group; formally we
have that

ŷi = 1

nm

nm∑
l=1

ylm

For a classification tree, fitted values are given in terms of fitted probabilities of
affiliation to a single group. If only two classes are possible (binary classification),
the fitted success probability is therefore

πi = 1

nm

nm∑
l=1

ylm

where the observations ylm can take the value 0 or 1, therefore the fitted prob-
ability corresponds to the observed proportion of successes in group m. Notice
that ŷi and πi are constant for all the observations in the group.

The output of the analysis is usually represented using a tree; it looks very
similar to the dendrogram produced by hierarchical clustering (Section 4.2). This
implies that the partition performed at a certain level is influenced by the previ-
ous choices. Figure 4.6 shows a classification tree for a credit scoring application
described in Chapter 11. For this problem the response variable is binary, and for
the time being we use a 1 to indicate the event corresponding to the consumer
not being reliable (bad). In Chapter 11 we will follow the opposite convention,
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Figure 4.6 Example of a decision tree.

where 1 indicates the ‘good’ customers. The choice is irrelevant for the final
results, but it affects how the model is interpreted.

Figure 4.6 describes the typical output of a tree model analysis. The analysis
proceeds in a divisive way. On top of the figure there is the root node of the tree
model, which contains all the 1000 available observations; 70% are credit reliable
(good) and 30% are credit unreliable (bad). In the first step of the procedure, the
consumers are divided into two groups, according to the levels of the variable
‘Good Account’, estimated to be the most discriminatory. In the group on the
right are the 394 consumers with a good account (Good Account = 1), of which
about 88% are credit reliable; in the group on the left are the 606 consumers
with a bad account (Good Account = 0), of which about 58% are credit reliable.
Subsequently, the bad accounts group is further split according to the variable
‘Previous Repayments’ and the good accounts group is separated according to
the variable ‘Concurrent’ (debts). The tree stops at these levels, so there are four
terminal nodes (groups not further divisible).

The terminal nodes of a tree are often called the ‘leaves’. The leaves contain
the main information conveyed by a tree model analysis; in this example they
partition the observations into four groups, ordered by the fitted probability of
credit unreliability (response variable): 9.3%, 25%, 38.5% and 67.1%. These
fitted probabilities can be compared with those that could be obtained from a
logistic regression model.

We can now classify new observations, for which the levels of the response
variable are unknown. In Figure 4.6 we can do this by locating such observa-
tions in one of the four classes corresponding to the terminal branches, according
to the levels assumed by the explanatory variables Good Account, Previous
Repayments, and Concurrent, and following the described rules. For example,
a consumer with level 0 of the variable Good Account and level 0 of the variable
Previous Repayments will be classified as credit unreliable, since the correspond-
ing terminal node (the leftmost leaf) has a very high probability of unreliability
(equal to 67.1%). A consumer with level 1 of Good Account and level 0 of Con-
current will be classified as credit reliable, as they have a very low probability
of unreliability (9.3%).
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For classification trees, a discriminant rule can be derived at each leaf of
the tree. A commonly used rule is to classify all observations belonging to a
terminal node in the class corresponding to the most frequent level (mode).
This corresponds to the so-called ‘majority rule’. Other ‘voting’ schemes are
also possible but, in the absence of other considerations, this rule is the most
reasonable. Therefore each of the leaves points out a clear allocation rule of the
observations, which is read by going through the path that connects the initial
node to each of them. Every path in a tree model thus represents a classification
rule. Compared with discriminant models, tree models produce rules that are less
explicit analytically but easier to understand graphically.

Tree models can be considered as non-parametric predictive models
(Section 5.2), since they do not require assumptions about the probability
distribution of the response variable. In fact, this flexibility means that tree
models are generally applicable, whatever the nature of the dependent variable
and the explanatory variables. But this greater flexibility may have disadvantages,
for instance, a higher demand of computational resources. Furthermore, their
sequential nature and their algorithmic complexity can make them dependent on
the observed data, and even a small change might alter the structure of the tree.
It is difficult to take a tree structure designed for one context and generalize it
to other contexts.

Despite their graphical similarities, there are important differences between
hierarchical cluster analysis and classification trees. Classification trees are pre-
dictive rather than descriptive. Cluster analysis performs an unsupervised clas-
sification of the observations on the basis of all available variables, whereas
classification trees perform a classification of the observations on the basis of all
explanatory variables and supervised by the presence of the response (target) vari-
able. A second important difference concerns the partition rule. In classification
trees the segmentation is typically carried out using only one explanatory variable
at a time (the maximally predictive explanatory variable), whereas in hierarchical
clustering the divisive (or agglomerative) rule between groups is established on
the basis of considerations on the distance between them, calculated using all the
available variables.

We now describe in more detail the operational choices that have to be made
before fitting a tree model to the data. It is appropriate to start with an accurate
preliminary exploratory analysis. First, it is necessary to verify that the sample
size is sufficiently large. This is because subsequent partitions will have fewer
observations, for which the fitted values may have a lot of variance. Second,
it is prudent to conduct accurate exploratory analysis on the response variable,
especially to identify possible anomalous observations that could severely distort
the results of the analysis. Pay particular attention to the shape of the response
variable’s distribution. For example, if the distribution is strongly asymmetrical,
the procedure may lead to isolated groups with few observations from the tail of
the distribution. Furthermore, when the dependent variable is qualitative, ideally
the number of levels should not be too large. Large numbers of levels should be
reduced to improve the stability of the tree and to achieve improved predictive
performance.
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After the preprocessing stage, choose an appropriate tree model algorithm,
paying attention to how it performs. The two main aspects are the division cri-
teria and the methods employed to reduce the dimension of the tree. The most
used algorithm in the statistical community is the CART algorithm (Breiman
et al., 1984), which stands for ‘classification and regression trees’. Other algo-
rithms include CHAID (Kass, 1980), C4.5 and its later version, C5.0 (Quinlan,
1993). C4.5 and C5.0 are widely used by computer scientists. The first ver-
sions of C4.5 and C5.0 were limited to categorical predictors, but the most
recent versions are similar to CART. We now look at two key aspects of the
CART algorithm: division criteria and pruning, employed to reduce the com-
plexity of a tree.

4.5.1 Division criteria

The main distinctive element of a tree model is how the division rule is chosen
for the units belonging to a group, corresponding to a node of the tree. Choosing
a division rule means choosing a predictor from those available, and choosing
the best partition of its levels. The choice is generally made using a goodness
measure of the corresponding division rule. This allows us to determine, at each
stage of the procedure, the rule that maximises the goodness measure. A goodness
measure �(t) is a measure of the performance gain in subdividing a (parent) node
t according to a segmentation in a number of (child) nodes. Let tr , r = 1, . . . , s,
indicate the child groups generated by the segmentation (s = 2 for a binary seg-
mentation) and let pr indicate the proportion of observations, among those in t ,
that are allocated to each child node, with

∑
pr = 1. The criterion function is

usually expressed as

�(s, t) = I (t) −
s∑

r=1

I (tr )pr

where the symbol I indicates an impurity function. High values of the criterion
function imply that the chosen partition is a good one. The concept of impurity
refers to a measure of variability of the response values of the observations. In
a regression tree, a node will be pure if it has null variance (all observations are
equal) and impure if the variance of the observations is high. More precisely, for
a regression tree, the impurity at node m can be defined by

IV (m) =

nm∑
l=1

(ylm − ŷm)2

nm

where ŷm indicates the fitted mean value for group m. For regression trees
impurity corresponds to the variance; for classification trees alternative measures
should be considered. Here are the usual choices.
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Misclassification impurity

IM(m) =

nm∑
l=1

1(ylm , yk)

nm

= 1 − πk

where yk is the modal category of the node, with fitted probability πk; the function
1() indicates the indicator function, which takes the value 1 if ylm = yk and
0 otherwise.

Gini impurity

IG(m) = 1 −
k(m)∑
i=1

π2
i

where πi are the fitted probabilities of the levels present in node m, which are
at most k(m).

Entropy impurity

IE(m) = −
k(m)∑
i=1

πi log πi

with πi as above. Notice that the entropy impurity and the Gini impurity cor-
respond to the application of the heterogeneity indexes (Section 3.1) to the
observations in node m. Compared to the misclassification impurity, both are
more sensitive to changes in the fitted probabilities; they decrease faster than the
misclassification rate as the tree grows. Therefore, to obtain a parsimonious tree,
choose the misclassification impurity.

Tree assessments
Besides giving a useful split criterion, an impurity measure can be used to give
an overall assessment of a tree. Let N(T ) be the number of leaves (terminal
nodes) of a tree T . The total impurity of T is obtained as

I (T ) =
N(T )∑
m=1

I (tm)pm

where pm are the observed proportions of observations in the final classification.
In particular, the misclassification impurity constitutes a very important assess-
ment of the goodness of fit of a classification tree. Even when the number of
leaves coincides with the number of levels of the response variable, it need not
to be that all the observations classified in the same node actually have the
same level of the response variable. The percentage of misclassifications, or the
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percentage of observations classified with a level different from the observed
value, is also called misclassification error or misclassification rate; it is another
important overall assessment of a classification tree.

The impurity measure used by CHAID is the distance between the observed
and the expected frequencies; the expected frequencies are calculated using the
hypotheses for homogeneity for the observations in the considered node. This split
criterion function is the Pearson X2 index. If the decrease in X2 is significant (i.e.
the p-value is lower than a prespecified level α) then a node is split, otherwise
it remains unsplit and becomes a leaf.

4.5.2 Pruning

In the absence of a stopping criterion, a tree model could grow until each node
contains identical observations in terms of values or levels of the dependent vari-
able. This obviously does not constitute a parsimonious segmentation. Therefore
it is necessary to stop the growth of the tree at a reasonable dimension. The
ideal final tree configuration is both parsimonious and accurate. The first prop-
erty implies that the tree has a small number of leaves, so that the predictive rule
can be easily interpreted. The second property implies a large number of leaves
that are maximally pure. The final choice is bound to be a compromise between
the two opposing strategies. Some tree algorithms use stopping rules based on
thresholds on the number of the leaves, or on the maximum number of steps
in the process. Other algorithms introduce probabilistic assumptions on the vari-
ables, allowing us to use suitable statistical tests. In the absence of probabilistic
assumptions, the growth is stopped when the decrease in impurity is too small.
The results of a tree model can be very sensitive to the choice of a stopping rule.

The CART method uses a strategy somewhat different from the stepwise stop-
ping criteria; it is based on the concept of pruning. First the tree is built to its
greatest size. This might be the tree with the greatest number of leaves, or the tree
in which every node contains only one observation or observations all with the
same outcome value or level. Then the tree is ‘trimmed’ or ‘pruned’ according
to a cost-complexity criterion. Let T0 indicate the tree of greatest size and let T

indicate, in general, a tree. From any tree a subtree can be obtained by collapsing
any number of its internal (non-terminal) nodes. The idea of pruning is to find
a subtree of T0 in an optimal way, the one that minimises a loss function. The
loss function implemented in the CART algorithm depends on the total impurity
of the tree T and the tree complexity:

Cα(T ) = I (T ) + αN(T )

where, for a tree T , I (T ) is the total impurity function calculated at the leaves,
and N(T ) is the number of leaves; with α a constant that penalises complex-
ity linearly. In a regression tree the impurity is a variance, so the total impurity
can be determined as

I (T ) =
N(T )∑
m=1

IV (m)nm
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We have seen how impurity can be calculated for classification trees. Although
any of the three impurity measures can be used, the misclassification impurity
is usually chosen in practice. Notice that the minimisation of the loss function
leads to a compromise between choosing a complex model (low impurity but high
complexity cost) and choosing a simple model (high impurity but low complexity
cost). The choice depends on the chosen value of α. For each α it can be shown
that there is a unique subtree of T0 which minimises Cα(T ).

A possible criticism of this loss function is that the performance of each tree
configuration is evaluated with the same data used for building the classification
rules, which can lead to optimistic estimates of the impurity. This is particularly
true for large trees, due to the phenomenon we have already seen for regres-
sion models: the goodness of fit to the data increases with the complexity, here
represented by the number of leaves. An alternative pruning criterion is based
on the predictive misclassification errors, according to a technique known as
cross-validation (Section 6.4). The idea is to split the available data set, use one
part to train the model (i.e. to build a tree configuration), and use the second
part to validate the model (i.e. to compare observed and predicted values for
the response variable), thereby measuring the impurity in an unbiased fashion.
The loss function is thus evaluated by measuring the complexity of the model
fitted on the training data set, whose misclassification errors are measured on the
validation data set.

To further explain the fundamental difference between training and validation
error, Figure 4.7 takes a classification tree and illustrates the typical behaviour of
the misclassification errors on the training and validation data sets, as functions of
model complexity. I (T ) is always decreasing on the training data. I (T ) is non-
monotone on the validation data; it usually follows the behaviour described in the
figure, which allows us to choose the optimal number of leaves as the value of
N(T ) such that I (T ) is minimum. For simplicity, Figure 4.7 takes α = 0. When
greater values for the complexity penalty are specified, the optimal number of
nodes decreases, reflecting aversion towards complexity.

The misclassification rate is not the only possible performance measure to
use during pruning. Since the costs of misclassification can vary from one class
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Figure 4.7 Misclassification rates.
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to another, the misclassification impurity could be replaced by a simple cost
function that multiplies the misclassification impurity by the costs attached to the
consequence of such errors. This is further discussed in Section 6.5.

The CHAID algorithm uses chi-squared testing to produce an implicit stopping
criterion based on testing the significance of the homogeneity hypothesis; the
hypothesis is rejected for large values of χ2. If homogeneity is rejected for
a certain node, then splitting continues, otherwise the node becomes terminal.
Unlike the CART algorithm, CHAID prefers to stop the growth of the tree through
a stopping criterion based on the significance of the chi-squared test, rather than
through a pruning mechanism.

4.6 Neural networks

Neural networks, can be used for many purposes, notably descriptive and predic-
tive data mining. They were originally developed in the field of machine learning
to try to imitate the neurophysiology of the human brain through the combination
of simple computational elements (neurons) in a highly interconnected system.
They have become an important data mining method. However, the neural net-
works developed since the 1980s have only recently received attention from
statisticians (e.g. Bishop, 1995; Ripley, 1996). Despite controversies over the
real ‘intelligence’ of neural networks, there is no doubt they have now become
useful statistical models. In particular, they show a notable ability to fit observed
data, especially with high-dimensional databases, and data sets characterised by
incomplete information, errors or inaccuracies. We will treat neural networks as
a methodology for data analysis; we will recall the neurobiological model only
to illustrate the fundamental principles.

A neural network is composed of a set of elementary computational units,
called neurons, connected together through weighted connections. These units
are organised in layers so that every neuron in a layer is exclusively connected
to the neurons of the preceding layer and the subsequent layer. Every neuron, also
called a node, represents an autonomous computational unit and receives inputs
as a series of signals that dictate its activation. Following activation, every neuron
produces an output signal. All the input signals reach the neuron simultaneously,
so the neuron receives more than one input signal, but it produces only one
output signal. Every input signal is associated with a connection weight. The
weight determines the relative importance the input signal can have in producing
the final impulse transmitted by the neuron. The connections can be exciting,
inhibiting or null according to whether the corresponding weights are respectively
positive, negative or null. The weights are adaptive coefficients that, in analogy
with the biological model, are modified in response to the various signals that
travel on the network according to a suitable learning algorithm. A threshold
value, called bias, is usually introduced. Bias is similar to an intercept in a
regression model.

In more formal terms, a generic neuron j , with a threshold θj , receives n

input signals x = [x1, x2, . . . , xn] from the units to which it is connected in
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Figure 4.8 Representation of the activity of a neuron in a neural network.

the previous layer. Each signal is attached with an importance weight wj =
[w1j , w2j , . . . , wnj ].

The same neuron elaborates the input signals, their importance weights and
the threshold value through something called a combination function. The com-
bination function produces a value called potential, or net input. An activation
function transforms the potential into an output signal. Figure 4.8 schematically
represents the activity of a neuron. The combination function is usually linear,
therefore the potential is a weighted sum of the input values multiplied by the
weights of the respective connections. This sum is compared with the value
of the threshold. The potential of neuron j is defined by the following linear
combination:

Pj =
n∑

i=1

(xiwij − θj )

To simplify the expression for potential, the bias term can be absorbed by adding
a further input with constant value x0 = 1, connected to the neuron j through a
weight w0j = −θj :

Pj =
n∑

i=0

(xiwij )

Now consider the output signal. The output of the j th neuron, yj, is obtained by
applying the activation function to potential Pj :

yj = f (x , w j ) = f (Pj ) = f

(
n∑

i=0

xiwij

)

The quantities in bold italics are vectors. In defining a neural network model, the
activation function is typically one of the elements to specify. Three types are
commonly employed: linear, stepwise and sigmoidal. A linear activation function
is defined by

f (Pj ) = α + βPj
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where Pj is defined on the set of real numbers, and α and β are real constants;
α = 0 and β = 1 is a particular case called the identity function, usually employed
when the model requires the output of a neuron to be exactly equal to its level of
activation (potential). Notice the strong similarity between the linear activation
function and the expression for a the regression line (Section 4.3). In fact, a
regression model can be seen as a simple type of neural network.

A stepwise activation function is defined by

f (Pj ) =
{
α Pj ≥ θj

β Pj < θj

The activation function can assume only two values according to whether or not
the potential exceeds the threshold θj . For α = 1, β = 0 and θj = 0 we obtain the
so-called sign activation function, which takes value 0 if the potential is negative
and value +1 if the potential is positive.

Sigmoidal, or S-shaped, activation functions are probably the most used. They
produce only positive output; the domain of the function is the interval [0, 1].
They are widely used because they are non-linear and also because they are easily
differentiable and understandable. A sigmoidal activation function is defined by

f (Pj ) = 1

1 + e−αPj

where α is a positive parameter that regulates the slope of the function.
Another type of activation function, the softmax function, is typically used to

normalise the output of different but related nodes. Consider g such nodes, and
let their outputs be vj , j = 1, . . . , g. The softmax function normalises the vj so
they sum to 1:

softmax(vj ) = exp(vj )
g∑

h=1

exp(vh)

(j = 1, . . . , g)

The softmax function is used in supervised classification problems, where the
response variable can take g alternative levels.

4.6.1 Architecture of a neural network

The neurons of a neural network are organised in layers. These layers can be
of three types: input, output or hidden. The input layer receives information
only from the external environment; each neuron in it usually corresponds to
an explanatory variable. The input layer does not perform any calculation; it
transmits information to the next level. The output layer produces the final results,
which are sent by the network to the outside of the system. Each of its neurons
corresponds to a response variable. In a neural network there are generally two
or more response variables. Between the output layer and the input layer there
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can be one or more intermediate layers, called hidden layers because they are not
directly in contact with the external environment. These layers are exclusively
for analysis; their function is to take the relationship between the input variables
and the output variables and adapt it more closely to the data. In the literature
there is no standard convention for calculating the number of layers in a neural
network. Some authors count all the layers of neurons and others count the
number of layers of weighted neurons. I will use the weighted neurons and count
the number of layers that are to be learnt from the data. The ‘architecture’ of
a neural network refers to the network’s organisation: the number of layers, the
number of units (neurons) belonging to each layer, and the manner in which the
units are connected. Network architecture can be represented using a graph, hence
people often use the term ‘network topology’ instead of ‘network architecture’.
Four main characteristics are used to classify network topology:

• Degree of differentiation of the input and output layer
• Number of layers
• Direction of flow for the computation
• Type of connections

The simplest topology is called autoassociative; it has a single layer of intra-
connected neurons. The input units coincide with the output units; there is no
differentiation. We will not consider this type of network, as it has no statis-
tical interest. Networks with a single-layer of weighted neurons are known as
single-layer perceptrons. They have n input units (x1, . . . , xn) connected to a
layer of p output units (y1, . . . , yp) through a system of weights. The weights
can be represented in matrix form:




w11 . . . w1j . . . w1p

...
...

...
...

...

wi1 . . . wij . . . wip

...
...

...
...

...

wn1 . . . wnj . . . wnp




for i = 1, . . . , n; j = 1, . . . , p. The generic weight wij represents the weight of
the connection between the ith neuron of the input layer and the j th neuron of
the output layer.

Neural networks with more than one layer of weighted neurons, which con-
tain one or more hidden layers, are called multilayer perceptrons, and we will
concentrate on these. A two-layer network has one hidden layer; there are n neu-
rons in the input layer, h in the hidden layer and p in the output layer. Weights
wik (i = 1, . . . , n; k = 1, . . . , h) connect the input layer nodes with the hidden
layer nodes; weights zkj (k = 1, . . . , h; j = 1, . . . , p) connect the hidden layer
nodes with the output layer nodes. The neurons of the hidden layer receive infor-
mation from the input layer, weighted by the weights wik , and produce outputs
hk = f (x , wk), where f is the activation function of the units in the hidden
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layer. The neurons of the output layer receive the outputs from the hidden layer,
weighted by the weights zkj , and produce the final network outputs yj = g(h, zj ).
The output of neuron j in the output layer is

yj = g

(∑
k

hkzkj

)
= g

(∑
k

zkj f

(∑
i

xiwik

))

This equation shows that the output values of a neural network are determined
recursively and typically in a non-linear way.

Different information flows lead to different types of network. In feedforward
networks the information moves in only one direction, from one layer to the
next, and there are no return cycles. In feedback networks it is possible that
information returns to previous layers. If each unit of a layer is connected to all
the units of the next layer, the network is described as totally interconnected; if
each unit is connected to every unit of every layer, the network is described as
totally connected.

Networks can also be classified into three types according to their connection
weightings: networks with fixed weights, supervised networks and unsupervised
networks. We shall not consider networks with fixed weights as they cannot learn
from the data and they do not offer a statistical model. Supervised networks use
a supervising variable, a concept introduced in Section 4.5. With a supervised
network, there can be information about the value of a response variable cor-
responding to the values of the explanatory variables; this information can be
used to learn the weights of the neural network model. The response variable
behaves as a supervisor for the problem. When this information is not available,
the learning of the weights is exclusively based on the explanatory variables and
there is no supervisor. Here is the same idea expressed more formally:

• Supervised learning: assume that each observation is described by a pair
of vectors (xi , ti ) representing the explanatory and response variables, res-
pectively. Let D = {(x1, t1), . . . , (xn, tn)} represent the set of all available
observations. The problem is to determine a neural network yi = f (xi ),
i = 1, . . . , n, such that the sum of the distances d(yi , ti ) is minimum. Notice
the analogy with linear regression models.

• Unsupervised learning: each observation is described by only one vector, with
all available variables, D = {x1, . . . , xn}. The problem is the partitioning of
the set D into subsets such that the vectors xi , belonging to the same subset
are ‘close’ in comparison to a fixed measure of distance. This is basically a
classification problem.

We will now examine the multilayer perceptron, an example of a supervised
network, and the Kohonen network, an example of an unsupervised network.

4.6.2 The multilayer perceptron

The multilayer perceptron is the most used architecture for predictive data mining.
It is a feedforward network with possibly several hidden layers, one input layer
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and one output layer, totally interconnected. It can be considered as a highly non-
linear generalisation of the linear regression model when the output variables are
quantitative, or of the logistic regression model when the output variables are
qualitative.

Preliminary analysis
Multilayer perceptrons, and neural networks in general, are often used ineffi-
ciently on real data because no preliminary considerations are applied. Although
neural networks are powerful computational tools for data analysis, they also
require exploratory analysis (Chapter 3).

Coding of the variables
The variables used in a neural network can be classified by type – qualitative or
quantitative – and by their role in the network – input or output. Input and output
in neural networks correspond to explanatory and response in statistical methods.
In a neural network, quantitative variables are represented by one neuron. The
qualitative variables, both explanatory and responses, are represented in a binary
way using several neurons for every variable; the number of neurons equals, the
number of levels of the variable (Section 2.3). In practice the number of neurons
to represent a variable need not be exactly equal to the number of its levels. It
is advisable to eliminate one level, and therefore one neuron, since the value of
that neuron will be completely determined by the others.

Transformation of the variables
Once the variables are coded, a preliminary descriptive analysis may underline the
need for some kind of transformation, perhaps to standardise the input variables
to weight them in a proper way. Standardisation of the response variable is
not strictly necessary. If a network has been trained with transformed input or
output, when it is used for prediction, the outputs must be mapped on to the
original scale.

Reduction in the dimensionality of the input variables
One of the most important forms of preprocessing is reduction in the dimension-
ality of the input variables. The simplest approach is to eliminate a subset of
the original inputs. Other approaches create linear or non-linear combinations of
the original variables to represent the input for the network. Principal component
methods can be usefully employed here (Section 3.5).

Choice of the architecture
The architecture of a neural network can have a fundamental impact on real
data. Nowadays, many neural networks optimise their architecture as part of
the learning process. Network architectures are rarely compared using the clas-
sical methods of Chapter 5; this is because a neural network does not need
an underlying probabilistic model and seldom has one. Even when there is an
underlying probabilistic model, it is often very difficult to draw the distribution
of the statistical test functions. Instead it is possible to make comparison based
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on the predictive performances of the alternative structures; an example is the
cross-validation method (Chapter 6).

Learning of the weights
Learning the weights in multilayer perceptrons appears to introduce no particu-
lar problems. Having specified an architecture for the network, the weights are
estimated on the basis of the data, as if they were parameters of a (complex)
regression model. But in practice there are at least two aspects to consider:

• The error function between the observed values and the fitted values could be
a classical distance function, such as the Euclidean distance or the misclassi-
fication error, or it could be depend in a probabilistic way on the conditional
distribution of the output variable with respect to the inputs.

• The optimisation algorithm needs to be a computationally efficient method
to obtain estimates of the weights by minimising of the error function.

The error functions usually employed for multilayer perceptrons are based on the
maximum likelihood principle (Section 5.1). For a given training data set D =
{(x1, t1), . . . , (xn, tn)}, this requires us to minimise the entropy error function:

E(w) = −
n∑

i=1

log p(ti |xi ; w)

where p(ti |xi ; w) is the distribution of the response variable, conditional on the
input values and the weighting function. For more details see Bishop (1995). We
will now look at the form of the error function for the two principal applica-
tions of the multilayer perceptron: predicting a continuous response (predictive
regression) and predicting a qualitative response (predictive classification).

Error functions for predictive regression
Every component ti,k of the response vector ti is assumed to be the sum of a
deterministic component and an error term, similar to linear regression:

ti,k = yi,k + εi,k (k = 1, . . . , q)

where yi,k is the kth component of the output vector yi . To obtain more infor-
mation from a neural network for this problem it can be assumed that the error
terms are normally distributed, similar to the normal linear model (Section 5.3).

Since the objective of statistical learning is to minimise the error function
in terms of the weights, we can omit everything that does not depend on the
weights. Then we obtain

E(w) =
n∑

i=1

q∑
k=1

(ti,k − yi,k)
2
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This expression can be minimised using a least squares procedure (Section 4.3).
In fact, linear regression can be seen as a neural network model without hidden
layers and with a linear activation function.

Error functions for predictive classification
Multilayer perceptrons can also be employed for solving classification problems.
Then it is used to estimate the probabilities of affiliation of every observation to
the various groups. There is usually an output unit for each possible class, and
the activation function for each output unit represents the conditional probability
P(Ck|x), where Ck is the kth class and x is the input vector. Output value yi,k

represents the fitted probability that the observation i belongs to the kth group Ck .
To minimise the error function with respect to the weights, we need to minimise

E(w) = −
n∑

i=1

q∑
k=1

[ti,k log yi,k + (1 − ti,k) log(1 − yi,k)]

which represents a distance based on the entropy index of heterogeneity
(Section 3.1). Notice that a particular case can be obtained for the logistic
regression model.

In fact, logistic regression can be seen as a neural network model without
hidden nodes and with a logistic activation function and softmax output function.
In contrast to logistic regression, which produces a linear discriminant rule, a
multilayer perceptron provides a non-linear discriminant rule and this cannot be
given a simple analytical description.

Choice of optimisation algorithm
In general, the error function E(w) of a neural network is highly non-linear in
the weights, so there may be many minima that satisfy the condition ∇E = 0.
Consequently, it may not be possible, in general, to find a globally optimal
solution, w*. Therefore we must resort to iterative algorithms. We guess an initial
estimate w (0) then produce a sequence of points w (s), s = 1, 2, . . . that converge
to a certain value ŵ . Here are the steps in more detail:

1. Choose a direction d(s) for the search.
2. Choose a width (or momentum) α(s) and set w (s+1) = w (s) + α(s)d(s).
3. If a certain criterion of convergence is verified then set ŵ = w (s+1), otherwise

set s = s + 1 and return to step 1.

Iterative methods guarantee convergence towards minimum points for which
∇E = 0. Different algorithms have different ways of changing the vector of
weights �w (s) = α(s)d(s). A potential problem for most of them is getting stuck
in a local minimum; the choice of the initial weights determines the minimum
to which the algorithm will converge. It is extremely important to choose the
weights carefully to obtain a valid fit and a good convergence rate. The momen-
tum parameter also needs to be chosen carefully. If it is too small, the algorithm
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will converge too slowly; if it is too large, the algorithm will oscillate in an
unstable way and may never converge.

One last choice for the analyst is when to interrupt the learning algorithm.
Here are some possibilities: stop after a defined number of iterations; stop after
a defined amount of computer time (CPU usage); stop when the error function
falls below a preset value; stop when the difference between two consecutive
values of the error function is less than a preset value; stop when the error of
classification or forecast, measured on an appropriate validation data set, starts
to grow (early stopping), similar to tree pruning (Section 4.5). For more details
see Bishop (1995). It is not possible to establish in general which is the best
algorithm; performance varies from problem to problem.

Generalisation and prediction
The objective of training a neural network with data, to determine its weights on
the basis of the available data set, is not to find an exact representation of the
training data, but to build a model that can be generalised or that allows us to
obtain valid classifications and predictions when fed with new data. Similar to
tree models, the performance of a supervised neural network can be evaluated
with reference to a training data set or validation data set. If the network is
very complex and the training is carried out for a large number of iterations, the
network can perfectly classify or predict the data in the training set. This could be
desirable when the training sample represents a ‘perfect’ image of the population
from which it has been drawn, but it is counterproductive in real applications
since it implies reduced predictive capacities on a new data set. This phenomenon
is known as overfitting. To illustrate the problem, consider only two observations
for an input variable and an output variable. A straight line adapts perfectly to the
data but poorly predicts a third observation, especially if it is radically different
from the previous two. A simpler model, the arithmetic average of the two output
observations, will fit the two points worse but may be a reasonable predictor of
a third point.

To limit the overfitting problem, it is important to control the degree of
complexity of the model. A model with few parameters will involve a mod-
est generalisation. A model that is too complex may even adapt to noise in the
data set, perhaps caused by measurement errors or anomalous observations; this
will lead to inaccurate generalisations. There are two main approaches to con-
trolling a neural network’s complexity. Regularisation is the addition of a penalty
term to the error function. Early stopping is the introduction of stopping criteria
in the iterative procedure of learning.

In regularisation, overfitting is tackled directly when the weights are estimated.
More precisely, the weights are trained by minimising an error function of the
following type:

Ẽ(w) = E(w) + v�

where E is an error function, � describes the complexity of the network and
v is a parameter that penalises for complexity. Notice again the analogies with
pruning in tree models (Section 4.5). A complex network that produces a good
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fit to the training data will show a minimum value of E, whereas a very simple
function will have low value of �. Therefore, what will be obtained at the end
of the training procedure will be a compromise between a simple model and a
good fit to the data.

A useful regularisation function is based on weight decay, which consists of
taking � equal to the sum of the squares of the weights (including the bias) of
the neural network:

� = 1

2

∑
i

w2
i

Early stopping uses the fact that the error function usually shows an initial reduc-
tion followed by an increase; the increase starts when the network begins to have
problems with overfitting. Training can be stopped when the lowest prediction
error is observed.

Optimality properties of multilayer perceptrons
Multilayer perceptrons have optimal properties. Researchers have shown that,
given a sufficiently large number of nodes in the hidden layer, a simple neural
network structure (with two layers of weights, sigmoidal activation function for
the hidden nodes and identity activation function for the output nodes) is able to
approximate any functional form with arbitrary accuracy. This is known as the
principle of universal approximation – the rate of convergence does not depend
on the dimension of the problem. If a network with only one hidden layer can
approximate any functional form with arbitrary accuracy, why use any other
network topology? One reason is that extra hidden layers may produce a more
efficient approximation that achieves the same level of accuracy using fewer
neurons and fewer weights.

Application
In the second part of the book, particularly Chapters 10, 11 and 12, there are
some case studies using neural networks. But here is a simple example to illustrate
the methodology. The data is a sample of 51 enterprises in the European software
industry, for which a series of binary variables have been measured. Here are
some of them: N (degree of incremental innovations: low/high); I (degree of
radical innovations: low/high); S (relationships of the enterprise with the software
suppliers: low/high); A (applicative knowledge of the employees of the enterprise:
low/high); M (scientific knowledge of the employees of the enterprise: low/high);
H (relationships of the enterprise with the hardware suppliers: low/high). The
variable Y (revenues) is a continuous variable.

The objective of the analysis is to classify the 51 enterprises into the two
groups of variable N , according to the values of the six remaining (explanatory)
variables, so as to build a predictive model for the degree of incremental inno-
vations. Since there is only one response variable and six explanatory variables,
the network architecture will have one output variable and six input variables. It
remains to see how many neurons to allocate to the hidden nodes. Suppose that,
for parsimony, there is only one hidden node in a unique hidden layer. Finally,
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given the nature of the problem, a logistic activation function is chosen for the
hidden layer node and an identity activation function for the output nodes. The
following formula specifies the non-linear relationship for the model:

logit(πN) = w08 + w18m + w28a + w38h + w48i + w58s + w68y

+ w78φ(w07 + w17m + w27a + w37h + w47i + w57s + w67y)

where the left-hand side is the logit function for N = 1 and φ is the inverse
logistic function. Notice that a logistic regression model differs from this one in
not having the term w78φ(). The process of learning the weights converges and
produces the following 15 final weights:

ω̂07 = 32.76, ω̂17 = 9.25, ω̂27 = 14.72, ω̂37 = 3.63, ω̂47 = −10.65, ω̂57 = 10.39,

ω̂67 = −22.34, ω̂08 = 0.06, ω̂78 = 10.89, ω̂18 = −1.44, ω̂28 = −0.82,

ω̂38 = −2.18, ω̂48 = −0.70, ω̂58 = −8.34, ω̂68 = 0.43

As a simple measure of its performance, consider the number of misclassified
observations. Given the limited number of observations, the model was initially
trained and validated on the whole data set. Then the 51 observations were
divided in a random way into 39 observations for training and 12 observations for
validation by considering misclassifications of these 12 observations. Adopting
the threshold rule that N = 1 if the estimated value of πN is greater than 0.5,
the number of misclassifications is 9 on 51 training cases and 8 on 12 validation
cases. The proposed model is too adaptive. It performs well on training error but
very badly on classification ability. Application of a simpler logistic regression
model led to these errors: 15 out of 51 and 3 out of 12. So compared with the
neural network model, the logistic regression model is not as adaptive but more
predictive.

4.6.3 Kohonen networks

Self-organizing maps (SOMs), or Kohonen networks, can be employed in a
descriptive data mining context, where the objective is to cluster the observa-
tions into homogeneous groups. In these models the parameters are constituted
by the weights of the net (the thresholds are not present) and learning occurs
in the absence of an output variable acting as supervisor. A model of this type
is generally specified by a layer of input neurons and a layer of output neu-
rons. For a given set of n observations, the n input nodes are represented by
p-dimensional vectors (containing qualitative and/or quantitative variables), each
of which represents one multivariate observation, whereas the output nodes are
described by discrete values, each of which corresponds to a group (cluster) of
the observations. The number of groups is typically unknown a priori.

The objective of Kohonen maps is to map every p-dimensional input obser-
vation to an output space represented by a spatial grid of output neurons. Adja-
cent output nodes will be more similar than distant output nodes. The learning
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technique for the weights in a Kohonen map is based on competition among
the output neurons for assignment of the input vectors. For every assigned input
node, a neuron of winning output is selected on the basis of the distance function
in the input space.

Kohonen networks can be considered as a non-hierarchical method of cluster
analysis. As non-hierarchical methods of clustering, they assign an input vec-
tor to the nearest cluster, on the basis of a predetermined distance function but
they try to preserve a degree of dependence among the clusters by introduc-
ing a distance between them. Consequently, each output neuron has its own
neighbourhood, expressed in terms of a distance matrix. The output neurons are
characterised by a distance function between them, described using the configu-
ration of the nodes in a unidimensional or bidimensional space. Figure 4.9 shows
a two-dimensional grid of output neurons. In such a 7 × 7 map, each neuron is
described by a square and the number on each square is the distance from the
central neuron. Consider the simplest algorithm, in which the topological struc-
ture of the output nodes is constant during the learning process. Here are the
basic steps:

1. Initialisation: having fixed the dimensions of the output grid, the weights that
connect the input neurons to the output neurons are randomly initialised. Let
r indicate the number of iterations of the algorithm and set r = 0.

2. Selection of the winner: for each input neuron xj , select the winning output
neuron i* that minimises the Euclidean distance ||xj − w r

i || between the p-
dimensional vector of input xj and the p-dimensional weight vector wi that
connects the j th input neuron to the ith output neuron.

3. Updating of the weights: let N(i∗) be a neighbourhood of the winning output
neuron i*, implicitly specified by the distance function among the output
neurons. For every output neuron i ∈ {N(i∗), i∗}, the weights are updated
according to the rule w r+1

i = w r
i + η(xj − w r

i ), ∀i ∈ {N(i∗), i∗}; η is called
the rate of learning and is specified in advance. The rule updates only the
neighbours of the winning output neuron.

Figure 4.9 Example output grid in a Kohonen network.
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4. Normalisation of the weights: after updating, the weights are normalised so
they are consistent with the input measurement scales.

5. Looping through: steps 1 to 4 are repeated and the number of iterations is
set to r = r + 1, until an appropriate stopping criterion is reached, or until
a maximum number of iterations is exceeded.

This algorithm can be modified in two important ways. One way is to introduce a
varying neighbourhood. After selecting the winning output neuron, its neighbour-
hood is recomputed along with the relevant weights. Another way is to introduce
algorithms based on sensitivity to history. Then the learning algorithm, hence the
cluster allocation, can be made to depend on the frequency of past allocations.
This allows us to avoid phenomena that typically occur with non-hierarchical
clustering, such as obtaining one enormous cluster compared to the others.

SOMs are an important methodology for descriptive data mining and they
represent a valid alternative to clustering methods. They are closely related to
non-hierarchical clustering algorithms, such as the k-means method. The fun-
damental difference between the two methodologies is that SOM algorithms
introduce a topological dependence between clusters. This can be extremely
important when it is fundamental to preserve the topological order among the
input vectors and the clusters. This is what happens in image analysis, where
it is necessary to preserve a notion of spatial correlation between the pixels of
the image. Clustering methods may overcentralise, since the mutual indepen-
dence of the different groups leads to only one centroid being modified, leaving
the centroids of the other clusters unchanged; this means that one group gets
bigger and bigger while the other groups remain relatively empty. But if the
neighbourhood of every neuron is so small as to contain only one output neu-
ron, the Kohonen maps will behave analogously to the k-means algorithm. For a
practical comparison of descriptive clustering algorithms, in Chapter 9 compares
Kohonen networks with the k-means non-hierarchical clustering method.

4.7 Nearest-neighbour models

Nearest-neighbour models are a flexible class of predictive data mining methods
based on a combination of local models. This does not mean they are local in the
sense of Section 4.8; they are still applied to the whole data set, but the statistical
analysis is split into separate local analyses. The basic idea is rather simple and
builds on the theory we have already elaborated. The available variables are
divided into the explanatory variables (x) and the target variable (y). A sample
of observations in the form (x,y) is collected to form a training data set. For
this training data, a distance function is introduced between the x values of the
observations. This can be used to define, for each observation, a neighbourhood
formed by the observations that are closest to it, in terms of the distance between
the x values. For a continuous response variable, the nearest-neighbour fitted
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value for each observation’s response value yi is defined by

ŷi = 1

k

∑
xj ∈N(xi )

yj

This is the arithmetic mean of all response values, whose corresponding x values
are contained in the neighbourhood of xi , N(xi ). Furthermore, k is a fixed con-
stant that specifies the number of elements to be included in each neighbourhood.
The model can be easily applied to predict a future value of y, say y0, when the
values of the explanatory variables, say x0, are known. It is required to identify,
in the training data set, the k values of y belonging to the neighbourhood of
the unknown y0. This is done by taking the k explanatory variable observations
in the training data set, closest to x0. The arithmetic mean of these y values is
the prediction of y0. In contrast with linear regression, the nearest-neighbour fit
is simpler, as it is an arithmetic mean. However, it is not calculated over all
observation points, but on a local neighbourhood. This implies that the nearest-
neighbour model fits the data more closely; on the other hand, this may lead to
overfitting and difficulty with generalisation.

Nearest-neighbour methods can also be used for predictive classification. To
classify an observation y, its neighbourhood is determined as before and the
fitted probabilities of each category are calculated as relative frequencies in the
neighbourhood. The class with the highest fitted probability is finally chosen.
Like tree models, nearest-neighbour models do not require a probabilistic distri-
bution. But whereas classification trees partition the data into exclusive classes,
providing explicit predictive rules in terms of tree paths, the fitted values in
nearest-neighbour models are based on overlapping sets of observations, not on
explicit rules. These methods are also known as memory-based models, as they
require no model to be fitted, or function to be estimated. Instead they require
all observations to be maintained in memory, and when a prediction is required,
they recall items from memory and calculate what is required.

Two crucial choices in nearest neighbour-methods are the distance function
and the cardinality k of the neighbourhood. Distance functions are discussed in
Section 4.1. The cardinality k represents the complexity of the nearest-neighbour
model; the higher the value of k, the less adaptive the model. Indeed the model
is often called the k-nearest-neighbour model to emphasise the importance of
k. In the limit, when k is equal to the number of observations, the nearest-
neighbour fitted values coincide with the sample mean. As we have seen for
other models in this chapter (e.g. Sections 4.5 and 4.6), k can be chosen to
balance goodness of fit with simplicity. The evaluation criteria in Chapter 6 can
be used for these purposes.

Possible disadvantages of these models are that computationally they are
highly intensive, especially when the data set contains many explanatory vari-
ables. In this case the neighbourhood may be formed by distant points, therefore
taking their mean may not be a sensible idea. Chapter 10 contains an application
of nearest-neighbour methods. Among other possible data mining applications,
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they are used for detecting frauds involving telephone calls, credit cards, etc.
(Cortes and Pregibon, 2001). Impostors are discovered by identifying the charac-
teristics, or footprints, of previous frauds and formulating a rule to predict future
occurrences.

4.8 Local models

So far we have looked at global models, but local models are also very important.
They look at selected parts of the data set (subsets of variables or subsets of
observations), rather than being applied to the whole data set. Hand, Mannila and
Smyth (2001) use the concept of ‘pattern’ rather than the concept of ‘model’.
Relevant examples are the association rules, developed in market basket analysis
and web clickstream analysis, and the retrieval-by-content methods, developed
for text mining. Another important example is searching for outliers, introduced
in Chapter 3 and revisited several times in the book.

4.8.1 Association rules

Association rules were developed in the field of computer science and are often
used in important applications such as market basket analysis, to measure the
associations between products purchased by a particular consumer, and web click-
stream analysis, to measure the associations between pages viewed sequentially
by a website visitor. In general, the objective is to underline groups of items
that typically occur together in a set of transactions. The data on which associ-
ation rules are applied is usually in the form of a database of transactions. For
each transaction (a row in the database) the database contains the list of items
that occur. Note that each individual may appear more than once in the data
set. In market basket analysis a transaction means a single visit to the super-
market, for which the list of purchases is recorded; in web clickstream analysis
a transaction means a web session, for which the list of all visited webpages
is recorded.

Rows typically have a different number of items, and this is a remarkable
difference with respect to data matrices. Alternatively, the database can be con-
verted in a binary data matrix, with transactions as rows and items as columns.
Let X1, . . . , Xp be a collection of random variables. In general, a pattern for
such variables identifies a subset of all possible observations over them. A use-
ful way to describe a pattern is through a collection of primitive patterns and
a set of logical connectives that can act on them. For two variables, Age and
Income, a pattern could be α = (Age < 30 ∧ Income > 100), where ∧ is the
logical operator ‘AND’ (intersection). Another pattern could be β = (Gender =
male ∨ Education = High), where ∨ is the logical operator ‘OR’ (union). The
primitive patterns in the first expression are Age < 30 and Income > 100; the
primitive patterns in the second expression are Gender = male and Education =
High. A rule is a logical statement between two patterns, say α and β, written
as α → β. This means that α and β occur together; in other words, if α occurs,
then β also occurs. It is an expression of the type ‘if condition, then result’.
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Association rules consider rules between special types of pattern, called item
sets. In an item set each variable is binary: it takes value 1 if a specific condition
is true, otherwise it takes value 0. Let A1, . . . , Ap indicate a collection of such
binary variables, and let j1, . . . , jk indicate a subset of them. An item set is then
defined by a pattern of the type A = (Aj1 = 1∧, . . . , ∧Ajk = 1). Thus, in an item
set, primitive patterns always indicate that a particular variable is true, and the
logical connectives are only conjunctions (AND operators). An association rule
is a statement between two item sets that can be written in the form A → B,
where both A and B are item sets. For simplicity, the right-hand item set is usually
formed of a single primitive item, and we will do the same. Therefore an associa-
tion rule will have the form (Aj1 = 1 ∧, . . . , ∧Ajk = 1) → Ajk+1 = 1, where we
have now considered a subset containing k + 1 of the original p variables. More
briefly, such an association rule is usually written as (Aj1∧, . . . ,∧Ajk ) → Ajk+1.

The order of an association rule usually refers to the total number of items
considered, here, k + 1. Suppose a supermarket has a total of 100 000 available
products. Each of them can correspond to a binary random variable, depending on
whether or not the product is bought in each transaction. A simple association rule
of order 3 would be (Milk ∧ Tea) → Biscuits. We shall simply write A → B to
indicate an association rule of the described type. A is the antecedent, or body of
the rule, and B is the consequent, or head of the rule. Chapters 7 and 8 consider
specific applications and use real variables.

Each association rule describes a particular local pattern that selects a restricted
set of binary variables. In market basket analysis and web clickstream analysis,
rules are relationships between variables that are binary by nature. This need
not always be the case; continuous rules are also possible. Then the elements of
the rules would be intervals of the real line, conventionally assigned a value of
TRUE = 1. A rule of this kind is X > 0 → Y > 100. Here we shall be mainly
concerned with binary variables. The strength of an association rule is commonly
measured using support, confidence and lift, also known as measures of a rule’s
‘statistical interestingness’ (Hand, Mannila and Smyth, 2001).

The main problem in association rule modelling is to find, from the available
database, a subset of association rules that are interesting. Interestingness can
be measured according to various criteria, including subject-matter criteria and
objective-driven criteria. Here we consider statistical interestingness, which is
related to the observed frequency of the rules. For a given rule, say A → B, let
NA→B be its absolute frequency (count), that is, the number of times in which
this rule is observed at least once. In other words, NA→B measures the number of
transactions in which the rule is satisfied. This does not take into account repeated
sequences (occurring more than once), and this may sometimes be a limitation,
as in web clickstream analysis. The support for a rule A → B is obtained by
dividing the number of transactions which satisfy the rule by the total number of
transactions, N :

support {A → B} = NA→B

N
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The support of a rule is a relative frequency that indicates the proportion of
transactions in which the rule is observed. When a large sample is considered,
the support approximates the rule’s probability of occurrence:

support {A → B} = Prob(A → B) = Prob(A and B occur)

The support is quite a useful measure of a rule’s interestingness; it is typically
employed to filter out the rules that are less frequent. The confidence of the rule
A → B is obtained by dividing the number of transactions which satisfy the rule
by the number of transactions which contain the body of the rule, A:

confidence {A → B} = NA→B

NA

= NA→B/N

NA/N
= support{A → B}

support{A}
The confidence expresses a relative frequency (a probability in the limit) that
indicates the proportion of times that, if a rule contains the body A, it will
also contain the head B. In other words, it is the frequency (or probability) of
occurrence of B, conditional on A being true. Confidence is the most used inter-
estingness measure of an association rule; it aims to measure the strength of
the relationship between two items. For instance, in market basket analysis, the
higher the confidence of the association rule A → B, the greater the probabil-
ity that if a customer buys products in A, it will also buy product B. In web
clickstream analysis, the higher the confidence of the sequence rule A → B, the
greater the probability that if a visitor looks at page A, it will also look at page B.

The language of conditional frequencies and conditional probabilities can be
employed to give a normalised strength of the relationship between items A and
B. One common measure is the lift; this takes the confidence of a rule and relates
it to the support for the rule’s head:

lift{A → B} = confidence{A → B}
support{B} = support{A → B}

support {A} support{B}
Notice how the lift is a ratio between the relative frequency (probability) of both
items occurring together, and the relative frequency (probability) of the same
event but assuming the two items are independent (Section 3.4). Therefore a lift
value greater than 1 indicates there is a positive association, whereas a value less
than 1 indicates there is a negative association.

These three interestingness measures can be used to search for association rule
models in the data. This amounts to finding a set of rules that are statistically
interesting. As the number of possible rules is very large, we need some strategies
for model selection. This forward approach is to start from the simplest rules
and proceed by adding items, as in the well-known Apriori algorithm (Agrawal
et al., 1995). From a given set of items, the algorithm starts by selecting a subset
for which the support passes a prefixed threshold t ; the other items are discarded.
A higher threshold will reduce the complexity of the final solution, as fewer items
will be considered.
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Next all pairs of items that have passed the previous selection are joined to
produce item sets with two items. Item sets are discarded if their support is below
the threshold t . The discarded item sets are stored as candidate association rules
of order 2; the item selected in this step is the head of the rule. The procedure is
repeated. At the mth step, item sets of size m are formed by taking all item sets
of size m − 1 that have survived and joining them with all those items that have
passed the first step. The item sets that do not pass the threshold are discarded
and stored to form an association rule of order m; the last item joined is the
head and all the previous items are the body. The procedure continues until no
rule passes the threshold. The higher the number of variables, with respect to
the number of observations, and the higher the threshold value, the quicker the
algorithm will terminate.

Notice that the algorithm incorporates a principle of nesting: if a rule of order
2 is discarded, all rules that contain it as antecedent will also be discarded. A
disadvantage of the algorithm is that rules with very high confidence or lift, but
low support will not be discovered. Also the algorithm can find rules with high
support, high confidence and lift close to 1 (indicating that the two item sets are
approximately independent) and flag them as interesting. As the strength of an
association is not measured by the support, but by the confidence (or the lift), the
Apriori algorithm outputs only those rules that pass a fixed confidence threshold.

An alternative way to generate association rules is by using tree models. This
can be seen as an instance of backward search, and is somewhat analogous to
pruning in tree models. Indeed a tree model can be seen as a supervised generator
of item sets, each corresponding to the path from the root node to a leaf. In other
words, there are as many rules as the tree has leaves. As a tree gives a partition
of the observations into exclusive groups, the support and confidence of each
decision tree rule can be easily calculated by going through the nodes of the tree.
However, the association rules that can be produced by a tree are built globally
and may be too few and too long. To achieve a larger set of rules, fitted locally,
each tree model can be pruned using support and confidence thresholds. The
advantage of using a tree representation to build rules is that pruning is efficient
because of their global modelling nature. Furthermore, they can easily deal with
all kinds of variables.

The interestingness measures we have used to find rules can also be used
to assess the final model (i.e. the list of rules we obtain) by combining the
scores of the individual rules. Alternatively, we can use the measures of associa-
tion introduced in Section 3.4 for analysing interrelationships between qualitative
variables. An important difference is that whereas the measures of association
refer to all possible pairs of values of the binary variables, association rules con-
sider only the pair (1,1). For instance, as in Section 3.4, the Pearson statistic X2

is a very general measure of association. It can be used to give an interestingness
measure as well:

X2{A → B} = (support{A → B} − support {A} support{B})2

support {A} support{B}
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This interestingness measure can be extended to a large number of rules and can
be used to assess the departure from independence by appealing to an inferen-
tial threshold (based on the chi-squared distribution in Section 5.1). Inferential
thresholds can also be derived for association rules. For instance, a large-sample
confidence interval for the logarithm of the lift is given by

log(lift) ± z1−α/2

√
1

support{A → B} − 1

N
+ 1

support{A} + 1

support{B}

where log(lift) is the observed lift and z1−α/2 is the 1 − α/2 percentile of a
normal distribution. Exponentiating this expression leads to a confidence interval
for the lift. Not only does the width of the interval depend on the confidence
level α, it is also directly proportional to the informational content of the rule
(support{A → B}, support {A} and support {B}) and inversely proportional to the
number of transactions N . In other words, the length of the interval, hence the
uncertainty on the interestingness of the relationship, decreases as the frequency
of the rule increases and in a balanced way (i.e. both the frequency of A and the
frequency of B increase).

A confidence interval permits us to decide on the statistical significance of an
association rule: if a value of 1 for the lift is within the confidence interval, then
the rule is not significant. When more than one rule is tested in this way, the
conclusions may be overly restrictive, as the tests are not truly independent. In
this case it may be appropriate to increase the width of the confidence intervals
and therefore reject fewer rules. To assess the validity of a set of rules, we can
also use rules based on a comparison between complementary rules, such as
A → B and A → B , where B is the complement of B (true when B is false,
and vice versa). A simple one is the odds, seen in Section 3.4:

odds{A → B} = support{A → B}
support{A → B}

The Gini index and the entropy index can also be applied in this context as
measures of heterogeneity for binary variables.

We now consider a specific type of association rule, particularly relevant for
some applications. So far we have said that an association rule is simply a rule of
joint occurrence between two item sets, A and B. It is possible to attach to this
joint occurrence a meaning of logical precedence, so that the rule’s body logically
precedes the rule’s head. The resulting rule is called a sequence. Association rules
can be specifically calculated for sequences, by linking the transaction data set to
an ordering variable. A typical way of introducing a logical precedence is through
time. Sequences are not needed in market basket analysis; although products are
taken off the shelf in a temporal order, this order gets lost when the products
are presented at the counter. On the other hand, web clickstream data typically
comes in as a log file, which preserves the temporal order in which the pages
were visited. Therefore it is important to take account of the order in which
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the pages were visited. When sequences are considered, the meaning of support
and confidence change: support can be interpreted as the number of times that
A precedes B; confidence can be interpreted as the conditional probability of
B, conditional on A having already occurred. We will look at this difference in
Chapter 8.

A further distinction is between direct and indirect sequence rules. A sequence
rule is usually indirect, in the sense there may be other elements that logically
sit between the body and the head of the rule, but they are not considered. For
example, if A and B are two webpages, the sequence rule A → B searches for
all occurrences in which A precedes B, even if other webpages were viewed
in between. To allow comparison with the results of global models, it may be
interesting to consider direct sequences. A direct sequence searches only for the
occurrences in which A exactly precedes B. Note the difference between asso-
ciation and sequence rules. Association rules produce a symmetric relationship,
hence the confidence is a measure of association between the binary variables in
the two item sets. Sequence rules produce an asymmetric relationship, hence the
confidence is a measure of how the variable in the head depends on the variables
in the body.

Association rules are probably the most well-known local method for detecting
relationships between variables. They can be used to mine very large data sets, for
which a global analysis may be too complex and unstable. Section 5.6 explains
two related types of global model that can provide a very helpful visual rep-
resentation of the association structures. These models are known as undirected
graphical models (for association modelling) and probabilistic expert systems (for
dependency modelling). Chapters 7 and 8 show how such global models com-
pare with the local models presented here. Association rules per se cannot be
used predictively, as there would be more than one sequence to predict a given
head of a rule. Tree models can be used predictively and also provide a set of
association rules.

As two chapters (7 and 8) are entirely devoted to local association models,
there are no practical examples in this section. Algorithmic aspects are discussed
in Hand, Mannila and Smyth (2001), which contains a comprehensive description
of how to find interesting rules using the Apriori algorithm. The advantages of
association rules are their extreme simplicity and interpretational capacity; their
disadvantages are the lengthy computing times and analysis costs but, above all,
the need for sensible pruning. Software packages produce huge numbers of rules,
and without sensible pruning, it is easy to get lost in the details and lose sight
of the problem.

4.8.2 Retrieval by content

Retrieval-by-content models are local methods based on identifying a query object
of interest then searching the database for the k objects that are most similar to
it. In association rules the local aspect is in selecting the variables; in retrieval
by content the local aspect is in selecting the observations. The main problem is
in finding valid measures of proximity to identify observations that are ‘similar’.
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Notable examples of retrieval by content are searching for information on the
internet using a search engine and, more generally, the analysis of text docu-
ments, or text mining. The technique is quite broad and can also be applied to
audio and video data. There are similarities with memory-based reasoning mod-
els (Section 4.7); the main differences are that retrieval by content is not aimed
at predicting target variable values, and it is not based on a global assessment
of distance between objects, but on distances from the query object. For more
details see Hand, Mannila and Smyth (2001).

4.9 Further reading

The first section explained how to calculate a distance matrix from a data
matrix. Sometimes we want to build a data matrix from a distance matrix, and
one solution is the method of multidimensional scaling (e.g. Mardia, Kent and
Bibby, 1979). Having applied multidimensional scaling, it is possible to repre-
sent the row vectors (statistical observations) and the column vectors (statistical
variables) in a unique plot called biplot; this helps us to make interesting interpre-
tations of the obtained scores. In general, biplots are used with tools for reducing
dimensionality, such as principal component analysis and correspondence analy-
sis. For an introduction to this important theme, see Gower and Hand (1996); in
a data mining context see Hand, Mannila and Smyth (2001).

An interesting extension of cluster analysis is fuzzy classification; this allows
a ‘weighted’ allocation of the observations to the clusters (Zadeh, 1977).

Multivariate linear regression is best dealt with using matrix notation. For
an introduction to matrix algebra in statistics, see Searle (1982). The logistic
regression model is for predicting categorical variables. The estimated cate-
gory probabilities can then be used to classify statistical observations in groups,
according to a supervised methodology. Probit models, well known in economics,
are essentially the same as logistic regression models, once the logistic link is
replaced by an inverse Gaussian link (e.g. Agresti, 1990).

Tree models are probably the most used data mining technique. A more
detailed account can be found in advanced data mining textbooks, such as Hastie,
Tibshirani and Friedman (2001) and Hand, Mannila and Smyth (2001). These
texts offer a statistical treatment; a computational treatment can be found in Han
and Kamber (2001). The original works on CART and CHAID are Breiman et al.
(1984) and Kass (1980).

The literature on neural networks is vast. Neural networks are treated in all
data mining textbooks, such as those previously quoted. For a classical statistical
approach, consult Bishop (1995); for a Bayesian approach, consult Neal (1996).
Section 4.6 considered only two principal network architectures; there was not
room to consider others, such as radial basis function (RBF) networks. RBF net-
works have only one hidden layer and the activation function of every hidden
node is a kernel density function (Section 5.2). In this way, the activation function
becomes a function of the distance between the input vector and a characteristic
vector of the hidden node. Hidden nodes of this type can take non-zero values
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only in a limited area of the space related to the input variable, as in nearest-
neighbour methods. This allows a better separation of the input information and
generally a faster learning speed. Support vector machines are a powerful alterna-
tive to multilayer perceptrons. The classification rules determined by multilayer
perceptrons find a non-linear hyperplane separating the observations, assuming
the classes are perfectly separable, but support vector machines generalise this to
more complex observation spaces by allowing variable transformations to be per-
formed. Support vector machines optimise the location of the decision boundary
between classes. Research is still in progress on these methods. For more details
consult Vapnik (1995, 1998). Recently researchers have developed complex sta-
tistical models that closely resemble neural networks, but with a more statistical
structure. Examples are projection pursuit models, generalised additive models
and MARS models (multivariate adaptive regression splines). They are reviewed
in Cheng and Titterington (1994) and Hastie, Tibshirani and Friedman (2001).
Nearest-neighbour models provide a rather flexible predictive algorithm using
memory-based reasoning. Instead of fitting a global model, they fit a local model
for the neighbourhood of the observation that is the prediction target. They are
related to the descriptive methodology of kernel methods (Section 5.2).

Local model rules are still in an embryonic stage of development, at least from
a statistical viewpoint. We looked at association rules, which seem ripe for a full
statistical treatment. We briefly examined retrieval-by-content methods, which are
expected to gain importance in the foreseeable future, especially with reference
to text mining. Consult Hand, Mannila and Smyth (2001) on retrieval by content
and Zanasi (2003) on text mining. I think that the statistical understanding of
local models will be an important area of research. Local models can be used as
an exploratory tool for a global model. Chapters 7 and 8 show how to exploit
sequence and association rules to derive a similarity measure between a pair of
items and then multidimensional scaling to obtain a global representation of the
similarity and the degree of interrelationship between them. This is an example
of a link analysis, which tries to establish logical connections among single rows
of a database. These connections are similar to the concept of association; the
difference is that link analysis is mainly a global analysis of the interrelations
among the observations, not among the variables.



CHAPTER 5

Statistical data mining

The principal purpose of this chapter is to illustrate data mining methodologies
that are supported by the presence of an underlying probabilistic model. This
presence, albeit complicated in structure, allows us to derive more powerful and
better interpretable results, based on the ideas of statistical inference developed
during the twentieth century. Section 5.1 introduces how to measure uncertainty
in probabilistic terms and looks at the basic ideas of statistical inference. In
particular, it introduces the most used parametric probability model, the Gaussian
distribution, in an operational way. Section 5.2 moves on to non-parametric and
semiparametric modelling of the data, and shows how these approaches can be
used to perform descriptive data mining on the observations. In particular, it
introduces a probabilistic approach to cluster analysis, based on mixture models,
as well as the basic ideas behind kernel density estimation.

Section 5.3 considers the normal linear model, the main tool for modelling the
relationship between one or more response variables and one or more explana-
tory variables, to construct a decision rule that enables us to predict the values of
the response variables, given the values of the explanatory variables. Section 5.4
introduces a more general class of parametric models, based on the exponen-
tial family of distributions; we derive a more general class of linear models
that admits as special cases the linear model and the logistic regression model.
Another important class of generalised linear models are the log-linear mod-
els; they are the most important data mining tool for descriptively analysing
the interrelationships between variables. As log-linear models hold only for cat-
egorical variables (quantitative discrete and qualitative), Section 5.5 introduces
graphical models that can achieve the same goal in a rather general fashion.
Graphical models permit an extremely flexible and modular analysis of all the
numerous interdependences present in a database. In particular, directed graphi-
cal models, known as expert systems or Bayesian networks, define sophisticated
predictive models.

5.1 Uncertainty measures and inference

So far we have not assumed any probabilistic hypothesis on the considered statis-
tical variables. However, the considered observations are generally only a subset
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from a target population of interest, a sample. Furthermore, the very large size
of the data often forces the analyst to consider only a sample of the available
data matrix, either for computational reasons (storage and/or processing memory)
or for interpretational reasons. Sampling theory gives a statistical explanation of
how to sample from a population in order to extract the desired information effi-
ciently; there is not space to cover it here but Barnett (1975) is a good reference.
We shall assume that a sample has been drawn in a random way and is ready
for analysis. When dealing with a sample, rather than with the whole population,
it is necessary to introduce a probabilistic model that could adequately describe
the sampling variability. More generally, a probabilistic model is a useful tool
that is often used to model the informational uncertainty that affects most of our
everyday decisions.

The introduction of a probabilistic model will lead us to take the estimated
statistical summaries and attach measures of variability that describe the degree
of uncertainty in the estimate due to sample variability. This will eventually lead
us to substitute parametric point estimates with so-called interval estimates; we
replace a number with an interval of real numbers that contains the parameter of
interest in most cases. We can improve the diagnostic ability of a model by using
statistical hypothesis testing; for example, we can introduce a critical threshold
above which we retain a certain regression plane as a valid description of the
relationship between the variables or we treat a certain clustering of the data as a
valid partitioning of the observations. For descriptions of the various probabilistic
models, see Mood, Graybill and Boes (1991) or Bickel and Doksum (1977).

5.1.1 Probability

An event is any proposition that can be either true or false and is formally
a subset of the space �, which is called the space of all elementary events.
Elementary events are events that cannot be further decomposed, and cover all
possible occurrences. Let a be a class of subsets of �, called the event space.
A probability function P is a function defined on a that satisfies the following
axioms:

• P(A) ≥ 0, ∀A ∈ a
• P(�) = 1
• If A1, A2, . . . is a sequence of events of a that is pairwise mutually

exclusive (i.e. Ai ∩ Aj = ∅ for i �= j, i, j = 1, 2, . . . ,) and if A1 ∪ A2 ∪
. . . = ⋃∞

i=1 Ai ∈a, then P(
⋃∞

i=1 Ai) = ∑∞
i=1 P(Ai).

A probability function will also be known as a probability measure or simply as
probability. The three axioms can be interpreted in the following way. The first
axiom says the probability is a non-negative function. The second axiom says
the probability of the event � is 1; � is an event that will always be true as it
coincides with all possible occurrences. Since any event is a subset of �, it fol-
lows that the probability of any event is a real number in [0,1]. The third axiom
says the probability of occurrence of any one of a collection of events (possibly
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infinite, and mutually exclusive) is the sum of the probabilities of occurrence
of each of them. This is the formal, axiomatic definition of probability due to
Kolmogorov (1933). There are several interpretations of this probability. These
interpretations will help us from an operational viewpoint when we come to
construct a probability measure. In the classical interpretation, if an experiment
gives rise to a finite number n of possible results, then P(A) = nA/n, where nA

indicates the number of results in A (favourable results). In the more general
frequentist interpretation, the probability of an event coincides with the relative
frequency of the same event in a large (possibly infinite) sequence of repeated tri-
als under the same experimental conditions. The frequentist interpretation allows
us to take most of the concepts developed for frequencies (such as those in
Chapter 3) and extend them to the realm of probabilities. In the even more gen-
eral (although somewhat controversial) subjective interpretation, the probability
is a degree of belief that an individual attaches to the occurrence of a certain
event. This degree of belief is totally subjective but not arbitrary, since proba-
bilities must obey coherency rules, that corresponds to the above axioms and all
the rules derivable from those axioms. The advantage of the subjective approach
is that it is always applicable, especially when an event cannot be repeated (a
typical situation for observational data and data mining, and unlike experimental
data).

We can use the three axioms to deduce the basic rules of probability. Here
are the complement rule and the union rule:

• Complement rule: if A is any event in a, and A is its complement (negation),
then P(A) = 1 − P(A).

• Union rule: For any pair of events A, B ∈ a, P(A ∪ B) = P(A) + P(B) −
P(A ∩ B), where the union event A ∪ B is true when either A or B is true;
the intersection event A ∩ B is true when both A and B are true.

Probability has so far been defined in the absence of information. Similar to
the concept of relative frequency, we can define the probability of an event A

occurring, conditional on the information that the event B is true. Let A and B

be two events in a. The conditional probability of the event A, given that B is
true, is

P(A|B) = P(A ∩ B)

P (B)
with P(B) > 0.

The previous definition extends to any conditioning sets of events. Conditional
probabilities allows us to introduce further important rules:

• Intersection rule: Let A and B be two events in a. Then P(A ∩ B) =
P(A|B)P (B) = P(B|A)P (A).
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• Independence of events: If A is independent of B, the following relations
hold:

P(A ∩ B) = P(A)P (B)

P (A|B) = P(A)

P (B|A) = P(B)

In other words, if two events are independent, knowing that one of them occurs
does not alter the probability that the other one occurs.

• Total probability rule: Consider n events Hi, i = 1, . . . , n, pairwise mutually
exclusive and exhaustive of � (equivalently, they form a partition of �), with
P(Hi) > 0. Then the probability of an event B in a is given by

P(B) =
n∑

i=1

P(B|Hi)P (Hi)

• Bayes’ rule: Consider n events Hi, i = 1, . . . , n, pairwise mutually exclusive
and exhaustive of � (equivalently, they form a partition of �), with P(Hi) >

0. Then the probability of an event B in a such that P(B) > 0 is given by

P(Hi |B) = P(B|Hi)P (Hi)∑
j P (B|Hj)P (Hj )

The total probability rule plays a very important role in the combination of dif-
ferent probability statements; we will see an important application in Section 5.7.
Bayes’ theorem is a very important rule, also known as the ‘inversion rule’ as
it calculates the conditional probability of an event by using the reversed condi-
tional probabilities. Note also that the denominator of Bayes’ rule is the result
of the total probability rule; it acts as a normalising constant of the probabilities
in the numerator. This theorem lies at the heart of the inferential methodology
known as Bayesian statistics.

5.1.2 Statistical models

Suppose that, for the problem at hand, we have defined all the possible elementary
events �, as well as the event space a. Suppose also that, on the basis of one of
the operational notions of probability, we have constructed a probability measure
P . The triplet (�, a, P ) defines a probability space; it is the basic for defining
a random variable, hence for building a statistical model.

Given a probability space (�, a, P), a random variable is any function X(ω),
ω ∈ �, with values on the real line. The cumulative distribution of a random
variable X, denoted by F , is a function defined on the real line, with values
on [0,1], that satisfies F(x) = P(X ≤ x) for any real number x. The cumula-
tive distribution function, often called the distribution function, characterises the
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probability distribution for X. It is the main tool for defining a statistical model
of the uncertainty in a variable X.

We now examine two important special cases of random variables and look
at their distribution functions. A random variable is discrete if it can take only a
finite, or countable, set of values. In this case

F(x) =
∑
X≤x

p(x) with p(x) = P(X = x)

Therefore in this case p(x), called the discrete probability function, also char-
acterises the distribution. Both quantitative discrete variables and qualitative
variables can be modelled using a discrete random variable, provided that numer-
ical codes are assigned to qualitative variables. They are collectively known as
categorical random variables.

A random variable is said to be continuous if there exist a function f , called
the density function, such that the distribution function can be obtained from it:

F(x) =
∫ x

−∞
f (u) du for any real number x

Furthermore, the density function has these two properties:

f (x) ≥ 0, ∀x∫ ∞

−∞
f (x) dx = 1

In view of its definition, the density function characterises a statistical model for
continuous random variables.

By replacing relative frequencies with probabilities, we can treat random
variables like the statistical variables in Chapter 3. For instance, the discrete
probability function can be taken as the limiting relative frequency of a dis-
crete random variable. On the other hand, the density function corresponds to
the height of the histogram of a continuous variable. Consequently, the concepts
in Chapter 3 – mean, variance, correlation, association, etc. – carry over to ran-
dom variables. For instance, the mean of a random variable, usually called the
expected value, is defined by

µ =
∑

xipi if X is categorical

µ =
∫

xf (x) dx if X is continuous

The concept of a random variable can be extended to cover random vectors or
other random elements, thereby defining a more complex statistical model. From
here on, we use notation for random variables, but without loss of generality.
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In general, a statistical model of uncertainty can be defined by the pair
(X, F(x)), where X is a random variable, and F(x) is the cumulative distribution
attached to it. It is often convenient to specify F directly, choosing it from a cat-
alogue of models available in the statistical literature, models which have been
constructed specifically for certain problems. These models can be divided into
three main classes: parametric models, for which the cumulative distribution is
completely specified by a finite set of parameters, denoted by θ ; non-parametric
models, which, require the whole specification of F ; and semiparametric mod-
els, where the specification of F is eased by having some parameters but these
parameters do not fully specify the model.

We now examine the most used parametric model, the Gaussian distribution;
Section 5.2 looks at non-parametric and semiparametric models. Let Z be a
continuous variable with real values. Z is distributed according to a standardised
Gaussian (or normal) distribution if the density function is

f (z) = 1√
2π

e− z2

2

This is a bell-shaped distribution (Section 3.1), with most of the probability
around its centre, which coincides with the mean, the mode and the median of
the distribution (equal to zero for the standardised Gaussian distribution). Since
the distribution is symmetric, the probability of having a value greater than a
certain positive quantity is equal to the probability of having a value lower than
the negative of the same quantity, i.e. P(Z > 2) = P(Z < −2). Having defined
the Gaussian as our reference model, we can use it to calculate some probabilities
of interest; these probabilities are areas under the density function. We cannot
calculate them in closed form, so we must use numerical approximation. In the
past this involved statistical tables but now it can be done with all the main data
analysis packages. Here is a financial example.

Consider the valuation of the return of a certain financial activity. Suppose, as
is often done in practice, that the future distribution of this return, Z, expressed
in euros, follows the standardised Gaussian distribution. What is the probability
of observing a return greater than 1 euro? To solve this problem it is sufficient to
calculate the probability P(Z > 1). The solution is not expressible in closed form,
but using statistical software we find that the probability is equal to about 0.159.
Now suppose that a financial institution has to allocate an amount of capital to
be protected against the risk of facing a loss on a certain portfolio. This problem
is a simplified version of a problem that daily faces credit operators – calculating
value at risk (VaR). VaR is a statistical index that measures the maximum loss to
which a portfolio is exposed in a holding period �t and with a fixed level α of
desired risk. Let Z be the change in value of the portfolio during the considered
period, expressed in standardised terms. The VaR of the portfolio is then the loss
(corresponding to a negative return), implicitly defined by

P(Z ≤ − VaR) = 1 − α
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suppose the desired level of risk is 5%. This corresponds to fixing the right-
hand side at 0.95; the value of the area under the standardised density curve to
the right of the value VaR (i.e. to the left of the value −VaR) is then equal to
0.05. Therefore the VaR is given by the point on the x-axis of the graph that
corresponds to this area. The equation has no closed-form solution. But statistical
software easily computes that VaR = 1.64. Figure 5.1 illustrates the calculation.
The histogram shows the observed returns and the continuous line is the standard
Gaussian distribution, used to calculate the VaR. In quantitative risk management
this approach is known as the analytic approach or the delta normal approach, in
contrast to simulation-based methods.

So far we have considered the standardised Gaussian distribution, with mean
0, and variance 1. It is possible to obtain a family of Gaussian distributions that
differ only in their values for mean and variance. In other words, the Gaussian
distribution is a parametric statistical model, parameterised by two parameters.
Formally, if Z is a standard Gaussian random variable and X = σZ + µ then X

is distributed according to a Gaussian distribution with mean µ and variance σ 2.
The family of Gaussian distributions is closed with respect to linear transforma-
tions; that is, any linear transformation of a Gaussian variable is also Gaussian.
As a result, the Gaussian distribution is well suited to situations in which we
hypothesize linear relationships among variables.

Our definition of the Gaussian distribution can be extended to the multivariate
case. The resulting distribution is the main statistical model for the inferential
analysis of continuous random vectors. For simplicity, here is the bivariate case.
A bidimensional random vector (X1,X2) is distributed as a bivariate Gaussian
distribution if there exist six real constants:

Figure 5.1 Calculation of VaR.
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aij , 1 ≤ i, j ≤ 2

µi, i = 1, 2

and two independent standardised Gaussian random variables, Z1 and Z2, such
that

X1 = µ1 + a11Z1 + a12Z2

X2 = µ2 + a21Z1 + a22Z2

In matrix terms, the previous equation can be stated as X = µ + AZ, which
easily extends to the multivariate case. In general, a multivariate Gaussian dis-
tribution is completely specified by two parameters, the mean vector µ and the
variance–covariance matrix � = AA′.

Using the Gaussian distribution, we can derive three distributions, of special
importance for inferential analysis: the chi-squared distribution, the Student’s t

distribution and the F distribution.
The chi-squared distribution is obtained from a standardised Gaussian distribu-

tion. If Z is a standardised Gaussian distribution, the random variable defined by
Z2 is said to follow a chi-squared distribution with 1 degree of freedom; it is indi-
cated by the symbol χ2(1). More generally, a parametric family of chi-squared
distributions, indexed by one parameter, is obtained from the fact that the sum
of n independent chi-squared distributions is a chi-squared distribution with n

degrees of freedom: χ2(n). The chi-squared distribution has positive density only
for positive real values. Probabilities from it have to be calculated numerically,
as for the Gaussian distribution. Finally, the chi-squared value has an expected
value equal to n and a variance equal to 2 n.

The Student’s t distribution is characterised by a density symmetric around
zero, like the Gaussian distribution but more peaked (i.e. with a higher kurtosis).
It is described by one parameter, the degrees of freedom, n. As n increases, the
Student’s t distribution approaches the Gaussian distribution. Formally, let Z be
a standard Gaussian (normal) distribution, in symbols Z ∼ N (0,1), and let U be a

chi-squared distribution T = Z√
U/n

∼ t (n) with n degrees of freedom, U ∼ χ2
n .

If Z and U are independent, then,

T = Z√
U/n

∼ t (n)

that is, T is a Student’s t distribution with n degrees of freedom. It can be shown
that the Student’s t distribution has an expected value of 0 and a variance given
by

VaT(T ) = n/(n − 2) for n > 2

Finally, the F distribution is also asymmetric and defined only for positive val-
ues, like the chi-squared distribution. It is obtained as the ratio between two
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independent chi-squared distributions, U and V , with degrees of freedom m and
n, respectively:

F = U/m

V/n

The F distribution is therefore described by two parameters, m and n; it has an
expected value equal to n/(n − 2) and a variance that is a function of both m

and n. An F distribution with m = 1 is equal to the square of a Student’s t with
n degrees of freedom.

5.1.3 Statistical inference

Statistical inference is mainly concerned with the induction of general statements
on a population of interest, on the basis of the observed sample. First we need
to derive the expression of the distribution function for a sample of observations
from a statistical model. A sample of n observations on a random variable X is
a sequence of random variables X1, X2, . . . , Xn that are distributed identically
as X. In most cases it is convenient to assume that the sample is a simple ran-
dom sample, with the observations drawn with replacement from the population
modelled by X. Then it follows that the random variables X1, X2, . . . , Xn are
independent and therefore they constitute a sequence of independent and iden-
tically distributed (i.i.d.) random variables. Let X indicate the random vector
formed by such a sequence of random variables, X = (X1, X2, . . . , Xn), and let
X = (x1, x2, . . . , xn) indicate the sample value actually observed. It can be shown
that, if the observations are i.i.d., the cumulative distribution of X simplifies to

F(x) =
n∏

i=1

F(xi)

with F(xi)the cumulative distribution of X, evaluated for each of the sample
values (x1, x2, . . . , xn). If x = (x1, x2, . . . , xn) are the observed sample values,
this expression gives a probability, according to the assumed statistical model, of
observing sample values less than or equal to the observed values. Furthermore,
when X is a continuous random variable

f (x) =
n∏

i=1

f (xi)

where f is the density function of X. And when X is a discrete random variable

p(x) =
n∏

i=1

p(xi)

where p is the discrete probability function of X. If x = (x1, x2, . . . , xn) are
the observed sample values, this expression gives the probability, according to
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the assumed statistical model, of observing sample values exactly equal to the
observed values. In other words, it measures how good is the assumed model for
the given data. A high value of p(x), possibly close to one, implies that the data
is well described by the statistical model; a low value of p(x) implies the data is
poorly described. Similar conclusions can be drawn for f (x) in the continuous
case. The difference is that the sample density f (x) is not constrained to be
in [0,1], unlike the sample probability p(x). Nevertheless, higher values of f (x)

also indicate that the data is well described by the model, and low values indicate
the data is poorly described.

In both cases we can say that p(x) or f (x) express the likelihood of the
model, for the given data.

These are fundamentals ideas when considering inference. A statistical model
is a rather general model, in the sense that once a model is assumed to hold,
it remains to specify precisely the distribution function or, if the model is para-
metric, the unknown parameters. In general, there remain unknown quantities to
be specified. This can seldom be done theoretically, without reference to the
observed data. As the observed data is typically observed on a sample, the
main purpose of statistical inference is to ‘extend’ the validity of the calcu-
lations obtained on the sample to the whole population. In this respect, when
statistical summaries are calculated on a sample rather than a whole popula-
tion, it is more correct to use the term ‘estimated’ rather than ‘calculated’, to
reflect the fact that the obtained values depend on the chosen sample and may
therefore be different if a different sample is considered. The summary func-
tions that produce the estimates, when applied to the data, are called statistics.
The simplest examples of statistics are the sample mean and the sample vari-
ance; other examples are the statistical indexes in Chapter 3, when calculated on
a sample.

The methodologies of statistical inference can be divided into estimation meth-
ods and hypothesis testing procedures. Estimation methods derive statistics, called
estimators, of the unknown model quantities that, when applied to the sample
data, can produce reliable estimates of them. Estimation methods can be divided
into point estimate methods, where the quantity is estimated with a precise value,
and confidence interval methods, where the quantity is estimated to have a high
frequency of lying within a region, usually an interval of the real line. To pro-
vide a confidence interval, estimators are usually supplemented by measures
of their sampling variability. Hypothesis testing procedures look at the use of
the statistics to take decisions and actions. More precisely, the chosen statis-
tics are used to accept or reject a hypothesis about the unknown quantities by
constructing useful rejection regions that impose thresholds on the values of
the statistics.

I briefly present the most important inferential methods. For simplicity, I
refer to a parametric model. Starting with estimation methods, consider some
desirable properties for an estimator. An estimator T is said to be unbiased,
for a parameter θ , if E(T ) = θ . The difference E(T ) − θ is called the bias
of the estimator and is null if the estimator is unbiased. For example, the
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sample mean

X = 1

n

n∑
i=1

Xi

is always an unbiased estimator of the unknown population mean µ, as it can be
shown that E(X) = µ. On the other hand, the sample variance

S2 = 1

n

n∑
i=1

(Xi − X)2

is a biased estimator of the sample variance σ 2, as E(S2) = n−1(n − 1)σ 2

n
. Its

bias is therefore

bias(S2) = −1

n
σ 2

This explains why an often used estimator of the population variance is the
unbiased sample variance:

S2 = 1

n − 1

n∑
i=1

(Xi − X)2

A related concept is the efficiency of an estimator, which is a relative concept.
Among a class of estimators, the most efficient estimator is usually the one
with the lowest mean squared error (MSE), which is defined on the basis of the
Euclidean distance by

MSE(T ) = E[(T − θ)2]

It can be shown that

MSE(T ) = [bias(T )]2 + Var(T )

MSE is composed of two components: the bias and the variance. As we shall
see in Chapter 6, there is usually a trade-off between these quantities: if one
increases, the other decreases. The sample mean can be shown to be the most
efficient estimator of the population mean. For large samples, this can be easily
seen applying the definition.

Finally, an estimator is said to be consistent (in quadratic mean) if, for n → ∞,
lim(MSE(T )) = 0. This implies, for n → ∞, P (lim |T − θ |) = 1; that is, for
a large sample, the probability that the estimator lies in an arbitrarily small
neighbourhood of θ approximates to 1. Notice that the sample mean and the
sample variances we have introduced are consistent.

In practice the two most important estimation methods are the maximum
likelihood method and the Bayesian method.
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Maximum likelihood methods
Maximum likelihood methods start by considering the likelihood of a model
which, in the parametric case, is the joint density of X , expressed as a function
of the unknown parameters θ :

p(x ; θ) =
n∏

i=1

p(xi ; θ)

where θ are the unknown parameters and X is assumed to be discrete.
The same expression holds for the continuous case but with p replaced by f .

In the rest of the text we will therefore use the discrete notation, without loss of
generality.

If a parametric model is chosen, the model is assumed to have a precise form,
and the only unknown quantities left are the parameters. Therefore the likelihood
is in fact a function of the parameters θ . To stress this fact, the previous expression
can also be denoted by L(θ ; x). Maximum likelihood methods suggest that, as
estimators of the unknown parameter θ , we take the statistics that maximise
L(θ ; x) with respect to θ . The heuristic motivation for maximum likelihood is
that it selects the parameter value that makes the observed data most likely
under the assumed statistical model. The statistics generated using maximum
likelihood are known as maximum likelihood estimators (MLEs) and they have
many desirable properties. In particular, they can be used to derive confidence
intervals. The typical procedure is to assume that a large sample is available
(this is often the case in data mining), then the maximum likelihood estimator
is approximately distributed as a normal distribution. The estimator can thus be
used in a simple way to derive an asymptotic (valid for large samples) confidence
interval. Here is an example. Let T be a maximum likelihood estimator and let
var(T ) be its asymptotic variance. Then a 100(1 − α)% confidence interval is
given by (

T − z(1−α/2)

√
VaR(T ), T + z(1−α/2)

√
VaR(T )

)
where z(1−α/2) is the 100(1 − α/2) percentile of the standardised normal distri-
bution, such that the probability of obtaining a value less than z(1−α/2) is equal
to (1 − α/2). The quantity (1 − α) is also known as the confidence level of the
interval, as it gives the confidence that the procedure is correct: in 100(1 − α)%
of the cases the unknown quantity will fall within the chosen interval. It has to
be specified before to the analysis. For the normal distribution, the estimator of
µ is the sample mean, X = n−1 ∑

Xi . So a confidence interval for the mean,
assuming we known the variance σ 2, is given by

(
X − z(1−α/2)

√
Var(X),X + z(1−α/2)

√
Var(X)

)
where Var(X) = σ 2

n

When the distribution is normal from the start, as in this case, the expression
for the confidence interval holds for any sample size. A common procedure
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in confidence intervals is to assume a confidence level of 95%; in a normal
distribution this leads to z(1−α/2) = 1.96.

Bayesian methods
Bayesian methods use Bayes’ rule, which expresses a powerful framework for
combining sample information with (prior) expert opinion to produce an updated
(posterior) expert opinion. In Bayesian analysis, a parameter is treated as a ran-
dom variable whose uncertainty is modelled by a probability distribution. This
distribution is the expert’s prior distribution p(θ), stated in the absence of the
sampled data. The likelihood is the distribution of the sample, conditional on the
values of the random variable θ : p(x |θ). Bayes’ rule provides an algorithm to
update the expert’s opinion in light of the data, producing the so-called posterior
distribution p(θ |x):

p(θ |x) = c−1p(x |θ)p(θ)

with c = p(x), a constant that does not depend on the unknown parameter θ .
The posterior distribution represents the main Bayesian inferential tool. Once it
is obtained, it is easy to obtain any inference of interest. For instance, to obtain
a point estimate, we can take a summary of the posterior distribution, such as
the mean or the mode. Similarly, confidence intervals can be easily derived by
taking any two values of θ such the probability of θ belonging to the interval
described by those two values corresponds to the given confidence level. As
θ is a random variable, it is now correct to interpret the confidence level as a
probabilistic statement: (1 − α) is the coverage probability of the interval, namely,
the probability that θ assumes values in the interval. The Bayesian approach is
thus a coherent and flexible procedure. On the other hand, it has the disadvantage
of requiring a more computationally intensive approach, as well as more careful
statistical thinking, especially in providing an appropriate prior distribution.

For the normal distribution example, assuming as a prior distribution for θ a
constant distribution (expressing a vague state of prior knowledge), the poste-
rior mode is equal to the maximum likelihood estimator. Therefore, maximum
likelihood estimates can be seen as a special case of Bayesian estimates. More
generally, it can be shown that, when a large sample is considered, the Bayesian
posterior distribution approaches an asymptotic normal distribution, with the
maximum likelihood estimate as expected value. This reinforces the previous
conclusion.

An important application of Bayes’ rule arises in predictive classification
problems. As explained in Section 4.4, the discriminant rule establishes that an
observation x is allocated to the class with the highest probability of occurrence,
on the basis of the observed data. This can be stated more precisely by appealing
to Bayes’ rule. Let Ci , for i = 1, . . . , k, indicate a partition of mutually exclusive
and exhaustive classes. Bayes’ discriminant rule allocates each observation x to
the class Ci that maximises the posterior probability:

p(Ci |x) = c−1p(x|Ci)p(Ci) where c = p(x) =
k∑

i=1

p(Ci)p(x|Ci)
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and x is the observed sample. Since the denominator does not depend on Ci , it is
sufficient to maximise the numerator. If the prior class probabilities are all equal
to k−1, maximisation of the posterior probability is equivalent to maximisation of
the likelihood p(x|Ci). This is the approach often followed in practice. Another
common approach is to estimate the prior class probabilities with the observed
relative frequencies in a training sample. In any case, it can be shown that the
Bayes discriminant rule is optimal, in the sense that it leads to the least possible
misclassification error rate. This error rate is measured as the expected error
probability when each observation is classified according to Bayes’ rule:

pB =
∫

(1 − max
i

p(Ci |x))p(x) dx

also known as the Bayes error rate. No other discriminant rule can do better than
a Bayes classifier; that is, the Bayes error rate is a lower bound on the misclassi-
fication rates. Only rules that derive from Bayes’ rule are optimal. For instance,
the logistic discriminant rule and the linear discriminant rule (Section 4.4) are
optimal, whereas the discriminant rules obtained from tree models, multilayer
perceptrons and nearest-neighbour models are optimal for a large sample size.

Hypothesis testing
We now briefly consider procedures for hypothesis testing. A statistical hypoth-
esis is an assertion about an unknown population quantity. Hypothesis testing
is generally performed in a pairwise way: a null hypothesis H0 specifies the
hypothesis to be verified, and an alternative hypothesis H1 specifies the hypoth-
esis with which to compare it. A hypothesis testing procedure is usually built
by finding a rejection (critical) rule such that H0 is rejected, when an observed
sample statistic satisfies that rule, and vice versa. The simplest way to build a
rejection rule is by using confidence intervals. Let the acceptance region of a
test be defined as the logical complement of the rejection region. An acceptance
region for a (two-sided) hypothesis can be obtained from the two inequalities
describing a confidence interval, swapping the parameter with the statistic and
setting the parameter value equal to the null hypothesis. The rejection region is
finally obtained by inverting the signs of the inequalities. For instance, in our
normal distribution example, the hypothesis H0: µ = 0 will be rejected against
the alternative hypotheses H1: µ �= 0 when the observed value of X is outside
the interval (0 − z(1−α/2)

√
Var(X), 0 + z(1−α/2)

√
Var(X)).

The probability α has to be specified a priori and is called the significance
level of the procedure. It corresponds to the probability of a type I error, namely,
the probability of rejecting the null hypothesis when it is actually true. A com-
mon assumption is to take α = 0.05, which corresponds to a confidence level of
0.95. The probability is obtained, in this case, by summing two probabilities rela-
tive to the random variable X: the probability that X < 0 − z(1−α/2)

√
Var(X) and

the probability that X > 0 + z(1−α/2)

√
Var(X). Notice that the rejection region is

derived by setting µ = 0. The significance level is calculated using the same
assumption. These are general facts: statistical tests are usually derived under
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the assumption that the null hypothesis is true. For short, it is said that the test
holds ‘under the null hypothesis’. The limits of the interval are known as critical
values. If the alternative hypothesis were one-sided, the rejection region would
correspond to only one inequality. For example, if H1: µ > 0, the rejection region
would be defined by the inequality

X > 0 + z(1−α)

√
Var(X)

The critical value is different because the significance level is now obtained by
considering only one probability.

There are other methods for deriving rejection rules; we will consider them
in Section 5.4. An alternative approach to testing the validity of a certain null
hypothesis is by calculating the p-value of the test. The p-value can be described
as the probability, calculated under the null hypothesis, of observing a test statistic
more extreme than actually observed, assuming the null hypothesis is true, where
‘more extreme’ means in the direction of the alternative hypothesis. For a two-
sided hypothesis, the p-value is usually taken to be twice the one-sided p-value.
Note that the p-value is calculated using the null hypothesis. In our normal
distribution example, the test statistics is X. Let x be the observed sample value
of X. The p-value would then be equal to twice the probability that X is greater
than x: p-value = 2P(X > x). A small p-value will indicate that x is far from
the null hypothesis, which is thus rejected; a large p-value will mean that the null
hypothesis cannot be rejected. The threshold value is usually the significance level
of the test, which is chosen in advance. For instance, if the chosen significance
level of the test is α = 0.05, a p-value of 0.03 indicates that the null hypothesis
can be rejected whereas a p-value of 0.18 indicates that the null hypothesis
cannot be rejected.

5.2 Non-parametric modelling

A parametric model is usually specified by making a hypothesis about the dis-
tribution and by assuming this hypothesis is true. But this can often be difficult
or uncertain. One possible way to overcome this is to use non-parametric proce-
dures, which eliminate the need to specify the form of the distribution in advance.
A non-parametric model only assumes that the observations come from a cer-
tain distribution function F , not specified by any parameters. But compared with
parametric models, non-parametric models are more difficult to interpret and esti-
mate. Semiparametric models are a compromise between parametric models and
non-parametric models.

A non-parametric model can be characterised by the distribution function or
by the density function (used for short to indicate the continuous and categorical
cases), which need to be fully specified.

First consider the estimate of the distribution function. A valid estimator is
the empirical distribution function, usually denoted by S(x). Intuitively it is an
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analogous estimate of the distribution function F (x) of the random variable X.
Formally, the empirical distribution function is calculated, at any point x, by
taking the proportion of sample observations less than or equal to it:

S(x) = 1

n
n{xi ≤ x}

It can be shown that the expected value of S(x) is F (x) and that

Var(S(x)) = 1

n
F(x)(1 − F(x))

Therefore the empirical distribution function is an unbiased estimator of F (x)
and it is consistent as, for n → ∞, Var(S(x)) → 0, so that MSE(S(x)) → 0.

The sample distribution function can be used to assess a parametric model’s
goodness of fit in an exploratory way. To evaluate the goodness of fit of a distri-
bution function, we usually use the Kolmogorov–Smirnov distance that leads to
the well-known statistical test of the same name. In this test, the null hypothesis
refers to a particular distribution that we shall call F ∗(x) (this distribution could
be a normal distribution, for example). Therefore we have

H0 : F(x) = F ∗(x)

H1 : F(x) �= F ∗(x)

To test H0 against H1, we consider the available random sample X1, . . . , Xn.
The idea is to compare the observed distribution function, S(x), with the theo-
retical distribution function F ∗ calculated using the observed values. The idea of
Kolmogorov and Smirnov is simple and clever. Since S(x) estimates F (x) it is
logical to hypothesis a ‘distance’ between S(x) and F (x). If S(x) and F (x) are
close enough (i.e. they are similar enough), the null hypothesis can be accepted,
otherwise it is rejected. But what kind of test statistics can we use to measure
the discrepancy between S(x) and F (x)? One of the easiest measurements is the
supremum of the vertical distance between the two functions. This is the statistic
suggested by Kolmogorov:

T1 = sup
−∞<x<+∞

|S(x) − F ∗(x)|

It relies on using the uniform distance, explained in Chapter 6. For ‘high’ T1

values, the null hypothesis is rejected; for low T , values, the null hypothesis
is accepted. The logic of the T1 statistic is obvious but the calculation of the
probability distribution is more complicated. Nevertheless, we can demonstrate
that, under the null hypothesis, the probability distribution of the statistical test
based on T1 does not depend on the functional form of F ∗(x). This distribu-
tion is tabulated and included in the main statistical packages. It is therefore
possible to determine critical values for T1 and obtain a rejection region of the
null hypotheses. Alternatively, it is possible to obtain p-values for the test. The
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Figure 5.2 The Kolmogorov–Smirnov statistic.

Kolmogorov–Smirnov test is important in exploratory analysis. For example,
when the qq-plot (Section 3.1) does not give any obvious indications that a cer-
tain empirical distribution is normal or not, we can check whether the distance
of the normal distribution function from the empirical distribution function is
large enough to be rejected. Figure 5.2 illustrates how the Kolmogorov–Smirnov
statistic works.

The simplest type of density estimator is the histogram. A histogram assigns
a constant density to each interval class. This density is easily calculated by
taking the relative frequency of observations in the class and dividing it by the
class width. For continuous densities the histogram can be interpolated by joining
all midpoints of the top segment of each bar. However, histograms can depend
heavily on the choice of the classes as well as on the sample, especially when
considering a small sample. Kernel estimators represent a more refined class of
density estimators. They represent a descriptive model that works locally, strongly
analogous to nearest-neighbour models (Section 4.7). Consider a continuous ran-
dom variable X, with observed values x1, . . . , xn, and a kernel density function
K with a bandwidth h. The estimated density function at any point x is

f̂ (x) = 1

n

n∑
i=1

K

(
x − xi

h

)

In practice the kernel function is usually chosen as a unimodal function, with a
mode at zero. A common choice is to take a normal distribution for the random
variable x − xi with zero mean and variance corresponding to h2, the square of
the bandwidth of the distribution. The quality of a kernel estimate then depends on
a good choice of the variance parameter h. The choice of h reflects the trade-off
between parsimony and goodness of fit that we have already encountered: a low
value of h means the estimated density values are fitted very locally, possibly
on the basis of a single data point; a high value leads to a global estimate,
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smoothing the data too much. It is quite difficult to establish what a good value
of h should be. One possibility is to use computationally intensive methods, such
as cross-validation techniques. The training sample is used to fit the density and
the validation sample is used to calculate the likelihood of the estimated density.
A value of h can then be chosen that leads to a high likelihood.

Estimating high-dimensional density functions is more difficult but kernel
methods can still be applied. Replacing the univariate normal kernel with a mul-
tivariate normal kernel yields a viable multivariate density estimator. Another
approach is to assume that the joint density is the product of univariate kernels.
However, the problem is that, as the number of variables increases, observa-
tions tend to be farther away and there is little data for the bandwidths. This
parallels what happens with nearest-neighbour models. Indeed both are memory-
based and the main difference is in their goals; kernel models are descriptive and
nearest-neighbour models are predictive.

Kernel methods can be seen as a useful model for summarising a low-dimen-
sional data set in a non-parametric way. This can be a helpful step towards the
construction of a parametric model, for instance.

The most important semiparametric models are mixture models. These models
are suited to situations where the data set can be clustered into groups of observa-
tions, each with a different parametric form. The model is semiparametric because
the number of groups, hence the number of distributions to consider, is unknown.
The general form of a finite mixture distribution for a random variable X is

f (x) =
g∑

i=1

wifi(x; θi)

where wi is the probability that an observation is distributed as the ith popu-
lation, with density fi and parameter vector θi . Usually the density functions
are all the same (often normal) and this simplifies the analysis. We can apply
a similar techniques to a random vector X. The model can be used for (model-
based) probabilistic cluster analysis. Its advantage is conducting cluster analysis
in a coherent probabilistic framework, allowing us to draw conclusions based on
inferential results rather than on heuristics. Its disadvantage is that the procedure
is structurally complex and possibly time-consuming. The model can choose the
number of components (clusters) and estimate the parameters of each population
as well as the weight probabilities, all at the same time. The most challenging
aspect is usually to estimate the number of components, as mixture models are
non-nested so a log-likelihood test cannot be applied. Other methods are used,
such as AIC, BIC, cross-validation and Bayesian methods (Chapter 6). Once
the number of components is found, the unknown parameters are estimated by
maximum likelihood or Bayesian methods.

5.3 The normal linear model

The most widely applied statistical model is the normal linear model. A lin-
ear model is defined essentially by two main hypotheses. Given the explanatory
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variables X1, . . . , Xp and the response variable Y , with x1i , . . . , xpi the observed
values of the explanatory variables X1, . . . , Xp corresponding to the ith observa-
tion, the first hypothesis supposes that the corresponding observations Y1, . . . , Yn

of the response variable Y are independent random variables, each normally
distributed with different expected values µ1, . . . , µn and equal variance σ 2:

E(Yi|X1i = x1i , . . . , Xpi = xpi ) = µi

Var(Yi |X1i = x1i , . . . , Xpi = xpi ) = σ 2 (i = 1, . . . , n)

Dropping the conditioning terms in the expressions for the means and the vari-
ances, we can write

E(Yi) = µi Var(Yi) = σ 2 (i = 1, . . . , n)

For each i = 1, . . . , n, let

xiž =




x0i

x1i

...

xpi


 =




1
x1i

...

xpi


 β =




β0

β1
...

βp




The second hypothesis states that the mean value of the response variable is a
linear combination of the explanatory variables:

µi = x ′
ižβ = β0 + β1x1i + · · · + βpxpi (i = 1, . . . , n)

In matrix terms, setting

Y =




Y1

Y2
...

Yn


 X =




x ′
1ž

x ′
2ž
...

x ′
nž


 =




x01 x11 . . . xp1

x02 x12 . . . xp2
...

...
...

...

x0n x1n . . . xpn


β =




β0

β1
...

βp




The two hypotheses can be summarised by saying that Y is a multivariate nor-
mal variable with mean vector E(Y ) = µ = Xβ and variance–covariance matrix

 = E[(Y − µ)(Y − µ)′] = σ 2In, where In is an identity matrix of order n.

5.3.1 Main inferential results

Under the previous assumptions, we can derive some important inferential results
that build on the theory in Section 4.3.

Result 1
For a point estimate, it can be demonstrated that the least squares fitted parameters
in Section 4.3 coincide with the maximum likelihood estimators of β. We will
use β̂ to indicate either of the two estimators.



148 APPLIED DATA MINING

Result 2
A confidence interval for a slope coefficient of the regression plane is

β = β̂ ± tn−p−1(1 − α/2)se(β̂)

where tn−p−1(1 − α/2) is the 100(1 − α/2) percentile of a Student’s t distribution
with n − p − 1 degrees of freedom and se (β̂) is an estimate of the standard error
of β̂.

Result 3
To test the hypothesis that a slope coefficient is 0, a rejection region is given by

R = {|T | ≥ tn−p−1(1 − α/2)
}

where T = β̂

se(β̂)

If the observed absolute value of the statistic T is contained in the rejection
region, the null hypothesis of the slope equal to 0 is rejected, and the slope
coefficient is statistically significant. In other words, the considered explana-
tory variable significantly influences the response variable. Conversely, when
the observed absolute value of the statistic T falls outside the rejection region,
the explanatory variable is not significant. Alternatively, it is possible to calcu-
late the p-value of the test, the probability of observing a value of T greater
in absolute value than the observed value. If this p-value is small (e.g. lower
than α = 0.05), this means that the observed value is very distant from the null
hypothesis, therefore the null hypothesis is rejected (i.e. the slope coefficient is
significant).

Result 4
To test whether a certain regression plane, with p explanatory variables, consti-
tutes a significant linear model, it can be compared with a trivial model, with
only the intercept. The trivial model, set to be the null hypothesis H0, is obtained
by simultaneously setting all slope coefficients to 0. The regression plane will be
significant when the null hypothesis is rejected. A rejection region is given by
the following inequality:

F = R2/p

(1 − R2)/(n − p − 1)
≥ Fp,n−p−1(1 − α)

where R2 is the coefficient of determination seen in Section 4.3 and Fp,n−p−1(1 −
α) is the 100 (1 − α) percentile of an F distribution, with p and n − p − 1
degrees of freedom. The degrees of freedom of the denominator represent the
difference in dimension between the observation space (n) and the fitting plane
(p + 1); those of the numerator represent the difference in dimension between
the fitting plane (p + 1) and a fitting point (1) defined by the only intercept. A
p-value for the test can be calculated, giving further support to the significance
of the model.
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Notice how we have introduced a precise threshold for evaluating whether
a certain regression model is valid in making predictions, in comparison with
the simple arithmetic mean. But this is a relative statement, which gives little
indication of how well the linear model fits the data at hand. A statistic like
this can be applied to cluster analysis, assuming that the available observations
come from a normal distribution. Then the degrees of freedom are c − 1 and
n − c. The statistic is called a pseudo-F statistic, because in the general case of
a non-normal distribution for the observations, the statistic does not have an F

distribution.

Result 5
To compare two nested regression planes that differ in a single explanatory vari-
able, say the (p + 1)th, present in one model but not in the other, the simpler
model can be set as the null hypothesis H0, so the more complex model is cho-
sen if the null hypothesis is rejected, and vice versa. A rejection region can be
defined by the following inequality:

F = r2
Y,Xp+1|X1,...,Xp

/1

(1 − r2
Y,Xp+1|X1,...,Xp

)/(n − p − 2)
≥ F1,n−p−2(1 − α)

where r2
Y,Xp+1|X1,...,Xp

is the partial correlation coefficient between Xp+1 and
the response variable Y , conditional on all present explanatory variables and
F1,n−p−2(1 − α) is the 100(1 − α) percentile of an F distribution, with 1 and
n − p − 2 degrees of freedom.

Notice that the degrees of freedom of the denominator represent the differ-
ence in dimension between the observation space (n) and the more complex
fitting plane (p + 2); the degrees of freedom of the numerator represent the dif-
ference in dimension between the more complex fitting plane (p + 2) and the
simpler one (p + 1). Alternatively, we can do the comparison by calculating
the p-value of the test. This can usually be derived from the output table that
contains the decomposition of the variance, also called the analysis of variance
(ANOVA) table. By substituting the definition of the partial correlation coefficient
r2
Y,Xp+1|X1,...,Xp

, we can write the test statistic as

F = Var(Ŷp+1) − Var(Ŷp)

(Var(Y ) − Var(Ŷp+1))/(n − p − 2)

therefore this F test statistic can be interpreted as the ratio between the additional
variance explained by the (p + 1)th variable and the mean residual variance. In
other words, it expresses the relative importance of the (p + 1)th variable. This
test is the basis of a process which chooses the best model from a collection of
possible linear models that differ in their explanatory variables. The final model
is chosen through a series of hypothesis tests, each comparing two alternative
models. The simpler of the two models is taken as the null hypothesis and the
more complex model as the alternative hypothesis.



150 APPLIED DATA MINING

As the model space will typically contain many alternative models, we need to
choose a search strategy that will lead to a specific series of pairwise comparisons.
There are at least three alternative approaches. The forward selection procedure
starts with the simplest model, without explanatory variables. It then complicates
it by specifying in the alternative hypothesis H1 a model with one explanatory
variable. This variable is chosen to give the greatest increase in the explained
variability of the response. The F test is used to verify whether or not the added
variable leads to a significant improvement with respect to the model in H0. In
the negative case the procedure stops and the chosen model is the model in H0

(i.e., the simplest model). In the affirmative case the model in H0 is rejected and
replaced with the model in H1. An additional explanatory variable (chosen as
before) is then inserted in a new model in H1, and a new comparison is made.
The procedure continues until the F test does not reject the model in H0, which
thus becomes the final model.

The backward elimination procedure starts with the most complex model, con-
taining all the explanatory variables. It simplifies it by making the null hypotheses
H0 equal to the original model minus one explanatory variable. The eliminated
variable is chosen to produce the smallest decrease in the explained variability
of the response. The F test is used to verify whether or not the elimination of
this variable leads to a significant improvement with respect to the model in H1.
In the negative case the chosen model is the model in H1 (i.e. the most complex
model) and the procedure stops. In the affirmative case the complex model in H1

is rejected and replaced with the model in H0. An additional variable is dropped
(chosen as before) and the resulting model is set as H0, then a new comparison is
made. The procedure continues until the F test rejects the null hypothesis. Then
the chosen model is the model in H1.

The stepwise procedure is essentially a combination of the previous two. It
begins with no variables; variables are then added one by one according to the for-
ward procedure. At each step of the procedure, a backward elimination is carried
out to verify whether any of the added variables should be removed. Whichever
procedure is adopted, the final model should be the same. This is true most of the
time but it cannot be guaranteed. The significance level used in the comparisons
is an important parameter as the procedure is carried out automatically by the
software and the software uses the same level for all comparisons. For example,
the SAS procedure reg chooses a significance level of α = 0.15 as a default. It
is interesting to compare the model selection procedure of a linear model with
the computational procedures in Chapter 4. The procedures in Chapter 4 usually
require the introduction of heuristic criteria, whereas linear model selection can
be fully automated but still remain within a formal procedure.

For large samples, stepwise procedures are often rather unstable in finding
the best models. It is not a good idea to rely solely on stepwise procedures for
selecting models.

5.3.2 Application

To illustrate the application of the normal linear model, we will again consider
the data matrix with 262 rows and 6 columns containing observations on the
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behaviour of an investment fund return, and the five sector indexes that can be
adopted as explanatory variables (Section 4.3). The objective is to determine the
best linear model that describes the returns as a function of the sector indexes.
We can do this by comparing different linear combinations of the predictors and
choosing the best one. The exploratory procedures in Chapter 4 detected a strong
correlation between the return and the predictors, encouraging us to apply a linear
model. Before proceeding with model comparisons, it is useful to test whether
the response variable satisfies the assumptions for the normal linear model, and
whether it has an approximately normal distribution. If this is not the case, we
will need to transform it to bring it closer to normality.

Table 5.1 shows the calculation of a few summary univariate indexes for the
response variable. The values of the skewness and kurtosis do not depart much
from those for the theoretical normal distribution (both equal to 0 in SAS).
Figure 5.3 shows the qq-plot of the response variable, and confirms the validity
of the normal approximation, apart from the possible presence of anomalous
observations in the tail of the distribution. This means we can proceed with the

Table 5.1 Univariate statistics for the response variable.

Figure 5.3 The qq-plot of the response variable.
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Table 5.2 Estimates with the most complex linear model.

Backward Elimination Procedure for Dependent Variable REND
Step 0 All Variables Entered R-square = 0.81919887
Source DF Sum of Squares Mean Square F Prob>F

Regression 5 755.61964877 151.12392975 231.98 0.0001
Error 256 166.76888880 0.65144097
Total 261 922.38853757

Parameter Standard Type II
Variable Estimate Error Sum of Squares F Prob>F

INTERCEP -0.00771196 0.05111640 0.01482805 0.02 0.8802
COMIT -0.01453272 0.02254704 0.27063860 0.42 0.5198
JAPAN 0.07160597 0.02174317 7.06525395 10.85 0.0011
PACIFIC 0.08148180 0.02408673 7.45487776 11.44 0.0008
EURO 0.35309221 0.03924075 52.74444954 80.97 0.0001
NORDAM 0.35357909 0.02945975 93.84044089 144.05 0.0001

selection of the model. Although we are assuming a normal linear model, we
could consider other linear models, such as constant variance and uncorrelated
residuals. We will do this indirectly by examining the residuals of the final model.
Econometrics textbooks give an introduction to more formal tests for choosing
different kinds of linear model. Using the backward elimination procedure, we
begin by fitting the most complex model, containing all the explanatory variables.
Table 5.2 shows the typical output from applying the normal linear model. The
first part of the table shows the results relative to the variance decomposition
of the response variable; it is an ANOVA table. For each source of variability
(regression, error, total) it shows the degrees of freedom (DF) and the sum of
squares, which represents the explained variance. The mean square regression is
the regression sum of squares divided by the regression DF. The mean square
error is the error sum of squares divided by the error DF. The F statistic (from
Result 4 on page 148) is the mean square regression divided by the mean square
error. We can evaluate a p-value for F . The p-value is small (lower than 5%),
so we reject the null hypothesis that the explanatory variables offer no predictive
improvement over the mean alone. Therefore the model with five explanatory
variables is significant. The multiple coefficient of determination R2 is equal to
81.91%, a relatively large value that leads, through the application of the F test,
to a significant model.

The second part of the table shows the maximum likelihood estimates of the
six parameters of the regression plane (the intercept plus the five slope coeffi-
cients). These estimates match those obtained with the method of least squares
(Table 4.5). But now the introduction of a statistical model allows us to attach
measures of sampling variability (standard errors). Calculating the ratio between
the value of the estimated parameters and their standard errors, we obtain the T

statistic (from Result 3 on page 148). To test the hypothesis that the COMIT slope
coefficient is 0, we obtain a T -value equal to −0.64, corresponding to a p-value
of 0.54. This clearly indicates that the COMIT coefficient is not significantly
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different from 0 and therefore COMIT is not a significant predictor. The type II
sum of squares is the additional contribution to the explained variability, with
respect to a model that contains all other variables. Each type II sum of squares
corresponds to the numerator of the F statistic (from Result 5 on page 149).
The F statistic is the type II sum of squares divided by the mean square error
in the first part of the table. The final column gives the corresponding p-values,
which show that the response variable strongly depends on only four of the five
explanatory variables.

Table 5.3 is a summary of the backward elimination procedure. We removed
only the COMIT variable and then we stopped the procedure. The table shows the
step of the procedure where the variable was removed, the number of variables
remaining in the model (In = 4), the partial correlation coefficient (given all the
others) of the excluded variable (0.0003), the coefficient of multiple determination
of the model, for the remaining four variables (0.8189); it also gives the F statistic
of Result 5 and its p-value, for inserting COMIT in a plane with all the other
variables. The hypothesis is clearly rejected. Table 5.4 shows the final linear
model, where all the remaining variables are significant.

Once a statistical model is chosen, it is useful to diagnose it, perhaps by
analysing the residuals (Section 4.3). To facilitate comparisons, the residuals are
often Studentised – they are divided by their estimated standard error. The name
derives from the fact that we can take the resulting ratio and apply a Student’s t

test to see whether each residual significantly departs from the null value. If this

Table 5.3 Results of the backward selection procedure.

Summary of Backward Elimination Procedure for Dependent
Variable REND

Step Removed In Partial R**2 Model R**2 F Prob>F
1 COMIT 4 0.0003 0.8189 0.4154 0.5198

Table 5.4 Estimates with the chosen final model.

Source DF Sum of Squares Mean Square F Prob>F

Regression 4 755.34901017 188.83725254 290.54 0.0001
Error 257 167.03952741 0.64995925
Total 261 922.38853757

Parameter Standard Type II
Variable Estimate Error Sum of Squares F Prob>F

INTERCEP -0.00794188 0.05105699 0.01572613 0.02 0.8765
JAPAN 0.07239498 0.02168398 7.24477432 11.15 0.0010

PACIFIC 0.08249154 0.02400838 7.67324503 11.81 0.0007
EURO 0.33825116 0.03173909 73.82028615 113.58 0.0001
NORDAM 0.35346510 0.02942570 93.78332454 144.29 0.0001
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(a) (b)

Figure 5.4 Diagnostics: (a) residuals against fitted values, (b) residuals qq-plot.

is so, it indicates a possible problem for the linear model. Using a significance
level of 5%, the absolute value of the residuals should not exceed about 2, which
approximates a 5% significance test. Figure 5.4 shows the analysis of the residuals
for our chosen model. Figure 5.4(a) shows a plot of the observed residuals (y-
axis) versus the fitted values (x-axis); Figure 5.4(b) is a qq-plot of the observed
residuals (y-axis) against the theoretical normal ones (x-axis). Both plots show
good behaviour of the model’s diagnostics. In particular, all the residuals are
included in the interval (−2, +2) and there are no evident trends – no increasing
or decreasing tendencies. The qq-plot confirms the hypothesis underlying the
normal linear model. We can therefore conclude that we have chosen a valid
model, on which it is reasonable to base predictions. The final model is described
by the following regression plane:

REND = −0.0079 + 0.0724 JAPAN + 0.0825 PACIFIC

+ 0.3383 EURO + 0.3535 NORDAM

Comparing this model with the model in Table 4.5, there are slight differences in
the estimated coefficients, due to the absence of the variable COMIT. The slight
effect of COMIT on the response variable is absorbed by the other variables.

5.4 Generalised linear models

For several decades the linear model has been the main statistical model for data
analysis. However, in many situations the hypothesis of linearity is not realistic.
The second restrictive element of the normal linear model is the assumption of
normality and constant variance of the response variable. In many applications
the observations are not normally distributed nor do they have a constant vari-
ance, and this limits the usefulness of the normal linear model. Developments
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in statistical theory and computing power during the 1960s allowed researchers
to take their techniques for linear models and develop them in other contexts.
It turns out that many of the ‘nice’ proprieties of the normal distribution are
shared by a wider class of statistical models known as the exponential family of
distributions.

The numerical calculations for the parameter estimates have also benefited
from refinements; as well as working on linear combinations Xβ, we can now
work on functions of linear combinations such as g(Xβ). Improved computer
hardware and software have helped with effective implementation, culminating
in generalised linear models (Nelder and Wedderburn, 1972). In the normal lin-
ear model, the base distribution is the normal distribution; in generalised linear
models it is one of the exponential family of distributions.

5.4.1 The exponential family

Consider a single random variable Y whose density function (or discrete prob-
ability function) depends on a single parameter θ (possibly vector-valued). The
probability distribution of the variable is said to belong to the exponential family
if the density can be written in the form

f (y; θ) = s(y)t (θ)ea(y)b(θ)

where a, b, s and t are known functions.
The symmetry existing between y and the parameter θ becomes more evident

if the previous equation is rewritten in the form

f (y; θ) = exp[a(y)b(θ) + c(θ) + d(y)]

where s(y) = exp[d(y)] and t (θ) = exp[c(θ)]. If it holds that a(y) = y, the pre-
vious distribution is said to be in canonical form, and b(θ) is called the natural
parameter of the distribution. If there are other parameters (let us say φ), besides
the parameter of interest θ , they are considered as nuisance parameters that are
usually dealt with as if they were known. Many familiar distributions belong to
the exponential family; here are some of them.

Poisson distribution
The Poisson distribution is usually used to model the probability of observing
integer numbers, corresponding to counts in a fixed period of time (e.g. the
number of clients that enter a supermarket in an hour, or the number of phone
calls received at a call centre in a day). The Poisson distribution is a discrete
distribution that associates a non-zero probability to all the non-negative integers.
It is parameterised by a parameter that represents the mean value of the counts.
If a random variable Y has a Poisson distribution with mean λ, its discrete
probability function is

f (y; λ) = λye−λ

y!
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where y takes the values 0, 1, 2, . . .. Through simple algebra it is possible to
rewrite the density as

f (y; λ) = exp[y log λ − λ − log y!]

which shows that the Poisson distribution belongs to the exponential family, in
canonical form, with natural parameter b(θ) = log λ.

Normal distribution
The normal distribution is a continuous distribution that associates a positive
density to each real number. If Y is a normal random variable with mean µ and
variance σ 2, its density function is

f (y; µ) = 1

(2πσ 2)1/2
exp

[
− 1

2σ 2
(y − µ)2

]

where µ is usually the parameter of interest and σ 2 is treated as a disturbance
parameter. The density can be rewritten as

f (y; µ) = exp

[
y

µ

σ 2
− µ2

2σ 2
− 1

2
log(2πσ 2) − y2

2σ 2

]

which shows that the normal distribution belongs to the exponential family, in
canonical form, with natural parameter b(θ) = µ/σ 2.

Binomial distribution
The binomial distribution is used to model the probability of observing a number
of successes (or events of interest) in a series of n independent binary trials, (e.g.
how many among the n clients of a certain supermarket buy a certain product,
or how many among n loans assigned to a certain credit institution have a good
end). The binomial distribution is a discrete distribution that associates a non-
zero probability to all the non-negative integers between 0 and n, representing
the completed trials. It is parameterised by n and by the parameter π , which
represents the probability of obtaining a success in each trial. Suppose that the
random variable Y represents the number of successes in n binary independent
experiments, in which the probability of success is always equal to π . In this
case Y has a binomial distribution with discrete probability function

f (y; π) =
(

n

y

)
πy(1 − π)n − y

where Y takes the values 0,1,2, . . ., n. This function can be rewritten as

f (y; π) = exp

[
y log

(
π

1 − π

)
+ n log(1 − π) + log

(
n

y

)]

which shows that the binomial distribution belongs to the exponential family, in
canonical form, with natural parameter b(θ) = log[π/(1 − π)].
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The exponential family
The exponential family of distributions is a very general class that contains these
three important probabilistic models. The advantage of the general form is that it
is possible to obtain inferential results common to all the distributions belonging
to it. We will not dwell on these results; we will concentrate on some important
consequences for data analysis. For more details see Agresti (1990) or Dob-
son (1990).

5.4.2 Definition of generalised linear models

A generalised linear model takes a function of the mean value of the response
variable and relates it to the explanatory variables through an equation having
linear form. It is specified by three components: a random component, which
identifies the response variable Y and assumes a probability distribution for it;
a systematic component, which specifies the explanatory variables used as pre-
dictors in the model; and a link function, which describes the functional relation
between the systematic component and the mean value of the random component.

Random component
For a sample of size n, the random component of a generalised linear model is
described by the sample random variables Y1, . . . , Yn; these are independent, each
has a distribution in exponential family form that depends on a single parameter
θi , and each is described by the density function

f (yi ; θi) = exp[yib(θi) + c(θi) + d(yi)]

All the distributions for the Yi have to have the same form (e.g. all normal or all
binomial) but their θi parameters do not have to be the same.

Systematic component
The systematic component specifies the explanatory variables and their roles in
the model. It is specified by a linear combination:

η = β1x1 + · · · + βpxp =
p∑

j=1

βjxj

The linear combination η is called the linear predictor. The Xj represent the
covariates, whose values are known (e.g. they can be derived from the data
matrix). The βj are the parameters that describe the effect of each explanatory
variable on the response variable. The values of the parameters are generally
unknown and have to be estimated from the data. The systematic part can be
written in the following form:

ηi =
p∑

j=1

βjxij (i = 1, . . . , n)
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where xij is the value of the j th explanatory variable for the ith observation. In
matrix form it is

η = Xβ

where η is a vector of order n × 1, X is a matrix of order n × p, called the model
matrix, and β is a vector of order p × 1, called the parameter vector.

Link function
The third component of a generalised linear model specifies the link between the
random component and the systematic component. Let the mean value of Yi be
denoted by

µi = E(Yi) (i = 1, . . . , n.)

The link function specifies which function of µi linearly depends on the explana-
tory variables through the systematic component ηi . Let g(µi) be a function
(monotone and differentiable) of µi . The link function is defined by

g(µi) = ηi =
p∑

j=1

βjxij (i = 1, . . . , n)

In other words, the link function describes how the explanatory variables affect
the mean value of the response variable, that is, through the function g. How do
we choose g? In practice the more commonly used link functions are canonical
and define the natural parameter of the particular distribution as a function of
the mean response value. Table 5.5 shows the canonical link functions for the
three important distributions in Section 5.4.1. The same table can be used to
derive the most important examples of generalised linear models. The simplest
link function is the normal one. It directly models the mean value through the
link identity ηi = µi , thereby specifying a linear relationship between the mean
response value and the explanatory variables:

µi = β0 + β1xi1 + · · · + βpxip

The normal distribution and the identity link give rise to the normal linear model
for continuous response variables (Section 5.3).

Table 5.5 Main canonical links.

Distribution Canonical link

Normal g(µi) = µi

Binomial g(µi) = log

(
πi

1 − πi

)
Poisson g(µi) = log µi
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The binomial link function models the logarithm of the odds as a linear func-
tion of the explanatory variables:

log

(
µi

1 − µi

)
= β0 + β1xi1 + · · · + βpxip (i = 1, . . . , n)

This type of link is called a logit link and is appropriate for binary response vari-
ables, as in the binomial model. A generalised linear model that uses the binomial
distribution and the logit link is a logistic regression model (Section 4.4). For a
binary response variable, econometricians often use the probit link, which is not
canonical. They assume that

�−1(µi) = β0 + β1xi1 + · · · + βpxip (i = 1, . . . , n)

where �−1 is the inverse of the cumulative normal distribution function.
The Poisson canonical link function specifies a linear relationship between the

logarithm of the mean response value and the explanatory variables:

log(µi) = β0 + β1xi1 + · · · + βkxik (i = 1, . . . , n)

A generalised linear model that uses the Poisson distribution and a logarithmic
link is a log-linear model; it constitutes the main data mining tool for describing
associations between the available variables. It will be examined in Section 5.5.

Inferential results
We now consider inferential results that hold for the whole class of generalised
linear models; we will apply them to logistic regression and log-linear models.
Parameter estimates are usually obtained using the method of maximum likeli-
hood. The method computes the derivative of the log-likelihood with respect to
each coefficient in the parameter vector β and sets it equal to zero, similar to
the linear regression context in Section 4.3. But unlike what happens with the
normal linear model, the resultant system of equations is non-linear in the param-
eters and does not generally have a closed-form solution. So to obtain maximum
likelihood estimators of β, we need to use iterative numerical methods, such as
the Newton–Raphson method or Fisher’s scoring method; for more details see
Agresti (1990) or Hand, Mannila and Smyth (2001).

Once the parameter vector β is estimated, its significance is usually assessed
by hypothesis testing. We will now see how to verify the significance of each
parameter in the model. Later we will compute the overall significance of a
model in the context of model comparison. Consider testing the null hypothesis
H0 : βi = 0 against the alternative H1 : βi �= 0. A rejection region for H0 can be
defined using the asymptotic procedure known as Wald’s test. If the sample size
is sufficiently large, the statistic

Z = β̂i

σ (β̂i)
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is approximately distributed as a standardised normal; here σ(β̂i) indicates the
standard error of the estimator in the numerator. Therefore, to decide whether to
accept or reject the null hypothesis, we can build the rejection region

R = {|Z| ≥ z1−α/2}
where z1−α/2 is the 100(1 − α/2) percentile of a standard normal distribution. Or
we can find the p-value and see whether it is less than a predefined significance
level (e.g. α = 0.05). If p < α then H0 is rejected. The square of the Wald
statistic Z has a chi-squared distribution with 1 degrees of freedom, for large
samples (Section 5.1). That means it is legitimate for us to build a rejection
region or to assess a p-value.

Rao’s score statistic, often used as an alternative to the Wald statistic, computes
the derivative of the observed log-likelihood function evaluated at the parameter
values set by the null hypothesis, βi = 0. Since the derivative is zero at the point
of maximum likelihood, the absolute value of the score statistic tends to increase
as the maximum likelihood estimate β̂i gets more distant from zero. The score
statistic is equal to the square of the ratio between the derivative and its standard
error, and it is also asymptotically distributed as a chi-squared distribution with
1 degree of freedom. For more details on hypotheses testing using generalised
linear models, see McCullagh and Nelder (1989), Dobson (1990) or Azzalini
(1992).

Model comparison
Fitting a model to data can be interpreted as a way of replacing a set of observed
data values with a set of estimated values obtained during the fitting process. The
number of parameters in the model is generally much lower than the number of
observations in the data. We can use these estimated values to predict future
values of the response variable from future values of the explanatory variables.
In general the fitted values, say µ̂i , will not be exactly equal to the observed
values, yi . The problem is to establish the distance between the µ̂i and the yi . In
Chapter 6 we will start form this simple concept of distance between observed
values and fitted values, then show how it is possible to build statistical measures
to compare statistical models and, more generally, data mining methods. In this
section we will consider the deviance and the Pearson statistic, two measures for
comparing the goodness of fit of different generalised linear models.

The first step in evaluating a model’s goodness of fit is to compare it with the
models that produce the best fit and the worst fit. The best-fit model is called
the saturated model; it has as many parameters as observations and therefore
leads to a perfect fit. The worst-fit model is called the null model; it has only one
intercept parameter and leaves all response variability unexplained. The saturated
model attributes the whole response variability to the systematic component. In
practice the null model is too simple and the saturated model is not informative
because it does completely reproduces the observations. However, the saturated
model is a useful comparison when measuring the goodness of fit of a model
with p parameters. The resulting quantity is called the deviance, and it is defined
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as follows for a model M (with p parameters) in the class of generalised linear
models:

G2(M) = −2 log

{
L(β̂(M))

L(β̂(M∗))

}

where the quantity in the numerator is the likelihood function, calculated using the
maximum likelihood parameter estimates under model M , indicated by β̂(M);
and the quantity in the denominator is the likelihood function of the observa-
tions, calculated using the maximum likelihood parameter estimates under the
saturated model M∗. The expression in curly brackets is called the likelihood
ratio, and it seems an intuitive way to compare two models in terms of the
likelihood they receive from the observed data. Multiplying the natural loga-
rithm of the likelihood ratio by −2, we obtain the maximum likelihood ratio test
statistic.

The asymptotic distribution of the G2 statistic (under H0) is known: for a large
sample size, G2(M) is approximately distributed as a chi-squared distribution
with n − k degrees of freedom, where n is the number of observations and k is
the number of estimated parameters under model M , corresponding to the number
of explanatory variables plus one (the intercept). The logic behind the use of G2

is as follows. If the model M that is being considered is good, then the value of
its maximised likelihood will be closer to that of the maximised likelihood under
the saturated model M∗. Therefore ‘small’ values of G2 indicate a good fit.

The asymptotic distribution of G2 can provide a threshold beneath which to
declare the simplified model M as a valid model. Alternatively, the significance
can be evaluated through the p-value associated with G2. In practice the p-
value represents the area to the right of the observed value for G2 in the χ2

n−k

distribution. A model M is considered valid when the observed p-value is large
(e.g. greater than 5%). The value of G2 alone is not sufficient to judge a model,
because G2 increases as more parameters are introduced, similar to what happens
with R2 in the regression model. However, since the threshold value generally
decreases with the number of parameters, by comparing G2 and the threshold we
can reach a compromise between goodness of fit and model parsimony.

The overall significance of a model can also be evaluated by comparing it
against the null model. This can be done by taking the difference in deviance
between the considered model and the null model to obtain

D = −2 log

{
L(β̂(M0))

L(β̂(M))

}

Under H0 ‘the null model is true’, D is asymptotically distributed as a χ2
p dis-

tribution, where p is the number of explanatory variables in model M . This
can be obtained by noting that D = G2(M0) − G2(M) and recalling that the
two deviances are independent and asymptotically distributed as chi-squared
random variables. From the additive property of the chi-squared distribution,
the degrees of freedom of D are (n − 1) − (n − p − 1) = p. The considered
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model is accepted (i.e. the null model in H0 is rejected) if the p-value is small.
This is equivalent to the difference D between the log-likelihoods being large.
Rejection of the null hypothesis implies that at least one parameter in the sys-
tematic component is significantly different from zero. Statistical software often
gives the log-likelihood maximised for each model of analysis, corresponding
to −2 log(L(β̂(M)), which can be seen as a score of the model under con-
sideration. To obtain the deviance, this should be normalised by subtracting
−2 log(L(β̂(M∗)). On the other hand, D is often given with the correspond-
ing p-values; This is analogous to the statistic in Result 4 on page 148. SAS
calls it chi-square for covariate.

More generally, following the same logic used in the derivation of D, any
two models can be compared in terms of their deviances. If the two models are
nested (i.e. the systematic component of one of them is obtained by eliminating
some terms from the other one), the difference of the deviances is asymptotically
distributed as chi-squared with p − q degrees of freedom, that is the number of
variables excluded in the simpler model (which has q parameters) but not in the
other one (which has p parameters). If the difference between the two is large
(with respect to the critical value), the simpler model will be rejected in favour
of the more complex model, and similarly when the p-value is small.

For the whole class of generalised linear models, it is possible to employ a
formal procedure in searching for the best model. As with linear models, this
procedure is usually forward, backward or stepwise elimination.

When the analysed data is categorical, or discretised to be such, an alternative
to G2 is Pearson’s X2:

X2 =
∑

i

(oi − ei)
2

ei

where, for each category i, ‘oi’ represents the observed frequencies and ‘ei’ rep-
resents the frequencies expected according to the model under examination. As
with the deviance G2, we are comparing the fitted model (which corresponds
to the ei) and the saturated model (which corresponds to the oi). However,
the distance function is not based on the likelihood, but on direct comparison
between observed and fitted values for each category. Notice that this statis-
tic generalises the Pearson X2 distance measure in Section 3.4. There the fitted
model particularised to the model under which the two categorical variables were
independent.

The Pearson statistic is asymptotically equivalent to G2, therefore under H0,
X2 ≈ χ2

n−k. The choice between G2 and X2 depends on the goodness of the
chi-squared approximation. In general, it can be said that X2 is less affected
by small frequencies, particularly when they occur in large data sets – data sets
having many variables. The advantage of G2 lies in its additivity, so it easily
generalises to any pairwise model comparisons, allowing us to adopt a model
selection strategy.

The statistics G2 and X2 indicate a model’s overall goodness of fit; we need to
do further diagnostic analysis to look for local lack of fit. Before fitting a model,
it may be extremely useful to try some graphical representations. For example,
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we could plot the observed frequencies of the various categories, or functions of
them, against the explanatory variables. It is possible to draw dispersion diagrams
and fit straight lines for the response variable transformation described by the
canonical link (e.g. the logit function for logistic regression). This can be useful to
verify whether the hypotheses behind the generalised linear model are satisfied. If
not, the graph itself may suggest further transformations of the response variable
or the explanatory variables. Once a model is chosen as the best and fitted to the
data, our main diagnostic tool is to analyse the residuals. Unlike what happens
in the normal linear model, for generalised linear models there are different
definitions of the residuals. Here we consider the deviance residuals that are
often used in applications. For each observation, the residual from the deviance
is defined by the quantity

Dri = (yi − µ̂i)
√

di

This quantity increases (or decreases) according to the difference between the
observed and fitted values of the response variable (yi − µ̂i) and is such that∑

Dr2
i = G2. In a good model, the deviance residuals should be randomly dis-

tributed around zero, so plot the deviance residuals against the fitted values. For
a good model, the points in the plane should show no evident trend.

5.4.3 The logistic regression model

The logistic regression model is an important model. We can use our general
results to derive inferential results for the logistic regression model. The deviance
of a model M assumes the following form:

G2(M) = 2
n∑

i=1

[
yi log

(
yi

niπ̂i

)
+ (ni − yi) log

(
ni − yi

ni − niπ̂i

)]

where the π̂i are the fitted probabilities of success, calculated on the basis of the
estimated β parameters for model M . The deviance G2 assumes the form

G2 = 2
∑

i

oi log
oi

ei

where oi indicates the observed frequencies yi and ni − yi , and ei indicates the
corresponding fitted frequencies niπ̂i and ni − niπ̂i . Note that G2 can be inter-
preted as a distance function, expressed in terms of entropy differences between
the fitted model and the saturated model.

The Pearson statistic for the logistic regression model, based on the X2 dis-
tance, takes the form

X2 =
n∑

i=1

(yi − niπ̂i)
2

niπ̂i(1 − π̂i)
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Both G2 and X2 can be used to compare models in terms of distances between
observed and fitted values. The advantage of G2 lies in its modularity. For
instance, in the case of two nested logistic regression models MA, with q param-
eters, and MB , with p parameters (q < p), the difference between the deviances
is given by

D = G2(MA) − G2(MB) = 2
n∑

i=1

yi log

(
niπ̂

B
i

niπ̂
A
i

)
+ (ni − yi) log

(
niπ̂

B
i

niπ̂
A
i

)

= 2
n∑

i=1

oi log

(
eB
i

eA
i

)
≈ χ2

p−q

where π̂A
i and π̂B

i indicate the success probability fitted on the basis of models
MA and MB , respectively. Note that the expression for the deviance boils down
to an entropy measure between probability models, exactly as before. This is a
general fact. The deviance residuals are defined by

Dri = ±(yi − π̂i)2
1/2

[
yi log

(
yi

niπ̂i

)
+ (ni − yi) log

(
ni − yi

ni − niπ̂i

)]1/2

5.4.4 Application

We now consider a case study on correspondence sales for an editorial company.
It is described at length in Chapter 10. The observations are the customers of the
company. The response variable to be predicted distinguishes the clients into two
categories: those that buy only one product and those that buy more, following the
first purchase. All the explanatory variables are binary. The response variable is
called Nacquist; it indicates whether or not the number of purchases is greater
than one. The explanatory variables are Vdpflrat, islands, south, centre,
north, age15 35, age36 50, age51 89, dim g, dim m, dim p, sex.

The interpretation of the variables and the explanatory analysis are given
in Chapter 10. Here we construct the logistic regression model, initially fitting
a model with all the variables. The value of G2 for this model is 3011.658.
Table 5.6 gives the deviance and the maximum likelihood estimates for this
model. It begins with information relative to the chosen model. The third row
shows the log-likelihood score for the considered model and for the null model
with only the intercept. The difference between the two deviances, D, is equal
to 307.094. Using a chi-squared test with 9 degrees of freedom (9 = 10 − 1), we
obtain a significant difference, so we accept the considered model (the p-value
is 0.00001). Even though there are 12 explanatory variables, the presence of the
intercept means we have to eliminate three of them that we cannot estimate. For
example, since there are three age classes, the three columns that indicate the
presence or absence of each of them sum to a vector of ones, identical to the
intercept vector. Therefore, in this model we eliminate the variable age15 35.



STATISTICAL DATA MINING 165

Table 5.6 Results of fitting the full logistic regression model.

Model Fitting Information and Testing Global Null Hypothesis BETA=0

Intercept

Intercept and

Criterion Only Covariates Chi-Square for Covariates

AIC 3320.732 3031.658 .

SC 3326.556 3089.700 .

-2 LOG L 3318.752 3011.658 307.094 with g DF (p=0.0001)

Score . . 300.114 with g DF (p=0.0001)

NOTE: The following parameters have been set to 0, since the variables are

a linear combination of other variables as shown.

AGE15−35 = 1 * INTERCEPT - 1 * AGE51−89 - 1 * AGE36−50
NORTH = 1 * INTERCEPT - 1 * ISLANDS - 1 * SOUTH - 1 * CENTRE

DIM−P = 1 * INTERCEPT - 1 * DIM−G - 1 * DIM−M

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardised Odds

Variable DF Estimates Error Chi-Square Chi-Square Estimate Ratio

INTERCEPT 1 -1.2163 0.1510 64.9210 0.0001 . .

VDPFLRAT 1 1.5038 0.0999 226.6170 0.0001 0.365878 4.498

ISLANDS 1 -0.2474 0.1311 3.5639 0.0590 -0.050827 0.781

SOUTH 1 -0.4347 0.1222 12.6525 0.0004 -0.098742 0.647

CENTRE 1 -0.1371 0.1128 1.4777 0.2241 -0.033399 0.872

AGE1−89 1 0.4272 0.1312 10.6086 0.0011 0.095633 1.533

AGE36−50 1 0.7457 0.1070 48.5289 0.0001 0.205547 2.108

DIM−G 1 -0.0689 0.1335 0.2667 0.6055 -0.016728 0.933

DIM−M 1 0.1294 0.1172 1.2192 0.2695 0.035521 1.138

AGE15−35 0 0 . . . . .

SEX 1 0.1180 0.0936 1.5878 0.2076 0.030974 1.125

NORTH 0 0 . . . . .

DIM−P 0 0 . . . . .

AIC and SC in the first two rows of the table are model choice criteria related
to the numerator of the deviance. Chapter 6 covers them in more detail. The
second part of the table shows, for each of the parameters, the estimates obtained
plus the relative standard errors, as well as the Wald statistic for hypothesis testing
on each coefficient. Using the p-value corresponding to each statistic, we can
deduce that at least four variables are not significant (with a significance level of
0.05, five variables are not significant, as they have a greater p-value). Finally,
the table shows the estimated odds ratios of the response variable with each
explanatory variable. These estimates are derived using the estimated parameters,
so they may differ from the odds ratios calculated during the exploratory phase
(Section 4.4), which are based on a saturated model. The exploratory indexes
are usually calculated marginally, whereas the present indexes take account of
interactions among all variables.

We now look at a model selection procedure to see whether the model can
be further simplified. We can choose forward, backward or stepwise selection.
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In the normal linear model, these procedures are based on recursive application
of the F test, but now they are based on the deviance differences. If the p-value
for this difference is ‘large’, the simpler model will be chosen; if it is small,
the more complex model will be chosen. The procedure stops when no further
change will produce a significant change in the deviance. Table 5.7 shows the
results obtained with a forward procedure (generically known as ‘stepwise’ by
the software). It highlights for every variable the values of Rao’s score statis-
tic, in order to show the incremental importance of each inserted variable. The
procedure stops after the insertion of five variables. Here they are in order of
insertion: Vdpflrat, age15 35, north, age51 89, south. No other vari-
able is retained at a significance level of α = 0.15, the software default. Table 5.7
also reports the parameter estimates for the five variables selected in the final
model, with the corresponding Wald statistics. Now, no variable appears to be not
significant, using a significance level of 0.05. The variable Vdpflart indicates
whether or not the price of the first purchase is paid in instalments; it is decisively
estimated to be the variable most associated with the response variable.

For large samples, stepwise selection procedures, like the one we have just
applied, might lead to high instability of the results. The forward and backward
approaches may even lead to different final models. Therefore it is a good idea
to consider other model selection procedures too; this is discussed in Chapter 6.
Figure 5.5 presents a final diagnostic of the model, through analysis of the
deviance residuals. It turns out that the standardised residuals behave quite well,
lying in the interval [−2,+2]. But notice a slight decreasing tendency of the
residuals (as opposed to being distributed around a constant line). This indicates
a possible underestimation of observations with high success probability. For
more details on residual analysis see Weisberg (1985).

Table 5.7 Results of forward procedure.

Summary of Stepwise Procedure

Variable Number Score Wald Pr >
Step Entered Removed In Chi-Square Chi-Square Chi-Square

1 VDPFLRAT 1 234.7 . 0.0001
2 AGE15−35 2 45.0708 . 0.0001
3 NORTH 3 9.4252 . 0.0021
4 AGE51−89 4 7.4656 . 0.0063
5 SOUTH 5 4.4325 . 0.0353

Analysis of Maximum Likelihood Estimates

Parameter Standard Wald Pr > Standardized Odds
Variable DF Estimate Error Chi-Square Chi-Square Estimate Ratio

INTERCEPT 1 -0.5281 0.0811 42.3568 0.0001 . .
VDPFLRAT 1 1.5022 0.0997 226.9094 0.0001 0.365499 4.492
SOUTH 1 -0.2464 0.1172 4.4246 0.0354 -0.055982 0.782
AGE51−89 1 -0.3132 0.1130 7.6883 0.0056 -0.070108 0.731
AGE15−35 1 -0.7551 0.1063 50.5103 0.0001 -0.186949 0.470
NORTH 1 0.2044 0.0989 4.2728 0.0387 0.053802 1.227
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Figure 5.5 Residual analysis for the fitted logistic model.

5.5 Log-linear models

We can distinguish between symmetric and asymmetric generalised linear mod-
els. If the objective of the analysis is descriptive – to describe the associative
structure among the variables – the model is called symmetric. If the variables
are divided in two groups, response and explanatory – to predict the responses
on the basis of the explanatory variables – the model is asymmetric. Asymmet-
ric models we have seen are the normal linear model and the logistic regression
model. We will now consider the most well-known symmetric model, the log-
linear model. The log-linear model is typically used for analysing categorical
data, organised in contingency tables. It represents an alternative way to express
a joint probability distribution for the cells of a contingency table. Instead of
listing all the cell probabilities, this distribution can be described using a more
parsimonious expression given by the systematic component.

5.5.1 Construction of a log-linear model

We now show how a log-linear model can be built, starting from three different
distributional assumptions about the absolute frequencies of a contingency table,
corresponding to different sampling schemes for the data in the table. For sim-
plicity but without loss of generality, we consider a two-way contingency table
of dimensions I × J (I rows and J columns).

Scheme 1
The cell counts are independent random variables that are distributed according
to a Poisson distribution. All the marginal counts, including the total number of
observations n, are also random and distributed according to a Poisson distri-
bution. As the natural parameter of a Poisson distribution with parameter mij is
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log(mij ), the relationship that links the expected value of each cell frequency mij

to the systematic component is

log(mij ) = ηij for i = 1, . . . , I and j = 1, . . . , J

In the linear and logistic regression models, the total amount of information
(which determines the degrees of freedom) is described by the number of obser-
vations of the response variable (indicated by n), but in the log-linear model this
corresponds to the number of cells of the contingency table. In the estimation
procedure, the expected frequencies will be replaced by the observed frequencies,
and this will lead us to estimate the parameters of the systematic component. For
an I × J table there are two variables in the systematic component. Let the levels
of the two variables be indicated by xi and xj , for i = 1, . . . , I and j = 1, . . . , J .
The systematic component can therefore be written as

ηi = u +
∑

i

uixi +
∑

j

ujxj

∑
ij

uij xixj

This expression is called the log-linear expansion of the expected frequencies.
The terms ui and uj describe the single effects of each variable, corresponding
to the mean expected frequencies for each of their levels. The term uij describes
the joint effect of the two variables on the expected frequencies. The term u is
a constant that corresponds to the mean expected frequency over all table cells.

Scheme 2
The total number of observations n is not random, but a fixed constant. This
implies that the relative frequencies follow a multinomial distribution. Such a
distribution generalises the binomial to the case where there are more than two
alternative events for the considered variable. The expected values of the absolute
frequencies for each cell are given by mij = nπij . With n fixed, specifying a
statistical model for the probabilities πij is equivalent to modelling the expected
frequencies mij , as in Scheme 1.

Scheme 3
The marginal row (or column) frequencies are known. In this case it can be shown
that the cell counts are distributed as a product of multinomial distributions. It is
also possible to show that we can define a log-linear model in the same way as
before.

Properties of the log-linear model
Besides being parsimonious, the log-linear model allows us easily to incorporate
in the probability distribution constraints that specify independence relationships
between variables. For example, using results introduced in Section 3.4, when two
categorical variables are independent, the joint probability of each cell probability
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factorises as πij = πi+π+j , for i = 1, . . . , I and j = 1, . . . , J . And the additive
property of logarithms implies that

log mij = log n + log πi+ + log π+j

This describes a log-linear model of independence that is more parsimonious than
the previous one, called the saturated model as it contains as many parameters as
there are table cells. In general, to achieve a unique estimate on the basis of the
observations, the number of terms in the log-linear expansion cannot be greater
than the number of cells in the contingency table. This implies some constraints
on the parameters of a log-linear model. Known as identifiability constraints,
they can be defined in different ways, but we will use a system of constraints
that equates to zero all the u-terms that contain at least one index equal to the
first level of a variable. This implies that, for a 2 × 2 table, relative to the binary
variables A and B, with levels 0 and 1, the most complex possible log-linear
model (saturated) is defined by

log(mij ) = u + uA
i + uB

i + uAB
ij

with constraints such that: uA
i �= 0 for i = 1 (i.e. if A = 1); uB

i �= 0 for j = 1
(i.e. if B = 1); uAB

ij �= 0 for i = 1 and j = 1 (i.e. if A = 1 and B = 1). The
notation reveals that, in order to model the four cell frequencies in the table,
there is a constant term, u; two main effects terms that exclusively depend on
a variable, uA

i and uB
i ; and an interaction term that describes the association

between the two variables, uAB
ij . Therefore, following the stated constraints, the

model establishes that the logarithms of the four expected cell frequencies are
equal to the following expressions:

log(m00) = u

log(m10) = u + uA
i

log(m01) = u + uB
i

log(m11) = u + uA
i + uB

i + uAB
ij

5.5.2 Interpretation of a log-linear model

Logistic regression models with categorical explanatory variables (also called
logit models) can be considered as a particular case of log-linear models. To
clarify this point, consider a contingency table with three dimensions for variables
A, B, C, and numbers of levels I , J , 2 respectively. Assume that C is the response
variable of the logit model. A logit model is expressed by

log

(
mij1

mij0

)
= α + βA

i + βB
j + βAB

ij
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All the explanatory variables of a logit model are categorical, so the effect of
each variable (e.g. variable A) is indicated only by the coefficient (e.g. βA

i ) rather
than by the product (e.g. βA). Besides that, the logit model has been expressed in
terms of the expected frequencies, rather than probabilities, as in the last section.
This is only a notational change, obtained through multiplying the numerator
and the denominator by n. This expression is useful to show that the logit model
which has C as response variable is obtained as the difference between the log-
linear expansions of log(mij1) and log(mij0). Indeed the log-linear expansion for
a contingency table with three dimensions I × J × 2 has the more general form

log(mijk ) = u + uA
i + uB

j + uC
k + uAB

ij + uAC
ik + uBC

jk + uABC
ijk

Substituting and taking the difference between the logarithms of the expected
frequencies for C = 1 and C = 0:

log(mij1) − log(mij0) = uC
1 + uAC

i1 + uBC
j1 + uABC

ij1

In other words, the u-terms that do not depend on the variable C cancel out.
All the remaining terms depend on C. By eliminating the symbol C from the
superscript, the value 1 from the subscript and relabelling the u-terms using α

and β, we arrive at the desired expression for the logit model. Therefore a logit
model can be obtained from a log-linear model. The difference is that a log-
linear model contains not only the terms that describe the association between
the explanatory variables and the response – here the pairs AC, BC – but also
the terms that describe the association between the explanatory variables – here
the pair AB. Logit models do not model the association between the explanatory
variables.

We now consider the relationship between log-linear models and odds ratios.
The logarithm of the odds ratio between two variables is equal to the sum of the
interaction u-terms that contain both variables. It follows that if in the considered
log-linear expansion there are no u-terms containing both the variables A and B,
say, then we obtain θAB = 1; that is, the two variables are independent.

To illustrate this concept, consider a 2 × 2 table and the odds ratio between
the binary variables A and B:

θ = θ1

θ2
= π1|1/π0|1

π1|0/π0|0
= π11/π01

π10/π00
= π11π00

π01π10

Multiplying numerator and denominator by n2 and taking logarithms:

log(θ) = log(m11) + log(m00) − log(m10) − log(m01)

Substituting for each probability the corresponding log-linear expansion, we
obtain log(θ) = uAB

11 . Therefore the odds ratio between the variables A and B

is θ = exp(uAB
11 ). These relations, which are very useful for data interpretation,

depend on the identifiability constraints we have adopted. For example, if we
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had used the default constraints of the SAS software, we would have obtained
the relationship θ = exp(1/4uAB

11 ).
We have shown the relationship between the odds ratio and the parameters

of a log-linear model for a 2 × 2 contingency table. This result is valid for
contingency tables of higher dimension, providing the variables are binary and,
as usually happens in a descriptive context, the log-linear expansion does not
contain interaction terms between more than two variables.

5.5.3 Graphical log-linear models

A key instrument in understanding log-linear models, and graphical models in
general, is the concept of conditional independence for a set of random variables;
this extends the notion of statistical independence between two variables, seen
in Section 3.4. Consider three random variables X, Y , and Z. X and Y are
conditionally independent given Z if the joint probability distribution of X and
Y , conditional on Z, can be decomposed into the product of two factors: the
conditional density of X given Z and the conditional density of Y given Z. In
formal terms, X and Y are conditionally independent on Z if f (x, y|Z = z) =
f (x|Z = z)f (y|Z = z) and we write X ⊥ Y |Z. An alternative way of expressing
this concept is that the conditional distribution of Y on both X and Z does not
depend on X. So, for example, if X is a binary variable and Z is a discrete
variable, then for every z and y we have

f (y|X = 1, Z = z) = f (y|X = 0, Z = z) = f (y|Z = z)

The notion of (marginal) independence between two random variables
(Section 3.4) can be obtained as a special case of conditional independence.
As seen for marginal independence, conditional independence can simplify
the expression and interpretation of log-linear models. In particular, it can be
extremely useful in visualising the associative structure among all variables at
hand, using the so-called independence graphs. Indeed a subset of log-linear
models, called graphical log-linear models, can be completely characterised in
terms of conditional independence relationships and therefore graphs. For these
models, each graph corresponds to a set of conditional independence constraints
and each of these constraints can correspond to a particular log-linear expansion.

The study of the relationship between conditional independence statements,
represented in graphs, and log-linear models has its origins in the work of
Darroch, Lauritzen and Speed (1980). We explain this relationship through an
example. For a systematic treatment see Whittaker (1990), Edwards (1995), or
Lauritzen (1996). I believe that the introduction of graphical log-linear models
helps to explain the problem of model choice for log-linear models. Consider
a contingency table of three dimensions, each one corresponding to a binary
variable, so the total number of cells in the contingency table is 23 = 8. The
simplest log-linear graphical model for a three-way contingency table assumes
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that the logarithm of the expected frequency of every cell is

log(mjkl ) = u + uA
j + uB

k + uC
l

This model does not contain interaction terms between variables, therefore the
three variables are mutually independent. In fact, the model can be expressed in
terms of cell probabilities as pjkl = pj++p+k+p++l , where the symbol + indicates
that the joint probabilities have been summed with respect to all the values of
the relative index. Note that, for this model, the three odds ratios between the
variables – (A, B), (A, C), (B, C) – are all equal to 1. To identify the model
in a unique way it is possible to use a list of the terms, called generators, that
correspond to the maximal terms of interaction in the model. These terms are
called maximals in the sense that their presence implies the presence of interac-
tion terms between subsets of their variables. At the same time, their existence
in the model is not implied by any other term. For the previous model of mutual
independence, the generators are (A, B,C); they are the main effect terms as
there are no other terms in the model. To graphically represent conditional inde-
pendence statements, we can use conditional independence graphs. These are
built by associating a node to each variable and by placing a link (technically,
an edge) to connect a pair of variables whenever the corresponding random vari-
ables are dependent. For the cases of mutual independence we have described,
there are no edges and therefore we obtain the representation in Figure 5.6.

Consider now a more complex log-linear model among the three variables,
described by the following log-linear expansion:

log(mjkl ) = u + uA
j + uB

k + uC
l + uAB

jk + uAC
jl

In this case, since the maximal terms of interaction are uAB
jk and uAC

jl , the gener-
ators of the model will be (AB, AC). Notice that the model can be reformulated
in terms of cell probabilities as

πjkl = πjk+πj+l

πj++

or equivalently as
πjkl

πj++
=

(
πjk+
πj++

) (
πj+l

πj++

)

A

B C

Figure 5.6 Conditional independence graph for mutual independence.
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which, in terms of conditional independence, states that

P(B = k, C = l|A = j) = P(B = k|A = j)P (C = l|A = j)

This indicates that, in the conditional distribution (on A), B and C are indepen-
dent. In other words, B ⊥ C|A. Therefore the conditional independence graph of
the model is as shown in Figure 5.7. It can been demonstrated that, in this case,
the odds ratio between all variable pairs are different from 1, whereas the two
odds ratios for the two-way table between B and C, conditional on A, are both
equal to 1.

We finally consider the most complex (saturated) log-linear model for the three
variables:

log(mjkl ) = u + uA
j + uB

k + uC
l + uAB

jk + uAC
jl + uBC

kl + uABC
jkl

which has (ABC ) as generator. This model does not establish any conditional
independence constraints on cell probabilities. Correspondingly, all odds ratios,
marginal and conditional, will be different from 1. The corresponding conditional
independence graph will be completely connected. The previous model (AB, AC )
can be considered as a particular case of the saturated model, obtained by setting
uBC

kl = 0 for all k and l and uABC
jkl = 0 for all j , k, l. Equivalently, it is obtained

by removing the edge between B and C in the completely connected graph,
which corresponds to imposing the constraint, that B and C are conditionally
independent on A. Notice that the mutual independence model is a particular case
of the saturated model obtained by setting uBC

kl = uAC
jl = uAB

jk = uABC
jkl = 0 for all

j , k, l, or by removing all three edges in the complete graph. Consequently, the
differences between log-linear models can be expressed in terms of differences
between the parameters or as differences between graphical structures. I think it
is easier to interpret differences between graphical structures.

All the models in this example are graphical log-linear models. In general,
graphical log-linear models are definable as log-linear models that have as gen-
erators the cliques of the conditional independence graph. A clique is a subset of
completely connected and maximal nodes in a graph. For example, in Figure 5.7
the subsets AB and AC are cliques, and they are the generators of the model.
On the other hand, the subsets formed by the isolated nodes A, B and C are
not cliques. To better understand the concept of a graphical log-linear model,

A

B C

Figure 5.7 Conditional independence graph for B ⊥ C|A.
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consider a non-graphical model for the trivariate case. Take the model described
by the generator (AB, AC, BC):

log(mjkl ) = u + uA
j + uB

k + uC
l + uAB

jk + uAC
jl + uBC

kl

Although this model differs from the saturated model by the absence of the three-
way interaction term uABC

jkl , its conditional independence graph is the same, with
one single clique ABC. Therefore, since the model generator is different from
the set of cliques, the model is not graphical. To conclude, in this section we
have obtained a remarkable equivalence relation between conditional indepen-
dence statements, graphical representations and probabilistic models, with the
probabilistic models represented in terms of cell probabilities, log-linear models
or sets of odds ratios.

5.5.4 Log-linear model comparison

For log-linear models, including graphical log-linear models, we can apply the
inferential theory derived for generalised linear models. We now insist on model
comparison. This is because the use of conditional independence graphs per-
mits us to interpret model comparison and choice between log-linear models
in terms of comparisons between sets of conditional independence constraints.
In data mining problems the number of log-linear models to compare increases
rapidly with the number of considered variables. Therefore a valid approach
may be to restrict the class of models. In particular, a parsimonious and effi-
cient way to analyse large contingency tables is to consider interaction terms
in the log-linear expansion that involve at most two variables. The log-linear
models in the resulting class are all graphical. Therefore we obtain an equiv-
alence relationship between the absence of an edge between two nodes, say i

and j , conditional independence between the corresponding variables, Xi and
Xj (given the remaining ones), and nullity of the interaction parameter indexed
by both of them.

As we saw with generalised linear models, the most important tool for compar-
ing models is the deviance. All three sampling schemes for log-linear models lead
to an equivalent expression for the deviance. Consider, for simplicity, a log-linear
model to analyse three categorical variables. The deviance of a model M is

G2(M) = 2
∑
jkl

njkl log

(
njkl

m̂jkl

)
= 2

∑
oi log

oi

ei

where m̂jkl = npjkl , the pjkl are the maximum likelihood estimates of the cell
probabilities, the oi are the observed cell frequencies and the ei indicate the cell
frequencies estimated according to the model M . Notice the similarity with the
deviance expression for the logistic regression model. What changes is essentially
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the way in which the cell probabilities are estimated. In the general case of a
p-dimensional table, the definition is the same but the index set changes:

G2(M0) = 2
∑
i∈I

ni log

(
ni

m̂0
i

)

where, for a cell i belonging to the index set I , ni is the frequency of observations
in the ith cell and m̂0

i are the expected frequencies for the considered model M0.
For model comparison, two nested models M0 and M1 can be compared using
the difference between their deviances:

D = G2
0 − G2

1 = 2
∑
i∈I

ni log

(
ni

m̂0
i

)
− 2

∑
i∈I

ni log

(
ni

m̂1
i

)
= 2

∑
i∈I

ni log

(
m̂1

i

m̂0
i

)

As in the general case, under H0, D has an asymptotic chi-squared distribution
whose degrees of freedom are obtained by taking the difference in the number
of parameters for models M0 and M1.

The search for the best log-linear model can be carried out using a forward,
backward or stepwise procedure. For graphical log-linear models we can also
try adding or removing edges between variables rather than adding or remov-
ing interaction parameters. In the backward procedure we compare the deviance
between models that differ by the presence of an edge and at each step we elimi-
nate the less significant edge; the procedure stops when no arc removals produce
a p-value greater than the chosen significance level (e.g. 0.05). In the forward
procedure we add the most significance edges one at time until no arc additions
produce a p-value lower than the chosen significance level.

5.5.5 Application

We can use a log-linear model to determine the associative structure among
variables in a credit risk evaluation problem. The considered sample is made up
of 8263 small and medium-sized Italian enterprises. The considered variables are
A, a binary qualitative variable indicating whether the considered enterprise is
deemed reliable (Good) or not (Bad); B, a qualitative variable with 4 levels that
describes the age of the enterprise, measured from the year of its constitution; C,
a qualitative variable with 3 levels that describes the legal status of the enterprise;
D, a qualitative variable with 7 levels that describes the macroeconomic sector of
activity of the enterprise; and E, a qualitative variable with 5 levels that describes
the geographic area of residence of the enterprise.

Therefore the data is classified in a contingency table of five dimensions
and the total number of cells is 2 × 4 × 3 × 7 × 5 = 840. The objective of the
analysis is to determine the associative structure present among the five variables.
In the absence of a clear preliminary hypothesis on the associative structure, we
will use a backward procedure for model comparison. Given the small number
of variables to be determined, we can consider all log-linear models, including
non-graphical models.
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The first model to be fitted is the saturated model, which contains 840 parame-
ters, equal to the number of cells. Here is the corresponding log-linear expansion
embodying the identifiability constraints described earlier:

log µABCDE
ijklm = u

+ uA
i + uB

j + uC
k + uD

l + uE
m

+ uAB
ij + uAC

ik + +uAD
il + uAE

im + uBC
jk + uBD

jl + uBE
jm + uCD

kl + uCE
km + uDE

lm

+ uABC
ijk + uABD

ijl + uABE
ijm + uBCD

jkl + uBCE
jkm + uCDE

klm + uACD
ikl + uACE

ikm + uADE
ilm + uBDE

jlm

+ uABCD
ijkl + uABCE

ijkm + uBCDE
jklm + uACDE

iklm + uABDE
ijlm

+ uABCDE
ijklm

Notice that the saturated model contains interaction terms of different order, for
example, the constant (first row), terms of order 2 (third row) and one term of
order 5 (fifth row).

The backward strategy starts by comparing the saturated model with a sim-
pler model that omits the interaction term of order 5. At a significance level
of 5% as the p-value for the deviance difference is 0.9946. We then look at
interaction terms of order 4, removing them one at a time to find the simpler
model in each comparison. We continue through the terms and down the orders
until we can achieve no more simplification at our chosen significance level of
5%. The final model contains the constant term; the main effects and the interac-
tions AB,AC, BC,AD, AE,BE,ABC that is, 6 interactions of order 2 and one
interaction of order 3. These interaction terms can be described by the generators
(AD, AE,BE,ABC). Figure 5.8 shows the conditional independence graph for
the final model.

Notice that Figure 5.8 contains three cliques: ABC, and ABE and AD. Since
the cliques of the graph do not coincide with the generators of the log-linear
model, the final model is not graphical. The log-linear model without the order 3
interaction term ABC would have the generators (AB,AC, BC,AD, AE,BE)
and would be graphical. But on the basis of deviance difference, we need to

A

B

C

DE

Figure 5.8 Conditional independence graph for the final selected model.
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include the order 3 interaction. The model could be converted into a logistic
regression model for variable A with respect to all the others. Then the logistic
regression model would also have to contain the explanatory variable B ∗ C, a
multiplicative term that describes the joint effect of B and C on A.

5.6 Graphical models

Graphical models are models that can be specified directly through conditional
independence relationships among the variables, represented in a graph. Although
the use of graphics with statistical models is not a new idea, the work of Dar-
roch, Lauritzen and Speed (1980) has combined the two concepts in a new
and illuminating way. They showed that a subset of the log-linear models, the
log-linear graphical models, can be easily interpreted in terms of conditional
independence relationships. This finding has led to the development of a wide
class of statistical models, known as graphical models, which give us consider-
able flexibility in specifying models to analyse databases of whatever dimension,
containing both qualitative and quantitative variables, and admitting both sym-
metric and asymmetric relationships. Graphical models contain, as special cases,
important classes of generalised linear models, such as the three seen in this
book. For a detailed treatment see Whittaker (1990), Edwards (1995) or Lauri-
tzen (1996).

Here are some definitions we will need. A graph G = (V, E) is a struc-
ture consisting of a finite number V of vertices (nodes) that correspond to the
variables present in the model, and a finite number of edges between them. In
general, the causal influence of a variable on another is indicated by a directed
edge (shown using an arrow) while an undirected edge (shown using a line)
represents a symmetric association. Figure 5.8 is an example of an undirected
graph, containing only undirected edges. Figure 5.9 is a directed graph for the
same type of application, where we have introduced a new variable, X, which
corresponds to the return on investments of the enterprises. We have made a
distinction between vertices that represent categorical variables (empty circles)
and vertices that represent continuous variables (filled circles).

Two vertices X and Y belonging to V are adjacent, written X ∼ Y , if they are
connected by an undirected arc; that is, if both the pairs (X, Y ) and (Y, X) belong

A

X

C

Figure 5.9 Example of a directed graph.
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to E. A node X is a parent of node Y , written X → Y , if they are connected by
a directed edge from X to Y ; that is, if (X, Y ) ∈ E and (Y, X) /∈ E.

A complete graph is a graph in which all pairs of vertices are connected by an
edge. A sequence of vertices X0, . . . , Xn such that Xi−1 ∼ Xi for i = 1, . . . , n

is called a path of length n. A graph is connected when there exists at least one
path between each pairs of vertices.

These are only some of the properties we can define for graphical models,
but they are sufficient to understand the probabilistic assumptions implied by a
conditional independence graph.

In general, a graphical model is a family of probability distributions that
incorporates the rules of conditional independence described by a graph. The
key to interpreting a graphical model is the relationship between the graph and
the probability distribution of the variables. It is possible to distinguish three
types of graph, related to the three main classes of graphical models:

• undirected graphs are used to model symmetric relations among the variables.
(Figure 5.8); they give rise to the symmetric graphical models.

• directed graphs are used to model asymmetric relations among the variables.
(Figure 5.9); they give rise to recursive graphical models, also known as
probabilistic expert systems.

• chain graphs contain both undirected and directed edges, therefore they can
model both symmetric and asymmetric relationships; they give rise to graph-
ical chain models (Cox and Wermuth, 1996).

5.6.1 Symmetric graphical models

In symmetric graphical models, the probability distribution is Markovian with
respect to the specified undirected graph. This is equivalent to imposing on the
distribution a number of probabilistic constraints known as Markov properties.
The constraints can be expressed in terms of conditional independence relation-
ships. Here are two Markov properties and how to interpret them:

• For the pairwise Markov property, if two nodes are not adjacent in the fixed
graph, the two corresponding random variables will be conditionally inde-
pendent, given the others. On the other, hand, if the specified probability
distribution is such that X⊥Y | others, the edge between the nodes corre-
sponding to X and Y has to be omitted from the graph.

• For the global Markov property, if two sets of variables, U and V , are graph-
ically separated by a third set of variables, W , then it holds that U⊥V |W . For
example, consider four discrete random variables, W , X, Y , and Z, whose
conditional independence relations are described by the graph in Figure 5.10,
from which we have that W and Z are separated from X and Y , and Y and Z

are separated from X. A Markovian distribution with respect to the graph in
Figure 5.10 has to satisfy the global Markov property and therefore it holds
that W⊥Z|(X, Y ) and Y⊥Z|(W,X).



STATISTICAL DATA MINING 179

W

Y

X

Z

Figure 5.10 Illustration of the global Markov property.

It is useful to distinguish three types of symmetric graphical models:

• Discrete graphical models coincide with log-linear graphical models and are
used when all the available variables are categorical.

• Graphical Gaussian models are used when the joint distribution of all variables
is multivariate Gaussian.

• Mixed graphical models are used for a mixture of categorical variables and
multivariate Gaussian variables.

We have seen discrete graphical models in the Section 5.5.3. A similar type of
symmetric model, useful for descriptive data mining, can be introduced for con-
tinuous variables. An exhaustive description of these models can be found in
Whittaker (1990), who has called them Gaussian graphical models even though
they were previously known in the statistical literature as covariance selection
models (Dempster, 1972). For these models, it is assumed that Y = (Y1, . . . , Yq)

is a vector of continuous variables with a normal multivariate distribution. Marko-
vian properties allow us to show that two variables are conditionally independent
on all the others, if and only if the element corresponding to the two variables
in the inverse of the variance–covariance matrix is null. This is equivalent to
saying that the partial correlation coefficient between the two variables, given the
others, is null. In terms of conditional independence graphs, given four variables
X, Y , W , Z, if the elements of the inverse of the variance–covariance matrix
kx,z and ky,w were null, the edges between the nodes X and Z and the nodes
Y and W would have to be absent. From a statistical viewpoint, a graphical
Gaussian model and, equivalently, a graphical representation are selected by suc-
cessively testing hypotheses of edge removal or addition. This is equivalent to
testing whether the corresponding partial correlation coefficients are zero.

Notice how the treatment of the continuous case is similar to the discrete
case. This has allowed us to introduce a very general class of mixed symmetric
graphical models. We now introduce them in a rather general way, including
continuous and discrete graphical models as special cases. Let V = � ∪ � be
the vertex set of a graph, partitioned in a set of |�| continuous variables, and a
set of |�| discrete variables. If to each vertex v is associated a random variable
Xv , the whole graph is associated with a random vector XV = (Xv, v ∈ V ). A
mixed graphical model is defined by a conditional Gaussian distribution for the
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vector XV . Partition XV into a vector X� containing the categorical variables, and
a vector X� containing the continuous variables. Then XV follows a conditional
Gaussian distribution if it satisfies these two conditions:

• p(i) = P(X� = i) > 0
• p(X�|X� = i) = N|�|

(
ξ(i),

∑
(i)

)
where the symbol N indicates a Gaussian distribution of dimension |�| with mean
vector ξ(i) = K(i)−1h(i) and variance–covariance matrix

∑
(i) = K(i)−1, pos-

itive definite. In words, a random vector is distributed as a conditional Gaussian
if the distribution of the categorical variables is described by a set of positive cell
probabilities (this could happen through the specification of a log-linear model)
and the continuous variables are distributed, conditional on each joint level of
the categorical variables, as a Gaussian distribution with a null mean vector and
a variance–covariance matrix that can, in general, depend on the levels of the
categorical variables.

From a probabilistic viewpoint, a symmetric graphical model is specified by
a graph and a family of probability distributions, which has Markov properties
with respect to it. However, to use graphical models in real applications, it is
necessary to completely specify the probability distribution, usually by estimating
the unknown parameters on the basis of the data. This inferential task, usually
accomplished by maximum likelihood estimation, is called quantitative learning.
Furthermore, in data mining problems it is difficult to avoid uncertainty when
specifying a graphical structure, so alternative graphical representations have to
be compared and selected, again on the basis of the available data; this con-
stitutes the so-called structural learning task, usually tackled by deviance-based
statistical tests.

To demonstrate this approach, we can return to the European software industry
application in Section 4.6 and try to describe the associative structure among all
seven considered random variables. The graph in Figure 5.11 is based on hypothe-
ses formulated through subject matter research by industrial economics experts;
it shows conditional independence relationships between the available variables.
One objective of the analysis is to verify whether the graph in Figure 5.11 can
be simplified, maintaining a good fit to the data (structural learning). Another
objective is to verify some research hypothesis on the sign of the association
between some variables (quantitative learning).

We begin by assuming a probability distribution of conditional Gaussian type
and given the reduced sample size (51 observations), a homogeneous model
(Lauritzen, 1996). A homogeneous model means we assume the variance of the
continuous variable does not depend on the level of the qualitative variables.
So we can measure explicitly the effect of the continuous variable Y on the
qualitative variables, we have decided to maintain, in all considered models, a
link between Y and the qualitative variables, even when it is not significant on
the basis of the data. The symmetric model for the complete graph will therefore
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Y

A S I

M NH

Figure 5.11 Initial conditional independence graph.

contain a total of 129 parameters. It is opportune to start the selection from the
initial research graph (Figure 5.11). Since the conditional Gaussian distribution
has to be Markovian with respect to this graph, all the parameters containing
the pairs {M, A}, {N, I }, {M, N}, {M, I }, {A, N}, {A, I } have to be 0, hence
the total number of parameters in the model corresponding to Figure 5.11 is
29. Considering the low number of available observations, this model is clearly
overparameterised.

A very important characteristic of graphical models is to permit local calcula-
tions on each clique of the graph (Frydenberg and Lauritzen, 1989). For instance,
as the above model can be decomposed into 4 cliques, it is possible to estimate
the parameters separately, on each clique, using the 51 available observations
to estimate the 17 parameters of each marginal model. In fact, on the basis
of a backward selection procedure using a significance level of 5%, Giudici and
Carota (1992) obtained the final structural model shown in Figure 5.12. From the
figure we deduce that the only direct significant associations between qualitative
variables are between the pairs {H, I }, {N, S} and {N, H }. These associations
depend on the revenue Y but not on the remaining residual variables. Concerning
quantitative learning, the same authors have used their final model to calculate the

Y

A S I

M NH

Figure 5.12 Final conditional independence graph.
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odds ratios between the qualitative variables, conditional on the level of Y . They
obtained the estimated conditional odds, relative to the pairs HI, NS, and NH:

�̂IH |R = exp(0.278 + 0.139R) therefore �̂IH |R > 1 for R

> 0.135 (all enterprises)

�̂NH |R = exp(−2.829 + 0.356R) therefore �̂NH |R > 1 for R

> 2856 (one enterprise)

�̂NS|R = exp(−0.827 − 0.263R) therefore �̂NS|R > 1 for R

< 23.21 (23 enterprises)

The signs of the association can be summarised as follows: the association
between I and H is positive; the association between N and H is substan-
tially negative; the association between N and S is positive only for enterprises
having revenues less than the median.

From an economic viewpoint, these associations have a simple interpretation.
The relationship between I and H confirms that enterprises which adopt a strategy
of incremental innovations tend to increase their contacts with enterprises in the
hardware sector. The strategy of creating radically new products is based on an
opposite view. Looking at contacts exclusively within the software sector, small
enterprises (having revenues less than the median) tend to fear their innovations
could be stolen or imitated and they tend to not make contacts with other small
companies. Large companies (having revenues greater than the median) do not
fear initiations and tend to increase their contacts with other companies.

5.6.2 Recursive graphical models

Recursive graphical models, also known as probabilistic expert systems, can be
considered as an important and sophisticated tool for predictive data mining.
Their fundamental assumption is that the variables can be partially ordered so
that every variable is logically preceded by a set of others. This precedence
can be interpreted as a probabilistic dependency and, more strongly, as a causal
dependency. Both interpretations exist in the field of probabilistic expert sys-
tems and this is reflected in the terminology: casual network if there is a causal
interpretation, belief network if there is no causal interpretation.

To specify any recursive model, we need to specify a directed graph that
establishes the (causal) relationships among the variables. Once this graph is
specified, a recursive model is obtained by using a probability distribution that is
Markov with respect to the graph (e.g. Lauritzen, 1996). The Markov properties
include the following factorisation property of the probability distribution:

f (x1, . . . xp) =
p∏

i=1

f (xi |pa(xi))
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V1

V2

V3

V4

Figure 5.13 Example of a directed acyclic graph.

where pa(xi) indicates the parent nodes of each of the p considered nodes. This
specifies that the probability distribution of the p variables is factorised in a
series of local terms, each of which describes the dependency of each of the
considered variables, xi , from the set of relevant explanatory variables, pa(xi). It
is a constructive way to specify a directed graphical model using a (recursive)
sequence of asymmetric models, each of which describes the predictor set of
each variable.

The conditional independence graphs are therefore directed, because the edges
represent ordered pairs of vertices. They are also constrained to be acyclic–no
sequence of connected vertices has to form a loop. Figure 5.13 is an example
of an acyclic directed conditional in dependence graph. It states, for instance,
that V3⊥V2|V4, and it corresponds to a recursive model that can be specified, for
instance, by the following factorisation:

p(V1, V2, V3, V4) = p(V1)p(V2|V1)p(V4|V1, V2)p(V3|V4)

When it comes to specifying the local probability distributions (e.g. the distribu-
tions of V1, V2, V3, and V4), we could specify a recursive model as a recursion
of generalised linear models. For example, Figure 5.13 corresponds to a model
defined by a linear regression of V3 on the explanatory variable V4, of V4 on the
explanatory variables V1 and V2, and of V2 on the explanatory variable V1.

From a predictive data mining perspective, the advantage of recursive models
is that they are simple to specify, interpret and summarise, thanks to the fac-
torisation of the model into many local models of reduced dimensions. On the
other hand, they do involve more sophisticated statistical thinking, especially in
the context of structural learning. However, few mainstream statistical packages
implement these types of model. Chapter 8 considers an application of directed
graphical models using a recursive logistic model. Directed graphical models
are typically used in artificial intelligence applications, where they are known as
probabilistic expert systems or Bayesian networks (e.g. Heckerman, 1997).

Another important special case of directed graphical models are Markov chain
models, which are particularly useful for modelling time series data. In particular,
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first-order Markov models are characterised by a short memory, and assume that
Xi+1⊥Xj<i |{Xi}, where Xi+1 is a random variable that describes the value of a
certain quantity at time i + 1, i is the previous time point and j < i indicates
time points further back in time. In other words, the future occurrence of a
random variable Xi+1 does not depend on the past values Xj<i , if the present
value Xi is known. If the data can be modelled by a Markov chain model, the
joint probability distribution will factorise as

f (x1, . . . , xp) =
p∏

i=1

f (xi |xi−1)

Recursive graphical models can also be used to classify observations, when they
are more commonly known as Bayesian networks. One of the simplest and most
useful Bayesian networks is the naive Bayes model. It arises when there is one
qualitative response variable that can assume M values, corresponding to M

classes. The goal is to classify each observation in one of the three classes, and
p explanatory variables can be used, described by a random vector X . As we
have seen in Section 5.1, the Bayes classifier allocates each observation to the
class Ci that maximises the posterior probability

p(Ci |X = x) = p(X = x |Ci)p(Ci)/p(X = x).

The naive Bayes model corresponds to a special case of this rule, obtained when
the explanatory variables that appear in the vector X are assumed to be condi-
tionally independent given the class label. A Bayesian network can be seen as a
more sophisticated and more realistic version of a Bayes classifier, which estab-
lishes that among the explanatory variables there are relationships of conditional
dependence specified by a directed graph.

5.6.3 Graphical models versus neural networks

We have seen that the construction of a statistical model is a long and conceptually
complex process and it requires the formulation of a series of formal hypotheses.
On the other hand, a statistical model allows us to make predictions and simulate
scenarios on the basis of explicit rules that are easily scalable – rules that can be
generalised to different data. In Chapter 4 we saw how computationally intensive
techniques require a lighter analytical structure, allowing us to find precious
information rapidly from large volumes of data. Their disadvantages are low
transparency and low scalability. Here is a brief comparison to help underline the
different concepts. We shall compare neural networks and graphical models; they
can be seen as rather general examples of computational methods and statistical
methods, respectively.

The nodes of a graphical model represent random variables, whereas in neural
networks they are computational units, not necessarily random. In a graphical
model an edge represents a probabilistic conditional dependency between the
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corresponding pair of random variables, whereas in a neural network an edge
describes a functional relation between the corresponding nodes. Graphical mod-
els are usually constructed in three phases: (a) the qualitative phase establishes
the conditional independence relationships among the random variables; (b) the
probabilistic phase associates the graph with a vector of random variables having
a Markovian distribution with respect to the graph; (c) the quantitative phase
assigns the parameters (if known) that characterise the distribution in (b). Neural
networks are constructed in three similar phases: (a) the qualitative phase estab-
lishes the organisation of the layers and the relationships among them; (b) the
functional phase specifies the functional relationships between the layers; (c) the
quantitative phase fixes the weights (if known) associated with the connections
among the different nodes.

I believe that these two methodologies can be used in a complementary way.
Taking a graphical model and introducing latent variables – variables that are not
observed – confers two extra advantages. First, it allows us to represent a multi-
layer perceptron as a graphical model, so we can take formal statistical methods
valid for graphical models and use them on neural networks (e.g. confidence
intervals, rejection regions, deviance comparisons). Second the use of a neural
network in a preliminary phase could help to reduce the structural complexity of
graphical models, reducing the number of variables and edges present, and doing
it in a more computationally efficient way. Adding latent variables to graphi-
cal models, corresponding to purely computational units, allows us to enrich the
model with non-linear components, as occurs with neural networks. For more on
the role of latent variables in graphical models, see Cox and Wermuth (1996).

5.7 Further reading

In this chapter we have reviewed the main statistical models for data mining
applications. Their common feature is the presence of probabilistic modelling.
This makes the results much easier to interpret but it may slow down the imple-
mentation and elaboration phases. I have tried to give an overview of the relevant
literature.

We began with methods for modelling uncertainty and inference; there are
many textbooks on this. One to consult is Mood, Graybill and Boes (1991);
another is Azzalini (1992), which takes more of a modelling viewpoint. Non-
parametric models are distribution-free, as they do not require heavy preliminary
assumptions. They may be very useful, especially in an exploratory context. For
a review of non-parametric methods see Gibbons and Chakraborti (1992). Semi-
parametric models, based on mixture models, can provide a powerful probabilistic
approach to cluster analysis. For an introductory treatment from a data mining
viewpoint, see Hastie, Tibshirani and Friedman (2001).

Introduction of the Gaussian distribution allows us to bring regression methods
into the field of normal linear models, and therefore to correlate the least squares
method with measures of sample variability, as well as to provide thresholds
for evaluating goodness of fit. For an introduction to the normal linear model,
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consult Mood, Graybill and Boes (1991) or a classic econometrics text such as
Greene (1999). It is possible to develop the normal linear model into generalised
linear models. For an introduction consult the original article of Nelder and
Wedderburn (1972) and the books of Dobson (1990), McCullagh and Nelder
(1989) and Agresti (1990).

Log-linear models are an important class generalised linear models. They are
symmetric models and are mainly used to obtain the associative structure among
categorical variables, whose observations are classified in multiple contingency
tables. Graphical log-linear models are particularly useful for data interpretation.
For an introduction to log-linear models, look at the earlier texts or at Christensen
(1997). For graphical log-linear models it is better to consult texts on graphical
models, for example Whittaker (1990).

We introduced the concept of conditional independence (and dependence);
graphical representation of conditional independence relationships allowed us to
take what we saw for graphical log-linear models and generalise it to a wider
class of statistical models, known as graphical models. Graphical models are
very general statistical models for data mining. In particular, they can adapt to
different analytical objectives, from predicting multivariate response variables
(recursive models) to finding associative structure (symmetric models), in the
presence of both qualitative and quantitative variables. For an introduction to
graphical models, consult Edwards (1995), Whittaker (1990) or Lauritzen (1996).
For directed graphical models, also known as probabilistic expert systems, see
Cowell et al. (1999) or Jensen (1996).



CHAPTER 6

Evaluation of data mining
methods

In the previous two chapters we considered several classes of computational and
statistical methods for data mining. For example, we looked at linear models,
which differ in the number of explanatory variables; graphical models, which
differ in the number of conditional dependences (edges in the graph); tree models,
which differ in the number of leaves; and multilayer perceptrons, which differ
in the numbers of hidden layers and nodes. Once a class of models has been
established, the problem is to choose the ‘best’ model from it. In Chapter 5
we looked at the problem of comparing the various statistical models within
the theory of statistical hypothesis testing. With this in mind we looked at the
sequential procedures (forward, backward and stepwise) that allow a model to be
chosen through a sequence of pairwise comparisons. These criteria are generally
not applicable to computational data mining models, which do not necessarily
have an underlying probabilistic model and therefore do not allow us to apply
the statistical theory of hypothesis testing.

A particular data problem can often be tackled using several classes of models.
For instance, in a problem in predictive classification it is possible to use logistic
regression and tree models as well as neural networks.

Furthermore, model specification, hence model choice, is determined by the
type of the variables. After exploratory analysis the data may be transformed
or some observations may be eliminated; this will also affect the variables. So
we need to compare models based on different sets of variables present at the
start. For example, how do we take a linear model having the original explana-
tory variables and compare it with a model having principal components as
explanatory variables?

All this suggests the need for a systematic study of how to compare and
evaluate statistical models for data mining. In this chapter we will review the
most important methods. As these criteria will be frequently used and compared in
the second part of the text, this chapter will just offer a brief systematic summary
without giving examples. Section 6.1 introduces the concept of discrepancy for
a statistical model; it will make us look further at comparison criteria based on
statistical tests. Although this leads to a very rigorous methodology, it allows only
a partial ordering of the models. Scoring functions are a less structured approach
developed in the field of information theory. Section 6.2 explains how they give
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each model a score that puts the models into some kind of complete order. The
Bayesian approach, covered in Section 6.3, possesses the structural advantages
of discrepancy with the ordering advantages of scoring.

Section 6.4 looks at criteria for computational models, where it is difficult to
develop formal statistic tests. One of the main computational criteria is cross-
validation, which is based on calculating the predictive error in a validation data
set. Computational criteria have the advantage of being generally applicable but
the disadvantages of taking a long time to calculate and of being sensitive to the
characteristics of the data. Section 6.4 concludes by looking at how to combine
data mining models through model averaging, bagging and boosting; this is a very
important concept. Section 6.5 explains how to compare model performance in
terms of relative losses connected to the approximation errors when fitting data
mining models. Loss functions are easy to understand but they still need formal
improvements and mathematical refinements.

6.1 Criteria based on statistical tests

The choice of the statistical model used to describe a database is one of the
main aspects of statistical analysis. A model is either a simplification or an
approximation of the reality and therefore it does not entirely reflect reality. As
we have seen in Section 5.1, a statistical model can be specified by a discrete
probability function or by a probability density function f (x) (for brevity we will
refer to only one of them, but without loss of generality); this is what is considered
to be ‘underlying the data’ or, in other words, it is the generating mechanism of
the data. A statistical model is usually left unspecified, up to unknown quantities
that have to be estimated from the data at hand. The observed sample is not
sufficient to reconstruct each detail of f (x), but it can be used to approximate
f (x) with a certain accuracy.

Often a density function is parametric or, rather, it is defined by a vector of
parameters � = (θ1, . . . , θI ) such that each value θ of � corresponds to a partic-
ular density function, pθ(x). A model that has been correctly parameterised for a
given unknown density function f (x) is a model which gives f (x) for particular
values of the parameters. We can select the best model in a non-parametric con-
text by choosing the distribution function that best approximates the unknown
distribution function. But first of all we consider the notion of a distance between
model f , which underlies the data, and model g, which is an approximating
model.

6.1.1 Distance between statistical models

We can use a distance function to compare two models, say g and f . As explained
in Section 4.1, there are different types of distance function; here are the most
important ones.

In the categorical case, a distance is usually defined by comparing the esti-
mated discrete probability distributions, denoted by f and g. In the continuous
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case, we often refer to two variables, Xf and Xg , representing fitted observation
values obtained with the two models.

Entropic distance
The entropic distance is used for categorical variables and is related to the concept
of heterogeneity reduction (Section 3.4). It describes the proportional reduction
of the heterogeneity between categorical variables, as measured by an appropriate
index. Because of its additive properties, the entropy is the most used hetero-
geneity measure for this purpose. The entropic distance of a distribution g from
a target distribution f is

E d =
∑

i

fi log
fi

gi

which has the form of the uncertainty coefficient (Section 3.4) and also the form
taken by the G2 statistic. The G2 statistic can be employed for most proba-
bilistic data mining models. It can therefore be applied to predictive problems,
such as logistic regression and directed graphical models, but also to descriptive
problems, such as log-linear models and probabilistic cluster analysis. It also
finds application with non-probabilistic models, such as classification trees. The
Gini index can also be used as a measure of heterogeneity, giving rise to the
concentration coefficient, with similar applications in classification trees.

Chi-squared distance
The Chi-squared distance between a distribution g and a target f is

χ2 d =
∑

i

(fi − gi)
2

gi

which corresponds to a generalisation of the Pearson statistic seen in Section 3.4.
This distance is used for descriptive and predictive problems in the presence of
categorical data, as an alternative to the entropic distance. It does not necessarily
require an underlying probabilistic model; we have seen its application within
the CHAID decision trees algorithm.

0–1 distance
The 0–1 distance applies to categorical variables, typically in the presence of a
supervised classification problem. It is defined as

0 – 1 d =
n∑

r=1

1(Xfr − Xgr )

where 1(w, z) = 1 if w = z and 0 otherwise. It measures the distance in terms of
a 0–1 function that counts the number of correct matches between the classifica-
tions carried out using the two models. Dividing by the number of observations
gives the misclassification rate, probably the most important evaluation tool in



190 APPLIED DATA MINING

predictive classification models, such as logistic regression, categorical response
multilayer perceptrons, classification trees and nearest-neighbour models.

Euclidean distance
Applied to quantitative variables, the Euclidean distance between a distribution
g and a target f is

2 d(Xf ,Xg) =
√√√√ n∑

r=1

(Xfr − Xgr )
2

It represents the distance between two vectors in the Cartesian plane. The Euclid-
ean distance leads to the R2 index and to the F test statistics. Furthermore, by
squaring it and dividing by the number of observations, we obtain the mean
square error. The Euclidean distance is often used, especially for continuous
predictive models such as linear models, regression trees, multilayer perceptrons
and continuous probabilistic expert systems. But it is also used in descriptive
models for the observations, such as cluster analysis and Kohonen maps. Notice
that it does not necessarily require an underlying probability model. When there
is an underlying model, it is usually the Gaussian distribution; consequently the
Euclidean distance is often called the Gaussian distance.

Uniform distance
The uniform distance applies to comparisons between distribution functions. For
two distribution functions F , G with values in [0, 1], the uniform distance is

sup
0≤t≤1

|F(t) − G(t)|

It is usually used in non-parametric statistics and leads to the Kolmogorov–Smirnov
statistics in Section 5.2, typically employed to verify whether a non-parametric
estimator is valid. It can also be used to verify whether a specific parametric method,
for example the Gaussian model, is a good simplification with respect to a less
restrictive non-parametric model.

6.1.2 Discrepancy of a statistical model

The distances in Section 6.1.1 can be used to define the notion of discrepancy for
a model. Assume that f represents the unknown density of the population, and
let g = pθ be a family of density functions (indexed by a vector of I parameters,
θ ) that approximates it. The discrepancy of a statistical model g, with respect to
a target model f , can be defined using the Euclidean distance as

�(f, pϑ) =
n∑

i=1

(f (xi) − pϑ(xi))
2
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For each observation, i = 1, . . . , n, this discrepancy (which is a function of the
parameters θ ) considers the error made by replacing model f with the approx-
imation obtained from model g, then it sums the squares of these errors. The
discrepancy could have been calculated using another distance function, but to
keep things simple we will concentrate on the Euclidean distance.

If we knew f , the real model, we would be able to determine which of the
approximating statistical models, different choices for g, will minimise the dis-
crepancy. Therefore the discrepancy of g (due to the parametric approximation)
can be obtained as the discrepancy between the unknown probabilistic model and
the best parametric statistical model, p

(I)
θ0

:

�
(
f, p

(I)
θ0

)
=

n∑
i=1

(
f (xi) − p

(I)
θ0

(xi)
)2

However, since f is unknown we cannot identify the best parametric statistical
model. Therefore we will substitute f with a sample estimate, be denoted by
p

(I)

θ̂
(x), for which the I parameters are estimated on the basis of the data. The

discrepancy between this sample estimate of f (x) and the best statistical model
is called the discrepancy of g (due to the estimation process):

�
(
p

(I)

θ̂
, p

(I)
θ0

)
=

n∑
i=1

(
p

(I)

θ̂
(xi) − p

(I)
θ0

(xi)
)2

Now we have a discrepancy that is a function of the observed sample. Bear in
mind the complexity of the considered family of parametric models g. To get
closer to the unknown model, it is better to choose a family where the mod-
els have a large number of parameters. In other words, the discrepancy due
to parametric approximation is smaller for models having a large number of
parameters – more complex models. But, the sample estimates obtained with
a more complex model tend to overfit the data, producing a greater discrep-
ancy due to estimation. The goal is to achieve a compromise between dis-
crepancy due to parametric approximation and discrepancy due to estimation.
The total discrepancy, known as the discrepancy between function f and the
sample estimate p

(I)

θ̂
, takes both these factors into account. It is given by the

equation

�
(
f, p

(I)

θ̂

)
=

n∑
i=1

(
f (xi) − p

(I)

θ̂
(xi)

)2

which represents the algebraic sum of two discrepancies, one from the parametric
approximation and one from the estimation process. Generally, minimisation of
the first discrepancy favours complex models, which are more adaptable to the
data, whereas minimisation of the second discrepancy favours simple models,
which are more stable when faced with variations in the observed sample.
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The best statistical model to approximate f will be the model p
(I)

θ̂
that

minimises the total discrepancy. The total discrepancy can rarely be calculated
in practice as the density function f (x) is unknown, so we resort to the notion
of the total expected discrepancy, E�(f, p

(I)

θ̂
), where the expectation is taken

with respect to the sample probability distribution. The problem becomes that
of finding an appropriate estimator of the total expected discrepancy. Such an
estimator defines an evaluation criterion for a model with I parameters. Model
choice will then be based on comparing the corresponding estimators, known as
minimum discrepancy estimators.

6.1.3 The Kullback–Leibler discrepancy

We now consider how to derive a model evaluation criterion. To define a general
estimator, we need the Kullback–Leibler discrepancy; this is more general than
the Euclidean discrepancy but the considerations in Section 6.1.2 still apply. The
Kullback–Leibler (KL) discrepancy (or divergence) can be applied to any type
of observations; it derives from the entropic distance and is defined as follows:

�KL

(
f, p

(I)

θ̂

)
=

∑
i

f (xi) log

(
f (xi)

p
(I)

θ̂
(xi)

)

This can be easily mapped to the expression for the G2 deviance; then the tar-
get density function corresponds to the saturated model. Kullback and Leibler
proposed their measure in terms of information theory (Burnham and Anderson,
1998). The best model can be interpreted as the one with a minimal loss of
information from the true unknown distribution. Like the entropic distance, the
Kullback–Leibler discrepancy is not symmetric.

We can now show that the statistical tests used for model comparison are based
on estimators of the total Kullback–Leibler discrepancy. Let pθ indicate a prob-
ability density function parameterised by the vector � = θ1, . . . , θI . The sample
values x1, . . . , xn are a series of independent observations that are identically
distributed, therefore the sample density function is expressed by the equation

L(ϑ ; x1, . . . , xn) =
n∏

i=1

pϑ(xi)

Let ϑ̂n indicate the maximum likelihood estimator of the parameters, and let the
likelihood function L be calculated at this point. Taking the logarithm of the
resulting expression and multiplying by – 1/n, we get

�KL

(
f, p

(I)

θ̂

)
= −

(
1

n

) n∑
i=1

log
[
p

(I)

θ̂
(xi)

]

known as the sample Kullback–Leibler discrepancy function. This expression
can be shown to be the maximum likelihood estimator of the total expected
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Kullback–Leibler discrepancy of a model pθ . Notice that the Kullback–Leibler
discrepancy gives a score to each model, corresponding to the mean (negative)
log-likelihood of the observations. Practical applications often consider the log-
likelihood score, which is equal to

2n�KL

(
f, p

(I)

θ̂

)
= −2

n∑
i=1

log
[
p

(I)

θ̂
(xi)

]

The Kullback–Leibler discrepancy is fundamental to selection criteria developed
in the field of statistical hypothesis testing. These criteria are based on succes-
sive comparisons between pairs of models. The idea is to compare the sample
Kullback–Leibler discrepancy of two alternative models. Let us suppose that the
expected discrepancy for two statistical models with respect to the same observed
data is calculated as above, where the model pθ is substituted by one of the two
models considered. Let �Z(f, zϑ̂ ) be the sample discrepancy function estimated
for the model with density zθ and let �G(f, gϑ̂ ) be the sample discrepancy esti-
mated for the model with density gθ . Let us suppose that model g has a lower
discrepancy, namely that �Z(f, zϑ̂ ) = �G(f, gϑ̂ ) + ε, where ε is a small posi-
tive number. Therefore, based on comparison of the discrepancy functions, we
will choose the model with the density function gθ .

This result may depend on the specific sample used to estimate the discrepancy
function. We therefore need to carry out a statistical test to verify whether a
discrepancy difference is significant; that is, whether the results obtained from
a sample can be extended to all possible samples. Suppose we find that the
difference ε is not significant, then the two models would be considered equal
and it would be natural to choose the simplest model. The deviance difference
criterion defined by G2 (Section 5.4) is equal to twice the difference between
sample Kullback–Leibler discrepancies. For nested models, the G2 difference
is asymptotically equivalent to the chi-squared comparison (and test), so this is
also seen to derive from the Kullback–Leibler discrepancy. When a Gaussian
distribution is assumed, the Kullback–Leibler discrepancy coincides with the
Gaussian discrepancy, therefore we are justified in using F statistics.

To conclude, using a statistical test, it is possible to use the estimated dis-
crepancy to make an accurate choice among the models, based on the observed
data. The defect of this procedure is that it requires comparisons between model
pairs, so when we have a large number of alternative models, we need to make
heuristic choices regarding the comparison strategy (such as choosing among the
forward, backward and stepwise criteria, whose results may diverge). Further-
more, we must assume a specific probabilistic model and this may not always be
a reasonable assumption.

6.2 Criteria based on scoring functions

Often we will not be able to derive a formal test. Examples include choos-
ing models for data analysis with missing values or for mixed graphical mod-
els. Furthermore, it may be important to have a complete ordering of models,
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rather than a partial one, based on pairwise comparisons. For this reason, it is
important to develop scoring functions that attach a score to each model. The
Kullback–Leibler discrepancy estimator is a scoring function that can often be
approximated asymptotically for complex models.

A problem with the Kullback–Leibler score is that it depends on the com-
plexity of a model, perhaps described by the number of parameters, hence its
use may lead to us choosing complex models, similar to what happens with the
R2 index. Section 6.1 explained how a model selection strategy should reach a
trade-off between model fit and model parsimony. We now look at this issue
from a different perspective, based on a trade-off between bias and variance. In
Section 5.1 we defined the mean square error of an estimator. Let us apply the
same mean square principle to measure the Euclidean distance of the chosen
model, pθ̂ , as the best approximator of the underlying model f :

MSE(pθ̂ ) = E[(pθ̂ − f )2]

Note that pθ̂ is estimated on the basis of the data and is therefore subject to
sampling variability. In particular, for pθ̂ we can define an expected value E(pθ̂ ),
roughly corresponding to the arithmetic mean over a large number of repeated
samples, and a variance Var(pθ̂), measuring its variability with respect to this
expectation. From the properties of the mean square error it then follows that

MSE(pθ̂ ) = [bias(pθ̂ )]
2 + Var(pθ̂ ) = [E(pθ̂) − f ]2 + E[(pθ̂ − E(pθ̂ ))

2]

This indicates that the error connected to a model pθ̂ can be decomposed into
two parts: a systematic error (bias), which does not depend on the observed
data and reflects the error due to the parametric approximation; and a sampling
error (variance), which reflects the error due to the estimation process. A model
should therefore be selected to balance the two parts. A very simple model will
have a small variance but a rather large bias (e.g. a constant model); a very
complex model will have a small bias but a large variance. This is known as the
bias–variance trade-off and emphasises the need to balance goodness of fit with
model parsimony. This concept is central to data mining and can be shown in
other ways. For instance, Vapnik (1995, 1998) has introduced the principle of
structural risk minimisation for supervised learning problems, an idea that leads
to similar conclusions.

We now define score functions that, related to the Kullback–Leibler princi-
ple, penalise for model complexity. The most important of these functions is the
Akaike information criterion (AIC). To find AIC, in 1974 Akaike formulated the
idea that (i) the parametric model is estimated using the method of maximum
likelihood and (ii) the parametric family specified contains the unknown distribu-
tion f (x) as a particular case. He therefore defined a function that assigns a score
to each model by taking a function of the Kullback–Leibler sample discrepancy.
In formal terms, AIC is defined by the following equation:

AIC = −2 log L(ϑ̂ ; x1, . . . , xn) + 2q
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where log L(ϑ̂ ; x1, . . . , xn) is the logarithm of the likelihood function calculated
in the maximum likelihood parameter estimate and q is the number of parameters
in the model. Notice that the AIC score essentially penalises the log-likelihood
score using a term that increases linearly with model complexity.

AIC is based on the implicit assumption that q remains constant when the size
of the sample increases. But this assumption is not always valid, so AIC does
not lead to a consistent estimate for the dimension of the unknown model. An
alternative and consistent scoring function is the Bayesian information criterion
(BIC), also called SC. It was formulated by Schwarz (1978) and is defined by
the following expression:

BIC = −2 log L(ϑ̂ ; x1, . . . , xn) + q log n

BIC differs from AIC only in the second part, which now also depends on the
sample size n. When n increases, BIC favours simpler models than AIC. As n

gets large, the first term (linear in n) will dominate the second term (logarithmic
in n). This corresponds to the fact that, for large n, the variance term in the MSE
expression tends to be negligible. Despite the superficial similarity between AIC
and BIC, AIC is usually justified by resorting to classical asymptotic arguments,
whereas BIC is usually justified by appealing to the Bayesian framework.

To conclude, the scoring function criteria we have examined are easy to cal-
culate and lead to a total ordering of the models. From most statistical packages
we can get the AIC and BIC scores for all the models considered. A further
advantage of these criteria is that they can be used to compare non-nested mod-
els and, more generally, models that do not belong to the same class (e.g. a
probabilistic neural network and a linear regression model). The disadvantage of
these criteria is the lack of a threshold, as well as the difficulty of interpreting
their measurement scale. In other words, it is not easy to determine whether or
not the difference between two models is significant, and how it compares with
another difference.

6.3 Bayesian criteria

From an operational perspective, the Bayesian criteria are an interesting com-
promise between the statistical criteria based on the deviance differences and
the criteria based on scoring functions. They are based on coherent statistical
modelling and therefore their results can be easily interpreted. They provide a
complete ordering of the models and can be used to compare non-nested models
as well as models belonging to different classes. In the Bayesian derivation each
model is given a score that corresponds to the posterior probability of the model
itself. A model becomes a discrete random variable that takes values on the space
of all candidate models. This probability can be calculated from Bayes’ rule:

P(M|x1, . . . , xn) = P(x1, . . . , xn|M)P(M)/P (x1, . . . , xn)
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The model which maximises this posterior probability will be chosen. Unlike the
information criteria, the Bayesian criteria use probability and therefore define a
distance that can be easily interpreted to compare models.

For further information about Bayesian theory and selection criteria for Bayes-
ian models, see Bernardo and Smith (1994) and Cifarelli and Muliere (1989).
There are also difficulties with the Bayesian scoring methods. These are related
to the practical application of Bayes’ rule. The first problem is to calculate
the likelihood of a model, P(x1, . . . , xn|M). To calculate this, the parameters
of the model must be integrated out, and integration may be a rather diffi-
cult task. For a model M indexed by a vector ϑ of parameters, we have to
calculate

P(x1, . . . , xn|M) =
∫

P(x1, . . . , xn|ϑ,M)P (ϑ|M) dϑ

where P(ϑ|M) is the prior distribution of the parameters, given that model
M is under consideration. Although calculations like these long prevented the
widespread use of Bayesian methods, Markov chain Monte Carlo (MCMC) tech-
niques emerged during the 1990s, providing a successful, albeit computationally
intensive, way to approximate such integration problems, even in highly complex
settings. For a review of MCMC methods, see Gilks, Richardson and Spiegel-
halter (1996). The most common software for implementing MCMC is BUGS,
which can be found at www.mrc-bsu.cam.ac.uk/bugs.

A further advantage of Bayesian methods is that the model scores are prob-
abilities, so they can also be used to draw model-averaged inferences from the
various competing models, rather than making inferences conditional on a single
model being chosen. This takes model uncertainty into account. Consider the
problem of predicting the value of a certain variable Y . In the presence of uncer-
tainty over which model to choose, among the K available models, the Bayesian
prediction will be

E(Y |x1, . . . , xn) =
K∑

j=1

E(Y |M,x1, . . . , xn)P (M|x1, . . . , xn)

Notice how the prediction correctly reflects the uncertainty on the statistical
model. Rather than choosing a single model, and drawing all inferences based on
it, we consider a plurality of models, averaging the inferences obtained from each
model, using posterior probabilities as weights. Application of Bayesian model
averaging to complex models usually requires careful design of MCMC approxi-
mations. This issue is considered in detail in Brooks, Giudici and Roberts (2003)
and for graphical models in Giudici and Green (1999). Green, Hjort and Richard-
son (2003) is an important reference on Bayesian inference and computational
approximations for highly structured stochastic systems.
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6.4 Computational criteria

The widespread use of computational methods has led to the development of com-
putationally intensive model selection criteria. These criteria are usually based
on using data sets that are different from the one being analysed (external valida-
tion) and are applicable to all the models considered, even when they belong to
different classes (e.g. in comparing logistic regression, decision trees and neural
networks, even when the latter two are non-probabilistic). A possible problem
with these criteria is that they take a long time to design and implement, although
general-purpose packages such as SAS Enterprise Miner have made this task
easier. We now consider the main computational criteria.

The cross-validation criterion
The idea of cross-validation is to divide the sample into two subsamples: a
training sample having n − m observations and a validation sample having m

observations. The first sample is used to fit a model and the second is used
to estimate the expected discrepancy or to assess a distance. We have already
seen how to apply this criterion to neural networks and decision trees. Using
this criterion the choice between two or more models is made by evaluating an
appropriate discrepancy function on the validation sample.

We can see that the logic of this criterion is different. The other criteria are all
based on a function of internal discrepancy on a single data set, playing the roles
of the training data set and the validation data set. With these criteria we directly
compare predicted and observed values on an external validation sample. Notice
that the cross-validation idea can be applied to the calculation of any distance
function. For example, in the case of neural networks with quantitative output,
we usually employ a Gaussian discrepancy

1

m

∑
i

∑
j

(tij − oij )
2

where tij is the fitted output and oij the observed output, for each observation i

in the validation set and for each output neuron j .
One problem with the cross-validation criterion is in deciding how to select

m, the number of observations in the validation data set. For example, if we
select m = n/2 then only n/2 observations are available to fit a model. We could
reduce m but this would mean having few observations for the validation data
set and therefore reducing the accuracy with which the choice between models is
made. In practice proportions of 75% and 25% are usually used for the training
and validation data sets, respectively.

The cross-validation criterion can be perfected in different ways. One limi-
tation is that if the validation data set is used to choose a model, the results
obtained are not real measurements of the model’s performance that can be com-
pared with the measurements obtained from other models. The reason for this is
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that the validation data set is in fact also used to construct the model. Therefore
the idea is to generalise what we have seen by dividing the sample into more
than two data sets.

The most frequently used method, especially in the field of neural networks,
is to divide the data set into three blocks: training, validation and testing. The
test data will not be used in the modelling phase. Model fit will be carried out
on the training data, using the validation data to choose a model. Finally, the
model chosen and estimated on the first two data sets will be adapted to the test
data and the error found will provide a correct estimate of the prediction error.
The disadvantage is that it reduces the amount of data available for training and
validation.

A further improvement could be to use all the data for the training. The data
is divided into k subsets of equal size; the model is fitted k times, leaving out one
of the subsets each time, which could be used to calculate a prediction error rate.
The final error is the arithmetic average of the errors obtained. This method is
known as k-fold cross-validation. Another common alternative is the leaving-one-
out method, in which one observation only is left out in each of the k samples,
and this observation is used to calibrate the predictions. The disadvantage of
these methods is the need to retrain the model several times, which makes the
elaboration process very computationally intensive.

The bootstrap criterion
The bootstrap method was introduced by Efron (1979) and is based on the idea
of reproducing the ‘real’ distribution of the population with a resampling of
the observed sample. Application of the method is based on the assumption
that the observed sample is in fact a population, a population for which we
can calculate the underlying model f (x) – it is the sample density. To compare
alternative models, a sample can be drawn (or resampled) from the fictitious
population (the available sample) and then we can use out earlier results on model
comparison. For instance, we can calculate the Kullback–Leibler discrepancy
directly, without resorting to estimators. The problem is that the results depend
on resampling variability. To get around this, we resample many times, and we
assess the discrepancy by taking the mean of the obtained results. It can be shown
that the expected discrepancy calculated in this way is a consistent estimator of
the expected discrepancy of the real population. We will therefore choose the
statistical model which minimises it. Application of the bootstrap method requires
us to assume a probabilistic model, either parametric or non-parametric, and it
can also be rather computationally intensive.

Bagging and boosting
Bootstrap methods can be used not only to assess a model’s discrepancy and
therefore its accuracy, but also to improve the accuracy. Bagging and boosting
methods are recent developments that can be used for combining the results of
more than one data mining analysis. In this respect they are similar to Bayesian
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model-averaging methods, as they also lead to model-averaged estimators, which
often improve on estimators derived using a single model.

Bagging (bootstrap aggregation) methods can be described as follows. For
each loop of the procedure, we draw a sample with replacement from the avail-
able training data set. Typically, the sample size corresponds to the size of the
training data itself. This does not mean that the drawn sample will be the same as
the training sample, because observations are drawn with replacement. Consider
B loops of the procedure; the value of B depends on the computational resources
available and time. A data mining method can be applied to each bootstrapped
sample, leading to a set of estimates for each model; these can then be combined
to obtain a bagged estimate. For instance, the optimal classification tree can be
searched for one sample, and each observation allocated to the class with the
highest probability. The procedure is repeated, for each sample i = 1, . . . , B,
leading to B classifications. The bagged classification for an observation corre-
sponds to the majority vote, namely, to the class in which it is most classified
by the B fitted trees. Similarly, a regression tree can be fitted for each of the B

samples, producing a fitted value ŷi , in each of them, for each observation. The
bagged estimate is the mean of these fitted values:

1

B

B∑
i=1

ŷi

With reference to the bias–variance trade-off, as a bagged estimate is a sample
mean, it will not alter the bias of a model but it may reduce the variance. This
occurs especially for highly unstable models, such as decision trees, complex
neural networks and nearest-neighbour models. On the other hand, if the applied
model is simple, the variance may not decrease, because variability is added by
bootstrapping.

So far we have assumed that the same model is applied to the bootstrap
samples; this does not need to be the case. Different models can be combined,
provided the estimates are compatible and expressed on the same scale. Bagging
is related to the use of bootstrap samples, but this is not strictly the case for
boosting. Although there are now many variants, the early versions of boosting
fitted models on several weighted versions of the data set, where the observations
with the poorest fit receive the greatest weight. For instance, in a classification
problem, the well-classified observations will get lower weights as the iteration
proceeds, allowing the model to concentrate on estimating the most difficult cases.
The case studies explain how to apply these methods, and more details can be
found in Han and Kamber (2001) and Hastie, Tibshirani and Friedman (2001).

Genetic algorithms
Genetic algorithms are not strictly for data mining. They are a class of opti-
misation methods that can be used within any data mining model; this makes
them similar to any other optimisation method, such as maximum likelihood or
least squares. Here is a brief description. Like neural networks, genetic algo-
rithms are based on analogies with biological mechanisms. Evolutionary theory
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links a species’ survival chances to how well it can adapt to the surrounding
environment. These adaptations optimise the efficiency of the following genera-
tions, propagating the best genetic traits from one generation to the next. Genetic
algorithms apply the same idea; they simulate these evolutionary mechanisms to
create an adaptive method for solving optimisation problems. To solve a problem,
they work on a population of individuals, each representing a possible solution;
at the end of the process, they indicate the best solution. More concretely, indi-
viduals can represent parameters or models, therefore the algorithm furnishes the
best estimate or the best model.

Genetic algorithms can be very important for model evaluation. They allow
us to manage the process of model choice in a very flexible way, because they
do not have an underlying modelling hypothesis. They can be used as part of
Bayesian model averaging, bagging and boosting; they can be used alongside
them or instead of them. One of the advantages of genetic algorithms is the
ability to work, in a general way, with all types of data. Two disadvantages are
the long coding times of the algorithms and the need for large computational
resource to run them.

6.5 Criteria based on loss functions

One aspect of data mining is the need to communicate the final results in a way
that suits the aims of the analysis. With business data we need to evaluate the
models not only by comparing them among themselves but also by comparing
the advantages to be had by using one model rather than another. In other words,
we need to compare the results obtained from the models, not just the models
themselves. Since the main problem dealt with by data analysis is to reduce uncer-
tainties in the risk factors or loss factors, we often talk about developing criteria
to minimise the loss connected with a problem. In other words, the best model
is the one that leads to the lowest loss. The best way to introduce these rather
specific criteria is to give some practical examples. As these criteria are mostly
used in predictive classification problems, that is where we will concentrate. The
confusion matrix is used as an indication of the properties of a classification
(discriminant) rule. It contains the number of elements that have been correctly
or incorrectly classified for each class. The main diagonal shows the number of
observations that have been correctly classified for each class; the off-diagonal
elements indicate the number of observations that have been incorrectly classi-
fied. If it is assumed, explicitly or implicitly, that each incorrect classification has
the same cost, the proportion of incorrect classifications over the total number of
classifications is called the misclassification error, or misclassification rate; this
is the quantity we must minimise. The assumption of equal costs can be replaced
by weighting errors with their relative costs.

Table 6.1 shows a confusion matrix for a classification problem. The diagonal
shows the correct predictions. We can see that the model classifies 38 out of 46
observations correctly as belonging to class B (2 + 38 + 6). Of the 8 observations
that have been incorrectly classified, 2 belong to class A and 6 belong to class C.
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Table 6.1 Example of a confusion matrix.

Observed
Class A Class B Class C

Predicted

Class A 45 2 3

Class B 10 38 2

Class C 4 6 40

This is much more informative than saying the accuracy of the model is 82%
(123 correct classifications out of 150). If there are different costs for different
errors, a model with a lower general level of accuracy is preferable to one that
has greater accuracy but also much higher costs. For example, if we suppose that
in Table 6.1 each correct answer has a value of C–– 1000 and that each error for
class A costs C–– 500s, each error for class B costs C–– 1000 and each error for class
C costs C–– 2000, the cost associated with the matrix will be (123 × 1000) – (5 ×
500) – (12 × 1000) – (10 × 2000) = C–– 88 500.

We now consider the lift chart and the ROC curve, two graphs that can be
used to assess model costs. Both are presented with reference to a binary response
variable, the area where evaluation methods have developed most quickly. For a
comprehensive review see Hand (1997).

Lift chart
The lift chart puts the observations in the validation data set into increasing
or decreasing order on the basis of their score, which is the probability of the
response event (success), as estimated on the basis of the training data set. It
subdivides these scores into deciles then calculates and graphs the observed prob-
ability of success for each of the decile classes in the validation data set. A model
is valid if the observed success probabilities follow the same order (increasing or
decreasing) as the estimated probabilities. To improve interpretation, a model’s
lift chart is usually compared with a baseline curve, for which the probability
estimates are drawn in the absence of a model, that is, by taking the mean of the
observed success probabilities.

Figure 6.1 compares the lift charts of three logistic regression models. The
scores are ordered in a decreasing way, so the more the curve is decreasing, the
better the corresponding model. The performances of the three models are quite
close, but model C seems to be better than the others, especially because in the
first deciles it captures the successes better. Dividing the values of each curve
by the baseline, we obtain a relative index of performance called the lift. The
lift measures a model’s worth. For model C, in the first decile (containing 164
observations) the lift is 4.46 (i.e. 22.7%/5.1%); this means that using model C
we are 4.5 times more likely to get a success than if we chose randomly, without
a model.
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Figure 6.1 Example of a lift chart.

ROC curve
The receiver operating characteristic (ROC) curve is a graph that measures the
predictive accuracy of a model. It is based on the confusion matrix in Table 6.2.
The term ‘event’ stands for the value Y = 1 (success) of the binary response.
Table 6.2 classifies the observations of a validation data set into four possible
categories:

• Observations predicted as events and effectively such (with absolute fre-
quency equal to a)

Table 6.2 Theoretical confusion matrix.

Predicted

Observed
Event (1) Non-event (0) Total

Event (1) a b a + b

Non-event (0) c d c + d

Total a + c b + d a + b + c + d
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• Observations predicted as events and effectively non-events (with frequency
equal to c)

• Observations predicted as non-events and effectively events (with frequency
equal to b)

• Observations predicted as non-events and effectively such (with frequency
equal to d)

Given an observed table, and a cut-off point, the ROC curve is calculated on
the basis of the resulting joint frequencies of predicted and observed events
(successes) and non-events (failures). More precisely, it is based on the following
conditional probabilities:

• Sensitivity
a

a + b
is the proportion of events predicted as such.

• Specificity
d

c + d
is the proportion of non events predicted as such.

• False positives
c

c + d
= 1 − specificity is the proportion of non-events pre-

dicted as events (type II error).

• False negatives
b

a + b
= 1 − sensitivity is the proportions of events predicted

as non-events (type I error).

The ROC curve is obtained by graphing, for any fixed cut-off value, the false
positives (1 − specificity) on the horizontal axis and the sensitivity on the vertical
axis. Each point on the curve corresponds to a particular cut-off. The ROC curve
can also be used to select a cut-off point, trading off sensitivity and specificity.
In terms of model comparison, the ideal curve coincides with the vertical axis, so
the best curve is the leftmost curve. Figure 6.2 shows ROC curves for the same
problem considered in Figure 6.1. It turns out that the best model is C. However,
the three models are substantially similar.

The ROC curve is the basis of an important summary statistic called the
Gini index of performance. Recall the concentration curve in Figure 3.2. For any
given value of Fi , the cumulative frequency, there corresponds a value of Qi , the
cumulative intensity. Fi and Qi take values in [0,1] and Qi ≤ Fi Therefore the
concentration curve joins a number of points in the Cartesian plane determined
by taking xi = Fi and yi = Qi , for i = 1, . . . , n. The area between the curve and
the 45◦ line gives a summary measure for the degree of concentration. The ROC
curve can be treated in a similar way. In place of Fi and Qi we need to consider
two cumulative distributions constructed as follows.

First, the data contains both events (Yi = 1) and non-events (Yi = 0). It can
therefore be divided into two samples, one containing all events (labelled E)
and one containing all non-events (labelled N ). As explained in Chapter 4, any
statistical model for predictive classification takes each observation and attaches
to it a score that is the fitted probability of success πi . In each of the two samples,
E and N , the observations can be ordered (in increasing order) according to



204 APPLIED DATA MINING

Figure 6.2 Example of an ROC curve.

this score. Now, for any fixed value of i (a percentile corresponding to the cut-
off threshold), a classification model would consider all observations below it as
non-events and all observations above it as events.

Correspondingly, the predicted proportion of events can be estimated for pop-
ulations E and N . For a reasonable model, in population E this proportion has
to be higher than in population N . Let F E

i and F N
i be these proportions corre-

sponding to the cut-off i, and calculate coordinate pairs (F N
i , F E

i ) as i varies.
The coordinates will be different for each model. We have that, for i = 1, . . . , n,
both F E

i and F N
i take values in [0,1]; indeed they both represent cumulative fre-

quencies. Furthermore, F N
i ≤ F E

i . The ROC curve is obtained by joining points
with coordinates yi = F E

i and xi = F N
i . This is because F E

i equals the sensitivity
and F N

i equals 1 − specificity.
Notice that the curve will always lie above the 45◦ line. However, the area

between the curve and the line can also be calculated, and gives the Gini index
of performance. The higher the area, the better the model.

6.6 Further reading

In this chapter we have systematically compared the main criteria for evaluating
the statistical methods used in data mining. These methods can be classified into
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criteria based on statistical tests, criteria based on scoring functions, Bayesian
criteria, computational criteria, and criteria based on loss functions. Criteria based
on statistical tests start from the theory of statistical hypothesis testing, so there
is a lot of detailed literature; see for example Mood, Graybill and Boes (1991).
The main limitation of these methods is that the choice is made by pairwise
comparisons, which introduces an element of discretion, further reinforced by
the choice of significance levels.

Criteria based on scoring functions offer a high generality of application, com-
plete ordering and simple calculation. Their main disadvantage is that they do not
define threshold levels which allow us to choose one model rather than another.
Therefore they are especially useful in an exploratory phase. Zucchini (2000)
and Hand, Mannila and Smyth (2001) examine these criteria and compare them
with criteria based on statistical tests. Bayesian criteria are a possible compro-
mise between the previous two. They can be developed in an interesting way,
but their limited application is probably due to the absence of general software.
For data mining using Bayesian criteria see Giudici (2001a) and Giudici and
Castelo (2001).

Computational criteria have an important advantage in being applicable to sta-
tistical methods that are not necessarily model based, such as those in Chapter 4.
They are the main methods of universal comparison among the different types
of model. Since most of them are non-probabilistic, they may be too dependent
on the observed sample. One way to overcome this problem is to consider model
combination methods, such as bagging and boosting. For a thorough description
of these recent methodologies, see Hastie, Tibshirani and Friedman (2001).

Criteria based on loss functions have recently appeared, although related ideas
have long been known in Bayesian decision theory (Bernardo and Smith, 1994).
They are very interesting and have considerable potential, but at present they
are mainly concerned with solving classification problems. For a more detailed
treatment see Hand (1997), Hand, Mannila and Smyth (2001), or the reference
manuals that accompany data mining software, such as Enterprise Miner (SAS
Institute, 2001).

I think the topics in this chapter are of great interest for developing statistical
methods in data mining. The second part of the book shows how to apply them
in different contexts.
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Business cases





CHAPTER 7

Market basket analysis

7.1 Objectives of the analysis

This case study looks at market consumer behaviour using the marketing method-
ology known as market basket analysis. Market basket analysis has the objective
of individuating products, or groups of products, that tend to occur together (are
associated) in buying transactions (baskets). The knowledge obtained from a
market basket analysis can be very valuable; for instance, it can be employed by
a supermarket to reorganise its layout, taking products frequently sold together
and locating them in close proximity. But it can also be used to improve the
efficiency of a promotional campaign: products that are associated should not
be put on promotion for the same periods. By promoting just one of the associ-
ated products, it should be possible to increase the sales of that product and get
accompanying sales increases for the associated products.

The databases usually considered in a market basket analysis consist of all
the transactions made in a certain sale period (e.g. one year) and in certain sale
locations (e.g. a chain of supermarkets). Consumers can appear more than once
in the database. In fact, consumers will appear in the database whenever they
carry out a transaction at a sales location. The objective of the analysis is to
individuate the most frequent combinations of products bought by the customers.
The association rules in Section 4.8 represent the most natural methodology here;
indeed they were actually developed for this purpose. Analysing the combinations
of products bought by the customers, and the number of times these combina-
tions are repeated, leads to a rule of the type ‘if condition, then result’ with
a corresponding interestingness measurement. Each rule of this type describes
a particular local pattern. The set of association rules can be easily interpreted
and communicated. Possible disadvantages are locality and lack of probabilistic
modelling.

This case study takes a real market basket analysis and compares association
rules with log-linear models (Section 5.5), which represent a powerful method
of descriptive data mining. It also shows how an exploratory analysis, based
on examining the pairwise odds ratios, can help in building a comprehensive
log-linear model. Odds ratios can be directly compared with association rules.
Similar analyses can be found in Giudici and Passerone (2002) and Castelo and
Giudici (2003); Castelo and Giudici take a Bayesian viewpoint.

Applied Data Mining. Paolo Giudici
 2003 John Wiley & Sons, Ltd ISBNs: 0-470-84679-8 (Paper); 0-470-84678-X (Cloth)
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7.2 Description of the data

The statistical analysis in this chapter was carried out on a data set kindly provided
by AC Nielsen, concerning transactions at a large supermarket in southern Italy.
The data set is part of a larger database for 37 shop locations of a chain of super-
markets in Italy. In each shop the recorded transactions are all the transactions
made by someone holding one of the chain’s loyalty cards. Each card carries a
code that identifies features about the owner, including important personal charac-
teristics such as sex, birthdate, partner’s birthdate, number of children, profession
and education. The card allows the analyst to follow the buying behaviour of its
owner: how many times they go to the supermarket in a given period, what they
buy, whether they follow the promotions, etc. Our aim here is to consider only
transaction data on products, in order to investigate the associations between
these products. Therefore we shall not consider the influence of demographic
variables or the effect of promotions.

The available data set is organised in a collection of 37 transactional databases,
one for each shop location. For each shop, a statistical unit (a row in the database)
corresponds to one loyalty card code and one product bought. For each card code
there may be more than one product and, in the file, the same card code may
appear more than once, each time corresponding to one visit to a particular shop.

Table 7.1 The considered product categories and
corresponding frequency counts.
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The considered period consists of 75 days between 2 January and 21 April 2001.
To suit the aims of the analysis and the complexity of the overall data set, we will
choose one representative shop, in southern Italy, with an area of about 12 000 m2.
This shop has a mean number of visits in the considered period of 7.85, which
is roughly equivalent to the overall mean for the 37 shops. But the total number
of loyalty cards issued for the shop is 7301, the largest out of all the shops; this
is one of the main reasons for choosing it. Finally, the average expenditure per
transaction is about C–– 28.27, slightly lower than the overall mean.

The total number of products available in the shop is about 5000 ignoring
the brand, format and specific type (e.g. weight, colour, size). Products are usu-
ally grouped into categories. The total number of available categories in the
considered supermarket is about 493. For clarity we will limit our analysis to
20 categories (items), which correspond to those most sold. They are listed in
Table 7.1, along with their frequency of occurrence, namely, the number of trans-
actions that contain the item at least once. Notice that all considered product
categories – shortened to products from now on–concern food products. These
categories are used to produce a transaction database and Table 7.2 presents an
extract. This extract will be called the transactions data set.

From Table 7.2 notice that the transaction database presents, for each card and
each purchase date (i.e. for each transaction), a list of the products that have been

Table 7.2 The transactions data set.
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Table 7.3 The card owners database.

put in the basket. For example, on 2 January 2002, card owner 0460202004099
bought tinned meat, tunny and mozzarella. The transaction database may conve-
niently be expressed as a data matrix, with each row representing one transaction
of one owner of a card code; the columns are binary variables that represent
whether or not each specific product has been bought (at least once) in that
transaction. We will call this the card owners database; an extract is shown in
Table 7.3. The total number of transactions is 46 727, which corresponds to the
number of rows in the card owners database.

7.3 Exploratory data analysis

To understand the associations between the 20 products considered, we have con-
sidered 190 two-way contingency tables, one for each pair of products. Table 7.4
shows one of these tables. It can be used to study the association between the
products ice cream and Coke. In each cell of the contingency table we have the
absolute frequency, the relative frequency (as a percentage), and the conditional
frequency by row and by column. Below the table we report the association
measure, the odds ratio between the two variables, along with the corresponding
confidence interval. According to Section 3.4, an association is deemed signifi-
cant if the value 1 is external to the confidence interval. Here we can say there is
a strong positive association between the two products. Recall that the total sam-
ple size is quite large (46 727 transactions), therefore even a small odds ratio can
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Table 7.4 Example of a two-way contingency table and calculation of the odds ratios.

ICE CREAM COKE
Frequency
Percent
Row Pct
Col Pct 0 1 Total

0 41179 4779 45958
88.13 10.23 98.35
89.60 10.40
98.57 96.56

1 599 170 769
1.28 0.36 1.65

77.89 22.11
1.43 3.44

Total 41778 4949 46727
89.41 10.59 100.00

Value 95% Confidence Limits

Odds Ratio 2.4455 2.0571 2.9071

be significant. We have calculated all 190 possible odds ratios between products;
the largest values are shown in Table 7.5. Notice that the largest associations
are detected between tinned meat and tunny, tinned meat and mozzarella, and
frozen fish and frozen vegetables. In all these cases the two paired products are
fast food products. Next comes an association between two drinks: Coke and
beer. In general, all the associations in Table 7.5 appear fairly reasonable from a
subject-matter viewpoint. In calculating the odds ratios, each pair of variables is
considered independently from the remaining 18. It is possible to relate them to
each other by drawing a graph whose nodes are the binary product variables. An
edge is drawn between a pair of nodes if the corresponding odds ratio is signif-
icantly different from 1; in other words, if the confidence interval for the odds
ratio does not contain the value 1. The resulting graph is not a conditional inde-
pendence graph, like those in Section 5.6, but a marginal independence graph.
Nevertheless, it may be useful in an exploratory stage.

It is difficult to visualise a graph with perhaps as many as 190 links. Therefore
we will represent only positive associations with an odds ratio greater than 2
(i.e. those in Table 7.5). This reduces the number of links in the graph and
Figure 7.1 shows what it looks like. Using Figure 7.1 we can group together
products that are linked. Notice that five products appear isolated from the others,
not (strongly) positively associated with anything: milk, biscuits, water, coffee
and yoghurt. All other products are related, either directly or indirectly. It is
possible to individuate at least three groups, by connecting links but also by
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Table 7.5 The largest odds ratios between pairs of products and the corresponding
confidence interval.

Product 1 Product 2 ODDS RATIO Confidence Interval

tin. meat tunny 5.0681 3.9101 6.5689
tin. meat mozzar 4.8847 2.9682 8.0386
froz. veg froz. fish 3.3610 2.9521 3.8265
coke beer 2.8121 2.6109 3.0289
brioches juices 2.8094 2.6094 3.0248
juices ice cream 2.5333 2.1018 3.0534
coke ice cream 2.4455 2.0571 2.9071
tomato j. pasta 2.3773 2.2446 2.5179
crackers ice cream 2.2839 1.7061 3.0574
brioches crackers 2.2833 2.0276 2.5713
tin. meat rice 2.1433 1.4762 3.1120
rice pasta 2.1129 1.9618 2.2756
brioches ice cream 2.0211 1.7178 2.3781
crackers juices 2.0486 1.7633 2.3800
froz. fish mozzar 2.0785 1.4721 2.9347
oil tomato j. 2.0713 1.8318 2.3420

coke
biscuits

water

tunny

yoghurt

crackers

juices

frozen fish

pasta

oil

frozen vegetables

brioches

tomato sauce

coffee

mozzarella

beer

milk

rice

tinned meat
ice cream

Figure 7.1 Graph showing the strong positive associations between the products.

logical relationships between products. These groups are very interesting because
they identify fairly typical buying behaviours. There is one group with five nodes:
tunny, tinned meat, mozzarella, frozen fish and frozen vegetables. These nodes,
highly related with each other, correspond to fast food products, quick and easy
to prepare. A second group contains four nodes: rice, pasta, tomato sauce and oil.
This group can be identified with food bought for ordinary meals (ordinary by
Mediterranean standards). A third group contains six other products: beer, Coke,
juice, ice cream, brioches, crackers. All relate to break items, food and drink
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typically consumed outside of regular meals. This group seems less logically
homogeneous than the other two. We shall return to this in the next section. We
have not detected any significant negative association in the data at hand. This
has important implications; for instance, a promotion on pasta will presumably
increase the sales of this product but is very unlikely to decrease the sales of other
products, such as rice and water. Negative associations are rarely considered in
market basket analysis.

7.4 Model building

7.4.1 Log-linear models

Log-linear models are very useful for descriptive data mining; they investigate
the associations between the considered variables. Fitting a log-linear model to
all our 20 binary variables may require too many parameters to be estimated.
Furthermore, the conditional independence graph may be difficult to interpret.
Therefore, to be parsimonious and to satisfy computational restrictions, we will
analyse the results in Figure 7.1 using an exploratory approach.

Figure 7.1 suggests the existence of five isolated nodes that can be deemed
independent from the others: milk, biscuits, water, coffee and yoghurt. We will
therefore try to fit a graphical log-linear model to the remaining 15 variables, in
order to see whether the results from the exploratory analysis can be confirmed.
Table 7.6 presents the maximum likelihood estimates of the parameters of the
log-linear model with interactions up to order 2, fitted on the 15-way contingency
table corresponding to the 15 considered variables.

Table 7.6 Maximum likelihood estimates of the log-linear parameters.

Parameter Estimate
Standard
Error

Chi-
Square Pr > ChiSq

TIN−MEAT −1.6186 0.2206 53.85 <.0001
MOZZAR −0.0100 0.1320 0.01 0.9396
TIN−MEAT*MOZZAR 0.6607 0.0660 100.31 <.0001
TUNNY −0.3920 0.0635 38.07 <.0001
TIN−MEAT*TUNNY 0.3994 0.0344 134.72 <.0001
MOZZAR*TUNNY 0.1483 0.0290 26.17 <.0001
COKE −0.1740 0.0750 5.38 0.0203
TIN−MEAT*COKE 0.2215 0.0501 19.58 <.0001
MOZZAR*COKE 0.0769 0.0326 5.58 0.0182
TUNNY*COKE 0.0592 0.0117 25.63 <.0001
CRACKERS −0.2079 0.1228 2.87 0.0904
TIN−MEAT*CRACKERS 0.4715 0.0768 37.71 <.0001
MOZZAR*CRACKERS 0.1389 0.0616 5.08 0.0242
TUNNY*CRACKERS 0.1504 0.0188 63.80 <.0001

(continued overleaf )
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Table 7.6 (continued )

Parameter Estimate
Standard
Error

Chi-
Square Pr > ChiSq

COKE*CRACKERS 0.1068 0.0199 28.68 <.0001
PASTA −0.2935 0.0516 32.35 <.0001
TIN−MEAT*PASTA 0.0294 0.0346 0.72 0.3957
MOZZAR*PASTA 0.00751 0.0206 0.13 0.7156
TUNNY*PASTA 0.0872 0.00796 120.20 <.0001
COKE*PASTA 0.0267 0.00805 11.01 0.0009
CRACKERS*PASTA 0.0219 0.0144 2.30 0.1291
JUICES −0.3191 0.0807 15.62 <.0001
TIN−MEAT*JUICES 0.2942 0.0543 29.32 <.0001
MOZZAR*JUICES 0.1089 0.0347 9.84 0.0017
TUNNY*JUICES 0.0879 0.0126 48.95 <.0001
COKE*JUICES 0.1238 0.0119 107.57 <.0001
CRACKERS*JUICES 0.1683 0.0200 70.84 <.0001
PASTA*JUICES 0.0304 0.00901 11.41 0.0007
OIL 0.0318 0.1195 0.07 0.7902
TIN−MEAT*OIL 0.4508 0.0770 34.28 <.0001
MOZZAR*OIL 0.1343 0.0569 5.57 0.0183
TUNNY*OIL 0.1219 0.0180 45.90 <.0001
COKE*OIL 0.0466 0.0204 5.20 0.0226
CRACKERS*OIL 0.1644 0.0361 20.76 <.0001
PASTA*OIL 0.0792 0.0131 36.54 <.0001
JUICES*OIL 0.0630 0.0230 7.52 0.0061
TOMATO−J −0.1715 0.0712 5.80 0.0160
TIN−MEAT*TOMATO−J 0.2314 0.0469 24.34 <.0001
MOZZAR*TOMATO−J 0.1121 0.0284 15.62 <.0001
TUNNY*TOMATO−J 0.0605 0.0112 29.23 <.0001
COKE*TOMATO−J 0.0958 0.0108 78.92 <.0001
CRACKERS*TOMATO−J 0.0589 0.0211 7.77 0.0053
PASTA*TOMATO−J 0.1887 0.00747 637.43 <.0001
JUICES*TOMATO−J 0.0831 0.0122 46.54 <.0001
OIL*TOMATO−J 0.1780 0.0163 119.22 <.0001
BRIOCHES −0.2412 0.0620 15.14 0.0001
TIN−MEAT*BRIOCHES 0.1530 0.0414 13.64 0.0002
MOZZAR*BRIOCHES 0.0955 0.0254 14.17 0.0002
TUNNY*BRIOCHES 0.0774 0.00995 60.57 <.0001
COKE*BRIOCHES 0.0965 0.00966 99.71 <.0001
CRACKERS*BRIOCHES 0.1860 0.0156 141.60 <.0001
PASTA*BRIOCHES 0.0343 0.00689 24.81 <.0001
JUICES*BRIOCHES 0.2342 0.00962 592.76 <.0001
OIL*BRIOCHES 0.0251 0.0176 2.02 0.1552
TOMATO−J*BRIOCHES 0.0608 0.00967 39.54 <.0001
BEER −0.0287 0.0742 0.15 0.6987
TIN−MEAT*BEER 0.2098 0.0462 20.62 <.0001
MOZZAR*BEER 0.0700 0.0333 4.42 0.0356
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Table 7.6 (continued )

Parameter Estimate
Standard
Error

Chi-
Square Pr > ChiSq

TUNNY*BEER 0.0864 0.0113 58.89 <.0001
COKE*BEER 0.2415 0.00965 626.64 <.0001
CRACKERS*BEER 0.0721 0.0210 11.76 0.0006
PASTA*BEER 0.00755 0.00802 0.89 0.3464
JUICES*BEER 0.1201 0.0119 102.14 <.0001
OIL*BEER 0.0805 0.0192 17.61 <.0001
TOMATO−J*BEER 0.0602 0.0111 29.56 <.0001
BRIOCHES*BEER 0.0621 0.00985 39.83 <.0001
FROZ−VEG −0.2247 0.0704 10.18 0.0014
TIN−MEAT*FROZ−VEG 0.1938 0.0490 15.64 <.0001
MOZZAR*FROZ−VEG 0.1211 0.0276 19.25 <.0001
TUNNY*FROZ−VEG 0.0634 0.0114 31.14 <.0001
COKE*FROZ−VEG 0.0398 0.0116 11.75 0.0006
CRACKERS*FROZ−VEG 0.0630 0.0214 8.70 0.0032
PASTA*FROZ−VEG 0.0381 0.00773 24.30 <.0001
JUICES*FROZ−VEG 0.0496 0.0129 14.76 0.0001
OIL*FROZ−VEG 0.0720 0.0188 14.59 0.0001
TOMATO−J*FROZ−VEG 0.0847 0.0106 63.29 <.0001
BRIOCHES*FROZ−VEG 0.0406 0.00993 16.75 <.0001
BEER*FROZ−VEG 0.0224 0.0118 3.61 0.0575
RICE −0.2743 0.0840 10.67 0.0011
TIN−MEAT*RICE 0.2987 0.0514 33.83 <.0001
MOZZAR*RICE 0.1887 0.0355 28.34 <.0001
TUNNY*RICE 0.1460 0.0131 124.67 <.0001
COKE*RICE 0.0626 0.0149 17.65 <.0001
CRACKERS*RICE 0.1909 0.0235 65.96 <.0001
PASTA*RICE 0.1481 0.00975 231.01 <.0001
JUICES*RICE 0.1024 0.0155 43.40 <.0001
OIL*RICE 0.1225 0.0237 26.75 <.0001
TOMATO−J*RICE 0.1090 0.0129 70.90 <.0001
BRIOCHES*RICE 0.0228 0.0128 3.15 0.0759
BEER*RICE 0.0362 0.0151 5.74 0.0166
FROZ−VEG*RICE 0.0949 0.0136 49.02 <.0001
F−FISH −0.0494 0.1337 0.14 0.7119
TIN−MEAT*F−FISH 0.4792 0.0894 28.74 <.0001
MOZZAR*F−FISH 0.2417 0.0527 21.04 <.0001
TUNNY*F−FISH 0.1034 0.0224 21.40 <.0001
COKE*F−FISH 0.0504 0.0258 3.82 0.0507
CRACKERS*F−FISH 0.1047 0.0494 4.48 0.0342
PASTA*F−FISH 0.0536 0.0156 11.78 0.0006
JUICES*F−FISH 0.1032 0.0274 14.22 0.0002
OIL*F−FISH 0.1232 0.0419 8.66 0.0033
TOMATO−J*F−FISH 0.0750 0.0221 11.49 0.0007
BRIOCHES*F−FISH 0.0545 0.0207 6.92 0.0085

(continued overleaf )
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Table 7.6 (continued )

Parameter Estimate
Standard
Error

Chi-
Square Pr > ChiSq

BEER*F−FISH 0.0735 0.0243 9.16 0.0025
FROZ−VEG*F−FISH 0.2954 0.0169 305.75 <.0001
RICE*F−FISH 0.1711 0.0262 42.64 <.0001
ICECREAM −0.4074 0.1882 4.68 0.0304
TIN−MEAT*ICECREAM 0.6214 0.1579 15.49 <.0001
MOZZAR*ICECREAM 0.1597 0.0828 3.73 0.0536
TUNNY*ICECREAM 0.1106 0.0293 14.28 0.0002
COKE*ICECREAM 0.2095 0.0235 79.35 <.0001
CRACKERS*ICECREAM 0.2912 0.0417 48.72 <.0001
PASTA*ICECREAM −0.00983 0.0200 0.24 0.6233
JUICES*ICECREAM 0.2335 0.0255 83.69 <.0001
OIL*ICECREAM 0.1632 0.0534 9.33 0.0023
TOMATO−J*ICECREAM 0.0961 0.0286 11.31 0.0008
BRIOCHES*ICECREAM 0.1393 0.0220 40.05 <.0001
BEER*ICECREAM 0.1133 0.0278 16.57 <.0001
FROZ−VEG*ICECREAM 0.2202 0.0240 84.07 <.0001
RICE*ICECREAM 0.1967 0.0347 32.13 <.0001
F−FISH*ICECREAM 0.1872 0.0560 11.18 0.0008

The results to Table 7.6 are obtained using the SAS procedure CATMOD.
To compare Table 7.6 with Table 7.5, recall that the odds ratio between each
pair of parameters can be obtained by exponentiating a value which is about four
times the estimated interaction parameter. Therefore the threshold odds ratio of 2,
adopted in Table 7.5 corresponds to a threshold value of the interaction parameter
equal to about 0.1732. We can thus select the interactions that pass this threshold
and consider the corresponding pair as being (strongly) positively associated.

From Table 7.6 it turns out that all interactions found in Table 7.5 remain
strongly significant, except for (rice, pasta), (brioches, ice cream) and (crackers,
juices), which have an estimated odds ratio slightly lower than 2. Furthermore,
there are 14 more (strongly) positive associations: 9 of them concern tinned
meat associated with Coke, crackers, juices, oil, tomato, beer, frozen vegetables,
frozen fish and ice cream; 3 of them concern ice cream associated with frozen
vegetables, rice, and frozen fish; the final 2 are (mozzarella, rice) and (crack-
ers, rice). The difference with Table 7.5 is that we have now taken into account
conditional dependences between the variables, and as all variables are positively
associated, more interactions have been found significant. Table 7.6 reveals, that
no significant negative interactions are found.

7.4.2 Association rules

The most common way to analyse of market basket data is to use association
rules, a local data mining method explained in Section 4.8. We begin with a
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simple setting. Consider the products ice cream and Coke. As order is not rel-
evant, to study the association between the two products, the data set can be
collapsed to the two-way contingency table in Table 7.4. This shows that the
support for the rule ‘if ice cream, then Coke’ is

support (ice cream −−−→ Coke) = 170

46 727
= 0.0036

indicating low support for the rule. This means these two products are bought
together only occasionally. The support corresponds to only one of the four joint
frequencies in Table 7.4, corresponding to the occurrence of both buying events.
A support of 0.0036 means that only 0.36% of the transactions considered will
have both ice cream and Coke in the basket. The support of an association rule is
symmetric; the support of the rule ‘if Coke, then ice cream’ would be the same.

The confidence of a rule, even when calculated for an association, where order
does not matter, depends on the body and head of the rule:

confidence (ice cream −−−→ Coke) = 170

769
= 0.22

which corresponds to the second row conditional frequency of Coke = 1, and

confidence (Coke −−−→ ice cream) = 170

4949
= 0.034

which corresponds to the second column conditional frequency of ice cream = 1.
The confidence is really a particular conditional frequency. In the first case it
indicates the proportion, among those that buy ice cream, of those that also
buy Coke. In the second case it indicates the proportion, among those that buy
Coke, of those that also buy ice cream. The lift is a normalised measure of
interestingness; it is also symmetric:

lift (ice cream −−−→ Coke) = 0.22

0.11
= 2

lift (Coke −−−→ ice cream) = 0.034

0.017
= 2

This is always the case, as can be seen from the formula in Section 4.8. Section 4.8
goes on to derive an asymptotic confidence interval for the lift. Here the asymp-
totic confidence interval goes from 1.17 to 3.40, so the association can be con-
sidered significant.

Notice that the odds ratio between the two products was calculated as 2.44, a
rather similar value (and also with a significant confidence interval). The main
difference is that the odds ratio depends explicitly on all four cell frequencies of a
contingency table, whereas the lift is the ratio between the frequency of the levels
(A = 1, B = 1) and the product of the two marginal frequencies, (A = 1) and
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(B = 1), so it depends only implicitly on the frequencies of the complementary
events (A = 0, B = 0).

In any case the support of the considered rule is rather limited – ice cream
and Coke are present in only 0.36% of all transactions – therefore conclusions
based on it may not be of much practical value, even when supported by a high
confidence and/or a high lift value. But this conclusion is relative; it depends
on the support of other rules. To discover this and obtain a more comprehensive
picture of the interesting association rules, we now move to a full application of
association rule modelling. The Apriori algorithm and a threshold support rule
of 0.05*support(mode), where mode is the rule with maximum support among
all rules of a fixed order, leads to the selection of several relevant rules.

Table 7.7 presents the order 2 association rules with the highest support out
of the 190 possible rules. For each rule it shows the lift, the support and the
confidence as well as the transaction count, which is the absolute frequency of
the rule. It turns out that the (ice cream, Coke) rule does not appear among the
most frequent. Other rules have a higher support, and the rule with the highest
support is milk → pasta, which appears in almost 50% of the transactions. This
is followed by biscuits → pasta, milk → biscuits, water → pasta and milk →
water, all occurring in about 39% of the transactions.

Table 7.7 Association rules with highest support.
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Table 7.8 Association rules with highest confidence.

As Table 7.7 contains the rules with the highest support and as support is
symmetric, it is obvious that reciprocal rules are always adjacent to each other.
Table 7.8 presents the order 2 association rules with the highest confidence out of
the 190 possible rules. From Table 7.8 we can see, for example, that rice → pasta
has a confidence equal to 90.18. This means that if a transaction contains rice, it
will also contain pasta about 90% of the time. On the other hand, pasta → rice
is not among the rules in Table 7.8; it has a confidence of 36.18. This can be
interpreted as saying that if a transaction contains pasta, it will also contain
rice only 36.18% of the time. Notice that the confidence of pasta → rice can
be obtained by multiplying the confidence of rice → pasta by a factor of 0.401,
which corresponds to the ratio between the number of transactions containing
rice (1822) and the number of transactions containing pasta (4541), as obtained
from Table 7.1. More generally, notice that in Table 7.8 the head of the rule is
always either pasta or milk, as these are the most supported products.

Finally, to obtain a relative measure of a rule’s interestingness, we can also
consider the lift. Table 7.9 reports the rules with the highest lift out of the 190
possible rules. Notice that frozen fish → mozzarella and ice cream → crackers
come first, both with a lift of about 2.36. And notice that Coke → ice cream is
well ranked. Table 7.9 can be usefully compared with the odds ratios in Table 7.5,
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Table 7.9 Association rules with highest lift.

which were used to build the exploratory graph in Figure 7.1. It turns out that
similar products appear in both tables, except for pasta, which appears only in the
odds ratios table. However, the pairs are sometimes different. Isolated products in
Figure 7.1 – milk, biscuits, water, coffee and yoghurt – have a high support but
a low lift, therefore they do not appear in Table 7.9. The rules we obtain depend
on the measure of interestingness that we choose. It is interesting to consider the
rules jointly in terms of support, confidence and lift.

Figure 7.2 is a graphical representation of the rules with the highest support
(i.e. the 28 rules in Table 7.7). Support decreases with distance up the vertical
axis; confidence decreases with distance along the horizontal axis. The larger the
volume of the geometric figure, the greater the lift. Figure 7.2 is a valuable joint
visualisation of the rules that need to be selected. For instance, we can see that
pasta → milk has the highest confidence of all the rules that have pasta in their
body, but it has a low value of lift.

Now consider associations between more than two products. Table 7.10 shows
the associations with the highest support, for associations up to order 4.

Notice that some order 2 associations in Table 7.7 are also present in Table 7.10.
There are also some order 3 associations, typically for break items and for com-
binations of isolated products such as pasta, milk and biscuits. Table 7.11 shows
similar results, this time ordered by confidence.
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milk biscuits coffee tunny yoghurt

pasta water brioches frozen vegetables

Right Hand of Rule

29.57-32.11 32.11-34.64 37.18-39.71 39.71-42.24

Support(%)

Confidence(%)

45.01-47.18 47.48-49.96 49.96-59.85 59.85-62.32

Left Hand of Rule

yoghurt

frozen vegetables

tunny

brioches

coffee

water

biscuits

milk

pasta

Figure 7.2 Graphical representation of association rules, based on support, confidence
and lift.

Notice that the confidences values are now rather high. For instance, if a
transaction contains tomato sauce, oil and crackers, it will certainly contain pasta
as well, as the confidence is equal to 100%. However, the support of this rule is
only 1.41%. As in table 7.8, milk and pasta are the only heads selected. Unlike
Table 7.10, there are no order 2 associations.

Next we try a methodology based on tree models (Section 4.8). We have
chosen pasta, the most frequent product and the most frequent head of the
rule in the associations. We have built a tree model having pasta as target
variable and all the other products as predictors. Among the different paths lead-
ing to the terminal nodes, we consider those paths where all variables in the
path have the value 1. These paths corresponds to rules with high confidence.
Using a CHAID tree (CART gives similar results), we obtain the following
rules:

tunny & tomato sauce → pasta
tomato sauce & rice → pasta
rice & biscuits → pasta
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Table 7.10 Higher-order association rules ordered in terms of support.

and their respective measures of interestingness:

lift 1.41, confidence 95.24%, support 14.84%
lift 1.44, confidence 96.80%, support 12.14%
lift 1.40, confidence 94.23%, support 18.43%

Notice that all three rules, have a high confidence. This is to be expected, as a
tree model tries to develop the best predictive rules for the target variable.

7.5 Model comparison

It is quite difficult to assess local models such as association rules, simply because
a global measure of evaluation conflicts with the local nature of the model.
Furthermore, as the idea of searching for local patterns and rules is very recent,
there is little consensus in the data mining literature on how to measure their
performance (Hand, Mannila and Smyth, 2001). A natural idea is to measure
the utility of patterns in terms of how interesting or unexpected they are to the
analyst. As it is quite difficult to model an analyst’s opinion, we usually assume a
situation of completely uninformed opinion. The measures of interestingness for
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Table 7.11 Higher-order association rules ordered in terms of confidence.

a rule (Section 4.8), can then be used to assess performance. In this case study we
have considered support, confidence and lift as the main measures for validating
a set of association rules. But the needs of the user will govern which of these
three is the best one for selecting a set of rules. The support can be used to assess
the importance of a rule in terms of its frequency in the database; the confidence
can be used to investigate possible dependences between variables; and the lift
can be used to measure the distance from the situation of independence.

Ultimately, a set of rules has to be assessed on its ability to meet the analysis
objectives. Here the objectives are primarily to reorganise the layout of a sales
outlet and to plan promotions so as to increase revenues. Once the associations
have been identified, it is possible to organise promotions within the outlet so the
products that are put on offer at the same time are products which are not asso-
ciated. Correspondingly, by putting one product on promotion, we also increase
the sales of the associated products.

At the beginning of the chapter we saw that odds ratios and log-linear models
can also be employed to determine a global association structure between the
buying variables; in this case traditional statistical measures, such as G2, or AIC
and BIC, can be employed to assess the overall quality of a model. Although
they have a different purpose, classification trees can also be seen as a global
model capable of producing an association structure. Although association rules
are much easier to detect and interpret, I believe that good global modelling,
as expressed by log-linear and tree models, allows more stable and coherent
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conclusions. With enough time and sufficient knowledge to implement a global
model, I think this approach should be preferred.

7.6 Summary report

• Context: this case study concerns the understanding of associations between
buying behaviours. A similar kind of analysis can be applied to problems in
which the main objective is cross-selling to increase the number of products
that are bought in a given commercial unit (a supermarket, a bank, a travel
agency, or more generally, a company offering more than one product or
services). A related class of problems arise in promotional campaigns: it is
desirable to put on promotion the fewest possible number of products but
to derive any benefits on the largest possible number of products. This is
achieved by an efficient layout of the products, putting together those that
are most associated with each other.

• Objectives: the aim of the analysis is to track the most important buying
patterns, where a pattern means a group of products bought together. The cho-
sen measure of importance determines the results of the analysis. The most
common measures refer to the occurrence probability of a certain sequence
(support) or to the conditional probability of buying a certain product, hav-
ing bought others (confidence). There are strong analogies with the class of
problems that can be analysed using the methods in Chapter 8. The crucial
difference is that here we are not interested in the order in which the products
are bought.

• Organisation of the data: data is extracted from a large database containing
all commercial transactions in a supermarket in a given amount of time. The
transactions are made by someone holding one of the chain’s loyalty cards.
Although data is structured in a transactional database, it can be simplified
into a data matrix format, with rows identifying clients and columns associ-
ated with binary variables describing whether or not each product has been
bought. After some simplification the data matrix contains 46 727 rows and
20 columns

• Exploratory data analysis: exploratory data analysis was performed by look-
ing at all pairwise odds ratios between the 20 products, for a total of 190
association measures. The results can be visualised graphically and already
give important suggestions for the analysis objectives.

• Model specification: we compared association rules, originally devised for
market basket analysis problems, with more structured log-linear models, the
most important symmetric statistical models for analysing contingency table
data.

• Model comparison: it is rather difficult to compare association rules, which are
local, with log-linear models, which are global. The most effective measure
of comparison has to be the practical utility of a rule; this can be measured
in terms of cross-selling or by using the efficacy of a promotional campaign.
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• Model interpretation: association rules seem to be easier to understand than
the results from log-linear models, but it depends on how the results are
presented. Results from a log-linear model can be expressed graphically, using
dependences and odds ratios, and these measures can be understood. The
advantage of log-linear models is that they are based on inferential statements
and, can therefore provide confidence intervals for an association statement
or a threshold able to ‘filter’ out relevant rules from the many possible rules
and in a coherent way.





CHAPTER 8

Web clickstream analysis

8.1 Objectives of the analysis

This case study considers how visitor behaviour on a website can be predicted
by analysing existing data on the order in which the site’s webpages are visited.
Whenever a user links to a website, the server keeps track of all their actions in a
log file. What is captured is the click flow, or clickstream, of the mouse and the
keys the user employs to navigate the website. Usually every click of the mouse
corresponds to the viewing of a webpage, therefore we can define the clickstream
as the sequence of webpages requested. A user session describes the succession
of webpages seen by one user during one period logged on to the web. This may
contain pages from more than one site. A server session, or session, is the set of
pages for one particular site during the user session. Collectively these pages are
often known as a visit.

The objective of the analysis is to show how web clickstream data can be
used to understand the most likely navigation paths in a website, with the aim of
predicting, possibly online, which pages a visitor will view, given the path they
have taken so far. This can be very useful in finding the probability that a visitor
will view a certain page, perhaps a buying page in an e-commerce site. It can also
find the probability of entering (or exiting) the website from any particular page.
Note that since most pages are now dynamically generated, the idea of viewing
a particular page may need to be replaced with the idea of viewing a particular
class of page, or type of page; a class could be defined by meta information in
the header.

8.2 Description of the data

The data set comes from the log file for an e-commerce site. The source of the
data cannot be specified, but it is the website of a company that sells hardware
and software products; it will be known as a webshop. The accesses to the website
were registered in a log file for a period of about two years, 30 September 1997
to 30 June 1999. The log file was then processed to produce a data set called
sequences. This data set contains the userid (c value), a variable with the
date and the instant the visitor has linked to a specific page (c time) and the
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Table 8.1 The considered data set.

c−value c−time c−caller

70ee683a6df. . . 14OCT97:11:09:01 home
70ee683a6df. . . 14OCT97:11:09:08 catalog
70ee683a6df. . . 14OCT97:11:09:14 program
70ee683a6df. . . 14OCT97:11:09:23 product
70ee683a6df. . . 14OCT97:11:09:24 program

webpage seen (c caller). Table 8.1 reports a small extract of the available data
set, corresponding to one visit. Table 8.1 shows that the visitor corresponding to
the identifier (cookie) 70ee683a6df. . . entered the site on 14 October 1997
at 11:09:01 and visited, in sequence, the pages home, catalog, program,
product, program, leaving the website at 11:09:24.

The whole data set contains 250 711 observations, each corresponding to a
click, that describe the navigation paths of 22 527 visitors among the 36 pages
which compose the site of the webshop. The visitors are taken as unique; that is,
no visitors appears with more than one session. But a page can occur more than
once in the same session. This data set is an example of a transaction dataset.
However, unlike the market basket data in Chapter 7, the order in which the
pages are seen is important, and it may be the very objective of the analysis to
understand the patterns that produce it. The data set can be used directly in a form
like Table 8.1, with as many rows as the number of total clicks, to determine
association and sequence rules. Alternatively, we can use a derived data set
called visitors. It is organised by sessions and contains variables that can
characterise each of these sessions. The variables include important quantitative
variables, such as the total duration of the server session (length), the total
number of clicks made in a session (clicks), and the time at which the session
starts (start, setting 0 as midnight of the preceding day). More importantly for
our analysis, this data set contains binary variables that describe whether each
page is visited at least once (level 1) or not (level 0). Table 8.2 shows an extract
from visitors that corresponds to the session in Table 8.1.

The rows in Table 8.1 correspond to clicks, but the rows in Table 8.2 corre-
spond to sessions (or, equivalently, visitors, as they are unique). There are as
many rows as the total number of visits to the website. In particular, looking at
the last five columns, we obtain a binary data matrix that expresses which pages,
among the 36 considered, have been visited at least once in each session. Other
binary variables, derived from the original 36, can be inserted in visitors;
for instance, it is of interest for e-commerce to insert a variable Purchase

Table 8.2 The derived data set.

c−value c−time lengthclicks time homecatalogaddcartprogramproduct

70ee683a6df. . .14OCT97:11:09:01 24 5 11:09:01 1 1 0 1 1
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that indicates whether the session has led to at least one commercial transaction.
However, in this case study we will be mainly concerned with understanding the
navigation patterns, so we will mainly consider the 36 binary variables describing
the available webpages. To give an idea of the types of page, here are some of
the most common ones:

• Home: the homepage of the website.
• Login: where a user has to enter their name and other personal information,

during the first registration, to access certain services and products reserved
for customers.

• Logpost: prompts a message that informs whether the login has been suc-
cessful or whether it has failed.

• Logout: where the user can leave the personal characterisation given in the
login page.

• Register: to be recognised later on, the visitor has to obtain a userid
and password.

• Regpost: shows the partial results of the registration, asking for missing
information.

• Results: once the registration is accomplished, this page summarises the
information given.

• Regform1: here the visitor has to insert data that enables them to buy a
product; the data could be a personal identification number.

• Regform2: here the visitor has to subscribe to a contract in which they
accept the conditions for online commerce.

• Help: it answers questions that may arise during navigation through the
website.

• Fdback: a page that allows the user to go back to the previous page they
have visited.

• Fdpost: a page that allows the user to go back to a previously viewed page
in determined areas of the site.

• News: presents the most up-to-date products.
• Shelf: contains a list of the programs that can be downloaded from the

website.
• Program: gives detailed information about the software programs that can

be bought.
• Promo: demonstrates the features of a program.
• Download: allows the user to download software programs of interest.
• Catalog: contains a complete list of products on sale in the website.
• Product: shows detailed information on each product that can be purchased.
• P info: sets out the payment terms for purchasing products on the website.
• Addcart: where the virtual basket can be filled with items to be purchased.
• Cart: shows the current status of the basket, i.e. the items it contains.
• Mdfycart: allows the user to modify the current content of the basket,

perhaps by removing an item.
• Charge: indicates the required payment to buy the items contained in the

basket.
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• Pay req: displays the amount final amount to pay for the products in
the basket.

• Pay res: here the visitor agrees to pay, and payment data is inserted (e.g.
credit card number).

• Freeze: where the requested payment can be suspended, perhaps to add
new products to the basket.

The data set in this chapter has also been analysed by Blanc and Giudici (2002)
and Di Scala and La Rocca (2002).

8.3 Exploratory data analysis

Our main aim is to discover the most frequent sequence rules among the 36
binary variables describing whether any single page has been visited. To obtain
valid conclusions, the considered data has to be homogeneous. To assess whether
visitors (and, correspondingly, sequence) is homogeneous, we decide to
do an exploratory analysis on it. The available quantitative variables, which are
ancillary to the analysis, can be used in the exploratory phase. We now examine
the univariate distributions of clicks, length and start.

Table 8.3 shows summary measures for clicks. It turns out that the mean
number of clicks is 11. However, the mean is affected by the presence of extreme
observations to the right of the distribution, as the mode and the median consist,
respectively, of 5 and 8 clicks. In most of the cases more than 5 clicks (1%
quantile) and less than 47 clicks (99% quantile) are seen. The maximum number
of clicks is 192; this appears as an anomalous observation. To investigate this
further, we consider the boxplot in Figure 8.1. The distribution is heavily skewed
to the right, and the skewness coefficient in Table 8.3 is 4.7.

Table 8.4 shows summary statistics for length. Notice that this distribution
behaves like the previous one – the mean is considerably higher than the mode

Table 8.3 Summary measures for
click.

Mean 11,13 clicks
Mode 5 clicks

Minimum 1 click
Quantile 1% 5 clicks
First quartile 6 clicks
Median 8 clicks
Third quartile 13 clicks
Quantile 99% 47 clicks
Maximum 192 clicks

Skewness 4.7
Kurtosis 40.8
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Figure 8.1 Boxplot of the variable clicks.

Table 8.4 Summary measures for
length.

Mean 12.33 minutes
Mode 2.08 minutes

Minimum 0 seconds
Quantile 1% 45 seconds
First quartile 2.65 minutes
Median 5.12 minutes
Third quartile 11.4 minutes
Quantile 99% 108 minutes
Maximum 65.5 hours

Asymmetry 58.6
Kurtosis 5666

and the median. This reflects the fact that there may be anomalous observations
(sessions). Indeed, as the 95% quantile is equal to 47.6 minutes, we have that
95% of the sessions terminate after 47.6 minutes and 99% after 1 hour and 48
minutes. Notice that the minimum time is 0 seconds; this must be an error in the
log file or in the transcription of the data from the log file, so this observation
can be safely eliminated as an outlier.

Table 8.5 shows summary statistics for start, which indicates the time when
the website is first entered. The distribution appears skewed to the left. The mean
and median starting time of connection are around 14:30, the beginning of the
afternoon. Figure 8.2 shows the boxplot of the distribution, measuring time in
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Table 8.5 Summary measures
for start.

Mean 14:30
Mode 9:49

Minimum 2:30
First quartile 11:11
Median 14:43
Third quartile 18:17
Quantile 99% 23:40
Maximum 23:59

Asymmetry −0.49
Kurtosis 0.19

Figure 8.2 Boxplot of the variable start.

seconds. It shows a distribution that is indeed skewed to the left, but the skewness
is reflected in a large bunch of observations in the left tail (night visitors) not in
an asymmetric aspect of the central box (containing 75% of the observations).

On the basis of the previous results we decide to remove the outliers. From
now on, for clarity, we will express start in hours and length in minutes.
We eliminate all observations above the 99th percentile of the distributions for
clicks and length, which behave in a similar way. But we do not remove
the possible outliers for start. This is because of the nature of start and the
appearance of the observed distribution. Furthermore, these extreme users may
well be the most valuable customers. After removing the outliers, visitors
contains 22 152 observations, instead of the initial 22 527.

We now consider a descriptive analysis of the 36 binary variables at hand,
on the cleaned data set. The fourth column of Table 8.6 contains the relative
frequency of visit (support) for each of the 28 most frequent pages. Furthermore,
for e-commerce purposes, we have indicated the frequency distribution of the
same variables, conditional on the values of purchase. The overall propor-
tion of purchasers is 7.21%, therefore the third column can be obtained as a
weighted average of the other two, with weights equal to 7.21% and 92.79%.
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Table 8.6 Frequency distribution of the visits, and of the purchase.

Frequency of visit

Purchase = 0 Purchase = 1 Frequency of visit

ADDCART 26.33% 99.56% 31.61%

AGB 5.12% 8.33% 5.35%

CART 15.67% 55.73% 18.56%

CATALOG 42.68% 68.13% 44.52%

CHARGE 0.06% 1.63% 0.17%

DOWNLOAD 3.96% 65.44% 8.40%

FDBACK 2.47% 1.88% 2.42%

FDPOST 0.78% 0.81% 0.79%

FREEZE 19.00% 99.94% 24.84%

HELP 8.49% 8.58% 8.50%

HOME 49.32% 40.89% 48.71%

LOGIN 40.18% 65.87% 42.03%

LOGOUT 1.90% 4.01% 2.05%

LOGPOST 30.42% 73.64% 33.53%

MDFYCART 3.46% 10.33% 3.96%

NEWS 9.60% 4.76% 9.25%

P−INFO 49.52% 32.50% 48.29%

PAY−REQ 10.45% 97.43% 16.73%

PAY−RES 5.05% 90.61% 11.22%

PRODUCT 83.69% 96.49% 84.62%

PROGRAM 76.81% 75.89% 76.74%

PROMO 0.27% 0.88% 0.32%

REGFORM1 1.24% 2.07% 1.30%

REGFORM2 1.28% 1.31% 1.29%

REGISTER 26.17% 35.94% 26.88%

REGPOST 16.79% 32.25% 17.91%

RESULT 4.15% 4.45% 4.18%

SHELF 15.90% 74.64% 20.13%
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Table 8.7 Conditional means of the quantitative variables with
respect to purchase.

Purchase N. Obs. Variable Mean

0 20555 clicks 10

length 9
start 14

1 1597 clicks 17
length 21
start 14

The most visited pages are, in decreasing order, product (84.62%), program
(76.74%), home (48.71%), p info (48.29%) and catalog (48.71%). Although
we are not interested here in studying the dependence of purchase on the other
variables, we can draw interesting preliminary conclusions from Table 8.6. For
instance, notice that, even if the 31.61% of visitors add at least one product to
the virtual basket (addcart =1), the application of Bayes’ rule (Section 5.1)
shows that the percentage of them who actually purchases something is only
equal to (99.56% × 7.21%)/31.61% = 22.61%. Further conclusions about pur-
chase can be drawn by considering the mean values of the quantitative variables,
conditional on the values of purchase. They are described in Table 8.7.

From Table 8.7 notice that the time of entering the website (start) is about
the same, but the purchasers make, on average, more clicks (17 against 10) and
stay longer in the site (21 minutes against 9 minutes) This could occur because
purchasing might take a long time and require many clicks to confirm the order.
Given the heterogeneous nature of the navigators, we decide to perform a cluster
analysis, in order to find homogeneous clusters of behaviours. Our primary goal
is not cluster analysis per se, so cluster analysis can be seen as preliminary to
the local models we are seeking.

The clustering variables we consider are the three quantitative variables start,
length and clicks, plus the binary variable purchase, all of them instru-
mental to our objective of understanding navigation patterns. We begin with a
hierarchical method to find the number of groups and then try a non-hierarchical
method to allocate observations into the determined number of groups. We use the
Euclidean distance as our distance function and Ward’s method (Section 4.2) as
our hierarchical method, after some comparative experiments. To allocate obser-
vations we choose the K-means non-hierarchical method. From the hierarchical
method, we obtain the number of clusters as 4. In fact, a further reduction in
the number of clusters leads to a noticeable decrease in R2 and an increase in
SPRSQ. This can be seen in Figure 8.3, which plots R2 and SPRSQ versus the
number of groups in the hierarchical agglomerative algorithm.

We then apply the K-means algorithm to the data, with the number of clusters
set to 4. Table 8.8 summarises the results; it shows the size of each cluster and
the mean values of the four variables used in the classification. For purchase
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Figure 8.3 Behaviour of R2 (increasing) and SPRSQ (decreasing).

Table 8.8 Results of the cluster analysis.

Cluster N. obs. Variables
Cluster
mean

Overall
mean

1 8802 clicks 8 10
length 6min 10min
start 18h 14h
purchase 0.034 0.072

2 2859 clicks 22
length 17min
start 15h
purchase 0.241

3 1240 clicks 18
length 59min
start 13h
purchase 0.194

4 9251 clicks 8
length 6min
start 10h
purchase 0.039

the mean represents the proportion of actual purchases. Notice that there are
two bigger groups, 1 and 4. From this final cluster allocation we have R2 =
59%, which indicates a good performance given the complexity of the data. To
better understand the cluster configurations, the percentages of visits to the 36
webpages can be calculated separately for each cluster. There is not enough space
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to publish all the results, so here is a summary description of the mean profile of
each cluster, obtained by interpreting the percentages and the conditional means
in Table 8.8:

• Cluster 1: they connect in the late afternoon, at about 18; they visit about 2
pages (2 less than the overall mean); the length of the visit is about 6 minutes
(4 less than the overall mean), and they purchase less than the mean (about
3.4% against 7.21%). They are particularly interested in the pages product
(82% viewed) and program (75.74% viewed); the other pages are viewed
in a proportion well below the overall mean.

• Cluster 2: they link up at about 15; they visit many pages (22, 12 more
than the overall mean); they stay connected for a long time (17 minutes) and
purchase much more than the others (24% against the overall 7.22%). Con-
sequently, they are very interested in all pages related to purchase: product
(95% viewed), addcart (63% viewed) and freeze (55% viewed). They
are also frequent visitors, as the register page is visited less than the
average (47%).

• Cluster 3: they link up at about 13; they visit many pages (18); they stay
connected for a very long time (1 hour) and purchase more than the others
(19% against the overall 7.22%). They seem to be very similar to the visitors
in cluster 2 with respect to the visited pages, but they seem to be less frequent
visitors and they stay connected for longer.

• Cluster 4: they link up at about 10, four hours before than the mean; they visit
fewer pages (8); they stay connected as the overall population (10 minutes)
and purchase little (only 3.9%) They are similar to the visitors in cluster 1,
as they often visit product (83%) and program (75%). The difference
between the two clusters seems to be in the starting time.

The results obtained from cluster analysis confirm heterogeneity of behaviours.
To find navigation patterns, we decide to concentrate on only one cluster and we
choose cluster 3. This choice is obviously subjective but it has two important
features. First, the visitors in this cluster stay connected for a long time and
visit many pages. This will help us explore the navigation sequences between
the webpages. Second, this cluster has a high probability of purchase; it seems
important to consider the typical navigation pattern for a group of high purchasers.
We shall therefore consider a reduced data set, corresponding to cluster 3, with
1240 sessions and 21 889 clicks.

8.4 Model building

8.4.1 Sequence rules

To meet the objectives in Section 8.1 and for the type of data available, we
begin by applying the associative local models in Section 4.8. Since the transac-
tions considered here are visit sessions, the order in which pages are visited is
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important, so we shall consider the application of sequence rules, which are asso-
ciative rules ordered by a variable. In our case such variable is start. Sequence
rules are to be calculated on the sequence data set corresponding to cluster 3,
which looks like the data in Table 8.1. Furthermore, to obtain useful results,
we have appended two extra pages: at the beginning of each session there is a
start session page and at the end of each session there is an end session
page. The total number of pages is therefore 38. To choose a sequence model,
we have applied the Apriori algorithm implemented in SAS Enterprise Miner,
setting a support threshold equal to 0.05 × support (mode), where support(mode)
indicates the support of the most seen page among the 38 considered.

As a result of the algorithm, we can obtain the sequence rules with the highest
interestingness, as measured by the support and confidence. Consider a sequence
A → B. Suppose for simplicity that it is an indirect sequence of order 2 and
indicate with NA→B the number of visits which appear in the sequence at least
once. Let N be the total number of server sessions. Based on Section 4.8, the

Table 8.9 The most frequent indirect sequences of order 2.
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support for A → B is obtained by dividing the number of server sessions which
satisfy the rule by the total number of server sessions. Therefore the support
is a relative frequency that indicates the percentage of users for which the two
pages have been visited in succession. The confidence of A → B is obtained by
taking the number of server sessions which satisfy the rule and dividing it by
the number of sessions containing page A. Therefore the confidence expresses
the probability that during a server session where page A has been viewed then
page B has subsequently been viewed.

Table 8.9 reports the most likely sequences of order 2, for the sequence data
set of cluster 3. In other words, we search a pattern of sequences characterised
by maximum support among all sequences of order 2. Notice that most of the
sequences involve start session and/or end session; this is obvious as
each session will contain both of them and we are considering indirect rules.
Among the other sequences, program → product is the sequence with the
highest frequency, followed by product → product; product → product
will not be detected by an association rule that is not sequential. Table 8.9 estab-
lishes that the estimated probability is 64.68% that the product page is seen at
least twice in a session.

We now search the most supported indirect sequences among those
of any order. Table 8.10 reports the results from the Apriori algorithm.

Table 8.10 The most frequent indirect sequences of any order.
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Table 8.11 The most frequent direct sequences of order 2.

Besides those already examined, notice that the most frequent sequences are
sequences to do with visiting the most seen pages in the cluster, namely
start session → product → end session and start session →
program → end session. We now search the most likely direct sequences.
Although direct sequences of order 2 can be easily obtained from the software,
this is not the case for higher-order sequences. Table 8.11 reports the most
likely direct sequences of order 2. Notice that program → product is the
most likely direct sequence, but its support is now about 0.60, against 0.73 for
indirect sequences (Table 8.10). This means that other pages are viewed between
program and product on 13% of occasions. Table 8.11 also allows us to make
sensible conclusions about which pages are the entrance pages: home, program,
product, logpost. These are listed among those having the highest support
of occurring with start session. But there are no sequences containing
end session as head of a rule; this means that the site is typically entered
from a few pages (the four that are listed) but it is exited from a wide variety of
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pages. Sequence rules can also be deduced by using a classification tree that has
as its target variable one of the considered pages, which acts as a supervisor.

8.4.2 Link analysis

We now consider how we can take the results from the sequence rules and use
link analysis to build up a global model. In the Enterprise Miner implementation,
link analysis takes as its input those sequences having a prespecified support. For
comparison we will consider all indirect sequences of any order up to a maximum
of 10. As in Section 8.4.1, we will use the default threshold of support(mode),
which is 0.05. Link analysis considers each of the obtained sequences as a row
observation in a data set called link. It then counts how many of the observations
include a certain sequence. This is called the count of a sequence and is the
fundamental measure for link analysis.

The main output of a link analysis is a graph of nodes and links. Figure 8.4
shows the graph for our webshop data.

In the graph each page is represented by a node, and links are drawn between
the nodes. A link is drawn between two nodes if the count of the corresponding
sequence of order 2 is non-null (i.e. the sequence is contained at least once
in the link data set). The graph therefore tells us which nodes are connected
and which are not. Usually the thickness of a link is directly related to the
size of the count. For instance, the link between home and program is quite

Figure 8.4 Link analysis graph.
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thick, as the corresponding sequence appears often in the link data set. Links
are directed; for instance, to orientate an edge between two nodes A, B the two
counts of A → B and B → A in the link data set are compared and the higher
count determines the orientation. Both orientations will be present when there is
substantial parity. For instance, shelf precedes download in the graph, as the
count of shelf → download is higher than that of download → shelf.

The size of the nodes typically depends on a so-called centrality measure. This
concepts comes from ideas in social networks. A first-order centrality measure
(C1) basically means that the importance of a node depends on the number of
connections it has. On the other hand, a second-order centrality measure (C2)
means that the importance of a node depends on the number of connections that
the nodes connected to it have. In both cases each connection and link can be
weighted according to its count in the link data set. We will describe the size of a
node using an unweighted first-order centrality measure. Therefore in Figure 8.4
the pages end session, product, program and shelf turn out to be the
largest nodes, as they are connected to many others. Table 8.12 gives the values
of the variables used to plot Figure 8.4.

The position of a node may also depend on the counts. The counts between
each pair of pages are put in a proximity matrix. Multidimensional scaling is then
used to reproduce these proximities with a bidimensional Euclidean distance, and
correspondingly to derive two (X, Y ) points. The higher the count, the closer the
points on a Cartesian graph. For instance, product and program have a large
count and their points are close together.

Table 8.12 Coordinates from the link analysis.
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8.4.3 Probabilistic expert systems

Probabilistic expert systems build up global statistical models by means of sub-
sequent local factorisations. Although there are strong similarities with sequence
rules, the difference is substantial. In the application considered here, sequence
rules state that the visit to page B depends on the visit to page A, and establishes
that this is true if the support (and possibly the confidence) of the rule A → B

is higher than a prefixed threshold. In a probabilistic expert system the binary
random variable B depends on the occurrences of the binary random vari-
able A if P(B|A, others) �= P(B|others), where others are the other variables
considered. Therefore probabilistic expert systems are global models for the
dependence between variables, whereas association rules are local models for
the dependence between the occurrence of events. In our present context the
pages start session and end session are not random variables, hence
they will not appear in the model, which will contain at most 36 variables. A
further difference is that discrete probabilistic expert systems are actually cal-
culated using contingency tables in a similar way to odds ratios (Chapter 7),
therefore they cannot easily take account of temporal order.

To compare probabilistic expert systems and association rules, we will fit a
probabilistic expert system to the available data set, with 1240 sessions. This
methodology is not yet fully implemented in SAS, so we have to build it using
a sequence of logistic regressions. The problem with this approach is that no a
priori ordering of the variables is given, so each attempted logistic regression
has been based on all the chosen variables, except the one adopted as response.
Alternatively, we could have used a software package that supports probabilistic
expert systems, such as Hugin (www.hugin.com).

The graphical model in Figure 8.5 is has been obtained on the basis of 17
logistic regression models, one for each of the 17 pages with highest support.
The relevant page is taken as the target variable and the other 16 binary variables
are used as explanatory variables. The model is built from the logistic regres-
sion results by supposing that if a significantly positive odds ratio occurs, this
corresponds to the existence of a link from the relevant explanatory variable to
the target variable. The link is represented on the graph by an arrow from the
explanatory variable to the target variable. Because we have no a priori logical
ordering of the variables, we have not obtained a single model, but a graph that
can be compatible with different orderings.

Figure 8.5 can be compared with the results obtained from the indirect and
direct sequence rules. In general, sequences can contain start session and
end session, but the expert systems cannot contain them as they are not
random variables. Consequently, most of the selected sequences are not in the
graph. Another main difference is that the expert systems cannot contain rules
of the type A → A, they are based on an unordered data set (visitors); this
is especially noticeable with indirect rules. Here most of the direct rules chosen
correspond to a link in the expert systems. Indeed probabilistic expert systems
can be deemed closer to direct rules. The model in Figure 8.5 determines the
pages variable that most influences webpage selection; since this model does not
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Figure 8.5 Directed graph built by recursive logistic regression.

consider the order of the visits, these pages can precede or follow the visit to
the target page. In the graph there are double arrows, so the model is not a true
probabilistic expert system; that would require us to specify the order of the
variables. For instance, we could use the order specified by the selected indirect
or direct rules.

Even though this is a global model, it can still give precise local statements. For
instance, the odds ratios for the variable product with all other 16 variables can
be estimated from the local logistic regression of product on all others. These
odds ratios are reported in Table 8.13. It turns out that product is significantly
positively associated with p info, pay req, addcart and program, and
these are precisely the nodes to which it is linked in Figure 8.5. Blanc and
Tarantola (2002) give a different analysis of this data set, comparing probabilistic
expert systems and dependency networks, a class of more elaborate recursive
graphical models (Heckerman et al., 2000).

8.4.4 Markov chains

Probabilistic expert systems are global models for analysing the dependence
between variables; they are different from sequence rules, which model depen-
dence between events. Markov chain models, (Section 5.7), can be used as global
models for sequences of events. Here we consider discrete Markov chains. The
idea is to introduce dependence between time-specific variables. In each session,
to each time point i, corresponding to the ith click, there corresponds a discrete
random variable with as many levels as the number of pages; these are called
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Table 8.13 Estimated odds ratios of the page product.

Odds Ratio Estimates

Point 95% Wald
Effect Estimate Confidence Limits

PROGRAM 9.461 5.105 17.534
HOME 0.593 0.321 1.096
CATALOG 1.358 0.724 2.547
LOGIN 2.066 0.790 5.403
ADDCART 17.889 5.305 60.323
LOGPOST 0.494 0.190 1.284
P−INFO 36.115 10.821 120.535
FREEZE 2.136 0.357 12.769
PAY−REQ 21.256 0.489 924.314
REGISTER 0.315 0.140 0.708
SHELF 0.384 0.161 0.916
CART 0.375 0.168 0.836
PAY−RES 0.202 0.007 5.906
REGPOST 1.663 0.645 4.288
DOWNLOAD 0.353 0.125 0.997
HELP 1.613 0.543 4.794

states of the chain. The observed ith page in the session is the observed realisa-
tion of the Markov chain, at time i, for that session. Time can go from i = 1 to
i = T , and T can be any finite number. A session can stop well before T ; in this
case the last page viewed is an absorbing state (end session for our data).

A Markov chain model establishes a probabilistic dependence between what
is seen before time i and what will be seen at time i. In particular, a first-order
Markov chain, which is the model we consider here, establishes that what is
seen at time i depends only on what is seen at time i − 1. This short-memory
dependence can be assessed by a transition matrix that establishes the proba-
bility of going from any one page to any other page in a single step. For 36
pages there are 36 × 36 probabilities of this kind. The conditional probabilities
in the transition matrix can be estimated from the available conditional frequen-
cies. By making the assumption that the transition matrix is constant in time
(homogeneity of the Markov chain), we can use the frequencies of any two
adjacent pairs of time-ordered clicks to estimate the conditional probabilities.
Note the analogy of Markov chains with direct sequences. Conditional prob-
abilities in a first-order Markov model correspond to the confidence of order
2 direct sequence rules, therefore a first-order Markov chain is a model for direct
sequences of order 2. Furthermore, it can be shown that a second-order Markov
model is a model for direct sequences of order 3, and so on. The difference is
that the Markov chain model is global not local. This is mainly reflected in the
fact that Markov chains consider all pages, not just those with a high support.
The Markov model is a probabilistic model, hence it allows inferential results to
be obtained.
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Table 8.14 The data set page for the Markov chain model.

To build a Markov chain model (first-order and homogeneous), we have
reorganised the data in a new data set called page, in which there are two vari-
ables: page now and page tomorrow. page now indicates what is viewed
by the visitor at a certain click and page tomorrow indicates what is viewed
immediately afterwards. Table 8.14 is an extract from this data set. Each row
in Table 8.14 corresponds to a pair of pages that are seen one after the other.
For a given visitor, the second term in a row becomes the first term in the
next row. For a new visitor, we start with a new pair of pages and apply
the same rule. The transition matrix can be calculated from this data set. It
is a table with 37 rows (the 36 pages and start session) and 37 columns
(the 36 pages and end session). The rows represent page now (they thus
exclude end session, which cannot appear first) and the columns represent
page tomorrow (they exclude start session, which cannot appear sec-
ond). Therefore a transition matrix contains a total of 37 × 37 = 1369 esti-
mated probabilities. There is not enough space to publish the whole transition
matrix.

First of all, we can evaluate where a visitor is most likely to enter the
site. To obtain this we have to consider the transition probabilities of the row
start session. Figure 8.6 is a graph of the probabilities, excluding those
estimated to have a null probability. The most frequent entrance page is home
(48.81%), followed by program (17.02%), product (14.52%), logpost
(9.19%) and catalog (6.77%). This is consistent with the nature of the visi-
tors belonging to this cluster. Unlike what happens with association rules, the
transition probabilities sum to 1 by row and column. We can then consider the
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most likely exit pages. To obtain this we have to consider the transition proba-
bilities of the column end session. Figure 8.7 is a graph of the probabilities,
excluding those estimated to have a null probability. The most likely exit page
is product (20.81%), followed by logpost (12.10%), download (10.56%),
home (9.19%) and p info (6.94%).

From the transition matrix we can establish a path that connects nodes
through the most likely transitions. One possibility is to proceed forward from
start session. From start session we can connect to the page with
which start session has the highest probability of transition; this is home.
Next follows program, then product and then p info. From p info the

Figure 8.6 Representation of the transition probabilities from the page
start−session.

Figure 8.7 Representation of the transition probabilities from the page end−session.
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most likely transition is back to product, so the path ends. This information
can be represented graphically as in Figure 8.8, which includes estimates for the
conditional probabilities of transition. We can compare what the previous path
would be, using the confidence index in the sequence rule algorithm. Initially,
from start session the highest confidence is reached for home (45.81%, as
obtained by Markov chains), followed by program (20.39%, more than with
Markov chains), product (78.09% as against 70.18%). The next most probable
link is now with addcart (28.79%) rather than p info. The differences with
Markov chains are due to the fact that the direct sequences consider only pages
which pass a certain support.

Following similar logic, we can also construct a backward path as in Figure 8.9,
which is built starting from end session. The page with the highest transition
probability to end session is product (20.81%). Then the highest transition
to product is program (42.41%), and so on. Here the path is complete, as is
it reaches start session. The paths in Figure 8.8 and 8.9 are not the most
likely ones; these could be calculated by comparing all Markov chains of all
orders, a formidable computational task. Alternatively, sequence rules can be used
(Section 8.4.1); they are local, easy to calculate and easy to implement, even for
large data sets. But because they are local, they are not normalised, therefore
they do not sum to 1. We conclude this Markov chain analysis by describing the
estimated transitions for some typical pages:

• addcart: the highest transition is to freeze (57.01%), followed by mod-
ifycart (8.24%), addcart (7.49%), login (7.38%). On the other hand,
addcart is mostly reached by product (78.82%).

start_session

p_info

program producthome
45.81% 17.80% 70.18%

26.73%

Figure 8.8 The forward path of the most likely transitions.

end_session

home

program catalogproduct

start_session

20.81% 42.14% 38.41%

29.22%

22.28%

Figure 8.9 The backward path of the most likely transitions.
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• shelf: once the programs in shelf are seen, most visits go to download
(39.35%), back to shelf (16.06%) or to cart (8.09%).

• download: once a program is downloaded, visitors return to the same page
(46.88%), or leave the site (end session is 20.47%) and on 13.44% of
occasions they go to shelf.

• catalog: after catalog, the most seen page is program (78.73%), while
all others are visited on less than 5% of occasions. On the other hand,
catalog is reached from home (22.28%), logpost (13.60%) and prod-
uct (10.87%)

• pay res: having consented to pay, a visitor goes to shelf with a probability
of 33.77%, to cart (14.83%) or to end session (11.70%). On the other
hand, pay res reached from pay req on 81.55% of occasions.

8.5 Model comparison

As discussed in Chapter 6, it is quite difficult to evaluate local models. Here the
situation is complicated by the fact that in Section 8.4 we compared local models
with global models. For global models, such as probabilistic expert systems and
Markov chains, statistical evaluation can proceed as in Sections 6.2, 6.4 and 6.5,
or in terms of computationally intensive methods. But the real problem is how
to compare them with sequence rules. In the absence of other considerations,
a simple and natural scoring function for a sequence rule is its support, which
gives the proportion of the population to which the rule applies. Alternatively,
if the objective is to predict visiting behaviour, in terms of conditional prob-
abilities of moving from one page to another, the confidence or the lift may
be used.

Among the considered models, direct sequences and Markov chains are com-
parable with each other and can be more easily interpreted, as they lead to
statements having a unique meaning (these are direct sequence rules to which
a conditional probability is attached). Indirect sequences can be seen as more
exploratory; they lead to the link analysis representation, which is a very helpful
global picture of the relationships between pages. On the other hand, probabilistic
expert systems do model problems of a different nature, in which the modelled
dependency is between random variables rather than event occurrences.

We now compare briefly the results obtained with direct sequence rules and
Markov chain models.

The set of rules selected in Table 8.11 can be scored in terms of support, as
we have already done. To measure how usefully the body of a rule predicts the
head of the rule, we can calculate its lift. We do this by taking each confidence in
the table and dividing it by the support of the corresponding head (which consists
of a single page); these supports are given in Table 8.15.

Dividing the confidences in Table 8.11 by the corresponding supports in Table
8.15, we find that 24 of them have a lift greater than one; some have a high lift
value and are therefore very informative. This is the case for the sequences
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program → product (lift = 4.35) and catalog → program (lift = 7.64).
The lift of 7.64 is saying that the probability of visiting program is about 7.64
times greater when catalog is seen beforehand than what it would be by chance.
On the other hand, the rules product → product, start session →
product and home → product are not informative, as their lift values are
close to 1 (indeed slightly lower).

Similar conclusions can be drawn from the Markov chain model; the lift of
each transition can be calculated from dividing the transition probabilities by the
initial state probabilities, corresponding to the probabilities which are (partly)
reproduced in Table 8.15. It can thus be deduced, for example, that the lift of
program → product is 0.7018/0.1793 = 3.91, and the lift of catalog →
program is 0.7873/0.1077 = 7.31. Notice that both lifts are slightly lower than
for sequence rules; this is because sequence rules only consider as transition
candidates those pages whose joint support is higher than a certain threshold,
whereas Markov chains consider them all.

Table 8.15 Support of the most frequent pages in cluster 3.

C−CALLER

C−caller Frequency Percent

product 4366 17.93%

program 2622 10.77%

home 1944 7.99%

p−info 1715 7.04%

catalog 1279 5.25%

End−session 1240 5.09%

start−session 1240 5.09%

login 1135 4.66%

freeze 1120 4.60%

addcart 935 3.84%

pay−req 879 3.61%

logpost 857 3.52%

shelf 803 3.30%

cart 644 2.65%

download 640 2.63%

Register 631 2.59%

pay−res 607 2.49%

Regpost 504 2.07%
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Ultimately, though, a set of rules has to be assessed on its ability to
meet the analysis objectives. In this case study the informative value of
start session → end session is null, but in Table 8.10 it has the largest
support and confidence (100%). On the other hand, the informative value of the
rules that go from start session to other pages, and from other pages to
end session can be extremely important when designing the website.

8.6 Summary report

• Context: this case study concerns the identification of navigation patterns in a
website. A similar kind of analysis can be applied to problems in which there
is discrete time-ordered data identifying behavioural patterns; for instance,
in consecutive commercial transactions (online or otherwise), or in study-
ing people’s careers. The peculiarity of web behaviour is that the average
number of transactions per individual, in a given period, is higher than in
other contexts.

• Objectives: the aim of the analysis is to track the most important patterns
of visits, where a pattern means a time-ordered sequence of pages, possibly
repeated. The chosen measure of importance determined the results of the
analysis. The most common measures refer to the occurrence probability
of a certain viewing sequence (support) or to the conditional probability of
viewing a certain page, having viewed others in the past (confidence).

• Organisation of the data: data is extracted from the log file that registers the
access to a website. It is structured in a transaction database. It may be further
simplified into a data matrix format, but then the temporal order will be lost.

• Exploratory data analysis: this phase of the analysis is necessary to draw valid
conclusions. On the basis of three continuous variables related to visitor char-
acteristics – the number of clicks in the session, the time of the connection
and the length of the connection – we removed outlying observations, which
are bound to arise in this context. Furthermore, a preliminary cluster analy-
sis identified four distinct behaviours. This allows us to identify patterns for
homogeneous groups of visitors. We concentrated on one cluster.

• Model specification: the data mining analysis needed here is an example of
a local model or pattern. We therefore compared sequence rules, based on
the Apriori algorithm, with link analysis. Furthermore, we considered more
traditional statistical techniques, based on the whole data set but using local
computations – probabilistic expert systems and Markov chain models.

• Model comparison: it is rather difficult to assess local models; consequently,
it is also hard to compare them with global based statistical models. Another
difficulty when comparing local models with global models is that they are
based on different assumptions. Sequence rules can be compared directly
with Markov chains. It turns out that the most probable patterns identified by
the two procedures are rather similar. The choice between the two methods
therefore depends on the scope of the rules themselves.
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• Model interpretation: the rules can be easily interpreted, but there may be
a problem if the analysis produces a very large number. Statistical models,
such as Markov chains, make it considerably easier to select the most relevant
rules, as they can be evaluated in a more coherent way.





CHAPTER 9

Profiling website visitors

9.1 Objectives of the analysis

The aim of this case study is to analyse web access data to classify the visitors
into homogeneous groups on the basis of their behaviour. This will lead us to
identify typical visiting profiles. In other words, we are trying to match each
visitor to a specific cluster, depending on their surfing habits on that particular
site. This will give us a behavioural segmentation of the users that we can use
in future marketing decisions. We can also monitor the evolution of the kind of
‘customer’ who comes to the site by looking at how the distribution of users
in the different behavioural segments evolves over time. Then we can see how
our business decisions affect the different segments, whether they increase visits
by a particular segment or whether they decrease them. Examples of business
decisions are changes to the webpages and the use of publicity. The data set
in this chapter has also been analysed by Cadez et al. (2000) and Giudici and
Castelo (2001); Giudici and Castelo take a Bayesian viewpoint.

9.2 Description of the data

The data set contains data about the pages visited of the website
www.microsoft.com by 32 711 anonymous visitors. For each visitor we have
indicated the pages of the site that have been visited in the first week of
February 1998. Visitors are identified with an identification number (from 10 001
to 42 711) and no personal information is given. The total number of visited
pages is 296. The pages are identified by a number that corresponds to a title
and a corresponding address. For example, number 1057 refers to the page
‘MS PowerPoint News’ of the PowerPoint group of pages. The numeric codes
associated with the pages are integers that go from 1000 up to 1295. To give a
better idea of the data set, here are its first few lines:

C, ‘‘10908’’, 10908
V, 1108
V, 1017
C, ‘‘10909’’, 10909
V, 1113

Applied Data Mining. Paolo Giudici
 2003 John Wiley & Sons, Ltd ISBNs: 0-470-84679-8 (Paper); 0-470-84678-X (Cloth)
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V, 1009
V,1034
C, ‘‘10910’’, 10910
V, 1026
V, 1017

Each visitor is indicated by a line (beginning with the letter C) that identifies
them using with a numerical code. The code is converted into a number. The
visitor’s line is then followed by one or more lines that show which pages are
visited. The pages that are not visited do not appear. Unlike in Chapter 8, this
time it is convenient to work with a derived data matrix, organised by visitors.
This matrix will describe, for each visitor, how many times each page has been
viewed. We will therefore have one categorical variable for each page. And also
unlike Chapter 8, we count how many times a page is viewed, not just whether
the page has been viewed at least once. As a result, we now have a discrete
quantitative random variable, not a binary variable.

There is a problem with setting up the data matrix. The number of variables in
the data set corresponds to the number of webpages viewed, and at 296 it is too
large. It will be likely that many combinations of these variables will never arise,
or they will arise very rarely, so there will not be much statistical information.
To perform a valid cluster analysis of visitors into groups, we need to clean
and summarise the original file so we obtain a less complex data matrix. To do
this, we group the webpages into 13 homogeneous categories, reflecting their
logical meaning in the Microsoft website. The number of discrete variables is
then reduced from 296 to 13. Each variable corresponds to one of the 13 groups:

• Initial: this includes all the general access pages and all the pages dedicated
to research.

• Support: this includes all the pages related to the requests for help and support.
• Entertainment: this includes all the pages that refer to entertainment, games

and cultural software.
• Office: this has all the pages which refer to the Office software.
• Windows: this groups together all the pages related to the Windows operat-

ing system.
• Othersoft: this refers to all the pages relating to software other than Office.
• Download: this includes all the pages regarding software downloading or

updating.
• Otherint: this has all the pages dedicated to services through the internet for

IT professionals; these pages are different from the download pages.
• Development: this has all the pages dedicated to professional developers (e.g.

Java).
• Hardware: this includes the pages relating to Microsoft hardware.
• Business: this has pages dedicated to businesses.
• Info: this includes all the pages which give information about new products

and services.
• Area: this has all the pages which refer to local access, depending on the

specific language.



PROFILING WEBSITE VISITORS 257

Table 9.1 Extract from the visitors data matrix.

Using this grouping, we can derive a visitor data matrix with 32 711 rows and 13
columns. Table 9.1 shows part of it. Corresponding to each page there is a dis-
crete variable that shows the number of times each person has visited the specific
group of pages. It does not include information on the order in which the pages
are visited. We have already commented on this point in Chapter 8. To achieve
our initial aims, we carry out the analysis in three stages: (1) an exploratory
phase looks at preliminary considerations; (2) an analysis phase determines the
behavioural classes of users by applying cluster analysis and Kohonen maps;
(3) a comparison phase evaluates the performance of the two descriptive models
in terms of grouping and predictive ability.

Figure 9.1 Frequency of visits to the webpages of the website being analysed.
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9.3 Exploratory analysis

The exploratory analysis reveals a high level of dispersion with respect to the
pages visited. Figure 9.1 shows the absolute frequency distribution of visits to
each page. Notice that the pages coded with the lowest numbers (from 1000
onwards) have the highest frequencies, and there appears to be a decreasing
pattern, as higher-numbered pages are being considered. From a preliminary
examination of the data it turns out that the most frequently visited page is
page number 1008, ‘Free Downloads’. We have also discovered that each visitor
looks, on average, at 4 pages, as this is the sample mean. However, the mode
is only 2, reflecting a positively skewed distribution of the variable ‘number of
visited pages’. Given the size of the available data, the number of pages to be
considered (296) is too large for a valid categorical data analysis. If all variables
were considered, there would be too many parameters to be estimated, with a
consequent loss in statistical efficiency of the procedure. It becomes necessary
to have a preliminary transformation of the data and in particular to group the
pages together, as we discussed in Section 9.2.

9.4 Model building

The first part of the analysis aims to identify the different behavioural segments
within the sample of users. We use two different descriptive data mining tech-
niques: cluster analysis and the unsupervised networks known as Kohonen maps.
Both techniques allow us to partition the data to identify homogeneous groups or
types possessing internal cohesion that differentiates them from the other groups.
We use two techniques so we can compare their efficiency, but also to check
that they produce consistent results. We will use the results of the cluster anal-
ysis to help us determine the optimal number of clusters for the Kohonen map
implementation.

9.4.1 Cluster analysis

Chapter 4 explained the main techniques of hierarchical cluster analysis as well
as the non-hierarchical K-means method. A variation of the K-means method is
used in the SAS procedure fastclus that we will employ. The basic idea is to
introduce seeds, or centroids, to which statistical units may be attracted, forming
a cluster. It is important to specify the maximum number of clusters, say G, in
advance. As discussed in Section 4.2, hierarchical and non-hierarchical methods
of cluster analysis do have some disadvantages. Hierarchical cluster analysis does
not need to know the number of clusters in advance but it may require too much
computing power. For moderately large quantities of data, as in this case study,
the calculations may take a long time. Non-hierarchical methods are fast, but
they require us to choose the number of clusters in advance.

To avoid these disadvantages and to try to exploit the potential of both the
methods, we can adopt two possible approaches. We can extract from the data a
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sample of limited size, then carry out a hierarchical cluster analysis to determine
G, the optimal number of clusters. Once we have a value for G we take the
G means of the clusters as our seeds; then we continue with a non-hierarchical
analysis on the whole data set using a number of clusters equal to G and allocating
each observation to one of them. Alternatively we can work on the whole data
set, carrying out a non-hierarchical analysis with a large value of G. We then
consider a new data set, made up from the G group means, each endowed with
two measurements, one indicating the cluster size and one the dispersion within
the cluster. A hierarchical analysis is then carried out on this data set to see
whether any groups can be merged. It is essential to indicate the frequency and
the dispersion of each cluster, otherwise the analysis will not take account of
clusters having different numbers and variabilities.

The Clustering node of Enterprise Miner implements a mixture of both
approaches in a three-stage procedure. Initially a non-hierarchical clustering
procedure is run on the whole data, having chosen a large value of G. Seeds are
initially set as the first G available observations. Then an iterative procedure is
run; at each step of the procedure, temporary clusters are formed, allocating each
observation to the cluster with the seed nearest to it. Each time an observation is
allocated to a cluster, the seed is substituted with the mean of the cluster, called
the centroid. The process is repeated until convergence is achieved, namely, until
there are no substantial changes in the cluster seeds. At the end of the procedure,
a total of G clusters are available, with corresponding cluster centroids. This is
the input of the second stage.

In the second stage a hierarchical clustering method is run on a sample of the
data to find the optimal number of clusters. As the number of clusters cannot
be greater than G, the procedure is agglomerative, starting at G and working
downwards. The previous cluster means are used as seeds, and a non-hierarchical
procedure is run to allocate the observations to the clusters. A peculiar aspect
of this stage is that the optimal number of clusters is chosen with respect to a
test statistic, a function of the R2 index known as the cubic clustering criterion
(CCC).

As discussed in Section 4.2, it may be too restrictive to assume, a Gaussian
distribution for the observations to be clustered. But in order to derive a statis-
tical test, we need to make some kind of assumptions. Suppose that we want
to verify the significance of a number of clusters equal to G. A rather general
assumption is to assume that, under the null hypotheses H0, the observations
are distributed uniformly over a hypercube with dimension equal to the number
of variables, each cube representing a cluster, adjacent to the others. Under the
alternative hypothesis, clusters are distributed as a mixture of multivariate Gaus-
sian distributions, centred at the mean of each cluster, and with equal variances.
The cubic clustering criterion is a function of the ratio between the observed
R2 and the expected R2 under the null hypothesis. From empirical Monte Carlo
studies, it turns out that a value of CCC greater than 2 represents sufficient evi-
dence against the null hypothesis and, therefore, for the validity of the chosen G

clusters. Although it is approximate, the criterion tends to be conservative – it
may have a bias towards a low number of clusters.
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Once the optimal number of clusters has been chosen, the algorithm pro-
ceeds with a non-hierarchical clustering to allocate the observations into the
G chosen groups, whose initial seeds are the centroids obtained in the previ-
ous step. In this way, we obtain a final configuration of the observations. The
procedure is similar to the first non-hierarchical stage, and can be summarised
as follows:

Repeat the following two steps until convergence: (1) scan the data and assign
each observation to the nearest seed (nearest using the Euclidean distance);
(2) replace each seed with the mean of the observations assigned to its cluster.

Here we choose G = 40 for the first non-hierarchical stage. The hierarchical
stage is then carried out on a sample of 2000 observations from the available
data, obtained by sampling randomly with replacement. The distance function is
the Euclidean distance, and Ward’s method is used to recompute the distances
as the clusters are formed. To choose the number of clusters, we set the CCC
threshold at 3 (rather conservative) and the maximum number of clusters at 40.
To obtain valid cluster means for use as seeds in the third stage, we impose a
minimum of 100 observations in each cluster.

Table 9.2 is the dendrogram for the agglomerative clustering procedure,
expressed in tabular form. Each of the 40 observations in fact corresponds to
a cluster, as formed in the previous non-hierarchical stage. It is quite difficult to
choose the optimal number of clusters on the basis of R2 (RSQ) or the semipartial
R2 (SPSRQ); a threshold criteria is definitely required. Figure 9.2 shows the
behaviour of CCC as the number of clusters increases from 2 to 40. Notice that
CCC reaches a threshold value of 3 when there are 10 groups. And in Table 9.2,
when moving from 9 groups to 10, there is a considerable increase in SPRSQ from
0.0163 to 0.0165 and a corresponding reduction in RSQ from 0.440 to 0.424. A
final non-hierarchical procedure was therefore run on the whole data set using
10 clusters.

The results of the final procedure are shown in Table 9.3. For each of the
10 clusters, it gives the total number of observations in the cluster, (the fre-
quency) and a measure of internal cohesion (the root mean square standard
deviation within the cluster). It also gives the maximum distance from the
cluster seed as a further measure of internal cohesion, and the distance from
the cluster seed to the nearest other cluster seed. We have R2 = 0.45 for the
final configuration, which can be treated as a summary evaluation measure of
the model.

To better interpret the cluster configurations, Table 9.4 gives the means of
each cluster. Notice that clusters 1 and 3 have similar centroids, expressed by a
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Table 9.2 Dendrogram of the first-stage hierarchical cluster analysis.

NCL –Clusters Joined – FREQ SPRSQ RSQ

39 OB15 OB18 2 0.0012 .626
38 OB17 OB34 2 0.0013 .625
37 OB16 OB40 4 0.0016 .623
36 OB5 CL39 3 0.0017 .622
35 OB9 OB14 5 0.0019 .620
34 OB19 OB35 6 0.0020 .618
33 OB7 CL37 10 0.0020 .616
32 OB20 OB33 2 0.0021 .614
31 OB28 OB39 8 0.0025 .611
30 OB13 CL34 22 0.0029 .608
29 OB24 CL31 9 0.0031 .605
28 OB11 OB23 29 0.0033 .602
27 OB10 OB21 11 0.0033 .599
26 CL35 CL38 7 0.0034 .595
25 CL26 OB31 18 0.0040 .591
24 CL36 CL29 12 0.0041 .587
23 OB2 OB12 51 0.0046 .583
22 CL33 CL32 12 0.0064 .576
21 OB29 OB32 57 0.0068 .569
20 CL25 CL30 40 0.0069 .562
19 OB4 OB8 80 0.0081 .554
18 OB30 OB36 204 0.0082 .546
17 CL24 CL27 23 0.0084 .538
16 OB3 OB27 159 0.0091 .529
15 OB6 OB37 174 0.0130 .516
14 CL28 CL21 86 0.0130 .503
13 CL23 CL20 91 0.0146 .488
12 CL22 CL14 98 0.0154 .473
11 OB1 OB22 971 0.0158 .457
10 OB25 OB38 156 0.0163 .440
9 CL11 CL10 1127 0.0165 .424
8 CL19 CL17 103 0.0172 .407
7 CL9 OB26 1171 0.0239 .383
6 CL13 CL16 250 0.0263 .357
5 CL7 CL18 1375 0.0269 .330
4 CL6 CL15 424 0.0380 .292
3 CL8 CL12 201 0.0653 .226
2 CL4 CL3 625 0.0834 .143
1 CL5 CL2 2000 0.1429 .000

similar mean number of mean visits to each page. On the other hand, clusters
4 and 9 appear to have rather different behaviours, concentrated mainly on one
page (respectively, development and initial). Before interpreting the final
profiles in Table 9.4, we will have a look at Kohonen maps.
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Figure 9.2 Choice of the optimum number of clusters according to CCC.

Table 9.3 Results from the final K-means cluster configuration.

9.4.2 Kohonen maps

Kohonen maps require us to specify the number of rows and the number of
columns in the grid space characterising the map. Large maps are usually the
best choice, as long as each cluster has a significant number of observations. The
learning time increases significantly with the size of the map. The number of
rows and the number of columns are usually established by conducting several
trials until a satisfactory result is obtained. We will use the results of the cluster
analysis to help us. It makes sense in terms of optimality but it will also be
useful when we compare the two techniques later on. Having identified 10 as
the optimal number of clusters, we will consider a 5 × 2 map. The Kohonen
mapping algorithm in SAS Enterprise Miner essentially replaces the third step of
the clustering algorithm with the following iterative procedure:
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Table 9.5 Results from the final Kohonen map configuration.

Repeat the following two steps until convergence: (1) scan the data and assign
each observation to the nearest seed (nearest using the Euclidean distance);
(2) replace each seed with a weighted mean of the cluster means for the clusters
that lie in the grid neighbourhood of the seed’s cluster

The weights correspond to the frequencies of each cluster. In this way the cluster
configuration is such that any two clusters which are close to each other in the
map grid will have centroids close to each other. The initial choice of the seeds
can be made in different ways; we will choose them randomly. Alternatively, we
could have used the centroids obtained from the second stage of the K-means
clustering procedure.

Table 9.5 shows the summary statistics for the final 5 × 2 configuration. For
each of 10 map clusters, it gives the total number of observations in the cluster
(the frequency) and the root mean square standard deviation within the cluster,
as a measure of internal cohesion. It also gives the distance from the cluster
seed to the nearest cluster seed. Table 9.5 should be compared with Table 9.3,
which gives similar information for the K-means procedure. Notice that the
groups in Table 9.5 are more homogeneous in their numbers of observations.
In Table 9.3 there is one large cluster (cluster 3) but now most clusters have a
similar size. We also have R2 = 0.51, which is 0.06 higher than we obtained
using the K-means procedure.

To better interpret the cluster configurations, Table 9.6 gives the centroids
of each cluster in the final Kohonen configuration; it confirms the findings in
Table 9.4. For instance, clusters 1 and 6 seem to describe visitors that visit the
initial pages a high number of times, whereas cluster 5 describes visitors that
often click on the development pages. These behaviours correspond, respec-
tively to clusters 4, 9 and 4, 5 in Table 9.4. Notice there is a degree of overlapping:
two kinds of behaviour appear in the same cluster, number 4.

9.5 Model comparison

An important consideration concerns the economic value of the results. Broadly
speaking, a visitor profile is better if the cluster profiles are more distinct and
if their separation reflects a truly distinct behaviour rather than being due to
randomness. We have already commented that the Kohonen map seems to do
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this better. It achieves it by exploiting the dependence between adjacent clusters.
A second consideration is that the statistical evaluation of the results should be
based mainly on R2, or measures derived from it, because this is a descriptive
analysis. We have already seen that the overall R2 is larger with the Kohonen
networks. It is interesting to examine for each variable (page) the ratio of the
between sum of squares and the total sums of squares that lead to R2. This can
give a measure of the goodness of the cluster representation, specific for each
variable. By examining all such R2 we can get an overall picture of which aspects
of the observations are more used in the clustering process.

Table 9.7 presents all variable-specific R2 and the overall R2 for the K-means
procedure and the Kohonen procedure. For both procedures the group pages that
have a high R2 and are therefore most influential in determining the final results,
are Initial, help, office and download. There are also pages that are
influential only for the K-means procedure: othersoftware and hardware.
And, there are pages that are influential only for the Kohonen procedure: win-
dows, download, and area. The choice between the two procedures therefore
depends on which pages to choose as discriminant for the behaviour. In the
absence of other considerations, the choice should consider the procedure which
leads to the highest overall R2, here the Kohonen map.

Further considerations may arise when the results will be used to make pre-
dictions. For instance, suppose that once the grouping has been accomplished,
we receive some new observations to be classified into clusters. One reasonable

Table 9.7 Comparison of the variable-specific R2.

Page R2 for (K-means) R2 for Kohonen map

initial 0.60 0.65

support 0.68 0.66

entertainment 0.01 0.02

office 0.44 0.70

windows 0.18 0.56

othersoft 0.47 0.07

download 0.04 0.43

otherint 0.21 0.15

development 0.79 0.64

hardware 0.49 0.03

business 0.02 0.02

infor 0.05 0.05

area 0.01 0.56

Overall 0.45 0.51
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way to proceed is to assign them to one of the clusters previously determined,
according to a discriminant rule. Alternatively, the analysis could be redone on
the old and new observations. The first choice is more valid from a decision-
making viewpoint. In that case, clustering methods can be compared in terms of
predictive performance, perhaps by using cross-validation techniques. We begin
by creating two data sets. We take the original data set and append one column
of values, corresponding to the categorical variable that assigns each observation
to a cluster (namely, the allocation variable). The allocation variable obviously
differs between the K-means analysis and the Kohonen analysis, hence we create
two different data sets.

To compare the two clustering procedures, we then split the two data sets
into a training sample with 75% of the observations and a validation sample
with the remaining 25%. A classification tree procedure is then run on both
training data sets, with the allocation variable as the target response variable. We
will take entropy as the impurity measure. We can then compare the predictive
performance of the tree model on the two data sets, in terms of misclassification
errors. This is because we know, from the cluster analysis, the actual allocation of
each observation in the validation sample. Note that the two data sets only differ
for the target variable, and the tree model applied is the same. The difference
in the misclassification rates will therefore measure the performance of the two
clustering methods in terms of predictive ability. For each cluster and for both
methods, Table 9.8 shows the proportion of observations classified correctly; we
can obtain the misclassification rates by subtracting these values from 100%.
Once again the Kohonen map performs better on this data set, as in 9 of the 10
cases it leads to a lower misclassification error.

Table 9.8 Comparison of the predictive performances between the K-means
method and the Kohonen map network.

Actual
cluster

Predicted
cluster

Percentage correctly
classified by
K-means

Percentage correctly
classified by

Kohonen map

1 1 92 86

2 2 98 99

3 3 99 97

4 4 73 96

5 5 82 99

6 6 57 69

7 7 92 98

8 8 93 97

9 9 80 86

10 10 58 92
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Therefore, on the basis of all viewpoints, Kohonen maps are to be preferred
for this problem. We now proceed with a more detailed interpretation of its
results. Table 9.6 characterises each cluster in terms of the most clicked pages.
But this interpretation can be improved by producing a graphical representation
of the same information. More precisely, for each cluster we compare graphically
the overall mean of each page variable with that found in the different visitor
segments. For our study we use the mean number of visits made to the 13 areas
for each behavioural profile. By comparing the 13 mean values with the whole
population (as if there were just one cluster), we can suggest an interpretation of
the profile.

To make interpretation easier, we will make the comparison with respect to
the normalised mean (the mean divided by the maximum value in the 13 group

Figure 9.3 Interpretation of cluster 7.
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pages), which varies between 0 and 1. For each behavioural segment, we shall use
a graph that has the normalised mean on the horizontal axis and the 13 webpages
on the vertical axis, plotted in decreasing order of their normalised mean. There
is insufficient space to show all the clusters, but we do illustrate a few typical
ones. First of all we have clusters that represent monothematic behaviours, people
who visit mostly one specific area of the website. This behaviour occurs for the
visitors in cluster 7, and Figure 9.3 shows that it describes visitors who mostly
go to help. In other words, this group of users visits the site to ask for help
about how to use the different products. The visitors in clusters 10, 9, 8 and 4
also exhibit monothematic behaviours; they correspond to visitors who go mainly
to area, windows, download and office, respectively.

A second type of behaviour is polythematic behaviour, illustrated by cluster
6. Figure 9.4 shows that these visitors exploit all areas of the site. They are
curious visitors who surf the pages reserved for hardware, the pages reserved

Figure 9.4 Interpretation of cluster 6.
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for businesses and the pages which give information about new products and
services. They are also interested in areas connected to technical help, entertain-
ment, downloads and Office products. A similar behaviour is seen in cluster 1,
which is perhaps less business-oriented than cluster 6.

A third type of behaviour is intermediate between the previous two, but it can
also be interpreted as profiling specific categories of visitor. An example is cluster
5. Figure 9.5 shows that this cluster can represent software developers, namely
IT professionals in the field of programming and the development of software
solutions. They often visit pages on development, specialised software, hardware
and downloads. And they are probably involved in the care and development
of their company’s computing power, hence the high number of visits to the
business area.

Other intermediate behaviours are exhibited by clusters 2 and 3. Cluster 2
can represent workers who do their duty, people who use the site mostly for

Figure 9.5 Interpretation of cluster 5.
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business and initial. In other words, it is the profile of people who use
the site for work reasons without being distracted by other things. Cluster 3 can
represent workers in pause, people who mainly visit entertainment; they also
go to pages reserved for businesses and other interests pages. In other words, it
is the profile of people visiting the site for work reasons but who are also taking
a break.

9.6 Summary report

• Context: this case study concerns customer profiling on the basis of web
behaviour. The context is very broad, as the analysis refers to any type of
problem involved with classifying people, companies or any other statistical
units into homogeneous groups.

• Objectives: the aim of the analysis is to classify customers into an unknown
number of homogeneous classes that will then be interpreted on the basis of
their statistical characteristics, such as mean values of the variables employed.
The classification is unsupervised: there is no target variable and all the avail-
able information should be used to form homogeneous groups, or clusters.

• Organisation of the data: in this case study the data was elaborated from
the log file that registers access to a website. Consequently, there is a data
matrix that records for each visitor the number of times they have viewed a
collection of pages. For computational tractability, the pages were grouped
into 13 web areas, homogeneous in terms of their content. Therefore the
data matrix considered in the analysis contains 32 711 rows (visitors) and 13
columns (one counting variable for each area).

• Exploratory data analysis: this phase of the analysis revealed a high level of
dispersion with respect to the pages visited. Each visitor looks, on average,
at 4 pages, and this confirms the validity of grouping the 104 visited pages
into 13 areas.

• Model specification: the analysis objectives suggested a descriptive model
that would group observations into homogeneous classes. Given the size of
the data set, we considered non-hierarchical cluster analysis models based on
the K-means algorithm and Kohonen maps. To compare the two approaches
fairly, we considered a 5 × 2 Kohonen map, which corresponds to the same
number of clusters (10) obtained with the K-means algorithm.

• Model comparison: models were first compared by splitting the total variabil-
ity into within-group variability and between-group variability, leading to the
calculation of the overall R2 and R2 for specific area variables. The result of
the comparison favours Kohonen maps, which also have the advantage that
the groups obtained tend to be more distinct than the groups from K-means
clustering. We then compared the models in terms of their predictive ability.
We did this by using the clustering variable as a ‘target’ variable, fitting a
classification tree and following a cross-validation approach. Yet again the
results favour Kohonen maps.
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• Model interpretation: the interpretation of the results should be based on the
obtained cluster profiles. For the Kohonen map, which performed better, we
interpreted each cluster profile by looking at the comparison between the
overall mean and the cluster-specific mean of each of the 13 variables. This
allowed us to identify each cluster profile. Expert knowledge is needed to
elucidate the business meaning of each profile.



CHAPTER 10

Customer relationship
management

10.1 Objectives of the analysis

This case study looks at statistical aspects of customer relationship management
(CRM). In this context a company has as a primary objective to encourage
customer loyalty, to obtain from them as much value as possible. The necessity
of having loyal customers motivates companies to know them well. One way to do
this is by using valid management and processing of the customer database. Data
mining methods represent a valid approach to extracting precious information
from such a database, and the information is then used to manage relations
with existing and prospective clients. Companies increasingly personalise their
services to suit each client. The data in this case study is from a company that
foresaw the potential and has long been using statistically driven CRM to help
manage its sales network. I cannot mention its name, but it sells mail-order
merchandise in Italy.

The objective is to study the buying behaviour of the company’s clients and, in
particular, to understand from the outset which factors might create an, occasional
buyer or a loyal shopper. This may indicate at an early stage which customers will
be really profitable and where to concentrate any marketing efforts. In data mining
terms, we are concerned with a problem of predictive classification. Another
common data mining problem, churn analysis, can be seen as somewhat similar
to loyalty analysis, as churners can be identified as disloyal clients. So this case
study can also help with churn models.

10.2 Description of the data

Although schematic and concise, the analysis here is a complete representation
of the data mining process, from the construction of the data matrix to the com-
munication of the final results. It can therefore give an idea of what is involved
in setting up the whole data mining process (Section 1.2). Information on the

Applied Data Mining. Paolo Giudici
 2003 John Wiley & Sons, Ltd ISBNs: 0-470-84679-8 (Paper); 0-470-84678-X (Cloth)



274 APPLIED DATA MINING

reference population, the company’s current customers, is distributed across three
distinct databases, containing the list of customers and their characteristics; the
list of orders collected by the local agencies, later transmitted to the company;
and the list of buying orders transmitted by the agencies to the company. All
three databases contain variables on the customers, mainly socio-demographic
and behavioural variables. These variables refer to the ways in which the first
commercial contact has been established (e.g. the number of products bought and
the method of payment).

To achieve the goals of the analysis, it is useful to analyse a homogeneous
cohort of consumers, that is, to analyse the behaviour over time of people whose
first contact with the company occurred at roughly the same time, the entry period.
This eliminates possible bias effects due to structural changes in the economy,
or in the structure of the company. We first consider all clients that have entered
the customer database between 1992 and 1996; the total number is very large,
equal to 210 085. It would be very expensive and time-consuming to analyse the
whole data set, so we will take a stratified sample and analyse that. We will take
the same number of clients from each time slot over the whole entry period;
this sample contains a total of 2470 customers. Generally it is not necessary
to sample the data; the main reason for doing it here is the low quality of the
available data.

Finally, as data is spread across three databases, we need to construct a mar-
keting database (datamart) that organises all the information we require; this is
not a simple procedure. The input data sets contain data collected for operational
purposes and the records differ in their type and structure. We need to obtain
a coherent and informative data set by eliminating a great deal of information.
The end result is a data matrix with one row for each customer and one col-
umn for each customer characteristic (statistical variable). After a long process
of database management, we obtain the variables in Table 10.1.

Table 10.1 The available customer variables.

• Marketing status • Dimension of the shop
• Whether the client is active • Age
• Whether the client is in a debt position • Area of residence
• Total number of orders • Sex
• Date of first order • Whether first payment is with

instalments
• Date of last order • First amount spent
• Total amount ordered • Number of products at first order
• Total amount paid
• Current balance
• Whether payments have been delayed
• Time lag between first and second order
• Amount of current instalment
• Residual number of instalments
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10.3 Exploratory data analysis

Before starting the actual data analysis, we need to identify a response variable;
we need to define the explanatory variables and suggest possible transformations.
The main objective is to classify the customers in two categories: those that place
only one order, and those that make further orders. This binary variable, indicated
by Y , can be deduced from the ‘total number of orders’ variable in Table 10.1.
We shall set Y = 0 when the number of orders is equal to one and Y = 1 if the
number of orders is greater than one. In the stated objectives, the two levels of the
response variable correspond to consumers deemed disloyal (Y = 0) and loyal
(Y = 1). Therefore a customer is deemed loyal if they place at least two orders
with the company. Table 10.2 shows the distribution of this response variables
for our sample. We could have chosen other variables to represent Y , such as the
total expenditure and the number of items bought. Notice that the sample is well
divided between the two categories. There are also more than 19 observations
for which the value of the response variable is missing. We will ignore these
observations.

Consider now the choice of explanatory variables. We want variables that will
help us with predictive classification. Intuitively it seems important to consider
variables that concern the first order, that describe how the first contact with the
company is established, as well as the socio-demographic variables available on
the customers ‘age, sex, area of residence’ and the dimension of the corresponding
agency (see later). These are the variables on the right-hand side of Table 10.1.
A few data items are missing for the explanatory variables, but as there are only
a few, we can substitute a location measure for the distribution of the valid data,
such as the mean (continuous variables) the median (ordinal variables) and the
mode (nominal variables).

Table 10.3 shows the conditional distribution of the response variable on the
socio-demographic variables. We can draw the following conclusions:

• Sex: at first sight, it does not seem very influential on the response variable,
as there is no substantial difference in the distribution for males and females.

• Area of residence: see how the conditional probability of Y = 1 decreases
when the area changes from North to Centre and from Centre to South
(of Italy). This seems to be a predictive variable. South includes the Italian
islands, and sometimes we will call it ‘south and islands’.

• Age: the odds for Y = 1 are close to 1 for the oldest group, but notice-
ably lower than 1 for the other two classes, and especially for the youngest

Table 10.2 Distribution of the response variable.

Modality Absolute frequency Relative frequency (%)

Y = 0 1457 59.71

Y = 1 1013 40.29
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Table 10.3 Conditional distribution of the response variable on the socio-demographic
explanatory variables.

Sex Y=0 Y=1

Female 61.04% 38.96%
Male 57.88% 42.12%

Area Y=0 Y=1

North 55.40% 44.60%
Center 58,22% 41.78%
South 62.73% 37.27%

Age Y=0 Y=1

15–35 68.80% 31.20%
36–50 53.44% 46.56%
51–89 60.42% 39.58%

Dimension Y=0 Y=1

Small 60.39% 39,61%
Medium 56.95% 43.05%
Large 62.11% 37.89%

Table 10.4 Contingency table classifying the
response variable and the instalment variable.

Y instalment

Frequency
Percent
Row Pct
Col Pct 0 1 Total

0 1239 218 1457
50.16 8.83 58.99
85.04 14.96
68.04 33.59

1 582 431 1013
23.56 17.45 41.01
57.45 42.55
31.96 66.41

Total 1821 649 2470
73.72 26.28 100.00

group. This variable may be a relevant predictor, as the probability of Y = 1
increases noticeably with age.

• Dimension of the agency: this represents the only information we can use to
reconstruct the location of the agency, an important variable that we do not
have. Dimension of the agency subdivides the agencies into three classes on
the basis of number of clients served: if the number is less than 15, the agency
is considered small; if the number is between 15 and 30, it is considered
medium; if it is greater than 30 (up to a maximum of 60), it is considered large.
In Table 10.3 notice how the conditional probability of Y = 1 gets lower
for large agencies. Unlike the previous variables, the effect on the response
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variable is not monotone with respect to the order of the explanatory variable,
as medium agencies appear to show the highest conditional probability.

Besides socio-demographic variables, we also have behavioural variables that
refer to the customer’s first order:

• Instalment: a binary variable that indicates whether the first purchase is paid
for in instalments (level 1) or not (level 0). It indicates the length of the
relationship between the customer and the company. If a person pays in
instalments, the contact with the company will tend to be longer. Table 10.4
shows the contingency table that cross-classifies the response variable with
the modalities of instalment. Notice the positive association of this variable
with Y , as the odds ratio is about 4.20.

• First amount spent and number of products at first order (numb): these two
quantitative variables seem particularly informative about the behaviour of

(a)

(b)

Figure 10.1 Conditional distribution of (a) the amount spent and (b) the number of
products with respect to the levels of Y .
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the client at the first commercial contact. The first amount spent is expressed
in Italian lire (C–– 1 = L1936.27). Figure 10.1 shows the boxplots for these two
variables. If the two resulting boxplots differ markedly in position (e.g. in
terms of the median), the corresponding variable can be deemed relevant.
The amount spent seems to be relevant, but the number of products bought
does not. And there appear to be outliers in the right tail of the distribution.
We proceed by removing observations above the 99th percentile of the two
variables.

We will not transform the two quantitative variables; we will leave them as
they are. But to help with interpretation, we will binarise the qualitative variables
age, area and dimension of the agency, all of which have three levels. This gives a
total of nine binary variables. In fitting linear models, to avoid perfect collinearity,
it is necessary to remove the intercept or to remove one binary variable for each
of the three variables. We will leave the intercept. Table 10.5 shows an extract of
the available data matrix, summarising the variables we will use in the analysis.

10.4 Model building

We will employ different types of model, and some of them we will not be able
to compare using statistical techniques. In Section 10.5 we will therefore rely on
cross-validation.

10.4.1 Logistic regression models

Having selected our explanatory variables, we need to find the ones that can effec-
tively predict the response variable. The first model we consider is the logistic
regression model. In order to choose a model, we follow a stepwise procedure,
based in the G2 deviance difference, with a level of significance equal to 0.05.
Table 10.6 presents the results obtained from the stepwise procedure, namely the
selected model along with the corresponding parameter estimates and estimated
odds ratios. Only three of the available seven variables significantly affect Y :
the binary instalment variable, with a strong positive association measured by
an odds ratio of about 5; the age variable or, more precisely, the youngest class
variable, with a negative effect determined by an odds ratio of about 0.580; and
the numb variable, with a mild positive association expresses by an odds ratio of
about 1.356. As numb is discrete, the effect should be interpreted by saying that
a unitary increase in the number of products determines an increase in the odds
of Y = 1 of about 1.356. For the age variable, there is no significant distinction
between the adult class (36–50) and the mature class (51–89); what matters is
whether or not the customer is young (15–35).

The model as a whole is significant, with a log-likelihood score equal to
254.928, leading to rejection of the null model; the degrees of freedom for this
test is 3. In the next section we will assess the predictive ability of the logistic
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Table 10.6 The selected logistic regression model.

Estimates Stderr Wald Pr>Chi-square Odds ratio

Intercept 0.3028 0.1248 108.93 <.0001 –
age15−35 -0.5440 0.1367 15.84 <.0001 0.580
installment 1.6107 0.1371 137.98 <.0001 5.006
number−of−products 0.3043 0.0465 42.78 <.0001 1.356

regression model, which has the advantage of producing transparent results inter-
pretable in a linear form. The logistic discriminant rule in this case study allows
us to distinguish a priori customers that are profitable (Y = 1) from those that are
less profitable, therefore we can devise different ways of targeting customers. On
the basis of the estimated model in Table 10.6, we can see how the discriminant
rule works. For each new customer that has placed a first order, we need to know
three things: whether they are young (variable A), whether they pay in instal-
ments (B) and how many products they order (C). Let ta , tb, tc be the estimated
parameters of the three variables, whose values are given in Table 10.6, and let
t be the estimated intercept. A customer will be profitable if the estimated prob-
ability of ordering more than once is greater than 0.5, and this corresponds to
checking whether the inequality t + taA + tbB + tcC > 0 is true. For instance,
if a customer is not young, pays in instalments and buys one product, they
are profitable as (−1.3028 × 1) + (1.6107 × 0) + (0.3043 × 1) = 0.6122 > 0. If
a customer is not young, does not pay in instalments and buys one product,
they are likely to be less profitable as −1.3028 + 1.6107 + 0.3043 = −0.9985.
The estimated probability of reordering is about 0.648 in the first example
and 0.269 in the second. The logistic regression model can therefore provide
a simple scoring mechanism for each customer that can be used for decision
making.

10.4.2 Radial basis function networks

For a neural network model, we will choose a radial basis function (RBF) with
one hidden node. This is because there may be a neighbourhood structure in the
input variable space and we might be able to explain it. We have considered
13 explanatory variables: all those present in Table 10.5 apart from the response
variable Y . As a combination function for the input variables, we will take a
Gaussian radial basis function with equal widths and equal heights. The activation
function for the hidden node is the identity function and the activation function
for the output node is the softmax function, so we obtain normalised output
values corresponding to the estimated probabilities of Y = 1. The parameters of
the network are learned by minimising the misclassification rate in the validation
data set. Figure 10.2 shows how the misclassification rate evolves with successive
iterations. The process can be stopped when the misclassification rate stabilises,
and Figure 10.2 indicates that seven iterations are sufficient.



CUSTOMER RELATIONSHIP MANAGEMENT 281

Figure 10.2 Evolution of the misclassification rate for the RBF network.

A neural network of this kind produces a list of fitted weights, with no assess-
ment of their significance. We will not publish the list here; in any case, the
largest weights correspond to the variables selected using the logistic regres-
sion model. It is not advisable to use the fitted weights of a neural network to
build a discriminant rule, because the fitted weights are not corrected for sample
variability, so they may depend heavily on the sample at hand. We will suspend
comment on the RBF discriminant rule for the time being.

10.4.3 Classification tree models

We begin by comparing two CART tree models, based on the entropy and the
Gini impurity. The better model is based on the Gini impurity. The results from
the better tree are based on a pruning algorithm that leads to an optimal number of
terminal nodes. It does this by minimising the misclassification rate. Figure 10.3
shows the behaviour of the classification accuracy (the complement of the mis-
classification rate) as the number of terminal nodes (leaves) increases. Notice
that the optimal configuration of the decision tree is obtained when the number
of leaves equals 11. The corresponding tree can be described in terms of 11
association rules, pointing towards the leaves, that take the 1465 customers in
the training data set and split them into 11 target groups, each with a differ-
ent estimated probability of ordering again (Y = 1). Table 10.7 gives the list of
these rules.

In Table 10.7 each rule is stated according to the path that leads from the
root node to the terminal node. But the list of conditions that express a rule is
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Figure 10.3 Evolution of the classification accuracy for the classification tree as the
number of leaves increases.

written in reverse order, so that nodes farther from the leaf come closer to it in
the rule. Here is the association rule with the highest support; about 48.3% of
the customers follow this rule:

IF (375000 ≤ FIRST AMOUNT SPENT < 2659000) AND
(INSTALMENT = 0), THEN (Y =0)

This rule corresponds to a leaf obtained from splitting all observations by
instalment, and then by the inequality 375000 ≤ FIRST AMOUNT SPENT <
2659000. Customers that obey the conditions of this rule are estimated to be
not profitable, as the estimated probability of Y = 1 is only 18.6%. This explains
why the head of the rule is Y = 0. In general, the head of the rule follows the
classical discriminant rule: if the fitted probability is less than 50% then Y = 0;
otherwise Y = 1.

Table 10.7 The rules for the classification tree.

IF 2659000 <=FIRST−AMOUNT−SPENT

AND INSTALMENT EQUALS 0
THEN
N : 226
1 : 56.2%
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Table 10.7 (continued )

IF 2659000 <=FIRST−AMOUNT−SPENT

0 : 43.8%

IF FIRST−AMOUNT−SPENT < 515000
AND INSTALMENT EQUALS 1
THEN
N : 55
1 : 89.1%
0 : 10.9%

IF 375000 <=FIRST−AMOUNT−SPENT < 2659000
AND INSTALMENT EQUALS 0
THEN
N : 709
1 : 18.6%
0 : 81.4%

IF NORTH EQUALS 0
AND NUMBER−OF−PRODUCTS < 2.5
AND 515000 <=FIRST−AMOUNT−SPENT
AND INSTALMENT EQUALS 1
THEN
N : 99
1 : 47.5%
0 : 52.5%

IF NORTH EQUALS 1
AND NUMBER−OF−PRODUCTS < 2.5
AND 515000 <=FIRST−AMOUNT−SPENT
AND INSTALMENT EQUALS 1
THEN
N : 42
1 : 73.8%
0 : 26.2%

IF 2.5 <=NUMBER−OF−PRODUCTS < 5.5
AND 515000 <=FIRST−AMOUNT−SPENT
AND INSTALMENT EQUALS 1
THEN
N : 178
1 : 78.7%
0 : 21.3%

IF 5.5 <=NUMBER−OF−PRODUCTS
AND 515000 <=FIRST−AMOUNT−SPENT
AND INSTALMENT EQUALS 1
THEN
N : 3

(continued overleaf )
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Table 10.7 (continued )

IF 2659000 <=FIRST−AMOUNT−SPENT

1 : 0.0%
0 : 100.0%

IF FIRST−AMOUNT−SPENT < 105000
AND NORTH EQUALS 1
AND INSTALMENT EQUALS 0
THEN
N : 7
1 : 0.0%
0 : 100.0%

IF 105000 <=FIRST−AMOUNT−SPENT < 375000
AND NORTH EQUALS 1
AND INSTALMENT EQUALS 0
THEN
N : 59
1 : 72.9%
0 : 27.1%

IF AGE36−50 EQUALS 1
AND NORTH EQUALS 0
AND FIRST−AMOUNT−SPENT < 375000
AND INSTALMENT EQUALS 0
THEN
N : 47
1 : 25.5%
0 : 74.5%

IF AGE36−50 EQUALS 0
AND NORTH EQUALS 0
AND FIRST−AMOUNT−SPENT < 375000
AND INSTALMENT EQUALS 0
THEN
N : 40
1 : 52.5%
0 : 47.5%

The classification tree thus provides an immediate discriminant rule, based on
partitions of the explanatory variables. To allocate a new customer, we begin at
the root and take the path corresponding to the characteristics of the customer;
then we see whether the terminal leaf gives a probability higher than 50% to
Y = 1. The difference with the logistic regression model is that the discriminant
rule is a hierarchical logical statement (based on partitions of the data) rather
than an additive score (based on all the data). The variables that appear relevant
for classification are instalment, number of products, and age, which correspond
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Figure 10.4 The chosen CHAID tree.

to the significant variables in the logistic regression model. The tree also ascribes
relevance to the first amount spent and the geographic area.

For completeness, we also implement a CHAID tree model, with a signifi-
cance level of 0.01, in order to obtain a more parsimonious classification tree.
The resulting model has a higher misclassification rate than our Gini-based CART
model, but it is parsimonious. Figure 10.4 shows the CHAID tree. The two dis-
criminant variables are instalment and first amount spent. These two variables are
also the ones first chosen in the CART tree of Table 10.7. The difference is that
the CHAID tree does not go into as much depth. On the other hand, comparing
the results with logistic regression, the instalment variable appears in both, but
age and number of products are now replaced by first amount spent.

10.4.4 Nearest-neighbour models

In a nearest-neighbour model, the main parameter to choose is the width K ; this
establishes the size of the neighbourhood of the explanatory variables that will be
used to predict Y . We begin with a very large value, K = 732, which corresponds
to half the total number of observations in the training data set. Then we try a
very low value, K = 10. It turns out that K = 10 is a better choice, in terms of
misclassification rate: for K = 732 it is 0.41; for K = 100 it is 0.328; and for
K = 10 it is 0.316. The misclassification rate increases for lower values of K .
We will thus choose K = 10.
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For nearest-neighbour models there is no analytic form to comment upon, as
the method is memory-based, namely, it recalls the neighbouring data only when
a prediction is in order. Section 10.5 evaluates its predictive performance.

A nearest-neighbour model works well when the observations are well sep-
arated in the space of the explanatory variables and when the corresponding
groups are fairly pure. In an ideal situation, observations should be partitioned in
non-overlapping regions, possibly of a small size, and each region should contain
observations with a similar value of the response variable (here 0 or 1).

10.5 Model comparison

We first compare models in terms of the confusion matrices obtained on the
validation data set. For all models, we have chosen a cut-off threshold of 50%, and
the errors are derived on that basis. Table 10.8 shows the confusion matrix for the
final logistic regression model. In this table and the following ones, frequencies
are expressed as percentages. Table 10.8 shows that the model predicts as non-
profitable (Y = 0 predicted) customers that in fact are profitable (Y = 1 observed)
in 22.92% of the cases; this is the type I error. On the other hand, it predicts as
profitable (Y = 1 predicted) those that are not (Y = 0 observed) in 10.91% of
the cases; this is the type II error.

Whether the logistic regression model leads to a valid discriminant rule,
depends on marketing evaluations on the relative costs of the two errors. Usu-
ally, if a customer is targeted to be profitable, a direct marketing campaign is
dedicated to them by mail, telephone calls, etc. If a customer is not targeted to
be profitable, they will not be part of the campaign. Therefore the cost of the
type I error depends on the probability of losing customers that are not targeted,
although they would be profitable; the cost of the type II error is the money
allocated by the company to follow customers that are probably not worthy of
attention. From Table 10.8 the logistic regression model leads to a higher type
I error, and should be chosen if type II error is deemed more costly than type
I error. Table 10.9 shows the confusion matrix for the chosen CART tree model.
Notice that the total misclassification rate for the classification tree is slightly

Table 10.8 Confusion matrix for
the logistic regression model.

Predicted

0 1

0 48.02 10.91

O
b
s
e
r
v
e
d

1 22.92 18.14
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lower than for the logistic regression model, 29.74% against 33.83%. Further-
more, the probabilities of the two types of error are rather balanced. The tree
model should therefore be chosen in the absence of information on the costs of
the two errors, or when the costs are roughly equivalent.

Table 10.10 shows the confusion matrix for the RBF network. Notice that
the total misclassification rate is about 32.47%, lower than for logistic regres-
sion but higher than for CART. The probabilities of the two errors are unbal-
anced, as with logistic regression. Overall we can draw the same conclusions
as for logistic regression. However, the slight improvement does not justify the
increased model complexity and difficulty of interpretation compared with logistic
regression.

Table 10.11 shows the confusion matrix for the nearest-neighbour model. It
turns out that the nearest-neighbour model has the same total misclassifica-
tion rate as the tree model, 29.74%, and is therefore as good overall. But the
probabilities for type I and type II errors are slightly more unbalanced, and the
nearest-neighbour model has the lowest type I error probability among all the
considered models. Therefore, if type I error costs are higher than type II error
costs, a nearest-neighbour model should be chosen. If the relative error costs
are not a consideration, both the CART tree and the nearest-neighbour model
can be chosen, as they minimise the misclassification error rate over the valida-
tion set.

Table 10.9 Confusion matrix for
the CART classification tree.

Predicted

0 1

0 43.52 15.42

O
b
s
e
r
v
e
d

1 14.32 26.74

Table 10.10 Confusion matrix for
the RBF neural network.

Predicted

0 1

0 47.34 11.60

O
b
s
e
r
v
e
d

1 20.87 20.19
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Table 10.11 Confusion matrix for
the nearest-neighbour model.

Predicted

0 1

0 41.34 17.60

O
b
s
e
r
v
e
d

1 12.14 28.92

So far we have drawn our conclusions using the validation data set. But since
some data mining models are often built using results on the validation data
set, it may be of interest to compare models on a third data set, named the test
data set. To do this, the available data should be partitioned into three data sets
instead of two: a training data set (60% of the data), a validation dataset (20%
of the data) and a test data set (20% of the data). Then the predictive power
of the models can be compared on the test data set, to obtain a more neutral
evaluation. When there are only two data sets, not three, the second data set (for
validation) is sometimes indirectly used to build a model (e.g. to prune a tree, to
choose the number of hidden nodes in a neural network, or to choose the number
of neighbours in a nearest-neighbour method); consequently, the outcome of the
validation may be too optimistic. Splitting the data set into three implies a loss
of information, as the test data set is never used, and the number of observations
in the training data set is reduced. The extra sampling process introduces a new
source of variability and it could increase the instability of the results.

We consider a threefold partitioning accomplished in a stratified way to main-
tain the proportion of Y = 1 and Y = 0 in each of the three data sets. We have
placed 60% of the data in the training data set, 20% in the validation data set
and 20% in the test data set. Table 10.12 shows the misclassification rates for
the models on all three partitions training, validation and test. On the test set,
the tree model has the lowest error, followed by the nearest-neighbour model,
called MBR for memory-based reasoning, then the RBF network and finally the
logistic regression model. The same ranking of the models is obtained on the
training data set, but on the validation data set there is a tie between MBR and
the tree model. The CHAID tree in Figure 10.4 leads to a misclassification error
of 0.3237 on the test set, higher than the CART tree and MBR.

Table 10.12 Summary comparison of misclassification errors.
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Now would be the time to approach marketing experts for a cost function
using the costs of the type I and type II errors. But even without this informa-
tion, we can still go a bit further in our model selection. Up to now we have used
a cut-off threshold of 50%, but this need not be the only choice. In particular, the
costs of the errors may lead us to change the cut-off. For instance, if type II error
is deemed more costly, a higher cut-off can be chosen, so as to predict fewer
events Y = 1 and decrease type II errors; but this will increase type I errors.
Conversely, if type I error is deemed more costly, a lower cut-off can be chosen.

In the absence of cost considerations, the models should be compared using
ROC curves. Figure 10.5 shows the ROC curves of the four models being com-
pared. The vertical axis is the sensitivity, equal to 1 − the probability of type I
error, and the horizontal axis plots 1 − specificity, equal to the probability of a
type II error. Notice that the ROC curves for all four models are rather similar,
apart from a gap in the central part of the curve, where the tree model and
the nearest-neighbour model (called user) are better. This is the area where the

Figure 10.5 ROC curves for the considered models. The curve called user is the MBR
model.



290 APPLIED DATA MINING

Table 10.13 Comparison of Gini indexes of performance.

Logistic
regression RBF Tree

Nearest
neighbour

Gini index 0.4375 0.4230 0.4445 0.5673

50% cut-off error probabilities fall. Conversely, in the upper right part of the
graph, the neural network model and the logistic regression model are better, as
they lead to a higher sensitivity (lower type I error). All the curves are similar
for high values of the cut-off, corresponding to low values of sensitivity and
1 − specificity.

To decide between the curves, we need more information about the costs. But
without this information we can calculate a summary measure of performance for
the models, which corresponds to the area between the ROC curve and the 45◦

line; it is called the Gini index of performance (Section 6.6). We calculate the
Gini index for all four models on the test data set, and for nine equally spaced cut-
off points (from 10% onwards). The values are given in Table 10.13. The higher
the Gini index, the better the considered model. Therefore the nearest-neighbour
model is the best model, followed by the tree model, the logistic regression model
and the RBF model.

To conclude, the nearest-neighbour model should be chosen in the absence
of cost considerations (and cut-off considerations) or when type I error is more
costly. We should make this choice if we are not interested in having an explicit
discriminant rule that can decide whether or not a customer is profitable. Oth-
erwise we should consider a classification tree model. If type II error is more
costly, a logistic regression model would also be fine.

10.6 Summary report

• Context: this case study concerns analytic customer relationship management
(CRM). In this framework the main objective is to encourage customer loy-
alty to obtain from customers as much value as possible. CRM can be applied
in a fairly broad context; in general, it can be applied to any situations where
a company’s customer database is used to classify clients into classes or
segments that identify different targets for future actions of the company. A
common application is to identify loyal customers; another common appli-
cation is churn analysis, which identifies clients that abandon a company,
perhaps for competitors. The next case study looks at the related problem
of scoring, where each client is assigned a score before classification. The
scoring aspect was not emphasised here, as the main interest was in classifying
the customers.

• Objectives: the aim of the analysis is to classify customers into homogeneous
classes that identify different target profiles. Customers are divided into more



CUSTOMER RELATIONSHIP MANAGEMENT 291

valuable customers (more than one order in the considered period) and less
valuable customers (only one order in the considered period).

• Organisation of the data: data is usually contained in a so-called customer
table, or marketing database (data mart). We considered a common situation,
especially for small and medium-sized companies, in which there is not a
data warehouse and therefore a customer database has to be built up from
operational databases. This process is rather difficult and typically eliminates
much information due to inconsistencies or missing data. To consider a clean
and statistically representative data mart (e.g. with regard to the entrance
time in the database), we had to take a sample whose size appears very small
when compared with the original customer database. This shows just how
important it is to consider how the data will be analysed when building up a
data warehouse or a system of operational databases. At the end of the process,
besides the binary response variable indicating the value of a customer, we
obtained seven explanatory variables, five discrete and two continuous.

• Exploratory data analysis: this was conducted by analysing the bivariate dis-
tributions involving the binary response variable and the seven candidate
predictors taken one at a time.

• Model specification: the analysis objective suggested a predictive classifi-
cation model that allocates customers to the classes more valuable and less
valuable. We considered four types of model: logistic regression, classification
trees, RBF networks and nearest-neighbour models.

• Model comparison: the models were compared using a computational cross-
validation approach. We compared classification errors of the models on a
validation data set and then on a more independent test dataset. We used the
standard discriminant threshold rule of 50%. Then we compared ROC curves,
which are drawn by varying the discriminant threshold. To give a summary
performance measure, we calculated the Gini index for each ROC curve. The
result is that, in the absence of considerations on error costs or when type
I error is deemed more costly, the classification tree performs best with a
50% threshold and the nearest-neighbour model performs best with a varying
threshold. If type II error is more costly, a logistic regression model would
also be fine.

• Model interpretation: on the basis of model comparison, it seems that classifi-
cation trees and nearest-neighbour models are the best tools for the considered
predictive task. However, there is an interpretational difference that should
be taken into account. Classification trees produce rules that are easily inter-
pretable in logical terms but nearest-neighbour models do not deliver explicit
rules. Nearest-neighbour models are non-parametric tools, hence they have
the advantage of not requiring strong modelling assumptions but they are
harder to interpret. The choice between the two tools depends on who will be
using the results. If the results will go to trained statisticians or IT. experts,
then it probably does not matter which model is chosen, but trees are prob-
ably better for business experts who would like a more user-friendly picture
of what is going on.





CHAPTER 11

Credit scoring

11.1 Objectives of the analysis

This case study applies data mining methods to the problem of credit scoring
for consumer credit. It looks at how to evaluate the credit reliability of indi-
viduals who ask for credit when buying goods or services. The various credit
operators (e.g. banks, investment companies and credit card societies) receive
thousands of applications every day, so they need a system to help them grant
or refuse requests. Recent studies have proposed decision support systems, or
scoring models. They are fast, objective and inexpensive, which makes them
extremely efficient when compared with traditional scores based on experience.
This is especially true for consumer credit, where the monetary value of each loan
is quite small. We will take customer data from an important bank in southern
Germany and use it to construct a scoring model for consumer credit.

Automatic systems are widely used for evaluating creditworthiness, especially
by banks and investment companies. There are many reasons for this develop-
ment, including the regulatory policy that was recently established by the Basel
Committee of central banks (www.bis.org). These regulations include a detailed
prescription of how credit risk should be calculated by financial institutions and
they apply to different types of credit, including consumer credit and business
credit. Consumer credit means lending to individuals and households for the
acquisition of goods or services. The exercise of this activity is reserved by law
to banks, specialised intermediary backers and, in some forms, to the sellers of
goods or services.

The term ‘credit scoring’ describes the statistical methods used to classify
possible creditors into two classes of risk: good and bad. Statistical models
for credit scoring, often known as scorecard models, use explanatory variables
obtained from information about the applicant to estimate the probability of a
loan’s non-repayment. A credit request is granted or refused by comparing the
estimated probability with a suitable threshold chosen by the management. The
statistical methods most often used to develop scorecards are neural networks,
logistic regression and classification trees. The literature on credit scoring and
credit scorecard models is quite vast; see for instance Hand and Henley (1996).

The data to construct a scorecard is generally obtained from a sample of
applicants to whom credit has already been granted, and for whom it is known
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whether or not the creditor was reliable. To calculate the score for a specific
credit request, the customer’s data is compared with the scorecard, in order to
classify the new applicant into one of the observed behavioural patterns and
determine a predictive score. Often a scorecard model is able to assign a score to
every measurable characteristic of the applicant. These scores are then summed
to produce an overall score.

11.2 Description of the data

The data set is 1000 observations on 1000 credit applicants to an important bank
in southern Germany; see Fahrmeir and Hamerle (1994) for a more detailed
description of the data. We consider 21 variables; one of them is the binary
variable Y , credit reliability (Y = 0 for the reliables, Y = 1 for the non-
reliables), which we treat as the response or target variable. The other 20 variables
are treated as explanatory variables. They can be grouped in the following way.
Table 11.1 shows the data matrix.

• Socio-demographic variables
• sex and marital status
• age
• residence: number of years resident in the present home

• Personal and financial variables
• account: whether owners of a bank account
• bank book: whether owners of a bank book
• previous rep: history of past repayments
• debts: amount of previous debts
• concurrent: whether other fundings have been required
• employment: type of employment
• working years: number of working years
• foreign: whether foreign worker
• family: number of people in charge of

• Variables specific to the loan
• loan: amount of the loan
• purpose: purpose of the loan

Table 11.1 The structure of the data matrix.

Applicant Y X1 X2 . . . X3 . . . . . . . . . . . . . . . X20

1 1 1 18 . . . 1049 . . . 1
.
..

34 1 4 24 . . . 1376 . . . 1
.
..

1000 0 1 30 . . . 6350 . . . 1
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• deadline: deadline of the loan
• monthly interests
• others: whether other concurrent debtors are specified

• Indicators of wealth
• house: whether owner of a house
• effects: whether has other personal guarantees
• telephone: whether a telephone is available

Only 3 of the 20 explanatory variables are continuous: deadline, loan and
age. The other 17 are discrete but only 2 of these are binary: telephone and
foreigner. The other 15 discrete variables have different numbers of levels;
purpose has 11.

The data is stratified into 300 customers selected as non-reliable (Y = 1, loans
not repaid) and 700 as reliable (Y = 0, loans repaid). Therefore the percentages
of good and bad customers are already fixed. This kind of stratification affects
the results obtained from the statistical models; they will not be the same as the
results from a simple random sample. The data set has an inherent bias as it
contains only those individuals actually given a loan. There are others that did
not get a loan and we do not know whether or not they would have been at risk.
Although these considerations do not alter the validity of the analysis, we should
remember them when we come to interpretation.

Even though we will lose information, to simplify the analysis, we will modify
the original data set to obtain exclusively binary variables. Binarisation allows us
to investigate the odds ratio. For the quantitative variables we mainly calculate
the median; we create two levels, one corresponding to values higher than the
median, another to values lower than the median. For example, deadline had
values in the interval of 0–72 months, but we have modified it as in Table 11.2
For all the other variables, we give the value 0 to the category that is less reli-
able, and the value 1 to the category that is more reliable. Take previous rep
as an example. We give the value 1 to the category corresponding to impecca-
ble previous repayments and the value 0 to the category corresponding to late
previous repayments.

Some discrete variables have to be reclassified. For instance, account is
subdivided into two new binary variables: good−account and bad−account.
Table 11.3 shows the new and old classifications. The variable sex and mar-
ital status is divided into two distinct binary variables: sex and marital
status. Table 11.4 summarises this representation.

Table 11.2 Classification of the deadline variable.

Previous classes New classes Interpretation

Deadline > 18 months 1 Long-term
Deadline < 18 months 0 Short-term
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Table 11.3 Classification of the account variable.

New variables Original variable

bad−account good−account account

1 0 2 negative balance Bad
0 1 4 balance > DM 200 Good
0 0 3 balance in [0–200] Neutral
0 0 1 no account Neutral

Table 11.4 Classification of the sex and marital status variables.

New variables Original Variable

sex marital status sex and marital status

0 0 1 man: bachelor, divorced or separated
1 0 2 woman: bachelor, divorced or separated
0 1 3 man: married or widow
1 1 4 woman: married or widow

11.3 Exploratory data analysis

We begin with a univariate analysis to investigate the intensity of the existing
links between every explanatory variable and the response variable. This will
indicate the efficiency of each explanatory variable in identifying the non-reliable
clients (Y = 1). The explanatory variables that are more associated with the
response variable should be better able to determine client’s reliability. Although
it neglects interactions between the variables, univariate analysis often proves
very useful. It is an important preliminary step in setting up a multivariate model.

To investigate the association between the response variable and each of the
22 explanatory variables, we construct the odds ratio. Here we put Y = 1 first and
Y = 0 second to help with interpretation. The resulting odds ratio is the reciprocal
of the one we would obtain using the conventional order (Section 3.4). Now the
higher the odds ratio, the more negative the association of the explanatory variable
with the response variable and the higher the positive association with credit
reliability. In other words, the results indicate the efficiency of each individual
variables as an indicator of creditworthiness.

Table 11.5 shows the odds ratios and the corresponding 95% confidence inter-
vals; the last column shows the p-value of the chi-squared Pearson statistic. The
22 explanatory variables are tabulated in decreasing order of the odds ratio. The
first eight variables in the table have a negative association with the response
variable; in fact, the odds ratio shows a value higher than 1, and 1 does not fall
in the confidence interval. The last five variables have a positive association with
the response variable, since the odds ratio takes values in the interval [0,1], and
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Table 11.5 Univariate odds ratios with the response variable.

Variable Odds ratio
95% Confidence

interval Association
Chi-square
p-value

good−account 5.459 (3.857; 7.725) (−) 1.41E-24
previous rep 3.958 (2.529; 6.193) (−) 1.21E-09
bank book 2.758 (1.957; 3.888) (−) 3.05E-09
deadline 1.842 (1.402; 2.421) (−) 1.22E-05
working years 1.781 (1.311; 2.421) (−) 2.47E-04
purpose 1.679 (1.269; 2.220) (−) 2.85E-04
age 1.676 (1.274; 2.206) (−) 2.48E-04
marital status 1.532 (1.160; 2.022) (−) 3.17E-03
monthly interests 1.342 (1.008; 1.787) (−?) 0.045
loan 1.241 (0.946; 1.627) NO 0.129
debts 1.233 (0.928; 1.639) NO 0.153
telephone 1.177 (0.892; 1.554) NO 0.261
residence 1.031 (0.785; 1.354) NO 0.835
family 1.018 (0.700; 1.481) NO 1.000
others 0.994 (0.624; 1.583) NO 1.000
employment 0.904 (0.651; 1.257) NO 0.563
sex 0.769 (0.584; 1.011) NO 0.067
effects 0.642 (0.489; 0.842) (+) 1.49E-03
bad−account 0.568 (0.423; 0.763) (+) 1.88E-04
concurrent 0.550 (0.395; 0.765) (+) 4.06E-04
house 0.531 (0.398; 0.710) (+) 1.99E-05
foreign 0.273 (0.096; 0.778) (+) 9.42E-03

1 does not fall in the confidence interval. The variable monthly interests
exhibits a probable negative association since the odds ratio is greater than 1, but
1 is slightly out of the confidence interval. We will leave it in for now and use
the multivariate analysis to make a firmer decision. The rest of the explanatory
variables show no significant association with the response variable, since the
confidence interval contains the value 1. These conclusions are all confirmed by
the p-values of the chi-squared statistics in the last column of the table.

• For the first eight variables and the last five variables the p-value is less than
0.05; this means that the null hypothesis is rejected and the existence of an
association is accepted:

• For monthly interests the p-value is slightly under 0.05; this means
the association with the response variable is borderline significant.

• The remaining variables have a p-value greater than 0.05; this means the null
hypothesis is accepted

Table 11.6 shows how we derive the odds ratios and allows us to draw the
following conclusions:
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Table 11.6 Interpretation of the odds ratios.

Variable
Odds for X = 1,

θ1

Odds for X = 0,
θ2 Odds ratio Association

good−account 0.594 3.243 5.459 (−)
previous rep 0.291 1.152 3.958 (−)
bank book 0.078 2.143 2.758 (−)
deadline 0.730 1.344 1.842 (−)
working years 0.650 1.157 1.781 (−)
purpose 0.720 1.209 1.679 (−)
age 0.788 1.322 1.676 (−)
marital status 0.767 1.175 1.532 (−)
monthly interests 0.901 1.210 1.342 (−?)
loan 0.901 1.116 1.241 N0
debts 0.928 1.114 1.233 N0
telephone 0.937 1.104 1.177 N0
residence 0.983 1.041 1.031 N0
family 0.997 1.016 1.018 N0
others 1.000 0.996 0.994 N0
employment 1.081 0.978 0.904 N0
sex 1.115 0.857 0.769 N0
effects 1.253 0.804 0.642 (+)
bad−account 1.178 0.669 0.568 (+)
concurrent 1.129 0.620 0.550 (+)
house 1.217 0.646 0.531 (+)
foreign 3.541 0.966 0.273 (+)

• The applicants who possess a good current account (more than DM 200)
with a creditor bank are more reliable. In fact, in going from customers who
have a medium account or a negative balance (good−account = 0) to
customers who have a good account (good−account = 1) the probability
of repayment increases; it goes from an odds of 0.594 to an odds of 3.243.
Therefore there exists a negative association between unreliability and the
possession of a good current account; the exact measure of this association
is given by the odds ratio. In the case of good−account, when the account
balance is greater than DM 200 then the probability of repayment is about 5.46
times the probability of repayment for clients who have a medium account
or a negative balance.

• German workers are more reliable than foreign workers. In going from clients
who are German workers (foreign = 0) to clients who are foreign workers
(foreign = 1) the odds of repayment is reduced from 3.541 to 0.966. This
means that a positive association exists between being a foreign worker and
being non-reliable. The exact measure of this association is expressed by the
odds ratio, and the probability of repayment for foreign workers is 0.273 times
that for German workers. In other words, the probability of repayment for
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German workers is around 3.6 times (1/0.273) the probability of repayment
for foreign workers.

• those who own effects (effects = 1) or who own a house (house = 1)
are less reliable than those who do not own effects or who do not own a
house. This could be because house owners have already taken out credit in
the form of mortgage. Having to cope with a mortgage could make someone
a non-reliable client.

11.4 Model building

Having performed a univariate exploratory analysis, we move on to a multivariate
analysis, by specifying a statistical model. We are trying to combine all the signals
from the different explanatory variables to obtain an overall signal that indicates
the reliability of each applicant. In order to choose a model, we have to clarify
the nature of the problem. It is clear that we have a predictive classification
problem, as the response variable is binary and our aim is to predict whether a
credit applicant will be reliable or non-reliable. We will concentrate on logistic
regression, classification trees and multilayer perceptrons, the methods most often
used for predictive classification in general and credit scoring in particular. We
also consider an approach based on bagging, which combines the results from
different models. Other methods can also be adopted, notably nearest-neighbour
models and probabilistic expert systems, but we will not consider them here.

11.4.1 Logistic regression models

We choose a logistic regression model using a forward selection procedure with
a significance level of 0.05. To check the model, we try a stepwise proce-
dure and a backward procedure then verify that all three models are similar.
Table 11.7 describes the forward selection procedure. The starting point is the

Table 11.7 Results of the forward selection procedure.

Step
Effect

entered
Effect

removed df
Number

in
Score

chi-square
Wald

chi-square
P >

chi-square

1 good−account – 1 1 103.9648 – <0.0001
2 previous rep – 1 2 24.4942 – <0.0001
3 bank book – 1 3 17.3725 – <0.0001
4 deadline – 1 4 18.8629 – <0.0001
5 house – 1 5 8.3749 – 0.0038
6 age – 1 6 7.0758 – 0.0078
7 purpose – 1 7 8.4775 – 0.0036
8 foreign – 1 8 7.9316 – 0.0049
9 monthly interests – 1 9 6.9678 – 0.0083

10 marital status – 1 10 5.7610 – 0.0164
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simplest model, containing only the intercept. Then, at every step, we compare
the deviances to decide whether or not to add an explanatory variable.

SAS Enterprise Miner uses the score chi-squared statistic in the forward pro-
cedure and the Wald chi-squared statistic in the backward procedure. According
to Table 11.7, the final model is obtained in step 10; besides intercept, it
includes the following explanatory variables:

X1 = deadline X6 = age
X2 = previous rep X7 = house
X3 = purpose X8 = foreign
X4 = bank book X9 = good−account
X5 = monthly interests X10 = marital status

To check the overall quality of the final model, we calculate the likelihood ratio
test G2 for the final model (H1) against the null model (H0). It turns out that
G2 = 219.89 with 10 degrees of freedom. As the corresponding p-value of the
test is lower than 0.0001, the null hypothesis is rejected, implying that at least
one of the model’s coefficients in Table 11.7 is significant. The model has an
AIC score of 1023.828, and a BIC score of 1077.814. The total misclassifi-
cation rate is 0.244. The misclassification rate of a model with all variables
present (i.e. without any stepwise model selection) is 0.252, slightly higher than
0.244.

Table 11.8 shows the maximum likelihood estimates corresponding to the final
model and the statistical significance of the parameters. For all the explanatory
variables we obtain a p-value lower than 0.05, therefore the null hypothesis is
always rejected. This means that all the 10 explanatory variables selected using
the stepwise procedure are significantly associated with the response variable and
are useful in explaining whether an applicant is reliable (Y = 0) or not (Y = 1).

Table 11.8 Maximum likelihood estimates of the parameters.

Parameter df Estimate
Standard

error
Wald

chi-square P > chi-square

intercept 1 0.5030 0.6479 0.6029 0.4375
deadline 1 −0.6027 0.1567 14.7914 0.0001
previous rep 1 −1.0479 0.2573 16.5875 <0.0001
purpose 1 −0.5598 0.1632 11.7703 0.0006
bank book 1 −0.7870 0.1937 16.5063 <0.0001
monthly interests 1 −0.4754 0.1660 8.2009 0.0042
age 1 −0.4203 0.1603 6.8701 0.0088
house 1 0.4934 0.1683 8.5914 0.0034
foreign 1 1.3932 0.5794 5.7825 0.0162
good−account 1 −1.4690 0.1863 62.1582 <0.0001
marital status 1 −0.3910 0.1633 5.7325 0.0167
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Now that we have a model, we need to interpret it. A stepwise procedure
may be unstable in the estimates, which are conditional on the selected model.
A model-averaging approach, such as a full Bayesian approach, may solve this
problem, but it will make the model more complicated (Giudici, 2001a). The
obtained logistic regression model can be described by the following formula:

log
P(Y = 1)

P (Y = 0)
= β0 + β1X1 + β2X2 + · · · + β10X10

in which the response variable is credit reliability (Y = 0 if yes, Y = 1 if no)
and the explanatory variables are as described in Section 11.2. Table 11.9 shows
the parameter estimates and the estimated odds ratios for each variable. We can
interpret Table 11.9 using the model formula. This formula is constructed by
setting Y = 1 when the debtor is non-reliable, so we can say that a parame-
ter with a positive sign indicates that the corresponding variable reduces the
debtor’s reliability. Conversely, a parameter with a negative sign indicates that
the corresponding variable increases the debtor’s reliability.

The variable good−account has a parameter with a negative sign (β̂ =
−1.4690); this means that clients who have a good current account, above DM
200, present a probability of repayment greater than clients who have a medium
account or a negative balance. Analogous arguments are valid for deadline,
previous rep, purpose, bank book, monthly interests, age and
marital status. We can therefore list eight variables that reduce the risk of
non-repayment, or increase the probability of repayment:

• A good current account
• Previous impeccable repayments
• The possession of a bank book
• A loan with a short-term deadline

Table 11.9 Interpretation of the estimated
model.

Variables β̂ e−β̂

intercept 0.5030 0.605
deadline −0.6027 1.827
previous rep −1.0479 2.852
purpose −0.5598 1.750
bank book −0.7870 2.197
monthly interests −0.4754 1.609
age −0.4203 1.522
house 0.4934 0.611
foreign 1.3932 0.248
good-account −1.4690 4.345
marital status −0.3910 1.479
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• A business purpose for the loan
• The presence of high rates of interest
• Not being single
• Age above 33 years

Foreign workers that ask for a loan (foreign = 1) are less reliable than Ger-
man workers. This is indicated by the positive sign of the coefficient, β̂ = 1.3932.
Consequently, there is a direct relationship between being a foreign worker and
being a non-reliable applicant. As we saw during the exploratory phase, clients
who own a house and perhaps have a mortgage (house = 1) are less reliable
than clients who do not own their own house. This is indicated by the coefficient
β̂ = 0.4934, which has a positive sign.

The odds ratio measures the strength of association between each explana-
tory variable and the response variable. Table 11.10 compares the estimated
odds ratio with the values from the exploratory analysis. When a client pos-
sesses a good current account (good−account = 1) their probability of repay-
ment is 4.345 times greater than for a client without an account. Analogous
arguments are valid for previous rep, bank book, deadline, purpose,
age, monthly interests and marital status. The variables house
and foreign are positively associated with the response variable. The proba-
bility of repayment for foreign workers (foreign =1) is 0.248 times that for
German workers. In other words, the probability of repayment for German work-
ers is around 4 times the value for foreign workers. These multivariate odds ratios
are more reliable than the univariate odd ratios. They give a better description
of the interrelationships between the variables, as each individual association is

Table 11.10 Comparison between univariate and
multivariate odds ratios.

Odds ratios

Variable Multivariate Univariate

deadline 1.827 1.842
previous rep 2.852 3.958
purpose 1.750 1.679
bank book 2.197 2.758
monthly interests 1.609 1.342
age 1.522 1.676
house 0.611 0.531
foreign 0.248 0.273
good−account 4.345 5.459
marital status 1.479 1.532
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corrected by taking into account the indirect effects on the response variable that
occur through the remaining explanatory variables.

11.4.2 Classification tree models

SAS Enterprise Miner allows us to fit three types of tree model. We begin with
one based on the CHAID algorithm and the chi-squared impurity measure. To
obtain a parsimonious tree, we use a significance level of 0.05 in the stopping rule.
Figure 11.1 and Table 11.11 present the results from the CHAID classification
tree analysis. Figure 11.1 is self-explanatory; the total number of terminal nodes
is 6, each obtained through successive splits of the chosen binary variables. At
each split, the only choice is to decide which variable to use for the split.

The total number of splitting variables in the final tree is 4: good−account,
bank book, previous rep and deadline. These variables are the first four
obtained by the forward selection procedure for logistic regression (Table 11.7).
From the classification tree we can see good−account acts on its own, but
the other variables interact with each other. This reveals a possible lack of fit
when using a logistic regression model that considers only the separate effects of
each explanatory variable and no interaction effects. Interactions can obviously

Table 11.11 Results for the CHAID classification tree.

IF GOOD−ACCOUNT EQUALS 1 N : 394
1 : 11.7%

0 : 88.3%

IF BANK−BOOK EQUALS 0 N : 59
AND PREVIOUS−REP EQUALS 0 1 : 76.3%

AND GOOD−ACCOUNT EQUALS 0 0 : 23.7%

IF BANK−BOOK EQUALS 1 N : 14
AND PREVIOUS−REP EQUALS 0 1 : 28.6%

AND GOOD−ACCOUNT EQUALS 0 0 : 71.4%

IF DEADLINE EQUALS 1 N : 295
AND PREVIOUS−REP EQUALS 1 1 : 29.5%

AND GOOD−ACCOUNT EQUALS 0 0 : 70.5%

IF BANK−BOOK EQUALS 1 N : 52
AND DEADLINE EQUALS 0 1 : 28.8%
AND PREVIOUS−REP EQUALS 1 0 : 71.2%

AND GOOD−ACCOUNT EQUALS 0

IF BANK−BOOK EQUALS 0 N : 186
AND DEADLINE EQUALS 0 1 : 55.4%
AND PREVIOUS−REP EQUALS 1 0 : 44.6%

AND GOOD−ACCOUNT EQUALS 0
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be introduced, but this considerably increases the calculations and makes the
model harder to interpret.

Table 11.11 shows the chosen tree in the form of if-then rules, where
the if condition corresponds to a tree path that leads to the then result of a
terminal node, characterised by the indicated absolute frequencies (N ), percentage
of bad applicants (1) and percentage of good applicants (0). The six tree rules can
be interpreted as association rules (Section 4.8), all having as their body either
Y = 0, or Y = 1. To do this, we need to consider as primitive items not only the
level 1 of each variable, but also the complements, for a total of 44 items. Then
we obtain results like this:

• GOOD−ACCOUNT → NOT RELIABLE has a support of 39.4% and a confi-
dence of 11.7%.

• BANK BOOK = 1 AND NO PREVIOUS REP AND NO GOOD ACCOUNT
→ NOT RELIABLE has a support of 1.4% (14/1000) and a confidence
of 28.6%.

We can calculate the misclassification rate as an overall performance measure.
In each leaf we classify all the observations according to the majority vote, that
is, the class with the highest fitted probability of being present. This corresponds
to a cut-off threshold of 0.5. The misclassification rate is 0.249, slightly higher
than we obtained with the logistic regression model.

We now look at a tree model using the CART algorithm and the Gini impurity.
For pruning, we calculate the misclassification rate on the whole data set using
the penalty parameter α = 1. This can be considered as the default choice, in
the absence of other considerations. Table 11.12 shows the chosen tree in the
form of if-then rules. A graphical representation can easily be constructed
from Table 11.12. Compared with the CHAID tree, this one is rather complex
and has 33 terminal nodes. The 33 paths in the model can be interpreted as
association rules. The extra complexity has lowered the misclassification rate to
0.212, obtained on the training data set. But this improvement may not justify
the increased complexity.

Almost all the explanatory variables are represented in the tree model, except
for sex and marital status. This is a remarkable result. There is no differ-
ence in reliability by sex or by marital status. It is also interesting to note that
all the paths are rather long, with lengths between 4 and 6. We could reduce the
complexity of the model by increasing α, but we will leave it at α = 1 so we
can compare it with the CHAID tree.

Table 11.13 shows a CART model using the entropy impurity and keeping
α = 1. This model is also rather complex; it has 34 terminal nodes, one more
than the Gini model. The results are also rather similar, but they are not exactly
the same. The misclassification rate of the entropy model is 0.211 on the training
data set, compared with 0.212 for the Gini model. In Section 4.5 we considered
the same tree as in Table 11.13, but we stopped at 4 leaves. On the basis of
misclassification rates it seems that the CART models are better than the CHAID
model, and the entropy impurity is slightly better than the Gini impurity. But so
far we have only compared goodness of fit, not predictive ability.
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Table 11.12 Results for the CART classification tree with Gini impurity.

IF FAMILY EQUALS 0 N : 10
AND BANK−BOOK EQUALS 1 1 : 10.0%
AND PREVIOUS−REP EQUALS 0 0 : 90.0%
AND GOOD−ACCOUNT EQUALS 0

IF FAMILY EQUALS 1 N : 4
AND BANK−BOOK EQUALS 1 1 : 75.0%
AND PREVIOUS−REP EQUALS 0 0 : 25.0%
AND GOOD−ACCOUNT EQUALS 0

IF EFFECTS EQUALS 0 N : 194
AND DEADLINE EQUALS 1 1 : 24.7%
AND PREVIOUS−REP EQUALS 1 0 : 75.3%
AND GOOD−ACCOUNT EQUALS 0

IF FAMILY EQUALS 0 N : 144
AND AGE EQUALS 1 1 : 2.8%
AND CONCURRENT EQUALS 0 0 : 97.2%
AND GOOD−ACCOUNT EQUALS 1

IF DEBTS EQUALS 0 N : 9
AND PURPOSE EQUALS 0 1 : 22.2%
AND CONCURRENT EQUALS 1 0 : 77.8%
AND GOOD−ACCOUNT EQUALS 1

IF AGE EQUALS 0 N : 19
AND PURPOSE EQUALS 1 1 : 0.0%
AND CONCURRENT EQUALS 1 0 : 100.0%
AND GOOD−ACCOUNT EQUALS 1

IF AGE EQUALS 1 N : 10
AND HOUSE EQUALS 0 1 : 90.0%
AND BANK−BOOK EQUALS 0 0 : 10.0%
AND PREVIOUS−REP EQUALS 0
AND GOOD−ACCOUNT EQUALS 0

IF FOREIGN EQUALS 0 N : 1
AND HOUSE EQUALS 1 1 : 0.0%
AND BANK−BOOK EQUALS 0 0 : 100.0%
AND PREVIOUS−REP EQUALS 0
AND GOOD−ACCOUNT EQUALS 0

IF FOREIGN EQUALS 1 N : 28
AND HOUSE EQUALS 1 1 : 92.9%
AND BANK−BOOK EQUALS 0 0 : 7.1%
AND PREVIOUS−REP EQUALS 0
AND GOOD−ACCOUNT EQUALS 0

IF MONTHLY−INTERESTS EQUALS 0 N : 119
AND BANK−BOOK EQUALS 0 1 : 61.3%
AND DEADLINE EQUALS 0 0 : 38.7%
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Table 11.12 (continued )

AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF DEBTS EQUALS 1 N : 30
AND EFFECTS EQUALS 1 1 : 26.7%
AND DEADLINE EQUALS 1 0 : 73.3%
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF OTHERS EQUALS 0 N : 31
AND WORKING−YEARS EQUALS 0 1 : 22.6%
AND AGE EQUALS 0 0 : 77.4%
AND CONCURRENT EQUALS 0
AND GOOD−ACCOUNT EQUALS 1

IF OTHERS EQUALS 1 N : 2
AND WORKING−YEARS EQUALS 0 1 : 100.0%
AND AGE EQUALS 0 0 : 0.0%
AND CONCURRENT EQUALS 0
AND GOOD−ACCOUNT EQUALS 1

IF EMPLOYMENT EQUALS 1 N : 107
AND WORKING−YEARS EQUALS 1 1 : 9.3%
AND AGE EQUALS 0 0 : 90.7%
AND CONCURRENT EQUALS 0
AND GOOD−ACCOUNT EQUALS 1

IF OTHERS EQUALS 0 N : 34
AND FAMILY EQUALS 1 1 : 5.9%
AND AGE EQUALS 1 0 : 94.1%
AND CONCURRENT EQUALS 0
AND GOOD−ACCOUNT EQUALS 1

IF OTHERS EQUALS 1 N : 1
AND FAMILY EQUALS 1 1 : 100.0%
AND AGE EQUALS 1 0 : 0.0%
AND CONCURRENT EQUALS 0
AND GOOD−ACCOUNT EQUALS 1

IF OTHERS EQUALS 1 N : 1
AND DEBTS EQUALS 1 1 : 0.0%
AND PURPOSE EQUALS 0 0 : 100.0%
AND CONCURRENT EQUALS 1
AND GOOD−ACCOUNT EQUALS 1

IF RESIDENCE EQUALS 0 N : 3
AND AGE EQUALS 1 1 : 66.7%
AND PURPOSE EQUALS 1 0 : 33.3%
AND CONCURRENT EQUALS 1
AND GOOD−ACCOUNT EQUALS 1

(continued overleaf)
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Table 11.12 (continued )

IF RESIDENCE EQUALS 1 N : 16
AND AGE EQUALS 1 1 : 12.5%
AND PURPOSE EQUALS 1 0 : 87.5%
AND CONCURRENT EQUALS 1
AND GOOD−ACCOUNT EQUALS 1

IF LOAN EQUALS 0 N : 12
AND AGE EQUALS 0 1 : 33.3%
AND HOUSE EQUALS 0 0 : 66.7%
AND BANK−BOOK EQUALS 0
AND PREVIOUS−REP EQUALS 0
AND GOOD−ACCOUNT EQUALS 0

IF LOAN EQUALS 1 N : 8
AND AGE EQUALS 0 1 : 75.0%
AND HOUSE EQUALS 0 0 : 25.0%
AND BANK−BOOK EQUALS 0
AND PREVIOUS−REP EQUALS 0
AND GOOD−ACCOUNT EQUALS 0

IF TELEPHONE EQUALS 0 N : 15
AND BAD−ACCOUNT EQUALS 0 1 : 60.0%
AND BANK−BOOK EQUALS 1 0 : 40.0%
AND DEADLINE EQUALS 0
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF TELEPHONE EQUALS 1 N : 10
AND BAD−ACCOUNT EQUALS 0 1 : 20.0%
AND BANK−BOOK EQUALS 1 0 : 80.0%
AND DEADLINE EQUALS 0
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF OTHERS EQUALS 0 N : 26
AND BAD−ACCOUNT EQUALS 1 1 : 11.5%
AND BANK−BOOK EQUALS 1 0 : 88.5%
AND DEADLINE EQUALS 0
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF OTHERS EQUALS 1 N : 1
AND BAD−ACCOUNT EQUALS 1 1 : 100.0%
AND BANK−BOOK EQUALS 1 0 : 0.0%
AND DEADLINE EQUALS 0
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF LOAN EQUALS 0 N : 61
AND MONTHLY−INTERESTS EQUALS 1 1 : 41.0%
AND BANK−BOOK EQUALS 0 0 : 59.0%
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Table 11.12 (continued )

AND DEADLINE EQUALS 0
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF LOAN EQUALS 1 N : 6
AND MONTHLY−INTERESTS EQUALS 1 1 : 83.3%
AND BANK−BOOK EQUALS 0 0 : 16.7%
AND DEADLINE EQUALS 0
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF LOAN EQUALS 1 N : 42
AND DEBTS EQUALS 0 1 : 52.4%
AND EFFECTS EQUALS 1 0 : 47.6%
AND DEADLINE EQUALS 1
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF LOAN EQUALS 0 N : 29
AND DEBTS EQUALS 0 1 : 31.0%
AND EFFECTS EQUALS 1 0 : 69.0%
AND DEADLINE EQUALS 1
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF BANK−BOOK EQUALS 0 N : 11
AND EMPLOYMENT EQUALS 0 1 : 18.2%
AND WORKING−YEARS EQUALS 1 0 : 81.8%
AND AGE EQUALS 0
AND CONCURRENT EQUALS 0
AND GOOD−ACCOUNT EQUALS 1

IF BANK−BOOK EQUALS 1 N : 4
AND EMPLOYMENT EQUALS 0 1 : 75.0%
AND WORKING−YEARS EQUALS 1 0 : 25.0%
AND AGE EQUALS 0
AND CONCURRENT EQUALS 0
AND GOOD−ACCOUNT EQUALS 1

IF EMPLOYMENT EQUALS 1 N : 11
AND OTHERS EQUALS 0 1 : 81.8%
AND DEBTS EQUALS 1 0 : 18.2%
AND PURPOSE EQUALS 0
AND CONCURRENT EQUALS 1
AND GOOD−ACCOUNT EQUALS 1

IF EMPLOYMENT EQUALS 0 N : 1
AND OTHERS EQUALS 0 1 : 0.0%
AND DEBTS EQUALS 1 0 : 100.0%
AND PURPOSE EQUALS 0
AND CONCURRENT EQUALS 1
AND GOOD−ACCOUNT EQUALS 1
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Table 11.13 Results for the CART classification tree with entropy impurity.

IF FAMILY EQUALS 0 N : 10
AND BANK−BOOK EQUALS 1 1 : 10.0%
AND PREVIOUS−REP EQUALS 0 0 : 90.0%
AND GOOD−ACCOUNT EQUALS 0

IF FAMILY EQUALS 1 N : 4
AND BANK−BOOK EQUALS 1 1 : 75.0%
AND PREVIOUS−REP EQUALS 0 0 : 25.0%
AND GOOD−ACCOUNT EQUALS 0

IF EFFECTS EQUALS 0 N : 194
AND DEADLINE EQUALS 1 1 : 24.7%
AND PREVIOUS−REP EQUALS 1 0 : 75.3%
AND GOOD−ACCOUNT EQUALS 0

IF FAMILY EQUALS 0 N : 144
AND AGE EQUALS 1 1 : 2.8%
AND CONCURRENT EQUALS 0 0 : 97.2%
AND GOOD−ACCOUNT EQUALS 1

IF DEBTS EQUALS 0 N : 9
AND PURPOSE EQUALS 0 1 : 22.2%
AND CONCURRENT EQUALS 1 0 : 77.8%
AND GOOD−ACCOUNT EQUALS 1

IF AGE EQUALS 0 N : 19
AND PURPOSE EQUALS 1 1 : 0.0%
AND CONCURRENT EQUALS 1 0 : 100.0%
AND GOOD−ACCOUNT EQUALS 1

IF AGE EQUALS 1 N : 10
AND HOUSE EQUALS 0 1 : 90.0%
AND BANK−BOOK EQUALS 0 0 : 10.0%
AND PREVIOUS−REP EQUALS 0
AND GOOD−ACCOUNT EQUALS 0

IF CONCURRENT EQUALS 0 N : 18
AND HOUSE EQUALS 1 1 : 100.0%
AND BANK−BOOK EQUALS 0 0 : 0.0%
AND PREVIOUS−REP EQUALS 0
AND GOOD−ACCOUNT EQUALS 0

IF LOAN EQUALS 1 N : 43
AND BANK−BOOK EQUALS 0 1 : 69.8%
AND DEADLINE EQUALS 0 0 : 30.2%
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF DEBTS EQUALS 1 N : 30
AND EFFECTS EQUALS 1 1 : 26.7%
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Table 11.13 (continued )

AND DEADLINE EQUALS 1 0 : 73.3%
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF OTHERS EQUALS 0 N : 31
AND WORKING−YEARS EQUALS 0 1 : 22.6%
AND AGE EQUALS 0 0 : 77.4%
AND CONCURRENT EQUALS 0
AND GOOD−ACCOUNT EQUALS 1

IF OTHERS EQUALS 1 N : 2
AND WORKING−YEARS EQUALS 0 1 : 100.0%
AND AGE EQUALS 0 0 : 0.0%
AND CONCURRENT EQUALS 0
AND GOOD−ACCOUNT EQUALS 1

IF EMPLOYMENT EQUALS 1 N : 107
AND WORKING−YEARS EQUALS 1 1 : 9.3%
AND AGE EQUALS 0 0 : 90.7%
AND CONCURRENT EQUALS 0
AND GOOD−ACCOUNT EQUALS 1

IF OTHERS EQUALS 0 N : 34
AND FAMILY EQUALS 1 1 : 5.9%
AND AGE EQUALS 1 0 : 94.1%
AND CONCURRENT EQUALS 0
AND GOOD−ACCOUNT EQUALS 1

IF OTHERS EQUALS 1 N : 1
AND FAMILY EQUALS 1 1 : 100.0%
AND AGE EQUALS 1 0 : 0.0%
AND CONCURRENT EQUALS 0
AND GOOD−ACCOUNT EQUALS 1

IF RESIDENCE EQUALS 1 N : 3
AND DEBTS EQUALS 1 1 : 100.0%
AND PURPOSE EQUALS 0 0 : 0.0%
AND CONCURRENT EQUALS 1
AND GOOD−ACCOUNT EQUALS 1

IF RESIDENCE EQUALS 0 N : 3
AND AGE EQUALS 1 1 : 66.7%
AND PURPOSE EQUALS 1 0 : 33.3%
AND CONCURRENT EQUALS 1
AND GOOD−ACCOUNT EQUALS 1

IF RESIDENCE EQUALS 1 N : 16
AND AGE EQUALS 1 1 : 12.5%

AND PURPOSE EQUALS 1 0 : 87.5%
AND CONCURRENT EQUALS 1
AND GOOD−ACCOUNT EQUALS 1

(continued overleaf)
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Table 11.13 (continued )

IF LOAN EQUALS 0 N : 12
AND AGE EQUALS 0 1 : 33.3%
AND HOUSE EQUALS 0 0 : 66.7%
AND BANK−BOOK EQUALS 0
AND PREVIOUS−REP EQUALS 0
AND GOOD−ACCOUNT EQUALS 0

IF LOAN EQUALS 1 N : 8
AND AGE EQUALS 0 1 : 75.0%
AND HOUSE EQUALS 0 0 : 25.0%
AND BANK−BOOK EQUALS 0
AND PREVIOUS−REP EQUALS 0
AND GOOD−ACCOUNT EQUALS 0

IF WORKING−YEARS EQUALS 0 N : 2
AND CONCURRENT EQUALS 1 1 : 0.0%
AND HOUSE EQUALS 1 0 : 100.0%
AND BANK−BOOK EQUALS 0
AND PREVIOUS−REP EQUALS 0
AND GOOD−ACCOUNT EQUALS 0

IF WORKING−YEARS EQUALS 1 N : 9
AND CONCURRENT EQUALS 1 1 : 88.9%
AND HOUSE EQUALS 1 0 : 11.1%
AND BANK−BOOK EQUALS 0
AND PREVIOUS−REP EQUALS 0
AND GOOD−ACCOUNT EQUALS 0

IF TELEPHONE EQUALS 0 N : 15
AND BAD−ACCOUNT EQUALS 0 1 : 60.0%
AND BANK−BOOK EQUALS 1 0 : 40.0%
AND DEADLINE EQUALS 0
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF TELEPHONE EQUALS 1 N : 10
AND BAD−ACCOUNT EQUALS 0 1 : 20.0%
AND BANK−BOOK EQUALS 1 0 : 80.0%
AND DEADLINE EQUALS 0
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF OTHERS EQUALS 0 N : 26
AND BAD−ACCOUNT EQUALS 1 1 : 11.5%

AND BANK−BOOK EQUALS 1 0 : 88.5%
AND DEADLINE EQUALS 0
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0
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Table 11.13 (continued )

IF OTHERS EQUALS 1 N : 1
AND BAD−ACCOUNT EQUALS 1 1 : 100.0%
AND BANK−BOOK EQUALS 1 0 : 0.0%
AND DEADLINE EQUALS 0
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF MONTHLY−INTERESTS EQUALS 0 N : 82
AND LOAN EQUALS 0 1 : 58.5%
AND BANK−BOOK EQUALS 0 0 : 41.5%
AND DEADLINE EQUALS 0
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF MONTHLY−INTERESTS EQUALS 1 N : 61
AND LOAN EQUALS 0 1 : 41.0%
AND BANK−BOOK EQUALS 0 0 : 59.0%
AND DEADLINE EQUALS 0
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF LOAN EQUALS 1 N : 42
AND DEBTS EQUALS 0 1 : 52.4%
AND EFFECTS EQUALS 1 0 : 47.6%
AND DEADLINE EQUALS 1
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF LOAN EQUALS 0 N : 29
AND DEBTS EQUALS 0 1 : 31.0%
AND EFFECTS EQUALS 1 0 : 69.0%
AND DEADLINE EQUALS 1
AND PREVIOUS−REP EQUALS 1
AND GOOD−ACCOUNT EQUALS 0

IF BANK−BOOK EQUALS 0 N : 11
AND EMPLOYMENT EQUALS 0 1 : 18.2%
AND WORKING−YEARS EQUALS 1 0 : 81.8%
AND AGE EQUALS 0
AND CONCURRENT EQUALS 0
AND GOOD−ACCOUNT EQUALS 1

IF BANK−BOOK EQUALS 1 N : 4
AND EMPLOYMENT EQUALS 0 1 : 75.0%
AND WORKING−YEARS EQUALS 1 0 : 25.0%

AND AGE EQUALS 0
AND CONCURRENT EQUALS 0
AND GOOD−ACCOUNT EQUALS 1

(continued overleaf)



314 APPLIED DATA MINING

Table 11.13 (continued )

IF BANK−BOOK EQUALS 0 N : 8
AND RESIDENCE EQUALS 0 1 : 75.0%
AND DEBTS EQUALS 1 0 : 25.0%
AND PURPOSE EQUALS 0
AND CONCURRENT EQUALS 1
AND GOOD−ACCOUNT EQUALS 1

IF BANK−BOOK EQUALS 1 N : 2
AND RESIDENCE EQUALS 0 1 : 0.0%
AND DEBTS EQUALS 1 0 : 100.0%
AND PURPOSE EQUALS 0
AND CONCURRENT EQUALS 1
AND GOOD−ACCOUNT EQUALS 1

11.4.3 Multilayer perceptron models

To specify a multilayer perceptron, we need to decide on its architecture. Given
the nature of this problem, we choose a single layer of hidden nodes and we
make both activation functions logistic, from the input to the hidden nodes and
from the hidden nodes to the output. The output nodes are combined through a
softmax function. According to the SAS Enterprise Miner implementation of the
multilayer perceptron, we choose a back propagation estimation algorithm for
the weights, with a momentum parameter of 0.1. The error function is binomial,
as in Section 4.6.

To choose the optimal number of nodes in the hidden layer, we begin with a
single node and proceed stepwise until the misclassification rate starts to decrease.
With 3 nodes it is 0.182, with 4 it is 0.141 and with 5 its 0.148. This sug-
gests a multilayer perceptron with 4 nodes. Therefore the architecture of our
final network contains 22 input nodes, 4 hidden nodes and 1 output node. The
corresponding number of weight parameters is 97.

Unlike logistic regression and tree models, neural networks are black boxes.
There are no interesting structures to see, besides the fitted 0–1 values for each
observation, obtained according to the 0.5 threshold rule, from which we derive
the misclassification rate. Unlike tree models, the multilayer perceptron can be
embedded in a parametric (binomial) framework. This allows us to obtain the
model scores, which can then be compared with logistic regression scores. For our
final neural network model, we have AIC = 1634.30 and BIC = 2110.35. Both
are considerably higher than for the final logistic regression model, indicating a
possible improvement.

11.5 Model comparison

To help us choose a final model, we extend our performance analysis to include
criteria based on loss functions. For all our models we begin by splitting the
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available data into a training data set, containing 75% of the observations, and a
validation data set, containing 25% of the observations. We do this in a stratified
way to maintain the proportions 70% reliable and 30% non-reliable in the new
data sets. After fitting each model on the training data set, we use it to classify the
observations in the validation data set. This classification is reached by producing
a score and then using a threshold cut-off to classify those above the threshold
as Y = 1 and as those below the threshold as Y = 0. Finally, each model is
evaluated by assessing the misclassification rate.

We begin with the logistic regression model and classification errors for a
cut-off threshold of 50% (corresponding to the discriminant rule). According to
this threshold, all the applicants whose estimated probability of non-reliability
(Y = 1) is greater than 50% are predicted as non-reliable clients, otherwise they
are classified as reliable clients. This model correctly predicts 90.29% of the
reliable clients (Y = 0). The probability of committing a type II error is 9.71%.
A type II error means taking a reliable client and predicting it as non-reliable.
The model is less effective at predicting non-reliable clients; in fact, it predicts
only 39.56% of them correctly. The probability of committing a type I error is
60.44%. A type I error means taking a non-reliable client and predicting it as
reliable. It seems that the model has greater difficulty in predicting non-reliable
clients than reliable ones.

This is quite common in credit-scoring problems. The main difficulty of score-
card models is in predicting the bad risks. But we need models that can predict
bad risk effectively, because type I errors are usually more costly than type II
errors. The previous error rates are obtained for a 50% cut-off, but a lower cut-off
might allow us to catch a greater number of bad repayers. A 30% cut-off reduces
the type I error to 24.44%, but the type II error rises from 9.71% to 22.80%.

The cut-off threshold should be chosen to suit the costs of the type I and
type II errors. If the costs are similar, at 50% cut-off will be fine; otherwise, a
different threshold may be better. In credit-scoring problems, where type I error
is usually more costly, a cut-off lower than 50% is probably advisable. How
much below depends on the cost function. The ROC curve, which shows how
the errors change when the threshold varies, can be used for this purpose. Before
looking at the ROC curve, we compare the predictive misclassification rates,
at 50% cut-off, for the logistic regression model, the classification tree and the
neural network. It turns out that the tree model has the best performance, with
a misclassification rate of 0.244, followed by the multilayer perceptron at 0.248
and the logistic regression model at 0.280. Concerning type I errors, the logistic
regression model shows a 60.44% probability against 54.67% for the tree model
and 64.79% for the neural network.

We now compare the three models in terms of their ROC curves and the
Gini index of performance. The higher the point on the curve, the lower the
cut-off threshold, before applicants are estimated to be non-reliable. Figure 11.2
shows the ROC curves for our three final models; all are calculated using the
same random partitioning of the data. It shows the point for 50% cut-off using
the decision tree, which is the best model when using 50% cut-off. The pre-
dictive behaviour of the three models is rather similar. The logistic regression
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Figure 11.2 ROC curves for the final models.

model appears slightly inferior to the other two, but not as bad as it appeared
on the misclassification rates alone. For a clearer comparison, we calculate the
Gini index of performance; the classification tree has the highest value (0.6260),
followed by the logistic regression model (0.5798) and then the neural net-
work (0.5738).

Figure 11.3 is a lift chart. A lift chart gives, for each decile, the percentage
of predicted events (here non-reliable applicant). If the model were perfect, this
percentage would be 100% for the first three deciles (as this is the proportion
of true events) and equal to zero for the other seven deciles. From Figure 11.3
it appears that the models are rather similar for the last seven deciles (with the
neural network a bit worse, probably due to overfitting); and in the first three
deciles, the most critical region for credit scoring, the tree outperforms the logistic
regression model, and although they are very different in nature, the tree and the
neural network have a similar performance.

To summarise, the tree seems to be the best-performing model, but the differ-
ences are rather slight.
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Figure 11.3 Lift chart for the final models.

We now consider whether a combined model leads to a better classification
performance. Given the potential instability of the tree model, we try to improve
it using the bagging algorithms in SAS Enterprise Miner. We take 10 random
samples for both algorithms. Each sample is split randomly and in a stratified
way into a training data set and a validation data set, and the observations in
the validation data set are calculated according to the majority rule out of the
10 classification from the CART model using entropy impurity. As a result, we
obtain a total misclassification rate of 0.224, with a type I error probability of
about 48%. This shows a notable improvement over the single-tree model (which
had a total misclassification rate of 0.244 and a type I error probability of about
54%).

Figure 11.4 shows the ROC curves plus the 50% cut-off point using the com-
bined tree model. The combined model is rather similar to the single-tree model.
Indeed the Gini index of performance for the combined tree model is 0.5724,
slightly worse than for the single tree. Therefore, if the cut-off threshold is to be
chosen, not fixed at 50%, then perhaps it would be better to keep a single tree.
But if the cut-off is fixed at 50%, then the combined tree is the better performer.
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Figure 11.4 ROC curves for the bagged tree model and the single-tree model.

Table 11.14 Comparison of the bagged model with the three individual models.

Now we use unweighted majority voting to combine the results from the
regression model the tree model and the neural network. Table 11.14 shows
the results. Although the combined model is the best one on the training data
set, in terms of predictive classification it is outperformed by the tree model,
which proves to be the best one. However, notice that the difference in perfor-
mance is very small, no more than 0.04. The type I error probability of the
combined model is 56%, worse than the single tree. Figure 11.5 shows the
ROC curves for this comparison. Notice that the combined model does bet-
ter than the tree for low cut-off values, but then the type I error is too high.
The Gini index of performance for the combined model is 0.5699, lower than
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Figure 11.5 ROC curves for the bagged tree model and its component models.

before. Therefore the tree model, which does better at high cut-off values, is to
be preferred.

To conclude, the best model for classifying the data set is the single-tree
model, or if computational resources allow, the bagged tree model. However,
all the final models have a rather similar performance, so it may make sense to
choose the most transparent model, namely, logistic regression.

11.6 Summary report

• Context: this case study concerns credit scoring. It may also be applied to any
situations where the objective is to score the past behaviour of an individual or
company in order to plan a future action on the same individual or company in
a CRM framework. The score can then be used to evaluate credit reliability,
customer loyalty or customer churnability. Furthermore, it can be used to
select clients in order to maximise the return on an investment (e.g. clients to
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receive a promotional campaign, clients to involve in a one-to-one banking
relationship, clients to target with a personalised gift).

• Objectives: the aim of the analysis is to build a scoring rule that attaches a
numerical value to each client.

• Organisation of the data: the data is all the information available in a bank
on each applicant for consumer credit, including individual data and bank-
ing behaviour data. There are 21 categorical variables, one of which is the
observed credit reliability, used as a supervisor target variable to build up
a credit-scoring rule able to discriminate reliable debtors from non-reliable
debtors. A credit-scoring rule should be able to tell which are the discriminant
variables and give their weight in the final score.

• Exploratory data analysis: this phase was conducted using odds ratio analysis,
as the available variables were all discrete (actually binarised). The odds
ratios suggest which explanatory variables may be discriminant. Two of the
original variables were rather confusing, so they were subdivided into new
binary variables, giving a total of 22 explanatory variables.

• Model specification: the analysis objective suggested a predictive model,
able to find a rule that splits debtors into homogeneous categories and then
attaches to each category a score expressed as a probability of reliability.
We considered the three types of model that are typically used in credit-
scoring problems: logistic regression, classification trees and multilayer per-
ceptrons.

• Model comparison: the models were compared using statistical or scoring-
based criteria, such as G2, AIC and BIC as well as the misclassification
rate on the whole data set. There was not enough data to rely on cross-
validation alone. The goodness-of-fit comparison showed that neural net-
works performed best, followed by logistic regression and classification trees.
We then considered a cross-validation approach, and compared classifica-
tion errors on a validation data set. To convert a score into a 0–1 estimate
(good or bad debtors) we assumed a threshold of 50%. Then the tree model
had the best performance, followed by the multilayer perceptron and then
the logistic regression model. However, in terms of type I errors, which
are usually more costly in these types of problem, logistic regression out-
performed neural networks. To obtain a result independent of the chosen
threshold, we compared the ROC curves and calculated the Gini index of
performance. This time the classification tree came out best, confirmed by
the lift chart. Given the rather limited amount of data and the potential
instability of tree models, we tried to improve our model by bagging; the
results for the bagged model were considerably better when a 50% threshold
was chosen.

• Model interpretation:: on the basis of model comparison, it seems that clas-
sification trees, or their bagged version, do the best job for this problem.
But logistic regression models are not so inferior on this considered data set,
especially if type I errors are emphasised. The choice should also depend on
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how the results will be used. If decision makers look for hierarchical ‘what
if’ rules, which classify clients into risk class profiles, then classification trees
are very good. On the other hand, if they desire analytic rules, which attach
an impact weight to each explanatory variable (measured by a regression
coefficient or an odds ratio), then logistic regression is better.





CHAPTER 12

Forecasting television
audience

12.1 Objectives of the analysis

This case study compares a number of statistical techniques for forecasting tele-
vision audiences in the Italian market. Programme planners want a forecasting
method that will help them devise schedules to maximise audiences. To do this,
they need to know which programmes on a channel reach the maximum audi-
ence, for a given choice of the competing channels. There are essentially two
strategies: counterplanning reacts to competitors’ programmes with a programme
that is very different, in order to capture the remaining public; and competitive
programming reacts to competitors’ programmes with programmes of the same
type, hoping to attract a higher audience share based on the programme’s quality.
Television schedules are planned in advance. The data in this study consists of
programme plans for 3–5 month periods, planned at least 4 months in advance.

These strategies embody the notion of a programme’s value. A programme’s
value is often related to the perceived impact of an advertisement with a slot
during its broadcast. The higher a programme’s audience, the higher the publicity
cost to insert an advertisement in the programme. In this case study we consider
audience data from the Italian television market. By magnitude and composition,
this is one of the most complex television markets in the world and it therefore
represents an important example for other markets too. In the Italian television
market there are six leading channels, and several smaller channels; most of these
smaller channels are local but some are national. All six leading channels are
national, as they reach almost 100% of the country. Three are owned by the state:
rai1, rai2, rai3. The other three are owned by a private company called Mediaset:
rete4, canale5 (can5), italia1 (ita1). Although the real competition is between
Mediaset and the state, each owning three channels, the individual channels have
a degree of autonomy, so it makes sense to talk about competition between
them all.

Data on the television audience, at regional level and national level, is provided
in Italy by an institutional company called Auditel. Auditel selects a panel – a
stratified sample of viewing families – to represent the different geographic,
demographic and sociocultural characteristics of the national population. The
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selected individuals remain on the panel for a period of about five years; each
year about 20% of them are replaced. Each television in the house of a panel fam-
ily is fitted with an electronic meter. The meter continually records viewing data:
whether the television is on and to which channel it is tuned. The panel consists
of 5000 families, containing a total of 15 000 individuals, and data is collected
from 8000 television meters. It is one of the largest television audience panels in
the world. The panel audience for a programme is extrapolated to the whole pop-
ulation using weights that reflect the representation of each population stratum in
the panel. The extrapolated data is the database for our case study; we will not
examine the extrapolation mechanism. Here are some indicators for measuring
the audience of a channel; this case study uses the indicator called share.

• Reach indicates the total number of distinct (unique) visitors that, in a given
time interval, have seen the channel for at least one minute.

• Mean audience is the sum of the number of viewers per minute divided by
the number of minutes in the considered time interval.

• Total audience is the sum of the mean audience for all the considered chan-
nels, in the considered time interval.

• Share is a percentage for each channel given by the ratio of the channel’s
mean audience to the total audience in the given time interval.

The share of a channel is defined for a given time interval; it is the percentage of
people that are watching that channel, averaged over the time interval. Here we
will consider the six leading channels and put the rest into a ‘residual’ channel.
This will give us seven channels and seven shares, which sum to 100%.

Our objective is to predict the shares of the six leading channels, for a given
menu of broadcast programmes. It is difficult to predict a channel’s share, because
it depends on factors that can be hard to quantify, such as the preferences and
habits of the viewers, and the quality of the broadcast programme. Programme
quality depends on many factors besides content; two of them are programme
history and coverage by other media. Many viewers enjoy a varied diet of tele-
vision and show greater loyalty to a channel than to a programme or type of
programme. Although this behaviour is gradually declining, it can have a con-
siderable effect on audience share predictions and it does still exist, especially
among older viewers. To summarise, our problem is to predict the shares of the
six leading channels. We therefore have a predictive data mining problem aimed
at predicting a multiple target, consisting of six variables, something we have
not covered up to now. This data set is analysed from a Bayesian perspective in
Giudici (1998).

12.2 Description of the data

We will use one year of observations from 29 November 1995 to 28 November
1996 for the hours 20:30 to 22:30, known as prime time. For every minute of
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these hours, the meter records the channel to which the television is tuned. The
channel can be one of the six leading channels or channel 7, which contains
all the rest. The data matrix consists of 366 multivariate observations; for each
prime time during the considered year (a row in the matrix) it shows general and
channel-specific information. The general information is the date, the day of the
week (Sunday is 1 and Saturday is 7) and the total number of television viewers
(in thousands). The channel-specific information is the share of each channel, the
title of the broadcast programme and the type of the programme.

Table 12.1 shows an extract from the original data matrix; it contains the gen-
eral information and information specific to channels rai1 and rai2. On Thursday
29 November 1995 there were, on average, 28 916 thousand people watching
television (about half the country’s population) during prime time: 21.7% were
watching rai1, broadcasting the telefilm (TF) Solo per il tuo bene (Only for your
love); 14.2% were watching rai2, broadcasting the film (F) royce. The data matrix
contains similar information for the other four channels.

Now we need some more background information. The shares during prime
time exhibit high variability. This is because they measure how a large total
audience is distributed among the channels, which usually broadcast their better
programmes in this period and generally behave according to a competitive pro-
gramming strategy, instead of the counterplanning strategy they follow during
the rest of the day. The high variability means that prime time shares are usually
rather difficult to predict with reasonable accuracy. The six leading channels take
about 92% of the television audience, so they can be treated as highly repre-
sentative of the public’s choices. The share of the other networks is treated as
residual, and this means it is obtained by subtraction:

share7t = 100 −
6∑

i=1

shareit

where the index i = 1, . . . , 6 refers to the six main channels and the index t =
1, . . . , 366 refers to the considered day.

The programme titles cannot really be used to obtain explanatory variables
of the shares, as in most cases they are unique, so there is no variability on
which to build a statistical analysis. Furthermore, even when a programme is

Table 12.1 Extract from the original data matrix.
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Table 12.2 Classification of programmes into 14 groups.

F = Film SC = Sport (football, official league)
TF = Telefilm SCA = Sport (football, friendly)
PV = Variety programme SA = Sport (different from football)
PVS = Special variety programme TSI = Italian fiction, in episodes
P = Special programme TS = Non-Italian fiction, in episodes
PI = Information programme TMI = Italian TV movie
D = Theatre TM = Non-Italian TV movie

Table 12.3 Classification of the
14 groups into 5 categories.

Film: F
Tv-Movie: TF, TS, TSI, TM, TMI
Shows: PV, PVS, P
Information: PI, D
Sport: SC, SCA, SA

repeated (e.g. a show), it will never be the same programme, as it will probably
have new content. We therefore need to classify programmes into homogeneous
categories by programme type. This classification is a critical issue, as it affects
the quality of the final predictions. Here we have the classification provided by
the marketing experts of the Italian private network, who have kindly supplied
the datas. For each combination of day and channel, the data matrix shows the
programme type, as can be seen in Table 12.1. The programme classification puts
each programme into one of 14 groups listed in Table 12.2.

Given the somewhat limited amount of available data, having 14 groups will
mean there are too many to make accurate predictions. We therefore aggregate
them into 5 groups as logically as possible, based on discussions with marketing
experts. Table 12.3 shows this new classification and how it relates to the old
one. There is a price to pay for this greater simplicity; it may lead to less accurate
predictions because the new classes may be more heterogenous. But this danger
is not entirely removed by considering finer groupings, like the original one.

We now have 6 new programme type variables, one for each channel. Each
of them is a qualitative variable with 5 possible levels. To be parsimonious,
we transform each of them into as many binary variables as their levels. This
gives a total of 6 × 5 = 30 binary variables, one for each programme type and
channel combination. We apply a similar binarisation to the days of the week,
obtaining a total of 7 binary variables. We have therefore taken the original
6 + 1 qualitative variables in the data matrix and replaced them with 37 binary
variables. Table 12.4 shows their values for the same evenings as in Table 12.1.
The share of rai2 is missing for one evening. We delete this item from the matrix
as there is no obvious way to estimate it. The total number of observations
is now 365.
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Table 12.4 Binarisation of the qualitative explanatory variables.

12.3 Exploratory data analysis

Exploratory analysis is essential when tackling a difficult problem like this one.
We want to predict the shares of the six leading channels, so we examine the
distribution of these shares over the year. Table 12.5 shows some simple sum-
mary statistics for each channel share. Notice that there appear to be two leading
channels: rai1 and can5. These can be considered as the leading channels of each
of the two networks (public and private); they typically compete for the leader-
ship, and usually they can be considered as ‘generalist’, aiming at the general
public. In the considered year, Table 12.4 indicates that rai1 had a higher overall
mean share of 23.80, against 22.13 for can5. The other channels follow, with rai2
(14.76) coming before ita1 (11.73), rai3 (11.06) and rete4 (8.38). Generally, rai2
and rete4 are both targeted at a mature public, whereas rai3 and ita1 are targeted
at a younger public; rai3 is more cultural than ita1. The variability of the shares,
expressed by the standard deviation, varies considerably, with leading channels
having a higher variability. And the wide range of the observations, expressed
by the minimum and maximum shares, makes predictions rather difficult.

To understand the influence of programme type, we obtain the boxplot of each
share, conditional on the programme types (Figure 12.1). There appear to be out-
lying observations (evenings). These manifest themselves for different channels
and different programme types. The shares of the six leading channels add up to

Table 12.5 Summary statistics on the channel shares.

Variable N Mean Std Dev Minimum Maximum

shrrai1 365 23.7915068 7.6157088 9.2000000 72.5000000
shrrai2 365 14.7591781 4.7044466 3.0000000 44.7000000
shrrai3 365 11.0575342 3.7992668 2.6000000 40.5000000
shrrete4 365 8.3783562 2.2547867 2.7000000 17.5000000
shrcan5 365 22.1252055 5.9504290 5.3000000 60.3000000
shrita1 365 11.7336986 2.9919193 3.1000000 23.4000000
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Figure 12.1 Boxplots for the six channels using the five programme types.
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Figure 12.1 (continued )
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a fairly stable figure of about 92%. So when there is an outlier higher than the
median, other channels may have an outlier lower than the median. In any case,
considering the very erratic nature of television shares, we do not remove any
outliers, although removing them would improve the accuracy of the predictions.
We are trying to build a model that can predict shares, whatever the menu of
available programmes.

Figure 12.1 suggests the shares depend on the programme types in differ-
ent ways. For instance, on rai1 Show programmes and Sport programmes seem
to increase shares, with other types near the overall median. For can5 there is
a similar behaviour. The other channels are more thematic; they show differ-
ent effects. Generally, Sport programmes increase the shares; other programmes
differ according to where they are broadcast:

• rai2 does better with Sports programmes and Tv-Movie programmes, worse
with Information programmes.

• rete4, which is also rather dependent on programme types, does better
with Sport programmes and Show programmes, worse with Information
programmes.

• rai3, which never broadcasts Tv-Movie programmes in the considered period,
does better with Sport programmes and Show programs, worse with Film
programmes.

• ita1, which has a very limited amount of Information programmes, does bet-
ter with Sport programmes and Tv-Movie programmes, worse with Film
programmes and Show programmes.

It is very important to understand the nature of a channel – the programmes
which characterise it and create its image. Table 12.6 shows the frequency distri-
bution of the programme type variables, using our five-level classification. The
channel images now begin to emerge. For instance, the distributions of rai1 and
can5 are rather similar: rai1 has percentages higher than other channels on the
most popular programme types, Show programmes and Sport programmes; can5
does this on Show programmes but is beaten by rai2 on Sport programmes. In the
considered period, most football matches were broadcast on the public channels,
and this explains the difference between rai1 and can5. The other channels are
more specific, as they all differ notably.

Differences between the channels can be better understood by comparing them
within the two networks, public and private. This appears to show that rai1 and
can5 behave as competitive channels, with the others behaving more like coun-
terplanners. For instance, in the public network, rai2 broadcasts a high percentage
of Film programmes and Tv-Movie programmes, whereas rai3 broadcasts many
Information programmes and Film programmes. In the private network, rete4
broadcasts many Film programmes, and ita1 broadcasts many Film programmes
and Tv-Movie programmes. This leads to highly symmetrical planning behaviour
between the two networks. Another important explanatory variable is the total
audience. Variation in the total audience is usually related to specific groups of
people (i.e. those who tend to be at home less often), hence it will be reflected in
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Table 12.6 Distribution of the programme types by channel.

rai1 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

Film 103 28.22 103 28.22
Information 33 9.04 136 37.26
Show 127 34.79 263 72.05
Sport 33 9.04 296 81.10
Tv−Movie 69 18.90 365 100.00

rai2 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

Film 170 46.58 170 46.58
Information 9 2.47 179 49.04
Show 45 12.33 224 61.37
Sport 23 6.30 247 67.67
Tv−Movie 118 32.33 365 100.00

rai3 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

Film 152 41.64 152 41.64
Information 172 47.12 324 88.77
Show 17 4.66 341 93.42
Sport 24 6.58 365 100.00

rete4 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

Film 251 68.77 251 68.77
Information 29 7.95 280 76.71
Show 23 6.30 303 83.01
Sport 5 1.37 308 84.38
Tv−Movie 57 15.62 365 100.00

can5 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

Film 117 32.05 117 32.05
Information 17 4.66 134 36.71
Show 144 39.45 278 76.16
Sport 19 5.21 297 81.37
Tv−Movie 68 18.63 365 100.00

Ita1 Frequency Percent
Cumulative
Frequency

Cumulative
Percent

Film 177 48.49 177 48.49
Information 1 0.27 178 48.77
Show 27 7.40 205 56.16
Sport 9 2.47 214 58.63
Tv−Movie 151 41.37 365 100.00
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Figure 12.2 Distribution of the total audience.

changes of share. Figure 12.2 show that the distribution of the total audience is
rather asymmetric to the right; it is also extremely variable. Therefore it makes
sense to include the total audience as an explanatory variable, and we standardise
it to help with interpretation. Other variables can be derived from the data matrix.
First of all, each channel share depends not only on its own programme, but also
on the programmes broadcast by the other channels. This effect is generally less
marked, but we consider it in Section 12.4. Another relevant explanatory variable
is the day of the week. Its informative content may be included in the programme
types (which usually entail a specific day) and the total audience, but there may
also be other effects due to the day of the week. Other temporal variables may also
be included, such as the month and the season. After discussion with marketing
experts and some practical experimentation, we decide not to consider them.

To build a statistical model, it is often important to understand which probabil-
ity model can be used to describe the distribution of the response variable. Here
the response variable is a 6-variate vector of shares. The shares are continuous
quantitative variables but they have a limited range. The Gaussian distribution
is typically used to model multivariate continuous variables, yet it may not be
entirely appropriate here. This is confirmed by a closer examination of the dis-
tribution of the shares. Figure 12.3 shows the distribution of the shares of can5,
along with the Gaussian approximation and the kernel density estimate, based on
a Gaussian kernel (Section 5.2). The Gaussian curve is distant from the kernel
density estimator. But given the complexity of the analysis, it may be prudent to
use a linear model, as linear models often produce explicit results that are easy
to interpret. Since a linear model is based on the Gaussian assumption, we can
try to meet this assumption by transforming the response vector.

When we include channel 7, others, the shares sum to 100%. They are propor-
tions, and proportions can be transformed to a multivariate Gaussian distribution
by using the following logistic transformation. Assume there exist some explana-
tory variables that allow us to determine the structure of the parameter πit , which
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Figure 12.3 Histogram, Gaussian and kernel density estimated curves for shrcan5.

expresses the aggregated probability that each subject chooses the ith channel on
the t th evening. This can be seen as a model for individual preferences. The dis-
tribution of a binary variable is defined by only two probabilities, π and 1 − π .
To describe a logistic transformation for a binary variable, we define a logit

θ = log

(
π

1 − π

)

Suppose the variables are n-ary rather than binary, as in this case, where for each
evening t there are seven probabilities of channel choice, which sum to 1. Then
a possible logistic transformation is

θi = log

(
πi

π7

)
for i = 1, . . . , 6

One of the seven probabilities (here π7, corresponding to others) is chosen as
a comparison term and is therefore omitted from the analysis. We now use this
transformation on the observed shares. The response variable is defined by the
following transformation:

yit = log

(
shareit

share7t

)
for i = 1, . . . , 6 and t = 1, . . . , 365

where yit represents the logit of shareit (share relative to the ith channel and to
the t th evening).

It can be shown (e.g. Johnson and Wichern, 1982) that the previous trans-
formation has an approximately multivariate Gaussian distribution for the 6-
dimensional vector of the logit share so defined. Table 12.7 shows the values
of these logit shares for the six evenings in Table12.1. It contains a logit share



334 APPLIED DATA MINING

Table 12.7 Logit shares for the evenings in Table 12.1.

Figure 12.4 Histogram, parametric (red) and kernel density (purple) estimated curves
for logitshrcan5.

equal to 0. This corresponds to a share equal to the channel 7 share for that
evening (up to the second decimal place). Figure 12.4 shows the distribution of
the logit shares for can5 obtained using this transformation. It exhibits a rather
good approximation of the Gaussian curve, which is now very close to the ker-
nel density estimate. The goodness of the Gaussian approximation for the logit
shares can be deduced in other ways; for instance, the qq-plot after the transfor-
mation gives a remarkable goodness of fit. Figure 12.5 compares the qq-plot for
the share of can5 with the qq-plot for the logit share of can5.

Logit shares help us with the statistical analysis but then they can be converted
back into shares by using the following inverse transformation:

shareit = 100




exp yit

1 +
6∑

j=1

exp yjt


 for i = 1, . . . , 6

which resembles the softmax activation function used in neural networks mod-
elling (Section 4.6).
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(a) (b)

Figure 12.5 The qq-plots for (a) shrcan5 and (b) logitshrcan5.

Figure 12.6 Scatterplot of the logit shares.
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Table 12.8 Correlation matrix of the logit shares.

Table 12.9 Partial correlation matrix of the logit shares.

logit1 logit2 logit3 logit4 logit5 logit6

logit1 1 0.025 0.126 0.096 0.177 0.109

logit2 1 0.257 0.146 0.172 0.177

logit3 1 0.181 0.052 0.145

logit4 1 0.058 0.208

logit5 1 0.255

logit6 1

On the basis of the available logit shares, Section 12.4 considers a number
of predictive models. Often, for brevity, a logit share will be indicated with
li , with i = 1, . . . , 6. First we consider the correlation structure among the logit
shares, which helps us to understand the structure of the Italian television market.
Figure 12.6 shows the scatterplot of the observed logit shares, and for each
logit share variable it also shows the minimum and maximum observations. As
expected, there is a degree of correlation between the logit shares.

To reach a firmer conclusion, Table 12.8 shows the correlation coefficients
between logit shares. There are relevant correlations between logit shares, not
only for the minor channels (l2, l3, l4, l6), as can be expected, but also for the
can5 logit share (l5). Table 12.9 shows the partial correlation matrix, which leads
us to more accurate results on the interdependency structure between the logit
shares (and in turn between the shares, as the channel 7 share is quite stable).
The strongest partial correlations occur within each of the two networks: between
can5 and ita1 (0.255), between rai2 and rai3 (0.257) and between rete4 and ita1
(0.208). Between networks, the strongest competition is between the two lead-
ing channels, rai1 and can5 (0.177), and also between rai2 and rete4 (0.146),
rai2 and can5 (0.172), rai2 and ita1 (0.177), rai3 and rete4 (0.181), and rai3
and ita1 (0.145). These results confirm that the two leading networks com-
pete with each other, with can5 also competing with others, in particular with
rai2 and ita1. The other channels are quite interdependent and cannot sim-
ply be paired across networks; in other words, they are more exposed to the
competition.
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12.4 Model building

We consider two types of models that differ in their aims. First we consider a
single-target model, in which the logit share (hence the share) of one channel is
to be predicted, on the basis of all programme types, the day of the week and the
total audience. We choose to predict can5 as it is more subject to competition.
We then build a multiple-target predictive model, in which all logit shares are
predicted using all the explanatory variables. So we can compare models of
different kinds, we use cross-validation from the outset. We randomly partition
the data set into a training data set (75% of the data) and a validation data set
(25% of the observations). In this section we show, for each class of models,
how to obtain a good representative model that minimises the validation error,
then we compare the representative models in Section 12.5.

Our initial aim is to predict the logit share of can5, on the basis of the 30 binary
explanatory variables that describe programme types, the 7 binary variables that
describe the day of the week, and the continuous variable that describes the
audience. We begin with a linear model. In linear models, to avoid linear depen-
dency problems, we omit one binary variable per channel and one for the days
of the week.

To select a parsimonious linear model, we follow a stepwise model selec-
tion procedure, based on pairwise model comparison F tests (Section 5.3). We
choose a significancy level of 0.05. Table 12.10 summarises the stepwise proce-
dure. The first variable that enters the model is the standardised audience. The
correlation between the two is 0.3179, rather high for our data. The other sig-
nificant variables inserted in the final model include whether Show programmes
and Sport programmes are on can5, and variables related to programme types on
other channels, in particular, whether ita1 is broadcasting a Film programme or
a Tv-Movie programme. It also matters whether or not rete4 broadcasts a Film
programme or an Information programme, whether or not rai1 is broadcasting an
information programme, and whether or not it is a Thursday.

Table 12.10 Results from the stepwise linear model selection procedure.

Step
Effect
Entered

Number
DF In F Prob > F

1 std(audience) 1 1 31.1124 <.0001
2 show5 1 2 29.2278 <.0001
3 film6 1 3 20.4956 <.0001
4 sport5 1 4 17.8170 <.0001
5 film4 1 5 7.0417 0.0084
6 information1 1 6 8.8123 0.0033
7 information4 1 7 4.4485 0.0359
8 thursday 1 8 5.2413 0.0228
9 tv−movie6 1 9 4.1858 0.0418

10 show3 1 10 5.4349 0.0205
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Table 12.11 Parameter estimates with the linear model.

Standard
Analysis of Parameter Estimates

Standard
Parameter DF Estimate Error t Value Pr > |t|
Intercept 1 0.5582 0.0696 8.03 <.0001
AUDI−BV1 1 0.1481 0.0186 7.97 <.0001
film4 1 0.1621 0.0426 3.81 0.0002
film6 1 0.3047 0.0629 4.85 <.0001
information1 1 0.2017 0.0616 3.27 0.0012
information4 1 0.2032 0.0753 2.70 0.0074
show3 1 −0.1972 0.0846 −2.33 0.0205
show5 1 0.2249 0.0387 5.81 <.0001
sport5 1 0.3562 0.0780 4.57 <.0001
thursday 1 −0.1367 0.0543 −2.52 0.0125
tv−movie6 1 0.1498 0.0638 2.35 0.0196

To interpret these results, we look at the estimated linear coefficients in
Table 12.11. It turns out that the logit share of can5 depends positively (in order
of magnitude) on sports5, film6, show5, information4, informa-
tion1, film4, audience and tv movie6. It depends negatively on show3
and thursday. In other words, the estimated share of can5 is expected to
increase when can5 broadcasts Sport programmes or Show programmes; when
ita1 broadcasts Film programmes or Tv-Movie programmes; when rai1 broad-
casts Information programmes; when rete4 broadcasts Information programmes
or Film programmes. Furthermore, the logit shares increase with the audiences, by
about 1.15 share points. Conversely, the estimated shares are expected to decrease
when it is Thursday, or when rai3 broadcasts a Show programme. Overall this
coincides with Figure 12.1: can5 takes most of its audience from Sports pro-
grammes and Show programmes, and increases it when others broadcast Films
programmes or Information programmes, especially the main competitors, rai1
and ita1. The estimated intercept is quite high, and this corresponds to a strong
effect of loyalty to the channel.

Next we fit a regression tree to the training data. We choose a CART tree
using the variance as a measure of impurity and the mean square error in the
validation set as the pruning criterion. A more parsimonious model is a regression
tree similar to the CHAID tree but using the F test for model splitting, instead
of the chi-squared test. But the results were poorer in terms of mean square error
on the validation data set and they are not reported here.

Figure 12.7 shows the mean square error of the CART regression tree as the
number of leaves increases. The optimal number of leaves is reached when the
mean square error is a minimum on the validation data set; it occurs at 22.
The top node of the tree specifies that the mean logit share of the training data
(274 observations) is equal to about 0.99. This corresponds to a mean share of
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Figure 12.7 Behaviour of MSE and choice of tree configuration.

8e0.99 = 21.52, according to the definition of the logit share, and assuming a
mean share for the residual channels equal to 8%. Similarly for the validation
data set. The tree is first split according to whether the standardised audience is
essentially positive (right node) or negative (left node). In the positive case, the
resulting node has a higher mean share, about 8e1.08 = 23.55; in the negative case
it has a lower mean share, about 8e0.82 = 18.16. A second split is done, for both
nodes, according to whether or not, can5 is broadcasting a Show programme.
The worst-case scenario is described by the leftmost node (no show and low
audience), in which the expected share is about 8e0.69 = 15.95. So far the tree
results essentially agree with those from the linear model.

The whole tree, which completely describes the 22 rules leading to the terminal
nodes, is given in Table 12.12. For each rule, it shows the number of observations
(total) classified to be there, as well as the mean and standard deviation of the logit
share for the observations in the node. It is difficult to compare the signs of the
effects with the signs in the linear model, as the two models are rather different
in structure. We can draw conclusions by comparing the discriminant variables.
Most of the variables detected with the linear model also appear in the tree model,
yet in a hierarchical form. This is the case for audience, show5, sport5,
information1, film6 and tv movie6. Other variables, such as film4,
information4, show3 and thursday, do not appear here. Other effects
related to the same competing channels do appear: sport3, information3,
film3, show4 and sport4, as well as film2 and film1. Finally, friday,
saturday and sunday appear. The overall structure of the tree seems more
compatible with the image of can5 and with those of its correlated competitors
(according to the correlation structure in Section 12.3).
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Table 12.12 Classification rules deduced from the CART regression tree.

IF SHOW5 EQUALS 0
AND standardize(AUDIENCE) < -0.059023893
THEN
N : 44
AVE : 0.69386
SD : 0.25358

IF TV−MOVIE6 EQUALS 0
AND SHOW5 EQUALS 1
AND standardize(AUDIENCE) < -0.059023893
THEN
N : 25
AVE : 1.02851
SD : 0.29171

IF SATURDAY EQUALS 0
AND SHOW5 EQUALS 1
AND -0.059023893 <= standardize(AUDIENCE)
THEN
N : 43
AVE : 1.14185
SD : 0.29216

IF INFORMATION1 EQUALS 1
AND -0.059023893 <= standardize(AUDIENCE) < 0.6803605603
AND SHOW5 EQUALS 0
THEN
NODE : 25
AVE : 1.43764
SD : 0.23178

IF SPORT3 EQUALS 1
AND SATURDAY EQUALS 1
AND SHOW5 EQUALS 1
AND -0.059023893 <= standardize(AUDIENCE)
THEN
N : 1
AVE : 0.82832
SD : 0

IF standardize(AUDIENCE) < -0.07021096
AND INFORMATION3 EQUALS 1
AND TV−MOVIE6 EQUALS 1
AND SHOW5 EQUALS 1
THEN
N : 7
AVE : 0.655
SD : 0.10062
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Table 12.12 (continued )

IF -0.07021096 <= standardize(AUDIENCE) < -0.059023893
AND INFORMATION3 EQUALS 1
AND TV−MOVIE6 EQUALS 1
AND SHOW5 EQUALS 1
THEN
N : 1
AVE : 0.82146
SD : 0

IF SHOW4 EQUALS 1
AND INFORMATION1 EQUALS 0
AND -0.059023893 <= standardize(AUDIENCE) < 0.6803605603
AND SHOW5 EQUALS 0
THEN
N : 8
AVE : 0.55035
SD : 0.26191

IF FRIDAY EQUALS 0
AND SPORT5 EQUALS 0
AND 0.6803605603 <= standardize(AUDIENCE)
AND SHOW5 EQUALS 0
THEN
N : 61
AVE : 1.09677
SD : 0.23145

IF FRIDAY EQUALS 1
AND SPORT5 EQUALS 0
AND 0.6803605603 <= standardize(AUDIENCE)
AND SHOW5 EQUALS 0
THEN
N : 3
AVE : 1.38847
SD : 0.15933

IF 0.6803605603 <= standardize(AUDIENCE) < 0.9634971743
AND SPORT5 EQUALS 1
AND SHOW5 EQUALS 0
THEN
N : 5
AVE : 1.09189
SD : 0.28865

IF FILM3 EQUALS 1
AND SPORT3 EQUALS 0
AND SATURDAY EQUALS 1

(continued overleaf)
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Table 12.12 (continued )

AND SHOW5 EQUALS 1
AND -0.059023893 <= standardize(AUDIENCE)
THEN
N : 4
AVE : 1.41927
SD : 0.16031

IF SPORT4 EQUALS 0
AND FILM2 EQUALS 0
AND INFORMATION3 EQUALS 0
AND TV−MOVIE6 EQUALS 1
AND SHOW5 EQUALS 1
AND standardize(AUDIENCE) < -0.059023893
THEN
N : 9
AVE : 0.80977
SD : 0.06078

IF SPORT4 EQUALS 1
AND FILM2 EQUALS 0
AND INFORMATION3 EQUALS 0
AND TV−MOVIE6 EQUALS 1
AND SHOW5 EQUALS 1
AND standardize(AUDIENCE) < -0.059023893
THEN
N : 1
AVE : 1.17222
SD : 0

IF SUNDAY EQUALS 0
AND FILM2 EQUALS 1
AND INFORMATION3 EQUALS 0
AND TV−MOVIE6 EQUALS 1
AND SHOW5 EQUALS 1
AND standardize(AUDIENCE) < -0.059023893
THEN
N : 5
AVE : 0.96288
SD : 0.1526

IF SUNDAY EQUALS 1
AND FILM2 EQUALS 1
AND INFORMATION3 EQUALS 0
AND TV−MOVIE6 EQUALS 1
AND SHOW5 EQUALS 1
AND standardize(AUDIENCE) < -0.059023893
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Table 12.12 (continued )

THEN
N : 2
AVE : 1.24541
SD : 0.21291

IF FILM6 EQUALS 0
AND SHOW4 EQUALS 0
AND INFORMATION1 EQUALS 0
AND -0.059023893 <= standardize(AUDIENCE) < 0.6803605603
AND SHOW5 EQUALS 0
THEN
N : 23
AVE : 0.72516
SD : 0.27712

IF FILM6 EQUALS 1
AND SHOW4 EQUALS 0
AND INFORMATION1 EQUALS 0
AND -0.059023893 <= standardize(AUDIENCE) < 0.6803605603
AND SHOW5 EQUALS 0
THEN
N : 17
AVE : 0.95977
SD : 0.23193

IF 0.9634971743 <= standardize(AUDIENCE) < 1.1544846418
AND SPORT5 EQUALS 1
AND SHOW5 EQUALS 0
THEN
N : 2
AVE : 1.71799
SD : 0.13672

IF 1.1544846418 <= standardize(AUDIENCE)
AND SPORT5 EQUALS 1
AND SHOW5 EQUALS 0
THEN
N : 2
AVE : 2.05309
SD : 0.30578

IF FILM1 EQUALS 0
AND FILM3 EQUALS 0
AND SPORT3 EQUALS 0
AND SATURDAY EQUALS 1
AND SHOW5 EQUALS 1
AND -0.059023893 <= standardize(AUDIENCE)

(continued overleaf)
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Table 12.12 (continued )

THEN
N : 5
AVE : 1.6396
SD : 0.0795

IF FILM1 EQUALS 1
AND FILM3 EQUALS 0
AND SPORT3 EQUALS 0
AND SATURDAY EQUALS 1
AND SHOW5 EQUALS 1
AND -0.059023893 <= standardize(AUDIENCE)
THEN
N : 2
AVE : 1.39445
SD : 0.00816

Finally, we come to feedforward neural networks. We design a multilayer per-
ceptron with one hidden layer. After some experimentation we choose to have
two hidden nodes, which can be deemed to represent the public and private tele-
vision networks. We choose linear combination functions and linear activation
functions for the two hidden nodes. We train the network using mean square
error on the validation data set. We then try an RBFs network, to capture the
neighbour topology among the evenings. We choose one hidden node and make
the combination function from the input nodes to the hidden node a (Gaussian)
radial basis function, with equal widths and equal heights. We choose the iden-
tify function for the activation functions. The neural network models appear to
perform rather similarly; the multilayer perceptron is slightly better but the RBF
network is more parsimonious.

Table 12.13 shows the weights calculated using the multilayer perceptron.
There are 72 weights, even though there are only 38 explanatory variables, the
audience plus 37 binary variables. This occurs because rai3 has no Tv-Movie
programmes, so the corresponding binary variable is dropped. Similarly, ita1
transmits information only once and is therefore dropped. There are also two
intercept parameters (bias), one for each input, as well as one from the hidden
node to the output node. Unlike with linear models, there is no need to drop
further binary variables. On the other hand, there is no simple formal model
selection procedure, or hypothesis testing procedure on the weights, so we can
only make qualitative comments about the signs and magnitudes of the weights.

Notice that the estimated weight from the hidden nodes H11, H12 to the output
node is small but positive. It therefore makes sense to interpret the effect of the
explanatory variables by looking at the sign of the coefficients from the input
nodes to the hidden node. Also notice that the bias terms have rather high values,
and this corresponds to the channel loyalty effect seen for the linear model. Most
of the signs in the linear model match the signs in this model.
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Table 12.13 Weights of the multilayer perceptron network.

From To Weight
1 AUDI−BV1 H11 1.1740347772
2 AUDI−BV1 H12 0.123134213
3 FILM11 H11 0.2168710734
4 FILM21 H11 −0.003614915
5 FILM31 H11 0.1618147995
6 FILM41 H11 0.3251317677
7 FILM51 H11 −0.900685697
8 FILM61 H11 0.9334017087
9 FRIDAY1 H11 −0.091669461

10 INFORMATION11 H11 0.4018886565
11 INFORMATION21 H11 0.101447949
12 INFORMATION31 H11 0.2979551735
13 INFORMATION41 H11 0.4086658636
14 INFORMATION51 H11 0.0348085575
15 MONDAY1 H11 0.2211611959
16 SATURDAY1 H11 0.4637795148
17 SHOW11 H11 −0.178213926
18 SHOW21 H11 0.1589792454
19 SHOW31 H11 −0.420967523
20 SHOW41 H11 −0.292000262
21 SHOW51 H11 0.1495358451
22 SHOW61 H11 −0.302074523
23 SPORT11 H11 −0.367628308
24 SPORT21 H11 −0.088506097
25 SPORT31 H11 0.468554604
26 SPORT41 H11 0.3149658113
27 SPORT51 H11 1.0365237425
28 SPORT61 H11 −0.861727181
29 SUNDAY1 H11 0.0581028079
30 THURSDAY1 H11 −0.425886049
31 TUESDAY1 H11 0.2672841044
32 TV−MOVIE11 H11 −0.290958077
33 TV−MOVIE21 H11 −0.180243694
34 TV−MOVIE41 H11 −0.308903067
35 TV−MOVIE51 H11 −0.474061343
36 TV−MOVIE61 H11 0.1132854614
37 WEDNESDAY1 H11 −0.632832395
38 FILM11 H12 −0.055731218
39 FILM21 H12 −0.083121848
40 FILM31 H12 −0.073921865
41 FILM41 H12 −0.144347594
42 FILM51 H12 0.0200435139
43 FILM61 H12 −0.0349771
44 FRIDAY1 H12 0.2470090922

(continued overleaf)
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Table 12.13 (continued )

From To Weight

45 INFORMATION11 H12 0.1106999195
46 INFORMATION21 H12 −0.198466293
47 INFORMATION31 H12 −0.03354677
48 INFORMATION41 H12 0.4014440409
49 INFORMATION51 H12 0.0197488302
50 MONDAY1 H12 −0.226134652
51 SATURDAY1 H12 −0.246060203
52 SHOW11 H12 0.0688079194
53 SHOW21 H12 −0.067446329
54 SHOW31 H12 −0.472039866
55 SHOW41 H12 0.0018527931
56 SHOW51 H12 0.0462647232
57 SHOW61 H12 −0.220152292
58 SPORT11 H12 −0.220443076
59 SPORT21 H12 −0.051749183
60 SPORT31 H12 0.2625010151
61 SPORT41 H12 −0.035962957
62 SPORT51 H12 0.2103932874
63 SPORT61 H12 0.1457104861
64 SUNDAY1 H12 0.1676716269
65 THURSDAY1 H12 −0.169547437
66 TUESDAY1 H12 0.064402756
67 TV−MOVIE11 H12 0.1610823216
68 TV−MOVIE21 H12 −0.164204013
69 TV−MOVIE41 H12 0.220171918
70 TV−MOVIE51 H12 −0.138515633
71 TV−MOVIE61 H12 0.0168145323
72 WEDNESDAY1 H12 −0.137997477
73 BIAS H11 −0.099578697
74 BIAS H12 1.0532654311
75 H11 LOGIT5 0.0661926904
76 H12 LOGIT5 0.0489219573

77 BIAS LOGIT5 0.864583892

We finally fit a nearest-neighbour model. For K , the number of neighbour-
hoods to consider in the predictions, we take different multiples of 7, coinciding
with a week in our data set. This is because programmes repeat in weekly sched-
ules. The best configuration, in terms of mean square error, occurs for K = 28,
coinciding almost with a month.

In principle, all the previous models can be extended to the multiple-target
case, but most general-purpose data mining packages, such as SAS Enterprise
Miner, do not support tree models or nearest-neighbour models with multiple
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targets. The next section compares the following three models, to predict the 6
response variables:

• A linear model with 37 + 1 explanatory variables (the binary programme
variables plus the audience) selected through stepwise model selection with
a significance level of 0.05.

• A multilayer perceptron network with 37 + 1 input variables, one hidden
layer with two hidden nodes, linear combination functions and linear activa-
tion functions.

• An RBF network with 37 + 1 input variables, one hidden node, and a radial
basis combination function from the input nodes to the hidden node, with
equal widths and heights.

12.5 Model comparison

We begin with the single-target predictive problem. The models in the previous
section are compared using two main measures of performance. The first one
is the mean square error (MSE) of the predictions, namely, the mean of the
differences between the observed and the predicted logitshares. We make this
measurement on the training date set and the validation data set. The validation
data set is obviously the most important, but the training data set can give an
assessment of the model’s goodness of fit. The second one is the correlation
coefficient between the observed and predicted quantities. It measures errors in
a slightly different way.

Table 12.14 shows model comparison when can5 is considered as the response
target variable, for the models considered in the last section. In terms of MSE
over the training data set, the CART regression tree model comes first, followed
by linear regression and the two network models. The nearest-neighbour model is
clearly worse than the others on goodness of fit. In terms of MSE for predictions,
the CART tree is again the best model, followed by the two network models and
the linear regression model. The nearest-neighbour model is again the worst.

The differences between the models are indeed slight, apart from the nearest-
neighbour model. For this data set, the neighbouring structure over the input

Table 12.14 Summary of the univariate predictive models.

Model

MSE
training
data set

MSE
validation
data set

Correlation
between

observed and
predicted

Linear regression 0.078 0.116 0.4525
CART tree 0.060 0.104 0.5066
RBF network 0.083 0.108 0.4889
MLP network 0.083 0.105 0.4933
Nearest neighbour 0.105 0.123 0.3260
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Figure 12.8 Observed versus predicted scatterplot for the CART tree (correlation =
0.5066).

variables of the different evenings is not of great help. This slightly affects the
RBF network too, which is slightly inferior than the multilayer perceptron. Net-
works do better than the regression model, as they have probably been trained
accurately, by minimising MSE over the validation data set. It may be sensi-
ble to see how they perform comparatively on a test data set, if sufficient data
is available. Comparison of the correlation coefficients, over the validation data
set, reflects quite well the previous ranking of the models. Figure 12.8 is a scat-
terplot that compares the observed and predicted logit shares for the best model,
namely, the CART tree model.

We now compare models for multivariate target prediction. We compare MSEs
in terms of shares, not logit shares. The two MSEs are strictly related. However,
there is variability in the relationship due to the volatility of the residual shares,
and this effect is stronger in the multivariate case. That is why we refer directly
to shares, which we obtain by applying the inverse logistic transformation to the
predicted logit shares. Table 12.15 is a summary comparison of the MSEs of the
predicted shares, on the validation data set only, for each of the six channels,
as well as the overall MSE obtained by averaging all squared errors. It appears
that, at the overall level, the linear model performs best, followed by the MLP
network and finally the RBF network. Differences appear more marked on a share
scale than on a logit share scale. In particular, the linear model does considerably
better for the public television channels, probably because they have a more loyal
public, easier to predict in a linear way. A mean error of around 5% is considered
rather good by the television market experts.
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Table 12.15 Summary of the multivariate predictive models expressed as MSE of the
shares on the validation data set.

Model rai1 rai2 rai3 rete4 can5 ita1 overall

Linear network 7.95 4.43 4.74 1.90 4.94 2.81 4.84
MLP network 9.36 5.28 5.20 1.91 5.07 2.88 5.48
RBF network 9.72 5.27 5.15 1.97 5.73 2.93 5.68

Table 12.16 Comparison between
observed (centre column) and predicted
quantiles (right column).

Quantile
100% Max 41.7 30.9409
99% 41.7 29.5403
95% 31.9 28.4538
90% 29.6 27.4046
75% Q3 25.8 25.4045
50% Median 21.2 23.0174
25% Q1 17.8 20.8245
10% 14.8 18.1678
5% 12.4 17.0909
1% 5.3 14.2822
0% Min 5.3 14.2822

We then calculate the mean of all (absolute) correlations between observed
and predicted shares, for each considered channel. It is 0.4739 for the linear
model, 0.226 for the MLP network and 0.186 for the RBF network. This confirm
the previous findings, especially the large superiority of the linear model over
the neural network models. Neural networks require more data to be trained well
on such a highly complex model.

The data set contains some anomalous observations, particularly for the public
channels. The presence of outliers can have two effects: when they are allocated
to the training data set, they bias the model fit; when they are in the validation data
set, they inflate the MSE. Both occur in this case study, especially for rai1. To
give a clearer picture of these effects, Table 12.16 compares the quantiles of the
observed distribution and the predicted distribution of the shares of can5, under
the best model, namely, the linear model. Notice how the model compresses the
distribution, considerably diminishing the range. Outliers cannot be eliminated
from this data set, especially because they may contain precious information on
share patterns. For completeness, however, we omit the outliers and obtain about
a 1% improvement in MSE over the shares.

To summarise, we have been able to build a valid predictive model for the
data; this model uses information on the types of programmes broadcast by all
channels, the total audience and, to a lesser extent, the date of broadcast (day
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of the week). The Italian television market appears to exhibit a strong channel
loyalty, reflected in the high intercept (and biases) estimated by the models.

While for single response problems a regression tree seem to be the best
model, followed by a neural network model, for the multiple response case a
simpler linear model may be considered a very good choice.

12.6 Summary report

• Context: this case study concerns forecasting television shares. It may also be
applied to any situations where the objective is to predict aggregate individual
preferences. Here preferences were measured through the chosen television
channel; more generally, this type of setting applies to any context where the
data reflects consumer choices among a set of alternatives, observed repeat-
edly in time. Examples are choices between internet portals, videotapes or
DVD rentals in a given period; brand choices in subsequent visits to a spe-
cialised shop; choice of restaurant in a given city area, in a given year, etc.

• Objectives: the aim of the analysis is to build a predictive rule which allows a
television network to broadcast programmes which maximise audience share.

• Organisation of the data: the data is one year of television shares for the six
leading Italian channels during prime time. Besides shares, there is informa-
tion on the programme broadcast and its type, as well as on the broadcasting
channel and the day of transmission. The type of a programme depends on
how programmes are classified in categories; this is a fairly critical issue.

• Exploratory data analysis: this suggested that television shares are affected
mainly by three sources of variation: the broadcasting channel, which express
loyalty to the channel, the type of programme, which seems to be the driving
force of individual preferences; and the day of the week, which determines
what else is available to the viewers, besides watching television. This also
explains why it is important to include the total audience in the analysis. The
exploratory analysis also suggested that we should transform the shares into
logit shares to achieve normality and lead to an easier analysis.

• Model specification: the objective of the analysis suggests a predictive model,
and the available (transformed) data specifies that there are six potential
response variables (logit shares) and a number of explanatory variables, some
of which are channel specific, such as type of programme, and some not,
such as day of the week and total audience. We considered predicting a
single channel share and all six shares simultaneously. For the univariate
problem, we considered a linear regression model, a regression tree, a mul-
tilayer perceptron, an RBF network and a nearest-neighbour model. For the
multivariate problem, we considered a linear regression model, a multilayer
perceptron and an RBF network. Multi-response regression trees and nearest-
neighbour models were not available.

• Model comparison: the models were compared using cross-validation, in
terms of mean square error (MSE) of the predictions, on the training data
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set and the validation data set. We also considered the correlation coefficient
between the observed share and the predicted share. In the univariate case,
the regression tree performs best, followed by the linear model, the neural
networks and the nearest-neighbour model. In the multivariate case, the linear
model seems to outperform the neural network models, probably because the
neural networks require more data.

• Model interpretation: on the basis of model comparison, it seems that simpler
models, such as linear models and regression trees, do the best job for this
problem. This is generally true when the available data is not sufficient to
obtain correct estimates for the very large number of parameters contained
in a more complex model. An overparameterised model, such as a neural
network, may adapt well to the data, but its estimates may be based on very
few data points, giving a rather poor predictive behaviour. This problem is
further emphasised when outliers are present in the data. In this setting they
cannot be removed as they may be very important for model building. In terms
of business interpretability, the linear model and the regression tree (for the
univariate response case) give an understandable decision rule, analytic in the
case of linear models and logically deductive in the case of trees. In this type
of problem, it is very important to incorporate expert judgements, such as in
an expert-driven classification of programme types.
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